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Resumen

En esta tesis estudiamos la preservación de homogeneidad (y no homogeneidad)
de contraejemplos universales no metrizables bajo productos e hiperespacios,
con el fin de responder las siguientes preguntas: ¿Es la ω-ésima potencia del
plano de Niemytzki homogénea? [Fitzpatrick Jr. and Zhou (1990), Problem 5]
y ¿Es el hiperespacio de los cerrados no vacíos de la doble flecha homogéneo?
[Arkhangel’skǐi (1987), Problem II.1].

Para abordar la primera pregunta, investigamos subespacios de la ω-ésima
potencia del plano de Niemytzki y la respondemos parcialmente demostrando la
homogeneidad del producto entre el plano de Niemytzki y la ω-ésima potencia de
un abierto básico. Como consecuencia, concluimos que el producto de la ω-ésima
potencia del plano de Niemytzki con la ω-ésima potencia de un abierto básico es
también homogéneo.

Para responder a la segunda pregunta, analizamos hiperespacios de la doble
flecha y ofrecemos una respuesta parcial probando que los espacios de uniones
de a lo más una cantidad finita de intervalos cerrados, así como todos los
productos simétricos excepto el primero, no son homogéneos. Como contraparte,
demostramos que el segundo producto simétrico de la recta de Sorgenfrey
es homogéneo. Además, logramos dar una imagen completa de cómo lucen
los autohomeomorfismos de potencias finitas de la doble flecha. Mostramos
que cualquier autohomeomorfismo de una potencia finita de la doble flecha es
localmente (fuera de un conjunto nunca denso) un producto de encajes monótonos
que van desde un intervalo abierto-cerrado de la doble flecha a esta, seguido de
una permutación de las coordenadas.

Keywords – espacio homogéneo, hiperespacio, producto simétrico, plano de
Niemytzki, recta de Sorgenfrey, flecha doble, sucesión convergente no trivial



iii

Abstract

In this thesis we study the preservation of homogeneity (and non-homogeneity)
of nonmetrizable universal counterexamples under products and hyperspaces.
The main objective is to answer the following questions: Is ωth power of the
Niemytzki plane homogeneous? [Fitzpatrick Jr. and Zhou (1990), Problem 5], Is
the hyperspace of nonempty closed subsets of the double arrow homogeneous?
[Arkhangel’skǐi (1987), Problem II.1].

To answer the first question, we study subspaces of the ωth power of the
Niemytzki plane and we answer it partially by showing that the product of the
ωth power of the Niemytzki plane and the ωth power a basic open is homogeneous.
As a consequence, the product of the ωth power of the Niemytzki plane and the
ωth power of a basic open is homogeneous.

To answer the second question, we study hyperspaces of the double arrow and
we answer it partially by showing that the spaces of all unions of at most a finite
number of closed intervals and all symmetric products, except the first one, are
nonhomogeneous. As a counterpart, we prove that the second symmetric product
of the Sorgenfrey line is homogeneous. Moreover, we give a complete picture on
how the autohomeomorphisms of finite powers of the double arrow looks like, by
showing that any autohomeomorphism of a finite power of the double arrow is
locally (outside of a nowhere dense set) a product of monotone embeddings from a
clopen interval of the double arrow to the double arrow, followed by a permutation
of the coordinates.

Keywords – homogeneous space, hyperspace, symmetric product, Niemytzki
plane, Sorgenfrey line, double arrow, nontrivial convergent sequence
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Introducción 1

Introducción

Un espacio es homogéneo si para cada par de puntos de este existe un
autohomeomorfismo que lleva un punto en el otro. Intuitivamente, esto significa
que la estructura topológica en cada punto es la misma, es decir, que no depende
del punto. Algunos ejemplos de espacios homogéneos son grupos topológicos y
variedades conexas.

A pesar de que la homogeneidad es un concepto bastante natural, aún no es
bien comprendido. Muchas veces la homogeneidad de un espacio no es fácil de
verificar, sobre todo en ausencia de metrizabilidad (ver Arhangel’skii and van
Mill (2014)). Dicho lo anterior, en el contexto de "contraejemplos universales"
no metrizables (ver Steen and Seebach (1995)), queremos dar un poco de luz al
asunto estudiando la preservación de homogeneidad (o no homogeneidad) bajo las
operaciones topológicas de producto e hiperespacio.

Es fácil ver que la homogeneidad se comporta bien bajo productos. Más aún, el
producto de espacios no homogéneos puede ser homogéneo. Por ejemplo, el cubo
de Hilbert [0, 1]ω [Keller (1931)], el producto numerable de variedades conexas
metrizables con frontera [Fort (1962),Yang (1992)] y el producto numerable de
espacios primero contables 0-dimensionales [Dow and Pearl (1997)]. Observamos
que no siempre la homogeneidad puede ser inducida; por ejemplo, ninguna potencia
de {0} ∪ [1, 2] es homogénea. Así, la homogeneidad de un producto numerable de
espacios se vuelve bastante compleja.

En [Fitzpatrick Jr. and Zhou (1990), Problem 5], y más recientemente en
[Hrušák and van Mill (2018), Problem 5)], los autores hacen la siguiente pregunta:

Pregunta 1. ¿Es la ω-ésima potencia del plano de Niemytzki homogénea?

En esta tesis respondemos parcialmente esta pregunta probando que:

Teorema 1 (Teorema 2.2.9). El producto del plano de Niemytzki con la ω-ésima
potencia de un abierto básico del plano de Niemyztki es homogéneo. En particular,
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el producto de la ω-ésima potencia del plano de Niemytzki con la ω-ésima potencia
de un abierto básico del plano de Niemyztki es homogéneo.

Dado un espacio X, el hiperespacio Exp(X) es el conjunto de todos los
subconjuntos cerrados no vacíos de X con la topología de Vietoris. Esta topología
generaliza la métrica de Hausdorff en el caso de espacios metrizables compactos
(ver Michael (1951) e Illanes and Nadler (1999)). Dado un entero positivo m, el
producto simétrico Fm(X) es el subespacio de Exp(X) de todos los subconjuntos
de X con a lo más m elementos. Dado un espacio linealmente ordenado X,
consideramos Cm(X) como el subespacio de Exp(X) de todas las uniones de a lo
más m intervalos cerrados.

Varios resultados clásicos sobre homogeneidad involucran el estudio de
hiperespacios. En los años 70, R. Schori y J. West (Schori and West (1975))
mostraron que Exp([0, 1]) es homeomorfo al cubo de Hilbert. En particular,
Exp(X) puede ser homogéneo sin que X lo sea. Por otro lado, si κ > ℵ1, entonces
Exp (2κ) no es homogéneo (Ščepin (1976)). Por consiguiente, se puede ver que la
homogeneidad de un hiperespacio es bastante sutil.

Sea A la flecha doble de Alexandroff-Uryshon. En [Arkhangel’skǐi (1987),
Problem II..1], A.V. Arhangel’skǐi pregunta lo siguiente,

Pregunta 2. ¿Es el hiperespacio Exp (A) homogéneo?

Para comprender mejor este hiperespacio, estudiamos la homogeneidad de
algunos de sus subespacios más conocidos, tales como los productos simétricos
y el espacio de sucesiones convergentes no triviales. Este último fue introducido
en García-Ferreira and Ortiz-Castillo (2015) para espacios métricos y estudiado
de forma más general en Maya et al. (2018). Hoy en día tiene gran interés entre
topólogos.

Respondemos parcialmente la pregunta 2 mostrando que.

Teorema 2 (Teorema 4.3.5). El producto simétrico Fm(A) no es homogéneo para
todo m ≥ 2.

Teorema 3 (Teorema 4.4.5). Cm(A) no es homogéneo para todo entero positivo
m.

A pesar de la fuerte conexión entre A y la recta de Sorgenfrey S, como
contraparte demostramos que
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Teorema 4 (Teorema 3.2.3). El producto simétrico F2(S) es homeomorfo a S2.
En particular, es homogéneo.

Durante el desarrollo del Teorema 2, estudiamos el grupo de
autohomeomorfismos de mA y obtuvimos el siguiente resultado que nos
da una imagen completa de la estructura de tales morfismos.

Teorema 5 (Teorema 4.2.7). Si h : mA→ mA un homeomorfismo, entonces existe
una sucesión de cajas abiertas-cerradas básicas disjuntas Un :=

∏
j∈m

Ijn(n ∈ ω)

tales que
⋃
n∈ω

Un es denso en mA y h ↾ Un = σ ◦ (h0 × · · · × hm−1), donde cada

hj : Ijn → A es un homeomorfismo estrictamente monótono sobreyectivo a un
intervalo abierto-cerrado, y σ es una permutación de mA.

A continuación, se presenta la estructura del trabajo. En el Capítulo
1 proporcionamos definiciones y resultados básicos sobre homogeneidad e
hiperespacios necesarios para comprender el resto de los contenidos. Además,
probamos un teorema de metrización (Proposición 1.3.1).

En el Capítulo 2 estudiamos la homogeneidad de algunos subespacios de la
ω-ésima potencia del plano de Niemytzki. En la sección 2.1 hablamos sobre
cierto tipo de n-celdas (Definición 2.1.1) y recordamos un fuerte teorema de los
orígenes de la topología de dimensión infinita (Teorema 2.1.2). En la sección 2.2,
analizando los abiertos básicos del plano de Niemytzki (Lema 2.2.2) y ocupando el
teorema mencionado, demostramos que la ω-ésima potencia de los dichos básicos
es homogénea (Corolario 2.2.4). Luego, por extensión probamos el Teorema 1.

