

UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA QUÍMICA

Almacenamiento de hidrógeno en carbón activado obtenido de carbón mineral. Efecto de la adición de Ni y Cu como promotores metálicos.

Por

Gabriel Franco Romero Cifuentes

Memoria de Título presentada a la Facultad de Ingeniería de la Universidad de Concepción para optar al título profesional de Ingeniero Civil Químico

Profesores Patrocinantes:

Dra. Ximena García C. Dra. Claudia Ulloa T.

Profesor comisión:

Marlene Roeckel.

Concepción, Agosto 2023

Resumen

El hidrógeno emerge como una opción altamente prometedora ante los apremiantes problemas climáticos. Sin embargo, surge una complicación central relacionada con su almacenamiento, ya que las formas convencionales presentan diversas limitaciones. Recientemente, la investigación científica se ha focalizado en el almacenamiento mediante materiales sólidos, específicamente en el carbón activado. Además, se sugiere que la introducción de metales podría ser una estrategia beneficiosa para mejorar este proceso de almacenamiento. En este contexto, se llevó a cabo un estudio para investigar cómo la adición de Ni y Cu en un carbón activado derivado de carbón mineral activado químicamente con NaOH, influye en el almacenamiento de hidrógeno. Los carbones activados fueron dopados con diferentes niveles de carga de metal: 0,5%, 1,0%, 1,5%, 2,5% y 5,0% en masa. Para caracterizar los carbones preparados, se realizaron pruebas de adsorción de nitrógeno a 77 K, con el fin de determinar parámetros cruciales como el área superficial BET y el volumen de microporos. Así mismo, se efectuaron pruebas de adsorción de hidrógeno a 77 K y 1 bar. Además, se aplicaron otros análisis con el propósito de obtener información adicional. Estos incluyen análisis elemental e inmediato, TEM y un análisis teórico aplicando el modelo de adsorción de Dubinin-Astakhov [56]. Los resultados demostraron que los carbones dopados, tanto con Ni y Cu presentaron una mayor porosidad en comparación al carbón sin dopar, lo cual se traduce en una mayor área BET. La forma de las isotermas de adsorción de nitrógeno de las muestras dopadas no presentó ninguna variación respecto de los carbones base, salvo en el caso del 5 Ni-CA, las isotermas fueron de tipo I y tipo IV según los criterios de la IUPAC. Se comprobó además una relación lineal entre el área BET y el volumen de microporos. El análisis TEM proporcionó un rango de tamaño de partícula que varió entre 14-7 nm, destacando que la muestra 2,5 Cu-CA exhibió este último valor. Con respecto a la adsorción de hidrógeno, se plantea la posibilidad de que la introducción de metal tenga un impacto restringido a condiciones de 77 K y 1 bar, lo cual podría estar influenciado por taponamiento de los poros. Esto se evidencia en el hecho de que la muestra de mayor desempeño fue 1,5-Ni-CA, alcanzando un valor del 2,51 % en peso de H₂, lo que representa un aumento de solo un 1,6 % en comparación con la muestra sin dopar. Finalmente se logró proyectar los datos experimentales del carbón activado a condiciones de elevadas presiones y diversas temperaturas. Como resultado, se obtuvo un valor de 8,74% en peso a 100 bar, mientras que se registró un valor de 0,69% en peso a 298 K y 100 bar.

Summary

Hydrogen is emerging as a highly promising option in the face of pressing climate issues. However, a central complication arises related to its storage, since conventional forms present various limitations. Recently, scientific research has focused on storage using solid materials, specifically activated carbon. In addition, it is suggested that the introduction of metals could be a beneficial strategy to improve this storage process. In this context, a study was conducted to investigate how the addition of Ni and Cu in an activated carbon derived from chemically activated mineral carbon with NaOH, influences hydrogen storage. The activated carbons were doped with different levels of metal charge: 0,5%, 1,0%, 1,5%, 2,5% and 5,0% by mass. To characterize the prepared carbons, nitrogen adsorption tests were performed at 77 K, in order to determine crucial parameters such as BET surface area and micropore volume. Likewise, hydrogen adsorption tests were carried out at 77 K and 1 bar. In addition, other analyses were applied in order to obtain additional information. These include elemental and immediate analysis, TEM and a theoretical analysis applying the Dubinin-Astakhov adsorption model [56]. The results showed that doped carbons with both Ni and Cu presented a higher porosity compared to undoped carbon, which translates into a greater BET area. The shape of the nitrogen adsorption isotherms of the doped samples did not present any variation with respect to the base carbons, except in the case of 5 Ni-CA, the isotherms were type I and type IV according to IUPAC criteria. A linear relationship between the BET area and the volume of micropores was also verified. The TEM analysis provided a particle size range that varied between 14-7 nm, highlighting that the 2,5 Cu-CA sample exhibited this last value. With regard to hydrogen adsorption, the possibility arises that the introduction of metal has an impact restricted to conditions of 77 K and 1 bar, which could be influenced by clogging of the pores. This is evidenced by the fact that the highest performing sample was 1,5-Ni-CA, reaching a value of 2,51% by weight of H₂, representing an increase of only 1,6% compared to the undoped sample. Finally, it was possible to project the experimental data of activated carbon at conditions of high pressures and different temperatures. As a result, a value of 8,74% by weight was obtained at 100 bar, while a value of 0,69% by weight was recorded at 298 K and 100 bar.

Índice

Resumen	2
Índice de figuras	7
Índice de tablas	9
Abreviaturas	
Nomenclatura	
1. Introducción	
2. Objetivos	
2.1 Objetivo general	
2.2 Objetivos específicos	
3. Antecedentes generales	
3.1 Problemática ambiental global	
3.2 Hidrógeno como vector energético	
3.2.1 Hidrógeno verde	
3.2.3 Almacenamiento del hidrógeno	
3.3 Carbón	
3.3.1 Carbón mineral	
3.3.2 Carbón activado	
3.4 Activación	
3.4.2 Activación química	
3.5 Caracterización del carbón activado	
3.5.1 Porosidad	
3.5.2 Isotermas de adsorción	
3.5.3 Volumen de microporos	
3.5.4 Área superficial específica	

	3.5.5 Diámetro medio de poros	32
	3.5.6 Distribución del tamaño de poros	32
	3.6 Almacenamiento de hidrógeno en carbón activado	33
	3.6.1 Antecedentes de la adicción de metales al carbón activado	34
	3.6.2 Fundamentos teóricos para la evaluación de datos adsorción de hidrogeno	37
4	. Trabajo experimental	39
	4.1 Materiales y equipos	39
	4.1.1 Sustancias químicas	39
	4.1.2 Equipos	40
	4.2 Metodología	40
	4.2.1 Selección y análisis del carbón activado	40
	4.2.2 Activación del carbón	41
	4.2.3 Adición de metales al carbón activado	43
	4.2.4 Impregnación húmeda incipiente	43
	4.2.5 Reducción	44
	4.2.6 Caracterización de los carbones activados	45
	4.2.7 Tratamiento teórico de datos de adsorción de hidrógeno	48
5	. Resultados y Discusión	50
	5.1 Análisis inmediato y elemental	50
	5.2 Caracterización textural	51
	5.2.1 Isotermas de adsorción/desorción de nitrógeno	51
	5.2.2 Área B.E.T y volumen de poros	53
	5.2.3 Distribución de tamaño de poros	57
	5.3.4 Análisis morfológico del precursor y de los carbones activados mediante T.E.M.	59
	5.3 Capacidad de adsorción de hidrógeno	62
	5.4 Isotermas de dióxido de carbono	66

	5.5 Aplicación del modelo de Dubinin-Astakhov	
	5.5.1 Extrapolación a otras presiones	
	5.2.2 Extrapolación a otras temperaturas	70
6.	Conclusiones	73
7.	Referencias	75
8.	Anexos	
	8.1 Variables del proceso de activación	
	8.2 Efecto Spillover	
	8.3 Equipos utilizados	
	8.4 Cálculo concentración soluciones madre	
	8.5 Data experimental de análisis termogravimétrico	
	8.6 Isotermas de adsorción de nitrógeno	92
	8.6.1 Isotermas de adsorción de nitrógeno para la serie Ni-CA	92
	8.6.2 Isotermas de adsorción de nitrógeno para la serie Cu-CA	96
	8.7 Isotermas de adsorción de hidrógeno	
	8.7.1 Isotermas de adsorción de hidrógeno para la serie Ni-NaOH	
	8.7.2 Isotermas de adsorción de hidrógeno para la serie Cu-NaOH	
	8.8 Distribución de tamaños de poros	102
	8.8.1 Distribución de tamaños de poros para la serie Ni-CA	
	8.8.2 Distribución de tamaños de poros para la serie Cu-CA	112

Índice de figuras

Figura 1: Evolución de las emisiones de gases de efecto invernadero en el mundo [1]15
Figura 2: Diferentes áreas en la que está involucrado el hidrógeno [14]17
Figura 3: Alternativas para el almacenamiento de hidrógeno [16]
Figura 4: Conceptos comunes para etiquetas el hidrógeno almacenado [17]
Figura 5: Estructura carbón activado [24] 22
Figura 6: Funcionalidades superficiales ácidas y básicas en un plano basal de carbono [26] 23
Figura 7: Rutas de activación del carbón activado, rediseñado de [28]
Figura 8: Porosidad del carbón activado [37]26
Figura 9: Tipos de isotermas de adsorción según clasificación IUPAC [38]
Figura 10: Energía de adsorción de distintos materiales utilizados para el almacenamiento de
hidrógeno [45]
Figura 11: Instrumentos utilizados en la impregnación húmeda
Figura 12: Equipo Micromeretics Gemins VII 2390t45
Figura 13: Software SAIEUS representando las distribuciones de tamaño de poro
Figura 14: Isoterma de adsorción de hidrógeno presentada por el programa de computador
3Flex
Figura 15: Isotermas de adsorción de N2 de Ni-CA51
Figura 16: Isotermas de adsorción de N2 para Cu-CA52
Figura 17: Área superficial vs porcentaje de metal55
Figura 18: Relación entre el Área BET y el volumen de microporos
Figura 19: Distribución de tamaños de poros (a) caso Ni (b) caso Cu
Figura 20: Imágenes TEM para muestra dopada con Ni a diferente concentración
Figura 21: Imágenes TEM para muestra dopada con Cu a diferente concentración
Figura 22: Isotermas de adsorción de exceso de hidrógeno (a) caso con Ni (b) caso con Cu 62

Figura 23: Relación entre la adsorción de hidrógeno y el área BET (a) caso con Ni (b) caso c	con
Cu	63
Figura 24: Relación entre nivel de carga vs hidrógeno adsorbido	64
Figura 25: Isotermas de adsorción de CO ₂ (a) caso con Ni (b) caso con Cu	66
Figura 26: Distribución de tamaños de poros (a) caso con Ni (b) caso con Cu	68
Figura 27: Extrapolación de data experimental de Ni a altas presiones	69
Figura 28: Extrapolación de los datos experimentales a otras temperaturas	71
Figura 29: Ilustración del mecanismo "spillover" de hidrógeno [3]	83
Figura 30: Horno tubular LINDBERG modelo HTF55342	84
Figura 31: Rotavapor Heidolph modelo LABOROTA 4002	84

Índice de tablas

Tabla 1: Información sobre diferentes estudios del dopaje de metal sobre carbón activado 36
Tabla 2: Sustancias químicas utilizadas, pureza y utilidad
Tabla 3: Condiciones óptimas para la activación del carbón activado 41
Tabla 4: Análisis elemental e inmediato del carbón mineral
Tabla 5: Parámetros texturales para Ni-CA serie53
Tabla 6: Parámetros texturales para Cu-CA serie54
Tabla 7: Diámetro medio de poro58
Tabla 8: Tamaño de partícula para las diferentes muestras61
Tabla 9: Adsorción de exceso de hidrógeno y adsorción de exceso de hidrógeno normalizada por
SSA de las diferentes muestras de carbón activado a 77 K y 0,95 bar
Tabla 10: Parámetros texturales obtenidos de las isotermas de CO2 a 273 K
Tabla 11: Parámetros de calibración del ajuste del modelo MDA para el carbón activado con
níquel a 77 K 69
Tabla 12: Exceso de hidrógeno a 273 K a diferentes presiones. 70
Tabla 13: Parámetros de calibración del ajuste del modelo MDA para el carbón sin dopar a otras
temperaturas
Tabla 14: Matriz de ensayos de activación junto a resultados obtenidos
Tabla 15: Cálculo concentración solución madre Ni
Tabla 16: Cálculo concentración solución madre Cu 85

Abreviaturas

Abreviaturas	Descripción		
СА	Carbón activado		
DOE	Departamento de energía de EE. UU.		
DTP	Distribución de tamaño de poros		
GEI	Gases de efecto invernadero		
MDA	Modelo modificado de Dubinin-Astakhov		
TEM	Microscopia electrónica de transmisión		

Nomenclatura

Símbolo	Descripción	Unidad
	Adsorción absoluta (por	
n_{abs}	unidad de masa de	mol/kg
	adsorbente)	
	Adsorción en exceso (por	
n_{exc}	unidad de masa de	mol/kg
	adsorbente)	
Р	Presión de equilibrio	Pa
D	Presión de pseudosaturación	Da
I 0	(modelo D-A)	1 a
R	Constante de los gases	8 314 I /mol K
A	universal	0,514 J/ 1101 K
SSA	Área superficial	,
	Volumen de adsorción (por	
V_a	unidad de masa de	m ³ /kg
	adsorbente	
Vo	Volumen de microporo	cm ³ /g
V_m	Volumen de mesoporo	cm ³ /g
	Contribución entálpica a la	
α	energía libre característica	J/mol
	de adsorción	
	Contribución entrópica a la	
β	energía libre característica	J/mol K
	de adsorción	
	Energía libre característica	
ε	de adsorción (D-A	J/mol
	modelo)	
0	Densidad media de la fase	mol/m^3
Pa	adsorbida	
$ ho_g$	Densidad de la fase aparente	mol/ m ³

1. Introducción

El uso excesivo de combustibles fósiles ha generado una considerable emisión de gases de efecto invernadero (GEI), desencadenando serios fenómenos climáticos en nuestro planeta, como el calentamiento global y, en consecuencia, el cambio climático. Según el informe "Global Carbon Budget 2022"[1], las emisiones de CO₂ han alcanzado una alarmante cifra de 40.600 millones de toneladas (GtCO₂) para ese año, donde el 90 % de estas emisiones proviene de la quema de combustibles fósiles. Si estos niveles persisten, el medio ambiente experimentará daños irreversibles.

La incorporación de energías renovables, como la eólica y solar, es esencial para abordar los desafíos ambientales y avanzar hacia una matriz energética más sostenible. Estas fuentes de energía son abundantes, limpias y no emiten gases de efecto invernadero durante su operación, lo que las hace fundamentales para reducir la dependencia de los combustibles fósiles y reducir el cambio climático. Sin embargo, aún existen desafíos significativos para su implementación, la intermitencia y variabilidad de estas energías producto de la dependencia de las condiciones climáticas dificultan la integración constante a la red eléctrica, por lo que se requiere soluciones de almacenamiento y sistemas de gestión inteligente [2]. Con respecto a lo anterior el hidrógeno ha demostrado ser una opción extremadamente prometedora como vector energético [3]. Su alta densidad energética y la ausencia de emisiones de carbono durante su uso, lo convierten en el candidato ideal para el remplazo de los combustibles fósiles.

El hidrógeno es un elemento abundante en la Tierra, pero rara vez se encuentra en su forma pura en la naturaleza. Su producción puede ser renovable al utilizar la electrólisis del agua, que se basa en la descomposición de la molécula de agua (H₂O), en los gases oxígeno e hidrógeno, a través de corriente continua en un electrolizador [4].

Una de las áreas de mayor interés en relación con la implementación del hidrógeno en la sociedad se encuentra en su aplicación en vehículos. En este contexto, el principal desafío se centra en el almacenamiento de este elemento. Las formas convencionales de almacenamiento, como el gas comprimido y el estado líquido, requieren un espacio considerable en los automóviles. Ante esta situación, ha surgido la posibilidad de utilizar materiales porosos como una solución prometedora para el almacenamiento. Específicamente, los materiales carbonosos han llamado la atención de la comunidad científica como una alternativa potencial para

almacenar hidrógeno debido a su estructura altamente porosa, su gran área superficial y sus propiedades químicas [3].

Los nanotubos de carbono, nanofibras de grafito, MOFs (estructuras organometálicas) hidruros metálicos y carbones activados han tenido resultados esperanzadores en cuanto a esta materia. [5],[6],[7]. No obstante, la capacidad alcanzada hasta el momento no cumple completamente con los objetivos establecidos por el Departamento de Energía de Estados Unidos (DOE).

Es así como se abre un amplio campo de investigación en la búsqueda de procesos o tratamientos que mejoren la capacidad de adsorción de hidrógeno en este tipo de materiales Algunos investigadores plantean cambios estructurales internos [3]. La estrategia ampliamente adoptada implica la introducción de nanopartículas metálicas en la superficie del material, ya que esta técnica podría dar lugar al fenómeno conocido como efecto Spillover [3], [8], cuando la adsorción se realiza a temperaturas más elevadas.

Dentro de este contexto, surge el almacenamiento de hidrógeno en carbono activado como un campo apasionante que promete desempeñar un papel crucial en la transición hacia una sociedad más sostenible y exenta de emisiones. En un mundo donde la energía limpia se vuelve cada vez más imperativa, este proceso presenta una solución cautivadora y llena de posibilidades. En esta exploración, adentrémonos a las diversas características asociadas al almacenamiento de hidrógeno en carbono activado, y descubramos cómo esta tecnología podría allanar el camino hacia un futuro energético más limpio y sostenible.

2. Objetivos

2.1 Objetivo general

Estudiar el efecto de la adición de metales sobre las propiedades y capacidad de almacenamiento de hidrógeno de carbón activado obtenido de carbón mineral.

2.2 Objetivos específicos

- 1. Evaluar el efecto de adicionar Ni y Cu sobre las propiedades fisicoquímicas y capacidad de adsorción de hidrogeno.
- 2. Analizar las propiedades estructurales y morfológicas del carbón activado dopado para comprender cómo afectan a su capacidad de almacenamiento de hidrógeno.
- 3. Evaluar parámetros característicos y determinar el rol de los diferentes componentes en el proceso de adsorción.
- 4. Representar, mediante modelación, el comportamiento de los carbones preparados en la adsorción de hidrógeno bajo diferentes condiciones.

3. Antecedentes generales

3.1 Problemática ambiental global

El cambio climático, con respecto a la influencia en los sistemas climáticos, representa el mayor desafío humano que la humanidad enfrenta en la actualidad [1]. Un consenso científico sólido respalda este fenómeno como un hecho ineludible, impulsado por la actividad humana, especialmente debido a las significativas emisiones de gases de efecto invernadero (GEI). Estos gases, como el vapor de agua (H₂O), dióxido de carbono (CO₂), óxido nitroso (N₂), metano (CH₄) y el ozono, absorben la radiación infrarroja emitida por la superficie terrestre y actúan como una manta térmica, lo que conlleva un aumento de la temperatura global [9],[10].

El CO₂ ha sido el GEI que más ha contribuido al calentamiento global, y sus emisiones han ido en aumento a lo cargo de los años. Según el informe del Global Carbon Project en 2022, las emisiones de dióxido de carbono alcanzaron los 40.600 millones de toneladas (GtCO₂), una cifra significativamente superior a lo requerido para cumplir con el objetivo establecido en el Acuerdo de París, el cual busca limitar el calentamiento global a niveles por debajo de 2°C, preferiblemente 1,5°C [1].

Figura 1: Evolución de las emisiones de gases de efecto invernadero en el mundo [1]

A nivel mundial, se han establecido alianzas entre países con un único propósito: frenar el cambio climático. Estas coaliciones se han comprometido a proponer diversas estrategias encaminadas a reducir la emisión de gases de efecto invernadero (GEI) en todo el mundo. Entre las medidas propuestas, se destacan el empleo de energías renovables, la captura y utilización del dióxido de carbono, la implementación de economías circulares y la descarbonización de la matriz energética. En particular, esta última estrategia implica eliminar el uso de combustibles fósiles para la generación de energía, reemplazándolos por fuentes renovables libres de carbono [11].

Nuestro país, al igual que muchos otros, se ha comprometido con el proceso de descarbonización de la matriz energética con el objetivo de alcanzar la carbono-neutralidad en 2050. Como parte de este compromiso, se impulsará la incorporación de nuevas fuentes de energía renovable y vectores energéticos, como el hidrógeno verde, en la matriz energética. La estrategia nacional de hidrógeno verde fomentará el desarrollo de este vector y tiene como objetivo convertir al país en un exportador mundial para el año 2040 [12].

3.2 Hidrógeno como vector energético

El actual modelo energético, centrado en el uso de combustibles fósiles, enfrenta desafíos insostenibles. Esto ha llevado a reconocer la imperiosa necesidad de explorar nuevas alternativas energéticas. Entre las diversas opciones, el hidrógeno ha surgido como una propuesta prominente, abriendo la posibilidad de una "economía del hidrógeno" en el futuro. Sin embargo, para que la economía del hidrógeno se materialice como una realidad viable, es necesario que el hidrógeno, pueda ser producido a partir de recursos locales, de forma económicamente viable y respetuosa con el medioambiente (hidrógeno verde) [13].

El hidrógeno, el elemento más abundante en el universo, no se encuentra libre en la tierra, por lo que no es un recurso natural disponible directamente. En su lugar, debe ser producido, razón por la cual no puede ser considerado como fuente de energía primaria, designándolo como portador o vector energético. La producción de hidrógeno puede llevarse a cabo a partir de diversos recursos, como agua, recursos fósiles, biomasa, microorganismos, entre otros. Esta producción se logra mediante diferentes procesos de transformación, tales como electrólisis, gasificación, reformado, fotoelectrólisis, fotobiólisis, y otros métodos [12].

3.2.1 Hidrógeno verde

Se denomina hidrógeno verde aquel que se obtiene a partir de agua y fuentes de energía renovables y/o no convencionales. Su producción implica el uso de un proceso llamado electrólisis, mediante el cual las moléculas de agua (H₂O) se descomponen en oxígeno (O₂) e hidrógeno (H₂) mediante una corriente eléctrica. Este enfoque representa una alternativa mucho más respetuosa con el medio ambiente en comparación con el proceso de reformado de metano con vapor, debido a que no emite gases de efecto invernadero en su producción.

Figura 2: Diferentes áreas en la que está involucrado el hidrógeno [14]

El hidrógeno verde (H₂V) y sus derivados presentarán enormes oportunidades para la futura generación de energía y desempeñarán un papel vital en esa transición, especialmente en el caso de Chile, donde el H₂V será un gran aliado para descarbonizar ciertos sectores como el minero, industrial, agrícola y transporte [14].

3.2.2 Almacenamiento del hidrógeno

El hidrógeno, un gas con baja densidad energética por unidad de volumen (0,089 kg/m₃), plantea la necesidad de investigar métodos avanzados para su almacenamiento y aumento de densidad energética. Los métodos de almacenamiento convencionales requieren presiones extremadamente altas que se traducen en la necesidad de tanques de almacenamiento pesados por cuestiones de seguridad, y un consumo de energía elevado para la compresión hasta presiones de hasta 350–700 bar [15]. Estos problemas representan desafíos significativos y subrayan la urgencia de desarrollar materiales capaces de almacenar cantidades considerables de hidrógeno bajo condiciones más moderadas, lo que se convierte en un factor esencial para promover el desarrollo de una economía fundamental en este recurso.

En lo que respecta a la clasificación y a las distintas categorías de almacenamiento, la figura 3 proporciona una representación esquemática. Estas pueden ser categorizadas en dos grupos principales: almacenamiento físico y almacenamiento basado en materiales [16].

Figura 3: Alternativas para el almacenamiento de hidrógeno [16]

Debido a las desventajas antes mencionadas de los almacenamientos convencionales, la comunidad científica ha despertado interés en el almacenamiento basado en materiales, específicamente el almacenamiento de hidrógeno basado en materiales porosos es considerado como una solución prometedora debido a la excelente reversibilidad, buena cinética y la

posibilidad de almacenar hidrógeno a presiones moderadas (<100 bar) en comparación a los tanques de hidrogeno [16].

Por otro lado, un aspecto crucial relacionado con el almacenamiento, que podría influir directamente tanto en el medio ambiente como en la sociedad, se encuentra en la aplicación de este concepto en el contexto de la movilidad liviana. En este sentido, es esencial que el hidrógeno sea contenido en un volumen reducido que no afecte el peso del vehículo. De acuerdo con esto, el Departamento de Energía de Estados Unidos (DOE) planteó diferentes metas para las tecnologías futuras sobre el almacenamiento de hidrógeno. Algunas de estas son sistemas que posean altas capacidades gravimétricas y volumétricas, que exhiban una cinética de adsorción rápida a temperatura ambiente, alta estabilidad y que sean rentables en términos económicos. Los materiales carbonosos surgen como candidatos destacados para satisfacer estos requisitos; no obstante, aún existe una brecha considerable con respecto al objetivo establecido. Por lo tanto, la investigación en torno a estos materiales presenta un campo amplio y prometedor [3].

3.2.2.1 Conceptos básicos

La determinación precisa de la cantidad de hidrógeno adsorbido en un material ha generado debate en la comunidad científica [17],[18]. Por consiguiente, es imperativo establecer las formas de cuantificación de las empleadas. Existen tres enfoques para cuantificar el hidrógeno adsorbido, que se ilustran en la figura 4.

La capacidad en exceso, también conocida como cantidad adsorbida en exceso o exceso de Gibbs, denota la cantidad adicional de hidrógeno presente debido a su adsorción en la superficie. En otras palabras, corresponde al exceso de hidrógeno que habría por muestra respecto de lo que habría habido si es que la densidad del gas libre fuera la misma hasta la superficie del sólido (representado por los círculos con la letra a con fondo blanco y el área A en la Figura 4) [17], es decir, no hubiese interacciones entre las moléculas del gas y el sólido. La adsorción en exceso incrementa con la presión hasta alcanzar un máximo, luego del cual disminuye a medida que la densidad del gas aumenta, lo cual implica que existen un óptimo para la presión de almacenamiento [18].

La adsorción absoluta corresponde la cantidad de hidrógeno presente en el radio de influencia del potencial atractivo de la superficie (capa límite), lo cual incluye la adsorción en exceso y parte del gas libre. El volumen formado entre la superficie y la capa límite se define como V_{ad} en la Figura 4, comprendido por las áreas A y B (incluye tanto los círculos con la letra a en negro como en blanco). Como la capa límite es un constructo hipotético, la adsorción absoluta no puede medirse experimentalmente, por lo que depende de algunas suposiciones respecto de la posición de la capa límite, ya sea un volumen o una densidad constante [18]. La diferencia entre la adsorción en exceso y absoluta sólo es relevante a presiones más altas. La cantidad total incluye las regiones A, B y C de la Figura 4, es decir, contempla adicionalmente a las moléculas de hidrógeno libre en los poros o en las vecindades de la superficie [17]. Esta última adquiere más relevancia al determinar capacidades reales, sin embargo, esta definición también es controversial, ya que requiere conocer la extensión de la región de gas libre y no existen acuerdos para su estimación.

Figura 4: Conceptos comunes para etiquetas el hidrógeno almacenado [17]

3.3 Carbón

3.3.1 Carbón mineral

Los carbones son rocas sedimentarias heterogéneas que contienen tanto componentes orgánicos (macerales) como inorgánicos (minerales). Estas rocas se formaron hace millones de años a partir de materia vegetal, resultado de la descomposición de vegetales terrestres que se acumularon en zonas pantanosas poco profundas. Estos restos vegetales se acumulan y quedan sumergidos en agua, privados del oxígeno del aire que los degradaría. Este entorno sin oxígeno del aire permite que comience una lenta transformación, propiciada por bacterias anaerobias (microorganismos que no requieren oxígeno). Con el transcurso del tiempo, el contenido de carbono en los restos vegetales aumenta gradualmente. La preservación del ambiente anaerobio es esencial para que el proceso de carbonización continúe [19].

Dentro de la complejidad del carbón, los elementos químicos que lo forman están distribuidos entre sus partes orgánicas e inorgánicas en una variedad de modos. Los elementos principales del carbón, carbono, hidrógeno, nitrógeno, oxígeno y azufre, con concentraciones de más de 1000 ppm, componen principalmente la materia orgánica del carbón. El silicio, aluminio, hierro, calcio, magnesio, manganeso, titanio, potasio, y sodio son los elementos la materia mineral del carbón, con un rango de concentraciones de 100 a 1000 ppm [20].

3.3.2 Carbón activado

Los carbones activados (CA) son sólidos desordenados que comparten una estructura similar a la del grafito. Se caracterizan por su porosidad y su capacidad de desarrollar áreas superficiales elevadas, lo cual permite que sean utilizados en los procesos relacionados a la adsorción y catálisis.

Al someter a los materiales precursores de CA a un proceso de activación (física o química), ocurre una eliminación de los materiales volátiles de estos, lo cual permite aumentar su capacidad de adsorción mediante la creación de poros adicionales en la estructura del material. En consecuencia, el carbón activado puede presentar elevadas superficies específicas, del orden de 500 m₂/g e incluso llegar a los 3000 m₂/g [21].

Variables como tipo de precursor empleado, pretratamiento, modo de activación, y las condiciones de carbonización, influyen significativamente en las características fisicoquímicas del material, específicamente en la estructura porosa y en la superficie de este. En cuanto al tamaño, la distribución de sus poros y la naturaleza química de su superficie, son variables que se pueden monitorear de acuerdo con las necesidades del proceso en el que esté involucrado el CA, lo que lo transforma en un adsorbente muy versátil, y, por ende, importante para la industria. [22].

3.3.2.1 Estructura y sus características

La estructura del carbón activado se considera como un descenso continuo en el grado de ordenamiento de los planos en el grafito. De este modo el carbón activado presenta una estructura tridimensional de átomos de carbonos en láminas planas de anillos hexagonales. Sin embargo, a diferencia del grafito, no existe un orden cristalográfico en la tercera dimensión, pudiendo darse el entrecruzamiento de las láminas y las capas se pueden reticular. Por otro lado, los defectos estructurales en las capas bidimensionales son mucho más comunes en el CA que en grafito, existiendo ciclos con anillos de 5 y 7 carbonos e incluso con una gran cantidad de anillos aromáticos. Esto da como resultado la formación de una estructura altamente desordenada, denominada estructura turbo estática, en la que el carbón activado tiene un área de superficie más grande accesible a las fases gaseosa y líquida que el propio grafito. Además, las imperfecciones en el carbón activado promueven la reactividad de los átomos de carbono situados en la periferia de los planos [23].

