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Resumen

El origen de los agujeros negros supermasivos en centrastigals a altos redshifts
en el Universo temprano es aun desconocido. En las ultimzedds8, astronomos
han propuesto un amplio rango de modelos para explicar tadoion de estos
objectos y su correlaciéon entre sus masas y la de las galgum$os hospedan.
Algunas posibles explicaciones implican semillas muy wessi acreciones de
hyper-Eddington y supra-exponensial, super cimulos radire de metales, el
colapso de las primeras estructuras baridnicas y la folinade SMBHs via
fusiones de agujeros negros. En este proyecto, estudiamdsrrhacion de
objectos supermasivos en cumulos nucleares ( NSC, por fas g ingles) a
través de la fusion de agujeros negros, ademas afectadd poze potencial de
gas. Nosotros consideramos el efecto del potencial extéehado al gas y los
efectos relativistas mediante efectos post-NewtoniaBbsiodelo fue investigado
mediante simulaciones N-body usando el c6digo Nbody6++dpuesentamos
un total de 100 simulaciones, donde variamos tanto el p@kpgterno como
la velocidad de la luz debido a su alto consumo computacioBhbbjetico es
extrapolar los resultados al valor real de la velocidad de@daNuestros resultados
indican que el tiempo de core collapse en presencia de mayores potenciates®xt
de gas tiende a disminuir en cimulos en estado relativisteambio para cimulos
fuera de un estado relativista, el comportamiento es tistirel tiempo de core
collapse tiende a aumentar a mayores potenciales de gaetrBdado, los IMBH
formados se encuentran en 2 rangos de masas; los mas masivos con miasug,de
para cumulos en estados relativistas, donde la mayorissdedenes terminan en
IMBH, y 10°M,, para cumulos fuera de un estado relativista, donde la cahtid
de fusiones que terminan siendo absorbidos por IMBH desebstancialmente.

Keywords - IMBH - methods: numerical - theory



Abstract

The origin of SMBHSs in galactic centers at high redshift in the earlywdrse is still
unknown. In recent decades, astronomers have proposed a wide range of models to
explain the formation of these objects and the correlation of their massieghvei

host galaxy. Some theoretical explanations include very large seed mhgges,
Eddington or supra-exponential accretion, very massive metal-free supersjust
the collapse of the first baryon structures, and the foromatif SMBHs via BH
mergers. In this project, we examine the formation of massibjects in the
nuclear star cluster (NSC) core through the fusion of black holes. We consider the
effect of an external gas potential and post-Newtonianeobions in our study.

The model is investigated via N-body simulations using the Nbody6++gpu code.
We present the results of 100 simulations, where we vary thesmf the gas
potential. Since the simulations are computationally expensive when considering
the real speed of light, we treat it as a free parameter arefrdete results
assuming different speeds of light, with the aim of extragiay our results to

the physical value. Our findings indicate that the time afecoollapse in the
presence of higher external gas potential tends to decrease in relatolisdiers.

For clusters out of the relativistic state, the trend is cletaby different, tending

to increase at higher external potential. On the other hdmedBH seeds that
form are set in two rangess 10*M,, for clusters in relativistic states, where
almost all BH mergers end in the BH seed, anth*M,, for clusters out of the
relativistic state, in this case only a few percent of mes@erd in the BH seeds.

Keywords - IMBH : formation - methods: numerical - theory
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Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Introduction

The existence of supermassive black holes (SMBHs) and pingsical nature has
been confirmed through different independent observatiamcluding the orbits
of the S2 stars near the center of Milky Way with the GRAVITYstrument

( | ), as well as the observation of their shadows
at the centers of M87 and Sagitarius A*\(

, ) ). Observed through the detection of Active Galactic Nuclei
(AGN) at high redshift (e.g: J ), even at redshifts larger than
z > 6, more than 200 quasars have been detected [:0: | }

| ). These objects are very rare with number densities of
~ 1 Gpc~2 and have so far been found in optical/infrared(IR) survéws tover
a large portion of the sky, such as the Sloan Digital Sky Survey (SDSS), 8te fir
survey to discover a high-redshift quasai : ).These objects SMBHs
are common in the centers of local galaxies (€.g: J )

J ; , ). Their masses are in the range of

106 - 10%°M.,.

The most distant quasar detected so far is ULAS J1342+0988 aviedshift of
z = 7.54 which is SMBH mass ok 8 x 108M, ( ! ). In the
local Universe the rarest SMBHs are the so-called ultrasmasones; over the
last decade observations have established the existenaefeaf of these with
massesz 10°M, in some bright cluster galaxies (e.il. , ;
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) ; , )-

In the local Universe, galaxies were also found to host nuclear star ciNECS)

at their centerl{ i ). The most massive NSCs are the densest
known stellar systems and can reach mass surface dengitel®®M/pc? or
higher. Some important features of these objects and anrtergdopic to study
are their correlations with their host galaxies, such asigfit correlations with

the masses of their host galaxy/¢ | )

) )-

There are a number of cases where nuclear stars cluster sssivedlack holes
were found to co-existH ; 1 | 3

f A § ; | ). Other
nearby examples of SMBH detections within NSCs are M34:{( | )

M32 ( , ; | ), NGC 3115 and the Milky Way
( : ; : ; J ;

: ; J ). The co-existence suggests that the
build-up of NSC and the growth of massive black holes areetjoselated (see
also , ; | )-

The high masses of the SMBHs at an early age of the Universeewte observe
these objects are a real challenge for the formation theofiehese objects. If we
assume super-Eddington accretion with on# of the matter falling into the
black hole being radiated away, a stellar-mass black hale a&vmass of 10 M,
requires a timescale af.- ® 1 Gyr to reach the masses of SMBHs observed
in the most massive AGN. However, it is unlikely to grow so uecause the
removal of the gas reservoir by UV radiation and superno™ €xplosions of the
Pop Il stars in the shallow gravitational potential wellsminihalos (

] ; | ) , ). This suggests
that the black hole seed must have been formed at redskift5 with a mass
of = 10°, or the black hole seed had a lower mass but a high rate of brawt
a combination of both. As we can note in Fid.1.1, there are some pathways
for the formation of very massive objects. We will give a bsammary of these
scenarios in the next subsections.
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Pop lll BHs GW recoils M °
20<hM/Men<140 “‘ radiation feedback i
pal ¥ 10"-2 Msun
mini-halo %
Tur 104K " hyper-Eddington accretion
F X P M=>Meaq
Collapsing < Hz cunlmg ¥ .
protogalaxy pristine gas —r
s 1056 Maun
\ \ rapid merger SMS
atomic-cooling halo / :
star formation
T\ﬂ_r ?.-1(]4 K {H" CDGIiﬁ } if N?}NM ﬁ_lrl_ﬂ'\!'i"ﬂy
\ no = \ g - collisions .
—_—
Prior star / N
{ or;-n = yes > First galaxies 1034 Msun

Figure 1.1.1: Different scenarios the formation of seed BHs on the top. 1) A
BH remnant of a Pop Ill star with massesi0'2M,. 2) Massive seed BHs
forming under conditions such as strong radiation, rapidgees halos and high
baryon-DM streaming velocities, reaching massas10f~°M,, 3) Formation of

less massive intermediate massive black hels¥ *M, via runaway collisions

in ultra-dense star clusters, 4) Finally the Hyper-Eddamghccretion onto stellar
mass BHs |( | ).

1.2 Direct collapse

Direct collapse is one of the most promising scenarios osguérmation at high
redshiftz > 6. It implies the formation of a massive BH seed P — 10° M,
via the gravitational collapse of a cloud of primordial gas=¢5 1

; ) ! s J ), also called a
direct collapse black hole (DCBH). These models invoke #pad collapse of a
chemically pristine primordial gas in so-called "atomioting halos"(ACHS). For
this scenario to work the gas should efficiently redisttédoangular momentum
and rapidly collapse avoiding fragmentation. The main ighethis process is to
bring large inflows of gas in a short time to the center of taétvia a large mass
accretion rate o 0.1 My/yr (

, )-

This high accretion rate could be reached via thermodynalrpcocesses by
keeping the gas warm, where the mass inflow rate of the caligpgas, the
inflow gas mass rates are proportional to the temperaturd as 7?2 (

’ ] el ]
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) ). This relation can be derived dividing the Jeans nidss:
2 x 10*°Mon}/*T*? by the time free-fallGp) /2 time of the gas as follows:

M ~ M x~ 4 x 10> Mpyr 1T 32 (1.2.1)
Ly

Therefore higher temperatures imply large mass inflowesatHence, the
thermodynamical way to form DCBHs requires warm gas to rethehcritical
mass inflow rate to form these objects, thus the gas in theshsthiould not cool
down to lower temperatures, otherwise fragmentation aad fsfmation could
occur instead. The primordial metal free gas could also bdirg by the H
rovibrational lines bringing the gas to low temperatures:af00 K and triggering
star formation. However, if the Hs dissociated the metal-free gas could reach
temperatures of 10* K triggering isothermal collapse forming objects with masse
of > 10’'M,.

The suppression of molecular hydrogen requires the presence of a Lyman Werner
(LW) ( | ; , ] ) ) : ),

flux by UV soft photons irk 11 - 15 eV, these are the transitions between the
ground and excited electronic stategifroughly10% og the exciteH, decays
radiatively into the split state of twd atoms. But the requirements of a strong
LW fluxes could be reached as hosting halo should form in the vicinity of a massive

star forming galaxy!( , ). Numerical simulations have shown
that the photodissociation of,;iequires a very strong backgrouridl ¢
, ; : ; , )-

The traces of Hin the primordial gas can be formed via two reactions :

H+e =H +y,

H+H =H>+e".

The formation of H can be suppressed in two ways either; directly by dissanati

of H, or indirectly via photo-detachment of HIn the direct way photons with
enough energy (iel1.2 - 13.6 eV ) can be absorbed by the Lyman-Werner bands
of H, and photo-dissociate it via the Solomon process, and iatyréhrough
energetic photons abowe76 eV. The reactions are then the following ;
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H2+)/LW=H+H,

H + Vo.76 = H+e .

The critical value/.i: of the LW intensity for suppressing the ldbundance follows
from balancing the dissociation rate {.w x ny) and the formation ratee( n?),
and therefore the suppression of tepends on the density,. The intensity varies
between/si: =~ (0.01 — 1)J21, whereJ,; is in units of 107 ?lerg s** cm™2 Hz ! sr?

