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Abstract
In recent years, real-time image processing has gained an essential space in mobile devices,

such as IoT endpoints, smartphones, and laptops. This interest is mainly fueled by the need
to improve biometrics, such as recognizing different features from humans, security, such as
detecting intruders in restricted areas, and safety, such as detecting pedestrians in assisted
driving, among others. Mobile devices typically have two essential characteristics, a small form
factor, to allow portability, and low energy consumption, to extend battery life. Designing
and creating solutions to achieve real-time processing with those two characteristics is not
straightforward; moreover if we consider that most image processing methods are not thought
to be mobile-friendly. As a consequence, several researchers in the field of hardware design
have focused on designing specific purpose circuits. Among these, we can find external digital
coprocessors, next to the imager, and smart image sensors (SIS), that add extra circuitry to the
imager (i.e., at pixel level) to capture and process the image in the same die.

This thesis report presents the architecture of two smart imaging sensor for face recognition
and motion-based object detection, two commonly used image-processing methods. The SISs
are based on custom smart pixels capable of computing part of computer vision algorithms in
the analog domain, and a respective digital coprocessor that performs the rest of the algorithm
in the same die. On the one hand, the SIS for face recognition can compute local spatial gradi-
ents in the analog domain, on the smart pixel, and perform image classification on the digital
coprocessor. The SIS uses spatial gradients to compute a lightweight version of local-binary
patterns (LBP), which was named Ringed LBP (RLBP). The face-recognition method, which
is based on Ahonen’s algorithm, operates in three stages: (1) it extracts local image features
using RLBP, (2) it computes a feature vector using RLBP histograms, and (3) it projects the
vector onto a subspace that maximizes class separation and classifies the image using a nearest-
neighbor criterion. On the other hand, the SIS for motion-based object detection can compute
frame differences in the analog domain, on the smart pixel, and perform morphological opera-
tions and connected components to determine the bounding boxes of the detected objects on the
digital coprocessor. The smart-pixel array implements on-pixel temporal difference computa-
tion using analog memories to detect motion between consecutive frames. The object detection
SIS can operate in two modes: (1) as a conventional image sensor and (2) as a smart sensor
which delivers a binary image that highlights the pixels in which movement is detected between
consecutive frames and the object bounding boxes. The smart pixels were designed the smart
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pixel using a 0.18 µm and 0.35 µm mixed-signal CMOS processes. The evaluation of the perfor-
mance were performed using post-layout parasitic extraction. With a pixel-pitch of 32 µm × 32
µm, and considering the 0.18 µm and 0.35 µm processes, the fill factor of the face recognition
smart pixel is 34% and 76%, respectively, and of 28% and 74% for the object detection smart
pixel, respectively. The pixel array for face recognition operates at up to 556 frames per second.
Implemented, validated and tested on a Xilinx XC7Z020 field-programmable gate array, the
digital coprocessor achieves 96.5% classification accuracy on a database of infrared face images,
can classify a 150 × 80-pixel image in 94 µs, and consumes 71 mW of power. On an array of
320× 240 smart pixels, the object detection SIS operates at 60 frames per second. The digital
coprocessor was implemented and validated on a Xilinx Artix-7 XC7A35T field-programmable
gate array that can run at 125 MHz, detects objects in a frame in 0.614 µs, and has a power
consumption of 58 mW.

Thanks to the results obtained in this thesis, we can enumerate the following contributions.
First, it is possible to design heterogeneous smart cameras that combine smart pixels based on
intelligent readout circuits and a digital coprocessor in the same die. Using an array of smart
pixels can contribute to exploiting the parallelism present in the image processing algorithms.
Designing smart pixels based on intelligent readout circuits allows computing during capture
time, thus, reducing processing time and memory resources. Finally, modifying and adapting
the image processing algorithms while considering the SIS architecture can lead to simpler
methods, mathematically, without significantly impacting results such as precision.
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1. Introduction

1.1 General introduction

Computer vision is a discipline that has gained an important place in data analysis on various
scientific and industrial applications. Among the applications of computer vision are obsta-
cle detection [1] and position and speed estimation for accident avoidance [2] in driverless cars,
pedestrian detection using infrared cameras for surveillance [3,4], autonomous underwater mon-
itoring system for detecting life on the seabed [5], improvement of food industry using real time
smart machines and predictable models [6], real-time pupil localization for drive safety improve-
ments [7, 8], among others.

The scientific and industrial community have recent interest in image-based biometric meth-
ods that fostered a growing interest in smart image systems that can handle the computational
requirements of real-time video analysis. Biometrics is described as a pattern-recognition tech-
nique for individual identification, based on their physical, chemical or behavioral characteris-
tics [9, 10]. One of the most popular biometric techniques is face recognition [10], which has
abundant applications [11–13] in various areas, such as: (1) security, including identity veri-
fication [14, 15], computer or mobile device unlock [15, 16], criminal records search, and voter
registration; (2) surveillance, such as cameras used on closed circuit television [17]; and (3)
access control, that could grant access to a specific place or an electronic account to a group of
people [18] using their faces as a credential.

On the other hand, there is a growing interest in image and video processing on mobile
devices [19], including a variety of approaches for biometric recognition [20], fueled by the
commercial interest in robust authentication methods for smartphones, laptops, tablets and
other mobile devices [15,16], and mobile object detection [21–23]. One of the key advantages of
mobile devices in general is portability, mainly supported by a small form factor and a low energy
consumption to extend the device battery life [24]. Computer vision typically requires a huge
amount of computation power to be capable of delivering highly precise and fast results, relying
on increased computational requirements for improved accuracy [25, 26]. This increment on
computational requirements is counterproductive when the objective is to implement computer
vision applications into resource-constrained platforms, such as mobile devices or IoT endpoints,
as the high computation capabilities affect form factor and power consumption, requiring major
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efforts to achieve high-performance mobile solutions [27]. Thus, it is important to take into
account different considerations when selecting suitable hardware for computer vision tasks [25].

In particular for low-power biometrics, different sensors have been reported in the literature,
such as adaptive wireless body sensor networks for biometrics and healthcare applications [28] for
long-time monitoring, sensors for age and gender classification which monitor brain signals using
electroencephalography [29], biometric recognition systems for mobile Internet-of-Things (IoT)
devices [30], and an ultra-low-power hybrid face recognition processor integrated with a CMOS
Image Sensor (CIS) [31] applied to mobile devices [32, 33]. Common to all these designs are
two technological challenges: low power consumption and circuit area reduction. Both are
intimately related to key features of mobile devices, such as energy autonomy and size [28].

To reduce power consumption and increase hardware integration, designers often turn to
dedicated hardware architectures specifically designed to perform a singular task of interest. In
image processing, there is visible progress in the development of Smart Image Sensors (SISs),
also referred to as vision chips. The SIS are dedicated electronic devices that combine conven-
tional image sensors with additional circuitry on the same die [34]. The additional circuitry
performs, either partially or totally, operations and algorithms associated with different image
processing methods. It is possible to organize image processing methods and hardware into
three levels, depending on where the data is processed: pixel level processing, column/row level
processing and data-sequence level processing, i.e., processing that occurs outside the pixel ar-
ray after digital conversion [34]. Of these three levels, the most challenging when designing
the architecture of a SIS, is the pixel level, because there is a very limited area available inside
each of the pixels, and the design of the processing circuits must minimize the overhead im-
posed on the pixel size. Therefore, the complexity of the circuitry is limited by the space that
can be occupied and, as a consequence, the complexity of the image-processing operations that
can be introduced into the pixel is also limited. This difficult tradeoff can be observed on the
SIS work available the literature. Some examples of image processing methods implemented
as a SIS are edge detection [35–37], image classification using analog lightweight convolutional
neural networks [38], on-chip non-uniformity compensation on IR image sensors [39,40], target
tracking [35,37], motion detection [35], feature extraction [41–45], and face recognition [31–33],
among others [46].

When a pixel performs a significant level of data processing, such as complex mathematical
operations or feature extraction, then it is frequently referred to as a smart pixel. Smart pixels
have the capacity to deliver a high level of fine-grained parallelism (spatial or temporal), where
each smart pixel of the Focal Plane Array (FPA) in a SIS performs computation simultaneously
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on different data [34]. Fine-grained parallelism can improve the execution time of the algorithm,
lower the processing latency, reduce the amount of memory required to store temporary results,
and maximize output data throughput [43,44]. Moreover, when the smart pixel operates in the
analog domain, they can also reduce power consumption and die area [47].

The main problem presented in this thesis can be elaborated as follows. Portable devices
require to accomplish two characteristics: 1) low power consumption to extend battery life
and 2) a small-form factor. As there is a growing interest in real-time image processing for
applications such as security and authentication, the logical path is the implementation of these
applications in portable devices. As technology continuously improves, an attractive alternative
is to pushing its limits to reduce power consumption and form-factor, including implementing
real-time image processing algorithms in portable devices. A natural way of achieving low power
and portability while processing in real-time is using dedicated hardware, such as FPGAs or
ASICs, that exploits the parallelism available in the algorithm. These alternatives are typically
connected to the output of the imager. Thus they are still connected in a serial-data stream,
considerably reducing the capacity of exploiting the parallelism and then limiting the capacity
to further reducing power consumption and form factor. Another alternative are SISs, which
are heterogeneous devices composed of an imager and processing circuitry in the same die.
This heterogeneity allows computing part of the algorithms between the circuitry at the pixel-
or column-level of the sensor array and a coprocessor (analog or digital). Including pixel or
column-level processing allows to exploits the parallelism available in the algorithms. However,
many solutions require first capturing the image, i.e. waiting for the capture time of the readout
circuit, to later process the pixel data. There is an open field that can further exploits the
parallelism and power consumption, that is processing the images during the capture time.

This thesis reports the design and evaluation of two novel Intelligent Read Out Integrated
Circuits (iROICs) and their complete SIS architecture for two algorithms: face recognition and
motion-based object detection. The presented iROICs are designed to compute part of the
algorithms during the current-to-voltage integration process of the capture time. The proposed
SISs are composed of a smart-pixel architecture based on a Capacitive Transimpedance Amplifier
(CTIA) integrator, widely used on thermal IR image sensors. Therefore, the iROIC is suitable
for both face recognition and motion-based object detection in thermal IR and visible images.
The SIS design is suitable for mobile devices, where the SIS can be operated as a conventional
sensor to capture images of a scene, or, depending on the SIS architecture, as a face recognition
system to obtain the identity of a subject or as a object detection system based on motion. Using
a CTIA-based pixel, it is possible to add a small number of transistors, thereby minimizing the
added cost in area and power compared to a regular image sensor.
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1.2 Hypothesis

The hypothesis of this thesis is that a smart-pixel array can efficiently distribute the computa-
tion of an image processing system between pixel level, column level and a digital coprocessor,
and perform highly-parallel fine-grain calculations for local gradient-based image processing al-
gorithms in the spatial and the time domains.

An smart-pixel array, next to a configurable digital processor that interfaces with it, can
allow to fabricate an SIS capable of implement computer vision algorithms distributed between
both domains. The SIS can distribute the calculation of different computer vision algorithms by
performing highly-parallel tasks all along the smart pixel array. This distribution can increase
the overall performance of the smart image system with a penalty on the ratio between the pixel
circuit and photodetector areas (fill factor) that can be comparable to the fill factor conventional
readout circuit.

1.3 General goal

The general goal of this thesis is to design, test, evaluate and probe that an SIS, that computes
part of computer vision algorithms on-pixel can improve the performance of the algorithm with
a small penalty on the pixel fill factor.

1.4 Specific goals

1. Define the digital image processing algorithms on the literature to identify an algorithm
that relies on operations at the pixel-level.

2. Design and adapt different active pixel architectures to execute on-pixel operations that
are part of image processing algorithms.

3. Generalize a design of a smart pixel interfaced with a configurable digital processor. De-
sign a custom digital architecture processor to interface with the designed smart pixel
architecture and compute the desired pixel-level operations.
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1.5 Scope

The scope of this thesis work includes: 1) research and propose SISs as circuits and image
processing systems, 2) simulate and evaluate the performance (speed, power, utilization) of the
proposed SISs, and 3) publish the results as articles on Web of Science indexed journals.

As the main goal is to design an SIS architecture, the algorithms that are being evaluated
and reviewed during this thesis are limited to classic and mathematically simple available in the
literature. This scope reduces the literature analysis to those works that are related to the two
applications implemented, that are face recognition and object detection, and can be thought
of as part of a heterogeneous smart camera architecture.

1.6 Contributions

Thanks to the results obtained in this thesis, we can enumerate the following contributions:

1. It is possible to design heterogeneous smart cameras that combine smart pixels based on
intelligent readout circuits and a digital coprocessor in the same die

2. Using an array of smart pixels can contribute to exploiting the parallelism present in the
image processing algorithms.

3. Designing smart pixels based on intelligent readout circuits allows computing during cap-
ture time, thus, reducing processing time and memory resources.

4. Modifying and adapting the image processing algorithms while considering the architec-
ture can lead to simpler methods, mathematically, without significantly impacting results
such as precision.

