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Abstract

In this thesis, new Banach spaces-based mixed finite element methods are explored to address coupled
diffusion problems and related models in continuous mechanics. The focus is on numerical analysis
and simulation of the stress-assisted diffusion problem and the chemotaxis-Navier-Stokes problem.

First, we introduce and analyze mixed variational formulations based on Banach spaces for the
nearly incompressible linear elasticity problem and the Stokes problem. This approach is motivated by
the similarities between the variational formulations of these models with respect to those obtained for
the stress-assisted diffusion problem, which will be subsequently studied. To avoid the imposition of
weak symmetry on the Cauchy stress tensor, we reformulate the problems in terms of the pseudostress
tensor. We apply integration by parts formulas appropriate for the Banach spaces used, resulting
in continuous schemes for both models. We employ the Babuška-Brezzi theory in Banach spaces and
generalize classic results to establish that the obtained formulations are well-posed within these spaces.

Next, we address the system of partial differential equations describing the diffusion of a solute in an
elastic material. The elasticity model, whose momentum equation includes a source term dependent
on diffusion, is reformulated using the non-symmetric pseudostress tensor and the deformation of the
solid as unknowns of the mixed scheme. The diffusion equation, with the diffusivity function and
source term depending on the stress and strain tensor of the solid, respectively, is approached using a
primal formulation with concentration as the unknown. Dirichlet boundary conditions are considered
for both equations.

As a natural continuation of the above, a fully-mixed approach based on Banach spaces is proposed
and analyzed, generating a new finite element method for the coupled stress-assisted diffusion problem
to be solved numerically. We introduce two mixed schemes for the diffusion problem, using diffusion
flux as an additional variable, and for the second, we also consider the concentration gradient as an
unknown.

Finally, we introduce and analyze a fully-mixed method based on Banach spaces to numerically
solve the stationary chemotaxis-Navier-Stokes problem. This coupled and nonlinear model represents
the biological process driven by cellular movements induced by an external or internal chemical signal
within an incompressible fluid. In addition to the velocity and pressure of the fluid, the velocity gradient
and the Bernoulli-type stress tensor are introduced as additional variables, allowing the fluid pressure to
be eliminated from the equations and calculated by post-processing after solving the system. In turn,
in addition to the cellular density and the concentration of the chemical signal, the pseudostresses
associated with these last variables and their corresponding gradients are introduced as additional
unknowns. The resulting continuous formulation, set in a Banach framework, consists of a coupled
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system of three saddle point problems, each perturbed with trilinear forms dependent on the data and
the unknowns of the other two problems.

The continuous formulations resulting from each of the schemes are approached through a fixed-
point strategy. Therefore, the Babuška-Brezzi theory in Banach spaces allows us to establish that the
operators associated with each of the problems are well-stated. In turn, the classic Banach fixed-point
theorem, in conjunction with assumptions of small data, results in the existence and uniqueness of
the solution at a continuous level. Then, on arbitrary finite element subspaces, we establish Galerkin
schemes corresponding to each of the problems. Assuming that the mentioned subspaces are inf-sup
stable, Brouwer’s theorem allows us to establish the existence of solutions at the discrete level. Ad-
ditionally, for the scheme associated with the stationary chemotaxis-Navier-Stokes problem, Banach’s
fixed-point theorem also allows establishing the uniqueness of such discrete solution. We obtain Céa’s
estimates corresponding to each scheme, and once the finite element subspaces are particularized, the
approximation properties allow us to establish the corresponding convergence rates. Finally, numerical
experiments confirm these rates and illustrate the good performance of our methods.



Resumen

En esta tesis, se exploran nuevos métodos de elementos finitos mixtos basados en espacios de Banach
para abordar problemas de difusión acoplada y modelos relacionados en mecánica de medios continuos.
El enfoque se centra en el análisis numérico y simulación de los problemas de difusión asistida por
esfuerzos y chemotaxis-Navier-Stokes.

Primero, introducimos y analizamos formulaciones variacionales mixtas basadas en espacios de Ba-
nach para el problema de elasticidad lineal casi incompresible y el problema de Stokes. Este enfoque esta
motivado por las similitudes entre las formulaciones variacionales de estos modelos con respecto a las
obtenidas para el problema de difusión asistida por esfuerzo, el cual sera estudiado subsecuentemente.
Con el fin de evadir la imposición de simetría débil sobre el tensor de esfuerzos de Cauchy, reformu-
lamos los problemas en términos del tensor de pseudoesfuerzos. Aplicamos fórmulas de integración por
partes acordes a los espacios de Banach utilizados y obteniendo como resultado los esquemas continuos
para ambos modelos. Empleamos la teoría de Babuška-Brezzi en espacios de Banach y generalizamos
resultados clásicos para establecer que las formulaciones obtenidas estén bien planteadas dentro de
estos espacios.

A continuación, abordamos el sistema de ecuaciones diferenciales parciales que describen la difusión
de un soluto en un material elástico. El modelo de elasticidad, inicialmente definido de acuerdo a la
relación constitutiva de la ley de Hooke, cuya ecuación de momentum incluye un término fuente depen-
diente de la difusión, es reformulado usando el tensor de psudoesfuerzos no simétrico y la deformación
del solido como incógnitas del esquema mixto. La ecuación de difusión, con función de difusividad
y termino fuente dependiendo del tensor de esfuerzos y deformación del sólido, respectivamente, es
abordada usando una formulación primal con la concentración como incógnita. Para ambas ecuaciones
son consideradas condiciones de contorno Dirichlet.

Como continuación natural de lo anterior, se plantea y analiza un enfoque completamente mixto
basado en espacios de Banach, generando un nuevo método de elementos finitos para el problema
acoplado de difusión asistido por esfuerzo a ser resuelto numéricamente. Introducimos dos esquemas
mixtos para el problema de difusión, empleando al flujo de difusión como variable adicional, y para el
segundo, consideramos además el gradiente de la concentración como incógnita.

Finalmente, introducimos y analizamos un método completamente mixto basado en espacios de Ba-
nach para resolver numéricamente el problema de chemotaxis-Navier-Stokes en estado estacionario.
Este modelo acoplado y no lineal representa el proceso biológico dado por movimientos celulares con-
ducidos por una señal química externa o interna dentro de un fluido incompresible. Además de la
velocidad y presión del fluido, el gradiente de la velocidad y el tensor de esfuerzos de tipo Bernoulli se
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introducen como variables adicionales, lo que permite eliminar la presión del fluido de las ecuaciones
y calcularse mediante un postproceso tras resolver el sistema. A su vez, además de la densidad celular
y la concentración de la señal química, los psudoesfuerzos asociados a estas últimas variables y sus
correspondientes gradientes son introducidos como incógnitas adicionales. La formulación continua
resultante, establecida en un marco Banach, consiste en un sistema acoplado de tres problemas de
punto silla, cada uno perturbado con formas trilineales dependientes de los datos y de las incógnitas
de los otros dos problemas.

Las formulaciones continuas resultantes de cada uno de los esquemas son abordadas mediante una
estrategia de punto fijo, por lo cual, la teoría de Babǔzka-Brezzi en espacios de Banach permite
establecer que los operadores asociados a cada uno de los problemas están bien planteados. Por su
parte, el clásico teorema de punto fijo de Banach en conjunto con suposiciones de datos pequeños
da como resultado la existencia y unicidad de solución a nivel continuo. Luego, sobre subespacios
de elementos finitos arbitrarios, establecemos esquemas de Galerkin correspondientes a cada uno de
los problemas. Asumiendo que los subspespacios mencionados son inf-sup estables, con lo cual el
teorema de Brouwer permite establecer la existencia de solución a nivel discreto. Adicionalmente, para
el esquema asociado al problema estacionario de chemotaxis-Navier-Stokes, el teorema de punto fijo
de Banach permite además establecer unicidad de dicha solución discreta. Obtenemos estimaciones
de Céa correspondiente a cada esquema, y una vez particularizados los subespacios de elementos
finitos, las propiedades de aproximación permiten establecer las correspondientes tasas de convergencia.
Finalmente, experimentos numéricos confirman dichas tasas e ilustran el buen desempeño de nuestros
métodos.
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Introduction

Nonlinear and coupled models are common in continuous mechanics. In these models, the equations
often include coefficients, source terms, or arbitrary terms that depend on the variables of other
equations. This complexity significantly increases the difficulty of the corresponding analyses compared
to simpler linear problems. This feature represents a challenge both in the formulation and in the
resolution of such problems.

To address this difficulty, various approaches have been proposed. One of them involves incorpo-
rating additional penalized redundant Galerkin terms into the original formulations, resulting in the
so-called augmented methods. Some examples include [7] and [8] for coupled flow and transport prob-
lems, [3] and [31] for Boussinesq equations, [20] and [22] for Navier-Stokes equations, and [46] and [47]
for stress-assisted diffusion. Although these extra terms allow for the reestablishment of a Hilbertian
framework for the models, simplifying their analysis, it is important to note that the incorporation
of such terms introduces greater complexity into the discrete schemes and associated computational
implementations, which could be mitigated through a proper analysis of the original variational for-
mulations not augmented. It is also important to emphasize that in some models, such as the coupled
Darcy and heat equations [52], generating an augmented method is not possible, leading to the necessity
of a Banach space-based approach.

Therefore, this thesis aims to develop new finite element methods based on Banach spaces to solve
problems in continuum mechanics, with a main focus on using the mixed approach to address problems
related to the mechanics of fluids and solids. Generalizing common tools in analysis within Hilbertian
frameworks to a Banach context, facing the challenges that this will entail. We specifically focus on
the numerical analysis of coupled models, addressing challenges posed by the stress-assisted diffusion
problem and the chemotaxis-Navier-Stokes problem, for which we will derive mainly fully-mixed vari-
ational formulations, establishing the existence, uniqueness, stability, and regularity of the solutions,
and highlighting under what conditions these are held.

The following sections of this thesis will focus on the detailed presentation of the models we will work
with, exploring some of their most significant applications, and providing the corresponding references.
In addition, the general organization of the thesis will be described, detailing the mathematical and
numerical approach we will employ to address each of the proposed models.

Model Problems

This thesis focuses on coupled problems in two directions: solid mechanics and fluid mechanics. Re-
garding solid mechanics, our primary emphasis lies on the analysis of a diffusion-deformation problem,

1



2

wherein stress acts as a coupling variable, commonly recognized as stress-assisted diffusion problems
[2, 73]. This models the diffusion of a solute in an elastic material occupying the domain Ω and is
described by the following system of partial differential equations:

ρ = C
(
e(u)

)
in Ω , −div(ρ) = f(ϕ) in Ω , u = uD on Γ ,

σ̃ = ϑ̃(ρ)∇ϕ in Ω , −div(σ̃) = g(u) in Ω , and ϕ = 0 on Γ ,
(1)

where the Lamé constants λ and µ > 0 characterize the material properties. Additionally, ϕ represents
the local species concentration, σ̃ is the diffusive flux, and ϑ̃ : R → R is a tensorial diffusivity function.
Finally, f : R → R is a vector field of body forces, and g : R → R represents an additional source
term that depends on the solid displacement u, and uD is the Dirichlet datum for u. The system (1)
describes the constitutive relationships inherent to linear elastic materials, the conservation of linear
momentum, the constitutive description of diffusion flows, and the mass transport of the diffusive
substance, respectively. It is also assumed that the diffusion time scales are much slower than those of
elastic wave propagation, justifying the static nature of the system. We note that the effects of stress-
assisted diffusion constitute the main mechanism in many applied problems, including diffusion of
boron and arsenic in silicon, hydrogen diffusion in metals, aluminum interconnect voiding in integrated
circuits, stress-induced migration in iron, sorption in fiber-reinforced polymeric materials, drying of
liquid paint layers and gels, penetration of solutes and anisotropy in cardiac dynamics, among others.

We emphasize that the main challenge in analyzing this model lies in the stress dependence on the
diffusivity tensor ϑ̃. Thus, to address this problem without making the regularity assumption put forth
in previous works, it is necessary to develop tools within the framework of Banach spaces. In order to
achieve this, Chapter 1 provides several preliminary results. Additionally, Chapters 2 and 3 offer both
continuous and discrete analysis for mixed-primal and fully-mixed formulations, respectively.

In the context of fluid dynamics, we introduce the chemotaxis-Navier-Stokes problem. This model
aims to find the velocity u and pressure p of an incompressible fluid in a region Ω, as well as the cell
density η and chemical concentration signal φ. These variables must satisfy the following system of
differential equations:

− ν∆u + λ (∇u)u + ∇p − η∇f = f in Ω ,

div(u) = 0 in Ω ,∫
Ω p = 0 ,

− kη∆η + µdiv
(
η∇φ

)
+ u · ∇η = fη in Ω ,

− kφ∆φ + γηφ + u · ∇φ = fφ in Ω ,

u = uD , η = ηD and φ = φD on Γ .

(2)

Here, f , f , fη, and fφ are given functions belonging to appropriate function spaces, while ν, λ, kη,
kφ, µ, and γ are positive constants representing fluid viscosity, fluid density, cell diffusion constant,
chemical diffusion constant, chemotactic coefficient, and chemical signal consumption rate, respectively.
Additionally, uD, ηD, and φD are the corresponding Dirichlet boundary data, and uD satisfies the
compatibility condition

∫
ΓuD · ν = 0.

The chemotaxis-Navier-Stokes equations have a crucial role in understanding how cells move in
response to chemical signals and how they influence the surrounding fluid flow. These equations are
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used in various biological and medical processes, such as the development of multicellular organisms
and the spread of cancer [75, 59, 76]. Although numerical methods have been developed [26, 36, 38],
there is still a need for a mixed approach using Banach spaces. This approach can provide a more
efficient and conservative formulation for these coupled and nonlinear systems, offering new possibilities
for both fundamental research and medical applications.

In Chapter 4, we aim to address the aforementioned gap and expand the utilization of Banach space-
based approaches in studying the continuous and discrete formulation of the chemotaxis-Navier-Stokes
problem. We introduce and analyze a fully-mixed finite element method for this model.

Outline of the thesis

The structure of this thesis is as follows. In Chapter 1, we introduce mixed variational formulations
in Banach spaces for the nearly incompressible linear elasticity and Stokes models, addressing nonlinear
coupled problems in continuum mechanics. We employ a pseudostress-based approach and apply the
Babuška-Brezzi theory in Banach spaces. The outcomes encompass the construction of a tensorial
operator and the generalization of classical estimates for the tensor deviator. The results of this
chapter were published in

[48] G.N. Gatica and C. Inzunza, On the well-posedness of Banach spaces-based mixed for-
mulations for the nearly incompressible Navier-Lamé and Stokes equations. Computers &

Mathematics with Applications, vol. 102, pp. 87–94, (2021).

In Chapter 2, we address the stress-assisted diffusion of a solute in an elastic material using a varia-
tional approach based on Banach spaces, employing a mixed-primal finite element method. The initial
elasticity model, defined by Hooke’s law, is reformulated using non-symmetric stress and displacement
as unknowns in the mixed scheme. The diffusion equation, with diffusivity function and source term
dependent on stress and displacement, is cast in primal form concerning the unknown concentration.
The dependence of the diffusion coefficient and subsequent analysis suggest seeking unknowns in ap-
propriate Lebesgue spaces. The coupled formulation is transformed into an equivalent fixed-point
equation, utilizing the classical Banach fixed-point theorem and Babuška-Brezzi theory alongside the
Lax-Milgram theorem to establish the uniqueness of the solution. Discrete analysis and Brouwer’s
theorem ensure the existence of a Galerkin solution. The contents of this chapter can be found in

[49] G.N. Gatica, C. Inzunza and F.A. Sequeira, A pseudostress-based mixed-primal finite
element method for stress-assisted diffusion problems in Banach spaces. Journal of Scientific
Computing, vol. 92, article: 103, (2022).

In Chapter 3, we propose fully-mixed approaches for the previous work. The nonlinear dependence of
the elastic variables on the diffusion coefficient and its source term, along with the nonlinear dependence
of concentration on the elastic source term, they suggest looking for unknowns in suitable Lebesgue
spaces for continuous and discrete analysis. We reformulate the coupled systems as equivalent fixed-
point equations, demonstrating the uniqueness of the solution using the classical Banach fixed-point
theorem and Babuška-Brezzi theory. We tackle the Galerkin scheme and employ Brouwer’s theorem
to ensure discrete solutions. The contents of this chapter are covered in
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[50] G. N. Gatica, C. Inzunza and F.A. Sequeira, New Banach spaces-based fully-mixed fi-
nite element methods for pseudostress-assisted diffusion problems. Applied Numerical Math-
ematics, vol. 193, pp. 148-178, (2023).

In Chapter 4, we present a fully-mixed finite element method based on Banach spaces to numerically
solve the steady-state chemotaxis-Navier-Stokes problem. We introduce variables such as the velocity
gradient and the stress tensor, removing pressure from the equations. We also used unknowns for
stress associated with cell density and chemical signal gradient. After using a fixed-point approach the
Banach and Babuška-Brezzi theorems allow us to guarantee the existence and uniqueness of solution
under small data constraints. In Galerkin’s scheme, we apply the Brouwer and Banach theorems,
deriving a priori error estimates, even for the post-processed calculated pressure. We introduce finite
element subspaces that guarantee stability and local conservation of momentum, defined in terms of
Raviart-Thomas spaces and piecewise polynomials, and provide convergence rates. In addition, other
properties of the Raviart-Thomas interpolator are demonstrated, which were necessary for establishing
discrete inf-sup conditions. The content of this chapter resulted in the following article:

[23] G. N. Caucao, E. Colmenares, G.N. Gatica and C. Inzunza, A Banach spaces-
based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem.
Computers & Mathematics with Applications, vol. 145, pp. 65-89, (2023).

Throughout the chapters 2-4, we provide a priori error estimates and convergence rates for specific
finite element subspaces that satisfy the discrete inf-sup conditions. In addition, we include numerical
experiments to validate the accuracy of the schemes and to illustrate the properties of the models.
All implementations were carried out using FreeFem++ [58] and Matlab [63]. Post-processing and
visualization were performed using Paraview [1].

Preliminary notations

Throughout the thesis, Ω is a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, whose outward
unit normal at its boundary Γ is denoted n. Additionally, in the Chapters 1-3, Ω is assumed to be
star-shaped with respect to a ball. Standard notation will be adopted for Lebesgue spaces Lt(Ω),
with t ∈ [1,+∞), and Sobolev spaces Wℓ,t(Ω) and Wℓ,t

0 (Ω), with ℓ ≥ 0, whose corresponding norms
and seminorms, either for the scalar, vector, or tensorial version, are denoted by ∥ · ∥0,t;Ω, ∥ · ∥ℓ,t;Ω,
and | · |ℓ,t;Ω, respectively. Note that W0,t(Ω) = Lt(Ω), and that when t = 2, we simply write Hℓ(Ω)

instead of Wℓ,2(Ω), with its norm and seminorm denoted by ∥ · ∥ℓ,Ω and | · |ℓ,Ω, respectively. Now,
letting t, t′ ∈ (1,+∞) conjugate to each other, that is such that 1/t+ 1/t′ = 1, we let W1/t′,t(Γ) and
W−1/t′,t′(Γ) be the trace space of W1,t(Ω) and its dual, respectively, and denote the duality pairing
between them by ⟨·, ·⟩. In particular, when t = t′ = 2, we simply write H1/2(Γ) and H−1/2(Γ) instead
of W1/2,2(Γ) and W−1/2,2(Γ), respectively. Also, given any generic scalar functional space M, we let
M and M be its vector and tensorial counterparts. Furthermore, for any vector fields v = (vi)i=1,n

and w = (wi)i=1,n, we set the gradient, divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div(v) :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .
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In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n , tr(τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij ,

and τ d := τ − 1

n
tr(τ )I ,

where I stands for the identity tensor of R := Rn×n. On the other hand, for each t, j ∈ [1,+∞) such
that t ≥ j, we introduce the Banach spaces

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
, (3)

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
, (4)

and
Ht(divj ; Ω) :=

{
τ ∈ Lt(Ω) : div(τ ) ∈ Lj(Ω)

}
, (5)

which are endowed with the natural norms

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) , (6)

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) , (7)

and
∥τ∥t,divj ;Ω := ∥τ∥0,t;Ω + ∥div(τ )∥0,j;Ω ∀ τ ∈ Ht(divj ; Ω) . (8)

We recall from [44, eq. (1.43), Section 1.3.4] (see also [21, Section 4.1] and [29, Section 3.1]), that for

each t ∈

{
(1,+∞) if n = 2

[6/5,+∞) if n = 3
there holds

⟨τ · n, v⟩ =

∫
Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ H(divt; Ω)×H1(Ω) , (9)

and analogously

⟨τ n,v⟩ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt; Ω)×H1(Ω) , (10)

where ⟨·, ·⟩ denotes in (9) (resp. (10)) the duality pairing between H1/2(Γ) (resp. H1/2(Γ)) and
H−1/2(Γ) (resp. H−1/2(Γ)). In turn, given t, t′ ∈ (1,+∞) conjugate to each other, there also holds
(cf. [41, Corollary B.57])

⟨τ · n, v⟩ =

∫
Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ Ht(divt; Ω)×W1,t′(Ω) , (11)

where ⟨·, ·⟩ stands for the duality pairing between W−1/t,t(Γ) and W1/t,t′(Γ).



Introducción

Los modelos no lineales y acoplados son frecuentes en la mecánica de medios continuos. En estos
modelos, las ecuaciones suelen incluir coeficientes, términos fuente o términos arbitrarios que dependen
de las variables de otras ecuaciones. Esta complejidad incrementa notablemente la dificultad de los
análisis correspondientes, en comparación con problemas lineales más simples. Esta característica
representa un desafío tanto en la formulación como en la resolución de dichos problemas.

Para abordar esta dificultad, se han propuesto diversos enfoques. Uno de ellos consiste en incorporar
términos de Galerkin redundantes penalizados adicionales a las formulaciones originales, lo que resulta
en los llamados métodos aumentados. Algunos ejemplos incluyen [7] y [8] para problemas acoplados
de flujo y transporte, [3] y [31] para ecuaciones de Boussinesq, [20] y [22] para ecuaciones de Navier-
Stokes, y en [46] y [47] para la difusión asistida por estrés. Si bien estos términos adicionales permiten
restablecer un marco Hilbertiano para los modelos, simplificando su análisis, es importante señalar que
la incorporación de tales términos introduce una mayor complejidad en los esquemas discretos y las
implementaciones computacionales asociadas, lo cual se podría mitigar mediante un análisis adecuado
de las formulaciones variacionales originales no aumentadas. A su vez, es importante destacar que en
algunos modelos, como las ecuaciones acopladas de Darcy y calor [52], no es posible generar un método
aumentado, lo que hace inevitable un enfoque basado en espacios de Banach.

Por lo tanto, esta tesis tiene como objetivo desarrollar nuevos métodos de elementos finitos basados
en espacios de Banach para resolver problemas en la mecánica de medios continuos, con un enfoque
principal en utilizar el enfoque mixto para abordar problemas relacionados con la mecánica de fluidos
y sólidos. Generalizando herramientas comunes en el análisis en marcos Hilbertianos a un contexto
Banach, afrontando las dificultades que ello implicará. Nos centramos específicamente en el análi-
sis numérico de modelos acoplados, abordando desafíos planteados por el problema de difusión asis-
tida por estrés y el problema de chemotaxis-Navier-Stokes, para los cuales derivaremos formulaciones
variacionales principalmente completamente mixtas, estableciendo existencia, unicidad, estabilidad y
regularidad de las soluciones, y destacando bajo que condiciones se tienen estas.

Las siguientes secciones de esta tesis se centrarán en la presentación detallada de los modelos con
los que trabajaremos, explorando algunas de sus aplicaciones más significativas y proporcionando las
referencias correspondientes. Además, se describirá la organización general de la tesis, detallando el
enfoque matemático y numérico que emplearemos para abordar cada uno de los modelos propuestos.
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Problemas Modelo

Esta tesis se centra en problemas acoplados en dos direcciones: la mecánica de sólidos y la mecánica
de fluidos. En lo que respecta a la mecánica de sólidos, nuestro principal énfasis se centra en el
análisis de un problema de difusión-deformación, mientras que el estrés actúa como una variable de
acoplamiento, comúnmente conocido como problema de difusión asistida por estrés [2, 73]. Esto modela
la difusión de un soluto en un material elástico que ocupa el dominio Ω y está descrito por el siguiente
sistema de ecuaciones en derivadas parciales:

ρ = C
(
e(u)

)
in Ω , −div(ρ) = f(ϕ) in Ω , u = uD on Γ ,

σ̃ = ϑ̃(ρ)∇ϕ in Ω , −div(σ̃) = g(u) in Ω , and ϕ = 0 on Γ ,
(12)

donde Γ := ∂Ω, ρ es el tensor de Cauchy del sólido, u es el campo de desplazamiento, e(u) :=
1
2(∇u+∇ut) es el tensor de deformación infinitesimal (gradiente simetrizado de desplazamientos), y
C representa el operador lineal que define la ley de Hooke (cf. ecuación (2.36) en [44]), es decir,

C(τ ) := λ tr (τ ) I + 2µ τ ∀ τ ∈ R ,

de modo que
ρ = λ tr

(
e(u)

)
I + 2µ e(u) , (13)

donde las constantes de Lamé λ y µ > 0 (módulos de dilatación y cizallamiento) caracterizan las
propiedades del material. Además, ϕ representa la concentración local de especies, σ̃ es el flujo difusivo,
y ϑ̃ : R → R es una función tensorial de difusividad. Finalmente, f : R → R es un campo vectorial
de cargas en el cuerpo (que depende de la concentración de especies), g : R → R representa un
término fuente adicional que depende del desplazamiento sólido u, y uD es el dato de Dirichlet para
u. El sistema (12) describe las relaciones constitutivas inherentes a materiales elásticos lineales, la
conservación del momento lineal, la descripción constitutiva de los flujos de difusión y el transporte de
masa de la sustancia difusiva, respectivamente. También se asume que las escalas de tiempo de difusión
son mucho más lentas que las de la propagación de ondas elásticas, lo que justifica la naturaleza estática
del sistema (cf. [67]). Cabe destacar que los efectos de la difusión asistida por estrés constituyen el
mecanismo principal en muchos problemas aplicados [5, 27], que incluyen la difusión de boro y arsénico
en silicio, la difusión de hidrógeno en metales, la formación de huecos en interconexiones de aluminio
en circuitos integrados, la migración inducida por estrés en hierro, la sorción en materiales poliméricos
reforzados con fibra, el secado de capas de pintura líquida, la penetración de geles y solutos, y la
anisotropía en la dinámica cardíaca, entre otros [5, 27, 69, 70, 77, 82, 87].

Destacamos que el principal desafío en el análisis de este modelo reside en la dependencia del tensor
de difusividad ϑ̃ sobre el tensor de Cauchy del sólido. Por lo tanto, para el análisis matemático
correspondiente y para eludir la suposición de regularidad planteada en trabajos anteriores [46, 47], se
vuelve imperativo desarrollar herramientas que nos permitan abordar el problema en el marco de los
espacios de Banach. Para lograr esto, se proporcionan varios resultados preliminares en el Capítulo
1. Luego, en los Capítulos 2 y 3, llevamos a cabo análisis continuos y discretos para formulaciones
mixtas-primal y totalmente mixtas, respectivamente.

En el contexto de mecánica de fluidos, presentamos el problema de chemotaxis-Navier-Stokes. Este
modelo tiene como objetivo encontrar la velocidad u y la presión p de un fluido incompresible que
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ocupa una región Ω, además de la densidad celular η y la señal de concentración química φ. Estas
variables deben satisfacer el siguiente sistema acoplado de ecuaciones diferenciales:

− ν∆u + λ (∇u)u + ∇p − η∇f = f in Ω ,

div(u) = 0 in Ω ,∫
Ω p = 0 ,

− kη∆η + µdiv
(
η∇φ

)
+ u · ∇η = fη in Ω ,

− kφ∆φ + γηφ + u · ∇φ = fφ in Ω ,

u = uD , η = ηD and φ = φD on Γ ,

(14)

donde f , f , fη y fφ son funciones dadas que pertenecen a espacios adecuados que se indicarán más
adelante, mientras que ν, λ, κη, κφ, µ y γ son constantes positivas que representan la viscosidad del
fluido, la densidad del fluido, la constante de difusión celular, la constante de difusión química, el
coeficiente quimiotáctico y la tasa de consumo de la señal química, respectivamente. A su vez, uD, ηD
y φD son los correspondientes datos de Dirichlet y además uD satisface la condición de compatibilidad∫
Γ uD · ν = 0.

Las ecuaciones de chemotaxis-Navier-Stokes desempeñan un papel fundamental en la comprensión
del desplazamiento directo de las células mediante señales químicas y su consecuente influencia en
el flujo de fluido circundante. Estos modelos encuentran aplicaciones en diversos procesos biológicos
y médicos, que van desde el desarrollo de organismos multicelulares hasta la propagación del cáncer
[75, 59, 76]. A pesar de la existencia de métodos numéricos [26, 36, 38], aún falta un enfoque mixto
dentro de los espacios de Banach, que podría proporcionar una formulación más eficiente y conservativa
para estos sistemas acoplados y no lineales. Este enfoque tiene el potencial de abrir oportunidades
innovadoras tanto en la investigación fundamental como en las aplicaciones médicas.

Dentro del contexto de la discusión anterior, el Capítulo 4 tiene como objetivo abordar tanto la
brecha mencionada como ampliar aún más las posibilidades de aplicar enfoques basados en espacios
de Banach para el estudio de la formulación continua y discreta del problema de chemotaxis-Navier-
Stokes. Aquí, se introduce y analiza un método de elementos finitos completamente mixto para este
modelo.

Organización de la tesis

La estructura de esta tesis es la siguiente. En el Capítulo 1, introducimos formulaciones variacionales
mixtas en espacios de Banach para modelos de elasticidad lineal casi incompresible y la ecuación de
Stokes. Utilizamos un enfoque basado en el pseudoesfuerzo y aplicamos la teoría de Babuška-Brezzi en
espacios de Banach. Los resultados incluyen la construcción de un operador tensorial y la generalización
de estimaciones clásicas para el desviador de tensores. Los resultados de este capítulo se publicaron en

[48] G.N. Gatica and C. Inzunza, On the well-posedness of Banach spaces-based mixed for-
mulations for the nearly incompressible Navier-Lamé and Stokes equations. Computers &

Mathematics with Applications, vol. 102, pp. 87–94, (2021).
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En el Capítulo 2, abordamos la difusión asistida por tensión de un soluto en un material elástico
utilizando un enfoque variacional basado en espacios de Banach, empleando un método de elementos
finitos primarios mixtos. El modelo de elasticidad inicial, definido por la ley de Hooke, se reformula
utilizando tensiones y desplazamientos asimétricos como incógnitas en el esquema mixto. La ecuación
de difusión, cuya función de difusividad y término fuente dependen de la tensión y el desplazamiento, se
formula en forma primaria con respecto a la concentración desconocida. La dependencia del coeficiente
de difusión y el análisis posterior sugieren buscar incógnitas en espacios de Lebesgue apropiados. La
formulación acoplada se transforma en una ecuación de punto fijo equivalente, utilizando el teorema
clásico del punto fijo de Banach y la teoría de Babuška-Brezzi junto con el teorema de Lax-Milgram
para establecer la unicidad de la solución. El análisis discreto y el teorema de Brouwer aseguran la
existencia de una solución de Galerkin. El contenido de este capítulo se puede encontrar en

[49] G.N. Gatica, C. Inzunza and F.A. Sequeira, A pseudostress-based mixed-primal finite
element method for stress-assisted diffusion problems in Banach spaces. Journal of Scientific
Computing, vol. 92, article: 103, (2022).

En el Capítulo 3, proponemos enfoques completamente mixtos para el trabajo anterior. La depen-
dencia no lineal de las variables elásticas del coeficiente de difusión y su término fuente, junto con la
dependencia no lineal de la concentración del término fuente elástico, sugieren buscar incógnitas en
espacios de Lebesgue adecuados para análisis continuo y discreto. Reformulamos los sistemas acopla-
dos como ecuaciones de punto fijo equivalentes, demostrando la unicidad de la solución utilizando el
teorema clásico del punto fijo de Banach y la teoría de Babuška-Brezzi. Abordamos el esquema de
Galerkin y empleamos el teorema de Brouwer para garantizar soluciones discretas. El contenido de
este capítulo está cubierto en

[50] G. N. Gatica, C. Inzunza and F.A. Sequeira, New Banach spaces-based fully-mixed fi-
nite element methods for pseudostress-assisted diffusion problems. Applied Numerical Math-
ematics, vol. 193, pp. 148-178, (2023).

En el Capítulo 4, presentamos un método de elementos finitos completamente mixto basado en es-
pacios de Banach para resolver numéricamente el problema estacionario de chemotaxis-Navier-Stokes.
Introducimos variables como el gradiente de velocidad y el tensor de esfuerzo, eliminando la presión
de las ecuaciones. También utilizamos incógnitas para el esfuerzo asociado con la densidad celular y
el gradiente de señal química. Después de aplicar un enfoque de punto fijo, los teoremas de Banach
y Babuška-Brezzi nos permiten garantizar la existencia y unicidad de la solución bajo restricciones de
datos pequeños. En el esquema de Galerkin, aplicamos los teoremas de Brouwer y Banach, derivando
estimaciones de error a priori, incluso para la presión calculada postprocesada. Introducimos subespa-
cios de elementos finitos que garantizan la estabilidad y la conservación local del momento, definidos
en términos de espacios de Raviart-Thomas y polinomios por partes, y proporcionamos tasas de con-
vergencia. Además, se demuestran otras propiedades del interpolador de Raviart-Thomas, que fueron
necesarias para establecer condiciones inf-sup discretas. El contenido de este capítulo dio lugar al
siguiente artículo:

[23] G. N. Caucao, E. Colmenares, G.N. Gatica and C. Inzunza, A Banach spaces-
based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem.
Computers & Mathematics with Applications, vol. 145, pp. 65-89, (2023).
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A lo largo de los capítulos 2-4, proporcionamos estimaciones de error a priori y tasas de convergencia
para subespacios específicos de elementos finitos que cumplen con las condiciones inf-sup discretas.
Además, incluimos experimentos numéricos para validar la precisión de los esquemas e ilustrar las
propiedades de los modelos. Todas las implementaciones se realizaron utilizando FreeFem++ [58] y
Matlab [63]. El postprocesamiento y la visualización se realizaron utilizando Paraview [1].



CHAPTER 1

On the well-posedness of Banach spaces-based mixed formulations for
the nearly incompressible Navier-Lamé and Stokes equations

1.1 Introduction

In many nonlinear models in continuum mechanics, specially in coupled ones, the coefficients, source
terms, or arbitrary terms of each equation depend on the unknowns from the other equations involved,
which certainly makes the corresponding analyses much more cumbersome than for simple linear prob-
lems. Indeed, one of the main challenges that one often encounters there refers to the fact that the
natural spaces to which the unknowns belong force the respective variational formulations to be posed
in terms of Banach spaces instead of Hilbert ones. In order to overcome this, in some cases one may
resort to the incorporation of augmented terms, as done for instance in [7] and [8] for coupled flow-
transport problems, in [3] and [31] for the Boussinesq equations, in [20] and [22] for the Navier-Stokes
equations, or in [46] and [47] for stress-assisted diffusion, thanks to which one recovers Hilbertian frame-
works for the models, which are much easier to analyse. Nevertheless, while showing this and other
advantages as well, the augmentation procedure adds further complexity to the problems, mainly af-
fecting the associated discrete schemes and the respective computational implementations, which could
be avoided if proper analyses are developed for the original non-augmented variational formulations.
Needless to mention, in some models the augmentation is not even possible, as for the coupled Darcy
and heat equations, and hence a Banach framework becomes unavoidable in these cases (see, e.g. [52]).

As a matter of illustration of the above, let us briefly recall that the model from [46] and [47]
consists of a system of partial differential equations governing the diffusion of a solute interacting
with the motion of an elastic solid occupying a bounded domain Ω with boundary Γ. In particular,
the respective diffusion coefficient ϑ depends on the Cauchy stress tensor σ of the solid, so that the
diffusive flux p and the diffusion equation become

p := ϑ(σ)∇ϕ and − div(p) = g(u) in Ω , (1.1)

respectively, where ϕ is the solute concentration, ∇ and div are the usual gradient and divergence
operators, respectively, and g is a source term depending on the displacement u of the solid. Then,
dividing the first equation of (1.1) by ϑ(σ), which is assumed to be strictly positive, multiplying by a
test vector q associated with the unknown p, formally integrating by parts, and assuming for simplicity

11
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that ϕ vanishes on Γ, one obtains∫
Ω

1

ϑ(σ)
p · q +

∫
Ω
ϕ div(q) = 0 . (1.2)

In turn, denoting by ψ a test function associated with ϕ, the second equation of (1.1) yields∫
Ω
ψ div(p) = −

∫
Ω
ψ g(u) . (1.3)

Thus, because of the terms ϑ(σ) and g(u), with σ and u coming from the elasticity model, one can
employ fixed point arguments to analyse the solvability of (1.2) - (1.3). A similar procedure is applied
to the linear elasticity equation, whose source term depends on ϕ. As a consequence, and in order to
derive, in particular, a continuity property of the fixed-point operator for the stress-assisted diffusion
problem, most likely one will have to deal, among others, with the following expression arising from
the first term of (1.2) ∫

Ω

{ϑ(τ )− ϑ(ζ)

ϑ(τ )ϑ(ζ)

}
p · q , (1.4)

where τ and ζ are generic tensors belonging to the same space where σ lives. In this case, if ϑ is
assumed to be bounded from below and satisfy a Lipschitz-continuity property, the Cauchy-Schwarz
and Hölder inequalities allow to conclude that the above expression can be controlled only if τ − ζ,
p, and q, belong to particular Lebesgue spaces. This simple example illustrates that, even if σ and
u are solutions of a linear elasticity problem, for which the solvability via Hilbert spaces is already
well-established, when this equation is coupled with (1.1), the fixed-point argumentation requires that
the analysis of the former be performed within a suitable Banach spaces framework. Same conclusions
arise if linear elasticity is coupled with other equations, if other model, as Stokes in [7], is employed,
or if similar coupled problems are considered.

According to the above discussion, the initial purpose of this work is to introduce and analyse a
Banach spaces-based mixed variational formulation for linear elasticity, particularly for the nearly
incompressible case, which is of much more interest in applications. Additionally, and because of the
similarities between the resulting continuous formulations, we also include the Stokes system in our
discussion. In this way, the rest of the chapter is organized as follows. In Section 1.2 we introduce both
models of interest and use a suitable integration by parts formula to derive their mixed variational
formulations. Some preliminary results, namely the well-posedness of Banach spaces-based primal
formulations for the Stokes and Poisson equations, a suitable operator mapping a tensor Lebesgue
space into itself, and a generalization to arbitrary Lebesgue spaces of a key inequality for the Hilbertian
analysis of linear elasticity, are stated in Section 1.3. Finally, the well-posedness of the formulations
from Section 1.2 are established in Section 1.4.

1.2 The models and their mixed formulations

In this section we define our models of interest and derive their corresponding Banach spaces-based
mixed formulations. In what follows, Ω is a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3},
which is star shaped with respect to a ball, and whose outward normal at Γ is denoted by ν.
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1.2.1 Nearly incompressible linear elasticity

The aim of the linear elasticity model is to determine the displacement u and the Cauchy stress
tensor ρ of a linear elastic material occupying the region Ω, under the action of external forces. More
precisely, given a volume force f and a Dirichlet datum uD, we seek a symmetric tensor field ρ and a
vector field u satisfying the constitutive relation given by Hooke’s law, the corresponding momentum
balance, and a Dirichlet boundary condition on Γ, that is

ρ = 2µ e(u) + λ tr (e(u)) I in Ω ,

div(ρ) = −f in Ω , and u = uD on Γ ,
(1.5)

where e(u) := 1
2

(
∇u + (∇u)t

)
is the strain tensor of small deformations, λ, µ > 0 denote the

corresponding Lamé constants, and div stands for the operator div acting along the rows of each
tensor. We are particularly interested in the nearly incompressible case, which reduces to assume from
now on that λ is sufficiently large. In addition, in order to avoid the symmetry of ρ, we reformulate (1.5)
in terms of the non-symmetric pseudostress tensor σ introduced in [45]. More precisely, according to the
analysis provided in [45, Section 2.1], we know that (1.5) is equivalent to the Navier-Lamé equations,
which are given by

σ = µ∇u +
(
λ+ µ

)
tr (∇u) I in Ω ,

div(σ) = −f in Ω , and u = uD on Γ .
(1.6)

Hence, applying matrix trace to the first equation of (1.6), we can express tr (∇u) in terms of tr (σ)
(cf. [45, eq. (2.3)]), so that the former is eliminated and (1.6) is rewritten, equivalently, as

1

µ
σd +

1

n
(
nλ+ (n+ 1)µ

) tr (σ) I = ∇u in Ω ,

div(σ) = −f in Ω , and u = uD on Γ .

(1.7)

Note that the original Cauchy stress tensor ρ can be recovered in terms of the pseudostress σ through
the postprocessing formula (cf. [45, eq. (2.14)])

ρ = σ + σt − (λ+ 2µ)(
nλ+ (n+ 1)µ

)tr (σ) I . (1.8)

Next, in order to set the Banach spaces-based variational formulation of (1.7), we need a couple of
further concepts and tools. Indeed, we first introduce for each t ∈ (1,+∞) the Banach space

Ht(divt; Ω) :=
{
τ ∈ Lt(Ω) : div(τ ) ∈ Lt(Ω)

}
, (1.9)

which is endowed with the natural norm defined as

∥τ∥t,divt;Ω := ∥τ∥0,t;Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ Ht(divt; Ω) . (1.10)

Note that H2(div2; Ω) is the usual Hilbert space H(div; Ω). Then, given t, t′ ∈ (1,+∞) conjugate to
each other, we invoke the integration by parts formula (cf. [41, Corollary B. 57])

⟨τ ν,v⟩Γ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ Ht(divt; Ω)×W1,t′(Ω) , (1.11)
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where ⟨·, ·⟩Γ stands for the duality pairing between W−1/t,t(Γ) and W1/t,t′(Γ). Finally, we observe
that for each t ∈ (1,+∞) there holds

Ht(divt; Ω) = Ht
0(divt; Ω) ⊕ R I , (1.12)

where
Ht

0(divt; Ω) :=
{
τ ∈ Ht(divt; Ω) :

∫
Ω
tr (τ ) = 0

}
. (1.13)

Equivalently, each τ ∈ Ht(divt; Ω) can be decomposed, uniquely, as

τ = τ 0 + d I , with τ 0 ∈ Ht
0(divt; Ω)

and d :=
1

n|Ω|

∫
Ω
tr (τ ) ∈ R .

(1.14)

Now, given r, s ∈ (1,+∞) conjugate to each other, we assume that f ∈ Lr(Ω) and uD ∈ W1/s,r(Γ),
and initially look for (σ,u) ∈ Hr(divr; Ω)×W1,r(Ω) as the solution of (1.7). In this way, multiplying
the first equation of (1.7) by a test tensor τ ∈ Hs(divs; Ω), applying (1.11) with t = s and t′ = r, and
using the Dirichlet boundary condition for u, we find that

1

µ

∫
Ω
σd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω
tr (σ) tr (τ ) +

∫
Ω
u · div(τ ) = ⟨τ ν,uD⟩Γ , (1.15)

whereas the second equation of (1.7) tested against v ∈ Ls(Ω) becomes∫
Ω
v · div(σ) = −

∫
Ω
f · v . (1.16)

In turn, taking τ = I in (1.15), it follows that

1(
nλ+ (n+ 1)µ

) ∫
Ω
tr (σ) =

∫
Γ
uD · ν ,

from which, along with (1.14), we deduce that

σ = σ0 + c I , with σ0 ∈ Hr
0(divr; Ω)

and c :=

(
nλ+ (n+ 1)µ

)
n|Ω|

∫
Γ
uD · ν ∈ R .

(1.17)

Regarding the explicit knowledge of the unknown σ, the foregoing equation shows that it only remains
to find its Hr

0(divr; Ω)-component σ0. Hence, replacing σ = σ0 + c I back into (1.15), redenoting σ0

simply by σ, noting that the testing of the resulting (1.15) against τ ∈ Hs(divs; Ω) is equivalent to
doing it against τ ∈ Hs

0(divs; Ω), and placing this new equation jointly with (1.16), we arrive at the
following mixed variational formulation of (1.7): Find (σ,u) ∈ X2 ×M1 such that

a(σ, τ ) + b1(τ ,u) = F (τ ) ∀ τ ∈ X1 ,

b2(σ,v) = G(v) ∀v ∈M2 ,
(1.18)
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where

X2 := Hr
0(divr; Ω) , M1 := Lr(Ω) , X1 := Hs

0(divs; Ω) , and M2 := Ls(Ω) , (1.19)

and the bilinear forms a : X2×X1 → R and bi : Xi×Mi → R, i ∈
{
1, 2
}
, and the functionals F ∈ X ′

1

and G ∈M ′
2, are defined, respectively, as

a(ζ, τ ) :=
1

µ

∫
Ω
ζd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω
tr (ζ) tr (τ ) ∀ (ζ, τ ) ∈ X2 ×X1 , (1.20)

bi(τ ,v) :=

∫
Ω
v · div(τ ) ∀ (τ ,v) ∈ Xi ×Mi , (1.21)

F (τ ) := ⟨τ ν,uD⟩Γ ∀ τ ∈ X1 , (1.22)

and
G(v) := −

∫
Ω
f · v ∀v ∈M2 . (1.23)

We remark here that the above notations for the spaces involved have been chosen for convenience
of the definitions of b1 and b2.

1.2.2 The Stokes system

The goal of this model is to determine the pseudostress tensor σ, the velocity u, and the pressure p
of a steady flow occupying the region Ω, under the action of external forces. More precisely, given a
volume force f and a Dirichlet datum uD, we now seek a tensor field σ, a vector field u, and a scalar
field p such that

σ = 2µ∇u − p I in Ω , div(σ) = −f in Ω ,

div(u) = 0 in Ω ,

∫
Ω
p = 0 , and u = uD on Γ ,

(1.24)

where µ is the kinematic viscosity, and, as required by the incompressibility equation div(u) = 0, the
datum uD satisfies the compatibility condition

∫
Γ uD · ν = 0 . Then, proceeding exactly as in [53,

Section 2.1], we can show that (1.24) can be rewritten as

σ = 2µ∇u − p I in Ω , div(σ) = −f in Ω ,

p +
1

n
tr (σ) = 0 in Ω ,

∫
Ω
p = 0 , and u = uD on Γ ,

(1.25)

from which, eliminating the pressure p, which can calculated later on by the postprocessing formula
p = − 1

n tr (σ), we arrive at the equivalent system

1

2µ
σd = ∇u in Ω , div(σ) = −f in Ω ,∫

Ω
tr (σ) = 0 , and u = uD on Γ .

(1.26)
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In this way, assuming that f ∈ Lr(Ω) and uD ∈ W1/s,r(Γ), and proceeding analogously to the
derivation of (1.18), we obtain the following mixed variational formulation of (1.26): Find (σ,u) ∈
X2 ×M1 such that

ã(σ, τ ) + b1(τ ,u) = F (τ ) ∀ τ ∈ X1 ,

b2(σ,v) = G(v) ∀v ∈M2 ,
(1.27)

where the spaces X2, M1, X1 and M2, the bilinear forms bi : Xi × Mi → R, i ∈
{
1, 2
}
, and the

functionals F and G are those given by (1.19), (1.21), (1.22), and (1.23), whereas the bilinear form
ã : X2 ×X1 → R is defined as

ã(ζ, τ ) :=
1

2µ

∫
Ω
ζd : τ d ∀ (ζ, τ ) ∈ X2 ×X1 . (1.28)

Later on in Section 1.4 we prove the well-posedness of the mixed variational formulations (1.18) and
(1.27), for which we establish below some results that will be employed in the respective proofs.

1.3 Some preliminary results

We begin by considering a Banach spaces-based primal formulation for a slight generalization of
the Stokes system (1.24) with viscosity µ = 1/2 and null Dirichlet boundary condition, which, given
r, s ∈ (1,+∞) conjugate to each other, g ∈ Lr(Ω), and f ∈ Lr(Ω), consists of seeking a pair (u, p) ∈
W1,r(Ω)× Lr(Ω) such that

div(∇u− p I− g) = −f in Ω ,

div(u) = 0 in Ω,

∫
Ω
p = 0, and u = 0 on Γ .

(1.29)

Note that the above mentioned generalization refers to the incorporation of a further datum g within the
divergence operator, whose purpose, rather mathematical than physical, has to do with the introduction
in Lemma 1.2 of a key operator for our analysis, and particularly with the verification of its divergence
free property (cf. (1.35)).

Then, applying (1.11) with τ := ∇u − p I − g ∈ Hr(divr; Ω) and v ∈ W1,s
0 (Ω), and performing

some minor algebraic rearrangements, the testing of the first equation of (1.29) becomes∫
Ω
∇u : ∇v −

∫
Ω
p div(v) =

∫
Ω
g : ∇v +

∫
Ω
f · v ∀v ∈ W1,s

0 (Ω) . (1.30)

In turn, it is easy to see, thanks to the homogeneous Dirichlet boundary condition satisfied by u,
that testing the incompressibility equation div(u) = 0 in Ω against q ∈ Ls(Ω) is equivalent to
doing it against q ∈ Ls0(Ω). Consequently, the weak formulation of (1.29) reduces to: Find (u, p) ∈
W1,r

0 (Ω)× Lr0(Ω) such that∫
Ω
∇u : ∇v −

∫
Ω
p div(v) = F (v) ∀v ∈ W1,s

0 (Ω) ,∫
Ω
q div(u) = 0 ∀ q ∈ Ls0(Ω) ,

(1.31)
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where the functional F ∈ W−1,r(Ω) := W1,s
0 (Ω)′ is defined as

F (v) :=

∫
Ω
g : ∇v +

∫
Ω
f · v ∀v ∈ W1,s

0 (Ω) . (1.32)

We now establish, as a consequence of a more general result from [71], the well-posedness of (1.31),
even irrespective of the particular form of F given by (1.32).

Theorem 1.1. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let r, s ∈
(1,+∞) conjugate to each other. Then, there exists δ > 0 such that for each r ∈

(
2n
n+1 − δ, 2n

n−1 + δ
)
,

and for each F ∈ W−1,r(Ω), there exists a unique pair (u, p) ∈ W1,r
0 (Ω) × Lr0(Ω) solution to (1.31).

Moreover, there exists a positive constant cr, such that

∥u∥1,r;Ω + ∥p∥0,r;Ω ≤ cr ∥F∥−1,r;Ω . (1.33)

Proof. We first assume that Ω ⊂ R2. Then, taking the local parameters α = −1 and q = 2 in [71,
Corollary 1.7], we deduce, according to [71, eq. (1.47)], that there exists ϵ ∈ (0, 12 ] such that for each
F ∈ W−1,r(Ω) the problem (1.31) has a unique solution (u, p) ∈ W1,r

0 (Ω) × Lr0(Ω) satisfying (1.33)
whenever the point

(
α− 1

r +2, 1r
)
=
(
1− 1

r ,
1
r

)
belongs to the two-dimensional region specified by [71,

Figure 1]. More precisely, the latter means either

i) 0 < 1− 1

r
<

1

2
+ ϵ and 0 <

1

r
<

3

2
− 1

r
+ ϵ, or

ii)
1

2
+ ϵ ≤ 1− 1

r
< 1 and

1

2
− 1

r
− ϵ <

1

r
<

3

2
− 1

r
+ ϵ.

Then, solving these inequalities, one obtains r ∈
(
4
3 − ϵ1,

2
1−2ϵ

)
, with ϵ1 := 8ϵ

9+6ϵ , and r ∈
[

2
1−2ϵ , 4+ ϵ2

)
,

with ϵ2 := 8ϵ
1−2ϵ , as solutions of i) and ii), respectively, so that the final feasible range for r is the

interval
(
4
3 − ϵ1, 4 + ϵ2

)
. In this way, observing now that ϵ1 < ϵ < ϵ2, we arrive at the indicated range

for r (cf. [71, eq. (1.52)]) with δ = ϵ1. In turn, the case Ω ⊂ R3 proceeds analogously by imposing
now the point

(
1− 1

r ,
1
r

)
to belong to the two-dimensional region specified by [71, Figure 2]. We omit

further details.

We stress here that when F is given by (1.32), the a priori estimate (1.33) becomes

∥u∥1,r;Ω + ∥p∥0,r;Ω ≤ cr

{
∥g∥0,r;Ω + ∥f∥0,r;Ω

}
. (1.34)

The following result, which constitutes an extension of [52, Lemma 2.3] to the present tensor context,
makes use of Theorem 1.1 to introduce a suitable operator mapping Lt(Ω) into itself for each t in the
range specified by this theorem.

Lemma 1.2. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let t, t′ ∈ (1,+∞)

conjugate to each other with t satisfying the range given by Theorem 1.1. Then, there exists a linear
and bounded operator Dt : Lt(Ω) → Lt(Ω) such that

div
(
Dt(τ )

)
= 0 in Ω , (1.35)
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and ∫
Ω
tr
(
Dt(τ )

)
=

∫
Ω
tr (τ ) , (1.36)

for all τ ∈ Lt(Ω). In addition, for each ζ ∈ Lt′(Ω) such that div(ζ) = 0 in Ω, there holds∫
Ω
ζd :

(
Dt(τ )

)d
=

∫
Ω
ζd : τ d ∀ τ ∈ Lt(Ω) . (1.37)

Proof. Given τ ∈ Lt(Ω), we let (u, p) ∈ W1,t(Ω) × Lt(Ω) be the unique solution, guaranteed by
Theorem 1.1, of the Stokes problem (1.29) with r = t, g = τ and f = 0, that is

div(∇u− p I− τ ) = 0 in Ω ,

div(u) = 0 in Ω,

∫
Ω
p = 0, and u = 0 on Γ ,

(1.38)

whose weak formulation is given by (1.31) and (1.32). Note that the functional F ∈ W−1,t(Ω) =

W1,t′

0 (Ω)′ (cf. (1.32)) reduces in this case to F (v) :=

∫
Ω
τ : ∇v for all v ∈ W1,t′

0 (Ω). It follows,

in virtue of the continuous dependence result (1.34), that ∥u∥1,t;Ω + ∥p∥0,t;Ω ≤ ct ∥τ∥0,t;Ω, so that,
defining

Dt(τ ) := τ − (∇u− p I) ∈ Lt(Ω) , (1.39)

we see that Dt is linear and bounded, namely

∥Dt(τ )∥0,t;Ω ≤ (1 + n1/t ct) ∥τ∥0,t;Ω , (1.40)

which implies ∥Dt∥ ≤ (1 + n1/t ct), and clearly Dt(τ ) is divergence free in Ω. In addition, since

tr (∇u) = div(u) = 0 and
∫
Ω
p = 0, we readily deduce from (1.39) that for each τ ∈ Lt(Ω) there holds

∫
Ω
tr
(
Dt(τ )

)
=

∫
Ω
tr (τ ) + n

∫
Ω
p =

∫
Ω
tr (τ ) ,

which proves (1.36). Furthermore, using again that tr (∇u) = 0, we have that
(
Dt(τ )

)d
= τ d − ∇u,

and hence, given ζ ∈ Lt′(Ω) such that div(ζ) = 0 in Ω, and applying (1.11) to ζ ∈ Ht′(divt′ ; Ω) and
u ∈ W1,t

0 (Ω), we deduce that ∫
Ω
ζd : ∇u =

∫
Ω
ζ : ∇u = 0 ,

which yields (1.37) and ends the proof.

On the other hand, for each t ∈ (1,+∞) we introduce the subspace of Lt(Ω) given by

Lt0(Ω) :=
{
v ∈ Lt(Ω) :

∫
Ω
v = 0

}
. (1.41)

Then, we have from [41, Lemma B.69] (see [16] for the original reference, or [40]) the following result.

Lemma 1.3. Let Ω be a bounded domain of Rn, n ≥ 2, which is star-shaped with respect to a ball.
Then, for each t ∈ (1,+∞) the operator div : W1,t

0 (Ω) → Lt0(Ω) is surjective.
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Thanks to Lemma 1.3 and the open mapping theorem (cf. [4, Theorem 7.7]), we readily deduce
that, given t ∈ (1,+∞), there exists a constant Ct > 0, such that for every v ∈ Lt0(Ω) there exists
zv ∈ W1,t

0 (Ω) satisfying
div(zv) = v and ∥zv∥1,t;Ω ≤ Ct ∥v∥0,t;Ω . (1.42)

We now employ Lemma 1.3, and particularly (1.42), to provide a generalization from r = 2 to any
r ∈ (1,+∞) of the inequality stated in [17, Chapter IV, Proposition 3.1] (see also [44, Lemma 2.3]),
namely

∥τ∥0,Ω ≤ C
{
∥τ d∥0,Ω + ∥div(τ )∥0,Ω

}
∀ τ ∈ H2

0(div2; Ω) ,

which plays a key role in the solvability analysis of the classical Hilbertian dual-mixed variational
formulation of linear elasticity (cf. [17, Chapter IV, Section IV.3], [44, Section 2.4.3]). More precisely,
we have the following result.

Lemma 1.4. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, which is star-shaped
with respect to a ball, and let r ∈ (1,+∞). Then, there exist positive constants C̃r and Ĉr such that

∥tr (τ )∥0,r;Ω ≤ C̃r

{
∥τ d∥0,r;Ω + ∥div(τ )∥0,r;Ω

}
(1.43)

and
∥τ∥0,r;Ω ≤ Ĉr

{
∥τ d∥0,r;Ω + ∥div(τ )∥0,r;Ω

}
(1.44)

for all τ ∈ Hr
0(divr; Ω).

Proof. Given r, s ∈ (1,+∞) conjugate to each other, we first recall that the dual of Ls(Ω) is identified
with Lr(Ω). Then, given τ ∈ Hr

0(divr; Ω), which yields tr (τ ) ∈ Lr0(Ω), we apply the associated duality
argument and the fact that Ls(Ω) = Ls0(Ω)⊕ R, to observe that

∥tr (τ )∥0,r;Ω = sup
v∈Ls(Ω)

v ̸=0

∫
Ω
v tr (τ )

∥v∥0,s;Ω
= sup

v∈Ls0(Ω)

v ̸=0

∫
Ω
v tr (τ )

∥v∥0,s;Ω
. (1.45)

Next, given v ∈ Ls0(Ω), v ̸= 0, we make use of (1.42) (with t = s) and proceed analogously to the proof
of [17, Chapter IV, Proposition 3.1] to estimate

∫
Ω v tr (τ ). Indeed, recalling that div(zv) = tr (∇zv),

utilizing the definition and properties of the deviatoric tensors, and then integrating by parts according
to (1.11) with τ ∈ Hr

0(divr; Ω) and zv ∈ W1,s
0 (Ω), we find that∫

Ω
v tr (τ ) =

∫
Ω
div(zv) tr (τ ) =

∫
Ω
tr (∇zv) τ : I

=

∫
Ω
τ : tr (∇zv) I = n

∫
Ω
τ :
(
∇zv − (∇zv)

d
)

= n

∫
Ω
τ : ∇zv − n

∫
Ω
τ d : ∇zv

= −n
∫
Ω
zv · div(τ )− n

∫
Ω
τ d : ∇zv ,
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from which, employing Hölder’s inequality and (1.42), we obtain∣∣∣∣ ∫
Ω
v tr (τ )

∣∣∣∣ ≤ n ∥zv∥1,s;Ω
{
∥τ d∥0,r;Ω + ∥div(τ )∥0,r;Ω

}
≤ nCs ∥v∥0,s;Ω

{
∥τ d∥0,r;Ω + ∥div(τ )∥0,r;Ω

}
.

(1.46)

In this way, replacing (1.46) back into (1.45) we arrive at (1.43) with C̃r := nCs. Furthermore, using
the triangle inequality and the fact that ∥tr (τ ) I∥r0,r;Ω = n∥tr (τ )∥r0,r;Ω, we get

∥τ∥0,r;Ω ≤ ∥τ d∥0,r;Ω +
1

n
∥tr (τ ) I∥0,r;Ω = ∥τ d∥0,r;Ω + n1/r−1 ∥tr (τ )∥0,r;Ω ,

which, along with (1.43), implies (1.44) with Ĉr := 1 + n1/r Cs.

We end this section with a Banach spaces-based primal formulation for the vector Poisson equation,
which, given r, s ∈ (1,+∞) conjugate to each other, g ∈ Lr(Ω), and f ∈ Lr(Ω), consists of seeking
u ∈ W1,r(Ω) such that

div(∇u− g) = −f in Ω , u = 0 on Γ . (1.47)

Then, proceeding similarly as for (1.29), that is applying (1.11) with τ := ∇u− g ∈ Hr(divr; Ω) and
w ∈ W1,s

0 (Ω), we arrive at the following weak formulation of (1.47): Find u ∈ W1,r
0 (Ω) such that∫

Ω
∇u : ∇w = F (w) ∀w ∈ W1,s

0 (Ω) , (1.48)

where F ∈ W−1,r(Ω) := W1,s
0 (Ω)′ is defined as in (1.32), that is

F (w) :=

∫
Ω
g : ∇w +

∫
Ω
f ·w ∀w ∈ W1,s

0 (Ω) . (1.49)

We establish next the analogue of Theorem 1.1 for the vector Poisson equation, which arises in this
case as a straightforward consequence of more general results provided in [60]. We remark in advance
that the arguments of the proof are very similar to those from Theorem 1.1, whereas the resulting
ranges for r are exactly the same. In addition, we stress that while [60] addresses the scalar Poisson
equation, the analysis and results certainly applies to the present version as well. Actually, there is
no intrinsic difference between both versions, so that we provide below some details just for sake of
clearness.

Theorem 1.5. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let r, s ∈
(1,+∞) conjugate to each other. Then, there exists δ > 0 such that for each r ∈

(
2n
n+1 − δ, 2n

n−1 + δ
)
,

and for each F ∈ W−1,r(Ω), there exists a unique u ∈ W1,r
0 (Ω) solution to (1.48). Moreover, there

exists a positive constant c̄r, such that

∥u∥1,r;Ω ≤ c̄r ∥F∥−1,r;Ω . (1.50)

Proof. We first assume that Ω ⊂ R3. Then, taking the local parameter α = 1 in [60, Theorem 1.1], we
deduce that there exists ϵ ∈ (0, 1] such that for each F ∈ W−1,r(Ω) the problem (1.48) has a unique
solution u ∈ W1,r

0 (Ω) satisfying (1.50) whenever:
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i) 1 < r ≤ κ and
3

r
− 1− ϵ < 1 < 1 +

1

r
, or

ii) κ < r < κ′ and
1

r
< 1 < 1 +

1

r
, or

iii) κ′ ≤ r < +∞ and
1

r
< 1 <

3

r
+ ϵ,

where κ = 2
1+ϵ and κ′ = 2

1−ϵ . Then, in order to guarantee that at least one of the above is accomplished,
one simply solves the three inequalities on the right hand-side, which gives

3

2
− ϵ1 < r < 3 + ϵ2 with ϵ1 :=

3ϵ

2(2 + ϵ)
and ϵ2 :=

3ϵ

1− ϵ
.