( | ) , ; , ). The
intensity varies depending on the halo mass and the redshift

For the thermal evolution of the gas there is a tight depecelem the LW
intensity, particularly if it is below or above the criticatensityJ.;.. In Fig.
1.1.1whenJ < J4i: (dashed blue curve) the temperature shows a rapid drop
caused by the cooling of self-shielded.Hn this case, the temperature track also
converges with the solid blue curve without LW radiationthe rapid cooling
phase the gas is expected to fragment into small clumps Mith 10° Mg, (

; ). ForJ > J..i: (solid red curve) the temperature evolution is
nearly isothermal witlT = 8000 K reaching high densities-(10**cm™3) without
being affected by the Hcooling. In this scenario the fragmentation at least
is suppressed+{( 3 ). To form a massive objects of mass
~ M ® M, requires that the gas remains at a high temperature during the collapse
phase driving an atomic cooling processes (B:g.emission).

Black curves show the temperature evolution in a gas polluted by metals and dust
with z/Z, = 1074 - 1073, leading to a rapid drop in the temperature due the
thermal emission, driving a rapid cooling phase and theedfte gas likely will

be fragmenting into smalls clumps forming regular stars.

In summary the formation of a massive seed BH is the resultnoisathermal
collapse by gravitational unstable primordial gas at higimperatures avoiding
the processes of cooling, then producing a high accretitae sato the central
object and avoiding the episodes of gas fragmentation.
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Figure 1.2.1: Temperature evolution of a metal-free gas cloud, irradiate
LW radiation. For high enough intensiti€sw > J.i+) it is able to dissociate H
even in high density regions (red curves)( | ).

1.3 Formation of the first stars

The first generation of stars, the socalled populatiorRtg Ill) generation, are
formed atz = 20 - 30 in minihalos of10° - 10°M,. The collapse of primordial
gas clouds in these halos was triggered by the cooling psesas molecular
hydrogen reducing the temperature200 K. The thermal Jeans mass scales with
temperaturg ®? so the mass scale of these stars is expected to be higher.

The protostars are born in a dense core embedded in a malégdiamgen gas.
The protostars grow either by mergers with other dense cdurnphrough gas
accretion. In the first phase the star increases its radiusg@l the adiabatic
accretionr 103*My/yr reaching masses abM,. Subsequently the star begins
the Kevin Helmholtz phase (KH) radiating away its thermamrgy. When the
star begins to burn hydrogen and accretion stops, the starsethe zero age
main sequence (ZAMS) with a mass arourtd M, ( | ; |
). The final mass of the star depends on the initial condition of the gas cloud

such as its mass, spin, formation redshift and mass acenetio ( ,

).
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The UV feedback limits the stellar masses at lower accretatas to at most a
few 100Mq( , ). For mass inflow rates higher than 0.1My/yr,
the envelope of the star is pulsationally unstable, to reshtgi and lost mass by
this pulsations, similar due to themechanism excited in the Hénization layer

in the envelopel( | ). However, the mass loss rate is negligible
compared to the mass inflow rates, so the formation of a soassive star (SMS)
is not prevented neither by the UV feedback nor the pulsatiorstability.

The limit that a SMS could reach is given by a classical argunfe :

); a SMS exceeding the critical masdsz collapses directly to a massive
BH via the general relativistic (GR) instability: ( ) found that
critical mass is of the ordes 10° M. ( ) studied the
gravitational collapse of rotating SMSs, and found thatadtrihe complete stellar
mass is swallowed by the new-born BH, ejecting om% of its mass. If the
SMS is rotating sufficiently fast at the beginning of the\gtational collapse, the
SMS collapses and a binary BH forms« | ). Another proposed
scenario is that only the central part of the SMS collapsesiifog a BH with
mass~ 100M,, and the envelope is inflated by the energy input from the gas
that accreted onto the BH:( ) ).

1.4 Runaway collisions in a Dense Star Cluster

So far in the previous scenarios of massive seed BH formation, we talked about how
the primordial gas undergoes gravitational collapse amgigprocesses of cooling
and fragmentation, but the issue that the cloud may fragaerdry high densities
is not entirely settled. The gas collapsing in the halo mayehe modest level of
pre-enrichment by metal/dust, so fragmentation could ncthe fragmentation
opens another pathway to form massive seed BHs. The fragtn@mtat high
density may give rise to the formation of an ultradense elu@&? , 3

J ). Due to its high stellar densities- (10°" M /cm3)
this cluster can undergo runaway core collapse in a shod forming a central
intermediate-mass black hole (IMBH) with mass~of03~* M.

In this scenario a newly born dense star cluster could stilembedded in gas,
which may help to form a massive BH seed by inflow of gas inte ttuster
( J ), increasing its potential while decreasing the escapeas a
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deepening the potential well of the cluster. In this scem#éine proto-star also
could be accreting the gas increasing its radius hence dassesection, and the
gas dynamical friction driving a more efficient core cokap(e.g.

, ; J )-

In systems where massive black holes (BHs) form as a resuteoflynamics in
dense clusters, the contraction of these systems can bakbdebkavith a negative
heat capacity. The process can be described using a selgtiati@atment of the
energy transfer to the outer parts of the cluster( f ).
In this bound system the negative heat capacity brings tihe abthe cluster in
contact with the outer parts, it could act as a heat sink, this possible that
the core loses energy to the outer parts and contracts arnsl ingan the process,
leading to core collapse or the "gravothermal instability"

In such a scenario at the moment of the core collapse, thereaohes such a high
density that the collisions and mergers lead to the formmatiba massive object.
The binary heating in less massive star clusters may stogoiteecollapser{ )

i , ). On the other hand, mass segregation can lead to the
formation of a massive BH seed even in less massive clustersy(s i

, ). Another way to form a massive seed black hole is via the mgrg
of stellar mass black holes (| , ) or a supra-exponential growth of
stellar mass BHs in a cluster with dense gas:{ : ).
Runaway merging may proceed in this regime because furtlemBrgers will be
retained by the potential energy of the star cluster.

The relaxation time is related to the change and redisiobudf the kinetic energy
within the cluster by dynamical friction; this time scaleuiseful in understanding
the evolution of the cluster, for a cluster consisting ofrstaith a single stellar
mass it is given as

0.065 v

~ nG2m?2InN (1.4.1)

trc

wherev is the rms velocity of the stargn is the mass of one of the stans,is

the number density of stars,is the ratio between the size of the system and the
distance necessary for an encounter to deflect the stay/hyFor a cluster as a
whole a useful concept is the relaxation time; this time escdlanges relatively
little through the evolution of some clusters, and des&ithe time necessary to
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distribute the kinetic energy in the cluster by two body angers. Considering
virial equilibrium and equal mass stars the half mass re¢laras given by

N /2 r:/z

tsn = 0.138 (1.4.2)

ml/ZGl/Zln/\.
HereN is the amount of particles in the clustey,is the half mass radius of
the cluster, the radius that contains the half mass of theteriuthe Coumlomb
logarithmA = yN, with y = 0.4 ( [ ).

A variation of this scenario consists of a less dense stellar clustemdgtle massive
stars, with a rapid evolution collapsing and producing remnant stellar-miss B
which are embedded in a dense gas cloud. The mergers via dynamical friction and
aided by gravitational waves (GW) could form a massive IMBH( , )

.201D).
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Chapter 2

Dark cores in nuclear star cluster

2.1 Model

The theoretical framework of this project is a variation bé tmodel introduced
in the previus section on runaway mergers in a dense starectusThe model
considers mergers in dense black hole clusters, follonwhedgramework of

( ). Due to mass segregation, the stellar mass BHs are assunhecé
sunken to the center of the core of a nuclear star clustertelfas systems there
is a the tendency toward equipartition of kinetics energsesthe most massive
objects will tend to move more slowly on average and then massbject drops
deep into the potential well, and light objects tend to moast fand move out,
and may reach the velocity necessary to escape. This ihigtabiknown as the
equipartition instability or Spitzer instability causimgass segregation, leading to
the formation of a dark core. We assume that the stars and mthwants in the
core of the cluster can be ignored as their individual maasesnuch smaller than
those of the stellar mass BHs and thus they will be absorbetthdoBHs or they
may be pushed outside of the radius of the dark cBez( ) ;

| ).The cluster which is more tha80Myr old is assumed

to consist of N equal stellar mass BHs, each with mass. Some BH - BH
interactions can lead to escapers but a significant fractibthe initial stellar
mass BHs remains in the clustér { ) )

Binaries within the dark core stabilise the cluster agacwmte collapse as the
binaries are a heating sourcgil(s, i ) i )



2.1. Model 11

). Thus the dark core evolves as the BH population self-depl¢éhrough
the dynamical formation of BH binaries in triple encounterkich, after their
formation, exchange energy with a third BH, where some adtons could lead
to BH escapers, though due the deep potential well the clustains most of its
BHs. According to the Hénon principleltnon , ), the energy generation
rate in the cluster core from encounters between single ldhisries with hard
binaries is regulated by the mass of the system. Such enasunansform binding
energy into kinetic energy, which supports the clustermgfaiore collapse. While
soft binaries will be split by interactions in binary-siegtncounters, hard binaries
tend to harden in binary-single encounters. We introduge bt critical value
of the semi-major axis describing the transition betweeft and hard binary
systems,

Gmim,;

s o (2.1.1)

anss =

wherem; andm, are the masses of the primary and secondary of the binary
system,ll mB describes the average mass in the cluster core aatiue
velocity dispersion. Binaries with a semi-major axes a,/s are then referred

to as a soft binary and will be disrupted due gravitationadoamters, while
only hard binaries witlw < an/s can survive. The timescale of a binary within a
cluster to gravitational interact with another object is given Ly

(2009

2
Tyu =6x 10°x 9% yr (2.1.2)

VOO,lO
whereM, ¢ is the total mass of the cluster in units If*M,, x is the ratio of
binary bindiT? energy to kinetic energy. In virial equilibrium we can consider that
Veo,10 ® 4.36 GM/rp, ( ) ), wherev,, 10 is the relative
velocity at infinity in units ofl0 km/s andr is the cluster half mass radius. Once
the dark core reaches the critical density and a high enoelgicity dispersion,
the dynamical binaries formed in the cluster will be sufficiently tightmerge via
gravitational wave (GW) emission, since the time scale of &Wssion will be
equal or shorter than the time scale of gravitational bisamgle encounters. As
the binding energy stored in the binaries is lost via GW eimigshe binaries
cease to be the source of heating of the cluster and core collapse takes place. The
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decay time of a BH binary with an initial separatio@nd eccentricity is ( ;

)

m
Tw = 5x107°¢G 5 x M1 -e)? yr. (2.1.3)

0,10
The gravitational binary-single interactions will leavetbinaries with a thermal
dif}ribution of the orbital eccentricities, where the nadieccentricity i®mes =
1/ 2. This effect reduces the typical binary merger time by adaof = 10. Soft
black hole binaries do not lose the necessary energy vidtgtenal radiation to
merge, but iftg, < 141 binaries will merge avoiding the transfer of its binding
energy to kinetic energy via gravitational interactionghd field, lose the energy
that is stored in the binaries and thus the binaries will rekheating the cluster
as a result. Then the energy equilibrium breaks and coragsdl is expected to
happen. As we can note in Fig.1.], the solid dark line is the time scale of the
inspiral time considering the real value of 3 x 10° km/s and the dashed light

green line is a cluster with mass10°M,, so the core collapse could start when
the velocity dispersion in the cluster reachgs t2.1.

