
UNIVERSIDAD DE CONCEPCIÓN
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

ANALYTICAL EXPLORATION OF NUCLEAR MATTER TRANSPORT
PROPERTIES AT FINITE DENSITY

EXPLORACIÓN ANALÍTICA DE PROPIEDADES DE TRANSPORTE DE
MATERIA NUCLEAR A DENSIDAD FINITA

Autor: Scarlett Catalina Rebolledo Cáceres

Tesis presentada a la Facultad de Ciencias Físicas y Matemáticas de la Universidad de
Concepción para optar al título de FÍSICA

2023
Concepción, Chile

Profesor Guía: Dr. Julio Oliva
Profesor Co-Guía: Dr. Fabrizio Canfora

Comisión: Dr. Nicolás Grandi, Dr. Alex Giacomini



© 2023, Scarlett Rebolledo
Ninguna parte de esta tesis puede reproducirse o transmitirse bajo ninguna forma o por ningún
medio o procedimiento, sin permiso por escrito del autor.

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio
o procedimiento, incluyendo la cita bibliográfica del documento



A Mis Padres y Hermanos



i

AGRADECIMIENTOS

En esta sección quiero agradecer a todas las personas importantes en este proceso. Agradezco
a mi profesor guía el Dr. Fabrizio Canfora por mostrarme que la investigación es una labor
rigurosa, que requiere mucho compromiso y que siempre se puede mantener el entusiasmo por
descubrir nuevos aspectos de la naturaleza a través de nuestra comprensión e interpretación
de la misma. En este sentido, me gustaría agradecer al Dr. Julio Oliva por su apoyo y guía
constante en los últimos años y también por contagiarme de su curiosidad. Ahora bien, también
me gustaría agradecer al Dr. Aldo Vera, por su guía y claridad por enseñarme muchos aspectos
fundamentales de esta tesis.

Quiero agradecer en especial a mi mamá Tamara Cáceres por su apoyo, confianza, guía y amor
de todos estos años. Por invertir en mi educación académica dentro de sus posibilidades y por
la amistad que hemos construido estos últimos años.

Agradezco a mis hermanos Pablo San Martín y Monserrat Rebolledo que junto a sus risas, a
las bromas de todos los días y pesar que muchas veces no tuve el tiempo que me gustaría para
compartir con ellos, siempre conté con ellos de manera incondicional.

También agradezco a mi papá Santiago Rebolledo y a mi tío Orlando Rebolledo, por su compañía
y amor.

Gran parte de este trabajo fue posible gracias a las contribuciones a nivel personal de un montón
de personas. En este sentido, agradezco a mi pareja Marcel Yáñez por su incondicional apoyo y
amor. Por todos los momentos de contención cuando la deadline se aproximaba vertiginosamente
en temas académicos. Además, es importante mencionar que esta tesis es legible, en gran medida,
gracias a sus correcciones de inglés. Agradecida por todos estos años juntos.

También me gustaría mencionar de manera general a la familia Yáñez-Reyes (padres y hermanos
de Marcel) que durante estos últimos años han sido un apoyo constante y hay mucho de ellos en
este trabajo.

Sobre el día a día en la Universidad y fuera de ella, mis amigos son un pilar fundamental. Me
gustaría iniciar con Mariana Navarro gran amiga y colega, que ha sido una muestra constante
del amor incondicional en una amistad a lo largo de los años. También mi gran amigo y colega
Aníbal Neira que sin duda mi experiencia en la física no sería lo mismo sin él. También agradezco
a Guillermo Zieballe y Ayleen Contreras que son personas excepcionales en todo lo que se
disponen a hacer y eso incluye su amistad conmigo. Además agradezco a Pablo Navarrete y
Fabián Jofré por su amistad y por tener las experiencias más entretenidas de laboratorio.

Agradezco a mi buen amigo Félix Palma por su infinita preocupación, por su presencia constante
en mi vida a pesar de la distancia. Otra persona que también se encuentra lejos es Ricardo
Stuardo, agradezco su cariño, guía y dirección en mis primeros años en la física.

Además, agradezco a Camilo Alegría y Monserrat Aguayo por su cariño, apoyo y por siempre



ii

estar dispuestos a ayudar y compartir. Agradezco a Marcelo Oyarzo por su carísma contagioso,
sus discusiones de física y por ser una constante motivación, también, me gustaría agradecer a
Jorge Gidi por su apoyo y risas en este último período.

Finalmente, agradezco a mis amigos de la vida Tomás Chamorro, Camila Leal, Grace Rivas y
Cat Apablaza por todos estos años de amistad y cariño que hemos construido. Por su compañía
y luz, espero tener muchos más años de amistad con ustedes.

Este trabajo fue financiado por ANID-Beca de Magíster Nacional 2022-22221100, FONDECYT
Grant 221504 y 1200022.



iii

Resumen

En esta tesis, describiremos los avances recientes en métodos analíticos para construir soluciones
exactas del modelo Skyrme que representan condensados hadrónicos no homogéneos que viven
en una densidad bariónica finita. Estas novedosas herramientas analíticas se basan en la idea
de generalizar el conocido ansatz del erizo esférico a situaciones (relevantes para el análisis
de efectos de densidad finita) en las que ya no existe la simetría esférica. Estudiamos dos
parametrizaciones; la exponencial (que llamamos Generic Spherical Ansatz ) y la de ángulos de
Euler (que llamamos Euler Angles Ansatz ).

Además del interés matemático intrínseco para encontrar soluciones exactas con carga bariónica
no nula a volumen finito, este marco abre la posibilidad de calcular cantidades físicas importantes
que serían difíciles de calcular de otra manera. En particular, discutiremos las propiedades de
transporte de dichos condensados hadrónicos no homogéneos del Modelo Skyrme en (3 + 1)

dimensiones a través del formalismo de Kubo.

Estos resultados contribuyen significativamente a la comprensión de la materia nuclear en el
régimen de baja energía ya que, debido a su naturaleza no perturbativa, es difícil calcular sus
propiedades analíticamente. Además, los resultados presentados en esta tesis están directamente
relacionados con descubrimientos recientes en física nuclear sobre estructuras que presentan
patrones ordenados y que coloquialmente se denominan nuclear pasta.

Keywords – densidad finita, skyrmiones, funciones de respuesta, pasta nuclear.
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Abstract

In this thesis, we will describe recent advances in analytical methods to construct exact solutions
of the Skyrme model (and its generalizations) representing inhomogeneous Hadronic condensates
living at finite Baryon density. Such novel analytical tools are based on the idea to generalize
the well known spherical hedgehog ansatz to situations (relevant for the analysis of finite density
effects) in which there is no spherical symmetry anymore. We study two parameterizations; the
exponential (which we call Generic Spherical Ansatz ) and the Euler Angles (which we call Euler
Angles Ansatz ).

Besides the intrinsic mathematical interest to find exact solutions with non-vanishing Baryonic
charge confined to a finite volume, this framework opens the possibility to compute important
physical quantities, which would be difficult to compute otherwise. In particular, we will discuss
the transport properties of such inhomogeneous hadronic condensates of the Skyrme Model in
(3 + 1) dimensions through the Kubo formalism.

These results contribute significantly to understanding nuclear matter in the low-energy regime
since, due to its non-perturbative nature, it is challenging to calculate properties analytically. In
addition, the results presented in this thesis are directly related to recent discoveries in nuclear
physics about structures that give ordered patterns and are colloquially called nuclear pasta.

Keywords – finite density, skyrmions, response functions, nuclear pasta.
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Chapter 1

Introduction

Undoubtedly, one of the most significant open issues in physics is achieving a satisfactory
theoretical description of the phase diagram of Quantum Chromodynamics (QCD henceforth).
In this context, the most challenging part is the low temperature and finite Baryon density
region of the phase diagram. The common belief is that in this regime, only refined numerical
techniques can be effective (see [1], [2], [3], [4], and references therein) while analytical tools are
useless. An unfortunate consequence of this fact is that until very recently, the appearance of
the nuclear pasta phase 1 (see [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], and the nice up
to date review [16]), which is a very remarkable phenomenon typical of the finite Baryon density
and low-temperature regime, had no theoretical “first principles" explanation. 2 Moreover, the
numerical analysis of these configurations is quite challenging (see [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27] and references therein) and, as the above references show, requires very
high computing power.

Transport properties are fundamental properties of multi-Baryonic configurations, especially
electrical conductivity, entropy, and viscosity (see [28], [29], [30], [31], [32] and references therein).
It is difficult to underestimate the importance of these quantities in particle physics, nuclear
physics and astrophysics. Without a proper analytic understanding of the complex structures
characterizing the nuclear pasta phase, numerical simulations are the only way to compute the
electric conductivity. In this work, we intend to prove that it is very difficult to extend the
numerical techniques used to analyze transport properties in homogeneous condensates with very
large Baryonic charge when these systems are coming out of equilibrium. On the other hand,
a "theoretical dream" would be to have a proper analytic description of these multi-Baryonic
systems in order to be able to apply the Green-Kubo formalism [33], [34], [35] (for a detailed
pedagogical review see [36]). In this way, one would achieve a first-principle understanding of
these essential properties, allowing their comparison with available experimental data.

1In such a phase, ordered structures appear, in which most of the Baryonic charge is contained in regular shapes
like thick Baryonic layers (called nuclear lasagna) or thick Baryonic tubes (called nuclear spaghetti). This phase
has many similarities with the non-homogeneous condensates, which have been discovered in integrable field
theories in (1 + 1) dimensions.

2Namely, a theoretical explanation that only uses the QCD Lagrangian (or its low energy limit) and the fact
that there is a finite amount of Baryonic charge within a finite spatial volume.
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The main goal of this thesis is to take the first steps toward the construction of a first principle
understanding of the low-temperature transport properties of multi-Baryonic structures appearing
in the nuclear pasta phase. Our starting point is the Skyrme theory which (at leading order in
the t’ Hooft expansion [37], [38], [39]) represents the low energy limit of QCD.3

The dynamical field of the Skyrme action [47] is a SU(N)-valued scalar field U (here we will
consider the two-flavors case U(x) ∈ SU(2)). This action possesses both small excitations
describing Pions and topological solitons describing Baryons [48], [49], [50], [51], [52]; the
Baryonic charge being a topological invariant (see also [53], [54], [55], [56], [57], [58], [59] [60],
[61] , [62] and references therein).

To achieve the goal of computing -via the Green-Kubo formalism- some transport properties of
regular multi-Baryonic structures, we will need to generalize the analytic crystal-like solutions
with high topological charge constructed in [63], [64], [65], [66], [67], [68], [69], [70], [71], and
[72] (using the methods developed in [73], [74], [75], [76], [77], [78], [79], [80]).4 It is worth
emphasizing that, first of all, the plots in [63] and [72] are qualitatively very close to the ones
found numerically in the analysis of spaghetti-like configurations (see the plots in [5], [6], [7], [8],
[9] and [16]). Moreover, in [71] the shear modulus of lasagna configurations has been computed,
the result being in good agreement with [11] and [15]. Thus, the present formalism is well
equipped to analyze the nuclear pasta phase.

Now, as the analysis of the following sections will clarify, the Hamiltonian describing small Pionic
fluctuations of these crystalline structures cannot be directly analyzed with the Green-Kubo
formalism. An essential technical step is to allow for a more general time-dependence of these
configurations and describe "Baryonic pulses". We will construct more general topologically
non-trivial solutions and show that the Hamiltonian describing the small Pionic excitations is
very well suited for the Green-Kubo formalism.

The manuscript is divided as follows: In chapter 2, we give a brief review of the Skyrme Model,
its relation with baryons, its field equations, the energy-momentum tensor, and we define
topological charge in the model. Furthermore, we define and explain the most common ansätze
for the fundamental element U .

Chapter 3 summarizes previous contributions of hadronic configurations at finite density, we
called these structures Skyrmions crystals. Then, we will present the metric and their ranges of
coordinates.

Chapter 4 presents our analytic solution of the Skyrme Model at finite density with a non-
vanishing topological charge. Besides, we will define the relevant properties of the theory, like
the energy-momentum tensor and the topological current.

In chapter 5, we present recent work on transport properties of hadronic layers and tubes. We

3Needless to say, Skyrme’s ideas have also been applied in astrophysics [40], Bose-Einstein condensates [41],
nematic liquids [42], magnetic structures [43] and condensed matter physics [44] (see also [45] and [46]).

4In [81] and [82], numerical string shaped solutions in the Skyrme model with the mass term have been constructed.
However, those configurations have vanishing topological density (and they are expected to decay into Pions).
The configurations analyzed in the present thesis are topologically non-trivial and therefore can not decay into
those of [81] and [82].
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contrast with recent references on nuclear pasta.

In chapter 6, we show recent work related to a sector of the Yang-Mills theory that exhibits
conformal symmetry. We will motivate this work with the exciting possibilities to compute and
characterize nuclear matter.

Finally, chapter 7 is dedicated to conclusions and future outlook.

In our convention c = ℏ = 1, Greek indices run over the space-time with mostly plus signature,
and Latin indices are reserved for those of the internal space. For simplicity, we denote the
scalar product with ·, for example, we use (∇α · ∇G) for (∇µα∇µG).
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Chapter 2

Skyrme Model

In this chapter, we present the most essential aspects of the Skyrme theory when coupled with
the Maxwell theory. First, in section 2.1, we show that barions are described by skyrmions, which
are solutions to the Skyrme model. Then, in section 2.2, we give the definition of the Skyrme
Model coupled with the Maxwell action and the considerations for the fundamental element
U of SU(2). Afterwards, in section 2.3, we study the field equations of the Skyrme-Maxwell
Model. Finally, in section 2.4, we compute the energy-momentum tensor; however, we analyze
the energy when the fundamental field Aµ vanishes, i.e we only study the contributions of the
Skyrme action.

It should be noted that in this chapter we analyze the Skyrme theory coupled with Maxwell
theory; nevertheless, our work and results are focused when the field Aµ goes to 0.

