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1. RESUMEN 

La competencia es producida por el solapamiento de nicho, especialmente en 

especies morfológica, ecológica, filogenéticamente similares y simpátricas. Sin 

embargo, si los recursos son suficientes las especies realizaran una partición del 

nicho en 3 ejes fundamentales: comida, tiempo y espacio. Entender las 

interacciones de los depredadores nos permite entender las relaciones 

ecológicas dentro de una comunidad. En Chile central hay especies de 

carnívoros viviendo en simpatría. A su vez, esta área concentra una mayor 

antropización del hábitat, llevando a las especies a coexistir en un ambiente con 

menor disponibilidad de recursos. Es por esto que el objetivo principal de este 

trabajo fue comprender como los tres ejes principales permiten la coexistencia 

de estos depredadores en un ambiente con recursos limitados. Proponemos que 

las especies de carnívoros relacionados ecológica y morfológicamente exhibirán 

una mayor segregación espaciotemporal para evitar el riesgo de agresión y la 

competencia de recursos. Mas aun, esperamos que, en el hábitat nativo, los 

carnívoros segregaran sus dietas debido a la alta diversidad de alimento. En el 

hábitat antropizado, más ítems de alimento exóticos será consumida dada la 

disminución de ítems nativos, cambiando la dinámica trófica entre los carnívoros. 

Para esto, comparamos un hábitat antropizado con un hábitat nativo en el parque 

nacional Radal Siete Tazas. Evaluamos el eje espaciotemporal con cámaras 

trampa, y para el eje trófico se colecto y analizo fecas de los carnívoros y se 

capturaron pequeños mamíferos en el área de estudio. Obtuvimos datos de 6 de 

8 carnívoros. Casi todas las especies prefirieron las horas de oscuridad con 

excepción del quique, y presentaron distintas preferencias de hábitats. La dieta 

de los carnívoros estuvo compuesta en su mayoría de pequeños roedores, la 

mayoría especies exóticas. En el hábitat nativo, se observó un mayor número de 

interacciones entre los carnívoros con valores de solapamiento moderados y 

altos, mientras que en el hábitat antropizado hubo un menor número de especies 

depredadoras y menor disponibilidad de recursos, es por esto que se encontró 
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un menor número de interacciones, pero todas con un alto solapamiento de 

nicho. De los tres ejes principales, la segregación del nicho espacial y las 

distintas preferencias de hábitat parecen ser la llave para la coexistencia de esta 

comunidad de carnívoros a través de los diferentes tipos de hábitat; el nicho 

trófico y temporal por hábitat y especies también juegan un rol fundamental para 

evitar la competencia de recursos cuando el eje espacial esta solapado. 
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2. ABSTRACT      

Competition is produced by niche overlap, especially in morphologically, 

ecologically, phylogenetically similar species, and sympatric. However, if 

resources are enough, species would do a niche partitioning in 3 fundamental 

axes: food, time, and space. Understanding predator interaction allows us to 

understand the ecological relationship inside a community. In central Chile, there 

are carnivore species living in sympathy. In turn, this area concentrates a greater 

anthropization of the habitat, leading species to coexist in an environment with 

less resource availability. Therefore, the main objective of this work was to 

comprehend how the three principal axes allow the coexistence of these 

predators in an environment with limited resources. We proposed that carnivore 

species with closely related ecology and morphology exhibit greater spatial-

temporal segregation to avoid aggression risk and resource competition. 

Furthermore, we expect that in the native habitat, carnivores segregate their diets 

due to the high diversity of food. In the anthropized habitat, more exotic food items 

will be consumed due to the decrease of native items, changing trophic dynamics 

among competitive carnivores. To do that, we compared an anthropized habitat 

with a native one in Radal Siete Tazas National Park. We evaluated the spatial-

temporal axis with camera traps, and for the trophic niche, we collected and 

analyzed carnivore scats and captured small mammals in the study area. We 

obtain data from 6 of 8 carnivores. Most species preferred dark hours, except 

quique, and had different habitat preferences. Carnivores' diet was mainly 

composed of small rodents, mostly exotic species. In the native habitat, we 

observe a greater number of niche interactions among carnivores with moderate 

and high overlap values, while in the anthropized habitat, there were fewer 

predator species and less resource availability; therefore, there was less niche 

interaction, but those were all high niche overlap. From the three principal axes, 

spatial niche segregation and different habitat preferences seem to be the keys 

to the coexistence of this carnivore community through these different habitats; 
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trophic and temporal niches per habitat and species also play a key role in 

avoiding resource competition when the spatial axis is overlapped. 
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3. INTRODUCTION 

Concepts of niche and competition by resources are fundamentals for our 

comprehension of how sympatric species coexist. While the niche concept refers 

to all relevant resources for the existence of a species and its role within the 

ecosystem, the competition theory postulates that ≥ two species cannot coexist if 

they depend on the same resources since these have a limited supply (Gause 

1934; Hutchinson 1957; Tokeshi 1999). Competition can be induced by 

coexistence, and like a product of ecological niche overlap, this interaction is 

especially apparent within the mammalian carnivore guilds (Mammalia: 

Carnivora) because are the top or superior predators in most terrestrial 

communities and have evolved specialized morphology, physiology, behaviors 

and ecological requirements which drives to competitive interactions when they 

are in sympatry (Gittleman 1989; Hutchinson 1957; Hardin 1960; Schoener 1974; 

Alley 1982; Jaksic 2007). Nevertheless, if resources are enough, species will 

partition existing resources to coexist, reducing niche overlap by dividing into 

three main axes: food, space, and time (Hutchinson 1957; Pianka 1973; Chesson 

2000; Macarthur & Levins 1967). Niche partitioning promotes biodiversity and is 

critical to ecosystem functioning and stability (Chesson 2000). 