Hence, noticing that ϵ1 < ϵ < ϵ2, we obtain the indicated range for r with δ = ϵ1. The case Ω ⊂ R2

proceeds analogously by taking now α = 1 in [60, Theorem 1.3]. Further details are omitted.

1.4 The main results

In this section we apply the Babuška-Brezzi theory in Banach spaces and the results from Section 1.3
to prove the unique solvability and continuous dependence result for each one of the mixed variational
formulations (1.18) and (1.27). For sake of completeness and clearness, we follow [12, Theorem 2.1,
Corollary 2.1, Section 2.1] to state below the main theorem concerning the aforementioned theory.

Theorem 1.6. Let X1, X2, M1, and M2 be real reflexive Banach spaces, and let a : X2 × X1 → R

and bi : Xi ×Mi → R, i ∈ {1, 2}, be bounded bilinear forms with boundedness constants given by ∥a∥
and ∥bi∥, i ∈ {1, 2}, respectively. In addition, for each i ∈ {1, 2}, let Ki be the kernel of the operator
induced by bi, that is

Ki :=
{
τ ∈ Xi : bi(τ, v) = 0 ∀ v ∈Mi

}
.

Assume that

i) there exists α > 0 such that

sup
τ∈K1
τ ̸=0

a(ζ, τ)

∥τ∥X1

≥ α ∥ζ∥X2 ∀ ζ ∈ K2 ,

ii) there holds
sup
ζ∈K2

a(ζ, τ) > 0 ∀ τ ∈ K1 , τ ̸= 0 ,

iii) for each i ∈ {1, 2} there exists βi > 0 such that

sup
ζ∈Xi
ζ ̸=0

bi(ζ, v)

∥ζ∥Xi
≥ βi ∥v∥Mi ∀ v ∈Mi .
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Then, for each (F,G) ∈ X ′
1 ×M ′

2 there exists a unique (σ, u) ∈ X2 ×M1 such that

a(σ, τ) + b1(τ, u) = F (τ) ∀ τ ∈ X1 ,

b2(σ, v) = G(v) ∀ v ∈M2 ,
(1.51)

and the following a priori estimates hold:

∥σ∥X2 ≤ 1

α
∥F∥X′

1
+

1

β2

(
1 +

∥a∥
α

)
∥G∥M ′

2
,

∥u∥M1 ≤ 1

β1

(
1 +

∥a∥
α

)
∥F∥X′

1
+

∥a∥
β1 β2

(
1 +

∥a∥
α

)
∥G∥M ′

2
.

(1.52)

Moreover, i), ii), and iii) are also necessary conditions for the well-posedness of (1.51).

We begin by providing a tensor version of [52, Lemma 2.2]. Indeed, given t, t′ ∈ (1,+∞) conjugate
to each other, we define for each τ ∈ Lt(Ω)

Jt(τ ) :=

{
∥τ∥t−2 τ if τ ̸= 0 ,

0 otherwise ,
(1.53)

and observe, after simple algebraic computations, that

τ t′ := Jt(τ ) ∈ Lt
′
(Ω) if and only if τ = Jt′(τ t′), and (1.54)∫

Ω
τ : τ t′ = ∥τ∥t0,t;Ω = ∥τ t′∥t

′
0,t′;Ω = ∥τ∥0,t;Ω ∥τ t′∥0,t′;Ω . (1.55)

Next, for each i ∈
{
1, 2
}

we let Ki ⊂ Xi be the kernel of the bilinear form bi, which, according to
the definition of the spaces involved (cf. (1.19)), and bi (cf. (1.21)), yields

Ki :=
{
τ ∈ Xi : div(τ ) = 0

}
. (1.56)

Then, the inf-sup conditions required for the bilinear form a (cf. (1.20)) are established as follows.

Lemma 1.7. Assume that r and s satisfy the range specified by Theorem 1.1. Then, there exist positive
constants M and α such that for each λ > M there hold

sup
τ∈K1
τ ̸=0

a(ζ, τ )

∥τ∥X1

≥ α ∥ζ∥X2 ∀ ζ ∈ K2 , (1.57)

and
sup
ζ∈K2

a(ζ, τ ) > 0 ∀ τ ∈ K1 , τ ̸= 0 . (1.58)

Proof. We first observe that for each pair (ζ, τ ) ∈ X2 ×X1 := Hr
0(divr; Ω)×Hs

0(divs; Ω) there holds∣∣∣∣ ∫
Ω
tr (ζ) tr (τ )

∣∣∣∣ ≤ n1/r ∥tr (ζ)∥0,r;Ω ∥τ∥0,s;Ω , (1.59)
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which follows from simple applications of the Hölder and triangle inequalities, the latter in Ls(Ω) and
the former in Lr(Ω) × Ls(Ω) and R × R. Now, let ζ ∈ K2, that is ζ ∈ X2 := Hr

0(divr; Ω) and
div(ζ) = 0, and assume that ζ ̸= 0. Then, bearing in mind the definition of a (cf. (1.20)), and
employing (2.62) and (1.43) (cf. Lemma 1.4), we readily find that

sup
τ∈K1
τ ̸=0

a(ζ, τ )

∥τ∥X1

≥ 1

µ
sup
τ∈K1
τ ̸=0

∫
Ω
ζd : τ d

∥τ∥X1

− C̃r

n1/s
(
nλ+ (n+ 1)µ

) ∥ζd∥0,r;Ω . (1.60)

In turn, letting ζs := Jr(ζ
d) ∈ Ls(Ω) as defined in (1.53), we clearly have tr (ζs) = 0, and thus, thanks

to Lemma 1.2, it follows that Ds(ζs) belongs to K1. Next, using (1.37) and (1.55), we get∫
Ω
ζd :

(
Ds(ζs)

)d
=

∫
Ω
ζd : ζds =

∫
Ω
ζd : ζs = ∥ζd∥0,r;Ω ∥ζs∥0,s;Ω ,

and hence, noting that ∥Ds(ζs)∥X1 = ∥Ds(ζs)∥0,s;Ω, and employing the boundedness of Ds (cf. (1.40)),
we deduce that

sup
τ∈K1
τ ̸=0

∫
Ω
ζd : τ d

∥τ∥X1

≥

∫
Ω
ζd :

(
Ds(ζs)

)d
∥Ds(ζs)∥X1

=
∥ζd∥0,r;Ω ∥ζs∥0,s;Ω
∥Ds(ζs)∥0,s;Ω

≥ 1

∥Ds∥
∥ζd∥0,r;Ω . (1.61)

In this way, replacing the foregoing estimate back into (1.60), we arrive at

sup
τ∈K1
τ ̸=0

a(ζ, τ )

∥τ∥X1

≥
{

1

µ∥Ds∥
− C̃r

n1/s
(
nλ+ (n+ 1)µ

)} ∥ζd∥0,r;Ω , (1.62)

from which, choosing λ sufficiently large such that

C̃r

n1/s
(
nλ+ (n+ 1)µ

) <
1

2µ∥Ds∥
,

that is
λ > Ms :=

µ

n1+1/s
max

{
2∥Ds∥C̃r − n1/s(n+ 1), 0

}
,

and applying (1.44), we conclude (1.57) with α := 1

2µ∥Ds∥Ĉr
. On the other hand, given now τ ∈ K1,

τ ̸= 0, we proceed analogously as above, but exchanging the roles of τ and ζ, and obtain

sup
ζ∈K2

a(ζ, τ ) ≥ sup
ζ∈K2
ζ ̸=0

a(ζ, τ )

∥ζ∥X2

≥ 1

2µ∥Dr∥Ĉs
∥τ∥X1 > 0 (1.63)

for λ > Mr :=
µ

n1+1/r
max

{
2∥Dr∥C̃s − n1/r(n + 1), 0

}
, which proves (1.58). Finally, the proof is

completed by choosing M := max
{
Ms,Mr

}
.

We stress here that, constituting the bilinear form ã a key part of a, some arguments employed in
the proof of Lemma 1.7 allow us to establish next the inf-sup conditions required for the former.
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Lemma 1.8. Assume that r and s satisfy the range specified by Theorem 1.1. Then, there exists a
positive constant α̃ such that

sup
τ∈K1
τ ̸=0

ã(ζ, τ )

∥τ∥X1

≥ α ∥ζ∥X2 ∀ ζ ∈ K2 . (1.64)

In addition, there holds
sup
ζ∈K2

ã(ζ, τ ) > 0 ∀ τ ∈ K1 , τ ̸= 0 . (1.65)

Proof. It follows straightforwardly from the definition of ã (cf. (1.28)), and the inequalities (2.66), and
(1.44), that for each ζ ∈ K2, ζ ̸= 0, there holds

sup
τ∈K1
τ ̸=0

ã(ζ, τ )

∥τ∥X1

=
1

2µ
sup
τ∈K1
τ ̸=0

∫
Ω
ζd : τ d

∥τ∥X1

≥ 1

2µ∥Ds∥Ĉr
∥ζ∥X2 , (1.66)

which yields (1.64) with α̃ := 1

2µ∥Ds∥Ĉr
. In addition, given τ ∈ K1, τ ̸= 0, and proceeding analogously

to the derivation of (1.63), that is exchanging the roles of ζ and τ and using (1.66), we easily find that

sup
ζ∈K2

ã(ζ, τ ) ≥ sup
ζ∈K2
ζ ̸=0

ã(ζ, τ )

∥ζ∥X2

≥ 1

2µ∥Dr∥Ĉs
∥τ∥X1 > 0 , (1.67)

which shows (1.65) and ends the proof.

It only remains to verify the inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}, which we address
in what follows.

Lemma 1.9. Assume that r and s satisfy the range specified by Theorem 1.5. Then, there exist positive
constants β1, β2 such that for each i ∈ {1, 2} there hold

sup
ζ∈Xi
ζ ̸=0

bi(ζ,v)

∥ζ∥Xi
≥ βi ∥v∥Mi ∀v ∈Mi . (1.68)

Proof. Having b1 and b2 the same algebraic structure (cf. (1.21)), and being the pairs (X1,M1) and
(X2,M2) one obtained from the other by exchanging r and s, we now proceed to show (1.68) only for
i = 2 since the proof for i = 1 is completely analogous. In this way, given v ∈ M2 := Ls(Ω), we let
Js be the vector version of Js (cf. (1.53)), and set vr := Js(v) ∈ Lr(Ω), for which, similarly to (1.54)
and (1.55), there hold

v = Jr(vr) , and
∫
Ω
v · vr = ∥v∥s0,s;Ω = ∥vr∥r0,r;Ω = ∥v∥0,s;Ω ∥vr∥0,r;Ω . (1.69)

Then, we let z ∈ W1,r
0 (Ω) be the unique solution, guaranteed by Theorem 1.5, of the vector Poisson

equation (1.47) with g = 0 and f = −vr, that is

∆z = vr in Ω, z = 0 on Γ ,
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whose weak formulation is given by (1.48) and (1.49) with F (w) := −
∫
Ω
vr ·w for all w ∈ W1,s

0 (Ω).

It follows that ∥F∥−1,r ≤ ∥vr∥0,r;Ω, and thus the continuous dependence result (1.50) yields

∥z∥1,r;Ω ≤ c̄r ∥vr∥0,r;Ω . (1.70)

Next, we observe that div
(
∇z
)
= vr in Ω, which proves that ∇z ∈ Hr(divr; Ω), and let ζ̂ be the

Hr
0(divr; Ω)-component (cf. (1.12)) of ∇z. In this way, utilizing (1.70) and noting that div(ζ̂) = vr,

we deduce that

∥ζ̂∥X2 = ∥ζ̂∥0,r;Ω + ∥div(ζ̂)∥0,r;Ω ≤ |z|1,r;Ω + ∥vr∥0,r;Ω ≤
(
1 + c̄r

)
∥vr∥0,r;Ω .

Finally, bearing in mind the definition of b2 (cf. (1.21)), and employing (1.69) and the foregoing
inequality, we conclude that

sup
ζ∈X2
ζ ̸=0

b2(ζ,v)

∥ζ∥X2

≥ b2(ζ̂,v)

∥ζ̂∥X2

=

∫
Ω
v · vr

∥ζ̂∥X2

≥ 1(
1 + c̄r

) ∥v∥0,s;Ω , (1.71)

which gives (1.68) for i = 2 with β2 :=
(
1 + c̄r

)−1.

Regarding the assumptions on r and its conjugate s, we remark here that
[

2n
n+1 ,

2n
n−1

]
constitutes the

largest subset of
(

2n
n+1 − δ, 2n

n−1 + δ
)

guaranteeing that both indexes lie simultaneously within it.

We are now in position to establish below the announced well-posedness of (1.18) and (1.27).

Theorem 1.10. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, which is star
shaped with respect to a ball, and let r, s ∈ (1,+∞) conjugate to each other such that they satisfy the
range specified by Theorem 1.1 (which coincides with that of Theorem 1.5). Then, there exists a positive
constant M such that for each λ > M and for each pair (f ,uD) ∈ Lr(Ω) ×W1/s,r(Γ), there exists a
unique solution (σ,u) ∈ X2 ×M1 := Hr

0(divr; Ω)× Lr(Ω) to (1.18). Moreover, there exists a positive
constant C, independent of the data and the solution, such that

∥σ∥r,divr;Ω + ∥u∥0,r;Ω ≤ C
{
∥f∥0r;Ω + ∥uD∥1/s,r;Γ

}
.

Proof. It follows from Lemmas 1.7 and 1.9, along with a straightforward application of Theorem
1.6.

Theorem 1.11. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, which is star
shaped with respect to a ball, and let r, s ∈ (1,+∞) conjugate to each other such that they satisfy
the range specified by Theorem 1.5 (which coincides with that of Theorem 1.1). Then, for each pair
(f ,uD) ∈ Lr(Ω)×W1/s,r(Γ), there exists a unique solution (σ,u) ∈ X2 ×M1 := Hr

0(divr; Ω)× Lr(Ω)

to (1.27). Moreover, there exists a positive constant C, independent of the data and the solution, such
that

∥σ∥r,divr;Ω + ∥u∥0,r;Ω ≤ C
{
∥f∥0r;Ω + ∥uD∥1/s,r;Γ

}
.

Proof. It follows from Lemmas 1.8 and 1.9, along with a straightforward application of Theorem
1.6.
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We end the chapter by announcing that the extension of the present analysis to the discrete setting
of a Banach spaces-based mixed formulation for the stress-assisted diffusion problem studied in [46] and
[47], will be reported in the next chapter. In particular, it will be shown in this case that the feasible
ranges for r and its conjugate s are given by the intervals (2, 2n

n−1 ] and [ 2n
n+1 , 2), respectively. Several

numerical experiments illustrating the performance of the resulting method will also be included there.



CHAPTER 2

A pseudostress-based mixed-primal finite element method for
stress-assisted diffusion problems in Banach spaces

2.1 Introduction

The so-called stress-assisted diffusion models, which refer to diffusion processes in deformable solids,
are present in diverse applications, which include, among others, diffusion of boron and arsenic in
silicon [69], voiding of aluminum conductor lines in integrated circuits [87], sorption in polymers [77],
damage to electrodes in lithium-ion batteries [5], and anisotropy of cardiac dynamics [27]. The usual
assumptions in most of these models are, on one hand, that the solid follows an elastic regime, and on
the other hand, that the diffusion obeys a Fickean law enriched with further contributions arising from
local effects by exerted stresses. Mathematically, this second hypothesis means that the respective
diffusion coefficient is a continuous function depending precisely on the stress, which acts then as a
coupling variable.

While many contributions to the modelling of stress-assisted (and even strain-assisted) diffusion
problems are available in the literature, the same can not be said of the corresponding mathematical
and numerical analyses of them, which are rather scarce. Indeed, for the first of the latter issues we
can mention the recent works [67], [81], and [42], which deal with a general local-global well-posedness
theory for static and transient problems via a primal formulation, homogenization of concentration -
electric potential systems, and multiscale analysis of the deterioration of binder in electrodes, respec-
tively. In turn, concerning the second of those issues, and up to our knowledge, we can only refer to
[46] and [47], where mixed-primal and fully-mixed finite element methods have been introduced and
analysed to numerically solve the stationary problem describing the diffusion of a solute into an elastic
material. This diffusion-deformation model is represented by the linear elasticity equations along with
a diffusion equation whose function of diffusivity depends on the Cauchy stress of the solid. Further
interactions between them are given by the corresponding source terms, which depend on the concen-
tration and the displacement, respectively. In other words, the diffusing species affects the behavior of
the solid, whereas the displacement of the latter influences the solute concentration, both through the
corresponding external forces, thus yielding a two-way coupled system.

Regarding further details on [46] and [47], we first notice that the approach in [46] follows the usual
methodology for the dual-mixed formulation of the linear elasticity problem (cf. [17], [44]), so that

27
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the symmetry of the Cauchy stress is imposed weakly through the incorporation of the tensor of solid
rotations as the corresponding Lagrange multiplier. In contrast, a primal formulation is employed for
the diffusion equation. The well-posedness of the resulting coupled variational formulation is addressed
by means of a fixed-point strategy and by applying the Lax-Milgram lemma, the Babuška-Brezzi
theory, Sobolev embedding theorems, and suitable regularity estimates. In this way, the Schauder
and Banach fixed-point theorems allow establishing existence and uniqueness of continuous solution,
respectively. An analogue reasoning is applied to analyse the associated Galerkin scheme and an
augmented version of it (for the elasticity equations only), thus deriving existence of discrete solutions,
as well as corresponding a priori error estimates and rates of convergence, by employing the Brouwer
theorem and a Strang-type lemma.

In turn, while keeping the same dual-mixed scheme for the elasticity equations, an augmented
mixed formulation instead of the primal one from [46] is utilized in [47] for the diffusion equation. In
addition, similarly to previous works (see, e.g. [51]), the concentration gradient and the diffusive flux
are introduced as further unknowns for a more suitable treatment of the nonlinearity arising from the
stress-dependent diffusivity. The rest of the continuous and discrete analyses in [47] follows by applying
basically the same theoretical tools utilized in [46]. In particular, we highlight that two families of finite
element subspaces yielding stable Galerkin schemes are proposed, namely either PEERS or Arnold-
Falk-Winther elements for elasticity, and Raviart-Thomas and piecewise polynomials for the mixed
formulation of the diffusion equation. We end our discussion on [46] and [47] by pointing out that a
significant drawback of their approaches is given by the use of a regularity result for the uncoupled
elasticity problem (cf. [46, Theorem 2.4]), which is valid only for convex domains in 2D. In this regard,
we remark that the need of this result arises from the handling of the stress-dependent diffusion term
when trying to prove a Lipschitz-continuity property of one of the components of the continuous
fixed-point operator.

According to the above discussion, and in order to overcome the aforementioned drawback, we
have recently realized that the required Lipschitz-continuity property can be established, without any
regularity nor convexity assumptions for the linear elasticity problem, by previously restating the
whole coupled variational formulation in terms of suitable Lebesgue and Sobolev-type Banach spaces.
Moreover, the continuous and discrete analyses can be carried out in this case without employing
any augmentation procedure, thus simplifying the computational complexity of the resulting discrete
scheme. The purpose of the present work is precisely to introduce and analyse, at the continuous
and discrete levels, this new Banach spaces-based formulation for the stress-assisted diffusion problem
studied in [46] and [47]. In doing so, we will resort to some results provided in our recent related
works [48] and [52]. Moreover, because of greater interest in applications, we consider the nearly
incompressible case in linear elasticity, and for sake of further simplicity of its analysis, we adopt a
pseudostress-based approach instead of the usual stress-based one.

The rest of the chapter is organized as follows. Required notations and basic definitions are collected
at the end of this introductory section. In Section 2.2 we introduce the stress-assisted diffusion model,
reformulate the elasticity problem in terms of the non-symmetric pseudostress tensor, and rewrite
the diffusivity coefficient in terms of the latter. The continuous formulation is derived in Section
2.3, and its solvability is studied by means of a fixed-point strategy that arises after decoupling the
model into the elasticity and diffusion problems. In turn, the well-posedness of each one of the latter
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is deduced by applying the Babuška-Brezzi theory in Banach spaces and the classical Lax-Milgram
theorem, respectively, whereas the unique solvability of the whole coupled model is concluded thanks
to the Banach fixed-point theorem. In Section 2.4 we consider arbitrary finite element subspaces,
assume that they satisfy suitable stability conditions, and employ the discrete version of the fixed-
point strategy introduced in Section 2.3 to analyse the solvability of the associated Galerkin scheme.
In this way, and along with the corresponding versions of the theoretical tools employed in Section
2.3, a straightforward application of Brouwer’s theorem allows us to conclude the existence of discrete
solution. An a priori error estimate in the form of Cea’s estimate is also derived here. Next, in Section
2.5 we restrict ourselves to the 2D case and introduce specific finite element subspaces satisfying the
theoretical hypotheses that were assumed in Section 2.4. Actually, the latter refer only to a couple of
discrete inf-sup conditions for the elasticity equation since any finite element subspace will work for
the diffusion model. The lack of a required boundedness property for a particular projector involved
stop us from extending the analysis from Section 2.5 to the 3D case. Finally, several numerical results
illustrating the performance of the method and confirming the theoretical rates of convergence provided
in Section 2.5, are reported in Section 2.6.

2.2 The model problem

The stress-assisted diffusion problem studied in [46] and [47], which models the diffusion of a so-
lute into an elastic material occupying the domain Ω, is described by the following system of partial
differential equations:

ρ = C
(
e(u)

)
in Ω , −div(ρ) = f(ϕ) in Ω , u = uD on Γ ,

σ̃ = ϑ̃(ρ)∇ϕ in Ω , −div(σ̃) = g(u) in Ω , and ϕ = 0 on Γ ,
(2.1)

where ρ is the Cauchy solid stress, u is the displacement field, e(u) := 1
2(∇u+∇ut) is the infinitesimal

strain tensor (symmetrised gradient of displacements), and C stands for the linear operator defining
the Hooke law (cf. [44, eq. (2.36)]), that is

C(τ ) := λ tr (τ ) I + 2µ τ ∀ τ ∈ R ,

so that
ρ = λ tr

(
e(u)

)
I + 2µ e(u) , (2.2)

with the Lamé constants λ, µ > 0 (dilation and shear moduli) characterizing the properties of the
material. In turn, ϕ represents the local concentration of species, σ̃ is the diffusive flux, and ϑ̃ : R → R
is a tensorial diffusivity function. Finally, f : R → R is a vector field of body loads (which depends
on the species concentration), g : R → R denotes an additional source term depending on the solid
displacement u, and uD is the Dirichlet datum for u, which belongs to a suitable trace space to
be identified later on. Specific requirements on f and g will be given below. We note that system
(2.1) describes the constitutive relations inherent to linear elastic materials, conservation of linear
momentum, the constitutive description of diffusive fluxes, and the mass transport of the diffusive
substance, respectively. It also assumes that diffusive time scales are much lower than those of the
elastic wave propagation, justifying the static character of the system (cf. [67]).
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On the other hand, in this work we are particularly interested in the nearly incompressible case,
which reduces to assume from now on that λ is sufficiently large. In addition, in order to avoid the weak
imposition of the symmetry of ρ, we now reformulate (2.1) in terms of the non-symmetric pseudostress
tensor σ introduced in [45]. More precisely, according to the analysis provided in [45, Section 2.1], we
know that the first row of (2.1) is equivalent to

σ = Ĉ
(
∇u
)

in Ω , −div(σ) = f(ϕ) in Ω , u = uD on Γ , (2.3)

where
Ĉ(τ ) := (λ+ µ) tr (τ )I + µτ ∀ τ ∈ R ,

so that
σ = (λ+ µ) tr

(
∇u
)
I + µ∇u . (2.4)

In this way, applying matrix trace to (2.4), we find that (cf. [45, eq. (2.3)])

tr (∇u) =
1

nλ+ (n+ 1)µ
tr (σ) , (2.5)

and hence (2.3) is rewritten, equivalently, as

∇u = Ĉ−1(σ) in Ω , −div(σ) = f(ϕ) in Ω , u = uD on Γ , (2.6)

where
Ĉ−1(τ ) :=

1

µ
τ d +

1

n
(
nλ+ (n+ 1)µ

) tr(τ ) I ∀ τ ∈ R . (2.7)

In turn, it also follows from (2.4) that

σ + σt = 2(λ+ µ) tr (∇u) I + 2µ e(u) ,

which yields
2µ e(u) = σ + σt − 2(λ+ µ) tr (∇u) I , (2.8)

and thus, noting that tr
(
e(u)

)
= tr (∇u), we deduce from (2.2), along with (2.5) and (2.8), that the

original Cauchy stress tensor ρ can be expressed in terms of the pseudostress σ through the formula

ρ = C̃(σ) , (2.9)

where
C̃(τ ) := τ + τ t − λ+ 2µ

nλ+ (n+ 1)µ
tr(τ ) I ∀ τ ∈ R . (2.10)

Consequently, we can recast the original stress-dependent diffusivity ϑ̃(ρ) as a pseudostress-dependent
diffusivity

ϑ(σ) := ϑ̃
(
C̃(σ)

)
. (2.11)

In this way, we finally obtain that the model (2.1) can be restated, equivalently, as

∇u = Ĉ−1(σ) in Ω , −div(σ) = f(ϕ) in Ω , u = uD on Γ ,

σ̃ = ϑ(σ)∇ϕ in Ω , −div(σ̃) = g(u) in Ω , and ϕ = 0 on Γ .
(2.12)
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Throughout this work, we suppose that ϑ̃ is of class C1 and uniformly positive definite, meaning the
latter that there exists ϑ0 > 0 such that

ϑ̃(τ )w ·w ≥ ϑ0 |w|2 ∀w ∈ R , ∀ τ ∈ R . (2.13)

We also require uniform boundedness and Lipschitz continuity of ϑ̃, that is that there exist positive
constants ϑ1, ϑ2 and L

ϑ̃
, such that

ϑ1 ≤ |ϑ̃(τ )| ≤ ϑ2 and |ϑ̃(τ )− ϑ̃(ζ)| ≤ L
ϑ̃
|τ − ζ| ∀ τ , ζ ∈ R . (2.14)

Then, it is easily seen that (2.13) and the uniform boundedness of ϑ̃ are transferred to ϑ (cf. (2.11))
with the same constants ϑ0, ϑ1, and ϑ2, whereas, being C̃ clearly of class C1 (cf. (2.10)) and noticing
that |C̃(τ )− C̃(ζ)| ≤ (2 + n) |τ − ζ| for all τ , ζ ∈ R, the same conclusion is valid for the smoothness
and Lipschitz-continuity of ϑ, the latter with constant Lϑ = (2 + n)L

θ̃
. We summarize the above as

follows
ϑ(τ )w ·w ≥ ϑ0 |w|2 ∀w ∈ R , ∀ τ ∈ R , (2.15)

ϑ1 ≤ |ϑ(τ )| ≤ ϑ2 and |ϑ(τ )− ϑ(ζ)| ≤ Lϑ |τ − ζ| ∀ τ , ζ ∈ R . (2.16)

Similar hypotheses to those of ϑ̃, and hence of ϑ, are assumed on the source functions f and g, which
means that there exist positive constants f1, f2, Lf , g1, g2 and Lg, such that

f1 ≤ |f(s)| ≤ f2 , |f(s)− f(t)| ≤ Lf |s− t| ∀ s, t ∈ R , (2.17)

g1 ≤ |g(w)| ≤ g2 , and |g(v)− g(w)| ≤ Lg |v −w| ∀v,w ∈ R . (2.18)

We find it important to remark in advance that the analysis to be developed in what follows could
be extended, under suitable minor modifications, to nonlinear elasticity, say for instance to the hyper-
elastic model arising from the Hooke law when the Lame constants are actually nonlinear coefficients
depending on |e(u)d| (cf. [9, eq. (2.6)]). In this case, however, we would need to stay with the original
stress dependent diffusivity ϑ̃(ρ) since the aforementioned nonlinearity would not allow us to employ a
pseudostress. In addition, in order to derive the corresponding mixed formulation, the strain rate ten-
sor and the rotation would need to be introduced as auxiliary unknowns as well. In turn, keeping the
elasticity model as in (2.1), our present approach could also be applied to handle Neumann boundary
conditions, but again using only the Cauchy stress since it is with this tensor that this condition makes
sense. Thus, the same observation is valid for mixed-boundary conditions. Summarizing, the present
use of the pseudostress σ and the consequent advantage of avoiding to impose the weak symmetry of
the Cauchy stress tensor, is possible thanks to the linear character of the Hooke law and the fact that
we are considering Dirichlet boundary conditions.

On the other hand, irrespective of whether one uses the stress ρ or the pseudostress σ, we emphasize
here that the major benefit of employing a mixed formulation instead of a displacement-based primal
scheme, lies on the fact that the former provides direct discrete approximations of those tensors, and
hence of the corresponding diffusivity functions. The latter approach, on the contrary, would need
to apply numerical differentiation, with the consequent loss of accuracy that this procedure implies,
in order to obtain not as good discrete approximations of ρ and σ, and thus of ϑ̃(ρ) and ϑ(σ). In
other words, the fact that one is dealing with a stress-assisted diffusion problem, and not with a
displacement-assisted one, is determinant for the present choice of the mixed method.
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2.3 The continuous formulation

In this section we introduce a suitable Banach spaces-based variational formulation for (2.12), and
then analyse its solvability by means of a fixed-point strategy.

2.3.1 The mixed-primal formulation

We begin by noticing, as suggested by the Dirichlet boundary condition satisfied by the concentration
ϕ, that the appropriate trial and test space reduces in this case to

H1
0(Ω) =

{
ψ ∈ H1(Ω) : ψ = 0 on Γ

}
.

Thus, performing the usual integration by parts procedure in H1(Ω), the primal formulation for the
diffusion equation becomes: find ϕ ∈ H1

0(Ω) such that

Aσ(ϕ, ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω) , (2.19)

where, given ζ and w lying, respectively, in the same spaces where σ and u will be sought,

Aζ(ϕ, ψ) :=

∫
Ω
ϑ(ζ)∇ϕ · ∇ψ ∀ϕ, ψ ∈ H1

0(Ω) , (2.20)

and
Gw(ψ) :=

∫
Ω
g(w)ψ ∀ψ ∈ H1

0(Ω) . (2.21)

Next, before proceeding with the elasticity equations, we remark that in order to study the continuity
property of the diffusivity function ϑ within the definition of the bilinear form A (cf. (2.20)), which will
be required for the solvability analysis of the fixed-point operator equation to be proposed afterwards,
we need to be able to control the expression∫

Ω
(ϑ(τ )− ϑ(ζ))∇ϕ · ∇ψ , (2.22)

where τ and ζ are generic tensors belonging to the same space in which we will seek the unknown
σ. In this regard, and employing the Lipschitz-continuity property of ϑ (cf. (2.16)), straightforward
applications of the Cauchy-Schwarz and Hölder inequalities yield∣∣∣∣∫

Ω
(ϑ(τ )− ϑ(ζ))∇ϕ · ∇ψ

∣∣∣∣ ≤ Lϑ ∥τ − ζ∥0,2p;Ω ∥∇ϕ∥0,2q;Ω ∥∇ψ∥0,Ω , (2.23)

where p, q ∈ (1,+∞) are conjugate to each other, which makes sense for τ , ζ ∈ L2p(Ω) and ∇ψ ∈
L2q(Ω). In this way, the above leads us to initially look for σ in the space Lr(Ω), with r := 2p.
The specific choice of r will be discussed later on, so that meanwhile we consider a generic r and let
s ∈ (1,+∞) be its respective conjugate. In turn, a suitable bounding of the expression ∥∇ϕ∥0,2q;Ω in
(2.23) for a particular ϕ will also be explained subsequently by means of a regularity argument.

Having set the above preliminary choice for the space to which σ belongs, it follows now from (2.7)
and the first equation of (2.12) that u should be initially sought in W1,r(Ω). Thus, in order to derive
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the variational formulation of the elasticity equations, we need to invoke a suitable integration by parts
formula. Indeed, we first introduce for each t ∈ (1,+∞) the Banach space

Ht(divt; Ω) :=
{
τ ∈ Lt(Ω) : div(τ ) ∈ Lt(Ω)

}
, (2.24)

which is endowed with the natural norm defined as

∥τ∥t,divt;Ω := ∥τ∥0,t;Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ Ht(divt; Ω) . (2.25)

Then, given t, t′ ∈ (1,+∞) conjugate to each other, there holds (cf. [41, Corollary B. 57])

⟨τν,v⟩Γ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ Ht (divt; Ω)×W1,t′(Ω) , (2.26)

where ⟨·, ·⟩Γ stands for the duality pairing between W−1/t,t(Γ) and W1/t,t′(Γ). Moreover, thanks to
the surjectivity of the trace operator γ0,t′ : W1,t′(Ω) −→ W1/t,t′(Γ), a straightforward application of
the open mapping theorem and (2.26) yield the existence of a constant Ct′ > 0 such that

∥τν∥−1/t,t;Γ ≤ Ct′ ∥τ∥t,divt;Ω ∀ τ ∈ Ht (divt; Ω) . (2.27)

Now, applying (2.26) with t = s and t′ = r to u ∈ W1,r(Ω) and τ ∈ Hs(divs; Ω), and using the
Dirichlet boundary condition satisfied by u, for which we assume from now on that uD ∈ W1/s,r(Γ),
we find that ∫

Ω
τ : ∇u = −

∫
Ω
u · div(τ ) + ⟨τν,uD⟩Γ , (2.28)

so that, according to (2.7), the testing of the first equation of (2.12) against τ ∈ Hs(divs; Ω) gives

1

µ

∫
Ω
σd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω
tr(σ) tr(τ ) +

∫
Ω
u · div(τ ) = ⟨τν,uD⟩Γ . (2.29)

It follows from the third term on the left-hand side of (2.29) that actually it suffices to look for u in
Lr(Ω). Furthermore, testing the second equation of (2.12), also named equilibrium equation, against
v ∈ Ls(Ω), we obtain ∫

Ω
v · div(σ) = −

∫
Ω
f(ϕ) · v , (2.30)

which makes sense for div(σ) ∈ Lr(Ω), and hence σ is sought from now in Hr(divr; Ω). To be more
precise about the latter, we notice that for each t ∈ (1,+∞) there holds the decomposition

Ht(divt; Ω) = Ht
0(divt; Ω) ⊕ RI ,

where
Ht

0(divt; Ω) :=
{
τ ∈ Ht(divt; Ω) :

∫
Ω
tr (τ ) = 0

}
.

Equivalently, each τ ∈ Ht(divt; Ω) can be decomposed, uniquely, as

τ = τ 0 + d I, with τ 0 ∈ Ht
0(divt; Ω) and d :=

1

n|Ω|

∫
Ω
tr(τ ) ∈ R . (2.31)

In this way, taking τ = I in (2.29) we get

1

nλ+ (n+ 1)µ

∫
Ω
tr(σ) =

∫
Γ
uD · ν ,
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from which, along with an application of (2.31) to t = r and τ = σ ∈ Hr(divr; Ω), we deduce that

σ = σ0 + c I , with σ0 ∈ Hr
0(divr; Ω) and c :=

nλ+ (n+ 1)µ

n|Ω|

∫
Γ
uD · ν ∈ R . (2.32)

The above shows that, in order to attain the full explicit knowledge of the unknown σ, it only remains
to find its Hr

0(divr; Ω)-component σ0. Therefore, replacing σ = σ0 + c I back into (2.29), redenoting
σ0 simply by σ, replacing ϑ(σ) by ϑ(σ + cI) in the diffusion equation, noting that the testing of the
resulting (2.29) against τ ∈ Hs(divs; Ω) is equivalent to doing it against τ ∈ Hs

0(divs; Ω), and placing
this new equation jointly with (2.30), we arrive at the following mixed variational formulation of the
first row of (2.12): Find (σ,u) ∈ X2 ×M1 such that

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1,

b2(σ,v) = Fϕ(v) ∀v ∈ M2,
(2.33)

where

X2 := Hr
0(divr; Ω) , M1 := Lr(Ω) , X1 := Hs

0(divs; Ω) and M2 := Ls(Ω) , (2.34)

and the bilinear forms a : X2×X1 → R and bi : Xi×Mi → R, i ∈
{
1, 2
}
, and the functionals Fϕ ∈M ′

2

and G ∈ X ′
1, are defined, respectively, as

a(ζ, τ ) :=
1

µ

∫
Ω
ζd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω
tr (ζ) tr (τ ) ∀ (ζ, τ ) ∈ X2 ×X1 , (2.35)

bi(τ ,v) :=

∫
Ω
v · div(τ ) ∀ (τ ,v) ∈ Xi ×Mi , (2.36)

G(τ ) := ⟨τν,uD⟩Γ, ∀ τ ∈ X1, (2.37)

Fϕ(v) := −
∫
Ω
f(ϕ) · v ∀v ∈M2. (2.38)

In this way, the mixed-primal formulation of (2.12) reduces to (2.33) and (2.19), that is: Find (σ,u, ϕ) ∈
X2 ×M1 ×H1

0(Ω) such that

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1 ,

b2(σ,v) = Fϕ(v) ∀v ∈ M2 ,

Aσ(ϕ, ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω) .

(2.39)

2.3.2 Fixed-point approach

In this section we follow a similar approach to those employed in previous works, e.g. in [8], [30],
[46], and [52], and make use of the decoupled variational formulations (2.33) and (2.19) to introduce
a fixed-point strategy for the solvability analysis of (2.39). Indeed, we first let S : H1

0(Ω) → X2 ×M1

be the operator defined for each φ ∈ H1
0(Ω) as S(φ) := (σ̃, ũ), where (σ̃, ũ) ∈ X2 ×M1 is the unique

solution (to be confirmed below) of (2.33) with φ instead of ϕ, that is

a(σ̃, τ ) + b1(τ , ũ) = G(τ ) ∀ τ ∈ X1,

b2(σ̃,v) = Fφ(v) ∀v ∈ M2 .
(2.40)
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In turn, we let S̃ : X2×M1 → H1
0(Ω) be the operator defined for each (ζ,w) ∈ X2×M1 as S̃(ζ,w) := ϕ̃,

where ϕ̃ ∈ H1
0(Ω) is the unique solution (to be confirmed below as well) of (2.19) with (ζ,w) instead

(σ,u), that is
Aζ(ϕ̃, ψ) = Gw(ψ) ∀ψ ∈ H1

0(Ω) . (2.41)

Thus, we define the operator T : H1
0(Ω) → H1

0(Ω) as

T (φ) := S̃
(
S(φ)

)
∀φ ∈ H1

0(Ω) , (2.42)

and notice that solving (2.39) is equivalent to seeking a fixed point of T , that is ϕ ∈ H1
0(Ω) such that

T (ϕ) = ϕ . (2.43)

2.3.3 Well-posedness of the uncoupled problems

Some preliminary results

We begin with the Babuška-Brezzi theorem in Banach spaces.

Theorem 2.1. Let H1, H2, Q1 and Q2 be real reflexive Banach spaces, and let a : H2 × H1 → R

and bi : Hi × Qi → R, i ∈ {1, 2}, be bounded bilinear forms with boundedness constants given by ∥a∥
and ∥bi∥, i ∈ {1, 2}, respectively. In addition, for each i ∈ {1, 2}, let Ki be the kernel of the operator
induced by bi, that is

Ki :=
{
τ ∈ Hi : bi(τ, v) = 0 ∀ v ∈ Qi

}
.

Assume that

i) there exists α > 0 such that

sup
τ∈K1
τ ̸=0

a(ζ, τ)

∥τ∥H1

≥ α ∥ζ∥H2 ∀ ζ ∈ K2 ,

ii) there holds
sup
ζ∈K2

a(ζ, τ) > 0 ∀ τ ∈ K1 , τ ̸= 0 ,

iii) for each i ∈ {1, 2} there exists βi > 0 such that

sup
τ∈Hi
τ ̸=0

bi(τ, v)

∥τ∥Hi
≥ βi ∥v∥Qi ∀ v ∈ Qi .

Then, for each (F,G) ∈ H ′
1 ×Q′

2 there exists a unique (σ, u) ∈ H2 ×Q1 such that

a(σ, τ) + b1(τ, u) = F (τ) ∀ τ ∈ H1 ,

b2(σ, v) = G(v) ∀ v ∈ Q2 ,
(2.44)
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and the following a priori estimates hold:

∥σ∥H2 ≤ 1

α
∥F∥H′

1
+

1

β2

(
1 +

∥a∥
α

)
∥G∥Q′

2
,

∥u∥Q1 ≤ 1

β1

(
1 +

∥a∥
α

)
∥F∥H′

1
+

∥a∥
β1β2

(
1 +

∥a∥
α

)
∥G∥Q′

2
.

(2.45)

Moreover, i), ii), and iii) are also necessary conditions for the well-posedness of (2.44).

Proof. See [12, Theorem 2.1, Corollary 2.1, Section 2.1] for details.

The results provided by the following two lemmas, which are originally stated and proved in Lemmas
1.2 and 1.4, will serve to establish the well-posedness of (2.33) for a given ϕ (equivalently the well-
definedness of the operator S).

The first lemma introduces a suitable linear operator mapping Lt(Ω) into itself for a range of t.

Lemma 2.2. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let t, t′ ∈ (1,+∞)

conjugate to each other with t satisfying the range specified by Theorem 1.1. Then, there exists a linear
and bounded operator Dt : Lt(Ω) → Lt(Ω) such that

div
(
Dt(τ )

)
= 0 in Ω , (2.46)

and ∫
Ω
tr
(
Dt(τ )

)
=

∫
Ω
tr (τ ) , (2.47)

for all τ ∈ Lt(Ω). In addition, for each ζ ∈ Lt′(Ω) such that div(ζ) = 0 in Ω, there holds∫
Ω
ζd :

(
Dt(τ )

)d
=

∫
Ω
ζd : τ d ∀ τ ∈ Lt(Ω) . (2.48)

For later use, we remark in advance here that a particular case in which both t and t′ satisfy the
range specified by Theorem 1.1 is when they lie in [ 2n

n+1 ,
2n
n−1 ], n ∈

{
2, 3
}
. More precisely, it is easy to

see that t belongs to this closed interval if and only if t′ does as well.

The second lemma announced previously generalizes from t = 2 to any t ∈ (1,+∞) the inequality
stated in [17, Chapter IV, Proposition 3.1] (see also [44, Lemma 2.3]), which is employed for the
solvability analysis of the Hilbertian dual-mixed formulation of linear elasticity.

Lemma 2.3. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, which is star-shaped
with respect to a ball, and let t ∈ (1,+∞). Then, there exist positive constants C̃t and Ĉt such that

∥tr (τ )∥0,t;Ω ≤ C̃t

{
∥τ d∥0,t;Ω + ∥div(τ )∥0,t;Ω

}
(2.49)

and
∥τ∥0,t;Ω ≤ Ĉt

{
∥τ d∥0,t;Ω + ∥div(τ )∥0,t;Ω

}
(2.50)

for all τ ∈ Ht
0(divt; Ω).

We remark here that the proof of Lemma 2.3 (cf. Lemma 1.4) makes use of the surjectivity of the
operator div : W1,t(Ω) → Lt0(Ω) (cf. [41, Lemma B.69]), which, in turn, requires that Ω be star-shaped
with respect to a ball. This fact explains the necessity of this geometric hypothesis.
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Well-definedness of the operator S

In what follows we employ some of the preliminary results provided in Section 2.3.3, along with
Theorem 2.1, to prove that the operator S (cf. (2.40)) is well-defined. We begin by checking that the
bilinear forms and linear functionals involved are all bounded. Indeed, we first observe from (2.35)
that a can be rewritten as

a(ζ, τ ) =
1

µ

∫
Ω
ζ : τ − λ+ µ

µ(nλ+ (n+ 1)µ)

∫
Ω
tr (ζ) tr (τ ) ,

from which, noting that λ+µ
nλ+(n+1)µ <

1
n , and employing, thanks to the triangle and Hölder inequalities,

that for each t ∈ (1,+∞) there holds

∥tr (τ )∥0,t;Ω ≤ n1/t
′∥τ∥0,t;Ω ∀ τ ∈ Lt(Ω) , (2.51)

we find, using again Hölder’s inequality, that

|a(ζ, τ )| ≤ 1

µ
∥ζ∥0,r;Ω ∥τ∥0,s;Ω +

1

nµ
∥tr (ζ)∥0,r;Ω ∥tr (τ )∥0,s;Ω

≤ 2

µ
∥ζ∥0,r;Ω ∥τ∥0,s;Ω ≤ 2

µ
∥ζ∥X2 ∥τ∥X1 ∀ (ζ, τ ) ∈ X2 ×X1 .

(2.52)

In turn, invoking once more the aforementioned inequality, it follows from (2.36) that

|b1(τ ,v)| ≤ ∥div(τ )∥0,s;Ω ∥v∥0,r;Ω ≤ ∥τ∥divs,s;Ω ∥v∥0,r;Ω ∀ (τ ,v) ∈ X1 ×M2 , (2.53)

and similarly
|b2(τ ,v)| ≤ ∥τ∥divr,r;Ω ∥v∥0,s;Ω ∀ (τ ,v) ∈ X2 ×M1 . (2.54)

In addition, bearing in mind the upper bound for f (cf. (2.17)) and the estimate (2.27), we deduce
from (2.37) and (2.38), respectively, that

|G(τ )| ≤ Cr ∥uD∥1/s,r;Γ ∥τ∥X1 ∀ τ ∈ X1 , (2.55)

and, for each ϕ ∈ H1
0(Ω),

|Fϕ(v)| ≤ |Ω|1/r f2 ∥v∥0,s;Ω ∀v ∈M2 . (2.56)

In this way, and as a straightforward consequence of (2.52) - (2.56), we conclude that a, b1, b2, G and
Fϕ are all bounded with respective constants satisfying

∥a∥ ≤ 2

µ
, ∥b1∥ , ∥b2∥ ≤ 1 , ∥G∥ ≤ Cr ∥uD∥1/s,r;Γ , and ∥Fϕ∥ ≤ |Ω|1/r f2 . (2.57)

Next, we let Ki, i ∈ {1, 2}, be the kernel of the bilinear form bi, i ∈ {1, 2} (cf. (2.36)), that is

Ki :=
{
τ ∈ Xi : bi(τ ,v) = 0 ∀v ∈Mi

}
,

which, according to the definitions of X1, X2 and bi (cf. (2.36)), yields

K1 =
{
τ ∈ Hs

0(divs; Ω) : div(τ ) = 0
}

(2.58)
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and
K2 =

{
ζ ∈ Hr

0(divr; Ω) : div(ζ) = 0
}
. (2.59)

The continuous inf-sup conditions required for the bilinear forms a (cf. (2.35)) and bi (cf. (2.36)),
i ∈

{
1, 2
}
, are established next. While these results were already stated and proved in Lemmas 1.7

and 1.9 by following similar approaches to those employed in [52, Lemmas 2.6 and 2.7], we provide
them again here for sake of completeness of our presentation.

Lemma 2.4. Assume that r and s satisfy the particular range specified by Theorem 1.1, that is r, s ∈
[ 2n
n+1 ,

2n
n−1 ]. Then, there exist positive constants M and α such that for each λ > M there hold

sup
τ∈K1
τ ̸=0

a(ζ, τ )

∥τ∥X1

≥ α ∥ζ∥X2 ∀ ζ ∈ K2 , (2.60)

and
sup
ζ∈K2

a(ζ, τ ) > 0 ∀ τ ∈ K1 , τ ̸= 0 . (2.61)

Proof. We begin by noticing, thanks to Hölder’s inequality and (2.51), that for each pair (ζ, τ ) ∈
X2 ×X1 := Hr

0(divr; Ω)×Hs
0(divs; Ω) there holds∣∣∣∣ ∫

Ω
tr (ζ) tr (τ )

∣∣∣∣ ≤ n1/r ∥tr (ζ)∥0,r;Ω ∥τ∥0,s;Ω . (2.62)

Now, we consider ζ ∈ K2, that is ζ ∈ X2 := Hr
0(divr; Ω) and div(ζ) = 0, such that ζ ̸= 0. Then,

according to the definition of a (cf. (2.35)) and the estimates (2.62) and (2.49) (cf. Lemma 2.2), we
obtain

sup
τ∈K1
τ ̸=0

a(ζ, τ )

∥τ∥X1

≥ 1

µ
sup
τ∈K1
τ ̸=0

∫
Ω
ζd : τ d

∥τ∥X1

− C̃r

n1/s
(
nλ+ (n+ 1)µ

) ∥ζd∥0,r;Ω . (2.63)

Next, in order to derive a lower bound for the supremum on the right hand side of (2.63), we let

ζs :=

{
|ζd|r−2 ζd if ζd ̸= 0,

0 if ζd = 0,
(2.64)

and observe that ζs ∈ Ls(Ω) and∫
Ω
ζd : ζs = ∥ζd∥r0,r;Ω = ∥ζs∥s0,s;Ω = ∥ζd∥0,r;Ω ∥ζs∥0,s;Ω . (2.65)

In addition, it is clear that tr (ζs) = 0, and thus, thanks to Lemma 2.2, it follows that Ds(ζs) belongs
to K1. Moreover, using (2.48) and (2.65), we find that∫

Ω
ζd :

(
Ds(ζs)

)d
=

∫
Ω
ζd : ζds =

∫
Ω
ζd : ζs = ∥ζd∥0,r;Ω ∥ζs∥0,s;Ω ,

and hence, noting that ∥Ds(ζs)∥X1 = ∥Ds(ζs)∥0,s;Ω, and invoking the boundedness of Ds (cf. Lemma
2.2), we deduce that

sup
τ∈K1
τ ̸=0

∫
Ω
ζd : τ d

∥τ∥X1

≥

∫
Ω
ζd :

(
Ds(ζs)

)d
∥Ds(ζs)∥X1

=
∥ζd∥0,r;Ω ∥ζs∥0,s;Ω
∥Ds(ζs)∥0,s;Ω

≥ 1

∥Ds∥
∥ζd∥0,r;Ω . (2.66)
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Consequently, replacing (2.66) back into (2.63), we get

sup
τ∈K1
τ ̸=0

a(ζ, τ )

∥τ∥X1

≥
{

1

µ∥Ds∥
− C̃r

n1/s
(
nλ+ (n+ 1)µ

)} ∥ζd∥0,r;Ω , (2.67)

from which, choosing λ sufficiently large such that

C̃r

n1/s
(
nλ+ (n+ 1)µ

) <
1

2µ∥Ds∥
,

which reduces to
λ > Ms :=

µ

n1+1/s
max

{
2∥Ds∥C̃r − n1/s(n+ 1), 0

}
,

and applying (2.50) to ζ, we arrive at (2.60) with α := 1

2µ ∥Ds∥ Ĉr
. On the other hand, given now

τ ∈ K1, τ ̸= 0, we exchange the roles of τ and ζ in the above analysis, so that we obtain

sup
ζ∈K2

a(ζ, τ ) ≥ sup
ζ∈K2
ζ ̸=0

a(ζ, τ )

∥ζ∥X2

≥ 1

2µ ∥Dr∥ Ĉs
∥τ∥X1 > 0 (2.68)

for
λ > Mr :=

µ

n1+1/r
max

{
2∥Dr∥C̃s − n1/r(n+ 1), 0

}
,

which shows (2.61). In this way, the proof is completed by choosing M := max
{
Ms,Mr

}
.

From now on we assume that the Lamé parameter λ is such that

λ > M ,

with M defined at the end of the foregoing proof.

Lemma 2.5. Assume that r and s satisfy the particular range specified by Theorem 1.1, that is,
r, s ∈ [ 2n

n+1 ,
2n
n−1 ]. Then, there exist positive constants β1, β2 such that for each i ∈ {1, 2} there hold

sup
ζ∈Xi
ζ ̸=0

bi(ζ,v)

∥ζ∥Xi
≥ βi ∥v∥Mi ∀v ∈Mi . (2.69)

Proof. Since b1 and b2 have the same algebraic structure (cf. (2.36)), and the pairs (X1,M1) and
(X2,M2) are obtained from each other by exchanging r and s, it suffices to show (2.69) for either i = 1

or i = 2. We proceed here with i = 2, for which, given v ∈M2 := Ls(Ω), we first set

vr :=

{
|v|s−2 v if v ̸= 0 ,

0 if v = 0 .
(2.70)

It follows that vr ∈ Lr(Ω), and similarly to (2.65), there holds∫
Ω
v · vr = ∥v∥s0,s;Ω = ∥vr∥r0,r;Ω = ∥v∥0,s;Ω ∥vr∥0,r;Ω . (2.71)
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Next, we let z ∈ W1,r
0 (Ω) be the unique solution, guaranteed by Theorem 1.5, of the vector Poisson

equation (1.47) with f = 0 and g = vr, that is

∆z = vr in Ω , z = 0 on Γ ,

whose weak formulation reduces to: Find z ∈ W1,r
0 (Ω) such that∫

Ω
∇z · ∇w = −

∫
Ω
vr ·w ∀w ∈ W1,s

0 (Ω) .

Note that the corresponding continuous dependence result establishes the existence of a positive con-
stant c̄r such that

∥z∥1,r;Ω ≤ c̄r ∥vr∥0,r;Ω . (2.72)

Furthermore, we observe that div
(
∇z
)
= vr in Ω, which proves that ∇z ∈ Hr(divr; Ω), and hence we

let ζ̂ be the Hr
0(divr; Ω)-component of ∇z. Thus, employing (2.72) and noting that div(ζ̂) = vr, we

obtain
∥ζ̂∥X2 = ∥ζ̂∥0,r;Ω + ∥div(ζ̂)∥0,r;Ω ≤ |z|1,r;Ω + ∥vr∥0,r;Ω ≤

(
1 + c̄r

)
∥vr∥0,r;Ω .

Finally, bearing in mind the definition of b2 (cf. (2.36), i = 2), and making use of (2.71) and the
foregoing inequality, we conclude that

sup
ζ∈X2
ζ ̸=0

b2(ζ,v)

∥ζ∥X2

≥ b2(ζ̂,v)

∥ζ̂∥X2

=

∫
Ω
v · vr

∥ζ̂∥X2

≥ 1

1 + c̄r
∥v∥0,s;Ω , (2.73)

which proves (2.69) for i = 2 with β2 :=
(
1 + c̄r

)−1.

For the rest of the chapter we assume meanwhile that r and s lie in the range stipulated in Lemmas
2.4 and 2.5, that is

r, s ∈
[ 2n

n+ 1
,

2n

n− 1

]
. (2.74)

The following result establishes that the operator S (cf. (2.9)) is well defined.

Lemma 2.6. For each φ ∈ H1
0(Ω) there exists a unique S(φ) =

(
S1(φ),S2(φ)

)
:= (σ̃, ũ) ∈ X2 ×M1

solution to (2.40). Moreover, there hold

∥S1(φ)∥X2 = ∥σ̃∥X2 ≤ Cr
α

∥uD∥1/s,r;Γ +
|Ω|1/r

β2

(
1 +

2

αµ

)
f2 , and

∥S2(φ)∥M1 = ∥ũ∥M1 ≤ Cr
β1

(
1 +

2

αµ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1β2

(
1 +

2

αµ

)
f2 .

(2.75)

Proof. Thanks to the fact that X1, X2, M1 and M2 are all reflexive Banach spaces, along with the
boundedness of all the forms and functionals involved, and the inf-sup conditions provided by Lemmas
2.4 and 2.5, the proof reduces to a direct application of Theorem 2.1. In particular, the a priori
estimates (2.75) follow from (2.45) and (2.57).
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Well-definedness of operator S̃

In this section we use the classical Lax-Milgram lemma to prove that S̃ (cf. (2.41)) is well defined.
In fact, we first notice from (2.20) and (2.16) that, given ζ ∈ X2, there holds

Aζ(ϕ, φ) ≤ ϑ2 ∥ϕ∥1,Ω ∥φ∥1,Ω ∀ϕ, φ ∈ H1
0(Ω) , (2.76)

which says that Aζ is bounded independently of ζ with

∥Aζ∥ ≤ ϑ2 . (2.77)

In turn, using now that ϑ is uniformly positive definite (cf. (2.15)), and denoting by cp the constant
of the Poincaré inequality in H1

0(Ω), which says that ∥ϕ∥1,Ω ≤ cp |ϕ|1,Ω ∀ϕ ∈ H1
0(Ω), we deduce that

Aζ(ϕ, ϕ) =

∫
Ω
ϑ(ζ)∇ϕ · ∇ϕ ≥ α̃ ∥ϕ∥21,Ω ∀ϕ ∈ H1

0(Ω) , (2.78)

where
α̃ :=

ϑ0
c2p
, (2.79)

thus establishing the H1
0(Ω)-ellipticity of Aζ independently of ζ as well. Furthermore, given w ∈ M1,

and bearing in mind (2.21), we employ the upper bound of g (cf. (2.18)) and the Cauchy-Schwarz
inequality to arrive at

|Gw(ψ)| ≤ |Ω|1/2 g2 ∥ψ∥0,Ω ∀ψ ∈ H1
0(Ω) , (2.80)

which yields Gw ∈ H1
0(Ω)

′ with ∥Gw∥ ≤ |Ω|1/2 g2.

Consequently, we are in a position to state that the operator S̃ is well-defined.

Lemma 2.7. For each (ζ,w) ∈ X2 × M1 there exists a unique S̃(ζ,w) := ϕ̃ ∈ H1
0(Ω) solution to

(2.41). Moreover, there holds

∥S̃(ζ,w)∥1,Ω = ∥ϕ̃∥1,Ω ≤ r̃ :=
1

α̃
|Ω|1/2 g2 . (2.81)

Proof. Thanks to the previous analysis, it is a straightforward application of Lax-Milgram’s lemma
(cf. [44, Theorem 1.1]).

2.3.4 Solvability of the fixed-point equation

In this section we address the solvability analysis of the fixed-point equation (2.43). For this purpose,
the hypotheses of the Banach fixed-point theorem are verified in what follows. We begin by defining
the ball

W :=
{
ϕ ∈ H1

0(Ω) : ∥ϕ∥1,Ω ≤ r̃
}
, (2.82)

where r̃ > 0 is the constant specified in (2.81). The following result states that T maps W into itself.

Lemma 2.8. There holds T (W ) ⊆W .
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Proof. It follows directly from the definition of T (cf. (2.42)) and the a priori estimate for the operator
S̃ provided by (2.81).

The next goal is to establish the continuity of T , for which we previously prove the corresponding
properties of S and S̃. We begin with the one of S.

Lemma 2.9. There exists a positive constant CS, depending only on µ, α, β1, β2, and the norm of
the continuous injection ir : H

1(Ω) → Lr(Ω), such that

∥S(ϕ)− S(φ)∥X2×M1 ≤ CS Lf ∥ϕ− φ∥1,Ω ∀ϕ, φ ∈ H1
0(Ω) . (2.83)

Proof. Given φ, ψ ∈ H1
0(Ω), we let S(φ) := (σ̃, ũ) ∈ X2 ×M1 and S(ψ) := (σ̄, ū) ∈ X2 ×M1, which

satisfy (2.40) with φ itself and with φ = ψ, respectively. Then, subtracting the corresponding equations
of these systems, we obtain

a(σ̃ − σ̄, τ ) + b1(τ , ũ− ū) = 0 ∀ τ ∈ X1 ,

b2(σ̃ − σ̄,v) = (Fφ − Fψ)(v) ∀v ∈M2 ,
(2.84)

which says, thanks to the analysis and results from Section 2.3.3, particularly the inf-sup conditions
satisfied by a, b1 and b2, along with Theorem 2.1, that (σ̃ − σ̄, ũ − ū) ∈ X2 × M1 is the unique
solution of (2.40) with G given by the null functional and Fφ replaced by Fφ − Fψ. Next, having in
mind the definitions of Fφ and Fψ (cf. (2.38)), employing the Lipschitz-continuity of f (cf. (2.17)),
applying Hölder’s inequality, and invoking the continuous injection ir : H1(Ω) → Lr(Ω), which is valid
in particular for r ∈ [ 2n

n+1 ,
2n
n−1 ], we readily find that

|(Fφ − Fψ)(v)| ≤ Lf ∥φ− ψ∥0,r;Ω ∥v∥0,s;Ω ≤ Lf ∥ir∥ ∥φ− ψ∥1,Ω ∥v∥0,s;Ω ∀ v ∈M2 , (2.85)

which implies ∥Fφ −Fψ∥M ′
2
≤ Lf ∥ir∥ ∥φ−ψ∥1,Ω. In this way, this latter inequality and the abstract

estimate (2.45) applied to problem (2.84), yield (2.83) and end the proof.

On the other hand, in order to establish a continuity property for S̃, we follow the approach of
diverse previous works (see, e.g. [7], [30], [46], [47], and [52]), and introduce a regularity assumption
on the solutions of the problem defining this operator. More precisely, from now on we suppose that
there exists ε ≥ n

r and a constant Cε > 0, such that

(RA) for each (ζ,w) ∈ X2 ×M1 there holds S̃(ζ,w) = ϕ̃ ∈ H1
0(Ω) ∩H1+ε(Ω) and

∥ϕ̃∥1+ε,Ω ≤ Cε g2 . (2.86)

The reason of the aforementioned lower bound of ε is clarified within the proof of the next lemma,
which provides the Lipschitz-continuity of the operator S̃. In connection to this, and to be employed in
the aforementioned proof as well, we recall now, thanks to the embedding between fractional Sobolev
spaces, that for each ε < n

2 there holds Hε(Ω) ⊂ Lε
∗
(Ω), with continuous injection

iε : H
ε(Ω) −→ Lε

∗
(Ω) , where ε∗ =

2n

n− 2ε
. (2.87)
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In this regard, we notice that the indicated lower and upper bounds for the additional regularity ε,
which turn out to require that ε ∈ [nr ,

n
2 ), are compatible if and only if r > 2, which is coherent with

the fact that initially (cf. (2.23)) r = 2p, with p ∈ (1,+∞). Then, intersecting this constraint with
the one stated previously in (2.74), we deduce that the feasible range for r becomes

r ∈
(
2,

2n

n− 1

]
=

{
(2, 4] if n = 2 ,

(2, 3] if n = 3 ,
(2.88)

which we assume from now on. As a consequence, the range for the conjugate s of r is

s ∈
[ 2n

n+ 1
, 2
)

=

{ [
4
3 , 2
)

if n = 2 ,[
3
2 , 2
)

if n = 3 .
(2.89)

Lemma 2.10. There exists a positive constant C
S̃
, depending only on α̃, the norm of the continuous

injection is : H
1(Ω) → Ls(Ω), |Ω|, r, ε, ∥iε∥ (cf. (2.87)), and Cε (cf. (2.86)), such that

∥S̃(ζ,w)− S̃(τ ,v)∥1,Ω

≤ C
S̃

{
Lg + Lϑ g2

}
∥(ζ,w)− (τ ,v)∥X2×M1 ∀ (ζ,w), (τ ,v) ∈ X2 ×M1 .