During the BH-BH mergers gravitational waves carry awagdinmomentum from
the radiating source. This recoil is independent of thel totass of the system.
When the BHs have the same masses gravitational beamingnmeiric and
the recoil vanishes. Calculations which include gravita#l redshift suggest that
recoil velocities are much less th&a0 km/s, so much higher than the velocity
dispersion of a globular cluster ef 30 km/s, but in a BHs cluster core with
Ve > 1000 km/s probably less tha®0% of BHs will be retained in the cluster
despite the gravitational recoil.

This scenario thus requires a mechanism to shrink the raditie cluster and/or
increase its mass. The dark core thus needs to become maose,denthat the
black holes may merge via run-away processes and stay withioluster. In the
scenario proposed by ( ), the self-gravitating gas is subject to
instabilities that funnel much of the low angular momentuas go the center
to scales 0.2 pc or less. It is thus very efficient in contracting the core loé¢ t
cluster, to increase the central densities and enhancedhls segregation, leading
to fast interactions between stellar mass black holes thaldclead to a quick
coalescence and the formation of a massive BH seed. Highutesocosmological
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Figure 2.1.1: Logarithm of different time scales in years, the time scale f
binary-single encounters give by ef1.2(dashed line) and gravitational radiation
inspiral given by eq.2.1.3(solid line), considering a variation on the gas mass
fraction betweem, = 0.0, 0.1, 0.3, 0.5, 1.010.0, with the lowest value in the blue
dashed line and the highest value light green line, consigatifferent speeds of
light, from ¢ = 10® km/s to the real value ot = 3 -10° km/s (black line) and the
lowest values ot = 102 km/s (brown line), the vertical lines show the velocity
dispersion given by, for different gas mass fractions.
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simulations of galaxy formation={( , ) show a gaseous inflow
due to a combination of accretion of matter from the cosmibsfikaments and
mergers of galaxies, providing a significant inflow of gasrparable to or higher
than the stellar mass in the cluster at high redshift- (10).

Independent of the primordial mass segregation the inflow of gas into the cluster
will make the black hole cluster shrink given the steepinthefpotential. This
increases the interactions between the BHs, while thelritaction of hard
binaries also affects the re-expansion of the cluster dileetdieating of them.
In this scenario the gas contributes only to deepening tenpial well, while
we neglect here the dynamical friction that could make thistelr even more
dissipative and further enhance the probability to form iy veassive object.

( ) have further investigated this scenario. They define tiee g
mass that falls into the black hole cluség = ngNmsws. They find this scenario
to be feasible f00.1 < n, < 1.0 with Ry;r S 1.5 - 4 pc andMjy = 10* M, where
it could reach a relativistic state within much less thagya, while forn, < 6
the BH cluster expands because the binary heating domioa¢eshe gas drag.
For large values ag,; > 6 the black hole cluster may even be in the relativistic
regime from the beginning.

The time scale for the cluster to undergo core collapse denisigN equal mass
BHs with a mass ofngy IS t.. = 0.15t. ( | ). t is defined
in Eq. 1.4.1. Considering the gas mass that falls into the cluster thé rhaks
relaxation time is also affected. We consider a variatiothefhalf mass relaxation

time derived by ( ), which takes into a count the external
potential,
N(1 + ny)*
trn = 0.138 Mtcmss,ext; (214)
In(yN)

wherenyg is the ratio of the gas mass fractigns 0.4 for equal mass BHs, and
the teross,ext = teross/(1 + Ng), Wheretqoss is the time necessary a BH to cross the
cluster at rms velocCityteoss = R/Vims -

When the semi-mayor axis is sufficiently smatl,; < tew , and binaries merge
before any other encounter happens. The inner part of thie claster has a
high enough velocity dispersian so thatans can be sufficiently small for hard
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binaries to merge via gravitational radiation. Such considerations give uscalcri
velocity dispersion of
_ (5 5\1/11 \

e = UggPom G2 © I (2.1.5,
wherepsy is the density of the dark clustengs is the mass of black holes, and
c is it the light speed. When the cluster reaches the critiedlas in density
(psr) and velocity dispersioroi:) ( , ), the time necessary for
the cluster undergo to the core collapse is given by

—5/11 —8/11

Lt 1 myy _Ppy
~ 1. 8 . 2.1.6
Myr 1.2 10 InN M, (Mo pe3) ( )

Onceo reach the one percent of the light speed, the dark core isdxnesl to be
in a relativistic statel{ , ).
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Chapter 3

Nbody6++GPU

To resolve the gravitational dynamics in the cluster, idaohg post-Newtonian
corrections, we use the Nbody6++GPU codé( , ). Nbody6++GPU
uses a Hermitet® order integrator method\{ , ). It also includes a
set of routines to speed up the calculations such as usirntgakspad individual
time steps and a spatial hierarchy which considers a listesghbor particles
inside a given radius, to distinguish between the regulazef@and the irregular

force ( ) ). In this version the gravitational forces are
computed by Graphics Processing Units (GPU&Sy( , ). It further
uses an algorithm to regulate close encouniers( ) ). Finally

Nbody6++GPU includes post-Newtonian effects as descrimddw ( ,
).

3.1 The Hermite integrator method

Each particle in our cluster is completely defined by its svas positionr, and
velocity vo, where the subscript denotes the time zgrarhe equation of motion
for a particlei is given by its acceleration and his derivativg:

=

a =— Gm R, (3.1.1
0,i J R3
fi=j
=y ,3RWVxR
do; = — ij v+, (312)
g R3 R5
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where G is the gravitational constaRts ro; — ro is the relative coordinate
andV =vg; - vg; the relative spatial velocity with respect to particle j.

The first approximation to the equation of motion of padiis a prediction via a
Taylor series of the positiongt) and the velocitw;(t) for the next time steft):

(E_t)? . (t-t) 3

rpi = ro+ vo(t—to) + ao,,-To + ao,,%, (3.1.3)
ey 2

Vp,i = Vo + ao(t — to) + do,i % (314)

The predicted positions,; and velocitiey, ;, which result from this simple Taylor
approximation, do not fulfill the requirements for an aaerhigh-order integrator.
An improvement is made by a Hermite interpolation which appnates the
higher accelerating terms by another Taylor series:

a;(t) = ag; + do; x (t — 1) + %a‘éi x (t—to)? + %déi- x (t—ty)°,  (3.1.5)

. . 1
a ft)=a o;+af) x(t—to)+ —Zag} x (t —to)> (3.1.6)

Here the values o#ip; andao,; are known. To determine the higher derivatives
of the accelerations terms we used the predietefdom Eq. 3.1.3andv, in Eq.
3.1.4 we calculate their derivative and call these new tempsanda,,;, and
replacer, andv, on the right hand of Eq3.1.5 And finally we have :

Qoi— Op,i doi—Qpi

a¥ =12 +6 , (3.1.7)
o1 (t — to)? (t — to)?
a® = g0t Opi_ 5200 %ap,; (3.1.8)

0 (t — to)? t—to

Finally if we extend the Taylor series fe£ft) andvi(t) by two more orders and
find the "corrected" positions and velocity to parti¢lat timet; as

2 (t—t)* 3 (t-to)

rl,i(t) = rp,i + ao’,' 24 + aol,- 120 ’ (319‘
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@) (t - to)? 3 (t = to)*

Vl,i(t) = Vp,,' + ao’,- T + aol,- T (3110

The error inr andv within in two time stepsAt = t1 - to is expected to be of
orderO(At>) and the global error for a fixed physical integration timalss with
o(at?) ( , ). One of the advantages of the Hermite scheme is that it
allows to use time steps twice as large for the same accuiagly( }

).

3.2 Individual and Block time steps

Stellar systems are characterized by a huge dynamical iramgdial and temporal
scales. The time scale varies e.g. in a star cluster fronmabnberiods of binaries
of some days upto relaxation time scales of a few hundredanglyear.

So in stellar systems we have a large dynamic range in thetgdran the center
to the outskirts of the cluster, so those stars need to beettedifferent in the
force calculation from the whole rest of the system. The cisjehat are in the
outskirts of the cluster shall be allowed to move for longestahces before a
re-computation of the gravitational force becomes necgs3ais is the idea of a
method for assigning different time-steps = t; - to, in the force computation,
the so-called "individual time-steps scheme™( § ).

Given their high amount of elements, stellar systems are complex indyeamical
interactions over space and time scales,including binary systems with cd pari
only a few days to relaxation times of millions of years. Considering thigea

of time scales it is useful to use different time steps: ( )
developed the "individual time step scheme”, where the idea is to use small tim
steps to integrate particles in regions where the changes of the force ardikegh,
for stars in the core of a star cluster, and large time steps for partitlesgions

of slowly changing dynamical force, like stars in the out-skirts of a startelus
where they are allowed to move a larger distance before recomputing.

Each particle is assigned its ouwuy as shown in Fig.2.1. This scheme is called
"block time-steps". The particlehas the smallest time step at the beginning, so
its phase space coordinate is determined at each time stefhether hand,
we have the particle which has a time step twice as larger as the partjead
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Figure 3.2.1: Regular and irregular time steps!{ ] ).

its coordinates are just extrapolated ("predicted") atthetime steps, while a
full force calculation is due at the black dots. Meanwhile time steps in the
simulation could change or not change during the evolutowea see for the
particlek in figure 3.2. 1

A first approximatijon of the time-step comes from the rateclodnge in the

acceleratiordt; <« aja’;. A more accurate estimate in case of many-bodies is
given by ( ) avoiding some numerical error

u las{|a?)] + |aw,il?

fin 1103 + 102

At = (3.2.1)

wheren is a dimensionless accuracy parameter which controls the error. In most
applications it is taken to bg = 0.01 to 0.02. In the block-time steps, the
synchronization is made by taking the next-lowest intede\to
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3.3 The Ahmad-Cohen scheme

The computation of the gravitational interactions betweagarticles makes
simulations very time-consuming for large numbers of particles, where the eqgsiati
of motions to compute in the simulation scale witt? so at largeN the time
consumption increases rapidly. One method to speed up tbalatons while
retaining the collisions approach is by employing a "neminbscheme" £

[ )-

The idea is to split the force polynomiall.50n a given particle into two parts,
an irregular and regular component,

ai = ai/irr + ai,reg, (3.3.1)

where the irregular acceleratioam;;r results from particles in a certain
neighbourhood of (see Fig3.3.1). The particles inside the neighbourhood
give rise to a stronger fluctuating gravitational force,tsis calculated more
frequently than the regular one of the more distant padittiat do not change
their relative distance toso quickly. One can replace the full summation in
Eqg. 3.1.1by a sum over thev,, nearest particles faa;;» and add a distant
contribution from all the othera; ;.