Also, anthropogenic disturbance is restructuring terrestrial ecosystems 

with global consequences for niche dynamics and biotic interactions (Foley et al. 

2005, 2011). Currently, carnivores face significant anthropogenic threats in 

agricultural areas from habitat loss and fragmentation, disturbance by domestic 

free-roaming dogs and cats, and direct hunting by humans (Gálvez et al. 2021). 

Some effects of expanding human footprints on carnivores are restricting animal 

movements in space, increased wildlife nocturnality, and transforming resource 

niches and prey partitioning with widespread consequences for population, 

community, and ecosystem dynamics (Tucker et al. 2018; Gaynor et al. 2018; 

Thompson et al. 2012; Smith et al. 2018; Moss et al. 2016; Magioli et al. 2019). 
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These alterations can also affect interspecific competition. For example, 

decreasing prey density can increase resource competition, intensifying the 

negative interaction between carnivores (Powers & Jetz, 2019). For carnivores, 

all principal niche axes have rarely been explored concurrently to explain 

carnivore community structure and interactions (but see Thornton et al. 2004; 

Dröge et al. 2017; Miller et al. 2018). Ultimately, niche partitioning among 

carnivores is structured by body size (Polis et al. 1989; Donadio & Buskirk 2006): 

apex carnivores limit mesocarnivores, which limit small carnivores (Newsome & 

Ripple 2014). Thus, apex carnivores often create ecological opportunities for 

small carnivores, although the particular axis that is made available varies by the 

system (Prugh & Sivy 2020; Sévêque et al. 2020). Accordingly, understanding the 

mechanism structuring carnivore communities requires that all critical niche axes 

be quantified simultaneously (Rodriguez et al. 2022). 

Chile has suffered significative spatial transformation due to fragmentation 

and the replacement of native habitats due to different human activities (Romero 

et al. 2003; Montenegro et al. 2004; Vogiatzakis et al. 2006; Lara et al. 1996; 

Acosta 2001; Echeverría et al 2006; Zuñiga 2009). The central zone of Chile 

mainly represents an ecologically important ecosystem due to the high 

concentration of endemic species, which characterizes it as a biodiversity hotspot, 

which is distinguished for having a marked seasonality (cold-wet winters and hot-

dry summers), its vegetation composed of the Chilean shrubland, and its high 

anthropization, where live more than 80% of the Chilean population (Arroyo et al., 

2008; Mooney & Dunn 1970; Myers et. al 2000; Blondel & Fernández 2012). This 

has historically generated high anthropic pressure, forcing different native species 

to coexist in a highly modified habitat and constant contact with humans 

(Montenegro 2004; Vogiatzakis et al. 2006; Napolitano et al. 2020). In Chilean 

fragmented forests, it has been possible to identify a greater co-occurrence of 

terrestrial carnivore species in plantation areas than in native forests. Also, these 

species show diet homogenization, and it has been proposed that they are in a 
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strong competitive condition (Zuñiga et al. 2005; Zuñiga et al. 2009). Whereas, in 

undisturbed environments, the greater environmental availability of prey 

resources coupled with small differences in diet associated with temporal 

partitioning could contribute to the coexistence of carnivorous species (Walker et 

al. 2007; Napolitano et al. 2008; Nagy-Reis et al. 2019). In Central Chile, it is 

possible to find seven native species of terrestrial carnivores inhabiting the same 

ecosystems: Conepatus chinga, Galictis cuja, Leopardus guigna, L. colocola, 

Lycalopex griseus, L. culpaeus, and Puma concolor, which use similar 

environmental resources. According to niche theory, species using the same 

resource may partition their niches or segregate in another niche dimension, 

allowing their coexistence in the same habitat. However, what happens when 

these dynamics are disturbed by human activities? This question becomes more 

relevant when considering that predator resources in fragmented systems tend to 

homogenize because of the decrease of native prey in anthropized forests. 

Therefore, a competitive scenario can be promoted by facilitating the 

development of a new niche, at least in the trophic axis (Pasitschniak-Arts and 

Messier, 1998).  

Following this niche partitioning conceptual framework, we hypothesize that 

carnivore species with closely related ecology and morphology (i.e., between 

felids or mustelids and foxes) would exhibit greater spatial-temporal segregation 

to avoid aggression risk and resource competition. This dynamic would repeat in 

anthropized and native habitats. Furthermore, we expect that in the native habitat, 

carnivores segregate their diets due to the high diversity of native “food”/prey 

availability. In the anthropized habitat, carnivore species would consume more of 

human resources subsidies and exotic species due to availability and decreased 

native “food”.  This change in trophic dynamic would increase niche overlap 

among competing carnivores, particularly between specialist predators and 

hypercarnivores (i.e., felids). To explore this mechanism of niche partitioning for 

these carnivores in an anthropized habitat, our objectives were: 
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1. Characterize the three main niche dimensions of a predator community in 

the Andes Mountains in central Chile: trophic, spatial, and temporal. 

2. Evaluate how these niche axes change for the carnivore species between 

two different habitats (anthropized and native). 

3. Generate base material for developing evidence-based conservation 

policies for this group of terrestrial mammals, which is widely threatened in 

Chile. 

4. MATERIALS AND METHODS 

4.1 Study area. - The study was carried out in the Radal Siete Tazas 

National Park (-71.026 W, -35.458 S) located in Region del Maule, Chile, 50 km 

southeast of Molina, between 650 and 2156 m.a.s.l. The park is a privileged site 

due to its great biodiversity and endemism, playing a fundamental role in the 

conservation of the original ecosystems of the area (Molina Communal Ecological 

Council, 2015). The park is highly visited each summer, with more than 2000 

people per day, and during 2023 winter was strongly affected by the rainy season 

enhanced by El Niño Southern Oscillation. We identified two contrasting areas for 

the study inside the park: an anthropized and a native landscape. The anthropized 

area corresponds to an abandoned pine plantation close to the "El Toro" sector, 

which has houses and campsites and a high summer population flux. In the pine 

plantation, most of the soil is bare and covered only with pine needles. The area 

also has isolated presence of Lithraea caustica, Gevuina avellana, Podanthus 

mitiqui, and Rubus sp. The native area corresponds to two different adjacent 

landscapes: 1) A Nothofagus semi-dense forest with abundant presence of 

Aristotelia chilensis and Lomatia dentata, and 2) a shrubland area with sandy soil 

and isolated trees of Nothofagus, Lomatia hirsuta, and Austrocedrus chilensis.  