1.7 Report organization

The rest of this thesis report is organized as follows: Chapter 2 discusses related work. Chapter 3
describes the face recognition and object detection methods used in to desing the SISs. Chapter 4
describes the proposed SISs architecture, including their smart pixel, the coprocessor and digital
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controller. Chapter 5 presents the algorithm and SISs performance results. Finally, Chapter 6
concludes with a discussion of the results, summarizes key contributions of this thesis and its
possible outcomes.
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2. Related work
The technological advances in high-performance computing have enabled the development of

fast and highly-accurate computer vision systems, including face recognition and object detec-
tion. Most frequently, this performance is achieved using power-hungry processors and graphics
processing units (GPUs) [48, 49]. While this cost in power and space may not be important
in big-data applications that require high precision, it is normally not acceptable in mobile or
portable systems [20], which require compact, power-efficient electronics. For these applica-
tions, modern technologies have enabled the design of special-purpose processing systems on
dedicated hardware that achieve high speed and portability with low power. These designs
are implemented on programmable devices such as field-programmable gate arrays (FPGAs) or
Application-Specific Integrated Circuit (ASICs). This chapter summarizes related work in face
recognition and object detection. The first two sections enumerate and describe FPGA and SIS
implementations, and the final section discuses the reviewed literature.

Considering FPGA devices, researchers have developed special systems focused on a wide
variety of computer vision methods. FPGAs are popular implementation platforms because of
their higher level of fine-grained parallelism and lower power consumption compared to tradi-
tional software-programmable solutions.

In the case of facial recognition, many of the FPGA implementations have been developed
to focus on speed, portability and low power-consumption. A popular method for facial and
object recognition is the use of different type of neural networks, based on Histogram of Ori-
ented Gradients (HOG) [50], a combination of Weighted Modular Principle Component Analysis
(WMPCA) and a Radial Basis Function Neural Network (RBFNN) [51] and Convolutional Neu-
ral Networks (CNN) [52]. A common disadvantage of these solutions is the limited capacity of
on-chip FPGA memory, which is insufficient to store the large number of parameters required
by the CNN. Storing these parameters in external memory reduces the throughput of the imple-
mentation, therefore limiting the application of FPGAs for small form-factor face recognition in
real time. Other algorithms have been addresses that uses local information, such as face recog-
nition algorithms based on Fast Fourier Transform (FFT) [53] or Local Binary Pattern (LBP)
and linear discriminant analysis (LDA) [54], which can help to minimize the memory usage and
can increase the recognition time.

On the object location and classification side, during recent years many FPGA-based CNN
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architectures have been proposed [55–59]. A described above, a common disadvantage of neural
networks solutions is the limited capacity of on-chip FPGA memory, and limits the application
of FPGAs for small form-factor object detection in real time. This issue was addressed by Long
et al. [60], who implemented an FPGA-based object detection algorithm based on multi-frame
information fusion. Their algorithm uses a reduced number of parameters for HOG-based object
location and Support Vector Machines (SVMs) for classification, and achieves a throughput of
up to 10,000 fps. Nakahara et al. [61] presented an object detection algorithm based on a
multiscale sliding-window location search, which binarizes the CNN parameters to reduce their
memory requirements, and enables the implementation of the complete network using only on-
chip memory. Despite the throughput improvement achieved by using on-chip parameters, all
the solutions described above read the image pixels as a serial stream from the image sensor.
This has the effect of increasing the latency and limiting the data parallelism available to the
algorithm, compared to having access to all the pixels simultaneously. Moreover, algorithms
that access the image data serially require line buffers or even entire frame buffers, further
increasing the memory requirements of the hardware platform.

Despite the throughput improvement achieved by using on-chip parameters, all the FPGA-
solutions described above read the image pixels as a serial stream from the image sensor. This
read method has the effect of increasing the latency and limiting the data parallelism available to
the algorithm, compared to having access to all the pixels simultaneously. Moreover, algorithms
that access the image data serially require line buffers or even entire frame buffers, further
increasing the memory requirements of the hardware platform.

As discussed in Chapter 1, SISs are special-purpose image sensors that combine conventional
imagers with additional circuitry to process pixel data on the same chip. When an SIS is de-
signed with computational circuits in every pixel (smart pixels), it can exploit the pixel-level
parallelism available in the image-processing algorithm. This parallelism shortens latency, in-
creases throughput, and reduces the memory requirements of the solution [44,62–64]. To further
reduce power and area, SISs typically use analog circuits to store and process the data [62,65].
For example, Lee et al. [65] presented an SIS with embedded object detection that uses a recon-
figurable pixel array capable of computing frame differences and spatial gradients. The SIS uses
a capacitor in every pixel that acts as an analog memory to compute frame differences. Choi et
al [62] use a similar approach to implement motion-triggered object detection. To reduce circuit
area and improve fill factor, they use the same capacitor for two horizontally adjacent pixels
and alternate its use between odd and even frames, thus trading motion-detection horizontal
resolution for fill factor. An alternative technique to improve fill factor is to perform compu-
tation during photocurrent integration using an intelligent Readout Circuit (iROIC) [66]. For
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example, the SIS presented by Gottardi et al. [67] computes local gradients using this technique
to implement a lightweight version of local-binary patterns (LBP). Our own previous work [64]
also uses an iROIC to compute face recognition in visible-range and IR image sensors using an
array of smart pixels based on a configurable CTIA, reducing precision by only 1% compared
to a fully digital implementation.

Implementing most of the computation at the pixel level using smart pixels reduces the die
area available for the photodector in each pixel, thus reducing the fill factor of the imager. To
mitigate this effect, several SISs implement part of the computation at the column level, thus
improving fill factor at the cost of reducing parallelism and increasing memory requirements. For
example, Jin et al. [36] designed an SIS that computes edge detection using column-level circuits
and static memory. Young et al. [68] presented an SIS for object detection that combines pixel-
and column-level processing to compute image features based on HOG. Their SIS eliminates
redundant illumination data during readout, thus compressing the HOG feature descriptors by
up to 25 times compared to a conventional 8-bit readout. Kim et al. [33] detect and recognize
faces by combining, on a single chip, a standard imager architecture and a mixed-signal CNN
that implements its first layer in the analog domain. Computing part of the operations of the
algorithm using analog circuits degrades the accuracy by 1.3%, but it also reduces the power
consumption by 15.7% because Analog-to-Digital Converters (ADCs) are one of the most power-
consuming elements in standard CIS [69]. The SIS presented by Zhong et al. [70] computes
edge detection and omnidirectional LBP using column-level circuits and array of capacitors
capable of storing two rows of the image. Our own previous work [64] computes LBP using
a combination on-pixel and column-level processing. An array of smart pixels performs the
comparisons between adjacent pixels and outputs a binary value, which is used by column-
level circuits to construct the LBP features. The single-bit output of the smart pixel allows
us to reduce the memory required by the line buffers and the time to read the data from the
pixel array and improves the fill factor by moving a significant part of the computation to the
column-level circuit.

2.1 General discussion

The FPGA solutions described and analyzed above show that memory utilization is a key
concern for low power, real-time and small form factor solutions for face recognition and object
detection. The analysis shows that SISs are a solid alternative to further achieve the power and
performance that is required by computer vision on mobile devices. Despite having drawbacks
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on precision and fill factor, SISs are competitive compared to their fully digital counterparts.

Most SISs reviewed in this work shows that local filters and local algorithms, such as median
filter o LBP, are a recurrent objective. Some of these address local kernels inside the smart pixel,
but their small fill-factor difficults their scalability for high-resolution systems. Furthermore,
most of the SISs with competitive fill factor are those that compute major part of the computer
vision algorithm in their respective digital coprocessor.

The SIS architectures described above use different techniques to integrate computation into
the image sensor efficiently, including column-level processing, computing in the analog domain,
limiting LBP kernel size and reducing the number of comparisons in the kernel. These tradeoffs
mainly aim to reduce computation time and maximize fill factor. It is also important to note that
some of the computation can be performed at integration time, without waiting for the entire
image to be acquired. Indeed, Gottardi et al. [71] computes the difference between neighboring
pixels during integration to obtain a simplified version of LBP. The work presented by Young
et al. [68] indicates that compressing data prior to extracting it from the readout reduces the
bandwidth for data transmission and computation. This reduction is reflected directly as overall
energy savings. The work presented by Lee et al. [65] demonstrates that a capacitor used as an
analog memory is sufficient to store previous frame data to compute the frame-difference step
of motion-based object detection.

From the point of view of face recognition, the literature shows that infrared face recognition
is a good option for enhanced security or PAD [72]. Popa et al. [73] improve PAD performance
using a combination of IR and conventional cameras. Hoon et al [74] proposed NIRFaceNet,
a variation of the FaceNet method tailored for NIR images. Tested on different NIR data
sets, NIRFaceNet achieves accuracies between 73.1% and 94.8%. Hermosilla et.al [75] tested
different methods of face recognition on two thermal IR databases, and they achieved their
best accuracies using Gabor Jet Descriptors (96.6%), Weber Local Descriptors (94.9%), and
LBPhistograms (92.0%).

The discussion above shows that SISs are a viable alternative to digital processors to achieve
the low power and high performance required by computer vision on mobile devices, while
achieving comparable precision [33, 64]. An SIS can exploit the pixel-level parallelism of the
algorithm, but the area used by the processing circuits limits the fill factor of the SIS. This
limitation can be mitigated by performing part of the computation during photocurrent inte-
gration and by moving computation to column-level circuits. The design presented in this paper
uses both techniques to build a two-mode imager that operates as a conventional sensor and
computes object location, using a configurable CTIA suitable for the thermal IR range.
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3. Methods

3.1 Face recognition

3.1.1 Face recognition background

According to [76], a face recognition system is useful when it can work on both videos and
images, processes in real time, and is independent of the person while being robust to different
light conditions and different angles. The three fundamental steps of face recognition algorithms
are face detection, feature extraction and face classification, but typically the algorithms assume
that the face is already detected or posed at the foreground of the image. The feature extraction
step uses face images to generate a set of feature vectors that describe it. These vectors represent,
depending on the method, different features of the face such as textures, face parts (mouth, nose,
etc.), and their geometric distribution. With these, it is possible to have a general representation
of the face structure.

Based on the focus of the data processing, feature extraction algorithms can be categorized
as local (or geometric) or as holistic. On the one hand, local algorithms consider the general
structure of faces, that is, discover distinctive features using appearance-based or key-points-
based techniques. LBP is an appearance-based method that has proved to obtain competitive
performance compared to the literature on visible face databases thanks to its invariance to the
rotation of the target image [77–79]. Other LBP variations can be found that improve the base
LBP method such as multiscale LBP [80] or local ternary pattern (LTP) [81]. Histogram of
oriented gradients (HOG) is another appearance-based descriptor widely used in literature [82–
84], which consist of divide the face image into small regions and generate a histogram of pixel
gradients. Then, the histograms of the whole regions are combined to extract the feature of the
face image. Other local feature extraction methods can be found such as Speeded Up Robust
Features (SURF) [85, 86], Locality Preserving Projections (LPP) [85, 87] or multimodal deep
face recognition (MDFR) [88]. Scale-Invariant Feature Transform (SIFT) is a well-known key-
points-based technique that extracts a number of meaningful descriptive image features [85,89]
which are invariant to scaling, rotation and illumination. The main idea of SIFT is that the
relative position of key points must remain the same in different images of the same face.
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On the other hand, holistic algorithms consider that any face-image collection has redundant
information that can be discarded by applying the tensor’s decomposition [11]. With this,
these algorithms generate a new collection of fundamental vectors that represents the original
collection into a subspace of smaller dimension, while preserving the original set of images.
There is a wide variety of holistic methods in the literature. Principal component analysis
(PCA) or Eigenfaces [90] is a well-known method that efficiently characterizes the facial images
in several works [91,92]. They proved that using a standard facial image (eigenpicture) and only
a few weights for each facial image in the database it could recreate any of them very closely.
Other common method is linear discriminative analysis (LDA) or Fisherfaces [93], which is
robust to light variances and facial expressions by projecting the faces into a small-dimensional
subspace that generates well-isolated classes. Independent component analysis [94] (ICA) is
a third well-known method that consists of a PCA generalization where the most important
information can be included in a high-arrange relationship between pixels.

The classification stage uses the feature vector to label the image, using methods such as
nearest neighbors [95,96], Support Vector Machines (SVMs) [96,97], or deep neural networks [98,
99]. The classification method must be chosen according to the feature extracted in the previous
stage. For example, on holistic algorithms it is necessary to first calculate the projection of the
captured face and then calculate its distance to all classes described in that subspace using any
distance metric.

3.1.2 Face recognition for SIS

Figure 3.1 depicts a block diagram of the SIS designed in this work. The left hand side of the
figure shows the steps of the proposed face classification algorithm, which is described below.
The right hand side of the figure relates each step of the algorithm to the component of the
proposed SIS that implements it. The architecture of the SIS is described in Section 4.1.