En el Capítulo 3 analizamos la homogeneidad de tres subespacios de Exp(S).
En la sección 3.1 mostramos que el espacio de sucesiones convergentes no triviales
de S es homogéneo (Proposición 3.1.2). En la sección 3.2, haciendo uso de una
partición muy ingeniosa (Proposición 3.2.1) probamos el Teorema 4. En la sección
3.3 demostramos que el espacio de los intervalos cerrados no vacíos de S es
homogéneo (Proposición 3.3.2).

En el Capítulo 4 investigamos la homogeneidad de varios subespacios de Exp(A).
En la sección 4.1 probamos que el espacio de sucesiones convergentes no triviales
de A es homogéneo (Proposición 4.1.2). En la sección 4.2 demostramos el Teorema
5 haciendo uso de funciones monótonas definidas sobre A. En la sección 4.3
mostramos el Teorema 2. En la sección 4.4, dado un espacio linealmente ordenado
X damos una caracterización para Cm(X) (Proposición 4.4.2) y probamos el
Teorema 3.



4 Introducción

Emplearemos el libro de R. Engelking Engelking (1989) como referencia para
topología. Para homogeneidad utilizaremos el artículo de A.V. Arhangel’skǐi y
J. van Mill Arhangel’skii and van Mill (2014). Para hiperespacios ocuparemos el
artículo de E. Michael Michael (1951) y el libro de A. Illanes con S.B. Nadler Jr.
Illanes and Nadler (1999).
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Introduction

A space is homogeneous if for any two of its points there exists an
autohomeomorphism that carries one point into the other. Intuitively, this
means that all points have the same topological properties, that is, the topological
structure does not depend on the point. Some examples are topological groups
and connected manifolds.

Even though homogeneity is a very natural concept, it is not well understood
yet. Very often the homogeneity of a space is not easy to verify, especially in
the absence of metrizability (see Arhangel’skii and van Mill (2014)). Having said
the above, in the context of "universal counterexamples" (see Steen and Seebach
(1995)), we want to shed some light on the issue by studying the preservation of
homogeneity (or non-homogeneity) under the topological operations of product
and hyperspace.

It is easy to see that homogeneity behaves well under products. Moreover, the
infinite product of non homogeneous spaces can be homogeneous. For example;
the Hilbert cube [0, 1]ω [Keller (1931)], the countable infinite product of connected
metrizable manifolds with boundary [Fort (1962); Yang (1992)] and any product
of countably many 0-dimensional first countable spaces [Dow and Pearl (1997)].
On the other hand, we observe that homogeneity not always can be induced; for
example, no power of {0}∪ [1, 2] is homogeneous. Thus, homogeneity of a product
can be quite complex.

In [Fitzpatrick Jr. and Zhou (1990), Problem 5], and more recently in [Hrušák
and van Mill (2018), Problem 5], the authors asks the following.

Question 1. Is the ωth power of the Niemytzki plane homogeneous?

In this thesis we partially solves this question proving that.

Theorem 1. The product of the Niemytzki plane and the ωth power of a basic
neighborhood of the Niemytzki plane is homogeneous. In particular, the product of
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ωth power of the Niemytzki plane and the ωth power of a basic neighborhood of the
Niemytzki plane is homogeneous.

Given a space X, the hyperspace Exp(X) is the set of all nonempty closed
subsets of X with the Vietoris topology. This topology generalizes the Hausdorff
metric for compact metrizable spaces (see Michael (1951) and Illanes and Nadler
(1999)). Given a positive integer m, the symmetric product Fm(X) is the subspace
of Exp (X) consisting of all nonempty subsets of X with at most m elements. For
a linearly ordered space X, we consider Cm(X) as the subspace of Exp(X) of all
unions of at most m closed intervals.

Several classic results on homogeneity involve the study of the hyperspaces.
In the 1970’s, it was shown by R. Schori and J. West Schori and West (1975) that
Exp([0, 1]) is homeomorphic to the Hilbert cube. In particular, it is possible that
the hyperspace Exp(X) is homogeneous while X is not. On the other hand, if
κ > ℵ1, then Exp (2κ) is not homogeneous (see Ščepin (1976)). Thus, the question
of homogeneity of the hyperspace turns out to be quite subtle.

Let A be the Alexandroff-Uryshon double arrow space. In [Arkhangel’skǐi
(1987), Problem II.1], A.V. Arhangel’skǐi asked the following question.

Question 2. Is the hyperspace Exp (A) homogeneous?

To better understand this space, we study the homogeneity of some of the
most well-known subspaces of it, such as symmetric products and the space of
nontrivial convergent sequences. The later space was introduced in García-Ferreira
and Ortiz-Castillo (2015) for metric spaces and studied in a more general setting
in Maya et al. (2018). Today has a great interest among topologists.

We partially answer Question 2, by showing that.

Theorem 2 (Theorem 4.3.5). The symmetric product Fm(A) is not homogeneous
for any m ≥ 2.

Theorem 3 (Theorem 4.4.5). Cm(X) is not homogeneous for any positive integer
m.

Despite the strong connection between A and the Sorgenfrey line S, as a
counterpart we prove that.

Theorem 4 (Theorem 3.2.3). The symmetric product F2(S) is homeomorphic to
S2. In particular, it is homogeneous.



Introduction 7

In the course of proving Theorem 2, we study the group of autohomeomorphisms
of mA and obtain the following Theorem which gives us a complete picture on the
structure of such autohomeomorphisms.

Theorem 5 (Theorem 4.2.7). Let h : mA → mA be a homeomorphism. Then
there is a pairwise disjoint sequence of basic clopen boxes Un :=

∏
j∈m

Ijn(n ∈ ω)

such that
⋃
n∈ω

Un is dense in mA and h ↾ Un = σ ◦ (h0 × · · · × hm−1), where each

hj : Ijn → A is an strictly monotone homeomorphism onto a clopen interval, and
σ is a permutation of mA.

This thesis is organized as follows. In Chapter 1 we will give definitions and
basic results about homogeneity and hyperspaces needed to understand the other
chapters. Also, we prove a metrization theorem (Proposition 1.3.1).

In Chapter 2 we study the homogeneity of some subspaces of the ωth power
of the Niemytzki plane. In section 2.1 we talk about a special type of n-cells
(Definition 2.1.1) and recall a strong theorem from the origins of the infinite-
dimensional topology (Theorem 2.1.2). In section 2.2, analyzing the basic open
sets of the Niemytzki plane (Lemma 2.2.2) and using the theorem above, we show
that the ωth power of such basic sets is homogeneous (Corollary 2.2.4). Finally,
by extension we prove Theorem 1.

In Chapter 3 we study the homogeneity of three subspaces of Exp(S). In
section 3.1 we show that the space of nontrivial convergent sequences of S is
homogeneous (Proposition 3.1.2). In section 3.2, via a very ingenious partition
(Proposition 3.2.1) we prove Theorem 4. In section 3.3 we show that the space of
nonempty closed intervals of S is homogeneous (Proposition 3.3.2).

In Chapter 4 we study the homogeneity of several subspaces of Exp(A). In
section 4.1 we show that the space of nontrivial convergent sequences of A is
homogeneous (Proposition 4.1.2). In section 4.2 we prove Theorem 5 via monotone
functions defined on A. In section 4.3 we prove Theorem 2. In section 4.4,
for a compact linearly ordered space X, we give a characterization for Cm(X)

(Proposition 4.4.2) and we show Theorem 3.
We will use the book of R. Engelking Engelking (1989) as a basic reference

on topology. For homogeneity we will use the article of A.V. Arhangel’skǐi and
J. van Mill Arhangel’skii and van Mill (2014). For hyperspaces we will use the
article of E. Michael Michael (1951) and the book of A. Illanes with S.B. Nadler
Jr. Illanes and Nadler (1999).
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Chapter 1

Homogeneity and hyperspaces

By a space we mean a topological space. In the first two sections of this chapter we
will give definitions and basic results on homogeneity and hyperspaces. In section
1.1 we prove that finite powers of the Niemytzki plane are nonhomogeneous and
we give basic properties of the Sorgenfrey line and the double arrow. In section
1.2 we recall definitions and properties related to the Vietoris topology and a
characterization for symmetric products. In the last section we give a metrization
theorem that was obtained in our efforts to prove Theorem 4.3.5 and generalizes
a classical result on compact spaces.

1.1 Homogeneity

Definition 1.1.1. A space X is homogeneous if for every x, y ∈ X there
exists h ∈ Aut(X) such that h(x) = y, where Aut(X) denotes the group of
autohomeomorphisms of X.

Example 1.1.2. The real numbers, the rational numbers and the Hilbert cube are
homogeneous spaces.

The homogeneity of the Hilbert cube was first proved in Keller (1931). More
recent proofs can be found in [van Mill (2001), Theorem 1.6.6] and [Sakai (2020),
Theorem 2.1.2].

The proof of the following proposition is straightforward.