4.2 Trophic niche 

         4.2a Diet data. - Feces were collected by walking around the native and 

anthropized study areas following Muñoz (2008) protocol. Only whole feces were 
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considered, identified by morphology according to Muñoz-Pedreros (2010). Once 

in the lab, to preserve the samples, they were dried at 60°C for 24 hrs (Phillip et 

al. 2007). The samples were individually placed in a nylon mesh bag and washed 

in an automatic washing machine, with water only retaining the remains. These 

were dissected to identify digested prey items in each sample (fur, teeth, bones, 

seeds, feathers). Then, the items were classified into four food categories: 

arthropods, birds, mammals, and plant matter, and further identified to the lowest 

possible taxonomic level according to specialized literature (i.e., Chehébar & 

Martín 1989; Reise 1973; Pearson 1995), plus a database obtained with samples 

from the Zoology Museum of the Universidad de Concepción and small mammals 

captured in the study area during the fieldwork. 

4.2b Diet analyses. - To estimate the trophic niche for each carnivore 

species, we calculated the relative frequency of occurrence of food items in 

predator feces (%FO). The reliability of the scat sample size was assessed for 

each species by plotting accumulation curves for prey species (Ray and Sunquist 

2001). Next, we estimate trophic preferences, diet breadth, and similarity between 

carnivores with a correspondence analysis (CA) using %FO of each prey item for 

each predator and employing the “FactoMineR” package (Lê et al., 2008). We 

used bootstrap confidence ellipses to graphically represent the variability of the 

diet of each carnivore in the CA dimensions. Complementarly, we use the Levins 

standardized index ranging from 0 to 1 (i.e., specialist to generalist food habits, 

respectively; Levins 1968). To evaluate trophic niche overlap, we use Pianka’s 

index, varying from 0 (exclusive food niches) to 1 (complete dietary overlap) 

(Krebs 1989). Finally, we evaluated significant changes in carnivore diets 

between habitats using bootstrapped empirical distribution and Mann-Whitney's 

U-test (Wilcoxon 1992). We use the Bonferroni correction for each p-value 

obtained to correct for the effect of multiple comparisons. 
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4.2c Prey availability. - To characterize prey availability per habitat, we 

estimate small mammals' abundance, richness, and diversity by live trapping with 

Sherman traps (5 m to 10 m spacing). With 160 traps, we set 2 capture lines by 

habitat spaced between 100 m with a layout that maximizes the distance to the 

edges of the designated habitat (Fernández et al. 2013). Traps were operated for 

periods of 3 to 5 nights. These were checked at dawn to reduce the capture time 

and were baited with crushed oats, vanilla, and peanut butter. 

Richness was calculated as the total number of captured species. 

Abundance was estimated by directly listing small mammals (Hilborn et al. 1976) 

since the assumption of homogeneity of recapture probabilities is not required 

(Simonetti 1986). Also, we considered the independent records of small mammals 

obtained by the camera traps as potential prey. Diversity was calculated with the 

Shannon-Wiener diversity index (H; Cardenas et al. 2003).  The H index 

considers the number of species and their representation (how many individuals 

per species) and measures diversity as 𝐻 = − ∑ 𝑝𝑖 ln(𝑝𝑖)𝑠
𝑖  with 𝑝𝑖 =  

𝑛𝑖

𝑁
. Where 𝑛𝑖 

is the number of individuals of i species, N is the pooled abundance of the species, 

and s is the observed richness. H value is bounded between 0 and ln(s) and tends 

to zero in communities that are not very diverse (Soler et al. 2012). In addition, 

we made a habitat grouping analysis based on species composition 

(presence/absence), using Jaccard's similarity index (Cardenas et al. 2003). 

Jaccard index, modified by Ellenber (1956), is only qualitative and it doesn't 

consider the degree of participation of each species in the ecological dominance, 

where a value closer to 1 indicates greater similarity (Magurran 1988). This index 

is defined as 𝐽𝑖𝑗 =
𝐶

𝑆1+𝑆2−𝐶
. Were S1 = the number of species observed in zone 1, 

S2 = the number of species observed in zone 2 and C = the number of shared 

species for S1 and S2 (Soler et al. 2012). Food item’s availability and use were 

compared using the Pearson’s correlation coefficient (r). These analyses were 

made in R software. 
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4.3 Temporal and Spatial niche 

4.3a Camera trap data collection. - We placed 15 camera traps 

(Campark Upgrade Trail Camera T70 16 MP 1080P Game & Hunting Camera) in 

the native area and 15 in the anthropized area. We use a minimum camera 

spacing of 200 m to cover the largest possible area and maximize the probability 

of detecting the presence of the focal species (Silver et al., 2004). We considered 

sites with markings or traces of the species of interest, such as latrines or animal 

trails (Balme et al. 2009). To avoid affecting the behavior of target species, we 

did not use any bait or lure on the camera stations (Soyumert 2020). We set the 

cameras to take three photos per trigger without delay between pictures, in a 

continuous operation of 24 hours from November 2022 to January 2024. Cameras 

were checked at the end of every season to compile the information and to 

replace the batteries or SD cards. We divided the independent records of each 

species into 1-hour intervals over the 24-hour circadian cycle. 