To consider a particle inside the list of irregular particieis necessary that
particles are inside the "neighbor sphere" with radiusin addition,we consider
particles within a surrounding shell to satidyx V < 0. This condition serves
to identify particles that are rapidly approaching

The process of force calculation begins with a list of neighbours around the particle
i shown as filled dots (see Fig:.3.1). From this list the irregular component
a;;r due to the neighbours is calculated, and then the summatmontinued to

the distant particles, the regular componant,. The time derivatives of two
components are computed from equation Ed..5and3.1.6 so the positions
and velocities are predicted. At time;, we only correct thes; ., inside the
neighbours, the regular component is not affected by theectbons. For the
next time step, ;- the same process is repeated. The distant particles dre stil
unaffected by the acceleration corrections. Whesreached we calculate the
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total force on the basis of the full application of the Hemngredictor-method,
and a new list of neighbours is constructed. With this sché&bedy6++GPU

in the irregular time only computes the forces of particleside the neighbour
radius, meanwhile in the regular time it computes all fortesn neighbours and
distant particles.

Figure 3.3.1: lllustration of the neighbour scheme. Partittearked with an
asterisk and the neighbour radius. Black dots are particles that correspond
irregular forces and unfilled dots. Particles that corogsjto the regular forces
are marked aX to represent a close encountgi( ) ).

3.4 KS Regularization

Close encounters of stars such as close binary systems or hyperbolic encousders ne
a special treatment. Their small distances and strong tgtéomal interactions
lead to small time steps, making the particle integratiomgotationally expensive.
The main idea of the KS regularization implemented Ity

( ), when two particles are as close as "X" in Fig.3.1 with distances of
hundreds of AU, is to take both close stars and move then ouh®fmain
integrator, replacing the system by their center of massdinate and go on with
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the normal integration without both particles. The two eld®dies are moved to
another coordinate system and integrated separately nemest of the particles,
as the harmonic oscillator accurately describes the closeunter of two bodies.

The parameters involved in the regularization RIMIIN and DTMIN, which
refer to the minimum distance between two particles andr tenimum time
step, respectively, to be a considered as a regularize@tlparfhey also need to
fulfil 2 more criteria :

J
RxV>0.1 G(mi+m3)R.

If the particles are approaching each other the valwelcdllows for nearly circular
orbits to be regularized. The second criterion is

L |apert| R?

=——< 0.2
G(m1+ my) 0.25,

so the relative force between the 2 particles is less thanaatepuof the rest of
the particles.

3.5 Post-Newtonian corrections

The relativistic stellar dynamics in stellar systems susiN&Cs could give us a
better understanding of the formation of SMBH, how massieet@al BHs could
form from a given initial conditions, or to estimate the aagtof compact objects
on a central SMBH via extremely mass ratio inspiraling, é&ts.we saw above
Nbody6++GPU includes KS regularization, and this algonithtarts to operate
when 2 particles are tightly bound. To avoid problems witraBnmdividual time
steps, they are moved to another coordinates system. Thersx is modified
to allow for relativistic corrections to the Newtonian fes by expanding the

accelerations in a series of powersige ( , ):
a= gq +c’a+ca+cag+0(c), (3.5.1)
e SR S S
N ew t. 1P 2PN %5 PN

wherea is the acceleration of the particle dy, = -Gm2n/r? is the Newtonian
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acceleration, and PN , 2 PN and 2.5PN are the Post-Newtonian corrections
to the Newtonian acceleration, whetBN and 2PN are the pericenter shift and
2.5 PN is the quadruple gravitational radiation. The correctians integrated
into the KS regularization scheme as perturbations, sriygil@ what is done to
account for passing stars influencing the KS pair.

Other versions of Nbody also include relativistic effects. Nbody5 only includeswa
emission terms, hence it neglected theN and 2PN terms. The computation
of PN is also CPU-time consuming, as it is necessary to computh b
accelerations and the time derivative. In the version of d&a-+GPU that
we use,1PN,2PN, 2.5PN corrections are implemented without any further
approximations , ).

Another important topic in the relativistic dynamics is theavitational recoill,

the expected loss of linear momentum in an asymmetric systemhich the

remnant receives a kick from the gravitational waves emisdin the model used
in Nbody6++gpu the series (e.5.1) is truncated aD > ( , ), SO

the gravitational recoil is not consider in Nbody6++GPU.

Finally the criterion for particle mergers is calculated from theih&@gschild radii
as

IRl < 2% 3 (mi+ m), (35.2)

whereg is the gravitational constantjs the speed of lighth; andm; the mass

of particlesi andj, with |R;;| the distance between the particles in the binary
system. This equation shows the minimal distance to conaidesrge between
two particles, and occurs when the distance between the particles is dovegual

of the sum of their Scharzschild radii.

3.6 Initialization of Nbody6++GPU
The input file that we use to model the clusters in this projegiven as follows.
We will also give a brief description of the template below.

1 1e6 1le6 40 40 O
N 10 10 NRAND 200 1 0 10
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0.02 0.02 0.15 5.0 1.0 TCRIT 1.0E7 RBAR ZMBAR
2210104012
0004200030
1120010001
0020000100
000024-6001

DTMIN RMIN 0.05 1.0 1.0E-06 0.01 0.125
1 100.0 CLIN O 1.0

1.0 10.0 10.0 0 0 0.002 0.0 1.0

0.5 0.0 0.0 0.0

MP AP MPDOT TDELAY

In the second rowN is the number of particles in the clustd&RAND is the
seed to initialized the random position and velocities afeparticle. In the third
row TCRIT is the run time of the simulation in MylRBAR is the virial radius

of the cluster in pcZMBAR is the mean mass of the particles in the cluster
in solar masses, from row 4 to 8 are the KZ parameters whicltexp&ined in
the manual of Nbody6++GPU<( ) ). On row 9 we have
DTMIN and RMIN, the parameters to define a close encounter between two
particles. If two particles are closer th&®MIN or have time steps lower than
DTMIN, then they are candidates for regularization. The next meludes the
parameter used for the Post Newtonian effects, the parar@HEN is the speed

of light in km/s. The last row is that used to define the analytic potentiak th
we consider in the cluster; in our case it is a Plummer distrdm settled with
KZ(14) = 4, MP is the total mass of the Plummer sphere in Nbody-uiB,is

the Plummer scale factor also in Nbody-units. Findl@PDOT and TDELAY

are the decay time of the gas expulsion and the delay timentogas expulsion,
respectively.

3.7 Initial conditions

In this project we use the model introduced in Ch&po explore the evolution
and the formation of a SMBH seed in the dark core of a NSC. Wéopera
range of simulations to study how the presence of an extgamapotential affects
a dark core, the core collapse of the dark core and the groléhSMBH seed
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via run-away mergers. The configurations that we consim@nadel the dark
core of a NSC is a spherical cluster @f= 10* stellar mass black holes with
an identical mass oV1zy = 10 M, at the beginning of the simulations. The
spatial distribution is an isotropic Plummer spheré.( [ ) in virial
equilibrium with virial radius ofR, = 1.0 pc. The analytic potential is given
by a Plummer distribution with a ma$d,.s = ngMsns M and a Plummer
radius ofR, = 0.56 pc, where we vary the gas mass fraction of the cluster on
ng=0.0,0.1,0.3,0.5, 1.0.

The computations in such simulations considering the raalevof the speed of
light ¢ = 3 x 10° km/s become prohibitive. Here we try to extrapolate the behavior
of the black hole cluster and the efficiency of formation ofssive objects by
taking ¢ as a free parameter exploring the dependence and extrapolating
to the real value ot. Mergers via gravitational radiation strongly dependence
on the speed of light, as seen in Equatienl(3. When we increase the speed
of light, the post-Newtonian effects become more promirierthe evolution of
the cluster, and it takes more time to compute, eventuallikimgait unfeasible
to do computations for the real speed of light. Besides ndy orcreasing the
time for mergers, it also increases the time to solve the tamuaf motion,
because as we see above in the Hermite scheme we need to eomopwnly the
acceleration (see e@3.1.]) but also the derivative (see éqgl.2, and we need
do this for every factor of the post-Newtonian correctiorBN,2 PN and 2.5PN.
Simulations considering the real speed of light could takenths to model
systems considered here. Therefore, we vary the speedhofiigour simulations
to study the dependence on post-Newtonian effects, witlyolad of inferring what
would occur in a dark core under realistic speed of light ¢oons. We vary the
speed of light ag = 103; 3 x 103%; 6 x 10%; 104 3 x 10* km/s, and as a consequence
it also affects the radii of the BHs in the cluster given by 8whwarzschild radii.
The time evolution of all clusters is considered over a tinhg e 1.4 Gyr. All
configurations are given in tabie 7.1 For every setup we run 4 simulations, with
different random initial conditions giving a total of 100vailations.
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Table 3.7.1: The initial amount of black holes in the cluster is N, the totass

in the cluster by BHs i#s4s, the fraction of gas mass in the cluster is givemby
the virial radiusR,, finally the speed of light that we use in the simulation is
given byc.

IDs N Mgy [Mg] ng Ry [pc] c[km/s]

10 10 0.0 1.0 10
10 10 0.1 1.0 10
10 1¢° 0.3 1.0 10
10 10 05 1.0 10
10 10 1.0 1.0 10

10 10 0.0 1.0 310
10 10 0.1 1.0 310
10 1¢° 0.3 1.0 318
10 10 0.5 1.0 319
10 1d 10 1.0 1.0 310
11 1d 10 0.0 1.0 610
12 1d 10 0.1 1.0 610
13 10 1¢° 0.3 1.0 610
14 10 10 0.5 1.0 6 10

OO ~NOOTE, WN PR

15 1d 10 1.0 1.0 610
16 1d 10 0.0 1.0 10
17 10 1¢° 0.1 1.0 10
18 10 1¢° 0.3 1.0 10
19 1d 10 0.5 1.0 10
20 10 10 1.0 1.0 10

21 1d 1¢° 0.0 1.0 k10
22 10 10 0.1 1.0 10y
23 10 10 0.3 1.0 30
24 10 10 0.5 1.0 310
25 10 10 1.0 1.0 310
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Chapter 4
Results

In this section, we present the results of simulations inclvhive explore the
behavior of the black hole cluster, taking into account tifauence of an external
potential, as well as variations in its potential mass. Addally, we consider
the effects of altering the speed of light in the context o$tPldewtonian effects
and how these factors impact the evolution and growth of drdral object. The
setups we consider are detailed in Tablé.1 For each parameter listed in Table
3.7.1, we conducted four simulations with different random wilifpositions and
velocities, resulting in a total of 100 simulations. In thexhsection, we will focus
on four specific clusters with the following IDs: 1, 5, 21,da85, as indicated in
Table3.7.1"