Figura 5: Estructura carbón activado [24]

Por otra parte, los carbones activados poseen una estructura química, ya que están constituidos por pequeñas cantidades de heteroátomos tales como hidrógeno, nitrógeno y oxígeno, lo que da paso a que sustancias polares sean débilmente retenidas en la superficie del carbón activado. Esto ocurre debido a que los átomos de carbono que están situados al margen de los planos presentan una actividad disponible ya que no están saturados de átomos de carbono y poseen electrones libres. Estos sitios se unen a los heteroátomos, permitiendo la formación de diferentes grupos funcionales, y afectando las propiedades adsorbentes del material.

La superficie del carbón activado tiene una naturaleza anfótera debido a la coexistencia de grupos superficiales ácidos y básicos. Que un carbón sea globalmente ácido o básico dependerá de la concentración de estos grupos y de la fuerza como ácido o base de estos [25].

Figura 6: Funcionalidades superficiales ácidas y básicas en un plano basal de carbono [26]

3.4 Activación

La activación del carbón es la formación de partículas cristalinas altamente porosas con una gran superficie de contacto en el interior del carbón de los gránulos o polvos del carbón. El carbón activado puede proceder de cualquier material carbonoso o cualquier carbón mineral no grafitico, sin embargo, cada materia prima otorga al producto propiedades y cualidades diferentes [27].

En cuanto al proceso de activación, existen dos tipos: activación física que consta de dos etapas y activación química.

Figura 7: Rutas de activación del carbón activado, rediseñado de [28]

3.4.1 Activación física

La activación física o también llamada térmica, involucra dos etapas: la carbonización del precursor a temperaturas entre 400 y 900 °C en atmósfera inerte y la gasificación controlada del carbonizado. La carbonización consiste en la transformación de la materia prima a carbón, donde la mayoría de los heteroátomos tales como H, O y N son liberados como especies volátiles dando lugar a un esqueleto carbonoso con un aumento en su aromaticidad.

En la activación por su parte, el material sólido se expone a una atmósfera oxidante (oxígeno, dióxido de carbono, vapor de agua) a temperaturas entre 800 y 1000°C, eliminando las especies volátiles y aumentando el volumen de poros. El proceso completo consta de dos etapas diferenciadas, una primera donde se desgasifica todo el material desorganizado, y una segunda en la que se abren los poros que inicialmente estaban cerrados o bloqueados [29].

3.4.2 Activación química

La activación química comienza con una etapa inicial en la que se impregna el agente activante. Por lo general, se utiliza una solución concentrada que se mezcla con el carbón, y deja que estos interactúen durante un tiempo específico a una temperatura inferior a los 100°C. Existen diversos agentes activantes, tales como: KOH, NaOH, ZnCl₂, H₃PO₄, MgCl₂, AlCl₃ y K₂CO₃ [30]. Estos provocan una deshidratación en la materia prima, lo que da lugar a la formación de estructuras de enlace cruzado que están directamente relacionadas con el desarrollo de porosidad [31].

Posteriormente, ocurre una etapa de carbonización donde el carbón se expone a una atmósfera entre 400-900 °C en ausencia de aire. El agente químico deshidrata la materia prima y se incrementa el grado de aromatización del carbón, creando la estructura porosa tridimensional [32]. Finalmente, el producto resultante se lava, con el propósito de dejar libre el material del agente químico utilizado en la impregnación.

3.4.2.1 Activación química con hidróxidos

La activación química con hidróxidos puede realizarse con diversos tipos de hidróxidos, tales como LiOH, CuOH, NaOH, KOH, entre otros [33]. El empleo de hidróxidos como agentes activantes presenta una característica distintiva: la capacidad de generar áreas superficiales amplias. Los resultados obtenidos al emplear NaOH y KOH como activadores han demostrado un gran potencial, logrando alcanzar áreas superficiales significativas, un notable volumen de microporos y, en consecuencia, una destacada capacidad de adsorción de hidrógeno [33], [34].

En relación con el mecanismo general de activación, inicialmente se produce la reducción del hidróxido a metal libre que penetra en la estructura, entre las capas compuestas por conjunto de anillos aromáticos fuertemente enlazados. Las capas se expanden por el metal intercalado, luego ocurre una eliminación de las capas intercaladas producto del aumento de temperatura, separándolas y creando microporosidad. El oxígeno que proviene del hidróxido tiene un efecto de activante físico y tanto K como Na pueden tener un efecto catalítico en la gasificación, de forma que se acelere la eliminación de grupos oxigenados superficiales [23].

En particular en este estudio se empleó NaOH como agente activante. Las principales reacciones que ocurren en el proceso descrito son:

$$6NaOH + 2C \rightarrow 2Na_2CO_3 + 2Na + 3H_2 \tag{1.1}$$

 $2Na_2O + C \to 4Na + CO_2 \tag{1.2}$

 $Na_2CO_3 + 2C \rightarrow 2Na + 3CO \tag{1.3}$

3.5 Caracterización del carbón activado

3.5.1 Porosidad

Los carbones activados se distinguen principalmente por su porosidad, lo cual quiere decir que tienen una cantidad de poros en su superficie o estructura interna. Estos materiales son únicos debido a que poseen múltiples cavidades, "agujeros" (huecos, espacios, sitios o poros) del mismo tamaño que las moléculas que se adsorben. Lo interesante y relevante de estos agujeros es que, a pesar de tener una densidad electrónica nula, exhiben intensas fuerzas de Van der Waals debido a la proximidad de los átomos de carbono. Estas fuerzas son las responsables de los procesos de adsorción en las superficies [35].

De acuerdo a la IUPAC [36] los poros se pueden clasificar como:

- Microporo: Menores a 2 nm
- Mesoporos: Entre 2 y 50 nm.
- Macroporos: Mayores a 50 nm (típicamente de 200 a 2000 nm)

Figura 8: Porosidad del carbón activado [37]

Estos límites hasta cierto punto son algo arbitrario, debido a que los mecanismos de llenado de poros dependen de la forma de los poros y se ven afectados por las propiedades del adsorbente y las interacciones adsorbente-adsorbato. Todo el volumen accesible presente en los microporos puede considerarse como el espacio de adsorción, y el proceso que ocurre entonces es el llenado de los microporos, en contraste con el recubrimiento superficial que ocurre en las paredes de los macroporos o mesoporos abiertos.

3.5.2 Isotermas de adsorción

Las isotermas de adsorción se refieren a la cantidad molar de un gas que se adsorbe en una superficie sólida a una temperatura constante, en función de la presión del gas. Cuando representamos gráficamente estas variaciones, obtenemos lo que se conoce como isoterma de adsorción, que brinda información acerca de cómo las moléculas interactúan con la superficie sólida.

En las recomendaciones de la IUPAC de 1985, las isotermas de fisisorción se agruparon en seis tipos [36]. No obstante, con el avance de la ciencia en los últimos años, se han ido identificando nuevos tipos de isotermas los cuales están relacionados con estructuras porosas particulares. De acuerdo con lo anterior la IUPAC actualmente reconoce los siguientes tipos de isotermas de adsorción para diferentes pares de adsorbente-adsorbato y sus bucles de histéresis asociados [38]:

Figura 9: Tipos de isotermas de adsorción según clasificación IUPAC [38]

- Tipo 1: Están dadas por sólidos microporosos que tienen superficies externas relativamente pequeñas. Las de tipo I (a) están dadas por materiales microporosos que tienen principalmente microporos estrechos < ~1 nm mientras que las de tipo I(b) se encuentran con materiales que tienen distribuciones de tamaño de poros en un rango más amplio, incluyendo microporos más anchos, y posiblemente, mesoporos estrechos Se caracterizan principalmente por la adsorción en monocapa < ~ 2,5 nm.
- Tipo II: Es característica de proceso de adsorción en sólidos no porosos o macroporosos. Representa la adsorción sin restricción monocapa-multicapa hasta altas presiones. El característico punto B representa el momento en el que se completa la monocapa y empieza el llenado en multicapa.
- Tipo III: Es característica de procesos de adsorción en sólidos no porosos en la interacción adsorbente-adsorbato débil, por lo que no se forma el distintivo punto B de las isotermas tipo II. El estudio de estos procesos es difícil, debido a que no existe prácticamente interacción Solido-Gas.
- Tipo IV: Se caracteriza por la presencia de ciclos de histéresis. Su parte inicial es semejante a las de tipo II, producto de la adsorción en las paredes de los mesoporos, haciendo semejanza a microporo, pero a presiones medias comienza la adsorción en multicapas. En las de tipo IV(a), la condensación capilar se acompaña de histéresis. Esto ocurre cuando el ancho de poro excede un cierto ancho crítico, que depende del sistema de adsorción y la temperatura generalmente cuando el ancho del poro > 4 nm. Por su parte en las isotermas de tipo IV(b)se observa que el adsorbente tiene un mesoporoso cilíndrico y cónico con un ancho menor, que es completamente reversible cerrado en el extremo cónico < ~4 nm.
- Tipo V: A presiones bajas se comporta como isoterma de tipo II dada la débil interacción entre adsorbato-adsorbente. Es una isoterma típica de la adsorción de agua en sólidos micro y mesoporos de carácter hidrófobo.
- Tipo VI: Es característico de la adsorción en multicapas de gases nobles sobre las superficies uniformes. Cada una de las capas adsorbe dentro de un cierto rango de presiones correspondiendo cada escalón al llenado de una capa, hasta un total de dos o tres capas. Son poco comunes debido a la heterogeneidad de los poros.

3.5.3 Volumen de microporos

Ecuación de Dubinin-Radushkevich

Fundamentado en la teoría potencial de Ponlayi, sobre todo en el hecho de que los microporos se caracterizan por el llenado de estos con adsorbato como líquido en un proceso de adsorción física. Dubinin y Radushkevich plantean que los espacios de adsorción podrían expresarse como una función gaussiana de los potenciales de adsorción correspondientes:

$$V = V_0 exp\left[-\left(\frac{A}{\beta E_0}\right)^2\right]$$
(2.1)

Donde

 V_0 : volumen de microporos

 E_0 : energía de adsorción característica

A:energía de adsorción

$$A = \epsilon = RT ln\left(\frac{P_0}{P}\right) \tag{2.2}$$

 β :coeficiente de afinidad, característico para cada adsorbato

$$\beta = \frac{\emptyset}{\emptyset_{ref}} \tag{2.3}$$

Finalmente, aplicando la función logarítmica y realizando remplazos y ajustes la ecuación puede ser linealizada resultando:

$$\log V = \log V_0 - 2,303 \left(\frac{RT}{\beta E_0}\right)^2 \log \left(\frac{P_0}{P}\right)$$
(2.4)

Al representar log V frente a log²(P₀/P) se obtendrá una relación lineal cuyo punto de corte con el eje de las ordenadas será el valor log Vo y por tanto se obtiene el volumen de microporos. Este parámetro ha sido considerado por Dubinin como el más importante y el que mejor caracteriza un sólido microporoso. El rango de aplicabilidad de la ecuación de Dubinin-Raduskevich oscila entre los valores de presiones relativas de 10⁻⁵-0,4, este rango se establece básicamente porque a presiones inferiores de 10⁻⁵ se contempla el llenado de microporos más pequeños o ultra microporos y a presiones por encima de 0,4 se inicia el llenado de los mesoporos, procesos que no se contemplan en la teoría del modelo [39].

El V_{total} se obtiene de la isoterma de adsorción de N₂ cuando p/p₀ se acerca al valor de 1. Considerando este volumen de adsorción como el volumen total de poros, por diferencia se obtiene el V_{meso} según:

$$V_{total} = V_{micro} + V_{meso} \tag{2.5}$$

3.5.4 Área superficial específica

Existen diversos métodos para calcular el área superficial de materiales, sin embargo, el más común es el propuesto por Brunauer, Emmett y Teller, el cual es utilizado en sistemas de adsorción en multicapas y está basado en la consideración de las fuerzas de atracción de Van der Waals como únicas responsables del proceso de adsorción. Debido a esto, este método sólo es aplicable para fenómenos de adsorción física [40].

La ecuación B.E.T se justifica en las siguientes suposiciones:

- I. Todos los sitios superficiales de adsorción son equivalentes
- II. La capacidad de adsorción en un sitio ocurre independientemente de la adsorción en sitios vecinos.
- III. Sobre cada centro pueden adsorberse varias capas de moléculas, siendo el calor de adsorción para todas ellas equivalentes excepto para la primera

La expresión linealizada del Área superficial propuesta por B.E.T se expresa como:

$$\frac{P}{V(P_0 - P)} = \frac{1}{V_m C} + \frac{C - 1}{V_m C} \frac{P}{P_0}$$
(3.1)

V: volumen adsorbido

P: presión del adsorbato

P₀: presión de saturación

 V_m : volumen de la monocapa

C: constante la cual está dado por la siguiente ecuación:

$$C = Aexp \frac{(E_1 - E_l)}{RT}$$
(3.2)

A: constante

*E*₁: calor medio de adsorción en la primera capa

 E_l : calor de licuefacción del adsorbato

Sin embargo, no es necesario calcular el valor de C ya que al representar gráficamente P/V (P_0 -P) frente a P/P₀ se obtendrá una línea recta, a partir de la cual (pendiente y ordenada en el origen) se deducirán los correspondientes valores de V_m y C, además cabe destacar que comúnmente el intervalo de presiones relativas en el que se puede aplicar la ecuación BET va desde 0,05 hasta 0,35 [39].

Este método es aplicable a las isotermas tipo II y tipo IV (Figura 9) sin inconvenientes, pero en el caso de la presencia de microporos se requiere suma precaución (isotermas tipo I y combinaciones tipo I y III o tipo I y IV) [41].

3.5.7.1 Aplicación del método BET en materiales microporosos

Con adsorbentes microporosos, el rango lineal de la gráfica BET puede ser muy difícil de localizar. Un procedimiento útil permite superar esta dificultad y evitar cualquier subjetividad en la evaluación de la capacidad monocapa de apuesta. Este procedimiento se conoce como criterios de Rouquerol y basa en los siguiente [38]:

- (a) La cantidad de C debe ser positiva (una intersección negativa en la ordenada de la gráfica BET es la primera indicación de que uno está fuera del rango apropiado)
- (b) La aplicación de la ecuación BET debe restringirse al rango donde el término n(1-P/P₀) aumenta continuamente con P/P₀
- (c) El valor de P/P₀ correspondiente n_m debe estar dentro del rango BET seleccionado

3.5.5 Diámetro medio de poros

Para el cálculo del diámetro medio de poros Wheeler desarrolló una ecuación que utiliza los valores de área superficial y volumen total de poros considerando una morfología de poros cilíndricos, no interconectados de iguales dimensiones de largo y diámetro. El d_m se puede calcular como:

$$m \cdot S = (\pi \cdot d_m \cdot L) \cdot n_p \tag{4.1}$$

$$m \cdot V = \left(\pi \cdot \frac{d_m^2}{4} \cdot L\right) \cdot n_p \tag{4.2}$$

m: Masa de la partícula

n_p: Número de poros por partícula

S: Área superficial por unidad másica de solido

V: Volumen de poro por unidad másica de solido

Haciendo el cociente entre las ecuaciones (4.1) y (4.2) y suponiendo que el área superficial es equivalente al área BET y V_t es igual a P/P₀=1 [42], entonces la ecuación del diámetro corresponde a:

$$d_m = \frac{4V_t}{S_{BET}} \tag{4.3}$$

3.5.6 Distribución del tamaño de poros

La distribución del tamaño de poros (DTP) es una de las propiedades más importantes en la caracterización y diseño de materiales carbonosos. En este trabajo se optó por utilizar un modelo bidimensional basado en la teoría del funcional de densidad no local (2D – NLDFT)

En este modelo, un conjunto de dos isotermas de adsorción se instala simultáneamente con su kernels correspondientes para producir un solo DTP como solución común para todos los datos

experimentales utilizados en el análisis. Matemáticamente, la DTP se obtiene minimizando la siguiente expresión [43]:

$$min\sum_{m}^{2}\sum_{i}^{N_{m}} \left[V_{m}(p_{i} - \int_{\alpha}^{\beta} K_{m}(p_{i}, w)f(w)dw \right]^{2} + \lambda \int_{\alpha}^{\beta} [f''(w)]^{2}dw$$
(5.1)

Donde pi es la presión del i-ésimo punto de adsorción, V_m y K_m son la adsorción experimental isoterma y el kernel para el adsorbato m-ésimo, respectivamente. λ es el parámetro de regularización (suavizado) y f(w) es el diferencial de DTP que debe calcularse. Un método numérico para obtener una solución estable y físicamente factible para f(w) se implementa en el programa SAIEUS, el cual se utiliza para el análisis de datos en este trabajo.

3.6 Almacenamiento de hidrógeno en carbón activado

Como ya se ha mencionado, los carbones activados son candidatos sobresalientes para el almacenamiento de hidrógeno debido a sus destacadas propiedades, como su alta área superficial BET y volumen de microporos. Gracias a la considerable porosidad que pueden alcanzar, estos carbones activados han sido ampliamente considerados y evaluados para su implementación en sistemas de almacenamiento de hidrógeno. Algunos autores han sugerido que existe una relación directa entre el área BET y la adsorción de microporo [6], otros plantean que es más relevante la relación del volumen total de microporos y la adsorción de hidrógeno [44].

Es en este punto donde la energía de adsorción se vuelve un parámetro fundamental en la caracterización del almacenamiento de hidrógeno. Si esta energía es baja, significa que la interacción entre el hidrógeno y el material es débil, lo que resulta en una desorción espontánea del hidrógeno a bajas temperaturas. Por lo tanto, el hidrógeno solo podrá almacenarse a temperatura ambiente si se utiliza una alta presión. En contraste, si la energía de adsorción es alta, se logrará almacenar una gran cantidad de hidrógeno, pero su liberación será más difícil, lo cual es una limitación en la cantidad de combustible disponible. De este modo, de acuerdo con la figura 10, la energía ideal se encuentra en el rango de los 10-50 [kJ/mol], porque esos valores son aceptables para el almacenamiento a temperatura ambiente [45].

Figura 10: Energía de adsorción de distintos materiales utilizados para el almacenamiento de hidrógeno [45]

Diversas investigaciones [44][45][46] han sugerido que los materiales de carbón en estado puro muestran un gran potencial como candidatos prometedores para el almacenamiento de hidrógeno, principalmente debido a sus áreas superficiales elevadas. No obstante, las capacidades de adsorción de hidrógeno informadas para estos carbones son en promedio inferiores al 1 %p/p bajo condiciones ambientales [3], lo cual está muy por debajo de los estándares establecidos por la DOE para el año 2025 que estipulan un 5,5 % en peso de capacidad gravimétrica y 40 g/L de capacidad volumétrica a temperaturas comprendidas entre 40 y 60 °C y a presión inferior a 100 bar [47]. Ante esta situación, surge la necesidad de explorar nuevas opciones que mejoren la capacidad de adsorción de los carbones. Algunos enfoques proponen modificar la estructura del carbón mediante la incorporación de heteroátomos (N, HNO₃, NH₃, etc.) [48] mientras que otros sugieren agregar metales (Cu, Ni, Pd, Pt, etc.) [5] [6],[49],[50] a la matriz carbonosa, incluso algunos sugieren la combinación de ambos [51]. Lo cierto es que estas modificaciones tienen como objetivo mejorar el rendimiento del carbono activado en el almacenamiento de H₂.

3.6.1 Antecedentes de la adicción de metales al carbón activado

Como se reveló previamente, todavía se está lejos de alcanzar los objetivos establecidos por el Departamento de Energía de EE. UU. (DOE). A lo largo del tiempo, varios científicos han propuesto diferentes métodos y materiales para lograr estos objetivos [3]. En la última década, el uso de compuestos organometálicos ha llamado la atención; sin embargo, su síntesis y estabilidad presentan limitaciones que restringen su aplicabilidad. Lo mismo ocurre con varias nanoestructuras de carbono, como los nanotubos de carbono y los materiales basados en grafeno, donde su aplicación se ve limitada por consideraciones económicas [52]. Desde esta perspectiva, los carbones activados (CA) surgen como candidatos ideales para abordar esta problemática.

Se ha constatado que los materiales porosos, como el carbón activado, dotados de una elevada área de superficie específica (SSA) y una porosidad óptimamente ajustada, tienen la facultad de maximizar la retención de gases. En el contexto de las diversas estrategias exploradas para ajustar los parámetros texturales de los carbones activados, destaca un enfoque particularmente exitoso: la impregnación de metales, la cual posibilita la modulación del ancho de los poros y el volumen de los microporos, mejorando la capacidad de almacenamiento de hidrógeno [6][49],[50]. Sin embargo, tambien hay otros factores a considerar, como lo es la temperatura. A temperaturas criogénicas, las moléculas de hidrógeno tienen muy poca energía cinética, lo que las hace mucho más propensas a ser adsorbidas por la superficie del carbón activado. Dado que se mueven muy lentamente, tienen más tiempo para interactuar y unirse a los sitios de adsorción en la superficie del material, además es menos probable que el hidrógeno ya adsorbido se desorba fácilmente del carbón activado, lo cual resulta en una mayor retención de hidrógeno.

La deposición de Pt o Pd ya demostró su eficacia para aumentar la adsorción de hidrógeno, sin embargo, estos metales son caros. Por lo que podría ser interesante el uso de metales mucho más comunes y baratos como el Ni y el Cu [53]. La mejora de la capacidad de hidrógeno se lograría a través del efecto Spillover, donde las moléculas de hidrógeno se disocian en los metales y los átomos de hidrógeno se difunden para ser absorbidos en la superficie de los nanocarbonos. Es probable que el papel de los metales sea disociar las moléculas de hidrógeno y el de los nanocarbonos sea aceptar átomos de hidrógeno, y que los metales y los nanocarbonos cooperen para almacenar más hidrógeno que la suma de su capacidad independiente. No obstante, este efecto conocido como Spillover es relevante cuando se trata de temperaturas altas (273 K), ya que a temperaturas bajas su efecto es casi insignificante (77 K), por lo que la adicción de metales a esta temperatura pareciera no tener un efecto positivo en la capacidad de adsorción de hidrógeno [6],[54].

También se ha observado que la dispersión del metal, que representa la proporción entre el área de superficie activa del metal y el número total de átomos de metal, juega un papel crucial en diversos procesos. En términos generales, esta dispersión debe maximizarse para lograr resultados óptimos. Sin embargo, al aumentar significativamente la cantidad de metal, surge la dificultad de mantener una dispersión elevada debido a la propensión del metal a aglomerarse [6],[54].

Autor	Método	Muestra	H ₂	Т	Presión	Conclusiones
(año)			(wt%)	(K)	(bar)	
Rossetti		СА	3,17-6,0	77	4,9-19,6	A 77 K no se ha
(2015)	Improgración	CA-Cu-0,5	3,75-6,15	77	4,9-19,6	evidenciado una
		CA-Ni-0,5	0,84-6,03	77	4,9-19,6	ganancia
		CA-Cu-2,0	3,48-5,32	77	4,9-19,6	significativa en la
	Impregnación	CA-Ni-2,0	0,67-5,24	77	4,9-19,6	capacidad de
						almacenamiento de
						la CA al dopar con
						metales.
Aly-Abaoud		CA	2,5	77	7	El almacenamiento
(2021))	CA-Ni	2,4	77	7	de H ₂ a 77 K no
		CA-Pd	2,5	77	7	aumentó por la
		CA-Rh	2,3	77	7	decoración con
	Improgración asistida					metales de
	nor ultraconido					transición, efecto
	por unrasonido					insignificante del
						mecanismo de
						spillover a
						temperaturas tan
						bajas
Conte	Impregnación	CA	3,42	77	80	Un contenido de Cu
(2022)		CA-Cu-0,2	3,32	77	80	superior al 1 %
		CA-Cu-0,5	3,9	7	80	deteriora el
		CA-Cu-1,0	3,91	77	80	rendimiento de
		CA-Cu-2,0	3,26	77	80	adsorción de H ₂ ,

Tabla 1: Información sobre diferentes estudios del dopaje de metal sobre carbón activado
		CA-Cu-5,0	3,45	77	80	debido al tamaño de
						partícula.
Kaneko	deposición química de	CA-FeNiCr	0,59-1,16	77	10	La adición de los
(2015)	vapor catalítico con		(antes de			metales
	alcohol		moler,			proporciono un
			después de			efecto positivo en el
			moler)			almacenamiento de
						hidrógeno
Zhao	Impregnación húmeda	CA-Pd0.0	4,45	77	70	El dopaje con Pd
(2012)	incipiente	CA-Pd-1,1	4,02	77	80	disminuye las
		CA-Pd-3,5	3,42	77	70	capacidades de
		CA-Pd-8,7	2,9	77	70	almacenamiento de
						hidrógeno al
						disminuir el
						volumen específico
						de microporos
						disponible para la
						fisisorción.

Nota: extraídos de [6],[49],[50],[53],[54]

3.6.2 Fundamentos teóricos para la evaluación de datos adsorción de hidrogeno

Tal como se detalló en la sección 3.2.3.1, los datos experimentales de almacenamiento ofrecen valores de exceso de adsorción de hidrógeno, denotados como n_{exc} [mol/kg], especialmente cuando se emplean métodos volumétricos para las mediciones. Este valor se define como la diferencia entre la cantidad de hidrógeno adsorbido en la superficie del carbono activado (CA) a una temperatura y presión específicas, y la cantidad que existiría en el mismo volumen, bajo la misma temperatura y presión, si no hubiera fuerzas de adsorción presentes [55].

$$n_{exc} = n_{abs} - \rho_g V_a \tag{6.1}$$

 n_{abs} (mol/kg): Cantidad absoluta de hidrogeno adsorbido

 $ho_g~(\mathrm{kg}/\mathrm{m}^{3)}$: densidad de fase aparente de hidrogeno

V_a (m³/kg): Volumen de la fase adsorbida

Varios autores consideran que Va se mantiene constante, lo que sugiere que el hidrógeno adsorbido ocupa un volumen definido cerca de la superficie del carbono, donde existe el campo de adsorción y su densidad aumenta gradualmente hasta llegar a un valor asintótico. No es posible medir experimentalmente el valor exacto de Va. Según la Ec. (6.1), las isotermas de adsorción en exceso muestran un máximo. De hecho, la densidad pg aumenta significativamente a altas presiones, mientras que la cantidad adsorbida n_{abs} ya no aumenta más una vez que alcanza su valor máximo a una presión específica.

Un aspecto adicional de gran importancia a tener en cuenta es el modelo Dubinin-Astakhov modificado (MDA). El modelo MDA fue propuesto por Richard et al. [56] y es apropiado para modelar isotermas de adsorción de gases en estado supercrítico, lo que implica que también se puede aplicar a la adsorción de hidrógeno a 77 K. A continuación, se presenta la ecuación MDA para el exceso de adsorción:

$$n_{ex} = n_{max} exp\left[-\left[\frac{RT}{\varepsilon}\right]^m ln^m\left(\frac{P_0}{P}\right)\right] - \rho_g V_a$$
(6.2)

El modelo 5 parámetros: n_{max} [mol kg⁻¹] es la cantidad de hidrógeno adsorbido correspondiente a la saturación del volumen poroso total disponible, α [J mol-1] es un factor de "entalpía", β [mol J⁻¹ K⁻¹] es un factor de "entropía" y P₀ [MPa] es la presión de pseudosaturación, según lo definido por Dubinin, y, por último, Va que ya fue definida anteriormente y se considera constante.

4. Trabajo experimental

4.1 Materiales y equipos

Esta sección menciona los materiales y equipos utilizados dando énfasis en aquellos de mayor relevancia.

4.1.1 Sustancias químicas

A continuación, se detallan las principales sustancias químicas empleadas para el desarrollo experimental

Sustancia	Marca	Pureza	Utilidad
Hidróxido de sodio	Winkler y	98.0.%	Agente oxidante para activar
	Zawadsky	90,0 % W	el carbón
Carbón minoral	VAAD	No osposifica	Materia prima con la que se
Carbon mineral	KAAI	No específica	elabora carbón activado
Ácido clorhídrico	Sigma-Aldrich	Solución	l avado de sólido resultante de
neluo elorinarieo	FMSIIDE	preparada de 5	la activación
	EMOURE	Μ	
Nitrato de cobre (II)	Morel	00 5 06	Precursor del metal Cu
trihidrato puro	MEICK	99,5 70	utilizado para la impregnación
Nitrato de níquel	Morel	00.04	Precursor del metal Ni
hexahidratado (II)	MEICK	99 %0	utilizado para la impregnación
Nitrágono	Airliquido	00 0 0/	Atmósfera inerte para proceso
Muogeno	All liquide	99,9 70	de activación
			Impregnación del carbón
Agua dostilada		Sin osposificar	activado al NaOH
Agua destilada	-	Sill especificat	Lavado de solido resultante de
			la activación

Tabla 2: Sustancias químicas utilizadas, pureza y utilidad

4.1.2 Equipos

A lo largo del trabajo experimental se utilizaron múltiples equipos como: balanza, rotavapor, estufa a 105 °C, horno, reactor lecho fijo, etc. A continuación, se le dará énfasis a los que presentan una mayor complejidad

4.1.2.1 Horno Tubular

Para las activaciones de los carbones se utilizó un horno tubular de pirólisis, marca LINDBERG modelo HTF55342, el cual consta de: Indicador de temperatura al interior del tubo de proceso, termocupla exterior para control de temperatura, controlador de temperatura del horno, tubo de proceso, tapón de salida, matraz de burbujeo con agua/solvente orgánico y tubo evacuación de gases fuera del laboratorio.

4.1.2.2 Rotavapor

Para las activaciones de igual forma se utilizó un rotavapor marca Heidolph modelo LABOROTA 4002, el cual consta de un baño de agua, matraz de evaporación, matraz de recepción, bomba de vacío y una pantalla digital, la cual permite tener control de las variables del proceso.

4.2 Metodología

4.2.1 Selección y análisis del carbón activado

Se empleó un carbón procedente de la planta de lavado KAAP ubicada en Curanilahue, Chile, como precursor del carbón activado en el marco del proyecto Fondef ID20I10008. La muestra inicial tuvo un peso aproximado de 50 kg. A partir de esta, se seleccionó una submuestra representativa de 5 kg de masa, la cual fue sometida a un proceso de secado a 105° C. Posteriormente se procedió a moler y tamizar esta submuestra en un rango de tamaño de partícula de $100-250 \,\mu$ m.