Algorithm 1 describes the proposed face recognition method, which is based on Ahonen’s
LBP-based algorithm [100]. The feature extraction stage replaces LBP with the custom RLBP
descriptor and projects the feature vector onto a reduced space using LDA. The classification
stage compares the projected vector to a stored database of known faces and selects an ID
for the input image using a nearest-neighbor criterion. As shown in Algorithm 1, the feature
extraction stage first computes an 8-bit RLBP value for each pixel in the image using Algo-
rithm 2. Figure 3.2 compares regular LBP to RLBP for a 3 × 3-pixel kernel: LBP, shown in
Fig. 3.2a, compares each pixel to its 8 neighbors and concatenates the results to build a binary
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Fig. 3.1: Proposed method and SIS architecture. The left hand side illustrates the steps of the
presented face recognition algorithm. The right hand side shows the elements of the proposed
SIS, namely smart-pixel array, pattern generator and digital coprocessor, which execute the
stages of the algorithm.

pattern for the pixel. Thus, LBP requires 8 comparisons per pixel. In the RLBP method [101],
shown in Fig. 3.2b, each pixel is compared only to its rightmost neighbor and the results from
the comparisons of the 8 neighbors are concatenated to build the pattern vector. Unlike LBP,
RLBP requires only one comparison per pixel, because the result of each comparison is used in 8
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Algorithm 1: Proposed method using RLBP + LDA.
input : Input frame Im×n, LDA projection matrix W, face database FD, number of

subjects N , distance threshold THR
output: Subject ID

begin
Um×n ← URLBP(I) using Algorithm 2;
for i← 0 to 7 do

for j ← 0 to 7 do
Region Ri,j ← U(m

8 i : m
8 (i + 1)− 1,n

8 j : n
8 (j + 1)− 1);

Histogram Hi,j ← Histogram(Ri,j);

Feature vector X ← Concatenate {H0,0 to H7,7};
Projected vector Y ←WT X;
for k ← 1 to N do

Distance Dk ←
√∑N−1

i=1 (Yi − FDk,i)2;

if min(Dk) >THR then return unknown;
else return ID of min(Dk);
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Fig. 3.2: Examples of LBP and RLBP operators on a 3× 3-pixel window.
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Fig. 3.3: Ahonen’s algorithm using uniform RLBP.

different kernels. Moreover, all the comparisons in the image can be performed in parallel using
only one comparator per pixel. While the features extracted by RLBP contain less information
than LBP, the method provides a sufficiently accurate texture representation of the image that
achieves a similar performance in face recognition, as shown in Section 5.2.3.
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Algorithm 2: Uniform RLBP computation.
input : Input image Im×n, LUT of uniform RLBP values
output: Uniform Ringed LBP URLBP

begin
for Ii,j ∈ I do

if Ii,j − Ii+1,j > 0 then ∇Ii,j ← 1;
else ∇Ii,j ← 0;

for Ii,j ∈ I do
RLBPi,j ← {∇Ii−1,j−1,∇Ii,j−1,∇Ii+1,j−1,

∇Ii−1,j,∇Ii+1,j,

∇Ii−1,j+1,∇Ii,j+1,∇Ii+1,j+1};

URLPB ← LUT(RLBP );
return URLPB(X)

After computing the binary patterns, the algorithm divides the image into 8 × 8 nonover-
lapping regions, and computes a histogram of the binary patterns in each image, as shown in
Fig. 3.3. The 64 resulting histograms are concatenated to produce the feature vector that rep-
resents the input image. Ahonen [100] uses uniform LBP to reduce the number of labels in the
histogram. Uniform LBP assigns a label only to those patterns that have at most two 0-1 or
1-0 transitions between adjacent positions in the 8-bit pattern. As shown in Algorithm 2, the
algorithm uses the same technique, using a 256-entry lookup table (LUT) to map the RLBP
values onto uniform RLBP patterns.

After computing the histogram vector, Algorithm 1 uses LDA to map the vector onto a lower-
dimensional subspace, as in the Fisherfaces method [102]. LDA applies a linear transformation to
the histogram vector, where the transformation matrix W is computed to minimize the variance
between vectors belonging to the same class (images of the same person) and maximize the
variance between vectors of different classes. Using LDA allows us to improve the performance
of the classifier, use a simple distance metric, and reduce the dimension of the feature vector,
reducing the computational complexity of the classifier. The transformation matrix is computed
off-line using a labeled training set, and is used to project the histogram vector X onto the new
feature space as shown in Eq. (3.1):

Y = W T X (3.1)

where Y is the linear projection, X is the uniform RLBP histogram vector and W is the LDA
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projection matrix.

Finally, in the classification stage, the algorithm computes the Euclidean distance between
the projected feature vector and each element of the stored dataset FD of known subjects. FD
contains one feature vector for each know face, which is computed as the centroid of all feature
vectors obtained from the same subject in the training set. The vectors in FD have also been
projected using LDA, and the training set can be the same used to compute the LDA matrix
W. Using the nearest-neighbor criterion, the algorithm labels the input image with the identity
of the subject with minimal distance to the projected vector if that distance is larger than a
predefined threshold THR. If the minimum distance is larger than THR, the algorithm labels
the input image as an unknown subject.

3.2 Object detection

3.2.1 Object detection background

Object detection is a computer vision method focused on detecting instances of visual objects
of a class in digital images [103]. As any other computer vision technique, it is possible to
classify object detection in two approaches: single-frame and multi-frame. Single-frame object
detection uses the information contained in a single image or video frame, to perform shape
processing [104,105], color segmentation [105,106], or light intensity segmentation [107]. Multi-
frame object detection considers the information of multiple video frames, usually consecutive
in time. This allows us to discriminate the background from the foreground.

The most important applications of object detection in the past 20 years include pedestrian
detection, face detection, text detection, traffic sign/light detection, and remote sensing target
detection [103]. Depending on which application is the detection target, a different approach
must be chosen. On applications such as text detection or face detection, static objects are
being detected the main concerns are intra-class variation, such as different text fonts [108]
or face expressions [109], and object rotation [110] and distortion [111]. Many recent works
have used convolutional neural networks (CNNs) to detect objects [103,112], and its variations
such as pyramid R-CNN [113], dynamic R-CNN [114], termed oriented R-CNN [115] or libra
R-CNN [116]. Despite their very good results, the implementation complexity increases as
computational speeds are required to reach real-time processing. Thus, simple methods are still
an alternative for fast and low computational cost implementations. One simple object detection
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technique is based on object motion, known as motion-based object detection [117,118]. Motion
can be estimated in many ways, but always requires storing previous frames to determine
whether and object is in movement. The basic motion detection is to consider two consecutive
frames and calculate the absolute difference between their respective pixels. Where if that
difference is higher than a threshold, then it is possible to assume that those particular pixels
are in movement. After detecting objects, it is required to label the pixels or bound them with
known shapes to differentiate one of others [119, 120], such as bounding boxes or single pixel
labeling.

3.2.2 Object detection for SIS

Figure 3.4 shows a block diagram of the proposed object detection algorithm and the hardware
modules of the proposed SIS that perform each step of the algorithm. In the center, the figure
shows the three core blocks of the SIS, which are the smart pixel array, an analog comparator
(A-THR) core and the digital coprocessor. Section 4.2 provides a detailed description of the
SIS architecture and circuits.

The proposed algorithm is based on the work by Bir Bhanu et al. [121]. They presented a
human motion analysis model in IR video sequences, based in kinematic. To discriminate people
from the background, they assume that in a video sequence the only objects in movement are
people. With this, it is possible to determine the silhouette of a person by simply subtracting
the background from the frame. When the difference of the pixel from the background and the
frame surpasses a predefined threshold, then the model considers that pixel as a part of the
silhouette. Once the silhouette is extracted from the frame, the model uses the body position
and characteristics to determine the 3D human motion for automatic gait recognition.

Algorithm 3 shows the motion-based object detection algorithm, which consist of four main
stages: frame-difference, thresholding, morphological operations (erosion and dilation), and
connected components. Figure 3.5 illustrates the operation of the algorithm, showing an input
image and the output of the first three stages.

The first stage of the algorithm computes the absolute frame-difference: it computes the
absolute difference between corresponding pixels in two consecutive video frames. The next
stage compares each pixel difference to an application-defined threshold: if the absolute frame-
difference is greater than the threshold, the algorithm identifies it as a movement pixel and assign
it a logic label of value 1. Otherwise, the pixel is labeled as 0. Figure 3.5(c) illustrates the output
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Fig. 3.4: Illustration of the motion-based object detection algorithm and SIS architecture.

Fig. 3.5: Results of the steps of motion-based object detection: (a) input image, (b) result of
the frame-difference, (c) thresholding the frame-difference, (d) applying the image-open mor-
phological transformation, and (e) bounding boxes.

of the threshold stage. The figure shows that this method can produce isolated labels due to
abrupt changes in pixel values. To compensate for this, it is common to add a morphological
operation stage. The algorithm applies an image opening operation, which consists of image
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Algorithm 3: Motion-based object detection.
input : Input frame imk,m×n, previous input frame imk−1,m×n, threshold THR
output: Output frame of highlighted object-pixels and bounding boxes.

begin
for i← 1 to n do

for j ← 1 to m do
Absolute difference imdiff (i, j)← |imk(i, j)− imk−1(i, j)|;

Threshold-image imthr ← imdiff > THR;
for i← 1 to n do

for j ← 1 to m do
Eroded image imerd(i, j)← ERD(imthr) using Equation (3.2);

for i← 1 to n do
for j ← 1 to m do

Dilated image imdlt(i, j)← DIL(imthr) using Equation (3.3);

for i← 1 to n do
for j ← 1 to m do

Label pixel imlb(i, j)← CC(imdil) using Equation (3.4);
Update bounding boxes;

return Image with highlighted objects imdlt, labeled objects imlb and bounding boxes

erosion followed by dilation. Figure 3.5(d) shows that this considerably reduces the number of
isolated labels. Finally, Fig 3.5(e) shows, using different colors and bounding boxes, the output
of the connected components algorithm, which labels the objects found in the image. From this
point, it is possible to further extend image analysis to process shapes, single objects, and more.

The implemented morphological image transformation uses 3 × 3-pixel kernels, for both
image erosion and dilation. Since the algorithm applies morphological transformation to binary
images, the calculation can be simplified.

Figure 3.6a depicts image erosion, which replaces the center pixel in a 3×3 window with the
minimum value in the window. As shown in Figure 3.6b with binary images, dilation replaces
the pixel with logical 0 if there is at least one pixel equal to 0 in the window, as described in
Eq. (3.2):

imerd = ERD(imin) =


0 if at least one pixel is 0

1 if all pixels in kernel are 1
(3.2)
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(a) Conventional image erosion.

(b) Binary image erosion.

Fig. 3.6: Graphic description of (a) conventional image erosion and (b) binary image erosion.
Conventional image erosion replaces central pixel with the lower value on its neighborhood.
Binary image erosion replaces central pixel with a logical 0 if there is at least one logical 0 on
its neighborhood.

(a) Conventional image dilation.

(b) Binary image dilation.

Fig. 3.7: Graphic description of (a) conventional image dilation and (b) binary image dilation.
Conventional image dilation replaces central pixel with the higher value on its neighborhood.
Binary image dilation replaces central pixel with a logical 1 if there is at least one logical 1 on
its neighborhood.

Figure 3.7a depicts image dilation, which replaces the center pixel in a 3×3 window with the
maximum value in the window. As shown in Figure 3.7b with binary images, dilation replaces
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Fig. 3.8: Graphic description of the connected components algorithm. The algorithm receives
as input a binary image with movement pixels from the frame-difference stage. The algorithm
defines a 2× 2-pixel window, corresponding to the analyzed pixel, and its west, northwest and
north neighbors. For each pixel, if its three neighbors are not labeled as part of an object, then
the algorithm assigns a new label to the pixel (Figs. a and b). If one or more of the neighbors
have the same label, the algorithm assigns the same label to the pixel (Fig. c). When two or
more neighbors have different labels, the algorithm assigns one of the labels to the pixel and
update the equivalence table to reflect that all those labels now belong to the same connected
component (Fig. d).

the pixel with logical 1 if there is at least one 1 pixel in the window, as described in Eq. (3.3):

imdil = DIL(imin) =


0 if all pixels in kernel are 0

1 if at least one pixel is 1
(3.3)

After computing the opening operation, the connected components algorithm assigns all
connected pixels to the same object in the image and computes the bounding box for each
detected object. The connected components block operates in a single pass and outputs a table
containing the bounding boxes for all objects in the image.

The connected-components algorithm finds the objects in an image by analyzing the move-
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ment pixels and their adjacent neighbors. Figure 3.8 illustrates the operation of the algorithm.
For each movement pixel in the image, the algorithm looks at its north, northwest and west
neighbors. If none of them are also a movement pixel, the algorithm assigns a new object label
to the pixel, as shown in Figs. 3.8(a) and (b). Otherwise, if the neighbor movement pixels are
part of the same connected component, the algorithm assigns the same object label to the new
pixel, thus adding it to the connected component (Fig. 3.8(c)). If the neighbor movement pixels
belongs to different connected components, the algorithm assigns one of the labels to the new
pixel and merges the connected components by adding a new entry into the equivalence table
(Fig. 3.8(d)). The base procedure of the algorithm is described as the priority-OR operation in
Eq. (3.4):

imlb = CC(imin) =



L0 if ps is 0, or

Li+1 if only central pixel is 1

Lnw if central and north-west pixels are 1

Ln if central and north pixels are 1

Lw if central and west pixels are 1

(3.4)

where L0 is the label for no-object pixels, and Lw, Lnw, and Ln are labels of the west, northwest,
and north pixels, respectively.