4.1 Dark Core Evolution

In Fig. 4.1.1, we illustrate the evolution of the dark cluster without atieenal
potential (i.e.,ns = 0.0) while considering a speed of light dfo®* km/s. The
crossing time of the cluster, assuming no external potensiacalculated to be
0.0482 Myr. Additionally, the half-mass relaxation time as given by. Bdl.4is
166.38 toss. The cluster reaches its highest densitgatio4 Myr or, in terms of
the half-mass relaxation time, #0.61 t,. the inner parts of the clustetd%
Lagragian radii) reaches its highest density, measuring.3ak 10° My/pc3, with
al0% Lagrangian radius di.144 pc. In the first panel, we can observe that the
1% Lagrangian radius experiences a contraction and posaas®l oscillations.
After the time of its highest density, t15¢ Lagrangian radius shows a rebound,
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and approximatelg0 Myr later, it also experiences a contraction and begins to
oscillate. A similar phenomenon occurs with thé% Lagrangian radius, but with

a longer delay in the collapse and subsequent oscillations. Lagrangian radérgrea
than 10% are affected by the expansion of the cluster.The second panel depicts the
growth of the mass of the central object and the initiatiomastsive black hole
formation. At time of highest density, the growth becomes exponential, occurring
in a short span of approximatelyo Myr, eventually reaching a mass v6770 M,

by the end of the simulation. In the third panel, we can obsére escapers of
black holes within the cluster and how they are influencegdroyninent density

at this point, resulting in a total mass los2a# within the cluster. The fourth
panel illustrates the peak of mergers at the time when the cluster reatigttest
density in the clusters, with approximatel0 mergers. There is a second peak
occurring approximatelg 50 Myr later, with about 30 mergers, coinciding
with the contraction of th&% Lagrangian radius. we speculate that the event of
shrink the Lagrangian radii of lower percentsl(0%) could be given by that the
central object gain mass a high rate of mergers with other &dbse this event
math with the event of high rates of mergers.

In Fig. 4.1.2, we observe a cluster withy = 1.0 and a speed of light af0® km/s.
The crossing time i9.0241Myr, and the half-mass relaxation time2662.149¢tss.
The cluster experiences a high increase of the densi@Myr or, in terms of
half-mass relaxation timeZ.010 t,,. The density reached at ti®% Lagrangian
radius is1.23 x 10° My/pc3, with a radius 0f0.2 pc. The behavior of the cluster
is remarkably similar to that of the cluster without an eredrpotential. There
is a delay in the contraction of higher Lagrangian radii aftee collapse. The
only difference is the duration of this delay, which is skeoytlasting only a few
hundred Myr for thel0% Lagrangian radius. Additionally, post highest density in
the inner reginons in the cluster, the cluster enters arllagon stage affecting
different percentages of the Lagrangian radii that haviapekd.

In the second panel, the mass of the central object exhibissmalar trend.
The only difference is the occurrence of some mergers befosepoint of high
density, and the final object is more massive, with almostéwhe mass of the
central object in the cluster without an external potential terms of escapers,
this cluster experiences significantly lower mass loss marad to the cluster
with ng = 0.0, with a total mass loss of onlg7% at the end of the simulation.
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Figure 4.1.1: Evolution of the cluster in a simulation with speed of light c

103 km/s without external potential. On the first top panel have thgilangian
radius for mass fractions betwee% to 90% of the total cluster. The vertical

line in this panel is the moment when the inner region reach the highest densities.
The second panel shows the growth of the mass of the mostwvad3idiin the
cluster. The third panel shows the accumulative ejectiotisa cluster, and the
lowest panel shows the mergers of BHs in bins dfyr.
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Finally, there are abou0 mergers at the time of a highst density in the inner
regions. However, in contrast to the cluster without an mek potential, the
peak of mergers is shorter, and the mergers are more evesttjbdied over time.
Similar that the event in the cluster without external ptitdrthe shrinks of the
Lagrangian radii of belovt0% is also affected by the high rate mergers.

In Fig. 4.1.3 we depict the time evolution of a black cluster without ateexal
potential while considering a higher speed of lighBof10* km/s. The crossing
time, based on the initial conditions of the cluster withaatxternal potential,

is 0.0482 Myr. Consequently, the half-mass relaxation time is calcdlate
166.38 teoss. The point of highest density occurs268.70 t..ss, Which translates

to 13.63 t» in terms of relaxation time. At the moment of highest densitye

10% Lagrangian radius reaches its minimum valuesdf x 1072 pc, with a density

of 1.65 x 107 My/pc3. During the evolution of the cluster towards increase the
density of the inner regions, we observe a contraction ot tigrangian radii
below 10%. Following this event, there is a slight expansion in both the inner and
outer regions of the cluster. In the second panel, we itibstthe mass growth of
the most massive object in the cluster, the SMBH seed. Iratively short time
range, this object gains a significant amount of its finabkmaeaching a mass of
680 M, at1.4 Gyr. Additionally, after the point of highest density, we obsea
slight increase in escapers in the third panel, resulting in a total of 24%pess,
accounting for almost5% of the initial BHs in the cluster. In the fourth panel,
we can see the BH mergers. The peak of the mergers is reacleedindcentral
regions contracts, with a peak of 15 mergers. Beyond the time of highest density
isolated mergers occur, with at most three mergers whiityr

In Fig. 4.1.4, we explore a cluster with a comparable mass of the extetahpial
and the BHs within the cluster, denotedmgs= 1.0. The most notable distinction
is the significant delay in the contraction of the inner tegs compared to the
clusters mentioned earlier. The highest density occursaahemt when thel0%
Lagrangian radius reaches its minimum value, in this c8se,1072 pc with a
corresponding density peak 092 x 10’ My/pc3. This event occurs &at137 Myr
or, in terms of relaxation timel7.77 t,. Before the highest density, only the
Lagrangian radii lower than0% experience contraction. After this event, unlike
the clusters with a lower gas mass, the outer regions areaféssted and do not
experience significant expansion. Regarding the masstyrofathe central object,
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Figure 4.1.2: Evolution of the cluster in a simulation with speed of light=c

10® km/s and an external potential of, = 1.0. On the first top panel we show
the Lagrangian radius for mass fractions betwe#to 90% of total cluster. The

vertical line in this panel shows the moment when the inngiom reach the

highest densities. The second panel shows the growth of s raf the most
massive BH in the cluster. The third panel shows the accuimel&jections in

the cluster, and the lowest panel shows the mergers of BHsi&d$5 Myr.
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Figure 4.1.3: Evolution of the cluster in a simulation with speed of light
c = 3x10* km/s without external potential. On the first top panel we have th
Lagrangian radius for mass fractions betwekf to 90% of total cluster. The
vertical line in this panel is the moment when the inner ragieach the highest
densities. The second panel shows the of growth the masg ofitist massive BH
in the cluster. The third panel shows the accumulative igpstin the cluster,
and the lowest panel shows the mergers of BHs in birsMfr.
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it does not reach the same mass as in the other simulationsidesing the gas
mass fraction and the time required to reach at this poinbatraction and high
density. This discrepancy results from the time spent emglthe cluster after
this event of high density. In terms of escapers, there isightsbump at the
of this contraction of the inner parts of the cluster. Howewmmpared to the
cluster without an external potential, this trend is stegpesulting in a total of
1679 escapers, equivalent to 16% of the initial BHs in thestelu

4.2 time dependence of core contraction

As we increase the external potential, one of the signiticiffierences is the time

it takes for the inner regions contraction to occur. As obsdrin the preceding
sections, there is a difference of more thhGyr between the cluster without a
gas potential and the one with an equal mass fraction of gh8&ks, considering

a speed of light oB x 10* km/s. However, at a lower speed of light @03 km/s,
there is a450 Myr delay in time when occur that the inner region experience a
contraction between the highest and lowest external paleii estimate the of
the core contraction time, we identify the peak of densityhatl0% Lagrangian
radius.

This even of highest density in the inner regions occurs betw6-20 half-
mass relaxation times, as evident in Fig.2.1. Assuming that core collapse
is proportional to the relaxation times( ; ), we can infer that the time
of contraction of the inner regions is proportional Q9 < (1 + ng)*tcross, SO
the time of core contractions tends to be higher when thereatepotential
increases J ). The linear trend suggests that clusters are more
affected by gravitational radiation if the speed of lightresluced, thus making
them more relativistic. We speculate this event of highesisity event occurs
even faster due to the emission of gravitational radiatidhis is supported by
the root mean square (rms) velocity in Fig.2.2, which shows that the rms
velocity is higher thami% of the speed of light (10 km/s) that we consider in
the simulation IDs 1-5, indicating that the BH cluster is irredativistic state

( , ). Furthermore, the relativistic state is more prolongeadhigher
external potentials, by the rms speed increases as thenakfartential increases,
affecting the cluster via strong relativistic effects leagto the dissipation of
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Figure 4.1.4: Evolution of the cluster in a simulation with speed of light ¢ =
3-10* km/s and an external potential of, = 1.0. On the first top panel we
have the Lagrangian radius for mass fractions betwigéto 90% of total cluster.
The vertical line in this panel shows the moment when therimegion reach the
highest densities. The second panel shows the of growth s rof the most
massive BH in the cluster. The third panel shows the accutivela&jections in
the cluster, and the lowest panel shows the mergers of BHm&d$5 Myr.
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kinetic energy into gravitational waves. For speeds oftligkceedingl0® km/s,
wherec = 3 x 10® km/s, we observe that the rms speed is slightly belthé of
the speed of light (30 km/s), but it is very close. Conseqlyemte might expect
that gravitational radiation is not exceptionally stromg it is still sufficient to
reduce the time of highest density in the cluster, consmdethat the external
potential increases the time of the event of high densityis T evident when
examining the orange curve in Figufe?.1. However, for higher speeds of light,
gravitational radiation is not strong enough, leading toetay in the event of
inner regions contractions.

In the right panel of Fig.4.2.1, we observe the time of event of highest density
as a function of the speed of light. It is evident that the edé potential has a
significant impact on the evolution of the cluster and timrerg of highest density,
as reflected in the slopes of these trends. For clustersoutitexternal potential,
there is almost no delay in the inner regions contractionsofn@ speed of light
increases. In contrast, for clusters with an external gatkeaf ny, = 1.0, the slope
is much steeper. This results in a delay in the time of higtessity of more than
700 Myr. This suggests that the time of highest density irstedts with a high
fraction of gas mass is more affected. This impact can mshde a decrease in
the core contraction time due to gravitational radiatioranrincrease in the core
contraction time due to dynamical friction, influenced Ihetadded mass. The
influence of the external potential on the time of highestgiy is particularly
pronounced in clusters with a substantial gas mass fraclites effect can lead
to variations in the core contraction time time, making it @ssential factor in
the evolution of the cluster. For simulations with the diéfiet speed of light, we
have calculated fits how, depends omg4, which we provide in the following:

t
= (n)=-3728n +10.449; c=10%m/s,

trh

t
= (n)) =-0.0430 +11.991; c=3x 10%km/s,

trh

fee

ﬂg) = 1-482f7g +12.91; c =6 x 103%km/s,
trh

tec
(ng) = 3-3an + 12.874; c = 10*km/s,

trh
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Figure 4.2.1: In the left panel, we depict the core collapse time relativéhe
half-mass relaxation time as a function of the gas massidmaaif the cluster,
denoted ag,. Each curve represents a different value of the speed dof, kgl®n
the right panel, we illustrate the core collapse time re&atime as a function of
the speed of lights. However, in this scenario, we vary the external potengal,
The shadow zone is the error computed by standard deviatithnsimulations at
different initial conditions.