Como primera intervención se sometió la muestra de KAAP a estudios preliminares que contribuyeran al análisis de los componentes de la materia prima a utilizar.

4.2.1.1Análisis inmediato

El porcentaje de humedad, cenizas y materia volátil se determinó según norma ASTM D3173, ASTM D3174 y ASTM D3175, respectivamente.

4.2.1.2 Análisis elemental

El análisis elemental se realizó según norma ASTM D5373 y D4239, en un analizador LECO TruSpec ® CHN y TruSpec ® S. Al cual se introduce una pequeña muestra previamente pesada y se deja caer automáticamente en el horno de combustión a alta temperatura, permitiendo que la muestra se queme. La combustión convierte el carbono en CO₂, hidrógeno en H₂O, nitrógeno en N₂ y azufre en SO₂. Los gases de combustión son arrastrados hacia una serie de detectores infrarrojos para la detección de carbono, hidrógeno y azufre, mientras que el nitrógeno se mide usando un sistema de detección de conductividad térmica

4.2.2 Activación del carbón

En este estudio se consideró optima la preparación del carbón activado por medio de la activación química utilizando NaOH como agente oxidante. Las condiciones fueron estudiadas con anterioridad en el marco del proyecto Fondef ID20|10008 (Anexo tabla 14). A continuación, en la Tabla 3 se presentan las condiciones seleccionadas

Agente	Método de	Razón	Temperatura	de	Tiempo	de	Flujo	de
activante	contacto	AA:CP	activación		activación		nitrógeno	D
			[°C]		[h]		[ml/min]	
NaOH	Impregnación	4:1	650		2		400	

Tabla 3: Condiciones óptimas para la activación del carbón activado

Fuente: Elaboración Propia

El proceso de activación química del carbón consta de tres etapas bien diferenciadas: impregnación, activación y mezclado, cada una de las cuales se describe con detalle en la siguiente sección

4.2.2.1 Impregnación

Se pesaron 2,5 g de carbón KAAP pretratado y 10,2 g de hidróxido de sodio (pureza 98%) obteniendo una relación p/p igual a 4. En primera instancia la sal de NaOH fue vertida en un matraz aforado de 100 ml donde se diluyó con agua para obtener razón p/p de 1:10. Después de homogenizar la solución por medio de la agitación manual, se procedió a mezclar el carbón y la sal disuelta en un matraz de fondo redondo, que luego se acopló al rotavapor.

Se programó el rotavapor a temperatura de 60 °C por 120 min con nivel 4 del equipo en cuanto a rotación, con el objetivo de que NAOH se impregnara de manera óptima al carbono. En una segunda etapa se configuró a una temperatura de 80 °C y se inició una evaporación al vacío por unos 80-90 min con la precaución de no evaporar la totalidad del agua ya que, de ser así, se entorpece el proceso de extracción de la mezcla final. Una vez finalizado el proceso se extrajo la mezcla y se depositó en un crisol de porcelana, el cual se dejó en la estufa 105 °C por 24h para su secado total.

4.2.2.2 Activación

Al día siguiente, la muestra fue retirada de la estufa y con ayuda de una espátula, se procedió a raspar el carbón del crisol procurando recuperar el hidróxido de sodio adherido en las paredes de este. La mezcla resultante fue depositada en una navecilla. Es importante mencionar que este proceso debe llevarse a cabo lo más pronto posible una vez retirada la muestra de la estufa ya que con el tiempo la muestra se solidifica y se dificulta la acción de retirar el carbón del crisol.

Una vez puesta la mezcla en la navecilla, se introdujo en el horno tubular, donde se programó una temperatura de activación de 650 °C durante 120 min, con una rampa de calentamiento de 5 °C/min. Durante el experimento se mantuvo un flujo continuo de nitrógeno de 400 ml/min, con la intención de arrastrar los compuestos volátiles y crear una atmósfera inerte. Transcurrido el tiempo programado, se dejó enfriar la muestra durante 24 h en atmósfera inerte.

4.2.2.3 Lavado

Después de retirar la navecilla del horno, se procedió a extraer la muestra con una espátula, procurando nuevamente recuperar el hidróxido de sodio adherido a las paredes de la navecilla. El material obtenido se transfirió a un vaso precipitado y se montó en la estación de filtración al vacío, utilizando un filtro N° 5898 de la marca SELECTA. Primero se realizó un lavado de carácter ácido utilizando 60 ml de ácido clorhídrico. Luego se procedió a realizar un lavado entre 1-1,5 L de agua tibia, seguido por 200 ml de agua destilada. Finalmente se midió el pH de la muestra para asegurarse de que estuviera entre 5-6, impidiendo así posibles complicaciones en los futuros experimentos. El carbón activado lavado se vertió a un crisol de porcelana y se sometió a un proceso final de secado en la estufa a una temperatura de 105 °C durante 24 horas.

4.2.3 Adición de metales al carbón activado

Esta etapa consiste en la adición de los metales seleccionados al carbón activado previamente fabricado, para aquello se utilizó Cu (NO₃)₂·3H₂O en el caso del cobre y Ni (NO₃)₂·6H₂O en el del níquel.

Previo a la impregnación húmeda incipiente, se prepararon soluciones madres con las sales mencionadas, para aquello se utilizó 10 ml de agua destilada y la cantidad de sal metálica necesaria para lograr una solución con la concentración más grande a estudiar. De esta forma se obtuvieron dos soluciones madres con concentración 5 g metal/ g CA cada una con su concentración molar correspondiente.

4.2.4 Impregnación húmeda incipiente

Se situaron 0,5 g de CA en una placa Petri, obteniendo así 10 muestras de carbón activado sin dopar. Con una micropipeta de 100-1000 ul se dispensó la cantidad necesaria de agua y de solución madre para obtener muestras con nivel de carga de 0,5 1,0 1,5 2,5 y 5,0 % p/p de cada metal. Luego se distribuyó la nueva solución por todo el CA hasta lograr una distribución uniforme. Se dejó reposar al aire libre por unos días, luego en la estufa de 40 °C y finalmente en la estufa a 105 °C.

Figura 11: Instrumentos utilizados en la impregnación húmeda

4.2.5 Reducción

Cada una de las muestras pasó por un proceso final de reducción, el cual se llevó a cabo en el reactor de lecho fijo del laboratorio Carbocat de la Universidad de Concepción.

Se pesó 0,1 g de muestra y se colocó en un reactor, luego este se montó al equipo y se programó de acuerdo con el metal que tenía impregnada la muestra. En el caso del níquel se configuró de tal manera que su temperatura de reducción fuese de 550 °C durante 3 h con una rampa de calentamiento 5 °C/min y un flujo de H₂ de 5 ml/min. Una vez alcanzada temperatura ambiente, se hizo circular un flujo de N₂ por 40 min con la intención de recubrir el material y así evitar la contaminación con el ambiente, lo cual se conoce como pasivación. En el caso del Cobre se realizó un procedimiento similar con la diferencia que la temperatura de reducción fue de 400 °C.

4.2.6 Caracterización de los carbones activados

4.2.6.1 Adsorción de Nitrógeno

Se obtuvieron las isotermas de adsorción y desorción de nitrógeno a 77 K utilizando el equipo Micromeritics Géminis VII 2390t propiedad del Laboratorio Carbocat del Departamento de Ingeniería Química de la Universidad de Concepción.

Inicialmente todas las muestras se sometieron a un proceso de desgasificación durante 12 h a una temperatura de 120°C con el fin de eliminar posibles impurezas presentes en la superficie del carbón. Luego para realizar las mediciones, se agregaron 300 mg de muestra a un tubo de cuarzo de ¾′′ de diámetro. Además, el software del equipo se configuró para que las pruebas se llevaran a cabo en un rango de presiones relativas (P/P₀) de 0,001- 0,990 con intervalo de equilibrio de 15 s. Finalmente, los datos de adsorción de nitrógeno obtenidos fueron analizados mediante los métodos detallados en la sección 3.5, para obtener los resultados del área superficial, volumen de poro, y distribución de tamaños de poro.

Figura 12: Equipo Micromeretics Gemins VII 2390t

4.2.5.2 Distribución de tamaños de poros

La determinación de la distribución del tamaño de poros, descrita en la sección 3.5.6, se llevó a cabo utilizando el software SAEIUS (Solution of Adsoption Integral Equation Using Splines) desarrollado por la empresa "Micromeritics". Específicamente se empleó el método Carbon N₂, 2D-NLDFT Heterogeneous Surface. En la figura 13 se presenta la interfaz del programa descrito.

Para mejorar la precisión de los resultados y reducir el error, es necesario ajustar algunos parámetros. En particular el parámetro Lambda debe ser modificado de tal manera que el punto rojo en el gráfico de "Fitting error" se sitúe en el punto medio de la curva. De formal análoga, se realiza lo mismo para el gráfico de "L-curve". Esto permitirá obtener una distribución de tamaños de poros más precisa y confiable.

Figura 13: Software SAIEUS representando las distribuciones de tamaño de poro

4.2.5.3 Adsorción de hidrógeno

Para determinar la capacidad de adsorción de hidrógeno, se realizaron isotermas de adsorción a una temperatura de 77 K y una presión de 1 bar. Estas mediciones se llevaron a cabo utilizando el quipo Micromeritics modelo 3 Flex de la Pontificia Universidad Católica de Chile (PUC), se analizaron las muestras en un rango de presiones relativas desde 0,006 a 0,95 con un intervalo de equilibrio de 45 s. Previo a los ensayos de adsorción, las muestras fueron desgasificadas en condiciones análogas a los ensayos de adsorción/desorción de nitrógeno.

Una vez obtenida la isoterma de hidrógeno, se analiza el último punto de esta ya que representa la máxima capacidad de adsorción de hidrógeno de la muestra. En la figura 14 se muestra la versión gráfica de la isoterma de adsorción utilizando el programa 3 flex 4.02. En este gráfico el punto máximo indica la capacidad de sorción de H₂ de la muestra.

Figura 14: Isoterma de adsorción de hidrógeno presentada por el programa de computador 3Flex

4.2.5.4 Microscopia electrónica de transmisión (TEM)

Esta técnica posibilita la determinación de las características estructurales y morfológicas de los catalizadores, como el tamaño y la distribución de las partículas que componen la muestra. Las muestras fueron remitidas al Centro de Espectroscopia y Microscopia Electrónica CESMI de la Universidad de Concepción, en el cual utilizaron el equipo JEOL KEM-1200 EX II. Las imágenes obtenidas fueron posteriormente analizadas mediante el software Image J.

4.2.7 Tratamiento teórico de datos de adsorción de hidrógeno

Con el objetivo de aprovechar al máximo los datos experimentales sobre la adsorción de hidrógeno, se llevó a cabo un análisis teórico adicional. Este análisis consistió en la aplicación del modelo de Dubinin-Astakahov Modificado, tanto a altas presiones como a otras temperaturas (distintas de 77 K), con el fin de obtener un mayor entendimiento y valoración de la información obtenida.

4.2.7.1 Extrapolación a otras presiones

Se utilizó el modelo de adsorción propuesto por Dubinin-Astakhov modificado, descrito en la sección 3.6.2, para ajustar los datos experimentales de las diferentes muestras. Luego, este modelo fue empleado para realizar una extrapolación de la adsorción a altas presiones, alcanzando una presión máxima de 100 bar. Los parámetros n_{max} , P_0 , α , β , m y Va se determinaron mediante el ajuste no lineal del modelo MDA a los datos experimentales utilizando Microsoft Excel. Además, para hacer uso de este modelo, las densidades de fase gas (pg) para diferentes presiones se obtuvieron de la base de datos del NIST (Instituto Nacional de Estándares y Tecnología) [57].

4.2.7.2 Extrapolación a otras temperaturas

En el caso de la extrapolación a altas temperaturas, se utilizó la extrapolación a altas presiones de CA a 77 K y también fue indispensable obtener datos experimentales adicionales de hidrógeno a una temperatura diferente para poder aplicar adecuadamente el modelo MDA. Para ello, se emplearon los registros experimentales de Rossetti et al [6], los cuales fueron obtenidos a una temperatura de 273 K bajo diversas presiones.

Este enfoque se basa principalmente en la suposición de que la función de distribución del llenado de microporos mantiene su invarianza térmica, lo que implica que la energía libre de adsorción es independiente de la temperatura [56]. De esta forma se obtuvieron los cinco parámetros correspondientes y los datos de exceso de hidrógeno a diferentes temperaturas.

Cabe mencionar que para poder hacer posible este ejercicio teórico se consideró lo siguiente:

- Valores iniciales de los parámetros fueron extraídos de un trabajo por Richard et al [56]
- Para cada temperatura se consideró pg variable (se utilizaron los datos correspondientes del NIST)

• El hidrógeno liberado de la tesis de Rossetti [6] se consideró como hidrógeno desorbido, el cual en el mejor de los casos es igual al adsorbido

Por lo mismo los resultados no deben tomarse como un absoluto si no como una buena aproximación que permite observar qué ocurre al incrementar la temperatura y cómo es la resistencia del modelo los cambios de esta.

5. Resultados y Discusión

5.1 Análisis inmediato y elemental

Se llevó a cabo la caracterización del carbón precursor con el propósito de evaluar su idoneidad como materia prima. Los resultados de esta caracterización se presentan en la tabla 4, destacando especialmente el bajo contenido de impurezas(cenizas) y el alto contenido de carbono del material.

Análisis inmediato	[%]
Humedad	5,40
Cenizas	2,82
Material volátil	47,21
Carbono fijo	49,97
Análisis elemental	[%]
Carbono	81,18
Hidrógeno	6,68
Nitrógeno	1,11
A f	1 01

Tabla 4: Análisis elemental e inmediato del carbón mineral

5.2 Caracterización textural

5.2.1 Isotermas de adsorción/desorción de nitrógeno

La caracterización textural de los carbones se realizó mediante la adsorción-desorción de nitrógeno a 77 K, en la cual se describen las isotermas de adsorción que miden volumen adsorbido con respecto a la presión parcial de N₂. Por comodidad se separaron las isotermas impregnadas de cobre con las de níquel.

Figura 15: Isotermas de adsorción de N2 de Ni-CA

Figura 16: Isotermas de adsorción de N₂ para Cu-CA

De acuerdo con la clasificación de la IUPAC [38], se aprecia que las isotermas obtenidas presentan características particulares asociables a las isotermas de tipo I y Tipo IV(a). Se le clasifica como tipo I debido a la adsorción pronunciada a bajas presiones, lo cual es un indicio de la presencia de microporos. Por otra parte, las isotermas se clasifican de tipo IV debido a la presencia de histéresis en sus curvas en el rango aproximado de presión relativa 0,35-0,9. Este fenómeno es resultado de la condensación capilar de las moléculas de nitrógeno dentro de mesoporos, indicando claramente la presencia de estos.

El dopaje con níquel y cobre no produjo cambios significativos en la forma de la isoterma de nitrógeno, excepto en el caso del 5,0-Ni-CA. En este último, se repitió la adsorción de N₂ y el resultado se mantuvo inalterado, Además, debido a su pronunciada elevación en la curva en el rango de 0,4 de P/P₀, producto de la adsorción en multicapas y al llamativo ciclo de histéresis de tipo H4 se le clasifica de tipo IV. Estas características indican que la presencia de mesoporos es significativamente mayor en comparación con otras isotermas y se corrobora con el cálculo de la distribución de tamaño de poros.

Otro aspecto llamativo es un aumento en la capacidad de adsorción de todas las muestras dopadas con respecto a la muestra sin dopar, esto podría estar asociado a que los metales provocaron un notable desarrollo en la porosidad de los carbones, lo cual debería verse reflejado en las áreas superficiales. Sería interesante llevar a cabo pruebas de adsorción con un gas diferente, como el argón, para ver si este fenómeno se repite.

5.2.2 Área B.E.T y volumen de poros

En las tablas 5 y 6 se presentan los resultados de los principales parámetros texturales obtenidos a partir de los datos de adsorción de N₂, estos corresponden a: área superficial (SSA) calculado por el modelo BET con criterio de Rouquerol [39], el volumen de microporo (Vo) estimado por el modelo DR y volumen de mesoporo (Vm) definido como la diferencia entre el volumen total de poro calculado a $P/P_0=0,99$ y el volumen de microporos DR

		tenten ares pu		
Ni-CA	SSA(m ² /g)	Vo (cm ³ /g)	Vm(cm ³ /g)	Vmicro/Vtotal (%)
0,0	2372	0,99	0,08	92,90
0,5	2386	1,00	0,00	92,03
1,0	2838	1,19	0,07	94,09
1,5	2779	1,16	0,10	91,93
2,5	2816	1,18	0,10	91,96
5,0	2938	1,26	0,62	67,07

Tabla 5: Parámetros texturales para Ni-CA serie

		· · · · · · · · · · · · · · · · · · ·		
Cu-CA	SSA(m ² /g)	Vo (cm ³ /g)	Vm (cm ³ /g)	Vmicro/Vtotal (%)
0,0	2372	0,99	0,08	92,90
0,5	2467	1,03	0,08	90,84
1,0	2619	1,09	0,10	92,28
1,5	2593	1,08	0,09	91,41
2,5	2779	1,17	0,10	90,77
5,0	2346	0,99	0,12	90,27

Tabla 6: Parámetros texturales para Cu-CA serie

Basándonos en la información presentada en las tablas 5 y 6, se puede inferir que el proceso de dopaje de metales (Ni y Cu) en el carbón activado influyó positivamente en la expansión del área superficial y en el desarrollo de porosidad. Esto se debe debido a varios factores que deterioran la estructura y la química de los poros del material. El dopaje con metal introduce nuevos átomos y grupos funcionales en la estructura del carbón activado. Estos átomos adicionales crean sitios activos adicionales en la superficie del material que son propicios para la adsorción de moléculas, lo cual aumenta la cantidad de lugares disponibles para la adsorción y, por lo tanto, aumenta el área superficial efectiva. También La incorporación de átomos de metal puede alterar la estructura de poros del carbón activado, abriendo o ensanchando o incluso generando nuevos poros existentes, permitiendo la accesibilidad de las moléculas a la superficie y a los sitios de adsorción lo que resulta en un aumento del área superficial, lo cual es favorable para la retención específicamente de H₂ [5],[6], [16].

En particular en el caso del Ni, cabe destacar que el mayor valor de área superficial se obtuvo para la muestra de 5-Ni-CA, alcanzando un valor de 2938 m²/g, seguida de la muestra 1 Ni-NaOH-CA con 2838 m²/g. Esto sugiere que al incrementar la concentración de níquel al 5% p/p, se pueden provocar cambios en la estructura y la disposición de los átomos de carbono en la red cristalina, propiciando la apertura de espacios más amplios en la estructura dando lugar a la formación de poros de tamaño mesoporoso. Como consecuencia, la capacidad de adsorción de

N₂ se ve fortalecida y se facilita el acceso a moléculas de mayor tamaño, generando un incremento en el área superficial. No obstante, es importante mencionar que en el contexto particular de la adsorción de H₂ bajo las condiciones investigadas (77K y presiones inferiores a 1 bar), este aumento de la mesoporosidad podría ser perjudicial.

Es interesante observar que la tendencia de la curva de área con respecto al porcentaje de Ni (figura 17) en el carbón activado muestra un salto abrupto cuando la carga de níquel supera el 0,5 %p/p, pero luego del 1% p/p se estabiliza en un rango de áreas de 2770-2950 m²/g. Este comportamiento sugiere que la carga de níquel actúa como un agente de expansión, induciendo cambios en la porosidad del material y aumentando el área superficial.

Figura 17: Área superficial vs porcentaje de metal

En el caso del Cu la tendencia de la curva de área superficial con respecto al porcentaje de Cu (figura 17) exhibe un suave aumento hasta la muestra 1 Cu-CA que luego decae levemente para alcanzar el valor máximo correspondiente a la muestra 2,5 Cu-CA, alcanzando un valor de 2779 m²/g. Este comportamiento también sugiere que la impregnación de Cu tiene un efecto directo en el aumento del área superficial. Sin embargo, al superar una carga del 2,5 % p/p, se observa un efecto perjudicial que lleva incluso valores inferiores a los del carbón sin dopar. Esto indica

que añadir más del 2,5 % de Cu tiene poco impacto en la creación de porosidad y, en cambio, puede dañar la estructura porosa del material

Por otra parte, es posible observar que los mayores valores de Vo se lo adjudican las muestras con mayor área BET, en efecto la muestra de 5-Ni-CA (2938 m²/g) corresponde a la que tiene un mayor volumen de microporos (1,26 cm³/g). En base a esto se decidió analizar la relación que existe entre ambos parámetros, lo cual se expone en la figura 18.

Figura 18: Relación entre el Área BET y el volumen de microporos

Se graficaron los datos de los carbones de las series de Ni-CA, Cu-CA y CA, sin distinción ya que lo importante en este caso es ver qué relación presentan los parámetros señalados. Se consideró en esta instancia relevante el parámetro de Pearson el cual se usa específicamente para medir la fuerza de una asociación lineal entre dos variables, donde el valor r = 1 significa una correlación positiva perfecta y el valor r = -1 significa una correlación negativa perfecta. En este caso da un valor de 0,993 lo cual indica que existe una relación lineal positiva.

Haciendo hincapié en el resultado obtenido, se puede afirmar que existe una relación lineal entre el área BET y el volumen de microporos, lo cual es concordante con lo que proponen diversos autores, que plantean que, al aumentar el volumen de microporos, ocurre un incremento correspondiente en el área BET [58],[59].

5.2.3 Distribución de tamaño de poros

La distribución de tamaño de poros (DTP) se determinó con el modelo 2D-NLDFT utilizando los datos de adsorción N₂. En la figura 19 se muestra la DTP de los carbones estudiados en un rango de 0 a 80 A°, lo cual es un indicativo de la existencia tanto de microporos como de mesoporos.

Figura 19: Distribución de tamaños de poros (a) caso Ni (b) caso Cu

El ancho total de la curva revela el rango de tamaño de poros presente en el carbón activado, mientras que la intensidad de los picos refleja el grado de desarrollo de su porosidad, al indicar la cantidad de poros de un determinado tamaño. En líneas generales, todos los materiales exhiben una DTP con dos picos principales, el primero en el rango de 4-10 A° (rango objetivo) y el segundo entre 12-25 A°. Además, si se comparan las muestras impregnadas exhiben una menor intensidad comparado con las muestras sin dopar, lo cual es un indicativo que el dopaje propicia la formación de nuevos poros, tanto de microporos como de mesoporos.

Otro aspecto destacable es lo observado en el caso de 5-Ni-CA, donde el valor de ancho de poro alcanza incluso los 120 A°, sin embargo, debido a consideraciones prácticas, los datos se representaron únicamente hasta los 80 A°. Esta tendencia sugiere una marcada presencia de mesoporos, lo cual respalda lo postulado en las secciones anteriores. También cabe destacar lo ocurrido en las muestras 1 Ni-CA y 2,5 Cu-CA que son las que presentan los picos de mayor intensidad para todo el rango de poros, coincidiendo con las mayores áreas BET 2838 m²/g y 2779 m²/g respectivamente, esto sin considerar lo ocurrido en el caso de 5-Ni-CA que es un caso especial y tiene un área levemente superior.

%Metal	Ni-AC µ(nm)	Cu-AC Cµ(nm)
0,0	1,79	1,79
0,5	1,83	1,84
1,0	1,78	1,80
1,5	1,81	1,82
2,5	1,82	1,85
5,0	2,56	1,88

Tabla 7: Diámetro medio de poro

De acuerdo con los datos presentados en la tabla 7, el diámetro medio de poro varía entre 1,79 y 2,56 nm. En la mayoría de las muestras, se observa una tendencia hacia los microporos, excepto en el caso de la muestra 5 Ni-CA.

Cabe destacar que un estudio realizado por G. Zhang et al [59] planteaba que los ultramicroporos (0,65-0,84nm) podrían ser los poros más efectivos para la adsorción de hidrógeno a 77K y 1 bar. Basándonos en lo anterior el rango de poros promedio obtenido estaría por sobre el óptimo para una correcta adsorción de hidrógeno.

5.3.4 Análisis morfológico del precursor y de los carbones activados mediante T.E.M

En la Figura 20 y 21 se presentan algunas imágenes como resultado del análisis de Microscopía Electrónica de Transmisión (TEM) realizado a las muestras de carbón activado dopadas con diferente concentración de metal (Ni y Cu)

e) 5% Ni-AC

Figura 20: Imágenes TEM para muestra dopada con Ni a diferente concentración

e) 5 %Cu-AC

Figura 21: Imágenes TEM para muestra dopada con Cu a diferente concentración

Utilizando las fotografías y el software Image J, se determinaron las dimensiones de las partículas metálicas presentes en la superficie del carbón activado. Los resultados obtenidos se registran en la Tabla 8.

M-CA(%m)	TP Ni (nm)	TP Cu(nm)
0,5	9,07 <u>+</u> 4,94	12,60±6,77
1,0	14,49 <u>+</u> 7,12	13,49 <u>+</u> 3,90
1,5	13,10 <u>+</u> 4,70	13,24 <u>+</u> 4,35
2,5	9,15 <u>+</u> 3,44	7,43 <u>+</u> 3,48
5,0	9,21 <u>+</u> 2,91	9,78 <u>+</u> 4,88

Tabla 8: Tamaño de partícula para las diferentes muestras

Haciendo un análisis diferencial para cada metal, se observa que, en el caso del Ni, el tamaño de partícula obtenido para las muestras de concentración 1,0 % -1.5 % son similares, lo mismo ocurre para las muestras de concentración 0,5 %-2,5 %-5,0 % que rondan cerca 9 nm aproximadamente. La muestra de 0,5 % presenta el tamaño de partícula más pequeño con un valor de 9,07 y en caso contrario la muestra de 1.0 % es la que presenta un mayor valor, provocando aglomeraciones.

En cuanto a las muestras impregnadas con Cu los tamaños de partícula obtenidos para las muestras de concentración 0,5 %- 1,0 % -1.5 % presentan resultados similares. La muestra que presenta un menor valor es la de 2,5%, siendo la muestra que presenta el menor valor de todos los casos descritos.

5.3 Capacidad de adsorción de hidrógeno

Las isotermas de adsorción de hidrogeno obtenidas a 77 K y hasta 0,95 bar, son presentadas en la figura 22 y las adsorciones máximas se resumen en la tabla 9.

Figura 22: Isotermas de adsorción de exceso de hidrógeno (a) caso con Ni (b) caso con Cu

De acuerdo con lo expuesto, estas isotermas no presentan saturación a 0,95 por lo que podría ser una señal de que a mayores presiones la capacidad de adsorción aumenta [6],[49],[55]. Además, resulta relevante resaltar que todas las isotermas son idénticas en su forma, variando únicamente en la cantidad de adsorción lograda.

04 Motal	adsorción H ₂	H2 wt/Área	adsorción H ₂	H2 wt/Área
% Metal	Ni(wt%)	$(g H_2/m^2/g) \cdot 1000$	Cu(wt%)	$(g H_2/m^2/g) \cdot 1000$
0,0	2,47	1,09	2,47	1,09
0,5	2,40	1,00	2,48	1,00
1,0	2,43	0,86	2,35	0,90
1,5	2,51	0,90	2,41	0,92
2,5	2,44	0,86	2,25	0,86
5,0	2,15	0,73	2,28	0,97

Tabla 9: Adsorción de exceso de hidrógeno y adsorción de exceso de hidrógeno normalizada por SSA de las diferentes muestras de carbón activado a 77 K y 0,95 bar

De acuerdo con lo expuesto anteriormente, en el caso del Ni, el mayor rendimiento se obtuvo con la muestra 1,5-Ni-CA, alcanzando un valor del 2,51 % en peso de H₂, lo que representa un aumento del 1,6 % en comparación con la muestra original. Por otro lado, en el caso del Cu, la muestra 0,5-Cu-CA se destaca al obtener el mayor rendimiento, registrando un valor del 2,48 % en peso de H₂, lo que representa un incremento del 0,4 % con respecto a la muestra original. Además, en ambos casos las muestras que obtuvieron peor rendimiento fueron las que más tenían contenido de metal. De esta forma se infiere que el dopaje de metal no influye en la mejora de la capacidad de adsorción de hidrogeno a las condiciones estudiadas (77K y < 1 bar).

La incorporación de dopantes tuvo un impacto diferencial en la adsorción de hidrógeno por unidad de área superficial (% peso/SSA) para los diferentes metales. En el caso del níquel Ni, se demostró una disminución en esta métrica como resultado del dopaje, llegando a un mínimo de 0,73. Por otro lado, en el caso del cobre Cu, la influencia del dopaje en esta métrica se mantuvo en un rango más estrecho. Esto sugiere que el dopaje con níquel tuvo un efecto más pronunciado en la cantidad adsorbida, sin considerar los efectos de la superficie de adsorción.

Ahora para analizar la dependencia de la adsorción de hidrógeno a temperaturas criogénicas y bajas presiones sobre las propiedades texturales, como el área BET y el volumen de microporos, se presentan las Figuras 23 a) y b).

Figura 23: Relación entre la adsorción de hidrógeno y el área BET (a) caso con Ni (b) caso con Cu

La adsorción de hidrógeno a 77 k y 1 bar para las muestras dopadas no posee una tendencia clara con respecto al área bet. Diversos autores se han pronunciado al respecto sobre el tema. De hecho, Yushin et al [61] sugiere que el área superficial por sí sola no puede ser responsable en la captación de hidrógeno y que no se debe ignorar el efecto del tamaño de poros, especialmente de los poros menores a 1nm. Otros trabajos de Zhang et al [62] sugirieron que el volumen de los microporos entre 0,65 y 1,5 nm podría ser más importante que el área BET y el volumen total de poros para la captación de hidrogeno a 77K y 1 bar.

Por ultimo y para concluir, Kaneko et al [63] postula que a presiones más altas como a 20 bar se aprecia una tendencia entre la capacidad de adsorción de H₂ con la extensión del área superficial BET, a pesar de los problemas del método para materiales microporosos. Pero que a condiciones de 1 bar y 77K, no solamente se tiene relacionar el fenómeno de adsorción, con este parámetro, si no tambien a interacciones reforzadas del H₂ en el interior de los microporos. Además, postula que otro punto a tener en cuenta es que el H₂ puede ser capaz de acceder a poros que no accede el N₂ A 77 K.

Finalmente, para profundizar en el análisis del efecto de los metales sobre la adsorción de hidrógeno, se muestra la Figura 24, donde se presenta la adsorción de hidrógeno en función del contenido de Ni y Cu en las muestras.

