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Resumen

El origen de los agujeros negros supermasivos en centros galácticos a altos redshifts

en el Universo temprano es aún desconocido. En las últimas décadas, astrónomos

han propuesto un amplio rango de modelos para explicar la formación de estos

objectos y su correlación entre sus masas y la de las galaxiasque los hospedan.

Algunas posibles explicaciones implican semillas muy masivas, acreciones de

hyper-Eddington y supra-exponensial, super cúmulos masivos libre de metales, el

colapso de las primeras estructuras bariónicas y la formación de SMBHs vía

fusiones de agujeros negros. En este proyecto, estudiamos la formación de

objectos supermasivos en cumulos nucleares ( NSC, por su siglas en ingles) a

través de la fusión de agujeros negros, además afectado por el pozo potencial de

gas. Nosotros consideramos el efecto del potencial externodebido al gas y los

efectos relativistas mediante efectos post-Newtonianos.El modelo fue investigado

mediante simulaciones N-body usando el código Nbody6++gpu. Presentamos

un total de 100 simulaciones, donde variamos tanto el potencial externo como

la velocidad de la luz debido a su alto consumo computacional. El objetico es

extrapolar los resultados al valor real de la velocidad de laluz. Nuestros resultados

indican que el tiempo de core collapse en presencia de mayores potenciales externos

de gas tiende a disminuir en cúmulos en estado relativista, en cambio para cúmulos

fuera de un estado relativista, el comportamiento es distinto y el tiempo de core

collapse tiende a aumentar a mayores potenciales de gas. Porotro lado, los IMBH

formados se encuentran en 2 rangos de masas; los mas masivos con masas de104M⊙

para cúmulos en estados relativistas, donde la mayoría de las fusiones terminan en

IMBH, y 103M⊙ para cúmulos fuera de un estado relativista, donde la cantidad

de fusiones que terminan siendo absorbidos por IMBH decrecesubstancialmente.

Keywords – IMBH - methods: numerical - theory
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Abstract

The origin of SMBHs in galactic centers at high redshift in the early Universe is still

unknown. In recent decades, astronomers have proposed a wide range of models to

explain the formation of these objects and the correlation of their masses with the

host galaxy. Some theoretical explanations include very large seed masses,hyper-

Eddington or supra-exponential accretion, very massive metal-free superclusters,

the collapse of the first baryon structures, and the formation of SMBHs via BH

mergers. In this project, we examine the formation of massive objects in the

nuclear star cluster (NSC) core through the fusion of black holes. We consider the

effect of an external gas potential and post-Newtonian corrections in our study.

The model is investigated via N-body simulations using the Nbody6++gpu code.

We present the results of 100 simulations, where we vary the mass of the gas

potential. Since the simulations are computationally expensive when considering

the real speed of light, we treat it as a free parameter and determine results

assuming different speeds of light, with the aim of extrapolating our results to

the physical value. Our findings indicate that the time of core collapse in the

presence of higher external gas potential tends to decrease in relativistic clusters.

For clusters out of the relativistic state, the trend is completely different, tending

to increase at higher external potential. On the other hand,the BH seeds that

form are set in two ranges:≈ 104M⊙ for clusters in relativistic states, where

almost all BH mergers end in the BH seed, and≈ 103M⊙ for clusters out of the

relativistic state, in this case only a few percent of mergers end in the BH seeds.

Keywords – IMBH : formation - methods: numerical - theory



iv Contents

Contents

AGRADECIMIENTOS i

Resumen ii

Abstract iii

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Direct collapse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Formationof the first stars . . . . . . . . . . . . . . . . . . . . . 6
1.4 Runaway collisions in a Dense Star Cluster. . . . . . . . . . . . 7

2 Dark cores in nuclear star cluster 10
2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Nbody6++GPU 16
3.1 TheHermiteintegratormethod . . . . . . . . . . . . . . . . . . . 16
3.2 Individual andBlock time steps . . . . . . . . . . . . . . . . . . . 18
3.3 The Ahmad-Cohenscheme. . . . . . . . . . . . . . . . . . . . . . 20
3.4 KS Regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Post-Newtoniancorrections . . . . . . . . . . . . . . . . . . . . . 22
3.6 Initialization of Nbody6++GPU. . . . . . . . . . . . . . . . . . . 23
3.7 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results 27
4.1 Dark CoreEvolution . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 time dependenceof corecontraction . . . . . . . . . . . . . . . . 33
4.3 Binary population. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Escapers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Formationof IMBH . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Extrapolation to real clusters. . . . . . . . . . . . . . . . . . . . 51

5 Conclusion 59

6 Discussion and future work 62



Contents v

Referencias 64



vi List of Tables

List of Tables

3.7.1The initial amount of black holes in the cluster is N, the total mass
in the cluster by BHs isMBHs, the fraction of gas mass in the
cluster is given byηg, the virial radiusRv, finally the speed of light
that we use in the simulation is given byc..............................................26

4.5.1Extrapolation of the BHs seed mass as to the real value of the
speed of the light300.000km/s................................................................51

4.5.2In this table, we present characteristic results for the clusters
corresponding to the initial conditions index in Table 3.7.1. The first
column displays the mass of the BH seed at the end of the simulation,
measured in solar masses. In the second column, we provide the
number of mergers that occurred in the cluster. The third column
indicates the time of core collapse, measured in millions ofyears
(Myr). Finally, the last column presents the number of BH escapers
in the cluster................................................................................................52



List of Figures vii

≈

≈
≈

·

List of Figures

1.1.1 Different scenarios the formation of seed BHs on the top. 1) A
BH remnant of a Pop III star with masses101−2M⊙. 2) Massive
seed BHs forming under conditions such as strong radiation,rapid
mergers halos and high baryon-DM streaming velocities, reaching
masses of 105−6M⊙, 3) Formation of less massive intermediate
massive black holesM3−4M⊙ via runaway collisions in ultra-dense
star clusters, 4) Finally the Hyper-Eddington accretion onto stellar
mass BHs (Inayoshi et al., 2020). . . . . . . . . . . . . . . . . . . 3

1.2.1 Temperature evolution of a metal-free gas cloud, irradiated by LW
radiation. For high enough intensities (JLW > Jcrit) it is able to
dissociate H2 even in high density regions (red curves) (Inayoshi
et al., 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Logarithm of different time scales in years, the time scale for
binary-single encounters give by eq. 2.1.2 (dashed line) and
gravitational radiation inspiral given by eq. 2.1.3 (solidline),
considering a variation on the gas mass fraction betweenηg =

0.0, 0.1, 0.3, 0.5, 1.010.0, with the lowest value in the blue dashed
line and the highest value light green line, considering different
speeds of light, fromc = 103km/s to the real value ofc = 3 105km/s

(black line) and the lowest values ofc = 103 km/s (brown line), the
vertical lines show the velocity dispersion given byv∞ for different
gas mass fractions........................................................................................13

3.2.1 Regular and irregular time steps (Khalisi and Spurzem, 2014).............19
3.3.1 Illustration of the neighbour scheme. Particlei marked with an

asterisk and thers neighbour radius. Black dots are particles that
correspond to irregular forces and unfilled dots. Particles that
correspond to the regular forces are marked asX to represent a
close encounter (Khalisi and Spurzem, 2014)..........................................21



viii List of Figures

×

·

4.1.1Evolution of the cluster in a simulation with speed of light c=
103 km/s without external potential. On the first top panel have
the Lagrangian radius for mass fractions between1% to 90% of the
total cluster. The vertical line in this panel is the moment when the
inner region reach the highest densities. The second panel shows
the growth of the mass of the most massive BH in the cluster. The
third panel shows the accumulative ejections in the cluster, and the
lowest panel shows the mergers of BHs in bins of5 Myr.........................29

4.1.2Evolution of the cluster in a simulation with speed of light c=
103 km/s and an external potential ofηg = 1.0. On the first top
panel we show the Lagrangian radius for mass fractions between
1% to 90% of total cluster. The vertical line in this panel shows
the moment when the inner region reach the highest densities. The
second panel shows the growth of the mass of the most massive BH
in the cluster. The third panel shows the accumulative ejections in
the cluster, and the lowest panel shows the mergers of BHs in bins
of 5Myr........................................................................................................31

4.1.3Evolution of the cluster in a simulation with speed of lightc =

3 104 km/s without external potential. On the first top panel
we have the Lagrangian radius for mass fractions between1% to
90% of total cluster. The vertical line in this panel is the moment
when the inner region reach the highest densities. The second panel
shows the of growth the mass of the most massive BH in the cluster.
The third panel shows the accumulative ejections in the cluster,
and the lowest panel shows the mergers of BHs in bins of5Myr 32

4.1.4Evolution of the cluster in a simulation with speed of light c=
3 104 km/s and an external potential ofηg = 1.0. On the first top
panel we have the Lagrangian radius for mass fractions between
1% to 90% of total cluster. The vertical line in this panel shows
the moment when the inner region reach the highest densities. The
second panel shows the of growth the mass of the most massive BH
in the cluster. The third panel shows the accumulative ejections in
the cluster, and the lowest panel shows the mergers of BHs in bins
of 5Myr........................................................................................................34

4.2.1In the left panel, we depict the core collapse time relative to the
half-mass relaxation time as a function of the gas mass fraction of
the cluster, denoted asηg. Each curve represents a different value
of the speed of light,c. On the right panel, we illustrate the core
collapse time relative time as a function of the speed of light, c.
However, in this scenario, we vary the external potential,ηg. The
shadow zone is the error computed by standard deviation with
simulations at different initial conditions..................................................36



List of Figures ix

4.2.2Evolution of the rms velocity over time, where the differentpanel
correspond different speeds of light, on the top panel the lowest and
to bottom panel the highest speed of light, for different external
potentials (ηg). The horizontal red line correspond to the1% of
the light speed to check if the cluster could be in a relativistic state. 37

4.3.1Distribution of the semi-mayor axis of binaries in the cluster for
different values ofc and ηg, of all binaries that formed in the
simulations...................................................................................................39

4.3.2The standard deviation of the semi-major axis is derived from the
distribution in Fig. 4.3.1. On the left panel, we observe thetrend
of the semi-major axis concerning the external potential. On the
right panel, we depict the semi-major axis in relation to thespeed
of light..........................................................................................................40

4.3.3Histogram of binary eccentricities where the different panels
correspond to different value of the speeds of light, and thecolors
show different external potentials (ηg)......................................................41

4.4.1Accumulative numbers of escapers as a function of crossing times,
considering different external potentials marked by theircolors, and
for different speeds of light. The vertical line marks the time of the
core collapse.................................................................................................44

4.4.2On the left panel we have the escapers as a function of the external
potential. On the right panel the escapers are given as a function
of the speed of light. In both panels shown the escapers at the
same crossing of 29031 crossing times shown in the Fig. 4.4.1..............45

4.5.1Mass growth of the most massive BH in the cluster over time in
relaxation time scales, where the different colors mark theexternal
potential of the cluster (ηg). Different panels shows the speed of
light (c) considering in simulations...........................................................47

4.5.2At the top we have the mass of the massive BH in the cluster at
the end of the simulation. On the left panel, as a function of the
external potential (ηg), different colors mark different speeds of
light. On the right panel, we have the mass of the massive BH
as a function of the light speed (c), with different colors marking
the external potential. On the bottom we provide the ratio of
amount of black holes that merger with BH seed and the mergers
on the cluster definedα see eq. 4.5.11, and on the left panel as a
function of the external potential. On the right panel we haveα as
a function of the speed of light..................................................................50

4.6.1In the top panel, we depict rms contour lines of the velocity
calculated by Equation 4.6.1, showcasing its dependency onthe
virial radius and the mass of BHs in the cluster. The contours
illustrate the velocities at specific radii and masses. Meanwhile,
the bottom panel illustrates countour lines of the velocityof the
cluster including as defined by Equation 4.6.2, where different colors
indicate various values ofηg..........................................................................................................54



x List of Figures

4.6.2We present the BH formation efficiency of the clusters defined as
the mass of the most massive BH divided by the total mass of the
cluster, as a function of the ratio between the root mean square
(rms) velocity at the time of the core collapse and the speed of
light (c), as considered in the simulations. Different colors are used
to denote varying external potentialsηg. The vertical lines mark
velocity to ratios assuming the real value of the speeed of light of
clusters with an rms velocity of1000 km/s and3000 km/s...................55

4.6.3We display the black holes (BHs) that can form clusters based
on root mean square (rms) velocities calculated using equation
4.6.1 and their corresponding efficiency depicted in Fig. 4.6.2. The
clusters are within a range of virial radii from0.1 to 2.0 pc and
masses from104 - 108 M⊙. The color represents the mass of the
BHs that form the clusters, and each panel corresponds to different
external potentials.......................................................................................57

4.6.4 We display the black holes (BHs) that can form clusters based on
root mean square (rms) velocities calculated using equation 4.6.2
(Kroupa et al., 2020) and their corresponding efficiency depicted in
Fig. 4.6.2. The clusters are within a range of virial radii from0.1
- 2.0 pc and masses from104 - 108 M⊙. The color represents the
mass of the BHs that form the clusters, and each panel corresponds
to different external potentials...................................................................58



Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Introduction

The existence of supermassive black holes (SMBHs) and theirphysical nature has

been confirmed through different independent observations, including the orbits

of the S2 stars near the center of Milky Way with the GRAVITY instrument

(GRAVITY Collaboration et al., 2018), as well as the observation of their shadows

at the centers of M87 and Sagitarius A* (Event Horizon Telescope Collaboration

et al., 2019, 2022). Observed through the detection of Active Galactic Nuclei

(AGN) at high redshift (e.g.Shankar et al., 2010), even at redshifts larger than

z > 6, more than 200 quasars have been detected (e.g.Bañados et al., 2016;

Inayoshi et al., 2020). These objects are very rare with number densities of

~ 1 Gpc−3 and have so far been found in optical/infrared(IR) surveys that cover

a large portion of the sky, such as the Sloan Digital Sky Survey (SDSS), the first

survey to discover a high-redshift quasar (Fan et al., 2001).These objects SMBHs

are common in the centers of local galaxies (e.g.Ferrarese and Merritt, 2000;

Tremaine et al., 2002; Gültekin et al., 2009). Their masses are in the range of

106 − 1010M⊙.