4.3 Binary population

Our simulations indicate that with respect to both the binaopulation and the
mass of the cluster, the population of binary systems deeseahen the cluster
experiences a higher external potential. This trend is @iy attributed to the
disruption of soft binaries resulting from the increasehe welocity dispersion
within the cluster. In dense star clusters, binaries artuemiced by two-body
encounters, leading to their drift due to mass segregatibms is primarily

because binaries possess a larger mass relative to siagée st denser regions,
the semi-major axis of binary systems tends to decreasetionvey which leads to
an increase in their hardness or their disruption via enwmrarwith single stars.

In Fig. 4.3.1, we present a distribution of the semi-major axes of all bes
that are formed in the simulations, which demonstratesbhstries tend to
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Figure 4.2.2: Evolution of the rms velocity over time, where the different
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horizontal red line correspond to tl&s of the light speed to check if the cluster
could be in a relativistic state.
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become more tightly bound when subjected to a stronger madt@otential. This
phenomenon is particularly noticeable when they form athiel-soft boundary,
characterized by smaller values of the velocity dispersasoutlined by

( ). The ratio of hard/soft binaries appears to decrease asxteznal
potential of the cluster becomes more massive. This can p&ieed by the
Hills-Heggie law, which describes the semi-major axis atchhthe orbital energy
equals the average kinetic energy of single stars (se€ Edl). When the semi-
major axis is smaller thanys, the binary is considered a hard binary and tends
to have a higher binding energy following single encount@itss increases the
likelihood of merging due to gravitational waves. Convérskinaries with a larger
semi-major axis thamys are categorized as soft binaries and are more likely to
expand their semi-major axes before encounters, making grene to ionization.
This observed trend of an increasing ratio of hard to sofabés with the rise
in the external potential of the cluster is likely to have gnsiicant impact on
massive black hole growth. This impact is manifested in s&eahbinary mergers
and cluster escapers, affecting the mass loss of the cltigtmugh single-binary
encounters.

To provide a clearer view of the trends in the semi-major axidifferent external
potentials, we calculated the standard deviation of tha-seajor axis distribution
mentioned previously. In Figl.3.2 the left panel demonstrates an increase in the
semi-major axis up tay = 0.1. As the external potential increases, it becomes
evident that binaries tend to become more tightly boundjltieg) in a significant
reduction in the spread of the semi-major axis, nearly by mragnitude, when

ng = 1.0. On the other hand, in the right panel of Fig.3.2 we have the
semi-major axis dispersion as a function of the speed of.ligfke can observe that
the semi-major axis remains almost flat for speeds of lighdr than10* km/s,

and for higher values, it tends to decrease. This behavioy b attributed

to hard binaries, which tend to persist because the inspired scale is longer,
leading to a delayed merger of black holes. In contrast,lsofiries become less
bound by dynamical friction and may even dissociate. As altethe average
dispersion of the semi-major axis tends to become lessdprea

In Figure4.3.3 we observe a distribution of eccentricities in binaries of all binaries
that are formes in the simulations. We notice that the shape of the distribution
remains relatively consistent across different external potentials. biimary
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40 4.3. Binary population

c=1x103km/s
c=3x103km/s
_ c=6x10%km/s
_ c=1x10%km/s
_ c=3x10*km/s

105+ 105 ==

Os [AU]

104+ 104+

00 02 04 06 08 10 103 10
Ng ¢ [km/s]

Figure 4.3.2: The standard deviation of the semi-major axis is derivedhfro
the distribution in Fig.4.3.1. On the left panel, we observe the trend of the
semi-major axis concerning the external potential. On tgktmpanel, we depict
the semi-major axis in relation to the speed of light.

eccentricity distribution exhibits a steep increase ineatdcities, reaching a
peak at around 0.9, and then it decreases for binaries wihehieccentricities.
The shape of the distribution is similar to all clusters, thé differences in the
external potential lead to significant variations in thgplation of binaries. This
is because the formation of binaries through three-bodpemiers is less frequent
when the velocity dispersion is higher due to time scalesetx M3/p*2.

We can also observe that the formation of binaries tends swoltran high
eccentricities. This may be due to the fact that these systeitnally possess high
eccentricities or evolve to such states through interastid\s a result, circular
orbits are rare, either because these objects are dissdca@tthey increase their
eccentricities through gravitational interactions. Tihidial assurr\ljatlon ot,w,
considering a thermal distribution with an eccentricityepfs = 1/ 2, appears
to be a reasonable approximation. Additionally, it seenad ¢h.s is independent
of the external potential.
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4.4 Escapers

Escapers in star clusters can be triggered by three digtiechanisms: a single
encounter with another BH can produce a velocity change eoafgpe with the
initial velocities of the two BHs. The second mechanism Iaee a series of weaker,
more distant encounters that gradually increases the grodérg BH. Eventually,
after a last, weak encounter that imparts slightly posianergy, the BH escapes.
We refer to this process as 'evaporation.’” The third andlfimachanism is related
to the asymmetric emission of gravitational radiation. Bihnants receive a kick,
providing the kinetic energy required to escape the clustée magnitude of
this kick depends on the mass ratio and spins of the BHs. Hewes mentioned
earlier, this mechanism does not affect our simulations.

The escape velocity as a function of the cluster mass anditgassgiven by

( | )
Vese = 40kms™t  Mnsc _Pnsc (4.4.1)

Equation4.4.1takes into account the mass and density of the NSC. Howelver, i
is important to consider that we might be overestimatingrthmber of escapers
from the dark core. We are, in essence, neglecting the mas&leuhe dark core,
which could significantly increase the total mass of thestdu. The mass of the
NSC can vary within the range ab® - 10° My, ( | ). The loss

of mass due to escapers plays a pivotal role in the evolutidheocluster and the
formation of Intermediate-Mass Black Holes (IMBHSs). Theeggy lost from the
cluster due to the escape of BHs leads to a heating of theec]Jugintributing to

its overall dynamics.

In Fig 4.4.1, we observe the evolution of escapers in terms of crossmgsi It
is evident that all clusters exhibit a similar trend in théh&eior of escapers at
different values of the speed of light. The escapers arebhotafluenced by the
core contraction and high densities in the inner regionshefdluster, with the
highest density events reaching densities of approxima®- 10’ Mypc~3. This
increase in density leads to a subsequent rise in the nunfilescapers, primarily
due to both weak encounters (evaporations) and strong atesuresulting in
ejections. The escapers generally follow a consistenepativith occasional
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fluctuations, possibly associated with oscillations ia thner regions that, in turn,
impact the density.

On the other hand, there is a notable difference betweenectusvith varying
external potential. Initially, the clusters without extat potential exhibit a
higher number of escapers compared to clusters with higkiarreal potential.
However, after a few thousand crossing times, clusters gth 0.1 andng = 0.3
reach or even surpass the escaper count of the clustenywtl®.0. This outcome
might not align with our expectations, especially when d¢d@sng higher-mass
clusters as described in equatiéni.], but it could be related to the evolution of
the binary population (see below). In the case of a highegreal potential, such
asng = 1.0, there is a substantial reduction in the number of escapetis,only
a fraction of the cluster having escapers compared to chustgh lower external
potential.

In Figure 4.4.2, the total number of escapers is compared a#8831 crossing
times (given by the cluster witly; = 0.0). On the left panel, the number of
escapers in the cluster is plotted as a function of the eatepotential. We
can observe that fon, = 0.1, the number of escapers shows a small increase,
independent of the speed of light. As the external potemizleasesr(, > 0.1),

the number of escapers starts to decrease with a steep slop@jshing even
more rapidly as), approaches 1.0. This trend appears similar to the trendeof th
semi-major axis of the binary systems (see Fig3.2. These trends could be
connected, considering that the timescale for a binarglsiencounter can be
expressed as{ | ):

9 (4.4.2)

tce

B 8ntGpsna ’

where pgy is the total mass density in the cluster amds the semi-major axis

of the BH binary, sa.. becomes smaller for high, as a result we could expect
to have more weak encounters between binary-single BH gnoyithe energy

necessary to escape from the cluster. On the other handigthepanel shows

the number of escapers as a function of the speed of light. &€an note the

slope is almost flat so the numbers of escaper do not chanthetihe speed of

light.
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Figure 4.4.1: Accumulative numbers of escapers as a function of crossimegst
considering different external potentials marked by tleiors, and for different
speeds of light. The vertical line marks the time of the carkbapse.
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Figure 4.4.2: On the left panel we have the escapers as a function of thenexte
potential. On the right panel the escapers are given as didunaf the speed of

light. In both panels shown the escapers at the same croe$iBg031 crossing

times shown in the Fig4.4.1

4.5 Formation of IMBH

From all these results, we can observe that binary systeaysgpivotal role in
the evolution of star clusters and the formation of InterratgiMassive Black
Holes (IMBHs). From the moment of highest density on the rmegions to the
generation of escapers and IMBH formation, binaries arérakto these processes.
Previously, we discussed how the formation of an IMBH caretplace through
mergers of stellar-mass black holes when the inspiral tialesfor these mergers
is shorter than the timescale for binary-single encounfeng conditions for this
scenario are most favorable during core contraction wherchhister experiences
high densities and velocity dispersion, allowing binat@merge via gravitational
radiation.

As we can observe in Figuresl.1and4.1.2 mergers of black holes can occur
independently of the core contraction event. This indisateat the conditions
for these mergers are not exclusively confined to the comraotion phase.
Consequently, the timing of the highest density can providee time for the
central massive black hole to grow, especially in clusteith & low gas mass
fraction, as depicted in Figure2.1. Hence the massive black hole could enhance



46 4.5. Formation of IMBH

the BH binaries mergers via Kozai-Lidov mechanisiedd; ) ] ),
the process by which the large eccentricities are attained is due third-bodharse
perturbations.

Additionally, the external potential has a significant agp on the binary
population by reducing the number of binaries available for mergers. This reduction
binaries could affect in the mass of a central massive blat&. Moreover, the
external potential also delays the timing of core contmactti However, it is
important to note that the density and velocity dispersiathiw the cluster are
essential factors for the formation of "hard" binaries, ethiare more likely to
merge due to gravitational radiation.