Proposition 1.1.3. Let {Xs}s∈S be a family of spaces. If Xs is homogeneous
for all s ∈ S, then

∏
s∈S Xs is homogeneous. In particular, all powers of a

homogeneous space are homogeneous.
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We will now introduce one of the main objects of study in this thesis. Let
H = {(x, y) ∈ R2 : y ≥ 0}, L = {(x, y) ∈ R2 : y = 0} and H+ = H \ L. For every
point x ∈ L, let B(x) the family of all sets of the form D ∪ {x} with D ⊂ H+

an open disc tangent to L at x. For every x ∈ H+, let B(x) be the family of all
open discs in H+ centered at x. The set H with the topology generated by the
neighborhood system {B(x)}x∈H is called Niemytzki plane and will be denoted by
HN . This space was defined (and attributed to Niemytzki) by Alexandroff and
Hopf in Alexandroff and Hopf (1935). We note that HN is first-countable.

Proposition 1.1.4. For all m ∈ Z+, Hm
N is not homogeneous.

Proof. Let m ∈ Z+ and x ∈ Hm
N such that all its coordinates are equal to (0, 0).

We claim that x does not have an open neighborhood with compact closure and
we proceed by contradiction. Let B ⊂ Hm

N a basic neighborhood of x. In this way,
there are open discs Di tangent to (0, 0) such that B =

∏m
i=1(Di∪{(0, 0)}). Assume

that B is compact. In particular, the boundary of B, ∂B, is also compact. Since
Hm

N is first-countable, by [(Engelking, 1989), Theorem 3.10.31] ∂B is sequentially
compact. Choose a sequence (xn) = (xn,1, . . . , xn,m)(n ∈ ω) such that for each
i, (xn,i)(n ∈ ω) is a sequence in ∂(Di ∪ {(0, 0)}) (xn,i ̸= (0, 0)) that converges to
(0, 0) in the Euclidean topology.

Claim 1.1.5. (xn)(n ∈ ω) do not have convergent subsequences.

Proof. If xn have a convergent subsequence, then the only candidate for limit is x.
If for each i we choose an open disc Ci tangent to (0, 0) that is strictly contained
in Di, then

∏m
i=1(Ci ∪ {(0, 0)}) is an open neighborhood of x that leaves out all

the elements of the sequence (xn).

Since (xn) is a sequence in
∏m

i=1 ∂(Di ∪ {(0, 0)}) ⊂ ∂B, there is a convergent
subsequence of (xn), which contradicts the claim.

The Sorgenfrey line S is the set of the real numbers with the topology generated
by the base B = {[a, b[: a, b ∈ R, a < b}. This space appeared in Alexandroff
(1929), but only after Sorgenfrey’s paper Sorgenfrey (1947) did it become one of
the "universal counterexamples" in general topology.

We recall that a space is 0-dimensional if it is T1 and has a base consisting of
clopen sets.
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Proposition 1.1.6. S is homogeneous, 0-dimensional and homeomorphic to every
element of B with the subspace topology.

Proof. We have that S is 0-dimensional, since every element in B is clopen.
For the homogeneity, let a, b ∈ S. The map f : S→ S defined by f(x) = x+b−a

is a homeomorphism with f(a) = b.
Since all the elements in B are homeomorphic, we will only prove that S ∼= [0, 1[.

Let [0,→ [ = {x ∈ R : x ≥ 0}. For each n ∈ ω we have that [ 1
n+2

, 1
n+1

[ ∼= [n, n+1[.
In addition, [n, n+ 1

2
[ ∼= [n, n + 1[ and [n+ 1

2
, n+ 1[ ∼= [−n − 1, n[. In this

way, [n, n+ 1[ = [n, n+ 1
2
[ ∪ [n+ 1

2
, n+ 1[ ∼= [−n− 1, n[ ∪ [n, n+ 1[. Since every

element in B is clopen, [0, 1[ =
⋃

n∈ω[
1

n+2
, 1
n+1

[ ∼=
⋃

n∈ω([−n− 1, n[ ∪ [n, n+ 1[) =

S.

Remark 1.1.7. Since the Sorgenfrey line is homeomorphic to [0, 1[ with the
subspace topology, we will asume that the S = [0, 1[.

Let (X,<) be a linear order. For a, b ∈ X we define the basic intervals

]←, a[ = {x ∈ X : x < a}

]a,→ [ = {x ∈ X : x > a}

]a, b[ = {x ∈ X : a < x < b}

The family of all this sets is a base for a topology called the order topology.
We say that (X,<) is a linearly ordered space if we consider it with the order
topology.

Let A0 = ]0, 1] × {0}, A1 = [0, 1[ × {1} and A = A0 ∪ A1. Define the
lexicographical ordering ⟨a, r⟩ ≺ ⟨b, s⟩ if a < b or a = b and r < s. The set A
with the order topology is the Alexandroff-Urysohn double arrow space (double
arrow for short). This space was defined in (Alexandroff, 1929). We observe that
D := {[⟨a, 1⟩, ⟨b, 0⟩] : 0 ≤ a < b ≤ 1]} is a base for A.

Remark 1.1.8. Since the map f : [⟨a, 1⟩, ⟨b, 0⟩] → A defined by f(⟨x, i⟩) =

⟨x−a
b−a

, i⟩(i ∈ {0, 1}) is a homeomorphism, we have that every element in D is
homeomorphic to A.

Proposition 1.1.9. A is homogeneous, 0-dimensional, first countable and
compact.
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Proof. Since every element of D is clopen, we have that A is 0-dimensional.
To prove homogeneity, let w, z ∈ A. Assume that w ≺ z. We consider several

cases.
Case 1. If w, z ∈ A0, then w = ⟨a, 0⟩ and z = ⟨b, 0⟩ for a, b ∈ ]0, 1] with

a < b. The function f : [⟨0, 1⟩, ⟨a, 0⟩] → [⟨a, 1⟩, ⟨b, 0⟩] defined by f(⟨x, i⟩) =

⟨b − b−a
b
(b − bx

a
), i⟩ is a homeomorphism. By the previous remark, there is a

homeomorphism g that sends A \ [⟨0, 1⟩, ⟨a, 0⟩] onto A \ [⟨a, 1⟩, ⟨b, 0⟩]. Thus,
h := f ∪ g ∈ Aut(A) and h(w) = z.

Case 2. For w, z ∈ A1 the procedure is analogous to the previous case.
Case 3. If w ∈ A0 and z ∈ A1, then there are a, b ∈ ]0, 1[ with a ≤ b such that

w = ⟨a, 0⟩ and z = ⟨b, 1⟩. The function f : [⟨0, 1⟩, ⟨a, 0⟩]→ [⟨b, 1⟩, ⟨1, 0⟩] defined
by f(⟨x, 0⟩) = ⟨1− x(1−b)

a
, 1⟩ and f(⟨x, 1⟩) = ⟨1− x(1−b)

a
, 0⟩ is a homeomorphism.

By the previous remark, there is a homeomorphism g that sends A \ [⟨0, 1⟩, ⟨a, 0⟩]
onto A \ [⟨b, 1⟩, ⟨1, 0⟩]. Thus, h := f ∪ g ∈ Aut(A) and h(w) = z.

Case 4. For w ∈ A1 and z ∈ A0 the procedure is similar to the previous
case except when w = ⟨0, 1⟩ or z = ⟨1, 0⟩. If w = ⟨0, 1⟩ and z = ⟨a, 0⟩ for
some a ∈ ]0, 1], then the function f : [⟨0, 1⟩, ⟨a, 0⟩] → [⟨0, 1⟩, ⟨a, 0⟩] defined by
f(⟨x, 0⟩) = ⟨a−x, 1⟩ and f(⟨x, 1⟩) = ⟨a−x, 0⟩ is a homeomorphism. If a = 1, then
we are done. If a < 1, then by the previous proposition there is a homeomorphism
g that sends A\ [⟨0, 1⟩, ⟨a, 0⟩] onto itself. Thus, h := f ∪g ∈ Aut(A) and h(w) = z.
Similarly for w = ⟨a, 1⟩ and z = ⟨1, 0⟩ with a ∈ [0, 1[.

We conclude that A is homogeneous. The other properties can be found in
Engelking (1989).

Remark 1.1.10. We note that A0 and A1 have the Sorgenfrey line topology as
subspaces of A.

1.2 Hyperspaces

Given a space X, we denote by Exp (X) the set of all non-empty closed subsets
of X. For a non-empty open set V of X, let [V ] = {F ∈ Exp (X) : F ⊂ V } and
⟨V ⟩ = {F ∈ Exp (X) : F ∩ V ̸= ∅}.

Definition 1.2.1 (Michael (1951)). The collection of all sets [V ] and ⟨V ⟩ is a
subbase for a topology on Exp (X) called the Vietoris topology.

From now on, Exp(X) will be considered with the Vietoris topology.
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Remark 1.2.2. The collection of all sets of the form{
F ∈ Exp(X) : F ⊂

n⋃
i=1

Ui and F ∩ Ui ̸= ∅ for all i

}

with U1, . . . , Un non-empty open sets of X; is a base for a topology. Originally, the
Vietoris topology was defined in Vietoris (1922) as the topology with such a base.

Since ⟨∪iVi⟩ = ∪i⟨Vi⟩ for any collection of non-empty open sets Vi; if X is
generated by a base, then the Vietoris topology on Exp (X) is generated by the
subbase of all sets of the form [V ] and ⟨W ⟩ with V open sets and W basic sets.
It is known that if X is compact, then Exp(X) is also compact [(Vietoris, 1922)].

Definition 1.2.3. Given a space X, a hyperspace of X is any subspace of Exp (X).

All subsets of Exp (X) will be considered hyperspaces.

Definition 1.2.4. For m ∈ Z+, the mth symmetric product of X, Fm(X), is the
collection of all subsets of X with cardinality at most m.

In this way, all symmetric products are hyperspaces. We recall the following
result by E. Michael.