The most distant quasar detected so far is ULAS J1342+0928 with a redshift of

z = 7.54 which is SMBH mass of≈ 8 × 108M⊙ (Bañados et al., 2018). In the

local Universe the rarest SMBHs are the so-called ultra-massive ones; over the

last decade observations have established the existence ofa few of these with

masses≳ 1010M⊙ in some bright cluster galaxies (e.g.McConnell et al., 2011;
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Hlavacek-Larrondo et al., 2012; Wu et al., 2015).

In the local Universe, galaxies were also found to host nuclear star cluster (NSCs)

at their center (Neumayer et al., 2020). The most massive NSCs are the densest

known stellar systems and can reach mass surface densities of ≈ 106M⊙/pc
2 or

higher. Some important features of these objects and an important topic to study

are their correlations with their host galaxies, such as thetight correlations with

the masses of their host galaxy (Wehner and Harris, 2006; Rossa et al., 2006;

Ferrarese et al., 2006).

There are a number of cases where nuclear stars cluster and massive black holes

were found to co-exist (Filippenko and Ho, 2003; Seth et al., 2008; Graham

and Spitler, 2009; Neumayer and Walcher, 2012; Nguyen et al., 2019). Other

nearby examples of SMBH detections within NSCs are M31 (Bender et al., 2005),

M32 (Verolme et al., 2002; Nguyen et al., 2018), NGC 3115 and the Milky Way

(Tonry, 1984; Dressler and Richstone, 1988; Richstone et al., 1990; Kormendy and

Richstone, 1992; van der Marel et al., 1994). The co-existence suggests that the

build-up of NSC and the growth of massive black holes are closely related (see

alsoEscala, 2021; Vergara et al., 2022).

The high masses of the SMBHs at an early age of the Universe where we observe

these objects are a real challenge for the formation theories of these objects. If we

assume super-Eddington accretion with only10% of the matter falling into the

black hole being radiated away, a stellar-mass black hole with a mass of= 10 M⊙

requires a timescale oftaccr ≈ 1 Gyr to reach the masses of SMBHs observed

in the most massive AGN. However, it is unlikely to grow so much because the

removal of the gas reservoir by UV radiation and supernova (SN) explosions of the

Pop III stars in the shallow gravitational potential wells of minihalos (Johnson

and Bromm, 2007; Whalen et al., 2008; Milosavljević et al., 2009). This suggests

that the black hole seed must have been formed at redshiftz ≥ 15 with a mass

of ≈ 105, or the black hole seed had a lower mass but a high rate of growth, or

a combination of both. As we can note in Fig.1.1.1, there are some pathways

for the formation of very massive objects. We will give a brief summary of these

scenarios in the next subsections.
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Figure 1.1.1: Different scenarios the formation of seed BHs on the top. 1) A
BH remnant of a Pop III star with masses101−2M⊙. 2) Massive seed BHs
forming under conditions such as strong radiation, rapid mergers halos and high
baryon-DM streaming velocities, reaching masses of105−6M⊙, 3) Formation of
less massive intermediate massive black holesM3−4M⊙ via runaway collisions
in ultra-dense star clusters, 4) Finally the Hyper-Eddington accretion onto stellar
mass BHs (Inayoshi et al., 2020).

1.2 Direct collapse

Direct collapse is one of the most promising scenarios of quasar formation at high

redshift z > 6. It implies the formation of a massive BH seed of105 − 106 M⊙

via the gravitational collapse of a cloud of primordial gas (Rees, 1984; Bromm

and Loeb, 2003; Koushiappas et al., 2004; Begelman et al., 2006), also called a

direct collapse black hole (DCBH). These models invoke the rapid collapse of a

chemically pristine primordial gas in so-called "atomic cooling halos"(ACHs). For

this scenario to work the gas should efficiently redistribute angular momentum

and rapidly collapse avoiding fragmentation. The main ideain this process is to

bring large inflows of gas in a short time to the center of the halo via a large mass

accretion rate of≥ 0.1M⊙/yr (Begelman, 2010; Hosokawa et al., 2013; Schleicher

et al., 2013).

This high accretion rate could be reached via thermodynamical processes by

keeping the gas warm, where the mass inflow rate of the collapsing gas, the

inflow gas mass rates are proportional to the temperature asṀ ∝ T 3/2 (Bromm
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H

≈ −3

and Loeb, 2003). This relation can be derived dividing the Jeans massMJ ≈

2 × 104M⊙n
−1/2T 3/2 by the time free-fall(Gρ)−1/2 time of the gas as follows:

Ṁ
MJ

tff
≈ 4 × 10 M⊙yr−1T 3/2. (1.2.1)

Therefore higher temperatures imply large mass inflows rates. Hence, the

thermodynamical way to form DCBHs requires warm gas to reachthe critical

mass inflow rate to form these objects, thus the gas in the halos should not cool

down to lower temperatures, otherwise fragmentation and star formation could

occur instead. The primordial metal free gas could also be cooling by the H2

rovibrational lines bringing the gas to low temperatures of≈ 200 K and triggering

star formation. However, if the H2 is dissociated the metal-free gas could reach

temperatures of≈ 104 K triggering isothermal collapse forming objects with masses

of > 107M⊙.

The suppression of molecular hydrogen requires the presence of a Lyman Werner

(LW) (Omukai, 2001; Omukai et al., 2008; Shang et al., 2010; Latif et al., 2013),

flux by UV soft photons in≈ 11 − 15 eV, these are the transitions between the

ground and excited electronic states ofH2, roughly10% og the excitefH2 decays

radiatively into the split state of twoH atoms. But the requirements of a strong

LW fluxes could be reached as hosting halo should form in the vicinity of a massive

star forming galaxy (Dijkstra et al., 2008). Numerical simulations have shown

that the photodissociation of H2 requires a very strong background (Bromm and

Loeb, 2003; Wise et al., 2008; Latif et al., 2013).

The traces of H2 in the primordial gas can be formed via two reactions :

H + e− = H− + γ,

H + H− = H2 + e−.

The formation of H2 can be suppressed in two ways either; directly by dissociation

of H2 or indirectly via photo-detachment of H−. In the direct way photons with

enough energy (ie.11.2 − 13.6 eV ) can be absorbed by the Lyman-Werner bands

of H2 and photo-dissociate it via the Solomon process, and indirectly through

energetic photons above0.76 eV. The reactions are then the following ;
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H

H2 + γLW = H + H,

H− + γ0.76 = H + e−.

The critical valueJcrit of the LW intensity for suppressing the H2 abundance follows

from balancing the dissociation rate (∝ JLW × nH) and the formation rate (∝ n2 ),

and therefore the suppression of H2 depends on the densitynH. The intensity varies

betweenJcrit ≈ (0.01 − 1)J21, whereJ21 is in units of10−21erg s−1 cm−2 Hz−1 sr−1

(Haiman et al., 2000; Machacek et al., 2001; O’Shea and Norman, 2008). The

intensity varies depending on the halo mass and the redshift.

For the thermal evolution of the gas there is a tight dependence on the LW

intensity, particularly if it is below or above the criticalintensityJcrit. In Fig.

1.1.1whenJ < Jcrit (dashed blue curve) the temperature shows a rapid drop

caused by the cooling of self-shielded H2. In this case, the temperature track also

converges with the solid blue curve without LW radiation. Inthe rapid cooling

phase the gas is expected to fragment into small clumps withMJ ∼ 103 M⊙ (Regan

and Downes, 2018). ForJ > Jcrit (solid red curve) the temperature evolution is

nearly isothermal withT ≈ 8000 K reaching high densities (∼ 1016cm−3) without

being affected by the H2 cooling. In this scenario the fragmentation at least

is suppressed (Regan and Downes, 2018). To form a massive objects of mass

≈ M 6 M⊙ requires that the gas remains at a high temperature during the collapse

phase driving an atomic cooling processes (e.g.Lyα emission).

Black curves show the temperature evolution in a gas polluted by metals and dust

with Z/Z⊙ = 10−4 − 10−5, leading to a rapid drop in the temperature due the

thermal emission, driving a rapid cooling phase and therefore the gas likely will

be fragmenting into smalls clumps forming regular stars.

In summary the formation of a massive seed BH is the result of an isothermal

collapse by gravitational unstable primordial gas at high temperatures avoiding

the processes of cooling, then producing a high accretion rate onto the central

object and avoiding the episodes of gas fragmentation.
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Figure 1.2.1: Temperature evolution of a metal-free gas cloud, irradiated by
LW radiation. For high enough intensities(JLW > Jcrit) it is able to dissociate H2
even in high density regions (red curves) (Inayoshi et al., 2020).

1.3 Formation of the first stars

The first generation of stars, the socalled population III (Pop III) generation, are

formed atz ≈ 20 − 30 in minihalos of105 − 106M⊙. The collapse of primordial

gas clouds in these halos was triggered by the cooling processes of molecular

hydrogen reducing the temperature to200 K. The thermal Jeans mass scales with

temperatureT 3/2 so the mass scale of these stars is expected to be higher.

The protostars are born in a dense core embedded in a molecular hydrogen gas.

The protostars grow either by mergers with other dense clumps or through gas

accretion. In the first phase the star increases its radius during the adiabatic

accretion≈ 10−3M⊙/yr reaching masses of10M⊙. Subsequently the star begins

the Kevin Helmholtz phase (KH) radiating away its thermal energy. When the

star begins to burn hydrogen and accretion stops, the star enters the zero age

main sequence (ZAMS) with a mass around100 M⊙ (Omukai, 2001; Yoshida et al.,

2006). The final mass of the star depends on the initial condition of the gas cloud

such as its mass, spin, formation redshift and mass accretion rate (Hirano et al.,

2014).
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The UV feedback limits the stellar masses at lower accretionrates to at most a

few 100M⊙(Hirano et al., 2014). For mass inflow rates higher than≳ 0.1M⊙/yr,

the envelope of the star is pulsationally unstable, to red giants and lost mass by

this pulsations, similar due to theκ mechanism excited in the He+ ionization layer

in the envelope (Inayoshi et al., 2013). However, the mass loss rate is negligible

compared to the mass inflow rates, so the formation of a supermassive star (SMS)

is not prevented neither by the UV feedback nor the pulsational instability.

The limit that a SMS could reach is given by a classical argument (Chandrasekhar,

1964); a SMS exceeding the critical massMGR collapses directly to a massive

BH via the general relativistic (GR) instability.Haemmerlé(2020) found that

critical mass is of the order> 105 M⊙. Shibata and Shapiro(2002) studied the

gravitational collapse of rotating SMSs, and found that almost the complete stellar

mass is swallowed by the new-born BH, ejecting only10% of its mass. If the

SMS is rotating sufficiently fast at the beginning of the gravitational collapse, the

SMS collapses and a binary BH forms (Reisswig et al., 2013). Another proposed

scenario is that only the central part of the SMS collapses forming a BH with

mass∼ 100M⊙, and the envelope is inflated by the energy input from the gas

that accreted onto the BH (Begelman et al., 2006).