4.3b Daily activity patterns and temporal and spatial distribution 

overlap. -  First, we calculated the relative frequency of records (Relative 

Abundance Index, RAI) in each camera trap as the number of detections per 100 

days/trap for each habitat (Ferreiro et al. 2021). Then, to describe the activity 

patterns, we classified the records as diurnal if 90% of the independent records 

were found in daylight hours, nocturnal to those that 90% of the records were 

found in darkness, and cathemeral to those that presented activities during the 

day and at night (Gómez et al. 2005). We consider diurnal the records between 

8:00 and 20:00 and nocturnal from 20:00 to 8:00, like an average of daylight hours 

since in Chile, seasons are marked with longer daylight hours in summer and 

shorter ones in winter. Also, we evaluated temporal segregation between the 

activity patterns of carnivore species pairs and tested for shifts in daily activity 

patterns between anthropized and native habitat using the nonparametric Mardia-

Watson-Wheeler test (MWW, Batschelet 1981) with the “circular” package 
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(Agostinelli & Lund, 2017). Finally, we used the nonparametric Kernel density 

function to estimate the activity overlap coefficient (Δ) between carnivore species 

and habitat type (Ridout & Linkie 2009; Linkie & Ridout 2011). This coefficient, 

defined as the area under the curves formed by the two density functions at each 

time unit, varies from 0 (no overlap) to 1 (total temporal overlap of the activity; 

Ridout & Linkie 2009). We obtained 95% confidence intervals for the estimated 

overlap coefficients from 1000 bootstrap samples (Linkie & Ridout 2011; Meredith 

& Ridout 2018). We use the Δ1 coefficient for small samples (<75 records for at 

least one of the compared pairs) and the Δ4 coefficient for large samples (>75 

records; Ridout & Linkie 2009). These analyses were performed with the 

“Overlap” package of R (Meredith & Ridout 2018; R Development Core Team 

2020). Activity overlap between each comparison was classified as follows: low 

overlap (Δ ≤ 0.5), moderate overlap (0.5 < Δ ≤ 0.75), and high overlap (Δ > 0.75) 

(Monterroso et al. 2014). We performed pairwise comparisons of the activity 

patterns of predators in each study site only in those cases where we had more 

than ten independent records (Fisher, 1995). 

Habitat use was estimated as the relative frequency of each photographic 

record of each species in each habitat type (Zuñiga & Jiménez 2018). 

Furthermore, we calculated the pairwise species overlap between the activity 

centers of carnivores based on the RAI data of each habitat for each camera 

(Ferreiro-Arias et al. 2021). The activity centers were spatially represented for 

each carnivore species and site using the packages “ggmap” and “ggplot2” (Kahle 

& Wickham, 2013; Wickham, 2016). We calculated the spatial overlap between 

predators using Pianka’s index (PI; Pianka 1973). We calculated bootstrapped 

confidence intervals around PI using the “spaa” package (Zhang et al. 2013). All 

analyses were conducted using R Software (R Core Team, 2020). 
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5. RESULTS 

5.1 TROPHIC NICHE 

During the study period, we identified and stored 167 scats. We collected 

scats of güiña, culpeo fox, and puma in both habitats. Scats of colocolo cats were 

only found in the shrubland area of the native habitat, and we did not find scats 

of Quique or Chingue (Table 1). Given the results of the species accumulation 

curve, all diets in this study were representative except for the puma in the 

anthropized habitat, which was excluded from further analysis (Table 1, Fig. 2). 

We can recognize a decrease in the number of scats collected during the winter 

season due to the heavy rains experienced in the 2023 summer. 

5.1a Diet composition and correspondence analysis. – With the U-test (Table 

2), we found significant differences in niche breadth and diet composition between 

all the carnivore species evaluated. Also, we found that güiña and culpeo fox had 

significant differences in their diet composition between the anthropized and the 

native habitats (p>0.05; Table 2). According to Levins index, culpeo fox had the 

broader trophic niche in both habitats (Best = 1), followed by the puma at the native 

habitat (Best = 0.61), güiña at the anthropized habitat (Best = 0.54), colocolo cat in 

the native (Best = 0.3) and güiña at the native habitat (0.18) (Table 1). 

Güiña showed a specialist diet in both habitats but with a wider niche 

amplitude in the anthropized habitat. It also showed significant differences in diet 

composition (Native Best = 0.18; Anthropized Best = 0.54, Table 1; p >0.05 Table 

2). In the native habitat its diet was composed strictly by small mammals (%FO = 

96.3%) mainly exotic species such as rats (%FO = 40.7%) and native rodents like 

O. bridgesi (%FO = 22.22%). This species, in the anthropized habitat, had a 

broader diet composed of small mammals ( (%FO= 55.8%) mostly exotic species, 

arthropods (%FO= 26.47%) and plant matter (%FO= 14.7%) like Prunus sp 

seeds. 
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Colocolo cat showed a specialist diet (Best = 0.3, Table 1) in the native 

habitat, composed of small mammals (%FO= 85.7%) and arthropods (%FO= 

14.3). The Colocolo cat preys mostly on rats (%FO= 28.57%), rabbits (%FO= 

23.81%) and native rodents like Octodon bridgesi (%FO= 14.29) and P. 

xanthopygus (%FO= 9.52). 

Puma showed a more generalist diet in the native habitat (Best = 0.61; 

Table 1) than the other felids, feeding mainly on small mammals (%FO = 56.76%), 

arthropods (%FO = 29.73%) and plant matter (%FO = 8.11%). Puma’s main prey 

were Oryctolagus cuniculus (%FO= 21.6%), Rattus sp (%FO = 8.11%) and 

Phyllotis xanthopygus (%FO = 8.11%). Also, puma consumed coleoptera species 

like Bolborhynum sp, Heliofugus sp and A. cummingii, and Prunus sp fruits. 