2.1 Topological Solitons and Baryons

The Skyrme model is an effective field theory of Quantum Chromodynamics (QCD) at low
energies proposed by T. Skyrme in 1961. The model describes baryons and mesons simultaneously
by using a scalar field triplet taking values in SU(2) [47]. Skyrme constructed the simplest
topological action through the skyrme term that gives stability to its solutions called solitons
(for more details, see A1). In particular, for this model, these solutions are called skyrmions.

Nevertheless, before starting with an in-depth analysis of the Skyrme model, it is convenient to
highlight some aspects of QCD. This model is a theory describing the strong nuclear interaction
between its fundamental constituents: the quark and gluon fields. In an analogous way to
electrodynamics, a theory in which elementary particles (electrons) interact through a mediator
of the force i.e. the photon, in QCD, gluons mediate strong nuclear interactions, while quarks
are the elementary particles. In this sense, quarks are the fundamental constituents of known
matter, everything we can interact with. These, when cooled, form hadrons such as neutrons
and protons.

Hadrons are quark-bound states, which can be classified according to their electric charge or
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the number of quark constituents. The latter classification separates hadrons into baryons and
mesons, composed of three and two quarks, respectively.

Now, when we say quarks are "cooled" we are alluding to the process in which the quark states
of the theory flow into a lower energy sector such that their color charge is hidden or masked
by the hadronic states. This phenomenon is called color confinement, and it explains that we
do not observe color-charged particles in nature, and it is related to an interesting property of
QCD: asymptotic freedom.

Asymptotic freedom is a peculiar characteristic of the fundamental constituents of QCD, which
interact strongly and non-linearly as they are separated. In contrast, they interact very weakly
when located relatively close to each other. This phenomenon is characteristic of the strong
nuclear interaction, making it very different from other forces. Furthermore, asymptotic freedom
is responsible for the fact that, at high enough energies, this theory can be studied perturbatively
since the expansion parameter (coupling constant) is small in this region. Nevertheless, in the
low-temperature regime, this parameter grows, which breaks the validity of the perturbation
theory. Hence, for studying such regions of the phase space, we use effective theories like the
Skyrme model, which describes hadron dynamics well.

The Skyrme model is related to the large NC limit, where NC is the number of colors (3 for QCD).
This number arises from the Lie group structure of QCD, a gauge theory for the color group
SU(3). In this context, the fundamental parameters of the theory are the strong interaction
coupling constant and the quark masses.

’t Hoolf [37] is the one who studies this coefficient as one more parameter of the theory. In
simple words, this parameter is very large and induces a combinatorial factor related to the
Feynman diagrams of the theory. This combinatory factor goes as 1/NC so that the theory can
be studied in power series on this factor.

In addition to coinciding with this regime with the Skyrme Model, he also describes other phases
of matter that are difficult to study since perturbation theory cannot be done.

In the particular case of the Skyrme Model, the relationship with QCD lies precisely in the large
NC limit where the topological charge corresponds to the baryon number of QCD.

In conclusion, the Skyrme Model provides a satisfactory description for baryons since it can
even, through quantization, a baryon itself. Among the essential features of the model is that it
predicts that the baryonic charge is conserved, which is related to the stability of the neutron
when it has no charge.

2.2 The Skyrme-Maxwell Model

The Skyrme model is a type of non-linear sigma model, so let’s first see the explicit contribution
of this term, which is defined as

I[U,Aµ] =

∫
d4v

(
LSK + LU(1)

)
, (2.2.1)
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where

LSK =
K

4
Tr
{
RµR

µ +
λ

8
GµνG

µν

}
. (2.2.2)

In this action, we recognize the first term like the non-linear sigma model that had a strong
predictive character for the time in which it was created. Skyrme was interested in a theory
that would allow him to have soliton-type solutions describing baryons and mesons, and wanted
to provide an answer for the following question: what is the simplest term that avoids Derrick’s
theorem, being Lorentz covariant and having second order field equations? It turns out that
his model was succesful in these points, and his work produced the so-called Skyrme term. We
provide a detailed proof that this term avoids Derrick’s theorem in Appendix A1. This means
that the theory has finite energy static solutions, which are stabilized by the second term of
(2.2.2).

Rµ = U−1DµU = Ra
µta , Gµν = [Rµ, Rν ] , d

4v =
√
−gd4x ,

DµU = ∇µU +AµUÔ , Ô = U−1 [t3, U ] , (2.2.3)

where, U(x) ∈ SU(2), g is the metric determinant, ∇µ is the partial derivative, Dµ is the
covariant derivative associated to the U(1) gauge field Aµ and ta = iσa are the generators of
the SU(2) Lie group, being σa the Pauli matrices. The Skyrme couplings K and λ are positive
constants that have to be fixed experimentally1.

On the other hand, Maxwell’s action is defined by the following lagrangian

LU(1) = FµνF
µν , (2.2.4)

where,
Fµν = ∂µAν − ∂νAµ . (2.2.5)

Here it is worth emphasizing an important point. In the limit of vanishing gauge potential the
above U(1) current does not necessarily vanish:

lim
Aµ→0

Jµ
def
= J (0)

µ ̸= 0′ . (2.2.6)

2.3 Field Equation

Field equations for the Skyrme Model are obtained through the variation of the Skyrme Model
with respect to the fundamental fields U and Aµ. This yields:

∇µ

(
Rµ +

λ

4
[Rν , G

µν ]

)
= 0 , (2.3.1)

∇µF
µν = Jν , (2.3.2)

1The parameter K and λ are defined by the constant of decay of pions Fπ and the adimensional constant that
gives the stability of the skyrmions e. These has the values Fπ = 186MeV and e = 5.45. In this sense, the
parameter K = F 2

π/4 and λ = 4/(e2F 2
π) (see the references [52] and [83]).
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For the fist equation we consider the variation of the element U fulfills δU = 0 over the volume
boundary of integration. While the electromagnetic current Jµ is given by

Jµ =
K

2
Tr
{
Ô

(
Rµ +

λ

4
[Rν , Gµν ]

)}
. (2.3.3)

In (2.3.1) we have (N2−1) equations (where N is the group number of SU(N) ), these equations
are nonlinear and their derivation is explicited in Appendix A2. It should be noted that finding
solutions of the Skyrme Model is hard, which makes the election of an intelligent Ansatz crucial
for the reduction of these complicated field equations. The last part of this chapter is dedicated
to the details of such Ansätze.

2.4 Energy of Solitons

The contribution to the energy-momentum tensor of the Skyrme model is given by

T SK
µν = −K

2
Tr
{
RµRν − 1

2
gµνR

αRα +
λ

4

(
gαβGµαGνβ − 1

4
gµνGαβG

αβ

)}
, (2.4.1)

while the contribution of the Maxwell theory is

T
U(1)
µν = gαβFµαFνβ − 1

4
gµνF

αβFαβ . (2.4.2)

We focus on the energy momentum tensor of Skyrme Model T SK
µν because across this work we

will use Aµ → 0.

In section 2.5, we will see with greater detail that using an in depth analysis of the energy it is
possible to have a notion of how complicated it is to find a solution to the Skyrme model field
equations through a Bogomol’nyi-Prasad-Sommerfield (BPS) bound in models with non trivial
topological charge Q. In order to do this, it will be useful to know an expression for the energy
that is obtained via the integration of the T00 component of (2.4.1).

E = Estat + Erot , (2.4.3)

where Estat is the static energy of the model and Erot is related with the rotational energy.
These are given by

Estat = −K
2

∫
d3xTr

{
1

2
RaR

a +
λ

16
GabG

ab

}
, (2.4.4)

Erot = −K
2

∫
d3xTr

{
1

2
R0R

0 − λ

8
G0aG

0a

}
. (2.4.5)

The derivation of (2.4.3) and interpretations of these terms are given in Appendix A3.
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2.5 Topological Charge like a Baryon Number

Topological charge is a property of theories that have non trivial topology and characterizes
solitonic solutions of the theory. More rigurously, topological charges are conserved charges
associated with discrete symmetries of the theory, which contrasts with the usual notion of
Noether charges. In practice, it is very useful to know that the existance and conservation of
this charge does not require to use the equations of motion.

B =
1

24π2

∫
σ

ρB , (2.5.1)

where σ is a three-dimensional hypersurface at t = const. and ρB is defined as

ρB = ρSK + ρU(1) , (2.5.2)

where

ρSK = ϵabcTr
{(
U−1∂aU

) (
U−1∂bU

) (
U−1∂cU

)}
, (2.5.3)

ρU(1) = −Tr
{
∂a
(
3Abt3

(
U−1∂cU + (∂cU)U−1))} . (2.5.4)

Topological charge is also known as a topological invariant that is uniquely linked to the
boundary conditions of the fundamental field U . One of the most important properties of this
kind of charge is the fact that infinite energy is needed to change a physical state with a fixed
value of the topological charge to a state with a different topological charge.

Whenever Aµ → 0 we get the topological charge associated to the Skyrme model by itself. As
mentioned before, there is a bound to this charge called the BPS bound. This equation relates
the static energy of a configuration of topological charge Q in such a way that it satisfies

E ≥ |Q| . (2.5.5)

There is a convenient case in which this bound is saturated i.e. E = |Q|. In this case the field
equations interpolate from a system with second order equations to a first order one. This is
very convenient for finding solutions to the system. Nevertheless, for the Skyrme model, this
bound can not be saturated, and this path can not help us construct any novel solutions of the
model. A proof of the impossibility of saturating the BPS bound in the Skyrme model is given
in Appendix A4.

In what follows, we will use the terminology "Skyrmions at finite density" and "inhomogeneous
Baryonic condensates" to denote analytic solutions of the field equations in Eqs. (2.3.1) and
(2.3.2) with non-vanishing topological charge satisfying boundary conditions corresponding to a
finite spatial volume.
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2.6 Ansatz for Skyrme Field

In this section, we will show two parametrizations of the fundamental field U . The objective of
this parametrization is to construct the field equations easily. Using these simplifications, we
will find solutions for the field equations by considering convenient ansätze for the scalar fields
in question.

2.6.1 Skyrme Generalized Spherical Ansatz SU(2)

The standard exponential form of the field U(x) is

U = cos (α)12×2 + sin (α)njt
j , (2.6.1)

where 12×2 is the 2× 2 identity matrix and ti = iσi where σj are the Pauli matrices. Besides,

n⃗ = (sin(Θ) cos(Φ), sin(Θ) sin(Φ), cos(Θ)) , (2.6.2)

where α = α(xµ), Θ = Θ(xµ) and Φ = Φ(xµ) are the three scalar degree of freedom of the
SU(2)-valued field U(x).

Then, plugging (2.6.1) and (2.6.2) into the action we get

I(α,Θ,Φ) =
K

4

∫
d4vTr

{
(∇α)2 + sin2(α)((∇Θ)2 + sin2(Θ)(DΦ)2) +

λ

2

(
sin2(α)((∇α)2(∇Θ)2−

− (∇α · ∇Θ)2) + sin2(α) sin2(Θ)((∇α)2(DΦ)2 − (∇α ·DΦ)2)+

+ sin4(α) sin2(Θ)((∇Θ)2(DΦ)2 − (∇Θ · ∇Φ)2)
)}

+IU(1), (2.6.3)

where

DµΦ = ∇µΦ− 2eAµ. (2.6.4)

It is a trivial computation to check that the covariant derivative in terms of the three scalar
degrees of freedom α(xµ), Θ(xµ) and Φ(xµ) is equivalent to the following minimal coupling rule

∇µα→ Dµα = ∇µα , (2.6.5)

∇µΘ → DµΘ = ∇µΘ , (2.6.6)

∇µΦ → DµΦ = ∇µΦ− 2eAµ . (2.6.7)

Thus, the scalar degree of freedom Φ plays the role of the "U(1) phase" of the Skyrme field
since, under a gauge transformation, it transforms as

Aµ → Aµ +∇µA , (2.6.8)

Φ → Φ+ 2eΛ . (2.6.9)

It is also useful to write the full Skyrme-Maxwell equations in terms of the three scalar degrees
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of freedom α, Θ and Φ:

−□α+ sin(α) cos(α)
(
(∇Θ)2 + sin2(Θ)(DΦ)2

)
+ λ

(
sin(α) cos(α)

(
(∇α)2(∇Θ)2 − (∇α · ∇Θ)2

)
+

+ sin(α) cos(α) sin2(Θ)
(
(∇α)2(DΦ)2 − (∇α ·DΦ)2

)
+ 2 sin3(α) cos(α) sin2(Θ)

(
(∇Θ)2(DΦ)2−

− (∇Θ ·DΦ)2
)
−∇µ

(
sin2(α)(∇Θ)2∇µα

)
+∇µ

(
sin2(α)(∇α · ∇Θ)∇µΘ

)
−

−∇µ

(
sin2(α) sin2(Θ)(DΦ)2∇µα

)
+∇µ

(
sin2(α) sin2(Θ)(∇α ·DΦ)DµΦ

))
= 0 , (2.6.10)

− sin2(α)□Θ− 2 sin(α) cos(α)(∇α · ∇Θ) + sin2(α) sin(Θ) cos(Θ)(DΦ)2+

+ λ
(
sin2(α) sin(Θ) cos(Θ)

(
(∇α)2(DΦ)2 − (∇α ·DΦ)2

)
+

+ sin4(α) sin(Θ) cos(Θ)
(
(∇Θ)2(DΦ)2 − (∇Θ ·DΦ)2

)
−∇µ

(
sin2(α)(∇α)2∇µΘ

)
−

−∇µ

(
sin4(α) sin2(Θ)(DΦ)2∇µΘ

)
+∇µ

(
sin4(α) sin2(Θ)(∇Θ ·DΦ)DµΦ

)
+

+∇µ

(
sin2(α)(∇α · ∇Θ)∇µα

))
= 0 , (2.6.11)

− sin2(α) sin2(Θ)
(
□Φ− 2e∇µA

µ)− 2 sin(α) cos(α) sin2(Θ)(∇α ·DΦ)−

− 2 sin2(α) sin(Θ) cos(Θ)(∇Θ ·DΦ) + λ
(
−∇µ

(
sin2(α) sin2(Θ)(∇α)2DµΦ

)
+

+∇µ

(
sin2(α) sin2(Θ)(∇α ·DΦ)∇µα

)
−∇µ

(
sin4(α) sin2(Θ)(∇Θ)2DµΦ

)
+

+∇µ

(
sin4(α) sin2(Θ)(∇Θ ·DΦ)∇µΘ

))
= 0 , (2.6.12)

where the electromagnetic current in the Maxwell equations (2.3.2) is

Jµ = −eK sin2 α sin2 Θ

{
DµΦ+

λ

2

(
(∇α)2DµΦ− (∇α ·DΦ)∇µα+ sin2 α

(
(∇Θ)2DµΦ− (∇Θ · ∇Φ)∇µΘ

))}
.