(2.90)

Proof. Given (ζ,w), (τ ,v) ∈ X2 ×M1, we let ϕ̃ := S̃(ζ,w) and φ̃ := S̃(τ ,v), which means, according
to the definition of S̃ (cf. (2.41)), that ϕ̃ and φ̃ are the unique elements in H1

0(Ω) such that

Aζ(ϕ̃, ψ) = Gw(ψ) ∀ψ ∈ H1
0(Ω) , (2.91)

and
Aτ (φ̃, ψ) = Gv(ψ) ∀ψ ∈ H1

0(Ω) . (2.92)

Thus, applying the H1
0(Ω)-ellipticity of Aζ , adding and subtracting Aτ (φ̃, ϕ̃− φ̃), and then employing

(2.91) and (2.92), we first obtain

α̃ ∥ϕ̃− φ̃∥21,Ω ≤ Aζ(ϕ̃− φ̃, ϕ̃− φ̃) = (Aτ −Aζ)(φ̃, ϕ̃− φ̃) + (Gw −Gv)(ϕ̃− φ̃) . (2.93)

Next, using the Lipschitz-continuity of g (cf. (2.18)), applying Hölder’s inequality, and invoking the
continuous injection is : H1(Ω) → Ls(Ω), which is also valid for the present range of s, we find that

|(Gw −Gv)(ϕ̃− φ̃)| ≤
∫
Ω
|g(w)− g(v)| |ϕ̃− φ̃| ≤ Lg

∫
Ω
|w − v| |ϕ̃− φ̃|

≤ Lg ∥w − v∥0,r;Ω ∥ϕ̃− φ̃∥0,s;Ω ≤ Lg ∥is∥ ∥w − v∥0,r;Ω ∥ϕ̃− φ̃∥1,Ω .
(2.94)

In turn, employing now the Lipschitz-continuity of ϑ (cf. (2.16)), and making use again of Hölder’s
inequality, we get

|(Aτ −Aζ)(φ̃, ϕ̃− φ̃)| =
∣∣∣ ∫

Ω

(
ϑ(τ )− ϑ(ζ)

)
∇φ̃ · ∇(ϕ̃− φ̃)

∣∣∣
≤ Lϑ ∥τ − ζ∥0,2q;Ω ∥∇φ̃∥0,2p;Ω ∥ϕ̃− φ̃∥1,Ω

(2.95)

where p, q ∈ (1,+∞) are conjugate to each other. Now, choosing p such that 2p = ε∗ (cf. (2.87)),
we get 2q = n

ε , which, according to the range stipulated for ε, yields 2q ≤ r, so that the norm
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of the embedding of the respective Lebesgue spaces is given by Cr,ε := |Ω|
rε−n
rn . In this way, using

additionally the continuity of iε (cf. (2.87)) along with the regularity assumption (2.86), the estimate
(2.95) becomes

|(Aτ −Aζ)(φ̃, ϕ̃− φ̃)| ≤ LϑCr,ε ∥τ − ζ∥0,r;Ω ∥iε∥ ∥∇φ̃∥ε,Ω ∥ϕ̃− φ̃∥1,Ω

≤ LϑCr,ε ∥iε∥Cε g2 ∥τ − ζ∥0,r;Ω ∥ϕ̃− φ̃∥1,Ω .
(2.96)

Finally, replacing the resulting estimates from (2.94) and (2.96) back into (2.93), simplifying ∥ϕ̃−φ̃∥1,Ω
on both sides, and dividing by α̃, we arrive at (2.90) and finish the proof.

We are now in a position to establish the Lipschitz-continuity of the fixed point operator T . More
precisely, we have the following result.

Lemma 2.11. There exists a positive constant CT , depending only on CS and C
S̃
, such that

∥T (ϕ)− T (φ)∥1,Ω ≤ CT Lf
{
Lg + Lϑ g2

}
∥ϕ− φ∥1,Ω ∀ϕ, φ ∈ H1

0(Ω) . (2.97)

Proof. Given ϕ, φ ∈ H1
0(Ω), and bearing in mind the definition of T (cf. (2.42)), straightforward

applications of Lemmas 2.10 and 2.9 yield

∥T (ϕ)− T (φ)∥1,Ω ≤ C
S̃

{
Lg + Lϑ g2

}
∥S(ϕ)− S(φ)∥X2×M1

≤ C
S̃
CS Lf

{
Lg + Lϑ g2

}
∥ϕ− φ∥1,Ω ,

which yields (2.97) with CT := CSCS̃
.

Consequently, the main result of this section is stated as follows.

Theorem 2.12. Assume the regularity assumption (RA) (cf. (2.86)) and that the data Lf , Lg, Lϑ
and g2 are sufficiently small so that

CT Lf
{
Lg + Lϑ g2

}
< 1 . (2.98)

Then, the coupled problem (2.39) has a unique solution (σ,u, ϕ) ∈ X2×M1×H1
0(Ω), with ϕ ∈W (cf.

(2.82)). Moreover, there hold

∥σ∥X2 ≤ Cr
α

∥uD∥1/s,r;Γ +
|Ω|1/r

β2

(
1 +

2

αµ

)
f2 , and

∥u∥M1 ≤ Cr
β1

(
1 +

2

αµ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1β2

(
1 +

2

αµ

)
f2 .

(2.99)

Proof. Thanks to Lemmas 2.8 and 2.11, and the assumption (2.98), the existence of a unique ϕ ∈ W

solution to (2.43), and hence, equivalently, the existence of a unique (σ,u, ϕ) ∈ X2 ×M1 × H1
0(Ω)

solution to (2.39), is merely an application of the Banach fixed point Theorem. In addition, the fact
that (σ,u) = S(ϕ) along with the a priori estimates provided by (2.75), yield (2.99) and conclude the
proof.
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At this point we remark that the assumption (2.98) is clearly satisfied if the first row of (2.1) is
given by the linear elasticity equations, in whose case f does not depend on ϕ, and hence obviously
the Lipschitz constant Lf is 0. In this way, the closest we get to this model, the more feasible (2.98)
becomes. Certainly, this feasibility also increases if g and ϑ get closer to constant functions, thus
making Lg and Lϑ smaller.

2.4 The Galerkin scheme

In this section we introduce the Galerkin scheme of the mixed-primal formulation (2.39), and analyse
its solvability by employing a discrete version of the fixed point strategy developed in Section 2.3.2.
For this purpose, we begin by considering arbitrary finite element subspaces X2,h ⊆ X2, M1,h ⊆ M1,
X1,h ⊆ X1, M2,h ⊆ X2, and Hh ⊆ H1

0(Ω), whose specific choices satisfying all the required stability
conditions will be introduced later on in Section 2.5. In this way, the Galerkin scheme associated with
(2.39) reads: Find (σh,uh) ∈ X2,h ×M1,h and ϕh ∈ Hh such that

a(σh, τ h) + b1(τ h,uh) = G(τ h) ∀ τ h ∈ X1,h ,

b2(σh,vh) = Fϕh(vh) ∀vh ∈ M2,h ,

Aσh(ϕh, ψh) = Guh(ψh) ∀ψh ∈ Hh .

(2.100)

2.4.1 The discrete fixed point strategy

Here we adopt the discrete analogue of the fixed point strategy introduced in Section 2.3.2 to analyse
the solvability of (2.100). According to it, we now let Sh : Hh → Xh,2 ×Mh,1 be the operator defined
for each φh ∈ Hh as Sh(φh) := (σ̃h, ũh), where (σ̃h, ũh) ∈ X2,h ×M1,h is the unique solution (to be
confirmed below) of the first two equations of (2.100) with φh instead of ϕh, that is

a(σ̃h, τ h) + b1(τ h, ũh) = G(τ h) ∀ τ h ∈ X1,h ,

b2(σ̃h,vh) = Fφh(vh) ∀vh ∈ M2,h .
(2.101)

In addition, we also let S̃h : X2,h×M1,h → Hh be the operator defined for each (ζh,wh) ∈ X2,h×M1,h

as S̃h(ζh,wh) := ϕ̃h, where ϕ̃h ∈ Hh is the unique solution of the last equation of (2.100) with (ζh,wh)

instead of (σh,uh), that is
Aζh(ϕ̃h, ψh) = Gwh(ψh) ∀ψh ∈ Hh . (2.102)

Then, we define the operator Th : Hh → Hh as

Th(φh) := S̃h
(
Sh(φh)

)
∀φh ∈ Hh , (2.103)

and realise that solving (2.100) is equivalent to seeking a fixed point of Th, that is ϕh ∈ Hh such that

Th(ϕh) = ϕh . (2.104)
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2.4.2 Well-posedness of the operators Sh and S̃h

We now apply the discrete versions of Theorem 2.1 and Lax-Milgram’s lemma to show that the
discrete operators Sh and S̃h are well defined, equivalently that problems (2.101) and (2.102) are well-
posed. For this purpose, we now let K1,h and K2,h be the discrete kernels of the operators induced by
the bilinear forms b1 and b2, respectively, that is

K1,h :=
{
τ h ∈ X1,h : b1(τ h,vh) = 0 ∀vh ∈M1,h

}
, (2.105)

K2,h :=
{
ζh ∈ X2,h : b2(ζh,vh) = 0 ∀vh ∈M2,h

}
. (2.106)

Next, we introduce some hypotheses involving the arbitrary spaces X2,h, M1,h, X1,h, and M2,h, as well
as K1,h and K2,h. More precisely, from now on we assume the following:

(H.1) there exists a constant αd > 0, independent of h, such that

sup
τh∈K1,h

τh ̸=0

a(σh, τ h)

∥τ h∥X1

≥ αd ∥σh∥X2 ∀σh ∈ K2,h , and

sup
ζh∈K2,h

a(ζh, τ h) > 0 ∀ τ h ∈ K1,h, τ h ̸= 0 .

(H.2) there exist constants β1,d, β2,d > 0, independent of h, such that for each i ∈ {1, 2} there holds

sup
τh∈Xi,h
τh ̸=0

bi(τ h,vh)

∥τ h∥Xi
≥ βi,d ∥vh∥Mi ∀vh ∈Mi,h .

Specific finite element subspaces satisfying (H.1) and (H.2) will be defined later on in Section 2.5.2.
Thus, as a straightforward consequence of these assumptions, we obtain the following result.

Lemma 2.13. For each φh ∈ Hh there exists a unique Sh(φh) =
(
S1,h(φh),S2,h(φh)

)
:= (σ̃h, ũh) ∈

X2,h ×M1,h solution to (2.101). Moreover, there hold

∥S1,h(φh)∥X2 = ∥σ̃h∥X2 ≤ Cr
αd

∥uD∥1/s,r;Γ +
|Ω|1/r

β2,d

(
1 +

2

αd µ

)
f2 , and

∥S2,h(φh)∥M1 = ∥ũh∥M1 ≤ Cr
β1,d

(
1 +

2

αd µ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1,d β2,d

(
1 +

2

αd µ

)
f2 .

(2.107)

Proof. Invoking (H.1) and (H.2), the proof reduces to a direct application of the discrete version of
Theorem 2.1 (see, e.g. [12, Corollary 2.2]). In particular, the a priori estimates given by (2.107) follow
from the discrete analogue of (2.75).

Having proved that Sh is well-defined, we now establish the same property for S̃h with an arbitrary
finite element subspace Hh of H1(Ω).

Lemma 2.14. For each (ζh,wh) ∈ X2,h ×M1,h there exists a unique S̃(ζh,wh) := ϕ̃h ∈ Hh solution
to (2.102). Moreover, with the same constant r̃ introduced in Lemma 2.7, there holds

∥S̃(ζh,wh)∥1,Ω = ∥ϕ̃h∥1,Ω ≤ r̃ . (2.108)
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Proof. It suffices to note that the bilinear form Aζh is Hh-elliptic with the same constant α̃ given by
(2.79), and that Gwh restricted to Hh belongs to H′

h with ∥Gwh∥ ≤ |Ω|1/2 g2 (cf. (2.80)). In this way,
the proof is a direct application of Lax-Milgram’s lemma.

2.4.3 Discrete solvability analysis

Having proved that the discrete operators Sh, S̃h, and hence Th, are all well defined, we now address
the solvability of the corresponding fixed point equation (2.104). To this end, and similarly to (2.82),
we first introduce the discrete ball

Wh :=
{
ϕh ∈ Hh : ∥ϕh∥1,Ω ≤ r̃

}
, (2.109)

where r̃ > 0 is the constant specified in (2.81), that is r̃ :=
1

α̃
|Ω|1/2 g2, and establish the discrete

analogue of Lemma 2.8.

Lemma 2.15. There holds Th(Wh) ⊆Wh.

Proof. Similarly to the proof of Lemma 2.8, it follows from the definition of Th (cf. (2.103)) and the a
priori estimate for the operator S̃h provided by (2.108).

Next, we aim to state the continuity of the operators Sh, S̃h, and Th. We begin with Sh by proceeding
analogously to the proof of Lemma 2.9. Indeed, considering the Galerkin scheme associated with (2.84),
the inf-sup conditions provided by (H.1) and (H.2), the continuous injection ir : H1(Ω) → Lr(Ω), and
the discrete version of the abstract estimate (2.45) (cf. [12, Corollary 2.2]), we readily deduce that there
exists a positive constant CS,d, depending only on µ, αd, β1,d, β2,d, and ∥ir∥, and hence independent
of h, such that

∥Sh(ϕh)− Sh(φh)∥X2×M1 ≤ CS,d Lf ∥ϕh − φh∥1,Ω ∀ϕ, φ ∈ Hh . (2.110)

In turn, for the continuity of S̃h we slightly modify the reasoning of the proof of Lemma 2.10. In fact,
instead of the regularity assumption (RA), which is certainly not applicable in the present discrete
context, we just employ an L2q − L2p − L2 argument to derive the discrete version of (2.90), where
p, q ∈ (1,+∞) conjugate to each other, are chosen such that 2q = r. Note that this is a feasible
choice since, as stipulated in (2.88), there holds r > 2, which yields r∗ := 2p = 2r

r−2 . In this way, given
(ζh,wh), (τ h,vh) ∈ X2,h ×M1,h, and denoting ϕ̃h = S̃h(ζh,wh) ∈ Hh and φ̃h = S̃h(τ h,vh) ∈ Hh, the
discrete analogue of (2.95) becomes

|(Aτh −Aζh)(φ̃h, ϕ̃h − φ̃h)| ≤ Lϑ ∥τ h − ζh∥0,r;Ω ∥∇φ̃h∥0,r∗;Ω ∥ϕ̃h − φ̃h∥1,Ω , (2.111)

which, along with the discrete versions of (2.93) and (2.94), imply the existence of a positive constant
C
S̃,d

, depending only on α̃ and the norm of the continuous injection is : H1(Ω) → Ls(Ω), and hence
independent of h, such that

∥S̃h(ζh,wh)− S̃h(τ h,vh)∥1,Ω

≤ C
S̃,d

{
Lg + Lϑ ∥∇S̃h(τ h,vh)∥0,r∗;Ω

}
∥(ζh,wh)− (τ h,vh)∥X2×M1

(2.112)
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for all (ζh,wh), (τ h,vh) ∈ X2,h ×M1,h.

In this way, recalling the definition of Th (cf. (2.103)), and employing the estimates (2.110) and
(2.112), we conclude that

∥Th(ϕh)−Th(φh)∥1,Ω ≤ CT,d Lf
{
Lg+Lϑ ∥∇Th(φh)∥0,r∗;Ω

}
∥ϕh−φh∥1,Ω ∀ϕh, φh ∈ Hh , (2.113)

with the positive constant CT,d := CS,dCS̃,d
. Regarding the estimate (2.113), we emphasize here that,

while it proves the continuity of Th, the lack of control of the term ∥∇Th(φh)∥0,r∗;Ω does not allow us
to conclude Lipschitz-continuity and hence nor contractivity of this operator. Consequently, we are
able to establish next only the existence of a fixed point of Th.

Theorem 2.16. The Galerkin scheme (2.100) has at least one solution (σh,uh, ϕh) ∈ X2,h×M1,h×Hh,
with ϕh ∈Wh (cf. (2.109)). Moreover, there hold

∥σh∥X2 ≤ Cr
αd

∥uD∥1/s,r;Γ +
|Ω|1/r

β2,d

(
1 +

2

αd µ

)
f2 , and

∥uh∥M1 ≤ Cr
β1,d

(
1 +

2

αd µ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1,d β2,d

(
1 +

2

αd µ

)
f2 .

(2.114)

Proof. Thanks to Lemma 2.15 and the continuity of Th (cf. (2.113)), and bearing in mind the equiva-
lence between (2.100) and (2.104), a straightforward application of Brouwer’s theorem (cf. [28, Theorem
9.9-2]) implies the first conclusion of this theorem. In turn, the fact that (σh,uh) = Sh(ϕh) and the a
priori estimates from (2.107) yield (2.114), thus completing the proof.

2.4.4 A priori error analysis

We now aim to derive an a priori error estimate for the Galerkin scheme (2.100) with arbitrary
finite element subspaces satisfying the hypotheses introduced in Section 2.4.2. In other words, we are
interested in establishing a Céa estimate for the global error

∥σ − σh∥X2 + ∥u− uh∥M1 + ∥ϕ− ϕh∥1,Ω ,

where (σ,u, ϕ) ∈ X2 ×M1 × H1
0(Ω) and (σh,uh, ϕh) ∈ X2,h ×M1,h × Hh are the unique solutions of

(2.39) and (2.100) , respectively, with ϕ ∈W (cf. (2.82)) and ϕh ∈Wh (cf. (2.109)). For this purpose,
and in order to employ suitable Strang estimates, we rewrite (2.39) and (2.100) as the following pairs
of corresponding continuous and discrete formulations

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1 ,

b2(σ,v) = Fϕ(v) ∀v ∈ M2 ,

a(σh, τ h) + b1(τ h,uh) = G(τ h) ∀ τ h ∈ X1,h,

b2(σh,vh) = Fϕh(vh) ∀vh ∈ M2,h,

(2.115)

and
Aσ(ϕ, ψ) = Gu(ψ) ∀ψ ∈ H1

0(Ω) ,

Aσh(ϕh, ψh) = Guh(ψh) ∀ψh ∈ Hh .
(2.116)



2.4. The Galerkin scheme 49

In what follows, given a subspace Zh of a generic Banach space (Z, ∥ · ∥Z), we set for each z ∈ Z

dist (z, Zh) := inf
zh∈Zh

∥z − zh∥Z .

Then, applying the Strang a priori error estimate from [12, Proposition 2.1, Corollary 2.3, and
Theorem 2.3] to the context given by (2.115), we deduce that there exists a positive constant ĈST ,
depending only on αd, β1,d, β1,d, ∥a∥, ∥b1∥, and ∥b2∥, where ∥a∥ ≤ 2

µ and ∥b1∥, ∥b2∥ ≤ 1 (cf. (2.57)),
such that

∥σ − σh∥X2 + ∥u− uh∥M1 ≤ ĈST

{
dist (σ, X2,h) + dist (u,M1,h) + ∥Fϕ − Fϕh∥M ′

2,h

}
. (2.117)

Then, proceeding as for the derivation of (2.85) (cf. proof of Lemma 2.9), we readily find that

∥Fϕ − Fϕh∥M ′
2,h

≤ Lf ∥ir∥ ∥ϕ− ϕh∥1,Ω , (2.118)

which, replaced back into (2.117), gives

∥σ − σh∥X2 + ∥u− uh∥M1

≤ ĈST

{
dist (σ, X2,h) + dist (u,M1,h) + Lf ∥ir∥ ∥ϕ− ϕh∥1,Ω

}
.

(2.119)

On the other hand, applying now the classical first Strang Lemma for elliptic variational problems
(cf. [41, Lemma 2.27]) to the context given by (2.116), and then adding and subtracting ϕ to the first
components of the expressions involving Aσ and Aσh in the corresponding consistent term, and finally
employing the boundedness of these bilinear forms (cf. (2.76) - (2.77)), we arrive at

∥ϕ− ϕh∥1,Ω ≤ C̃ST

{
dist (ϕ,Hh) + ∥Gu −Guh∥H′

h
+ ∥Aσ(ϕ, ·)−Aσh(ϕ, ·)∥H′

h

}
, (2.120)

where C̃ST is a positive constant depending only on α̃ (cf. (2.78) - (2.79)) and the upper bound ϑ2 of
∥Aσh∥ (cf. (2.76) - (2.77)). Next, proceeding exactly as for the derivations of (2.94) and (2.96), we
find that for each φh ∈ Hh there hold

|(Gu −Guh)(φh)| ≤ Lg ∥is∥ ∥u− uh∥0,r;Ω ∥φh∥1,Ω

and
|Aσ(ϕ, φh)−Aσh(ϕ, φh)| ≤ LϑCr,ε ∥iε∥Cε g2 ∥σ − σh∥0,r;Ω ∥φh∥1,Ω ,

respectively, from which it follows that

∥Gu −Guh∥H′
h
≤ Lg ∥is∥ ∥u− uh∥M1 (2.121)

and
∥Aσ(ϕ, ·)−Aσh(ϕ, ·)∥H′

h
≤ LϑCr,ε ∥iε∥Cε g2 ∥σ − σh∥X2 . (2.122)

In this way, replacing (2.121) and (2.122) back into (2.120), we conclude that

∥ϕ− ϕh∥1,Ω ≤ C̃ST

{
dist (ϕ,Hh) + Lg ∥is∥ ∥u− uh∥M1 + LϑCr,ε ∥iε∥Cε g2 ∥σ − σh∥X2

}
. (2.123)
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In turn, using the foregoing bound in (2.119), and performing some algebraic arrangements, we get

∥σ − σh∥X2 + ∥u− uh∥M1 ≤ C̄0

{
dist (σ, X2,h) + dist (u,M1,h) + dist (ϕ,Hh)

}
+ C̄1 Lf Lg ∥u− uh∥M1 + C̄2 Lf Lϑ g2 ∥σ − σh∥X2 ,

(2.124)

where C̄0 := ĈST max
{
1, Lf ∥ir∥ C̃ST

}
, and C̄1 and C̄2 are positive constants depending only on ĈST ,

C̃ST , ∥ir∥, ∥is∥, ∥iε∥, Cr,ε, and Cε.

According to the previous analysis, we are now in a position to establish the announced Céa estimate.

Theorem 2.17. Assume that the data satisfy

C̄1 Lf Lg ≤ 1

2
and C̄2 Lf Lϑ g2 ≤ 1

2
. (2.125)

Then, there exists a positive constant C, independent of h, such that

∥σ − σh∥X2 + ∥u− uh∥M1 + ∥ϕ− ϕh∥1,Ω

≤ C
{
dist (σ, X2,h) + dist (u,M1,h) + dist (ϕ,Hh)

}
.

(2.126)

Proof. It suffices to employ the assumptions from (2.125) in (2.124), and then combine the resulting
estimate with (2.123).

2.5 Specific finite element subspaces

We now restrict our analysis to the 2D case and define specific finite element subspaces X2,h ⊆ X2,
M2,h ⊆ M2, X1,h ⊆ X1, M1,h ⊆ M1, and Hh ⊆ H1

0(Ω), satisfying the abstract hypotheses (H.1) and
(H.2) that were introduced in Section 2.4.2 in order to guarantee the well-posedness of the Galerkin
scheme (2.100).

2.5.1 Preliminaries

We begin by letting
{
Th
}
h>0

be a regular family of triangulations of Ω̄, which are made of triangles
K of diameters hK , and define the meshsize h := max

{
hK : K ∈ Th

}
, which also serves as the index

of Th. Then, given an integer k ≥ 0 and K ∈ Th, we let Pk(K) be the space of polynomials defined on K
of degree ≤ k, and denote its vector version by Pk(K). In addition, we let RTk(K) = Pk(K)⊕Pk(K)x

be the local Raviart-Thomas space defined on K of order k, where x stands for a generic vector in R2,
and denote by RTk(K) its corresponding tensor counterpart, that is, letting τ i be the i-th row of a
tensor τ , we set

RTk(K) :=
{
τ ∈ H(div;K) : τ i ∈ RTk(K) ∀ i ∈

{
1, 2
}}

.

In turn, we let Pk(Th) and RTk(Th) be the corresponding global versions of Pk(K) and RTk(K),
respectively, that is

Pk(Th) :=
{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,
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and
RTk(Th) :=

{
τ h ∈ H(div; Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th

}
.

We stress here that for each t ∈ [1,+∞] there hold Pk(Th) ⊆ Lt(Ω) and RTk(Th) ⊆ Ht(divt; Ω) (cf.
(2.24)), which is implicitly utilized below in Section 2.5.2 to define the announced specific finite element
subspaces. Some useful properties concerning Pk(Th) and RTk(Th) are needed first. For this purpose,
we now introduce for each t ∈ (1,+∞) the space

Ht :=
{
τ ∈ Ht(divt; Ω) : τ |K ∈ W1,t(K) ∀K ∈ Th

}
,

and let Πkh : Ht → RTk(Th) be the global Raviart-Thomas interpolation operator (cf. [14, Section 2.5]).
Then, we recall from [14, Proposition 2.5.2 and eq. (2.5.27)] that the commuting diagram property
states that

div(Πkh(τ )) = Pk
h(div(τ )) ∀ τ ∈ Ht , (2.127)

where Pk
h : L1(Ω) → Pk(Th) is the usual orthogonal projector with respect to the L2(Ω)-inner product,

that is given w ∈ L1(Ω), Pk
h(w) is the unique element in Pk(Th) satisfying∫

Ω
Pk
h(w) · vh =

∫
Ω
w · vh ∀vh ∈ Pk(Th) . (2.128)

Regarding the approximation properties of Pk
h and Πkh in the present context of the Banach spaces

Lt(Ω) and Ht
0(divt; Ω), we remark that they follow in the usual way by employing now the Wm,t

version of the Deny-Lions Lemma (cf. [41, Lemma B.67] with integer m ≥ 0 and t ∈ (1,+∞), the
associated scaling estimates (cf. [41, Lemma 1.101]), and the regularity of {Th}h>0. Indeed, one
deduces the existence of positive constants C1, C2, independent of h, such that for integers l and m

verifying 0 ≤ l ≤ k + 1 and 0 ≤ m ≤ l, there hold

|w − Pk
h(w)|m,t;Ω ≤ C1 h

l−m |w|l,t;Ω ∀w ∈ Wl,t(Ω) , (2.129)

and

|div(τ )− div(Πkh(τ ))|m,t;Ω ≤ C1 h
l−m |div(τ )|l,t;Ω ∀ τ ∈ Wl,t(Ω) with div(τ ) ∈ Wl,t(Ω) , (2.130)

whereas for integers l and m verifying 1 ≤ l ≤ k + 1 and 0 ≤ m ≤ l, there holds

|τ −Πkh(τ )|m,t;Ω ≤ C2 h
l−m |τ |l,t;Ω ∀ τ ∈ Wl,t(Ω) . (2.131)

Note that actually (2.130) follows from (2.127) and a direct application of (2.129) to w = div(τ ).
Also, we highlight that (2.129) is first derived for 1 ≤ l ≤ k + 1, and then using only the scaling
estimates one proves the stability of Pk

h , that is the existence of a positive constant c, independent of
h, such that

∥Pk
h(w)∥0,t;Ω ≤ c ∥w∥0,t;Ω ∀w ∈ Lt(Ω) . (2.132)

In turn, employing the triangle inequality and (2.131) with l = 1 and m = 0, we conclude the bound-
edness of Πkh : W1,t(Ω) → Lt(Ω), which means that there exists a positive constant C, independent of
h, such that

∥Πkh(τ )∥0,t;Ω ≤ C ∥τ∥1,t;Ω ∀ τ ∈ W1,t(Ω) . (2.133)
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Finally, taking in particular m = 0 in (2.131) and (2.130), we readily find that there exists a positive
constant C3, independent of h, such that for 1 ≤ l ≤ k + 1 there holds

∥τ −Πkh(τ )∥t,divt;Ω ≤ C3 h
l
{
|τ |l,t;Ω + |div(τ )|l,t;Ω

}
(2.134)

for all τ ∈ Wl,t(Ω) with div(τ ) ∈ Wl,t(Ω).

2.5.2 The finite element subspaces

Appropriate finite element subspaces approximating the unknowns of the pseudostress-based mixed
variational formulation for the elasticity problem are defined as follows

X2,h := X2 ∩ RTk(Th) :=
{
ζh ∈ Hr

0(divr; Ω) : ζh|K ∈ RTk(K) ∀K ∈ Th
}
,

M2,h := M2 ∩ Pk(Th) :=
{
vh ∈ Ls(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

X1,h := X1 ∩ RTk(Th) :=
{
τ h ∈ Hs

0(divs; Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th
}
,

M1,h := M1 ∩ Pk(Th) :=
{
vh ∈ Lr(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
.

(2.135)

In turn, the unknown of the diffusion problem is approximated by Lagrange finite elements of degree
≤ k + 1, that is

Hh :=
{
ψh ∈ C(Ω) ∩H1

0(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th
}
. (2.136)

Regarding the definitions in (2.135) we stress that, while the pairs
(
X2,h,M2,h

)
and

(
X1,h,M1,h

)
are topologically different, they do coincide algebraically, and hence the stiffness matrices associated
to the bilinear forms b1 and b2 are exactly the same. Moreover, since div(Xi,h) ⊆ Mi,h, i ∈

{
1, 2
}
,

it follows that the corresponding discrete kernels of the bilinear forms b1 and b2 coincide as well, and
that they are given by the space

Kk
h,0 :=

{
τ h ∈ Kk

h :

∫
Ω
tr (τ h) = 0

}
, (2.137)

where
Kk
h :=

{
τ h ∈ RTk(Th) : div(τ h) = 0

}
. (2.138)

Moreover, similarly as derived for the vector version in [39, Lemma 2.1] (see also [52, Lemma 4.1] for
a slight variant of it), one can show that

Kk
h = curl

(
Pk+1,0(Th)

)
, (2.139)

where
Pk+1,0(Th) :=

{
ϕh ∈ H1(Ω) : ϕh|K ∈ Pk+1(K) ∀K ∈ Th ,

∫
Ω
ϕh = 0

}
,

and curl is the usual curl operator acting component-wise.
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Now, we let Θk
h : L1(Ω) → Kk

h be the L2(Ω)-orthogonal projector, that is, given ζ ∈ L1(Ω), Θk
h(ζ) is

the unique element in Kk
h satisfying∫

Ω
Θk
h(ζ) : τ h =

∫
Ω
ζ : τ h ∀ τ h ∈ Kk

h . (2.140)

Then, proceeding analogously to the vector version in [39, Theorem 3.1] (see also [52, Lemma 4.2] for
a slight variant of it), and employing now (2.139), it can be proved in the present tensor version that
for each t ∈ (1,+∞) and for each integer k ≥ 0, there exist positive constants Ckt and C̄kt , independent
of h, such that, defining

ckt :=



Ckt if Ω is convex ,

C̄kt
{
− log(h)

}|1−2/t| if Ω is non-convex and k = 0 ,

C̄kt if Ω is non-convex and k ≥ 1 ,

(2.141)

there holds
∥Θk

h(τ )∥0,t;Ω ≤ ckt ∥τ∥0,t;Ω ∀ τ ∈ H̃t(divt; Ω) , (2.142)

where
H̃t(divt; Ω) :=

{
τ ∈ Ht(divt; Ω) : div(τ ) = 0 in Ω

}
. (2.143)

Whether the boundedness property (2.142) is satisfied or not in 3D is, up to our knowledge, still an
open problem, and this fact is precisely the reason why we have restricted the analysis in the present
Section 2.5 to the 2D case.

2.5.3 The discrete inf-sup conditions for Sh

In this section we show that the specific finite element subspaces introduced in Section 2.5.2 (cf.
(2.135)) verify the hypotheses (H.1) and (H.2). To this end, we first introduce the deviatoric of Kk

h,
that is

Kk,d
h :=

{
τ d
h : τ h ∈ Kk

h

}
, (2.144)

and let Θk,d
h : L1(Ω) → Kk,d

h be the projector defined for each τ ∈ L1(Ω) as∫
Ω
Θk,d
h (τ ) : ζh =

∫
Ω
τ : ζh ∀ ζh ∈ Kk,d

h . (2.145)

Then, we have the following identity relating Θk,d
h and Θk

h.

Lemma 2.18. There holds

Θk,d
h

(
Θk
h(τ )

)
=
(
Θk
h(τ )

)d ∀ τ ∈ L1(Ω) . (2.146)

Proof. Given τ ∈ L1(Ω), it follows from (2.144) and (2.145) that for each τ h ∈ Kk
h there holds∫

Ω
Θk,d
h

(
Θk
h(τ )

)
: τ d

h =

∫
Ω
Θk
h(τ ) : τ

d
h =

∫
Ω

(
Θk
h(τ )

)d
: τ d

h .

Hence, since both Θk,d
h

(
Θk
h(τ )

)
and

(
Θk
h(τ )

)d belong to Kk,d
h , the identity (2.146) is concluded.
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We suppose from now on that the operators Θk
h satisfy the following asymptotic property: for each

t ∈ (1,+∞) and for each integer k ≥ 0 there exists hkt > 0 such that

||| I−Θk
h |||t := sup

τ∈H̃t(divt;Ω)

τ ̸=0

∥τ −Θk
h(τ )∥0,t;Ω

∥τ∥0,t;Ω
< 1 ∀h ≤ hkt . (2.147)

Numerical evidences supporting this assumption are provided later on in Section 2.6.

As a consequence of Lemma 2.18 and (2.147), we are able to provide next the Lt(Ω)-stability of Θk,d
h

when restricted to H̃t(divt; Ω).

Lemma 2.19. For each t ∈ (1,+∞) and for each integer k ≥ 0, there exists a positive constant ck,dt
such that

∥Θk,d
h (τ )∥0,t;Ω ≤ ck,dt ∥τ∥0,t;Ω ∀ τ ∈ H̃t(divt; Ω) , ∀h ≤ hkt . (2.148)

Proof. Given τ ∈ H̃t(divt; Ω), we first observe, thanks to the idempotence property of I−Θk
h, that

Θk,d
h (τ )−Θk,d

h

(
Θk
h(τ )

)
= Θk,d

h

(
(I−Θk

h)(τ )
)
= Θk,d

h

(
(I−Θk

h)
m(τ )

)
∀m ∈ N ,

from which it follows that

∥Θk,d
h (τ )−Θk,d

h

(
Θk
h(τ )

)
∥0,t;Ω ≤ ∥Θk,d

h ∥t ||| I−Θk
h |||mt ∥τ∥0,t;Ω ∀m ∈ N , (2.149)

where

∥Θk,d
h ∥t := sup

τ∈L1(Ω)

τ ̸=0

∥Θk,d
h (τ )∥0,t;Ω
∥τ∥0,t;Ω

.

In this way, invoking (2.147), taking lim
m→+∞

in (2.149), and employing (2.146) (cf. Lemma 2.18), we
conclude that

Θk,d
h (τ ) =

(
Θk
h(τ )

)d ∀h ≤ hkt . (2.150)

On the other hand, simple algebraic computations and (2.51) give

∥tr (τ ) I∥0,t;Ω = n1/t ∥tr (τ )∥0,t;Ω ≤ n ∥τ∥0,t;Ω ,

which readily implies
∥τ d∥0,t;Ω ≤ 2 ∥τ∥0,t;Ω ∀ τ ∈ Lt(Ω) . (2.151)

Hence, employing (2.151) and (2.142), we deduce from (2.150) that

∥Θk,d
h (τ )∥0,t;Ω ≤ 2 ckt ∥τ∥0,t;Ω ∀h ≤ hkt , (2.152)

which constitutes the required inequality (2.148) with ck,dt = 2 ckt .

Having proved Lemma 2.19, we proceed in what follows to establish the discrete analogues of Lemmas
2.4 and 2.5, for which we suitably adapt their respective proofs to the present context. We begin with
the discrete inf-sup conditions for a.
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Lemma 2.20. Assume that r and s satisfy the final ranges specified by (2.88) and (2.89), that is
r ∈

(
2, 2n

n−1

]
and s ∈

[
2n
n+1 , 2

)
. Then, there exist positive constants Md and αd such that for each

λ > Md and for each h ≤ h0 := min
{
hkr , h

k
s

}
, there hold

sup
τh∈Kk

h,0

τh ̸=0

a(ζh, τ h)

∥τ h∥X1

≥ αd ∥ζh∥X2 ∀ ζh ∈ Kk
h,0 , (2.153)

and
sup

ζh∈Kkh,0

a(ζh, τ h) > 0 ∀ τ h ∈ Kk
h,0, τ h ̸= 0 . (2.154)

Proof. Similarly to the proof of Lemmas 2.4, we first observe that, given ζh ∈ Kk
h,0, there holds the

discrete analogue of (2.63), namely

sup
τh∈Kk

h,0

τh ̸=0

a(ζh, τ h)

∥τ h∥X1

≥ 1

µ
sup

τh∈Kk
h,0

τh ̸=0

∫
Ω
ζdh : τ d

h

∥τ h∥X1

− C̃r

n1/s
(
nλ+ (n+ 1)µ

) ∥ζdh∥0,r;Ω , (2.155)

whence the rest of the proof reduces to get a suitable lower bound for the supremum on the right hand
side of (2.155). To this end, we proceed as in (2.64) and set

ζh,s :=

{
|ζdh|r−2 ζdh if ζdh ̸= 0,

0 if ζdh = 0 ,
(2.156)

which belongs to Ls(Ω) and satisfies (cf. (2.65))∫
Ω
ζdh : ζh,s = ∥ζdh∥r0,r;Ω = ∥ζh,s∥s0,s;Ω = ∥ζdh∥0,r;Ω ∥ζh,s∥0,s;Ω . (2.157)

Then, we recall the definition of the operator Ds (cf. Lemma 2.2) and let τ̃ h ∈ Kk
h (cf. (2.138)) such

that τ̃ d
h = Θk,d

h (Ds(ζh,s)) ∈ Kk,d
h (cf. (2.144)). In this way, defining the constant

ch :=
1

n|Ω|

∫
Ω
tr (τ̃ h) ∈ R ,

it follows that τ̃ h − chI ∈ Kk
h,0, and hence

sup
τh∈Kk

h,0

τh ̸=0

∫
Ω
ζdh : τ d

h

∥τ h∥X1

≥

∫
Ω
ζdh : (τ̃ h − chI)d

∥τ̃ h − chI∥0,s;Ω
=

∫
Ω
ζdh : τ̃ d

h

∥τ̃ h − chI∥0,s;Ω
. (2.158)

Now, employing the characterization of Θk,d
h (cf. (2.145)), the identity (2.48) satisfied by Ds, and

(2.157), we find that ∫
Ω
ζdh : τ̃ d

h =

∫
Ω
ζdh : Θk,d

h (Ds(ζh,s)) =

∫
Ω
ζdh : Ds(ζh,s)

=

∫
Ω
ζdh : ζh,s = ∥ζdh∥0,r;Ω ∥ζh,s∥0,s;Ω .

(2.159)
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In turn, applying (2.50) (cf. Lemma 2.3) to τ̃ h − chI, and making use of the boundedness of Θk,d
h (cf.

(2.148)) and Ds (cf. Lemma 2.2), we get

∥τ̃ h − chI∥0,s;Ω ≤ Ĉs ∥τ̃ d
h∥0,s;Ω = Ĉs ∥Θk,d

h (Ds(ζh,s))∥0,s;Ω

≤ Ĉs c
k,d
s ∥Ds∥ ∥ζh,s∥0,s;Ω ∀h ≤ hks .

(2.160)

Therefore, replacing (2.159) and (2.160) back into (2.158), and then the resulting estimate in (2.155),
we arrive at

sup
τh∈Kk

h,0

τh ̸=0

a(ζh, τ h)

∥τ h∥X1

≥

{
1

µ Ĉs c
k,d
s ∥Ds∥

− C̃r

n1/s
(
nλ+ (n+ 1)µ

)} ∥ζdh∥0,r;Ω ∀h ≤ hks , (2.161)

from which, choosing λ sufficiently large such that

C̃r

n1/s
(
nλ+ (n+ 1)µ

) <
1

2µ Ĉs c
k,d
s ∥Ds∥

,

that is
λ > Ms,d :=

µ

n1+1/s
max

{
2µ Ĉs C̃r c

k,d
s ∥Ds∥ − n1/s(n+ 1), 0

}
,

and applying (2.50) to ζh, we conclude (2.153), with αd := 1

2µ Ĉs Ĉr c
k,d
s ∥Ds∥

, for each h ≤ hks . Similarly,

given τ h ∈ Kk
h,0, τ h ̸= 0, we proceed analogously as above, but exchanging the roles of τ h and ζh, and

obtain

sup
ζh∈Kkh,0

a(ζh, τ h) ≥ sup
ζh∈Kk

h,0

ζh ̸=0

a(ζh, τ h)

∥ζh∥X2

≥ 1

2µ Ĉr Ĉs c
k,d
r ∥Dr∥

∥τ h∥X1 > 0 ∀h ≤ hkr , (2.162)

for
λ > Mr,d :=

µ

n1+1/r
max

{
2µ Ĉr C̃s c

k,d
r ∥Dr∥ − n1/r(n+ 1), 0

}
,

which proves (2.154) for each h ≤ hkr . Finally, defining Md := max{Ms,d,Mr,d}, the proof is com-
pleted.

The discrete inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}, are provided next.

Lemma 2.21. Assume that r and s satisfy the final ranges specified by (2.88) and (2.89), that is
r ∈

(
2, 2n

n−1

]
and s ∈

[
2n
n+1 , 2

)
. Then, there exist positive constants β1,d, β2,d, independent of h, such

that for each i ∈ {1, 2} there holds

sup
τh∈Xi,h
τ ̸=0

bi(τ h,vh)

∥τ h∥Xi
≥ βi,d ∥vh∥Mi ∀vh ∈Mi,h . (2.163)

Proof. We adapt the proof of Lemma 2.5 to show (2.163) only for i = 2 since the case i = 1 is analogous.
Indeed, given vh ∈M2,h ⊆ M2 = Ls(Ω), we follow (2.70) and define first

vh,r :=

{
|vh|s−2 vh if vh ̸= 0 ,

0 if vh = 0 ,
(2.164)
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which belongs to Lr(Ω) and, as in (2.71), satisfies∫
Ω
vh · vh,r = ∥vh∥s0,s;Ω = ∥vh,r∥r0,r;Ω = ∥vh∥0,s;Ω ∥vh,r∥0,r;Ω . (2.165)

Next, proceeding similarly to the proof of [52, Lemma 4.5], we let O be a bounded convex polygonal
domain containing Ω̄, and introduce

g =

{
vh,r in Ω ,

0 on O\Ω̄ ,
(2.166)

which is clearly seen to belong to Lr(O) with ∥g∥0,r;O = ∥vh,r∥0,r;Ω. Then, applying the elliptic
regularity result provided in [43, Corollary 1], we deduce that there exists a unique z ∈ W2,r(O) ∩
W1,r

0 (O) solution of
∆z = g in O , z = 0 on ∂O , (2.167)

and that there exists a positive constant Creg, depending only on O, such that

∥z∥2,r;O ≤ Creg ∥vh,r∥0,r;Ω . (2.168)

In this way, defining now ζ := ∇z|Ω ∈ W1,r(Ω), it follows from (2.166), (2.167), and (2.168) that

div(ζ) = vh,r in Ω and ∥ζ∥1,r;Ω ≤ Creg ∥vh,r∥0,r;Ω . (2.169)

Thus, letting ζh be the Hr
0(divr; Ω)-component (cf. (2.31)) of Πkh(ζ), and employing the commuting

diagram property (2.127) and the identity from (2.169), we observe that

div(ζh) = div(Πkh(ζ)) = Pk
h(div(ζ)) = Pk

h(vh,r) in Ω , (2.170)

so that, applying the stability estimate of Pk
h (cf. (2.132)), it follows that

∥div(ζh)∥0,r;Ω ≤ c ∥vh,r∥0,r;Ω . (2.171)

On the other hand, according to (2.31) and the notations introduced there, and using the triangle and
Holder inequality, and (2.51), it is easy to show that for each t ∈ (1,+∞) there holds

∥τ 0∥0,t;Ω ≤ 2 ∥τ∥0,t;Ω ∀ τ ∈ Ht(divt; Ω) . (2.172)

Hence, employing now (2.172), the stability estimate of Πkh (cf. (2.133)), and the inequality from
(2.169), we find that

∥ζh∥0,r;Ω ≤ 2 ∥Πkh(ζ)∥0,r;Ω ≤ 2C ∥ζ∥1,r;Ω ≤ 2C Creg ∥vh,r∥0,r;Ω , (2.173)

which, jointly with (2.171), yield the existence of a positive constant Ĉ, independent of h, such that
(cf. (2.25))

∥ζh∥X2 = ∥ζh∥0,r;Ω + ∥div(ζh)∥0,r;Ω ≤ Ĉ ∥vh,r∥0,r;Ω . (2.174)

Finally, bearing in mind (2.170), (2.128), (2.165), and (2.174), we obtain

sup
τh∈X2,h

τh ̸=0

b2(τ h,vh)

∥τ h∥X2

≥

∫
Ω
vh · div(ζh)

∥ζh∥X2

=

∫
Ω
vh · Pk

h(vh,r)

∥ζh∥X2

=

∫
Ω
vh · vh,r

∥ζh∥X2

=
∥vh∥0,s;Ω ∥vh,r∥0,r;Ω

∥ζh∥X2

≥ 1

Ĉ
∥vh∥M2 ,

which yields (2.163) for i = 2 with β2,d := 1

Ĉ
.
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2.5.4 The rates of convergence

The rates of convergence of the Galerkin scheme (2.100) with the specific finite element subspaces
introduced in Section 2.5.2 are provided next. To this end, we first collect the approximation properties
of X2,h and M1,h (cf. (2.135)), which follow from (2.134) (for t = r) and (2.129) (for m = 0 and t = r),
respectively, along with interpolation estimates of Sobolev spaces. More precisely, they are given as
follows:

(APσ
h ) there exists C > 0, independent of h, such that for each l ∈ [1, k+1], and for each τ ∈ Wl,r(Ω)

with div(τ ) ∈ Wl,r(Ω), there holds

dist (τ , X2,h) := inf
τh∈X2,h

∥τ − τ h∥r,divr;Ω ≤ C hl
{
∥τ∥l,r;Ω + ∥div(τ )∥l,r;Ω

}
.

(APu
h) there exists C > 0, independent of h, such that for each l ∈ [0, k+1], and for each v ∈ Wl,r(Ω),

there holds
dist (v,M1,h) := inf

vh∈M1,h

∥v − vh∥0,r;Ω ≤ C hl ∥v∥l,r;Ω .

In turn, the approximation property of Hh, which makes use of interpolation estimates of Sobolev
spaces as well, is stated as indicated below (cf. [41, Corollary 1.109]):

(APϕ
h) there exists C > 0, independent of h, such that for each l ∈ (0, k+1], and for each φ ∈ Hl+1(Ω),

there holds
dist (φ,Hh) := inf

φh∈Hh
∥φ− φh∥1,Ω ≤ C hl ∥φ∥l+1,Ω .

Consequently, we can state the following main theorem.

Theorem 2.22. Let (σ,u, ϕ) ∈ X2 ×M1 × H1
0(Ω) be the unique solution of (2.39) with ϕ ∈ W (cf.

(2.82)), and let (σh,uh, ϕh) ∈ X2,h ×M1,h × Hh be a solution of (2.100) with ϕh ∈ Wh (cf. (2.109)),
whose existences are guaranteed by Theorems 2.12 and 2.16, respectively. Assume that (2.125) (cf.
Theorem 2.17) holds, and that there exists l ∈ [1, k + 1] such that σ ∈ Wl,r(Ω), div(σ) ∈ Wl,r(Ω),
u ∈ Wl,r(Ω) and ϕ ∈ Hl+1(Ω). Then there exists a constant C > 0, independent of h, such that

∥σ − σh∥X2 + ∥u− uh∥M1 + ∥ϕ− ϕh∥1,Ω

≤ C hl
{
∥σ∥l,r;Ω + ∥div(σ)∥l,r;Ω + ∥u∥l,r;Ω + ∥ϕ∥l+1,Ω

}
.

Proof. It follows directly from the Céa estimate (2.126) and the above approximation properties.

2.6 Numerical results

In this section we report numerical experiments illustrating the performance of the Galerkin scheme
(2.100) with the specific finite element spaces defined in (2.135), and confirming the theoretical rates
of convergence provided by Theorem 2.22. We begin by recalling that part of the analysis developed in
Section 2.5, namely the one referring to the discrete inf-sup conditions for the bilinear form a, depends
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on the hypothesis (2.147), which establishes an asymptotic behavior of the operators Θk
h. However,

since proving this assumption has remained elusive, in what follows we present numerical evidence
supporting its eventual validity. To this end, we now consider the convex and non-convex domains
given by ΩS := (0, 1)2 and ΩL := (−1, 1)2 \ [0, 1]2, respectively, and let τ 1, τ 2, and τ 3 be the tensor
fields defined for each x := (x1, x2)

t ∈ ΩS ∪ ΩL as:

τ 1 := curl

(
exp(−x21 − x22)

exp(−x1x2)

)
=

(
−2x2 exp(−x21 − x22) 2x1 exp(−x21 − x22)

−x1 exp(−x1x2) x2 exp(−x1x2)

)
,

τ 2 := curl

(
π−1 sin(πx1) cos(πx2)

π−1 cos(πx1) sin(πx2)

)
=

(
− sin(πx1) sin(πx2) − cos(πx1) cos(πx2)

cos(πx1) cos(πx2) sin(πx1) sin(πx2)

)
and

τ 3 := curl

(
1

3

{
(x1 − 2)2 + (x2 − 2)2

}3/2
(

1

1

))
=
√
(x1 − 2)2 + (x2 − 2)2

(
x2 − 2 2− x1

x2 − 2 2− x1

)
,

which are clearly all divergence-free. Then, for p = 4
3 , k ∈ {0, 1}, and five regular triangulations Th of

ΩS and ΩL, respectively, we compute the expressions

ckh,S(τ ) :=
∥τ −Θk

h(τ )∥0,p;ΩS
∥τ∥0,p;ΩS

and ckh,L(τ ) :=
∥τ −Θk

h(τ )∥0,p;ΩL
∥τ∥0,p;ΩL

∀ τ ∈
{
τ 1, τ 2, τ 3

}
,

which are displayed below in Table 2.1. We notice there that these values remain not only below 1, as
demanded by (2.147), but they actually approach 0 as the meshsize h tends to 0, thus satisfying by
far the required upper bound. The same behavior was observed in many other examples, and hence
we actually have no evidence casting doubt on the validity of this assumption. However, irrespective
of the above, we stress that (2.147) is employed in the proof of Lemma 2.19 only to obtain the identity
(2.150), and hence, even in the unlikely case that (2.147) does not hold, one might still have the chance
to arrive to (2.150) through another argument.

Next, we consider the finite element subspaces defined in (2.135) with k ∈ {0, 1, 2}, to illustrate the
performance of the mixed-primal finite element scheme (2.100) and confirm the rates of convergence
provided by Theorem 2.22, through three numerical examples. We begin by noticing that the total
number of degrees of freedom (or unknowns) of (2.100) is given for n = 2 by

N :=
{
number of nodes of Th

}
+
(
2(k + 1) + k

)
×
{
number of edges of Th

}
+
(
2k(k + 1) + (k + 1)(k + 2) + 1

2k(k − 1)
)
×
{
number of elements of Th

}
+ 1 ,

whereas for n = 3 it becomes

N :=
{
number of nodes of Th

}
+ k ×

{
number of edges of Th

}
+
(
2k2 + 4k + 3

)
×
{
number of faces of Th

}
+
(
13k3+42k2+53k+18

6

)
×
{
number of elements of Th

}
+ 1 .

Now, regarding the resolution itself of (2.100), we remark that the null integral mean condition for the
traces of tensors in the space X2,h (cf. (2.135)) is imposed via a real Lagrange multiplier, and that the
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ΩS ΩL

τ h c0h,S(τ ) c1h,S(τ ) h c0h,L(τ ) c1h,L(τ )
0.1414 6.91e-02 1.58e-03 0.1414 8.43e-02 2.21e-03
0.0707 3.49e-02 4.00e-04 0.0471 2.85e-02 2.50e-04

τ 1 0.0471 2.33e-02 1.78e-04 0.0283 1.71e-02 9.05e-05
0.0202 1.00e-02 3.29e-05 0.0202 1.22e-02 4.63e-05
0.0109 5.40e-03 9.56e-06 0.0177 1.07e-02 3.54e-05
0.1414 1.52e-01 8.71e-03 0.1414 1.53e-01 8.79e-03
0.0707 7.66e-02 2.21e-03 0.0471 5.11e-02 9.88e-04

τ 2 0.0471 5.11e-02 9.85e-04 0.0283 3.07e-02 3.56e-04
0.0202 2.19e-02 1.82e-04 0.0202 2.19e-02 1.82e-04
0.0109 1.18e-02 5.28e-05 0.0177 1.92e-02 1.39e-04
0.1414 2.07e-02 1.63e-04 0.1414 1.44e-02 7.89e-05
0.0707 1.04e-02 4.08e-05 0.0471 4.81e-03 8.80e-06

τ 3 0.0471 6.90e-03 1.82e-05 0.0283 2.89e-03 3.17e-06
0.0202 2.96e-03 3.34e-06 0.0202 2.06e-03 1.62e-06
0.0109 1.59e-03 9.68e-07 0.0177 1.81e-03 1.24e-06

Table 2.1: Numerical evidence eventually supporting (2.147).

nonlinear algebraic systems obtained are solved following the discrete fixed-point strategy suggested
by (2.104), whose computational implementation is given by a C++ code. We take as initial guess the
trivial solution, and remark in advance that for each one of the examples to be reported below, three
iterations are required to achieve a tolerance of 10−6.

Furthermore, given r as specified in (2.88), we introduce the individual errors:

e(σ) := ∥σ − σh∥r,divr;Ω , e(u) := ∥u− uh∥0,r;Ω ,

e(ϕ) := ∥ϕ− ϕh∥1,Ω and e(ρ) := ∥ρ− ρh∥0,r;Ω ,

where, according to (2.9) and (2.32), ρh is computed as:

ρh := σh + σt
h −

(
λ+ 2µ

nλ+ (n+ 1)µ
tr(σh) − nλ+ 2µ

n|Ω|

∫
Γ
uD · ν

)
I . (2.175)

In this way, the respective experimental rates of convergence are defined as:

r(∗) :=
log(e(∗) / e′(∗))

log(h /h′)
∀ ∗ ∈

{
σ,u, ϕ,ρ

}
,

where e(∗) and e′(∗) denote errors computed on two consecutive meshes of sizes h and h′, respectively.

In what follows we proceed to report on the numerical experiments obtained. The first example uses
a smooth manufactured solution to illustrate that the optimal rates of convergence of our method are
indeed attained in this case. The second one considers a singular solution to confirm that precisely the
lack of smoothness directly affects the order of convergence. Finally, and while, as shown in Section
2.5, the discrete analysis using the specific finite element subspaces introduced in Section 2.5.2 has
been guaranteed only in 2D, the third example illustrates the applicability of the method to a three-
dimensional problem as well. In each case we let E and ν be the Young modulus and Poisson ratio,
respectively, of the isotropic linear elastic solid occupying the region Ω, so that the corresponding Lamé
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parameters are given by:

µ :=
E

2(1 + ν)
and λ :=

Eν

(1 + ν)(1− 2ν)
. (2.176)

While the three examples to be reported here are manufactured ones aiming to illustrate the afore-
mentioned objectives, we stress that the Galerkin scheme (2.100) can certainly be applied as well to
problems coming from applications, such as those reported in [46] and [47]. Indeed, because of the sin-
gularities and complex geometries that some of them might involve, we plan to consider these applied
examples in a forthcoming work addressing the a posteriori error analysis of the present mixed-primal
finite element method. As it is well-known, adaptive strategies based on a posteriori error indicators
have shown to be very suitable for handling those situations.

Example 1. We consider the very same example from [46, Example 1, Section 5], which means that
we let Ω = (0, 1)2, and adequately manufacture the data so that the exact solution of (2.1) is given by
the smooth functions

u(x) =

 1
20 sin(πx1) cos(πx2) +

1
2λx

2
1

1
20 cos(πx1) sin(πx2) +

1
2λx

2
2

 and ϕ(x) = x1x2(x1 − 1)(x2 − 1) ,

for all x := (x1, x2)
t ∈ Ω, whereas the body load, the diffusive source, and the tensorial diffusivity, are

given, respectively, by

f(ϕ) =

 1
10 cos

2(ϕ)

− 1
10 sin(ϕ)

 , g(u) =
1

10

(
1 +

1

1 + |u|

)
and ϑ̃(ρ) = I +

1

10
ρ2 .

It is important to remark here that the second and fifth equations of (2.12) actually include additional
explicit source terms that are added to f(ϕ) and g(u), respectively. However, yielding only slight
modifications of the functionals Fϕ and Gu in (2.39), this fact does not compromise the continuous
and discrete analyses. In addition, we take Young’s modulus E = 103 and Poisson’s ratio ν = 0.4,
which, according to (2.176), implies that µ = 357.1429 and λ = 1428.5714. Thus, in Tables 2.2 and
2.3 we summarize the convergence history of the Galerkin scheme (2.100) with r = 3 and r = 4,
respectively. In particular, we stress that the optimal order of convergence O(hk+1) predicted by
Theorem 2.22 is attained by all the unknowns. Some components and magnitudes of the discrete
solutions are displayed in Figure 2.1. Furthermore, in order to compare our discrete scheme (2.100)
with those proposed in [46], beyond the fact that they all confirm their theoretical rates of convergence,
we first point out that the unknowns σ from the present chapter and [46] do not coincide, and hence
their numerical approximations σh and associated errors are not comparable. Actually, the stress σ

from [46] corresponds to our ρ, whose discrete approximation ρh (cf. (2.175)) lies only in Lr(Ω).
Consequently, we extract from Tables 2.2 and 2.3, and [46, Table 1], the necessary information to
display in Figures 2.2 and 2.3 the error history for the unknowns u and ϕ only. The methods from
[46] are referred to as “PEERS-Lagrange scheme with k = 0", “Augmented scheme with k = 0", and
“Augmented scheme with k = 1", whereas those regarding (2.100) are named “Pseudostress-based
scheme with k = 0" and “Pseudostress-based scheme with k = 1", additionally indicating for the latter
the value of r (and hence of s) with which the corresponding norms are defined. Nevertheless, we
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k h N e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(ρ) r(ρ)

0.0333 19982 5.26e+01 −− 9.33e-04 −− 5.09e-03 −− 2.07e+01 −−
0.0270 30342 4.26e+01 1.00 7.54e-04 1.02 4.19e-03 0.93 1.68e+01 1.00
0.0217 46830 3.43e+01 1.00 6.05e-04 1.01 3.40e-03 0.96 1.35e+01 1.00

0 0.0185 64478 2.92e+01 1.00 5.14e-04 1.01 2.90e-03 0.98 1.15e+01 1.00
0.0164 82230 2.59e+01 1.00 4.55e-04 1.01 2.57e-03 1.00 1.02e+01 1.00
0.0139 114482 2.19e+01 1.00 3.85e-04 1.00 2.18e-03 1.00 8.63e+00 1.00
0.0122 148422 1.92e+01 1.00 3.38e-04 1.00 1.91e-03 1.00 7.58e+00 1.00
0.0333 65162 6.67e-01 −− 1.21e-05 −− 9.84e-05 −− 2.39e-01 −−
0.0270 99014 4.38e-01 2.00 7.93e-06 2.01 6.49e-05 1.99 1.58e-01 1.99

1 0.0217 152906 2.84e-01 2.00 5.13e-06 2.00 4.27e-05 1.92 1.02e-01 1.99
0.0185 210602 2.06e-01 2.00 3.72e-06 2.00 3.11e-05 1.99 7.42e-02 1.99
0.0164 268646 1.61e-01 2.00 2.91e-06 2.00 2.35e-05 2.28 5.82e-02 1.99
0.0333 135542 5.74e-03 −− 1.06e-07 −− 1.39e-06 −− 1.97e-03 −−
0.0270 206018 3.06e-03 3.00 5.63e-08 3.00 7.48e-07 2.94 1.05e-03 3.00

2 0.0217 318230 1.59e-03 3.00 2.93e-08 3.00 3.90e-07 3.00 5.48e-04 3.00
0.0185 438374 9.85e-04 3.00 1.81e-08 3.00 2.41e-07 3.00 3.39e-04 3.00
0.0164 559250 6.83e-04 3.00 1.26e-08 3.00 1.67e-07 2.99 2.35e-04 3.00

Table 2.2: History of convergence for Example 1 with r = 3.

k h N e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(ρ) r(ρ)

0.0333 19982 5.48e+01 −− 9.73e-04 −− 5.09e-03 −− 2.15e+01 −−
0.0270 30342 4.44e+01 1.00 7.86e-04 1.02 4.19e-03 0.93 1.75e+01 1.00
0.0217 46830 3.57e+01 1.00 6.30e-04 1.01 3.40e-03 0.96 1.41e+01 1.00

0 0.0185 64478 3.04e+01 1.00 5.36e-04 1.01 2.90e-03 0.98 1.20e+01 1.00
0.0164 82230 2.70e+01 1.00 4.74e-04 1.01 2.57e-03 1.00 1.06e+01 1.00
0.0139 114482 2.28e+01 1.00 4.02e-04 1.00 2.18e-03 1.00 8.99e+00 1.00
0.0122 148422 2.00e+01 1.00 3.53e-04 1.00 1.91e-03 1.00 7.89e+00 1.00
0.0333 65162 7.08e-01 −− 1.28e-05 −− 9.84e-05 −− 2.55e-01 −−
0.0270 99014 4.66e-01 2.00 8.43e-06 2.01 6.49e-05 1.99 1.68e-01 1.99

1 0.0217 152906 3.01e-01 2.00 5.45e-06 2.00 4.27e-05 1.92 1.09e-01 1.99
0.0185 210602 2.19e-01 2.00 3.95e-06 2.00 3.11e-05 1.99 7.92e-02 1.99
0.0164 268646 1.71e-01 2.00 3.10e-06 2.00 2.35e-05 2.28 6.21e-02 1.99
0.0333 135542 6.21e-03 −− 1.14e-07 −− 1.39e-06 −− 2.17e-03 −−
0.0270 206018 3.31e-03 3.00 6.09e-08 3.00 7.48e-07 2.94 1.16e-03 3.00

2 0.0217 318230 1.72e-03 3.00 3.17e-08 3.00 3.90e-07 3.00 6.02e-04 3.00
0.0185 438374 1.07e-03 3.00 1.96e-08 3.00 2.41e-07 3.00 3.72e-04 3.00
0.0164 559250 7.39e-04 3.00 1.36e-08 3.00 1.67e-07 2.99 2.58e-04 3.00

Table 2.3: History of convergence for Example 1 with r = 4.

observe from Figures 2.2 and 2.3 that, at least for this example, there is almost no difference between
the curves obtained with r = 3 and r = 4 for both values of k. Finally, according to the aforementioned
figures, and based on the comparison between schemes that use the same polynomial degree k, we infer
that in general (2.100) requires fewer degrees of freedom than the methods from [46] to achieve a given
accuracy. This fact is particularly notorious for the unknown u with k ∈

{
0, 1
}
, and specially with

k = 1, whereas for ϕ it is observed only with k = 0 since with k = 1 the respective curves are very
close to each other and therefore no substantial difference is noticed.

Example 2. We let Ω be the L-shaped (and hence non-convex) domain given by (−1, 1)2 \ [0, 1]2, and,
again, suitably perturb the definition of the functionals Fϕ and Gu, so that, letting θ := arctan

(
x2
x1

)
,
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Figure 2.1: Some components and magnitudes of the solution of Example 1 with k = 2 and N = 559250

the exact solution of (2.1) reduces to:

u(x) =

(
|x|2/3 sin(θ)

−|x|2/3 cos(θ)

)
and ϕ(x) = ex2

(
x1 −

1

2

)3

,

for all x := (x1, x2)
t ∈ Ω, whereas the body load, the diffusive source, and the tensorial diffusivity, are

given, respectively, by

f(ϕ) =

 1
40ϕ

1
40ϕ(1− ϕ)

 , g(u) = −|u| and ϑ̃(ρ) =

(
1 +

1

10

(
1 + |ρ|2

)−1/2
)
I .