In both habitats, the culpeo fox had the broadest diet of all carnivore 

species and showed significant differences in diet composition between the 

anthropized and native habitats (Best = 1; p>0.05; Table 1,2). Its primary food item 

was arthropods (%FO native-anthropized = 36 – 37%) with species like 

Acanthinodera cummingii, Heliofugus sp or Brachystermus sp, followed by plant 

matter (%FO native-anthropized = 32-33%) with species as Malus domestica in 

the native habitat and Cryptocacrya alba in the anthropized as the most important, 

and small mammals (%FO native-anthropized =20-24%). While in the 

anthropized habitat, it consumed more exotic species, mainly Rattus sp (%FO = 

8.08%), in the native habitat, it preyed upon native and exotic species equally 

(%FO = 9.09%). 

The first two dimensions of the correspondence analysis (CA) explained 

70.37% of the variability of carnivore diets (Fig. 3). Axis 1, which explained 

40.39% of the variation, points out trophic preferences of güiña, colocolo cat, 

puma, and culpeo fox in the native habitat. Güiña and colocolo cats showed close 

values due to their specialist behavior and preferences for exotic and native small 
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mammals. Puma showed greater variety of trophic items, having an intermediate 

position between the specialist small felids and the generalist, culpeo fox. Axis 2 

explained 29.98% of the variance generated by güiña and culpeo fox trophic 

preferences in the anthropized habitat. Güiña showed a wider variety of items in 

the anthropized habitat, including arthropods and vegetal matter. Meanwhile, the 

culpeo fox remains a generalist species that consumes the same groups in the 

anthropized habitat, and specific items of those groups change between habitats. 

5.1b Trophic niche overlap. - We found the highest overlap values and more 

cases of niche overlap between carnivore species in the native habitat than in the 

anthropized one (Table 2). Here the highest value of Pianka’s index was for the 

overlap of the güiña and colocolo cat PI =0.86(0.54-0.95), followed by colocolo 

cat with puma PI=0.77 (0.57-0.92), culpeo fox and puma PI=0.58(0.45-0.75), and 

the lowest overlap was found between güiña with puma 0.56(0.34-0.71). At the 

anthropized habitat, we only found one trophic niche overlap between güiña and 

culpeo fox with a moderate overlap value PI = 0.7(0.47-0.89). 

5.1c Prey availability. - 38 individuals were captured, and we obtained 1004 

independent records of small mammals in the park. The native area was the 

richest site for small mammal species and abundance, with 37 captures and 620 

independent records (Table 3). The following species were recognized in the 

native area: Abrothrix olivacea, A. longipilis, Oligoryzomys longicaudatus, 

Octodon bridgesi, Phillotys xanthopygus, Dromiciops bozinovici, Rattus sp and 

Orictolagus cuniculus. The anthropized area was the poorer in terms of species 

and individuals. We find O. longicaudatus, O. cuniculus and Rattus sp. As 

measured by the Shannon-Wiener index, species diversity showed that the native 

area was more diverse than the anthropized (H native = 0.74, H anthropized = 

0.5). The Jaccard index showed that the prey availability of the native habitat was 

not similar to that of the anthropized habitat (J = 0). Pearson correlation indicates 

that Colocolo cat (r=0.52), culpeo fox (r=0.69), and puma (r=0.86) in the native 
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habitat had an opportunistic behavior with a high correspondence between small 

mammals available and small mammals consumed while güiña showed as more 

specialist (r=0.26). In the anthropized habitat, the culpeo fox had a lower 

correspondence prey available/consumed (r=0.17) and güiña showed more 

opportunistic (r=0.73) (Table 3). 

5.2 SPATIAL-TEMPORAL NICHE 

We recorded six of seven carnivores expected for the study area (Table 

4). The number of records ranged from 245 for the culpeo fox to just two records 

for the puma. Due to the low number of records, the latter species was excluded 

from all posterior analyses. The total sampling effort was 424 days/trap. We 

obtained 1135 photographs, from which 344 were independent records. The most 

abundant species considering both habitats (anthropized and native) were culpeo 

fox (RAI=2.31, N = 245) and güiña (RAI = 0.34, N = 36), followed by chingue (RAI 

= 0.25, N = 26), quique (RAI = 0.18, N = 19), colocolo cat (RAI = 0.15, N = 16) 

and puma (RAI = 0.02, N = 2). RAI values for most predators were highest in the 

native habitats except for güiña (RAIanthropized = 2.42) and puma 

(RAIanthropized = 0.44) (Table 4). 

Most species preferred dark hours, but only chingue and colocolo cat were 

strictly nocturnal (96.2% and 93.8% of records in dark hours, respectively; Table 

4). Güiña and culpeo fox were categorized as cathemeral, mostly nocturnal 

(25/75% and 24.9/75.1% of records light/dark hours respectively; Table 4), and 

quique was the only carnivore strictly diurnal (100% of records in light hours; 

Table 4) with its highest activity at midday. Chingue and güiña showed their 

activity peak between 00:00 and 6:00. While colocolo cat and culpeo fox went 

from 18:00 to 00:00 (Fig. 4). Most of the carnivores except quique decreased their 

activity patterns between 12:00 and 18:00, starting at dusk and finishing at dawn 

(Table 4). Only the culpeo fox had enough records per habitat to compare its daily 
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activities between anthropized and native habitats, and its time distribution 

patterns were very similar between habitats (∆=0.82[0.73-0.91]; W = 0.77, p-value 

= 0.67; Table 4; FigS. 1). 