In Figure4.5.1, we observe the evolution of the most massive black holessjBH
in the cluster over relaxation time scales. As mentionediezacore contraction
and high densities leads to a high rate of mergers in a shoiddyaesulting in
the formation of objects as massive as 70 solar madde$ lhefore feeding the
BH seed. This, in turn, leads to a rapid increase in the mashkeoBH seed, a
phenomenon observed in all clusters.

When comparing clusters with different external potestiat is evident that

higher external potentials result in the BH seed reachingghen mass over the
same relaxation time. However, this trend of higher extiepotentials leading to
a more massive BH seed begins to decrease as the speed afidigdgtses. In such
cases, the clusters tend to have a smaller difference in #iss of the central object,
as we saw before when increasing the speed of light the gtawial radiation

is reduced increasing the time scale of mergers. Also the timcontraction of

inner regions is delayed even more when the speed of lighheases (see Fig.
4.2.7). In some instances, this clusters with low external po&rven end the
simulation with a more massive BH seed. This occurrencetigated to having

more relaxation times for to evolution after core contrawcti

In Fig. 4.5.2we have a plot that shows the dependence of the final mass of th
BH seed on the external potential (top-left panel) or theedp light (top-right
panel). We provide fits of the BH mass as a function of the revetiepotential
considering different speeds of light in equatichs.1- 4.5.5with a linear fits of

Mgy = Bng + y; we note that it is a linear trend for speeds of lightG¢ km/s.

The slope §) of the trend increases so the mass of the BH seed becomes more
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massive for higher external potentials. On the another hiand > 10* km/s,
the slope of the trend is negative so for higher externalrii@ks the mass of
BH seed tends to decrease. As we noted above this is due ted¢heede of the
available time as a result of the the delay of the core comtrac

Also we can note how the second paramet@riicreases considering relativistic
clusters, independent of the external potential of thetefugiving us 2 sets
of BH seeds, the massive BH seeds with nxa$83 *M,, for speeds of light <
6 x 103 km/s , and the lower massive BH seedsxaf0’M,, for speeds of lights
> 6 x 10°km/s. The dependence gf can be summarized as follows:

Msgu(ng) = 7812.022n, + 11448.431; c = 103km/s, (4.5.1)
Meu(ng) = 5063.854n, + 7331.736; c =3 x 103km/s, (4.5.2)
Mgr(ng) = 114.013n, + 960.175; c =6 x 103km/s, (4.5.3)
Msn(ng) = —22.85n, + 617.683; c = 10*%km/s, (4.5.4)
Mgr(ng) = —156.529n, + 738.981; c = 3 x 10*km/s. (4.5.5)

On the right panel of Fig!.5.2 (top-right panel), we show the mass of the BH
seed at the end of the simulation as a function of the speedidf IThe fits that
we provide are described by equatichs.64.5.10 As mentioned earlier, the BH
seed mass tends to increase for higher external potergiadspt for clusters with
speeds of light- 6 x 10% km/s. The trend of massive BH seeds at speeds of light

< 6 x 10%km/s, with masses ok 10°7* My, transitioning to less massive BH seeds
~ 102 M, at speeds 6 x 103km/s is evident.

For clusters withnp, = 1.0 and speed of light 08 x 10* km/s, the BH seed mass
becomes less than that of clusters with lower external piatisn This is primarily
due to the time of core contraction, as clusters with lowdemral potentials have
more time to evolve and then the BH seed grows in mass. We suserere the
dependence onfor different value ofy,:

4
My, () = 10199.39L exp(. ———— )+624.143; 1 _ 00  (4.5.6)
3227.732 9 ’
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4
MBH(C) = 10782.525, exp(_ —— )+777.679; n = 0.1 (4.5.7)
3568.121 g ’
4
Mp, () = 13838.729 exp(. ———— )+829.899; n _ (3 (4.5.8)
3966.455 g ’
4
Mgy, () = 16096.442 exp(. ———— )+897.747; n _ (5, (4.5.9)
3814.199 g ’
c 4
MBH(C) = 17766.999 exp(_ — ) +64566; n - 1. (4.5.10)
3480.472 9

To extrapolate the final BH seed mass to the real value ofghedof light, we
can use the equations provided above, considerig x 10° km/s as listed in
Table4.5.1. We note that the trend becomes nearly flat for higher vabfitise
speed of light. Furthermore, as the simulations only raaeéhof the real value
of the speed of light, we could overestimate the inspiral time scale for higleva
of speed of light.

The ratio of the mass of the BH seed over the number of the meigaiven by

a. This value gives us information of how many of the mergeesifthe BH seed.

If the value is equal td it mean that all mergers of BHs in the cluster end in the
BH seed. On the other hand, if the valuedist means none of the mergers feeds
the BH seed. Formally we have

Mgy 1

o = (4.5.11)

10 Mergs.
In Fig 4.5.2, the values fow are presented. In the bottom-left panel, we can
observe how, for lower values ok 3 x 10% km/s, a consistently remains above
0.9. This indicates that ove0% of BH mergers contribute to the growth of the
BH seed. A similar trend is observed for a speed of lighg ®fL0* km/s, where
even at higher external potentiadstemains high.

However, as we increase the speed of light, especially inahge betwees x 103
and10* km/s, a experiences a significant decline. This suggests that staotal
portion of BH binary mergers do not contribute to increasing BH seed mass.
This contrasts with the situation at a speed of light3ok 10* km/s, where a
consistently remains above 0.8, indicating that most nrergwolve the BH seed.
Though clusters witl3 x 10* km/s form a similar mass BH seed as clusters with
6 x 10® and 10* km/s, which means we have some BHs with massd® M, that
do not have the time nor the conditions to mergers with the Beds
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potential @), different colors mark different speeds of light. On thghti panel,
we have the mass of the massive BH as a function of the lighedsif®, with
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ratio of amount of black holes that merger with BH seed andntleegers on the

cluster definedx see eq4.5.11, and on the left panel as a function of the external

potential. On the right panel we haweas a function of the speed of light.
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Table 4.5.1: Extrapolation of the BHs seed mass as to the real value of the speed
of the light300.000km/s.

n, BH seed massM,]

0.0 624.143+ 14.142
0.1 777.678+53.874
0.3 829.899+ 83.301
0.5 897.747+ 35.483
1.0 645.66: 20.355

4.6 Extrapolation to real clusters

As mentioned earlier, the principal condition for a blackiehaluster to form

a massive central black hole is that it needs to reach a veltati state (i.e.,

Vo = 0.01c). This condition is typically influenced by the density diet cluster,
determined by its mass and radius. In our model, this candis further impacted

by the parameten,, representing the amount of gas accreted onto the black hole
cluster. The accretion of gas increases the density of thster, consequently
raising the root mean square velocity in the central regi@ss expressed by

( \ ). Considering the external potential, we can rewrite
this velocity as:

S

GMgus(1 +
Voo & 0.4 B”R( Na) (4.6.1)

Vo does not adequately account for the contraction of the blaake cluster
due to gas accretion. Therefore, the cluster is less demsedbnsidered in the
model proposed by ( ), where gas accretion affects the density of
the cluster and subsequently influences the root mean squedocity. A more
accurate velocity dispersion for a cluster affected by gasedion is presented in

( , ) as

1/2
o= fGMaus(1+n,)> (4.6.2)

v
R virM BHs

whereMsys is the mass of BH in the clusteR,;, is the virial radius and, is
a dimensionless factor that covers a departure from thal @quilibrium or a
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Table 4.5.2: In this table, we present characteristic results for thestels

corresponding to the initial conditions index in Talde/.1 The first column

displays the mass of the BH seed at the end of the simulatieasuared in solar
masses. In the second column, we provide the number of neetigatr occurred
in the cluster. The third column indicates the time of cordapse, measured
in millions of years (Myr). Finally, the last column pressnhe number of BH
escapers in the cluster.

IDs BH mass [M)] Mergers T cc [Myr] Escapers

1 10730+ 255 1095+ 26 84.654.93 2063.2%32.13
2 11495+ 485 1209+ 19 107.6&5.755 25988.831

3 14635+ 526 1499+ 37  162.3@16.134 2369.5+25.02

4 16930+ 427 1724+ 32 231.4@20.465 1764.523.7

5 18005+ 700 1857+ 57 443.39.428 650.6637.24

6 5460+ 675 590+ 77 89.135.293 2221.75302.46
7 7317+ 382 793+ 40 133t4.446 255223.04

8 10770+ 599 1150+ 54  217.1@10.154  2433.510.11

9 11857+ 469 1281+ 43  336.4@4.299  1894.5524.08
10 11333t875.9 123867 755.5&21.065 570.64.78
11 655+ 90.6 98.5+ 11 103.123.420 267855.33
12 997+ 114.7 138.7+ 12 139.344.367 3016.5%142.68
13 1207.5-247.3 185.7%8 230.238.687 2739.25188.95
14 1282.5+65.7 214.7% 11 384.355.866 2179.2551.36
15 916.6+ 102.0 212.3 13 909.0344.405 585.6685.55
16 557+ 20 72+ 3 103.864.045  2648.2542.86
17 605+ 35 82+ 1 142.5%4.602 3141+28.77
18 632+ 31 93+ 3 241.923.86 2823.510.97
19 715+ 92 113+ 7 388.5411.63 2029.2557.603
20 570+ 63 122+ 4 1043.8%44.99 558.6610.14
21 660+ 14.1 76+ 12 104.724.83  2553.%84.913
22 735+ 43.8 79.5+ 3 141.244.52 282&80.28
23 735+ 43.3 79.25+ 2 248.1°411.82 246@62.95
24 737.5+ 45.4 84+ 7 411.0%7.574 182338.79
25 546.6+ 23.5 69.3t4 1178.1929.093 554.380.471
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particular shape of the potential well.

In Fig.4.6.1, we present the trends of the velocity for the two models considering
different external potentials)f). On the top panel, we have the model considering
that the cluster is not shrunk by the accretion gas, wheng dokters with a
gas mass ratio af, = 5.0 and very dense clusters with a radiusRof = 0.25 pc

and masses of approximately8 x 10’ M, reach the velocity necessary to be
considered in a relativistic state.

On the other hand, the second panel shows the velocity cenrsidthat the
cluster is shrunk by the gas accretion. Here, we can obskeat@tore clusters
reach the velocities necessary to be in a relativistic stath lower masses of
approximately= 2 x 10’ My, and higher radiR,;- = 1 pc, even for clusters with

an external potential ofy = 0.3. It is important to note that this consideration

is based on the initial conditions, and during their evolution, clusters could attain
higher velocities, allowing clusters with lower masses to reach aivedtic state

in the inner regions, as shown ky ( ).