Figura 24: Relación entre nivel de carga vs hidrógeno adsorbido

Analizando cada caso por separado, se puede observar que, en relación al níquel, se presenta un ligero aumento en la capacidad de adsorción a medida que se incrementa la carga del metal, llegando a su punto máximo en la muestra 1,5 Ni-CA. Con respecto al cobre se observa que a medida que la carga del metal aumenta, la capacidad de adsorción de H₂ disminuye directamente. A pesar de que esta mejora solo constituye un 1,6 % con respecto a la muestra sin dopar, se evidencia una afinidad más marcada entre el hidrógeno y el níquel que entre el hidrógeno y el cobre, la diferencia se debe principalmente a la estructura electrónica y la disponibilidad de electrones de cada uno. El níquel tiene una estructura electrónica que le permite formar enlaces fuertes con el hidrógeno. Tiene una configuración electrónica que incluye electrones en orbitales d y s desapareados. Estos electrones desapareados pueden participar en interacciones con los electrones de valencia del hidrógeno, permitiendo la formación de enlaces químicos fuertes. Por otro lado, el cobre tiene una estructura electrónica en la que los electrones están más firmemente ligados debido a su energía de ionización más alta, lo que dificulta la formación de enlaces efectivos con el hidrógeno [63].

Al comparar el carbón dopado con el sin dopar, se observa que la diferencia en el área de superficie disponible y la porosidad no respaldan la ligera disminución en la capacidad de sorción. Por lo que es posible que las partículas de metal estén provocando un impedimento estérico, obstaculizando la difusión de hidrogeno en los microporos del carbón activado [5], [6]. Recordemos que el rango de los diámetros de partículas fue de 7-14 nm lo cual está lejos del rango objetivo (4<nm). Como resultado, se puede inferir que la incorporación de níquel y cobre tiene un efecto limitado en estas condiciones específicas (77K y 1 bar), dado que la capacidad gravimétrica de las muestras es similar.

Siguiendo las teorías planteadas por otros investigadores [6][49], la inclusión de metales en estructuras de carbono promueve la absorción de hidrógeno debido a las interacciones que se generan entre el metal y el H₂. Fenómenos como el Spillover y las interacciones de tipo Kubas son algunos de los fenómenos que impulsan la mejora del desempeño de este material [3]. Sin embargo, es importante resaltar que estos efectos son más pronunciados a temperaturas elevadas (273 K), ya que, a temperaturas más bajas, este impacto resulta insignificante.

Este sigue siendo un tema controversial, ya que algunos autores argumentan el Spillover de hidrógeno puede despreciarse y que la cantidad de desbordamiento así observada se debe más

probablemente a la densificación superficial del hidrógeno quimisorbido. Sin embargo, cálculos más recientes y datos experimentales evidenciaron que el desbordamiento existe y no debe ser ignorado [52].

5.4 Isotermas de dióxido de carbono

Con el propósito de profundizar en la comprensión de los efectos de la química y la morfología derivada de la impregnación de Ni y Cu en la adsorción de gas, también se llevaron a cabo pruebas de adsorción con CO₂.

Figura 25: Isotermas de adsorción de CO₂ (a) caso con Ni (b) caso con Cu

La figura 25 permite observar la isoterma de CO_2 a 273 K obtenida para las diferentes muestras. Se aprecia que este adsorbato permite trabajar a presiones relativas más bajas, que se encuentran en un rango de valores de P/P₀ menores a 0,005 y 0,03, lo cual resulta muy útil en la caracterización de la microposididad estrecha, que en algunos casos es difícil de determinar con las isotermas de N₂ a 77, además nos otorga información de cómo es la adsorción a mayor temperatura y evitando los posibles problemas de difusión del N₂ en condiciones criogénicas. Además, es relevante destacar que la muestra 0,5 Ni -CA muestra un comportamiento distinto al del resto, lo cual se atribuye principalmente a posibles errores en la medición de los datos, por lo que se prescindirá de utilizar este elemento en análisis futuros. Se calculó el volumen de microporos a partir de la ecuación de Dubinin-Radushchevich, los resultados se presentan en la tabla 10.

<i>a 275</i> K					
%Metal	Sco2	W0C02	Sco2	W0C02	
	Ni (m²/g)	Ni(cm ³ /g)	Cu(m ² /g)	Cu(cm ³ /g)	
0,0	542,67	0,13	542,67	0,13	
0,5	-	-	415,20	0,12	
1,0	241,89	0,10	451,21	0,13	
1,5	589,40	0,15	485,98	0,14	
2,5	305,14	0,10	356,86	0,11	
5,0	252,48	0,10	300,16	0,10	

Tabla 10: Parámetros texturales obtenidos de las isotermas de CO₂ a 273 K

El rango de volumen de microporos calculado para ambas series fue de 0,15-0,10 cm³/g, obteniendo el menor valor para la muestra con más metal, caso contrario a lo que ocurría en el caso de Ni con N₂ donde dicha muestra era que mostraba un valor mayor de volumen de microporos. En general no se observa una relación entre el nivel de carga vs el volumen de microporos, más bien W_{0CO2} , se mantiene constante. En cuanto al orden de magnitud del parámetro W_{0CO2} vs V₀, se sugiere a que se debe la diferente accesibilidad de poros para cada una de las moléculas y, en consecuencia, con diferentes procesos de llenado de poros.

La distribución de tamaño de poros (DTP) se determinó con el modelo 2D-NLDFT utilizando los datos de adsorción CO₂. En la figura 26 se muestra la DTP de los carbones estudiados en un rango de 0 a 60 A°.

Nota: Sco2: área superficial de las paredes microporosas, Woco2: volumen de microporos calculado por DR

Figura 26: Distribución de tamaños de poros (a) caso con Ni (b) caso con Cu

En líneas generales, todas las muestras exhiben una DTP con un pico principal en el rango de 10-20 A° para ambas series (Ni y Cu), que tiene relación directa con la condición de microporosidad. Esto "contrarresta" lo calculado en la sección 5.2.3, donde la DTP obtenidas destacaban por tener dos picos, el primero en el rango de 4-10 A° y el segundo entre 12-25 A°, esta diferencia se explicaría por la diferente accesibilidad de las diferentes moléculas (CO₂ y N₂) en los poros.

5.5 Aplicación del modelo de Dubinin-Astakhov

Ante la imposibilidad experimental de realizar mediciones de exceso de hidrógeno en otras condiciones de operación, se llevó a cabo un análisis teórico adicional aplicando el modelo de adsorción Dubinin-Astakhov Modificado (MDA). Este análisis se describe en detalle en la sección 4.2.7

5.5.1 Extrapolación a otras presiones

Se ajustó el modelo MDA a cada una de las isotermas de adsorción de níquel a 77 K ya que en general arrojaron mejores valores de exceso de hidrógeno. La adaptación del modelo a los datos experimentales fue bastante precisa, obteniéndose un coeficiente de determinación (R²) cercano a 1,00 para cada uno de los casos. Por lo que se puede concluir que el modelo es apto para todos los casos descritos. Los parámetros de calibración del modelo se muestran en la tabla

	CA	0,5 Ni-CA	1,0 Ni-CA	1,5 Ni-CA	2,5 Ni-CA	5,0 Ni-CA
n _{max} (mmol/g)	13,90	11,89	12.07	12.46	12,09	10,54
Po(bar)	1742,69	5800,12	4950,04	5409,76	5130,79	4376,84
α(J/mol)	8118,21	3407,74	3419,68	3474,23	3472	3989,15
β (J/ (mol K)	28	14,72	14,00	12,79	13,70	13,40
m	1,27	1,61	1,97	1,99	1,96	1,88
Va(cm ³ /g)	0,001	0,001	0,001	0,001	0,001	0,001
R ²	0,995	0,999	0,999	0,999	0,999	0,999

Tabla 11: Parámetros de calibración del ajuste del modelo MDA para el carbón activado con níquel a 77 K

Aplicando el modelo MDA con los parámetros expuestos anteriormente, se extrapoló la isoterma de adsorción de hidrógeno hasta una presión de 100 bar. Esta extrapolación se muestra en la figura 27.

Figura 27: Extrapolación de data experimental de Ni a altas presiones

En una observación inicial, es importante destacar que las curvas exhibieron la misma tendencia a altas presiones que a bajas presiones. En este contexto, la muestra no dopada apareció el rendimiento más destacado con un 8,74 % p/p, mientras que la muestra con la concentración más alta de Ni exhibió el rendimiento más bajo con un 7,38 % p/p. Analizando la muestra de mejor rendimiento se observa un incremento significativo en el exceso de adsorción en la región de baja presión, aumentando de un 2,60% en peso a 1 bar a un 6,54% a 20 bar. A medida que la presión se acerca a 100 bar, el exceso de adsorción se aproxima al límite superior, alcanzando el valor mencionado anteriormente (8,74% p/p). En términos generales, todas las curvas siguen una tendencia de aumento a bajas presiones (0-20 bar) y tienden a estabilizarse una vez que se superan los 70 bar.

Es importante destacar que este análisis no debe verse como un absoluto, sino más bien como una aproximación útil que nos brinda una idea de cómo se comportaría en situaciones de alta presión. Es necesario tener en cuenta que la aplicación del modelo no tiene en cuenta otros fenómenos superficiales que podrían estar surgiendo como resultado de la impregnación de metales.

5.2.2 Extrapolación a otras temperaturas

Este análisis consistió en la aplicación del modelo MDA a dos isotermas diferentes. Específicamente, se consideraron los datos experimentales obtenidos de la muestra de carbón puro a una temperatura de 77 K, además de incluir un conjunto adicional de datos (tabla 12) obtenidos del trabajo hecho por Rossetti et al [6], donde las mediciones experimentales se realizaron a 273K

Tabla 12: Exceso de hidrógeno a			
273 K a diferentes presiones.			
Presión	H ₂ (%wt)		
5,9	0,11		
20,6	0,26		
40,2	0,51		
98,8	0,82		

Los cinco parámetros de la ecuación obtenidos por ajuste de curva no lineal se enumeran en la tabla 13. Los resultados se muestran en la figura 28 con los datos experimentales pertinentes.

Tabla 13:	Parámetros de
calibración del ajuste del modelo	
MDA para el carbón sin dopar a	
otras temperaturas	
	CA
n _{max} (mmol/g)	12,09
Po(bar)	4218,18
$\alpha(J/mol)$	3995,97
β (J/ (mol K)	5,23
m	2
Va(cm ³ /g)	0,007
R ²	0,998

Figura 28: Extrapolación de los datos experimentales a otras temperaturas

La adaptación del modelo a los datos experimentales fue precisa, obteniéndose un coeficiente de determinación (R²) cercano a 1,00. De los dos sets de datos experimentales se obtuvieron dos isotermas extras a diferentes temperaturas a 298 K y 83,5K.

El comportamiento de las curvas coincide con lo previsto en la literatura, ya que se observa un descenso en la capacidad de adsorción a medida que aumenta la temperatura. Esta tendencia se atribuye al hecho de que el incremento de la temperatura favorece las colisiones térmicas entre las moléculas, lo cual afecta la afinidad del carbón activado con el hidrógeno. Esta interacción está relacionada con un proceso de adsorción exotérmico [64]. Por otro lado, el efecto del aumento de presión beneficia la capacidad de retención de hidrógeno independiente de la temperatura tanto para temperaturas altas(298K) como para bajas(77K).

Al examinar los picos máximos de adsorción a 100 bar en cada una de las curvas y contrastarlos con los datos experimentales que hemos recopilado a 77 K, se evidencia que la proyección a 83,5 K obtiene un 8,37 % p/p de H₂, lo que equivale a una reducción del 4,34 % en la capacidad de adsorción de hidrógeno. En el caso de la muestra a 273 K, la capacidad de adsorción se reduce de 8,74 % p/p a 0,82 % p/p, representando un decremento total del 90,6 %. Por último, al proyectar a 298 K, la capacidad de adsorción disminuye en un 92 %, alcanzando un valor de 0,69 % p/p. De este modo, resulta claro que la temperatura desempeña un papel esencial en el procedimiento de adsorción del hidrógeno, y a pesar de los beneficios que conlleva el incremento de la presión, resulta insuficiente para lograr niveles satisfactorios conforme a los objetivos establecidos por la DOE [47].
6. Conclusiones

En este estudio, se llevaron a cabo preparaciones de carbones activados con dopaje de níquel y cobre en distintas proporciones: 0,5%, 1,0%, 1,5%, 2,5% y 5,0% en masa, con el propósito de investigar su impacto en la capacidad de almacenamiento de hidrógeno. Para evaluar estas muestras, se emplearon una serie de técnicas analíticas. Inicialmente, se realizaron pruebas de adsorción/desorción de nitrógeno a una temperatura de 77 K para determinar las características porosas de los materiales. Luego, se empleó microscopía electrónica de transmisión (TEM) para examinar la morfología interna. Además, se llevó un cabo medido de adsorción de dióxido de carbono y, por supuesto, de hidrógeno. Adicionalmente, se empleó el Modelo de adsorción de Dubinin-Astakhov modificado, propuesto por Richard et al. [56], con el propósito de extrapolar los datos experimentales de exceso de hidrógeno. Este enfoque se aplicó tanto a la serie de muestras dopadas con níquel a diferentes presiones como a la muestra de carbón activado puro a distintas temperaturas. A partir de estos análisis, es posible extraer seis conclusiones fundamentales:

- El procedimiento de síntesis condujo a la obtención de carbones activados con características texturales idóneas para la adsorción de hidrógeno, como una elevada área superficial (>2000 m²/g) y una distribución de tamaño de poros estrecha, centrada principalmente en microporos y mesoporos.
- La adición de níquel y cobre al carbón activado produce un efecto beneficioso en términos de incremento del área superficial y la generación de microporosidad, a excepción del caso de 5 Cu-CA, que exhibió un valor menor que el del carbón no dopado. Esto sugiere que la cantidad de cobre en dicha muestra pudo haber ocasionado un bloqueo en los poros que dificultó el acceso del nitrógeno.
- La forma de las isotermas de adsorción de nitrógeno de las muestras dopadas no presentó ninguna variación respecto de los carbones base, no obstante, la cantidad adsorbida se modificó positiva. Además, se clasificaron de tipo I. La excepción la presentó la muestra 5-Ni-CA cuya isoterma de adsorción de N₂ resultó ser de tipo IV, lo cual es reflejo de una presencia tanto de microporos como de mesoporos.

- La adición de metal tiene un efecto limitado a 77 K y 1 bar en la capacidad de almacenamiento de hidrógeno. Tanto el cobre como el níquel no generan una mejoría significante en estas condiciones. Los valores más bajos de capacidad podrían deberse al impedimento estérico de las partículas de metal ya que los valores de superficie y porosidad no respaldan la ligera disminución de adsorción.
- Dado que las variaciones en la porosidad general se mantuvieron consistentes en todas las muestras, sin importar las especies de gas que se adsorbieran, se puede inferir que la disparidad en la capacidad de adsorción entre distintos gases está ligada a la accesibilidad única de los poros para cada tipo de molécula. En consecuencia, esto sugiere la existencia de diversos mecanismos de llenado de poros para cada gas.
- La adaptación del modelo de Dubinin-Astakhov Modificado posibilitó una extrapolación precisa tanto a altas presiones como a diferentes temperaturas, demostrando una aproximación extremadamente cercana con valores de coeficiente de determinación (R²) próximos a 1 en ambos casos. En el primer escenario, las curvas exhibieron una coherencia en su comportamiento tanto en altas como en bajas presiones, evidenciando un aumento positivo en función del incremento de la presión. En este contexto, la muestra no dopada se destacó con el mejor rendimiento, alcanzando un 8,74 % p/p, mientras que la muestra 5 Ni-CA aumentó el rendimiento más bajo, con un 7,38 % p/p. En el segundo escenario, la extrapolación se extendió hasta una temperatura de 298 K, resultando en una reducción del 92 % en la capacidad de adsorción en comparación con la muestra a 77 K. Este hallazgo subraya la importancia crucial que desempeña la temperatura en el proceso de adsorción, lo cual contrarresta en gran medida los efectos positivos de la presión.

7. Referencias

[1] P. Friedlingstein et al., "Global Carbon Budget 2022," Earth System Science Data, vol. 14, no.
11, pp. 4811–4900, Nov. 2022, <u>https://doi.org/10.5194/essd-14-4811-2022</u>

[2] V. B. Parambhath, R. Nagar, and S. Ramaprabhu, "Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene," Langmuir, vol. 28, no. 20, pp. 7826–7833, May 2012, <u>https://doi.org/10.1021/la301232r</u>

[3] E. Boateng y A. Chen, "Recent advances in nanomaterial-based solid-state hydrogen storage",
Mater. Today Advances, vol. 6, pp. 100022, junio de 2020.
https://doi.org/10.1016/j.mtadv.2019.100022

[4] P. Jena, "Materials for hydrogen Storage: Past, present, and future," Journal of Physical Chemistry Letters, vol. 2, no. 3, pp. 206–211, Jan. 2011, <u>https://doi.org/10.1021/jz1015372</u>

[5] W. Zhao et al., "Activated carbons doped with Pd nanoparticles for hydrogen storage," International Journal of Hydrogen Energy, vol. 37, no. 6, pp. 5072–5080, Mar. 2012, https://doi.org/10.1016/j.ijhydene.2011.12.058

[6] I. Rossetti, G. Ramis, A. Gallo y A. Di Michele, "Hydrogen storage over metal-doped activated carbon", Int. J. Hydrogen Energy, vol. 40, n. ^o 24, p. 7609–7616, Junio de 2015 <u>https://doi.org/10.1016/j.ijhydene.2015.04.064</u>

[7] J. Bellosta von Colbe et al., "Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives", Int. J. Hydrogen Energy, vol. 44, n.º 15, p. 7780–7808, marzo de 2019. <u>https://doi.org/10.1016/j.ijhydene.2019.01.104</u>

[8] S. Schaefer et al., "Rice straw-based activated carbons doped with SiC for enhanced hydrogen adsorption", Int. J. Hydrogen Energy, vol. 42, n.º 16, p. 11534–11540, abril de 2017. https://doi.org/10.1016/j.ijhydene.2017.02.043

[9]"Plan de accion nacional de cambio climatico 2017-2022", Informe de Ministerio del medio Ambiente, 2017.

[10] J. Houghton, "Global warming", Rep. Prog. Phys., vol. 68, n.º 6, p. 1343–1403, mayo de 2005.
Accedido el 23 de julio de 2023. [En línea]. Disponible: <u>https://doi.org/10.1088/0034-4885/68/6/r02</u>

[11] L. Morris et al., "A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions", Energy & Environmental Sci., vol. 12, n.º 5, p. 1580–1591, 2019: https://doi.org/10.1039/c8ee02499e

[12] C. Fuñez y L. Reyes, "El hidrógeno como vector energético: Pieza clave en la descontaminación de la economía chilena", Centro de ciencias de la comunicación. Universidad autónoma de Chile, 2019.

[13] José Linares y B. Moratilla, El hidrogeno y la energía, Universidad Pontificia Comillas ed., 2007, pp. 12-35.

[14]"¿Qué es el hidrógeno verde? | Ministerio de Energía". Ministerio de Energía |. https://energia.gob.cl/h2/Qué-es-el-hidrógeno-verde (accedido el 23 marzo de 2023).

[15] K. Koizumi, K. Nobusada, y M. Boero, «Hydrogen storage mechanism and diffusion in metalorganic frameworks», Physical Chemistry Chemical Physics, vol. 21, n.o 15, pp. 7756-7764, ene. 2019

[16] I. Hassan, H. S. M. Ramadan, M. Saleh, y D. Hissel, «Hydrogen storage technologies for stationary and mobile applications», Renewable and Sustainable Energy Reviews, vol. 149, p. 111311, oct. 2021, <u>https://doi.org/10.1016/j.rser.2021.111311</u>

[17] P. A. Parilla, K. Gross, K. E. Hurst, y T. Gennett, «Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials», Applied Physics A, vol. 122, n.o 3, feb. 2016, https://doi.org/10.1007/s00339-016-9654-1

[18] D. P. Broom y C. J. Webb, «Pitfalls in the characterisation of the hydrogen sorption properties of materials», International Journal of Hydrogen Energy, vol. 42, n.o 49, pp. 29320-29343, dic. 2017, https://doi.org/ 10.1016/j.ijhydene.2017.10.028

[19] R. Gupta, Advanced Coal Characterization: A Review. Energy & Fuels, n° 21 p.451-460, 2007

[20] F. Reyes. Cálculo de Parámetros de Calidad de los Carbones de la Mina Guachinte (Valle, Colombia), utilizando PGNAA MS y XRD. Tesis Doctoral. Universidad del Valle, Facultad de Ciencias, p.3, 2005 [21] M. Martinez, Preparación y caracterización de carbón activo a partir de la lignina para la descontaminación de aguas, Universidad Autónoma de Madrid. 2012.

[22] Universidad de Sevilla, Manual del carbón activo. 2011.

[23] M. Alvarez, F. Carrasco y J. Maldonado, Desarrollo y aplicaciones de materiales avanzados de carbón. Universidad internacional de Andalucía, 2014.

[24] H. F. Stoeckli, «Microporous carbons and their characterization: the present state of the art», Carbon, vol. 28, n.o 1, pp. 1-6, ene. 1990, <u>https://doi.org/10.1016/0008-6223(90)90086-</u>

[25] A. Grisales y W. Rojas, «Obtención de carbón activado a partir de la activación química de pulpa de café y aplicación en la remoción de colorantes en aguas residuales industriales», Universidad de Pereira, 2016.

[26] A. Rehman, M. Park, y S.-J. Park, «Current progress on the surface chemical modification of carbonaceous materials», Coatings, vol. 9, n.o 2, p. 103, feb. 2019, https://doi.org/10.3390/coatings9020103

[27] A. Sevillano y P. Torres, «Obtención de carbón activado a partir de madera», Universidad Nacional De Cuyo: Facultad de Ciencias Aplicadas a la Industria, 2013.

[28] E. Bricio, «Síntesis y caracterización de carbón activado a partir de bagazo de tequila Azul Weber.», Universidad de Guanjato, 2010.

[29] X. Hu, M. Radosz, K. A. Cychosz, y M. Thommes, «CO2 Filling Capacity and Selectivity of Carbon Nanopores: Synthesis, Texture, and Pore-Size Distribution from Quenched-Solid Density Functional Theory (QSDFT)», American Chemical Society, vol. 45, n.o 16, pp. 7068-7074, jul. 2011 <u>https://doi.org/10.1021/es200782s</u>

[30] A. R. Mohamed, M. Mohammadi, y G. N. Darzi, «Preparation of carbon molecular sieve from lignocellulosic biomass: a review», Renewable & Sustainable Energy Reviews, vol. 14, n.o 6, pp. 1591-1599, ago. 2010, <u>https://doi.org/10.1016/j.rser.2010.01.024</u>

[31] G. Navarrete y B. Daniela, «Desarrollo de carbón activado a partir de desechos agroindustriales con aplicación en adsorción de arsénico», 2017. [En línea]. Disponible en: https://repositorio.uchile.cl/handle/2250/147405 [32] M. J. Illán-Gómez, A., García-García, y C. Salinas-Martinez De Lecea, «Activated carbons from Spanish coals. 2 Chemical activation. », Energy and Fuels, 1996. <u>https://doi.org/10.1021/ef950195</u>

[33] J. Wang y S. Kaskel, «KOH activation of carbon-based materials for energy storage», Journal of Materials Chemistry, vol. 22, n.o 45, p. 23710, ene. 2012, https://doi.org/10.1039/C2JM34066F

[34] A. Linares-Solano, Lozano-Castelló, y M. A. Lillo-Ródenas, «Carbon activation by alkaline hydroxides preparation and reactions, porosity and performance. », Chemistry and Physics of Carbon, vol. 30, 2008.

[35] H. Marsh y F. Rodriguez-Reinoso, Activated Carbon. 2006.

[36] K. S. W. Sing, «Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)», Pure and Applied Chemistry, vol. 57, n.o 4, pp. 603-619, ene. 1985, doi: https://doi.org/10.1351/pac198557040603

[37] A. Fernandez, R. Casto, E. Castillo, R. Muñoz, I. Garcia, y M. Huerte-Mendia, «Aspectos Industriales de la Producción de Carbón Activado y sus Aplicaciones en la Mitigación Ambienta», Congreso Iberoamericano de Metalurgia y Materiales, Habana, Cuba, oct. 2006.

[38] M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) », Pure and Applied Chemistry, vol. 87, n.o 9-10, pp. 1051-1069, jul. 2015, <u>https://doi.org/10.1515/pac-2014-1117</u>

[39] J. M. Martin-Martínez, Adsorción Física de Gases y Vapores por Carbones. 1990.

[40] S. Brunauer, P. H. Emmett, y E. Teller, «Adsorption of Gases in Multimolecular Layers», Journal of the American Chemical Society, vol. 60, n.o 2, pp. 309-319, feb. 1938, doi: <u>https://doi.org/10.1021/ja01269a023</u>

[41] J. Rouquerol, P. Llewellyn, y F. Rouquerol, «Is the bet equation applicable to microporous adsorbents? », en Studies in Surface Science and Catalysis, 2007, pp. 49-56. https://doi.org/10.1016/s0167-2991(07)80008-5

[42] J. L. Figueiredo y P. Serp, Carbon material for catalysis. New Jersey, 2009.

[43] J. Jagiello, C. O. Ania, J. B. Parra, L. Jagiełło, y J. J. Pis, «Using DFT analysis of adsorption data of multiple gases including H2 for the comprehensive characterization of microporous carbons», Carbon, vol. 45, n.o 5, pp. 1066-1071, abr. 2007, https://doi.org/10.1016/j.carbon.2006.12.011

[44] H. Jin, Y. S. Lee, y I. Hong, «Hydrogen adsorption characteristics of activated carbon», Catalysis Today, vol. 120, n.o 3-4, pp. 399-406, feb. 2007, https://doi.org/10.1016/j.cattod.2006.09.012

[45] R. Strobel, J. Garche, P. T. Moseley, L. Jörissen, y G. Wolf, «Hydrogen storage by carbon materials», Journal of Power Sources, vol. 159, n.o 2, pp. 781-801, sep. 2006, https://doi.org/10.1016/j.jpowsour.2006.03.047

[46] H. Naveed et al., «Is the H2 economy realizable in the foreseeable future? Part I: H2 production Methods», International Journal of Hydrogen Energy, vol. 45, n.o 27, pp. 13777-13788, may 2020, <u>https://doi.org/10.1016/j.ijhydene.2020.03.092</u>

[47] U.S Energy Information Administration. International Energy Outlook 2020. Marzo 2023

[48] L. Wang y R. T. Yang, «Hydrogen storage properties of N-Doped microporous carbon», Journal of Physical Chemistry C, vol. 113, n.o 52, pp. 21883-21888, nov. 2009, https://doi.org/10.1021/jp908156v

[49] G. Conte, A. Policicchio, O. De Luca, P. Rudolf, G. Desiderio, y R. G. Agostino, «Copper-doped activated carbon from amorphous cellulose for hydrogen, methane and carbon dioxide storage», International Journal of Hydrogen Energy, vol. 47, n.o 42, pp. 18384-18395, may 2022, https://doi.org/10.1016/j.ijhydene.2022.04.029

[50] M.F. A Aboud, Z. A. ALOthman, y A. Bagabas, «Hydrogen storage in Untreated/Ammonia-Treated and Transition Metal-Decorated (PT, PD, NI, RH, IR and RU) activated carbons», Applied sciences, vol. 11, n.o 14, p. 6604, jul. 2021, <u>https://doi.org/10.3390/app11146604</u>

[51] W. Zhao et al., «Synthesis and characterization of PT-N-doped activated biocarbon composites for hydrogen storage», Composites Part B-engineering, vol. 161, pp. 464-472, mar. 2019, <u>https://doi.org/10.1016/j.compositesb.2018.12.122</u>

[52] S. Schaefer, V. Fierro, A. Szczurek, y M. T. Izquierdo, «Physisorption, chemisorption and spill-over contributions to hydrogen storage», International Journal of Hydrogen Energy, vol. 41, n.o 39, pp. 17442-17452, oct. 2016, <u>https://doi.org/10.1016/j.ijhydene.2016.07.262</u>

[53] T. Kaneko, Y. Watanuki, T. Toyama, Y. Kojima, y N. Nishimiya, «Hydrogen sorption and desorption behaviors of metal–carbon composites prepared by alcohol CVD method», International Journal of Hydrogen Energy, dic. 2015, https://doi.org/10.1016/j.ijhydene.2015.09.027

[54] W. Zhao et al., «Activated carbons doped with PD nanoparticles for hydrogen storage», International Journal of Hydrogen Energy, vol. 37, n.o 6, pp. 5072-5080, mar. 2012, https://doi.org/10.1016/j.ijhydene.2011.12.058

[55] G. Sdanghi, S. Schaefer, G. Maranzana, A. Celzard y V. Fierro, "Application of the modified Dubinin-Astakhov equation for a better understanding of high-pressure hydrogen adsorption on activated carbons", Int. J. Hydrogen Energy, vol. 45, n.º 48, p. 25912–25926, septiembre de 2020. <u>https://doi.org/10.1016/j.ijhydene.2019.09.240</u>

[56] M. A. Richard, P. Bénard y R. Chahine, "Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model", Adsorption, vol. 15, n.º 1, p. 43–51, febrero de 2009. <u>https://doi.org/10.1007/s10450-009-9149-x</u>

[57] «National Institute of Standards and Tecnology», <u>https://www.nist.gov/</u>

[58] C. Huang, H.-M. Chen, C.-H. Chen, y J.-C. Huang, «Effect of surface oxides on hydrogen storage of activated carbon», Separation and Purification Technology, vol. 70, n.o 3, pp. 291-295, ene. 2010, doi: https://doi.org/10.1016/j.seppur.2009.10.009

[59] J. Jiang, Q. Gao, Z. Zheng, K. Xia, y J. Hu, «Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres», International Journal of Hydrogen Energy, vol. 35, n.o 1, pp. 210-216, ene. 2010, <u>https://doi.org/10.1016/j.ijhydene.2009.10.042</u>

[60] G. Zhang, C. Zhang, D.-B. Wang, X. Zhou, y M. Cai, «Pore size effects of nanoporous carbons with ultra-high surface area on high-pressure hydrogen storage», Journal of Energy Chemistry, vol. 24, n.o 1, pp. 1-8, ene. 2015, <u>https://doi.org/10.1016/s2095-4956(15)60277-7</u>

[61] G. Yushin, R. K. Dash, J. Jagiello, J. E. Fischer, y Y. Gogotsi, «Carbide-Derived carbons: Effect of pore size on hydrogen uptake and heat of adsorption», Advanced Functional Materials, vol. 16, n.o 17, pp. 2288-2293, nov. 2006, <u>https://doi.org/10.1002/adfm.200500830</u>

[62] C. Zhang et al., «Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake», International Journal of Hydrogen Energy, vol. 38, n.o 22, pp. 9243-9250, jul. 2013, <u>https://doi.org/10.1016/j.ijhydene.2013.04.163</u>

[63] K. Kaneko y F. Rodríguez-Reinoso, Nanoporous Materials for Gas Storage. Springer, 2019.