5.2a Temporal overlap. - Temporal overlap values between carnivores varied 

widely from 0.14 to 0.82 (Fig. 4; Table 5). The activity distribution test indicated 

significant differences in the activity patterns for 5 of 10 carnivore contrasts (Table 

5). We found that quique is the only carnivore that does not overlap its temporal 

activity with the other species and has the lower overlapping value with chingue 

(∆ = 0.14; W = 34.4, p-value <0.001). On the contrary, colocolo cat and culpeo 

fox showed the highest temporal overlap (∆ = 0.82; W = 0.46, p-value = 0.79), 

followed by chingue and güiña (∆ = 0.81; W = 2.4, p-value = 0.3), and güiña and 

culpeo (∆ = 0.79; W = 6.53, p-value = 0.03). While güiña and colocolo cat (∆ = 

0.71; W = 2.35, p-value = 0.3), chingue and colocolo (∆ = 0.66; W = 39.07, p-

value = 0.14), and chingue and culpeo fox (∆ = 0.66; W = 11.32, p-value <0.01) 

showed moderate overlapping values. For more information, see supplementary 

material. 

5.2b Habitat preferences and Spatial overlap. - For habitat preferences, only 

chingue (92.3% records) and colocolo cat (100% records) were limited to the 

native habitat, while güiña mainly appeared in the anthropized area (94.4% 

records). Quique was found almost equally in both habitats (52.6% records in 

anthropized and 47.4% native) and culpeo fox was also in both habitats but mostly 

in the native area (36.6% records in anthropized and 63.7% native) (Table 4). 

Carnivores showed similar activity centers (peak RAI values) (Fig. 5) along 

one year of sampling, but moderate and variable spatial overlap values across 

the two study sites. In the native habitat, PI values go from 0 to 0.69. We found 

three pairs of carnivores with moderate spatial overlap values: quique with 

chingue PI = 0.69 (0.05-0.94), güiña with culpeo fox PI = 0.66 (0.34-0.9), and 
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Quique with culpeo fox PI = 0.63 (0.29-0.83). While in the anthropized habitat, 

there was only one pair of species with high spatial overlap value quique and 

güiña PI = 0.79 (0.17-0.98) and one with moderate overlap value culpeo fox with 

güiña PI = 0.5 (0.3-0.8) (Table 6). 

6. DISCUSSION 

 Our work reveals two major results. The first one is that the coexistence of 

this carnivore community among anthropized and native habitats in Radal Siete 

Tazas NP is driven mainly by habitat preferences and spatial niche segregation. 

In addition, we find resource partitioning in the other two axes evaluated (temporal 

and trophic) on a finer scale to avoid resource competition when the spatial axis 

overlaps, becoming evident in different activity peaks between species or a slight 

diet composition variability through habitats. Spatial segregation or differential 

space use among sympatric carnivores is likely context and species-dependent, 

changing with community membership and landscape characteristics (Heim et al. 

2019). This reinforces the idea that the coexistence mechanisms underlying 

community structure are multidimensional and must be analyzed integratively 

(Ferreiro-Arias et al. 2021). Our second significant result is the poorer prey 

diversity in the anthropized than in the native habitat. Consequently, the 

anthropized habitat hosts fewer carnivore species and few overlapping 

interactions but with higher overlap values. Carnivores’ habitat use is strictly 

related with prey availability (Mortelliti & Boitani 2008). Also, carnivores often 

change their abundance following prey density (Angerbjorn et al. 1999; Gilg et al. 

2006; Pereira et al. 2006). Resource availability is a strong predictor of carnivore 

spatial distribution (Rich et al., 2017; Ver Schueren et al., 2021), and spatial 

overlap between is usually higher when prey densities are lower to maximize 

resource acquisition (Karanth et al., 2017). Thus, the spatial niche interactions 

found here suggest that prey densities in the anthropized area are insufficient to 

support the predator community increasing competition between species. 
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The effective conservation of carnivores in their natural environment 

requires an understanding of how these carnivores coexist without competitively 

excluding one another (Muller et al. 2022). Our results show a high temporal 

overlap of the species activity in dark hours, starting at sunsets and decreasing 

through the morning, except for quique which shows mainly diurnal activity. 

However, variation was noticed in their activity peaks. Muller et al. (2022) found 

similar variation between caracal and leopard temporal activity; caracal activity 

peaked around midnight, while leopard activity peaked around dawn and dusk. It 

has been suggested that temporal segregation is uncommon between potential 

competitors possibly due to constraints in the biological clock of the species and 

the costs of shifting from one circadian cycle to another (Palomares & Caro 1999; 

Schoener 1974; Kronfeld-Schor & Dayan 2003). Although it is clear that carnivore 

temporal overlap is high, given that temporal activity patterns have evolved to 

satisfy a variety of selection forces that differ amongst species to minimize 

interactions with competitors, while increasing chances of hunting success 

(Hayward & Slotow, 2009; Karanth et al., 2017), it is plausible that smaller species 

like quique, chingue, and güiña could alter their peak activity to optimize this 

trade-off and also avoid potential bigger predators of the area such as culpeo fox 

or colocolo cat. The latter alter their peak activity to avoid puma, facilitating the 

coexistence of these species, especially if they are spatially overlapping. 

Subordinate carnivores can They are potential prey for larger body-size 

carnivores. Therefore, they can display prey strategies such as modifying their 

behavior by balancing their need to forage and avoid large predators (“Ecology of 

Fear”, Brown et al. 1999). Therefore, food-rich habitat patches with significantly 

high predation risk could remain spatially or temporally unoccupied (Linkie and 

Ridout 2011).  

Moreover, there is a trophic niche overlap in the two habitats, which was 

detected for the three feline species and the culpeo fox. We could not find any 

scat from chingue or quique. However, we presume possible the trophic niche 
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overlap between these species and the other carnivores since they feed mainly 

on arthropods and small mammals depending on their availability in the 

environment (Donadio et al. 2004; Zapata et al. 2001; Zuñiga et al. 2005; Sade 

et al. 2012), and trophic overlap has already reported between quique and culpeo 

fox in central Chile (Elberspenger 1991) and between quique and chilla fox in 

Argentina (Palacios et al. 2012). On the other hand, güiña, colocolo cat, and puma 

showed high overlap in their trophic niche, at least in the native habitat, mainly 

consuming small exotic mammals. This agrees with previous studies for 

neotropical small felids, whose also present temporal overlap and diets based 

mainly on rodents, lagomorphs and marsupials (Bisceglia et al. 2008; Silva-

Pereira et al. 2011; Iriarte & Jaksic 2012; Pérez-Irineo et al. 2017; Foster et al. 