Proposition 1.2.5 (Michael (1951)). If X is a T1 space, then X ∼= F1(X).

Given a linearly ordered space (X,<), we denote by

∆m(X) = {x ∈ Xm : ∀i ∈ {1, . . . ,m− 1}(πi(x) ≤ πi+1(x))}

Let ρ : ∆m(X)→ Fm(X) be the map given by ρ(x) = {π1(x), . . . , πm(x)} and let
∼ the equivalence relation on ∆m(X) defined by x ∼ y if and only if ρ(x) = ρ(y).

Let q : ∆m(X)→ ∆m(X)/∼ be the quotient map. We will sometimes write [x]

instead of q(x) to represent the equivalence class. We consider ∆m(X)/∼ as a
topological space with the quotient topology.

The following classical fact gives us a more geometric representation of Fm(X).

Proposition 1.2.6 (Ganea (1954)). If X is a linearly ordered space, then the
map ρ̃ : ∆m(X)/∼ → Fm(X) given by ρ̃([x]) = ρ(x) is a homeomorphism.

Definition 1.2.7 (Maya et al. (2018)). Let X be a Hausdorff space. A set S ⊂ X

will be called a nontrivial convergent sequence in X if S is countably infinite and
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there is x ∈ S such that S \ V is finite for any open neighborhood V of x. The
point x is called the limit of S and we will say that S converges to x. The set of
all nontrivial convergent sequences in X will be denoted Sc(X).

Remark 1.2.8. In the usual sense, a convergent sequence in X is a function
f : ω → X for which there exists x ∈ X such that for each open neighborhood
V of x, there is m ∈ ω with f(n) ∈ U for all n ≥ m. If f ′′(ω) is infinite, then
({x} ∪ f ′′(ω)) ∈ Sc(X).

The hyperspaces Fm(X) and Sc(X) will be relevant in chapters 3 and 4.

1.3 A metrization theorem

Proposition 1.3.1. Let X be a compact Hausdorff space. If there exists a Gδ-set
C ⊂ X2 homeomorphic to X such that for every x ∈ X there are a ∈ C and a
unique b ∈ C with x = π1(a) = π2(b), then X is metrizable.

Proof. For each n ∈ ω, let Gn be an open subset of X2 such that C =
⋂

n∈ω Gn

and Gn+1 ⊂ Gn. Since X2 is normal and C is closed, we can define a sequence of
open sets Un as follows. Let U0 = G0 and for n > 0 let Un such that C ⊂ Un ⊂
Un ⊂ Un−1 ∩ Gn. It follows that C =

⋂
n∈ω Un. Let x ∈ X and (s, x) ∈ C. For

n ∈ ω, let Un[s] := {y ∈ X : (s, y) ∈ Un}. Hence, Un[s] ⊂ Un−1[s] for any n > 0,
since

Un[s] = π′′
2(Un ∩ ({s} ×X)) = π′′

2(Un ∩ ({s} ×X)) ⊂ π′′
2(Un ∩ {s} ×X)

⊂ π′′
2(Un−1 ∩ ({s} ×X)) = Un−1[s]

where the second equality follows from [Engelking (1989), Corollary 3.1.11].

Claim 1.3.2. For any open neighborhood V of x, there exists n ∈ ω such that

x ∈ Un[s] ⊂ V

Proof. We proceed by contradiction. Let V be an open neighborhood of x with
Un[s] ̸⊂ V for any n ∈ ω. We choose xn ∈ Un[s] \ V . It follows that

⋂
n∈ω Un[s] =

{x}, since if z ∈
⋂

n∈ω Un[s] ⊂
⋂

n∈ω Un[s], then (s, z) ∈
⋂

n∈ω Un ⊂ C. Since
X is compact, the pseudocharacter and the character of x are equal [Engelking
(1989), Exercise 3.1.F.(a) (proved in (Alexandroff, 1924))]. Since the sets Un[s]



14 1.3. A metrization theorem

are open, the pseudocharacter of x is countable. Hence, X is first countable. By
[(Engelking, 1989), Theorem 3.10.31] X is sequentially compact. In this way, there
exists a convergent subsequence of (xn)(n ∈ ω), let us say with limit L. Since
each set Um[s] is closed and contains infinitely many elements of such subsequence,
we have that L belongs to each one of them. Thus, L ∈

⋂
m∈ω Um[s] = {x}.

By convergence, there are infinite elements of the subsequence in V , which is a
contradiction.

For each (s, t) ∈ C and n ∈ ω we can choose open neighborhoods Bs,n and
Bt,n such that Bs,n×Bt,n ⊂ Un. Since X is compact, there exists a finite subcover
Bn of {Bt,n : t ∈ X}. We claim that B =

⋃
n∈ω Bn is a countable base for X.

Let x ∈ X and V an open neighborhood of x. By the claim, there is n ∈ ω

such that x ∈ Un[s] ⊂ V . We choose Bz,n from Bn with x ∈ Bz,n. Therefore,
x ∈ Bz,n ⊂ Un[s] ⊂ V .

By the Urysohn’s metrization theorem, X is metrizable.

As a consequence, we obtain the following classical fact.

Corollary 1.3.3 (Šnĕıder (1945)). Let X a compact Hausdorff space. If the
diagonal of X is a Gδ-set, then X is metrizable.
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Chapter 2

Subspaces of countable products of

Niemytzki planes

In section 2.1 we give the definition and some properties of near n-cells. In
particular, Anderson has found when the countable infinite product of near n-cells
is homeomorphic to Rω. In section 2.2, via a geometric construction we show that
basic neighborhoods of points in H with the Niemytzki topology are homeomorphic
to basic neighborhoods with the Euclidean topology. With this results, we prove
the ωth power of basic neighborhoods of the origen are homeomorphic to Rω. By
extension, we prove that the product of the Niemytzki plane with the ωth power
of a basic neighborhood of it is homogeneous and as a consequence, we show that
the product of the ωth power of the Niemytzki plane with the ωth power of a basic
neighborhood is homogeneous too.

2.1 About n-cells

We recall that for n ∈ Z+, a closed n-cell is a product of n closed intervals of the
real line.

Definition 2.1.1 (Anderson (1967)). Let Y ⊂ Rn. We have that Y is a near
n-cell if Y is a subset of a closed n-cell V and the interior of V is contained in Y .
Additionally, if V \ Y is a Gδ of the boundary of V , then Y is called a Gδ near
n-cell. A proper near n-cell is a proper subset of a near n-cell.

We now recall the following result by R.D. Anderson.
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Theorem 2.1.2 (Anderson (1967), Theorem 9.3). A countable infinite product
of near n-cells is homeomorphic to Rω if and only if all its factors are Gδ near
n-cells and infinite many of them are proper.

By the previous theorem is natural to ask if, in general, an infinite product of
near n-cells is homogeneous. The answer is negative.

Example 2.1.3. Let D be the interior of a closed 2-cell and b a point of its
boundary. We have that (D ∪ {b})× [0, 1]ω is not homogeneous, since points with
coordinate b do not have open neighborhoods with compact closure.

However, we have the following result.

Proposition 2.1.4. The ωth power of a product of Gδ near n-cells is homogeneous.

Proof. Let {As}s∈S be a family of Gδ near n-cells. Let P be the set of all indexes
s ∈ S with As a proper Gδ near n-cell. Thus,

(∏
s∈S

As

)ω

=

(∏
s∈P

As

)ω

×

 ∏
s∈S\P

As

ω

=
∏
s∈P

Aω
s ×

∏
s∈S\P

Aω
s

∼=
∏
s∈P

Rω ×
∏

s∈S\P

[0, 1]ω

Since R and [0, 1]ω are homogeneous and product of homogeneous spaces is
homogeneous, we have that

(∏
s∈S As

)ω is homogeneous.

2.2 Homogeneity of some subspaces of the ωth

power of the Niemytzki plane

Proposition 2.2.1. If a, b ∈ H+ (or L), then there is f ∈ Aut(HN) such that
f(a) = b.

Proof. Let π1 and π2 be the projections onto the x-axis and y-axis, respectively.
Let a, b ∈ L. Assume that π1(a) ≤ π1(b). In this way, the map f : HN → HN

defined by f(x) = (π1(x) + π1(b)− π1(a), π2(x)) is as required. For π1(a) > π1(b)

the argument is similar.
Let a, b ∈ H+. We have two main subcases. If π2(a) = π2(b), then without loss

of generality assume that π1(a) < π1(b). Thus, the function f : HN → HN defined
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by f(x) = (π1(x) + π1(b) − π1(a), π2(x)) is a homeomorphism and f(a) = b. If
π1(a) = π1(b), then assume that π2(a) < π2(b). The function f : HN → HN defined
by f(x) = (π1(x), π2(b)π2(x)/π2(a)) is a homeomorphism with f(a) = b. Finally,
let us analyze the general case. We can assume that π1(a) < π1(b) and π2(a) <

π2(b). By the previous subcases, we can send a to b via the homeomorphism that
sends a to (π1(a), π2(b)) composition the homeomorphism that sends (π1(a), π2(b))

to b.

We denote H with the Euclidean topology by HE. For any A ⊂ H, AN and
AE denote A with the Niemytzki and Euclidean topologies, respectively. Let
B = H+ ∪ {(0, 0)}.

Lemma 2.2.2. BN is homeomorphic to BE.