1.4 Runaway collisions in a Dense Star Cluster

So far in the previous scenarios of massive seed BH formation, we talked about how

the primordial gas undergoes gravitational collapse avoiding processes of cooling

and fragmentation, but the issue that the cloud may fragmentat very high densities

is not entirely settled. The gas collapsing in the halo may have a modest level of

pre-enrichment by metal/dust, so fragmentation could occur. The fragmentation

opens another pathway to form massive seed BHs. The fragmentation at high

density may give rise to the formation of an ultradense cluster (Omukai et al., 2008;

Devecchi and Volonteri, 2009). Due to its high stellar densities (∼ 109−11M⊙/cm
3)

this cluster can undergo runaway core collapse in a short time forming a central

intermediate-mass black hole (IMBH) with mass of∼ 103−4 M⊙.

In this scenario a newly born dense star cluster could still be embedded in gas,

which may help to form a massive BH seed by inflow of gas into the cluster

(Tagawa et al., 2020), increasing its potential while decreasing the escapers and
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deepening the potential well of the cluster. In this scenario the proto-star also

could be accreting the gas increasing its radius hence its cross-section, and the

gas dynamical friction driving a more efficient core collapse (e.g.Portegies Zwart

et al., 2004; Reinoso et al., 2018).

In systems where massive black holes (BHs) form as a result ofthe dynamics in

dense clusters, the contraction of these systems can be described with a negative

heat capacity. The process can be described using a semi-analytic treatment of the

energy transfer to the outer parts of the cluster (Lynden-Bell and Wood, 1968).

In this bound system the negative heat capacity brings the core of the cluster in

contact with the outer parts, it could act as a heat sink, thusit is possible that

the core loses energy to the outer parts and contracts and heats up in the process,

leading to core collapse or the "gravothermal instability".

In such a scenario at the moment of the core collapse, the corereaches such a high

density that the collisions and mergers lead to the formation of a massive object.

The binary heating in less massive star clusters may stop thecore collapse (Heggie,

1975; Hut et al., 1992). On the other hand, mass segregation can lead to the

formation of a massive BH seed even in less massive clusters (Heggie, 1975; Hut

et al., 1992). Another way to form a massive seed black hole is via the merging

of stellar mass black holes (Lupi et al., 2014) or a supra-exponential growth of

stellar mass BHs in a cluster with dense gas (Alexander and Natarajan, 2014).

Runaway merging may proceed in this regime because further BH mergers will be

retained by the potential energy of the star cluster.

The relaxation time is related to the change and redistribution of the kinetic energy

within the cluster by dynamical friction; this time scale isuseful in understanding

the evolution of the cluster, for a cluster consisting of stars with a single stellar

mass it is given as

0.065 v3

trc ≈
nG2m2lnΛ

, (1.4.1)

wherev is the rms velocity of the stars,m is the mass of one of the stars,n is

the number density of stars,Λ is the ratio between the size of the system and the

distance necessary for an encounter to deflect the star byπ/2. For a cluster as a

whole a useful concept is the relaxation time; this time scale changes relatively

little through the evolution of some clusters, and describes the time necessary to
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distribute the kinetic energy in the cluster by two body encounters. Considering

virial equilibrium and equal mass stars the half mass relaxation is given by

N1/2r
3/2

trh = 0.138 h . (1.4.2)
m1/2G1/2lnΛ

HereN is the amount of particles in the cluster,rh is the half mass radius of

the cluster, the radius that contains the half mass of the cluster, the Coumlomb

logarithmΛ = γN , with γ = 0.4 (Spitzer, 1987).

A variation of this scenario consists of a less dense stellar cluster withmore massive

stars, with a rapid evolution collapsing and producing remnant stellar-mass BHs,

which are embedded in a dense gas cloud. The mergers via dynamical friction and

aided by gravitational waves (GW) could form a massive IMBH (Kroupa et al., 2020;

Davies et al., 2011).



10 Chapter 2. Dark cores in nuclear star cluster

Chapter 2

Dark cores in nuclear star cluster

2.1 Model

The theoretical framework of this project is a variation of the model introduced

in the previus section on runaway mergers in a dense star clusters. The model

considers mergers in dense black hole clusters, following the framework ofDavies

et al. (2011). Due to mass segregation, the stellar mass BHs are assumed to have

sunken to the center of the core of a nuclear star cluster. In stellar systems there

is a the tendency toward equipartition of kinetics energies, so the most massive

objects will tend to move more slowly on average and then massive object drops

deep into the potential well, and light objects tend to move fast and move out,

and may reach the velocity necessary to escape. This instability is known as the

equipartition instability or Spitzer instability causingmass segregation, leading to

the formation of a dark core. We assume that the stars and other remnants in the

core of the cluster can be ignored as their individual massesare much smaller than

those of the stellar mass BHs and thus they will be absorbed bythe BHs or they

may be pushed outside of the radius of the dark core (Banerjee and Kroupa, 2011;

Breen and Heggie, 2013).The cluster which is more than50Myr old is assumed

to consist of N equal stellar mass BHs, each with massmBH. Some BH - BH

interactions can lead to escapers but a significant fraction of the initial stellar

mass BHs remains in the cluster (Mackey et al., 2007)

Binaries within the dark core stabilise the cluster againstcore collapse as the

binaries are a heating source (Hills, 1975; Heggie, 1975; Miller and Hamilton,
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8 c,6≃ ×
v

√

2002). Thus the dark core evolves as the BH population self-depletes through

the dynamical formation of BH binaries in triple encounterswhich, after their

formation, exchange energy with a third BH, where some interactions could lead

to BH escapers, though due the deep potential well the cluster retains most of its

BHs. According to the Hénon principle (Hénon, 1961, 1975), the energy generation

rate in the cluster core from encounters between single BHs/binaries with hard

binaries is regulated by the mass of the system. Such encounters transform binding

energy into kinetic energy, which supports the cluster against core collapse. While

soft binaries will be split by interactions in binary-single encounters, hard binaries

tend to harden in binary-single encounters. We introduce here the critical value

of the semi-major axis describing the transition between soft and hard binary

systems,

ah/s

Gm1m2

=
< m > σ2

, (2.1.1)

wherem1 andm2 are the masses of the primary and secondary of the binary

system,⟨ m⟨ describes the average mass in the cluster core andσ the

velocity dispersion. Binaries with a semi-major axesa > ah/s are then referred

to as a soft binary and will be disrupted due gravitational encounters, while

only hard binaries witha < ah/s can survive. The timescale of a binary within a

cluster to gravitational interact with another object is given byBinney and

Tremaine(2008)

τ2+1
M 2

6 10 x 3

∞,10

yr, (2.1.2)

whereMc,6 is the total mass of the cluster in units of106M⊙, x is the ratio of

binary binding energy to kinetic energy. In virial equilibrium we can consider that

v∞,10 ≈ 4.36 GMc/rh (Binney and Tremaine, 2008), wherev∞,10 is the relative

velocity at infinity in units of10 km/s andrh is the cluster half mass radius. Once

the dark core reaches the critical density and a high enough velocity dispersion,

the dynamical binaries formed in the cluster will be sufficiently tight to merge via

gravitational wave (GW) emission, since the time scale of GWemission will be

equal or shorter than the time scale of gravitational binary-single encounters. As

the binding energy stored in the binaries is lost via GW emission, the binaries

cease to be the source of heating of the cluster and core collapse takes place. The
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≃ 5 × 10 c G
v

x (1 − e) yr. (2.1.3)

decay time of a BH binary with an initial separationa and eccentricitye is (Peters,

1964)

τgw
−3 5 mbh −4 7/2

8

∞,10

The gravitational binary-single interactions will leave the binaries with a thermal

distribution of the orbital eccentricities, where the median eccentricity isemed =

1/
√
2. This effect reduces the typical binary merger time by a factor of ≈ 10. Soft

black hole binaries do not lose the necessary energy via gravitational radiation to

merge, but ifτgr < τ2+1 binaries will merge avoiding the transfer of its binding

energy to kinetic energy via gravitational interactions ofthe field, lose the energy

that is stored in the binaries and thus the binaries will not keep heating the cluster

as a result. Then the energy equilibrium breaks and core collapse is expected to

happen. As we can note in Fig.2.1.1, the solid dark line is the time scale of the

inspiral time considering the real value ofc = 3 × 105 km/s and the dashed light

green line is a cluster with mass≈ 106M⊙, so the core collapse could start when

the velocity dispersion in the cluster reachesτgr < τ2+1.

During the BH-BH mergers gravitational waves carry away linear momentum from

the radiating source. This recoil is independent of the total mass of the system.

When the BHs have the same masses gravitational beaming is symmetric and

the recoil vanishes. Calculations which include gravitational redshift suggest that

recoil velocities are much less than500 km/s, so much higher than the velocity

dispersion of a globular cluster of≈ 30 km/s, but in a BHs cluster core with

v∞ > 1000 km/s probably less than80% of BHs will be retained in the cluster

despite the gravitational recoil.

This scenario thus requires a mechanism to shrink the radiusof the cluster and/or

increase its mass. The dark core thus needs to become more dense, so that the

black holes may merge via run-away processes and stay withinthe cluster. In the

scenario proposed byMayer et al.(2010), the self-gravitating gas is subject to

instabilities that funnel much of the low angular momentum gas to the center

to scales of0.2 pc or less. It is thus very efficient in contracting the core of the

cluster, to increase the central densities and enhance the mass segregation, leading

to fast interactions between stellar mass black holes that could lead to a quick

coalescence and the formation of a massive BH seed. High resolution cosmological
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Figure 2.1.1: Logarithm of different time scales in years, the time scale for
binary-single encounters give by eq.2.1.2(dashed line) and gravitational radiation
inspiral given by eq.2.1.3 (solid line), considering a variation on the gas mass
fraction betweenηg = 0.0, 0.1, 0.3, 0.5, 1.010.0, with the lowest value in the blue
dashed line and the highest value light green line, considering different speeds of
light, from c = 103 km/s to the real value ofc = 3 105 km/s (black line) and the
lowest values ofc = 103 km/s (brown line), the vertical lines show the velocity
dispersion given byv∞ for different gas mass fractions.
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simulations of galaxy formation (Bellovary et al., 2011) show a gaseous inflow

due to a combination of accretion of matter from the cosmic web-filaments and

mergers of galaxies, providing a significant inflow of gas comparable to or higher

than the stellar mass in the cluster at high redshift (z > 10).

Independent of the primordial mass segregation the inflow of gas into the cluster

will make the black hole cluster shrink given the steeping ofthe potential. This

increases the interactions between the BHs, while the initial fraction of hard

binaries also affects the re-expansion of the cluster due tothe heating of them.

In this scenario the gas contributes only to deepening the potential well, while

we neglect here the dynamical friction that could make the cluster even more

dissipative and further enhance the probability to form a very massive object.

Kroupa et al.(2020) have further investigated this scenario. They define the gas

mass that falls into the black hole clusterMg = ηgNmBHs. They find this scenario

to be feasible for0.1 < ηg < 1.0 with Rvir ≲ 1.5 − 4 pc andMBH ≳ 104 M⊙ where

it could reach a relativistic state within much less than aGyr , while for ηg < 6

the BH cluster expands because the binary heating dominatesover the gas drag.

For large values asηg > 6 the black hole cluster may even be in the relativistic

regime from the beginning.

The time scale for the cluster to undergo core collapse consideringN equal mass

BHs with a mass ofmBH is tcc ≈ 0.15trc (Gürkan and Rasio, 2005). trc is defined

in Eq. 1.4.1. Considering the gas mass that falls into the cluster the half mass

relaxation time is also affected. We consider a variation ofthe half mass relaxation

time derived byReinoso et al.(2020), which takes into a count the external

potential,

trh = 0.138
N (1 + ηg)

4

ln(γN )
tcross,ext, (2.1.4)

whereηg is the ratio of the gas mass fraction,γ = 0.4 for equal mass BHs, and

the tcross,ext = tcross/(1 + ηg), wheretcross is the time necessary a BH to cross the

cluster at rms velocity,tcross = R/Vrms .