2013; Gutiérrez-González & López-González 2017; Harmsen et al. 2009; Porfirio 

et al. 2017; Scognamillo et al. 2003; Hernandez-Sanchez & Santos-Moreno 

2020).  

Interestingly, the güiña, a species with a narrower diet compared to the 

colocolo cat and puma, could use the pine plantation from 2022 to 2024 

consistently. This shows that the güiña has more ecological flexibility than the 

colocolo cat, which was limited to the native scrubland habitat. In our study area, 

güiña was as abundant in the anthropized habitat as the colocolo cat was in the 

native habitat. Although morphological and niche similarities between these 

species, güiña seems to be more resilient than the colocolo cat to habitat 

anthropization by exploiting other types of resources, indicating that the almost 

exclusive presence of the colocolo cat in the native habitat could be a good 

indicator of the ecosystemic health. The literature postulates that generalist 

species are better adapted to changes in their habitat, while specialists are less 

likely to adapt, being relegated to less disturbed areas (Oehler, 1995; Morán-

López et al., 2006; McDougall et al., 2006; Sánchez-Hernandéz et al., 2001; 

Tabeni and Ojeda, 2005; Heim et al. 2019). However, our results suggest that the 

güiña could be more ecologically plastic than other feline species recognized as 
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a specialist predator in the native habitat and as a generalist predator in the 

anthropized habitat, expanding their niche breadth, consuming small mammals 

present in the habitat, arthropods and even plant matter. Similarly, Balme et al. 

(2020) found that leopard populations may consist of a heterogeneous mix of 

specialist and generalist individuals, with ecological opportunity as the primary 

driver of dietary specialization, influenced by phenotypic constraints (e.g., the sex 

of individuals or experience), and environmental conditions (e.g., prey diversity), 

as predicted by the optimal foraging theory (Stephens & Krebs, 1986). 

Species with ecological plasticity can respond to changes in food, 

competition, and the presence of novel resources through spatial segregation as 

an avoiding mechanism, which could be a recurrent strategy to avoid competition 

or intraguild aggression events (Greenberg, 1990a). In relatively homogeneous 

landscapes, where a general habitat type dominates, similar species may use 

different patches that support a set of resources sufficient to fulfill their 

requirements (Soto 2015). Spatial segregation is discernible even at a fine scale 

for species with high temporal and trophic overlap, with mesocarnivores actively 

avoiding each other, putatively to not engage in intraguild killing (Ferreiro-Arias et 

al. 2021). Particularly, güiña and culpeo fox are “extreme opposite predators” in 

the native habitat. While güiña had a specialist diet and selective behavior, the 

culpeo fox was the most generalist predator with opportunistic behavior. However, 

in the anthropized habitat, decreased small mammal diversity implied that these 

predators 1. changed their diet composition and foraging behavior, the güiña 

became more generalist and opportunistic while the culpeo fox became more 

specialist in consuming other food items; and 2. These changes in their trophic 

axis meant a high dietary overlap between them, interaction absent in the native 

habitat. The flexible hunting behavior of güiña and culpeo fox supports them as 

predators that feeds habitat-dependent (Moreira-Arce et al. 2015). Güiñas 

preferences for exotic mammals in exotic plantations have already been recorded 

(e.g., Correa & Roa 2005; Sade et al., 2012, Moreira-Arce et al., 2015). However, 
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in our study, güiña preyed on rats, available or not, in each habitat type. Also, the 

rest of the carnivores did it, suggesting a replacement for the role of native small 

mammals in the trophic network of the park. Since rats are up to fourfold the body 

mass of native rodents, they could become an essential source of biomass for 

carnivores (Muñoz-Pedreros & Yañez, 2009). This phenomenon appears to be 

widespread in southern South America. (Novaro et al. 2000) (i.e. Moreira-Arce et 

al. 2015; Lambertucci et al. 2009; Zanon et al. 2012; Rau & Jimenez 2002). Given 

the preference and high consumption of the "rat" resource by this carnivore 

community, the population fluctuations of this rodent could promote the variation 

of the niche axes for these predators. We speculate that this variation could be 

seen enhanced after the strong rainy season associated with the “El Niño 

Southern Oscillation” phenomenon that occurred in winter 2023 (Cordero et al. 

2024) due that under conditions where moist soil persists for several months, rats 

can breed over an extended period having a massive impact on their populational 

density (Madsen and Shine 1999). 

Although we were not able to cover all axes of all species, this work 

supports the idea that coexistence may be much more complicated and even 

dynamic than has mostly been evaluated (Linnell 2000). Resource partitioning is 

not always distributed along straightforward food, space, or time axes but could 

also be ‘hidden’ in finer-scale behavioral interactions between carnivores 

(Karanth et al., 2017; Lahkar et al., 2020). Promoting habitat diversity and 

segregation opportunities can help reduce the intensity of interspecific 

competition and benefit the conservation of threatened species (Thakur, 2023). 

Understanding the impacts of habitat alterations on interspecies interactions is 

crucial for conservation practices. This is the first study in Chile that evaluates the 

three central axes of a carnivore community and their fluctuation between 

anthropized and native habitats. Also, it is the first study of the ecological aspects 

of Leopardus colocola since it was raised to the species category, now a feline 

endemic of central Chile  (D’Elia et al. 2020). Here, we recorded its specialist diet 



30 
 

and preferences for small mammals, strictly nocturnal behavior, and niche axis 

interactions with other sympatric carnivore species. Also, we recorded and 

corroborated the ecological plasticity of guiña and culpeo fox previously reported 

(Correa & Roa, 2005; Sade et al., 2012; Moreira-Arce et al., 2015; Castillo-

Ravanal et al., 2018), and how these species can adjust their niche through 

habitat types. We hope this knowledge can help the management of conservation 

plans for carnivores and their ecosystems by providing new insights into the 

natural history of the species studied and their community dynamics. 