Every time the algorithm creates a new connected component or adds a pixel to an existing
component, it updates the coordinates of its bounding box in a table. When the algorithm
merges two connected components, it updates the bounding box .
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4. SIS architectures

4.1 SIS architecture for face recognition

Figure 4.1 shows the proposed SIS architecture for face recognition, which can be configured to
operate as a conventional image sensor or as a face recognition system. The main components
are an array of smart pixels, an Ringed Local Binary Pattern (RLBP) generator (RPG), and a
digital coprocessor. The pixel array acquires image data and, in parallel, subtracts the values
of horizontally adjacent pixels. The row-select and column-select circuits sequentially read the
pixel values and send them to the RPG, which constructs an 8-bit RLBP for each pixel in the
image. Dividing the image into 8 × 8 regions, the digital coprocessor computes a histogram
of uniform RLBP for each region and concatenates them to form the feature vector. Then,
it projects the vector using LDA, computes its Euclidean distance to a set of stored vectors
corresponding to the known faces, and labels the image using a nearest-neighbor criterion.

The SIS can also output a conventional image, in which case each smart pixel outputs the
analog-voltage output of its readout circuit, and the row- and column-select circuits read the
voltages to an ADC that outputs the digital value of the pixels.

4.1.1 Smart pixel

Figure 4.2 shows the circuit that implements the smart pixel. It consists of a photodetector, a
pair of input-select switches, a programmable CTIA, and a row-select switch. The input of the
CTIA are the currents from the local or horizontally-adjacent pixel, selected by the input-select
switches. The CTIA computes a voltage that represents either the current pixel value of the
difference between adjacent pixels, configured by the global control lines NegInt and PosInt.

Although it uses more area than alternative pixel circuits, using a CTIA for photocurrent
integration is a preferred method for low-light environments and IR cameras [122–125] because
its low input impedance offers offers good injection efficiency with weak photodiode currents.
In particular, as discussed in Secion 5.2.3, this work is interested in using the smart pixel to
recognize faces in thermal IR video. Moreover, when compared to other pixel circuits, a CTIA
features a wide linear output voltage range [126], small frame-to-frame lag, and reduced noise
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Fig. 4.1: Architecture of the proposed SIS. An array of smart pixels outputs either the pixel
value or the difference between horizontally adjacent pixels. An RLBP generator (RPG) reads
pixel values and creates an 8-bit RLBP for each pixel in the image. . The digital coprocessor
computes histograms of RLBP patterns to construct the feature vector, executes the LDA
projection on each vector, and selects the nearest neighbor from a stored set of projected vectors
using the Euclidean distance.

through better control of the photodiode bias [127].

Figure 4.3 shows the schematic of the CTIA. It integrates its input current to produce an
output voltage, and a set of 4 switches, implemented as conventional CMOS transmission gates,
can control the orientation of the integration capacitor [128]. The input current comes from the
photodetectors in the local or adjacent pixel.

Figure 4.4a shows the CTIA operating in conventional mode. During the entire integration
time, input-control switch connects the CTIA input to the local photodetector PD1. The CTIA
is configured in direct mode: sw1 and sw4 are closed, and sw2 and sw3 are open. The equivalent
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Fig. 4.2: The smart pixel consists of an analog input-select multiplexer, a configurable CTIA,
and a row-select switch. All the smart pixels in the array share the control signals placed above
in the figure, and all the pixels in the same column share the Column output signal. The input
to the CTIA can be selected from the photodetector in the local or adjacent pixel.

Sp1
PD1

Sp2
PD2

Vbias

Cint

S1 S2

S1S2

S2

S1 S2

S1

Srow

Input select

Custom CTIA

Row select

sw1 sw2

sw3 sw4

-

+

Column

output

Fig. 4.3: Schematic diagram of the configurable CTIA. The CTIA integrates the photodetector
currents and outputs a voltage that represents either the pixel value or the difference between
horizontally-adjacent pixels.

circuit of Fig. 4.4b shows the CTIA acting as a conventional integrator, and Eq. (4.1) shows
how it computes the output voltage that represents the local pixel value:
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PD1

PD2
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+0 [V]

CintInput select

Configurable CTIA

(a) Switch states and signals.

PD1
-

+0 [V]

Cint

Configurable CTIA

(b) Equivalent circuit.

Fig. 4.4: Smart pixel in conventional mode: the input-select switches pass the current from
PD1, sw1 and sw4 are closed to integrate the current, and sw2 and sw3 stay open.

PD1
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-

+Vdd/2 

Cint
Input select

Configurable CTIA

(a) Positive phase.

-

+

PD1

PD2

Vdd/2

Cint

Configurable CTIA

Input select

(b) Negative phase.

Fig. 4.5: Simplified view of positive and negative integration. During positive integration: sw1
and sw4 stay closed, sw2 and sw3 stay open. During positive integration: sw2 and sw3 stay
closed, sw1 and sw4 stay open.

V = I∆t/Cint, (4.1)

where V is the output voltage, I is the input current from photodetector PD1, ∆t is the
integration time, and Cint is the capacitance value.

Figure 4.5 shows the smart pixel when configured to compute local horizontal gradients.
The global bias input of the CTIA is set to the midpoint between the rails (1.65 V for a 3.3
V supply voltage). The integration time is divided into two phases of equal duration: direct
and inverse. During the direct phase, shown in Fig. 4.5a, the CTIA operates in conventional
mode by integrating the current from the local PD1 detector, starting from 1.65V. During the
negative phase, shown in Fig. 4.5b, the input switches select the current from the local neighbor
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Fig. 4.6: Architecture of the RPG. An input comparator compares the local gradient value for
each pixel to a reference voltage. The digital comparator outputs are sequentially stored in an
array of 3 × 3 flip-flops, organized as 3 shift registers. The RPG outputs an 8-bit RLBP with
the output of all the flip-flops except for the one at the center.

pixel PD2, sw1 and sw4 are open, and sw2 and sw3 are closed. Therefore, during the inverse
phase, the CTIA integrates the negative current value of the PD2 photodetector. The output
voltage at the end of the integration period is computed as shown en Eq. (4.2):

V = (I1∆ts + I2∆ts)/(2Cint), (4.2)

where V is the output voltage, I1 is the input current from the local detector PD1, I2 is the
current from the adjacent detector PD2, ∆ts is the integration time, and Cint is the capacitance.

In local-gradient mode, the integration time per pixel is reduced by 50% compared to normal
operation, which decreases the signal-to-noise ratio. However, this allows us to compute local
spatial gradients in parallel on the entire FPA with very small area overhead compared to a
conventional integrator. These local gradients are then used by the RPG to compute the RLBP
for each pixel.
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4.1.2 RLBP generator

Figure 4.6 shows the topology of the RPG circuit. An input opamp compares the readout value
Vpixel, which represents the difference between two adjacent pixels, to a global reference voltage
Vref . When Vpixel > Vref , the digital output of the comparator is 1, and 0 otherwise. The output
of the comparator is written into an array of 3× 3 flip-flops configured as three shift registers,
which is used to create the RLBP.

To compute the RLBPs in each region, the RPG performs a row-wise read of the FPA.
For each pixel, the RPG reads the pixel value and its two vertically-adjacent neighbors. The
comparator output for these values is written into flip-flops D1_3, D3_3 and D3_3. The
register array then performs a right shift, and the next three pixels are read from the FPA.
When nine reads have been completed, the array holds the RLPB for the central pixel, which is
then sent to the digital coprocessor to compute the histogram. Because the 3×3-pixel windows
used to compute the RLBP overlap for adjacent pixels, the next RLBP is completed after three
reads. The process continues until all pixel values in the region have been read, and the RPG
moves to the next region in the image (as shown in Fig. 3.3).

Because the FPA directly outputs the local pixel differences, computing the RLBP requires
only a 3 × 3-bit array instead of the large line buffers that would be required to compute the
differences in the RPG. Each RLBP requires three reads from the FPA, but because these reads
are only used for a 1-bit comparison instead of a complete analog-to-digital conversion, these
reads complete significantly faster than when the array operates in conventional mode.

4.1.3 Digital coprocessor

The digital coprocessor is responsible for computing the histograms of RLBPs from the image,
normalizing and centering the data, projecting the resulting histogram vector using LDA, com-
puting the Euclidean distance between the projected vector and a stored database of known
faces, and selecting a label for the input image using a nearest-neighbor criterion.

Figure 4.7 shows the architecture of the face-recognition coprocessor. It receives as input
the 8-bit RLBP vector RP from the RPG module. The memory controller reads the LDA
coefficients from external RAM and sends them to the LDA projection module. This module
reads the patterns computed by the RPG for each region of the image, and computes the
histogram vector and projects it using the LDA coefficients. Histogram computation and LDA
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Fig. 4.7: Architecture of the digital coprocessor. The processor receives a stream of RLBPs
from the RPG, and simultaneously builds the histogram vector and projects it using LDA. A
memory controller retrieves the LDA coefficients from RAM. The Euclidean distance between
the projected vector and the contents of database of stored faces is used for classification with
the nearest-neighbor criterion.

projection are fused into a single step to save memory and arithmetic resources. The output
of the LDA module is the feature vector of the input image projected onto the LDA subspace.
The face recognition module computes the Euclidean distance between this vector and a set of
stored vectors that represent the known faces. The module selects the minimal distance and
compares it against a chosen threshold. When the distance is smaller than the threshold, the
module outputs the ID of the selected known face. Otherwise, it outputs a null value.

Figure 4.8 shows the architecture of the LDA projection module. The module receives a
stream of 8-bit RLBPs from each region of the image. The first step converts the RLBP into a 6-
bit uniform RLBP (uRP) using a 256-entry lookup table. In order to avoid the use of multipliers
and reduce the amount of local storage required by the LDA projection, the module computes
the histogram vector and the multiplication by the projection matrix W simultaneously. Each
uRP value denotes a position in the histogram vector, for the current region, that must be
incremented to build the histogram. The final value stored in this position should then be
multiplied by the corresponding set of coefficient values in W when the vector is multiplied
by the matrix. Instead, every time a new uRP is received, the module obtains the value of
the coefficient associated with the uRP using a 64-entry coefficient buffer and accumulate the
values of the coefficients to directly produce an element of the projected vector. For illustration
purposes, let us assume a histogram vector of size three and a projection matrix of size 2 × 3.
The traditional projection is computed as shown en Eq. (4.3):
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Fig. 4.8: Architecture of the LDA projection module. The module transforms the 8-bit RLBP
into a 6-bit uniform RLBP (uRP). For each uRP value received, the module accumulates the
value of its corresponding LDA coefficient, thus performing histogram computation and LDA
projection in a single step.

y = W T x =
w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

 ·


x1

x2

x3

 =
w1,1x1 + w1,2x2 + w1,3x3

w2,1x1 + w2,2x2 + w2,3x3

 (4.3)

where W is the LDA projection matrix, x is the histogram vector, and y is the projected
feature vector. Instead, whn the LDA module receives the uRP pattern 1, it retrieves the
coefficients w1,1 and w2,1 from the two coefficient buffers in Fig. 4.8, and accumulates these
values in the corresponding registers in the figure. When the module receives the uRP pattern
2, it accumulates the coefficient values w1,2 and w2,2. If the uRP value is 3, the module adds the
values w1,2 and w2,2 to the registers. When all the uRP values have been read, the registers store
the coefficient values of the projected vectors. Thus, for a n ×m coefficient matrix, the LDA
module requires n coefficient buffers of m elements. The memory controller block is responsible
for reading the coefficient values stored in external RAM storing them in the coefficient buffers.

Projecting the histogram vector x with LDA requires normalizing and centering the value
of x. Because the centering operation is linear, it can be performed in the projected subspace
to reduce the arithmetic hardware required to perform the operation, as shown in Eq. (4.4):

y = ηW T (x− µ) = ηW T x− ηW T µ, (4.4)

where W T is the LDA projection matrix, η is the scalar normalization coefficient and µ is the
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Fig. 4.9: Euclidean distance module. It normalizes and centers the input vector and computes
the distance between vectors p and q as ∑

p2
i − 2 ∑

piqi + ∑
q2

i .

mean value of the training data vectors. The module performs these operations in the projected
subspace, locally storing the value of η and the precomputed value of ηW T µ.

The Euclidean distance between two vectors p and q can be computed as shown in Eq. (4.5):

d(p, q) =

√√√√ N∑
i=1

(pi − qi)2 =
√∑

p2
i − 2

∑
piqi +

∑
q2

i , (4.5)

where d(p, q) represents the Euclidean distance between vectors p and q, pi and qi are the ith

components of vectors p and q, respectively, and N is the dimension of the vectors. Because the
proposed work is only interested in determining the vector q in the database that is closest to
the projected input vector p, it is possible to use the square of the distance d(p, q)2 and avoid
computing the square root.