Proof. Let f : BN → BE be the function defined by

f(x, y) =


(
x
√
x2 + y2

y
,
√

x2 + y2

)
if x ∈ R and y > 0

(0, 0) if x = y = 0

We will prove that f is a homeomorphism. First of all, f is bijective with
inverse

f−1(s, t) =


(

st√
s2 + t2

,
t2√

s2 + t2

)
if s ∈ R and t > 0

(0, 0) if s = t = 0

Since the Niemytzki topology coincides with the Euclidean topology on H+

and f ↾ H+ ∈ Aut(H+
E), we have that a set is open in H+

N if and only if its image
under f is open in H+

E.
Let U be a basic neighborhood of (0, 0) in BN . There is r > 0 such that

U = {(x, y) ∈ R2 : x2 + (y − r)2 < r2} ∪ {(0, 0)}. Define V = {(x, y) ∈ R2 :

x2 + y2 < 4r2 ∧ y > 0} ∪ {(0, 0)}.

Claim 2.2.3. f ′′(U) = V .

Proof. If (x, y) ∈ U \ {(0, 0)}, then x2+(y− r)2 < r2, that is to say x2+ y2 < 2ry.
In this way,

x2(x2 + y2)

y2
+ x2 + y2 =

(x2 + y2)2

y2
<

(2ry)2

y2
= 4r2
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Figure 2.2.1: Construction of f

which means that f(x, y) ∈ V .

If (s, t) ∈ V \ {(0, 0)}, then s2 + t2 < 4r2, or equivalently, 1 <
2r√

s2 + t2
. Thus,

(s, t) = f

(
st√

s2 + t2
,

t2√
s2 + t2

)
and

(
st√

s2 + t2

)2

+

(
t2√

s2 + t2
− r

)2

= t2
(
1− 2r√

s2 + t2

)
+ r2 < r2

implies that (
st√

s2 + t2
,

t2√
s2 + t2

)
∈ U

In a similar way, if V is a basic neighborhood of (0, 0) in BE, then f−1(V ) =

U for a basic neighborhood U of (0, 0) in BN . Therefore, we can send basic
neighborhoods of (0, 0) with the Niemytzki topology onto basic neighborhoods of
(0, 0) with the Euclidean topology and viceversa.

We conclude that a set is open in BN if and only if its image under f is open
in BE.

Corollary 2.2.4. The spaces Bω
N and Rω are homeomorphic. In particular, Bω

N

is homogeneous.
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Proof. Since BE is homeomorphic to the Gδ near 2-cell (]− 1, 1[×]0, 1[) ∪ {0, 0},
by Theorem 2.1.2 Bω

E is homeomorphic to Rω. By Lemma 2.2.2, Bω
N and Rω are

homeomorphic.

In our efforts to show that Bω
N is homogeneous using the technique in the proof

of [Lemma 5 ,Yang (1992)] we obtain the following result.

Corollary 2.2.5. There is no h ∈ Aut(B2
N ) that carries a point of B2

N \ (H+
N )

2 to
((0, 0), (0, 0)).

Proof. By Lemma 2.2.2, we can consider BE instead of BN . We suppose that such h

exists. Without loss of generality, let a ∈ H+
E such that h(a, (0, 0)) = ((0, 0), (0, 0)).

Since the points in (H+
E)

2 have compact neighborhoods and the points in B2
E\(H+

E)
2

do not, we have that h′′((H+
E)

2) = (H+
E)

2 and h′′(B2
E \ (H+

E)
2) = B2

E \ (H+
E)

2.
But this is a contradiction, since (B2

E \ (H+
E)

2) \ {(a, (0, 0))} is connected and
(B2

E \ (H+
E)

2) \ {((0, 0), (0, 0))} is not.

Question 2.2.6. Is there an h ∈ Aut(B3
N) that carries a point of B3

N \ (H+
N)

3 to
((0, 0), (0, 0), (0, 0))?

Definition 2.2.7 (Ford (1954), Definition 4.1). A space X will be called strongly
locally homogeneous, SLH for short, if for every p ∈ X and every open subset U
of X such that p ∈ U , there is an open set V with p ∈ V ⊂ U such that if q ∈ V

there is h ∈ Aut(X) with h(p) = q and h(x) = x for all x ∈ X \ V .

We recall the following result by L.R. Ford Jr.

Proposition 2.2.8 (Ford (1954), Theorem 4.3). Rω is SLH.

Theorem 2.2.9. HN × Bω
N is homogeneous.

Proof. Let πHN
and πBω

N
be the projections onto HN and Bω

N respectively. Let
a, b ∈ HN × Bω

N . We have three cases.
Case 1: πHN

(a), πHN
(b) ∈ L. There is f1 ∈ Aut(HN) such that f1(πHN

(a)) =

πHN
(b) by Proposition 2.2.1. Since Bω

N is homogeneous by Corollary 2.2.4, there is
f2 ∈ Aut(Bω

N ) such that f2(πBω
N
(a)) = πBω

N
(b). In this way, f1×f2 ∈ Aut(HN×Bω

N )

and (f1 × f2)(a) = b.
Case 2: πHN

(a), πHN
(b) ∈ H+. By an analogous procedure as for the previous

case, there is h ∈ Aut(HN × Bω
N) such that h(a) = b.



202.2. Homogeneity of some subspaces of the ωth power of the Niemytzki plane

Case 3: πHN
(a) ∈ H+ and πHN

(b) ∈ L. By Proposition 2.2.1, there is g1 ∈
Aut(HN) such that g1(0, 0) = πHN

(b). Let us define c =
(
(0, 0), πBω

N
(b)
)

and
U = (D∪{(0, 0)})N×Bω

N with D an open disc tangent to L at (0, 0). Since BN×Bω
N

is SLH by Corollary 2.2.4 and Proposition 2.2.8, there is an open neighborhood
V ⊂ U of c such that for d ∈ (H+

N × Bω
N) ∩ V there is f ∈ Aut(BN × Bω

N) with
f(d) = c and f is the identity on (BN × Bω

N ) \ V . For x ∈ L \ {(0, 0)}, we choose
a basic neighborhood Ax disjoint from π′′

HN
(V ). Let

g = f ∪
⋃

x∈L\{(0,0)}

IdAx×Bω
N

We have that g ∈ Aut(HN × Bω
N).

By the second case, there is h ∈ Aut(HN × Bω
N) such that h(a) = d. We

conclude that (g1 × Id) ◦ g ◦ h ∈ Aut(HN × Bω
N ) and (g1 × Id) ◦ g ◦ h(a) = b.

Corollary 2.2.10. Hω
N × Bω

N is homogeneous.

Proof. Since HN×Bω
N is homogeneous by the previous proposition, (HN×Bω

N )
ω ∼=

Hω
N × Bω

N is homogeneous too.

Question 2.2.11. Is Hω
N homogeneous?
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Chapter 3

Hyperspaces of the Sorgenfrey line

In section 3.1 we prove that the space of nontrivial convergent sequences of S is
homogeneous in a very natural way. In section 3.2, with a very technical partition
as one of the main tools, we show that the second symmetric product of S is
homogeneous. In section 3.3 we prove that the space of non-empty closed intervals
of S is homogeneous via a geometric characterization.

3.1 Homogeneity of the space of nontrivial

convergent sequences

Proposition 3.1.1. If S, T ∈ Sc(S), then there exists a homeomorphism h : S→ S
such that h′′(S) = T .

Proof. Let S, T ∈ Sc(S). First, we will prove that if S = {x} ∪ {xn : n ∈ Z+}
and P := {0} ∪ {1/2n : n ∈ Z+} ∈ Sc(S), then there exists a homeomorphism h1 :

S→ S such that h′′
1(S) = P . Since S is homogeneous, there is a homeomorphism

f : S → S with f(x) = 0. We have that the sequence f(xn) converges to
f(x) = 0, so we can define inductively z1 = max{f(xn) : n ∈ Z+} and zm =

max{f(xn) : n ∈ Z+} \ {z1, . . . , zm−1} for m ≥ 2. By convergence, we can
choose a clopen neighborhood V1 of 0 such that f(xn) ∈ V1 for every n with
f(xn) ̸= z1 and z1 /∈ V1. Because S \ V1 and [1/2, 1[ are homeomorphic to S
and S is homogeneous, there exists a homeomorphism g1 : S \ V1 → [1/2, 1[ such
that g1(z1) = 1/2. As before, we can choose a clopen neighborhood V2 of 0 such
that f(xn) ∈ V2 for every n with f(xn) ̸= z1, z2 and z1, z2 /∈ V2. There exists a
homeomorphism g2 : V1 \ V2 → [1/22, 1/2[ with g2(z2) = 1/22. Recursively, we
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can choose a clopen neighborhood Vm of 0 such that f(xn) ∈ Vm for every n

with f(xn) ̸= z1, . . . , zm and z1, . . . , zm /∈ Vm. There exists a homeomorphism
gm : Vm−1 \ Vm → [1/2m, 1/2m−1[ with gm(zm) = 1/2m.

We define the homeomorphism g =
⋃

gm : ]0, 1[→ ]0, 1[. Hence, we have the
homeomorphism g : S→ S with g(x) = g(x) if x ̸= 0 and g(0) = 0. In this way,
h1 := g ◦ f is the desired homeomorphism.

Finally, by the previous argument there is a homeomorphism h2 : S→ S such
that h′′

2(P ) = T . Therefore, the homeomorphism h := h2 ◦ h1 is as required.

Proposition 3.1.2. Sc(S) is homogeneous.