In addition, we take E = 100 and ν = 0.4999, whence the resulting Lamé parameters are given in
this case (cf. (2.176)) by µ = 33.3356 and λ = 166644.4430. Due to the singularity of the vector
field u at the origin, in this example we do not expect to attain the theoretical orders of convergence
guaranteed by Theorem 2.22. In fact, in Tables 2.4 and 2.5 we display the corresponding convergence
history with r = 3 and r = 4, respectively, from which we realize that suboptimal, and even negative
experimental rates of convergence are obtained. In turn, it is interesting to observe in this case that,
differently from Example 1, these rates change not only with k but also with r, which must be certainly
connected to the Wl,r(Ω)-regularity of the solution, most likely with a non-integer l depending on r. For
instance, this was obtained for the regularity result of the Poisson problem in a non-convex domain,
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Figure 2.2: Example 1, log(e(u)) vs. log(N) for the present scheme (2.100) and those from [46].

with homogeneous Neumann boundary conditions, and source term in Lr(Ω) (see [52, Lemma B.1]
for details). Anyhow, the usual way of recovering optimal rates of convergence in these cases is by
applying an adaptive strategy based on a posteriori error estimates. This is precisely the subject of an
undergoing work to be communicated in a forthcoming contribution.

Example 3. Finally, and while not supported by the theory, we consider the three-dimensional domain
Ω = (0, 1)3, and choose the data so that the exact solution is given by

u(x) = ex1+x2+x3

 sin(πx1)

sin(πx2)

sin(πx3)

 and ϕ(x) = −64x1x2x3(x1 − 1)(x2 − 1)(x3 − 1) ,

for all x := (x1, x2, x3)
t ∈ Ω. In addition, the body load, the diffusive source, and the tensorial

diffusivity are given, respectively, by

f(ϕ) =

 ϕ

1− ϕ

ϕ

 , g(u) = x1 + x2 + x3 and ϑ̃(ρ) = I +
1

10
ρ2 .

As for Example 2, we take again E = 100 and ν = 0.4999, which yields µ = 33.3356 and λ =

166644.4430. In addition, we employ the software TetGen (cf. [78]) to generate triangulations of Ω
made of tetrahedrons. In this way, in Table 2.6 we present the convergence history of (2.100) with
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Figure 2.3: Example 1, log(e(ϕ)) vs. log(N) for the present scheme (2.100) and those from [46].

k h N e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(ρ) r(ρ)

0.0566 20927 4.00e+02 −− 1.98e-02 −− 2.72e-01 −− 6.99e+00 −−
0.0471 30062 4.51e+02 -0.66 1.65e-02 1.00 2.26e-01 1.00 6.57e+00 0.33
0.0372 48110 5.27e+02 -0.66 1.30e-02 1.00 1.79e-01 1.00 6.08e+00 0.33

0 0.0321 64418 5.80e+02 -0.66 1.12e-02 1.00 1.54e-01 1.00 5.79e+00 0.33
0.0283 83102 6.31e+02 -0.66 9.90e-03 1.00 1.36e-01 1.00 5.55e+00 0.33
0.0240 115583 7.04e+02 -0.66 8.39e-03 1.00 1.15e-01 1.00 5.25e+00 0.33
0.0208 153410 7.74e+02 -0.66 7.28e-03 1.00 9.99e-02 1.00 5.01e+00 0.33
0.0566 68102 3.98e+02 −− 7.30e-04 −− 2.77e-03 −− 4.48e+00 −−
0.0471 97922 4.49e+02 -0.66 5.75e-04 1.31 1.93e-03 2.00 4.22e+00 0.33

1 0.0372 156866 5.25e+02 -0.66 4.22e-04 1.31 1.20e-03 2.00 3.90e+00 0.33
0.0321 210146 5.78e+02 -0.66 3.48e-04 1.31 8.96e-04 2.00 3.71e+00 0.33
0.0283 271202 6.29e+02 -0.66 2.95e-04 1.31 6.94e-04 2.00 3.56e+00 0.33
0.0566 141527 4.08e+02 −− 2.43e-04 −− 2.07e-05 −− 3.53e+00 −−
0.0471 203582 4.60e+02 -0.66 1.91e-04 1.31 1.46e-05 1.94 3.32e+00 0.33

2 0.0372 326270 5.38e+02 -0.66 1.40e-04 1.31 9.85e-06 1.65 3.07e+00 0.33
0.0321 437186 5.93e+02 -0.66 1.16e-04 1.31 7.95e-06 1.46 2.92e+00 0.33
0.0283 564302 6.46e+02 -0.66 9.78e-05 1.31 6.67e-06 1.37 2.80e+00 0.33

Table 2.4: History of convergence for Example 2 with r = 3.

k ∈ {0, 1, 2} and r = 3, from which we observe that the same orders from 2D (cf. Example 1) are
attained in all these cases. This fact suggests, in coherence with the remark at the end of Section 2.5.2,
that only some technical issues might be stopping us from extending the theoretical analysis to the 3D
case. Finally, some components of the approximate solution are depicted in Figure 2.4.
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k h N e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(ρ) r(ρ)

0.0566 20927 7.01e+02 −− 1.91e-02 −− 2.72e-01 −− 1.09e+01 −−
0.0471 30062 8.15e+02 -0.82 1.60e-02 0.99 2.26e-01 1.00 1.05e+01 0.16
0.0372 48110 9.90e+02 -0.83 1.26e-02 0.99 1.79e-01 1.00 1.01e+01 0.16

0 0.0321 64418 1.12e+03 -0.83 1.09e-02 0.99 1.54e-01 1.00 9.89e+00 0.16
0.0283 83102 1.24e+03 -0.83 9.61e-03 0.99 1.36e-01 1.00 9.69e+00 0.16
0.0240 115583 1.43e+03 -0.83 8.15e-03 1.00 1.15e-01 1.00 9.43e+00 0.16
0.0208 153410 1.60e+03 -0.83 7.08e-03 1.00 9.99e-02 1.00 9.21e+00 0.17
0.0566 68102 7.35e+02 −− 1.17e-03 −− 2.77e-03 −− 8.14e+00 −−
0.0471 97922 8.54e+02 -0.83 9.46e-04 1.15 1.93e-03 2.00 7.90e+00 0.17

1 0.0372 156866 1.04e+03 -0.83 7.20e-04 1.16 1.20e-03 2.00 7.59e+00 0.17
0.0321 210146 1.17e+03 -0.83 6.07e-04 1.16 8.96e-04 2.00 7.41e+00 0.17
0.0283 271202 1.30e+03 -0.83 5.24e-04 1.16 6.94e-04 2.00 7.26e+00 0.17
0.0566 141527 7.90e+02 −− 4.22e-04 −− 2.07e-05 −− 7.03e+00 −−
0.0471 203582 9.19e+02 -0.83 3.41e-04 1.16 1.46e-05 1.94 6.82e+00 0.17

2 0.0372 326270 1.12e+03 -0.83 2.59e-04 1.16 9.85e-06 1.65 6.56e+00 0.17
0.0321 437186 1.26e+03 -0.83 2.19e-04 1.16 7.95e-06 1.46 6.40e+00 0.17
0.0283 564302 1.40e+03 -0.83 1.89e-04 1.16 6.67e-06 1.37 6.26e+00 0.17

Table 2.5: History of convergence for Example 2 with r = 4.

k h N e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(ρ) r(ρ)

0.3542 9487 4.59e+06 −− 1.47e+03 −− 9.06e-01 −− 2.56e+06 −−
0.3130 13844 4.05e+06 1.01 1.26e+03 1.25 8.01e-01 1.00 2.25e+06 1.04
0.2804 18203 3.61e+06 1.03 1.13e+03 0.99 7.16e-01 1.02 1.97e+06 1.22

0 0.2657 22188 3.43e+06 0.99 1.07e+03 1.07 6.78e-01 1.01 1.86e+06 1.04
0.2519 26479 3.25e+06 1.00 9.99e+02 1.27 6.42e-01 1.02 1.76e+06 1.00
0.1832 82222 2.35e+06 1.01 7.33e+02 0.97 4.41e-01 1.18 1.25e+06 1.08
0.1475 152258 1.88e+06 1.04 5.81e+02 1.08 3.53e-01 1.03 9.98e+05 1.05
0.3542 40854 3.03e+05 −− 4.52e+01 −− 1.10e-01 −− 1.53e+05 −−
0.3130 59920 2.38e+05 1.94 3.54e+01 1.99 8.71e-02 1.92 1.19e+05 2.04

1 0.2804 78912 1.91e+05 2.01 2.81e+01 2.07 7.01e-02 1.97 9.60e+04 1.97
0.2657 96220 1.71e+05 2.01 2.53e+01 1.99 6.28e-02 2.04 8.61e+04 2.02
0.2519 114932 1.54e+05 2.00 2.27e+01 2.03 5.65e-02 2.01 7.75e+04 2.00
0.3542 106570 1.67e+04 −− 1.84e+00 −− 7.93e-03 −− 8.75e+03 −−
0.3130 156755 1.14e+04 3.07 1.27e+00 2.97 5.47e-03 3.01 5.99e+03 3.07

2 0.2804 206621 8.18e+03 3.04 9.14e-01 3.00 3.91e-03 3.04 4.30e+03 3.01
0.2657 251985 6.96e+03 2.98 7.78e-01 2.99 3.33e-03 3.00 3.66e+03 3.00
0.2519 301137 5.92e+03 3.05 6.62e-01 3.05 2.84e-03 3.00 3.12e+03 3.01

Table 2.6: History of convergence for Example 3 with r = 3.
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Figure 2.4: Some components and norms of the solution of Example 3 obtained with k = 2 and
N = 301137 degrees of freedom. Surface (left) and contours (right).



CHAPTER 3

New Banach spaces–based fully–mixed finite element methods for
pseudostress-assisted diffusion problems

3.1 Introduction

In the Chapter 2, we employed a Banach spaces-based variational approach to derive a new mixed-
primal finite element method for the nearly incompressible case of the pseudostress-assisted diffusion
problem, which models the diffusion of a solute into an elastic material. More precisely, the aforemen-
tioned phenomenon refers to diffusion processes in deformable solids occupying originally a domain Ω

of Rn, n ∈
{
2, 3
}
, and arises in diverse applications, including diffusion of boron and arsenic in silicon

[69], voiding of aluminum conductor lines in integrated circuits [87], sorption in polymers [77], damage
to electrodes in lithium-ion batteries [5], and anisotropy of cardiac dynamics [27], among others. The
usual assumptions in most of them are, on one hand, that the solid satisfies an elastic regime, and
on the other hand, that the diffusion obeys a Fickean law enriched with further contributions aris-
ing from local effects by exerted stresses. This second hypothesis means that the respective diffusion
coefficient is a continuous function depending precisely on the stress, which acts then as a coupling
variable. Mathematically, the underlying model is usually described by the following system of partial
differential equations (cf. (2.12)):

∇u = Ĉ−1(σ) in Ω , −div(σ) = f(ϕ) in Ω , u = uD on Γ ,

σ̃ = ϑ(σ)∇ϕ in Ω , −div(σ̃) = g(u) in Ω , and ϕ = 0 on Γ ,
(3.1)

where
Ĉ−1(τ ) :=

1

µ
τ d +

1

n
(
nλ+ (n+ 1)µ

) tr(τ ) I ∀ τ ∈ Rn×n . (3.2)

Here, σ is the non-symmetric pseudostress tensor, u is the displacement field, λ, µ > 0 are the Lamé
constants (dilation and shear moduli), which characterize the properties of the material, and I is the
identity tensor of Rn×n. In turn, ϕ represents the local concentration of species, σ̃ is the diffusive flux,
and ϑ : Rn×n → Rn×n is a tensorial diffusivity function. In addition, f : R → Rn is a vector field of
body loads (which depends on the species concentration), g : Rn → R denotes an additional source
term depending on the solid displacement u, and uD is the Dirichlet datum for u, which belongs to a
suitable trace space to be identified later on.

68
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Now, throughout this chapter we suppose that ϑ is of class C1 and uniformly positive definite,
meaning the latter that there exists a positive constant ϑ0 such that

ϑ(τ )w ·w ≥ ϑ0 |w|2 ∀w ∈ R , ∀ τ ∈ R . (3.3)

We also require uniform boundedness and Lipschitz continuity of ϑ, that is that there exist positive
constants ϑ1, ϑ2, and Lϑ, such that

ϑ1 ≤ |ϑ(τ )| ≤ ϑ2 and |ϑ(τ )− ϑ(ζ)| ≤ Lϑ |τ − ζ| ∀ τ , ζ ∈ R . (3.4)

Moreover, thanks to (3.3), we have that the inverse of ϑ is uniformly positive definite as well, specifically,
denoting from now on ϑ̃(τ ) := ϑ(τ )−1, there exists a positive constant ϑ̃0 such that

ϑ̃(τ )w ·w ≥ ϑ̃0 |w|2 ∀w ∈ R , ∀ τ ∈ R . (3.5)

We also require uniform boundedness and Lipschitz continuity of ϑ̃, that is that there exist positive
constants ϑ̃1, ϑ̃2, and L

ϑ̃
, such that

ϑ̃1 ≤ |ϑ̃(τ )| ≤ ϑ̃2 and |ϑ̃(τ )− ϑ̃(ζ)| ≤ L
ϑ̃
|τ − ζ| ∀ τ , ζ ∈ R . (3.6)

Similar hypotheses are assumed on the source functions f and g, which means that there exist positive
constants f1, f2, Lf , g1, g2 and Lg, such that

f1 ≤ |f(s)| ≤ f2 , |f(s)− f(t)| ≤ Lf |s− t| ∀ s, t ∈ R , (3.7)

g1 ≤ |g(w)| ≤ g2 , and |g(v)− g(w)| ≤ Lg |v −w| ∀v,w ∈ R . (3.8)

The purpose of the present work is to continue contributing in the direction of Chapter 2 by in-
troducing and analysing new fully-mixed finite element methods for the numerical solution of (3.1) -
(3.2). In this way, the main novelty with respect to Chapter 2 is the utilization of a mixed variational
formulation for the diffusion equation. As a consequence, and regarding the mixed approach for the
elasticity equation, we certainly make use of the corresponding results from Chapter 2 either by stat-
ing or referring to them throughout the analysis. In some cases, and just for sake of completeness,
the main aspects of the respective proofs are explicitly recalled. Needless to say, we remark that a
fully-mixed approach for this model had basically been employed already in [47]. However, to be able
to carry out the respective analysis within a Hilbertian framework, it was necessary to incorporate
there augmented terms, thus increasing the complexity of the resulting discrete method. According
to the above, and motivated by recent works using Banach spaces-based formulations (see, e.g. [11],
[49], [52] and [54]), which do not need to resort to augmentation techniques, we proceed similarly to
them and propose two mixed variational formulations for the diffusion equation in terms of suitable
Lebesgue and Sobolev-type Banach spaces. For the first approach we perform integration by parts on
the constitutive equation, while for the second one the diffusion gradient is introduced as an auxiliary
unknown.

The chapter is organized as follows. The rest of this section collects first some preliminary notations,
definitions, and results to be utilized throughout the chapter. In Section 3.2, we derive the two fully-
mixed variational formulations of the problem. Suitable integration by parts formulae jointly with the
Cauchy-Schwarz and Hölder inequalities are crucial for determining the right Lebesgue and related
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spaces to which the unknowns and corresponding test functions are required to belong. In Section
3.3, fixed-point strategies are adopted to analyse the solvability of the continuous formulations. The
Babuška-Brezzi theory in Banach spaces is employed to study the corresponding uncoupled problems,
and then the classical Banach theorem is applied to conclude the existence of a unique solution of the
respective formulations. Analogue fixed-point approaches to those of Section 3.3 are utilized in Section
3.4 to study the well-posedness of the associated Galerkin scheme. In this way, and along with the
corresponding versions of the theoretical tools employed in Section 3.3, a straightforward application
of Brouwer’s theorem allows us to conclude the existence of discrete solution. A priori error estimates
in the form of Cea’s estimate are also derived here. Next, in Section 3.5 we restrict ourselves to the
2D case and introduce specific finite element subspaces satisfying the theoretical hypotheses that were
assumed in Section 3.4. The fact that a required boundedness property for a particular projector
involved is still an open problem in 3D, stop us from extending the 2D analysis from Section 3.5 to
that dimension. Finally, several numerical results illustrating the performance of the method and
confirming the theoretical rates of convergence provided in Section 3.5, are reported in Section 3.6

3.2 The fully-mixed formulations

In this section we introduce two Banach spaces-based fully-mixed formulations of (3.1)-(3.2), which
arise from a common formulation for elasticity (see Section 3.2.1 below) and two different approaches for
the diffusion equation (see Sections 3.2.2 and 3.2.3 below). The integration by parts formulae provided
by (9), along with the Cauchy-Schwarz and Hölder inequalities, play key roles in the derivation of the
Banach spaces where the respective unknowns will be sought.

3.2.1 The elasticity equation

As explained in Chapter 2.3, given

r ∈

{
(2,+∞) if n = 2 ,

(2, 6] if n = 3 ,
and s ∈

{
(1, 2) if n = 2 ,

[6/5, 2) if n = 3 ,
(3.9)

conjugate to each other, and given ϕ in a suitable space to be determined next, the Banach spaces-based
mixed formulation for the elasticity equation reads: Find (σ,u) ∈ X2 ×M1 such that

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1,

b2(σ,v) = Fϕ(v) ∀v ∈ M2,
(3.10)

where
X2 := Hr

0(divr; Ω) :=
{
τ ∈ Hr(divr; Ω) :

∫
Ω
tr (τ ) = 0

}
, M1 := Lr(Ω) ,

X1 := Hs
0(divs; Ω) :=

{
τ ∈ Hs(divs; Ω) :

∫
Ω
tr (τ ) = 0

}
, M2 := Ls(Ω) ,

and the bilinear forms a : X2×X1 → R and bi : Xi×Mi → R, i ∈
{
1, 2
}
, and the functionals G ∈ X′

1

and Fϕ ∈ M′
2, are defined, respectively, as

a(ζ, τ ) :=
1

µ

∫
Ω
ζd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω
tr (ζ) tr (τ ) ∀ (ζ, τ ) ∈ X2 ×X1 ,
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bi(τ ,v) :=

∫
Ω
v · div(τ ) ∀ (τ ,v) ∈ Xi ×Mi ,

G(τ ) := ⟨τν,uD⟩Γ, ∀ τ ∈ X1 , (3.11)

and
Fϕ(v) := −

∫
Ω
f(ϕ) · v ∀v ∈ M2 . (3.12)

Furthermore, we have from (2.57) that a, b1, b2, G and Fϕ are all bounded with respective constants
given by

∥a∥ =
2

µ
, ∥b1∥ = ∥b2∥ = 1 , ∥G∥ = Cr ∥uD∥1/s,r;Γ , and ∥Fϕ∥ = |Ω|1/rf2 , (3.13)

where Cr is a positive constant such that (cf. (2.27))

∥τ ν∥−1/r,r;Γ ≤ Cr ∥τ∥r,divr;Ω ∀ τ ∈ Hr(divr; Ω) . (3.14)

Having recalled the above from Chapter 2, we remark that in order to analyse the elasticity equation,
we need to be able to control the expression∫

Ω
(f(ψ)− f(φ)) · v , (3.15)

where v ∈ M2, and ψ and φ are generic functions belonging to the same space in which we will
seek the unknown ϕ. In this regard, employing the Lipschitz-continuity property of f (cf. (3.7)), a
straightforward application of the Hölder inequality yields∣∣∣∣∫

Ω
(f(ψ)− f(φ)) · v

∣∣∣∣ ≤ Lf∥ψ − φ∥0,r;Ω∥v∥0,s;Ω , (3.16)

from which we deduce that we must look for the unknown ϕ in Lr(Ω).

3.2.2 A first approach for the diffusion equation

In what follows we derive a first mixed variational formulation for the diffusion equation

ϑ̃(σ) σ̃ = ∇ϕ in Ω , −div(σ̃) = g(u) in Ω , and ϕ = 0 on Γ , (3.17)

where ϑ̃(σ) = ϑ(σ)−1. To this end, we begin by considering ϕ ∈ H1(Ω), which, thanks to the continuous
embedding of H1(Ω) into Lr(Ω), does not contradict what was discussed at the end of the previous
section. Then, applying (9) with s specified in (3.9) and τ̃ ∈ H(divs; Ω) (cf. (3)), and using the
Dirichlet condition satisfied by ϕ, we get∫

Ω
τ̃ · ∇ϕ = −

∫
Ω
ϕ div(τ̃ ) ,

whence the corresponding testing of the first equation of (3.17) becomes∫
Ω
ϑ̃(σ) σ̃ · τ̃ +

∫
Ω
ϕ div(τ̃ ) = 0 ∀ τ̃ ∈ H(divs; Ω) . (3.18)
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It is clear, thanks to (3.4) and Cauchy-Schwarz’s inequality, that the first term of (3.18) makes sense
for σ̃ ∈ L2(Ω). In addition, formally testing the second equation of the second row of (3.1) against a
function ψ, yields ∫

Ω
ψ div(σ̃) = −

∫
Ω
g(u)ψ , (3.19)

whose right-hand side has a similar structure to (3.12). Hence, analogously to (3.15) and (3.16), and
since u ∈ Lr(Ω) and r > s, Hölder’s inequality allows us to conclude that it suffices to take ψ in Lr(Ω).
In fact, thanks to the Lipschitz continuity property of g (cf. (3.8)), we get∣∣∣∣∫

Ω
(g(u)− g(v))ψ

∣∣∣∣ ≤ Lg ∥u− v∥0,r;Ω ∥ψ∥0,s;Ω ≤ |Ω|
r−s
rs Lg ∥u− v∥0,r;Ω ∥ψ∥0,r;Ω , (3.20)

from which we deduce that the left-hand side of (3.19) is finite if div(σ̃) ∈ Ls(Ω), and hence we will
look for σ̃ in H(divs; Ω) (cf. (3)). According to the foregoing discussion, we now set the following
Banach spaces

Q := H(divs; Ω) and M := Lr(Ω) , (3.21)

so that, given (σ,u) ∈ X2 ×M1, the mixed formulation for (3.17) reduces to: Find (σ̃, ϕ) ∈ Q ×M

such that
ãσ(σ̃, τ̃ ) + b̃(τ̃ , ϕ) = 0 ∀ τ̃ ∈ Q ,

b̃(σ̃, ψ) = G̃u(ψ) ∀ψ ∈ M ,
(3.22)

where, the bilinear forms ãσ : Q ×Q → R, b̃ : Q ×M → R, and the functional Gu ∈ M, are defined,
respectively, as

ãσ(σ̃, τ̃ ) :=

∫
Ω
ϑ̃(σ) σ̃ · τ̃ ∀ σ̃, τ̃ ∈ Q , (3.23)

b̃(τ̃ , ψ) :=

∫
Ω
ψ div(τ̃ ) ∀ (τ̃ , ψ) ∈ Q×M , (3.24)

and
G̃u(ψ) := −

∫
Ω
g(u)ψ ∀ψ ∈ M . (3.25)

Next, a direct application of Hölder’s inequality, and the bounds given by (3.6) and (3.8), allow to
conclude that the bilinear forms ã and b̃, and the functional G̃u, are all bounded with the corresponding
norms given by

∥τ̃∥Q := ∥τ̃∥divs;Ω ∀ τ̃ ∈ Q and ∥ψ∥M := ∥ψ∥0,r;Ω ∀ψ ∈ M .

In fact, there exist positive constants, given by

∥ãσ∥ = ϑ̃2 , ∥b̃∥ = 1 , and ∥G̃u∥ = g2 |Ω|1/s , (3.26)

such that
|ãσ(ζ̃, τ̃ )| ≤ ∥ãσ∥ ∥ζ̃∥Q ∥τ̃∥Q ∀ ζ̃, τ̃ ∈ Q ,

|̃b(τ̃ , ψ)| ≤ ∥b̃∥ ∥τ̃∥Q ∥ψ∥M ∀ (τ̃ , ψ) ∈ Q×M ,

and
|G̃u(ψ)| ≤ ∥G̃u∥ ∥ψ∥M ∀ψ ∈ M .
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3.2.3 A second approach for the diffusion equation

As an alternative to the previous formulation for the diffusion equation, and in order to obtain a
more accurate approximation for the diffusion gradient, as well as to avoid inverting ϑ, we introduce
the unknown t := ∇ϕ in Ω. Thus, the second row of (3.1) becomes

t = ∇ϕ in Ω , σ̃ = ϑ(σ) t in Ω ,

div(σ̃) = g(u) in Ω , and ϕ = 0 on Γ .
(3.27)

Then, bearing in mind that ϕ must be sought in Lr(Ω), and thanks to the continuous embedding of
H1(Ω) into Lr(Ω), we initially look for ϕ in H1(Ω). In this way, testing the first equation of (3.27)
against τ̃ ∈ H(divs; Ω), applying (9), with s specified in (3.9), and employing the Dirichlet boundary
condition for ϕ, we obtain∫

Ω
t · τ̃ +

∫
Ω
ϕ div(τ̃ ) = 0 ∀ τ̃ ∈ H(divs; Ω) ,

whence the first term makes sense for t ∈ L2(Ω). In turn, testing the second equation of (3.27) against
s ∈ L2(Ω), we formally get ∫

Ω
ϑ(σ) t · s −

∫
Ω
σ̃ · s = 0 ∀ s ∈ L2(Ω) , (3.28)

from which we notice, thanks to Cauchy-Schwarz’s inequality and (3.4), that the first term of (3.28)
is finite, whereas its second term makes sense is σ̃ is sought in L2(Ω). Now, testing the third equation
of (3.27) against a function φ, we have∫

Ω
φdiv(σ̃) =

∫
Ω
g(u)φ , (3.29)

and, similarly to (3.20), we deduce from the right side of (3.29) that φ can be considered in Lr(Ω).
Hence, in order for the left-hand side of (3.29) to be well-defined we need that div(σ̃) ∈ Ls(Ω), which
yields to look for σ̃ in H(divs; Ω). Consequently, recalling from (3.21) the definition of M, we introduce
the following notation

ϕ⃗ := (ϕ, t), φ⃗ := (φ, s) ∈ H := M× L2(Ω) .

Thus, given (σ,u) ∈ X2 ×M1, we arrive at the following mixed formulation for (3.27): Find (ϕ⃗, σ̃) ∈
H×Q such that

aσ(ϕ⃗, φ⃗) + b(φ⃗, σ̃) = Gu(φ⃗) ∀ φ⃗ ∈ H ,

b(ϕ⃗, τ̃ ) = 0 ∀ τ̃ ∈ Q ,
(3.30)

where the bilinear forms aσ : H×H → R and b : H×Q → R are defined as

aσ(ϕ⃗, φ⃗) :=

∫
Ω
ϑ(σ) t · s ∀ ϕ⃗, φ⃗ ∈ H , and (3.31)

b(φ⃗, τ̃ ) := −
∫
Ω
τ̃ · s −

∫
Ω
φdiv(τ̃ ) ∀ (φ⃗, τ̃ ) ∈ H×Q , (3.32)

whereas the linear functional Gu : H → R is given by

Gu(φ⃗) := −
∫
Ω
g(u)φ ∀ φ⃗ ∈ H . (3.33)
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Next, it is easily seen that aσ, b and Gu are bounded. In fact, endowing H with the product norm

∥φ⃗∥H := ∥φ∥0,r;Ω + ∥s∥0,Ω ∀ φ⃗ := (φ, s) ∈ H ,

and applying (3.4), (3.8), and the Cauchy-Schwarz and Hölder inequalities, we find that there exist
positive constants, denoted and given by

∥aσ∥ = ϑ2 , ∥b∥ = 1 , and ∥Gu∥ = g2 |Ω|1/s , (3.34)

such that
|aσ(ϕ⃗, φ⃗)| ≤ ∥aσ∥ ∥ϕ⃗∥H ∥φ⃗∥H ∀ ϕ⃗, φ⃗ ∈ H ,

|b(φ⃗, τ̃ )| ≤ ∥b∥ ∥φ⃗∥H ∥τ̃∥Q ∀ (φ⃗, τ̃ ) ∈ H×Q ,

and
|Gu(φ⃗)| ≤ ∥Gu∥ ∥φ⃗∥H ∀ φ⃗ ∈ H .

3.2.4 The coupled fully-mixed formulations

According to the analyses in Sections 3.2.1 and 3.2.2, our first fully-mixed formulation for (3.1)-(3.2)
reduces to gathering (3.10) and (3.22), that is: Find (σ,u) ∈ X2 ×M1 and (σ̃, ϕ) ∈ Q×M such that

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1,

b2(σ,v) = Fϕ(v) ∀v ∈ M2,

ãσ(σ̃, τ̃ ) + b̃(τ̃ , ϕ) = 0 ∀ τ̃ ∈ Q ,

b̃(σ̃, ψ) = G̃u(ψ) ∀ψ ∈ M .

(3.35)

In turn, as a consequence of the discussions in Sections 3.2.1 and 3.2.3, the second fully-mixed
formulation for (3.1)-(3.2) is given by (3.10) jointly with (3.30), that is: Find (σ,u) ∈ X2 ×M1 and
(ϕ⃗, σ̃) ∈ H×Q such that

a(σ, τ ) + b1(τ ,u) = G(τ ) ∀ τ ∈ X1,

b2(σ,v) = Fϕ(v) ∀v ∈ M2,

aσ(ϕ⃗, φ⃗) + b(φ⃗, σ̃) = Gu(φ⃗) ∀ φ⃗ ∈ H ,

b(ϕ⃗, τ̃ ) = 0 ∀ τ̃ ∈ Q .

(3.36)

3.3 The continuous solvability analysis

In this section we proceed similarly as in [29] and [52] (see also [21], [55], and some references
therein), and adopt a fixed-point strategy to analyse the solvability of (3.35) and (3.36). To this end,
we use the Babuška-Brezzi theory in Banach spaces (cf. [12, Theorem 2.1, Corollary 2.1, Section 2.1]
for the general case, and [41, Theorem 2.34] for a particular one) to prove the well-posedness of the
uncoupled problems (3.10), (3.22), and (3.30).
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3.3.1 Well-posedness of the elasticity equation

We begin by letting S : M → X2 ×M1 be the operator defined by

S(φ) = (S1(φ),S2(φ)) := (σ,u) ∀φ ∈ M , (3.37)

where (σ,u) ∈ X2 ×M1 is the unique solution (to be confirmed below) of the mixed formulation for
the elasticity equation (cf. (3.10)) with φ instead of ϕ, that is

a(σ, τ ) + b1(τ , ũ) = G(τ ) ∀ τ ∈ X1,

b2(σ,v) = Fφ(v) ∀v ∈ M2 .
(3.38)

Then, assuming that the Lamé parameter λ is sufficiently large, namely λ > M , where M is specified
in Lemma 2.4, we can establish that the operator S (cf. (3.37)) is well-defined. Indeed, letting α, β1,
and β2 be the constants yielding the continuous inf-sup conditions for a, b1, and b2 (cf. Lemmas 2.4
and 2.5), and bearing in mind the norms and the constant Cr defined in (3.13) and (3.14), respectively,
a simple application of [12, Theorem 2.1, Corollary 2.1, Section 2.1] leads to the following result (cf.
2.6).

Lemma 3.1. For each φ ∈ M there exists a unique (σ,u) ∈ X2 ×M1 solution of (3.38), and hence
one can define S(φ) =

(
S1(φ),S2(φ)

)
:= (σ,u) ∈ X2 ×M1. Moreover, there hold

∥S1(φ)∥X2 = ∥σ∥X2 ≤ Cr
α

∥uD∥1/s,r;Γ +
|Ω|1/r

β2

(
1 +

2

αµ

)
f2 , and

∥S2(φ)∥M1 = ∥u∥M1 ≤ Cr
β1

(
1 +

2

αµ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1β2

(
1 +

2

αµ

)
f2 .

(3.39)

At this point we recall that the proof of the inf-sup condition for a, given in Lemma 2.4, requires
the result stating that for each t ∈ (1,+∞) there exists a positive constant Ĉt such that

∥τ∥0,t;Ω ≤ Ĉt

{
∥τ d∥0,t;Ω + ∥div(τ )∥0,t;Ω

}
∀ τ ∈ Ht

0(divt; Ω) .

In this regard, we remark that the foregoing inequality, whose proof is provided in [48, Lemma 3.3],
makes use of the surjectivity of the operator div : W1,t(Ω) → Lt0(Ω) :=

{
v ∈ Lt(Ω) :

∫
Ω v = 0

}
,

which, in turn, requires that Ω be star-shaped with respect to a ball (cf. [41, Lemma B.69]). This is
the reason why this hypothesis is assumed on Ω.

3.3.2 Well-posedness of the first approach for the diffusion equation

We now let S̃ : X2 ×M1 → Q×M be the operator defined by

S̃(ζ,w) = (S̃1(ζ,w), S̃2(ζ,w)) := (σ̃, ϕ) ∀ (ζ,w) ∈ X2 ×M1, (3.40)

where (σ̃, ϕ) ∈ Q×M is the unique solution (to be confirmed below) of (3.22) with (ζ,w) instead of
(σ,u), that is

ãζ(σ̃, τ̃ ) + b̃(τ̃ , ϕ) = 0 ∀ τ̃ ∈ Q ,

b̃(σ̃, ψ) = Gw(ψ) ∀ψ ∈ M .
(3.41)
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Next, we let K̃ be the kernel of the bilinear form b̃ (cf. (3.24)), which reduces to

K̃ :=
{
τ̃ ∈ H(divs; Ω) : div(τ̃ ) = 0

}
.

Then, bearing in mind the uniform positiveness of ϑ̃ (cf. (3.5)), the definition of ãζ (cf. (3.23)), and
the norm of H(divs; Ω) (cf. (6)), we readily deduce that

ãζ(τ̃ , τ̃ ) ≥ ϑ̃0∥τ̃∥2Q ∀ τ̃ ∈ K̃, ∀ ζ ∈ X2 , (3.42)

which yields the continuous inf-sup condition for ãζ (cf. [41, eq. (2.28), Theorem 2.34]) with constant
α̃ = ϑ̃0. In addition, we know from [52, Lemma 2.9] that there exists a positive constant β̃ such that

sup
τ̃∈Q

τ̃ ̸=0

b̃(τ̃ , ψ)

∥τ̃∥Q
≥ β̃∥ψ∥M ∀ψ ∈ M , (3.43)

which establishes the continuous inf-sup condition for b̃.

Hence, we are in position to state that the operator S̃ is well-defined.

Lemma 3.2. For each (ζ,w) ∈ X2×M1 there exists a unique (σ̃, ϕ) ∈ Q×M solution of (3.41), and
hence one can define S̃(ζ,w) := (σ̃, ϕ) ∈ Q×M. Moreover, there hold

∥S̃1(ζ,w)∥Q = ∥σ̃∥Q ≤ 1

β̃

(
1 +

ϑ̃2
α̃

)
|Ω|1/sg2 , and (3.44)

∥S̃2(ζ,w)∥M = ∥ϕ∥M ≤ ϑ̃2

β̃2

(
1 +

ϑ̃2
α̃

)
|Ω|1/sg2 . (3.45)

Proof. Knowing from (3.42) and (3.43) that, given (ζ,w) ∈ X2×M1, ãζ and b̃ satisfies the hypotheses
of [41, Theorem 2.34], and noting that Q := H(divs; Ω) and M := Lr(Ω) are reflexive Banach spaces,
the proof reduces to a straightforward application of the aforementioned theorem. In this way, the a
priori estimates (3.44) and (3.45) follow from [41, eq. (2.30), Theorem 2.34] and (3.26).

3.3.3 Well-posedness of the second approach for the diffusion equation

Similarly to the analysis of previous sections, we let S : X2 ×M1 → H be the operator given by

S(ζ,w) = (S1(ζ,w),S2(ζ,w)) := ϕ⃗ ∀ (ζ,w) ∈ X2 ×M1 , (3.46)

where (ϕ⃗, σ̃) := ((ϕ, t), σ̃) ∈ H ×Q is the unique solution (to be confirmed below) of problem (3.30)
with (ζ,w) instead of (σ,u), that is

aζ(ϕ⃗, φ⃗) + b(φ⃗, σ̃) = Gw(φ⃗) ∀ φ⃗ ∈ H ,

b(ϕ⃗, τ̃ ) = 0 ∀ τ̃ ∈ Q .
(3.47)

Here we apply [41, Theorem 2.34] to prove that problem (3.47) is well-posed (equivalently, that S is
well-defined). In this regard, it is important to stress that the structure of (3.47) is similar to the
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one of [29, eq. (3.23)], and hence, several results and techniques from there will be employed in what
follows. Indeed, let V the kernel of the operator induced by b (cf. (3.32), which reduces to

V :=
{
φ⃗ = (φ, s) ∈ H := M× L2(Ω) : ∇φ = s

}
. (3.48)

Now, we let cP be the positive constant yielding the Friedrichs-Poincaré inequality, which states that
|φ|21,Ω ≥ cP ∥φ∥21,Ω for all φ ∈ H1

0(Ω), and denote by ir the continuous injection of H1(Ω) into Lr(Ω).
In addition, we consider an arbitrary ζ ∈ X2. Then, bearing in mind (3.3) and proceeding analogously
to the proof of [29, eq. (3.41), Lemma 3.2], we find that

aζ(φ⃗, φ⃗) ≥ α∥φ⃗∥2H ∀ φ⃗ ∈ V , (3.49)

with
α :=

ϑ0
2

min{1, cP
∥ir∥

} ,

which proves the V -ellipticity of aζ . In turn, a slight modification of the proof of [29, Lemma 3.3]
allows us to prove the existence of a positive constant β such that

sup
φ⃗∈H

φ⃗ ̸=0

b(φ⃗, τ̃ )

∥φ⃗∥H
≥ β∥τ̃∥Q ∀ τ̃ ∈ Q , (3.50)

whence the bilinear form b satisfies the continuous inf-sup condition required by [41, Theorem 2.34].

We are now in position to confirm that the operator S is well-defined.

Lemma 3.3. For each (ζ,w) ∈ X2×M1 there exists a unique (ϕ⃗, σ̃) ∈ H×Q solution of (3.47), and
hence one can define S(ζ,w) := ϕ⃗ ∈ H. Moreover, there holds

∥S(ζ,w)∥H = ∥ϕ⃗∥H = ∥ϕ∥0,r;Ω + ∥t∥0,Ω ≤ |Ω|1/s

α
g2 . (3.51)

Proof. Thanks to (3.34), (3.49) and (3.50), a straightforward application of [41, Theorem 2.34] yields
the existence of a unique solution (ϕ⃗, σ̃) ∈ H × Q to (3.30). Moreover, the corresponding a priori
estimate given by the first inequality of [41, eq. (2.30)], along with the expression for ∥Gw∥ provided
by (3.34), lead to (3.51).

Regarding the a priori estimate for the component σ̃ of the unique solution of (3.30), which will be
used later on, we recall that the second inequality in [41, eq. (2.30)] and (3.34) implies

∥σ̃∥Q ≤ |Ω|1/s

β

(
1 +

ϑ2
α

)
g2 . (3.52)

3.3.4 Solvability of the first fully-mixed formulation

We begin by defining the compose operator Ξ : M → M as

Ξ(ψ) := S̃2
(
S(ψ)

)
∀ψ ∈ M . (3.53)
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Then, knowing that the operators S̃ and S, and hence Ξ as well, are well-defined, we notice that solving
(3.35) is equivalent to seeking a fixed point of Ξ, that is: Find ψ ∈ M such that

Ξ(ψ) = ψ . (3.54)

Next, in order to address the solvability of (3.54) (equivalently of (3.35)), we verify the hypotheses of
the Banach fixed-point theorem. For this purpose, let us first introduce the ball

W̃ :=
{
ϕ ∈ M : ∥ϕ∥M ≤ δ̃

}
, (3.55)

with

δ̃ :=
ϑ̃2

β̃2

(
1 +

ϑ̃2
α̃

)
|Ω|1/sg2 .

It follows from the definition of Ξ (cf. (3.53)) and the a priori estimate for S̃2 (cf. (3.45)) that

Ξ(W̃ ) ⊆ W̃ . (3.56)

Now, in order to establish the continuity of Ξ, we previously establish those of S and S̃. Indeed,
resorting to a slight modification of Lemma 2.9, we deduce the existence of a positive constant CS,
depending only on µ, α, β1, and β2, such that

∥S(ϕ)− S(φ)∥X2×M1 ≤ CS Lf ∥ϕ− φ∥M ∀ϕ, φ ∈ M , (3.57)

which proves the Lipschitz-continuity of S. Furthermore, for the same property of S̃, the approach
from several previous works (see, e.g. [7], [30], [46], [47], and [52]) is adopted here, so that a regularity
assumption on the solution of the problem defining this operator is introduced. More precisely, from
now on we suppose that there exists ε ≥ n

r and a positive constant C̃ε, such that

(RA1) for each (ζ,w) ∈ X2 ×M1 there holds S̃(ζ,w) = (σ̃, ϕ) ∈ (Q ∩Hε(Ω))×Wε,r(Ω), and

∥σ̃∥ε,Ω + ∥ϕ∥ε,r;Ω ≤ C̃ε g2 . (3.58)

The aforementioned lower bound of ε is explained within the proof of Lemma 3.4 below, which provides
the Lipschitz-continuity of S̃. In this regard, we recall now from [74, Theorem 1.3.4, part a)] (see, also
[56, Theorem 1.4.5.2, part e)]) that for each ε < n

2 there holds Hε(Ω) ⊂ Lε
∗
(Ω), with continuous

injection

iε : H
ε(Ω) −→ Lε

∗
(Ω) , where ε∗ =

2n

n− 2ε
. (3.59)

Note that the indicated lower and upper bounds for the additional regularity ε, which turn out to
require that ε ∈ [nr ,

n
2 ), are compatible if and only if r > 2, which is coherent with the range stipulated

in (3.9).

Now, regarding the feasibility of (RA1), we first stress that, given (ζ,w) ∈ X2×M1, this hypothesis
is actually determined by the regularity of the second order elliptic problem in divergence form arising
from the second row of (3.1) (equivalently, (3.17)), that is

σ̃ = ϑ(ζ)∇ϕ in Ω , −div(σ̃) = g(w) in Ω , and ϕ = 0 on Γ , (3.60)
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whose variational formulation has been set in the form given by (3.41). Then, assuming that ϑ(ζ) and
g(w) are sufficiently smooth, and denoting by ω ∈ (0, π) ∪ (π, 2π) the largest interior angle of Ω, the
respective elliptic regularity result (see, e.g. [35, Theorem 14.6] or [57]) establishes that in this case
there holds ϕ ∈ H1+ε(Ω) for all ε ∈ (0, πω ). It follows that ∇ϕ ∈ Hε(Ω), and hence, invoking again
a suitable smoothness assumption on ϑ(ζ), one would deduce that σ̃ belongs to Hε(Ω) as well. In
addition, considering for simplicity the 2D case, we know from [56, Theorem 1.4.5.2, part e)] that the
space Ht(Ω) = Wt,2(Ω) is embedded in Wε,r(Ω) if t = 1+ ε− 2

r and ε ≤ t. Thus, knowing that r > 2

(cf. (3.9)), it is easily seen that the inequality between ε and t is satisfied, and since 1 + ε > t, we get
the continuous injections depicted as follows

H1+ε(Ω) ↪→ Ht(Ω) ↪→ Wε,r(Ω) ,

from which we conclude that ϕ ∈ Wε,r(Ω). In turn, (3.58) should follow from the a priori estimate
for ∥ϕ∥1+ε,Ω in terms of g(w), and the fact that |g| is bounded by g2 (cf. (3.8)). Summarizing, the
above discussion confirms (RA1) as an achievable assumption, and hence, in order to be able to pick
ε such that ε ≥ n

r , which is needed below, it suffices to impose that π
ω >

n
r , that is ω < r

n π, and hence
ω < min

{
1, rn

}
2π, which constitutes just a geometric condition on Ω.

We now use (RA1) to prove the announced property of S̃.

Lemma 3.4. There exists a positive constant C
S̃
, depending only on α̃, β̃, |Ω|, r, ε, ∥iε∥ M(cf.

(3.59)M), and C̃ε M(cf. (3.58)M), such that

∥S̃(ζ,w)− S̃(τ ,v)∥Q×M ≤ C
S̃

{
L
ϑ̃
g2 + Lg

}
∥(ζ,w)− (τ ,v)∥X2×M1 (3.61)

for all (ζ,w), (τ ,v) ∈ X2 ×M1.

Proof. We begin by noticing that the a priori estimates (3.44) and (3.45) of problem (3.41), with a
given (ζ,w) ∈ X2 ×M1, are equivalent to stating that

∥(ζ̃, φ)∥Q×M ≤ C sup
(τ̃ ,ψ)∈Q×M

(τ̃ ,ψ)̸=0

ãζ(ζ̃, τ̃ ) + b̃(τ̃ , φ) + b̃(ζ̃, ψ)

∥(τ̃ , ψ)∥Q×M
∀ (ζ̃, φ) ∈ Q×M , (3.62)

with a positive constant C that depends only on ϑ̃2, α̃, and β̃, and hence independent of (ζ,w). Next,
given (ζ,w), (τ ,v) ∈ X2 ×M1, we let

S̃(ζ,w) := (σ̃, ϕ) and S̃(τ ,v) := (ζ̃, φ) ,

which, according to (3.40) and (3.41), means, respectively, that

ãζ(σ̃, τ̃ ) + b̃(τ̃ , ϕ) = 0 ∀ τ̃ ∈ Q ,

b̃(σ̃, ψ) = Gw(ψ) ∀ψ ∈ M ,
(3.63)

and
ãτ (ζ̃, τ̃ ) + b̃(τ̃ , φ) = 0 ∀ τ̃ ∈ Q ,

b̃(ζ̃, ψ) = Gv(ψ) ∀ψ ∈ M .
(3.64)
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Then, applying (3.62) to S̃(ζ,w)− S̃(τ ,v) = (σ̃ − ζ̃, ϕ− φ), and using (3.63) and (3.64), we get

∥S̃(ζ,w)− S̃(τ ,v)∥Q×M ≤ C sup
(τ̃ ,ψ)∈Q×M

(τ̃ ,ψ) ̸=0

ãζ(σ̃ − ζ̃, τ̃ ) + b̃(τ̃ , ϕ− φ) + b̃(σ̃ − ζ̃, ψ)

∥(τ̃ , ψ)∥Q×M

≤ C sup
(τ̃ ,ψ)∈Q×M

(τ̃ ,ψ) ̸=0

ãτ (ζ̃, τ̃ )− ãζ(ζ̃, τ̃ ) + (Gw −Gv)(ψ)

∥(τ̃ , ψ)∥Q×M
.

(3.65)

Thus, bearing in mind the definitions of ãτ and ãζ , and using the Lipschitz-continuity of ϑ̃ (cf. (3.6))
along with the Cauchy-Schwarz and Hölder inequalities, we find that

|ãτ (ζ̃, τ̃ )− ãζ(ζ̃, τ̃ )| ≤ L
ϑ̃
∥(τ − ζ) ζ̃∥0,Ω ∥τ̃∥0,Ω ≤ L

ϑ̃
∥τ − ζ∥0,2q;Ω ∥ζ̃∥0,2p,Ω ∥τ̃∥0,Ω , (3.66)

where p, q ∈ (1,+∞) are conjugate to each other. Now, choosing p such that 2p = ε∗ (cf. (3.59)), we
get 2q = n

ε , which, according to the range stipulated for ε, yields 2q ≤ r, and thus the norm of the
embedding of Lr(Ω) into L2q(Ω) = L

n
ε (Ω) is given by Cr,ε := |Ω|

rε−n
rn . In this way, using additionally

the continuity of iε (cf. (3.59)) along with the regularity estimate (3.58), the inequality (3.66) becomes

|ãτ (ζ̃, τ̃ )− ãζ(ζ̃, τ̃ )| ≤ L
ϑ̃
Cr,ε ∥τ − ζ∥0,r;Ω ∥iε∥ ∥ζ̃∥ε,Ω ∥τ̃∥0,Ω

≤ L
ϑ̃
Cr,ε ∥iε∥ C̃ε g2 ∥τ − ζ∥X2 ∥(τ̃ , ψ)∥Q×M .

(3.67)

In turn, the Lipschitz-continuity of g (cf. (3.8)), the fact that s < r (cf. (3.9)), and Hölder’s inequality,
yield

|(Gw −Gv)(ψ)| ≤ Lg ∥w − v∥0,r;Ω ∥ψ∥0,s;Ω ≤ Lg |Ω|
r−s
rs ∥w − v∥0,r;Ω ∥ψ∥0,r;Ω

≤ Lg |Ω|
r−s
rs ∥w − v∥M2 ∥(τ̃ , ψ)∥Q×M .

(3.68)

Finally, replacing (3.67) and (3.68) back into (3.65), we arrive at (3.61), which ends the proof.

We are able to prove now the Lipschitz-continuity of Ξ in the closed ball W̃ of M := Lr(Ω).

Lemma 3.5. There exists a positive constant CΞ, depending only on CS and C
S̃
, such that

∥Ξ(ϕ)− Ξ(φ)∥M ≤ CΞ Lf
{
Lg + L

ϑ̃
g2
}
∥ϕ− φ∥M ∀ϕ, φ ∈ M . (3.69)

Proof. It readily follows from the definition of Ξ (cf. (3.53)), and the estimates (3.57) and (3.61),
which yields CΞ := CSCS̃

.

Consequently, the main result of this subsection is stated as follows.

Theorem 3.6. Assume the regularity assumption (RA1) (cf. (3.58)), and that the data Lf , Lg, Lϑ̃,
and g2 are sufficiently small so that

CΞ Lf
{
Lg + L

ϑ̃
g2
}
< 1 . (3.70)
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Then, Ξ has a unique fixed point ϕ in W̃ . Equivalently, the coupled problem (3.35) has a unique solution(
(σ,u), (σ̃, ϕ)

)
∈
(
X2 ×M1

)
×
(
Q×M

)
, with ϕ ∈ W̃ (cf. (3.55)). Moreover, there hold

∥σ∥X2 ≤ Cr
α

∥uD∥1/s,r;Γ +
|Ω|1/r

β2

(
1 +

2

αµ

)
f2 ,

∥u∥M1 ≤ Cr
β1

(
1 +

2

αµ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1β2

(
1 +

2

αµ

)
f2 , and

∥σ̃∥Q ≤ 1

β̃2

(
1 +

ϑ̃2
α̃

)
|Ω|1/sg2 .

(3.71)

Proof. Thanks to (3.56), Lemma 3.5, and the assumption (3.70), the existence of a unique ϕ ∈ W̃

solution to (3.54) (equivalently, the existence of a unique
(
(σ,u), (σ̃, ϕ)

)
∈
(
X2 × M1

)
×
(
Q × M

)
solution to (3.35)), follows from a straightforward application of the Banach fixed point Theorem. In
addition, noting that (σ,u) = S(ϕ) and (σ̃, ϕ) = S̃(σ,u), the a priori estimates (3.39) and (3.44) yield
(3.71), which ends the proof.

3.3.5 Solvability of the second fully-mixed formulation

Similarly to Section 3.3.4, for the solvability analysis of (3.36) we define the operator Λ : M → M as

Λ(ψ) := S1
(
S(ψ)

)
∀ψ ∈ M . (3.72)

Then, noticing that S and S, and hence Λ as well, are well-defined, we realize that solving (3.36) is
equivalent to finding a fixed point of Λ, that is: Find ψ ∈ M such that

Λ(ψ) = ψ . (3.73)

In what follows we show that Λ verifies the hypotheses of the respective Banach Theorem. We begin
by defining the ball

W :=
{
ϕ ∈ M : ∥ϕ∥M ≤ δ

}
, (3.74)

with

δ :=
|Ω|1/s

α
g2 ,

so that from the definition of Λ (cf. (3.72)) and the a priori estimate for S1 (cf. (3.51)), we get

Λ(W ) ⊆ W . (3.75)

Next, in order to prove that Λ is Lipschitz-continuous, and similarly to (RA1), we need to introduce
a regularity hypothesis on the solution of the problem defining the operator S. More precisely, we
assume that there exists ε ≥ n

r and a positive constant Cε such that

(RA2) for each (ζ,w) ∈ X2 ×M1 there hold S(ζ,w) := (ϕ, t) ∈ Wε,r(Ω)×Hε(Ω), and

∥ϕ∥ε,r;Ω + ∥t∥ε,Ω ≤ Cε g2 . (3.76)
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Regarding the feasibility of (RA2), we refer to the remark on (RA1) provided in Section 3.3.4, which
deals with the same boundary value problem defining the present operator S. In particular, it is also
commented there that t := ∇ϕ would belong to Hε(Ω).

The Lipschitz-continuity of S is addressed next, whose corresponding proof requires again the lower
bound of ε, and the embedding specified in (3.59). Therefore, following the same arguments from the
previous section, we conclude that the feasible range for r and s are given by (3.9). The announced
result is established as follows.

Lemma 3.7. There exists a positive constant CS, depending on α, |Ω|, r, s, ε, ∥iε∥ M(cf. (3.59)M),
and Cε (cf. (3.76)) such that

∥S(ζ,w) − S(τ ,v)∥H

≤ CS

{
Lg + Lϑ g2

}
∥(ζ,w)− (τ ,v)∥X2×M1 ∀ (ζ,w), (τ ,v) ∈ X2 ×M1 .

(3.77)

Proof. Given (ζ,w), (τ ,v) ∈ X2 ×M1, we let

S(ζ,w) := ϕ⃗ and S(τ ,v) := ψ⃗ ,

where (ϕ⃗, σ̃) := ((ϕ, t), σ̃) ∈ H ×Q and (ψ⃗, ζ̃) := ((ψ, r), ζ̃) ∈ H ×Q are the respective solutions of
(3.47). It follows from the corresponding second equations of (3.47) that ϕ⃗− ψ⃗ ∈ V (cf. (3.48)), and
thus the V -ellipticity of aζ (cf. (3.31)) gives

α ∥ϕ⃗− ψ⃗∥2H ≤ aζ(ϕ⃗− ψ⃗, ϕ⃗− ψ⃗) . (3.78)

In turn, applying the corresponding first equations of (3.47) to φ⃗ = ϕ⃗− ψ⃗, we obtain

aζ(ϕ⃗, ϕ⃗− ψ⃗) = Gw(ϕ⃗− ψ⃗) , and (3.79)

aτ (ψ⃗, ϕ⃗− ψ⃗) = Gv(ϕ⃗− ψ⃗) , (3.80)

so that employing (3.79), and then subtracting and adding aτ (ψ⃗, ϕ⃗− ψ⃗) (cf. (3.80)), (3.78) becomes

α ∥ϕ⃗− ψ⃗∥2H ≤ (Gw −Gv)(ϕ⃗− ψ⃗) + (aτ − aζ)(ψ⃗, ϕ⃗− ψ⃗) . (3.81)

Next, proceeding as for (3.68), we easily get

(Gw −Gv)(ϕ⃗− ψ⃗) ≤ Lg |Ω|
r−s
rs ∥w − v∥M1 ∥ϕ− ψ∥M . (3.82)

On the other hand, recalling that r and s are conjugate to each other with s < r (cf. (3.9)), and
employing the Lipschitz continuity of ϑ (cf. (3.4)) along with Hölder’s inequality, we find that

(aτ − aζ)(ψ⃗, ϕ⃗− ψ⃗) ≤ Lϑ ∥τ − ζ∥0,2q;Ω ∥r∥0,2p;Ω ∥t− r∥0,Ω , (3.83)

where p, q ∈ (1,+∞) are conjugate to each other as well. Then, similarly to the proof of Lemma 3.4,
we choose p such that 2p = ε∗ (cf. (3.59)), so that 2q = n

ε ≤ r, and hence

(aτ − aζ)(ψ⃗, ϕ⃗− ψ⃗) ≤ LϑCr,ε ∥iε∥Cε g2 ∥τ − ζ∥0,r;Ω ∥t− r∥0,Ω . (3.84)

Thus, replacing the estimates (3.82) and (3.84) back into (3.81), we arrive at (3.77) with the constant
CS := max

{
|Ω|

r−s
rs , Cr,ε ∥iε∥Cε

}
.
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We are now in position to conclude the Lipschitz-continuity of Λ.

Lemma 3.8. There exists a positive constant CΛ, depending only on CS and CS, such that

∥Λ(ϕ) − Λ(φ)∥M ≤ CΛ Lf
{
Lg + Lϑ g2

}
∥ϕ− φ∥M ∀ϕ, φ ∈ M . (3.85)

Proof. It is a direct consequence of the definition of Λ (cf. (3.72)) and the continuity properties given
by (3.57) and Lemma 3.7.

Finally, the well-posedness of (3.36) is established as follows.

Theorem 3.9. Assume the regularity assumption (RA2) (cf. (3.76)), and that the data Lf , Lg, Lϑ,
and g2 are sufficiently small so that

CΛ Lf
{
Lg + Lϑ g2

}
< 1 . (3.86)

Then, Λ has a unique fixed point ϕ ∈W . Equivalently, the coupled problem (3.36) has a unique solution(
(σ,u), (ϕ⃗, σ̃)

)
∈
(
X2 ×M1

)
×
(
H ×Q

)
, with ϕ⃗ := (ϕ, t) ∈ H and ϕ ∈ W (cf. (3.74)). Moreover,

there hold

∥σ∥X2 ≤ Cr
α

∥uD∥1/s,r;Γ +
|Ω|1/r

β2

(
1 +

2

αµ

)
f2 ,

∥u∥M1 ≤ Cr
β1

(
1 +

2

αµ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1β2

(
1 +

2

αµ

)
f2 ,

∥ϕ⃗∥H = ∥ϕ∥M + ∥t∥0,Ω ≤ |Ω|1/s

α
g2 , and

∥σ̃∥Q ≤ |Ω|1/s

β

(
1 +

ϑ2
α

)
g2 .

(3.87)

Proof. Bearing in mind (3.75), Lemma 3.8, and the hypothesis (3.86), a direct application of the
Banach fixed point Theorem implies the existence of a unique ϕ ∈W solution to (3.73) (equivalently,
the existence of a unique solution

(
(σ,u), (ϕ⃗, σ̃)

)
∈
(
X2 × M1

)
×
(
H × Q

)
to (3.36)). In addition,

recalling that (σ,u) = S(ϕ) and (ϕ⃗, σ̃) = S(σ,u), the a priori estimates (3.39), (3.51), and (3.52) yield
(3.87) and conclude the proof.

We end this section by noticing that smallness data assumptions such as (3.70) and (3.86), which
in this case yield unique solvability of the coupled problems (3.35) and (3.35), respectively, appear
very often in the literature when combining primal and dual-mixed formulations with fixed-point
strategies for addressing the solvability of diverse nonlinear problems in continuum mechanics. In
particular, in our previous work on the present model, the analogue of each one of them is given by
(2.98), whereas the same kind of hypotheses arise as well for similar and related problems, including,
coupled flow-transport (cf. [11, Theorem 3.11, eq. (3.54)]), Navier-Stokes (cf. [18, Theorem 3.8, eq.
(3.38)]), magneto-hydrodynamics (cf. [19, Theorem 3.7, eq. (3.39)]), Stokes/Poisson-Nernst-Planck
(cf. [34, Theorem 4.11, eq. (105)]), chemotaxis/Navier-Stokes (cf. [23, Theorem 3.12, eq. (3.78)]),
Boussinesq (cf. [24, Theorem 3.2, eq. (3.45)], [29, Theorem 3.11, eq. (3.78)], [33, Theorem 3.8, eq.
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(3.34)]), and fluidizer bed (cf. [55, Theorem 3.12, eq. (3.93)]), among many others. While most of the
aforementioned hypotheses have the same structure, in the sense that they reduce to constraints on
linear combinations of data, which make them similar, though all different because of the constants
involved, the fact that the latter are usually unknown, stops us from verifying them in practice, and
hence of performing comparisons among them. Instead of it, what turns out to be very helpful and
makes the difference in some models, is the fact that the respective fixed-point operator becomes
compact, in which case the existence of solution simply follows from the Schauder theorem, without
the need of imposing smallness data assumption, except the ones required to ensure that the operator
maps a ball into itself. We refer to [7, Theorem 3.13] and [32, Theorem 3.10] as illustrative examples
of the above for coupled flow-transport models.

3.4 The Galerkin schemes

In this section we introduce and analyse the Galerkin schemes of the fully-mixed formulations (3.35)
and (3.36). In particular, for the solvability analyses of the discrete versions of the decoupled problems
studied in Sections 3.3.1, 3.3.2, and 3.3.3, we employ the corresponding analogues of [12, Theorem 2.1,
Corollary 2.1, Section 2.1] and [41, Theorem 2.34], which are given by [12, Corollary 2.2, eqs. (2.24),
(2.25)] and [41, Proposition 2.42], respectively.

3.4.1 Preliminaries

We begin by letting X2,h, M1,h, X1,h, and M2,h be the finite element subspaces of X2, M1, X1, and
M2, respectively, that are described in (2.135). In addition, let Qh, Mh, and Ht

h be arbitrary finite
element subspaces of Q, M, and L2(Ω), respectively. Hereafter, h stands for both the sub-index of
each subspace and the size of a regular triangulation Th of Ω̄ made up of triangles K (when n = 2) or
tetrahedra K (when n = 3) of diameter hK , that is, h := max

{
hK : K ∈ Th

}
. Then, the Galerkin

scheme associated with (3.35) reads: Find (σh,uh) ∈ X2,h ×M1,h and (σ̃, ϕ) ∈ Qh ×Mh such that

a(σh, τ h) + b1(τ h,uh) = G(τ h) ∀ τ h ∈ X1,h,

b2(σh,vh) = Fϕh(vh) ∀vh ∈ M2,h,

ãσh(σ̃h, τ̃ h) + b̃(τ̃ h, ϕh) = 0 ∀ τ̃ h ∈ Qh ,

b̃(σ̃h, ψh) = G̃uh(ψh) ∀ψh ∈ Mh .

(3.88)

In turn, defining the product space Hh := Mh ×Ht
h and setting the notation

ϕ⃗h := (ϕh, th) , φ⃗h := (φh, sh) ∈ Hh ,

the Galerkin scheme associated with (3.36) reduces to: Find (σh,uh) ∈ X2,h ×M1,h and (ϕ⃗h, σ̃h) ∈
Hh ×Qh such that
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a(σh, τ h) + b1(τ h,uh) = G(τ h) ∀ τ h ∈ X1,h,

b2(σh,vh) = Fϕh(vh) ∀vh ∈ M2,h,

aσh(ϕ⃗h, φ⃗h) + b(φ⃗h, σ̃h) = Guh(φ⃗h) ∀ φ⃗h ∈ Hh ,

b(ϕ⃗h, τ̃ h) = 0 ∀ τ̃ h ∈ Qh .

(3.89)

The aforementioned subspaces X2,h, M1,h, X1,h, and M2,h, along with specific examples of Qh, Mh,
and Ht

h satisfying the hypotheses to be assumed below in Sections 3.4.3 and 3.4.4, are described later
on in Section 3.5.1.