(2.6.13)

The previous parametrization is reduced to the original ansatz proposed by Skyrme in [84]
when the three scalars fields are

α = α(R) , (2.6.14)

Θ = θ , (2.6.15)

Φ = ϕ , (2.6.16)

if we consider a flat metric in spherical coordinates

ds2 = −dt2 + dR2 +R2
(
dθ2 + sin2(θ)dϕ2

)
. (2.6.17)

2.6.2 Skyrme Generalized Spherical Ansatz SU(3)

When the fundamental field U(x) is an element of the SU(3) group, Balachandran et al. [85]
proposed an ansatz for describing dibaryons in flat spacetime with numerical tools. The Skyrme
field is constructed by a subgroup of Gell-Mann matrices that generate SU(3), the subgroup is
{λ2,−λ5, λ7} and corresponds to the subalgebra so(3) ⊆ su(3). A generalization of the spherical
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ansatz U is given by

UB = exp(iψ)l3×3 + i sin (χ) exp

(
− iψ

2

)
T+

(
cos (χ) exp

(
− iψ

2

)
− exp(iψ)

)
T2 (2.6.18)

where

T = Λ⃗ · n̂, (2.6.19)

Λ⃗ = (λ7,−λ5, λ2) , (2.6.20)

n̂ = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) , (2.6.21)

here ψ, χ, Θ and Φ are in principle arbitrary functions of the coordinates. The objective of
constructing this ansatz is to rewrite de field equations to easily find their solutions.

The previous parametrization is reduced to the original Ansatz proposed by Balachandran et al,
whenever

ψ = ψ(r) , (2.6.22)

χ = χ(r) , (2.6.23)

and the functions Θ and Φ are angular coordinates. In such a case we have

U = exp(iψ(r))13×3 + i sin(χ) exp

(
− iψ(r)

2

)
Λ⃗ · x̂+

(
cos(χ(r)) exp

(
− iψ(r)

2

)
− exp(iψ(r))

)
(λ⃗ · x̂)2

(2.6.24)

where

x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). (2.6.25)

2.6.3 Euler Angles Ansatz SU(N)

The Euler angle parametrization is detailed in [86, 87]. This formula, in our case, takes the
following forms for elements of SU(2) and SU(3), respectively

U
SU(2)
E = exp

(
i
α

2
σ3

)
exp

(
i
β

2
σ2

)
exp

(
i
ρ

2
σ3

)
, (2.6.26)

U
SU(3)
E = U1(α, β, ρ)U2(Θ,Φ)U3(a, b, c), (2.6.27)

where

U1(α, β, ρ) = exp
(
i
α

2
σ3

)
exp

(
i
β

2
σ2

)
exp

(
i
ρ

2
σ3

)
, (2.6.28)

U2(Θ,Φ) = exp (iΘλ5) exp (iΦλ8) , (2.6.29)

U3(a, b, c) = exp
(
i
a

2
σ3

)
exp

(
i
b

2
σ2

)
exp

(
i
c

2
σ3

)
, (2.6.30)
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α, β, ρ, a, b, c, Θ and Φ are arbitrary functions of the coordinates xµ, {σi}, with i = 1, . . . , 3

the Pauli matrices and {λi}, with i = 1, . . . , 8, the Gell-Mann matrices.

For the SU(2) case we chose the following element U of SU(2)

U = exp (F (xµ) t3) exp (H (xµ) t2) exp (G (xµ) t3) , (2.6.31)

where F (xµ), G (xµ) and H (xµ) are the three scalar degrees of freedom (traditionally, in this
parametrization the field H is called profile). It is worth emphasizing that, as it happens for
the exponential representation discussed in the previous section, any group element can always
be written in the Euler angle representation. We will see that in order to construct a concrete
ansatz that can be adapted to the finite density situation it is convenient to explicitly write the
Skyrme action in terms of the generic Euler angle parametrization in Eq. (2.6.31). A direct
computation shows that

I(H,F,G) =− K

2

∫
d4vTr

{
(∇H)2 + (DF )2 + (DG)2 + 2 cos(2H)(DF ·DG)−

− λ
(
2 cos(2H)((∇H ·DF )(∇H ·DG)− (∇H)2(DF ·DG))+

+ 4 sin2(H) cos2(H)((DF ·DG)2 − (DF )2(DG)2)+

+ (∇H ·DF )2 + (∇H ·DG)2 − (∇H)2(DF )2 − (∇H)2(DG)2
)}

. (2.6.32)

The coupling with the Maxwell field in this parametrization is performed via

DµF = ∇µF − eAµ , DµG = ∇µG+ eAµ ,

And the field equations in the Euler parameterization are given by

0 =□H + 2 sin(2H)(∇F · ∇G)− λ

{
2 sin(2H)

(
(∇H · ∇F )(∇H · ∇G)− (∇H)2(∇F · ∇G)−

− cos(2H)
(
(∇F · ∇G)2 − (∇F )2(∇G)2

))
+∇µ(cos(2H)(∇H · ∇G)∇µF )+

+∇µ(cos(2H)(∇H · ∇F )∇µG)−∇µ(2 cos(2H)(∇G · ∇F )∇µH) +∇µ((∇H · ∇F )∇µF )+

+∇µ((∇H · ∇G)∇µG)−∇µ((∇F )2∇µH)−∇µ((∇G)2∇µH)

}
, (2.6.33)

0 =□F − e∇ ·A− 2 sin(2H)(DG · ∇H) + cos(2H)(□G+ e∇ ·A)−

− λ
(
∇µ(cos(2H)(∇H ·DG)∇µH)−∇µ(cos(2H)(∇H)2DµG)+

+∇µ(4 sin
2(H) cos2(H)(DF ·DG)DµG)−∇µ(4 sin

2(H) cos2(H)(DG)2DµF )+

+∇µ((∇H ·DF )∇µH)−∇µ((∇H)2DµF )
)
, (2.6.34)

0 =□G+ e∇ ·A− 2 sin(2H)(DF · ∇H) + cos(2H)(□F − e∇ ·A)−

− λ
(
∇µ(cos(2H)(∇H ·DF )∇µH)−∇µ(cos(2H)(∇H)2DµF )+

+∇µ(4 sin
2(H) cos2(H)(DF ·DG)DµF )−∇µ(4 sin

2(H) cos2(H)(DF )2DµG)+

+∇µ((∇H ·DG)∇µH)−∇µ((∇H)2DµG)
)
, (2.6.35)
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while the Maxwell equations are given in (2.3.2). In this case the current Jµ is very relevant for
computing the electrical conductivity, and it is given by

Jµ = eK
{
2 sin2H(DµF −DµG) + λ

(
cos(2H)

(
((∇H ·DF )− (∇H ·DG))∇µH − (∇H)2(DµF −DµG)

)
+

+ 4 sin2H cos2H
(
(DF ·DG)(DµF −DµG) + (DG)2DµF − (DF )2DµG

)
+
(
(∇H ·DG)−

− (∇H ·DF )
)
∇µH + (∇H)2

(
DµF −DµG

))}
. (2.6.36)

In the following chapters, we will discuss first these field equations in the ungauged case to
show how and why effective low energy chiral conformal degrees of freedom appear.
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Chapter 3

Skyrmions at Finite Density

In this chapter, we will present a brief historical introduction of Klebanov Crystal in section 3.1.
Then, in 3.2, we will summarize the first example of skyrmions at finite density.

The Skyrme crystal is a hypothetical arrangement of skyrmions that has important properties
for our understanding of nuclear matter. In this chapter, we will summarize these structures
and the future perspective for this study.

E. Witten first proposed the concept of Skyrme crystal in 1981 [88], and later other authors
such as Igor Klebanov, Manton, and others made significant contributions to understanding
these structures and concluded relevant aspects in the nuclear physics context.

3.1 Klebanov Crystal

Igor Klebanov in 1985 ordered skyrmions in a cubic lattice and calculated the energy of the
configuration through numerical calculations, provided the symmetry of the crystal was preserved
[18]. This research inspired to coin these structures like Klebanov crystals in future works.

In this crystal, the skyrmions are arranged in a periodic array. One of the critical properties
of the Klebanov crystal is that it exhibits a wide variety of topological defects and magnetic
phases, which arise from the interplay between the skyrmions and the crystal lattice. In this
sense, he obtains a set of equations describing the dynamics of nuclear matter in terms of the
Skyrme fields.

Klebanov computes the equation of the state of nuclear matter and discusses the need to include
other degrees of freedom to describe the interaction between nucleons. Then, in 1988 M. Kugler
and S. Shtrikman [21] proposed a new type of skyrmion crystal with cubic symmetry, different
from the previously known skyrmion crystals with triangular lattice structure, and they explained
some aspects of this ferromagnetic material.

More recently, N. Manton et al. [89] contributed to finding and classifying the symmetries of the
Skyrme crystal. They used numerical simulations to steady the role of the maximal symmetry
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group for these structures. They concluded that the maximal symmetry of the Skyrme crystal
is an important tool for understanding the fundamental properties of this type of matter.

In this way, it is clear that the study of Skyrme crystals is a very active research area. In general,
this type of structure has been analyzed numerically. Nevertheless, it is important to highlight
that the analytical study of this phase of material can contribute significantly to understanding
nuclear matter in the low energy regime.

3.2 The first example: Sine-Gordon layer

As mentioned before, the study of skyrmions at finite density has been investigated through
numerical tools. However, in [90], the first analytical solution in flat space-time that describes
states of skyrmions in a finite volume was built.

The authors consider the following set of expressions for the scalar fields in the generalized
spherical ansatz parameterization of SU(2)

Φ =
γ + ϕ

2
,

tanΘ =
tanH

cosA
,

tanα =

√
1 + tan2 Θ

tanA
. (3.2.1)

where, A = (γ − ϕ)/2 and H = H(t, r).

Then, they prove that the expression (3.2.1) in the field equations (2.6.10), (2.6.11) and (2.6.12),
can be reduced to a single equation, given by

□H − λ

8L2(λ+ 2L2)
sin (4H) = 0 ,

∂2

∂t2
− 1

L2

∂2

∂r2
= □ , (3.2.2)

which is the Sine-Gordon equation (the prototype of integrable PDE), and the parameter L
comes from the flat metric in (3 + 1) dimensions.

ds2 = −dt2 + L2(dr2 + dϕ2 + dθ2) , (3.2.3)

where the range of coordinates are

0 ≤ r ≤ 2π , 0 ≤ γ ≤ 4π , 0 ≤ ϕ ≤ 2π . (3.2.4)

Moreover, the topological charge is non-vanishing and it reads

ρB = 3 sin (2H)dHdγdϕ .
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Furthermore, when the profile H satisfies the following boundary conditions

H(t, 0) = 0 , H(t, 2π) = ±π
2
,

the topological charge takes the values of B = ±1. These solutions are known as skyrmions
and anti-skyrmions, respectively. These configurations represent the first analytic examples
of Baryonic layers in a flat box of finite volume. In the following sections, we will discuss the
generalizations of these solutions.
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Chapter 4

Novel Solutions

In this chapter, we present the fundamental consideration for the objective of this work: the
computation of relevant transport properties. First, in section 4.1, we study the definition
of the flat metric for our case. Then, in section 4.2, we give the definition of the particular
parametrization of the layer case and the ansatz that we used. Afterward, in section 4.2.1, we
present a physical interpretation of the chiral degrees of freedom in the context of hadronic
layers. Finally, in sections 4.3 and 4.3.1, we present the same analysis as in the previous two
sections of this chapter, now in the context of hadronic tubes.

4.1 Finite Density: Metric of a Box

We are interested in analyzing the intriguing phenomena that occur when a finite amount of
Baryonic charge lives within a finite spatial volume. Therefore, we consider as a starting point
the metric of a box whose line element is

ds2 = −dt2 + L2
rdr

2 + L2
θdθ

2 + L2
ϕdϕ

2 , (4.1.1)

where Li are constants representing the length of the box where the solitons are confined. The
dimensionless coordinates {r, θ, ϕ} have the following ranges

0 ≤ r ≤ 2π , 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , (4.1.2)

so that the volume available for the solitons is V = 4π3LrLθLϕ. Notice that the coordinates are
Cartesian, even if we use an angular notation to emphasize their finite ranges.