Proof. Given S, T ∈ Sc(S), consider h ∈ Aut(S) as in the previous proposition
so that h′′(S) = T . Let us define h : Sc(S)→ Sc(S) such that h(X) = h′′(X). If
X ∈ Sc(S), then h−1(X) ∈ Sc(S), so h(h−1(X)) = X and h is onto. If X, Y ∈ Sc(S)
and h(X) = h(Y ), then h′′(X) = h′′(Y ), so X = Y by the injectivity of h. Hence,
h is bijective and h(S) = T .

We will prove that h is continuous. Let B a basic set of Sc(S). We have
two cases. If B = Sc(S) ∩ [V ] with V an open set of S, then h

−1
(B) = Sc(S) ∩

h
−1
([V ]) = Sc(S) ∩ [h−1(V )]. If B = Sc(S) ∩ ⟨V ⟩ with V a basic set of S, then

h
−1
(B) = Sc(S) ∩ h

−1
(⟨V ⟩) = Sc(S) ∩ ⟨h−1(V )⟩. Therefore, h is continuous.

To end, we will prove that h is an open map. Let B a basic set of Sc(S).
If B = Sc(S) ∩ [V ] with V an open set of S, then h

′′
(B) = Sc(S) ∩ h

′′
([V ]) =

Sc(S) ∩ [h′′(V )]. If B = Sc(S) ∩ ⟨V ⟩ with V a basic set of S, then h
′′
(B) =

Sc(S) ∩ h
′′
(⟨V ⟩) = Sc(S) ∩ ⟨h′′(V )⟩.

3.2 Homogeneity of the second symmetric product

In this section we prove Theorem 3.2.3. It is worth mentioning that our proofs
are based on work of Bennett, Burke and Lutzer Bennett et al. (2012) and we
will also borrow some of its notation.

A Sorgenfrey rectangle is a set of the form [a, b[×[c, d[ where a, b, c, d ∈ [0, 1[;
a < b and c < d. By the Euclidean closure of such a rectangle we mean its closure
in the euclidean topology of [0, 1[2. Let ∆2 := {(x, y) ∈ S2 : x ≤ y} and let ∆ be
the diagonal of S. For each k ∈ ω, let Lk be the straight line joining the points
(0, 1

k+1
) and (1, 1).
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Proposition 3.2.1 (Bennett et al. (2012), Proposition 2.1). There is a countable
collection T of pairwise disjoint Sorgenfrey rectangles such that:

(1)
⋃
T = ∆2 \∆;

(2) for each T ∈ T , the Euclidean closure of T is disjoint from ∆;

(3) for each x ∈ [0, 1[ the set {T ∈ T : T ∩ ({x}×]x, 1[) ̸= ∅} is infinite and can
be indexed as {Tm : m ∈ Z+} in such a way that for all k, points of Tk lie
above points of Tk+1.

(4) for each T ∈ T , there is k ∈ ω such that T is between Lk and Lk+2.

Proof. For k ∈ Z+, we claim that there is a step function Sk : [0, 1[→]0, 1[ such
that:

• the graph of Sk lies strictly between the graphs of Lk and Lk−1;

• the jump points of Sk occur at rational numbers and those jump points are
an increasing sequence that converges to 1;

• for each x ∈ [0, 1[, Sk(x) is rational;

• the horizontal segments of the graphs of Sk contains their left endpoints,
but not their right endpoints.

For x ∈ [0, 1[ and k ∈ ω, let Lk(x) be the second coordinate of the point
in Lk ∩ ({x} × [0, 1[). We will show how to construct S2 betweeen L2 and L1.
The other constructions are analogous. Let v1 the average between L2(0) and
L1(0). Find b1 ∈ [0, 1[ with L2(b1) = v1 and let v2 be the average of v1 = L2(b1)

and L1(b1). Find b2 with L2(b2) = v2 and let v3 be the average of v2 = L2(b2)

and L1(b2). In general, given b1, . . . , bn and v1, . . . , vn; let vn+1 be the average of
vn = L2(bn) and L1(bn) and find bn+1 such that L2(bn+1) = vn+1. This recursion
gives rational numbers bn and vn, which will be the jump points of S1 and the
set of values of S2 respectively. For x ∈ [0, b1[ we define S2(x) = v1. For n ≥ 2

and x ∈ [bn−1, bn[ we define S2(x) = vn. Notice that because the graph of S2 lies
between L2 and L1, while the graph of S1 is constructed between L1 and L0, we
have S2(x) < S1(x) for all x ∈ [0, 1[.

We will use the graphs of the functions Sk and their jump points to describe
the edges of the Sorgenfrey rectangles of the collection T . Using S1 the rectangles
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Figure 3.2.1: Partition T of ∆2 \∆

at the top are described. List the jump points of S1 as a0 := 0 < a1 < a2 < . . .

and choose the Sorgenfrey rectangles [0, a1[×[S1(0), 1[ and [aj, aj+1[×[S1(aj), 1[

for j ∈ Z+.
The next tier of rectangles is defined using S1 and S2. List the jump points of S2

as b0 := 0 < b1 < b2 < . . . . If for j ∈ Z+ there is no jump point of S1 in [bj, bj+1[,
then choose the Sorgenfrey rectangle [bj, bj+1[× [S2(bj), S1(bj)[. If there are jump
points of S1 in [bj, bj+1[, then list them as bj < cj1 < · · · < cji < bj+1 and choose
the Sorgenfrey rectangles [bj, cj1 [×[S2(bj), S1(bj)[, [cj1 , cj2 [×[S2(cj1), S1(cj1)[,...,
[cji , bj+1[×[S2(cji), S1(cji)[. This process is repeated for each pair Sk, Sk+1 of
consecutive step functions. The resulting collection of Sorgenfrey rectangles is as
required.

Lemma 3.2.2 ((Bennett et al., 2012), Lemma 2.2). Let a, b, c, d ∈ [0, 1[ with
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a < b and c < d. The function

habcd(x) = c+
d− c

b− a
(x− a)

is an order-isomorphism from [a, b[ onto [c, d[, and the inverse of habcd is hcdab.

For the main Theorem of the section we will give two proofs. In the first one,
we define a homeomorphism between ∆2 and S2 that carries ∆ onto S×{0} and it
is inspired in the construction of the homeomorphism in the proof of Proposition
3.1 in (Bennett et al., 2012). In the second one, we send ∆ onto itself, which
results into a more intuitive and shorter proof.

Theorem 3.2.3 (Barría and Martínez-Ranero (2023), Theorem 1.4). We have
that ∆2 and S2 are homeomorphic.

Proof 1. We will define an homeomorphism φ : ∆2 → S2. First, we will describe
some special notation, then define the function φ in steps D-1 to D-4. After that
we will prove that φ is 1-1 and onto, then define the inverse of φ in steps I-1
through I-4. Finally, we will prove that φ and its inverse φ−1 are continuous in
steps C-1 through C-4 and IC-1 through IC-4 respectively.

Special notation. For k ∈ Z+ let D(k) := [1/2k, 1/2k−1[2. The sets D(k)

will be called the basic diamonds of [0, 1[2 and the sets ∆2 ∩D(k) will be called
basic triangles of ∆2. We will denote π2 for the second projection.

Define two step functions σ and τ , as follows, both having domain ]0, 1[ and
range ]0, 1]. For each x ∈]0, 1[ there is a unique k ∈ Z+ such that 1/2k ≤ x <

1/2k−1, so we define σ(x) = 1/2k and τ(x) = 1/2k−1. The horizontal pieces of the
graphs of σ and τ are, respectively, the bottom and top of the basic diamonds
D(k). It will be important to note that each horizontal segment of the graph of σ
contains a left endpoint, but not a right one, and the same is true for τ .

For each x ∈ [0, 1[ let B(x) := {x} × [0, τ(x)[, and for n ∈ Z+, subdivide B(x)

into disjoint subsegments B(x, n) := {x} × [τ(x)/2n, τ(x)/2n−1[.
For each x ∈ S with x ̸= 0, there is a unique diamond D(k) containing (x, x).

Note that (x, x) might be the southwest corner point of D(k), but it cannot be
the northeast corner point of D(k). Define V L(x) = {x} × ]x, 1/2k−1[.

For each x ∈ ]0, 1[ we subdivide V L(x) as follows. Find the unique k such
that (x, x) ∈ D(k). By Proposition 3.2.1, we list all members of the collection
T that intersect V L(x) as T1, T2, . . . , where for all j, each point of Tj lies above
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each point of Tj+1. For each j we can write Tj = [aj, bj[×[cj, dj[, and then we
have · · · < d3 = c2 < d2 = c1 < 1/2k−1 ≤ d1. Define V L(x, n) = V L(x) ∩ Tn =

{x} × [cn, dn[ for each n ≥ 2, and V L(x, 1) = {x} × [c1, 1/2
k−1[.

Definition of φ(x, y). The definition of φ(x, y) has four parts, called D-1
through D-4, depending on the location of (x, y) ∈ ∆2. We proceed by cases.

D-1. Let φ(x, x) = (x, 0) for each x ∈ S.
D-2. Let φ(0, y) = (0, y) for each y ∈ S.
D-3. If (x, y) ∈ ∆2 is such that τ(x) ≤ y, then define φ(x, y) = (x, y) (φ is the

identity map above the basic triangles ∆2 ∩D(k)).
D-4. If (x, y) ∈ ∆2 ∩ D(k) for some k ∈ Z+, then (x, y) is in the vertical

line V L(x) and therefore in a unique subsegment V L(x, n) which has the form
V L(x, n) = {x} × [p, q[. The vertical segment B(x) = {x} × [0, τ(x)[ contains the
subsegment B(x, n) which has the form {x} × [r, s[. By Lemma 3.2.2, we have an
order isomorphism hpqrs : [p, q[→ [r, s[. Define φ(x, y) = (x, hpqrs(y)).