When the semi-mayor axis is sufficiently small,t2+1 < tGW , and binaries merge

before any other encounter happens. The inner part of the dark cluster has a

high enough velocity dispersionσ so thatah/s can be sufficiently small for hard
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8cc

Myr
≈ 1.2 × 10

BH

M⊙

BH

(M⊙/pc3 )lnΛ

binaries to merge via gravitational radiation. Such considerations give us a critical

velocity dispersion of

5
σ = ( πρ G3m2 c5)1/11, (2.1.5)
crit 64

BH BH

whereρBH is the density of the dark cluster,mBH is the mass of black holes, and

c is it the light speed. When the cluster reaches the critical values in density

(ρBH) and velocity dispersion (σcrit) (Kroupa et al., 2020), the time necessary for

the cluster undergo to the core collapse is given by

t 1 m
−5/11

ρ
−8/11

Onceσ reach the one percent of the light speed, the dark core is considered to be

in a relativistic state (Kupi et al., 2006).

. (2.1.6)
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Chapter 3

Nbody6++GPU

To resolve the gravitational dynamics in the cluster, including post-Newtonian

corrections, we use the Nbody6++GPU code (Wang et al., 2015). Nbody6++GPU

uses a Hermite4th order integrator method (Makino, 1991). It also includes a

set of routines to speed up the calculations such as using spatial and individual

time steps and a spatial hierarchy which considers a list of neighbor particles

inside a given radius, to distinguish between the regular force and the irregular

force (Ahmad and Cohen, 1973). In this version the gravitational forces are

computed by Graphics Processing Units (GPUs) (Wang et al., 2015). It further

uses an algorithm to regulate close encounter (Kustaanheimo et al., 1965). Finally

Nbody6++GPU includes post-Newtonian effects as describedbelow (Kupi et al.,

2006).

3.1 The Hermite integrator method

Each particle in our cluster is completely defined by its mass m, positionr0 and

velocity v0, where the subscript denotes the time zerot0. The equation of motion

for a particlei is given by its acceleration and his derivativeȧ0,i :

a = −
Σ

Gm , (3.1.1)

ȧ0,i

0,i

= − Gmj

iʫ=j

iʫ=j

V

R3

j
R3

+
3R(V × R)

, (3.1.2)
R5

R
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where G is the gravitational constant,R = r0,i − r0,j is the relative coordinate

andV = v0,i− v0,j the relative spatial velocity with respect to particle j.

The first approximation to the equation of motion of particles is a prediction via a

Taylor series of the positionsri(t) and the velocityvi(t) for the next time step(t):

rp,i = r0 + v0(t − t0) + a0,i

(t t )2

2
+ ȧ0,i

3

, (3.1.3)
6

vp,i = v0 + a0(t − t0) + ȧ0,i

2

. (3.1.4)
2

The predicted positionsrp,i and velocitiesvp,i, which result from this simple Taylor

approximation, do not fulfill the requirements for an accurate high-order integrator.

An improvement is made by a Hermite interpolation which approximates the

higher accelerating terms by another Taylor series:

a (t) = a + ȧ × (t − t ) + a × (t − t ) + a × (t − t ) , (3.1.5)

a˙ (t) = a˙ + a
(2) × (t − t ) +

1
a

(3) × (t − t )2. (3.1.6)

Here the values ofa0,i and ȧ0,i are known. To determine the higher derivatives

of the accelerations terms we used the predictedrp from Eq. 3.1.3andvp in Eq.

3.1.4; we calculate their derivative and call these new termsap,i and ȧp,i, and

replacerp andvp on the right hand of Eq.3.1.5. And finally we have :

a
(3)
= 12

a0,i− ap,i
+ 6

ȧ0,i − ȧp,i
, (3.1.7)

0,i (t − t0)3 (t − t0)2

a
(2)

= −6
a0,i + ap,i − 2

2ȧ0,i + ȧ p,i
. (3.1.8)

0,i (t − t0)2 t − t0

Finally if we extend the Taylor series forri(t) andvi(t) by two more orders and

find the "corrected" positions and velocity to particlei at time t1 as

(2) (t − t0)
4

(3) (t − t0)
5

r1,i(t) = rp,i + a0,i 24
+ a0,i

, (3.1.9)
120

0,i 0,i

0,i
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(2) (t − t0)
3

(3) (t − t0)
4

v1,i(t) = vp,i + a0,i 6
+ a0,i

. (3.1.10)
24

The error inr and v within in two time steps∆t = t1 − t0 is expected to be of

orderO(∆t5) and the global error for a fixed physical integration time scales with

O(∆t4) (Makino, 1991). One of the advantages of the Hermite scheme is that it

allows to use time steps twice as large for the same accuracy (Makino and Aarseth,

1992).

3.2 Individual and Block time steps

Stellar systems are characterized by a huge dynamical rangein radial and temporal

scales. The time scale varies e.g. in a star cluster from orbital periods of binaries

of some days upto relaxation time scales of a few hundred millions year.

So in stellar systems we have a large dynamic range in the density from the center

to the outskirts of the cluster, so those stars need to be treated different in the

force calculation from the whole rest of the system. The objects that are in the

outskirts of the cluster shall be allowed to move for longer distances before a

re-computation of the gravitational force becomes necessary. This is the idea of a

method for assigning different time-steps∆t = t1 − t0, in the force computation,

the so-called "individual time-steps scheme" (Aarseth and Hoyle, 1963).

Given their high amount of elements, stellar systems are complex in theirdynamical

interactions over space and time scales,including binary systems with a period of

only a few days to relaxation times of millions of years. Considering this range

of time scales it is useful to use different time steps.Aarseth and Hoyle(1963)

developed the ”individual time step scheme”, where the idea is to use small time

steps to integrate particles in regions where the changes of the force are high,like

for stars in the core of a star cluster, and large time steps for particlesin regions

of slowly changing dynamical force, like stars in the out-skirts of a star cluster,

where they are allowed to move a larger distance before recomputing.

Each particle is assigned its own∆ti as shown in Fig3.2.1. This scheme is called

"block time-steps". The particlei has the smallest time step at the beginning, so

its phase space coordinate is determined at each time step. On the other hand,

we have the particlek which has a time step twice as larger as the particlei, and
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Figure 3.2.1: Regular and irregular time steps (Khalisi and Spurzem, 2014).

its coordinates are just extrapolated ("predicted") at theodd time steps, while a

full force calculation is due at the black dots. Meanwhile the time steps in the

simulation could change or not change during the evolution as we see for the

particlek in figure3.2.1.

A first approximation of the time-step comes from the rate ofchange in the

accelerationδti ∝
√
aia˙i. A more accurate estimate in case of many-bodies is

given byAarseth(1985) avoiding some numerical error

∆t =

,
u
,η

|a1,i||a(2)| + |ȧ1,i|2

|ȧ 1,i||a(3)| + |ȧ(2)|2
, (3.2.1)

whereη is a dimensionless accuracy parameter which controls the error. In most

applications it is taken to beη ≈ 0.01 to 0.02. In the block-time steps, the

synchronization is made by taking the next-lowest integer of ∆ti.
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3.3 The Ahmad-Cohen scheme

The computation of the gravitational interactions betweenparticles makes

simulations very time-consuming for large numbers of particles, where the equations

of motions to compute in the simulation scale withN 2 so at largeN the time

consumption increases rapidly. One method to speed up the calculations while

retaining the collisions approach is by employing a "neighbour scheme" (Ahmad

and Cohen, 1973).

The idea is to split the force polynomial3.1.5on a given particlei into two parts,

an irregular and regular component,

ai = ai,irr + ai,reg, (3.3.1)

where the irregular accelerationai,irr results from particles in a certain

neighbourhood ofi (see Fig3.3.1). The particles inside the neighbourhood

give rise to a stronger fluctuating gravitational force, soit is calculated more

frequently than the regular one of the more distant particles that do not change

their relative distance toi so quickly. One can replace the full summation in

Eq. 3.1.1by a sum over theNnb nearest particles forai,irr and add a distant

contribution from all the othersai,reg.

To consider a particle inside the list of irregular particles it is necessary that

particles are inside the "neighbor sphere" with radiusrs. In addition,we consider

particles within a surrounding shell to satisfyR ×V < 0. This condition serves

to identify particles that are rapidly approachingi.

The process of force calculation begins with a list of neighbours around the particle

i shown as filled dots (see Fig.3.3.1). From this list the irregular component

ai,irr due to the neighbours is calculated, and then the summation is continued to

the distant particles, the regular componentai,reg. The time derivatives of two

components are computed from equation Eq.3.1.5and3.1.6, so the positions

and velocities are predicted. At timet1,irr we only correct theai,reg inside the

neighbours, the regular component is not affected by the corrections. For the

next time stept2,irr the same process is repeated. The distant particles are still

unaffected by the acceleration corrections. Whent1 is reached we calculate the
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total force on the basis of the full application of the Hermite predictor-method,

and a new list of neighbours is constructed. With this schemeNbody6++GPU

in the irregular time only computes the forces of particles inside the neighbour

radius, meanwhile in the regular time it computes all forcesfrom neighbours and

distant particles.

Figure 3.3.1: Illustration of the neighbour scheme. Particlei marked with an
asterisk and thers neighbour radius. Black dots are particles that correspondto
irregular forces and unfilled dots. Particles that correspond to the regular forces
are marked asX to represent a close encounter (Khalisi and Spurzem, 2014).

3.4 KS Regularization

Close encounters of stars such as close binary systems or hyperbolic encounters need

a special treatment. Their small distances and strong gravitational interactions

lead to small time steps, making the particle integration computationally expensive.

The main idea of the KS regularization implemented byMikkola and Aarseth

(1998), when two particles are as close as "X" in Fig.3.3.1 with distances of

hundreds of AU, is to take both close stars and move then out ofthe main

integrator, replacing the system by their center of mass coordinate and go on with
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2 4 5

the normal integration without both particles. The two close bodies are moved to

another coordinate system and integrated separately from the rest of the particles,

as the harmonic oscillator accurately describes the close encounter of two bodies.

The parameters involved in the regularization areRMIN andDTMIN, which

refer to the minimum distance between two particles and their minimum time

step, respectively, to be a considered as a regularized particle. They also need to

fulfil 2 more criteria :

R ×V > 0.1
√
G(m1 +m2)R.

If the particles are approaching each other the value of0.1 allows for nearly circular

orbits to be regularized. The second criterion is

γ :=
|apert| × R2

G(m1 +m2)
< 0.25,

so the relative force between the 2 particles is less than a quarter of the rest of

the particles.

3.5 Post-Newtonian corrections

The relativistic stellar dynamics in stellar systems such as NSCs could give us a

better understanding of the formation of SMBH, how massive central BHs could

form from a given initial conditions, or to estimate the capture of compact objects

on a central SMBH via extremely mass ratio inspiraling, etc.As we saw above

Nbody6++GPU includes KS regularization, and this algorithm starts to operate

when 2 particles are tightly bound. To avoid problems with small individual time

steps, they are moved to another coordinates system. This scheme is modified

to allow for relativistic corrections to the Newtonian forces by expanding the

accelerations in a series of powers of1/c (Soffel, 1989):

a = a0 + c−2a + c−4a + c−5a +O(c−6), (3.5.1)
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wherea is the acceleration of the particle 1,a0 = −Gm2n/r2 is the Newtonian
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acceleration, and 1PN , 2 PN and 2.5PN are the Post-Newtonian corrections

to the Newtonian acceleration, where1PN and 2PN are the pericenter shift and

2.5 PN is the quadruple gravitational radiation. The correctionsare integrated

into the KS regularization scheme as perturbations, similarly to what is done to

account for passing stars influencing the KS pair.

Other versions of Nbody also include relativistic effects. Nbody5 only includes wave

emission terms, hence it neglected the1PN and 2PN terms. The computation

of PN is also CPU-time consuming, as it is necessary to compute both the

accelerations and the time derivative. In the version of Nbody6++GPU that

we use,1PN,2PN, 2.5PN corrections are implemented without any further

approximations (Soffel, 1989).

Another important topic in the relativistic dynamics is thegravitational recoil,

the expected loss of linear momentum in an asymmetric systemin which the

remnant receives a kick from the gravitational waves emission. In the model used

in Nbody6++gpu the series (eq.3.5.1) is truncated atO−5 (Kupi et al., 2006), so

the gravitational recoil is not consider in Nbody6++GPU.

Finally the criterion for particle mergers is calculated from their Scharzschild radii

as

|Ri,j| ≤ 2 ×
c2

(mi + mj), (3.5.2)

whereG is the gravitational constant,c is the speed of lightmi andmj the mass

of particlesi and j, with |Ri,j| the distance between the particles in the binary

system. This equation shows the minimal distance to consider a merge between

two particles, and occurs when the distance between the particles is loweror equal

of the sum of their Scharzschild radii.

3.6 Initialization of Nbody6++GPU

The input file that we use to model the clusters in this project is given as follows.

We will also give a brief description of the template below.