Figure 4.9 shows the architecture of the Euclidean distance module, which computes ∑
p2

i −
2 ∑

piqi + ∑
q2

i . The inputs to the module are the projected vector and the LDA normaliza-
tion coefficient. As described above, the input vector is normalized and centered in the LDA
projected space, and stored into a local buffer. Then, the module sequentially computes the
distance between the input vector p and each vector q in the database of known faces. It first
computes p2

i , piqi and q2
i , and accumulates their values for 1 ≤ i ≤ N in three registers. Finally,

the values of the registers are added in a two-stage pipeline to compute d(p, q), where the value
of ∑

piqi is shifted one bit to the left to multiply it by 2. The process is repeated for each
know-face vector stored in the local database.

Figure 4.10 shows the final stage of the classifier in the digital coprocessor. The module
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Fig. 4.10: Classification module. The module implements a nearest-neighbor criterion by se-
lecting the face label that corresponds to the minimum distance computed between the input
image and the stored database of know faces.

receives a sequence of distances between the input image and each projected vector stored in
the database of known faces. It sequentially computes the minimum value of these distances by
comparing the currently-stored distance to the incoming value, and updating the register with
the smallest value. Finally, the minimum value is compared to a user-supplied threshold. If
the value is smaller than the threshold, the module outputs the face label corresponding to the
stored minimum value. Otherwise, it outputs a zero to indicate that the input face is not in the
database.

4.2 SIS architecture for motion-based object detection

Fig. 4.11 shows the architecture of the proposed SIS. The SIS supports two operation modes:
standard imager and motion-based object detection. The core blocks are an array of smart
pixels, an analog comparator (A-THR), and a digital coprocessor. In the standard mode, the
pixel array acquires image data as a conventional image sensor, row- and column-select circuits
sequentially read the pixel data, and an ADC produces digital values as a pixel stream. In
object detection mode, the array acquires and stores the image data for the current frame, and
computes the difference between the current frame and the stored data for the previous frame.
The row- and column-select circuits sequentially read the frame differences and send them to
the A-THR, which determines if the absolute difference of each pixel in the image is greater
than the application-defined threshold. The output of the A-THR is a single bit for each pixel,
that serves as input to the digital coprocessor. The coprocessor computes the binary erosion
and dilation, the connected components, and outputs the bounding boxes and binary image.
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Fig. 4.11: Architecture of the proposed SIS. An array of smart pixels outputs either the pixel
value or frame-difference. The A-THR module determines whether the absolute value of the
frame-differences exceeds an application-defined threshold. The digital coprocessor computes
image opening to improve the object detection, and uses a connected components algorithm to
detect objects in the image and compute their bounding boxes. The digital coprocessor can be
configured to output the original image or the binary image and the bounding boxes for the
objects.

4.2.1 Smart pixel

Figure 4.12 shows a block diagram of the proposed smart pixel composed of a photodetector,
switches for input enable and row-select, and a programmable CTIA. The input of the CTIA
is connected to a photodetector. The CTIA uses the signals NegInt, PosInt and BuffSL to
integrate the photodetector current. The resulting voltage represents the value of the pixel in
a frame or the difference between the pixel values in the current and past frames.
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Fig. 4.12: Architecture of the smart pixel. Negtin, PostInt, BuffSL and Vbias are global bias
and control signals. Row control is shared by all the pixels in a row and Column output is
shared by all the pixels in the same column.

Fig. 4.13: Configurable CTIA. The output voltage of the CTIA represents either the pixel
value or the difference between the pixels in the current and past frame. The configurable
CTIA includes two integration capacitors Cint1 and Cint2 of equal size, which are used as double
buffers to integrate and compute the frame difference.

A schematic view of the smart pixel is shown in Fig. 4.13. The CTIA includes two identical
integration capacitors that operate as double buffer, and 6 CMOS switches based on conven-
tional transmission gates. The switches are controlled by three configuration signals and their
complements. The configurable CTIA integrates its input current to produce an output volt-
age and uses the switches to select the integration capacitor and control the direction of the
integration [64,66].

The operation in conventional mode of the smart pixel is shown in Fig 4.14a, also referred
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(a) Switch states and signals.

PD1
-

+0 [V]

Cint

Configurable CTIA

(b) Equivalent circuit.

Fig. 4.14: Smart pixel in conventional mode: the input-enable switch passes the current from
the photodiode PD1, sw1, sw4 and sw5 are closed to integrate the current using Cint1, and sw2,
sw3 and sw6 stay open.

to as direct mode. In conventional mode the operation of the smart pixel is equivalent to the
conventional CTIA. Similarly, as described in Section 4.1.1, the smart pixel sets the bias voltage
to 0V , and the CTIA integrates the input current on the capacitor Cint1. As shown in Fig. 4.14b,
in direct mode the smart pixel works as a conventional CTIA, where it sets the switches sw1,
sw4 and sw5 as closed, and sw2, sw3 and sw6 as opened. Equation (4.6) describes the output
value at the end of the integration time:

V = I∆t/Cint1, (4.6)

where V is the voltage at the output of the smart pixel, I is current from photodetector PD1,
∆t is the amount of time that takes to integrate, and Cint1 is the capacitor value.

The operation of the smart pixel when computing the frame-difference in the pixel is shown in
Fig. 4.15. The smart pixel sets the global bias input the midpoint of the operation voltage.During
a single video frame, the circuit operates in two stages: store and subtract, assigning one half
of the integration time to each. During the store stage, the circuit integrates the input current
into one of the capacitors, which will be used in the next video frame. During the subtract
phase, the CTIA subtracts the input current from the second capacitor, which stores the pixel
value of the previous frame. In the next video frame, the capacitors are switched.

Figures 4.15a and 4.15b show the equivalent circuits during an odd video frame. Here,
the store and subtract phases integrate the input current in the positive direction in both
capacitors: sw2 and sw3 are closed, and sw1 and sw4 are open. During the store phase, shown
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(a) Odd frame: Store phase in Cint1. (b) Odd frame: Subtract phase in Cint2.

(c) Even frame: Store phase in Cint2. (d) Even frame: Subtract phase in Cint1.

Fig. 4.15: Simplified view of the CTIA in frame-difference mode during odd and even frames.
During an odd frame, sw2 and sw3 are closed while sw1 and sw4 are open. During the store
phase, sw5 is open and sw6 is closed, and during the subtract phase the states off sw5 and sw6
are reversed. At the end of the frame, the voltage across Cint1 represents the frame-difference
between the current and previous frame. During even frames the state of all switches is the
complement of the odd frames, and the frame-difference is represented by the voltage across
Cint2.

in Figure 4.15a, sw5 is closed and sw6 is open to integrate the input current on Cint1. During
the subtract phase, shown in Figure 4.15b, sw6 is open and sw5 is closed to integrate (subtract)
the input current on Cint2, which contains the pixel value acquired in the previous frame value.
At the end of the frame time, the voltage across Cint1 represents the current pixel value to be
used in the next frame and the voltage across Cint2 is the frame-difference between the current
and previous frames.

Figures 4.15c and 4.15d show the equivalent circuits during an even video frame, which inte-
grate the input current in the negative direction of both capacitors. The store phase integrates
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on Cint2 and the subtraction phase uses Cint1. The state of switches sw1 -sw6 is the complement
of the odd frames. At the end of the integration time, the CTIA outputs the voltage across
capacitor Cint2 for odd frames and Cint1 for even frames, which represents the frame-difference
value. The voltage across the capacitors at the end of the integration time is shown in Eq. (4.7):

Vc = (Ik∆ts − Ik−1∆ts)/(2Cint), (4.7)

where Vc is the output voltage, k is the current frame index, Ik is the input current during
frame k, Ik−1 is the current during the previous frame k − 1, ∆ts is the integration time where
∆ts = ∆t

2 , and Cint is the capacitance of Cint1 and Cint2. After the frame-difference values are
read by the A-THR core, the circuit resets the capacitor that holds the frame-difference value.

Note that, because the circuit store and subtract in different directions during odd and even
frames, the frame-difference in Vc has different sign in consecutive frames. This sign difference
does not affects the results of the algorithm because the next stages uses the absolute value of
the difference. Alternating the sign of the frame-differences allows us to configure the CTIA
using only three control signals. Moreover, sw1-sw6 switch only once per frame instead of once
per phase, which reduces charge injection and power consumption.

When the smart pixel operates in frame-difference mode, its integration time is the 50% of
the time that is used to operate in conventional mode. This reduction decreases the signal-to-
noise ratio of the pixel. However, the smart pixel can compute the frame-differences at the same
time on the entire array of smart pixels with small impact on the pixel fill factor.

4.2.2 A-THR

The A-THR core determines whether the absolute value of the frame-difference computed by
the smart pixel exceeds an application-defined threshold. Figure 4.16 shows the A-THR circuit.
A row- and column-select circuit scans the smart pixel array, reading the output voltage of each
CTIA connecting it to the input Vpixel of the A-THR module. Because the frame-difference
output of the smart pixel has a different sign for even and odd frames, the A-THR core uses
two comparators OA1 and OA2. The reference voltages V +

T HR and V −
T HR are used to compare

the absolute vale of the frame-difference voltage to the threshold voltage Vth, such that V +
T HR =

Vbias + Vth and V −
T HR = Vbias − Vth, where Vbias = Vdd/2 is the bias voltage of the CTIA in

frame-difference mode.

The comparator OA1 outputs a logical 1 when Vpixel > V +
th , and 0 otherwise, while OA2
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Fig. 4.16: Architecture of the A-THR. An input comparator compares the frame-difference for
each pixel to two reference voltages. The comparator OA1 outputs a logical 1 when Vpixel > V +

th ,
and the comparator OA2 outputs a logical 1 when Vpixel < V −

th . A logical OR outputs a logical
1 if one of the two conditions is met.

outputs a logical 1 when Vpixel < V −
th , and 0 otherwise. These two comparators independently

indicate when Vpixel is greater than V +
th or less than Vpixel. An OR gate outputs a logical 1 when

either OA1 or OA2 output a 1, thus indicating that the frame-difference is greater than the
supplied threshold.

4.2.3 Digital coprocessor

The coprocessor adds programmability to the SIS by processing the output in frame-difference
mode using reconfigurable digital logic. In the current implementation, the coprocessor imple-
ments the morphological opening operation and a connected components algorithm that detects
objects and computes their bounding boxes.

Figure 4.17 shows the architecture of the object detection coprocessor. The data flow of the
digital coprocessor is as follows: the object detection coprocessor receives a 1-bit pixel stream
from the A-THR module. Then, the coprocessor computes a morphological erosion and dilation
operations on 3 × 3-pixel window and outputs the resulting binary image. The image pixels
are also processed by a connected components module, which identify the objects in the image
using connected pixels in a single pass and computes the bounding boxes of the objects.

The digital implementation of the 1-bit image erosion, defined in Eq (3.2), is shown in Figure
4.18. The circuit erodes with a 3× 3 window, by calculating the logical AND between all pixels
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Fig. 4.17: Architecture of the digital coprocessor. The coprocessor receives a stream of move-
ment pixels, applies morphological opening operation (erosion+dilation), and computes the
connected components of the resulting binary image and their bounding boxes.

Fig. 4.18: Image erosion. The module uses two line buffers and six registers to define a 3× 3-
pixel window from the output of the smart pixel array, and performs image erosion by computing
a logical AND operation between them.

Fig. 4.19: Image dilation. The module uses two line buffers and six registers to define a 3× 3-
pixel window from the output of the image erosion module, and performs image dilation by
computing a logical OR operation between the pixels.

in the window. The sliding window was implemented using two line buffers and a 2× 3 array of
flip-flops. Figure 4.19 shows the implementation of the 1-bit image dilation, defined in Eq (3.3).
Dilation’s methodology is similar to the erosion, which uses the same architecture but replaces
the logical operations with OR gates.

Figure 4.20 shows the architecture of the connected components module. The Neighborhood
Context block uses a line buffer to define a 2× 2-pixel window that contains the current pixel
and its north, northwest and west neighbors. The block output indicates whether the current
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Fig. 4.20: Architecture of the connected components module. First, it analyzes the current
pixel and its north, northwest and west neighbors, determining which movement pixels are
connected. The module assigns a label to the current pixel and maintains an equivalence table
to merge connected components in the image. The module also computes the bounding boxes
for all connected components and merges them using the equivalence table.

pixel is an isolated movement pixel, to which of its neighbors it is connected, or whether it is
not a movement pixel. The Label Selector block assigns a new or existing label to the current
pixel based on its neighboring labels, using a line buffer with label information. Because new
pixels can join disconnected regions, the module uses a equivalence table to merge connected
components. The Label Management block updates the equivalence table using the information
from the neighborhood context. As new pixels are added to the existing connected components,
the coordinates of their bounding boxes are updated using the contents of the equivalence table
to consolidate regions as they merge.
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5. Results

5.1 Evaluation Methodology

The following methodology was used to evaluate and obtain the results of the designed SISs. The
SISs evaluation was divided into two steps, smart-pixel array simulations and digital coprocessor
implementation and validation.