[64] M. B. Yahia y S. Wjihi, «Study of the hydrogen physisorption on adsorbents based on activated Carbon by means of Statistical physics Formalism: Modeling Analysis and Thermodynamics Investigation», Scientific Reports, vol. 10, n.o 1, sep. 2020, doi: https://doi.org/10.1038/s41598-020-73268-w

8. Anexos

8.1 Variables del proceso de activación

Numerosas variables están involucradas en el proceso de activación de carbones, por eso el control de ellas permite hacer el proceso más eficiente, obteniendo mayor rendimiento y mejoras en las características del carbón (capacidad de adsorción, área superficial, mayor volumen de microporos etc.). Bajo este contexto, es de gran importancia seleccionar correctamente las variables de activación. En la tabla 14 se presentan los resultados obtenidos en la optimación de las variables de activación sobre el carbón mineral precursor a utilizar en este trabajo. Las variables estudiadas fueron: agente activante, razón másica: agente activante/carbón precursor, método de contacto, temperatura de activación, tiempo de activación y flujo de nitrógeno. Los ensayos fueron realizados en el marco del proyecto Fondef ID20I10008 previas a este trabajo, lo cual permitió la selección de la configuración óptima para la activación del carbón activado.

Tipo de	Razón	Temperatura de	Tiempo de	Flujo de	Área	VT	V_{micr}
agente	AA:CP	activación	activación	nitrógeno	BET	[cm ³ /g]	[cm ³ /g]
activante		[°C]	[h]	[ml/min]	$[m^2/g]$		
NaOH	3:1	750	0,5	283	1070	0,48	0,37
			1,5		1010	0,47	0,36
	<mark>4:1</mark>	<mark>650</mark>	1,5	283	1216	0,56	0,44
			<mark>2,0</mark>		2290	1,08	0,76
				<mark>400</mark>	2300	1,15	0,97
				283	2100	1,07	0,86
		700	1,5	283	730	0,37	0,25
		750	0,5	283	1150	0,55	0,40
			1,0		408	0,20	0,15
			1,5		1910	0,96	0,63
			1,5	283 ¹	868	0,43	0,31
			1,5	9621	2272	1,14	0,74
			2,0	283	960	0,49	0,33
		800	0,5		1341	0,73	0,46
	5:1	750	0,5	283	840	0,40	0,28

Tabla 14: Matriz de ensayos de activación junto a resultados obtenidos

	5:1		1,5		520	0,29	0,19
КОН	3:1	750	0,5	283	1180	0,52	0,43
			1,5		1270	0,55	0,49
			2,0		1140	0,60	0,55
	4:1	650	2,0	283	1042	0,43	0,38
		750	0,5	283	1210	0,50	0,44
			1,5		1360	0,57	0,49
			2,0		1440	0,60	0,53
				400	2600	1,27	1,17
	5:1	750	0,5	283	1360	0,60	0,54
			1,5		1000	0,44	0,36

Nota: En amarillo se destacan las variables utilizadas para esta investigación

8.2 Efecto Spillover

El mecanismo de Spillover, ilustrado en la figura 30, consiste en el transporte de especies activas que se adsorben o forman en una superficie inicial, que luego migran a un sustrato final que no absorbe ni forma especies activas en las mismas condiciones.[3]

El mecanismo Spillover de hidrógeno implica tres pasos principales que incluye:

1. La activación de moléculas de hidrógeno gaseoso en un catalizador de metal de transición

- 2. Migración de átomos de hidrógeno del catalizador al sustrato
- 3. La difusión de átomos de hidrógeno en las superficies del sustrato (receptor)

Figura 29: Ilustración del mecanismo "spillover" de hidrógeno [3]

8.3 Equipos utilizados

Figura 30: Horno tubular LINDBERG modelo HTF55342

Figura 31: Rotavapor Heidolph modelo LABOROTA 4002

8.4 Cálculo concentración soluciones madre

[p/p %Ni]	Masa precursora (g)	Concentración dilución (g/ml)	Volumen dilución (ml)	Volumen solución madre (ml)	Volumen solución madre (µl)
0,5	0,01	0,01	1	0,1	100
1	0,03	0,03	1	0,2	200
1,5	0,05	0,05	1	0,3	300
2,5	0,08	0,08	1	0,5	500
5	0,16	0,16	1	1	1000

Tabla 15: Cálculo concentración solución madre Ni

Tabla 16: Cálculo concentración solución madre Cu

[p/p %Cu]	Masa precursora (g)	Concentración dilución (g/ml)	Volumen dilución (ml)	Volumen solución madre (ml)	Volumen solución madre (µl)
0,5	0,01	0,01	1	0,1	100
1	0,02	0,02	1	0,2	200
1,5	0,04	0,04	1	0,3	300
2,5	0,06	0,06	1	0,5	500
5	0,12	0,12	1	1	1000

8.5 Data experimental de análisis termogravimétrico

##Temp./ø	Time/mi	DTA/(uV/m		DTG/(%/mi	Sensit./(æV/m	
С	n	g)	Mass/%	n)	W)	Segment
	0,00E+0					
22,313	0	-4,57E-02	100	-0,34739	1	1
22,449	0,5	-1,79E-02	99,85119	-0,19996	1	1
22,435	1	-1,77E-02	99,76852	-0,18203	1	1
22,364	1,5	-1,75E-02	99,66931	-0,21222	1	1
22,517	2	-1,64E-02	99,58664	-0,14319	1	1
22,577	2,5	-1,46E-02	99,50397	-0,10869	1	1
22,721	3	-1,13E-02	99,48743	-9,25E-03	1	1
23,152	3,5	-5,30E-03	99,48743	6,73E-02	1	1
23,772	4	3,03E-03	99,55357	0,17374	1	1
24,564	4,5	1,38E-02	99,65278	0,24543	1	1
25,83	5	2,71E-02	99,81812	0,31874	1	1
27,512	5,5	4,17E-02	99,96693	0,3061	1	1
			100,0992			
29,491	6	5,83E-02	1	0,22499	1	1

			100,1984			
32,059	6,5	7,54E-02	1	0,14149	1	1
			100,2480			
34,98	7	9,38E-02	2	4,19E-02	1	1
			100,2480			
38,216	7,5	0,11391	2	-4,40E-02	1	1
			100,1818			
41,817	8	0,13529	8	-0,28878	1	1
45,786	8,5	0,16033	99,93386	-0,65883	1	1
49,942	9	0,18884	99,5205	-0,98762	1	1
54,285	9,5	0,22063	98,97487	-1,53465	1	1
58,871	10	0,2593	98,08201	-1,78613	1	1
63,564	10,5	0,30446	97,04034	-2,3855	1	1
68,393	11	0,35952	95,70106	-3,02567	1	1
73,389	11,5	0,42556	94,01455	-3,86629	1	1
78,428	12	0,50623	91,84854	-4,82417	1	1
83,628	12,5	0,6021	89,12037	-6,01132	1	1
88,881	13	0,71166	85,86309	-7,09099	1	1
94,241	13,5	0,81296	82,07672	-7,40431	1	1
99,732	14	0,79902	78,76984	-4,3961	1	1
105,195	14,5	0,57662	77,74471	-0,94122	1	1
110,799	15	0,35391	77,56283	-0,16742	1	1
116,496	15,5	0,17484	77,51323	-6,55E-02	1	1
122,292	16	3,31E-02	77,49669	-2,67E-02	1	1
128,132	16,5	-8,26E-02	77,49669	1,86E-03	1	1
134,117	17	-0,1809	77,51323	6,00E-02	1	1
140,15199	17,5	-0,26661	77,5463	9,04E-02	1	1
146,293	18	-0,344	77,57937	5,12E-02	1	1
152,45799	18,5	-0,41761	77,61243	5,91E-02	1	1
158,612	19	-0,48819	77,62897	3,27E-02	1	1
164,808	19,5	-0,55864	77,67857	7,31E-02	1	1
171,063	20	-0,62872	77,69511	3,39E-02	1	1
177,341	20,5	-0,69829	77,69511	3,06E-02	1	1
183,54601	21	-0,76559	77,71164	1,29E-02	1	1
189,77299	21,5	-0,83421	77,72817	2,34E-02	1	1
195,995	22	-0,90555	77,72817	1,32E-04	1	1
202,198	22,5	-0,98023	77,72817	0,00E+00	1	1
208,338	23	-1,0544	77,72817	0,00E+00	1	1
214,58701	23,5	-1,1311	77,72817	0,00E+00	1	1
220,70399	24	-1,20673	77,72817	-4,23E-10	1	1
226,82001	24,5	-1,28323	77,72817	-7,18E-03	1	1
232,944	25	-1,36018	77,71164	-6,97E-02	1	1
239,03799	25,5	-1,43745	77,66204	-7,58E-02	1	1
245,01801	26	-1,51522	77,62897	-8,39E-02	1	1
251,078	26,5	-1,59217	77,57937	-0,10523	1	1

257,082	27	-1,67019	77,52976	-0,12135	1	1
263	27,5	-1,74802	77,46362	-8,80E-02	1	1
268,91299	28	-1,828	77,43055	-0,10774	1	1
274,83099	28,5	-1,90735	77,38095	-0,11015	1	1
280,69299	29	-1,98663	77,31481	-0,14629	1	1
286,54001	29,5	-2,06718	77,23214	-0,14672	1	1
292,30899	30	-2,14583	77,14947	-0,1717	1	1
298,03	30,5	-2,22215	77,0668	-0,16527	1	1
303,771	31	-2,2962	76,98413	-0,18403	1	1
309,45999	31,5	-2,36836	76,88492	-0,18344	1	1
315,121	32	-2,43856	76,80225	-0,17924	1	1
320,784	32,5	-2,51033	76,70304	-0,22415	1	1
326,409	33	-2,58287	76,5873	-0,20533	1	1
331,979	33,5	-2,65578	76,47156	-0,23911	1	1
337,57101	34	-2,72661	76,35582	-0,2526	1	1
343,06201	34,5	-2,79763	76,24008	-0,24481	1	1
348,59399	35	-2,86872	76,1078	-0,25501	1	1
354,069	35,5	-2,94176	75,99206	-0,26305	1	1
359,51501	36	-3,01518	75,82672	-0,30184	1	1
364,98499	36,5	-3,08941	75,67791	-0,2968	1	1
370,41	37	-3,16416	75,5291	-0,34471	1	1
375,84	37,5	-3,24237	75,36376	-0,38912	1	1
381,23999	38	-3,32165	75,14881	-0,34292	1	1
386,65601	38,5	-3,39892	74,98346	-0,36524	1	1
392,02399	39	-3,48104	74,78505	-0,4576	1	1
397,41299	39,5	-3,56789	74,5205	-0,5096	1	1
402,72101	40	-3,65727	74,28902	-0,50329	1	1
408,07199	40,5	-3,75099	74,02447	-0,60457	1	1
413,35699	41	-3,84876	73,71032	-0,59947	1	1
418,66299	41,5	-3,95233	73,39616	-0,72081	1	1
423,94	42	-4,06491	73,01587	-0,76436	1	1
429,189	42,5	-4,18828	72,61905	-0,84139	1	1
434,44601	43	-4,31159	72,17262	-0,93357	1	1
439,68201	43,5	-4,44474	71,67659	-1,04702	1	1
444,892	44	-4,5929	71,08135	-1,34653	1	1
450,09799	44,5	-4,75576	70,43651	-1,26285	1	1
455,285	45	-4,93016	69,72553	-1,55885	1	1
460,478	45,5	-5,12411	68,91534	-1,71289	1	1
465,67499	46	-5,33187	68,02249	-1,86715	1	1
470,86099	46,5	-5,55534	66,99735	-2,18254	1	1
476,06	47	-5,79086	65,88955	-2,38217	1	1
481,258	47,5	-6,03559	64,59987	-2,70696	1	1
486,452	48	-6,28605	63,19444	-3,01306	1	1
491,59	48,5	-6,53696	61,59061	-3,28786	1	1

496,76501	49	-6,7803	59,88756	-3,57388	1	1
501,87799	49,5	-7,01336	58,03571	-3,89347	1	1
507,08401	50	-7,23014	56,01852	-4,13718	1	1
512,24103	50,5	-7,42264	53,86905	-4,36804	1	1
517,40302	51	-7,59546	51,62037	-4,65113	1	1
522,521	51,5	-7,74728	49,25595	-4,81733	1	1
527,67798	52	-7,8704	46,82539	-5,00196	1	1
532,79498	52,5	-7,96993	44,24603	-5,11218	1	1
537,91602	53	-8,04272	41,65013	-5,22727	1	1
542,99701	53,5	-8,09614	39,0377	-5,27504	1	1
548,11401	54	-8,13563	36,40873	-5,30166	1	1
553,20801	54,5	-8,14206	33,71363	-5,33914	1	1
558,29498	55	-8,12894	31,08465	-5,31725	1	1
563,32001	55,5	-8,10869	28,40608	-5,34119	1	1
568,40302	56	-8,05735	25,76058	-5,33636	1	1
573,41199	56,5	-7,98255	23,04894	-5,20552	1	1
578,495	57	-7,85709	20,50264	-5,15449	1	1
583,51703	57,5	-7,6989	17,97288	-5,01537	1	1
588,51599	58	-7,46131	15,49272	-4,72304	1	1
593,55701	58,5	-7,05372	13,22751	-4,20957	1	1
598,53198	59	-6,24562	11,35912	-2,97136	1	1
603,448	59,5	-4,7374	10,33399	-1,09074	1	1
608,33899	60	-3,4367	10,15211	-0,21078	1	1
613,17902	60,5	-2,75058	10,06944	-0,12925	1	1
618,026	61	-2,41244	10,01984	-9,99E-02	1	1
622,90399	61,5	-2,23975	9,97023	-0,10561	1	1
627,81702	62	-2,14009	9,9041	-0,15787	1	1
632,74298	62,5	-2,06472	9,83796	-9,66E-02	1	1
637,69299	63	-1,98966	9,78836	-0,10751	1	1
642,64502	63,5	-1,89972	9,73875	-9,43E-02	1	1
647,646	64	-1,78543	9,68915	-9,85E-02	1	1
652,60999	64,5	-1,65013	9,63955	-9,45E-02	1	1
657,59198	65	-1,49857	9,60648	-8,81E-02	1	1
662,53101	65,5	-1,34227	9,55688	-6,64E-02	1	1
667,539	66	-1,19399	9,52381	-5,71E-02	1	1
672,47803	66,5	-1,06273	9,49074	-5,84E-02	1	1
677,45697	67	-0,95115	9,45767	-6,64E-02	1	1
682,383	67,5	-0,86386	9,44113	-8,24E-02	1	1
687,32703	68	-0,7975	9,39153	-7,64E-02	1	1
692,276	68,5	-0,74761	9,35847	-6,83E-02	1	1
697,23401	69	-0,70964	9,30886	-8,60E-02	1	1
702,14801	<u>69,</u> 5	-0,68176	9,27579	-7,96E-02	1	1
707,11603	70	-0,65805	9,22619	-8,27E-02	1	1
712,11401	70,5	-0,63944	9,19312	-5,99E-02	1	1

717,06299	71	-0,62374	9,16005	-8,99E-02	1	1
722,04602	71,5	-0,61049	9,11044	-7,56E-02	1	1
727,00897	72	-0,60059	9,07738	-5,64E-02	1	1
731,97601	72,5	-0,58892	9,06084	-8,83E-02	1	1
736,86603	73	-0,57757	9,01124	-7,45E-02	1	1
741,81	73,5	-0,57088	8,97817	-6,80E-02	1	1
746,758	74	-0,56407	8,92857	-9,83E-02	1	1
751,64398	74,5	-0,55883	8,8955	-7,16E-02	1	1
756,58398	75	-0,55328	8,8459	-8,10E-02	1	1
761,46002	75,5	-0,54925	8,81283	-6,17E-02	1	1
766,448	76	-0,54754	8,76322	-7,44E-02	1	1
771,37097	76,5	-0,54477	8,74669	-8,11E-02	1	1
776,31702	77	-0,54237	8,69709	-8,91E-02	1	1
781,28998	77,5	-0,53972	8,64748	-8,16E-02	1	1
786,245	78	-0,5384	8,61442	-5,31E-02	1	1
791,20398	78,5	-0,53733	8,59788	-5,37E-02	1	1
796,14801	79	-0,5372	8,56481	-7,79E-02	1	1
801,11102	79,5	-0,53764	8,51521	-0,11729	1	1
806,146	80	-0,54004	8,44907	-0,10003	1	1
811,164	80,5	-0,54187	8,416	-8,98E-02	1	1
816,216	81	-0,54319	8,34986	-9,88E-02	1	1
821,28601	81,5	-0,54855	8,3168	-0,10363	1	1
826,276	82	-0,54862	8,25066	-0,10865	1	1
831,276	82,5	-0,54723	8,20106	-8,94E-02	1	1
836,29102	83	-0,54698	8,16799	-0,10473	1	1
841,27399	83,5	-0,54452	8,10185	-9,59E-02	1	1
846,198	84	-0,53253	8,06878	-9,26E-02	1	1
851,151	84,5	-0,52849	8,01917	-7,57E-02	1	1
856,18597	85	-0,53493	7,98611	-0,11186	1	1
861,18597	85,5	-0,53587	7,90343	-0,10911	1	1
866,13397	86	-0,54042	7,87037	-9,42E-02	1	1
871,14001	86,5	-0,54464	7,82077	-9,30E-02	1	1
876,164	87	-0,54925	7,77116	-8,67E-02	1	1
881,06799	87,5	-0,54786	7,72156	-0,13436	1	1
885,99799	88	-0,54685	7,65542	-0,13624	1	1
890,4643	88,5	-0,54282	7,61802	-0,13598	1	2
893,85176	89	-0,46942	7,56278	-0,13549	1	2
896,1336	89,5	-0,36631	7,49987	-0,13478	1	2
897,64021	90	-0,27819	7,42928	-0,13388	1	2
898,59651	90,5	-0,21123	7,35975	-0,13281	1	2
899,19307	91	-0,16272	7,29127	-0,13162	1	2
899,55028	91,5	-0,13023	7,23692	-0,13032	1	2
899,76559	92	-0,10834	7,16889	-0,12895	1	2
899,87059	92,5	-9,58E-02	7,10887	-0,12755	1	2

899,9461	93	-9,06E-02	7,04897	-0,12614	1	2
900,06729	93,5	-8,94E-02	6,9802	-0,12476	1	2
900,18462	94	-8,86E-02	6,92675	-0,12343	1	2
900,19403	94,5	-8,36E-02	6,87299	-0,12217	1	2
900,14636	95	-7,92E-02	6,80219	-0,12099	1	2
900,15101	95,5	-8,11E-02	6,75208	-0,11991	1	2
900,16388	96	-8,45E-02	6,70613	-0,11892	1	2
900,17124	96,5	-8,54E-02	6,65322	-0,11803	1	2
900,24172	97	-8,77E-02	6,61151	-0,11724	1	2
900,29371	97,5	-9,04E-02	6,54158	-0,11653	1	2
900,33634	98	-8,90E-02	6,48482	-0,11591	1	2
900,32228	98,5	-8,77E-02	6,42068	-0,11537	1	2
900,31071	99	-8,85E-02	6,35548	-0,11489	1	2
900,33673	99,5	-9,02E-02	6,30251	-0,11447	1	2
900,32486	100	-9,22E-02	6,24687	-0,1141	1	2
900,27942	100,5	-9,28E-02	6,19184	-0,11379	1	2
900,27744	101	-9,42E-02	6,13465	-0,11351	1	2
900,24846	101,5	-9,62E-02	6,09046	-0,11327	1	2
900,22298	102	-9,79E-02	6,04386	-0,11305	1	2
900,221	102,5	-0,1	5,98718	-0,11284	1	2
900,20651	103	-0,1023	5,93136	-0,11265	1	2
900,23398	103,5	-0,10326	5,8624	-0,11246	1	2
900,23901	104	-0,10438	5,78956	-0,11226	1	2
900,21348	104,5	-0,10432	5,74095	-0,11204	1	2
900,18621	105	-0,10363	5,69773	-0,11179	1	2
900,15231	105,5	-0,10426	5,63504	-0,11152	1	2
900,1158	106	-0,10557	5,56648	-0,11122	1	2
900,12029	106,5	-0,10557	5,51156	-0,1109	1	2
900,10003	107	-0,10722	5,45698	-0,11054	1	2
900,08097	107,5	-0,10787	5,40046	-0,11016	1	2
900,06364	108	-0,10841	5,34841	-0,10974	1	2
900,05551	108,5	-0,10995	5,28512	-0,1093	1	2
900,07265	109	-0,11087	5,22057	-0,10883	1	2
900,08149	109,5	-0,11104	5,19538	-0,10834	1	2
900,08483	110	-0,11169	5,13084	-0,10782	1	2
900,07563	110,5	-0,11219	5,06503	-0,10729	1	2
900,04717	111	-0,11253	5,02403	-0,10673	1	2
900,03028	111,5	-0,11256	4,97235	-0,10615	1	2
900,02738	112	-0,11202	4,90403	-0,10555	1	2
899,98607	112,5	-0,11161	4,86419	-0,10494	1	2
899,9548	113	-0,11113	4,81122	-0,10431	1	2
899,93512	113,5	-0,11167	4,75296	-0,10367	1	2
899,922	114	-0,11282	4,70477	-0,10301	1	2
899,91985	114,5	-0,11389	4,66741	-0,10234	1	2

899,93273	115	-0,11485	4,62113	-0,10165	1	2
899,93939	115,5	-0,11503	4,55069	-0,10096	1	2
899,88762	116	-0,1135	4,49449	-0,10025	1	2
899,84803	116,5	-0,11328	4,4375	-9,95E-02	1	2
899,85765	117	-0,11392	4,39391	-9,88E-02	1	2
899,86923	117,5	-0,11544	4,34112	-9,81E-02	1	2
899,84236	118	-0,11759	4,27523	-9,73E-02	1	2
899,81608	118,5	-0,11794	4,25033	-9,66E-02	1	2
899,83396	119	-0,11833	4,21201	-9,58E-02	1	2
899,84129	119,5	-0,11836	4,15671	-9,51E-02	1	2
899,81803	120	-0,11894	4,10831	-9,44E-02	1	2
899,79572	120,5	-0,12028	4,06978	-9,36E-02	1	2
899,80057	121	-0,12118	4,02592	-9,29E-02	1	2
899,80931	121,5	-0,12129	3,96969	-9,22E-02	1	2
899,77813	122	-0,12146	3,91135	-9,15E-02	1	2
899,75849	122,5	-0,12046	3,88184	-9,08E-02	1	2
899,7525	123	-0,12072	3,83882	-9,01E-02	1	2
899,7524	123,5	-0,12227	3,78468	-8,94E-02	1	2
899,75583	124	-0,1235	3,74567	-8,87E-02	1	2
899,76084	124,5	-0,12451	3,70396	-8,81E-02	1	2
899,78535	125	-0,12383	3,6642	-8,74E-02	1	2
899,74576	125,5	-0,12301	3,60745	-8,68E-02	1	2
899,70916	126	-0,12234	3,57127	-8,62E-02	1	2
899,70572	126,5	-0,12247	3,53557	-8,56E-02	1	2
899,6895	127	-0,12278	3,4779	-8,49E-02	1	2
899,66183	127,5	-0,12211	3,43885	-8,43E-02	1	2
899,66626	128	-0,12346	3,41154	-8,37E-02	1	2
899,69729	128,5	-0,12562	3,37575	-8,31E-02	1	2
899,70142	129	-0,12578	3,31981	-8,25E-02	1	2
899,6669	129,5	-0,12516	3,27794	-8,19E-02	1	2
899,63633	130	-0,12535	3,24718	-8,12E-02	1	2
899,63393	130,5	-0,1256	3,18975	-8,06E-02	1	2
899,62552	131	-0,12675	3,14825	-7,99E-02	1	2
899,60967	131,5	-0,12786	3,10584	-7,93E-02	1	2
899,60588	132	-0,12884	3,0742	-7,86E-02	1	2
899,60801	132,5	-0,12919	3,04305	-7,79E-02	1	2
899,60364	133	-0,12929	2,99798	-7,72E-02	1	2
899,59996	133,5	-0,13009	2,95842	-7,65E-02	1	2
899,60126	134	-0,13042	2,9327	-7,58E-02	1	2
899,59846	134,5	-0,1306	2,87863	-7,51E-02	1	2
899,61448	135	-0,13119	2,8405	-7,44E-02	1	2
899,6175	135,5	-0,13143	2,81137	-7,36E-02	1	2
899,59701	136	-0,13126	2,76577	-7,28E-02	1	2
899,59191	136,5	-0,1316	2,72636	-7,21E-02	1	2

1	1					1
899,58977	137	-0,13191	2,69975	-7,13E-02	1	2
899,58219	137,5	-0,13133	2,65791	-7,05E-02	1	2
899,58395	138	-0,13103	2,62957	-6,98E-02	1	2
899,5897	138,5	-0,13084	2,58578	-6,90E-02	1	2
899,57645	139	-0,13055	2,53961	-6,82E-02	1	2
899,56055	139,5	-0,13084	2,52777	-6,74E-02	1	2
899,57996	140	-0,1313	2,48493	-6,66E-02	1	2
899,55753	140,5	-0,1321	2,45641	-6,58E-02	1	2
899,56333	141	-0,13262	2,41808	-6,50E-02	1	2
899,58405	141,5	-0,13272	2,38634	-6,42E-02	1	2
899,5758	142	-0,1322	2,38012	-6,34E-02	1	2
899,56362	142,5	-0,13134	2,36047	-6,25E-02	1	2
899,5659	143	-0,13152	2,30344	-6,17E-02	1	2
899,55999	143,5	-0,13208	2,27111	-6,09E-02	1	2
899,54784	144	-0,13266	2,24861	-6,03E-02	1	2
899,56563	144,5	-0,13243	2,21084	-5,99E-02	1	2
899,5669	145	-0,13187	2,17343	-5,98E-02	1	2
899,52508	145,5	-0,13179	2,14551	-5,94E-02	1	2
899,54571	146	-0,13184	2,10313	-5,81E-02	1	2
899,581	146,5	-0,13404	2,07404	-5,57E-02	1	2
899,6017	147	-0,13463	2,0461	-5,20E-02	1	2
899,589 <mark>92</mark>	147,5	-0,1343	2,02467	-4,77E-02	1	2

8.6 Isotermas de adsorción de nitrógeno

8.6.1 Isotermas de adsorción de nitrógeno para la serie Ni-CA

СА		0,5 Ni-CA		1 NI-CA		1,5 Ni-CA	
presión relativa	Cantidad adsorbida	presión relativa	Cantidad adsorbida	presión relativa	Cantidad adsorbida	presión relativa	Cantidad adsorbida
p/p0	cm3/g	p/p0	cm3/g	p/p0	cm3/g	p/p0	cm3/g
0,00990989	425,711523	0,01054063	418,536555	0,01013713	496,799741	0,01052046	480,041244
0,01998579	459,352143	0,02066289	451,221005	0,02034221	536,115885	0,02066519	518,083865
0,02994576	483,112516	0,03065083	475,03859	0,03025511	564,049823	0,03059544	545,411191
0,03989123	502,709709	0,04066656	495,112235	0,04026447	587,771211	0,04053683	568,45525
0,04971476	519,467909	0,0504131	512,201955	0,0500061	607,858317	0,0503232	588,440358
0,0548088	527,316045	0,07073266	542,279397	0,07034916	643,787725	0,07069674	623,936246
0,05983578	534,668391	0,09073668	566,370749	0,09050024	673,105853	0,0905712	652,45215
0,06489779	541,631421	0,11084847	586,4064	0,11053345	696,850777	0,11074104	676,449265
0,06997308	548,236702	0,13094185	602,809229	0,13072719	716,604028	0,13076541	696,11097
0,07499528	554,371484	0,15118267	616,336392	0,15072182	732,478687	0,15094676	712,350188
0,08011658	560,213825	0,17115553	627,099314	0,17068973	745,226792	0,17088972	725,459727
0,08503737	565,638421	0,19146377	635,882716	0,19080843	755,48969	0,19100575	735,946434
0,0901277	570,847717	0,21134868	642,752924	0,21095844	763,720853	0,21117313	744,514596