1 1e6 1e6 40 40 0

N 10 10 NRAND 200 1 0 10
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0.02 0.02 0.15 5.0 1.0 TCRIT 1.0E7 RBAR ZMBAR

2 2 1 0 1 0 4 0 1 2

0 0 0 4 2 0 0 0 3 0

1 1 2 0 0 1 0 0 0 1

0 0 2 0 0 0 0 1 0 0

0 0 0 0 2 4 -6 0 0 1

DTMIN RMIN 0.05 1.0 1.0E-06 0.01 0.125

1 100.0 CLIN 0 1.0

1.0 10.0 10.0 0 0 0.002 0.0 1.0

0.5 0.0 0.0 0.0

MP AP MPDOT TDELAY

In the second rowN is the number of particles in the cluster,NRAND is the

seed to initialized the random position and velocities of each particle. In the third

row TCRIT is the run time of the simulation in Myr,RBAR is the virial radius

of the cluster in pc,ZMBAR is the mean mass of the particles in the cluster

in solar masses, from row 4 to 8 are the KZ parameters which areexplained in

the manual of Nbody6++GPU (Khalisi and Spurzem, 2014). On row 9 we have

DTMIN andRMIN, the parameters to define a close encounter between two

particles. If two particles are closer thanRMIN or have time steps lower than

DTMIN, then they are candidates for regularization. The next row includes the

parameter used for the Post Newtonian effects, the parameter CLIN is the speed

of light in km/s. The last row is that used to define the analytic potential that

we consider in the cluster; in our case it is a Plummer distribution settled with

KZ(14) = 4, MP is the total mass of the Plummer sphere in Nbody-units,AP is

the Plummer scale factor also in Nbody-units. FinallyMPDOT andTDELAY

are the decay time of the gas expulsion and the delay time for the gas expulsion,

respectively.

3.7 Initial conditions

In this project we use the model introduced in Chap.2 to explore the evolution

and the formation of a SMBH seed in the dark core of a NSC. We perform a

range of simulations to study how the presence of an externalgas potential affects

a dark core, the core collapse of the dark core and the growth of a SMBH seed
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via run-away mergers. The configurations that we consider to model the dark

core of a NSC is a spherical cluster ofN = 104 stellar mass black holes with

an identical mass ofMBH = 10 M⊙ at the beginning of the simulations. The

spatial distribution is an isotropic Plummer sphere (Plummer, 1911) in virial

equilibrium with virial radius ofRv = 1.0 pc. The analytic potential is given

by a Plummer distribution with a massMgas = ηgMBhs M⊙ and a Plummer

radius ofRa = 0.56 pc, where we vary the gas mass fraction of the cluster on

ηg = 0.0, 0.1, 0.3, 0.5, 1.0.

The computations in such simulations considering the real value of the speed of

light c = 3× 105 km/s become prohibitive. Here we try to extrapolate the behavior

of the black hole cluster and the efficiency of formation of massive objects by

taking c as a free parameter exploring the dependence onc and extrapolating

to the real value ofc. Mergers via gravitational radiation strongly dependence

on the speed of light, as seen in Equation (2.1.3). When we increase the speed

of light, the post-Newtonian effects become more prominentin the evolution of

the cluster, and it takes more time to compute, eventually making it unfeasible

to do computations for the real speed of light. Besides not only increasing the

time for mergers, it also increases the time to solve the equation of motion,

because as we see above in the Hermite scheme we need to compute not only the

acceleration (see eq.3.1.1) but also the derivative (see eq.3.1.2), and we need

do this for every factor of the post-Newtonian corrections 1PN,2 PN and 2.5PN .

Simulations considering the real speed of light could take months to model

systems considered here. Therefore, we vary the speed of light in our simulations

to study the dependence on post-Newtonian effects, with thegoal of inferring what

would occur in a dark core under realistic speed of light conditions. We vary the

speed of light asc = 103; 3× 103; 6× 103; 104, 3× 104 km/s, and as a consequence

it also affects the radii of the BHs in the cluster given by theSchwarzschild radii.

The time evolution of all clusters is considered over a time of T = 1.4 Gyr. All

configurations are given in table3.7.1. For every setup we run 4 simulations, with

different random initial conditions giving a total of 100 simulations.
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·
·

·
·

·
·

·
·

·
·

Table 3.7.1: The initial amount of black holes in the cluster is N, the total mass
in the cluster by BHs isMBHs, the fraction of gas mass in the cluster is given byηg,
the virial radiusRv, finally the speed of light that we use in the simulation is
given byc.

IDs N MBHs [M⊙] ηg Rv [pc] c [km/s]

1 104 105 0.0 1.0 103

2 104 105 0.1 1.0 103

3 104 105 0.3 1.0 103

4 104 105 0.5 1.0 103

5 104 105 1.0 1.0 103

6 104 105 0.0 1.0 3 103

7 104 105 0.1 1.0 3 103

8 104 105 0.3 1.0 3 103

9 104 105 0.5 1.0 3 103

10 104 105 1.0 1.0 3 103

11 104 105 0.0 1.0 6 103

12 104 105 0.1 1.0 6 103

13 104 105 0.3 1.0 6 103

14 104 105 0.5 1.0 6 103

15 104 105 1.0 1.0 6 103

16 104 105 0.0 1.0 104

17 104 105 0.1 1.0 104

18 104 105 0.3 1.0 104

19 104 105 0.5 1.0 104

20 104 105 1.0 1.0 104

21 104 105 0.0 1.0 3·104

22 104 105 0.1 1.0 3·104

23 104 105 0.3 1.0 3·104

24 104 105 0.5 1.0 3·104

25 104 105 1.0 1.0 3·104
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Chapter 4

Results

In this section, we present the results of simulations in which we explore the

behavior of the black hole cluster, taking into account the influence of an external

potential, as well as variations in its potential mass. Additionally, we consider

the effects of altering the speed of light in the context of Post-Newtonian effects

and how these factors impact the evolution and growth of the central object. The

setups we consider are detailed in Table3.7.1. For each parameter listed in Table

3.7.1, we conducted four simulations with different random initial positions and

velocities, resulting in a total of 100 simulations. In the next section, we will focus

on four specific clusters with the following IDs: 1, 5, 21, and 25, as indicated in

Table3.7.1."

4.1 Dark Core Evolution

In Fig. 4.1.1, we illustrate the evolution of the dark cluster without an external

potential (i.e.,ηg = 0.0) while considering a speed of light of103 km/s. The

crossing time of the cluster, assuming no external potential, is calculated to be

0.0482Myr. Additionally, the half-mass relaxation time as given by Eq. 2.1.4is

166.38 tcross. The cluster reaches its highest density at85.194Myr or, in terms of

the half-mass relaxation time, at10.61 trh. the inner parts of the cluster (10%

Lagragian radii) reaches its highest density, measuring at3.3 × 106 M⊙/pc
3, with

a10% Lagrangian radius of0.144 pc. In the first panel, we can observe that the

1% Lagrangian radius experiences a contraction and post-collapse oscillations.

After the time of its highest density, the5% Lagrangian radius shows a rebound,
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and approximately50 Myr later, it also experiences a contraction and begins to

oscillate. A similar phenomenon occurs with the10% Lagrangian radius, but with

a longer delay in the collapse and subsequent oscillations. Lagrangian radii greater

than10% are affected by the expansion of the cluster.The second panel depicts the

growth of the mass of the central object and the initiation ofmassive black hole

formation. At time of highest density, the growth becomes exponential, occurring

in a short span of approximately10 Myr, eventually reaching a mass of10770 M⊙

by the end of the simulation. In the third panel, we can observe the escapers of

black holes within the cluster and how they are influenced byprominent density

at this point, resulting in a total mass loss of21% within the cluster. The fourth

panel illustrates the peak of mergers at the time when the cluster reach thehighest

density in the clusters, with approximately≈ 80 mergers. There is a second peak

occurring approximately≈ 50 Myr later, with about≈ 30 mergers, coinciding

with the contraction of the5% Lagrangian radius. we speculate that the event of

shrink the Lagrangian radii of lower percents (< 10%) could be given by that the

central object gain mass a high rate of mergers with other BH because this event

math with the event of high rates of mergers.

In Fig. 4.1.2, we observe a cluster withηg = 1.0 and a speed of light of103 km/s.

The crossing time is0.0241Myr, and the half-mass relaxation time is2662.149tcross.

The cluster experiences a high increase of the density at450 Myr or, in terms of

half-mass relaxation time,7.010 trh. The density reached at the10% Lagrangian

radius is1.23 × 106 M⊙/pc
3, with a radius of0.2 pc. The behavior of the cluster

is remarkably similar to that of the cluster without an external potential. There

is a delay in the contraction of higher Lagrangian radii after the collapse. The

only difference is the duration of this delay, which is shorter, lasting only a few

hundred Myr for the10% Lagrangian radius. Additionally, post highest density in

the inner reginons in the cluster, the cluster enters an oscillation stage affecting

different percentages of the Lagrangian radii that have collapsed.

In the second panel, the mass of the central object exhibits asimilar trend.

The only difference is the occurrence of some mergers beforethis point of high

density, and the final object is more massive, with almost twice the mass of the

central object in the cluster without an external potential. In terms of escapers,

this cluster experiences significantly lower mass loss compared to the cluster

with ηg = 0.0, with a total mass loss of only17% at the end of the simulation.
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Figure 4.1.1: Evolution of the cluster in a simulation with speed of light c=
103 km/s without external potential. On the first top panel have the Lagrangian
radius for mass fractions between1% to 90% of the total cluster. The vertical
line in this panel is the moment when the inner region reach the highest densities.
The second panel shows the growth of the mass of the most massive BH in the
cluster. The third panel shows the accumulative ejections in the cluster, and the
lowest panel shows the mergers of BHs in bins of5Myr.

Masstf=10770[M ]

Nesc=2118.0

90%

70%

50%

30%

10%

5%

1%

E
s
c
[N
e
sc
/N
T
]

L
a
g
.
R
[p
c]

M
e
rg
e
rs



30 4.1. Dark Core Evolution

Finally, there are about30 mergers at the time of a highst density in the inner

regions. However, in contrast to the cluster without an external potential, the

peak of mergers is shorter, and the mergers are more evenly distributed over time.

Similar that the event in the cluster without external potential the shrinks of the

Lagrangian radii of below10% is also affected by the high rate mergers.

In Fig. 4.1.3, we depict the time evolution of a black cluster without an external

potential while considering a higher speed of light of3 × 104 km/s. The crossing

time, based on the initial conditions of the cluster withoutan external potential,

is 0.0482 Myr. Consequently, the half-mass relaxation time is calculated as

166.38 tcross. The point of highest density occurs at2268.70 tcross, which translates

to 13.63 trh in terms of relaxation time. At the moment of highest density, the

10% Lagrangian radius reaches its minimum value of8.4 × 10−2 pc, with a density

of 1.65 × 107 M⊙/pc
3. During the evolution of the cluster towards increase the

density of the inner regions, we observe a contraction of theLagrangian radii

below 10%. Following this event, there is a slight expansion in both the inner and

outer regions of the cluster. In the second panel, we illustrate the mass growth of

the most massive object in the cluster, the SMBH seed. In a relatively short time

range, this object gains a significant amount of its final mass, reaching a mass of

680M⊙ at1.4 Gyr. Additionally, after the point of highest density, we observe a

slight increase in escapers in the third panel, resulting in a total of 2473 escapers,

accounting for almost25% of the initial BHs in the cluster. In the fourth panel,

we can see the BH mergers. The peak of the mergers is reached when the central

regions contracts, with a peak of 15 mergers. Beyond the time of highest density,

isolated mergers occur, with at most three mergers within5Myr

In Fig. 4.1.4, we explore a cluster with a comparable mass of the external potential

and the BHs within the cluster, denoted asηg = 1.0. The most notable distinction

is the significant delay in the contraction of the inner regions compared to the

clusters mentioned earlier. The highest density occurs at moment when the10%

Lagrangian radius reaches its minimum value, in this case,8 × 10−2 pc with a

corresponding density peak of1.92 × 107 M⊙/pc
3. This event occurs at1137 Myr

or, in terms of relaxation time,17.77 trh. Before the highest density, only the

Lagrangian radii lower than10% experience contraction. After this event, unlike

the clusters with a lower gas mass, the outer regions are lessaffected and do not

experience significant expansion. Regarding the mass growth of the central object,
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Figure 4.1.2: Evolution of the cluster in a simulation with speed of light c=
103 km/s and an external potential ofηg = 1.0. On the first top panel we show
the Lagrangian radius for mass fractions between1% to 90% of total cluster. The
vertical line in this panel shows the moment when the inner region reach the
highest densities. The second panel shows the growth of the mass of the most
massive BH in the cluster. The third panel shows the accumulative ejections in
the cluster, and the lowest panel shows the mergers of BHs in bins of 5 Myr.
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Figure 4.1.3: Evolution of the cluster in a simulation with speed of light
c = 3 104 km/s without external potential. On the first top panel we have the
Lagrangian radius for mass fractions between1% to 90% of total cluster. The
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it does not reach the same mass as in the other simulations, considering the gas

mass fraction and the time required to reach at this point of contraction and high

density. This discrepancy results from the time spent evolving the cluster after

this event of high density. In terms of escapers, there is a slight bump at the

of this contraction of the inner parts of the cluster. However, compared to the

cluster without an external potential, this trend is steeper, resulting in a total of

1679 escapers, equivalent to 16% of the initial BHs in the cluster.