The smart-pixel array simulations included the following. Spice simulations validate the
smart-pixel architecture’s functional operation, considering ideal components with their respec-
tive transistor size. Physical-layout design to extract the parasitic components of the circuit
and determine the readout-circuit area. Use a Layout vs. Schematic (LVS) evaluation tool to
validate the physical-layout netlist. Post-layout simulation to validate that the smart pixel cir-
cuit is still functioning as desired. The circuitry column level also passed the process described
from the beginning. The final evaluation of the smart-pixel array included the simulation of
the complete array interconnected and the circuitry at a column level. The post-layout results
were written into a collection of time-voltage values representing all the important signals. This
collection was then used as input to the digital coprocessor emulation. An important metric
to evaluate and compare the smart pixel is the fill factor. The pixel’s fill factor FFpix is de-
fined as the ratio between the and the photosensitive area and the total pixel area such that
FFpix = 1− Ar

Ap
, where Ar is readout-circuit area and Ap is the pixel area.

The implementation results of the digital coprocessor were obtained by writing an Hardware
Description Language (HDL) code that described the digital architecture at the register Register-
Transfer Level (RTL). To evaluate the digital coprocessor functionality, the RTL description
was synthesized and implemented using Vivado’s synthesis tool. The resulting bit-stream was
programmed into an Field Programmable Gate Array (FPGA) to test different input combi-
nations and evaluate its results at the output. The input and output data were transferred
to a desktop computer using an external memory card. Then, its results were compared to a
fully-software implementation. The numerical results of the digital coprocessor were obtained
by writing a software script that emulated each step of the hardware implementation, that is,
a fixed-point representation of the results in all the stages of the pipeline.

Finally, to fully evaluate the SIS results, the post-layout simulations of the smart-pixel



42

(a) Camera connected to the FPGA
board.

(b) Monitor displaying identified
faces.

Fig. 5.1: Experimental setup to test the face-recognition algorithm. An FPGA board receives
IR images from a FLIR Tau 2 camera core and uses a HOG algorithm to detect face locations.
The FPGA emulates the smart pixel array and the digital coprocessor. A monitor connected to
the FPGA displays the image acquired by the smart pixel array, and the location and number
of identified faces. The FPGA sends the labels of the recognized faces to a remote computer
via Ethernet.

array were used as the input of the digital-coprocessor fixed-point emulation. The input of the
smart-pixel array are currents values that are proportional to pixel values of an input image
within the range of [0, 255] (8-bit representation), where the minimum pixel-value is converted
as 0 = 0A, and the maximum as 255 = Imax (Imax defined by the smart-pixel design). The
resulting voltage values of the pixel-array simulation were digitalized and used as the input of
the digital-coprocessor emulator.

5.2 Face recognition results

Figure 5.1 shows an experimental setup used to validate the proposed face recognition method
using an FPGA connected to a thermal IR FLIR Tau 2 camera core. In this case, the FPGA
runs a face detection algorithm to locate faces in the acquired image, emulates the smart pixel
array that computes the local spatial gradients on the image and the RPG that generates the
URLBP values for each pixel, and implements the digital coprocessor. The FPGA outputs the
acquired image on an external monitor, and sends out the labels of the recognized faces via an
Ethernet link.
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Fig. 5.2: Layout of the smart-pixel. This work used the design shown in Fig. 4.3, implemented
on the TMSC 0.35 µm mixed-signal process. The opamp and integration capacitors are imple-
mented using two poly layers.

5.2.1 Smart pixel and RPG implementation

Figure 5.2 shows the layout of the smart-pixel circuit depicted in Fig. 4.3 using the TSMC 0.35
µm mixed-signal process with a 3.3 V supply voltage. A poly1-poly2 capacitor was used for
integration, which has a capacitance per area of 950 aF/µm2. Assuming an integration time
of 40 µs and a maximum photodetector current of 8nA, the pixel requires a 100fF integration
capacitor of 13.6 µm × 7.7 µm. The dimensions of the complete circuit, including all passive
and active elements, are 30 µm × 22.5 µm. Assuming a standard 32 µm × 32 µm pixel [41],
the circuit achieves a fill factor of 34%. The extra transistors used to compute local gradients
increase the area of the circuit by 26%. Without the switches used to operate in smart mode,
the fill factor is 47.6%.

The design of the smart pixel was ported to the 0.18 µm TMSC process, which is more
commonly used in the literature [41, 42, 44]. With a 1.8 V supply voltage and 2 fF/µm2 metal
capacitors, the total area of the circuit is 243 µm2, which allows us to achieve a fill factor of 76%
in the same 32 µm × 32 µm pixel. In comparison, the integration circuit without the switches
for local gradient computation has a fill factor of 79.9%. In summary, the presented smart pixel
is capable of computing spatial differences during integration with a small impact on the fill
factor.
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Table 5.1: Comparison of the proposed smart-pixel designs to other circuits in the literature.

SIS Technology
Pixel
pitch
µm× µm

Fill
factor

Tested
spectrum

Type of
integrator

Proposed
RLBP+LDA
face recognition

0.35 µm

TMSC
32×32 34%

Visible
Thermal IR
NIR

CTIA

0.18 µm

TMSC
32×32 76%

Visible
Thermal IR
NIR

CTIA

Edge
detection [41]

0.18 µm

1P4M CMOS
31×31 19% Visible

2T-integrator,
CTIA at
column level

LBP
Edge detection [42]

0.18 µm

CMOS
7.9× 7.9 55% Visible 2T-integrator

Spatial contrast
LBP [129]

0.35 µm 26 × 26 23% Visible 2T-integrator

4-neighbor
LBP [71]

0.35 µm

CMOS
64×64 15% Visible 2T-integrator

Table 5.1 compares the smart pixel to other designs reported in the literature and discussed
in Section 2. Even though the smart pixel described in [41], which computes local differences
for edge detection, uses a CTIA only at the column level, it reaches a fill factor of 19%, which
is much lower than the 76% reached by the proposed solution in a similar CMOS process.
The other designs shown in the table use a much simpler 2-transistor integrator, which is only
suitable for capturing images in the visible spectrum. Nevertheless, the proposed design achieves
a better fill factor in all cases.

Figure 5.3 shows a post-layout simulation of the CTIA during the positive and negative
integration phases. The figure depicts the capacitor voltage VCint for five different pixels in
the FPGA. During the positive integration phase, the output voltages increase proportionally
to the local photodetector current of the pixel. Then, during the negative phase, the voltage
decreases at a rate proportional to the photodetector current of the horizontally adjacent pixel.
The voltage after the negative phase is proportional to the difference between the two pixel
values. The output voltage VCint + Vbias is then sampled when reading the pixel value.
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Fig. 5.3: Post-layout simulation of five pixels in the SIS operating in local-gradient mode. The
graph shows the voltage across the integration capacitor of the CTIA in Fig. 4.14 during the
positive and negative integration phases shown in Fig. 4.5.

The simulation plot in Fig. 5.4 shows the operation of the input comparator of the RPG in
Fig. 4.6. During the integration phase, all the pixels compute their local horizontal gradient
in parallel. For clarity, Fig. 5.4 shows the output voltage of two pixels (Pixel A and Pixel
B). During the comparison phase, the controller performs a row-wise read of the pixel array,
sequentially reading the values of three vertically-adjacent cells for each pixel, as described in
Section 4.2.2. The voltage labeled Vcolumn shows the array output voltage, which is the input
to the comparator. The output values of Pixel A and Pixel B are the first and third voltages
presented to the comparator, respectively, and are sampled at the times circled in red in Fig. 5.4.
When the input voltage is higher than Vref, the comparator outputs Vdd, or a logic 1. Otherwise,
it outputs 0V, or a logic 0. In the simulation shown in the figure, the comparator outputs the
logic sequence 00110001011, which is delivered to the shift registers of the RPG generator to
create the RLBP values.

When simulating the operation of an array of 150×80 pixels in the 0.35 µm process, including
post-layout parasitics, the readout time of one pixel is 50ns. Considering that the circuit read
each pixel 3 times in smart mode, the readout time for the complete array is 1.8ms, which allows
us acquire and process images at 556 fps.
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Fig. 5.4: Post-layout simulation of the RPG input comparator while reading multiple pixels.
The plot shows the integration phase for the first and third pixel, the voltage input to the
comparator, the reference voltage, and the voltage output. Gradient values are read every 50ns.

Table 5.2: Resource utilization of the digital coprocessor on a Xilinx XC7Z020 FPGA.

Slice LUTs Distributed memory Block RAMs DSP slices
Total used 4345 1298 2 6
Available 53200 17400 140 220
Percentage 8.2% 7.6% 1.4% 2.7%

5.2.2 FPGA implementation of the digital coprocessor

The architecture of the digital coprocessor was modeled at the register-transfer level using the
System Verilog hardware design language, and synthesized the design onto a Xilinx XC7Z020
FPGA. Table 5.2 shows the resource utilization of the proposed design. The coprocessor uses less
than 10% of the logic and distributed memory available on the chip. Distributed memory was
used to implement the coefficient buffers in Fig. 4.8, because the buffers are small (64 entries),
and they need to be accessed in parallel to obtain a new set of coefficients with each uniform
RLBP element. The buffer in the Euclidian distance module of Fig. 4.9 uses two embedded
RAM blocks, which account for 1.4% of the blocks available on the chip. Finally, the same
module uses six out of the 220 DSP slices available on the FPGA. This small hardware resource
usage leaves ample space on the FPGA to implement additional image processing algorithms.
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Table 5.3: Databases used to test the performance of the proposed method.

Database Spectrum
Image size
(pixels)

Number of
subjects

Images per
subject

Face positions
and conditions

UCH-TF Thermal IR 150× 81 53 28
Rotations and
expressions

CBSR NIR Near IR 640× 511 197 20
Frontal, with and
without glasses

UL-FMTV Thermal IR 128× 128 238
Short video
sequence

Rotations

YaleFace B Visible range 192× 168 38 64
Frontal, expressions
and light variations

The coprocessor operates at a maximum clock speed of 128MHz, mostly due to the need to
access external memory for the LDA coefficients and the database of stored faces. At this clock
rate, the circuit can process 127 × 106 pixels per second or one 150 × 80-pixel image in 94 µs.
The power consumption of the circuit operating at this clock frequency, estimated using Xilinx
Power Analyzer, is 71mW.

5.2.3 Method classification performance

To test the classification performance of the proposed method, four databases were used:
UCHThermalFace database [130], the CBSR NIR face dataset [131], the Université Laval Face
Motion and Time-Lapse Video Database (UL-FMTV) [132, 133], and the Yale Face Database
B [134]. Table 5.3 summarizes the information of spectrum, image size in pixels, number of
subjects, number of images per subject, variations in face position and other conditions of the
images in each database.

To evaluate the classification performance of the algorithm on each database, 60% of the
images were used for training, that is, to compute the LDA transformation and the stored
database of projected faces, and 40% for testing. To reduce overfitting, a standard k-fold
cross-validation technique was used with 10 iterations. The performance of the algorithm was
quantified using the accuracy score, which is defined in Eq. (5.1) for a multiclass classification
problem with N classes:

Accuracy =
∑N

i=1 Hi∑N
i=1 Hi + Fi

× 100, (5.1)
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Table 5.4: Accuracy of the proposed method with RLBP and LBP using different databases.
UCH-TF CBSR NIR UL-FMTV YaleFaceB

RLBP+LDA 96.7% 96.0% 75− 95.9% 76.4%
LBP+LDA 98.5% 98.1% 79− 97.1% 82.9%

Table 5.5: Accuracy of the proposed RLBP+LDA and LBP+LDA methods compared to other
face classification algorithms discussed in [75], using the UCH-Thermalface [130] database.

Method RLBP+LDA LBP+LDA GJD WLD LBP
Accuracy 96.7% 98.5% 96.6% 94.4% 92.0%

where Hi and Fi are the number of correctly and incorrectly labeled samples of class i, respec-
tively. In other words, the accuracy is the percentage of correctly classified images in the test
set, computed as the sum of the diagonal elements of the confusion matrix divided by the sum
of all the elements in the matrix.

Table 5.4 shows the accuracy of the proposed method on the four databases, using both
RLBP and conventional LBNP to compute the local features. As the table shows, the proposed
method performs best with the UCH-TF and CBSR NIR databases, which consist mainly of
frontal images with small variations in rotation. The achieved accuracy is lower, but still above
80%, for YaleFaceB, which is a challenging dataset with significant variations in illumination
among images. The UL-FMTV contains short video sequences, of which 24 images were ex-
tracted for training and 16 for testing, for each subject. The classification accuracy depends
largely on which video frames were used to train and test the algorithm: The accuracy is lowest,
but still around 75%, when the training and testing frames are far apart in the video frame,
mostly due to large variations in rotation angle. When the sets are taken from closer video
frames, the algorithm achieves accuracy above 95%.

Table 5.4 also shows that replacing conventional LBP with the proposed lightweight RLBP
descriptor reduces classification accuracy in approximately 2− 5%, depending on the database.
LBP considers gradients in all directions in a 3 × 3-pixel window, while RLBP groups only
horizontal gradientes in the same window. Although LBP contains more information than
RLBP, RLBP can still capture significant texture information because it considers the spatial
distribution of horizontal gradients within a small pixel neighborhood while reducing the number
of operations at the pixel level.