1		1	1	1	1	1	1
0,09512884	575,802115	0,23142772	648,358007	0,23089168	770,20795	0,23108264	751,269995
0,10011989	580,399368	0,2513537	652,758752	0,25107478	775,397982	0,25115105	756,685237
0,10520456	584,949542	0,2716145	656,473406	0,27105103	779,525893	0,27123258	761,082099
0,11028427	589,082633	0,29148702	659,383774	0,29107538	782,731261	0,29134616	764,690764
0,11524169	593,054204	0,30166397	660,733561	0,30111271	784,179892	0,30135851	766,239557
0,12023982	596,70056	0,35181407	666,163475	0,35155748	790,247168	0,35157342	772,517468
0,12530998	600,28553	0,40223726	670,633808	0,40183113	794,553484	0,40186458	777,282585
0,13036792	603,580233	0,45259303	674,432324	0,45214474	797,938756	0,45227235	781,270115
0,13529775	606,657342	0,50258034	677,766185	0,50222602	801,111494	0,50230833	784,700543
0,14040984	609,744169	0,55264816	680,761522	0,55199123	803,638935	0,55226091	787,773132
0,14545434	612,516464	0,60271366	683,32266	0,60204982	806,07714	0,60193923	790,602974
0,1504622	615,128505	0,65237728	685,715645	0,65179857	808,130945	0,65166654	793,24501
0,15550139	617,63359	0,70201312	687,937583	0,70173404	810,001578	0,70176761	795,838353
0,16044855	619,945888	0,75219646	690,255196	0,75159262	811,927046	0,75170625	798,266219
0,16548207	622,185997	0,80174079	692,400902	0,80133892	813,74836	0,8015221	800,640575
0,17054267	624,255893	0,85186583	694,784472	0,85144814	815,663338	0,85133418	803,049433
0,17551655	626,198189	0,90218915	697,327952	0,90188462	817,623411	0,90170834	805,745434
0,18060618	628,079342	0,95219558	700,290557	0,95179275	820,165907	0,95174769	808,633993
0,18558006	629,829696	0,99204591	703,262698	0,99177286	822,648593	0,99160807	811,557509
0,19056792	631,400241	0,99726546	703,81706	0,99683894	822,791576	0,9968954	812,138632
0,1956455	632,935295	0,99198841	703,112941	0,99154085	821,950708	0,99155041	811,760483
0,20065832	634,375162	0,95150275	699,674975	0,95117766	819,173064	0,95140469	809,142272
0,20571416	635,73795	0,90144838	696,688129	0,90119757	816,313335	0,90142108	806,364378
0,21068202	637,046355	0,87123269	695,054147	0,87101063	814,77029	0,87125485	804,934453
0,21553857	638,215813	0,84132747	693,408105	0,84109601	813,414982	0,84127615	803,523405
0,22055421	639,354006	0,81135945	691,881057	0,81112277	811,964784	0,81121802	802,196789
0,22558279	640,417654	0,78138428	690,323614	0,78112978	810,653278	0,78132653	800,846673
0,23067364	641,448407	0,75165494	688,765434	0,75134101	809,432575	0,75156965	799,517322
0,23568186	642,412584	0,72172603	687,339352	0,72145346	808,209624	0,72018738	798,058168
0,2407437	643,320929	0,69024674	685,934744	0,69000488	806,811946	0,68999827	796,705057
0,24567227	644,151712	0,66003418	684,53	0,66010895	805,46529	0,66000732	795,298306
0,25077145	644,96487	0,63009277	683,06726	0,63000366	804,085527	0,63005859	793,810184
0,25571968	645,757506	0,6000708	681,462749	0,60008179	802,676746	0,60014753	792,306763
0,26070223	646,521351	0,56999789	680,010826	0,57006592	801,137039	0,57001709	790,798656
0,26572248	647,206065	0,53996968	678,342881	0,54006958	799,570969	0,54006836	789,045523
0,27075671	647,908525	0,51006226	676,165673	0,51012124	797,009059	0,5101807	786,334679
0,27575555	648,537286	0,48001587	673,958502	0,4800354	794,648443	0,47999902	783,890148
0,28080587	649,155967	0,45007202	671,978489	0,45007935	792,365415	0,45010761	781,590263
0,28574189	649,699682	0,42019087	669,90637	0,4201889	790,173667	0,42013421	779,256788
0,29081664	650,25227	0,40006592	668,455308	0,40013958	788,478919	0,40012597	777,626558
0,29582981	650,802805						
0,30084829	651,318454						
0,35106691	655,778873						
0,40131985	659,323946						

0,45167983	662,368943			
0,50167529	665,079853			
0,55159089	667,455468			
0,60147448	669,702095			
0.65116589	671.755875			
0.70119404	673,727023			
0.751058	675.681995			
0.80082727	677,593328			
0.85073507	679.645357			
0.90114417	681.872911			
0,95107269	684,517788			
0,99112019	687,367222			
0,99616643	687,831263			
0,99123342	687,514498			
0,95114345	685,182463			
0,90111036	682,690777			
0,87583193	681,564898			
0,85085666	680,555392			
0,82596034	679,578781			
0,80101487	678,653717			
0,77610209	677,741087			
0,75129266	676,842098			
0,72629266	675,944075			
0,70145778	675,049854			
0,6749784	674,080305			
0,65148693	673,200692			
0,62657945	672,258788			
0,6001601	671,224292			
0,57499639	670,176337			
0,55009766	669,120113			
0,52506023	667,601658			
0,50000244	665,785089			
0,47510336	664,231807			
0,44993611	662,718			
0,42497944	661,224595			
0,40013869	659,667389			
0,37666915	658,094551			
0,35014893	656,144468			
0,32501423	654,079944			
0,30144806	651,865187			
0,2763808	649,118122		 	
0,25142059	645,725395			
0,22634625	641,312116			
0,20003235	635,048951			

0,17632974	627,443338			
0,15133716	616,730376			
0,12621326	602,336051			
0,10108388	583,030483			

2,5 N	li-CA	5 Ni-CA		
presión	Cantidad	presión	Cantidad	
relativa	adsorbida	relativa	adsorbida	
p/p0	cm3/g	p/p0	cm3/g	
0,00992157	483,177912	0,00996617	490,293503	
0,02001686	523,477734	0,02013834	533,76852	
0,03000183	552,168234	0,03009689	563,815093	
0,03998768	576,202256	0,03999635	588,438846	
0,04976767	596,690473	0,04984802	610,267939	
0,07008148	633,367172	0,07023005	649,106128	
0,09007813	663,087578	0,09038273	681,487864	
0,11013739	687,949588	0,11027896	709,112971	
0,13021997	708,463277	0,13039181	733,404711	
0,15040061	725,542746	0,15051104	754,532065	
0,17038357	739,310696	0,17053187	773,04178	
0,19062207	750,522924	0,19068242	789,306105	
0,21059725	759,699197	0,21076006	803,540915	
0,23049525	766,76173	0,230654	816,204213	
0,25065695	772,607723	0,25084012	827,6193	
0,27068449	777,095956	0,27083405	837,887141	
0,29092459	780,980672	0,29086408	847,414742	
0,3010327	782,552589	0,30092316	851,890391	
0,35116441	789,322806	0,35114264	872,621536	
0,40132603	794,331864	0,40156864	892,032513	
0,45171702	798,464784	0,45172673	911,128147	
0,50186643	801,99369	0,50164112	930,664914	
0,55154066	805,097449	0,55161089	951,930669	
0,60153343	807,882924	0,60146191	975,133486	
0,65136161	810,463063	0,65137048	1000,87402	
0,70129178	812,939448	0,70112714	1028,61467	
0,75145657	815,229198	0,75120809	1058,40667	
0,80095416	817,474278	0,80080743	1089,52136	
0,85077491	819,644866	0,85082397	1122,65752	
0,90152765	822,010165	0,90126664	1157,13175	
0,95148275	824,641933	0,95123227	1191,17571	
0,99127165	827,249471	0,99115255	1217,29197	
0,9963599	827,645852	0,99625758	1220,30258	
0,99140223	827,058363	0,99122636	1218,05215	
0,95110506	824,334086	0,95114987	1204,70055	

0,90102595	821,622855	0,90113317	1182,63386
0,87083066	820,060258	0,87095008	1167,36365
0,84089934	818,644471	0,8410047	1150,79415
0,81092264	817,251485	0,81098689	1133,0391
0,78088997	815,923921	0,7810208	1114,17345
0,75118103	814,597413	0,75126953	1095,21298
0,72122763	813,210329	0,72132175	1075,78112
0,69145974	811,817902	0,69145444	1057,05324
0,66140884	810,443493	0,66145714	1038,60493
0,63148129	809,0036	0,63149707	1019,95019
0,60006714	807,490955	0,60172581	1002,36901
0,57008301	805,806213	0,57001465	984,68481
0,54002197	804,091152	0,54015194	968,602157
0,51001099	801,375262	0,5100647	945,584951
0,47996754	798,686149	0,48003052	922,924704
0,44998956	796,204856	0,44989487	908,59626
0,42008301	793,755311	0,42011369	897,513855
0,40016612	791,986136	0,40013355	889,850333

8.6.2 Isotermas de adsorción de nitrógeno para la serie Cu-CA

0,5 C	u-CA	1 Cu-CA		1,5 Cu-CA		2,5 Cu-CA	
presión relativa	Cantidad adsorbida	presión relativa	Cantidad adsorbida	presión relativa	Cantidad adsorbida	presión relativa	Cantidad adsorbida
p/p0	cm3/g	p/p0	cm3/g	p/p0	cm3/g	p/p0	cm3/g
0,0109905	430,488101	0,00982848	455,287569	0,00976229	446,077687	0,00971628	483,627565
0,02104321	463,544133	0,01990668	491,952121	0,0199242	483,217239	0,0198504	523,878275
0,03093665	487,665524	0,02992877	518,201153	0,02987409	509,369896	0,02985126	552,426417
0,04090759	508,155897	0,03987477	539,813546	0,03982893	531,399064	0,03978522	576,059007
0,05070157	525,78327	0,04970254	558,408412	0,04972466	550,490383	0,04958362	596,537934
0,0709061	557,116081	0,06999521	591,228881	0,0700206	583,978993	0,06982655	632,562736
0,09095701	582,684705	0,09007416	617,579561	0,09004608	611,283753	0,08991427	662,202098
0,11113128	603,924171	0,1103133	639,526398	0,11008118	633,844709	0,10997068	686,663205
0,13118006	621,582039	0,13039199	657,193719	0,1301276	652,642445	0,13008575	707,292655
0,1512639	636,068818	0,15053776	671,538764	0,15034717	667,973983	0,15022965	724,268107
0,17119235	647,726563	0,17046198	682,923464	0,17026482	680,441165	0,17014112	737,975553
0,19134273	657,29354	0,19060049	692,284902	0,19045695	690,655265	0,19033536	749,29316
0,21153131	664,988031	0,21074855	699,751319	0,21059034	698,881468	0,2104339	758,414957
0,23139251	671,03078	0,23051242	705,382882	0,23034003	705,301434	0,23040906	765,640613
0,25144926	675,935316	0,25078402	710,105586	0,25075943	710,572239	0,25044935	771,433791
0,27145346	679,936418	0,27097086	713,964323	0,27070415	714,613478	0,27046204	776,173896
0,2914658	683,195708	0,29077028	717,070355	0,29052941	718,104494	0,29049578	780,110556
0,30153726	684,664403	0,30093625	718,186619	0,30065434	719,774665	0,30067629	781,923913

0,35187213	690,404888	0,35129005	723,73522	0,35090549	725,689431	0,35077559	788,705029
0,40195325	694,738414	0,40160779	727,931232	0,40120621	730,202827	0,40128816	793,982978
0,45247642	698,42389	0,45185382	731,183882	0,45187274	734,097647	0,45152126	798,316739
0,50232407	701,618904	0,50218923	734,173922	0,50156664	737,386654	0,50154041	802,156655
0,5523464	704,538528	0,55182913	736,66937	0,55188273	740,349497	0,55150363	805,586736
0,60219727	707,275406	0,60175958	738,874528	0,60146139	743,193148	0,60143698	808,712527
0,65185414	709,872236	0,65166249	741,003238	0,65142248	745,633278	0,6510735	811,70554
0,70190847	712,523638	0,70161157	742,956487	0,70117107	747,942091	0,701328	814,571528
0,75171597	715,229311	0,75149512	744,805452	0,75118079	750,394204	0,75085417	817,212075
0,80157503	718,030762	0,80145007	746,795763	0,80115694	752,762224	0,80097343	819,959001
0,85142887	720,971289	0,85121436	748,652171	0,85089722	755,040335	0,85084325	822,768752
0,9017591	724,039918	0,90191803	750,956264	0,90145087	757,53407	0,90099511	825,709903
0,95177275	727,401853	0,95159125	753,863342	0,95161053	760,769259	0,95152483	829,381746
0,99156494	730,815298	0,99177126	757,43621	0,99141115	763,88391	0,99118355	832,707907
0,99675413	731,42229	0,99676233	757,502424	0,99664178	764,400808	0,99632681	833,235377
0,99193051	731,024695	0,99163425	757,455826	0,99126105	763,772518	0,99122033	832,855677
0,95006348	728,239817	0,95095801	752,934712	0,95097977	761,059261	0,95080293	830,005076
0,90165863	725,473303	0,90097584	749,743314	0,90098997	758,513979	0,90073748	827,09
0,8714557	723,921371	0,87077042	748,003518	0,87073172	757,117573	0,87050444	825,62309
0,84155948	722,496794	0,84084625	746,779248	0,8408742	755,807246	0,84057216	824,209046
0,81155002	721,1	0,81085695	745,480933	0,81087502	754,706585	0,81055555	822,79923
0,78147278	719,752377	0,7808597	744,274031	0,78087985	753,412353	0,78057813	821,403572
0,75183901	718,441495	0,75098652	743,332452	0,75111148	752,105004	0,75091183	819,865355
0,72014385	717,044838	0,72117896	741,89031	0,72121172	750,910394	0,7210018	818,436711
0,69006104	715,684462	0,69139974	740,713879	0,6912727	749,650976	0,69118187	816,984717
0,6599619	714,294075	0,66137346	739,395095	0,66135647	748,337104	0,66115807	815,358309
0,63002197	712,892342	0,63140821	737,895966	0,63137143	746,940202	0,63119463	813,793644
0,60010171	711,469258	0,60010665	736,347524	0,60161342	745,586551	0,60141272	812,049944
0,5700354	709,994964	0,57010177	734,912826	0,56999275	743,967716	0,57146414	810,336428
0,53963944	708,440568	0,54009644	733,36547	0,5396651	742,667173	0,54004517	808,166278
0,50994267	704,668646	0,51007202	729,968761	0,5102113	738,922814	0,51006714	804,039326
0,47994469	701,835767	0,48007324	727,437802	0,48004883	736,229198	0,4800293	801,327106
0,44989275	699,843091	0,45001953	725,354451	0,45005737	734,011852	0,44996547	798,769341
0,4201712	697,882889	0,42012413	723,460825	0,42018164	731,695026	0,42147108	796,363673
0,40007935	696,349172	0,40009155	721,940917	0,4001028	730,121286	0,40145505	794,467484

5 Cu-CA					
presión relativa	Cantidad adsorbida				
p/p0	cm3/g				
0,01070469	415,840245				
0,02083828	448,587648				

0.0308163	472.263068
0,04078796	492,19189
0,05060989	509,469833
0,0709491	539,928225
0,09087754	564,444508
0,11100615	584,788874
0,13112715	601,580107
0,15137221	615,340333
0,17143003	626,48294
0,19147367	635,367255
0,21151398	642,425499
0,23157232	648,140883
0,25217787	652,896316
0,2716246	656,661364
0,29144879	659,663665
0,30174414	661,168793
0,35206945	666,904689
0,40223991	671,25838
0,45259142	675,192023
0,50285147	678,616193
0,55260745	681,540235
0,60258942	684,503287
0,65217482	687,087936
0,70211415	689,673687
0,75199368	692,361755
0,80184117	695,194743
0,85185804	698,03329
0,90206034	701,688881
0,95183226	706,53
0,99236787	711,01481
0,99708637	711,811104
0,99192874	710,731871
0,95004639	707,407381
0,90162867	703,926997
0,87146984	702,096997
0,84154005	700,262252
0,81148095	698,418593
0,78153381	696,711229
0,75181242	695,08265
0,72000244	693,517426
0,69000977	691,96332
0,66014187	690,468783
0,62997047	688,969262
0,59994435	687,402792

0,5701108	686,007457
0,53957837	684,373846
0,5099731	679,165586
0,47994843	676,785234
0,44987612	675,227918
0,41993938	673,945921
0,40011625	672,702693

8.7 Isotermas de adsorción de hidrógeno

8.7.1 Isotermas de adsorción de hidrógeno para la serie Ni-NaOH

CA		0,5 N	li-CA	1 Ni-CA		1,5 Ni-CA	
presión relativa	peso	presión relativa	peso	presión relativa	peso	presión relativa	peso
p/p0	%p/p	p/p0	%p/p	p/p0	%p/p	p/p0	%p/p
0,0068795	0,00531	0,00678041	0,20823403	0,0069346	0,19966672	0,00670049	0,21172136
0,013433	0,08469375	0,01323071	0,31958138	0,01332675	0,30813594	0,01406845	0,34206121
0,0204	0,20201607	0,02084772	0,41784205	0,02091026	0,40563842	0,02086699	0,43236387
0,0264	0,28371786	0,02659404	0,48043576	0,02679794	0,46881062	0,02668782	0,4978564
0,03337	0,36704286	0,03384466	0,54926925	0,0338131	0,53522277	0,03367212	0,56706804
0,068	0,67842946	0,06972695	0,8051762	0,06968026	0,79593045	0,06977833	0,8366002
0,0995	0,88115089	0,10052568	0,96567836	0,10083026	0,9619091	0,10069644	1,0056796
0,1324	1,05258036	0,1339264	1,10756728	0,13458465	1,10797744	0,13371642	1,15309062
0,166	1,19821875	0,16824215	1,23027898	0,16906985	1,23409657	0,16813042	1,28244204
0,1993	1,32519018	0,2020834	1,33524193	0,20287484	1,34117487	0,20204606	1,39320842
0,2328	1,43683125	0,23685181	1,43067633	0,23695837	1,43661952	0,23572709	1,49049003
0,2661	1,53656875	0,27095339	1,51446382	0,26977415	1,51947188	0,2696086	1,57813484
0,2996	1,62730643	0,30341304	1,58717953	0,3037424	1,59757769	0,30364064	1,65874726
0,333	1,71043304	0,33771832	1,65758382	0,33815128	1,66977826	0,33777507	1,73262424
0,3663	1,78726518	0,3718896	1,72176286	0,37137134	1,73431515	0,37100447	1,79920683
0,3995	1,85850625	0,40491057	1,78035133	0,40614327	1,79701195	0,40501787	1,86200877
0,4329	1,9247875	0,43878648	1,83576851	0,43875613	1,85171047	0,43880607	1,92058296
0,4664	1,98773214	0,47254354	1,88745397	0,47251463	1,90509992	0,47255171	1,97532392
0,4995	2,04725	0,50629978	1,93595555	0,50674463	1,95555861	0,50650317	2,02700614
0,533	2,10325089	0,54028477	1,98227079	0,54035607	2,00227244	0,53993497	2,07447227
0,5696	2,15600536	0,57456405	2,02598687	0,57396912	2,04663796	0,57414349	2,12119176
0,59	2,20605446	0,60795733	2,06709723	0,60820436	2,09036213	0,60802748	2,16510515
0,63321	2,25366875	0,64210848	2,1073369	0,6420331	2,13095929	0,64112429	2,20581615
0,6695	2,29902857	0,67537025	2,14444219	0,67555241	2,16934465	0,67502161	2,24611218
0,6995	2,342675	0,70895947	2,18041767	0,70916938	2,20702134	0,70902446	2,28413514
0,7329	2,38487857	0,74277022	2,21477597	0,74293922	2,24233616	0,74255957	2,32107316
0,7664	2,426	0,77674676	2,24778277	0,77746796	2,27742201	0,77651111	2,35584676
0,7993	2,46495714	0,81040856	2,27987898	0,81153301	2,31112226	0,81038521	2,38938416

0,8327	2,50113408	0,84431243	2,31071431	0,84496402	2,34292828	0,84436843	2,42208781
0,8659	2,53710631	0,87817861	2,34070792	0,87784325	2,37327888	0,87820129	2,4536073
0,89951	2,57362232	0,91219054	2,36909566	0,9117072	2,40382151	0,91222369	2,48400345
0,9329	2,60770982	0,94612262	2,39674026	0,94578437	2,43322455	0,94542005	2,51303657

2,5 N	li-CA	5 N i	i-CA
presión relativa	peso	presión relativa	peso
p/p0	%p/p	p/p0	%p/p
0,00666086	0,19885825	0,00700763	0,18091581
0,01338694	0,31453157	0,01347332	0,27516399
0,02084652	0,41131827	0,02085005	0,35762438
0,02667372	0,47480792	0,02671078	0,41272096
0,0337174	0,54254816	0,03381052	0,47176992
0,06951838	0,80275268	0,06966739	0,6966426
0,10108648	0,97064851	0,10076764	0,84027919
0,13422036	1,11492432	0,13413982	0,96671128
0,1683629	1,24065381	0,16837132	1,07637768
0,20231884	1,34905668	0,20227841	1,17113528
0,23583108	1,44429298	0,23596035	1,25483515
0,26988096	1,53108664	0,26970462	1,33026048
0,30337401	1,60852855	0,30401993	1,40027413
0,33732762	1,68101836	0,33776864	1,4633467
0,37104368	1,7475378	0,37098921	1,52108216
0,40489172	1,80888065	0,40495156	1,57582625
0,43875675	1,86561654	0,4388144	1,6271107
0,47246964	1,91906736	0,47232163	1,67431051
0,50619371	1,96969192	0,50645228	1,71956601
0,54032152	2,01718954	0,54016583	1,76153222
0,5740102	2,06193162	0,57435785	1,80266776
0,6077273	2,10389649	0,60828004	1,84142557
0,64151059	2,14396866	0,64245123	1,87875778
0,6756864	2,18361248	0,67525074	1,91283759
0,70893373	2,2195067	0,70923363	1,94704066
0,74297147	2,25376047	0,74271867	1,97927409
0,77671525	2,28761574	0,77660968	2,01035987
0,81167182	2,32047378	0,81042349	2,04076038
0,84475551	2,35094188	0,84432109	2,06987195
0,8780459	2,3805556	0,87802305	2,09784848
0,91193617	2,40901074	0,91188907	2,12484908
0,9451934	2,43632634	0,94595386	2,15127709

8.7.2 Isotermas de adsorción de hidrógeno para la serie Cu-NaOH

0,5 C	u-CA	1 Cı	ı-CA	1,5 C	u-CA	2,5 C	u-CA
presión relativa	peso	presión relativa	peso	presión relativa	peso	presión relativa	peso
p/p0	%p/p	p/p0	%p/p	p/p0	%p/p	p/p0	%p/p
0,00686121	0,20923992	0,00660566	0,19154214	0,00694898	0,19963784	0,00678218	0,07488105
0,01331602	0,32170215	0,0133762	0,30490879	0,01339077	0,30829584	0,01358925	0,12200744
0,02085745	0,42133644	0,02079219	0,39830159	0,02087221	0,40375484	0,01976169	0,1548144
0,02674373	0,48638253	0,02669713	0,46083034	0,02668503	0,46611908	0,02696316	0,18761231
0,03367741	0,55412735	0,03373977	0,52624698	0,03380529	0,5334521	0,03380021	0,2153921
0,06999261	0,82079852	0,06955683	0,77726776	0,06987799	0,78998885	0,06862157	0,32602675
0,10078864	0,98621345	0,10119722	0,93940475	0,10067413	0,95101024	0,10090035	0,40460606
0,13392129	1,13186703	0,13471437	1,0792233	0,13387234	1,09268258	0,13453932	0,47297671
0,16818714	1,25896272	0,16855647	1,1981759	0,16838977	1,21726108	0,16866528	0,53258441
0,20303675	1,37098454	0,20309261	1,30390193	0,20191811	1,32247297	0,20219502	0,58456469
0,23644861	1,46629503	0,23610186	1,39285949	0,23581496	1,41645973	0,23668081	0,6320821
0,27084287	1,55440869	0,27080443	1,47747047	0,26965509	1,50137755	0,2696527	0,67401046
0,30378542	1,63098161	0,30370506	1,55014579	0,30387901	1,57905832	0,30365001	0,71342572
0,33772936	1,70366723	0,33773393	1,61916831	0,3377939	1,64962216	0,33798975	0,75020614
0,37108344	1,76935937	0,37203654	1,68371551	0,37117169	1,71366849	0,37124535	0,78326155
0,40516712	1,83200263	0,40510472	1,74100983	0,40464119	1,77350172	0,40504076	0,81458589
0,43871155	1,88914805	0,43856638	1,79473841	0,43888137	1,83081829	0,43895128	0,8437804
0,47229701	1,94290261	0,47244333	1,84629161	0,47279275	1,88364999	0,47325571	0,87163689
0,50658945	1,99447878	0,50644849	1,89519011	0,50620253	1,93282217	0,50605522	0,89722732
0,54017367	2,04189907	0,54023277	1,9400293	0,53996376	1,97963301	0,54030188	0,92259914
0,57357825	2,08733019	0,57478893	1,98355111	0,5738678	2,02442891	0,57378222	0,94563805
0,60799177	2,13140083	0,60893695	2,02500818	0,60771563	2,06682798	0,60739866	0,9677321
0,64156968	2,17273497	0,64272189	2,06408197	0,64140044	2,10733455	0,64229926	0,99014928
0,67595301	2,21232456	0,6765886	2,1006447	0,67519082	2,14623047	0,67504639	1,01018243
0,70889521	2,24925205	0,71014165	2,13622815	0,70948701	2,18390036	0,71017761	1,03086031
0,74409873	2,28724119	0,74289971	2,16915187	0,74273888	2,21871158	0,74337892	1,04965763
0,77754954	2,32176142	0,77787344	2,20333495	0,77653891	2,25343036	0,77706901	1,06776957
0,81046745	2,35525923	0,81035395	2,23384965	0,81072726	2,2866249	0,8105543	1,08534103
0,84558023	2,38897673	0,84460886	2,26387311	0,84388436	2,31829174	0,84445446	1,10254144
0,87785752	2,41859207	0,87859514	2,29313532	0,87800194	2,34939532	0,87808871	1,11965431
0,91189262	2,44880371	0,91300321	2,32233917	0,91198805	2,37868233	0,91260195	1,13603501
0,9462738	2,47841172	0,94683005	2,34977852	0,94575154	2,40773212	0,94634581	1,15126466

5 Cu-CA					
presión					
relativa	peso				
p/p0	%p/p				
0,00694898	0,18978133				
0,01339077	0,29068361				
0,02087221	0,3810312				
0,02668503	0,44136628				
0,03380529	0,50208746				
0,06987799	0,74612711				
0,10067413	0,90047435				
0,13387234	1,03580041				
0,16838977	1,15118582				
0,20191811	1,25059425				
0,23581496	1,33983372				
0,26965509	1,41922993				
0,30387901	1,49320941				
0,3377939	1,56017163				
0,37117169	1,6204261				
0,40464119	1,67786861				
0,43888137	1,73106662				
0,47279275	1,78200772				
0,50620253	1,82950948				
0,53996376	1,87342383				
0,5738678	1,91611466				
0,60771563	1,95652909				
0,64140044	1,99480001				
0,67519082	2,03283805				
0,70948701	2,06707931				
0,74273888	2,10117053				
0,77653891	2,13474319				
0,81072726	2,16481414				
0,84388436	2,19571698				
0,87800194	2,22420145				
0,91198805	2,25244774				
0,94575154	2,28017535				

8.8 Distribución de tamaños de poros

8.8.1 Distribución de tamaños de poros para la serie Ni-CA

C	Α	0.5 N	li-CA	1 Ni	-CA	1.5 N	li-CA
w	dV/dw	W	dV/dw	w	dV/dw	W	dV/dw
3,6	0	3,6	0	3,6	0	3,6	0

3,68049807	8,7284E-05	3,68049807	9,309E-05	3,68049807	0,00011655	3,68049807	0,00010752
3,76279613	0,00073576	3,76279613	0,0007853	3,76279613	0,0009835	3,76279613	0,00090713
3,84693441	0,00225245	3,84693441	0,00240225	3,84693441	0,00300755	3,84693441	0,00277469
3,93295408	0,00497794	3,93295408	0,00530622	3,93295408	0,00664172	3,93295408	0,00612853
4,0208972	0,00857441	4,0208972	0,00912866	4,0208972	0,01142013	4,0208972	0,01054195
4,11080677	0,01274955	4,11080677	0,01355067	4,11080677	0,01693968	4,11080677	0,01564571
4,20272678	0,01732147	4,20272678	0,0183729	4,20272678	0,02294801	4,20272678	0,02120888
4,29670217	0,02217778	4,29670217	0,02347392	4,29670217	0,02929326	4,29670217	0,02709092
4,3927789	0,02728234	4,3927789	0,02881208	4,3927789	0,03592164	4,3927789	0,03324331
4,49100396	0,03252816	4,49100396	0,03427207	4,49100396	0,04268909	4,49100396	0,03953266
4,5914254	0,03782871	4,5914254	0,03976155	4,5914254	0,04948087	4,5914254	0,04585216
4,69409231	0,04309049	4,69409231	0,04517977	4,69409231	0,05617105	4,69409231	0,05208529
4,79905492	0,04825214	4,79905492	0,05046219	4,79905492	0,0626802	4,79905492	0,05815748
4,90636455	0,05325862	4,90636455	0,05555124	4,90636455	0,06893772	4,90636455	0,06400231
5,01607368	0,05805978	5,01607368	0,06039461	5,01607368	0,07487946	5,01607368	0,06955939
5,12823598	0,06261363	5,12823598	0,06494942	5,12823598	0,08045341	5,12823598	0,07477938
5,24290628	0,06688291	5,24290628	0,06917786	5,24290628	0,08561378	5,24290628	0,07961877
5,36014069	0,07083557	5,36014069	0,07304776	5,36014069	0,09032186	5,36014069	0,08404059
5,47999652	0,07445495	5,47999652	0,07654432	5,47999652	0,09456024	5,47999652	0,0880281
5,60253239	0,07771546	5,60253239	0,07964209	5,60253239	0,09829856	5,60253239	0,09155209
5,72780824	0,08060571	5,72780824	0,0823316	5,72780824	0,10152595	5,72780824	0,09460197
5,85588533	0,08312002	5,85588533	0,08460956	5,85588533	0,10423893	5,85588533	0,0971743
5,98682629	0,08525001	5,98682629	0,08646932	5,98682629	0,10643004	5,98682629	0,09926173
6,12069518	0,08699705	6,12069518	0,08791499	6,12069518	0,10810473	6,12069518	0,10086939
6,25755744	0,0883648	6,25755744	0,088953	6,25755744	0,10927126	6,25755744	0,10200513
6,39748003	0,08935825	6,39748003	0,08959106	6,39748003	0,10993943	6,39748003	0,10267821
6,54053136	0,08998812	6,54053136	0,08984311	6,54053136	0,11012663	6,54053136	0,10290521
6,68678141	0,09026573	6,68678141	0,08972362	6,68678141	0,10985083	6,68678141	0,10270323
6,83630169	0,09020394	6,83630169	0,08924855	6,83630169	0,10913185	6,83630169	0,10209112
6,98916533	0,08982539	6,98916533	0,0884449	6,98916533	0,10800338	6,98916533	0,10110062
7,14544709	0,08914232	7,14544709	0,08732759	7,14544709	0,10648381	7,14544709	0,09974927
7,3052234	0,08817706	7,3052234	0,08592286	7,3052234	0,10460592	7,3052234	0,09806789
7,4685724	0,08695354	7,4685724	0,08425884	7,4685724	0,10240502	7,4685724	0,09608943
7,63557397	0,08549184	7,63557397	0,08235896	7,63557397	0,09991035	7,63557397	0,09384134
7,8063098	0,08381716	7,8063098	0,08025268	7,8063098	0,09715925	7,8063098	0,09135812
7,98086338	0,08195411	7,98086338	0,0779687	7,98086338	0,0941881	7,98086338	0,08867334
8,15932008	0,07992427	8,15932008	0,07553224	8,15932008	0,09102893	8,15932008	0,08581648
8,34176717	0,07776089	8,34176717	0,07298135	8,34176717	0,08773073	8,34176717	0,08283209
8,52829389	0,07548148	8,52829389	0,07033669	8,52829389	0,08431978	8,52829389	0,07974424
8,71899145	0,07311323	8,71899145	0,06762919	8,71899145	0,08083603	8,71899145	0,07658914
8,91395311	0,07068536	8,91395311	0,06489193	8,91395311	0,0773217	8,91395311	0,07340546
9,11327423	0,06821954	9,11327423	0,06214942	9,11327423	0,07380856	9,11327423	0,07022184
9,31705229	0,06574203	9,31705229	0,05943117	9,31705229	0,07033422	9,31705229	0,06707278
9,52538694	0,06327887	9,52538694	0,05676622	9,52538694	0,06693522	9,52538694	0,06399217