4.2 Skyrme Field in Euler Angles: Hadronic Layers

One of the most important quantities is the energy-momentum tensor, in section 5.1 we will
discuss some important aspects of them. In this sense, the energy-momentum tensor of the



18 4.2. Skyrme Field in Euler Angles: Hadronic Layers

Skyrme model reads

TSK
µν = gµνLSK +K

{
∇µH∇νH +DµFDνF +DµGDνG+ cos (2H)(DµFDνG+DνFDµG)−

− λ
(
cos (2H)

(
(∇H ·DG)(∇µHDνF +∇νHDµF ) + (∇H ·DF )(∇µHDνG+∇νHDµG)−

− 2(∇F ·DG)∇µH∇νH − (∇H)2(DµFDνG+DνFDµG)
)
+

+ 4 sin2H cos2H
(
(DF ·DG)(DµFDνG+DνFDµG)− (DG)2∇µF∇νF − (DG)2∇µG∇νF

)
+

+ (∇H ·DF )(∇µHDνF +∇νHDµF ) + (∇H ·DG)(∇µHDνG+∇νHDµG)−

−∇µH∇νH((DF )2 + (DG)2)− (∇H)2(DµFDνF +DµGDνG)
)}
, (4.2.1)

The hadronic layers-like solution can be generalized by including an arbitrary light-like function
as a degree of freedom. In fact, the suitable generalization of the ansatz in [71], [75], [76], [77],
[78], [79] and [80] is

H = H(r) , F = qθ , G = G(u) , u =
t

Lϕ
− ϕ , (4.2.2)

where q is an integer number. Here G (u) is an arbitrary function of the light-like coordinate u.
The eq. (4.2.2) explicitly avoids the no-go Derrick’s theorem [91] due to the time dependence of
the U field. The above ansatz keeps all the nice properties of the one in [71]. In particular, it
satisfies the following identities

(∇F · ∇G) = (∇H · ∇F ) = (∇H · ∇G) = (∇F )2 = 0 , (4.2.3)

which greatly simplifies the field equations. In fact, the ansatz in Eq. (4.2.2) reduces to the
Skyrme field equations in Eqs. (2.6.33) to (2.6.35) to a simple linear equation

∂2rH(r) = 0 ⇒ H(r) = κr + κ0 , (4.2.4)

where κ0 can be fixed to zero, the integration constant κ will be determined using appropriate
boundary conditions.

Plugging the ansatz in Eqs. (2.6.31) (4.2.2) into Eq. (2.5.1), the topological charge density of
the matter field reads

ρB = −12q sin(2H)H ′∂ϕG,

where it can be seen that the appropriate boundary conditions for the soliton profile H(r) and
the light-like function G(u) are the following:

H(r = 2π) =
π

2
, H(r = 0) = 0 , G(t, ϕ = 0)−G(t, ϕ = 2π) = (2π)p , (4.2.5)

so that the topological charge takes the value

B = pq . (4.2.6)
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Therefore, using the above boundary conditions, the profile becomes

H(r) =
r

4
. (4.2.7)

On the other hand, the light-like function G(u) satisfies the equations of a free scalar field in
two dimensions and a first-order nonlinear equation, which leads to an emergent chiral CFT
that we will discuss in the following section.

4.2.1 Physical interpretation of the chiral degrees of freedom

In order to clarify the physical meaning of the function G(u) appearing in the ansatz in Eq.
(4.2.2), let us consider the slightly different ansatz

H =
r

4
, F = qθ , G = G(t, ϕ) .

With the ansatz here above the Skyrme field equations would reduce to((
∂

∂t
− 1

Lϕ

∂

∂ϕ

)
G

)((
∂

∂t
+

1

Lϕ

∂

∂ϕ

)
G

)
= 0 .

Thus, the Skyrme field equations force the choice of chirality: G can represent either left movers
or right movers (but cannot represent both). Let us choose, as in Eq. (4.2.2) G = G(u). Then,
the boundary conditions in Eqs. (4.2.5) and (4.2.6) ensure that G(u) has the following expression

G(u) = G0(u) + G̃(u) , (4.2.8)

where G0(u) = pu represent the contribution without modulation and G̃(u) is periodic in the
coordinates ϕ

G̃(u) =
∑
N

aN cos(Nu) + bN sin(Nu) , N ∈ N ,

where aN and bN are real coefficients and the integer N labels the chiral modes. Thus, the first
term (linear in u) on the right hand side of Eq. (4.2.8) contributes to the Baryonic charge while
G̃ does not (being periodic in the coordinate ϕ). In order to interpret G̃ it is enough to observe
that, when G̃ = 0, the energy-momentum tensor only depends on the coordinate r (while it is
homogeneous in the other two spatial coordinates).

Thus, in this case the solution represents a homogeneous Baryonic layer. On the other hand,
when we turn on G̃, the energy-momentum tensor depends not only on r but also on u (through
the modes of G̃). In this case, the plots 4.2.2 of the energy-density reveal that G̃ represents
modulations of the layer in the ϕ direction moving at the speed of light. Consequently, the
present family of exact analytic solutions of the Skyrme field equations represents Baryonic
layers dressed by modulations in the ϕ direction. Aside from the high theoretical interest to
reveal the emergence of chiral conformal degrees of freedom living on Hadronic layers, the present
results open unprecedented possibilities to compute analytically relevant observable quantities
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Figure 4.2.1: Energy density without modulation of hadronic layers, with topological charge
B = 4. We have set Lr = Lθ = Lϕ = K = λ = 1, p = q = 2 and aI = bI = 0.1.

as will be discussed in the next sections.
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Figure 4.2.2: Energy density with modulation of hadronic layers, with topological charge
B = 4. We have set Lr = Lθ = Lϕ = K = λ = 1, p = q = 2 and, a1 = a2 = b1 = −b3 = 0.1.

4.3 Generalized Spherical Hedgehog: Hadronic Tubes

For computing transport properties it is necessary to know the form of the fundamental quantities
of the Skyrme model. In this sense, the energy-momentum tensor related to Skyrme Model TSK

µν
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in the hedgehog ansatz (2.6.1) with (2.6.2) reads

T Sk
µν = gµνLSK −K

{
∇µα∇να+ sin2α

(
∇µΘ∇νΘ+ sin2ΘDµΦDνΦ

)
+ (4.3.1)

+ λ
[
sin2α

(
(∇Θ)

2 ∇µα∇να+ (∇α)2 ∇µΘ∇νΘ− (∇α·∇Θ) (∇µα∇νΘ+∇να∇µΘ)
)

+

+ sin2α sin2 Θ
(
(DΦ)

2 ∇µα∇να+ (∇α)2DµΦDνΦ− (∇α·DΦ) (∇µαDνΦ+∇ναDµΦ)
)

+

+ sin4α sin2Θ
(
(DΦ)

2 ∇µΘ∇νΘ+ (∇Θ)
2
DµΦDνΦ− (∇Θ ·DΦ) (∇µΘDνΦ+∇νΘDµΦ)

)]}
.

While the topological charge density in Eq. (2.5.1) becomes

ρB = 12 sin2α (sinΘ (dΦ+A) ∧ dΘ+ cosΘF ) ∧ dα , (4.3.2)

where A = Aidx
i and F = 1

2Fijdx
i ∧ dxj . From the above expression, it follows that to have

non-trivial topological configurations, we must demand that dΘ∧ dΦ∧ dα ̸= 0. This implies the
necessary (but insufficient) condition that α, Θ, and Φ must be three independent functions. The
existence of arbitrary topological charge of our solutions will be revealed later when appropriate
boundary conditions are imposed.

To be able to apply the Green-Kubo formalism to compute some transport properties, we need
to generalize the strategy introduced in [63] and [64] for the Skyrme-Maxwell case. In particular,
for reasons which will be clarified in the next sections, we need more general time-dependence of
the SU(2)-valued Skyrme field without losing the main property of such an approach which can
reduce the complete set of non-linear field equations to just two integrable equations (one ODE
for the Skyrmion profile and one PDE for the Maxwell potential) while also keeping alive the
topological charge. In this subsection, we will not need to introduce the Maxwell field.

The suitable generalization of the ansatz in [63] and [64] is

α = α(r),

Θ = Qθ, Q = 2v + 1 , v ∈ Z,

Φ = G (u) , u =
t

Lϕ
− ϕ, (4.3.3)

where now G (u) is an arbitrary function of the light-like coordinate u. It is easy to see that
the above ansatz keeps all the nice properties of the one in [63] and [64]. Firstly, it satisfies the
following identities

(∇Φ · ∇α) = (∇α · ∇Θ) = (∇Θ · ∇Φ) = (∇Φ)2 = 0 , (4.3.4)

which greatly simplifies the field equations in Eqs. (2.6.10) to (2.6.12). Moreover, Eq. (4.3.3)
explicitly avoids the no-go theorem of Derrick [91] due to the time dependence of the U field.
The construction in [63] and [64] also suggests the following ansatz for the Aµ (which will be
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needed in the following section):

Aµ = (ξ, 0, 0,−Lϕξ) , ξ = ξ(u, r, θ) , (4.3.5)

⇒ AµA
µ = 0 and ∇µAµ = 0 . (4.3.6)

Replacing the ansatz introduced in Eqs. (2.6.1), (2.6.2) and (4.3.3) into the Skyrme field
equations in Eqs. (2.6.10) to (2.6.12), the set of three non-linear differential equations is reduced
to an ODE for the profile α, namely

α′′ +
Q2 sin(α) cos(α)(λα′2 − L2

r)

L2
θ + λQ2 sin2(α)

= 0 ,

which can be reduced to a first-order ODE that can be conveniently written as

dα

η(α,E0)
= ±dr , η (α,E0) =

[
E0L

2
θ − 1

2q
2L2

r cos(2α)

L2
θ + λQ2 sin2(α)

] 1
2

, (4.3.7)

E0 being an integration constant (fixed by the boundary conditions, as we will see below).1 On
the other hand, the light-like function G(u) satisfies the equations of a free scalar field in two
dimensions, which leads to an emergent chiral CFT. We will discuss this important fact in the
next section.

Plugging the ansatz in Eqs. (2.6.1), (2.6.2) and (4.3.3) into Eq. (2.5.1), the topological charge
turns out to be

ρB = 12q sin(qθ) sin2(α)α′∂ϕG ,

where it is clearly seen that the appropriate boundary conditions for the soliton profile α(r) and
the light-like function G(u) are the following:

α(2π)− α(0) = nπ, (4.3.8)

G(t, ϕ = 2π)−G(t, ϕ = 0) = (2π)p, (4.3.9)

with n and p integer numbers. Therefore, using Eq. (4.3.9) and integrating with the ranges
defined in Eq. (4.1.2), the topological charge takes the value

B = np , (4.3.10)

We have used that q is an odd number, as specified in the ansatz in Eq. (4.3.3). From Eqs.
(4.1.2), (4.3.7) and (4.3.9) it follows that the integration constant E0 must satisfy

n

∫ π

0

dα

η (α,E0)
= 2π . (4.3.11)

1Eq. (4.3.7) can be solved analytically in terms of Elliptic Functions; however, the explicit solution is not
necessary for our purposes.
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Eq. (4.3.11) is an equation for E0 in terms of n that always has a real solution when

E0 >
Q2L2

r

2L2
θ

,

so that, for given values of q, Lr and Lθ, the integration constant E0 determines the value of
the α profile for the boundary conditions defined in Eq. (4.3.9).

From the above condition, it is clear that for large n, the integration constant E0 scales as n2

E0 = n2ξ0, ξ0 > 0, (4.3.12)

where ξ0 can also be interpreted as an integration constant and does not depend on n for large
n.

4.3.1 Physical Interpretation of the chiral degrees of freedom

In the present case one can clarify the physical meaning of the function G(u) appearing in the
ansatz in Eq. (4.3.3) by the slightly more general ansatz

α = α(r),
dα

η(α,E0)
= ±dr ,

η (α,E0) =

[
E0L

2
θ − 1

2
q2L2

r cos(2α)

L2
θ + λQ2 sin2(α)

] 1
2

,

Θ = Qθ, Q = 2v + 1 , v ∈ Z,

Φ = G (t, ϕ) , α(2π)− α(0) = nπ ,

where α(r) and Θ(θ) are the same as in Eq. (4.3.3) but G has been taken as a generic function
of t and ϕ (instead of taking G as function of a single light-like coordinate). In this way one
can shed light on the true nature of G. As in the case of the Baryonic layers described in the
previous sections, with the ansatz here above the Skyrme field equations reduce to((

∂

∂t
− 1

Lϕ

∂

∂ϕ

)
G

)((
∂

∂t
+

1

Lϕ

∂

∂ϕ

)
G

)
= 0 , (4.3.13)

plus (
∂2

∂t2
− 1

L2
ϕ

∂2

∂ϕ2

)
G = 0 ,

which is a consequence of Eq. (4.3.13). Thus, G can represent either left movers or right movers
(but cannot reoresent both). Let us then choose G = G(u). The boundary conditions in Eq.
(4.3.9) require that G(u) has the following expression:

G (u) = G0(u) + G̃ (u) , (4.3.14)

where G0(u) = pu and G̃ (u) is periodic in the coordinate ϕ:

G̃ (u) =
∑
N

aN cos (Nu) + bN sin (Nu) , N ∈ N ,
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where aN and bN are real coefficients. Furthermore, in this case the first term (linear in u) on
the right hand side of Eq. (4.3.14) contributes to the Baryonic charge while G̃ does not (being
periodic in the coordinate ϕ). Moreover, when G̃ = 0, the stationary energy-momentum tensor
only depends on the coordinates r and θ (while it does not depend on ϕ).
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Figure 4.3.1: Energy density without modulation of hadronic tubes, with topological charge
B = 8.We have set Lr = Lθ = Lϕ = K = λ = 1, p = Q = 2, n = 4, and aI = bI = 0.