4.2 time dependence of core contraction

As we increase the external potential, one of the significant differences is the time

it takes for the inner regions contraction to occur. As observed in the preceding

sections, there is a difference of more than1 Gyr between the cluster without a

gas potential and the one with an equal mass fraction of gas and BHs, considering

a speed of light of3 × 104 km/s. However, at a lower speed of light of103 km/s,

there is a450 Myr delay in time when occur that the inner region experience a

contraction between the highest and lowest external potential. To estimate the of

the core contraction time, we identify the peak of density atthe 10% Lagrangian

radius.

This even of highest density in the inner regions occurs between 6-20 half-

mass relaxation times, as evident in Fig.4.2.1. Assuming that core collapse

is proportional to the relaxation time (Spitzer, 1987), we can infer that the time

of contraction of the inner regions is proportional totcc ∝ (1 + ηg)4tcross, so

the time of core contractions tends to be higher when the external potential

increases (Reinoso et al., 2020). The linear trend suggests that clusters are more

affected by gravitational radiation if the speed of light isreduced, thus making

them more relativistic. We speculate this event of highest density event occurs

even faster due to the emission of gravitational radiation.This is supported by

the root mean square (rms) velocity in Fig.4.2.2, which shows that the rms

velocity is higher than1% of the speed of light (10 km/s) that we consider in

the simulation IDs 1-5, indicating that the BH cluster is in arelativistic state

(Kupi et al., 2006). Furthermore, the relativistic state is more prolonged for higher

external potentials, by the rms speed increases as the external potential increases,

affecting the cluster via strong relativistic effects leading to the dissipation of
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Figure 4.1.4: Evolution of the cluster in a simulation with speed of light c =
3 104 km/s and an external potential ofηg = 1.0. On the first top panel we
have the Lagrangian radius for mass fractions between1% to 90% of total cluster.
The vertical line in this panel shows the moment when the inner region reach the
highest densities. The second panel shows the of growth the mass of the most
massive BH in the cluster. The third panel shows the accumulative ejections in
the cluster, and the lowest panel shows the mergers of BHs in bins of 5 Myr.
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g
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g

kinetic energy into gravitational waves. For speeds of light exceeding103 km/s,

wherec = 3 × 103 km/s, we observe that the rms speed is slightly below1% of

the speed of light (30 km/s), but it is very close. Consequently, we might expect

that gravitational radiation is not exceptionally strong,but it is still sufficient to

reduce the time of highest density in the cluster, considering that the external

potential increases the time of the event of high density. This is evident when

examining the orange curve in Figure4.2.1. However, for higher speeds of light,

gravitational radiation is not strong enough, leading to a delay in the event of

inner regions contractions.

In the right panel of Fig.4.2.1, we observe the time of event of highest density

as a function of the speed of light. It is evident that the external potential has a

significant impact on the evolution of the cluster and time event of highest density,

as reflected in the slopes of these trends. For clusters without external potential,

there is almost no delay in the inner regions contraction of as the speed of light

increases. In contrast, for clusters with an external potential of ηg = 1.0, the slope

is much steeper. This results in a delay in the time of highestdensity of more than

700 Myr. This suggests that the time of highest density in clusters with a high

fraction of gas mass is more affected. This impact can manifest as a decrease in

the core contraction time due to gravitational radiation oran increase in the core

contraction time due to dynamical friction, influenced by the added mass. The

influence of the external potential on the time of highest density is particularly

pronounced in clusters with a substantial gas mass fraction. This effect can lead

to variations in the core contraction time time, making it anessential factor in

the evolution of the cluster. For simulations with the different speed of light, we

have calculated fits howtrh depends onηg, which we provide in the following:

tcc
(η ) = −3.728η + 10.449; c = 103km/s,

trh
tcc

(η ) = −0.043η + 11.991; c = 3 × 103km/s,
trh
tcc

(η ) = 1.482η + 12.91; c = 6 × 103km/s,
trh
tcc

(η ) = 3.32η + 12.874; c = 104km/s,
trh

g

g

g

g
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Figure 4.2.1: In the left panel, we depict the core collapse time relative to the
half-mass relaxation time as a function of the gas mass fraction of the cluster,
denoted asηg. Each curve represents a different value of the speed of light, c. On
the right panel, we illustrate the core collapse time relative time as a function of
the speed of light,c. However, in this scenario, we vary the external potential,ηg.
The shadow zone is the error computed by standard deviation with simulations at
different initial conditions.

4.3 Binary population

Our simulations indicate that with respect to both the binary population and the

mass of the cluster, the population of binary systems decreases when the cluster

experiences a higher external potential. This trend is primarily attributed to the

disruption of soft binaries resulting from the increase in the velocity dispersion

within the cluster. In dense star clusters, binaries are influenced by two-body

encounters, leading to their drift due to mass segregation.This is primarily

because binaries possess a larger mass relative to single stars. In denser regions,

the semi-major axis of binary systems tends to decrease overtime, which leads to

an increase in their hardness or their disruption via encounters with single stars.

In Fig. 4.3.1, we present a distribution of the semi-major axes of all binaries

that are formed in the simulations, which demonstrates thatbinaries tend to
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Figure 4.2.2: Evolution of the rms velocity over time, where the different
panel correspond different speeds of light, on the top panelthe lowest and to
bottom panel the highest speed of light, for different external potentials (ηg). The
horizontal red line correspond to the1% of the light speed to check if the cluster
could be in a relativistic state.
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become more tightly bound when subjected to a stronger external potential. This

phenomenon is particularly noticeable when they form at thehard-soft boundary,

characterized by smaller values of the velocity dispersion, as outlined byLeigh

et al. (2014). The ratio of hard/soft binaries appears to decrease as theexternal

potential of the cluster becomes more massive. This can be explained by the

Hills-Heggie law, which describes the semi-major axis at which the orbital energy

equals the average kinetic energy of single stars (see Eq.2.1.1). When the semi-

major axis is smaller thanaHS, the binary is considered a hard binary and tends

to have a higher binding energy following single encounters. This increases the

likelihood of merging due to gravitational waves. Conversely, binaries with a larger

semi-major axis thanaHS are categorized as soft binaries and are more likely to

expand their semi-major axes before encounters, making them prone to ionization.

This observed trend of an increasing ratio of hard to soft binaries with the rise

in the external potential of the cluster is likely to have a significant impact on

massive black hole growth. This impact is manifested in terms of binary mergers

and cluster escapers, affecting the mass loss of the clusterthrough single-binary

encounters.

To provide a clearer view of the trends in the semi-major axisat different external

potentials, we calculated the standard deviation of the semi-major axis distribution

mentioned previously. In Fig.4.3.2, the left panel demonstrates an increase in the

semi-major axis up toηg = 0.1. As the external potential increases, it becomes

evident that binaries tend to become more tightly bound, resulting in a significant

reduction in the spread of the semi-major axis, nearly by onemagnitude, when

ηg = 1.0. On the other hand, in the right panel of Fig.4.3.2, we have the

semi-major axis dispersion as a function of the speed of light. We can observe that

the semi-major axis remains almost flat for speeds of light lower than104 km/s,

and for higher values, it tends to decrease. This behavior may be attributed

to hard binaries, which tend to persist because the inspiraltime scale is longer,

leading to a delayed merger of black holes. In contrast, softbinaries become less

bound by dynamical friction and may even dissociate. As a result, the average

dispersion of the semi-major axis tends to become less spread.

In Figure4.3.3, we observe a distribution of eccentricities in binaries of all binaries

that are formes in the simulations. We notice that the shape of the distribution

remains relatively consistent across different external potentials. Thebinary
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Figure 4.3.1: Distribution of the semi-mayor axis of binaries in the cluster for
different values ofc andηg, of all binaries that formed in the simulations.
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Figure 4.3.2: The standard deviation of the semi-major axis is derived from
the distribution in Fig. 4.3.1. On the left panel, we observe the trend of the
semi-major axis concerning the external potential. On the right panel, we depict
the semi-major axis in relation to the speed of light.

eccentricity distribution exhibits a steep increase in eccentricities, reaching a

peak at around 0.9, and then it decreases for binaries with higher eccentricities.

The shape of the distribution is similar to all clusters, butthe differences in the

external potential lead to significant variations in the population of binaries. This

is because the formation of binaries through three-body encounters is less frequent

when the velocity dispersion is higher due to time scales oft3bb ∝M 3/ρ1/2.

We can also observe that the formation of binaries tends to result in high

eccentricities. This may be due to the fact that these systems initially possess high

eccentricities or evolve to such states through interactions. As a result, circular

orbits are rare, either because these objects are dissociated, or they increase their

eccentricities through gravitational interactions. The initial assumption ofτgw,

considering a thermal distribution with an eccentricity ofemed = 1/
√
2, appears

to be a reasonable approximation. Additionally, it seems that emed is independent

of the external potential.
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Figure 4.3.3: Histogram of binary eccentricities where the different panels
correspond to different value of the speeds of light, and thecolors show different
external potentials (ηg).
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4.4 Escapers

Escapers in star clusters can be triggered by three distinctmechanisms: a single

encounter with another BH can produce a velocity change comparable with the

initial velocities of the two BHs. The second mechanism involves a series of weaker,

more distant encounters that gradually increases the energy of a BH. Eventually,

after a last, weak encounter that imparts slightly positiveenergy, the BH escapes.

We refer to this process as ’evaporation.’ The third and final mechanism is related

to the asymmetric emission of gravitational radiation. BH remnants receive a kick,

providing the kinetic energy required to escape the cluster. The magnitude of

this kick depends on the mass ratio and spins of the BHs. However, as mentioned

earlier, this mechanism does not affect our simulations.

The escape velocity as a function of the cluster mass and density is given by

(Georgiev et al., 2009)

vesc = 40kms−1 MNSC
1/3

ρNSC . (4.4.1)
105M⊙ 105M⊙pc

3

Equation4.4.1 takes into account the mass and density of the NSC. However, it

is important to consider that we might be overestimating thenumber of escapers

from the dark core. We are, in essence, neglecting the mass outside the dark core,

which could significantly increase the total mass of the cluster. The mass of the

NSC can vary within the range of105 − 109 M⊙ (Georgiev et al., 2016). The loss

of mass due to escapers plays a pivotal role in the evolution of the cluster and the

formation of Intermediate-Mass Black Holes (IMBHs). The energy lost from the

cluster due to the escape of BHs leads to a heating of the cluster, contributing to

its overall dynamics.

In Fig 4.4.1, we observe the evolution of escapers in terms of crossing times. It

is evident that all clusters exhibit a similar trend in the behavior of escapers at

different values of the speed of light. The escapers are notably influenced by the

core contraction and high densities in the inner regions of the cluster, with the

highest density events reaching densities of approximately 106 − 107 M⊙pc
−3. This

increase in density leads to a subsequent rise in the number of escapers, primarily

due to both weak encounters (evaporations) and strong encounters resulting in

ejections. The escapers generally follow a consistent pattern with occasional
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fluctuations, possibly associated with oscillations in the inner regions that, in turn,

impact the density.

On the other hand, there is a notable difference between clusters with varying

external potential. Initially, the clusters without external potential exhibit a

higher number of escapers compared to clusters with higher external potential.

However, after a few thousand crossing times, clusters withηg = 0.1 andηg = 0.3

reach or even surpass the escaper count of the cluster withηg = 0.0. This outcome

might not align with our expectations, especially when considering higher-mass

clusters as described in equation4.4.1, but it could be related to the evolution of

the binary population (see below). In the case of a higher external potential, such

asηg = 1.0, there is a substantial reduction in the number of escapers,with only

a fraction of the cluster having escapers compared to clusters with lower external

potential.