We have a function φ : ∆2 → S2.
The function φ is 1-1 and onto. Let (x, y), (v, w) ∈ ∆2 with (x, y) ̸= (v, w).

If x ̸= v, then φ(x, y) ∈ {x} × [0, 1[ and φ(v, w) ∈ {v} × [0, 1[. Since this sets are
disjoint, we have that φ(x, y) ̸= φ(v, w). If x = v and y ̸= w, then we have four
cases.

Case 1. If (x, y) and (v, w) are not in a set D(k), then φ(x, y) = (x, y) ̸=
(v, w) = φ(v, w).

Case 2. If for some k ∈ Z+ we have that (v, w) ∈ D(k) and (x, y) /∈ D(k),
then φ(x, y) = (x, y) /∈ B(x). Since φ(v, w) ∈ B(x), φ(x, y) ̸= φ(v, w).

Case 3. If for some k ∈ Z+ both points (x, y) and (v, w) are in D(k) with
(x, y) ∈ V L(x, n) and (v, w) ∈ V L(x,m) for n ̸= m, then φ(x, y) ∈ B(x, n) and
φ(v, w) ∈ B(x,m). Since B(x, n) ∩B(x,m) = ∅, we have that φ(x, y) ̸= φ(v, w).

Case 4. If for k, n ∈ Z+ both points (x, y) and (v, w) are in D(k)∩V L(x, n), we
write V L(x, n) = {x}× [p, q[ and B(x, n) = {x}× [r, s[, then by Lemma 3.2.2 there
is a homeomorphism hpqrs : [p, q[ → [r, s[ such that φ(x, y) = (x, hpqrs(y)) and
φ(v, w) = (x, hpqrs(w)). Since hpqrs(y) ̸= hpqrs(w), we have that φ(x, y) ̸= φ(v, w).

We conclude that φ is 1-1.
Let (x, y) ∈ S2. If (x, y) is above the basic diamonds D(k), then φ(x, y) =

(x, y). If y = 0, then φ(x, x) = (x, y). If (x, y) ∈ ]0, 1[2 and τ(x) > y, then
there exists n ∈ Z+ such that (x, y) ∈ B(x, n). Let B(x, n) := {x} × [r, s[

and V L(x, n) := {x} × [p, q[. By Lemma 3.2.2, there exists a homeomorphism
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hpqrs : [p, q[→ [r, s[. In this way, φ(x, hrspq(y)) = (x, y). Therefore, φ is onto.
Definition of φ−1(x, y). The definition of φ−1(x, y) has four parts, called I-1

through I-4, depending on the location of (x, y) ∈ S2.
I-1. Define φ−1(x, 0) = (x, x) for each x ∈ S.
I-2. Let φ−1(0, y) = (0, y) for each y ∈ S.
I-3. If (x, y) ∈ S2 is such that τ(x) ≤ y, then define φ−1(x, y) = (x, y).
I-4. If τ(x) > y, then define φ−1(x, y) = (x, hrspq(y)) with h as in the last case

of the proof of the surjectivity.
Continuity of φ. To prove that φ is continuous at (x, y) requires different

arguments for points in different parts of ∆2. We consider four separate cases
that we call C-1 through C-4.

C-1. First, suppose (x, y) ∈ ∆2 \ {(0, 0)} with x > 0 and τ(x) ≤ y < 1, or
x = 0 and y > 0. Since the set of all points of this type is an open subset of ∆2

and φ(x, y) = (x, y), we have φ is continuous at each such point.
C-2. Second, let (x, y) = (0, 0) and (xn, yn)(n ∈ ω) be a sequence that converges

to (0, 0). We may assume that (xn, yn) ̸= (0, 0) for each n. Separately, consider
two subsequences, namely, those with τ(xn) ≤ yn and those with τ(xn) > yn. If
there are infinitely many points of the first type, then their images converges to
(0, 0) because φ is the identity for such points. We observe that every point of the
second type has their image below the graph of τ . Therefore, if the subsequence
of such points is infinite, then their images converges to (0, 0). We conclude that
φ(xn, yn) converges to (0, 0).

C-3. Third, consider a point (x, y) = (x, x) on the diagonal with x ̸= 0.
There is a unique basic triangle ∆2 ∩D(k) that contains (x, x). Let ϵ > 0 and
V = [x, x + ϵ[ × [0, ϵ[ be a neighborhood of φ(x, x) = (x, 0). We may assume
that ϵ < σ(x) and σ(x′) = σ(x) for each x′ ∈ [x, x+ ϵ[ (this is posible because no
horizontal segment of the graph of σ contains its right endpoint). We will find a
δ > 0 such that if U := ∆2 ∩ [x, x+ δ[2, then φ′′(U) ⊂ V .

Since σ(x) = σ(x′) for x ≤ x′ < x + ϵ, we know that τ(x) = τ(x′), so
B(x) = {x} × [0, τ(x)[ and B(x′) = {x′} × [0, τ(x′)[ have the same set of second
coordinates. In this way, π′′

2(B(x)) = π′′
2(B(x′)) and π′′

2(B(x, k)) = π′′
2(B(x′, k)) for

all x′ ∈ [x, x+ ϵ[. Since limj→∞ σ(x)/2j = 0 and B(x, j + 2) ⊂ {x} × [0, σ(x)/2j[,
we may choose N such that

⋃
{B(x, j) : j ≥ N} ⊂ {x} × [0, ϵ[ ⊂ V . For each
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x′ ∈ [x, x+ ϵ[ we have
⋃
{B(x′, j) : j ≥ N} ⊂ {x′} × [0, ϵ[ ⊂ V and therefore,

⋃
{B(x′, j) : x ≤ x′ < x+ ϵ, j ≥ N} ⊂ [x, x+ ϵ[× [0, ϵ[ = V (3.2.1)

Consider the vertical line V L(x) = {x} × ]x, 1/2k−1[, which lies inside the
triangle ∆2 ∩ D(k). By Proposition 3.2.1, we can list all members of T that
intersect V L(x) as T1, T2, . . . where each point of Tj lies above of each point of
Tj+1. The Sorgenfrey rectangles Tj has the form Tj = [aj, bj[ × [cj, dj[ and we
have that x < · · · < d3 = c2 < d2 = c1 < d1. Also, since limj→∞ cj = x we can
choose M ≥ N such that cj < x+ ϵ when j ≥M .

Recall that V L(x, j) = V L(x) ∩ Tj = {x} × [cj, dj[. Since no set T1, . . . , TM

contains its right edge, there exists η > 0 such that [x, x+ η[× [ci, di[ ⊂ Ti for 1 ≤
i ≤M . Consider any x′ ∈ [x, x+ η[ and let T ′

n be the listing in decreasing order of
all members of T that intersect V L(x′) as in Proposition 3.2.1. Since the collection
T is pairwise disjoint and V L(x′) ∩ T1 ̸= ∅, we conclude that T ′

1 = T1. Similarly,
T ′
i = Ti for 1 ≤ i ≤ M . Thus, V L(x′, j) ⊂ {x′} × ]x′, cM [ ⊂ [x, x + η[ × [x, cM [

when j ≥M .
Let δ = min{ϵ, η, cM − x}. We note that if x′ ∈ [x, x+ δ[, then x ≤ x′ ≤ x+ η,

so that the subset {x′} × ]x′, cM [ of V L(x′) is such that

{x′} × ]x′, cM [ ⊂
⋃
{V L(x′, j) : j ≥M} (3.2.2)

To end this case, let (x1, y1) ∈ ∆2 ∩ [x, x+ δ[2. We have that (x1, x1) ∈ ∆ and
(x1, y1) ∈ V L(x1). Since x ≤ x1 < x+ δ ≤ x+ η and x ≤ x1 < y1 < x+ δ ≤ cM ,
equation 3.2.2 gives

(x1, y1) ∈ {x1} × ]x1, cM [ ⊂
⋃
{V L(x1, j) : j ≥M} (3.2.3)

Since there is a unique k such that (x1, y1) ∈ V L(x1, k), we have that
φ(x1, y1) ∈ B(x1, k). Because k ≥ M ≥ N , equation 3.2.1 gives φ(x1, y1) ∈
B(x1, k) ⊂ V .

C-4. Fourth and finally, consider any point (x, y) ∈ ∆2 ∩ D(k) \ ∆. Since
(x, y) ∈ V L(x), we can list all members of T that intersect V L(x) as T1, T2, . . .

where the points of Tj lie above the points of Tj+1. Let Tj = [aj, bj[×[cj, dj[. These
sets subdivide V L(x) into vertical segments V L(x, j) := V L(x)∩Tj = {x}×[cj, dj[.
Choose the unique N with (x, y) ∈ V L(x,N). For notational convenience we write
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V L(x,N) = {x}× [c, d[. Consider the set B(x) which is divided into subsegments
B(x, k), and write B(x,N) = {x} × [e, f [. Thus, φ(x, y) = (x, hcdef(y)) where
hcdef : [c, d[→ [e, f [ is the order-isomorphism from Lemma 3.2.2.