Thus, in this case the solution represents an ordered array of homogeneous Baryonic tubes. On
the other hand, when we turn on G̃, the energy-momentum tensor depends not only on r and
θ but also on u (through the modes of G̃). In this case, the plots 4.3.1 of the energy-density
reveal that G̃ describes modulations of the tubes in the ϕ direction moving at the speed of light.
These analytic solutions are Baryonic tubes dressed by modulations in the ϕ direction. The fact
that (both in the case of Hadronic layers and tubes) G̃ behaves as a chiral conformal field in
one spatial dimensions open the intriguing perspective to compute the transport coefficients
associated to these modulations as it will be shortly discussed in the next chapter.
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Figure 4.3.2: Energy density with modulation of hadronic tubes, with topological charge B = 8.
We have set Lr = Lθ = Lϕ = K = λ = 1, p = Q = 2, n = 4 and a1 = a2 = b1 = −b3 = 0.1.
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Chapter 5

Gauged Skyrmions and applications

In this chapter, we will discuss how to generalize the modulated inhomogeneous Baryonic
condensates constructed in the previous sections in the case in which the minimal coupling with
Maxwell theory is taken into account. This issue is extremely important for the following reason.
The numerical simulations discussing the appearance of inhomogeneous Baryonic condensates
(see [5, 6, 7, 8, 9, 10, 11, 31, 13, 14, 15], and the nice up to date review [16]) usually do not
consider explicitly the electromagnetic interactions of the Baryons (which often are modeled as
point-like particles). The self-consistent coupling of many Baryons with the electromagnetic field
generated by the Baryons themselves would make the numerical simulations considerably heavier.
Therefore, to have analytic tools which can help understand the nature of the electromagnetic
field naturally associated to these inhomogeneous Hadronic condensates would be extremely
helpful also as a guide for numerical simulations. Here we will describe how one can "dress" the
condensates introduced in the previous sections with their own electromagnetic fields. We will
try to give a unified description of this construction which is valid both for Hadronic layers and
tubes.

The starting point is the observation that the key property of the ansatze in the ungauged cases
which allows to decouple the Skyrme field equations without killing the topological charge are
the relations in Eqs. (4.2.3) and (4.3.4) for layers and tubes respectively. Thus, we have to
construct an ansatz for the gauge potential Aµ which keeps Eqs. (4.2.3) and (4.3.4) alive. The
answer to this question was found in [76, 77, 64], and [65].

We will first describe the method in the case of the Hadronic tube, which is easier to understand.
In order to minimally couple the Hadronic tubes discussed in the previous sections with U(1)
Maxwell gauge field let us consider a gauge potential Aµ with the following characteristics:

Aµ∂
µα = 0, Aµ∂

µΘ = 0, Aµ∂
µG = 0 , (5.0.1)

AµA
µ = 0 , ∂µA

µ = 0 . (5.0.2)

First of all, one observes that the above conditions for Aµ are not empty. In order to satisfy
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both conditions it is enough to consider a gauge potential with components only along the
t−direction and the ϕ−direction, then these two components, At and Aϕ, must be proportional
(in order to satisfy AµA

µ = 0) and can depend on r, θ and the same null coordinate u which
enters in G. In this sense, the Eq. (4.3.5) show this point.

One can easily check that the field strength of such gauge potential in general is non-vanishing.
The above conditions in Eqs. (5.0.1) and (5.0.2) complement the condition in Eq. (4.3.4) for
the SU(2)-valued Skyrme field. From the viewpoint of the gauged Skyrme field equations, Eqs.
(5.0.1) and (5.0.2) possess the very nice feature of eliminating all the terms of the gauged Skyrme
field equations which could, potentially, mix the SU(2) degrees of freedom with the gauge
potential. Consequently, with the above ansatz for the gauge potential, the gauged Skyrme field
equations remain the same as the ungauged Skyrme field equations corresponding to the ansatz
in Eq. (4.3.3). On the other hand, one may wonder whether the above conditions in Eqs. (5.0.1)
and (5.0.2) are too restrictive from the viewpoint of the Maxwell equations. In particular, the
left hand side of the Maxwell field equations (namely ∂µFµν) only has components along the
t−direction and the ϕ−direction (due to the form of the gauge potential in Eq. (4.3.5)). Thus,
we have to analyze the U(1) Skyrme current.

The terms which could spoil the consistency of the ansatz are all the terms which are not
proportional to DµΦ (such as the terms proportional to ∇µα and ∇µΘ). In fact, all these
“dangerous terms" vanish (since the ansatz has the property that ∇α ·DΦ = 0 = ∇Θ ·DΦ). From
the mathematical viewpoint, this ansatz for the gauge potential has been chosen to simplify as
much as possible the coupled gauged Skyrme Maxwell system keeping alive the field strength
and the interactions. From the physical viewpoint it turns out that such gauge fields belong to
the important class of force free Maxwell field [68] (which are very important in astrophysics:
see [92, 93, 94, 95, 96, 97] and references therein). Hence, from the physical viewpoint, the
present approach disclosed a relevant property of the inhomogeneous condensates introduced in
the previous sections which would have been very difficult to discover with other methods: such
condensates are natural sources of force free plasmas.

As far as Hadronic layers are concerned, the story is very similar although slightly more
complicated (see [76, 77], and [98] ). The ansatz for the Hadronic layers

H = H(r) , F = qθ , G = G(u) , u =
t

Lϕ
− ϕ ,

which satisfy the useful identities

(∇F · ∇G) = (∇H · ∇F ) = (∇H · ∇G) = (∇F )2 = 0 ,

can also be complemented with a suitable gauge potential by requiring that the gauge potential
does not spoil the solvability of the gauged Skyrme field equations. The only difference is
that instead of requiring AµA

µ = 0 one has to require a suitable quadratic constraint on the
components of Aµ (see [76, 77], and [98]) together with the usual conditions on the orthogonality
of the gradients as in the case of Hadronic layers. Furthermore, final results are similar: it
is possible to explicitly construct an ansatz for the gauge potential which allows the gauged
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Skyrme field equations to be solved and the Maxwell equations with the U(1) Skyrme current
reduce consistently to a Schrodinger-like equation. The case of Hadronic layers is simpler since
the Schrodinger-like equation can be reduced to the Mathieu equation which is solvable in terms
of special functions. For the Hadronic layers it is also true that they are natural sources of force
free plasmas (see [98] for details).

5.1 How to use the emergent Chiral Conformal Degrees of

Freedom

As it has been discussed in the previous sections, the present approach does not produce just
novel analytic solutions but it also provide new physical insights on relevant properties (such
as the natural electromagnetic field generated by the inhomogeneous condensates). In fact,
these solutions possess another characteristic which is likely to disclose intriguing observable
features. As it has been already discussed, these inhomogeneous condensates can be dressed with
a chiral conformal field (representing modulations along the layers and tubes) which behaves as
one-dimensional (such a field was denoted as G̃ in the previous sections). These “chiral CFT
modes" in one spatial dimension possess the remarkable properties of being not only solutions of
the linearized field equations around the inhomogeneous Baryonic condensates (defined by G̃ = 0)
but also exact solutions of the field equations. Moreover, not only the field equations for G̃ are
the same as in a chiral conformal field theory, but also the energy-momentum tensor (restricted
to the t, ϕ directions) corresponds to an effective two-dimensional traceless energy-momentum
tensor (both in the case of Hadronic layers and in the case of Hadronic tubes):

Tab =

(
Ttt Ttϕ

Tϕt Tϕϕ

)
, a, b = t, ϕ .

This fact opens the exciting possibility to develop an analytic theory of transport coefficients
of these inhomogeneous Baryonic condensates associated to these chiral modes. Here we will
sketch in some detail this analysis which we hope to complete in the near future.

As it is well known, one can consider the usual mode quantization of G̃ following the recipes of
conformal field theories (see [99] and [100]). If these recipes could be implemented in a proper
way in the present case one could arrive at a closed form for the shear viscosity, the thermal
conductivity and the electric conductivity.

Roughly speaking, the viscosity and conductivities are defined as

κ = ⟨JµJ ′
µ⟩ , η = ⟨TtϕT ′

tϕ⟩ ,

where Jµ is the “U(1)" current which can be expressed in terms of the gradient G̃1. The viscosity
can be calculated directly using the well-known results of CFT [99] or [100] and the definitions
of the Kubo formalism [33]. Since in the present case these inhomogeneous condensates can be
dressed exactly with chiral conformal excitations which propagate in one spatial dimension, a

1The expression for these currents is in Eqs. (2.6.36) and (2.6.13) for the Hadronic layers and tubes, respectively.
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natural guess is that the results for obtaining κ and η are the same as in a chiral conformal field
theory:

ηj =
T

2
ςj , j = 1, 2 ,

where T is the temperature, j = 1 refers to the layers, j = 2 to the tubes, and the coefficients ςj

(which, in principle, can be computed explicitly) would distinguish the transport coefficients
of Hadronic layers from the ones of Hadronic tubes. There are still some missing steps (in
particular, the proper semi-classical quantizations of these chiral modes living on top of the
condensates) but we are quite confident that such steps can be completed successfully.
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Chapter 6

Yang-Mills Perspectives

The Yang-Mills model is a quantum field theory that describes the behavior of gauge bosons,
particles that mediate the fundamental forces of nature. It was developed by physicists Chen
Ning Yang and Robert Mills in the 1950s to generalize the Maxwell theory of electromagnetism
[101].

The model is based on the concept of gauge symmetry, which is a mathematical transformation
that leaves the physics of a system unchanged. The Yang-Mills model is an essential theoretical
tool in particle physics used to describe the behavior of subatomic particles and the fundamental
forces that govern their interactions. It has been validated by numerous experiments, including
the discovery of the W and Z bosons, which mediate the weak nuclear force, and the discovery
of the gluon, which mediates the strong nuclear force. Their discoverers, C. Rubbia and S. van
der Meer, obtained the Nobel Prize in 1984.

In this thesis, we show the relationship with the Skyrme model in the context of a future
perspective for calculating some transport properties of matter.

6.1 Yang-Mills and Conformal Symmetry

The Yang-Mills and the Skyrme Model are very different because the Yang-Mills theory is a
gauge theory, while the Skyrme model only has global symmetries. However, recently, [78]
found a creative relationship between Skyrme and the Yang-Mills model, despite the belief that
different methods should be used for each.

However, they showed that certain sectors of these (3 + 1)-dimensional theories could be
identified as possessing arbitrary baryonic charge and conformal symmetry. As we saw in the
previous chapter, the Skyrme model has a sector with chiral conformal symmetry; however,
in the case of the Yang-Mills model, in [78], they showed that it has a sector with conformal
symmetry of infinite dimension. We sketch here this derivation.
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The Yang-Mills theory in (3 + 1) dimensions has the following action

I[A] =
1

2e2

∫
d4x

√
−gTr(F̄µν F̄

µν), (6.1.1)

where e is the Yang-Mills coupling constant. The field strenght F̄µν is defined as

F̄µν = ∂µAν − ∂νAµ + [Aµ, Aν ], (6.1.2)

where Aµ is the non-abelian connection, defined by

A = Aj
µtjdx

µ (6.1.3)

where ti can be written in terms of the Pauli matrices (see section 2.6.1).

The analogue of the barionic charge of the Skyrme Model in this context is the Chern-Simons
charge QCS , defined by

QCS =

∫
ρCSdV, (6.1.4)

where ρCs = JCS
µ=0 with

JCS
µ =

1

8π2
ϵµνρσTr

(
Aν∂ρAσ +

2

3
AνAρAσ

)
(6.1.5)

The field equations can be calculated directly through variation of the action with respect to
the field Aµ. These are

∇µF̄
µν + [Aν , ¯Fµν ] = 0 (6.1.6)

To consider finite effects, the authors need to use the flat metric (4.1.1), with ranges

0 ≤ r ≤ 4π , 0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π. (6.1.7)

Then, they consider the Euler parameterization (2.6.26) with the following scalar fields

α = pθ , β = 2H(t, ϕ) , ρ = qr (6.1.8)

And for some boundary conditions for the field H(t, ϕ), and some relations for the field Aµ and
the element U of SU(2), they find

H(t, ϕ) = arccos (G) (6.1.9)

where G is an arbitrary function G(t, ϕ) that is defined in terms of

G(t, ϕ) = exp(3η)
F√

1− exp(4η) · F 2
(6.1.10)
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where η is a real number that fixes the Chern-Simons charge QCS in terms of an integer value.
Using the former, F takes values depending on the boundary conditions of H. So then, from
specific considerations, they conclude that.

□F ≡

(
∂2

∂t2
− 1

L2
ϕ

∂2

∂ϕ2

)
F = 0, (6.1.11)

which describes the behavior of a free massless scalar field in two dimensions. Another relevant
result is that they find the same behavior of the (5.1). In conclusion, they find a sector of this
theory that describes the simplest bosonic CFT in two dimensions.

In the same article, they find exciting properties of the Yang-Mills-Higgs Model. This model
shares the chiral properties with the Skyrme Model, unlike the Yang-Mills model.

In conclusion, the authors provide a framework that can be systematically used to characterize
specific sectors of different theories, which was not expected at all due to their unequal
characteristics. This simplification promises to be able to calculate relevant properties, such as
transport properties, systematically.
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Chapter 7

Conclusion

In this thesis, we present the formalism of the Skyrme Model coupling with the Maxwell Theory.
We define the most important properties of this model, such as the topological charge and
the relation with the baryonic charge of the QCD theory. Then, in chapter 3, we present a
short historical introduction to Skyrme Crystals and their importance for characterizing nuclear
matter at the low energy limit. In chapter 4, we construct two solutions in the context of the
SU(2) group; layers and tubes cases. We show the box through the line element in cartesian
coordinates. In chapter 5, we expose the results and their derivations (with more details in the
respective Appendices). Then, in chapter 6, we see another example where our analytical tools
are necessary to compute some novel regions of the non-linear models, like the Yang-Mills. In
this region, emergent an effective conformal field theory. In the case of Skyrme, in chapter 5, we
see that this CFT is chiral.

We have described a proper analytic framework to construct inhomogeneous Baryonic condensates
in the gauged Skyrme Maxwell theory. This approach is able not only to produce exact solutions
with high Baryonic charges but also gives considerable physical insights on the nature of
the configurations (such as the fact that these Hadronic layers and tubes constructed in the
previous sections are natural sources of force free plasmas). Another characteristic of the present
technique is that it discloses the appearance of chiral conformal degrees of freedom which
describes modulations of the condensates.

Aside from the intrinsic theoretical interest of this fact, the unprecedented possibility of arriving
at the analytical computation of the transport properties of these condensates using known
results in conformal field theory in (1 + 1) dimensions was opened by these works. There are
still some missing steps to complete the proper computations of the transport coefficients. We
hope to provide solutions to this issue in the near future.