In Fig. 4.6.2 the efficiency €) of the cluster to form a massive object is depicted
as the ratio between the mass of the clugWfusier = Msus(1 + ng) and the
mass of the central massive BH, plotted against the ratiovdmt the velocity
dispersion at the time of the core contraction and the spéé&dght considered in
the simulation. As/../c increases, the efficiency of the cluster to form a massive
object also increases, reaching a high efficiency of aroairdd.06 for speed of
light < 6 x 10%km/s and € = 0.08 for speed of light of> 6 x 10°%km/s. The
external potential has an influence on the efficiency, witlsters having external
potentials ofny = 0.3 - 0.5 exhibiting the highest efficiency, while clusters with
an external potential of; = 1.0 showing lower efficiencies. This is attributed to
the time required to reach core contraction, as discusseiére&lusters not in a
relativistic state have an efficiency in the range~09.003, where approximately

=~ 0.3% of the mass of the cluster forms the central BH. In contrdssters in a
relativistic state exhibit an efficiency ef 0.05, with around= 5% of the mass of
the cluster forming a central massive BH.

Considering the mass and radius of the cluster, we compeie tims velocities
with equationst.6.1and4.6.2 If we take the ratio between velocity and the real
speed of lightc = 3 x 10° km/s, we can associate an efficiency, as shown in Fig.
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Figure 4.6.1: In the top panel, we depict rms contour lines of the velocity
calculated by Equatior.6.1, showcasing its dependency on the virial radius and
the mass of BHs in the cluster. The contours illustrate tHecwes at specific
radii and masses. Meanwhile, the bottom panel illustratasyour lines of the
velocity of the cluster including as defined by Equatiérs.2, where different
colors indicate various values gj.
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Figure 4.6.2: We present the BH formation efficiency of the clusters dedfims
the mass of the most massive BH divided by the total mass otlimter, as a
function of the ratio between the root mean square (rms)cigiat the time
of the core collapse and the speed of ligh), @s considered in the simulations.
Different colors are used to denote varying external paéng,. The vertical
lines mark velocity to ratios assuming the real value of theeed of light of
clusters with an rms velocity dfo00 km/s and3000 km/s
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4.6.2 In Fig. 4.6.3 we compute the final mass of massive BHs that could form,
considering their velocities and the associated effigreiht this plot, we consider
the velocities given by Eq4.6.2 also consider different values of the external
potential 0f0.0, 0.3, 0.5, 1.0. We consider a cluster mass rangel6f - 108 M, and
radii of 0.1 - 2 pc. We can note that for clusters with less tharno*3 M, the
clusters only form BHs with masses aroun@® M., independent of the external
potential considered. further we note the behavior for@émal potentials where
at lower R, the efficiency increase. For clusters with masses: a® - 10’ M,
andn, = 0.0 - 0.3, they can form massive BHs with masses~0fi0* - 10° M.
For higher-mass clusters, i.ev, 10’ - 107> My, they are considered relativistic
clusters with small radii lower thaf.25 pc, and this holds true for all clusters,
regardless of the external potential. Clusters with a maifi1.0 pc need high
massesy 108 M, andn, = 1.0 to be in a relativistic state, forming more massive
BHs.

When we consider the velocity given in equatidrb.2, we observe how the
external potential has a high impact on the velocity in thestwdr. This leads
to the formation of more massive BHs with lower masses andhigher radii,
unlike clusters without external potential where both eéies are equal. The
most significant difference is observed in clusters witheatternal potential of
ng = 1.0, where the clusters are in a relativistic state for massdkdmrange of
~ 10%° - 10”°> M,, and for radii in the range .25 - 1.0 pc. In this scenario, the
cluster can form massive BHs with an efficiency comparabtbdat of a relativistic
cluster.
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Figure 4.6.3: We display the black holes (BHs) that can form clusters based
on root mean square (rms) velocities calculated using equatiéri and their
corresponding efficiency depicted in Fig.6.2 The clusters are within a range of
virial radii from 0.1 to 2.0 pc and masses from0* - 102 M,. The color represents
the mass of the BHs that form the clusters, and each panel corresponds tmtliffere
external potentials.
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Figure 4.6.4: We display the black holes (BHs) that can form clusters based
on root mean square (rms) velocities calculated using equatiér?? (

, ) and their corresponding efficiency depicted in Fig6.2 The clusters
are within a range of virial radii fron0.1 - 2.0 pc and masses from0* - 108 M.
The color represents the mass of the BHs that form the clusters, and each panel
corresponds to different external potentials.
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Chapter 5
Conclusion

In this thesis, we conducted a comprehensive study on thedon of
Intermediate Mass Black Holes (IMBHS) in nuclear star @dusthrough runaway
mergers of Black Holes (BHs). Our investigation focusestmdvolution of BH
clusters in the presence of gas, focusing on the scenarimeditoy

( ). The study aims to elucidate how the core of the NSC evolvek the
formation of massive BH seeds .

To explore this model, we conducted a series of simulatiossghqu the
Nbody6++GPU code. In these simulations, we incorporatedraytic potential
with varying values to analyze its impact on the evolution thé cluster.
Furthermore, we manipulated the speed of light to expediee BH mergers
due to the computational expenses associated with thesgagions.

In these simulations, our primary focus was on studying tbee contraction,
including the time when it occurs and the resulting densitiddditionally, we

delved into the characteristics of the binary populatiarghsas their semi-major
axis and eccentricities. Exploring the ejections from thester, BH-BH mergers,
and the evolution of the BH seed were also integral aspectaiofnvestigation.

The key findings and insights from our results can be sunmedrin the following

topics:

e The first result of our simulations, shown in Figutel.4 is the time of core
contraction in relaxation times as a function of the extepwential. We
observe a clear trend where the time of highest density @ contraction
increases with higher external potential, consistent finttings in
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( ). However, for lower values of, the behavior is different, with
the time core contraction tending to decrease or remaintanh®s the
external potential increases. This is attributed to theteluhaving the root
mean square (rms) velocity necessary to enter a relativsséige or be in
proximity to it, aligning with similar results obtained by ( ).

Binary formation by three body encounters in the clusteds$eto produce
more tight binaries when increasing the external potentidlucing the
semi-mayor axis. On the other hand, the eccentricitiesebtharies tend to
not have a big difference between clusters with the samedspieleght, but

with different external potentials. The only big differents in the overall
reduction of the binary population when increasing the mykpotential.

The number of escapers in the cluster, whether through eaapo or
ejections, tends to decrease with higher external potentials. In dusidr
lower gas mass fractiongd), the mass loss reaches aro@og, while in
clusters with a high external potential f = 1.0, the mass loss is only
arounds%.

Clusters in a relativistic state or near it are capable ofdpoing BH
seeds in a mass range of approximatedfM,, experiencing a twofold
increase in mass with higher external potential with efficiesx~ 1072, In
contrast, clusters far from a relativistic state can onlyduce BH seeds of
approximatelyl0*M,, with efficienciesx~ 1072. This aligns with the findings
from ( ), where clusters in a relativistic state exhibit a BH
seed mass 8% of the total initial mass of the cluster. Similar models also
support these results, as seenkirn ( ), who consider
denser Nuclear Star Clusters (NSC) and account for grau@twave recoil
effects.

To resemble real clusters, as anticipated, we requirearisishat are denser
to achieve a relativistic state. They should also be moresimasand
have smaller radii, as indicated by the yellow regions in. Bi¢.3- 4.6.4
Additionally, the way of including the external potentiaysificantly affects
the rms velocity of the cluster and the BH formation effiaggnFor clusters

in equilibrium with the external potential, it is more ditilt to form massive
BHs, while a contraction of the cluster due to the inflow will favor the process.
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In a cluster with a virial radius oRvir = 0.1 — 2.0 pc and masses af0* and

6 x 10* M, a central black hole 0100 M, can form. To form a central
black hole of10® M., the cluster needs a virial radius Bfi: = 0.1 — 2.0 pc
and masses o7 x 10* - 24 x 10* M. Finally, to form a central black
hole with masses betwedi®* — 10° M, the cluster needs a virial radius of
Rvir = 0.1 — 2.0 pc and a mass 02 x 10° - 2.4 x 10° M. The radii begin
to constrain the formation of high-mass black holes in lowess clusters.
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Chapter 6
Discussion and future work

This investigation provides a clear insight into the forioatof an Intermediate
Mass Black Hole (IMBH) in the dark core of a Nuclear Star CaugiNSC). In a
simplified model, we consider a cluster with equal mass Bidgituted according
to a Plummer distribution. In our simulations, we form twdssef BH seeds,
approximately10* for clusters in a relativistic state and approximately? for
other clusters.

However, our models are affected by certain non-realistic assumptionsngtance,
assuming equal-mass BHs in the cluster impacts mass seigmregkeading to
time scales for cluster evolution higher than reality, fustance in clusters with a

realistic stellar mass function the = 0.2t ( ) ).

Additionally, we neglect gas accretion onto the BHs, whidywaffect the time
scale evolution, including the relaxation time=( , ) and the mass
distribution of the BHs in the cluster. Furthermore, gratrdnal recoil caused

by gravitational waves is not considered in the simulatiBecent versions of
Nbody6++gpu include these effects. Studies suchras ( )
provide a more extensive analysis of mergers and escapers considering reitioils, w
velocities upto a few thousarkeh, where the typical mass of an ejected massive
BH is 400-500M,. They also explore how the mass and density of the NSC
influences the retention of massive BHs and the formation of binaries, where the
massive NSCs can more easily retain massive BHs but the fiomat binaries
requires longer time scales. Dense NSCs both can retain massive BHmaaich
higher efficiency in forming binaries that merge through @Wission.
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Regarding future work on the formation of an IMBH in a reaistISC,

( ) demonstrate that for a high mass ratio of gas> 5.78, the cluster
tends to expand for dark core massed0’M,. However, for a mass of the dark
core > 10’ My, the cluster is already initially in a relativistic staten a large
scale of the cluster. To form an IMBH, we could consider masslark cores with
either massive black holes10 M, or a higher number of BHs in the cluster. But
this is not enough to reach the core collapse with the metloggahat we use so
far, as the relaxation time scales &g1 + ny)*, so for higher thamy = 2.0 the
core collapse will require more thain4 Gyr. We further note that an initial mass
distribution of the BHs could reduce the time of the coreajodle. Of course, this
IS a recent investigation and our knowledge on the massilulision of stellar
mass BHs is still limited, and no model can fully reproduce thstribution of
observed total masses. Nevertheless, the observationgthen the distribution
of mass in & band of theMpm. = 50 My, a = 2.35 model ( J ).
which could be employed in the follow-up calculations in tlure. In future
projects it will also important to understand resonantxaten (or Kozai) effects,
which could significantly increase the rate of inspiral &hdir relation with the
PN 1 andPN 2, affecting the precession and the impact of the number aiucap
( : ). Finally, the consideration of radiation recoils will
give us a better understanding of the evolution and the faomaf an IMBH.
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