3.4.2 Discrete well-posedness of the elasticity equation

We let Sh : Mh → X2,h ×M1,h be the discrete version of the operator S (cf. (3.37)), that is

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh,uh) ∀φh ∈ Mh , (3.90)

where (σh,uh) ∈ X2,h ×M1,h is the unique solution (to be confirmed below) of the first two rows of
(3.88) (or (3.89)) with φh instead of ϕh, namely

a(σh, τ h) + b1(τ h,uh) = G(τ h) ∀ τ h ∈ X1,h ,

b2(σh,vh) = Fφh(vh) ∀vh ∈ M2,h .
(3.91)

Then, under the same assumption on the Lamé parameter λ stipulated in Section 3.3.1, and letting
αd, β1,d, and β2,d be the constants yielding the discrete inf-sup conditions for a, b1, and b2 (cf. Lemmas
2.20 and 2.21), a direct application of [12, Corollary 2.2, eqs. (2.24), (2.25)] yields the following result
(cf. Lemma 2.16).

Lemma 3.10. For each φh ∈ Mh there exists a unique (σh,uh) ∈ X2,h×M1,h solution to (3.91), and
hence one can define Sh(φh) =

(
S1,h(φh),S2,h(φh)

)
:= (σh,uh) ∈ X2,h×M1,h. Moreover, there hold

∥S1,h(φh)∥X2 = ∥σh∥X2 ≤ Cr
αd

∥uD∥1/s,r;Γ +
|Ω|1/r

β2,d

(
1 +

2

αd µ

)
f2 , and

∥S2,h(φh)∥M1 = ∥uh∥M1 ≤ Cr
β1,d

(
1 +

2

αd µ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1,d β2,d

(
1 +

2

αd
µ

)
f2 .

(3.92)

We stress here that the lack of a required boundedness property for a projector involved in the proof
of the previous lemma, restricts the present discrete analysis to the 2D case. We refer to Chapter 2.5
for further details.

3.4.3 Discrete well-posedness of the first approach for the diffusion equation

We now let S̃h : X2,h ×M1,h → Qh ×Mh be the discrete version of S̃ (cf. (3.40)), that is

S̃h(ζh,wh) := (σ̃h, ϕh) ∀ (ζh,wh) ∈ X2,h ×M1,h , (3.93)
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where (σ̃h, ϕh) ∈ Qh×Mh is the unique solution (to be confirmed below) of the third and fourth rows
of (3.88) with (ζh,wh) instead of (σh,uh), namely

ãζh(σ̃h, τ̃ h) + b̃(τ̃ h, ϕh) = 0 ∀ τ̃ h ∈ Qh ,

b̃(σ̃h, ψh) = G̃wh(ψh) ∀ψh ∈ Mh .
(3.94)

In order to establish the well-posedness of (3.94), we first consider the discrete kernel of b̃, that is

K̃h :=
{
τ̃ h ∈ Qh : b̃(τ̃ h, ϕh) = 0 ∀ϕh ∈ Mh

}
, (3.95)

and suppose that

(H.1) div(Qh) ⊆ Mh.

Then, bearing mind the definition of b̃ (cf. (3.24)), and employing (H.1), we readily deduce from
(3.95) that

K̃h :=
{
τ̃ h ∈ Qh : div(τ̃ h) = 0

}
,

which yields the discrete analogue of (3.42), and hence the K̃h-ellipticity of ãζh with constant α̃d = ϑ̃0.

Next, we also assume that

(H.2) there exists a positive constant β̃d, independent of h, such that

sup
τ̃h∈Qh
τ̃h ̸=0

b̃(τ̃ h, ψh)

∥τ̃ h∥Q
≥ β̃d ∥ψh∥M ∀ψh ∈ Mh .

Thus, straightforward applications of [41, Theorem 2.42] and the abstract estimates from [41, eq.
(2.30)] imply the discrete analogue of Lemma 3.2, which is stated as follows.

Lemma 3.11. For each (ζh,wh) ∈ X2,h ×M1,h, there exists a unique (σ̃h, ϕh) ∈ Qh ×Mh solution
of (3.94), and hence one can define S̃h(ζh,wh) =

(
S̃1,h(ζh,wh), S̃2,h(ζh,wh)

)
:= (σ̃h, ϕh) ∈ Qh×Mh.

Moreover, there hold

∥S̃1,h(ζh,wh)∥Q = ∥σ̃h∥Q ≤ 1

β̃d

(
1 +

ϑ̃2
α̃d

)
|Ω|1/sg2 , and

∥S̃2,h(ζh,wh)∥M = ∥ϕh∥M ≤ ϑ̃2

β̃2d

(
1 +

ϑ̃2
α̃d

)
|Ω|1/sg2 .

(3.96)

3.4.4 Discrete well-posedness of the second approach for the diffusion equation

Here we introduce the discrete operator Sh : X2,h ×M1,h → Hh given by

Sh(ζh,wh) := ϕ⃗h ∀ (ζh,wh) ∈ X2,h ×M1,h , (3.97)

where (ϕ⃗h, σ̃h) := ((ϕh, th), σ̃h) ∈ Hh×Qh is the unique solution (to be confirmed below) of the third
and fourth rows of (3.89) with (ζh,wh) instead of (σh,uh), that is

aζh(ϕ⃗h, φ⃗h) + b(φ⃗h, σ̃h) = Gwh(φ⃗h) ∀ φ⃗h ∈ Hh ,

b(ϕ⃗h, τ̃ h) = 0 ∀ τ̃ h ∈ Qh .
(3.98)
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In order to prove that (3.98) is well-posed, we need to incorporate a couple of suitable hypotheses
on the discrete spaces. Indeed, we first assume that

(H.3) there exists a positive constant βd, independent of h, such that

sup
φ⃗h∈Hh
φ⃗h ̸=0

b(φ⃗h, τ̃ h)

∥φ⃗h∥H
≥ βd ∥τ̃ h∥Q ∀ τ̃ h ∈ Qh .

Next, we let Vh be the discrete kernel of the bilinear form b, that is

Vh :=
{
φ⃗h ∈ Hh : b(φ⃗h, τ̃ h) = 0 ∀ τ̃ h ∈ Qh

}
,

and suppose that

(H.4) there exists a positive constant Cd, independent of h, such that

∥sh∥0,Ω ≥ Cd ∥φh∥0,r,Ω ∀ φ⃗h := (φh, sh) ∈ Vh .

In this way, bearing in mind the definition of aζh (cf. (3.31)), and employing the positive definiteness
property of ϑ (cf. (3.3)) and (H.4), we deduce for each ζh ∈ X2,h that

aζh(φ⃗h, φ⃗h) ≥ ϑ0 ∥sh∥20,Ω ≥ ϑ0
2
C2
d ∥φh∥20,r;Ω +

ϑ0
2

∥sh∥20,r;Ω ∀ φ⃗h := (φh, sh) ∈ Vh , (3.99)

from which it readily follows the Vh-ellipticity of aζh with constant αd := ϑ0
2 min{C2

d , 1}.

Consequently, applying [41, Proposition 2.42], and making use of the a priori estimate provided by
[41, eq. (2.30)], we are lead to the discrete analogue of Lemma 3.3.

Lemma 3.12. For each (ζh,wh) ∈ X2,h ×M1,h there exists a unique (ϕ⃗h, σ̃h) ∈ Hh ×Qh solution of
(3.98), and hence one can define Sh(ζh,wh) := ϕ⃗h ∈ Hh. Moreover, there holds

∥Sh(ζh,wh)∥H = ∥ϕ⃗h∥H = ∥ϕh∥0,r;Ω + ∥th∥0,Ω ≤ |Ω|1/s

αd
g2 . (3.100)

We end this section by remarking that the discrete version of (3.52) becomes

∥σ̃h∥Q = ∥σ̃h∥divs;Ω ≤ |Ω|1/s

βd

(
1 +

ϑ2
αd

)
g2 . (3.101)

3.4.5 Discrete solvability of the first fully-mixed formulation

In this section we adopt the discrete analogue of the fixed point strategy introduced in Section 3.3.4
to analyse the solvability of (3.88). According to it, we define the operator Ξh : Mh → Mh as

Ξh(φh) := S̃2,h
(
Sh(φh)

)
∀φh ∈ Mh , (3.102)

and observe, being S̃h and Sh, and hence Ξh as well, well-defined, that solving (3.88) is equivalent to
seeking a fixed point of Ξh, that is: Find ϕh ∈ Mh such that

Ξh(ϕh) = ϕh . (3.103)
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Thus, in what follows we show that Ξh verifies the hypotheses of the Brouwer theorem. In fact,
introducing the ball

W̃h :=
{
ϕh ∈ M1,h : ∥ϕh∥0,r;Ω ≤ δ̃d

}
, (3.104)

with

δ̃d :=
ϑ̃2

β̃2d

(
1 +

ϑ̃2
α̃d

)
|Ω|1/sg2 ,

we realize, according to the definition of Ξh (cf. (3.102)) and the second a priori estimate in (3.96),
that

Ξh
(
W̃h

)
⊆ W̃h . (3.105)

Next, in order to derive the continuity of Ξh, we first recall from (2.110) that there exists a positive
constant CS,d, independent of h, such that

∥Sh(ϕh)− Sh(φh)∥X2×M1 ≤ CS,d Lf ∥ϕh − φh∥0,r;Ω ∀ϕh, φh ∈ Mh . (3.106)

On the other hand, for the continuity of S̃h the reasoning of the proof of Lemma 3.4 is slightly
modified. Indeed, knowing that the regularity assumption (RA1) is certainly not applicable in the
present discrete context, we proceed to utilize a L2q −L2p−L2 argument to derive the discrete version
of (3.61), where p, q ∈ (1,+∞), conjugate to each other, are chosen such that 2q = r. The above
is a feasible choice since, as stipulated in (3.9), there holds r > 2, which yields r∗ := 2p = 2r

r−2 . In
this way, given (ζh,wh) (τ h,vh) ∈ X2,h ×M1,h, and denoting (σ̃h, ϕh) = S̃h(ζh,wh) ∈ Qh ×Mh and
(ζ̃h, φh) = S̃h(τ h,vh) ∈ Qh ×Mh, the discrete analogue of (3.66) becomes

|ãτh(ζ̃h, τ̃ h)− ãζh(ζ̃h, τ̃ h)| ≤ L
ϑ̃
∥(τ h − ζh)ζ̃h∥0,Ω ∥τ̃ h∥0,Ω

≤ L
ϑ̃
∥τ h − ζh∥0,2q;Ω ∥ζ̃h∥0,2p,Ω ∥τ̃ h∥0,Ω .

(3.107)

The foregoing inequality, along with the discrete versions of (3.65) and (3.68), whose details we omit
here, imply the existence of a positive constant C

S̃,d
, depending only on α̃d, β̃d, and |Ω|, and hence

independent of h, such that

∥S̃h(ζh,wh)− S̃h(τ h,vh)∥Q×M

≤ C
S̃,d

{
Lg + L

ϑ̃
∥S̃1,h(τ h,vh)∥0,r∗;Ω

}
∥(ζh,wh)− (τ h,vh)∥Q×M

(3.108)

for all (ζh,wh), (τ h,vh) ∈ X2,h ×M1,h. In this way, recalling the definition of Ξh (cf. (3.102)), and
employing the estimates (3.106) and (3.108), we conclude that

∥Ξh(ϕh)− Ξh(φh)∥0,r;Ω

≤ CΞ,d Lf

{
Lg + L

ϑ̃
∥S̃1,h(Sh(φh))∥0,r∗;Ω

}
∥ϕh − φh∥0,r;Ω ∀ϕh, φh ∈ Mh ,

(3.109)

with the positive constant CΞ,d := CS,dCS̃,d
. While the estimate (3.109) implies that Ξh is continu-

ous, we emphasize that the lack of control of the term ∥S̃1,h(Sh(φh))∥0,r∗;Ω stop us from concluding
Lipschitz-continuity and hence nor contractivity of this operator.

We are now in position to establish the following main result.
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Theorem 3.13. The operator Ξh has at least one fixed point ϕh ∈ W̃h. Equivalently, the Galerkin
scheme (3.88) has at least one solution

(
(σh,uh), (σ̃h, ϕh)

)
∈
(
X2,h×M1,h

)
×
(
Qh×Mh

)
, with ϕh ∈ W̃h

(cf. (3.104)). Moreover, there hold

∥σh∥X2 ≤ Cr
αd

∥uD∥1/s,r;Γ +
|Ω|1/r

β2,d

(
1 +

2

αd µ

)
f2 ,

∥uh∥M1 ≤ Cr
β1,d

(
1 +

2

αd µ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1,d β2,d

(
1 +

2

αd µ

)
f2 , and

∥σ̃h∥Q ≤ 1

β̃d

(
1 +

ϑ̃2
α̃d

)
|Ω|1/sg2 .

(3.110)

Proof. Thanks to (3.105), the continuity of Ξh (cf. (3.109)), and the equivalence between (3.88) and
(3.103), a straightforward application of Brouwer’s theorem (cf. [28, Theorem 9.9-2]) implies the first
conclusion of this theorem. Next, noting that (σh,uh) = Sh(ϕh) and (σ̃h, ϕh) = S̃h(σh,uh), the a
priori estimate (3.110) follows from (3.92) and (3.96).

3.4.6 A priori error analysis for the first fully-mixed formulation

In this section we establish the Céa estimate for the global error

∥(σ,u)− (σh,uh)∥X2×M1 + ∥(σ̃, ϕ)− (σ̃h, ϕh)∥Q×M ,

where
(
(σ,u), (σ̃, ϕ)

)
∈
(
X2×M1

)
×
(
Q×M

)
and

(
(σh,uh), (σ̃h, ϕh)

)
∈
(
X2,h×M1,h

)
×
(
Qh×Mh

)
are the unique solutions of (3.35) and (3.88), respectively, with ϕ ∈ W̃ (cf. (3.55)) and ϕh ∈ W̃h (cf.
(3.104)). In what follows, given a subspace Zh of a generic Banach space (Z, ∥ · ∥Z), we set

dist (z, Zh) := inf
zh∈Zh

∥z − zh∥Z ∀ z ∈ Z .

Then, applying the Strang a priori error estimate provided by [12, Proposition 2.1, Corollary 2.3,
and Theorem 2.3] to the pair of associated continuous and discrete formulations given by the first
and second rows of (3.35) and (3.88), respectively, and proceeding as for the derivation of (2.119), but
without using the continuous injection of H1(Ω) into Lr(Ω) as done there, we deduce that there exists a
positive constant ĈST , depending only on αd, β1,d, β2,d, ∥a∥, ∥b1∥, and ∥b2∥, and hence independent
of h, such that

∥(σ,u)− (σh,uh)∥X2×M1 ≤ ĈST

{
dist (σ,X2,h) + dist (u,M1,h) + Lf ∥ϕ− ϕh∥M

}
. (3.111)

Similarly, applying the Strang a priori error estimate from [12, Proposition 2.1, Corollary 2.3, and
Theorem 2.3]to the pair of associated continuous and discrete formulations given by the third and fourth
rows of (3.35) and (3.88), respectively, we find that there exists a positive constant C̃ST , depending
only on α̃d, β̃d, ∥ãσ∥, and ∥b̃∥, and hence independent of h, as well, such that

∥(σ̃, ϕ)− (σ̃h, ϕh)∥Q×M

≤ C̃ST

{
dist (σ̃,Qh) + dist (ϕ,Mh) + ∥(ãσ − ãσh)(σ̃, ·)∥Q′

h
+ ∥G̃u − G̃uh∥M′

h

}
.

(3.112)
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Next, proceeding exactly as for the derivations of (3.67) and (3.68), we find that

∥(ãσ − ãσh)(σ̃, ·)∥Q′
h
≤ L̃

S̃
L
ϑ̃
g2 ∥σ − σh∥X2 , (3.113)

where L̃
S̃
:= Cr,ε ∥iε∥Cε, and

∥Gu −Guh∥M′
h
≤ Lg |Ω|

r−s
rs ∥u− uh∥M1 , (3.114)

respectively. In this way, replacing (3.113) and (3.114) back into (3.112), we conclude that

∥(σ̃, ϕ)− (σ̃h, ϕh)∥Q×M

≤ C̃ST

{
dist (σ̃,Qh) + dist (ϕ,Mh) + L̃

S̃
L
ϑ̃
g2 ∥σ − σh∥X2 + Lg |Ω|

r−s
rs ∥u− uh∥M1

}
.

(3.115)

Thus, adding (3.111) and (3.115), we arrive at

∥(σ,u)− (σh,uh)∥X2×M1 + ∥(σ̃, ϕ)− (σ̃h, ϕh)∥Q×M

≤ CST

{
dist (σ,X2,h) + dist (u,M1,h) + dist (σ̃,Qh) + dist (ϕ,Mh)

}
+ C(data)

{
∥(σ,u)− (σh,uh)∥X2×M1 + ∥ϕ− ϕh∥M

}
,

(3.116)

where CST := max
{
ĈST , C̃ST

}
, and

C(data) := max
{
ĈST Lf , C̃ST L̃S̃

L
ϑ̃
g2, C̃ST Lg |Ω|

r−s
rs

}
. (3.117)

We are now in a position to state the announced Céa estimate for our first approach.

Theorem 3.14. Assume that the data (cf. (3.117)) satisfy

C(data) ≤ 1

2
. (3.118)

Then, there exists a positive constant C, independent of h, such that

∥(σ,u)− (σh,uh)∥X2×M1 + ∥(σ̃, ϕ)− (σ̃h, ϕh)∥Q×M

≤ C
{
dist (σ,X2,h) + dist (u,M1,h) + dist (σ̃,Qh) + dist (ϕ,Mh)

}
.

(3.119)

Proof. It follows directly from (3.116) and (3.118).

3.4.7 Discrete solvability of the second fully-mixed formulation

The discrete analogue of the fixed point approach employed in Section 3.3.5 is adopted here to
establish the solvability of (3.89). Thus, we now define the operator Λh : Mh → Mh as

Λh(ψh) := S1,h
(
Sh(ψh)

)
∀ψh ∈ Mh , (3.120)
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which is clearly well-defined since Sh and Sh are, and hence, solving (3.89) is equivalent to finding a
fixed point of Λh, that is ϕh ∈ Mh such that

Λh(ϕh) = ϕh . (3.121)

Similarly to the analysis in Section 3.4.5, in what follows we prove that Λh verifies the hypotheses of
the Brouwer theorem. Indeed, defining

Wh :=
{
ϕh ∈ Mh : ∥ϕh∥0,r;Ω ≤ δd

}
, (3.122)

with

δd :=
|Ω|1/s

αd
g2 ,

it is straightforward to see, from the definition of Λh (cf. (3.120)) and the a priori estimate for S1,h
(cf. (3.100)), that

Λh(Wh) ⊆ Wh . (3.123)

Next, proceeding analogously to the proof of Lemma 3.7, but without using the regularity assumption
(RA2), which is not valid in the present discrete case, and letting CS,d := max

{
|Ω|

r−s
rs , 1

}
, we are

able to show that
∥Sh(ζh,wh) − Sh(τ h,vh)∥H

≤ CS,d

{
Lg + Lϑ ∥S2,h(τ h,vh)∥0,r∗;Ω

}
∥(ζh,wh)− (τ h,vh)∥X2×M1

(3.124)

for all (ζh,wh), (τ h,vh) ∈ X2,h×M1,h. In this way, bearing in mind the definition of Λh (cf. (3.120)),
and combining (3.124) with the Lipschitz-continuity of Sh (cf. (3.106)), we obtain

∥Λh(ϕh)− Λh(φh)∥0,r;Ω

≤ LΛ,d Lf

{
Lg + Lϑ ∥S2,h(Sh(φh))∥0,r∗;Ω

}
∥ϕh − φh∥0,r;Ω ∀ϕh, φh ∈ Mh ,

(3.125)

with LΛ,d := CS,dCS,d.

The main result of this section is then stated as follows.

Theorem 3.15. The operator Λh has at least one fixed point ϕh ∈ Mh. Equivalently, the Galerkin
scheme (3.89) has at least one solution

(
(σh,uh), (ϕ⃗h, σ̃h)

)
∈
(
X2,h×M1,h

)
×
(
Hh×Qh

)
, with ϕh ∈Wh

(cf. (3.122)). Moreover, there hold

∥σh∥X2 ≤ Cr
αd

∥uD∥1/s,r;Γ +
|Ω|1/r

β2,d

(
1 +

2

αd µ

)
f2 ,

∥uh∥M1 ≤ Cr
β1,d

(
1 +

2

αd µ

)
∥uD∥1/s,r;Γ +

2|Ω|1/r

µβ1,d β2,d

(
1 +

2

αd µ

)
f2 ,

∥ϕ⃗h∥H = ∥ϕh∥0,r;Ω + ∥th∥0,Ω ≤ |Ω|1/s

αd
g2 , and

∥σ̃h∥Q = ∥σ̃h∥divr;Ω ≤ |Ω|1/s

βd

(
1 +

ϑ2
αd

)
g2 .

(3.126)

Proof. Thanks to (3.123), the continuity of Λh (cf. (3.125)), and the fact that (3.89) and (3.121) are
equivalent, the existence of solution follows from a direct application of the Brouwer theorem (cf. [28,
Theorem 9.9-2]). In turn, the a priori estimates (3.92), (3.100), and (3.101) yield (3.126), which finishes
the proof.
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3.4.8 A priori error analysis for the second fully-mixed formulation

In what follows we derive the Céa estimate for the global error

∥(σ,u)− (σh,uh)∥X2×M1 + ∥(ϕ⃗, σ̃)− (ϕ⃗h, σ̃h)∥H×Q ,

where
(
(σ,u), (ϕ⃗, σ̃)

)
∈
(
X2×M1

)
×
(
H×Q

)
and

(
(σh,uh), (ϕ⃗h, σ̃h)

)
∈
(
X2,h×M1,h

)
×
(
Hh×Qh

)
are the unique solutions of (3.36) and (3.89), respectively, with ϕ ∈ W (cf. (3.74)) and ϕh ∈ Wh (cf.
(3.122)).

Since the first two rows of (3.35) and (3.88) coincide with those of (3.36) and (3.89), we realize
that the a priori estimate for ∥(σ,u) − (σh,uh)∥X2×M1 is exactly the one given by (3.111). In turn,
applying the Strang estimate provided by [29, Lemma 6.1] (whose proof is a simple modification of
that of [44, Theorem 2.6]) to the pair of associated continuous and discrete formulations given by the
last two rows of (3.36) and (3.89), we deduce the existence of a positive constant CST , depending only
on αd, βd, ∥aσ∥, and ∥b∥, such that

∥(ϕ⃗, σ̃) − (ϕ⃗h, σ̃h)∥H×Q

≤ CST

{
dist (ϕ⃗,Hh) + dist (σ̃,Qh) + ∥(aσ − aσh)(ϕ⃗, ·)∥H′

h
+ ∥Gu −Guh∥H′

h

}
.

(3.127)

Then, proceeding exactly as for the derivations of (3.84) and (3.82), we readily obtain

∥(aσ − aσh)(ϕ⃗, ·)∥H′
h
≤ LS Lϑ g2 ∥σ − σh∥0,r;Ω ,

where LS := Cr,ε ∥iε∥Cε, and

∥Gu −Guh∥H′
h
≤ Lg |Ω|

r−s
rs ∥u− uh∥M1 .

In this way, replacing the foregoing estimates back into (3.127), and adding the resulting inequality to
(3.111), we arrive at

∥(σ,u)− (σh,uh)∥X2×M1 + ∥(ϕ⃗, σ̃) − (ϕ⃗h, σ̃h)∥H×Q

≤ CST

{
dist (σ,X2,h) + dist (u,M1,h) + dist (ϕ⃗,Hh) + dist (σ̃,Qh)

}
+D(data)

{
∥(σ,u)− (σh,uh)∥X2×M1 + ∥ϕ− ϕh∥M

}
,

(3.128)

where CST := max
{
ĈST , CST

}
, and

D(data) := max
{
ĈST Lf , CST LS Lθ g2, CST Lg |Ω|

r−s
rs

}
. (3.129)

Thus, we conclude the Céa estimate for our second approach.

Theorem 3.16. Assume that the data (cf. (3.129)) satisfy

D(data) ≤ 1

2
. (3.130)

Then, there exists a positive constant C, independent of h, such that

∥(σ,u)− (σh,uh)∥X2×M1 + ∥(ϕ⃗, σ̃) − (ϕ⃗h, σ̃h)∥H×Q

≤ C
{
dist (σ,X2,h) + dist (u,M1,h) + dist (ϕ⃗,Hh) + dist (σ̃,Qh)

}
.

(3.131)
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Proof. It is a straightforward consequence of (3.128) and (3.130).

We now refer to the eventual smallness data assumptions arising from the study of the Galerkin
schemes. Indeed, similarly as for the continuous case, we first observe that, while sharing the same
structure, they differ from each other between different methods, and are not verifiable in practice.
The only coincidence is the amount of conditions that are required for each one of the specific goals of
the analysis, say, for instance, existence or uniqueness of solution, and Céa’s estimate. In particular,
for the underlying discrete schemes, that is (2.100), (3.88), and (3.89), we are able to prove existence
of solution by applying Brouwer’s theorem, and without requiring any data assumption, but only
continuity of the corresponding fixed-point operators. The respective results are given by Theorem
2.16, Theorem 3.13, and Theorem 3.15. In turn, the derivation of the Céa estimates requires of one
smallness data condition each, which are included in the statements of the respective theorems, namely
Theorem 2.17, Theorem 3.14, and Theorem 3.16.

3.5 Specific finite element subspaces

We now define specific finite element subspaces satisfying the stability conditions required by the
respective discrete analyses developed in Section 3.4, and provide the rates of convergence of the
resulting Galerkin schemes.

3.5.1 Preliminaries

Bearing in mind the mesh notations introduced at the beginning of Section 3.4.1, and given an
integer k ≥ 0 and K ∈ Th, we let Pk(K) be the space of polynomials defined on K of degree ≤ k, and
denote its vector version by Pk(K). In addition, we let M̃P k(K) be the space of polynomials defined
on K of degree = k. Furthermore, we let RTk(K) = Pk(K)⊕ M̃P k(K)x be the local Raviart-Thomas
space defined on K of order k, where x stands for a generic vector in R2, and denote by RTk(K)

its corresponding tensor counterpart. In turn, we let Pk(Th), Pk(Th), RTk(Th), and RTk(Th) be the
corresponding global versions of Pk(K), Pk(K), RTk(K), and RTk(K), respectively, that is

Pk(Th) :=
{
ψh ∈ L2(Ω) : ψh|K ∈ Pk(K) ∀K ∈ Th

}
,

Pk(Th) :=
{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

RTk(Th) :=
{
τ̃ h ∈ H(div; Ω) : τ̃ h|K ∈ RTk(K) ∀K ∈ Th

}
,

and
RTk(Th) :=

{
τ h ∈ H(div; Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th

}
.

We stress here that for each t ∈ [1,+∞] there hold Pk(Th) ⊆ Lt(Ω), Pk(Th) ⊆ Lt(Ω), RTk(Th) ⊆
H(divt; Ω), and RTk(Th) ⊆ Ht(divt; Ω), inclusions that are implicitly utilized in what follows.
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As announced in Section 3.4.1, we first recall from (2.135) that the finite element subspaces of X2,
M1, X1, and M2, are given, respectively, by

X2,h := Hr
0(divr; Ω) ∩ RTk(Th) , M1,h := Pk(Th) ,

X1,h := Hs
0(divs; Ω) ∩ RTk(Th) , and M2,h := Pk(Th) ,

(3.132)

whereas those of Q, M, and L2(Ω), are defined as

Qh := RTk(Th) , Mh := Pk(Th) , and Ht
h := Pk(Th) . (3.133)

We stress here that Qh, Mh, and Ht
h verify the assumptions (H.1) - (H.4). In fact, it is readily

seen that div(Qh) ⊆ Mh, which confirms (H.1), whereas (H.2) is proved in [52, Lemma 4.5]. In turn,
the assumptions (H.3) and (H.4) are shown in [11, Lemma 4.2].

3.5.2 The rates of convergence

The rates of convergence of the Galerkin schemes (3.88) and (3.89), with the specific finite element
subspaces introduced in Section 3.5.1, are provided next. To this end, we require the approximation
properties of X2,h, M1,h, Qh, Mh, and Ht

h, which are collected as follows (cf. [52, Section 4.5]):

(APσ
h ) there exists a positive constant C, independent of h, such that for each l ∈ [1, k + 1], and for

each τ ∈ Wl,r(Ω) with div(τ ) ∈ Wl,r(Ω), there holds

dist (τ ,X2,h) := inf
τh∈X2,h

∥τ − τ h∥r,divr;Ω ≤ C hl
{
∥τ∥l,r;Ω + ∥div(τ )∥l,r;Ω

}
.

(APu
h) there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for

each v ∈ Wl,r(Ω), there holds

dist (v,M1,h) := inf
vh∈M1,h

∥v − vh∥0,r;Ω ≤ C hl ∥v∥l,r;Ω .

(APσ̃
h ) there exists a positive constant C, independent of h, such that for each l ∈ [1, k + 1], and for

each τ̃ ∈ Hl(Ω) with div(τ̃ ) ∈ Wl,s(Ω), there holds

dist (τ̃ ,Qh) := inf
τ̃h∈X2,h

∥τ̃ − τ̃ h∥divs;Ω ≤ C hl
{
∥τ̃∥l,Ω + ∥div(τ̃ )∥l,s;Ω

}
.

(APϕ
h) there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for

each ψ ∈ Wl,r(Ω), there holds

dist (ψ,Mh) := inf
ψh∈Mh

∥ψ − ψh∥0,r;Ω ≤ C hl ∥ψ∥l,r;Ω .

(APt
h) there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for

each s ∈ Hl(Ω), there holds

dist (s,Ht
h) := inf

sh∈Ht
h

∥s− sh∥0,Ω ≤ C hl ∥s∥l,Ω .

Thus, the following two theorems establish the rates of convergence of (3.88) and (3.89).
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Theorem 3.17. Let
(
(σ,u), (σ̃, ϕ)

)
∈
(
X2 ×M1

)
×
(
Q ×M

)
be the unique solution of (3.35), with

ϕ ∈ W̃ (cf. (3.55)), and let
(
(σh,uh), (σ̃h, ϕh)

)
∈
(
X2,h×M1,h

)
×
(
Qh×Mh

)
be a solution of (3.88),

with ϕh ∈ W̃h (cf. (3.104)), whose existences are guaranteed by Theorems 3.6 and 3.13, respectively.
Assume that (3.118) (cf. Theorem 3.14) holds, and that there exists l ∈ [1, k+1] such that σ ∈ Wl,r(Ω),
div(σ) ∈ Wl,r(Ω), u ∈ Wl,r(Ω), σ̃ ∈ Hl(Ω), div(σ̃) ∈ Wl,s(Ω), and ϕ ∈ Wl,r(Ω). Then, there exists
a positive constant C, independent of h, such that

∥(σ,u)− (σh,uh)∥X2×M1 + ∥(σ̃, ϕ)− (σ̃h, ϕh)∥Q×M

≤ C hl
{
∥σ∥l,r;Ω + ∥div(σ)∥l,r;Ω + ∥u∥l,r;Ω + ∥σ̃∥l,Ω + ∥div(σ̃)∥l,s;Ω + ∥ϕ∥l,r;Ω

}
.

Proof. It follows from the Céa estimate (3.119) and the approximation properties (APσ
h ) - (APϕ

h).

Theorem 3.18. Let
(
(σ,u), (ϕ⃗, σ̃)

)
∈
(
X2 ×M1

)
×
(
H ×Q

)
be the unique solution of (3.36), with

ϕ ∈W (cf. (3.74)), and let
(
(σh,uh), (ϕ⃗h, σ̃h)

)
∈
(
X2,h×M1,h

)
×
(
Hh×Qh

)
be a solution of (3.89),

with ϕh ∈ Wh (cf. (3.122)), whose existences are guaranteed by Theorems 3.9 and 3.15, respectively.
Assume that (3.130) (cf. Theorem 3.16) holds, and that there exists l ∈ [1, k+1] such that σ ∈ Wl,r(Ω),
div(σ) ∈ Wl,r(Ω), u ∈ Wl,r(Ω), ϕ ∈ Wl,r(Ω), t ∈ Hl(Ω), σ̃ ∈ Hl(Ω), and div(σ̃) ∈ Wl,s(Ω). Then
there exists a positive constant C, independent of h, such that

∥(σ,u)− (σh,uh)∥X2×M1 + ∥(ϕ⃗, σ̃) − (ϕ⃗h, σ̃h)∥H×Q

≤ C hl
{
∥σ∥l,r;Ω + ∥div(σ)∥l,r;Ω + ∥u∥l,r;Ω + ∥ϕ∥l,r;Ω + ∥t∥l,Ω + ∥σ̃∥l,Ω + ∥div(σ̃)∥l,s;Ω

}
.

Proof. It follows from the Céa estimate (3.131) and the approximation properties (APσ
h ) - (APt

h).

3.6 Numerical results

In this section we present three examples illustrating the performance of the fully-mixed finite
schemes (3.88) and (3.89) with the finite element subspaces defined in Section 3.5.1 for k ∈ {0, 1}, and
confirming the rates of convergence provided by Theorems 3.17 and 3.18 on uniform refinements of the
respective domains.

Letting Ne and Nt be the number of edges and triangles, respectively, of Th, and denoting by DOF

the total number of degrees of freedom (or unknowns) of each approach, we deduce that in the 2D case
the respective values for (3.88) and (3.89), are given by (cf. (3.132), (3.133), and [44, Chapter 3])

DOF = 3 (k + 1)Ne +
3

2
(k + 1)(3k + 2)Nt + 1 , (3.134)

and
DOF = previous expression + (k + 1)(k + 2)Nt , (3.135)

where the extra degree of freedom at the end of (3.134) corresponds to the Lagrange multiplier taking
care of the null mean value for the traces of the tensors in X2,h and X1,h, whereas the ones at the
end of (3.135) correspond to those required by the subspace Ht

h. The resulting nonlinear algebraic
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systems are solved employing the Picard iterative process suggested by the respective discrete fixed-
point strategy (cf. Sections 3.4.5 and 3.4.6), whose computational implementation was done using a
FreeFem++ code [58]. We take as initial guess the trivial solution, and the iterations are stopped when
the relative error between two consecutive vectors containing the full solutions of the aforementioned
systems, namely coeffm and coeffm+1, is sufficiently small, that is,

∥coeffm+1 − coeffm∥
∥coeffm+1∥

≤ tol ,

where ∥ · ∥ stands for the usual Euclidean norm in RDOF, and tol is a given tolerance. In this regard, we
remark in advance that for each one of the examples to be reported below, 3 iterations are required to
achieve tol = 1e − 6.

We now recall that the original Cauchy stress tensor ρ of our model can be computed in terms of σ
according to the formula derived from (2.9) and (2.10) and (2.32), namely

ρ := σ + σt −
(

λ+ 2µ

nλ+ (n+ 1)µ
tr(σ) − nλ+ 2µ

n|Ω|

∫
Γ
uD · ν

)
I , (3.136)

which naturally suggests approximating this tensor by (2.175)

ρh := σh + σt
h −

(
λ+ 2µ

nλ+ (n+ 1)µ
tr(σh) − nλ+ 2µ

n|Ω|

∫
Γ
uD · ν

)
I . (3.137)

It follows from (3.136) and (3.137) that there exists a constant C > 0, independent of h and λ, such
that

∥ρ− ρh∥0,r;Ω ≤ C ∥σ − σh∥0,r;Ω ,

whence the rate of convergence for ρh is at least the same of σh.

Some additional notation is introduced next. We begin by defining the individual errors:

e(σ) := ∥σ − σh∥r,divr;Ω , e(u) := ∥u− uh∥0,r;Ω , e(ρ) := ∥ρ− ρh∥0,r;Ω ,

e(σ̃) := ∥σ̃ − σ̃h∥divs;Ω , e(ϕ) := ∥ϕ− ϕh∥0,r;Ω , and e(t) := ∥t− th∥0,Ω ,

where r and s, taken from (3.9), will be specified in the examples below. In turn, for each ⋆ ∈{
σ,u,ρ, σ̃, ϕ, t

}
we let r(⋆) be its experimental rate of convergence, which is defined as

r(⋆) := log
(
e(⋆)/ê(⋆)

)
/ log(h/ĥ) ,

where e and ê denote two consecutive errors with mesh sizes h and ĥ, respectively.

The examples to be considered in this section are described next. In each case we let E and ν be
the Young modulus and Poisson ratio, respectively, of the isotropic linear elastic solid occupying the
region Ω, so that the corresponding Lamé parameters are given by

µ :=
E

2(1 + ν)
and λ :=

Eν

(1 + ν)(1− 2ν)
. (3.138)

In addition, the mean value of tr (σh) over Ω is fixed via a real Lagrange multiplier, which reduces to
adding one row and one column to the matrix system that solves (3.91) for σh and uh.
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3.6.1 Example 1: Convergence in a 2D domain

We begin by corroborating the rates of convergence against a smooth exact solution in the two-
dimensional domain Ω = (0, 1)2. To this end, we adequately manufacture the data so that the solution
of (3.1)-(3.2) is given by

u(x) :=

 0.05 cos(π x1) sin(π x2) +
x21(1− x2)

2

2λ

−0.05 sin(π x1) cos(π x2) +
x31(1− x2)

3

2λ

 and ϕ(x) := (1− x1)
2x1(1− x2)x

2
2 ,

for all x := (x1, x2)
t ∈ Ω, whereas the body load, the diffusive source, and the tensorial diffusivity, are

given, respectively, by

f(ϕ) :=
1

10

(
cos(ϕ)

− sin(ϕ)

)
, g(u) := 2 +

1

1 + |u|2
, ϑ(σ) := I+

1

10
σ2 .

We note here that the second and fifth equation of (3.1), actually include additional explicit source
terms that are added to f(ϕ) and g(u), respectively. However, yielding only slight modifications of
the functionals G, Fϕ, G̃u and Gu (cf. (3.11), (3.12), (3.25) and (3.33), respectively), this fact does
not compromise the continuous and discrete analyses. Thus, in Tables 3.1 and 3.2 we summarize the
convergence of (3.88) and (3.89), respectively, considering r ∈

{
3, 4
}
, the Young’s modulus E = 1, and

the Poisson’s ratio ν = 0.4999, which, according to (3.138), yield λ = 1666.44 and µ = 0.3334. The
results confirm that the optimal rates of convergence O(hk+1) predicted by Theorems 3.17 and 3.18
are attained for k ∈

{
0, 1
}
, and for both indexes r, as implicitly stated by those theorems as well. In

addition, while not exactly the same values, the errors for r = 3 and r = 4 of each unknown are of
the same order of magnitude in each given mesh. Some components and magnitudes of the discrete
solutions of the first approach (3.88) are displayed in Figure 3.1.

On the other hand, we now compare the results of Example 1 with the mixed-primal method pre-
sented in Chapter 2 for the purpose of seeing the accuracy of each. Indeed, letting σ̃h, ũh and ϕ̃h be the
solution of Galekin scheme introduced in (2.4) and (2.135). In addition, let ρ̃h be the corresponding
postprocessing unknown computed in similar way of (3.137). Next, we add the following individual
errors:

e(σ̃) := ∥σ − σ̃h∥r,divr;Ω , e(ũ) := ∥u− ũh∥0,r;Ω ,

e(ρ̃) := ∥ρ− ρ̃h∥0,r;Ω , and e(ϕ̃) := ∥ϕ− ϕ̃h∥0,r;Ω ,

and, for each ⋆ ∈
{
σ,u,ρ, ϕ

}
we let d(⋆) be its relative error, which is defined as

d(⋆) :=
∣∣e(⋆)− e(⋆̃)

∣∣ / ∣∣e(⋆)∣∣ ,
where, for e(⋆) we only employ the solution of the Galerkin scheme (3.88), since the results for (3.89)
are the same. Finally, Table 3.3 shows the errors and convergence ratios for scheme (2.100) and (2.135),
where the relative errors d(·) suggest that the accuracy between the approximations for σ, u and ρ are
similar to that given by (3.88). Note that this is not the case for ϕ, which is expected since ϕ̃h ∈ H1(Ω),
whereas ϕh ∈ Lr(Ω). In this particular example, the results of Tables 3.1 and 3.3 establish, in the
Lr-norm, that ϕ was calculated better for the new scheme (3.88).
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k h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(σ̃) r(σ̃) e(ϕ) r(ϕ)

0.0471 13681 4.12e-2 −− 1.44e-3 −− 1.83e-2 −− 1.03e-2 −− 5.26e-4 −−
0.0393 19657 3.43e-2 1.01 1.20e-3 1.03 1.57e-2 0.99 8.65e-3 1.00 4.38e-4 1.00

0 0.0337 26713 2.93e-2 1.01 1.02e-3 1.02 1.34e-2 0.99 7.40e-3 1.00 3.76e-4 1.00
0.0295 34849 2.57e-2 1.01 8.93e-4 1.02 1.18e-2 0.99 6.48e-3 1.00 3.29e-4 1.00
0.0262 44065 2.29e-2 1.01 7.92e-4 1.01 1.05e-2 1.00 5.76e-3 1.00 2.92e-4 1.00
0.0471 43561 5.33e-4 −− 2.83e-5 −− 2.63e-4 −− 2.53e-4 −− 1.53e-5 −−
0.0393 62641 3.70e-4 2.00 1.96e-5 2.00 1.83e-4 1.99 1.76e-4 2.00 1.06e-5 2.00

1 0.0337 85177 2.72e-4 2.00 1.44e-5 2.00 1.35e-4 1.99 1.29e-4 2.00 7.82e-6 2.00
0.0295 111169 2.08e-4 2.00 1.10e-5 2.00 1.03e-4 1.99 9.89e-5 2.00 5.99e-6 2.00
0.0262 140611 1.65e-4 2.00 8.71e-6 2.00 8.16e-5 1.99 7.82e-5 2.00 4.73e-6 2.00

0.0471 13681 5.14e-2 −− 1.59e-3 −− 2.31e-2 −− 9.96e-3 −− 6.47e-4 −−
0.0393 19657 4.27e-2 1.01 1.32e-3 1.03 1.93e-2 0.99 8.29e-3 1.00 5.40e-4 1.00

0 0.0337 26713 3.66e-2 1.01 1.12e-3 1.02 1.66e-2 0.99 7.11e-3 1.00 4.63e-4 1.00
0.0295 34849 3.20e-2 1.01 9.82e-4 1.02 1.45e-2 0.99 6.22e-3 1.00 4.05e-4 1.00
0.0262 44065 2.84e-2 1.01 8.72e-4 1.01 1.29e-2 1.00 5.53e-3 1.00 3.60e-4 1.00
0.0471 43561 6.15e-4 −− 3.08e-5 −− 3.10e-4 −− 2.45e-4 −− 1.92e-5 −−
0.0393 62641 4.27e-4 2.00 2.14e-5 2.00 2.15e-4 1.99 1.70e-4 2.00 1.33e-5 2.00

1 0.0337 85177 3.14e-4 2.00 1.57e-5 2.00 1.58e-4 2.00 1.25e-4 2.00 9.79e-6 2.00
0.0295 111169 2.40e-4 2.00 1.20e-5 2.00 1.21e-4 2.00 9.68e-5 2.00 7.50e-6 2.00
0.0262 140617 1.90e-4 2.00 9.50e-6 2.00 9.59e-5 2.00 7.57e-5 2.00 5.93e-6 2.00

Table 3.1: Example 1: History of convergence for the Galerkin scheme (3.88) with r = 3 (upper half),
and r = 4 (lower half).

k h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(σ̃) r(σ̃) e(ϕ) r(ϕ) e(t) r(t)

0.0471 17281 4.12e-1 −− 1.44e-3 −− 1.88e-2 −− 1.04e-2 −− 5.25e-4 −− 3.24-03 −−
0.0393 24841 3.43e-2 1.01 1.20e-3 1.03 1.57e-2 0.98 8.63e-3 1.00 4.38e-4 1.00 2.70e-3 1.03

0 0.0337 33769 2.93e-2 1.01 1.02e-3 1.02 1.34e-2 0.99 7.40e-3 1.00 3.76e-4 1.00 2.31e-3 1.02
0.0295 44065 2.57e-2 1.01 8.93e-4 1.02 1.18e-2 0.99 6.48e-3 1.00 3.29e-4 1.00 2.02e-3 1.02
0.0262 55729 2.28e-2 1.01 7.92e-4 1.01 1.05e-2 1.00 5.76e-3 1.00 2.92e-4 1.00 1.18e-3 1.01
0.0471 54361 5.33e-4 −− 2.82e-5 −− 2.63e-4 −− 2.53e-4 −− 1.53e-5 −− 7.69e-5 2.00
0.0393 78193 3.70e-4 2.00 1.96e-5 2.00 1.83e-4 1.99 1.76e-4 2.00 1.06e-5 2.00 5.34e-5 2.00

1 0.0337 106345 2.72e-4 2.00 1.44e-5 2.00 1.35e-4 1.99 1.29e-4 2.00 7.82e-6 2.00 3.93e-5 2.00
0.0295 138817 2.08e-4 2.00 1.10e-5 2.00 1.03e-4 1.99 9.89e-5 2.00 5.99e-6 2.00 3.01e-5 2.00
0.0262 175609 1.65e-4 2.00 8.71e-6 2.00 8.16e-5 1.99 7.82e-5 2.00 4.73e-6 2.00 2.48e-5 2.00

0.0471 17281 5.14e-2 −− 1.59e-3 −− 2.31e-2 −− 9.95e-3 −− 6.47e-4 −− 3.24-03 1.03
0.0393 24841 4.27e-2 1.01 1.32e-3 1.03 1.93e-2 0.99 8.29e-3 1.00 5.39e-4 1.00 2.70e-3 1.02

0 0.0337 33769 3.66e-2 1.01 1.12e-3 1.02 1.66e-2 0.99 7.11e-3 1.00 4.63e-4 1.00 2.31e-3 1.02
0.0295 44065 3.20e-2 1.01 9.82e-4 1.01 1.45e-2 0.99 6.22e-3 1.00 4.05e-4 1.00 2.02e-3 1.01
0.0262 55729 2.84e-2 1.01 8.72e-4 1.01 1.29e-2 1.00 5.53e-3 1.00 3.60e-4 1.00 1.18e-3 1.01
0.0471 54361 6.15e-3 −− 3.08e-5 −− 3.10e-4 −− 2.45e-4 −− 1.92e-5 −− 7.69e-5 2.00
0.0393 78193 4.27e-4 2.00 2.14e-5 2.00 2.15e-4 1.99 1.70e-4 2.00 1.33e-5 2.00 5.34e-5 2.00

1 0.0337 106345 3.14e-4 2.00 1.57e-5 2.00 1.58e-4 2.00 1.25e-4 2.00 9.79e-6 2.00 3.93e-5 2.00
0.0295 138817 2.40e-4 2.00 1.20e-5 2.00 1.21e-4 2.00 9.58e-5 2.00 7.50e-6 2.00 3.01e-5 2.00
0.0262 175609 1.90e-4 2.00 9.50e-6 2.00 9.59e-5 2.00 7.57e-5 2.00 5.93e-6 2.00 2.48e-5 2.00

Table 3.2: Example 1: History of convergence for the Galerkin scheme (3.89) with r = 3 (upper half),
and r = 4 (lower half).

3.6.2 Example 2: Convergence in a non-convex 2D domain

We consider the L-shaped domain Ω = (−1, 1)2 \ [0, 1]2, and suitable perturbations of the definitions
of the functionals G, Fϕ, G̃u, and Gu, so that the exact solution of (3.1) - (3.2) reduces to the non-
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Figure 3.1: Example 1: Some components and magnitudes of the solution of the first approach (3.88)
with k = 1, λ = 1666.44, and µ = 0.3334.

smooth one defined as:

u(x) :=

(
|x|2/3 sin(θ)
−|x|2/3 cos(θ)

)
and ϕ(x) := exp(x1 + x2) sin(πx1) sin(πx2) ,

where θ = arctan
(
x2
x1

)
for all x = (x1, x2)

t ∈ Ω. In turn, the tensorial diffusivity is considered the
same from the previous example, whereas the body load and the diffusive source are given, respectively,
by

f(ϕ) :=

 1

40
ϕ

1

40
ϕ(1− ϕ)

 and g(u) := −|u| .

In this case, we take E = 100 and ν = 0.4999, which yields µ = 33.33 and λ = 166644.44. Here we
can see in Tables 3.4 and 3.5 that it was not possible to reach the convergence order k + 1 indicated
by Theorems 3.17 and 3.18. In particular, we notice that, for both formulations (cf. (3.88) and
(3.89)), negative convergence orders are obtained for σ, while for u, ρ, and σ̃, suboptimal ones are
attained. Furthermore, as it was observed in Chapter 2.6, we remark that the convergence ratios
depend not only on k but also on r and its conjugate s, which could be related to the Wl,r- regularity
of the solution, most likely with a non-integer l depending on r. We refer to [52, Lemma B.1] for a
similar situation holding with a regularity result for the Poisson problem with homogeneous Neumann
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k h DOF e(σ̃) r(σ̃) d(σ) e(ũ) r(ũ) d(u) e(ρ̃) r(ρ̃) d(ρ) e(ϕ̃) r(ϕ̃) d(ϕ)

0.0471 10082 3.88e-2 −− 5.83e-2 1.35e-3 −− 6.23e-2 1.86e-2 −− 1.69e-2 9.88e-3 −− 1.78e+1
0.0393 14474 3.23e-2 1.01 5.87e-2 1.12e-3 1.04 6.93e-2 1.55e-2 0.99 1.01e-2 8.33e-3 0.94 1.80e+1

0 0.0337 19658 2.76e-2 1.01 5.65e-2 9.53e-4 1.03 6.59e-2 1.33e-2 0.99 4.66e-3 7.18e-3 0.96 1.81e+1
0.0295 25634 2.42e-2 1.01 5.96e-2 8.31e-4 1.02 6.93e-2 1.17e-2 0.99 1.02e-2 6.30e-3 0.98 1.82e+1
0.0262 32402 2.15e-2 1.01 6.25e-2 7.37e-4 1.02 6.93e-2 1.04e-2 1.00 1.07e-2 5.61e-3 0.99 1.82e+1
0.0471 32762 5.31e-4 −− 3.96e-3 2.87e-5 −− 1.56e-2 2.65e-4 −− 6.96e-3 1.78e-3 −− 1.15e+2
0.0393 47090 3.69e-4 2.00 3.24e-3 2.00e-5 2.00 1.80e-2 1.84e-4 1.99 6.91e-3 1.25e-3 1.94 1.17e+2

1 0.0337 64010 2.71e-4 2.00 3.57e-3 1.47e-5 2.00 1.77e-2 1.36e-4 1.99 4.18e-3 9.07e-4 2.09 1.15e+2
0.0295 83522 2.08e-4 2.00 2.15e-3 1.12e-5 2.00 1.98e-2 1.04e-4 1.99 8.72e-3 6.97e-4 1.97 1.15e+2
0.0262 105626 1.64e-4 2.00 5.93e-3 8.86e-6 2.00 1.75e-2 8.22e-5 1.99 6.84e-3 5.51e-4 1.98 1.16e+2

0.0471 10082 4.66e-2 −− 9.34e-2 1.42e-3 −− 1.04e-1 2.27e-2 −− 1.53e-2 1.31e-2 −− 1.92e+1
0.0393 14474 3.87e-2 1.01 9.27e-2 1.18e-3 1.05 1.09e-1 1.90e-2 0.99 1.53e-2 1.10e-2 0.94 1.94e+1

0 0.0337 19658 3.31e-2 1.01 9.43e-2 1.00e-3 1.04 1.05e-1 1.63e-2 0.99 1.72e-2 9.50e-3 0.96 1.95e+1
0.0295 25634 2.90e-2 1.01 9.49e-2 8.74e-4 1.03 1.10e-1 1.43e-2 0.99 1.45e-2 8.33e-3 0.98 1.96e+1
0.0262 32402 2.57e-2 1.01 9.46e-2 7.75e-4 1.02 1.11e-1 1.27e-2 0.99 1.47e-2 7.42e-3 0.99 1.96e+1
0.0471 32762 6.10e-4 −− 8.63e-3 3.18e-5 −− 3.18e-2 3.14e-4 −− 1.32e-2 2.18e-3 −− 1.12e+2
0.0393 47090 4.23e-4 2.00 8.49e-3 2.21e-5 2.00 3.07e-2 2.18e-4 1.99 1.58e-2 1.53e-3 1.94 1.14e+2

1 0.0337 64010 3.11e-4 2.00 9.37e-3 1.62e-5 2.00 3.18e-2 1.61e-4 1.99 1.64e-2 1.13e-3 1.98 1.14e+2
0.0295 83522 2.38e-4 2.00 7.65e-3 1.24e-5 2.00 3.32e-2 1.23e-4 2.00 1.68e-2 8.67e-4 1.96 1.15e+2
0.0262 105626 1.88e-4 2.00 9.52e-3 9.79e-6 2.00 3.10e-2 9.73e-5 2.00 1.41e-2 6.87e-4 1.98 1.15e+2

Table 3.3: Example 1: History of convergence for the Galerkin scheme of Chapter 2 with r = 3 (upper
half), and r = 4 (lower half).

boundary conditions and source term in a Lebesgue space. In order to recover the optimal rates of
convergence, one could apply an adaptive strategy based on a posteriori error estimates, subject that
we plan to address in a forthcoming work.

3.6.3 Example 3: Convergence in a 3D domain

In this example we confirm the rates of convergence in the three-dimensional domain Ω = (0, 1)3

with the indexes r = 3 and s = 3/2 (cf. (3.9)). As in Example 1, we consider µ = 0.3334 and
λ = 1666.44, and suitably manufacture the data so that the exact solution is given by

u(x) :=

 sin(πx1) cos(πx2) cos(πx3)

−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 and ϕ(x) := x1x
2
2x3(x1 − 1)2(x2 − 1)(x3 − 1)2 ,

for all x := (x1, x2, x3)
t ∈ Ω, whereas the body load, the diffusive source, and the tensorial diffusivity,

are given, respectively, by

f(ϕ) :=
1

10

 cos(ϕ)

− sin(ϕ)

cos(ϕ)

 , g(u) := u1 + u2 + u3 , ϑ(σ) :=
1

2

(
1 +

1

(1 + |σ|2)1/2

)
I .

The convergence histories for quasi-uniform refinements using k = 0 are reported in Tables 3.6 and
3.7. Again, the mixed finite element methods converge optimally, that is with order O(h) in this case,
as it was proved by Theorems 3.17 and 3.18. This fact suggests that perhaps only technical difficulties
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k h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(σ̃) r(σ̃) e(ϕ) r(ϕ)

0.0471 40861 9.56e+2 −− 1.85e-2 −− 7.48e+0 −− 2.62e+1 −− 3.20e-2 −−
0.0404 55546 1.06e+3 -0.66 1.59e-2 0.99 7.10e+0 0.34 2.31e+1 0.82 2.72e-2 1.05

0 0.0354 72481 1.16e+3 -0.66 1.39e-2 0.99 6.79e+0 0.33 2.07e+1 0.81 2.37e-2 1.04
0.0314 91666 1.25e+3 -0.66 1.23e-2 0.99 6.53e+0 0.33 1.88e+1 0.80 2.10e-2 1.03
0.0283 113101 1.34e+3 -0.66 1.11e-2 0.99 6.30e+0 0.33 1.73e+1 0.80 1.88e-2 1.03
0.0471 130321 4.73e+2 −− 4.92e-4 −− 4.78e+0 −− 9.10e+0 −− 6.78e-4 −−
0.0404 177241 5.24e+2 -0.66 4.00e-4 1.33 4.54e+0 0.33 8.15e+0 0.71 4.99e-4 1.99

1 0.0354 231361 5.73e+2 -0.66 3.35e-4 1.33 4.34e+0 0.33 7.42e+0 0.71 3.83e-4 1.99
0.0314 292681 6.19e+2 -0.66 2.87e-4 1.33 4.18e+0 0.33 6.83e+0 0.70 3.03e-4 1.99
0.0283 361201 6.64e+2 -0.66 2.49e-4 1.33 4.03e+0 0.33 6.34e+0 0.70 2.46e-4 1.98

0.0471 40861 1.92e+3 −− 1.88e-2 −− 1.28e+1 −− 2.35e+1 −− 3.48e-2 −−
0.0404 55546 2.18e+3 -0.83 1.61e-2 0.99 1.25e+1 0.17 2.04e+1 0.91 2.96e-2 1.03

0 0.0354 72481 2.44e+3 -0.83 1.41e-2 0.99 1.22e+1 0.17 1.81e+1 0.90 2.58e-2 1.03
0.0314 91666 2.69e+3 -0.83 1.26e-2 0.99 1.20e+1 0.17 1.63e+1 0.90 2.29e-2 1.02
0.0283 113101 2.91e+3 -0.83 1.13e-2 0.99 1.18e+1 0.17 1.48e+1 0.90 2.06e-2 1.02
0.0471 130321 8.76e+2 −− 8.02e-4 −− 9.04e+0 −− 5.88e+0 −− 7.17e-4 −−
0.0404 177241 9.95e+2 -0.83 6.70e-4 1.17 8.81e+0 0.17 5.12e+0 0.90 5.27e-4 2.00

1 0.0354 231361 1.11e+3 -0.83 5.74e-4 1.17 8.62e+0 0.17 4.55e+0 0.89 4.04e-4 2.00
0.0314 292681 1.23e+3 -0.83 5.00e-4 1.17 8.45e+0 0.17 4.10e+0 0.89 3.19e-4 1.99
0.0283 361201 1.34e+3 -0.83 4.42e-4 1.17 8.30e+0 0.17 3.74e+0 0.88 2.59e-4 1.99

Table 3.4: Example 2: History of convergence for the Galerkin scheme (3.88) with r = 3 (first half),
and r = 4 (second half).

k h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(σ̃) r(σ̃) e(ϕ) r(ϕ) e(t) r(t)

0.0471 51661 9.56e+2 −− 1.85e-2 −− 7.48e+0 −− 2.55e+1 −− 3.19e-2 −− 2.11e-1 −−
0.0404 70246 1.06e+3 -0.66 1.59e-2 1.00 7.10e+0 0.34 2.25e+1 0.80 2.72e-2 1.04 1.80e-1 1.02

0 0.0354 91681 1.16e+3 -0.66 1.39e-2 1.00 6.79e+0 0.33 2.02e+1 0.80 2.37e-2 1.04 1.58e-1 1.02
0.0314 115966 1.25e+3 -0.66 1.24e-2 1.00 6.53e+0 0.33 1.85e+1 0.79 2.10e-2 1.03 1.40e-1 1.01
0.0283 143101 1.34e+3 -0.66 1.11e-2 1.00 6.30e+0 0.33 1.70e+1 0.79 1.88e-2 1.02 1.26e-1 1.01
0.0471 162721 4.73e+2 −− 4.92e-4 −− 4.78e+0 −− 8.92e+0 −− 6.74e-04 −− 6.98e-3 −−
0.0404 221341 5.24e+2 -0.66 4.01e-4 1.33 4.54e+0 0.33 8.01e+0 0.70 4.96e-04 1.99 5.24e-3 1.86

1 0.0354 288961 5.73e+2 -0.66 3.35e-4 1.33 4.34e+0 0.33 7.30e+0 0.70 3.80e-04 1.99 4.09e-3 1.86
0.0314 365581 6.19e+2 -0.66 2.87e-4 1.33 4.18e+0 0.33 6.73e+0 0.69 3.01e-04 1.99 3.28e-3 1.87
0.0283 451201 6.64e+2 -0.66 2.49e-4 1.33 4.03e+0 0.33 6.25e+0 0.69 2.44e-04 1.99 2.69e-3 1.87

0.0471 51661 1.92e+3 −− 1.88e-2 −− 1.28e+1 −− 2.28e+1 −− 3.47e-2 −− 2.11e-1 −−
0.0404 70246 2.18e+3 -0.83 1.61e-2 0.99 1.25e+1 0.17 1.99e+1 0.89 2.96e-2 1.04 1.80e-1 1.02
0.0354 91681 2.44e+3 -0.83 1.41e-2 0.99 1.22e+1 0.17 1.77e+1 0.89 2.58e-2 1.04 1.58e-1 1.02

0 0.0314 115966 2.69e+3 -0.83 1.26e-2 0.99 1.20e+1 0.17 1.59e+1 0.89 2.29e-2 1.03 1.40e-1 1.01
0.0283 143101 2.94e+3 -0.83 1.13e-2 0.99 1.18e+1 0.17 1.45e+1 0.89 2.06e-2 1.02 1.26e-1 1.01
0.0471 162721 8.76e+2 −− 8.02e-4 −− 9.04e+0 −− 5.70e+0 −− 7.14e-04 −− 6.98e-3 −−
0.0404 221341 9.95e+2 -0.83 6.70e-4 1.17 8.81e+0 0.17 4.98e+0 0.88 5.25e-04 2.00 5.24e-3 1.86

1 0.0354 288961 1.11e+3 -0.83 5.74e-4 1.17 8.62e+0 0.17 4.43e+0 0.88 4.02e-04 2.00 4.09e-3 1.86
0.0314 365581 1.23e+3 -0.83 5.00e-4 1.17 8.45e+0 0.17 4.00e+0 0.87 3.18e-04 1.99 3.28e-3 1.87
0.0283 451201 1.34e+3 -0.83 4.42e-4 1.17 8.30e+0 0.17 3.65e+0 0.87 2.58e-04 1.99 2.69e-3 1.87

Table 3.5: Example 2: History of convergence for the Galerkin scheme (3.89) with r = 3 (first half),
and r = 4 (second half).

stop us from extending the analysis to the 3D framework. Finally, some components and magnitudes
of the solution of the second approach (3.89) are displayed in Figure 3.2.
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k h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(σ̃) r(σ̃) e(ϕ) r(ϕ)

0.4330 4993 3.11e+2 −− 2.69e-1 −− 6.51e+1 −− 7.35e-3 −− 4.00e-4 −−
0.3464 9601 2.51e+2 0.95 2.18e-1 0.95 5.26e+1 0.96 5.58e-3 1.23 3.30e-4 0.87
0.2887 16417 2.11e+2 0.97 1.83e-1 0.97 4.40e+1 0.97 4.50e-3 1.18 2.79e-4 0.92

0 0.2474 25873 1.81e+2 0.98 1.57e-1 0.98 3.79e+1 0.98 3.78e-3 1.13 2.41e-4 0.95
0.2165 38401 1.59e+2 0.98 1.38e-1 0.98 3.32e+1 0.99 3.25e-3 1.13 2.12e-4 0.96
0.1925 54433 1.41e+2 0.99 1.23e-1 0.99 2.96e+1 0.99 2.87e-3 1.07 1.89e-4 0.97
0.1732 74401 1.27e+2 0.99 1.11e-1 0.99 2.66e+1 0.99 2.55e-3 1.12 1.70e-4 0.98

Table 3.6: Example 3: History of convergence for the Galerkin scheme (3.88) with r = 3 and s = 3/2.

k h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(σ̃) r(σ̃) e(ϕ) r(ϕ) e(t) r(t)

0.4330 6145 3.11e+2 −− 2.69e-1 −− 6.52e+1 −− 7.35e-3 −− 3.89e-4 −− 2.60e-3 −−
0.3464 11851 2.51e+2 0.95 2.18e-1 0.95 5.26e+1 0.96 5.58e-3 1.23 3.23e-4 0.83 2.14e-3 0.89
0.2887 20305 2.11e+2 0.97 1.83e-1 0.97 4.40e+1 0.97 4.50e-3 1.18 2.75e-4 0.89 1.81e-3 0.92

0 0.2474 32047 1.81e+2 0.98 1.57e-1 0.98 3.79e+1 0.98 3.78e-3 1.13 2.38e-4 0.93 1.56e-3 0.95
0.2165 47617 1.59e+2 0.98 1.38e-1 0.98 3.32e+1 0.99 3.25e-3 1.13 2.10e-4 0.95 1.38e-3 0.96
0.1925 67555 1.41e+2 0.99 1.23e-1 0.99 2.96e+1 0.99 2.87e-3 1.07 1.87e-4 0.96 1.23e-3 0.97
0.1732 92401 1.27e+2 0.99 1.11e-1 0.99 2.66e+1 0.99 2.55e-3 1.12 1.69e-4 0.97 1.11e-3 0.98

Table 3.7: Example 3: History of convergence for the Galerkin scheme (3.89) with r = 3 and s = 3/2.