There is still much work to be done; we could compute the same transport properties with the
same tools while considering an ansatz for U in the SU(3) group. Besides, with the recent work
[72], we can extend this understanding to another useful model, like the non-linear sigma model,
Yang-Mills, and the coupling with Higss and, possibly, with relativity.
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Appendix A

Basic of Skyrme Model

A1 Derrick Theorem

We consider the Skyrme Model for study static solutions that satisfied finite energy. Derrick
proved this although reductio ad absurdum. He assumed that the static solution exist and he use
a scaling of coordinates for proved that Fist we consider that the energy of the Skyrme Model is

E = INLSM + ISK. (A1.1)

where INLSM and ISK in therms of the element U ∈ SU(2) are

INLSM =
K

4

∫
d4xTr

{
(U−1∂µU)2

}
, (A1.2)

ISK =
K

4

∫
d4xTr

{
λ

8

[
U−1∂µU,U

−1∂νU
] [
U−1∂µU,U−1∂νU

]}
. (A1.3)

The energy should satisfied that E(λ = 1) = E0, where λ = 1 is an stationary point of E(λ).
We study the stationary point thought

dE(λ)

dλ

∣∣∣∣
λ=1

= 0. (A1.4)

In particular, we have for the non-sigma model action (A1.2) after the scaling x̄ = x for the
scalar field U

ĪNLSM =
K

4

∫
Tr

{
(U(x̄)∂iU(λx)) (U(x̄)∂jU(λx)) δij

(
1

λ

)D
}
dDx̄,

=
K

4

∫
Tr


(
U

(
x̄
∂U

∂x̄i
∂x̄i

∂x︸︷︷︸
λ

))(
U

(
x̄
∂U

∂x̄j
∂x̄j

∂x︸︷︷︸
λ

))
δij
(
1

λ

)D

 dDx̄,

= λ2−DINLSM.
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The non sigma model action has not static solutions by finite energy in R3.

However, we have in the commutator term of the Skyrme term (A1.3)

[U−1∂iU,U
−1∂jU ][U−1∂iU,U−1∂jU ],

= [U1(x̄)∂iU(λx), U−1(x̄)∂jU(λx)][U1(x̄)∂kU(λx), U−1(x̄)∂lU(λx)]δikδjl,

=

[
U−1(x̄)

∂U

∂x̄i
∂x̄i

∂x︸︷︷︸
λ

, U−1(x̄)
∂U

∂x̄j
∂x̄j

∂x︸︷︷︸
λ

][
U−1(x̄)

∂U

∂x̄k
∂x̄k

∂x︸︷︷︸
λ

, U−1(x̄)
∂U

∂x̄l
∂x̄l

∂x︸︷︷︸
λ

]
,

= λ4[U−1∂iU,U
−1∂jU ][U−1∂iU,U−1∂jU ].

Thus, we find the follow expression

ĪSK =
K

4

∫
Tr
{
λ

8
[U−1∂iU,U

−1∂jU ][U−1∂iU,U−1∂jU ]

}(
1

λ

)D

dDx̄,

= λ4−DISK.

We concluded that the Skyrme term of the Skyrme action permit stable solution of finite energy

A2 Details of Field Equations

We want to find the field equations for for the Skyrme Action. For this we should vary the
action (2.2.2) with respect the fundamental field U and we obtain

δLSK =
K

2
Tr
{
RµδRµ +

λ

8
GµνδGµν

}
. (A2.1)

Firstly, we consider the following relation

Rµ = U−1∂µU ⇒ δU−1 = −U−1(δU)U−1.

Then, we analyze the first term of (A2.1),

δRµ = δ(U−1∂µU) = −U−1(δU)Rµ +RµU
−1(δU) + ∂µ(U

−1δU).

Then,

Tr
{
(δRµR

µ)
}
= Tr

{
− U−1(δU)Rµ +RµU

−1(δU) + ∂µ(U
−1δU)Rµ

}
= −Tr

{
RµU−1(δU)Rµ

}
+ Tr

{
RµU

−1(δU)Rµ
}
+ Tr

{
∂µ(U

−1δU)Rµ
}

= Tr
{
∂µ(U

−1δU)Rµ
}

= Tr
{
∂µ(U

−1δURµ)
}
− Tr

{
U−1δU(∂µR

µ)
}

= Tr
{
∂µ(U

−1δURµ)
}
− Tr

{
(∂µR

µ)U−1δU
}
. (A2.2)
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On the other hand, for the second term of (A2.1), we have

∂µRν = ∂µ(U
−1∂νU)

= ∂µU
−1∂νU + U−1∂µ∂νU

= −U−1∂µUU
−1∂νU + U−1∂µ∂νU,

then we have, the following expression

∂µRν − ∂νRµ = −[Rµ, Rν ].

This suggested

δ[Rµ, Rν ] = −∂µδRν + ∂νδRµ,

= ∂µ(U
−1δURν −RνU

−1δU)− ∂ν(U
−1δURµ −RµU

−1δU)

Thus,

Tr
{
∂µ
(
[U−1δU,Rν ]

)
− ∂ν

(
[U−1δU,Rµ]

)
Gµν

}
= Tr

{
∂µ(U

−1δURν)G
µν − ∂µ(RνU

−1δU)Gµν − ∂µ(RνU
−1δU)Gµν − ∂µ(U

−1δURν)G
µν
}

= 2Tr
{
∂µ(U

−1δURν)G
µν − ∂µ(RνU

−1δU)Gµν
}

= Tr
{
∂µ(U

−1δURνG
µν)− (U−1δU)Rν∂µ∂µG

µν

− ∂µ(RνU
−1δUGµν) +RνU

−1δU∂µG
µν
}

= 2Tr
{
∂µ(U

−1δU [Rν , G
µν ]) + U−1δU [∂µG

µν , Rν ]
}
. (A2.3)

Where we have considered

[Rν , ∂µG
µν ] = ∂µ([Rν , G

µν ])− ∂µRνG
µν +Gµν∂µRν ,

= ∂µ([Rν , G
µν).

We concluded with (A2.2) and (A2.3) that the field equation of the Skyme Action (2.2.2) are
(2.3.1).

A3 Energy Derivation

From the (2.4.1) we find

T00 = −K
2

Tr
{
R0R0 −

1

2
g00R

αRα +
λ

4

(
gαβG0αG0β − 1

4
g00GαβG

αβ

)}
= −K

2
Tr
{
1

2
R0R

0 − λ

8
G0aG

0a

}
− K

2
Tr
{
1

2
RaR

a +
λ

16
GabG

ab

}
, (A3.1)

where the fist term of the previous equations is the rotational energy Erot and the second term
is the stataic energy Estatic.
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A4 Bound BPS

We focus now on the static energy term of the system, and notice the following

GabG
ab = [Ra, Rb][R

a, Rb]

=
1

2
ϵlabϵlmn[R

a, Rb][Rm, Rn]. (A4.1)

Hence, the static energy term can be rewritten as

Estat = −K
4

Tr
{
RaR

a +
λ

16
ϵlabϵ

lmn[Ra, Rb][R
m, Rn]±

√
λϵcabRcRaRb ∓

√
λϵcabRcRaRb

}

= −K
4

Tr


(
Ra ±

√
λ

4
ϵabc[Rb, Rc]

)2

∓
√
λϵabcRaRbRc

 . (A4.2)

From the last expression we see that the first term corresponds to the BPS equation while the
second is the baryonic charge. The existance of a BPS bound is given by the fact that the first
term is strictly positive

Estat ≥
∣∣∣∣Tr
{
K

4

√
λϵcabRcRaRb

}∣∣∣∣ . (A4.3)

This bound gives us access to the first term, which is known as the BPS equations. These
equations are of first order, which is extremely helpful for finding solutions to non linear theories
where the field equations are hard to solve in general. Moreover, the BPS equations imply the
field equations without the need of varying the action. In this sense, one only needs to make an
analysis of the total energy of the theory.

We first need to saturate the bound(
Ra ±

√
λ

4
ϵabc[Rb, Rc]

)
= 0 . (A4.4)

Then, apply a commutator from the left

[Rl, Ra]±
√
λ

2
ϵabc[Rl, [Rb, Rc]] = 0 .

Furthermore, the following commutator can be obtained from the BPS equation

± 2√
λ
ϵabcRa = [Rb, Rc].
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Substituting, we obtain

0 =± 2√
λ
ϵanlLn ±

√
λ

2
ϵabc[Ll[Lb, Lc]]

∓ 2√
λ
ϵaldϵalnLn ±

√
λ

2
ϵabcϵ

ald[Ll[Lb, Lc]]

∓ 4√
λ
δdnLn ±

√
λ

2
(δlbδ

d
c − δdb δ

l
c)[Ll[Lb, Lc]]

∓ 4√
λ
Ld ∓

√
λ[Rb, [Rd, Rb]] .

And with the former, we reobtain the static field equations as

∇d

(
Ld +

λ

4
[Lb, Gdb]

)
= 0 . (A4.5)
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Appendix B

First Steps to a new Work Related

to Hadronic Tubes

Here we will study the Pionic excitations on the multi-Baryonic configurations. These
perturbations can be divided into two types. The first type (which is discussed in the present
thesis in chapter 4) is denoted as “CFT perturbations": these are perturbations of the Hadronic
tubes in which the dependence of Πj (x

µ) is chosen in such a way to disclose some features of
the Baryonic tubes closely related to CFT in 1 + 1 dimension.

The second type will be denoted as “generic perturbations": these are perturbations (encoded in
three scalar degrees of freedom Πj (x

µ) with j = 1, 2, 3 ) of the Hadronic tubes in which the
dependence of Πj (x

µ) on the coordinates xµ is, a priori, generic (in other words, no symmetry
assumption on the Πj will be made). This last type we will study in this chapter.

B1 Pionic excitations on the Baryonic tubes

The idea is quite natural: let us consider the following generic perturbations of the solutions
defined above

α(r) → α(r)+εΠ1 (x
µ) , Θ → Qθ+εΠ2 (x

µ) , Φ → G (u)+εΠ3 (x
µ) , |ε| ≪ 1 . (B1.1)

The three degrees of freedom Πj (x
µ) represent excitations of the topologically non-trivial

configurations. To declare that these are “Pionic excitations" we need to require that the
variation of the topological charge δB to first order in ε vanishes:

δB = 0 .

The above condition defines the boundary conditions for the Pionic excitations. The simplest
way to implement the condition here above is to require that either the ΠJ (xµ) are periodic in
the spatial directions (this will be our choice in the following sections).
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If we replace the expressions in Eq. (B1.1) in the Skyrme action in Eq. (2.6.3) at zeroth order
in ε we obtain, of course, the on-shell action evaluated on the multi-Baryonic configurations. At
first order in ε we get zero (modulo boundary terms) since the configurations in Eqs. (2.6.1),
(2.6.2) and (4.3.3) are solutions of the field equations. At second order in ε we obtain the
following effective action I−→

Π
,

I−→
Π

def
= I(U + εδU)|ε2 =

K

4

∫
d4v

{
Ô(1)

µν (∂
µΠi)(∂

νΠj)C
ij
(1) + Ô(2)

µ (∂µΠi)ΠjC
ij
(2) + Ô

(3)
ij ΠiΠj

}
,

where the expressions for the operators Ô(1)
µν ,Cij

(1), Ô
(2)
µ , Cij

(2) and Ô
(3)
ij can be found in the

following section.

One can see that the action for the Pionic excitations can be written as the sum of two quadratic
parts. The first one is a time-independent action in which the soliton profile plays the role of an
effective static potential. The second one (which can be considered as a small perturbation of
the first one as long as the gradient of G is small) is a time-dependent perturbation that can be
turned on and off adiabatically.

Hence, we are in the position to apply directly the Kubo formula for the electric conductivity
[33] [34] [35]. The above explains why we needed the generalizations of the solutions in [63], and
[64] introduced in [72]. In [72] G is an arbitrary function of the null coordinate u which can be
chosen in such a way as to have a small gradient. Therefore, in this case, the Kubo theory can
be applied directly.

The field equation for the Pionic excitations is a set of three coupled partial differential equations
in a non-trivial background that are very difficult to deal with analytically. For this reason, in
what follows we will restrict to the NLSM case, that is λ → 0, where it is possible to derive
analytic expressions for the frequencies of the excitations, as we will see immediately.

First, it is important to note that perturbation of the form (B1.1) where only Fourier modes
in time are considered, leads only to trivial solutions for the perturbations. Therefore, it is
not consistent to analyze perturbations Πj which only depend on the time since the linearized
field equations would imply that such perturbations are actually trivial: hence here and in the
following sections the Pionic excitations will depend on, at least, one spatial coordinate.

From the above, to find non-trivial solutions of the equations system we use the following Fourier
expansions for the Pionic fields

Π1(t, r, θ, ϕ) = u1(r, θ) exp i (ωt+ kϕ) , (B1.2)

Π2(t, r, θ, ϕ) = u2(r, θ) exp i (ωt+ kϕ) , (B1.3)

Π3(t, r, θ, ϕ) = u3(r, θ) exp i (ωt+ kϕ) . (B1.4)
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In this sector, the field equations for the Pionic excitations become

0 =

(
− k22
L2

ϕ

+ ω2 − Q2 cos (2α(r))

L2
θ

)
u1(r, θ)−

Q sin (2α(r))

L2
θ

∂θu2(r, θ) +
1

L2
θ

∂2
θu1(r, θ) +

1

L2
r

∂2
ru1(r, θ) ,

(B1.5)

0 =

(
− k22
L2

ϕ

+ ω2

)
u2(r, θ) +

1

L2
θ

∂2
θu2(r, θ) + 2 cot (α(r))

(
Q

L2
θ

∂θu1(r, θ) +
α′(r)

L2
r

∂ru2(r, θ)

)
+

1

L2
r

∂2
ru2(r, θ) ,

(B1.6)

0 =

(
− k22
L2

ϕ

+ ω2

)
u3(r, θ) +

2Q cot (Qθ)

L2
θ

∂θu3(r, θ) +
1

L2
θ

∂2
θu3(r, θ) +

2 cot (α(r))α′(r)

L2
r

∂ru3(r, θ) +
1

L2
r

∂2
ru3(r, θ) .