Tables 5.5, 5.6 and 5.7 compares the accuracy of the proposed method to other algorithms
in the literature using the databases with which they were published. Table 5.5 reports the
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Table 5.6: Accuracy of the proposed RLBP+LDA and LBP+LDA methods compared to other
face classification algorithms discussed in [74], using the CBSR NIR [131] database.

Method RLBP+LDA LBP+LDA NIRFaceNet+Aug NIRFaceNet FaceNet
Accuracy 96.0% 98.2% 96.6% 94.8% 84.1%

Table 5.7: Accuracy of the proposed RLBP+LDA and LBP+LDA methods compared to other
face classification algorithms discussed in [135], using the Yale face database B [134].

Method RLBP+LDA∗ LBP+LDA∗ Sun’s Kernel CRC ELM Tanh
Accuracy 76.4% 82.9% 98.33% 96.82% 96.44% 96.34%

algorithms evaluated by Hermosilla et. al [75] using the UCHThermalFace database. Table 5.6
shows the accuracy achieved with the algorithms reported by Jo et. al [74] with the CBSR NIR
database. In all these cases, the method achieves similar or better accuracy than the algorithms
reported in the literature. Finally, Table 5.7 compares the results of the proposed method with
YaleFace B database against the algorithms evaluated by Sun et. al [135]. The results show
that the accuracy of the proposed algorithm is lower than the reported methods. The main
reason for this is that Ahonen’s algorithm does not perform well when there are large variations
in illumination between the images in the training and test set. Sun’s algorithm shows more
robustness under these conditions, but it requires more computation per pixel. Moreover, this
computation can not be easily mapped onto a smart pixel design in the analog domain to exploit
pixel-level parallelism in the imager. For NIR and thermal IR images, for which the proposed
smart pixel is better tailored, the proposed method delivers better results than the state of the
art.

All the experiments described above were executed as a closed-set problem, that is, the
test set contains only images of subjects that are also present in the training set. In order to
test the performance of the proposed method in an open-set problem, the classifier was trained
using only 40 subjects from the UCHThermalFace database, and used a test set with images
from all 53 subjects. The threshold THR described in Algorithm 1 was used to label the image
as unknown if the distance to its nearest is larger than this threshold. In this experiment,
using THR = 8, the accuracy of LBP+LDA is 95.5%, which is reduced to 93.1% when using
RLBP to compute the local features. That is, the accuracy of both methods is reduced by a
approximately 3% compared to the closed-set problem.
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Fig. 5.5: Effect of Vref in the RLBP values generated by the RPG for 3 images acquired using
a FLIR Tau 2 thermal IR core. (a) original IR image, (b) RLBP image generated by software,
(c)-(e) RLBP images generated by the RPG for Vref values of 1.665 V, 1.650 V and 1.645 V,
respectively.

5.2.4 SIS classification performance

A circuit parameter that affects classification performance is the reference voltage in the com-
parator of Fig. 4.6, which computes a digital value for the difference between adjacent pixels.
The images in Fig. 5.5 illustrate the effects of Vref in the RLBP values generated by the com-
parator, for thermal IR images of 3 different subjects. Fig. 5.5 (a) shows the original image,
Fig. 5.5 (b) is the image generated by replacing the pixel values with the RLBP values computed
in software, and Fig. 5.5 (c)-(e) are the RLBP images generated by the hardware setting the
value of Vref to 1.665V, 1.650V, and 1.645V.

Figure 5.6 shows the accuracy achieved in the simulations by the complete circuit as a
function of Vref using the UCHThermalFace database [130]. For comparison, the figure also
shows the classification accuracy achieved by a software implementation of the algorithm, and
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Fig. 5.6: Classification accuracy as a function of the value of the comparator input Vref in
Fig. 4.6.

by the same algorithm in software, using conventional LBP instead of the proposed RLBP.
When programmed in software, the proposed algorithm achieves 96.7% accuracy on the test
dataset, while using LBP achieves 98.5%, but requires 8 times as many comparisons. Varying
Vref between 1.63 V and 1.68 V, the proposed hardware implementation using the SIS and
digital coprocessor on the FPGA achieves an accuracy above 93%. Setting Vref between 1.655
V and 1.665 V achieves a mean accuracy of 96.5%. These values are slightly higher than the
expected value of Vref = Vdd/2 = 1.65V, mostly because of change injection in the feedback and
parasitic capacitors of the comparator.

5.3 Object detection results

5.3.1 Smart pixel and A-THR implementation

Figure 5.7 shows the physical layout for the smart-pixel presented in Fig. 4.3 to detect objects.
This design uses a 0.35 µm mixed-signal process, 950 aF/µm2 poly1-poly2 capacitors, and
a supply voltage of 3.3 V. The integration time of the proposed smart pixel is 20 µs and
the maximum current that the photodetector delivers is 8nA. With this, the two integration
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Fig. 5.7: Diagram of the smart-pixel layout. Using the design shown in Fig. 4.3 and imple-
mented on the TMSC 0.35 µm mixed-signal process. The opamp and integration capacitors are
implemented using two poly layers.

capacitors have an equal capacitance of 50 fF with a size of 7.7 µm × 7.7 µm. The area of the
entire smart-pixel circuit of is 32 µm × 23 µm, which achieves a fill factor of 28% in a standard
32 µm × 32 µm pixel [65]. In comparison. a conventional CTIA circuit designed on the same
process has a fill factor of 47.6%.

The layout of the smart pixel was drawn using the 0.18 µm TMSC process, a technology
commonly used in the literature [44, 65, 70]. For this technology a supply voltage of 1.8 V and
metal capacitors of 2 fF/µm2 capacitance were used. The size of the circuit is 14 µm × 19 µm,
which achieves a fill factor of 74% in the same 32 µm × 32 µm pixel, compared to 86.3% with
the conventional CTIA.

Figure 5.8 shows a post-layout simulation of a CTIA pixel of the SIS operating in frame-
difference mode. The figure depicts the voltage across the capacitors Cint1 and Cint2 during
two consecutive video frames. In the odd frames, during the store phase the capacitor voltage
VCint1 stars at zero and increases linearly with the photodetector current, and the voltage VCint2

represents the pixel value of the previous frame. During the subtract phase, VCint1 stays constant
and VCint2 decreases linearly with the photodetector current. After the subtract phase, VCint2

is proportional to the differences between the pixels in the two consecutive frames. The output
voltage VCint2 + Vbias is then sampled when reading the pixel value. For the even frames, the
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Fig. 5.8: Post-layout simulation of a pixel in the SIS operating in frame-difference mode.
The graph shows the voltage across the two integration capacitors of the CTIA during two
consecutive frames.

role of the capacitors is reversed, and the circuit outputs VCint1 + Vbias to the next stage.

The simulation plot in Fig. 5.9 shows the operation of the A-THR comparator of Fig. 4.16.
During the subtract phase, all pixels compute their respective frame-difference. For clarity,
Fig. 5.9 shows the output voltage of two pixels (pixels A and B). During the readout and
comparison phase, the controller performs a column-wise read of the pixel array. The readout
voltage of a column is labeled Vcolumn. The value of two different pixels, A and B, in the same
column inputs the A-THR. Those value, and the rest of the pixel values on the same column,
are sampled during the times circled in purple. If the input voltage is outside the threshold
window, i.e., greater than V+

THR or less than V−
THR, the A-THR outputs a logic 1, and outputs

a logic 0 otherwise. The simulation in Fig. 5.9 shows that the output of the A-THR is a logic
sequence 11001011100. This sequence is then delivered to the digital coprocessor.

5.3.2 FPGA implementation of the digital coprocessor

The SystemVerilog HDL at the RTL was used to implement and validate the architecture of the
digital coprocessor using the Xilinx Vivado 2020.1 development platform. In order to showcase
the reduction in digital hardware resources enabled by the SIS, the low-cost entry tier Xilinx
Artix-7 XC7A35T FPGA was targeted. It was compared the results to an FPGA-based Fully-
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Fig. 5.9: Post-layout simulation of the A-THR comparator while reading multiple pixels in
frame-difference mode. The plot shows the subtract phase for two pixels A and B in the same
column, during an odd frame. In the readout phase, the comparator consecutively samples all
pixels in each column, comparing their value to the application-defined thresholds and output
a logic 1 when the movement in the pixel exceeds the threshold. Pixel values are sampled every
50 ns.

digital implementation (FDI) of the algorithm that uses a conventional image sensor. The
FDI operates on 8-bit grayscale pixels. All implementations use 5-bit labels and a 32-entry
equivalence table in the Connected components module. Two tests scenarios with different
input image resolutions were considered: 320× 240 and 640× 480 pixels.

Table 5.8 shows the resource utilization of both implementations for both image resolutions.
The proposed coprocessor architecture using the SIS requires 5930 and 3929 Lookup tables
(LUTs) for the 640 × 480 and 320 × 240-pixel implementations, respectively. This represents
28.5% and 18.8% of the LUTs available on the XC7A35T FPGA. The presented implementations

Table 5.8: Resource utilization of the digital coprocessor on a Xilinx Artix-7 XC7A35T FPGA.
SIS 640x480 FDI 640x480 SIS 320x240 FDI 320x240
Util % Util % Util % Util %

LUT 5930 28.5 6493 31.2 3929 18.8 4051 19.4
FF 5021 12.0 5107 12.2 3239 7.7 3270 7.8
BRAM 0 0 75 150 0 0 19 38
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also utilize 12% and 7.7% of the available Flip-Flop (FFs). No on-chip BRAM are required in the
SIS-based architecture. When compared with the SIS-approach, the FDI needs a frame buffer
to compute the temporal differences between pixels in consecutive frames, which is implemented
with Block Random Access Memory (BRAM) to avoid using an external memory chip, which
would limit the performance of the algorithm and increase the overall cost of the system. Indeed,
the 320×240-pixel FDI requires only a small increase in the utilization of LUTs and FFs, but uses
38% of the available BRAM. Moreover, the 640×480-pixel FDI requires more BRAM resources
than those available on the FPGA, and thus could not be implemented on the selected device.
The small hardware utilization of the proposed SIS-based coprocessor leaves ample resources
available, even on a entry-level device such as the XC7A35T FPGA. These resources could be
used to implement additional image-processing algorithm on the output produced by the SIS.

Table 5.9 shows the power consumption of the coprocessor estimated by Xilinx Vivado.
Operating with the 20 MHz clock frequency imposed by the sampling rate of the SIS, the power
consumption of the presented coprocessor is 27 mW and 34 mW for the 320×240 and 640×480-
pixel inputs, respectively. The coprocessor can operate at up to 125 MHz, which enables it to
operate at up to 1627 fps on 320× 240-pixel images while consuming 58 mW, and at up to 406
fps on 640× 480-pixel images while consuming 61 mW. In comparison, the FDI with 320× 240-
pixel input consumes 39 mW at 20 MHz, and 97 mW at its maximum clock frequency of 104
MHz. Here, the power consumption of the frame buffer, implemented as an on-chip memory, is
near the 50% of the total dynamic power. At this frequency, the FDI can operate at up to 1354
fps.

5.3.3 SIS object detection performance

To test the performance of the motion-based object-detection algorithm on the proposed SIS,
the OSU Thermal Pedestrian [136] and the Terravic Motion Infrared (IR) [137] databases were
used. Both contain video sequences in the thermal IR range. Table 5.10 summarizes the image
size in pixels, number of video sequences and total number of images.

To evaluate the object location performance of the SIS on each dataset, we used a simulation
of the complete SIS circuit with post-parasitic extraction and the FPGA-based coprocessor
described in Section 5.3.1. We developed a software implementation of the algorithm using
floating-point arithmetic and used it as a baseline to evaluate the performance of the algorithm
on the SIS.
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Table 5.9: Power consumption of the digital coprocessor on a Xilinx Artix-7 XC7A35T FPGA,
estimated by Vivado. All implementations consume 20 mW of static power, which are added to
the dynamic power to compute the total. The 640× 480-pixel FDI can not be implemented on
the XC7A35T device.

Dynamic power (mW)
Total

Dynamic
(mW)

Total (mW)

Dilation Erosion
Connected
components

Frame Buffer

SIS 320x240
(20MHz)

2 2 3 0 7 27

SIS 320x240
(125MHz)

9 9 20 0 38 58

SIS 640x480
(20MHz)

4 3 7 0 14 34

SIS 640x480
(125MHz)

12 12 17 0 41 61

FDI 320x240
(20MHz)

2 2 3 12 19 39

FDI 320x240
(104MHz)

12 14 17 34 77 97

Figure 5.10 shows a visual comparison of the intermediate stages of the algorithm on the
software and the analog section of the SIS. Figure 5.10(a) shows the image input, taken from
IR security footage in the OSU database, which shows two pedestrians crossing the street.
Figures 5.10(b) and (c) show the absolute frame-difference and thresholding computed by the
software, and Figs. 5.10(d) and (e) show the same stages of the algorithm output by the smart
pixel array and A-THR module in the SIS. The figure shows that both implementations produces
visually similar results, although the SIS output loses resolution, mainly due to the reduction
in integration time.