We find it important to remark at this point that, while the theoretical hypotheses on the coefficients
and data of the model are usually not verified in practice, the numerical results reported in this section
do not seem to be affected at all by the eventual lack of verification of them. Nevertheless, in order to
illustrate the feasibility of these assumptions, we now prove, in particular, that, at least for Example
3, the Lipschitz-continuity of both ϑ(τ ) and ϑ̃(τ ) := ϑ(τ )−1 do hold. In fact, given ζ, τ ∈ R := Rn×n,
we obtain∣∣ϑ(ζ)− ϑ(τ )

∣∣ = 1

2

∣∣∣∣{ 1

(1 + |ζ|2)1/2
− 1

(1 + |τ |2)1/2

}
I
∣∣∣∣ = 1

2

∣∣∣∣(1 + |τ |2)1/2 − (1 + |ζ|2)1/2

(1 + |ζ|2)1/2 (1 + |τ |2)1/2

∣∣∣∣ ,
so that, defining f(x) := (1+x)1/2 for all x > 0, and noting that |f ′(x)| ≤ 1

2 for all x > 0, which yields
|f(x)− f(y)| ≤ 1

2 |x− y| for all x, y > 0, it follows that

∣∣ϑ(ζ)− ϑ(τ )
∣∣ ≤ 1

4

∣∣∣∣ |ζ|2 − |τ |2

(1 + |ζ|2)1/2 (1 + |τ |2)1/2

∣∣∣∣ = 1

4

∣∣∣∣
(
|ζ|+ |τ |

) (
|ζ| − |τ |

)
(1 + |ζ|2)1/2 (1 + |τ |2)1/2

∣∣∣∣ ≤ 1

2
|ζ − τ | ,

which proves the second inequality in (3.4) with Lϑ = 1
2 . In turn, performing some algebraic manip-

ulations, we find that∣∣ϑ̃(ζ)− ϑ̃(τ )
∣∣ = 2

∣∣∣∣{ (1 + |ζ|2)1/2(
1 + (1 + |ζ|2)1/2

) − (1 + |τ |2)1/2(
1 + (1 + |τ |2)1/2

)} I
∣∣∣∣

= 2

∣∣∣∣ (1 + |ζ|2)1/2 − (1 + |τ |2)1/2(
1 + (1 + |ζ|2)1/2

)(
1 + (1 + |τ |2)1/2

)∣∣∣∣ ,
from which, employing again the above bounds for f , we deduce the corresponding estimate in (3.6)
with L

ϑ̃
= 4. Furthermore, regarding ϑ in Example 1, it is easy to see that∣∣ϑ(ζ)− ϑ(τ )

∣∣ = 1

10

∣∣ζ2 − τ 2
∣∣ = 1

10

∣∣ζ(ζ − τ ) + (ζ − τ )τ
∣∣ ≤ 1

10

(
|ζ|+ |τ |

)
|ζ − τ | ,

which yields the Lipschitz-continuity of ϑ for ζ, τ bounded, say |ζ|, |τ | ≤M , whence Lϑ = M
5 .
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Figure 3.2: Example 3: Some components and magnitudes of the solution of the second approach
(3.89) with k = 0, λ = 1666.44, and µ = 0.3334.

3.6.4 Example 4: Convergence in a 2D domain with no manufactured solution

In the present example, we investigate the behavior of the model in a two-dimensional domain
without a manufactured solution. The domain under consideration Ω is defined as Ω := [0, 1]× [0, 1],
with boundaries Γ = Γtop ∪ Γleft ∪ Γright ∪ Γbottom. For this example, we set the Young’s modulus and
Poisson’s ratio as E = 1 and ν = 0.4999, respectively. This choice yields λ = 1666.44 and µ = 0.3334

according to (3.138). The diffusive source follows Example 1, and the body load and tensorial diffusivity
are given by

f(ϕ) :=

(
0.1ϕ

0.1ϕ(ϕ− 1)

)
and ϑ(σ) = αI+ α2σ + α3σ2,

respectively, with α = 0.005. The boundary conditions are given by

uD :=


(0, 0) on Γtop ∪ Γbottom,

(−0.5y(y − 1), 0) on Γleft,

(0.5y(y − 1), 0) on Γright,
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k h DOF e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(σ̃) r(σ̃) e(ϕ) r(ϕ)

0.0471 13680 1.96e+0 −− 4.15e-2 −− 8.44e-1 −− 3.38e-2 −− 6.55e-1 −−
0.0393 19652 1.63e+0 0.99 3.33e-2 1.20 7.01e-1 1.01 2.79e-2 1.05 5.49e-1 0.97

0 0.0337 26712 1.39e+0 1.05 2.83e-2 1.06 6.02e-1 0.99 2.38e-2 1.02 4.66e-1 1.07
0.0294 34848 1.21e+0 1.01 2.44e-2 1.10 5.27e-1 1.00 2.08e-2 1.01 4.07e-1 1.01
0.0262 44064 1.09e+0 0.92 2.16e-2 1.05 4.69e-1 9.78 1.86e-2 0.95 3.66e-1 0.90
0.0236 54360 9.80e-1 1.00 1.94e-2 1.02 4.22e-1 1.01 1.68e-2 0.97 3.29e-1 1.01

0.0471 13680 2.22e+0 −− 4.92e-2 −− 9.09e-1 −− 3.31e-2 −− 7.56e-1 −−
0.0393 19652 1.86e+0 0.98 3.95e-2 1.20 7.55e-1 1.01 2.73e-2 1.06 6.36e-1 0.95

0 0.0337 26712 1.59e+0 1.07 3.40e-2 0.99 6.48e-1 0.98 2.33e-2 1.02 5.38e-1 1.08
0.0294 34848 1.38e+0 1.01 2.96e-2 1.00 5.65e-1 1.00 2.04e-2 1.01 4.71e-1 1.00
0.0262 44064 1.24e+0 0.91 2.61e-2 0.98 5.06e-1 0.98 1.83e-2 0.93 4.23e-1 0.90
0.0236 54360 1.11e+0 1.04 2.34e-2 1.00 4.55e-1 1.00 1.65e-2 0.98 3.79e-1 1.06

Table 3.8: Example 4: History of convergence for the Galerkin scheme (3.88) with r = 3 (first half),
and r = 4 (second half).

and ϕD := cos(πx) on Γ. Table 3.8 provides a summary of the convergence history. We consider the
finite element spaces introduced in Section 3.5.1 with k = 0 and solve the nonlinear problem, which
typically requires approximately six iterations. As the analytical solution is unknown, we construct
the convergence history by considering a solution obtained with 581,664 triangle elements as the exact
solution on a sequence of uniform triangulations. It is observed that the method achieves optimal
convergence with an order of O(h).

Figure 3.3: Example 4: Some components and magnitudes of the solution of the second approach
(3.88) with k = 0, λ = 1666.44, and µ = 0.3334.

Concluding remarks

In this chapter we have continued advancing in the direction of Chapter 2 by introducing and
analysing two new Banach spaces-based fully-mixed finite element methods for the numerical solution
of pseudostress-assisted diffusion problems. As compared with the mixed-primal method from Chapter
2, the main advantages of the schemes proposed here, which actually arise from the use of two different
mixed approaches for the diffusion equation, are given by the fact that some additional variables of
physical interest, such as the diffusive flux and the concentration gradient, are approximated directly.
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In this way, and differently from what one would do to obtain approximations of those variables starting
from the numerical solutions provided by the method from Chapter 2, no numerical differentiation,
with the consequent loss of accuracy, is employed in the present case. In turn, regarding the number
of degrees of freedom involved in each method, we now recall that for the one proposed in Chapter 2
there holds

DOF = (3k + 2)Ne +
{
(k + 1) (3k + 2) +

1

2
k (k − 1)

}
Nt + Nv + 1 , (3.139)

where Nv denotes the number of vertices of Th. Thus, the difference between the degrees of freedom
employed by (3.88) and those utilized by the mixed-primal scheme from Chapter 2 is obtained by
subtracting (3.139) from (3.134), which gives

DIF(k) := Ne + (k2 + 3k + 1)Nt − Nv .

In Table 3.9 below we illustrate the behavior of DIF(k) through the sequence of quasi-uniform meshes
from Example 1, with k ∈ {0, 1}. Needless to say, the fact that (3.88), and hence (3.89) as well,
requires more degrees of freedom than the method from Chapter 2, is largely compensated by the
aforementioned advantages referring to the computation of further unknowns of interest. Furthermore,

h Ne Nt Nv DIF(0) DIF(1)

0.0471 2760 1800 961 3599 10799
0.0393 3960 2592 1369 5183 15551
0.0337 5376 3528 1849 7055 21167
0.0295 7008 4608 2401 9215 27647
0.0262 8856 5832 3025 11663 34991

Table 3.9: DIF(k), k ∈ {0, 1}, for the sequence of meshes of Example 1.

regarding a comparison between the two fully-mixed finite element methods developed here, we first
notice from the respective theoretical results, which are confirmed by the reported numerical results,
that, under assumed regularities of the exact solution, they provide the same rates of convergence,
and hence this aspect does not yield a valid reason for choosing one or the other. However, we also
observe from the tables that in order to attain a given accuracy, the second method requires a bit
higher number of degrees of freedom, which is explained by the fact that the latter incorporates one
more unknown than the first one, namely th ∈ Ht

h. Indeed, as observed from (3.134) and (3.135), the
difference between the number of unknowns of (3.89) and (3.88) is given by

(k + 1)(k + 2)Nt ,

which, as already noticed at the beginning of this section, constitutes the number of degrees of freedom
defining the subspace Ht

h. A minor aspect, though not that relevant, is that the tensorial diffusivity
function does not need to be inverted in the second approach. Therefore, both methods are fully
comparable, and deciding which one to employ for practical computations will depend on whether,
besides the diffusive flux, the user is interested or not in obtaining also direct approximations of the
concentration gradient.



CHAPTER 4

A Banach spaces-based fully-mixed finite element method for the
stationary chemotaxis-Navier-Stokes problem

4.1 Introduction

Chemotaxis refers to the active and directed movement of cells triggered by a chemical stimulus in
their surrounding microenvironment. From the development of multicellular organisms, to blood vessel
formation, to immune system function, to cancer growth and metastasis, chemotaxis plays an essential
role in many different biological processes [75]. The study of this phenomenon has particularly allowed
valuable insights for basic research, drug discovery to decrease or inhibit certain infectious diseases and
has ignited much hope for new prognostic tools and therapeutic interventions in oncology [59, 76]. From
the mathematical point of view, the well-known Keller-Segel system and their variations [6, 64] are the
simplest models for describing this phenomenon, which only relate the cell density and the concentration
of the chemical signal, neglecting any interplay with further components. However, in many contexts,
cell migration may influence the motion of a surrounding fluid through buoyant forces due to difference
in densities, and vice versa the fluid-driven transport of cells and signal may substantially affect the
overall behavior [37, 83]. In this regard, and for understanding the chemotaxis systems interaction
with liquid environments, several models have been studied (see, e.g. [13, 62, 65, 80, 85, 86] and the
references therein), which couple the Keller-Segel equations to a Navier-Stokes system. These works
include models describing chemo-repulsion, chemo-attraction, the presence of either a signal production
mechanism or a singular sensitivity, double-chemotaxis, among others. In particular, theoretical results
on existence and uniqueness of solutions to the unsteady chemotaxis-Navier-Stokes system when the
chemical signal is consumed by the organisms, case we focus on this work, are found in [61, 84, 85].
On the other hand, some results yielding existence of stationary classical solutions to a chemotaxis-
consumption model with realistic boundary conditions have been established in [15].

Regarding the numerical solvability, a wide variety of techniques have been constructed so far to
simulate the chemotaxis-fluid interaction [26, 36, 38, 66, 68]. These references include a combined
finite volume-nonconforming finite element method [68], a high-resolution vorticity-based hybrid finite-
volume finite-difference discretization [26], a splitting-type Navier-Stokes solver for a realistic three-
dimensional setting [66] and an upwind finite element technique in two dimensions [36]. Other numerical
techniques for close models can be found in the references of the aforementioned works. In turn,

106
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[10], [38], [72], and [79] constitute, up to our knowledge, the few works available in the literature in
which finite element methods for approximating the solutions of the full chemotaxis–Navier–Stokes
system are proposed and analysed, including corresponding optimal errors estimates. In particular,
an equivalent model in Hilbert spaces is proposed in [38] by using a splitting technique based on
the introduction of the chemical concentration gradient as an extra unknown, allowing to control the
strong regularity required by the model, which is one of the main difficulties appearing throughout the
respective numerical analysis. Additionaly, a time-discrete scheme along with a finite element method
with mass-lumping is introduced in [72] for solving a chemotaxis model describing tumor invasion.
Furthermore, a new chemotaxis-Navier-Stokes system is derived in [79], and a linear, decoupled and
unconditionally energy stable finite element scheme for its numerical solution is proposed there.

On the other hand, it is well-known that when dealing with problems involving couplings and nonlinear-
ities, the introduction of additional variables, that is the use of mixed methods, yields the corresponding
variational settings to be properly posed in terms of Banach spaces. This has become particularly fre-
quent in recent years for a wide family of models (see, e.g. [11, 21, 25, 29, 33, 52, 55] and the references
therein), whose resulting mixed formulations show mainly saddle-point, twofold saddle-point, or per-
turbed saddle-point structures. One of the advantages of keeping this functional framework, in addition
to avoiding the incorporation of further redundant Galerkin-type penalty terms, as it has been usual,
for instance, for diverse augmented schemes, lies on the fact that the sought variables belong to the
natural Banach spaces that are originated after carrying out the respective testing and integration
by parts procedures. Furthermore, the above not only allows to develop numerical schemes that are
momentum conservative but also to compute additional physically relevant variables that might be
introduced into the formulation or by employing postprocessing formulae in terms of the discrete solu-
tion. Nevertheless, no mixed methods with these features seem to be available in the literature so far
to solve the chemotaxis-Navier-Stokes model, which certainly constitutes a gap in the field.

According to the previous discussion, and in order, on one hand, to fill the aforementioned gap, and on
the other hand, to continue extending the applicability of Banach spaces-based approaches to study the
continuous and discrete well-posedness of nonlinear coupled problems in fluid mechanics, our present
purpose is to introduce and analyse a continuous Banach framework yielding a fully-mixed finite
element method for the stationary Chemotaxis-Navier-Stokes model. Unfortunately, we must warn
that the non-negativity of the cell density and chemical concentration, which, up to our knowledge,
seems to be an open question for stationary chemotaxis problems, is not considered here. We believe,
however, that a suitable time-discrete scheme ensuring that property for the non-stationary version
of our model, should be obtained by combining the mass-lumping approach proposed in [72] with the
mixed finite element method to be introduced and analysed in the present work. We plan to address
this issue in a forthcoming study.

The chapter is organized as follows. The rest of this section first collects some preliminary notations,
definitions, and results to be utilized throughout the chapter, and then describes the model of interest.
In particular, the auxiliary unknowns are introduced here. In Section 4.2 we derive the fully-mixed
variational formulation of the problem by splitting the analysis according to the three equations forming
the coupled model. Suitable integration by parts formulae jointly with the Cauchy-Schwarz and Hölder
inequalities are crucial for determining the right Lebesgue and related spaces to which the unknowns
and corresponding test functions are required to belong. Some remarks on the boundary conditions
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are also provided here. In Section 4.3, a fixed-point strategy is adopted to analyse the solvability of
the continuous formulation. The Babuška-Brezzi theory in Banach spaces is employed to study the
corresponding uncoupled problems, and then the classical Banach theorem is applied to conclude the
existence of a unique solution. An analogue fixed-point approach to that of Section 4.3 is utilized in
Section 4.4 to study the well-posedness of the associated Galerkin scheme. Under suitable stability
conditions on the finite element subspaces employed, existence and uniqueness of solution are proved
by applying the Brouwer and Banach theorems along with the discrete Babuška-Brezzi theory. Specific
finite element subspaces satisfying those assumptions are then introduced in Section 4.5, and the rates
of convergence of the resulting discrete scheme are also established there. Several numerical examples
confirming these theoretical findings and illustrating the good performance of the method as well as
the local conservation of momentum in an approximate sense, are presented in Section 4.6. Finally,
further properties of the Raviart-Thomas interpolator to be used in Section 4.5, are proved in Section
4.7.

4.1.1 The model problem

The stationary chemotaxis-Navier-Stokes problem consists of finding the velocity vector field u and
the pressure scalar field p of an incompressible fluid occupying the region Ω, along with the additional
scalar fields given by the cell density η, and the chemical signal concentration φ, satisfying the following
system of coupled partial differential equations:

− ν∆u + λ (∇u)u + ∇p − η∇f = f in Ω ,

div(u) = 0 in Ω ,∫
Ω p = 0 ,

− kη∆η + µdiv
(
η∇φ

)
+ u · ∇η = fη in Ω ,

− kφ∆φ + γηφ + u · ∇φ = fφ in Ω ,

u = uD , η = ηD and φ = φD on Γ ,

(4.1)

where f , f , fη, and fφ are given functions belonging to suitable spaces to be indicated later on, whereas
ν, λ, κη, κφ, µ, and γ are positive constants representing the fluid viscosity, the fluid density, the cell
diffusion constant, the chemical diffusion constant, the chemotactic coefficient, and the consumption
rate of the chemical signal, respectively. In turn, uD, ηD, and φD are corresponding Dirichlet data
belonging to suitable spaces as well to be specified throughout the analysis. Meanwhile, we observe
here that, due to the incompressibility of the fluid (cf. second equation of (4.1)), uD must satisfy the
compatibility condition ∫

Γ
uD · n = 0 . (4.2)

In addition, we stress that while the external sources fη and fφ are usually null in most applications,
we allow them here to be arbitrary in order to facilitate the construction of manufactured solutions
when reporting numerical examples later on in Section 4.6.

Next, in order to derive a fully-mixed formulation of (4.1) in Section 4.2, we first adopt the approach
from [33] (see also [29]) and introduce the velocity gradient and the Bernoulli-type stress tensor as
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further unknowns, that is

t := ∇u in Ω and σ := ν t − λ

2
(u⊗ u) − p I in Ω , (4.3)

so that the second equation of (4.3) is considered from now on as the constitutive law of the fluid.
Then, noting that div(u ⊗ u) = (∇u)u = tu, which follows from the fact that div(u) = 0, we find
that the first equation of (4.1) can be rewritten as

−div(σ) +
λ

2
tu − η∇f = f in Ω .

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of the aforementioned
constitutive equation, that the latter and the incompressibility condition, which can also be stated as
the identity tr (t) = 0, are equivalent to

σd = ν t − λ

2
(u⊗ u)d in Ω and p = − 1

n
tr
(
σ +

λ

2
(u⊗ u)

)
in Ω , (4.4)

and thus the pressure can be eliminated from the system and computed afterwards in terms of σ and u

as indicated in the foregoing equation. As a consequence, the third equation of (4.1), which constitutes
a uniqueness condition for p, is rewritten as∫

Ω
tr
(
σ +

λ

2
(u⊗ u)

)
= 0 .

On the other hand, for the cell density and chemical signal concentration equations, we proceed
similarly and define the auxiliary unknowns

σ̃ := ∇η − κ−1
η µ η∇φ − κ−1

η η u in Ω and p := ∇φ in Ω , (4.5)

and observe that the fourth and fifth equations of (4.1) become, respectively,

div(σ̃) = −κ−1
η fη in Ω ,

and
div(p) − κ−1

φ γ ηφ − κ−1
φ u · p = −κ−1

φ fφ in Ω .

Note that σ̃ can be seen as the pseudostress associated with the cell density equation. Summarizing,
(4.1) can be equivalently reformulated as: Find u, t,σ, σ̃, η,p and φ in proper spaces to be introduced
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below, such that

t = ∇u in Ω ,

−σd + ν t − λ

2
(u⊗ u)d = 0 in Ω ,

−div(σ) +
λ

2
t u = η∇f + f in Ω ,∫

Ω
tr
(
σ +

λ

2
(u⊗ u)

)
= 0 ,

σ̃ − ∇η + κ−1
η µ η p + κ−1

η η u = 0 in Ω ,

div(σ̃) = −κ−1
η fη in Ω ,

p = ∇φ in Ω ,

div(p) − k−1
φ γ η φ − k−1

φ u · p = −κ−1
φ fφ in Ω ,

u = uD, η = ηD and φ = φD on Γ .

(4.6)

4.2 The fully-mixed formulation

In this section we derive a Banach spaces-based fully-mixed formulation of (4.6). The integration by
parts formulae provided by (9) - (11), along with the Cauchy-Schwarz and Hölder inequalities, play a
key role in this derivation. The corresponding analysis is split in the following three subsections, which
correspond to the Navier-Stokes equations (first to fourth rows of (4.6)), the cell density equations
(fifth and sixth rows of (4.6)), and the chemical signal concentration equations (seventh and eighth
rows of (4.6)), respectively.

4.2.1 The Navier-Stokes equations

We begin by seeking originally u ∈ H1(Ω), which requires to assume that uD ∈ H1/2(Γ). Then, a

straightforward application of (10) with t ∈

{
(1,+∞) if n = 2

[6/5,+∞) if n = 3
and τ ∈ H(divt; Ω), gives

∫
Ω
τ : ∇u = −

∫
Ω
u · div(τ ) + ⟨τ n,uD⟩ ,

and hence the corresponding testing of the first equation of (4.6) becomes∫
Ω
τ : t +

∫
Ω
u · div(τ ) = ⟨τn,uD⟩Γ ∀ τ ∈ H(divt; Ω) . (4.7)

It is clear, thanks to Cauchy-Schwarz’s inequality, that the first term of (4.7) makes sense for t ∈ L2(Ω),
so that according to its free trace property, we look for this unknown in the space

L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr (s) = 0

}
. (4.8)
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In addition, knowing that div(τ ) ∈ Lt(Ω), and using Hölder’s inequality, we deduce from the second
term of (4.7) that, instead of H1(Ω), it would suffice to look for u in Lt

′
(Ω), where t′ is the conjugate

of t. Nevertheless, testing the second equation of (4.6) against tensors in L2
tr(Ω), we formally get

−
∫
Ω
σ : s + ν

∫
Ω
t : s − λ

2

∫
Ω
(u⊗ u) : s = 0 ∀ s ∈ L2

tr(Ω) , (4.9)

from which, employing the Cauchy-Schwarz and Hölder inequalities, we deduce that its third term
makes sense for u ∈ L4(Ω), and hence from now we chose t′ = 4, which yields t = 4/3. Needless
to say, the first term in (4.9) is finite if σ ∈ L2(Ω), and thus, aiming to use the same space for this
unknown and its test functions τ , we seek σ in H(div4/3; Ω) as well. In this way, knowing now that
div(σ) ∈ L4/3(Ω), we test the third equation of (4.6) against the vector functions in L4(Ω), which
yields

−
∫
Ω
v · div(σ) +

λ

2

∫
Ω
tu · v =

∫
Ω
η∇f · v +

∫
Ω
f · v ∀v ∈ L4(Ω) . (4.10)

Note here, thanks again to the aforementioned inequalities and the already established spaces for t,
u, and v, that the first, second, and fourth terms of (4.10) are well-defined, the latter if the datum f

belongs to L4/3(Ω), which is assumed from now on. Regarding the third one, which will depend on
where to look for η, and where to assume the datum f , we will refer to it in Section 4.2.2. We now
consider the decomposition

H(div4/3; Ω) = H0(div4/3; Ω) ⊕ R I , (4.11)

where
H0(div4/3; Ω) :=

{
τ ∈ H(div4/3; Ω) :

∫
Ω
tr (τ ) = 0

}
, (4.12)

and observe, in particular, that the unknown σ can be uniquely decomposed, according to (4.11) and
the mean value condition given by the fourth equation of (4.6), as σ = σ0 + c0I, where

0 ∈ H0(div4/3; Ω) and c0 :=
1

n |Ω|

∫
Ω
tr (σ) = − λ

2n |Ω|

∫
Ω
tr(u⊗ u) . (4.13)

In this way, similarly as for the pressure, the constant c0 can be computed once the velocity is known,
and hence it only remains to obtain 0. In this regard, we notice that (4.9) and (4.10) remain unchanged
if σ is replaced by 0. In addition, thanks to the fact that t is sought in L2

tr (Ω), and using the
compatibility condition (4.2), we realize that testing (4.7) against τ ∈ H(div4/3; Ω) is equivalent to
doing it against τ ∈ H0(div4/3; Ω). Consequently, bearing in mind the foregoing discussion, introducing
the notations

u⃗ = (u, t) , v⃗ = (v, s) , w⃗ = (w,o) ∈ H := L4(Ω)× L2
tr (Ω) , and Q := H0(div4/3; Ω) ,

redenoting from now on 0 as simply σ ∈ Q, and suitably gathering (4.7), (4.9), and (4.10), we arrive
at the following mixed formulation for the Navier-Stokes equations: Find (u⃗,σ) ∈ H×Q such that

a(u⃗, v⃗) + c(u; u⃗, v⃗) + b(v⃗,σ) = Fη(v⃗) ∀ v⃗ ∈ H ,

b(u⃗, τ ) = G(τ ) ∀ τ ∈ Q ,
(4.14)

where, given z ∈ L4(Ω), the bilinear forms a : H×H → R, b : H×Q → R, and c(z; ·, ·) : H×H → R,
are defined as

a(w⃗, v⃗) := ν

∫
Ω
o : s ∀ w⃗, v⃗ ∈ H , (4.15)
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b(v⃗, τ ) := −
∫
Ω
τ : s −

∫
Ω
v · div(τ ) ∀ (v⃗, τ ) ∈ H×Q , (4.16)

and
c(z; w⃗, v⃗) :=

λ

2

{∫
Ω
o z · v −

∫
Ω
(w ⊗ z) : s

}
∀ w⃗, v⃗ ∈ H , (4.17)

whereas, given χ in the same space where η will be sought, the linear functionals Fχ : H → R and
G : Q → R are given by

Fχ(v⃗) :=

∫
Ω
χ∇f · v +

∫
Ω
f · v ∀ v⃗ ∈ H , (4.18)

and
G(τ ) := −⟨τn,uD⟩Γ ∀ τ ∈ Q . (4.19)

Next, it is easily seen that a, b, c(z; ·, ·), and G are bounded. In fact, endowing H and Q with the
norms

∥v⃗∥H := ∥v∥0,4;Ω + ∥s∥0,Ω ∀ v⃗ := (v, s) ∈ H , ∥τ∥Q := ∥τ∥div4/3;Ω ∀ τ ∈ Q , (4.20)

applying the Cauchy-Schwarz and Hölder inequalities, and invoking (10) along with the continuous
injection i4 : H

1(Ω) → L4(Ω), we find that there exists positive constants, denoted and given as

∥a∥ := ν , ∥b∥ := 1 , ∥c∥ :=
λ

2
, and ∥G∥ :=

(
1 + ∥i4∥

)
∥uD∥1/2,Γ , (4.21)

such that
|a(w⃗, v⃗)| ≤ ∥a∥ ∥w⃗∥H ∥v⃗∥H ∀ w⃗, v⃗ ∈ H , (4.22)

|b(v⃗, τ )| ≤ ∥b∥ ∥v⃗∥H ∥τ∥Q ∀ (v⃗, τ ) ∈ H×Q, , (4.23)

|c(z; w⃗, v⃗)| ≤ ∥c∥ ∥z∥0,4;Ω ∥w⃗∥H ∥v⃗∥H ∀ z ∈ L4(Ω) , ∀ w⃗, v⃗ ∈ H , (4.24)

and
|G(τ )| ≤ ∥G∥ ∥τ∥Q ∀ τ ∈ Q . (4.25)

In addition, simple algebraic computations show that

c(z; v⃗, v⃗) = 0 ∀ z ∈ L4(Ω) , ∀ v⃗ ∈ H . (4.26)

Regarding Fχ (cf. (4.18)), and as already commented for its first term, we remark that its well-
definedness will be concluded below at the end of Section 4.2.2.

4.2.2 The cell density equations

Testing the fifth equation of (4.6) against functions τ̃ ∈ L2(Ω), we formally obtain∫
Ω
σ̃ · τ̃ −

∫
Ω
∇η · τ̃ + κ−1

η µ

∫
Ω
η p · τ̃ + κ−1

η

∫
Ω
η u · τ̃ = 0 , (4.27)
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from which we observe that the first and second terms of (4.27) are finite if σ̃ ∈ L2(Ω) and η ∈ H1
0(Ω),

respectively. In turn, using the Cauchy-Schwarz and Hölder inequalities, we find that for all l, j ∈
(1,+∞) conjugate to each other, there hold∣∣∣∣∫

Ω
η p · τ̃

∣∣∣∣ ≤ ∥η∥0,2l;Ω ∥p∥0,2j;Ω ∥τ̃∥0,Ω (4.28)

and ∣∣∣∣∫
Ω
η u · τ̃

∣∣∣∣ ≤ ∥η∥0,2l;Ω ∥u∥0,2j;Ω ∥τ̃∥0,Ω , (4.29)

from which we deduce that the third and fourth terms of (4.27) make sense for η ∈ L2l(Ω), p ∈ L2j(Ω),
and u ∈ L2j(Ω). However, since we already know from Section 4.2.1 that u will be sought in L4(Ω),
we have to impose here that 2j ≤ 4. On the other hand, in order to be able to apply (9) to τ̃ and η,
so that we obtain ∫

Ω
∇η · τ̃ = −

∫
Ω
η div(τ̃ ) + ⟨τ̃ · n, ηD⟩Γ , (4.30)

with τ̃ ·n ∈ H−1/2(Γ) and ⟨·, ·⟩ denoting the duality pairing between H−1/2(Γ) and H1/2(Γ), it suffices
to assume that div(τ̃ ) ∈ L(2l)′(Ω), where (2l)′ := 2l

2l−1 is the conjugate of 2l, the datum ηD belongs
to H1/2(Γ), and H1(Ω) is continuously embedded in L2l(Ω). The later is guaranteed for 2l ∈ [1,+∞)

when n = 2, which is always satisfied, and for 2l ∈ [1, 6] when n = 3 (cf. [41, Corollary B.43]).

On the other hand, in order to utilize later on a result on the W1,2j(Ω)-solvability of a Poisson
equation, which will be required to establish a continuous inf-sup condition, and according to the
result detailed in [48, Theorem 3.2] (see also [60, Theorems 1.1 and 1.3]), we need that 4/3 ≤ 2j ≤ 4

when n = 2, and 3/2 ≤ 2j ≤ 3 when n = 3. Note that these constraints are compatible with the
previous requirement that 2j ≤ 4. Now, since the respective lower bounds are already satisfied, we

just look at the upper ones, and readily observe that for n = 2, 2j =
2l

l − 1
≤ 4 if and only if 2l ≥ 4,

whereas for n = 3, 2j =
2l

l − 1
≤ 3 if and only if 2l ≥ 6. Thus, intersecting the above with the previous

restrictions on 2l, we find that when n = 2 we require 4 ≤ 2l, and when n = 3 the only possible choice
is 2l = 6. Therefore, denoting

(r, s) := (2j, (2j)′) , and (ρ, ϱ) := (2l, (2l)′) ,

we conclude from the foregoing discussion that the feasible ranges for r, s, ρ, ϱ, j and l, are given by r ∈ (2, 4] and s ∈ [4/3, 2) if n = 2 ,

r = 3 and s = 3/2 if n = 3 ,

 ρ ∈ [4,+∞) and ϱ ∈ (1, 4/3] if n = 2 ,

ρ = 6 and ϱ = 6/5 if n = 3 ,
(4.31)

and  j ∈ (1, 2] and l ∈ [2,+∞) if n = 2 ,

j = 3/2 and l = 3 if n = 3 .
(4.32)

Needless to say, once j (or its conjugate l) is chosen according to the indicated range, then r and ρ,
and their respective conjugates s and ϱ, are fixed. For instance, taking for n = 2, j = l = 2 yields
r = ρ = 4 and s = ϱ = 4/3.
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Hence, in terms of these indexes, we look for η ∈ Lρ(Ω) and p ∈ Lr(Ω), whereas the test function
τ̃ ∈ L2(Ω) is such that div(τ̃ ) ∈ Lϱ(Ω). In this way, replacing the resulting expression from (4.30)
into (4.27), and taking into account the definition (3), we arrive at∫

Ω
σ̃ · τ̃ +

∫
Ω
η div(τ̃ ) + c̃u,p(τ̃ , η) = F̃(τ̃ ) ∀ τ̃ ∈ H(divϱ; Ω) , (4.33)

where, given z ∈ L4(Ω) and q ∈ Lr(Ω), c̃z,q : H(divϱ; Ω)× Lρ(Ω) → R is the bilinear form given by

c̃z,q(τ̃ , ξ) := κ−1
η µ

∫
Ω
ξ q · τ̃ + κ−1

η

∫
Ω
ξ z · τ̃ ∀ (τ̃ , ξ) ∈ H(divϱ; Ω)× Lρ(Ω) , (4.34)

and F̃ : H(divϱ; Ω) → R is the linear functional defined as

F̃(τ̃ ) := ⟨τ̃ · n, ηD⟩Γ ∀ τ̃ ∈ H(divϱ; Ω) . (4.35)

In turn, testing now the sixth equation of (4.6) against ξ ∈ Lρ(Ω), which implicitly impose the unknown
σ̃ to live in H(divϱ; Ω), and assuming that the datum fη belongs to Lϱ(Ω), we obtain∫

Ω
ξ div(σ̃) = G̃(ξ) ∀ ξ ∈ Lρ(Ω) , (4.36)

where G̃ : Lρ(Ω) → R is the functional given by

G̃(ξ) := −κ−1
η

∫
Ω
fη ξ ∀ ξ ∈ Lρ(Ω) . (4.37)

In this way, given p ∈ Lr(Ω) and u ∈ L4(Ω), and denoting the spaces

H := H(divϱ; Ω) and Q := Lρ(Ω) , (4.38)

the mixed formulation for the cell density equation reduces to: Find (σ̃, η) ∈ H×Q such that

ã(σ̃, τ̃ ) + b̃(τ̃ , η) + c̃u,p(τ̃ , η) = F̃(τ̃ ) ∀ τ̃ ∈ H ,

b̃(σ̃, ξ) = G̃(ξ) ∀ ξ ∈ Q ,
(4.39)

where ã : H×H → R and b̃ : H×Q → R are the bilinear forms defined as

ã(ζ̃, τ̃ ) :=

∫
Ω
ζ̃ · τ̃ ∀ ζ̃, τ̃ ∈ H , (4.40)

and
b̃(τ̃ , ξ) :=

∫
Ω
ξ div(τ̃ ) ∀ (τ̃ , ξ) ∈ H×Q . (4.41)

It is easily seen that ã, b̃, c̃z,q, F̃, and G̃ are bounded with the corresponding norms given by
∥τ̃∥H := ∥τ̃∥divϱ;Ω for all τ̃ ∈ H, and ∥ξ∥Q := ∥ξ∥0,ρ;Ω for all ξ ∈ Q. Indeed, applying the Hölder and
Cauchy-Schwarz inequalities, invoking the bounds provided by (4.28) and (4.29), along with the fact
that ∥ · ∥0,r;Ω ≤ |Ω|(4−r)/4r ∥ · ∥0,4;Ω for c̃z,q, and proceeding similarly to G (cf. (4.21), (4.25)) for F̃,
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besides letting iρ : H1(Ω) → Lρ(Ω) be the respective continuous injection, we deduce the existence of
positive constants, denoted and given as

∥ã∥ := 1 , ∥b̃∥ := 1 , ∥c̃∥ := κ−1
η max

{
µ, |Ω|(4−r)/4r

}
,

∥F̃∥ :=
(
1 + ∥iρ∥

)
∥ηD∥1/2,Γ , and ∥G̃∥ := κ−1

η ∥fη∥0,ϱ;Ω ,
(4.42)

such that
|ã(ζ̃, τ̃ )| ≤ ∥ã∥ ∥ζ̃∥H ∥τ̃∥H ∀ ζ̃, τ̃ ∈ H , (4.43)

|̃b(τ̃ , ξ)| ≤ ∥b̃∥ ∥τ̃∥H ∥ξ∥Q ∀ (τ̃ , ξ) ∈ H×Q , (4.44)

|c̃z,q(τ̃ , ξ)| ≤ ∥c̃∥
(
∥z∥0,4;O + ∥q∥0,r;Ω

)
∥τ̃∥H ∥ξ∥Q ∀ (τ̃ , ξ) ∈ H×Q , (4.45)

|F̃(τ̃ )| ≤ ∥F̃∥ ∥τ̃∥H ∀ τ̃ ∈ H , (4.46)

and
|G̃(ξ)| ≤ ∥G̃∥ ∥ξ∥Q ∀ ξ ∈ Q . (4.47)

Finally, knowing that η will be sought in Lρ(Ω), we consider χ ∈ Lρ(Ω), proceed similarly to the
derivation of (4.28) and (4.29), and use that ∥ · ∥0,Ω ≤ |Ω|1/4 ∥ · ∥0,4;Ω, to bound the first term defining
Fχ (cf. (4.18)) as∣∣∣∣∫

Ω
χ∇f · v

∣∣∣∣ ≤ |Ω|1/4 ∥χ∥0,ρ;Ω ∥∇f∥0,r;Ω ∥v∥0,4;Ω ∀v ∈ L4(Ω) , (4.48)

which requires to assume from now on that ∇f ∈ Lr(Ω). Then, bearing in mind the definition of Fχ
(cf. (4.18)) and the foregoing estimate, and setting the constant

∥F∥ := max
{
1, |Ω|1/4

}
, (4.49)

we readily conclude that

|Fχ(v⃗)| ≤ ∥F∥
(
∥χ∥0,ρ;Ω ∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω

)
∥v⃗∥H ∀ v⃗ ∈ H , (4.50)

thus confirming the announced well-definedness and boundedness of Fχ.

4.2.3 The chemical signal concentration equations

Knowing already that p ∈ Lr(Ω), the seventh equation of (4.6) suggests to look originally for φ in
W1,r(Ω). In this way, testing that equation against q ∈ Hs(divs; Ω) (cf. (5)), and then employing (11)
and the Dirichlet boundary condition for φ, we obtain∫

Ω
p · q +

∫
Ω
φdiv(q) = ⟨q · n, φD⟩Γ , (4.51)

which requires to assume that φD ∈ W1/s,r(Γ). It follows from (4.51) that it suffices to seek the
concentration φ of the chemical signal in the space Lr(Ω). In turn, testing the eighth equation of (4.6)
against an arbitrary function ϕ belonging to a space to be determined, we formally get∫

Ω
ϕdiv(p) − κ−1

φ γ

∫
Ω
η φϕ − κ−1

φ

∫
Ω
u · pϕ = −κ−1

φ

∫
Ω
fφ ϕ . (4.52)
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Next, given the same l, j ∈ (1,+∞) conjugate to each other as before, and proceeding similarly to the
derivation of (4.28) and (4.29), we find that∣∣∣∣∫

Ω
η φϕ

∣∣∣∣ ≤ ∥η∥0,2j;Ω ∥φ∥0,2j;Ω ∥ϕ∥0,l;Ω = ∥η∥0,r;Ω ∥φ∥0,r;Ω ∥ϕ∥0,l;Ω (4.53)

and ∣∣∣∣∫
Ω
u · pϕ

∣∣∣∣ ≤ ∥u∥0,2j;Ω ∥p∥0,2j;Ω ∥ϕ∥0,l;Ω = ∥u∥0,r;Ω ∥p∥0,r;Ω ∥ϕ∥0,l;Ω , (4.54)

whence, recalling from (4.31) that r ≤ 4 ≤ ρ, we deduce that the second and third terms of (4.52)
make sense for η ∈ Lρ(Ω), φ ∈ Lr(Ω), ϕ ∈ Ll(Ω), u ∈ L4(Ω), and p ∈ Lr(Ω). In addition, in order for
the first and fourth terms to be well-defined, we need that both div(p) and the datum fφ belong to
Lj(Ω), which yields, in particular, to look for p in Hr(divj ; Ω) (cf. (5)).

According to the foregoing discussion, we now set the Banach spaces

X2 := Hr(divj ; Ω) , X1 := Hs(divs; Ω) , M1 := Lr(Ω) , and M2 := Ll(Ω) , (4.55)

so that, given u ∈ L4(Ω) and η ∈ Lρ(Ω), the mixed formulation for the chemical signal concentration
equation reduces to: Find (p, φ) ∈ X2 ×M1 such that

a(p,q) + b1(q, φ) = F(q) ∀q ∈ X1 ,

b2(p, ϕ) − cu,η
(
(p, φ), ϕ

)
= G(ϕ) ∀ϕ ∈M2 ,

(4.56)

where, given z ∈ L4(Ω) and χ ∈ Lρ(Ω), the bilinear forms a : X2 × X1 → R, bi : Xi ×Mi → R,
i ∈
{
1, 2
}
, and cz,χ :

(
X2 ×M1

)
×M2 → R, are defined as

a(r,q) :=

∫
Ω
r · q ∀ (r,q) ∈ X2 ×X1 , (4.57)

bi(q, ϕ) :=

∫
Ω
ϕdiv(q) ∀ (q, ϕ) ∈ Xi ×Mi , (4.58)

and

cz,χ
(
(r, ψ), ϕ

)
:= κ−1

φ

∫
Ω
z · rϕ + κ−1

φ γ

∫
Ω
χψ ϕ ∀

(
(r, ψ), ϕ

)
∈
(
X2 ×M1

)
×M2 , (4.59)

whereas the linear functionals F : X1 → R and G :M2 → R are given by

F(q) := ⟨q · n, φD⟩Γ ∀q ∈ X1 , (4.60)

and
G(ϕ) := −κ−1

φ

∫
Ω
fφ ϕ ∀ϕ ∈M2 . (4.61)

Next, it is straightforward to see that the bilinear forms a, bi, i ∈
{
1, 2
}
, and cz,χ, as well as the

functionals F and G, are all bounded. In fact, applying Hölder’s inequality, appealing to the bounds
given by (4.53) and (4.54), and making use of the fact that ∥ · ∥0,r;Ω ≤ |Ω|(4−r)/4r ∥ · ∥0,4;Ω and
∥ · ∥0,r;Ω ≤ |Ω|(ρ−r)/ρr ∥ · ∥0,ρ;Ω for cz,χ, we find that there exist positive constants, given by

∥a∥ := 1 , ∥bi∥ := 1
(
i ∈
{
1, 2
})
, ∥c∥ := κ−1

φ max
{
|Ω|(4−r)/4r, γ |Ω|(ρ−r)/ρr

}
,

and ∥G∥ = κ−1
φ ∥fφ∥0,j;Ω ,

(4.62)
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such that
|a(r,q)| ≤ ∥a∥ ∥r∥X2 ∥q∥M1 ∀ (r,q) ∈ X2 ×M1 , (4.63)

|bi(q, ϕ)| ≤ ∥bi∥ ∥q∥Xi ∥ϕ∥Mi ∀ (q, ϕ) ∈ Xi ×Mi , (4.64)

|cz,χ
(
(r, ψ), ϕ

)
| ≤ ∥c∥

(
∥z∥0,4;Ω + ∥χ∥0,ρ;Ω

)
∥(r, ψ)∥X2×M1 ∥ϕ∥M2

∀
(
(r, ψ), ϕ

)
∈
(
X2 ×M1

)
×M2 ,

(4.65)

and
|G(ϕ)| ≤ ∥G∥ ∥ϕ∥M2 ∀ϕ ∈M2 . (4.66)

In turn, for the boundedness F we first observe, thanks to [41, Lemma A.36] and the surjectivity of
the trace operator mapping W1,r(Ω) onto W1/s,r(Γ), that there exists a fixed constant Cr > 0 such
that for each φ ∈ W1/s,r(Γ) there exists v ∈ W1,r(Ω) satisfying v|Γ = φ and

∥v∥1,r;Ω := ∥v∥0,r;Ω + ∥∇v∥0,r;Ω ≤ Cr ∥φ∥1/s,r;Γ .

In particular, denoting by vD ∈ W1,r(Ω) a corresponding function for φD ∈ W1/s,r(Γ), applying (11)
to (t, t′) = (s, r) and (τ , v) = (q, vD), and then using Hölder’s inequality, we deduce that

|F(q)| ≤ ∥F∥ ∥q∥X1 ∀q ∈ X1 , (4.67)

with the constant
∥F∥ := Cr ∥φD∥1/s,r;Γ . (4.68)

As a consequence of the analysis developed in Sections 4.2.1 and 4.2.2, and the present Section
4.2.3, and under the assumption that the data belong to the indicated spaces, namely ∇f ∈ Lr(Ω),
f ∈ L4/3(Ω), fη ∈ Lϱ(Ω), fφ ∈ Lj(Ω), uD ∈ H1/2(Γ), ηD ∈ H1/2(Γ), and φD ∈ W1/s,r(Γ), we conclude
that the fully-mixed formulation of the chemotaxis-Navier-Stokes problem (4.6) can be summarized by
gathering (4.14), (4.39) and (4.56), that is: Find (u⃗,σ) ∈ H×Q, (σ̃, η) ∈ H×Q, and (p, φ) ∈ X2×M1,
such that

a(u⃗, v⃗) + c(u; u⃗, v⃗) + b(v⃗,σ) = Fη(v⃗) ∀ v⃗ ∈ H ,

b(u⃗, τ ) = G(τ ) ∀ τ ∈ Q ,

ã(σ̃, τ̃ ) + b̃(τ̃ , η) + c̃u,p(τ̃ , η) = F̃(τ̃ ) ∀ τ̃ ∈ H ,

b̃(σ̃, ξ) = G̃(ξ) ∀ ξ ∈ Q ,

a(p,q) + b1(q, φ) = F(q) ∀q ∈ X1 ,

b2(p, ϕ) − cu,η
(
(p, φ), ϕ

)
= G(ϕ) ∀ϕ ∈M2 .

(4.69)

We notice here that the first, fourth, and sixth rows of (4.69), the first one with v⃗ := (v,0) ∈ H,
constitute the conservation of momentum properties for the three equations involved. We will refer to
the discrete versions of them later on in Sections 4.4.1 and 4.5.1.
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4.2.4 Remarks on the boundary conditions

We find it important to highlight here that, while Dirichlet boundary conditions for the cell density
and chemical signal concentration are not the usual ones in applications, the variational formulations
resulting from more interesting boundary conditions are just minor modifications of (4.69). Indeed, let
us assume for instance the no-slip boundary condition for u and the no-flux boundary conditions for η
and φ considered in [38, eq. (1.2)] (see, also [72, eq. (1.2)], [10, eq. (1.1)], and [79, eq. (2.8)]), that is

u = 0 , ∇η · n = 0 , and ∇φ · n = 0 on Γ . (4.70)

In this case, we first observe from (4.2.1) that the functional G (cf. (4.19)) becomes the null one, which
constitutes the only change in the first two rows of (4.69). Moreover, it follows from the definitions of
σ̃ and p (cf. (4.5)) that

σ̃ · n = 0 and p · n = 0 on Γ , (4.71)

whence the unknowns σ̃ and p are sought now in the spaces arising from (4.38) and (4.55), respectively,
after incorporating into them the above homogeneous boundary conditions, that is

H :=
{
τ̃ ∈ H(divϱ; Ω) : τ̃ · n = 0 on Γ

}
, and

X2 :=
{
q ∈ Hr(divj ; Ω) : q · n = 0 on Γ

}
.

(4.72)

In this way, bearing in mind the new space H (cf. (4.72)), we notice that the last term of (4.30) now
vanishes, whence, besides H, the only change in the third row of (4.69) (cf. (4.33)) is given by the
fact that F̃ (cf. (4.35)) becomes the null functional as well. In addition, taking ξ ≡ 1 in the fourth
equation of (4.69) (cf. (4.36)) and using the first identity of (4.71), we realize that the datum fη must
belong to Lϱ0(Ω) :=

{
g ∈ Lϱ(Ω) :

∫
Ω g = 0

}
. It follows that testing this fourth equation against

ξ ∈ Q := Lρ(Ω) (cf. (4.38)) is equivalent to doing it against ξ ∈ Q := Lρ0(Ω), thus suggesting to look
for the corresponding unknown η in this new space Q as well, which actually would be required for the
corresponding solvability analysis. We refer in a more precise way to this fact in Section 4.3.2.

Furthermore, we proceed analogously for the chemical signal concentration, so that, according to
the definition of X2 in (4.72), we now incorporate the same homogeneous boundary condition into the
new version of the test space X1, that is

X1 :=
{
q ∈ Hs(divs; Ω) : q · n = 0 on Γ

}
. (4.73)

As a consequence, the last term of (4.51) vanishes, that is the functional F (cf. (4.60)) becomes the
null one, which, besides X2 and X1, constitutes the only change in the fifth row of (4.69). Similarly
as for the cell density, and regarding the spaces M1 and M2, one would just need to redefine them as
M1 := Lr0(Ω) and M2 := Ll0(Ω) in order to be able to perform the respective solvability analysis. We
further explain the above in Section 4.3.2.

On the other hand, let us next consider the more realistic boundary conditions from [15], that is

u = 0 , ∇η · n = 0 , and ∇φ · n =
(
c− φ

)
g on Γ , (4.74)

where c is a positive constant and g is a sufficiently smooth function defined on Ω̄, such that g ̸= 0

and g ≥ 0 on Γ. In this case, it is easy to see from the definitions of σ̃ and p (cf. (4.5)) that

σ̃ · n = g̃(η, φ) := −κ−1
η µ η

(
c− φ

)
g and p · n = g(φ) :=

(
c− φ

)
g on Γ , (4.75)



4.3. The continuous solvability analysis 119

whence the spaces H andX2 are kept as defined originally by (4.38) and (4.55). However, the derivations
of the weak formulations for the cell density and chemical signal concentration equations require to
define the negative traces of η and φ as the Lagrange multipliers associated to the non-homogeneous
boundary conditions in (4.75). In particular, letting ηD := −η|Γ ∈ H1/2(Γ), which is now an unknown,
and bearing in mind the integration by parts in (4.30), the identity (4.33) becomes∫

Ω
σ̃ · τ̃ +

∫
Ω
η div(τ̃ ) + ⟨τ̃ · n, ηD⟩Γ + c̃u,p(τ̃ , η) = 0 ∀ τ̃ ∈ H(divϱ; Ω) , (4.76)

whereas the testing of the first boundary condition in (4.75) yields

⟨σ̃ · n, ξD⟩Γ = ⟨g̃(η, φ), ξD⟩Γ ∀ ξD ∈ H1/2(Γ) , (4.77)

which is then added to (4.36). Consequently, H becomes the product space H(divϱ; Ω)×H1/2(Γ), the
bilinear form b̃ incorporates the additional boundary expression given by both the third and first terms
of (4.76) and (4.77), respectively, the functional F̃ is again the null one, and the functional G̃ results
from adding the right-hand sides of (4.37) and (4.77). In turn, introducing φD := −φ|Γ ∈ W1/s,r(Γ)

as a further unknown of the chemical signal equations, the fifth and sixth rows of (4.69) suffer analogous
modifications to those aforedescribed for the third and fourth ones. We omit further details here.

Summarizing, we believe that the discussion in this section has made clear that there is no loss
of generality when utilizing Dirichet boundary conditions for the chemotaxis-Navier-Stokes problem
since, at least for the case described by (4.70), the continuous and discrete analyses to be developed
throughout the rest of the chapter will need to be slighted modified only. In order to emphasize this
fact from a numerical point of view, in Section 4.6 we also include examples reporting the applicability
of our method to the aforementioned situation, and even to the particular case of (4.75) in which g̃ and
g are explicitly known data. A detailed discussion of the full case (4.75) certainly merits to be part of
a separate work. In particular, the way in which the right-hand side of (4.77) - which meantime forms
part of G̃ - is incorporated into the fixed-point strategy, is one of the key aspects to be elucidated.

4.3 The continuous solvability analysis

In this section we proceed similarly as in [29] and [52] (see also [11], [21], [55], and some of the
references therein) and adopt a fixed-point strategy to analyse the solvability of (4.69).

4.3.1 The fixed-point approach

We begin by rewriting (4.69) as an equivalent fixed point equation. To this end, we first let S :

L4(Ω)×Q → L4(Ω) be the operator defined by

S(z, χ) := u ∀ (z, χ) ∈ L4(Ω)×Q , (4.78)

where (u⃗,σ) =
(
(u, t),σ) ∈ H ×Q is the unique solution (to be confirmed below) of problem (4.14)

(equivalently, the first and second rows of (4.69)) when c(u; ·, ·) and Fη are replaced by c(z; ·, ·) and
Fχ, respectively, that is

a(u⃗, v⃗) + c(z; u⃗, v⃗) + b(v⃗,σ) = Fχ(v⃗) ∀ v⃗ ∈ H ,

b(u⃗, τ ) = G(τ ) ∀ τ ∈ Q .
(4.79)
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Similarly, we let S̃ : L4(Ω)×X2 → Q be the operator given by

S̃(z, r) := η ∀ (z, r) ∈ L4(Ω)×X2 , (4.80)

where (σ̃, η) ∈ H × Q is the unique solution (to be confirmed below) of problem (4.39) (equivalently,
the third and fourth rows of (4.69)) when c̃u,p is replaced by c̃z,r, that is

ã(σ̃, τ̃ ) + b̃(τ̃ , η) + c̃z,r(τ̃ , η) = F̃(τ̃ ) ∀ τ̃ ∈ H ,

b̃(σ̃, ξ) = G̃(ξ) ∀ ξ ∈ Q .
(4.81)

In turn, we let S : L4(Ω)×Q → X2 be the operator given by

S(z, χ) := p ∀ (z, χ) ∈ L4(Ω)×Q , (4.82)

where (p, φ) ∈ X2×M1 is the unique solution (to be confirmed below) of problem (4.56) (equivalently,
the fifth and sixth rows of (4.69)) when cu,η is replaced by cz,χ, that is

a(p,q) + b1(q, φ) = F(q) ∀q ∈ X1 ,

b2(p, ϕ) − cz,χ
(
(p, φ), ϕ

)
= G(ϕ) ∀ϕ ∈M2 .

(4.83)

Thus, defining the operator T : L4(Ω)×X2 → L4(Ω)×X2 as

T(z, r) :=
(
S
(
z, S̃(z, r)

)
, S
(
z, S̃(z, r)

))
∀ (z, r) ∈ L4(Ω)×X2 , (4.84)

we realize that solving (4.69) is equivalent to seeking a fixed point of T, that is: Find (u,p) ∈ L4(Ω)×X2

such that
T(u,p) = (u,p) . (4.85)

4.3.2 Well-posedness of the uncoupled problems

We now employ the Babuska-Brezzi theory in Banach spaces (cf. [12, Theorem 2.1, Corollary 2.1,
Section 2.1] for the general case, and [41, Theorem 2.34] for a particular one), and the Banach-Nečas-
Babuška Theorem (also known as the generalized Lax-Milgram Lemma) (cf. [41, Theorem 2.6]), to
establish the well-posedness of the problems (4.79), (4.81), and (4.83), defining the operators S, S̃, and
S, respectively.

Well-definedness of operator S

Here we apply [41, Theorem 2.34] to prove that problem (4.79) is well-posed (equivalently, that S

is well-defined). In this regard, it is important to stress that the structure of (4.79) is the same of
the problem stated in [29, eq. (3.23)], and hence, several results and techniques from there will be
employed in what follows. Indeed, given (z, χ) ∈ L4(Ω) × Q, we proceed as in [29, Section 3.3], and
introduce first the bilinear form Az : H×H → R defined by

Az(w⃗, v⃗) := a(w⃗, v⃗) + c(z; w⃗, v⃗) ∀ w⃗, v⃗ ∈ H , (4.86)
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so that problem (4.79) can be rewritten as: Find (u⃗,σ) ∈ H×Q such that

Az(u⃗, v⃗) + b(v⃗,σ) = Fχ(v⃗) ∀ v⃗ ∈ H ,

b(u⃗, τ ) = G(τ ) ∀ τ ∈ Q .
(4.87)

Now, we let V be the kernel of the operator induced by the bilinear form b (cf. (4.16)), that is

V :=
{
v⃗ := (v, s) ∈ H : b(v⃗, τ ) = 0 ∀ τ ∈ Q

}
,

which, exactly as [29, eq. (3.34)], reduces to

V :=
{
v⃗ := (v, s) ∈ H : ∇v = s and v ∈ H1

0(Ω)
}
. (4.88)

Then, letting cP be the positive constant yielding the Friedrichs-Poincaré inequality, which states that
|v|21,Ω ≥ cP ∥v∥21,Ω for all v ∈ H1

0(Ω), denoting by i4 the continuous injection of H1(Ω) into L4(Ω),
bearing in mind (4.86) and (4.26), and proceeding analogously to the proof of [29, eq. (3.41), Lemma
3.2], we find that

Az(v⃗, v⃗) = a(v⃗, v⃗) ≥ α ∥v⃗∥2H ∀ v⃗ ∈ V , (4.89)

with α := ν
2 min

{
1, cP

∥i4∥2
}
, which gives the V-ellipticity of Az. Thus, it is easily seen, thanks to

(4.89), that Az satisfies the hypothesis specified in [41, Theorem 2.34, eq. (2.28)] with the constant
α defined above. In addition, it follows from (4.86), along with (4.21), (4.22), and (4.24), that there
holds

|Az(w⃗, v⃗)| ≤ ∥Az∥ ∥w⃗∥H ∥v⃗∥H ∀ w⃗, v⃗ ∈ H , (4.90)

with the constant
∥Az∥ := ∥a∥ + ∥c∥ ∥z∥0,4;Ω = ν +

λ

2
∥z∥ , (4.91)

which says that A is bounded.

In turn, using that for each t ∈

{
(1,+∞) if n = 2

[6/5,+∞) if n = 3
there exists a constant Ct > 0, depending

only on Ω, such that

Ct ∥τ∥20,Ω ≤ ∥τ d∥20,Ω + ∥div(τ )∥20,t;Ω ∀ τ ∈ H0(divt; Ω) , (4.92)

which follows from a slight modification of the proof of [44, Lemma 2.3], one can prove the continuous
inf-sup condition for the bilinear form b. More precisely, employing (4.92) with t = 4/3, it is shown in
[29, Lemma 3.3, eq. (3.44)] that there exists a positive constant β, depending only on C4/3, such that

sup
v⃗∈H
v⃗ ̸=0

b(v⃗, τ⃗ )

∥v⃗∥H
≥ β ∥τ∥Q ∀ τ ∈ Q , (4.93)

whence the bilinear form b satisfies the hypothesis indicated in [41, Theorem 2.34, eq. (2.29)].

For sake of completeness we remark here that, exactly as for the proof of [44, Lemma 2.3], the
derivation of (4.92) is based on the fact that the divergence operator div is an isomorphism from the
closed subspace of H1

0(Ω) given by W⊥, where W :=
{
z ∈ H1

0(Ω) : div(z) = 0
}

, onto L2
0(Ω). In



4.3. The continuous solvability analysis 122

this way, given τ ∈ H0(divt; Ω), that is τ ∈ H(divt; Ω) and tr (τ ) ∈ L2
0(Ω), we let z be the unique

element in W⊥ such that div(z) = tr (τ ) and ∥z∥1,Ω ≤ C0 ∥tr (τ )∥0,Ω, with a positive constant C0

independent of z and τ . Then, a key identity stated a few lines after [44, eq. (2.53)] establishes that

∥tr (τ )∥20,Ω = −n
∫
Ω
z · div(τ ) − n

∫
Ω
τ d : ∇z ,

from which, applying the Hölder and Cauchy-Schwarz inequalities, letting t′ ∈ (1,+∞) be the conjugate
of t, and denoting by it′ the continuous injection of H1(Ω) into Lt

′
(Ω), which holds for t′ ∈ [1,+∞) in

2D and t′ ∈ [1, 6] in 3D, we get

∥tr (τ )∥20,Ω ≤ nC0

{
∥it′∥ ∥div(τ )∥0,t;Ω + ∥τ d∥0,Ω

}
∥tr (τ )∥0,Ω ,

and hence
∥tr (τ )∥0,Ω ≤ nC0

{
∥it′∥ ∥div(τ )∥0,t;Ω + ∥τ d∥0,Ω

}
.

Finally, it is readily seen that (4.92) follows straightforwardly from the foregoing inequality and the

fact that ∥τ∥20,Ω = ∥τ d∥20,Ω +
1

n
∥tr (τ )∥20,Ω.

We are now in position to confirm that the operator S is well-defined.

Lemma 4.1. For each (z, χ) ∈ L4(Ω)×Q there exists a unique (u⃗,σ) :=
(
(u, t),σ

)
∈ H×Q solution

of (4.87) (equivalently (4.79)), and hence one can define S(z, χ) := u ∈ L4(Ω). Moreover, there exists
a positive constant CS, depending only on |Ω|, ∥i4∥, ν, λ, α, and β, such that

∥S(z, χ)∥0,4;Ω = ∥u∥0,4;Ω ≤ ∥u⃗∥H

≤ CS

{
∥χ∥0,ρ;Ω ∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω +

(
1 + ∥z∥0,4;Ω

)
∥uD∥1/2,Γ

}
.

(4.94)

Proof. Having previously established that Az and b satisfy [41, eqs. (2.28) and (2.29)], and knowing
that Az, b, Fχ, and G are all bounded, a straightforward application of [41, Theorem 2.34] confirms the
existence of a unique (u⃗,σ) :=

(
(u, t),σ

)
∈ H×Q solution of (4.87). In addition, the corresponding

a priori estimate in [41, Theorem 2.34, eq. (2.30)] yields

∥u⃗∥H ≤ 1

α
∥Fχ∥ +

1

β

(
1 +

∥Az∥
α

)
∥G∥ . (4.95)

Then, noting from (4.49) and (4.50) that

∥Fχ∥ ≤ max
{
1, |Ω|1/4

} (
∥χ∥0,ρ;Ω ∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω

)
, (4.96)

invoking the expressions for ∥G∥ and ∥Az∥ provided in (4.21) and (4.91), respectively, and performing
some minor algebraic manipulations, we readily derive from (4.95) the required inequality (4.94).