(B1.7)

Note that Eq. (B1.7) is decoupled equation, the one that can be lead to a Schrödinger-like
equation of the form

−∆ū+ V ū = ω2ū , (B1.8)

where the new function ū is
ū = − sin(α) sin(qθ)u3 , (B1.9)

and where we have defined

∆ū =
1
√
g
∂i(

√
ggij∂j ū) , gij = diag(L2

r, L
2
θ) .

The potential in Eq. (B1.8) takes the form

V = −E0

L2
r

+
k2

L2
ϕ

− Q2

2L2
θ

+
Q2 cos(2α)

L2
θ

, (B1.10)

where we have used the expressions for the derivatives of α in Eqs. (4.3) and (4.3.7). A sufficient
condition ensuring linear stability under the Pionic excitations is the requirement V > 0, which
leads to the following constraint between the constants

k2

L2
ϕ

>
3Q2

2L2
θ

+
E0

L2
r

. (B1.11)

As per the previous ansatz, With the above condition, we notice a limit to the frequencies. This
fact is notable because, with this, we will only focus on the lowest energy perturbation, i.e.,
CFT-type.
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B2 Details of pionic perturbations and their field equations

The action I at second order in ϵ under the Pionic excitations (B1.1)

I =
K

4

∫
d4v
{
(∂Π1)

2 + sin2(α)(∂Π1 · ∂Π2) + sin2(α) sin2 Θ(∂Π3)
2+

+ 2Π1 sin (2α)(∇Θ · ∂Π2) + Π2
1 cos (2α)(∇Θ)2+

+
λ

2

(
sin2(α)

(
(∇α)2(∂Π2)

2 + 4(∇α · ∂Π1)(∇Θ · ∂Π2) + (∇Θ)2(∂Π1)
2−

− 2(∇α · ∂Π2)(∇Θ · ∂Π1)− (∇α · ∂Π2)
2 − (∇Θ · ∂Π1)

2
)
+

+Π1 sin (2α)
(
2(∇α)2(∇Θ · ∂Π2) + 2(∇α · ∂Π1)(∇Θ)2

)
+

+Π2
1 cos (2α)(∇α)2(∇Θ)2+

+ sin2(α) sin2 Θ
(
(∇α)2(∂Π3)

2 − (∇α · ∂Π3)
2
)
+

+ sin4 α sin2 Θ
(
(∇Θ)2(∂Π3)

2 − (∇Θ · ∂Π3)
2
))}

. (B2.1)

If we use (B1), we have the non-linear sigma term

Ô(1)
µνC

ij
(1) = δµνδi1δj1 + sin2(α)δµνδi1δj2 + sin2(α) sin2(Θ)δµνδi3δj3, (B2.2)

Ô(2)
µ Cij

(2) = 2δj1 sin (2α) (∇µΘ) δi2, (B2.3)

Ô
(3)
ij = δi1δj1 cos (2α) (∇Θ)

2
. (B2.4)

In the same way, for the Skyrme term

Ô(1)
µνC

ij
(1) = sin2(α) (∇α)2 δµνδj2δj2 + 4 sin2(α) (∇µα) (∇νΘ) δi1δj2 + sin2 α (∇Θ)

2
δµνδi1δj1−

− 2 sin2(α) (∇µα) (∇νΘ) δi2δj1 − sin2(α) (∇µα) (∇να) δi2δj2 − sin2(α) (∇µΘ) (∇νΘ) δi1δj1+

+ sin2(α) sin2(Θ) (∇α)2 δµνδi1δj1 − sin2 α sin2(Θ) (∇µα) (∇να) δi3δj3+

+ sin4 α sin2(Θ) (∇Θ)
2
δµνδi3δj3 − sin4 α sin2(Θ) (∇µΘ) (∇νΘ) δi3δj3, (B2.5)

Ô(2)
µ Cij

(2) = 2δj1 sin (2α) (∇α)2 (∇µΘ) δi2 + 2δj1 sin (2α) (∇Θ)
2
(∇µα) δi1, (B2.6)

Ô
(3)
ij = δi1δj1 cos (2α) (∇α)2 (∇Θ)

2
. (B2.7)

Now the field equations for the three pionic fields are

0 = □Π1 − sin (2α)(∇µΘ∂
µΠ2)−Π1 cos (2α)(∇Θ)2 +

λ

2

(
2∇µ

(
sin2(α)(∇Θ · ∂Π2)∇µα

)
+

+∇µ

(
sin2(α)(∇Θ)2∂µΠ1

)
−∇µ

(
sin2(α)(∇α · ∂Π2)∇µΘ

)
−∇µ

(
sin2 α(∇Θ · ∂Π1)∇µΘ

)
−

− sin(2α)
(
(∇α)2(∇Θ · ∂Π2) + (∇α · ∂Π1)(∇Θ)2

)
+∇µ

(
Π1 sin(2α)(∇Θ)2∇µα

)
−

−Π1 cos(2α)(∇α)2(∇Θ)2
)
, (B2.8)
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0 = □Π2 sin
2(α) + ∂µ(sin

2(α))∂µΠ2 + ∂µ(Π1 sin (2α)∇µΘ) +
λ

2

(
∇µ

(
sin2 α(∇α)2∂µΠ2

)
+

+ 2∇µ

(
sin2(α)(∇α · ∂Π1)∇µΘ

)
−∇µ

(
sin2(α)(∇Θ · ∂Π1)∇µα

)
−∇µ

(
sin2(α)(∇α · ∂Π2)∇µα

)
+

+∇µ

(
Π1 sin (2α)(∇α)2∇µΘ

))
, (B2.9)

0 = □Π3 sin
2(α) sin2(Θ) + ∂µ(sin

2(α) sin2 Θ)∂µΠ3 +
λ

2

(
∇µ

(
sin2 α sin2 Θ(∇α)2∂µΠ3

)
−

−∇µ

(
sin2 α sin2(Θ)(∇α · ∂Π3)∇µα

)
+∇µ

(
sin4(α) sin2(Θ)(∇Θ)2∂µΠ3

)
−

−∇µ

(
sin4 α sin2 Θ(∇Θ · ∂Π3)∇µΘ

))
. (B2.10)

The field equations for Π1

0 = −q
2 cos(2α(r))Π1

L2
θ

+
∂2ϕΠ1

L2
ϕ

− q sin(2α(r))∂θΠ2

L2
θ

+
∂2θΠ1

L2
θ

+
∂2rΠ1

Lr
− ∂2tΠ1+

+
1

2L2
rL

2
θL

2
ϕ

qλ
(
L2
ϕqΠ1(cos(2α(r))α

′(r)
2
+ sin(2α(r))α′′(r)) + sin(2α(r))

(
L2
rq sin(α(r))∂

2
ϕΠ1+

+ L2
ϕ

(
2 cos(α(r))α′(r)2∂θΠ2 + α′(r)(2q cos(α(r))∂rΠ1 + sin(α(r))∂r∂θΠ2)+

+ sin(2α(r))(2α′′(r)∂θΠ2 + q∂2rΠ1 − L2
rq∂

2
tΠ1)

)))
, (B2.11)

the field equation for Π2

0 = sin(α(r))

(
sin(α(r))∂2ϕΠ2

L2
ϕ

+
2q cos(α(r))∂θΠ1

L2
θ

+
sin(α(r)∂2θΠ2)

L2
θ

+
2 cos(α(r))α′(r)∂rΠ2

L2
r

+

+
sin(α(r))∂2rΠ2

L2
r

− sin(α(r))∂2tΠ2

)
+
λ sin2(α(r))

2L2
rL

2
θL

2
ϕ

(
− L2

ϕα(r)
′′∂θΠ1 + L2

ϕqα
′(r)∂r∂θΠ1+

+ α′(r)2
(
L2
θ∂

2
ϕΠ2 + L2

ϕ(∂
2
θ − L2

θ∂
2
tΠ2)

))
(B2.12)

and the field equation for Π3 are

0 =
λ sin(qθ) sin2(α(r))

2L2
rL

2
θL

2
ϕ

(
sin(qθ)(L2

rq
2 sin2(α(r)) + L2

θα
′(r)2)∂2

ϕΠ3 + L2
ϕ

(
2q2 sin(qθ) sin(2α(r))α′(r)∂rΠ3+

+ q2 sin(qθ) sin2(α(r))(∂2
rΠ3 − L2

r∂
2
tΠ3) + α′(r)2[2q cos(qθ)∂θ + sin(qθ)(∂2

θΠ3 − L2
θ∂

2
tΠ3)]

))
+

+
sin(qθ) sin(α(r))

L2
rL

2
θL

2
ϕ

(
L2

rL
2
θ sin(qθ) sin(α(r))∂

2
ϕΠ3 + L2

ϕ

(
2L2

rq cos(qθ) sin(α(r))∂θΠ3+

+ sin(qθ)[L2
r sin(α(r))∂

2
θΠ3 + L2

θ(2 cos(α(r)))α
′∂rΠ3 + sin(α(r))(∂2

rΠ3 − L2
r∂

2
tΠ3)]

))
. (B2.13)



B2. Details of pionic perturbations and their field equations 49

To solve the system of equations, we use the following Fourier expression for the pionic fields

Π1(t, r, θ, ϕ) = u1(r) exp(i(θk1 + k2ϕ+ ωt)), (B2.14)

Π2(t, r, θ, ϕ) = u2(r) exp(i(θk1 + k2ϕ+ ωt)), (B2.15)

Π3(t, r, θ, ϕ) = u3(r) exp(i(θk1 + k2ϕ+ ωt)). (B2.16)

The field equation for Π1 is

0 = −L2
r

{
u1(r)

(
λH ′2 + L2

r

)(
L2
ϕ(k1 + Lθω)(k1 − Lθω) + k22L

2
θ

)
+

+ u3(r) cos(2H(r))(λH ′2 + L2
r)
(
L2
ϕ(k1 + Lθω)(k1 − Lθω) + k22L

2
θ

)
+ L2

ϕ

(
iλk1qu2(r)H

′′(r)+

+H ′(r)
(
2L2

θ sin(2H(r))u′3(r)− iλk1qu
′
2(r)

)
−
{
L2
θ (cos(2H(r))u′′3(r) + u′′1(r))

})}
, (B2.17)

then the field equation for Π2 is

0 = −L2
θ

{
− L2

ru2(r)
(
k21L

2
ϕ + (k2 + Lϕω)(k2 − Lϕω)

(
L2
θ + λq2

))
+ L2

ϕ

(
(L2

θ + λq2)u′′2(r)+

+ ik1q
(
2λu1(r)H

′′(r) + λH ′(r) (cos(2H(r))u′3(r) + u′1(r)) + 2u3(r)
{
λH ′′(r) cos(2H(r))+

+ sin(2H(r))(L2
r − λH ′2)

}))}
, (B2.18)

and the field equation for Π3 is

0 = −L2
θ

{
− 2λk21L

2
rL

2
ϕu3(r)H

′2 + 4L2
rL

2
ϕ sin(2H(r))

(
L2
θH

′(r)u′1(r) + ik1L
2
rqu2(r)

)
−

− 2λk22L
2
θL

2
ru3(r)H

′2 + L2
ϕu

′′
3(r)

(
4λL2

θH
′2 + L2

r

(
λq2 cos(4H(r))− 2L2

θ − λq2
))
+

+ 2λL2
θL

2
rL

2
ϕω

2u3(r)H
′2 − 4λL2

rL
2
ϕq

2H ′(r) sin(4H(r))u′3(r)+

+ 2L2
r cos(2H(r))

(
u1(r)

(
λH ′2 + L2

r

)(
L2
ϕ(k1 + Lθω)(k1 − Lθω) + k22L

2
θ

)
+

+ L2
ϕ

{
− L2

θu
′′
1(r) + iλk1q

(
u2(r)H

′′(r)−H ′(r)u′2(r)
)})

+ 8λL2
θL

2
ϕH

′(r)H ′′(r)u′3(r)−

− λk22L
4
rq

2u3(r) cos(4H(r)) + λL4
rL

2
ϕq

2ω2u3(r) cos(4H(r)) + 2k21L
4
rL

2
ϕu3(r) + 2k22L

2
θL

4
ru3(r)+

+ λk22L
4
rq

2u3(r)− 2L2
θL

4
rL

2
ϕω

2u3(r)− λL4
rL

2
ϕq

2ω2u3(r)
}
. (B2.19)

Now in the case of k1 = 0 we have the following equations.