Figure 5.11 shows a visual comparison of the intermediate stages of the algorithm on the
software baseline implementation and the digital coprocessor. Because the two implementations
receive a single-bit pixel image as input and the algorithm uses integer arithmetic only, they
can produce identical results from the same images. However, the software and hardware
implementations receive different inputs as shown in Figs. 5.10(c) and (e). As a result, there are
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Table 5.10: Databases used to test the performance of the proposed algorithm.

Database Spectrum Image size
Number of
sequences

Total number
of images

OSU Thermal
pedestrian database [136]

Thermal IR 360× 240 10 284

Terravic Motion
IR database [137]

Thermal IR 320× 240 18 23355

Fig. 5.10: Visual comparison of the intermediate stages of the algorithm on the software and
analog section of the SIS: (a) input frame, (b) frame-difference computed by the software, (c)
software output after thresholding, (d) smart-pixel array output in frame-difference mode, and
(e) A-THR output in the SIS.

small differences in the image opening output (Figs. 5.11(a) and (c)), which leads to differences
in the bounding boxes (Figs. 5.11(b) and (d)). Figure 5.11(e) overlaps the bounding boxes
produced by the two implementations on the input image of Fig. 5.10(a).

5.3.4 Comparison to Related work

We quantified the performance of the object location algorithm in the SIS implementation
using the software implementation as a baseline. We used the Intersection over Union (IoU)
index to estimate the accuracy of each bounding box output [138] and the average precision
(AP), which measures the fraction of the objects in the image that are correctly located by the
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Fig. 5.11: Visual comparison of the intermediate stages of the software and digital coprocessor:
(a) image opening computed by the software, (b) bounding boxes in the software, (c) image
opening computed by the digital coprocessor, (d) bounding boxes output by the digital copro-
cessor, and (e) comparison between the outputs of the two implementations.

algorithm [138].

The IoU is defined in Equation (5.2) as:

IoU = area(SW ∩HW )
area(SW ∪HW ) , (5.2)

where SW is the ground truth given by the bounding box computed by the software imple-
mentation, and HW is the same bounding box computed by our SIS hardware implementation.
The IoU equals zero when the bounding boxes computed by two implementations have no over-
lap, and it equals one when the bounding boxes completely match. To compute the AP, we
define a set of IoU threshold values THRIoU , such that the location result of the ith object in
the image is defined as a true positive (TP) when IoUi ≥ THRIoU , and a false negative (FN)
when IoUi < THRIoU . For each selected value of THRIoU , the precision is computed as the
ratio between the number of TP and the total number of objects (TP + FN) in the image.
Finally, the AP of the algorithm is computed as the average between the precision values for
each THRIoU in the image, for all images in the dataset.

Using the OSU dataset, we computed a total of 1050 bounding boxes from the 284 input
images. The average value of the IoU for all boxes is 0.94. With the Terravic dataset, we
obtained a total of 65,394 bounding boxes from the 23,355 images, for an average IoU value of
0.9. To compute the AP, we used THRIoU values in the range [0.85, 0.95] with 0.01 increments.



59

Our SIS implementation of the algorithm obtained an AP of 0.92 on the OSU dataset and 0.87
on the Terravic dataset.

Table 5.11 compares the smart pixel array proposed in this work to other designs reported
in the literature that implement object detection on an SIS [62, 65, 68]. We also include our
own previous SIS designed for face recognition [64], which also uses an iROIC to implement
pixel-level operations.

The SIS presented in [65] detects objects using pixel-level processing to compute HOG
features in an 8 × 8-pixel window. The processing circuits reduce the fill factor to 19%. The
rest of the object detection algorithm is performed in a digital coprocessor and achieves an AP
of 0.84. To improve the fill factor, the SISs in [62,68] move most or all the computation to the
column level or to a coprocessor external to the imager. The SIS presented in [62] implements
motion detection only to activate the digital coprocessor that performs object detection. The SIS
combines pixel- and column-level processing to implement motion detection, and achieves a fill
factor of 30% despite sharing capacitors between horizontally adjacent pixels. The coprocessor
achieves an AP of 0.94. The SIS presented in [68] uses a digital coprocessor that operates at
the column level, using an ADC for each column. Although it adds no additional circuitry at
the pixel level, the die area used by the ADCs and coprocessors limits the fill factor to 60%.
The digital coprocessor achieves an AP between 0.7 and 0.87, depending on the type of object
detected.

Compared to works discussed above, our SIS achieves a frame rate that is significantly higher
that those reported in the literature. This is mainly due to the parallelism exploited by our
design at the pixel level and the fact that our column-level circuits have a single-bit digital
output, which improves the readout time. Table 5.11 also shows that our fill factor is higher
than those reported in the related work when using comparable CMOS processes. The main
reason for this is that our SIS uses iROICs at the pixel level to compute the frame differences,
which only add a capacitor and six extra switches to the conventional integration circuit. Finally,
it is important to note that our design uses a CTIA to perform integration, which allow us to
operate in the IR spectrum and low-light environments. The works reported in [62,65,68] only
operate in the visible spectrum, but this allows them to use simpler pixel architectures with
smaller die area.

The final column of Table 5.11 reports our own previous SIS [64] designed for face recognition,
which uses an iROIC approach similar to this work. In consequence, the design achieves a similar
fill factor, with slightly less area overhead because it uses only four switches and one capacitor
per pixel. However, its maximum frame rate is significantly lower because it requires multiple
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Table 5.11: Comparison of our smart-pixel design for object detection to other circuits in the
literature.

This Work [65] [62] [68] [64] [64]
Technology (µm) 0.35 0.18 0.18 0.18 0.13 0.35 0.18
Array size (pixels) 320× 240 320× 240 256× 256 256× 256 320× 240 150× 80 150× 80
Pixel pitch (µm) 32×32 32×32 31×31 5.9×5.9 5×5 32×32 32×32
Fill Factor (%) 28 74 19 30 60 34 76
Power (µw) 8.25 (pixel) - 2.18 (array) 51.1 (array) 229 (array) - -
Type of
integrator

CTIA CTIA OTA + 2 CAP 5T + 1 CAP 4T CTIA CTIA

Tested spectrum IR IR Visible Visible Visible
Visible
IR/NIR

Visible
IR/NIR

AP 0.87 - 0.92 - 0.84 0.94 0.7 - 0.87 - -
SIS fps 3846 - 30 30 15 (207 max) 556 -

reads per pixel to compute the features of the image at the column level.



61

6. Conclusions
This report has presented two SIS architectures, one for face recognition and other for

motion-based object detection. The SIS architecture for face recognition uses local gradients
to extract image features based on a lightweight version of LBP. The analog smart pixel sensor
computes spatial gradients in the image in parallel during photocurrent integration, and can
be configured to output the regular pixel value or the local gradients. A digital coprocessor
computes a modified version of Ahonen’s algorithm, where LDA is used to reduce the feature
space dimensions and improve class separability. The SIS for object detection uses a smart-pixel
array with local memory to compute frame-differences in the analog domain during pixel-current
integration with high parallelism. It also uses an analog comparator and a digital coprocessor to
compute image opening and connected components to detect objects from the frame-difference
output of the smart-pixel array.

The results of this work show that using a heterogeneous smart camera architecture can dis-
tribute the computation of the algorithm between a smart-pixel array and a digital coprocessor.
Using analog circuitry to process on the smart-pixel array simultaneously can affect the results
of the algorithms but increases the processing framerate and reduces the overall power. As a
drawback, a penalty on the fill factor can decrease the effective area for light capturing, but
depending on the application, this penalty is acceptable considering the benefits. Compared
to traditional software implementation and programmable hardware (such as FPGAs), using
smart pixels that operate simultaneously greatly increases the algorithm’s parallelism being ex-
ploited. The evaluated metrics show that the processing results are still competitive with those
obtained using traditional software and hardware implementations. The iROIC presented also
contributes to increasing the performance of the SISs, thanks to its computation process during
the capture time. Moreover, column-level circuits, such as analog thresholding or the RLBP
generator, further reduce computing time.

To design a heterogeneous intelligent camera, it is important to simultaneously consider the
architecture design and the algorithm’s stages. This way, the resulting design can naturally
implement the desired computation simultaneously along all the smart-pixel array. The simul-
taneous consideration of the architecture and the algorithm could include some mathematical
simplifications and some algorithm’s adaptation. Generalizing the pixel architecture to interface
the smart-pixel array with a digital coprocessor is an essential step in the design process because
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it could lead to further parallelism at the column level.

On the face detection SIS it is possible to summarize the following. Post-layout simulations
of an array of 150×80 pixels of 32 µm × 32 µm show that the array can deliver up to 556 frames
per second. Modifying the integration readout circuit to compute the local gradients allows to
extract local features with a small impact on fill factor. The digital coprocessor, implemented on
a Xilinx XC7Z020 FPGA, can classify a face image in 94 µs, or 10,638 images per second, while
consuming 71 mW of power. Several techniques were used to reduce on-chip resource utilization,
such as storing the LDA coefficients on external memory, and simultaneously building the
RLBP histograms and mapping them to the LDA subspace to avoid computing matrix-vector
multiplications. As a result, the coprocessor uses less than 10% of the slice LUTs of the FPGA,
less than 2% of the on-chip block memory, and less than 3% of the multipliers.

When classifying faces using different databases, it is possible to observe that the proposed
algorithm outperforms other methods in the literature, except when there are large variations in
illumination between the training and test datasets. These variations are significantly smaller
in IR images, for which the face recognition smart pixel has been designed. The results also
show that replacing conventional LBP with the proposed RLBP still captures sufficient texture
information to perform face classification with a small degradation in accuracy.

On the object detection SIS it is possible to summarize the following. Computing the
frame-differences on the smart-pixel array eliminates the need for a frame buffer in the digital
coprocessor. Indeed, the results show that the coprocessor in the proposed SIS does not use
on-chip memory blocks on the FPGA, while a fully-digital implementation of the algorithm
requires 19 memory blocks for 320 × 240-pixel images, and 75 blocks for a 640 × 480-pixel
input. The latter can not be implemented on the entry-level XC7A35T FPGA, which features
only 50 memory blocks. As a result, the digital coprocessor attached to the SIS also achieves
a higher maximum clock frequency, and therefore a higher frame rate, than the fully digital
implementation of the algorithm.

The results show that, using a 32 µm × 32 µm pixel, the proposed design reduces the
fill factor on the 0.18 µm process from 86.3% to 74% compared to a traditional CTIA-based
imager. This small impact on the fill factor is mainly due to the addition of switches that
control the current flow during integration. Because the integration time is reduced by 50%
in frame-difference mode, the resolution of the output images reduced. However, the circuit
can still detect objects with a mean accuracy of 0.92 over 28 video sequences from two thermal
IR databases, compared to a reference software implementation. When the presented SIS is
compared with a fully digital implementation, it is possible to note that the proposed circuits
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has lower area utilization and power consumption.

When we use integration capacitors as double-buffer memory to compute frame differences,
we reduce the penalty on the fill factor compared to circuits that operate with readout-circuit
output. Furthermore, although our smart pixel effectively uses half of the integration time,
which could reduce the signal-to-noise ratio, our results are comparable to a software imple-
mentation of the motion-based object location algorithm. The on-imager computation of the
proposed object detection SISs is convenient in contexts where privacy is required, where it
eliminates the need to continuously transmit video information over a communication channel.
As an example, the object detection SIS can deliver an alarm only when objects in motion are
detected. Another example is the use of the proposed object detection SIS paired with a high-
resolution camera where the SIS could detect objects based on motion and send the bounding
boxes to an external controller, which could use them to activate the capture of that portion
of the high resolution image. The proposed SISs have low power consumption and low area
utilization, making them suitable for mobile devices and portable systems. Although the CTIA
integrator used in the smart pixel is larger than alternative readout circuits, it is suitable for IR
and low-light imagers. Computing local differences during photocurrent integration minimizes
the impact on circuit area and fill factor, even though by cutting the integration time in half,
it may reduce the signal-to-noise ratio of the image sensor in face-recognition mode.

6.1 Future work

Thanks to the work presented on this report, it is possible to continue research in the field of
SIS as it was explored in this thesis. First, thanks to the area availability on each design it
is possible to join their architecture into a single readout circuit to perform local gradients or
temporal differences on-pixel. Then, it is possible to unify the digital coprocessors into a single
SIS to work as a conventional imager, a face-recognition or an object detection system. From
that point, it is possible to further expand the architecture and generate a programming model
to easily program the multi-purpose smart pixel. This programming model could include the
selection of the integration capacitor, the polarity of the integration on each, the photodetector,
and their respective integration time ratio.

Other related research lines could include the use of the proposed smart pixels as a base for
other computer vision algorithms that need to compute local gradients or temporal changes on-
pixel. Such applications includes local kernels for edge detection, local filters for noise reduction,
and temporal statistics such as the mobile mean estimation. Further, it is possible to think of
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other smart pixel architectures that use the same technique of adding or subtracting analog
values on-pixel. These could include smart pixels for non-uniformity correction on infrared
sensors, such as neural network based algorithms or two point calibration.
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