Regarding the a priori estimate for the component σ of the unique solution of (4.87), which will be
used later on, we recall that the second inequality in [41, Theorem 2.34, eq. (2.30)] gives

∥σ∥Q ≤ 1

β

(
1 +

∥Az∥
α

)
∥Fχ∥ +

∥Az∥
β2

(
1 +

∥Az∥
α

)
∥G∥ ,
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which, proceeding similarly to the derivation of (4.94), yields

∥σ∥Q = ∥σ∥div4/3;Ω ≤ C̄S (1 + ∥z∥0,4;Ω)
{
∥χ∥0,ρ;Ω ∥∇f∥0,r;Ω

+ ∥f∥0,4/3;Ω + (1 + ∥z∥0,4;Ω) ∥uD∥1/2,Γ
}
,

(4.97)

where C̄S is a positive constant depending as well on |Ω|, ∥i4∥, ν, λ, α, and β.

Well-definedness of operator S̃

In this section we make use of [41, Theorems 2.34 and 2.6] to show that (4.81) is well-posed (equiv-
alently, that S̃ is well-defined). To this end, and similarly to Section 4.3.2, we notice that, given
(z, r) ∈ L4(Ω) × X2, the structure of (4.81) is analogous to that of the problem specified in [52, eq.
(2.33), Section 2.3], so that some results and techniques from its corresponding analysis are employed
below. In particular, following the approach from [52, Section 2.4.3], we first apply [41, Theorem 2.34]
to a perturbation of (4.81), and then employ [41, Theorem 2.6] to conclude that the whole problem
(4.81) is well-posed. More precisely, we let Ã : (H×Q)× (H×Q) → R be the bounded bilinear form
arising from (4.81) after adding the left-hand sides of its equations, but without including c̃z,r, that is

Ã((ζ̃, χ), (τ̃ , ξ)) := ã(ζ̃, τ̃ ) + b̃(τ̃ , χ) + b̃(ζ̃, ξ) (4.98)

for all (ζ̃, χ), (τ̃ , ξ) ∈ H × Q, and show next that Ã satisfies a global continuous inf-sup condition.
Note that, being Ã symmetric, the latter will be valid with respect to any of its components. We also
remark that the boundedness of Ã follows from those of ã and b̃ (cf. (4.42), (4.43), and (4.44)).

Since establishing the aforementioned property for Ã is equivalent to proving that the bilinear forms
ã and b̃ satisfy the hypotheses of [41, Theorem 2.34], we proceed with the latter in what follows. We
begin by letting Ṽ be the null space of the operator induced by the bilinear form b̃, that is

Ṽ :=
{
τ̃ ∈ H : b(τ̃ , ξ) = 0 ∀ ξ ∈ Q

}
,

which, according to the definitions of b̃ (cf. (4.41)) and the spaces H and Q (cf. (4.38)), yields

Ṽ :=
{
τ̃ ∈ H : div(τ̃ ) = 0

}
. (4.99)

Then, it is straightforward to see from the definitions of ã (cf. (4.40)) and the norm of H := H(divϱ; Ω)

(cf. (6)) that there holds
ã(τ̃ , τ̃ ) = ∥τ̃ 2∥H ∀ τ̃ ∈ Ṽ , (4.100)

from which one easily deduces that ã satisfies the hypotheses given by [41, Theorem 2.34, eq. (2.28)]
with the constant α̃ = 1.

Furthermore, since the continuous inf-sup condition for b̃ has already been established (see, e.g. [21,
Lemma 2.1], [52, Lemma 2.9], and also [55, Lemma 3.5] for a closely related result), we provide next
only the main details of its corresponding proof. In fact, given ξ ∈ Q := Lρ(Ω), we note from (4.31)
that ρ > 2, introduce ξϱ := |ξ|ρ−2 ξ, and observe that

ξϱ ∈ Lϱ(Ω) and
∫
Ω
ξ ξϱ = ∥ξ∥0,ρ;Ω ∥ξϱ∥0,ϱ;Ω . (4.101)
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Then, letting w ∈ H1
0(Ω) be the unique weak solution of ∆w = −ξϱ in Ω, w = 0 on Γ, for which there

holds ∥w∥1,Ω ≤ ∥iρ∥
cP

∥ξϱ∥0,ϱ;Ω, where cP is the constant yielding the Friedrichs-Poincaré inequality,
and iρ is the continuous injection of H1(Ω) into Lρ(Ω), we define ζ̃ := −∇w ∈ L2(Ω) and notice that
div(ζ̃) = ξϱ, so that ζ̃ ∈ H := H(divϱ; Ω). In this way, bounding by below with τ̃ = ζ̃, and using the
above identities and estimates, we arrive at

sup
τ̃∈H
τ̃ ̸=0

b̃(τ̃ , ξ)

∥τ̃∥H
≥ β̃ ∥ξ∥Q , (4.102)

with β̃ :=
(
1 +

∥iρ∥
cP

)−1.

At this point we recall from Section 4.2.4 that in the case of the boundary conditions given by
(4.70) (which yields (4.71)), the elements of H have a null normal trace, and hence the proof of the
inf-sup condition for b̃ needs to be slightly modified. In fact, the auxiliary boundary value problem
with solution w must consider now a homogeneous Neumann boundary condition instead of a Dirichlet
one, so that, in order for the compatibility condition between the data be satisfied, the mean value of
the source term must be 0. For achieving the latter as well as the identity in (4.101), which is a key
aspect of the proof of (4.102), it suffices that Q becomes Lρ0(Ω), thus confirming what was announced
in Section 4.2.4. Alternatively, and coherently with [15, Theorem 1.1], we may assume that

∫
Ω η is

given, which allows to uniquely decompose η as η = η0 + c0, with the new unknown η0 ∈ Lρ0(Ω), and
a real constant c0 that is explicitly known in terms of the aforementioned given value.

Consequently, thanks to (4.100) and (4.102), the hypotheses of [41, Theorem 2.34] are satisfied, and
hence the a priori estimates given by [41, Theorem 2.34, eq. (2.30)] imply the existence of a positive
constant α

S̃
, depending only on α̃, β̃, and ∥ã∥, such that

sup
(τ̃ ,ξ)∈H×Q

(τ̃ ,ξ) ̸=0

Ã((ζ̃, χ), (τ̃ , ξ))

∥(τ̃ , ξ)∥H×Q
≥ α

S̃
∥(ζ̃, χ)∥H×Q ∀ (ζ̃, χ) ∈ H×Q . (4.103)

Next, we let Ãz,r :
(
H×Q

)
×
(
H×Q

)
→ R be the bounded bilinear form that results after adding the

full left-hand sides of the equations of (4.81), that is

Ãz,r((ζ̃, χ), (τ̃ , ξ)) := Ã((ζ̃, χ), (τ̃ , ξ)) + c̃z,r(τ̃ , χ) ∀ (ζ̃, χ), (τ̃ , ξ) ∈ H×Q , (4.104)

whence problem (4.81) can be rewritten, equivalently, as: Find (σ̃, η) ∈ H×Q such that

Ãz,r((σ̃, η), (τ̃ , ξ)) = F̃(τ̃ ) + G̃(ξ) ∀ (τ̃ , ξ) ∈ H×Q . (4.105)

We remark that the boundedness of Ã and c̃z,r (cf. (4.45)) implies the same property for Ãz,r. In
turn, it follows from (4.103), (4.104), and the boundedness of c̃z,r (cf. (4.42) and (4.45)), that for each
(ζ̃, χ) ∈ H×Q there holds

sup
(τ̃ ,ξ)∈H×Q

(τ̃ ,ξ)̸=0

Ãz,r((ζ̃, χ), (τ̃ , ξ))

∥(τ̃ , ξ)∥H×Q
≥ α

S̃
∥(ζ̃, χ)∥H×Q − ∥c̃∥

(
∥z∥0,4;O + ∥r∥0,r;Ω

)
∥χ∥Q

≥
{
α
S̃
− ∥c̃∥

(
∥z∥0,4;Ω + ∥r∥0,r;Ω

)}
∥(ζ̃, χ)∥H×Q ,
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and thus, under the assumption that

∥z∥0,4;Ω + ∥r∥0,r;Ω ≤
α
S̃

2 ∥c̃∥
, (4.106)

we arrive at

sup
(τ̃ ,ξ)∈H×Q

(τ̃ ,ξ)̸=0

Ãz,r((ζ̃, χ), (τ̃ , ξ))

∥(τ̃ , ξ)∥H×Q
≥

α
S̃

2
∥(ζ̃, χ)∥H×Q ∀ (ζ̃, χ) ∈ H×Q . (4.107)

Analogously, noting that Ã is symmetric, proceeding as before, and under the same assumption (4.106),
we obtain

sup
(ζ̃,χ)∈H×Q

(ζ̃,χ) ̸=0

Ãz,r((ζ̃, χ), (τ̃ , ξ))

∥(ζ̃, χ)∥H×Q

≥
α
S̃

2
∥(τ̃ , ξ)∥H×Q ∀ (τ̃ , ξ) ∈ H×Q . (4.108)

According to the foregoing analysis, the well-definedness of S̃ is established as follows.

Lemma 4.2. For each (z, r) ∈ L4(Ω) × X2 satisfying (4.106) there exists a unique (σ̃, η) ∈ H × Q

solution of (4.105) (equivalently (4.81)), and hence one can define S̃(z, r) := η ∈ Q. Moreover, there
exists a positive constant C

S̃
, depending only on α

S̃
, ∥iρ∥, and κη, such that

∥S̃(z, r)∥Q = ∥η∥0,ρ;Ω ≤ ∥(σ̃, η)∥H×Q ≤ C
S̃

{
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

}
. (4.109)

Proof. Bearing in mind the boundedness of Ãz,r, (4.107), and (4.108), a straightforward application of
[41, Theorem 2.6] yields the existence of a unique solution (σ̃, η) ∈ H×Q to (4.105). In addition, the
corresponding a priori estimate (cf. [41, Theorem 2.6, eq. (2.5)]) gives

∥(σ̃, η)∥H×Q ≤ 2

α
S̃

{
∥F̃∥ + ∥G̃∥

}
,

which, along with the expressions for ∥F̃∥ and ∥G̃∥ provided in (4.42), lead to (4.109) with the constant
C
S̃
:= 2

α
S̃
max

{
1 + ∥iρ∥, κ−1

η

}
.

Well-definedness of operator S

Our goal now is to show that (4.83) is well-posed (equivalently, that S is well-defined), for which
we will make use of the most general Babuška-Brezzi theory in Banach spaces (cf. [12, Theorem 2.1,
Corollary 2.1, Section 2.1]) and the Banach-Nečas-Babuška Theorem (cf. [41, Theorem 2.6]). To this
end, and as observed for Sections 4.3.2 and 4.3.2, we notice here that, given (z, χ) ∈ L4(Ω) × Q, the
structure of (4.83) is similar to a perturbation of the problem described by [52, eq. (2.32)], so that
some techniques employed there will be adapted for our analysis below. In particular, proceeding as
in [52, Section 2.4.2], we first employ [12, Theorem 2.1, Corollary 2.1, Section 2.1] to analyse part
of (4.83), and then we apply [41, Theorem 2.6] to conclude the well-posedness of the whole problem.
According to this, we now let A :

(
X2 ×M1

)
×
(
X1 ×M2

)
→ R be the bounded bilinear form arising

from (4.83) after adding the left-hand sides of its equations, but without including cz,χ, that is

A((r, ψ), (q, ϕ)) := a(r,q) + b1(q, ψ) + b2(r, ϕ)

∀ (r, ψ) ∈
(
X2 ×M1

)
, ∀ (q, ϕ) ∈

(
X1 ×M2

)
,

(4.110)
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and aim to prove next that A satisfies global continuous inf-sup conditions with respect to both its
first and second component. Note that the boundedness of A follows from those of a, b1 and b2 (cf.
(4.63), (4.64)). The verification of the aforementioned properties of A is equivalent to establishing
that the bilinear forms a, b1, and b2 verify the hypotheses of [12, Theorem 2.1, Section 2.1], which we
address in what follows. Firstly, for each i ∈ {1, 2} we let Ki be the kernel of the bilinear form bi (cf.
(4.58)), that is

Ki :=
{
q ∈ Xi : bi(q, ϕ) = 0 ∀ϕ ∈ Mi

}
,

which, according to the definitions of X1, X2, M1, and M2 (cf. (4.55)), and bi (cf. (4.58)), gives

K1 =
{
q ∈ Hs(divs; Ω) : div(q) = 0 in Ω

}
, and (4.111)

K2 =
{
q ∈ Hr(divj ; Ω) : div(q) = 0 in Ω

}
. (4.112)

The following lemma introduces a suitable linear operator mapping Lt(Ω) into itself for a range of
t containing the one specified for s in (4.31). This result will be utilized next to establish the inf-sup
conditions required by [12, Theorem 2.1] (equivalently, [12, eqs. (2.8) and (2.9)]) for our bilinear form
a (cf. (4.57)).

Lemma 4.3. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let t, t′ ∈ (1,+∞)

conjugate to each other with t (and hence t′) lying in

{
[4/3, 4] if n = 2

[3/2, 3] if n = 3
. Then, there exists a linear

and bounded operator Dt : L
t(Ω) → Lt(Ω) such that

div(Dt(w)) = 0 in Ω ∀w ∈ Lt(Ω) . (4.113)

In addition, for each z ∈ Lt
′
(Ω) such that div(z) = 0 in Ω, there holds∫

Ω
z ·Dt(w) =

∫
Ω
z ·w ∀w ∈ Lt(Ω) . (4.114)

Proof. It is a slight modification of the proof of [52, Lemma 2.3]. Indeed, given w ∈ Lt(Ω), with t in
the range indicated, we know from the scalar version of [48, Theorem 3.2] (see also [60, Theorems 1.1
and 1.3]) that there exists a unique u ∈ W1,t(Ω) such that

div(∇u+w) = 0 in Ω , u = 0 on ∂Ω ,

and there exists a constant Ct > 0 such that ∥u∥1,t;Ω ≤ Ct ∥w∥0,t;Ω. Then, defining Dt(w) := ∇u+w,
it is readily seen that Dt is linear and bounded, and satisfies (4.113). In turn, given z ∈ Lt

′
(Ω) such

that div(z) = 0 in Ω, it is clear that z ∈ Ht′(divt′ ; Ω), so that applying (11) to z and u, we obtain∫
Ω
z · ∇u = −

∫
Ω
udiv(z) + ⟨z · n, u⟩ = 0 ,

which yields (4.114) and finishes the proof.

The following result, which makes use of Lemma 4.3, resembles [52, Lemma 2.6], which, in turn,
employs [52, Lemma 2.3]. Note that the difference between Lemma 4.3 and [52, Lemma 2.3] lies on
the boundary conditions involved.
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Lemma 4.4. There exists a positive constant α such that

sup
q∈K1
q ̸=0

a(r,q)

∥q∥X1

≥ α ∥r∥X2 ∀ r ∈ K2 , and (4.115)

sup
r∈K2

a(r,q) > 0 ∀q ∈ K1, q ̸= 0 . (4.116)

Proof. Given r ∈ K2 (cf. (4.112)), that is r ∈ Hr(divj ; Ω) such that div(r) = 0 in Ω, and recalling
from (4.31) that r > 2, we set rs := |r|r−2 r, and observe, similarly to (4.101), that

rs ∈ Ls(Ω) and
∫
Ω
r · rs = ∥r∥0,r;Ω ∥rs∥0,s;Ω . (4.117)

Then, noting from (4.31) that s does belong to the range required by Lemma 4.3, an application of
this result to t = s yields Ds(rs) ∈ K1, and hence, using (4.114), the identity given in (4.117), and the
boundedness of Ds, we find that

sup
q∈K1
q ̸=0

a(r,q)

∥q∥X1

≥ a(r, Ds(rs))

∥Ds(rs)∥X1

=

∫
Ω
r ·Ds(rs)

∥Ds(rs)∥0,s;Ω
=

∫
Ω
r · rs

∥Ds(rs)∥0,s;Ω
≥ 1

∥Ds∥
∥r∥0,r;Ω ,

which proves (4.115) with α =
1

∥Ds∥
. In turn, we now take q ∈ K1 (cf. (4.111)), q ̸= 0, define

qr :=

{
|q|s−2 q if q ̸= 0

0 if q = 0
, and observe, similarly to (4.101) and (4.117), that

qr ∈ Lr(Ω) and
∫
Ω
q · qr = ∥q∥s0,s;Ω . (4.118)

In this way, noting from Lemma 4.3 that Dr(qr) ∈ K2 (cf. (4.112)), and using (4.114) and the identity
in (4.118), we obtain

sup
r∈K2

a(r,q) ≥
∫
Ω
Dr(qr) · q =

∫
Ω
qr · q = ∥q∥s0,s;Ω > 0 ,

which shows (4.116) and finishes the proof of the lemma.

The continuous inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}, which resemble, though with
some differences, the results given by [52, Lemma 2.7], are established in the following lemma.

Lemma 4.5. For each i ∈ {1, 2} there exists a positive constant βi such that

sup
q∈Xi
q ̸=0

bi(q, ϕ)

∥q∥Xi
≥ βi ∥ϕ∥Mi ∀ϕ ∈Mi . (4.119)

Proof. For the case i = 1, in which Xi = Hs(divs; Ω) and Mi = Lr(Ω), with r and s conjugate to
each other (cf. (4.31)), the present proof proceeds similarly to that of [52, Lemma 2.7], except for
the fact that the boundary conditions of the auxiliary problems utilized are homogeneous Dirichlet
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and Neumann, respectively. We omit further details and refer to [52, Lemma 2.7]. On the other
hand, for the case i = 2, in which Xi = Hr(divj ; Ω) and Mi = Ll(Ω), with j and l conjugate to each
other (cf. (4.32)), we first let O be a bounded convex polygonal domain containing Ω̄. Then, given
ϕ ∈M2 = Ll(Ω), we recall from (4.32) that l ≥ 2, set ϕj := |ϕ|l−2 ϕ, and observe, as before, that

ϕj ∈ Lj(Ω) and
∫
Ω
ϕϕj = ∥ϕ∥0,l;Ω ∥ϕj∥0,j;Ω . (4.120)

Next, we define g :=

{
ϕj in Ω ,

0 in O \ Ω̄ .
, which clearly belongs to Lj(O), and deduce, applying [43,

Corollary 1] to j ∈ (1, 2] (cf. (4.32)), that there exists a unique z ∈ W1,j
0 (O) ∩ W2,j(O) such that

∆z = g in O , z = 0 on ∂O ,

and
∥z∥2,j;O ≤ Cj ∥g∥0,j;O = Cj ∥ϕj∥0,j;Ω ,

with a positive constant Cj depending only on j and O. Thus, letting q̄ := ∇z|Ω ∈ W1,j(Ω), it follows
that div(q̄) = ϕj in Ω, whereas using the continuous embedding ij,r from W1,j(Ω) into Lr(Ω), which
is valid (cf. [41, Corollary B.43]) for the ranges of r and j specified in (4.31) and (4.32), respectively,
we get

∥q̄∥0,r;Ω ≤ ∥ij,r∥ ∥q̄∥1,j;Ω ≤ ∥ij,r∥ ∥z∥2,j;O ≤ ∥ij,r∥Cj ∥ϕj∥0,j;Ω .

In this way, we conclude that q̄ ∈ X2 := Hr(divj ; Ω), and that

∥q̄∥X2 = ∥q̄∥0,r;Ω + ∥div(q̄)∥0,j;Ω ≤
(
1 + ∥ij,r∥Cj

)
∥ϕj∥0,j;Ω ,

whence, using the identity in (4.120) as well, we find that

sup
q∈X2
q ̸=0

b2(q, ϕ)

∥q∥X2

≥ b2(q̄, ϕ)

∥q̄∥X2

≥ 1(
1 + ∥ij,r∥Cj

)
∫
Ω
ϕϕj

∥ϕj∥0,j;Ω
=

1(
1 + ∥ij,r∥Cj

) ∥ϕ∥0,l;Ω ,
which proves (4.119) with β2 =

(
1 + ∥ij,r∥Cj

)−1.

We now stress, in virtue of the discussion in Section 4.2.4 and the analysis developed in [52], that
when the boundary conditions (4.70) (which yields (4.71)) are considered, the spaces and bilinear
forms resulting from the weak formulation of the chemical signal equations, namely X2, M1, X1, M2,
a, b1, and b2, are actually the same ones that arise for the Darcy part of the coupled model studied
in [52], except that the corresponding spaces X2 and M2 differ in some Lebesgue indexes involved.
Consequently, being the proofs for Dirichlet boundary conditions basically the same from [52] for all
the forms, except the one for b2, which needs some additional technical aspects, as emphasized in the
present section, we conclude that those for the case (4.70) do not differ much either from them.

According to Lemmas 4.4 and 4.5, the required hypotheses of [12, Theorem 2.1, Section 2.1] are
satisfied, and hence the a priori estimates provided by [12, Corollary 2.1, Section 2.1] imply the
existence of a positive constant αS, depending only on α, β1, β2, and ∥a∥, such that

sup
(q,ϕ)∈X1×M2

(q,ϕ)̸=0

A((r, ψ), (q, ϕ))

∥(q, ϕ)∥X1×M2

≥ αS ∥(r, ψ)∥X2×M1 ∀ (r, ψ) ∈ X2 ×M1 , (4.121)
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and
sup

(r,ψ)∈X2×M1
(r,ψ)̸=0

A((r, ψ), (q, ϕ))

∥(r, ψ)∥X2×M1

≥ αS ∥(q, ϕ)∥X1×M2 ∀ (q, ϕ) ∈ X1 ×M2 . (4.122)

Now, we let Az,χ : (X2×M1)× (X1×M2) → R be the bounded bilinear form arising from (4.83) after
adding the full left-hand sides of its equations, that is

Az,χ((r, ψ), (q, ϕ)) := A((r, ψ), (q, ϕ)) − cz,χ
(
(r, ψ), ϕ

)
∀ (r, ψ) ∈

(
X2 ×M1

)
, ∀ (q, ϕ) ∈

(
X1 ×M2

)
,

(4.123)

and realize that (4.83) can be rewritten, equivalently, as: Find (p, φ) ∈ X2 ×M1 such that

Az,χ((p, φ), (q, ϕ)) = F(q) + G(ϕ) ∀ (q, ϕ) ∈ X1 ×M2 . (4.124)

Note that the boundedness of A and cz,χ (cf. (4.65)) guarantees that Az,χ is bounded as well. Thus,
bearing in mind (4.123), and employing (4.121) and (4.65), we find that for each (r, ψ) ∈ X2 ×M1

there holds

sup
(q,ϕ)∈X1×M2

(q,ϕ)̸=0

Az,χ((r, ψ), (q, ϕ))

∥(q, ϕ)∥X1×M2

≥
{
αS − ∥c∥

(
∥z∥0,4;Ω + ∥χ∥0,ρ;Ω

)}
∥(r, ψ)∥X2×M1 , (4.125)

and then, under the assumption that

∥z∥0,4;Ω + ∥χ∥0,ρ;Ω ≤ αS

2 ∥c∥
, (4.126)

we arrive at

sup
(q,ϕ)∈X1×M2

(q,ϕ) ̸=0

Az,χ((r, ψ), (q, ϕ))

∥(q, ϕ)∥X1×M2

≥ αS

2
∥(r, ψ)∥X2×M1 ∀ (r, ψ) ∈ X2 ×M1 . (4.127)

Similarly, but employing now (4.122) instead of (4.121), and under the same assumption (4.126), we
obtain

sup
(r,ψ)∈X2×M1

(r,ψ)̸=0

Az,χ((r, ψ), (q, ϕ))

∥(r, ψ)∥X2×M1

≥ αS

2
∥(q, ϕ)∥X1×M2 ∀ (q, ϕ) ∈ X1 ×M2 . (4.128)

We are now in position to establish the well-definedness of S.

Lemma 4.6. For each (z, χ) ∈ L4(Ω)×Q satisfying (4.126), there exists a unique (p, φ) ∈ X2 ×M1

solution of (4.124) (equivalently (4.83)), and hence one can define S(z, χ) := p ∈ X2. Moreover, there
exists a positive constant CS, depending only on αS, Cr, and κφ, such that

∥S(z, χ)∥X2 = ∥p∥X2 ≤ ∥(p, φ)∥X2×M1 ≤ CS

{
∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
. (4.129)

Proof. Thanks to the boundedness of Az,χ, and the global inf-sup conditions (4.127) and (4.128), a
direct application of [41, Theorem 2.6] provides the existence of a unique solution (p, φ) ∈ X2 ×M1

to (4.124). Moreover, the corresponding a priori estimate (cf. [41, Theorem 2.6, eq. (2.5)]) yields

∥(p, φ)∥X2×M1 ≤ 2

αS

{
∥F∥ + ∥G∥

}
,

which, together with the expressions for ∥F∥ and ∥G∥ given in (4.68) and (4.62), imply (4.129) with
CS := 2

αS
max

{
Cr, κ

−1
φ

}
.
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4.3.3 Solvability analysis of the fixed-point equation

Knowing that the operators S, S̃, S and hence T as well, are well-defined, in this section we address
the solvability of the fixed point equation (4.84). To this end, in what follows we aim to verify
the hypotheses of the respective Banach Theorem. We begin the analysis by establishing sufficient
conditions under which T maps a closed ball of L4(Ω)×X2 into itself. Indeed, given a radius δ to be
explicitly defined later on, we first set

Wδ :=
{
(z, r) ∈ L4(Ω)×X2 : ∥(z, r)∥ := ∥z∥0,4;Ω + ∥r∥X2 ≤ δ

}
. (4.130)

Then, given (z, r) ∈Wδ, we have from the a priori estimate for S (cf. (4.94) in Lemma 4.1) that

∥S
(
z, S̃(z, r)

)
∥0,4;Ω

≤ CS

{
∥S̃(z, r)∥0,ρ;Ω ∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω +

(
1 + ∥z∥0,4;Ω

)
∥uD∥1/2,Γ

}
,

(4.131)

from which, using the corresponding estimate for S̃ (cf. (4.109), Lemma 4.2), and assuming (cf. (4.106))

∥z∥0,4;O + ∥r∥0,r;Ω ≤
α
S̃

2 ∥c̃∥
, (4.132)

we get
∥S
(
z, S̃(z, r)

)
∥0,4;Ω ≤ CS

{
C
S̃

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
∥∇f∥0,r;Ω

+ ∥f∥0,4/3;Ω +
(
1 + ∥z∥0,4;Ω

)
∥uD∥1/2,Γ

}
.

(4.133)

Furthermore, supposing now that (cf. (4.126))

∥z∥0,4;O + ∥S̃(z, r)∥Q ≤ αS

2 ∥c∥
, (4.134)

the a priori estimate for S (cf. (4.129) in Lemma 4.6) gives

∥S
(
z, S̃(z, r)

)
∥X2 ≤ CS

{
∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
. (4.135)

Regarding (4.132), we observe that it is satisfied if we consider δ such that δ ≤ α
S̃

2 ∥c̃∥ . In turn, noting

that certainly ∥z∥0,4;Ω ≤ δ, and according to the estimate for ∥S̃(z, r)∥Q (cf. (4.109)), we deduce that
a sufficient condition for (4.134) is given by the assumptions

δ ≤ αS

4 ∥c∥
and C

S̃

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
≤ αS

4 ∥c∥
. (4.136)

In this way, defining
δ := min

{ α
S̃

2 ∥c̃∥
,
αS

4 ∥c∥

}
, (4.137)

(4.132) and (4.134) are satisfied, whence (4.133) and (4.135) are valid, and thus, assuming the second
inequality in (4.136), and recalling that ∥T(z, r)∥ := ∥S

(
z, S̃(z, r)

)
∥0,4;Ω + ∥S

(
z, S̃(z, r)

)
∥X2 , we obtain

∥T(z, r)∥ ≤ C(δ)
{(

∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω
)
∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω

+ ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω
}
,

(4.138)

where C(δ) is a positive constant depending explicitly on CS, C
S̃
, (1 + δ), and CS.

We have then proved the following result.
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Lemma 4.7. Assume that the data are sufficiently small so that

C
S̃

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
≤ αS

4 ∥c∥
, (4.139)

and
C(δ)

{(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω

+ ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω
}

≤ δ .
(4.140)

Then, T(Wδ) ⊆ Wδ.

We now aim to prove that the operator T is Lipschitz-continuous, for which, according to its definition
(cf. (4.84)), it suffices to show that S, S̃ and S satisfy suitable continuity properties. We begin with
the corresponding result for S.

Lemma 4.8. There exists a positive constant LS, depending on α, |Ω|, and ∥c∥, such that

∥S(z, χ) − S(z0, χ0)∥H

≤ LS

{
∥∇f∥0,r;Ω ∥χ − χ0∥0,ρ;Ω + F(z0, χ0) ∥z − z0∥0,4;Ω

} (4.141)

for all (z, χ), (z0, χ0) ∈ L4(Ω)×Q, where

F(z0, χ0) := CS

{
∥χ0∥0,ρ;Ω ∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω +

(
1 + ∥z0∥0,4;Ω

)
∥uD∥1/2,Γ

}
. (4.142)

Proof. Given (z, χ), (z0, χ0) ∈ L4(Ω) × Q, we let S(z, χ) := u ∈ L4(Ω) and S(z0, χ0) := u0 ∈ L4(Ω),
where (u⃗,σ) =

(
(u, t),σ

)
∈ H×Q and (u⃗0, 0) =

(
(u0, t0), 0

)
∈ H×Q are the respective solutions of

(4.79). It follows from the corresponding second equations of (4.79) that u⃗− u⃗0 ∈ V (cf. (4.88)), and
then the V−ellipticity of a (cf. (4.89)) gives

α ∥u⃗− u⃗0∥2H ≤ a(u⃗− u⃗0, u⃗− u⃗0) . (4.143)

In turn, applying the corresponding first equations of (4.79) to v⃗ = u⃗− u⃗0, we obtain

a(u⃗, u⃗− u⃗0) + c(z; u⃗, u⃗− u⃗0) = Fχ(u⃗− u⃗0) , (4.144)

and
a(u⃗0, u⃗− u⃗0) + c(z0; u⃗0, u⃗− u⃗0) = Fχ0(u⃗− u⃗0) , (4.145)

so that, subtracting (4.145) from (4.144), and using, thanks to the bilinearity of c(z; ·, ·) and (4.26),
that

c(z; u⃗, u⃗− u⃗0) = c(z; u⃗− u⃗0, u⃗− u⃗0) + c(z; u⃗0, u⃗− u⃗0) = c(z; u⃗0, u⃗− u⃗0) ,

we find
a(u⃗− u⃗0, u⃗− u⃗0) =

(
Fχ − Fχ0

)
(u⃗− u⃗0) + c(z0 − z; u⃗0, u⃗− u⃗0) . (4.146)

Next, utilizing (4.48), we get(
Fχ − Fχ0

)
(u⃗− u⃗0) =

∫
Ω
(χ− χ0)∇f · (u− u0)

≤ |Ω|1/4 ∥χ− χ0∥0,ρ;Ω ∥∇f∥0,r;Ω ∥u⃗− u⃗0∥H ,

(4.147)
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whereas the boundedness property of c (cf. (4.24)) yields

c(z0 − z; u⃗0, u⃗− u⃗0) ≤ ∥c∥ ∥z− z0∥0,4;Ω ∥u⃗0∥H ∥u⃗− u⃗0∥H . (4.148)

Finally, employing (4.147) and (4.148) in (4.146), replacing the resulting estimate back into (4.143),
simplifying by ∥u⃗− u⃗0∥H, and bounding ∥u⃗0∥H by the corresponding upper bound in (4.94), we arrive
at the required inequality (4.141) with LS := α−1 max

{
|Ω|1/4, ∥c∥

}
.

The continuity of S̃ is addressed next. More precisely, we have the following result.

Lemma 4.9. There exists a positive constant L
S̃
, depending only on ∥c̃∥, α

S̃
, and C

S̃
, such that

∥S̃(z, r) − S̃(z0, r0)∥Q

≤ L
S̃

{
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

}
∥(z, r) − (z0, r0)∥

(4.149)

for all (z, r), (z0, r0) ∈ L4(Ω)×X2 satisfying (4.106).

Proof. Given (z, r), (z0, r0) ∈ L4(Ω) × X2, we let S̃(z, r) := η ∈ Q and S̃(z0, r0) := η0 ∈ Q, where
(σ̃, η) ∈ H×Q and (σ̃0, η0) ∈ H×Q are the respective solutions of (4.81), equivalently (4.105), that is

Ãz,r

(
(σ̃, η), (τ̃ , ξ)

)
= F̃(τ̃ ) + G̃(ξ) ∀ (τ̃ , ξ) ∈ H×Q , (4.150)

and
Ãz0,r0

(
(σ̃0, η0), (τ̃ , ξ)

)
= F̃(τ̃ ) + G̃(ξ) ∀ (τ̃ , ξ) ∈ H×Q . (4.151)

It follows from the foregoing identities and the definitions of Ãz,r (cf. (4.104)) and c̃z,q (cf. (4.34))
that

Ãz,r

(
(σ̃, η)− (σ̃0, η0), (τ̃ , ξ)

)
= Ãz,r

(
(σ̃, η), (τ̃ , ξ)

)
− Ãz,r

(
(σ̃0, η0), (τ̃ , ξ)

)
= Ãz0,r0

(
(σ̃0, η0), (τ̃ , ξ)

)
− Ãz,r

(
(σ̃0, η0), (τ̃ , ξ)

)
= c̃z0−z,r0−r(τ̃ , η0) ,

(4.152)

and hence, applying the global inf-sup condition (4.107) to (σ̃, η) − (σ̃0, η0), and employing (4.152)
and the boundedness of c̃z,r (cf. (4.45)), we find that

∥(σ̃, η)− (σ̃0, η0)∥H×Q ≤ 2

α
S̃

sup
(τ̃ ,ξ)∈H×Q

(τ̃ ,ξ)̸=0

c̃z0−z,r0−r(τ̃ , η0)

∥(τ̃ , ξ)∥H×Q

≤ 2 ∥c̃∥
α
S̃

∥η0∥Q
{
∥z− z∥0,4;Ω + ∥r− r0∥0,r;Ω

}
,

which, together with the a priori estimate (4.109) for ∥η0∥Q, yields (4.149) with L
S̃
:= 2 ∥c̃∥α−1

S̃
C
S̃
.

It remains to establish the continuity of S, which is the purpose of the following lemma.

Lemma 4.10. There exists a positive constant LS, depending only on ∥c∥, αS, and CS, such that

∥S(z, χ) − S(z0, χ0)∥X2

≤ LS

{
∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
∥(z, χ) − (z0, χ0)∥

(4.153)

for all (z, χ), (z0, χ0) ∈ L4(Ω)×Q satisfying (4.126).
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Proof. Given (z, χ), (z0, χ0) ∈ L4(Ω)×Q as indicated, we proceed similarly to the proof of Lemma 4.9
and let S(z, χ) := p ∈ X2 and S(z0, χ0) := p0 ∈ X2, where (p, φ) ∈ X2 ×M1 and (p0, φ0) ∈ X2 ×M1

are the respective solutions of (4.83), equivalently (4.124), that is

Az,χ

(
(p, φ), (q, ϕ)

)
= F(q) + G(ϕ) ∀ (q, ϕ) ∈ X1 ×M2 , (4.154)

and
Az0,χ0

(
(p0, φ0), (q, ϕ)

)
= F(q) + G(ϕ) ∀ (q, ϕ) ∈ X1 ×M2 . (4.155)

Next, proceeding analogously to the derivation of (4.152), we deduce from the identities (4.154) and
(4.155), along with the definitions of Az,χ (cf. (4.123)) and cz,χ (cf. (4.59)) that

Az,χ

(
(p, φ)− (p0, φ0), (q, ϕ)

)
= cz−z0,χ−χ0

(
(p0, φ0), ϕ

)
, (4.156)

and thus, applying the global inf-sup condition (4.127) to (p, φ)− (p0, φ0), and making use of (4.156)
and the boundedness of cz,χ (cf. (4.65)), we get

∥(p, φ)− (p0, φ0)∥X2×M1 ≤ 2

αS
sup

(q,ϕ)∈X1×M2
(q,ϕ)̸=0

cz−z0,χ−χ0

(
(p0, φ0), ϕ

)
∥(q, ϕ)∥X1×M2

≤ 2 ∥c∥
αS

∥(p0, φ0)∥X2×M1

{
∥z− z0∥0,4;Ω + ∥χ− χ0∥0,ρ;Ω

}
,

which, together with the a priori estimate (4.129) for ∥(p0, φ0)∥X2×M1 , yields (4.153) with LS :=

2 ∥c∥α−1
S CS.

Having proved Lemmas 4.8, 4.9 and 4.10, we now aim to establish the continuity property of the
fixed point operator T in the closed ball Wδ (cf. (4.130)). Indeed, given (z, r), (z0, r0) ∈ Wδ, we first
observe from the definition of T (cf. (4.84)) that

∥T(z, r)− T(z0, r0)∥ = ∥S
(
z, S̃(z, r)

)
− S

(
z0, S̃(z0, r0)

)
∥0,4;Ω

+ ∥S
(
z, S̃(z, r)

)
− S
(
z0, S̃(z0, r0)

)
∥X2 .

(4.157)

Then, employing the continuity properties of S (cf. Lemma 4.8, (4.141)) and S̃ (cf. Lemma 4.9,
(4.149)), we find that

∥S
(
z, S̃(z, r)

)
− S

(
z0, S̃(z0, r0)

)
∥0,4;Ω

≤ LS

{
∥∇f∥0,r;Ω ∥S̃(z, r) − S̃(z0, r0)∥0,ρ;Ω + F

(
z0, S̃(z0, r0)

)
∥z − z0∥0,4;Ω

}
≤ LS

{
L
S̃

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
∥∇f∥0,r;Ω +F

(
z0, S̃(z0, r0)

)}
∥(z, r)− (z0, r0)∥

(4.158)

whereas (4.142) and the a priori estimate of S̃ (cf. (4.109)) gives

F
(
z0, S̃(z0, r0)

)
≤ CS

{
∥S̃(z0, r0)∥0,ρ;Ω ∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω +

(
1 + ∥z0∥0,4;Ω

)
∥uD∥1/2,Γ

}
≤ CS

{
C
S̃

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω +

(
1 + ∥z0∥0,4;Ω

)
∥uD∥1/2,Γ

}
.

(4.159)
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In this way, replacing the bound from (4.159) into (4.158), and using that ∥z0∥0,4;Ω ≤ δ, we deduce
the existence of a positive constant LT,S, depending only on LS, L

S̃
, CS, C

S̃
, and δ, such that

∥S
(
z, S̃(z, r)

)
− S

(
z0, S̃(z0, r0)

)
∥0,4;Ω ≤ LT,S

{(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
∥∇f∥0,r;Ω

+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ
}
∥(z, r)− (z0, r0)∥ .

(4.160)

In turn, proceeding similarly as before, but applying now the continuity properties of S (cf. Lemma
4.10, (4.153)) and S̃ (cf. Lemma 4.9, (4.149)), we arrive at

∥S
(
z, S̃(z, r)

)
− S
(
z0, S̃(z0, r0)

)
∥X2

≤ LT,S

(
1 + ∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

){
∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
∥(z, r)− (z0, r0)∥ ,

(4.161)

where LT,S is a positive constant depending only on LS and L
S̃
.

Defining LT := max
{
LT,S, LT,S

}
, we summarize the above discussion in the following result.

Lemma 4.11. Assume (4.139), that is

C
S̃

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
≤ αS

4 ∥c∥
.

Then, there holds

∥T(z, r)− T(z0, r0)∥ ≤ LT

{(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)(
∥∇f∥0,r;Ω + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

)
+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
∥(z, r)− (z0, r0)∥ ,

(4.162)

for all (z, r), (z0, r0) ∈Wδ.

Proof. We first stress that (4.139) is assumed here to ensure that both
(
z, S̃(z, r)

)
and

(
z0, S̃(z0, r0)

)
verify the hypothesis (4.126), which is required by the definition of S and its continuity property. Then,
it is readily seen that (4.162) follows directly from (4.157), (4.160), and (4.161)

The main result of this section is hence stated as follows.

Theorem 4.12. Assume that the data are sufficiently small so that (4.139) and (4.140) hold. In
addition, suppose that

LT

{(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)(
∥∇f∥0,r;Ω + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

)
+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
< 1 .

(4.163)

Then, the operator T has a unique fixed point (u,p) ∈ Wδ. Equivalently, the coupled problem (4.69)
has a unique solution (u⃗,σ) ∈ H × Q, (σ̃, η) ∈ H × Q, and (p, φ) ∈ X2 ×M1, with (u,p) ∈ Wδ.
Moreover, there hold the following a priori estimates

∥(u⃗,σ)∥H×Q ≤ Cu⃗,σ

{
∥∇f∥0,r;Ω

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ

}
,

∥(σ̃, η)∥H×Q ≤ C
S̃

{
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

}
,

∥(p, φ)∥X2×M1 ≤ CS

{
∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
,

where Cu⃗,σ is a positive constant depending only on CS, C̄S, C
S̃
, and δ.
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Proof. We begin by recalling from Lemma 4.7 that (4.139) and (4.140) guarantee that T maps Wδ

into itself. Hence, in virtue of the equivalence between (4.69) and (4.85), and bearing in mind the
Lipschitz-continuity of T (cf. Lemma 4.11) and the hypothesis (4.163), a straightforward application
of the Banach fixed point Theorem implies the existence of a unique solution (u,p) ∈Wδ of (4.69). In
addition, the a priori estimates follow straightforwardly from (4.94), (4.97), (4.109) and (4.129), and
bounding ∥u∥0,4;Ω by δ.

4.4 The Galerkin scheme

In this section we introduce the Galerkin scheme of the fully-mixed formulation (4.69), analyse its
solvability by employing a discrete version of the fixed point strategy introduced in Section 4.3.1, and
develop the corresponding a priori error analysis.

4.4.1 Preliminaries

We begin by considering arbitrary finite element subspaces Hu
h , Ht

h, Hσ
h , Hh, Qh, X2,h, M1,h, X1,h and

M2,h of the spaces L4(Ω), L2
tr(Ω), H(div4/3; Ω), H, Q, X2, M1, X1, and M2, respectively. Hereafter,

h stands for both the sub-index of each foregoing subspace and the size of a regular triangulation Th
of Ω̄ made up of triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hK , that is
h := max

{
hK : K ∈ Th

}
. Specific finite element subspaces satisfying the stability conditions to be

introduced along the analysis will be provided later on in Section 4.5. Then, defining the spaces

Hh := Hu
h ×Ht

h , Qh := Hσ
h ∩H0(div4/3; Ω) ,

and setting the notations
u⃗h := (uh, th) , v⃗h := (vh, sh) ∈ Hh ,

the Galerkin scheme associated with (4.69) reads: Find (u⃗h, h) ∈ Hh ×Qh, (σ̃h, ηh) ∈ Hh × Qh, and
(ph, φh) ∈ X2,h ×M1,h, such that

a(u⃗h, v⃗h) + c(uh; u⃗h, v⃗h) + b(v⃗h, h) = Fηh(v⃗h) ∀ v⃗h ∈ Hh ,

b(u⃗h, ãh) = G(ãh) ∀ ãh ∈ Qh ,

ã(σ̃h, τ̃ h) + b̃(τ̃ h, ηh) + c̃uh,ph(τ̃ h, ηh) = F̃(τ̃ h) ∀ τ̃ h ∈ Hh ,

b̃(σ̃h, ξh) = G̃(ξh) ∀ ξh ∈ Qh ,

a(ph,qh) + b1(qh, φh) = F(qh) ∀qh ∈ X1,h ,

b2(ph, ϕh) − cuh,ηh
(
(ph, φh), ϕh

)
= G(ϕh) ∀ϕh ∈M2,h .

(4.164)

Following the remark at the end of Section 4.2, we now stress that the first, fourth, and sixth rows
of (4.164), the first one with v⃗h := (vh,0) ∈ Hh, constitute the discrete conservation of momentum
properties. The fact that they are satisfied in an approximate sense will become clear in Section 4.5.1.

Throughout the rest of this section, we adopt the discrete analogue of the fixed point strategy
introduced in Section 4.3.1 to analyse the solvability of (4.164). According to it, we now let Sh :
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Hu
h ×Qh → Hu

h be the operator defined by

Sh(zh, χh) := uh ∀ (zh, χh) ∈ Hu
h ×Qh , (4.165)

where (u⃗h, h) =
(
(uh, th), h) ∈ Hh×Qh is the unique solution (to be confirmed) of the first and second

rows of (4.164) when c(uh; ·, ·) and Fηh are replaced by c(zh; ·, ·) and Fχh , respectively, that is

a(u⃗h, v⃗h) + c(zh; u⃗h, v⃗h) + b(v⃗h, h) = Fχh(v⃗h) ∀ v⃗h ∈ Hh ,

b(u⃗h, ãh) = G(ãh) ∀ ãh ∈ Qh .
(4.166)

In turn, we let S̃h : Hu
h ×X2,h → Qh be the operator given by

S̃h(zh, rh) := ηh ∀ (zh, rh) ∈ Hu
h ×X2,h , (4.167)

where (σ̃h, ηh) ∈ Hh × Qh is the unique solution (to be confirmed) of the third and fourth rows of
(4.164) when c̃uh,ph is replaced by c̃zh,rh , that is

ã(σ̃h, τ̃ h) + b̃(τ̃ h, ηh) + c̃zh,rh(τ̃ h, ηh) = F̃(τ̃ h) ∀ τ̃ h ∈ Hh ,

b̃(σ̃h, ξh) = G̃(ξh) ∀ ξh ∈ Qh .
(4.168)

Similarly, we let Sh : Hu
h ×Qh → X2,h be the operator given by

Sh(zh, χh) := ph ∀ (zh, χh) ∈ Hu
h ×Qh , (4.169)

where (ph, φh) ∈ X2,h ×M1,h is the unique solution (to be confirmed) of the fifth and sixth rows of
(4.164) when cuh,ηh is replaced by czh,χh , that is

a(ph,qh) + b1(qh, φh) = F(qh) ∀qh ∈ X1,h ,

b2(ph, ϕh) − czh,χh
(
(ph, φh), ϕh

)
= G(ϕh) ∀ϕh ∈M2,h .

(4.170)

Finally, we define Th : Hu
h ×X2,h → Hu

h ×X2,h as

Th(zh, rh) :=
(
Sh
(
zh, S̃h(zh, rh)

)
,Sh
(
zh, S̃h(zh, rh)

))
∀ (zh, rh) ∈ Hu

h ×X2,h , (4.171)

and notice that solving (4.164) is equivalent to seeking a fixed point of Th, that is: Find (uh,ph) ∈
Hu
h ×X2,h such that

Th(uh,ph) = (uh,ph) . (4.172)

4.4.2 Discrete solvability analysis

Similarly to the approach from Section 4.3, here we establish the well-posedness of the discrete
system (4.164) by studying the equivalent fixed-point equation (4.172). More precisely, being the
respective analyses fully analogous to those developed in Sections 4.3.2 and 4.3.3, in what follows we
basically collect the corresponding results and, eventually, discuss some details of the respective proofs.

We begin by stating next that the discrete operators Sh, S̃h, and Sh are well-defined, equivalently,
that the problems (4.166), (4.168), and (4.170) are well-posed. Certainly, instead of [12, Theorem 2.1,



4.4. The Galerkin scheme 137

Corollary 2.1, Section 2.1], [41, Theorem 2.34], and [41, Theorem 2.6], we now resort to the respective
discrete versions given by [12, Corollary 2.2, Section 2.2], [41, Proposition 2.42], and [41, Theorem 2.22].
To this end, we need to introduce general hypotheses on the finite element subspaces to be utilized in
(4.164), and later on in Section 4.5 we will introduce specific examples of the latter satisfying them.
According to the above, and in order to address first the well-definedness of S, we assume that

(H.1) there exists a positive constant βd, independent of h, such that

sup
v⃗h∈Hh
v⃗h ̸=0

b(v⃗h, ãh)

∥v⃗h∥H
≥ βd ∥ãh∥Q ∀ ãh ∈ Qh .

In addition, we let Vh be the discrete kernel of the bilinear form b, that is

Vh :=
{
v⃗h ∈ Hh : b(v⃗h, ãh) = 0 ∀ ãh ∈ Qh

}
, (4.173)

and suppose that

(H.2) there exists a positive constant Cd, independent of h, such that

∥sh∥0,Ω ≥ Cd ∥vh∥0,4;Ω ∀ v⃗h := (vh, sh) ∈ Vh .

Then, given zh ∈ Hu
h , it readily follows from the definitions of Azh (cf. (4.86)) and a (cf. (4.15)),

the identity (4.26), and the assumption (H.2), that

Azh(v⃗h, v⃗h) = a(v⃗h, v⃗h) = ν ∥sh∥20,Ω ≥ ν

2
C2
d ∥vh∥20,4;Ω +

ν

2
∥sh∥20,Ω ∀ v⃗h := (vh, sh) ∈ Vh ,

(4.174)
which proves the Vh-ellipticity of Azh with constant αd := ν

2 min
{
C2
d , 1
}
. Thus, the discrete analogue

of Lemma 4.1 reads as follows.

Lemma 4.13. For each (zh, χh) ∈ Hu
h×Qh there exists a unique (u⃗h,σh) :=

(
(uh, th), h

)
∈ Hh×Qh

solution of (4.166), and hence one can define Sh(zh, χh) := uh ∈ Hu
h . Moreover, there exists a positive

constant CS,d, depending only on |Ω|, ∥i4∥, ν, λ, αd, and βd, such that

∥Sh(zh, χh)∥0,4;Ω = ∥uh∥0,4;Ω ≤ ∥u⃗h∥H

≤ CS,d

{
∥χh∥0,ρ;Ω ∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω +

(
1 + ∥zh∥0,4;Ω

)
∥uD∥1/2,Γ

}
.

(4.175)

Proof. Having the discrete inf-sup condition for b (cf. (H.1)) and the Vh-ellipticity of Azh for each
zh ∈ Hu

h (cf. (4.174)), the existence of a unique solution to (4.166) is a straightforward application of
[41, Proposition 2.42], whereas the a priori estimate (4.175) follows from [41, eq. (2.30)].

We remark here that the discrete analogue of (4.97) reads

∥h∥Q = ∥h∥div4/3;Ω ≤ C̄S,d (1 + ∥zh∥0,4;Ω)
{
∥χh∥0,ρ;Ω ∥∇f∥0,r;Ω

+ ∥f∥0,4/3;Ω + (1 + ∥zh∥0,4;Ω) ∥uD∥1/2,Γ
}
,

(4.176)

where C̄S,d is a positive constant depending as well on |Ω|, ∥i4∥, ν, λ, αd, and βd.
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In turn, for the well-definedness of S̃h, we now look at the discrete kernel of b̃, that is

Ṽh :=
{
τ̃ h ∈ Hh : b̃(τ̃ h, ξh) = 0 ∀ ξh ∈ Qh

}
, (4.177)

and suppose that

(H.3) there holds div
(
Hh
)
⊆ Qh,

(H.4) there exists a positive constant β̃d, independent of h, such that

sup
τ̃h∈Hh
τ̃h ̸=0

b̃(τ̃ h, ξh)

∥τ̃ h∥H
≥ β̃d ∥ξh∥Q ∀ ξh ∈ Qh .

Bearing in mind the definition of b̃ (cf. (4.41)), and employing (H.3), we deduce from (4.177)
that Ṽh =

{
τ̃ h ∈ Hh : div(τ̃ h) = 0

}
, which yields the discrete analogue of (4.99), and hence

the Ṽh-ellipticity of ã (cf. (4.40)) with constant α̃d = 1. This fact together with (H.4) guarantee,
thanks to [41, Proposition 2.42], the discrete global inf-sup condition for Ã (cf. (4.98)) with a positive
constant α

S̃,d
depending only on α̃d, β̃d, and ∥ã∥, and thus the same property is transferred to Ãzh,rh

(cf. (4.104)) for each (zh, rh) ∈ Hu
h ×X2,h satisfying the discrete version of (4.106), that is

∥zh∥0,4;Ω + ∥rh∥0,r;Ω ≤
α
S̃,d

2 ∥c̃∥
. (4.178)

In this way, the well-definedness of S̃h is established by the following lemma.

Lemma 4.14. For each (zh, rh) ∈ Hu
h×X2,h verifying (4.178), there exists a unique (σ̃h, ηh) ∈ Hh×Qh

solution of (4.168), and hence one can define S̃h(zh, rh) := ηh ∈ Qh. Moreover, there exists a positive
constant C

S̃,d
, depending only on α

S̃,d
, ∥iρ∥, and κη, such that

∥S̃h(zh, rh)∥Q = ∥ηh∥0,ρ;Ω ≤ ∥(σ̃h, ηh)∥H×Q ≤ C
S̃,d

{
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

}
. (4.179)

Proof. It is a direct application of [41, Theorem 2.22].

Furthermore, the well-definedness of Sh requires the introduction of the discrete kernels of b1 and
b2, namely

K1,h :=
{
qh ∈ X1,h : b1(qh, ϕh) = 0 ∀ϕh ∈M1,h

}
,

and
K2,h :=

{
qh ∈ X2,h : b2(qh, ϕh) = 0 ∀ϕh ∈M2,h

}
,

and the following hypotheses:

(H.5) there exists a positive constant αd, independent of h, such that

sup
qh∈K1,h

qh ̸=0

a(rh,qh)

∥qh∥X1

≥ αd ∥rh∥X2 ∀ rh ∈ K2,h , and
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sup
rh∈K2,h

a(rh,qh) > 0 ∀qh ∈ K1,h, qh ̸= 0 ,

(H.6) for each i ∈
{
1, 2
}

there exists a positive constant βi,d, independent of h, such that

sup
qh∈Xi,h
qh ̸=0

bi(qh, ϕh)

∥qh∥Xi
≥ βi,d ∥ϕh∥Mi ∀ϕh ∈Mi,h .

Thanks to (H.5) and (H.6), a straightforward application of [12, Corollary 2.2, Section 2.2] implies
the discrete global inf-sup condition for A (cf. (4.110)) with a positive constant αS,d depending only
on αd, β1,d, β2,d and ∥a∥, and hence the same property is shared by Azh,χh (cf. (4.123)) for each
(zh, χh) ∈ Hu

h ×Qh satisfying the discrete version of (4.126), that is

∥zh∥0,4;Ω + ∥χh∥0,ρ;Ω ≤
αS,d

2 ∥c∥
. (4.180)

In this way, the well-definedness of Sh is stated as follows.

Lemma 4.15. For each (zh, χh) ∈ Hu
h × Qh verifying (4.180), there exists a unique (ph, φh) ∈

X2,h ×M1,h solution of (4.170), and hence one can define Sh(zh, χh) := ph ∈ X2,h. Moreover, there
exists a positive constant CS,d, depending only on αS,d, Cr, and κφ, such that

∥Sh(zh, χh)∥X2 = ∥ph∥X2 ≤ ∥(ph, φh)∥X2×M1 ≤ CS,d

{
∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
. (4.181)

Proof. Similarly to the proof of Lemma 4.14, it reduces to a simple application of [41, Theorem
2.22].

Having established that the discrete operators Sh, S̃h, Sh, and hence Th (under the constraint
imposed by (4.180)), are all well-defined, we now proceed as in Section 4.3.3 to address the solvability
of the corresponding fixed point equation (4.172). Indeed, letting δd be the discrete version of (4.137),
that is

δd := min
{ α

S̃,d

2 ∥c̃∥
,
αS,d

4 ∥c∥

}
, (4.182)

we first introduce the ball

Wδd :=
{
(zh, rh) ∈ Hu

h ×X2,h : ∥(zh, rh)∥ := ∥zh∥0,4;Ω + ∥rh∥X2 ≤ δd

}
. (4.183)

Then, analogously to the derivation of Lemma 4.7 (cf. beginning of Section 4.3.3), we deduce that Th
maps Wδd into itself under the discrete versions of (4.139) and (4.140), which read exactly as those,
except that the constants C

S̃
, αS, and C(δ), and the radius δ utilized there are replaced by C

S̃,d
, αS,d,

Cd(δ), and δd, respectively, where, similarly to C(δ), Cd(δ) depends explicitly on CS,d, CS̃,d
, (1 + δ),

and CS,d. Moreover, following analogue arguments to those employed in the proofs of Lemmas 4.8, 4.9,
and 4.10, we are able to prove the continuity properties of Sh, S̃h, and Sh, that is the discrete versions
of (4.141), (4.149), and (4.153), which are the same as the latter, but instead of LS, L

S̃
, and LS, the

resulting constants are given by

LS,d := α−1
d max

{
|Ω|1/4, ∥c∥

}
, L

S̃,d
:= 2 ∥c̃∥α−1

S̃,d
C
S̃,d
, and LS,d := 2 ∥c∥α−1

S,dCS,d ,
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respectively. Hence, proceeding analogously to the derivation of (4.160), (4.161), and the consequent
Lemma 4.11, we are able to show that, under the discrete version of (4.139), there holds

∥Th(zh, rh)− Th(z0,h, r0,h)∥

≤ LT,d

{(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)(
∥∇f∥0,r;Ω + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

)
+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
∥(zh, rh)− (z0,h, r0,h)∥ ,

(4.184)

for all (zh, rh), (z0,h, r0,h) ∈Wδd , where LT,d is a positive constant depending only on LS,d, LS̃,d
, LS,d,

CS,d, CS̃,d
, and δ.

According to the above, the main result of this section is established as follows.

Theorem 4.16. Assume that the data are sufficiently small so that the discrete versions of (4.139)
and (4.140) hold, that is

C
S̃,d

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
≤

αS,d

4 ∥c∥
, (4.185)

and
Cd(δ)

{(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
∥∇f∥0,r;Ω + ∥f∥0,4/3;Ω

+ ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω
}

≤ δd .
(4.186)

Then, the operator Th has a fixed point (uh,ph) ∈Wδd. Equivalently, the coupled problem (4.164) has
a solution (u⃗h, h) ∈ Hh ×Qh, (σ̃h, ηh) ∈ Hh ×Qh, and (ph, φh) ∈ X2,h ×M1,h, with (uh,ph) ∈ Wδd.
Moreover, there hold the following a priori estimates

∥(u⃗h, h)∥H×Q ≤ Cu⃗,σ,d

{
∥∇f∥0,r;Ω

(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ

}
,

∥(σ̃h, ηh)∥H×Q ≤ C
S̃,d

{
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

}
,

∥(ph, φh)∥X2×M1 ≤ CS,d

{
∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
,

where Cu⃗,σ,d is a positive constant depending only on CS,d, C̄S,d, CS̃,d
, and δd. Furthermore, under the

additional assumption

LT,d

{(
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)(
∥∇f∥0,r;Ω + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

)
+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω

}
< 1 ,

(4.187)

the aforementioned solutions of (4.172) and (4.164) are unique.

Proof. As previously mentioned, (4.185) and (4.186) guarantee that Th maps Wδd into itself. Then,
knowing from (4.184) that Th : Wδd → Wδd is continuous, a straightforward application of Brouwer’s
theorem (cf. [28, Theorem 9.9-2]) implies the existence of solution of (4.172), and hence of (4.164).
In turn, under the further hypotheses (4.187), the Banach fixed-point theorem yields the respective
uniqueness of solution. Finally, in any case, the a priori estimates are consequences of (4.175), (4.176),
(4.179) and (4.181), and the fact that ∥uh∥0,4;Ω ≤ δd.

Needless to say, analogue remarks to those stated in Sections 4.3.2 and 4.3.2 for the case of the
boundary conditions (4.70), hold in the present discrete case as well.
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4.4.3 A priori error analysis

In this section we derive an a priori error estimate for the Galerkin scheme (4.164) with arbitrary
finite element subspaces satisfying the hypotheses introduced in Section 4.4.2. More precisely, we are
interested in establishing the Céa estimate for the error

E := ∥(u⃗,σ)− (u⃗h, h)∥H×Q + ∥(σ̃, η)− (σ̃h, ηh)∥H×Q + ∥(p, φ)− (ph, φh)∥X2×M1 , (4.188)

where
(
(u⃗,σ), (σ̃, η), (p, φ)

)
∈ (H×Q)× (H×Q)× (X2 ×M1) is the unique solution of (4.69) with

(u,p) ∈Wδ (cf. (4.130)), and
(
(u⃗h, h), (σ̃h, ηh), (ph, φh)

)
∈ (Hh×Qh)× (Hh×Qh)× (X2,h×M1,h) is

a solution of (4.164) with (uh,ph) ∈Wδd (cf. (4.183)). To this end, we consider the pairs of associated
continuous and discrete formulations arising from (4.69) and (4.164) once the latter are split according
to the three equations forming the full model. In what follows, given a subspace Zh of a generic Banach
space (Z, ∥ · ∥Z), we set for each z ∈ Z

dist(z, Zh) := inf
zh∈Zh

∥z − zh∥Z . (4.189)

We begin by applying the Strang estimate provided by [29, Lemma 6.1], whose proof is a simple
modification of that of [44, Theorem 2.6], to the context given by the first two rows of (4.69) and
(4.164). As a consequence, we deduce the existence of a positive constant ĈS, depending only on αd

βd, ∥a∥, ∥b∥, ∥c∥, δ, and δd, such that

∥(u⃗,σ) − (u⃗h, h)∥H×Q ≤ ĈS

{
dist (u⃗,Hh) + dist (σ,Qh)

+ ∥Fη − Fηh∥H′
h
+ ∥c(u; u⃗, ·)− c(uh; u⃗, ·)∥H′

h

}
.

(4.190)

In fact, we first observe that the first two rows of (4.69) and (4.164) can be rewritten, respectively, as

ã(u⃗, v⃗) + b(v⃗,σ) = Fη(v⃗) ∀ v⃗ ∈ H ,

b(u⃗, τ ) = G(τ ) ∀ τ ∈ Q ,
(4.191)

and
ãh(u⃗h, v⃗h) + b(v⃗h, h) = Fηh(v⃗h) ∀ v⃗h ∈ Hh ,

b(u⃗h, ãh) = G(ãh) ∀ ãh ∈ Qh ,
(4.192)

where ã : H×H → R and ãh : Hh ×Hh → R, depending on u and uh, respectively, are given by

ã(w⃗, v⃗) := a(w⃗, v⃗) + c(u; w⃗, v⃗) ∀ w⃗, v⃗ ∈ H , (4.193)

and
ãh(w⃗h, v⃗h) := a(w⃗h, v⃗h) + c(uh; w⃗h, v⃗h) ∀ w⃗h, v⃗h ∈ Hh . (4.194)

It is clear from (4.193) and (4.194) that

∥ã(u⃗, ·)− ãh(u⃗, ·)∥H′
h
= ∥c(u; u⃗, ·)− c(uh; u⃗, ·)∥H′

h
,

so that (4.190) follows from a straightforward application of [29, Lemma 6.1] to the pair (4.191) -
(4.192).
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Then, using the boundedness properties of Fη (cf. (4.48) and (4.147)) and c (cf. (4.24) and (4.148)),
we readily obtain

∥Fη − Fηh∥H′
h
≤ |Ω|1/4 ∥η − ηh∥0,ρ;Ω ∥∇f∥0,r;Ω ,

and
∥c(u; u⃗, ·)− c(uh; u⃗, ·)∥H′

h
≤ ∥c∥ ∥u− uh∥0,4;Ω ∥u⃗∥H ,

which, replaced back in (4.190), give

∥(u⃗,σ) − (u⃗h, h)∥H×Q ≤ ĈS

{
dist (u⃗,Hh) + dist (σ,Qh)

}
+ CS

{
∥∇f∥0,r;Ω ∥η − ηh∥0,ρ;Ω + ∥u⃗∥H ∥u− uh∥0,4;Ω

}
,

(4.195)

where CS := ĈS max
{
|Ω|1/4, ∥c∥

}
.