9,73838007	0,0608524	9,73838007	0,05417947	9,73838007	0,06364324	9,73838007	0,06100911
9,95613586	0,05848767	9,95613586	0,05169849	9,95613586	0,06049225	9,95613586	0,05815578
10,1787608	0,05620801	10,1787608	0,04934876	10,1787608	0,05751365	10,1787608	0,05546191
10,4063637	0,05403589	10,4063637	0,04715443	10,4063637	0,05473684	10,4063637	0,05295563
10,639056	0,05199258	10,639056	0,04513816	10,639056	0,05219035	10,639056	0,05066343
10,8769514	0,05009925	10,8769514	0,04332197	10,8769514	0,04990032	10,8769514	0,04861082
11,1201663	0,04837263	11,1201663	0,04172346	11,1201663	0,04788882	11,1201663	0,04681832
11,3688196	0,0468295	11,3688196	0,04036017	11,3688196	0,04617813	11,3688196	0,04530646
11,623033	0,04548231	11,623033	0,03924498	11,623033	0,04478426	11,623033	0,04409019
11,8829307	0,04434529	11,8829307	0,03839238	11,8829307	0,04372578	11,8829307	0,04318644
12,1486399	0,04343112	12,1486399	0,03781573	12,1486399	0,04301954	12,1486399	0,04261082
12,4202904	0,04275067	12,4202904	0,03752601	12,4202904	0,04267952	12,4202904	0,0423761
12,6980153	0,0423143	12,6980153	0,037535	12,6980153	0,04271994	12,6980153	0,04249599
12,9819502	0,04212903	12,9819502	0,03785111	12,9819502	0,04315102	12,9819502	0,04298031
13,2722341	0,04221132	13,2722341	0,03849632	13,2722341	0,04400063	13,2722341	0,04385508
13,5690089	0,04250802	13,5690089	0,03940763	13,5690089	0,04519055	13,5690089	0,04504739
13,8724197	0,04305329	13,8724197	0,04063217	13,8724197	0,04678125	13,8724197	0,04661312
14,182615	0,04380575	14,182615	0,0421219	14,182615	0,04871325	14,182615	0,04849679
14,4997465	0,04469389	14,4997465	0,04378718	14,4997465	0,05087416	14,4997465	0,05059386
14,8239691	0,04569285	14,8239691	0,04560109	14,8239691	0,053231	14,8239691	0,05287348
15,1554416	0,04672047	15,1554416	0,04745847	15,1554416	0,0556512	15,1554416	0,05521286
15,494326	0,04768988	15,494326	0,04924671	15,494326	0,05799371	15,494326	0,05747965
15,8407881	0,04852618	15,8407881	0,05086916	15,8407881	0,0601371	15,8407881	0,05956052
16,1949972	0,04912635	16,1949972	0,05218858	16,1949972	0,06191171	16,1949972	0,06129246
16,5571267	0,04939815	16,5571267	0,05308438	16,5571267	0,0631682	16,5571267	0,06253168
16,9273535	0,04924502	16,9273535	0,05343608	16,9273535	0,06375724	16,9273535	0,06313371
17,3058589	0,04865762	17,3058589	0,05325778	17,3058589	0,06369285	17,3058589	0,06310884
17,6928279	0,04752981	17,6928279	0,05242206	17,6928279	0,06281724	17,6928279	0,06230371
18,0884497	0,04585145	18,0884497	0,05094521	18,0884497	0,06114701	18,0884497	0,06073164
18,4929178	0,04367233	18,4929178	0,0488936	18,4929178	0,05876236	18,4929178	0,05846676
18,9064301	0,04097175	18,9064301	0,04627114	18,9064301	0,05566481	18,9064301	0,05550846
19,3291888	0,0378429	19,3291888	0,04317888	19,3291888	0,05197907	19,3291888	0,0519735
19,7614005	0,03438865	19,7614005	0,03972375	19,7614005	0,04783704	19,7614005	0,04798643
20,2032768	0,03070276	20,2032768	0,03600369	20,2032768	0,04335952	20,2032768	0,04366129
20,6550337	0,02692515	20,6550337	0,03215212	20,6550337	0,03871067	20,6550337	0,03915603
21,1168922	0,02318281	21,1168922	0,02829031	21,1168922	0,03403953	21,1168922	0,03461442
21,589078	0,01960205	21,589078	0,02453585	21,589078	0,02948952	21,589078	0,03017638
22,0718222	0,01622467	22,0718222	0,02093933	22,0718222	0,02512166	22,0718222	0,02590375
22,5653609	0,01317935	22,5653609	0,0176153	22,5653609	0,02107453	22,5653609	0,02193337
23,0699353	0,01049198	23,0699353	0,01459977	23,0699353	0,01739111	23,0699353	0,01830957
23,5857924	0,0081605	23,5857924	0,01190418	23,5857924	0,01408646	23,5857924	0,01504801
24,1131843	0,00620943	24,1131843	0,00956104	24,1131843	0,01119916	24,1131843	0,0121886
24,6523689	0,00460812	24,6523689	0,00755582	24,6523689	0,00871454	24,6523689	0,00971658
25,2036101	0,00332386	25,2036101	0,00587049	25,2036101	0,0066141	25,2036101	0,00761316

25,7671773	0,0023248	25,7671773	0,00448657	25,7671773	0,00487871	25,7671773	0,00585892
26,3433462	0,00156772	26,3433462	0,00337268	26,3433462	0,00347562	26,3433462	0,00441994
26,9323986	0,00101243	26,9323986	0,00249867	26,9323986	0,00237303	26,9323986	0,00326357
27,5346226	0,00061939	27,5346226	0,00183182	27,5346226	0,00153748	27,5346226	0,00235426
28,1503126	0,00036018	28,1503126	0,00133911	28,1503126	0,00092548	28,1503126	0,0016557
28,7797698	0,00019708	28,7797698	0,00098777	28,7797698	0,00050602	28,7797698	0,0011322
29,423302	0,00010753	29,423302	0,00074926	29,423302	0,00023974	29,423302	0,00075227
30,0812239	7,3609E-05	30,0812239	0,00059927	30,0812239	8,9188E-05	30,0812239	0,00048867
30,7538574	7,5853E-05	30,7538574	0,00051321	30,7538574	2,077E-05	30,7538574	0,00031418
31,4415314	0,00010284	31,4415314	0,00047302	31,4415314	0	31,4415314	0,00020793
32,1445821	0,00014471	32,1445821	0,00046307	32,1445821	0	32,1445821	0,0001516
32,8633535	0,00019294	32,8633535	0,00046977	32,8633535	0	32,8633535	0,000129
33,5981969	0,00024234	33,5981969	0,00048453	33,5981969	0	33,5981969	0,00012889
34,349472	0,00028829	34,349472	0,00049984	34,349472	0	34,349472	0,00014128
35,1175459	0,00032705	35,1175459	0,0005103	35,1175459	0	35,1175459	0,00015853
35,9027945	0,00035746	35,9027945	0,00051535	35,9027945	0	35,9027945	0,00017824
36,7056016	0,00037645	36,7056016	0,00051105	36,7056016	0	36,7056016	0,00019455
37,52636	0,00038344	37,52636	0,0004979	37,52636	0	37,52636	0,00020641
38,365471	0,00037903	38,365471	0,00047699	38,365471	0	38,365471	0,00021357
39,223345	0,00036284	39,223345	0,00044879	39,223345	0	39,223345	0,00021523
40,1004016	0,00033722	40,1004016	0,0004153	40,1004016	0	40,1004016	0,00021232
40,9970696	0,0003045	40,9970696	0,00037845	40,9970696	0	40,9970696	0,00020582
41,9137877	0,00026758	41,9137877	0,00034049	41,9137877	0	41,9137877	0,00019697
42,8510041	0,00022798	42,8510041	0,00030235	42,8510041	0	42,8510041	0,00018649
43,8091772	0,00018977	43,8091772	0,00026699	43,8091772	0	43,8091772	0,00017621
44,7887756	0,00015445	44,7887756	0,00023538	44,7887756	0	44,7887756	0,00016688
45,7902784	0,0001227	45,7902784	0,00020769	45,7902784	0	45,7902784	0,00015869
46,8141754	9,6015E-05	46,8141754	0,00018497	46,8141754	0	46,8141754	0,00015243
47,8609673	7,4677E-05	47,8609673	0,00016701	47,8609673	0	47,8609673	0,00014805
48,9311661	5,8603E-05	48,9311661	0,00015349	48,9311661	0	48,9311661	0,0001454
50,0252951	4,7931E-05	50,0252951	0,00014418	50,0252951	0	50,0252951	0,0001444
51,1438895	4,1897E-05	51,1438895	0,00013848	51,1438895	0	51,1438895	0,00014462
52,2874963	3,9794E-05	52,2874963	0,00013581	52,2874963	0	52,2874963	0,00014569
53,4566748	4,1168E-05	53,4566748	0,00013562	53,4566748	0	53,4566748	0,00014721
54,6519968	4,4873E-05	54,6519968	0,00013723	54,6519968	0	54,6519968	0,00014899
55,8740469	5,091E-05	55,8740469	0,00014012	55,8740469	0	55,8740469	0,0001506
57,1234228	5,8146E-05	57,1234228	0,00014367	57,1234228	0	57,1234228	0,00015187
58,4007354	6,6034E-05	58,4007354	0,00014744	58,4007354	0	58,4007354	0,0001527
59,7066094	7,345E-05	59,7066094	0,00015086	59,7066094	0	59,7066094	0,00015291
61,0416836	8,0284E-05	61,0416836	0,00015362	61,0416836	0	61,0416836	0,00015244
62,4066108	8,6377E-05	62,4066108	0,00015551	62,4066108	0	62,4066108	0,00015126
63,8020585	9,1613E-05	63,8020585	0,00015631	63,8020585	0	63,8020585	0,0001493
65,2287092	9,5721E-05	65,2287092	0,00015602	65,2287092	0	65,2287092	0,00014657
66,6872607	9,8479E-05	66,6872607	0,00015466	66,6872607	0	66,6872607	0,00014306

68,1784262	9,9578E-05	68,1784262	0,00015229	68,1784262	0	68,1784262	0,00013875
69,7029351	9,9574E-05	69,7029351	0,00014909	69,7029351	0	69,7029351	0,00013386
71,2615328	9,7971E-05	71,2615328	0,00014516	71,2615328	0	71,2615328	0,00012833
72,8549817	9,5409E-05	72,8549817	0,00014065	72,8549817	0	72,8549817	0,00012235
74,484061	9,2142E-05	74,484061	0,00013576	74,484061	0	74,484061	0,00011613
76,1495675	8,8804E-05	76,1495675	0,00013062	76,1495675	0	76,1495675	0,00010979
77,8523156	8,5316E-05	77,8523156	0,0001254	77,8523156	0	77,8523156	0,00010358
79,5931382	8,1663E-05	79,5931382	0,00012027	79,5931382	0	79,5931382	9,7695E-05
81,3728866	7,7822E-05	81,3728866	0,00011536	81,3728866	0	81,3728866	9,2315E-05
83,1924312	7,3957E-05	83,1924312	0,00011076	83,1924312	0	83,1924312	8,7548E-05
85,0526618	7,0239E-05	85,0526618	0,00010651	85,0526618	0	85,0526618	8,3474E-05
86,9544883	6,7061E-05	86,9544883	0,00010269	86,9544883	0	86,9544883	8,0162E-05
88,8988407	6,4229E-05	88,8988407	9,9162E-05	88,8988407	0	88,8988407	7,7426E-05
90,8866699	6,247E-05	90,8866699	9,5981E-05	90,8866699	4,378E-10	90,8866699	7,5343E-05
92,9189482	6,1534E-05	92,9189482	9,3024E-05	92,9189482	0	92,9189482	7,3734E-05
94,9966693	6,1027E-05	94,9966693	9,0139E-05	94,9966693	1,8228E-08	94,9966693	7,2385E-05
97,1208495	6,0768E-05	97,1208495	8,7226E-05	97,1208495	6,6636E-08	97,1208495	7,1157E-05
99,2925276	6,0236E-05	99,2925276	8,4118E-05	99,2925276	2,592E-07	99,2925276	6,9811E-05
101,512766	5,9036E-05	101,512766	8,0682E-05	101,512766	6,6234E-07	101,512766	6,8157E-05
103,78265	5,6827E-05	103,78265	7,6803E-05	103,78265	1,3283E-06	103,78265	6,6025E-05
106,103289	5,3586E-05	106,103289	7,2454E-05	106,103289	2,1367E-06	106,103289	6,3351E-05
108,47582	4,9326E-05	108,47582	6,7617E-05	108,47582	2,9778E-06	108,47582	6,0085E-05
110,901402	4,422E-05	110,901402	6,2297E-05	110,901402	3,7456E-06	110,901402	5,6204E-05
113,381221	3,8589E-05	113,381221	5,6619E-05	113,381221	4,3872E-06	113,381221	5,1828E-05
115,91649	3,2732E-05	115,91649	5,0586E-05	115,91649	4,8011E-06	115,91649	4,6938E-05
118,50845	2,6936E-05	118,50845	4,432E-05	118,50845	4,9442E-06	118,50845	4,1655E-05
121,158367	2,1407E-05	121,158367	3,7971E-05	121,158367	4,8185E-06	121,158367	3,6132E-05
123,867538	1,6395E-05	123,867538	3,1638E-05	123,867538	4,3848E-06	123,867538	3,0467E-05
126,637287	1,1998E-05	126,637287	2,549E-05	126,637287	3,6908E-06	126,637287	2,4839E-05
129,46897	8,2904E-06	129,46897	1,9691E-05	129,46897	2,8135E-06	129,46897	1,9424E-05
132,36397	5,3298E-06	132,36397	1,4397E-05	132,36397	1,844E-06	132,36397	1,4391E-05
135,323705	3,1151E-06	135,323705	9,7913E-06	135,323705	9,9265E-07	135,323705	9,938E-06
138,349621	1,6277E-06	138,349621	6,0295E-06	138,349621	4,2811E-07	138,349621	6,2365E-06
141,443198	7,2212E-07	141,443198	3,2953E-06	141,443198	1,3425E-07	141,443198	3,4991E-06
144,605949	2,9122E-07	144,605949	1,3121E-06	144,605949	5,3455E-08	144,605949	1,4684E-06
147,839421	8,2711E-08	147,839421	3,5364E-07	147,839421	1,4407E-08	147,839421	4,5708E-07
151,145196	7,9203E-09	151,145196	0	151,145196	0	151,145196	3,3928E-08
154,524889	1,4278E-07	154,524889	1,311E-10	154,524889	9,3783E-11	154,524889	2,1187E-08
157,980155	4,1274E-07	157,980155	7,3322E-08	157,980155	5,2451E-08	157,980155	5,5735E-08
161,512682	1,1371E-06	161,512682	4,7655E-07	161,512682	3,4203E-07	161,512682	3,266E-07
165,124199	2,5673E-06	165,124199	1,4732E-06	165,124199	1,0536E-06	165,124199	1,0243E-06
168,816471	4,9228E-06	168,816471	3,4083E-06	168,816471	2,4274E-06	168,816471	2,4596E-06
172,591304	8,0809E-06	172,591304	6,1697E-06	172,591304	4,3469E-06	172,591304	4,5403E-06
176,450545	1,2148E-05	176,450545	1,025E-05	176,450545	7,1467E-06	176,450545	7,8238E-06

180,396081	1,7048E-05	180,396081	1,5603E-05	180,396081	1,076E-05	180,396081	1,2278E-05
184,429841	2,2601E-05	184,429841	2,2025E-05	184,429841	1,5025E-05	184,429841	1,7728E-05
188,553798	2,8784E-05	188,553798	2,9533E-05	188,553798	1,992E-05	188,553798	2,4197E-05
192,76997	3,5397E-05	192,76997	3,7894E-05	192,76997	2,5267E-05	192,76997	3,1479E-05
197,080417	4,2211E-05	197,080417	4,6815E-05	197,080417	3,0859E-05	197,080417	3,9312E-05
201,487249	4,905E-05	201,487249	5,6083E-05	201,487249	3,6537E-05	201,487249	4,7506E-05
205,99262	5,5636E-05	205,99262	6,531E-05	205,99262	4,2053E-05	205,99262	5,5706E-05
210,598733	6,1705E-05	210,598733	7,4123E-05	210,598733	4,7168E-05	210,598733	6,3565E-05
215,307842	6,7046E-05	215,307842	8,2251E-05	215,307842	5,1685E-05	215,307842	7,0812E-05
220,122249	7,1176E-05	220,122249	8,8925E-05	220,122249	5,5233E-05	220,122249	7,6769E-05
225,044309	7,3982E-05	225,044309	9,4064E-05	225,044309	5,7682E-05	225,044309	8,1292E-05
230,07643	7,4955E-05	230,07643	9,689E-05	230,07643	5,8641E-05	230,07643	8,3683E-05
235,221071	7,4046E-05	235,221071	9,7198E-05	235,221071	5,8076E-05	235,221071	8,3819E-05
240,48075	7,0688E-05	240,48075	9,4172E-05	240,48075	5,5551E-05	240,48075	8,0943E-05
245,858038	6,5093E-05	245,858038	8,7926E-05	245,858038	5,1234E-05	245,858038	7,5262E-05
251,355565	5,7551E-05	251,355565	7,8745E-05	251,355565	4,5358E-05	251,355565	6,7098E-05
256,97602	4,8285E-05	256,97602	6,6802E-05	256,97602	3,8102E-05	256,97602	5,6684E-05
262,722152	3,7726E-05	262,722152	5,2686E-05	262,722152	2,9803E-05	262,722152	4,454E-05
268,59677	2,6457E-05	268,59677	3,7223E-05	268,59677	2,092E-05	268,59677	3,1372E-05
274,602748	1,6718E-05	274,602748	2,3671E-05	274,602748	1,323E-05	274,602748	1,9899E-05
280,743024	6,8987E-06	280,743024	9,7678E-06	280,743024	5,4591E-06	280,743024	8,2111E-06
287,020599	1,9994E-06	287,020599	2,8309E-06	287,020599	1,5821E-06	287,020599	2,3797E-06
293,438545	0	293,438545	0	293,438545	0	293,438545	0
293,438545	0	293,438545	0	293,438545	0		

2.5 Ni-N	aOH-CA	5 Ni-NaOH-CA		
w	dV/dw	W	dV/dw	
3,6	0	3,6	0	
3,68049807	0,00010358	3,68049807	8,454E-05	
3,76279613	0,0008738	3,76279613	0,00071296	
3,84693441	0,00267288	3,84693441	0,00218163	
3,93295408	0,00590386	3,93295408	0,00481988	
4,0208972	0,01015627	4,0208972	0,00829593	
4,11080677	0,015075	4,11080677	0,01232279	
4,20272678	0,02043806	4,20272678	0,01672143	
4,29670217	0,02611114	4,29670217	0,02138355	
4,3927789	0,03204778	4,3927789	0,02627248	
4,49100396	0,03812042	4,49100396	0,03128517	
4,5914254	0,04422716	4,5914254	0,03633921	
4,69409231	0,05025647	4,69409231	0,04134443	
4,79905492	0,05613743	4,79905492	0,04624334	
4,90636455	0,0618069	4,90636455	0,05098464	
5,01607368	0,06720747	5,01607368	0,05552167	
5,12823598	0,07229229	5,12823598	0,05981614	

5,24290628	0,07702008	5,24290628	0,06383422	
5,36014069	0,08135579	5,36014069	0,06754713	
5,47999652	0,08528337	5,47999652	0,07094112	
5,60253239	0,08877522	5,60253239	0,07399344	
5,72780824	0,09182111	5,72780824	0,07669507	
5,85588533	0,09441747	5,85588533	0,07904229	
5,98682629	0,09655716	5,98682629	0,08102865	
6,12069518	0,09824461	6,12069518	0,08265684	
6,25755744	0,09948678	6,25755744	0,08393158	
6,39748003	0,10029201	6,39748003	0,08485873	
6,54053136	0,10067537	6,54053136	0,08544949	
6,68678141	0,1006525	6,68678141	0,08571554	
6,83630169	0,10024066	6,83630169	0,0856699	
6,98916533	0,09946915	6,98916533	0,08533503	
7,14544709	0,09835409	7,14544709	0,08472312	
7,3052234	0,09692396	7,3052234	0,0838561	
7,4685724	0,09520939	7,4685724	0,0827576	
7,63557397	0,09323579	7,63557397	0,0814472	
7,8063098	0,09103542	7,8063098	0,07994991	
7,98086338	0,08863966	7,98086338	0,07829009	
8,15932008	0,08607619	8,15932008	0,07648931	
8,34176717	0,08338676	8,34176717	0,07457988	
8,52829389	0,08059416	8,52829389	0,07257975	
8,71899145	0,0777324	8,71899145	0,0705153	
8,91395311	0,07483766	8,91395311	0,06841456	
9,11327423	0,07193694	9,11327423	0,06629853	
9,31705229	0,06906254	9,31705229	0,06419224	
9,52538694	0,06624596	9,52538694	0,06212015	
9,73838007	0,06351444	9,73838007	0,06010341	
9,95613586	0,06089759	9,95613586	0,05816507	
10,1787608	0,05842276	10,1787608	0,05632636	
10,4063637	0,05611578	10,4063637	0,05460738	
10,639056	0,05400046	10,639056	0,05302636	
10,8769514	0,05210018	10,8769514	0,05160145	
11,1201663	0,05043341	11,1201663	0,05034683	
11,3688196	0,04901847	11,3688196	0,04927659	
11,623033	0,04786888	11,623033	0,04840116	
11,8829307	0,04699986	11,8829307	0,04773225	
12,1486399	0,0464247	12,1486399	0,04728018	
12,4202904	0,04615467	12,4202904	0,04705368	
12,6980153	0,04619995	12,6980153	0,0470608	
12,9819502	0,04656717	12,9819502	0,04730683	
13,2722341	0,0472765	13,2722341	0,04780623	
13,5690089	0,04826038	13,5690089	0,04851067	
1				
---	------------	------------	------------	------------
	13,8724197	0,04956418	13,8724197	0,04945179
	14,182615	0,05113605	14,182615	0,05059231
	14,4997465	0,05288217	14,4997465	0,05186562
	14,8239691	0,05477265	14,8239691	0,05324991
	15,1554416	0,05669777	15,1554416	0,05466769
	15,494326	0,05854307	15,494326	0,05603748
	15,8407881	0,0602093	15,8407881	0,0572888
	16,1949972	0,0615639	16,1949972	0,05832589
	16,5571267	0,06248982	16,5571267	0,05906376
	16,9273535	0,06287052	16,9273535	0,05941786
	17,3058589	0,06270847	17,3058589	0,05938129
	17,6928279	0,06188207	17,6928279	0,05886686
	18,0884497	0,06039661	18,0884497	0,05787078
	18,4929178	0,0583071	18,4929178	0,05642371
	18,9064301	0,05560872	18,9064301	0,05451643
	19,3291888	0,05239181	19,3291888	0,05220449
	19,7614005	0,04875407	19,7614005	0,0495504
	20,2032768	0,04478505	20,2032768	0,04661151
	20,6550337	0,04061165	20,6550337	0,0434752
	21,1168922	0,03635061	21,1168922	0,0402227
	21,589078	0,03211763	21,589078	0,03693648
	22,0718222	0,02798219	22,0718222	0,03367686
	22,5653609	0,02405732	22,5653609	0,03052514
	23,0699353	0,0203977	23,0699353	0,02753059
	23,5857924	0,01703401	23,5857924	0,02472644
	24,1131843	0,01401431	24,1131843	0,02215539
	24,6523689	0,0113429	24,6523689	0,01983215
	25,2036101	0,00901779	25,2036101	0,01776613
	25,7671773	0,00703478	25,7671773	0,01596426
	26,3433462	0,00537112	26,3433462	0,01441996
	26,9323986	0,00400395	26,9323986	0,01312524
	27,5346226	0,00290498	27,5346226	0,01206652
	28,1503126	0,00203835	28,1503126	0,01121649
	28,7797698	0,00137369	28,7797698	0,0105591
	29,423302	0,0008789	29,423302	0,01006847
	30,0812239	0,00052505	30,0812239	0,00971969
	30,7538574	0,00028439	30,7538574	0,00949035
	31,4415314	0,00013309	31,4415314	0,00935769
	32,1445821	4,973E-05	32,1445821	0,0093011
	32,8633535	1,504E-05	32,8633535	0,00930184
	33,5981969	1,3712E-05	33,5981969	0,00934441
	34,349472	3,2113E-05	34,349472	0,00941466
	35,1175459	6,0093E-05	35,1175459	0,00949996
	35,9027945	9,3648E-05	35,9027945	0,00959146

		1	
36,7056016	0,00012541	36,7056016	0,00967843
37,52636	0,00015291	37,52636	0,00975394
38,365471	0,00017487	38,365471	0,00981279
39,223345	0,0001893	39,223345	0,00984933
40,1004016	0,00019677	40,1004016	0,00986104
40,9970696	0,00019797	40,9970696	0,00984617
41,9137877	0,00019383	41,9137877	0,00980298
42,8510041	0,00018565	42,8510041	0,00973552
43,8091772	0,00017497	43,8091772	0,00964253
44,7887756	0,00016298	44,7887756	0,00952754
45,7902784	0,00015047	45,7902784	0,00939372
46,8141754	0,00013857	46,8141754	0,00924415
47,8609673	0,00012781	47,8609673	0,00908171
48,9311661	0,00011847	48,9311661	0,00890846
50,0252951	0,00011094	50,0252951	0,00872675
51,1438895	0,00010513	51,1438895	0,00853722
52,2874963	0,00010091	52,2874963	0,00834044
53,4566748	9,8165E-05	53,4566748	0,00813693
54,6519968	9,6568E-05	54,6519968	0,00792668
55,8740469	9,5982E-05	55,8740469	0,00771011
57,1234228	9,6116E-05	57,1234228	0,00748708
58,4007354	9,6707E-05	58,4007354	0,00725819
59,7066094	9,7507E-05	59,7066094	0,00702313
61,0416836	9,8297E-05	61,0416836	0,00678282
62,4066108	9,8887E-05	62,4066108	0,00653859
63,8020585	9,9099E-05	63,8020585	0,00629144
65,2287092	9,8792E-05	65,2287092	0,00604364
66,6872607	9,7846E-05	66,6872607	0,00579729
68,1784262	9,6139E-05	68,1784262	0,00555458
69,7029351	9,3802E-05	69,7029351	0,00531664
71,2615328	9,069E-05	71,2615328	0,00508582
72,8549817	8,6917E-05	72,8549817	0,00486304
74,484061	8,2668E-05	74,484061	0,00464876
76,1495675	7,8019E-05	76,1495675	0,00444381
77,8523156	7,32E-05	77,8523156	0,00424828
79,5931382	6,8406E-05	79,5931382	0,00406204
81,3728866	6,3821E-05	81,3728866	0,00388501
83,1924312	5,9573E-05	83,1924312	0,0037166
85,0526618	5,5769E-05	85,0526618	0,00355619
86,9544883	5,2499E-05	86,9544883	0,00340321
88,8988407	4,9661E-05	88,8988407	0,00325604
90,8866699	4,7343E-05	90,8866699	0,00311428
92,9189482	4,5444E-05	92,9189482	0,00297645
94,9966693	4,3831E-05	94,9966693	0,0028411

1				
	97,1208495	4,2427E-05	97,1208495	0,00270702
	99,2925276	4,1077E-05	99,2925276	0,0025728
	101,512766	3,9653E-05	101,512766	0,00243736
	103,78265	3,8045E-05	103,78265	0,00229977
	106,103289	3,6202E-05	106,103289	0,00215991
	108,47582	3,4085E-05	108,47582	0,00201778
	110,901402	3,1672E-05	110,901402	0,00187352
	113,381221	2,9025E-05	113,381221	0,00172861
	115,91649	2,6126E-05	115,91649	0,00158317
	118,50845	2,3038E-05	118,50845	0,0014386
	121,158367	1,9848E-05	121,158367	0,00129661
	123,867538	1,6606E-05	123,867538	0,00115835
	126,637287	1,3417E-05	126,637287	0,00102577
	129,46897	1,0381E-05	129,46897	0,00090077
	132,36397	7,594E-06	132,36397	0,00078517
	135,323705	5,1617E-06	135,323705	0,00068108
	138,349621	3,1753E-06	138,349621	0,00059035
	141,443198	1,723E-06	141,443198	0,00051448
	144,605949	6,9029E-07	144,605949	0,00045358
	147,839421	1,9087E-07	147,839421	0,0004089
	151,145196	2,2125E-08	151,145196	0,00038022
	154,524889	1,6339E-07	154,524889	0,00036692
	157,980155	4,4391E-07	157,980155	0,00036873
	161,512682	1,1135E-06	161,512682	0,00038449
	165,124199	2,3656E-06	165,124199	0,00041299
	168,816471	4,3607E-06	168,816471	0,00045325
	172,591304	6,9959E-06	172,591304	0,00050249
	176,450545	1,0324E-05	176,450545	0,00056002
	180,396081	1,4279E-05	180,396081	0,00062366
	184,429841	1,8716E-05	184,429841	0,00069076
	188,553798	2,3611E-05	188,553798	0,00075975
	192,76997	2,8805E-05	192,76997	0,00082814
	197,080417	3,4119E-05	197,080417	0,00089337
	201,487249	3,9415E-05	201,487249	0,00095334
	205,99262	4,448E-05	205,99262	0,00100539
	210,598733	4,9111E-05	210,598733	0,00104704
	215,307842	5,3147E-05	215,307842	0,00107634
	220,122249	5,6225E-05	220,122249	0,00108952
	225,044309	5,8259E-05	225,044309	0,00108555
	230,07643	5,8863E-05	230,07643	0,00106018
	235,221071	5,8009E-05	235,221071	0,00101404
	240,48075	5,5266E-05	240,48075	0,00094209
	245,858038	5,0803E-05	245,858038	0,00084759
	251,355565	4,485E-05	251,355565	0,00073448