In Figure 4.4.2, the total number of escapers is compared after29031 crossing

times (given by the cluster withηg = 0.0). On the left panel, the number of

escapers in the cluster is plotted as a function of the external potential. We

can observe that forηg = 0.1, the number of escapers shows a small increase,

independent of the speed of light. As the external potentialincreases (ηg > 0.1),

the number of escapers starts to decrease with a steep slope,diminishing even

more rapidly asηg approaches 1.0. This trend appears similar to the trend of the

semi-major axis of the binary systems (see Fig.4.3.2). These trends could be

connected, considering that the timescale for a binary-single encounter can be

expressed as (Heggie and Hut, 2003):

tce =
σ

8πGρBHa
, (4.4.2)

whereρBH is the total mass density in the cluster anda is the semi-major axis

of the BH binary, sotce becomes smaller for higha, as a result we could expect

to have more weak encounters between binary-single BH providing the energy

necessary to escape from the cluster. On the other hand, the right panel shows

the number of escapers as a function of the speed of light. As we can note the

slope is almost flat so the numbers of escaper do not change with the speed of

light.
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Figure 4.4.1: Accumulative numbers of escapers as a function of crossing times,
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speeds of light. The vertical line marks the time of the core collapse.
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Figure 4.4.2: On the left panel we have the escapers as a function of the external
potential. On the right panel the escapers are given as a function of the speed of
light. In both panels shown the escapers at the same crossingof 29031 crossing
times shown in the Fig.4.4.1

4.5 Formation of IMBH

From all these results, we can observe that binary systems play a pivotal role in

the evolution of star clusters and the formation of Intermediate-Massive Black

Holes (IMBHs). From the moment of highest density on the inner regions to the

generation of escapers and IMBH formation, binaries are central to these processes.

Previously, we discussed how the formation of an IMBH can take place through

mergers of stellar-mass black holes when the inspiral timescale for these mergers

is shorter than the timescale for binary-single encounters. The conditions for this

scenario are most favorable during core contraction when the cluster experiences

high densities and velocity dispersion, allowing binariesto merge via gravitational

radiation.

As we can observe in Figures4.1.1 and 4.1.2, mergers of black holes can occur

independently of the core contraction event. This indicates that the conditions

for these mergers are not exclusively confined to the core contraction phase.

Consequently, the timing of the highest density can providemore time for the

central massive black hole to grow, especially in clusters with a low gas mass

fraction, as depicted in Figure4.2.1. Hence the massive black hole could enhance
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the BH binaries mergers via Kozai-Lidov mechanism (Sedda, 2020; Aarseth, 2007),

the process by which the large eccentricities are attained is due third-body secular

perturbations.

Additionally, the external potential has a significant impact on the binary

population by reducing the number of binaries available for mergers. This reduction

binaries could affect in the mass of a central massive black hole. Moreover, the

external potential also delays the timing of core contraction. However, it is

important to note that the density and velocity dispersion within the cluster are

essential factors for the formation of "hard" binaries, which are more likely to

merge due to gravitational radiation.

In Figure4.5.1, we observe the evolution of the most massive black holes (BHs)

in the cluster over relaxation time scales. As mentioned earlier, core contraction

and high densities leads to a high rate of mergers in a short period, resulting in

the formation of objects as massive as 70 solar masses (M⊙) before feeding the

BH seed. This, in turn, leads to a rapid increase in the mass ofthe BH seed, a

phenomenon observed in all clusters.

When comparing clusters with different external potentials, it is evident that

higher external potentials result in the BH seed reaching a higher mass over the

same relaxation time. However, this trend of higher external potentials leading to

a more massive BH seed begins to decrease as the speed of lightincreases. In such

cases, the clusters tend to have a smaller difference in the mass of the central object,

as we saw before when increasing the speed of light the gravitational radiation

is reduced increasing the time scale of mergers. Also the time of contraction of

inner regions is delayed even more when the speed of light increases (see Fig.

4.2.1). In some instances, this clusters with low external potential even end the

simulation with a more massive BH seed. This occurrence is attributed to having

more relaxation times for to evolution after core contraction .

In Fig. 4.5.2we have a plot that shows the dependence of the final mass of the

BH seed on the external potential (top-left panel) or the speed of light (top-right

panel). We provide fits of the BH mass as a function of the external potential

considering different speeds of light in equations4.5.1 - 4.5.5 with a linear fits of

MBH = βηg + γ; we note that it is a linear trend for speeds of light <104 km/s.

The slope (β) of the trend increases so the mass of the BH seed becomes more
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Figure 4.5.1: Mass growth of the most massive BH in the cluster over time
in relaxation time scales, where the different colors mark the external potential
of the cluster (ηg). Different panels shows the speed of light (c) considering in
simulations.
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× −

massive for higher external potentials. On the another hand, for c ≥ 104 km/s,

the slope of the trend is negative so for higher external potentials the mass of

BH seed tends to decrease. As we noted above this is due to the decrease of the

available time as a result of the the delay of the core contraciton.

Also we can note how the second parameter (γ) increases considering relativistic

clusters, independent of the external potential of the cluster, giving us 2 sets

of BH seeds, the massive BH seeds with mass≈ 103−4M⊙ for speeds of light <

6 × 103 km/s , and the lower massive BH seeds of≈ 102M⊙ for speeds of lights

≥ 6 × 103 km/s. The dependence ofηg can be summarized as follows:

MBH(ηg) = 7812.022ηg + 11448.431; c = 103km/s, (4.5.1)

MBH(ηg) = 5063.854ηg + 7331.736; c = 3 × 103km/s, (4.5.2)

MBH(ηg) = 114.013ηg + 960.175; c = 6 × 103km/s, (4.5.3)

MBH(ηg) = −22.85ηg + 617.683; c = 104km/s, (4.5.4)

MBH(ηg) = −156.529ηg + 738.981; c = 3 × 104km/s. (4.5.5)

On the right panel of Fig4.5.2 (top-right panel), we show the mass of the BH

seed at the end of the simulation as a function of the speed of light. The fits that

we provide are described by equations4.5.6-4.5.10. As mentioned earlier, the BH

seed mass tends to increase for higher external potentials,except for clusters with

speeds of light> 6× 103 km/s. The trend of massive BH seeds at speeds of light

< 6 × 103km/s, with masses of≈ 103−4 M⊙, transitioning to less massive BH seeds
≈ 102 M⊙ at speeds≥ 6 × 103km/s is evident.

For clusters withηg = 1.0 and speed of light of3 × 104 km/s, the BH seed mass

becomes less than that of clusters with lower external potentials. This is primarily

due to the time of core contraction, as clusters with lower external potentials have

more time to evolve and then the BH seed grows in mass. We summarise here the

dependence onc for different value ofηg:

MBH
(c) = 10199.391 exp(

c 4

) + 624.143; η
3227.732 g

= 0.0, (4.5.6)
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× −

× −

× −

× −

MBH

MBH

MBH

(c) = 10782.525 exp(
c 4

) + 777.679; η
3568.121 g

(c) = 13838.729 exp(
c 4

) + 829.899; η
3966.455 g

(c) = 16096.442 exp(
c 4

) + 897.747; η
3814.199 g

= 0.1, (4.5.7)

= 0.3, (4.5.8)

= 0.5, (4.5.9)

MBH
(c) = 17766.999 exp(

c 4

) + 645.66; η
3480.472 g

= 1.0. (4.5.10)

To extrapolate the final BH seed mass to the real value of the speed of light, we

can use the equations provided above, consideringc = 3× 105 km/s as listed in

Table4.5.1. We note that the trend becomes nearly flat for higher valuesof the

speed of light. Furthermore, as the simulations only reach10% of the real value

of the speed of light, we could overestimate the inspiral time scale for high values

of speed of light.

The ratio of the mass of the BH seed over the number of the mergers is given by

α. This value gives us information of how many of the mergers feed the BH seed.

If the value is equal to1 it mean that all mergers of BHs in the cluster end in the

BH seed. On the other hand, if the value is0, it means none of the mergers feeds

the BH seed. Formally we have

α =
MBH 1

. (4.5.11)
10 Mergs

In Fig 4.5.2, the values forα are presented. In the bottom-left panel, we can

observe how, for lower values ofc < 3 × 103 km/s, α consistently remains above

0.9. This indicates that over90% of BH mergers contribute to the growth of the

BH seed. A similar trend is observed for a speed of light of3 × 104 km/s, where

even at higher external potentials,α remains high.

However, as we increase the speed of light, especially in therange between6× 103

and104 km/s, α experiences a significant decline. This suggests that a substantial

portion of BH binary mergers do not contribute to increasingthe BH seed mass.

This contrasts with the situation at a speed of light of3 × 104 km/s, whereα

consistently remains above 0.8, indicating that most mergers involve the BH seed.

Though clusters with3 × 104 km/s form a similar mass BH seed as clusters with

6× 103 and104 km/s, which means we have some BHs with masses> 10M⊙ that

do not have the time nor the conditions to mergers with the BH seed.
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R

g

∞

Table 4.5.1: Extrapolation of the BHs seed mass as to the real value of the speed
of the light300.000km/s.

ηg BH seed mass [M⊙]

0.0 624.143± 14.142
0.1 777.678± 53.874
0.3 829.899± 83.301
0.5 897.747± 35.483
1.0 645.66± 20.355

4.6 Extrapolation to real clusters

As mentioned earlier, the principal condition for a black hole cluster to form

a massive central black hole is that it needs to reach a relativistic state (i.e.,

v∞ ≳ 0.01c). This condition is typically influenced by the density of the cluster,

determined by its mass and radius. In our model, this condition is further impacted

by the parameterηg, representing the amount of gas accreted onto the black hole

cluster. The accretion of gas increases the density of the cluster, consequently

raising the root mean square velocity in the central regions, as expressed by

(Binney and Tremaine, 2008). Considering the external potential, we can rewrite

this velocity as:

v ≈

s

0.4
GMBHs(1 + ηg)

. (4.6.1)
vir

v∞ does not adequately account for the contraction of the blackhole cluster

due to gas accretion. Therefore, the cluster is less dense than considered in the

model proposed byDavies et al.(2011), where gas accretion affects the density of

the cluster and subsequently influences the root mean square velocity. A more

accurate velocity dispersion for a cluster affected by gas accretion is presented in

(Kroupa et al., 2020) as

σ = f
2
BHs (1 + η )2

1/2

, (4.6.2)
RvirMBHs

whereMBHs is the mass of BH in the cluster,Rvir is the virial radius andfv is

a dimensionless factor that covers a departure from the virial equilibrium or a

GM
v
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Table 4.5.2: In this table, we present characteristic results for the clusters
corresponding to the initial conditions index in Table3.7.1. The first column
displays the mass of the BH seed at the end of the simulation, measured in solar
masses. In the second column, we provide the number of mergers that occurred
in the cluster. The third column indicates the time of core collapse, measured
in millions of years (Myr). Finally, the last column presents the number of BH
escapers in the cluster.

IDs BH mass [M⊙] Mergers T cc [Myr] Escapers

1 10730± 255 1095± 26 84.65±4.93 2063.25±32.13
2 11495± 485 1209± 19 107.66±5.755 2598±8.831
3 14635± 526 1499± 37 162.30±16.134 2369.5±25.02
4 16930± 427 1724± 32 231.40±20.465 1764.5±23.7
5 18005± 700 1857± 57 443.3±9.428 650.66±37.24
6 5460± 675 590± 77 89.13±5.293 2221.75±302.46
7 7317± 382 793± 40 133±4.446 2552±23.04
8 10770± 599 1150± 54 217.10±10.154 2433.5±10.11
9 11857± 469 1281± 43 336.40±4.299 1894.55±24.08
10 11333± 875.9 1238± 67 755.58±21.065 570.6±4.78
11 655± 90.6 98.5± 11 103.12±3.420 2678±55.33
12 997± 114.7 138.7± 12 139.34±4.367 3016.5±142.68
13 1207.5± 247.3 185.75± 8 230.23±8.687 2739.25±188.95
14 1282.5± 65.7 214.75± 11 384.35±5.866 2179.25±51.36
15 916.6± 102.0 212.3± 13 909.03±44.405 585.663±5.55
16 557± 20 72± 3 103.86±4.045 2648.25±42.86
17 605± 35 82± 1 142.51±4.602 3141.±28.77
18 632± 31 93± 3 241.92±3.86 2823.5±10.97
19 715± 92 113± 7 388.54±11.63 2029.25±57.603
20 570± 63 122± 4 1043.81±44.99 558.66±10.14
21 660± 14.1 76± 12 104.79±4.83 2553.5±84.913
22 735± 43.8 79.5± 3 141.24±4.52 2826±80.28
23 735± 43.3 79.25± 2 248.17±11.82 2460±62.95
24 737.5± 45.4 84± 7 411.05±7.574 1823±38.79
25 546.6± 23.5 69.3± 4 1178.19±29.093 554.33±0.471
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particular shape of the potential well.