Next, we apply the Strang a priori error estimate from [12, Proposition 2.1, Corollary 2.3, and
Theorem 2.3] to the context given by the third and fourth rows of (4.69) and (4.164), in which each
term involving c̃ is considered as part of the respective functional on the right-hand side. In this way,
we deduce the existence of a positive constant Ĉ

S̃
, depending only on α̃d, β̃d, ∥ã∥ and ∥b̃∥, such that

∥(σ̃, η) − (σ̃h, ηh)∥H×Q ≤ Ĉ
S̃

{
dist (σ̃,Hh) + dist (η,Qh) + ∥c̃u,p(·, η)− c̃uh,ph(·, ηh)∥H′

h

}
. (4.196)

In turn, subtracting and adding ηh to the second component of c̃u,p(·, η), making use of the triangle
inequality, bearing in mind the definition of c̃z,q (cf. (4.34)), and employing its boundedness property
(cf. (4.45)), we find that

∥c̃u,p(·, η)− c̃uh,ph(·, ηh)∥H′
h
≤ ∥c̃u,p(·, η − ηh)∥H′

h
+ ∥c̃u,p(·, ηh)− c̃uh,ph(·, ηh)∥H′

h

≤ ∥c̃∥
{(

∥u∥0,4;Ω + ∥p∥0,r;Ω
)
∥η − ηh∥Q + ∥ηh∥Q

(
∥u− uh∥0,4;Ω + ∥p− ph∥0,r;Ω

)}
,

which, along with (4.196), yield

∥(σ̃, η) − (σ̃h, ηh)∥H×Q ≤ Ĉ
S̃

{
dist (σ̃,Hh) + dist (η,Qh)

}
+C

S̃

{(
∥u∥0,4;Ω + ∥p∥0,r;Ω

)
∥η − ηh∥Q + ∥ηh∥Q

(
∥u− uh∥0,4;Ω + ∥p− ph∥0,r;Ω

)}
,

(4.197)

where C
S̃
:= Ĉ

S̃
∥c̃∥.

Furthermore, we proceed analogously to the previous case for the context given by the fifth and sixth
rows of (4.69) and (4.164), that is, we consider each term involving c as part of the respective functional
on the right-hand side, and then apply the Strang a priori error estimate from [12, Proposition 2.1,
Corollary 2.3, and Theorem 2.3]. As a result of it we obtain

∥(p, φ) − (ph, φh)∥X2×M1

≤ ĈS

{
dist (p, X2,h) + dist (φ,M1,h) + ∥cu,η

(
(p, φ), ·

)
− cuh,ηh

(
(ph, φh), ·

)
∥M ′

2,h

}
,

(4.198)

where ĈS is a positive constant depending only on αd, β1,d, β2,d, ∥a∥, ∥b1∥, and ∥b2∥. Now, in order
to estimate the consistency error term of (4.198), we subtract and add (ph, φh) in the first component
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of cu,η
(
(p, φ), ·

)
, employ triangle inequality, and invoke the definition of cz,χ (cf. (4.59)) and its

boundedness property (cf. (4.65)), to arrive at

∥cu,η
(
(p, φ), ·

)
− cuh,ηh

(
(ph, φh), ·

)
∥M ′

2,h

≤ ∥cu,η
(
(p, φ)− (ph, φh), ·

)
∥M ′

2,h
+ ∥cu,η

(
(ph, φh), ·

)
− cuh,ηh

(
(ph, φh), ·

)
∥M ′

2,h

≤ ∥c∥
{(

∥u∥0,4;Ω + ∥η∥Q
)
∥(p, φ)− (ph, φh)∥X2×M1

+
(
∥u− uh∥0,4;Ω + ∥η − ηh∥Q

)
∥(ph, φh)∥X2×M1

}
,

which, jointly with (4.198), imply

∥(p, φ) − (ph, φh)∥X2×M1 ≤ ĈS

{
dist (p, X2,h) + dist (φ,M1,h)

}
+CS

{(
∥u∥0,4;Ω + ∥η∥Q

)
∥(p, φ)− (ph, φh)∥X2×M1

+ ∥(ph, φh)∥X2×M1

(
∥u− uh∥0,4;Ω + ∥η − ηh∥Q

)}
,

(4.199)

with CS := ĈS ∥c∥.

Consequently, adding the inequalities (4.195), (4.197), and (4.199), denoting Ĉ := max
{
ĈS, ĈS̃

, ĈS

}
,

employing the bounds for ∥u⃗∥H, ∥p∥X2 , ∥η∥Q, ∥ηh∥Q, and ∥(ph, φh)∥X2×M1 provided by Theorems 4.12
and 4.16, and performing some algebraic manipulations, we find, in terms of the notations introduced
in (4.188) and (4.189), that

E ≤ Ĉ
{
dist

(
(u⃗,σ),Hh ×Qh

)
+ dist

(
(σ̃, η),Hh ×Qh

)
+ dist

(
(p, φ), X2,h ×M1,h

)}
+ Ĉ0

{(
1 + ∥∇f∥0,r;Ω

) (
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
+ ∥∇f∥0,r;Ω

+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω
}
E ,

(4.200)

where Ĉ0 is a positive constant depending on CS, C
S̃
, CS, Cu⃗,σ, C

S̃
, CS, CS̃,d

, and CS,d.

We are now in a position to establish the announced Céa estimate.

Theorem 4.17. In addition to the hypotheses of Theorems 4.12 and 4.16, assume that

Ĉ0

{(
1 + ∥∇f∥0,r;Ω

) (
∥ηD∥1/2,Γ + ∥fη∥0,ϱ;Ω

)
+ ∥∇f∥0,r;Ω

+ ∥f∥0,4/3;Ω + ∥uD∥1/2,Γ + ∥φD∥1/s,r;Γ + ∥fφ∥0,j;Ω
}

≤ 1

2
.

(4.201)

Then, denoting C := 2 Ĉ, there holds

∥(u⃗,σ)− (u⃗h, h)∥H×Q + ∥(σ̃, η)− (σ̃h, ηh)∥H×Q + ∥(p, φ)− (ph, φh)∥X2×M1

≤ C
{
dist (u⃗,Hh) + dist (σ,Qh) + dist (σ̃,Hh) + dist (η,Qh) + dist (p, X2,h) + dist (φ,M1,h)

}
.

Proof. It follows straightforwardly from (4.200).
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We end the section with the a priori estimate for ∥p − ph∥0,Ω, where ph is the discrete pressure
suggested by the postprocessing formula given by the second identity in (4.4), which, according to
(4.13), becomes

ph = − 1

n
tr
(
h+ ch I +

λ

2
(uh ⊗ uh)

)
, (4.202)

with
ch := − λ

2n |Ω|

∫
Ω
tr(uh ⊗ uh) . (4.203)

Then, applying Cauchy-Schwarz’s inequality, performing some algebraic manipulations, and employing
the a priori bounds for ∥u∥0,4;Ω and ∥uh∥0,4;Ω, we deduce the existence of a positive constant C,
depending on data, but independent of h, such that

∥p− ph∥0,Ω ≤ C
{
∥σ − h∥0,Ω + ∥u− uh∥0,4;Ω

}
. (4.204)

4.5 Specific finite element subspaces

We now define specific finite element subspaces satisfying the conditions (H.1) - (H.6) that were
introduced in Section 4.4.2, and provide the rates of convergence of the resulting discrete method.

4.5.1 Preliminaries

Bearing in mind the notations introduced at the beginning of Section 4.4.1, and given an integer k ≥ 0

andK ∈ Th, we let Pk(K) be the space of polynomials of degree ≤ k defined onK, and denote its vector
and tensor versions by Pk(K) and Pk(K), respectively. In addition, we let RTk(K) = Pk(K)+Pk(K)x

be the local Raviart-Thomas space of order k defined on K, where x stands for a generic vector in Rn,
and denote by RTk(K) its corresponding tensor counterpart. In turn, we let Pk(Th), Pk(Th), Pk(Th),
RTk(Th) and RTk(Th) be the corresponding global versions of Pk(K), Pk(K), Pk(K), RTk(K) and
RTk(K), respectively, that is

Pk(Th) :=
{
ϕh ∈ L2(Ω) : ϕh|K ∈ Pk(K) ∀K ∈ Th

}
,

Pk(Th) :=
{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

Pk(Th) :=
{
sh ∈ L2(Ω) : sh|K ∈ Pk(K) ∀K ∈ Th

}
,

RTk(Th) :=
{
qh ∈ H(div; Ω) : qh|K ∈ RTk(K) ∀K ∈ Th

}
,

and
RTk(Th) :=

{
ãh ∈ H(div; Ω) : ãh|K ∈ RTk(K) ∀K ∈ Th

}
.

We stress here that for each t, s ∈ (1,+∞) such that t ≥ s, there hold Pk(Th) ⊆ Lt(Ω), RTk(Th) ⊆
H(divt; Ω), RTk(Th) ⊆ H(divt; Ω), and RTk(Th) ⊆ Ht(divs; Ω), inclusions that are implicitly uti-
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lized below to introduce the announced specific finite element subspaces. Indeed, we now define

Hu
h := Pk(Th) , Ht

h := L2
tr (Ω) ∩ Pk(Th) , Hh := Hu

h ×Ht
h , Hσ

h := RTk(Th) ,

Qh := Hσ
h ∩H0(div4/3; Ω) , Hh := RTk(Th) , Qh := Pk(Th) ,

X2,h := RTk(Th) , M1,h := Pk(Th) , X1,h := RTk(Th) , M2,h := Pk(Th) .

(4.205)

Next, as a complement of the remark provided in Section 4.4.1, we now observe that for the finite
element subspaces introduced in (4.205), the discrete conservation of momentum properties become

div(h) − Pk
h

(
fNS
)
= 0 in Ω , with fNS :=

λ

2
thuh − ηh∇f − f , (4.206)

div(σ̃h) + Pk
h

(
fCD
)
= 0 in Ω , with fCD := k−1

η fη , and (4.207)

div(ph) − Pk
h

(
fCS
)
= 0 in Ω , with fCS := k−1

φ

(
γ ηh φh + uh · ph − fφ

)
, (4.208)

where Pk
h : L1(Ω) → Pk(Th) is the projector defined, for each v ∈ L1(Ω), as the unique element

Pk
h(v) ∈ Pk(Th) such that ∫

Ω
Pk
h(v) · qh =

∫
Ω
v · qh ∀qh ∈ Pk(Th) , (4.209)

and Pk
h : L1(Ω) → Pk(Th) is the corresponding scalar version, that is for each v ∈ L1(Ω), Pk

h(v) is the
unique element in Pk(Th) such that∫

Ω
Pk
h(v) qh =

∫
Ω
v qh ∀ qh ∈ Pk(Th) . (4.210)

4.5.2 Verification of the stability conditions

In this section we prove that the specific finite element subspaces given by (4.205) verify the assump-
tions (H.1) - (H.6). We begin with the following lemma establishing (H.1) and (H.2), for which we
recall that the definition of the discrete kernel Vh of the bilinear form b is given in (4.173).

Lemma 4.18. There exist positive constants βd and Cd, independent of h, such that

sup
v⃗h∈Hh
v⃗h ̸=0

b(v⃗h, ãh)

∥v⃗h∥H
≥ βd ∥ãh∥Q ∀ ãh ∈ Qh , (4.211)

and
∥sh∥0,Ω ≥ Cd ∥vh∥0,4;Ω ∀ v⃗h := (vh, sh) ∈ Vh . (4.212)

Proof. We first introduce the subspace

Q0,h :=
{
ãh ∈ Qh : b((vh,0), ãh) :=

∫
Ω
vh · div(ãh) = 0 ∀vh ∈ Hu

h

}
,

which, using from (4.205) that div
(
Qh

)
⊆ Hu

h , reduces to

Q0,h =
{
ãh ∈ Qh : div

(
ãh
)
= 0 in Ω

}
.
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Next, we proceed as in [11, Lemma 4.2] and apply the abstract equivalence result provided by [29,
Lemma 5.1] to the setting X = Hu

h , Y = Y1 = Ht
h, Y2 = {0}, V = Vh, Z = Qh, and Z0 = Q0,h,

where X, Y , Y1, Y2, V , Z, and Z0 correspond to the notations employed in [29, Lemma 5.1]. As a
consequence of it, we deduce that (4.211) and (4.212) are jointly equivalent to the existence of positive
constants β1 and β2, independent of h, such that there hold

sup
ãh∈Qh
ãh ̸=0

b((vh, 0), ãh)

∥ãh∥Q
= sup

ãh∈Qh
ãh ̸=0

∫
Ω
vh · div(ãh)

∥ãh∥Q
≥ β1 ∥vh∥0,4;Ω ∀vh ∈ Hu

h , (4.213)

and

sup
sh∈Ht

h
sh ̸=0

b((0, sh), ãh)

∥sh∥0,Ω
= sup

sh∈Ht
h

sh ̸=0

∫
Ω
sh : ãh

∥sh∥0,Ω
≥ β2 ∥ãh∥Q ∀ ãh ∈ Q0,h . (4.214)

Regarding (4.213), we stress that this result was already established in [29, Lemma 5.5]. In turn, for
the proof of (4.214), we first recall from [44, proof of Theorem 3.3] that, being Qh ⊆ RTk(Th), there
holds Q0,h ⊆ Pk(Th). In this way, given ãh ∈ Q0,h, it is clear that τ d

h ∈ Ht
h, and hence bounding

below the supremum in (4.214) with sh := τ d
h, and employing (4.92) for t = 4/3, gives the required

inequality with β2 := C
1/2
4/3 .

Now, as far as (H.3) and (H.4) are concerned, we observe from (4.205) that div(Hh) ⊆ Qh, which
confirms the former hypothesis, whereas the latter is proved in [52, Lemma 4.8].

On the other hand, in order to address the verification of (H.5) and (H.6), we first notice from
(4.205) that div

(
Xi,h

)
⊆ Mi,h for all i ∈ {1, 2}. Thus, being the pairs

(
X2,h,M2,h

)
and

(
X1,h,M1,h

)
algebraically equal, the corresponding discrete kernels of the bilinear forms b1 and b2 (cf. (4.58))
coincide as well, and it is easily seen that they become the space

Kk
h :=

{
qh ∈ RTk

(
Th
)
: div(qh) = 0 in Ω

}
. (4.215)

In turn, analogously to (4.209), we let Θk
h : L1(Ω) → Kk

h be the projector defined for each r ∈ L1(Ω)

as the unique Θk
h(r) ∈ Kk

h satisfying∫
Ω
Θk
h(r) · qh =

∫
Ω
r · qh ∀qh ∈ Kk

h . (4.216)

Then, we recall from [39, Theorem 3.1] (see also [52, Lemma 4.2] for a slight variant of it), that in the
2D case, given t ∈ (1,+∞) and an integer k ≥ 0, there exist positive constants Ckt and C̄kt , independent
of h, such that, defining

ckt :=


Ckt if Ω is convex,

C̄kt {− log(h)}|1−2/t| if Ω is non-convex and k = 0,

C̄kt if Ω is non-convex and k ≥ 1

there holds
∥Θk

h(r)∥0,t;Ω ≤ ckt ∥r∥0,t;Ω ∀ r ∈ H̃t(divj ; Ω) , (4.217)
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where
H̃t(divj ; Ω) :=

{
r ∈ Ht(divj ; Ω) : div(r) = 0 in Ω

}
.

We stress here that only when Ω is non-convex and k = 0, ckt depends on h, though in a very harmless
manner. In fact, the term {− log(h)}|1−2/t| grows very slowly when h approaches 0, and thus it remains
reasonably bounded for very small values of the mesh size. In particular, taking t = 3/2, which lies
in the range for s (cf. (4.31)), index with which (4.217) will be applied below, we observe that for
h ≥ 10−10 there holds {− log(h)}|1−2/t| = {− log(h)}1/3 < 3. Additionally, we remark that whether
the boundedness property (4.217) is satisfied or not in 3D is still an open problem, and hence the
hypothesis (H.5), to be established next by using (4.217), constitutes the only aspect of the analysis
of the present section that is not valid in 3D. All the other stability conditions hold in both 2D and
3D.

Lemma 4.19. There exists a positive constant αd, independent of h, such that

sup
qh∈K

k
h

qh ̸=0

a(rh,qh)

∥qh∥X1

≥ αd ∥rh∥X2 ∀ rh ∈ Kk
h , (4.218)

and
sup

rh∈Kk
h

a(rh,qh) > 0 ∀qh ∈ Kk
h , qh ̸= 0 . (4.219)

Proof. Indeed, given rh ∈ Kk
h (cf. (4.215)), rh ̸= 0, one first defines rh,s := |rh|r−2 rh, which belongs

to Ls(Ω). Note from (4.31) that r > 2. Next, bounding below the supremum in (4.218) with qh :=

Θk
h

(
Ds(rh,s)

)
∈ Kk

h , and then employing (4.216), (4.114) (cf. Lemma 4.3), and the boundedness of
Θk
h (cf. (4.217)) and Ds (cf. Lemma 4.3), we arrive at (4.218) with αd :=

(
cks ∥Ds∥

)−1. A similar
procedure is applied to derive (4.219). We omit further details and refer to the proof of [52, Lemma
4.3].

We now employ the notations and results from the Appendix (cf. Section 4.7) to prove (H.6), that
is the discrete inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}. Actually, being the proof for i = 1

a slight modification of that for [52, Lemma 4.5], we omit its details and just focus on the case i = 2.

Lemma 4.20. There exists a positive constant β2,d, independent of h, such that

sup
qh∈X2,h

qh ̸=0

b2(qh, ϕh)

∥qh∥X2

≥ β2,d ∥ϕh∥M2 ∀ϕh ∈M2,h . (4.220)

Proof. Given ϕh ∈M2,h, we set ϕh,j := |ϕh|l−2 ϕh, which belongs to Lj(Ω), and notice that∫
Ω
ϕh,j ϕh = ∥ϕh,j∥0,j;Ω ∥ϕh∥0,l;Ω . (4.221)

Note from (4.32) that l ≥ 2. Also, we let O be a bounded convex polygonal domain containing Ω̄, and
set

g :=

{
ϕh,j in Ω ,

0 in O \ Ω .
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It is clear that g ∈ Lj(O) and ∥g∥0,j;O = ∥ϕh,j∥0,j;Ω. Then, applying the elliptic regularity result
provided in [43, Corollary 1], we deduce that there exists a unique z ∈ W2,j(O) ∩W1,j

0 (O) such that:
∆z = g in O, z = 0 on ∂O, and there exists a positive constant Creg, depending only on O,
such that

∥z∥2,j;O ≤ Creg ∥g∥0,j;O = Creg ∥ϕh,j∥0,j;Ω . (4.222)

Thus, defining r := ∇z|Ω ∈ W1,j(Ω), we observe that div(r) = ϕh,j in Ω, and, using (4.222), there
holds

∥r∥1,j;Ω ≤ ∥z∥2,j;O ≤ Creg ∥ϕh,j∥0,j;Ω . (4.223)

In addition, letting rh be the global Raviart-Thomas interpolant of r, that is rh := Πkh(r), and
employing (4.227), we find that

div(rh) = div
(
Πkh(r)

)
= Pk

h

(
div(r)

)
= Pk

h(ϕh,j) , (4.224)

so that, thanks to the stability estimate (4.230), it follows that

∥div(rh)∥0,j;Ω ≤ CP ∥ϕh,j∥0,j;Ω . (4.225)

In turn, noting from (4.31) and (4.32) that j < r ≤ nj

n− j
, Lemma 4.24 and (4.223) yield

∥rh∥0,r;Ω = ∥Πkh(r)∥0,r;Ω ≤ CΠ ∥r∥1,j;Ω ≤ CΠCreg ∥ϕh,j∥0,j;Ω ,

which, jointly with (4.225), imply

∥rh∥X2 = ∥rh∥0,r;Ω + ∥div(rh)∥0,j;Ω ≤
(
CP + CΠCreg

)
∥ϕh,j∥0,j;Ω . (4.226)

Finally, bounding below the supremum in (4.220) with rh ∈ X2,h, and using (4.224), (4.210), (4.221),
and (4.226), we conclude the required discrete inf-sup condition for b2 with β2,d :=

(
CP + CΠCreg

)−1.

4.5.3 The rates of convergence

In this section we provide the rates of convergence of the Galerkin scheme (4.164) with the specific
finite element subspaces introduced in Section 4.5.1. To this end, we first collect the approximation
properties of the latter. Indeed, it is easily seen from (4.228) and its corresponding vector and tensorial
versions, along with interpolation estimates of Sobolev spaces, that those of Hu

h , Ht
h, Qh, and M1,h,

are given as follows

(APu
h) there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for

each v ∈ Wl,4(Ω), there holds

dist
(
v,Hu

h

)
:= inf

vh∈Hu
h

∥v − vh∥0,4;Ω ≤ C hl ∥v∥l,4;Ω ,

(
APt

h

)
there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for

each s ∈ Hl(Ω) ∩ L2
tr(Ω), there holds

dist
(
s,Ht

h

)
:= inf

sh∈Ht
h

∥s − sh∥0,Ω ≤ C hl ∥s∥l,Ω ,
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(
APη

h

)
there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for

each ξ ∈ Wl,ρ(Ω), there holds

dist
(
ξ,Qh

)
:= inf

ξh∈Qh
∥ξ − ξh∥0,ρ;Ω ≤ C hl ∥ξ∥l,ρ;Ω ,

(APϕ
h) there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for

each ψ ∈ Wl,r(Ω), there holds

dist
(
ψ,M1,h

)
:= inf

ψh∈M1,h

∥ψ − ψh∥0,r;Ω ≤ C hl ∥r∥l,r;Ω .

In turn, from [52, eq. (4.6), Section 4.1] and its tensorial version, along with interpolation estimates
of Sobolev spaces as well, we obtain the approximation properties of Qh and Hh, which reduce to

(APσ
h ) there exists a positive constant C, independent of h, such that for each l ∈ [1, k + 1], and for

each τ ∈ Hl(Ω) ∩H0(div4/3; Ω) with div(τ ) ∈ Wl,4/3(Ω), there holds

dist
(
τ ,Qh

)
:= inf

ãh∈Qh

∥τ − ãh∥div4/3;Ω ≤ C hl
{
∥τ∥l,Ω + ∥div(τ )∥l,4/3;Ω

}
,

(
APσ̃

h

)
there exists a positive constant C, independent of h, such that for each l ∈ [1, k + 1], and for

each τ̃ ∈ Hl(Ω) with div(τ̃ ) ∈ Wl,ϱ(Ω), there holds

dist
(
τ̃ ,Hh

)
:= inf

τ̃h∈Hh
∥τ̃ − τ̃ h∥divϱ;Ω ≤ C hl

{
∥τ̃∥l,Ω + ∥div(τ̃ )∥l,ϱ;Ω

}
.

Finally, that of X2,h, which follows from Lemma 4.23 and (4.229) (with m = 0), and applying again
interpolation estimates of Sobolev spaces, becomes

(APp
h) there exists a positive constant C, independent of h, such that for each l ∈ [1, k + 1], and for

each q ∈ Wl,r(Ω) with div(q) ∈ Wl,j(Ω), there holds

dist
(
q, X2,h

)
:= inf

qh∈X2,h

∥q− qh∥r,divj ;Ω ≤ C hl
{
∥q∥l,r;Ω + ∥div(q)∥l,j;Ω

}
.

Hence, we can state the following main theorem.

Theorem 4.21. Let
(
(u⃗,σ), (σ̃, η), (p, φ)

)
∈ (H×Q)× (H×Q)× (X2 ×M1) be the unique solution

of (4.69) with (u,p) ∈ Wδ (cf. (4.130)), and let
(
(u⃗h, h), (σ̃h, ηh), (ph, φh)

)
∈ (Hh × Qh) × (Hh ×

Qh) × (X2,h ×M1,h) be a solution of (4.164) with (uh,ph) ∈ Wδd (cf. (4.183)), which is guaranteed
by Theorems 4.12 and 4.16, respectively. In turn, let p and ph given by (4.4) and (4.202), respectively.
Assume the hypotheses of Theorem 4.17, and that there exists l ∈ [1, k + 1] such that u ∈ Wl,4(Ω),
t ∈ Hl(Ω) ∩ L2

tr(Ω), σ ∈ Hl(Ω) ∩H0(div4/3; Ω), div(σ) ∈ Wl,4/3(Ω), σ̃ ∈ Hl(Ω), div(σ̃) ∈ Wl,ϱ(Ω),
η ∈ Wl,ρ(Ω), p ∈ Wl,r(Ω), div(p) ∈ Wl,j(Ω), and φ ∈ Wl,r(Ω). Then, there exists a positive constant
C, independent of h, such that

∥(u⃗,σ)− (u⃗h, h)∥H×Q + ∥(σ̃, η)− (σ̃h, ηh)∥H×Q + ∥(p, φ)− (ph, φh)∥X2×M1 + ∥p− ph∥0,Ω

≤ C hl
{
∥u∥l,4;Ω + ∥t∥l,Ω + ∥σ∥l,Ω + ∥div(σ)∥l,4/3;Ω + ∥σ̃∥l,Ω

+ ∥div(σ̃)∥l,ϱ;Ω + ∥η∥l,ρ;Ω + ∥p∥l,r;Ω + ∥div(p)∥l,j;Ω + ∥φ∥l,r;Ω
}
.
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Proof. It follows straightforwardly from Theorem 4.17, (4.204), and the above approximation proper-
ties.

4.6 Numerical results

In this section we present three examples illustrating the performance of the fully-mixed finite
element method (4.164) on a set of quasi-uniform triangulations of the respective domains, and con-
sidering the finite element subspaces defined by (4.205) (cf. Section 4.5.1). In what follows, we
refer to the corresponding sets of finite element subspaces generated by k = 0 and k = 1, as simply
P0 − P0 − RT0 −RT0 − P0 −RT0 − P0 and P1 − P1 − RT1 −RT1 − P1 −RT1 − P1, respectively.
The implementation of the numerical method is based on a FreeFem++ code [58]. A Newton–Raphson
algorithm with a fixed tolerance tol = 1E−6 is used for the resolution of the nonlinear problem (4.164).
As usual, the iterative method is finished when the relative error between two consecutive iterations
of the complete coefficient vector, namely coeffm and coeffm+1, is sufficiently small, that is,

∥coeffm+1 − coeffm∥
∥coeffm+1∥

≤ tol ,

where ∥ · ∥ stands for the usual Euclidean norm in RDOF with DOF denoting the total number of degrees
of freedom defining the finite element subspaces Hu

h ,Ht
h,Hσ

h ,Hh,Qh, X2,h, and M1,h (cf. (4.205)).

We now introduce some additional notation. The individual errors are denoted by:

e(u) := ∥u− uh∥0,4;Ω, e(t) := ∥t− th∥0,Ω, e(σ) := ∥σ − h∥div4/3;Ω, e(p) := ∥p− ph∥0,Ω,

e(σ̃) := ∥σ̃ − σ̃h∥divϱ;Ω, e(η) := ∥η − ηh∥0,ρ;Ω, e(p) := ∥p− ph∥r,divj ;Ω, e(φ) := ∥φ− φh∥0,r;Ω,

where ϱ, ρ, r and j are described in (4.31)–(4.32), and will be specified in the examples below. Next,
as usual, for each ⋆ ∈

{
u, t,σ, p, σ̃, η,p, φ

}
we let r(⋆) be the experimental rate of convergence given

by r(⋆) := log
(
e(⋆)/ê(⋆)

)
/ log(h/ĥ), where h and ĥ denote two consecutive meshsizes with errors e

and ê, respectively.

The examples to be considered in this section are described next. In the first two examples, for the
sake of simplicity, we take ν = 1, λ = 1, κη = 1, µ = 1, κφ = 1, and γ = 1. In addition, the mean
value of tr (h) over Ω is fixed via a Lagrange multiplier strategy (adding one row and one column to
the matrix system that solves (4.166) for uh, th, and h).

Example 1: Convergence against smooth exact solutions in a 2D domain

In this test we corroborate the rates of convergence in a non-convex two-dimensional domain. We
consider an L-shaped domain Ω = (−1, 1)2 \ (0, 1)2. We choose j = l = 2, whence the remaining
parameters become r = ρ = 4 and ϱ = 4/3 (cf. (4.31)–(4.32)). In turn, we consider the given function
f(x1, x2) = sin(x1 + x2), and choose the data f , fη, fφ (cf. (4.6)) such that the exact solution is given
by

u(x1, x2) =

(
sin(πx1) cos(πx2)

− cos(πx1) sin(πx2)

)
, p(x1, x2) = cos(πx1) exp(x2) ,

η(x1, x2) = 0.5 + 0.5 cos(x1x2) , and φ(x1, x2) = 0.1 + 0.3 exp(x1x2) .
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The model problem is then complemented with the appropriate Dirichlet boundary conditions. Tables
4.1 and 4.2 show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations. Notice that we are able not only to approximate the original un-
knowns but also the pressure field through the formula (4.202). The results confirm that the optimal
rates of convergence O(hk+1) predicted by Theorem 4.21 are attained for k = 0, 1. The Newton method
exhibits a behavior independent of the meshsize, converging in five iterations in all cases. In addition,
in the case k = 0, and since fNS, fCD, and fCS (cf. (4.206) - (4.208)) are not necessarily piecewise
constant, we observe that our Galerkin scheme provides conservation of momentum in an approxi-
mate sense. We illustrate this fact in Table 4.3, where the computed ℓ∞-norm for div(h) −P0

h(fNS),
div(σ̃h)+P0

h(fCD), and div(ph)−P0
h(fCS), are displayed. As expected, these values are certainly close

to zero.

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example we consider the cube domain Ω = (0, 1)3 and the only possible choice of
parameters in 3D, that is j = 3/2, r = 3, ρ = 6, and ϱ = 6/5 (cf. (4.31)–(4.32)). The solution is given
by

u(x1, x2, x3) =

 sin(πx1) cos(πx2) cos(πx3)

−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , p(x1, x2, x3) = cos(πx1) exp(x2 + x3) ,

η(x1, x2, x3) = 0.5 + 0.5 cos(x1x2x3) , and φ(x1, x2, x3) = 0.1 + 0.3 exp(x1x2x3) .

Similarly to the first example, we consider f(x1, x2, x3) = sin(x1 + x2 + x3), whereas the data f , fη, fφ
are computed from (4.6) using the above solution. The convergence history for a set of quasi-uniform
mesh refinements using k = 0 is shown in Table 4.4. Again, the mixed finite element method converges
optimally with order O(h), as it was proved by Theorem 4.21. In addition, some components of the
numerical solution are displayed in Figure 4.1, which were built using the fully-mixed P0−P0−RT0−
RT0−P0−RT0−P0 approximation with meshsize h = 0.0643 and 63, 888 tetrahedral elements (actually
representing 1, 483, 944 DOF). The numerical results suggest that perhaps only technical difficulties stop
us from proving (4.217) for the 3D framework.

Example 3: Movement of cells guided by the concentration of a chemical signal

In the last example, inspired by [38, Test1, Section 7], we consider the rectangle domain Ω =

(0, 2) × (0, 1), and the unsteady version of the problem (4.6) with physical parameters ν = 10, λ =

1, κη = 4, µ = 8, κφ = 1, γ = 6, data f(x1, x2) = −1000x2, f = 0, fη = 0, fφ = 0, boundary conditions
u = 0 on Γ, σ̃ · n = g̃ on Γ, p · n = g on Γ, where, we distinct two cases. Case 1: g̃ = g = 0 (cf.
(4.71)). Case 2: g̃ and g are not homogeneous (cf. (4.75)), and are defined as follows

g̃ :=

{
200x2 (1− x2) on Γℓ ,

0 on ∂Ω \ Γℓ ,
and g :=


200 exp(1− x2) on Γℓ ,

200 exp(2− x1) on Γb ,

0 on ∂Ω \
(
Γℓ ∪ Γb

)
,
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where Γℓ and Γb represent the left and lower part of the boundary Γ. In both cases, we consider the
initial conditions

u0 = 0, η0 =

3∑
i=1

70 exp(−8(x1 − si)
2 − 10(x2 − 1)2), φ0 = 30 exp(−5(x1 − 1)2 − 5(x2 − 0.5)2),

where s1 = 0.2, s2 = 0.5 and s3 = 1.2. We employ a suitable backward Euler time discretization, with
time step ∆t = 10−5 and final time T = 5 × 10−3. We observe that at each time step we are solving
a slight adaptation of the stationary problem (4.164) for Case 1, whereas a discrete version of the
Lagrange multiplier approach detailed in (4.76)–(4.77) is required for Case 2 (see [44, Section 4.4] for
details of a similar approach). Next, we discuss the numerical results obtained in each case. We begin
by detailing the Case 1, which is in agreement with [38, Test1, Section 7]. In Figure 4.2, we display
the computed magnitude of the velocity, and the cell density and chemical signal concentration fields,
which were built using the fully-mixed P0−P0−RT0−RT0−P0−RT0−P0 approximation on a mesh
with meshsize h = 0.0298 and 18, 566 triangle elements (actually representing 242, 126 DOF). Similarly
to [38], the cells are in two clusters in the upper part of the domain at time T = 10−5, and then they
begin to orient their movement in the direction of greater concentration of the chemical signal (the
center of the domain) as we can see at time T = 10−3, where the organisms tend to agglomerate in
the center of the rectangle. This interesting behavior occurs because the chemotaxis/cross-diffusion
term is the dominant one in the initial times. However, as time progresses, the chemical signal is
consumed, which causes that the cross-diffusion loses strength, and the self-diffusion of the cells begins
to dominate, and therefore they begin to distribute themselves homogeneously over the domain. At
final time T = 5× 10−3 the cells move towards the bottom of the domain, which is due to the external
force ∇f = (0,−1000). In addition, some changes in the velocity field are evidenced, influenced by
the movement of the cells. Finally, we detail the results for Case 2, which, besides being for academic
purposes, illustrates the capability of our method to handle non-homogeneous Neumann boundary
conditions, as it is explained in Section 4.2.4. We observe from Figure 4.3 and the middle plots of
Figure 4.2 that in this case the magnitudes of the velocity are similar to the ones obtained in Case 1,
but the cell density and chemical signal concentration fields are affected on the left and bottom of the
domain, respectively, because of the non-homogeneous data g̃ and g, as we expected.

4.7 Further properties of the Raviart-Thomas interpolator

We begin by introducing for all t, s ∈ (1,+∞) such that t ≥ s, the space

Ht
s :=

{
τ ∈ Ht(divs; Ω) : τ |K ∈ W1,s(K) ∀K ∈ Th

}
,

and let Πkh : Ht
s → RTk(Th) be the global Raviart-Thomas interpolation operator (cf. [14, Section

2.5]). Then, we recall from [14, Proposition 2.5.2 and eq. (2.5.27)] that the commuting diagram
property states that

div
(
Πkh(q)

)
= Pk

h

(
div(q)

)
∀q ∈ Ht

s , (4.227)

where Pk
h : L1(Ω) → Pk(Th) is the projector defined by (4.210). In turn, employing the Wm,t version

of the Deny-Lions Lemma (cf. [41, Lemma B.67]) with integer m ≥ 0 and t ∈ (1,+∞), along with
the associated scaling estimates (cf. [41, Lemma 1.101]) and the regularity of

{
Th
}
h>0

, we deduce
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DOF h e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

1416 0.4002 2.98E-01 – 1.59E-00 – 8.62E-00 – 5.70E-01 –
3398 0.2652 1.87E-01 1.133 1.03E-00 1.058 5.44E-00 1.119 3.43E-01 1.235
8922 0.1551 1.15E-01 0.914 6.26E-01 0.928 3.32E-00 0.920 2.11E-01 0.904

28498 0.0892 6.43E-02 1.046 3.51E-01 1.047 1.86E-00 1.046 1.18E-01 1.059
102828 0.0502 3.36E-02 1.127 1.85E-01 1.115 9.72E-01 1.131 6.03E-02 1.160
382112 0.0258 1.74E-02 0.988 9.54E-02 0.992 5.03E-01 0.988 3.13E-02 0.984

e(σ̃) r(σ̃) e(η) r(η) e(p) r(p) e(φ) r(φ) iter

5.21E-01 – 2.02E-02 – 1.51E-01 – 2.84E-02 – 5
3.29E-01 1.122 1.32E-02 1.042 9.85E-02 1.034 1.90E-02 0.979 5
2.07E-01 0.866 7.86E-03 0.963 5.98E-02 0.930 1.16E-02 0.925 5
1.16E-01 1.049 4.67E-03 0.942 3.32E-02 1.062 6.61E-03 1.011 5
6.10E-02 1.110 2.50E-03 1.088 1.84E-02 1.031 3.82E-03 0.951 5
3.15E-02 0.994 1.32E-03 0.952 9.54E-03 0.982 2.03E-03 0.951 5

Table 4.1: Example 1, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed P0−P0−RT0−RT0−P0−RT0−P0 approximation
of the chemotaxis–Navier–Stokes model .

DOF h e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

4392 0.4002 4.06E-02 – 2.20E-01 – 1.17E-00 – 6.70E-02 –
10606 0.2652 1.79E-02 1.985 8.61E-02 2.280 4.94E-01 2.093 2.66E-02 2.246
27954 0.1551 6.24E-03 1.969 3.22E-02 1.837 1.82E-01 1.857 9.85E-03 1.851
89546 0.0892 1.95E-03 2.106 1.01E-02 2.093 5.67E-02 2.111 2.98E-03 2.160

323676 0.0502 5.38E-04 2.234 2.76E-03 2.253 1.56E-02 2.239 8.20E-04 2.244
1203904 0.0258 1.42E-04 1.995 7.39E-04 1.979 4.17E-03 1.983 2.19E-04 1.983

e(σ̃) r(σ̃) e(η) r(η) e(p) r(p) e(φ) r(φ) iter

6.52E-02 – 1.59E-03 – 8.68E-03 – 1.67E-03 – 5
2.85E-02 2.006 7.31E-04 1.888 3.75E-03 2.037 7.23E-04 2.025 5
1.05E-02 1.872 2.44E-04 2.049 1.40E-03 1.843 2.68E-04 1.857 5
3.28E-03 2.097 7.84E-05 2.049 4.37E-04 2.099 8.52E-05 2.074 5
9.16E-04 2.216 2.16E-05 2.239 1.40E-04 1.984 2.88E-05 1.888 5
2.42E-04 1.999 5.88E-06 1.955 3.84E-05 1.937 8.04E-06 1.913 5

Table 4.2: Example 1, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed P1−P1−RT1−RT1−P1−RT1−P1 approximation
of the chemotaxis-Navier–Stokes model .

the existence of positive constants C1, C2, independent of h, such that for integers l and m verifying
0 ≤ l ≤ k + 1 and 0 ≤ m ≤ l, there hold

|ϕ − Ph
k (ϕ)|m,s;Ω ≤ C1 h

l−m |ϕ|l,s;Ω (4.228)
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h 0.4002 0.2652 0.1551 0.0892 0.0502 0.0258

∥div(h)−P0
h(fNS)∥ℓ∞ 1.07E-14 2.13E-14 2.66E-14 5.42E-14 1.51E-13 3.73E-13

∥div(σ̃h) + P0
h(fCD)∥ℓ∞ 2.00E-15 5.22E-15 9.10E-15 2.80E-14 4.49E-14 8.42E-14

∥div(ph)− P0
h(fCS)∥ℓ∞ 4.28E-09 3.52E-09 3.89E-09 4.07E-09 4.08E-09 4.06E-09

Table 4.3: Example 1, Conservation of momentum for the fully-mixed P0 − P0 − RT0 −RT0 − P0 −
RT0 − P0 approximation of the chemotaxis-Navier–Stokes model .

DOF h e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

1224 0.7071 5.74E-01 – 2.63E-00 – 1.50E+01 – 1.18E-00 –
9312 0.3536 3.02E-01 0.927 1.44E-00 0.872 8.00E-00 0.911 6.46E-01 0.874

72576 0.1768 1.55E-01 0.961 7.41E-01 0.955 4.03E-00 0.989 3.00E-01 1.110
384552 0.1010 8.90E-02 0.990 4.27E-01 0.982 2.29E-00 1.007 1.54E-01 1.185

1483944 0.0643 5.68E-02 0.997 2.73E-01 0.992 1.46E-00 1.007 9.17E-02 1.152

e(σ̃) r(σ̃) e(η) r(η) e(p) r(p) e(φ) r(φ) iter

6.11E-01 – 3.90E-02 – 2.13E-01 – 4.52E-02 – 5
3.48E-01 0.811 2.34E-02 0.734 1.12E-01 0.929 2.37E-02 0.930 5
1.83E-01 0.927 1.22E-02 0.945 5.66E-02 0.985 1.20E-02 0.982 5
1.06E-01 0.974 6.98E-03 0.995 3.24E-02 0.997 6.87E-03 0.995 5
6.79E-02 0.989 4.44E-03 1.001 2.06E-02 0.999 4.38E-03 0.998 5

Table 4.4: Example 2, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed P0−P0−RT0−RT0−P0−RT0−P0 approximation
of the chemotaxis-Navier–Stokes model .

Figure 4.1: Example 2, Computed magnitude of the velocity, cell density field and chemical signal
concentration field.
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Figure 4.2: Example 3 - Case 1, Computed magnitude of the velocity, cell density field and chemical
signal concentration field at time T = 10−5 (top plots), at time T = 10−3 (middle plots), and at time
T = 5× 10−3 (bottom plots).

Figure 4.3: Example 3 - Case 2, Computed magnitude of the velocity, cell density field and chemical
signal concentration field at time T = 10−3.

for all ϕ ∈ Wl,s(Ω), and

|div(q) − div(Πkh(q))|m,s;Ω ≤ C2 h
l−m |div(q)|l,s;Ω (4.229)

∀q ∈ W1,s(Ω) with div(q) ∈ Wl,s(Ω). Note that (4.229) follows from (4.227) and a direct application
of (4.228) to ϕ = div(q). In turn, taking in particular m = l = 0 in (4.228), we deduce the stability
of Pk

h with respect to ∥ · ∥0,s;Ω, that is the existence of a positive constant CP , independent of h, such
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that
∥Pk

h(ϕ)∥0,s;Ω ≤ CP ∥ϕ∥0,s;Ω ∀ϕ ∈ Ls(Ω) . (4.230)

In what follows we prove additional approximation properties of Πkh. To this end, we now denote
the reference element of Th by K̂, so that, given K ∈ Th, we let FK : K̂ → K be the bijective affine
mapping defined by FK(x̂) := BK x̂+bK ∀ x̂ ∈ K̂, with BK ∈ Rn×n invertible and bK ∈ Rn. Then, the
scaling properties via Piola’s transformation between Wm,t(K) and Wm,t(K̂), with m a non-negative
integer and t ∈ (1,+∞), establish the existence of positive constants ĈP and CP, such that for each
K ∈ Th there hold

|q̂|
m,t;K̂

≤ ĈP ∥BK∥m ∥B−1
K ∥ |det(BK)|1−1/t |q|m,t;K ∀q ∈ Wm,t(K) , (4.231)

and
|q|m,t;K ≤ CP ∥B−1

K ∥m ∥BK∥ |det(BK)|1/t−1 |q̂|
m,t;K̂

∀ q̂ ∈ Wm,t(K̂) . (4.232)

Then, letting ΠkK : W1,s(K) → RTk(K) be the local Raviart-Thomas interpolator for each K ∈ Th,
and letting Πk

K̂
be the corresponding operator for K̂, we have the following approximation property.

Lemma 4.22. Let k and l be integers such that 1 ≤ l ≤ k+1, and let t and s such that 1 ≤ t ≤ ns
n−s

if s < n, or s ≤ t < +∞ if s = n. Then, there exists a positive constant C, depending only on K̂,
Πk
K̂

, k, n, t, and s, such that

∥q − ΠkK(q)∥0,t;K ≤ C h
l+n

t
−n
s

K |q|l,s;K ∀q ∈ Wl,s(K) . (4.233)

Proof. Given q ∈ Wl,s(K), we use (4.232) with m = 0 to obtain

∥q−ΠkK(q)∥0,t;K ≤ CP ∥BK∥ |detBK |1/t−1 |q̂−Πk
K̂
(q̂)|

0,t;K̂
,

which, thanks to the continuous embedding of W1,s(K̂) in Lt(K̂) for the indicated ranges of s and t,
yields

∥q−ΠkK(q)∥0,t;K ≤ C ∥BK∥ |det(BK)|1/t−1 ∥q̂−Πk
K̂
(q̂)∥

1,s;K̂
. (4.234)

Next, since Πk
K̂
(q̂) = q̂ ∀ q̂ ∈ RTk(K̂), and there holds Pl−1(K̂) ⊆ Pk(K̂) ⊆ RTk(K̂), the Bramble-

Hilbert Lemma implies that

∥q̂−Πk
K̂
(q̂)∥

m,s;K̂
≤ C |q̂|

l,s;K̂
for 0 ≤ m ≤ l,

and hence, using in particular the above with m = 1 we deduce

∥q̂ − Πk
K̂
(q̂)∥

1,s;K̂
≤ C |q̂|

l,s;K̂
. (4.235)

In this way, replacing (4.235) into (4.234), and then employing (4.231), it follows that

∥q − ΠkK(q)∥0,t;K ≤ C ∥BK∥ |det(BK)|1/t−1 |q̂|
l,s;K̂

≤ C ĈP ∥BK∥l+1 ∥B−1
K ∥ |det(BK)|1/t−1/s |q|l,s;K ,

from which, using that ∥BK∥ ≤ C hK , ∥B−1
K ∥ ≤ C h−1

K , and |det(BK)| ∼= hnK , we arrive at (4.233)
and end the proof.
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The extension of Lemma 4.22 to the global Raviart-Thomas interpolator Πkh is stated next.

Lemma 4.23. Let k and l be integers such that 1 ≤ l ≤ k+1, and let t and s such that 1 ≤ t ≤ ns
n−s

if s < n, or s ≤ t < +∞ if s = n. Then, with the same constant C from (4.233), there holds

∥q − Πkh(q)∥0,t;Ω ≤ C hl+
n
t
−n
s |q|l,s;Ω ∀q ∈ Wl,s(Ω) .

Proof. Given q ∈ Wl,s(Ω), it suffices to see that

∥q − Πkh(q)∥0,t;Ω =
{ ∑
K∈Th

∥q − ΠkK(q)∥t0,t;K
}1/t

=
{( ∑

K∈Th

∥q − ΠkK(q)∥t0,t;K
)s/t}1/s

,

and then apply the sub-additivity property with exponent s
t ∈ (0, 1], and Lemma 4.22.

Finally, a simple corollary of Lemma 4.23 reads as follows.

Lemma 4.24. Let k be integer such that 1 ≤ k + 1, and let t and s such that 1 ≤ t ≤ ns
n−s if s < n,

or s ≤ t < +∞ if s = n. Then, there exists CΠ > 0, depending only on C, |Ω|, n, t, and s, such that

∥Πkh(q)∥0,t;Ω ≤ CΠ ∥q∥1,s;Ω ∀q ∈ W1,s(Ω) . (4.236)

Proof. Given q ∈ W1,s(Ω), the embedding is,t : W
1,s(Ω) → Lt(Ω) and Lemma 4.23 (with l = 1) imply

∥Πkh(q)∥0,t;Ω ≤ ∥q∥0,t;Ω + ∥q − Πkh(q)∥0,t;Ω ≤ ∥is,t∥ ∥q∥1,s;Ω + C |Ω|1+
n
t
−n
s ∥q∥1,s;Ω ,

which yields (4.236) with CΠ := ∥is,t∥ + C |Ω|1+
n
t
−n
s .



Conclusions and future works

Conclusions

In this thesis, we have developed mixed finite element methods based on Banach spaces to numerically
solve partial differential equation systems relevant in solid and fluid mechanics. We have specifically
focused on the following models:

Stress-Assisted Diffusion: Aiming to develop the necessary tools to tackle this problem in Banach
spaces, due to the similarities in the resulting continuous formulations, we initially focused on the
continuous analysis of the nearly incompressible linear elasticity problem and the Stokes problem. We
reformulated both models with respect to the non-symmetric pseudostress tensor, which allowed us to
avoid the weak symmetry impositions. It should be noted that the original Cauchy stress tensor can
be obtained from the pseudostress tensor through simple post-processing. Then, using the integration
by parts formula suitable for the Sobolev spaces in which we worked, we obtained the corresponding
mixed variational formulations. These continuous schemes have the property that the search and test
spaces do not coincide, as is usually the case in formulations in a Hilbertian framework, therefore,
to establish the existence and uniqueness of the solution, it was necessary to apply the generalized
Babuška-Brezzi theorem on Banach spaces. To this end, verifying the inf-sup conditions constituted
one of the first challenges of this thesis. For the study of these, we developed and employed results
such as the well-posedness of primal formulations based in Banach spaces for the Stokes and Poisson
equations, an operator that maps a space Lt onto itself, and a generalization to Lebesgue spaces of a
key inequality in the analysis for linear elasticity.

Subsequently, having established these tools, we focused on the stress-assisted diffusion problem,
which we reformulated in terms of the pseudostress tensor, allowing us to avoid the imposition of
symmetry on the Cauchy tensor. We carried out a mixed formulation for the linear elasticity problem
and first coupled it with a primal formulation for the diffusion equation, and then with two mixed for-
mulation alternatives for the latter. We detailed their search spaces over Banach spaces. We highlight
that the choice of these more general spaces allowed us to avoid the restrictions of two-dimensional,
polygonal, and convex domains that had arisen in previous works. We applied the previously obtained
results and, with them, the Babuška-Brezzi theory, along with the Banach fixed-point theorem, allowed
us to establish the existence and uniqueness at the continuous level of the coupled problem.

At the discrete level, we initially considered arbitrary inf-sup stable finite element spaces. Through
Brouwer’s Theorem, we established the existence of a solution and, in addition, obtained its corre-
sponding Céa estimate. Since it is not possible to control a certain term with respect to the data,
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establishing the uniqueness of the solution at the discrete level is not possible. Subsequently, we chose
finite element spaces and demonstrated that they indeed satisfy the assumed hypotheses. Thanks to
the choice of these subspaces, which, although different at the topological level, coincide algebraically,
and, therefore, the stiffness matrices associated with the bilinear forms b1 and b2 are the same, which
constitutes an advantage at the computational level. In addition, we defined an Lt-stable projector
that acts on the space of deviators of kernel elements. Finally, regarding the achievement of results
concerning the orders of convergence, which were empirically verified through numerical trials.

Chemotaxis–Navier–Stokes: Chemotaxis–Navier–Stokes: In the context of the stationary
chemotaxis-Navier-Stokes problem, we have developed a fully mixed finite element method. Aim-
ing to improve approximations for the gradients of u, the cellular density η, and the chemical signal
concentration φ, we introduced these variables into the system. Due to the presence of trilinear terms,
it was necessary to address the resulting variational formulations in Banach spaces, where we note that
although we previously worked in spaces where the variables and their divergences were considered in
Lt, in this case, we had to address the divergence in Lt/2. It is important to highlight that, although
we have opted to consider Dirichlet boundary conditions, the resulting formulations require minimal
adjustments to handle more complex boundary conditions. The Babuška-Brezzi theory, along with the
Banach fixed-point theorem, allowed us to establish the existence and uniqueness, at the continuous
level, of our fully mixed scheme.

Concerning the Galerkin scheme, the introduction of this new space H-div led us to develop new
techniques and tools, such as additional properties of the Raviart-Thomas interpolant. In this way, we
were able to verify the necessary inf-sup conditions at the discrete level to establish that each decoupled
problem is well-posed. Then, thanks to Brouwer’s theorem and the Banach fixed-point theorem, we
were able to establish the uniqueness of the solution for the discrete scheme. We also demonstrated the
Céa estimate and, thus, along with the approximation properties of the chosen finite element spaces,
we theoretically concluded the orders of convergence. Numerical experiments empirically confirm these
orders. Additionally, we conducted experiments that illustrate our method’s ability to address more
realistic boundary conditions.

Future Work

The methods developed and the results obtained this thesis have motivated several and future
projects. Descriptions of some of these projects are provided below:

1. A Posteriori Analysis for Stress-Assisted Diffusion and chemotaxis-Navier-Stokes
Problems.
As a natural continuation, we are interested in conducting a posteriori error analysis for the
problems studied in this thesis to enhance their robustness in cases involving complex geometries
or solutions with high gradients.

2. Development of a Mixed Finite Element Method for the Coupled Poroelasticity-Heat
Problem.
We are interested in applying a mixed finite element method in Banach spaces to the coupled
poroelasticity problem with heat. This problem involves a homogeneous porous medium com-



posed of a mixture of incompressible grains and an interstitial fluid. Our focus will be on the
following coupled Biot equations with a convection-diffusion equation:

σ = 2µe(u) + λdiv(u)I− (αp+ βθ)I in Ω , −div(σ) = f in Ω , (4.237a)

c0p+ αdiv(u)− div(w) = l in Ω , w =
κ

η
∇p in Ω , (4.237b)

θ +w · ∇θ − div(δ(σ)∇θ) = g in Ω , (4.237c)

where e(u) := 1
2(∇u+∇ut) is the strain tensor, κ is the permeability of the porous solid, λ and

µ are the Lamé constants of the solid (dilation and shear moduli, respectively), c0 > 0 is the
restricted specific storage coefficient, 0 < α ≤ 1 is the Biot-Willis parameter, β is an active stress
scale indicating bidirectional coupling between diffusion and movement, η is the fluid viscosity
in the pores, and δ : R → R is a stress-dependent diffusivity accounting for altered diffusion in
the poroelastic domain.

This problem exhibits a structure similar to what has been studied in this thesis. Furthermore,
the second and third terms on the left-hand side of (4.237c) will require that w and σ be sought
in the Banach spaces Ht(divt; Ω) and Ht(divt; Ω), respectively. Therefore, many of the tools
developed in this thesis will be valuable for addressing this problem.

3. A More Generalized and Robust Analysis

While in this thesis we extended the analysis to Banach spaces, this led to the necessity of
restricting our analysis to certain cases. Specifically, for the stress-assisted diffusion problem,
continuous analysis required imposing constraints on the dilation modulus, assuming it to be
sufficiently large. On the other hand, proving inf-sup conditions at the discrete level involved the
use of a projector, whose stability in terms of the Lt-norm is only valid for the two-dimensional
case. Therefore, a possible future direction would be to find new ways to conduct the analysis
that address these constraints on data and problem dimensionality.



Conclusiones y trabajos futuros

Conclusiones

En esta tesis, hemos desarrollamos métodos de elementos finitos mixtos basados en espacios de Banach
para resolver numéricamente sistemas de ecuaciones diferenciales parciales relevantes en la mecánica
de sólidos y fluidos. Nos hemos enfocado específicamente en los siguientes modelos:

Difusión asistida por esfuerzo:

Con el objetivo de desarrollar las herramientas necesarias para abordar este problema sobre espacios
de Banach, debido a las similitudes de las formulaciones continuas resultantes, nos enfocamos inicial-
mente en el análisis continuo del problema de elasticidad lineal casi incompresible y el problema de
Stokes. Reformulamos ambos problemas con respecto al tensor no simétrico de pseudoesfuerzos, lo
cual nos permitió evadir imposiciones de simetría débil. Cabe destacar que los tensores de esfuerzos de
Cauchy originales son recuperables a partir del tensor de pseudoesfuerzos mediante una simple post-
proceso. Luego, utilizando formulas de integraciones por partes adecuadas a los espacios de Sobolev
en los cuales trabajamos obtuvimos las correspondientes formulaciones variacionales mixtas. Dichos
esquemas continuos tienen la propiedad de que los espacios de búsqueda y de testeo no coinciden como
usualmente sucede en las formulaciones en un marco Hilbertiano, por lo cual para establecer existencia
y unicidad de solución, fue necesario la aplicación del teorema de Babǔzka-Brezzi sobre espacios de Ba-
nach generalizado. Con este fin, la verificación de las condiciones inf-sup constituyo uno de los primeros
desafíos de esta tesis. Para el estudio de estas, desarrollamos y empleamos resultados tales como el
buen-planteamiento de las formulaciones primales basadas en espacios de Banach para las ecuaciones
de Stokes y Poisson, un operador que mapea un espacio Lt dentro de sí mismo, y una generalización a
espacios de Lebesgue de una desigualdad clave en el análisis para elasticidad lineal.

Posteriormente, habiendo establecido dichas herramientas, nos concentramos en el problema de
difusión asistida por esfuerzo, el cual reformulamos en términos del tensor de pseudoesfuerzo, que
nos permitió evitar la imposición de simetría sobre el tensor de Cauchy. Realizamos una formulación
mixta para el problema de elasticidad lineal y lo acoplamos primero con una formulación primal
para la ecuación de difusión, y luego con dos alternativas de formulaciones mixtas para este último.
Establecimos en detalle sus espacios de búsqueda sobre espacios de Banach. Resaltamos que la elección
de estos espacios más generales permitió evitar las restricciones de dominio bidimensional, poligonal
y convexo que habían surgido en trabajos anteriores. Aplicamos los resultados obtenidos previamente
y, con ello, la teoría de Babuška-Brezzi, junto con el teorema del punto fijo de Banach, nos permitió
establecer la existencia y unicidad a nivel continuo del problema acoplado.
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A nivel discreto, consideramos inicialmente espacios de elementos finitos arbitrarios inf-sup estables.
Mediante el Teorema de Brouwer, establecimos la existencia de solución y, además, obtuvimos su es-
timación de Céa correspondiente. Dado que no es posible controlar cierto término con respecto a los
datos, establecer la unicidad de solución a nivel discreto no es posible. Posteriormente, elegimos espa-
cios de elementos finitos y demostramos que efectivamente satisfacen las hipótesis asumidas. Gracias a
la elección de estos subespacios, que si bien son distintos a nivel topológico, coinciden algebraicamente,
y, por lo tanto, las matrices de rigidez asociadas a las formas bilineales b1 y b2 son las mismas, lo cual
constituye una ventaja a nivel computacional. Además, definimos un proyector Lt-estable que actúa
sobre el espacio de desviadores de los elementos del kernel. Finalmente, respecto a la obtención de
resultados concernientes a los órdenes de convergencia, los cuales fueron comprobados empíricamente
mediante ensayos numéricos.

Chemotaxis–Navier–Stokes: En el contexto del problema estacionario de chemotaxis-Navier-Stokes,
hemos realizado un método de elementos finitos completamente mixto. Con el objetivo de mejorar las
aproximaciones para los gradientes de u, la densidad celular η y la concentración de la señal química
φ, hemos introducido estas variables al sistema. Debido a la presencia de términos trilineales, fue nece-
sario a abordar las formulaciones variacionales resultantes en espacios de Banach, en donde destacamos
que si bien previamente trabajábamos en espacios donde las variables y sus divergencias eran consid-
eradas en Lt, en este caso, hemos tenido que abordar la divergencia en Lt/2. Es importante destacar
que, aunque hemos optado por considerar condiciones de Dirichlet para la frontera, las formulaciones
resultantes requieren ajustes mínimos para manejar condiciones de frontera más complejas. La teoría
de Babuška-Brezzi, junto con el teorema del punto fijo de Banach, nos permitió establecer la existencia
y unicidad, a nivel continuo, de nuestro esquema completamente mixto.

Concerniente al esquema de Galerkin, la introducción de este nuevo espacio H-div nos indujo a
desarrollar nuevas técnicas y herramientas, tales como propiedades adicionales del interpolante de
Raviart-Thomas. De esta manera, pudimos verificar las condiciones inf-sup a nivel discreto necesarias
para establecer que cada problema desacoplado está bien planteado. Luego, gracias al teorema de
Brouwer y al teorema del punto fijo de Banach, pudimos establecer la unicidad de la solución para
el esquema discreto. También demostramos la estimación de Céa y, así, junto con las propiedades
de aproximación de los espacios de elementos finitos elegidos, concluimos teóricamente los órdenes
de convergencia. Los experimentos numéricos confirman empíricamente el cumplimiento de estos ór-
denes. Además, realizamos experimentos que ilustran la capacidad de nuestro método para abordar
condiciones de frontera más realistas.

Trabajos futuros

Los métodos desarrollados y los resultados obtenidos en esta tesis han motivado varios proyectos en
proceso y a futuro. Algunos de ellos son descritos a continuación:

1. Análisis a posteriori para los problemas de difusión asistida por esfuerzo y chemotaxis–
Navier–Stokes.
Como una continuación natural, estamos interesados en llevar a cabo un análisis de error a pos-
teriori para los problemas estudiados en esta tesis, para mejorar su robustez ante problemas en
los cuales se involucran geometrías complejas o soluciones con altos gradientes.



2. Desarrollo de un método de elementos finitos mixtos para el problema de poroelas-
ticidad acoplado con calor.
Estamos interesados en aplicar un método de elementos finitos mixtos en espacios de Banach
para el problema de poroelasticidad acoplado con calor, el cual consiste en un medio poroso
homogéneo constituido por una mezcla de granos incompresibles y un fluido intersticial. Y dado
una fuerza volumétrica f y términos fuente dados l y g, centraremos la discusión en las siguientes
ecuaciones de Biot acopladas con una ecuación de convección-difusión:

σ = 2µe(u) + λdiv(u)I− (αp+ βθ)I en Ω , −div(σ) = f en Ω , (4.238a)

c0p+ αdiv(u)− div(w) = l en Ω , w =
κ

η
∇p en Ω , (4.238b)

θ +w · ∇θ − div(δ(σ)∇θ) = g en Ω , (4.238c)

donde e(u) := 1
2(∇u+∇ut) es el tensor de deformaciones infinitesimales, κ es la permeabilidad

del sólido poroso, λ y µ son las constantes de Lamé del sólido (módulos de dilatación y corte,
respectivamente), c0 > 0 es el coeficiente de almacenamiento específico restringido, 0 < α ≤ 1

es el parámetro de Biot-Willis, β es una escala de tensión activa que indica un acoplamiento
bidireccional entre difusión y movimiento, η es la viscosidad del fluido en los poros y δ : R → R
es una difusividad dependiente del estrés que considera una difusión alterada en el dominio
poroelástico.

Acá notamos, que el segundo y tercer término en el lado izquierdo de (4.238c), implicarán que w

y σ deberán ser buscados en los espacios de Banach Ht(divt; Ω) y Ht(divt; Ω), respectivamente.
Y en consecuencia, las herramientas desarrolladas en esta tesis serán de gran utilidad para el
análisis de este problema.

3. Un Análisis más Generalizado y Robusto

Si bien en esta tesis generalizamos el análisis a espacios de Banach, esto conllevó la necesidad de
restringir nuestro análisis a ciertos casos. El primero, para el problema de difusión asistido por
esfuerzo, requería imponer restricciones en el módulo de dilatación, suponiendo que este fuera
suficientemente grande. Por otra parte, el principal desafió de demostrar condiciones inf-sup a
nivel discreto implicó la utilización de un proyector, cuya estabilidad con respecto a la norma Lt

solo es válida para el caso bidimensional. Por lo tanto, un posible trabajo a futuro consistiría en
encontrar nuevas formas de realizar el análisis de manera que se evadan estas restricciones sobre
los datos y la dimensionalidad del problema.
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