The field equation for Π1 is

0 =
1

2L2
ϕ(L

2
θ + q2λ sin2(α(r))

(
u1(r, θ)

(
L2

r(−2L2
ϕq

2 cos(2α(r))− (k2 − Lϕω)(k2 + Lϕω)(2L
2
θ+

+ q2λ sin2(α(r)))) + sin(2α(r))α′′(r)
)
+ 2L2

ϕq sin(α(r))(−2L2
r cos(α(r)) + λ cos(α(r))α′(r)2+

+ λ sin(α(r))α′′(r))∂θu1(r, θ) + 2L2
rL

2
ϕ∂

2
θu1(r, θ) + L2

ϕqλ sin(α(r))α
′(r)(2q cos(α(r))∂ru1(r, θ)+

+ sin(α(r))∂r∂θu2(r, θ))
)
+

2L2
θ + q2λ sin2(α(r))∂2

ru1(r, θ)

2L2
θ + 2q2λ sin2(α)

, (B2.20)
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the field equation for Π2 is

0 =
1

2L2
θL

2
ϕ

(
− L2

θ(k
2
2 − L2

ϕω
2)(2L2

r + λα′(r)2)u2(r, θ) + L2
ϕ

(
(∂2θu1(r, θ)(4qL

2
r cot(α(r))− λqα′′(r))+

+ (2L2
r + λα′(r)2)∂2θu2(r, θ)) + α′(r)(4L2

θ cot(α(r))∂ru2(r, θ) + qλ∂r∂θu1(r, θ))
))

+ ∂2ru2(r, θ),

(B2.21)

the field equation for Π3

0 =
2L2

r + λα′(r)2

2L2
θ + 2q2λ sin2(α(r))

∂2θu3(r, θ) +
csc(α(r))

4L2
ϕ(q

2λ+ L2
θ csc

2(α(r)))

(
(k22 − L2

ϕω
2) csc(α(r))u3(r, θ)(−4L2

rL
2
θ−

− q2L2
rλ+ q2L2

rλ cos(2α(r)))) + 4L2
ϕ(q cot(qθ)) csc(α(r))(2L

2
r + λα′(r)2)∂θu3 + 2(q2λ cos(α(r))+

+ L2
θ cot(α(r)) csc(α(r)))

)
+

2L2
θ + q2λ sin2(α(r))

2L2
θ + 2q2λ sin2(α(r))

∂2ru3(r, θ). (B2.22)
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Appendix C

First Steps to a New Work Related

to Hadronic Layers

C1 A Future Work: Pionic excitations on the Baryonic

layers

The Pionic excitations of the Hadronic layers can be divided into two types: the first type is
“CFT perturbations". In contrast, the second type corresponds to “generic perturbations". In
the present section, we will discuss the second type in the same form discussed in the previous
chapter.

C2 Pionic excitations on the Hadronic layers

Let us consider the following generic perturbations of the solutions presented above

H(r) → κr+ εΠ2 (x
µ) , G→ G (u) + εΠ1 (x

µ) , F → qθ+ εΠ3 (x
µ) , |ε| ≪ 1 . (C2.1)

The three degrees of freedom ΠJ (xµ) represent Pionic excitations of the Baryonic layers
configurations. Also, in this case, these excitations can be considered as “Pionic excitations" if
the variation of the topological charge δB to first order in ε vanishes:

δB = 0 .

The simplest way to implement the above condition requires periodic boundary conditions for
the Πj .

If we replace the expressions in Eq. (C2.1) in the Skyrme action in Eq. (2.6.32) at zeroth
order in ε we obtain the on-shell action. Once again, at first order in ε we get zero (modulo
boundary terms). At second order in ε we obtain the following effective action I−→

Π
for the Pionic
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excitations:

I−→
Π

=

∫
d4v

{
Ô(1)

µν (∂
µΠi)(∂

νΠj)C
ij
(1) + Ô(2)

µ (∂µΠi)ΠjC
ij
(2) + Ô

(3)
ij ΠiΠj

}
.

The above is the sum of two quadratic parts (see section C3 for the explicit expressions). The
first is a time-dependent action in which H is an effective static potential. The second one
(which can be considered as a small perturbation of the first one as long as the gradient of G is
small) is a time-dependent perturbation that can be turned on and off adiabatically. Hence, we
are in the position to apply the Kubo formula for the electric conductivity directly [33] [34] [35].

As in the case of the Baryonic tubes, here we will focus in the case λ→ 0, where the resulting
equations can be interpreted directly.

To solve the equations system, we use the following Fourier expansions for the Pionic fields

Π1(t, r, θ, ϕ) = u1(r) exp(i(kϕ+ ωt)) , (C2.2)

Π2(t, r, θ, ϕ) = u2(r) exp(i(+kϕ+ ωt)) , (C2.3)

Π3(t, r, θ, ϕ) = u3(r) exp(i(kϕ+ ωt)) . (C2.4)

In this sector, the field equations for the Pionic excitations (the general equations are in section
C3) become

0 = −L2
θL

2
r(k

2
2 − L2

ϕω
2)
(
u1(r) + u3(r) cos

( r
2

))
+ L2

θL
2
ϕu

′′
1 (r) + L2

θL
2
ϕ cos

( r
2

)
u′′
3 (r)−

1

2
L2

θL
2
ϕ sin

( r
2

)
u′
3(r) ,

0 = −L2
θL

2
r(k

2
2 − L2

ϕω
2)
(
u3(r) + u1(r) cos

( r
2

))
+ L2

θL
2
ϕu

′′
3 (r) + L2

θL
2
ϕ cos

( r
2

)
u′′
1 (r)−

1

2
L2

θL
2
ϕ sin

( r
2

)
u′
1(r) .

The solution of this system is in section C3. The quantization of k is related to the periodic
boundary conditions in phi. The frequency ω turns out to be (note that at least one of the
integers k and/or n̂ must be non-vanishing as explained in the section C3.

ω =

√
16k22L

2
r + L2

ϕ(n̂− 1)

4LrLϕ
, (C2.5)

with n̂ an integer number that cannot be vanished. The regularity of these solutions and the
constant value are explained in section C3.
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C3 Details of Pionic Excitations and their Field Equations

Furthermore, the action under the Pionic excitations (C2.1) is

I = −K
2

∫
d4v

{
(∂Π1)

2 + (∂Π2)
2 + (∂Π3)

2 + 2 cos(2H)(∂Π1 · ∂Π3)− 4Π2 sin(2H)(∇F · ∂Π3)−

− λ
(
2 cos(2H)

(
(∇H · ∂Π1)(∇H · ∂Π3) + (∇F · ∂Π2)(∇H · ∂Π3)− (∇H)2(∂Π1 · ∂Π3)− 2(∇H · ∂Π2)(∇F · ∂Π3)+

+ 4Π2 sin(2H)
(
κ2(∇F · ∂Π3)

)
+ 4 sin2(H) cos2(H)

(
(∇F · ∂Π3)

2 − 1

4
(∇F )2(∂Π1)

2
)
−

−Π2 sin(4H)(∇F )2(∇F · ∂Π1)− (∇F )2(∂Π1)
2 + (∇F )2(∂Π3)

2 +
1

4
(∇F )2(∂Π2)

2 + 2(∇H · ∂Π1)(∇F · ∂Π2)+

+ (∇H · ∂Π1)
2 + (∇H · ∂Π3)

2 + (∇F · ∂Π2)
2 − 4(∇H · ∂Π2)(∇F · ∂Π1)

)}
. (C3.1)

If we use (C2) in the non-linear sigma model term we obtain

Ô(1)
µνC

ij
(1) = δµνδi1δj1 + δµνδi2δj2 + δµνδi3δj3 + 2 cos(2H)δµνδi1δj3, (C3.2)

Ô(2)
µ Cij

(2) = −4 sin(2H)
(
δ2jδµν(∇νF )δi3 + δ2jδµν(∇νG)δi1

)
, (C3.3)

Ô
(3)
ij = 0. (C3.4)

In the same way, for the Skyrme term, we obtain

Ô(1)
µνC

ij
(1) = 4 sin2(H) cos2(H)

(
2(∇µG)(∇νF )δi1δj3 + (∇µG)(∇νG)δi1δj1+

+ (∇µF )(∇νF )δi3δj3 −
q2

4
δµνδi1δj1 − 4(∇µG)(∇νF )δi3δj1

)
+

+ 2 cos(2H)
(
(∇µH)(∇νH)δi1δj3 + (∇µH)(∇νG)δi1δj2 + (∇µF )(∇νH)δi2δj3+

+ (∇µF )(∇νG)δi2δj2 − κ2δµνδi1δj3 − 2(∇µH)(∇νF )δi2δj3−

− 2(∇µH)(∇νG)δi2δj1

)
+ 2(∇µH)(∇νF )δi1δj2+

+ (∇µH)(∇νH)δi1δj1 + (∇µF )(∇νF )δi2δj2 + 2(∇µH)(∇νG)δi3δj2+

+ (∇µH)(∇νH)δi3δj3 + (∇µG)(∇νG)δi2δj2 − κ2δµνδi1δj1−

− 4(∇µH)(∇νF )δi2δj1 + κ2δµνδi3δj3 +
q2

4
δµνδi2δj2 + 4(∇µH)(∇νG)δi2δj3, (C3.5)

Ô(2)
µ Cij

(2) = 4δ2j sin(2H)
(
κ2δµνδi3(∇νF ) + κ2δµνδi1(∇νG)

)
+

+ 2δ2j sin(4H)
(
− 2

q2

4
δµνδi1(∇νF )

)
, (C3.6)

Ô
(3)
ij = 0. (C3.7)
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The field equation of the Π1 is

0 =
{
L2
θ

(
L2
r + λH ′(r)

)
∂2ϕΠ1 − 2L2

θL
2
ϕ sin (2H(r))H ′(r)∂rΠ3 + L2

ϕ

(
− qλH ′′∂θΠ2+

+ (L2
r + λH ′(r)2)∂2θΠ1 + qλH ′(r)∂r∂θΠ2 + L2

θ∂
2
rΠ1 − L2

θ(L
2
r + λH ′(r)2)∂2tΠ1

)
+

+ cos(2H(r))
(
L2
θ(L

2
r + λH ′(r)2)∂2ϕΠ3 + L2

ϕ

(
L2
θ∂

2
rΠ3 + (L2

r + λH ′(r)2)(∂2θΠ3 − L2
θ∂

2
tΠ3)

))}
.

(C3.8)

In the same way, the field equation for Π2 is

0 =
1

L2
rL

2
θL

2
ϕ

{
L2
r(L

2
θ + q2λ)∂2ϕΠ2 + L2

ϕ

(
2q sin (2H(r))(L2

r − λH ′(r)2)∂θΠ3+

+ 2qλH ′′(r)(∂θΠ1 + cos (2H(r))∂θΠ3) + qλH ′(r)(∂r∂θΠ1 + cos (2H(r))∂r∂θΠ3)+

+ (L2
θ + q2λ)∂2rΠ2 + L2

r

(
∂2θΠ2 − (L2

θ + q2λ)∂2tΠ2

))}
, (C3.9)

and for the Π3

0 =
1

2L4
rL

2
θL

2
ϕ

{
2L2

rL
2
θ cos 2H(r)(L2

r + λH ′(r)2)∂2ϕΠ1 + L2
r

(
L2
r(2L

2
θ + q2λ− λ cos (4H(r)))−

− 2L2
θH

′(r)2
)
∂2ϕΠ3 + L2

ϕ

(
2L4

r∂
2
θΠ3 − 2L2

rλH
′(r)2∂2θΠ3 − 4L2

r sin (2H(r))(L2
rq∂θΠ2+

+ L2
θH

′(r)∂rΠ1) + 4L2
rq

2λ sin (4H(r))H ′(r)∂rΠ3 − 8L2
θλH

′(r)H ′′(r)∂rΠ3+

+ 2L2
rL

2
θ∂

2
rΠ3 + L2

rq
2λ∂2rΠ3 − 4L2

θλH
′(r)2∂2rΠ3+

+ 2L2
r cos (2H(r))

(
− qλH ′′(r)∂θΠ2 + (L2

r + λH ′(r)2)∂2θΠ1 + qλH ′(r)∂r∂θΠ2+

+ L2
θ∂

2
rΠ1 − L2

θ(L
2
r + λH ′(r)2)∂2tΠ1

)
− 2L4

rL
2
θ∂

2
tΠ3 − L4

rq
2λ∂2tΠ3+

+ 2L2
rL

2
θλH

′(r)2∂2tΠ3 + L2
rq

2λ cos (4H(r))(−∂2rΠ3 + L2
r∂

2
tΠ3)

)}
. (C3.10)

To solve the system of equations, we use the following Fourier expression for the pionic fields

Π1(t, r, θ, ϕ) = u1(r) exp(i(θk1 + k2ϕ+ ωt)), (C3.11)

Π2(t, r, θ, ϕ) = u2(r) exp(i(θk1 + k2ϕ+ ωt)), (C3.12)

Π3(t, r, θ, ϕ) = u3(r) exp(i(θk1 + k2ϕ+ ωt)). (C3.13)

Now for the case of our study, when λ→ 0, we have the previous system of equations is

0 = −L2
θL

2
r(k

2
2 − L2

ϕω
2)
(
u1(r) + u3(r) cos

( r
2

))
+ L2

θL
2
ϕu

′′
1 (r) + L2

θL
2
ϕ cos

( r
2

)
u′′
3 (r)−

1

2
L2

θL
2
ϕ sin

( r
2

)
u′
3(r),

0 = −L2
θL

2
r(k

2
2 − L2

ϕω
2)
(
u1(r) cos

( r
2

)
+ u3(r)

)
+ L2

θL
2
ϕu

′′
3 (r) + L2

θL
2
ϕ cos

( r
2

)
u′′
1 (r)−

1

2
L2

θL
2
ϕ sin

( r
2

)
u′
1(r).

For solve this, we use an auxiliary variable Ψ(r) defined such as

Ψ(r) = u1(r)− u3(r). (C3.14)
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Then, if we take the difference between the equations of the previous system, we have an EDO
such like

0 = −L2
rL

2
θ(k2 − Lϕω)(k2 + Lϕω)

(
1− cos

(r
2

))
Ψ(r) + L2

θL
2
ϕ

((
1− cos

(r
2

))
Ψ′(r)

)′
.

(C3.15)

Then, the solution of Ψ(r) is

Ψ(r) = csc
(r
4

)(
exp

(r
4
Λ
)
c1 + exp

(
−r
4
Λ
)
c2

)
, (C3.16)

where c1 and c2 are, in principle, complex number and Λ is defined such as

Λ =

√
16L2

r(k
2
2 − L2

ϕω
2)− L2

ϕ

Lϕ
,

for ω to be real, we need the following constraint for Λ in the quantization of k2

Λ− in6 = 0, (C3.17)

from the above, it is clear that n6 cannot be null (otherwise, the perturbation vanishes). Besides,
for the regularity of the function Ψ(r) we choose the constant c2 so that Ψ(r) remains in terms
of

Ψ(r) = csc
(r
4

)
sin
(
r
n6
4

)
c1. (C3.18)

With the above, the modes u1(r) and u3(r) are defined from the auxiliary function Ψ(r), being
also regular.
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