In Fig.4.6.1, we present the trends of the velocity for the two models considering

different external potentials (ηg). On the top panel, we have the model considering

that the cluster is not shrunk by the accretion gas, where only clusters with a

gas mass ratio ofηg = 5.0 and very dense clusters with a radius ofRvir = 0.25 pc

and masses of approximately≈ 8 × 107 M⊙ reach the velocity necessary to be

considered in a relativistic state.

On the other hand, the second panel shows the velocity considering that the

cluster is shrunk by the gas accretion. Here, we can observe that more clusters

reach the velocities necessary to be in a relativistic state, with lower masses of

approximately≈ 2 × 107 M⊙ and higher radiiRvir = 1 pc, even for clusters with

an external potential ofηg = 0.3. It is important to note that this consideration

is based on the initial conditions, and during their evolution, clusters could attain

higher velocities, allowing clusters with lower masses to reach a relativistic state

in the inner regions, as shown byKroupa et al.(2020).

In Fig. 4.6.2, the efficiency (ϵ) of the cluster to form a massive object is depicted

as the ratio between the mass of the clusterMcluster = MBHs(1 + ηg) and the

mass of the central massive BH, plotted against the ratio between the velocity

dispersion at the time of the core contraction and the speed of light considered in

the simulation. Asv∞/c increases, the efficiency of the cluster to form a massive

object also increases, reaching a high efficiency of aroundϵ = 0.06 for speed of

light ≤ 6 × 103km/s and ϵ = 0.08 for speed of light of> 6 × 103km/s. The

external potential has an influence on the efficiency, withclusters having external

potentials ofηg = 0.3 − 0.5 exhibiting the highest efficiency, while clusters with

an external potential ofηg = 1.0 showing lower efficiencies. This is attributed to

the time required to reach core contraction, as discussed earlier. Clusters not in a

relativistic state have an efficiency in the range of≈ 0.003, where approximately

≈ 0.3% of the mass of the cluster forms the central BH. In contrast, clusters in a

relativistic state exhibit an efficiency of≈ 0.05, with around≈ 5% of the mass of

the cluster forming a central massive BH.

Considering the mass and radius of the cluster, we compute their rms velocities

with equations4.6.1and4.6.2. If we take the ratio between velocity and the real

speed of lightc = 3 × 105 km/s, we can associate an efficiency, as shown in Fig.
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Figure 4.6.1: In the top panel, we depict rms contour lines of the velocity
calculated by Equation4.6.1, showcasing its dependency on the virial radius and
the mass of BHs in the cluster. The contours illustrate the velocities at specific
radii and masses. Meanwhile, the bottom panel illustrates countour lines of the
velocity of the cluster including as defined by Equation4.6.2, where different
colors indicate various values ofηg.
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Figure 4.6.2: We present the BH formation efficiency of the clusters defined as
the mass of the most massive BH divided by the total mass of thecluster, as a
function of the ratio between the root mean square (rms) velocity at the time
of the core collapse and the speed of light (c), as considered in the simulations.
Different colors are used to denote varying external potentials ηg. The vertical
lines mark velocity to ratios assuming the real value of the speeed of light of
clusters with an rms velocity of1000 km/s and3000 km/s
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4.6.2. In Fig. 4.6.3, we compute the final mass of massive BHs that could form,

considering their velocities and the associated efficiency. In this plot, we consider

the velocities given by Eq.4.6.2 also consider different values of the external

potential of0.0, 0.3, 0.5, 1.0. We consider a cluster mass range of104 − 108 M⊙ and

radii of 0.1 − 2 pc. We can note that for clusters with less than≈ 104.3 M⊙, the

clusters only form BHs with masses around102 M⊙, independent of the external

potential considered. further we note the behavior for all external potentials where

at lowerRvir the efficiency increase. For clusters with masses of≈ 106 − 107 M⊙

andηg = 0.0 − 0.3, they can form massive BHs with masses of≈ 104 − 105 M⊙.

For higher-mass clusters, i.e.,≈ 107 − 107.5 M⊙, they are considered relativistic

clusters with small radii lower than0.25 pc, and this holds true for all clusters,

regardless of the external potential. Clusters with a radius of 1.0 pc need high

masses,≈ 108 M⊙, andηg = 1.0 to be in a relativistic state, forming more massive

BHs.

When we consider the velocity given in equation4.6.2, we observe how the

external potential has a high impact on the velocity in the cluster. This leads

to the formation of more massive BHs with lower masses and forhigher radii,

unlike clusters without external potential where both velocities are equal. The

most significant difference is observed in clusters with anexternal potential of

ηg = 1.0, where the clusters are in a relativistic state for masses inthe range of

≈ 106.5 − 107.5 M⊙ and for radii in the range of0.25 − 1.0 pc. In this scenario, the
cluster can form massive BHs with an efficiency comparable to that of a relativistic

cluster.
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Figure 4.6.3: We display the black holes (BHs) that can form clusters based
on root mean square (rms) velocities calculated using equation4.6.1 and their
corresponding efficiency depicted in Fig.4.6.2. The clusters are within a range of
virial radii from 0.1 to 2.0 pc and masses from104 - 108 M⊙. The color represents
the mass of the BHs that form the clusters, and each panel corresponds to different
external potentials.
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Figure 4.6.4: We display the black holes (BHs) that can form clusters based
on root mean square (rms) velocities calculated using equation4.6.2 (Kroupa
et al., 2020) and their corresponding efficiency depicted in Fig.4.6.2. The clusters
are within a range of virial radii from0.1 - 2.0 pc and masses from104 - 108 M⊙.
The color represents the mass of the BHs that form the clusters, and each panel
corresponds to different external potentials.
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Chapter 5

Conclusion

In this thesis, we conducted a comprehensive study on the formation of

Intermediate Mass Black Holes (IMBHs) in nuclear star clusters through runaway

mergers of Black Holes (BHs). Our investigation focuses on the evolution of BH

clusters in the presence of gas, focusing on the scenario outlined by Davies et al.

(2011). The study aims to elucidate how the core of the NSC evolves and the

formation of massive BH seeds .

To explore this model, we conducted a series of simulations using the

Nbody6++GPU code. In these simulations, we incorporated ananalytic potential

with varying values to analyze its impact on the evolution ofthe cluster.

Furthermore, we manipulated the speed of light to expedite the BH mergers

due to the computational expenses associated with these simulations.

In these simulations, our primary focus was on studying the core contraction,

including the time when it occurs and the resulting densities. Additionally, we

delved into the characteristics of the binary population, such as their semi-major

axis and eccentricities. Exploring the ejections from the cluster, BH-BH mergers,

and the evolution of the BH seed were also integral aspects ofour investigation.

The key findings and insights from our results can be summarized in the following

topics:

• The first result of our simulations, shown in Figure4.1.4, is the time of core

contraction in relaxation times as a function of the external potential. We

observe a clear trend where the time of highest density or core contraction

increases with higher external potential, consistent withfindings inReinoso



60

et al. (2020). However, for lower values ofc, the behavior is different, with

the time core contraction tending to decrease or remain constant as the

external potential increases. This is attributed to the cluster having the root

mean square (rms) velocity necessary to enter a relativistic stage or be in

proximity to it, aligning with similar results obtained byKupi et al. (2006).

• Binary formation by three body encounters in the cluster tends to produce

more tight binaries when increasing the external potential, reducing the

semi-mayor axis. On the other hand, the eccentricities of the binaries tend to

not have a big difference between clusters with the same speed of light, but

with different external potentials. The only big difference is in the overall

reduction of the binary population when increasing the external potential.

• The number of escapers in the cluster, whether through evaporation or

ejections, tends to decrease with higher external potentials. In clusters with

lower gas mass fractions (ηg), the mass loss reaches around20%, while in

clusters with a high external potential ofηg = 1.0, the mass loss is only

around5%.

• Clusters in a relativistic state or near it are capable of producing BH

seeds in a mass range of approximately104M⊙, experiencing a twofold

increase in mass with higher external potential with efficiencies≈ 10−1. In

contrast, clusters far from a relativistic state can only produce BH seeds of

approximately103M⊙ with efficiencies≈ 10−2. This aligns with the findings

from Kupi et al. (2006), where clusters in a relativistic state exhibit a BH

seed mass of6% of the total initial mass of the cluster. Similar models also

support these results, as seen inFragione and Silk(2020), who consider

denser Nuclear Star Clusters (NSC) and account for gravitational wave recoil

effects.

• To resemble real clusters, as anticipated, we require clusters that are denser

to achieve a relativistic state. They should also be more massive and

have smaller radii, as indicated by the yellow regions in Fig. 4.6.3 - 4.6.4.

Additionally, the way of including the external potential significantly affects

the rms velocity of the cluster and the BH formation efficiency. For clusters

in equilibrium with the external potential, it is more difficult to form massive

BHs, while a contraction of the cluster due to the inflow will favor the process.
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In a cluster with a virial radius ofRvir = 0.1 − 2.0 pc and masses of104 and

6 × 104 M⊙, a central black hole of100 M⊙ can form. To form a central

black hole of103 M⊙, the cluster needs a virial radius ofRvir = 0.1 − 2.0 pc

and masses of17 × 104 − 24 × 104 M⊙. Finally, to form a central black

hole with masses between104 − 105 M⊙, the cluster needs a virial radius of

Rvir = 0.1 − 2.0 pc and a mass of2 × 106 − 2.4 × 106 M⊙. The radii begin

to constrain the formation of high-mass black holes in lower-mass clusters.
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Chapter 6

Discussion and future work

This investigation provides a clear insight into the formation of an Intermediate

Mass Black Hole (IMBH) in the dark core of a Nuclear Star Cluster (NSC). In a

simplified model, we consider a cluster with equal mass BHs distributed according

to a Plummer distribution. In our simulations, we form two sets of BH seeds,

approximately104 for clusters in a relativistic state and approximately103 for

other clusters.

However, our models are affected by certain non-realistic assumptions. For instance,

assuming equal-mass BHs in the cluster impacts mass segregation, leading to

time scales for cluster evolution higher than reality, for instance in clusters with a

realistic stellar mass function thetcc ⋍ 0.2trh (Zwart and McMillan, 2002).

Additionally, we neglect gas accretion onto the BHs, which way affect the time

scale evolution, including the relaxation time (Leigh et al., 2013) and the mass

distribution of the BHs in the cluster. Furthermore, gravitational recoil caused

by gravitational waves is not considered in the simulation.Recent versions of

Nbody6++gpu include these effects. Studies such asFragione and Silk(2020)

provide a more extensive analysis of mergers and escapers considering recoils, with

velocities upto a few thousandkm, where the typical mass of an ejected massive

BH is 400-500M⊙. They also explore how the mass and density of the NSC

influences the retention of massive BHs and the formation of binaries, where the

massive NSCs can more easily retain massive BHs but the formation of binaries

requires longer time scales. Dense NSCs both can retain massive BHs andhave a

higher efficiency in forming binaries that merge through GWemission.



63

Regarding future work on the formation of an IMBH in a realistic NSC, Kroupa

et al. (2020) demonstrate that for a high mass ratio of gas,ηg > 5.78, the cluster

tends to expand for dark core masses< 107M⊙. However, for a mass of the dark

core > 107 M⊙, the cluster is already initially in a relativistic state, on a large

scale of the cluster. To form an IMBH, we could consider massive dark cores with

either massive black holes> 10M⊙ or a higher number of BHs in the cluster. But

this is not enough to reach the core collapse with the methodology that we use so

far, as the relaxation time scales as∝ (1 + ηg)4, so for higher thanηg = 2.0 the

core collapse will require more than1.4 Gyr. We further note that an initial mass

distribution of the BHs could reduce the time of the core collapse. Of course, this

is a recent investigation and our knowledge on the mass distribution of stellar

mass BHs is still limited, and no model can fully reproduce the distribution of

observed total masses. Nevertheless, the observations liewithin the distribution

of mass in 1σ band of theMmax = 50 M⊙, α = 2.35 model (Perna et al., 2019).

which could be employed in the follow-up calculations in thefuture. In future

projects it will also important to understand resonant relaxation (or Kozai) effects,

which could significantly increase the rate of inspiral andtheir relation with the

PN 1 andPN 2, affecting the precession and the impact of the number of captures

(Hopman and Alexander, 2006). Finally, the consideration of radiation recoils will

give us a better understanding of the evolution and the formation of an IMBH.
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