256,97602	3,7582E-05	256,97602	0,00060593
262,722152	2,9333E-05	262,722152	0,00046687
268,59677	2,0555E-05	268,59677	0,00032391
274,602748	1,298E-05	274,602748	0,00020276
280,743024	5,3562E-06	280,743024	8,3667E-05
287,020599	1,5523E-06	287,020599	2,4248E-05
293,438545	0	293,438545	0

8.8.2 Distribución de tamaños de poros para la serie Cu-CA

0.5 C	u-CA	1 Cı	ı-CA	1.5 0	u-CA	2.5 0	u-CA
W	dV/dw	w	dV/dw	w	dV/dw	w	dV/dw
3,6	0	3,6	0	3,6	0	3,6	0
3,68049807	9,4404E-05	3,68049807	0,00010172	3,68049807	9,9211E-05	3,68049807	0,0001034
3,76279613	0,00079655	3,76279613	0,00085809	3,76279613	0,00083662	3,76279613	0,00087147
3,84693441	0,00243616	3,84693441	0,00262501	3,84693441	0,00256023	3,84693441	0,00266848
3,93295408	0,00538037	3,93295408	0,0057984	3,93295408	0,00565669	3,93295408	0,00589819
4,0208972	0,00925323	4,0208972	0,00997594	4,0208972	0,0097377	4,0208972	0,01016288
4,11080677	0,01372946	4,11080677	0,01480955	4,11080677	0,01446722	4,11080677	0,01511826
4,20272678	0,01860551	4,20272678	0,02008169	4,20272678	0,01963557	4,20272678	0,02055018
4,29670217	0,02375844	4,29670217	0,0256602	4,29670217	0,02511279	4,29670217	0,02632331
4,3927789	0,02914519	4,3927789	0,03149973	4,3927789	0,03085613	4,3927789	0,03239567
4,49100396	0,03464905	4,49100396	0,03747475	4,49100396	0,03674214	4,49100396	0,03863852
4,5914254	0,04017696	4,5914254	0,04348477	4,5914254	0,04267101	4,5914254	0,04494671
4,69409231	0,04562689	4,69409231	0,04942006	4,69409231	0,04853505	4,69409231	0,05120803
4,79905492	0,05093422	4,79905492	0,05521046	4,79905492	0,05426352	4,79905492	0,05734678
4,90636455	0,05604149	4,90636455	0,06079339	4,90636455	0,05979313	4,90636455	0,06329487
5,01607368	0,06089646	5,01607368	0,06611195	5,01607368	0,06506628	5,01607368	0,06899024
5,12823598	0,06545673	5,12823598	0,07111952	5,12823598	0,07003495	5,12823598	0,0743801
5,24290628	0,06968499	5,24290628	0,07577493	5,24290628	0,07465665	5,24290628	0,07941753
5,36014069	0,07354962	5,36014069	0,08004317	5,36014069	0,07889491	5,36014069	0,08406187
5,47999652	0,07703667	5,47999652	0,0839078	5,47999652	0,08273172	5,47999652	0,08829131
5,60253239	0,08012128	5,60253239	0,08734118	5,60253239	0,08613797	5,60253239	0,09207304
5,72780824	0,08279476	5,72780824	0,09033267	5,72780824	0,08910168	5,72780824	0,09539196
5,85588533	0,08505454	5,85588533	0,09287827	5,85588533	0,09161781	5,85588533	0,0982404
5,98682629	0,08689466	5,98682629	0,09497048	5,98682629	0,09367772	5,98682629	0,10060713
6,12069518	0,08831984	6,12069518	0,09661325	6,12069518	0,09528473	6,12069518	0,10249368
6,25755744	0,08933712	6,25755744	0,09781304	6,25755744	0,0964448	6,25755744	0,10390452
6,39748003	0,08995474	6,39748003	0,09857772	6,39748003	0,09716541	6,39748003	0,10484587
6,54053136	0,09018716	6,54053136	0,09892184	6,54053136	0,09746103	6,54053136	0,10533151
6,68678141	0,0900493	6,68678141	0,09886052	6,68678141	0,09734677	6,68678141	0,10537597
6,83630169	0,08955756	6,83630169	0,09841056	6,83630169	0,09683948	6,83630169	0,10499583
6,98916533	0,08873944	6,98916533	0,09760059	6,98916533	0,09596807	6,98916533	0,1042202

7,14544709	0,08761016	7,14544709	0,0964463	7,14544709	0,09474842	7,14544709	0,10306492
7,3052234	0,08619641	7,3052234	0,09497562	7,3052234	0,09320875	7,3052234	0,10155867
7,4685724	0,08452681	7,4685724	0,09321855	7,4685724	0,09137919	7,4685724	0,09973198
7,63557397	0,08262511	7,63557397	0,09120003	7,63557397	0,08928497	7,63557397	0,09761061
7,8063098	0,08052137	7,8063098	0,08895168	7,8063098	0,08695759	7,8063098	0,09522646
7,98086338	0,07824478	7,98086338	0,08650428	7,98086338	0,08442767	7,98086338	0,09261061
8,15932008	0,07582108	8,15932008	0,083885	8,15932008	0,08172208	8,15932008	0,08979027
8,34176717	0,07328898	8,34176717	0,08113487	8,34176717	0,0788818	8,34176717	0,08680736
8,52829389	0,0706696	8,52829389	0,07827625	8,52829389	0,07592858	8,52829389	0,08368371
8,71899145	0,06799443	8,71899145	0,0753426	8,71899145	0,07289568	8,71899145	0,08045336
8,91395311	0,06529693	8,91395311	0,0723696	8,91395311	0,0698192	8,91395311	0,07715383
9,11327423	0,06260209	9,11327423	0,06938383	9,11327423	0,06672533	9,11327423	0,07381186
9,31705229	0,05993967	9,31705229	0,06641717	9,31705229	0,06364645	9,31705229	0,07046132
9,52538694	0,05733875	9,52538694	0,06350086	9,52538694	0,06061486	9,52538694	0,06713652
9,73838007	0,05482439	9,73838007	0,06066183	9,73838007	0,057658	9,73838007	0,06386637
9,95613586	0,0524239	9,95613586	0,05792959	9,95613586	0,05480729	9,95613586	0,06068509
10,1787608	0,05016239	10,1787608	0,05533143	10,1787608	0,05209204	10,1787608	0,05762488
10,4063637	0,04806384	10,4063637	0,05289306	10,4063637	0,04953938	10,4063637	0,05471502
10,639056	0,04614896	10,639056	0,05063933	10,639056	0,04717978	10,639056	0,05199283
10,8769514	0,04443984	10,8769514	0,04859332	10,8769514	0,04503687	10,8769514	0,04948295
11,1201663	0,04295256	11,1201663	0,04677434	11,1201663	0,04313426	11,1201663	0,04721438
11,3688196	0,04170261	11,3688196	0,04520186	11,3688196	0,04149683	11,3688196	0,04521859
11,623033	0,0407018	11,623033	0,04389003	11,623033	0,04014169	11,623033	0,04351661
11,8829307	0,03996249	11,8829307	0,04285517	11,8829307	0,03909016	11,8829307	0,04213582
12,1486399	0,039496	12,1486399	0,04211194	12,1486399	0,03836267	12,1486399	0,04110359
12,4202904	0,0393115	12,4202904	0,04167268	12,4202904	0,03797597	12,4202904	0,04044205
12,6980153	0,039419	12,6980153	0,04154941	12,6980153	0,03794913	12,6980153	0,0401787
12,9819502	0,03982483	12,9819502	0,04175074	12,9819502	0,03829841	12,9819502	0,04033881
13,2722341	0,04054629	13,2722341	0,04230014	13,2722341	0,03906285	13,2722341	0,04097848
13,5690089	0,04152013	13,5690089	0,04313149	13,5690089	0,04017512	13,5690089	0,04203205
13,8724197	0,04278442	13,8724197	0,04429565	13,8724197	0,04171529	13,8724197	0,04361019
14,182615	0,04428986	14,182615	0,04574242	14,182615	0,04363473	14,182615	0,04566821
14,4997465	0,04595185	14,4997465	0,04737682	14,4997465	0,04582199	14,4997465	0,04808087
14,8239691	0,04774054	14,8239691	0,04917113	14,8239691	0,04825595	14,8239691	0,05083539
15,1554416	0,04955927	15,1554416	0,05101288	15,1554416	0,05079845	15,1554416	0,05377038
15,494326	0,05130465	15,494326	0,05278409	15,494326	0,05330149	15,494326	0,05671045
15,8407881	0,05288794	15,8407881	0,05438264	15,8407881	0,05563783	15,8407881	0,05950543
16,1949972	0,05418368	16,1949972	0,05567035	16,1949972	0,05762708	16,1949972	0,061936
16,5571267	0,05508097	16,5571267	0,05652564	16,5571267	0,05911043	16,5571267	0,06380894
16,9273535	0,05546831	16,9273535	0,05682746	16,9273535	0,05992943	16,9273535	0,06493133
17,3058589	0,05534876	17,3058589	0,05658752	17,3058589	0,06010078	17,3058589	0,06532238
17,6928279	0,05460437	17,6928279	0,05567856	17,6928279	0,05945718	17,6928279	0,0647783
18,0884497	0,0532406	18,0884497	0,05411433	18,0884497	0,05801872	18,0884497	0,06332332
18,4929178	0,05131183	18,4929178	0,05196033	18,4929178	0,05586849	18,4929178	0,06105375

18,9064301	0,04881334	18,9064301	0,04921809	18,9064301	0,05301102	18,9064301	0,05797576
19,3291888	0,04583419	19,3291888	0,04598923	19,3291888	0,04957315	19,3291888	0,05423555
19,7614005	0,0424707	19,7614005	0,04238123	19,7614005	0,04568832	19,7614005	0,04998722
20,2032768	0,03881107	20,2032768	0,03849252	20,2032768	0,04147871	20,2032768	0,04537182
20,6550337	0,03498071	20,6550337	0,03445671	20,6550337	0,03710852	20,6550337	0,04057999
21,1168922	0,03109444	21,1168922	0,03039549	21,1168922	0,03272616	21,1168922	0,03578354
21,589078	0,0272655	21,589078	0,02642668	21,589078	0,02847237	21,589078	0,03114469
22,0718222	0,02355293	22,0718222	0,02260678	22,0718222	0,02439901	22,0718222	0,02671475
22,5653609	0,020068	22,5653609	0,01904954	22,5653609	0,02064072	22,5653609	0,02264926
23,0699353	0,01685544	23,0699353	0,01579684	23,0699353	0,01723199	23,0699353	0,0189794
23,5857924	0,01393615	23,5857924	0,01286606	23,5857924	0,01418069	23,5857924	0,01570702
24,1131843	0,01134989	24,1131843	0,01029456	24,1131843	0,01151823	24,1131843	0,0128611
24,6523689	0,00909185	24,6523689	0,00807353	24,6523689	0,00922454	24,6523689	0,0104128
25,2036101	0,00715248	25,2036101	0,00618968	25,2036101	0,007277	25,2036101	0,00833237
25,7671773	0,0055209	25,7671773	0,00462859	25,7671773	0,00565301	25,7671773	0,0065909
26,3433462	0,00417104	26,3433462	0,00336072	26,3433462	0,00431934	26,3433462	0,00515266
26,9323986	0,00307742	26,9323986	0,00235729	26,9323986	0,00324423	26,9323986	0,0039837
27,5346226	0,00221106	27,5346226	0,00158611	27,5346226	0,00239418	27,5346226	0,00304941
28,1503126	0,00153981	28,1503126	0,00101196	28,1503126	0,00173664	28,1503126	0,00231634
28,7797698	0,00103383	28,7797698	0,00060209	28,7797698	0,0012387	28,7797698	0,00175155
29,423302	0,00066493	29,423302	0,00032654	29,423302	0,00087238	29,423302	0,00132607
30,0812239	0,00040825	30,0812239	0,00015562	30,0812239	0,00061328	30,0812239	0,00101466
30,7538574	0,00023944	30,7538574	6,3747E-05	30,7538574	0,00043721	30,7538574	0,00079226
31,4415314	0,00013879	31,4415314	2,2105E-05	31,4415314	0,00032528	31,4415314	0,00063928
32,1445821	8,8857E-05	32,1445821	7,5199E-06	32,1445821	0,00026081	32,1445821	0,00053848
32,8633535	7,4131E-05	32,8633535	1,4206E-06	32,8633535	0,00022904	32,8633535	0,00047462
33,5981969	8,3291E-05	33,5981969	0	33,5981969	0,00021946	33,5981969	0,00043713
34,349472	0,00010622	34,349472	0	34,349472	0,00022271	34,349472	0,00041652
35,1175459	0,00013495	35,1175459	0	35,1175459	0,00023164	35,1175459	0,00040522
35,9027945	0,00016661	35,9027945	0	35,9027945	0,00024372	35,9027945	0,00040026
36,7056016	0,0001949	36,7056016	0	36,7056016	0,0002535	36,7056016	0,00039558
37,52636	0,00021835	37,52636	0	37,52636	0,00025969	37,52636	0,00038953
38,365471	0,00023641	38,365471	0	38,365471	0,00026172	38,365471	0,00038135
39,223345	0,00024794	39,223345	0	39,223345	0,00025857	39,223345	0,00036969
40,1004016	0,00025375	40,1004016	0	40,1004016	0,00025077	40,1004016	0,00035511
40,9970696	0,00025472	40,9970696	0	40,9970696	0,00023892	40,9970696	0,00033829
41,9137877	0,00025199	41,9137877	0	41,9137877	0,00022361	41,9137877	0,00032029
42,8510041	0,00024657	42,8510041	0	42,8510041	0,00020635	42,8510041	0,00030157
43,8091772	0,00024018	43,8091772	0	43,8091772	0,00018782	43,8091772	0,00028414
44,7887756	0,00023378	44,7887756	0	44,7887756	0,00016937	44,7887756	0,0002685
45,7902784	0,00022785	45,7902784	0	45,7902784	0,00015194	45,7902784	0,00025469
46,8141754	0,00022338	46,8141754	0	46,8141754	0,00013676	46,8141754	0,00024328
47,8609673	0,00022057	47,8609673	0	47,8609673	0,00012454	47,8609673	0,00023412
48,9311661	0,00021946	48,9311661	0	48,9311661	0,0001156	48,9311661	0,00022693

50,0252951	0,00022019	50,0252951	0	50,0252951	0,00011045	50,0252951	0,00022156
51,1438895	0,00022243	51,1438895	0	51,1438895	0,00010879	51,1438895	0,00021756
52,2874963	0,00022588	52,2874963	1,0668E-08	52,2874963	0,00011028	52,2874963	0,00021456
53,4566748	0,00023023	53,4566748	6,5391E-07	53,4566748	0,00011464	53,4566748	0,00021215
54,6519968	0,00023502	54,6519968	1,6323E-06	54,6519968	0,00012083	54,6519968	0,00021029
55,8740469	0,00023995	55,8740469	4,3957E-06	55,8740469	0,00012866	55,8740469	0,00020855
57,1234228	0,00024463	57,1234228	8,6777E-06	57,1234228	0,00013717	57,1234228	0,00020692
58,4007354	0,00024878	58,4007354	1,4121E-05	58,4007354	0,00014566	58,4007354	0,00020533
59,7066094	0,00025202	59,7066094	2,0531E-05	59,7066094	0,00015329	59,7066094	0,0002038
61,0416836	0,00025417	61,0416836	2,7539E-05	61,0416836	0,00015954	61,0416836	0,00020226
62,4066108	0,00025509	62,4066108	3,4764E-05	62,4066108	0,00016407	62,4066108	0,00020059
63,8020585	0,00025466	63,8020585	4,1875E-05	63,8020585	0,0001665	63,8020585	0,00019872
65,2287092	0,00025289	65,2287092	4,8451E-05	65,2287092	0,00016682	65,2287092	0,00019641
66,6872607	0,0002498	66,6872607	5,4124E-05	66,6872607	0,00016507	66,6872607	0,00019345
68,1784262	0,00024543	68,1784262	5,85E-05	68,1784262	0,00016129	68,1784262	0,00018959
69,7029351	0,00024001	69,7029351	6,1712E-05	69,7029351	0,00015589	69,7029351	0,00018499
71,2615328	0,00023355	71,2615328	6,3303E-05	71,2615328	0,00014893	71,2615328	0,00017933
72,8549817	0,00022627	72,8549817	6,3391E-05	72,8549817	0,00014075	72,8549817	0,00017277
74,484061	0,00021837	74,484061	6,2277E-05	74,484061	0,00013178	74,484061	0,00016556
76,1495675	0,00021001	76,1495675	6,0013E-05	76,1495675	0,00012228	76,1495675	0,00015781
77,8523156	0,00020144	77,8523156	5,7022E-05	77,8523156	0,00011269	77,8523156	0,00014986
79,5931382	0,00019285	79,5931382	5,3677E-05	79,5931382	0,0001034	79,5931382	0,000142
81,3728866	0,00018444	81,3728866	5,032E-05	81,3728866	9,475E-05	81,3728866	0,00013449
83,1924312	0,00017632	83,1924312	4,7208E-05	83,1924312	8,6971E-05	83,1924312	0,00012753
85,0526618	0,0001686	85,0526618	4,4556E-05	85,0526618	8,0247E-05	85,0526618	0,00012127
86,9544883	0,00016136	86,9544883	4,254E-05	86,9544883	7,4733E-05	86,9544883	0,00011584
88,8988407	0,00015447	88,8988407	4,1026E-05	88,8988407	7,0208E-05	88,8988407	0,00011104
90,8866699	0,00014802	90,8866699	4,0169E-05	90,8866699	6,6828E-05	90,8866699	0,000107
92,9189482	0,00014188	92,9189482	3,9831E-05	92,9189482	6,4372E-05	92,9189482	0,00010354
94,9966693	0,00013588	94,9966693	3,9824E-05	94,9966693	6,2563E-05	94,9966693	0,00010041
97,1208495	0,00012995	97,1208495	4,004E-05	97,1208495	6,1229E-05	97,1208495	9,7447E-05
99,2925276	0,00012388	99,2925276	4,0254E-05	99,2925276	6,0047E-05	99,2925276	9,438E-05
101,512766	0,00011755	101,512766	4,0278E-05	101,512766	5,8751E-05	101,512766	9,0981E-05
103,78265	0,00011083	103,78265	3,9944E-05	103,78265	5,7106E-05	103,78265	8,7051E-05
106,103289	0,00010369	106,103289	3,917E-05	106,103289	5,5002E-05	106,103289	8,2524E-05
108,47582	9,6112E-05	108,47582	3,7889E-05	108,47582	5,2348E-05	108,47582	7,7352E-05
110,901402	8,8105E-05	110,901402	3,6054E-05	110,901402	4,9087E-05	110,901402	7,1518E-05
113,381221	7,9805E-05	113,381221	3,3753E-05	113,381221	4,5333E-05	113,381221	6,5182E-05
115,91649	7,1213E-05	115,91649	3,0944E-05	115,91649	4,1041E-05	115,91649	5,8334E-05
118,50845	6,2464E-05	118,50845	2,7716E-05	118,50845	3,6327E-05	118,50845	5,1129E-05
121,158367	5,3719E-05	121,158367	2,4194E-05	121,158367	3,1351E-05	121,158367	4,3764E-05
123,867538	4,5088E-05	123,867538	2,0449E-05	123,867538	2,6207E-05	123,867538	3,6367E-05
126,637287	3,6757E-05	126,637287	1,663E-05	126,637287	2,1093E-05	126,637287	2,9169E-05
129,46897	2,8908E-05	129,46897	1,2892E-05	129,46897	1,6199E-05	129,46897	2,239E-05

132,36397	2,1713E-05	132,36397	9,3841E-06	132,36397	1,1707E-05	132,36397	1,6237E-05
135,323705	1,5367E-05	135,323705	6,3059E-06	135,323705	7,826E-06	135,323705	1,0933E-05
138,349621	1,0041E-05	138,349621	3,8258E-06	138,349621	4,7296E-06	138,349621	6,6653E-06
141,443198	5,981E-06	141,443198	2,0596E-06	141,443198	2,5361E-06	141,443198	3,6062E-06
144,605949	2,9163E-06	144,605949	8,2013E-07	144,605949	1,0098E-06	144,605949	1,4359E-06
147,839421	1,2249E-06	147,839421	2,2103E-07	147,839421	2,7216E-07	147,839421	3,87E-07
151,145196	4,0915E-07	151,145196	0	151,145196	0	151,145196	0
154,524889	3,5991E-07	154,524889	1,6686E-10	154,524889	1,4422E-10	154,524889	1,5468E-10
157,980155	6,5743E-07	157,980155	9,3322E-08	157,980155	8,0657E-08	157,980155	8,6507E-08
161,512682	1,7712E-06	161,512682	6,1129E-07	161,512682	5,2497E-07	161,512682	5,6241E-07
165,124199	4,0609E-06	165,124199	1,8737E-06	165,124199	1,6204E-06	165,124199	1,7381E-06
168,816471	7,8177E-06	168,816471	4,2411E-06	168,816471	3,7351E-06	168,816471	4,0189E-06
172,591304	1,2836E-05	172,591304	7,5722E-06	172,591304	6,743E-06	172,591304	7,2692E-06
176,450545	1,9186E-05	176,450545	1,2272E-05	176,450545	1,1154E-05	176,450545	1,2066E-05
180,396081	2,6735E-05	180,396081	1,827E-05	180,396081	1,6914E-05	180,396081	1,8351E-05
184,429841	3,5199E-05	184,429841	2,5331E-05	184,429841	2,3798E-05	184,429841	2,5882E-05
188,553798	4,4524E-05	188,553798	3,3456E-05	188,553798	3,1821E-05	188,553798	3,4676E-05
192,76997	5,4404E-05	192,76997	4,238E-05	192,76997	4,0725E-05	192,76997	4,4451E-05
197,080417	6,4497E-05	197,080417	5,1781E-05	197,080417	5,0191E-05	197,080417	5,4858E-05
201,487249	7,4535E-05	201,487249	6,1421E-05	201,487249	5,9985E-05	201,487249	6,5641E-05
205,99262	8,4118E-05	205,99262	7,0893E-05	205,99262	6,969E-05	205,99262	7,6339E-05
210,598733	9,2861E-05	210,598733	7,9806E-05	210,598733	7,8901E-05	210,598733	8,6507E-05
215,307842	0,00010046	215,307842	8,7846E-05	215,307842	8,7297E-05	215,307842	9,5791E-05
220,122249	0,00010624	220,122249	9,4283E-05	220,122249	9,4105E-05	220,122249	0,00010333
225,044309	0,00011003	225,044309	9,8947E-05	225,044309	9,9153E-05	225,044309	0,00010894
230,07643	0,00011113	230,07643	0,00010107	230,07643	0,00010164	230,07643	0,00011173
235,221071	0,00010946	235,221071	0,00010056	235,221071	0,00010143	235,221071	0,00011156
240,48075	0,00010425	240,48075	9,6572E-05	240,48075	9,7651E-05	240,48075	0,00010745
245,858038	9,5794E-05	245,858038	8,9374E-05	245,858038	9,0566E-05	245,858038	9,9683E-05
251,355565	8,4541E-05	251,355565	7,936E-05	251,355565	8,0567E-05	251,355565	8,8703E-05
256,97602	7,0822E-05	256,97602	6,6822E-05	256,97602	6,7941E-05	256,97602	7,482E-05
262,722152	5,5264E-05	262,722152	5,2364E-05	262,722152	5,3306E-05	262,722152	5,8715E-05
268,59677	3,8719E-05	268,59677	3,6807E-05	268,59677	3,7504E-05	268,59677	4,1316E-05
274,602748	2,4446E-05	274,602748	2,3304E-05	274,602748	2,3765E-05	274,602748	2,6184E-05
280,743024	1,0088E-05	280,743024	9,6164E-06	280,743024	9,8067E-06	280,743024	1,0805E-05
287,020599	2,9236E-06	287,020599	2,787E-06	287,020599	2,8421E-06	287,020599	3,1314E-06
293,438545	0	293,438545	0	293,438545	0	293,438545	0

5Cu-CA			
w	dV/dw		
3,6	0		
3,68049807	8,5632E-05		
3,76279613	0,00072236		
3,84693441	0,0022098		

3,93295408	0,00488122
4,0208972	0,00839793
4,11080677	0,01246689
4,20272678	0,01690503
4,29670217	0,02160173
4,3927789	0,02651885
4,49100396	0,03155127
4,5914254	0,03661508
4,69409231	0,04161834
4,79905492	0,04650269
4,90636455	0,05121615
5,01607368	0,05571142
5,12823598	0,05994996
5,24290628	0,06389776
5,36014069	0,06752597
5,47999652	0,07082132
5,60253239	0,07376106
5,72780824	0,07633672
5,85588533	0,07854523
5,98682629	0,08038064
6,12069518	0,08184644
6,25755744	0,08294816
6,39748003	0,08369248
6,54053136	0,08409156
6,68678141	0,08415803
6,83630169	0,08390585
6,98916533	0,08335877
7,14544709	0,08252981
7,3052234	0,0814421
7,4685724	0,08012051
7,63557397	0,07858567
7,8063098	0,0768638
7,98086338	0,07498042
8,15932008	0,07295806
8,34176717	0,0708306
8,52829389	0,06861661
8,71899145	0,06634375
8,91395311	0,06404131
9,11327423	0,06173128
9,31705229	0,0594398
9,52538694	0,05719236
9,73838007	0,05501102
9,95613586	0,05291969
10,1787608	0.05094039

10,4063637	0,0490942
10,639056	0,04739904
10,8769514	0,04587443
11,1201663	0,04453433
11,3688196	0,04339214
11,623033	0,04245821
11,8829307	0,04174321
12,1486399	0,04125691
12,4202904	0,04100725
12,6980153	0,04100281
12,9819502	0,04124895
13,2722341	0,04176067
13,5690089	0,04248217
13,8724197	0,04344662
14,182615	0,04461055
14,4997465	0,04589974
14,8239691	0,04728784
15,1554416	0,04869004
15,494326	0,0500164
15,8407881	0,05118949
16,1949972	0,0521017
16,5571267	0,05265803
16,9273535	0,05276314
17,3058589	0,05242086
17,6928279	0,0515305
18,0884497	0,05009772
18,4929178	0,04817075
18,9064301	0,04574625
19,3291888	0,04290258
19,7614005	0,03972428
20,2032768	0,03628881
20,6550337	0,03270566
21,1168922	0,02907537
21,589078	0,02549779
22,0718222	0,02202956
22,5653609	0,01876884
23,0699353	0,01575979
23,5857924	0,01302428
24,1131843	0,01060141
24,6523689	0,00848906
25,2036101	0,00667981
25,7671773	0,00516463
26,3433462	0,0039177
26,9323986	0,00291386

27,5346226	0,00212464
28,1503126	0,00151916
28,7797698	0,00106817
29,423302	0,0007447
30,0812239	0,00052499
30,7538574	0,00038576
31,4415314	0,00030821
32,1445821	0,00027569
32,8633535	0,0002734
33,5981969	0,00029051
34,349472	0,00031736
35,1175459	0,00034645
35,9027945	0,00037544
36,7056016	0,00039843
37,52636	0,00041446
38,365471	0,00042339
39,223345	0,00042449
40,1004016	0,00041888
40,9970696	0,00040766
41,9137877	0,00039204
42,8510041	0,00037334
43,8091772	0,00035298
44,7887756	0,00033214
45,7902784	0,00031166
46,8141754	0,00029267
47,8609673	0,00027573
48,9311661	0,00026121
50,0252951	0,00024953
51,1438895	0,00024058
52,2874963	0,00023423
53,4566748	0,00023035
54,6519968	0,00022835
55,8740469	0,00022811
57,1234228	0,00022911
58,4007354	0,00023089
59,7066094	0,00023299
61,0416836	0,00023503
62,4066108	0,00023667
63,8020585	0,00023759
65,2287092	0,00023758
66,6872607	0,00023645
68,1784262	0,00023397
69,7029351	0,0002304
71,2615328	0,00022546

72,8549817	0,00021937
74,484061	0,00021247
76,1495675	0,0002049
77,8523156	0,0001971
79,5931382	0,00018945
81,3728866	0,00018231
83,1924312	0,00017587
85,0526618	0,00017032
86,9544883	0,00016577
88,8988407	0,00016193
90,8866699	0,00015893
92,9189482	0,00015647
94,9966693	0,0001542
97,1208495	0,0001519
99,2925276	0,00014917
101,512766	0,0001457
103,78265	0,00014122
106,103289	0,00013562
108,47582	0,00012883
110,901402	0,00012081
113,381221	0,00011179
115,91649	0,00010173
118,50845	9,0866E-05
121,158367	7,9478E-05
123,867538	6,7752E-05
126,637287	5,6021E-05
129,46897	4,462E-05
132,36397	3,3873E-05
135,323705	2,4178E-05
138,349621	1,5894E-05
141,443198	9,3598E-06
144,605949	4,6097E-06
147,839421	1,9862E-06
151,145196	1,4131E-06
154,524889	2,8377E-06
157,980155	6,1857E-06
161,512682	1,1446E-05
165,124199	1,8568E-0 <mark>5</mark>
168,816471	2,7522E-05
172,591304	3,7898E-05
176,450545	4,9649E-05
180,396081	6,2465E-05
184,429841	7,593E-05
188,553798	8,9829E-05

1	
192,76997	0,00010376
197,080417	0,0001173
201,487249	0,00013011
205,99262	0,00014171
210,598733	0,00015168
215,307842	0,0001597
220,122249	0,00016503
225,044309	0,00016758
230,07643	0,00016653
235,221071	0,00016185
240,48075	0,00015263
245,858038	0,00013924
251,355565	0,00012222
256,97602	0,00010197
262,722152	7,9322E-05
268,59677	5,5451E-05
274,602748	3,4942E-05
280,743024	1,4419E-05
287,020599	4,1788E-06
293,438545	0