7. CONCLUSION 

The coexistence of predators is driven by multidimensional resource 

partitioning, where the three principal axes fluctuate depending on community 

members and environmental aspects such as prey availability. In our case, the 

coexistence of the carnivore community between habitat types in Radal Siete 

Tazas National Park can be facilitated by spatial segregation with different habitat 

preferences among species, but trophic and temporal resource partitioning at 

fine-scale behavior, like different peak activity or a slight diet composition 

variability through habitats, also plays a key role in decreasing competition. Our 

results showed a significant abundance, but only some prey species available in 

a homogeneous habitat cannot host the total number of predators due to 

increased competition. Therefore, conservation strategies not only would have to 

consider carnivores by themself but must begin to consider the critical elements 

such as the small mammals that support the predator assemblage and the 

interactions that this resource entails between carnivores, especially in species 

without enough ecological plasticity to use new resources. 
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9. TABLES 

Table 1.- Habitat and scat numbers. The Levins index (in the parentheses is the 

standardized value) for each carnivore per habitat in the National Park Radal 

Siete Tazas from Andean Central Chile. Sampling was made during the years 

2022-2023. %FO indicates the relative frequency of occurrence of each item in 

the total of occurrences of all items. Values next to the column of habitat type 

signify the number of samples collected per habitat for each carnivore species.  
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Table 2.- Trophic overlap among the carnivore species in the National Park Siete 

Tazas. Pianka values (PI) with its 95% CI in parentheses. Above the diagonal is 

the indicated PI value for the pair species compared in the native habitat, while 

under the diagonal it is indicated PI value for the pair species compared in the 

anthropized habitat. PI values with an * mean that niche amplitude between the 

paired species was significantly different. The diagonal, colored with grey, 

indicates the significance value from the Shannon index (H') corrected by 

Bonferroni for the trophic diversity of each carnivore between the two types of 

habitats, anthropized and native. Species without representative diet or absent 

per habitat were represented with x. 
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Table 3.- Prey availability per habitat type. Total abundance of small mammals 

captured and registered since 2022-2024 of the study area in the National Park 

Radal Siete Tazas (N). The following indexes are shown: Shannon index (H) for 

small mammals diversity per habitat, Jaccard’s similarity index (J) between 

habitats, and Pearson’s correlation coefficient (r) for every carnivore per habitat. 
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Table 4.- Daily activity patterns of carnivores in Siete Tazas National Park. 

Relative Abundance Index (RAI). Species were classified into activity categories 

based on the percentage of records falling in light or dark hours of the day (light: 

8:00 am to 20:00 pm; dark: 20:00 pm to 8:00 am). N is the number of records in 

total and each habitat. ∆ measures the species overlap in their temporal niche 

between the anthropized and native habitats (with the respective 95% confidence 

intervals). Habitat use was calculated as the relative frequency of records for 

every carnivore per hábitat. 
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Table 5.- Temporal niche overlap values of carnivores in the different habitats of 

National Park Radal Siete Tazas. Overlapping coefficient values (∆) with their 

respective 95% confidence intervals are between parentheses and are 

represented above the diagonal. Mardia-Watson-Wheller test values (W), with 

their respective statistical significance (p, between parentheses) are represented 

below the diagonal. Statistically significant values are shown in italics. Carnivores 

with <10 records per habitat or absent are represented with an x. 
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Table 6.- Spatial overlap among the carnivore species in the National Park Siete 

Tazas. Pianka values (PI) with its 95% CI in parentheses. Above the diagonal is 

indicated PI value for the pair species compared in the native habitat, while under 

the diagonal it is indicated PI value for the pair species compared in the 

anthropized habitat. Species without records in one habitat type were represented 

with x. 
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10. FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.- Map of the study area in Radal Siete Tazas National Park. The park is 

marked with light green in the upper box, and with white lines in the lower boxes. 

Anthropized habitat is colored in pink and the native habitat is colored in light blue. 

Camara traps are symbolized like black dots. 
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Figure 2.- Accumulation curves for prey species in every carnivore’s diet per 

habitat. 
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Figure 3.- Niche segregation along the trophic axis among carnivores in National 

Park Radal Siete Tazas. Individual dots indicate every food item consumed by 

the species in the park. The first two CA axes (Dim 1, Dim 2) explain 70% of the 

variability in diet composition between species and habitats. The first dimension 

represents a gradient of diet variability between güiña and culpeo fox in the native 

habitat, while the second dimension separates the diet of carnivores in the 

anthropized and native habitats. 
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Figure 4.- Density estimates of daily activity patterns and extensions of their 

overlap among pairs of carnivores in National Park Radal 7 Tazas, central Chile. 

Temporal activity for every carnivore species is represented with one line color. 

Overlap is represented by the shaded yellow area. Significant differences in the 

MWW test are indicated by an asterisk after overlap coefficient values (∆). Habitat 

preferences and activity patterns are represented with symbols for every 

carnivore species on the corresponding figure. 
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Figure 5.- Activity centers and Pianka’s index of carnivores in the anthropized 

and native habitats of the National Park Radal Siete Tazas. In RAI maps the black 

dots are the camera traps and the highest RAI values are in yellow. In PI graphs, 

moderate overlap values are indicated above the blue dashed line (PI >0.5), and 

high overlap is above the red dashed line (PI >0.75). 
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Figure 6.- Carnivore species recorded in Radal Siete Tazas National Park from 

2022-2024. 