For p =: hcdef(y) and ϵ > 0 consider any neighborhood V of φ(x, y) = (x, p)

of the form V = [x, x+ ϵ[× [p, p+ ϵ[. We may assume that p+ ϵ < τ (x) and that
if x ≤ x′ < x+ ϵ, then τ(x′) = τ(x). In this way, π′′

2(B(x, j)) = π′′
2(B(x′, j)) for

all j and x′ ∈ [x, x+ ϵ[. In particular, we have that B(x′, N) = {x′} × [e, f [ for
x ≤ x′ < x+ ϵ.

We will find a neighborhood U = [x, x+δ[×[y, y+δ[ such that φ′′(U) ⊂ V . First,
since hcdef is continuous at y ∈ [c, d[ and is order-preserving, there exists δ1 > 0

such that if y ≤ y′ < y+δ1 < d, then p = hcdef (y) ≤ hcdef (y
′) < hcdef (y)+ϵ = p+ϵ.

Second, consider the sets T1, . . . , TN where Tj = [aj, bj[× [cj, dj[. Because none of
this sets contains its right edge, there exists an η > 0 such that [x, x+η[× [cj, dj[ ⊂
Tj for 1 ≤ j ≤ N . We may assume that η < ϵ. In this way, for any x′ ∈ [x, x+ η[

we have that V L(x′, j) = {x′} × [cj, dj[ where 1 ≤ j ≤ N .
Since we are writing [cN , dN [ = [c, d[, for x ≤ x′ < x+ η we have V L(x′, N) =

{x′} × [c, d[ and for any (x′, y′) ∈ V L(x′, N) we have φ(x′, y′) = (x′, hcdef (y
′)).

Let δ = min{δ1, η} and consider U = [x, x + δ[ × [y, y + δ[. Therefore, if
(x1, y1) ∈ U , then φ(x1, y1) ∈ [x, x + ϵ[ × [p, p + ϵ[ = V , as required to prove
continuity of φ at any point (x, y) ∈ ∆2 ∩D(k) \∆.

Continuity of φ−1. To prove that φ−1 is continuous at (x, y) requires different
arguments for points in different parts of S2. We consider four separate cases that
we call IC-1 through IC-4.

IC-1. First, suppose (x, y) ∈ S2 \ {(0, 0)} with x > 0 and τ(x) ≤ y < 1, or
x = 0 and y > 0. Since the set of all points of this type is an open subset of S2

and φ−1(x, y) = (x, y), we have that φ−1 is continuous at each such point.
IC-2. Second, let (x, y) = (0, 0) and (xn, yn)(n ∈ ω) be a sequence in S2

that converges to (0, 0). We may assume that (xn, yn) ̸= (0, 0) for each n.
Separately, consider two subsequences, namely, those with τ(xn) ≤ yn and those
with τ(xn) > yn. If there are infinitely many points of the first type, then their
images under φ−1 converges to (0, 0) because φ−1 is the identity for such points.
We observe that every point of the second type has their image in ∆2 below the
graph of τ . Therefore, if the subsequence of such points is infinite, then their
images converges to (0, 0). We have that φ−1(xn, yn) converges to (0, 0).

IC-3. Third, consider (x, y) ∈ S2 with x > 0 and 0 < y < τ(x). Since



30 3.2. Homogeneity of the second symmetric product

(x, y) ∈ B(x), there is a unique n with (x, y) ∈ B(x, n). Let B(x, n) = {x}× [r, s[.
There is a basic triangle ∆2 ∩D(k) such that φ−1(x, y) ∈ V L(x, n) ⊂ ∆2 ∩D(k).
As usual, we can list all members of T that intersect V L(x) as T1, T2, . . . in such a
way that points of Tj lie above the points of Tj+1. We write Tj = [tj, uj[× [vj, wj[,
so that V L(x, n) = {x} × [vn, wn[. For notational convenience we let v = vn

and w = wn. In this way, φ−1(x, y) = (x, hrsvw(y)) where hrsvw is the order-
isomorphism given by Lemma 3.2.2. For ϵ > 0, consider the neighborhood
V = [x, x+ ϵ[× [hrsvw(y), hrsvw(y) + ϵ[ of φ−1(x, y).

We will find δ > 0 so that if U = [x, x+ δ[× [y, y + δ[, then φ−1(U) ⊂ V . Our
first step is to find a δ1 > 0 so that y + δ1 < τ(x) and for each x′ ∈ [x, x + δ1[

we have τ(x′) = τ(x). In this way, π′′
2(B(x′, j)) = π′′

2(B(x, j)) for all j and
x′ ∈ [x, x+ δ1[. In particular, for x′ ∈ [x, x+ δ1[ we have B(x′, n) = {x′} × [r, s[.

Since the function hrsvw : [r, s[ → [v, w[ is continuous and order-preserving,
there is a δ2 > 0 such that if y ≤ y′ < y + δ2, then hrsvw(y) ≤ hrsvw(y

′) <

hrsvw(y) + ϵ.
Consider η > 0 such that [x, x + η[ × [vi, wi[ ⊂ Ti for 1 ≤ i ≤ n. Consider

x′ ∈ [x, x + η[ and list the members of T that intersect V L(x′) as T ′
1, T

′
2, . . . so

that the points of T ′
j lie above the points of T ′

j+1 for all j ∈ Z+. Because T is
pairwise disjoint and V L(x′) ∩ Ti ̸= ∅, necessarly T ′

i = Ti for 1 ≤ i ≤ n. Thus,
V L(x′, n) = {x′} × [vn, wn[ = {x′} × [v, w[.

Let δ = min{δ1, δ2, η, ϵ} and (x′, y′) ∈ U := [x, x + δ[ × [y, y + δ[. We have
that τ(x′) = τ(x) and π′′

2(B(x′, n)) = π′′
2(B(x, n)) = [r, s[. Therefore, φ−1(x′, y′) ∈

[x, x+ ϵ[× [hrsvw(y), hrsvw(y) + ϵ[ = V .
IC-4. Finally, consider (x, 0) ∈ S2 with x > 0. We know that φ−1(x, 0) =

(x, x) belongs to some basic triangle ∆2 ∩ D(k). For ϵ > 0, consider the basic
neighborhood V = ∆2 ∩ [x, x + ϵ[2 ⊂ ∆2 ∩ D(k) of (x, x). We will find a
neighborhood U of (x, 0) such that if (x′, y′) ∈ U and (x′, y′) ∈ B(x′, j) for some
j, then φ−1(x′, y′) ∈ V .

Let T1, T2, . . . be all the members of T that intersect V L(x) ⊂ ∆2 ∩ D(k),
where the points of Tj lie above the points of Tj+1. Write Tj = [aj, bj[× [cj, dj[.
Because the sequence dn converges to x, there is some N with x < dN < x + ϵ.
On the other hand, there is some η > 0 such that [x, x + η[ × [cj, dj[ ⊂ Tj for
1 ≤ j ≤ N . We may assume that η < ϵ. If we consider x ≤ x′ < x + η, then
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π′′
2(V L(x′, j)) = π′′

2(V L(x, j)) = [cj, dj[ for 1 ≤ j ≤ N . In this way,

If x ≤ x′ < x+η and j ≥ N, then V L(x′, j) ⊂ {x′}×]x′, dN ] ⊂ ∆2∩[x, x+ϵ[2 = V

(3.2.4)
The segment B(x) = {x} × [0, τ(x)[ is partitioned by the sets B(x, j). Let

tN be the top point of B(x,N) and δ := min{tN , η, ϵ}. Define U = [x, x + δ[ ×
[0, δ[ and suppose (x′, y′) ∈ U . Since (x′, y′) ∈ B(x′, j) for some j, we have
that y′ ∈ π′′

2(B(x′, j)) = π′′
2(B(x, j)), so y′ < δ ≤ tN gives j ≥ N . Therefore,

φ−1(x′, y′) ∈ V L(x′, j) and V L(x′, j) ⊂ V by 3.2.4.

Proof 2. Let T be an element of the partition T . If T = [a, b[× [c, d[, then define
TU = [a, b[ × [ c+d

2
, d[, TL = [a, b[ × [c, c+d

2
[ and T S = [c, d[ × [a, b[. Finally, let

T S = {T S : T ∈ T }. 1

We shall define a homeomorphism h : ∆2 → S2. First, we will define the
function h. After that we will prove that h is a bijection. Finally, we will prove
that h and its inverse h−1 are continuous. For each T = [a, b[ × [c, d[ ∈ T , we
consider the following homeomomorphisms

hTU ,TS : TU → T S and hTL,T : TL → T

given by hTU ,TS(x, y) = (2y− d, x) and hTL,T (x, y) = (x, 2y− c), respectively. Let

h := Id∆ ∪
⋃
T∈T

(
hTL,T ∪ hTU ,TS

)
,

where Id∆ represents the identity function restricted to the diagonal. Since
∆2 = ∆⊔

⊔
T∈T

(TU ⊔ TL) and S2 = ∆⊔
⊔

T∈T
(T ⊔ T S), it follows that h : ∆2 → S2 is

a bijection. Notice that h ↾ (∆2 \∆) and h−1 ↾ (S2 \∆) are continuous, as hTU ,TS

and hTL,T are homeomorphism between clopen subspaces.
We will now show that h ↾ ∆ is continuous. Let (x, x) ∈ ∆ and (xn, yn)(n ∈ ω)

be a sequence that converges to (x, x). We may assume, without loss of generality,
that all elements of the sequence belong to the open neighborhood [x, 1[× [x, 1[

of (x, x). Thus, we have that x ≤ xn ≤ yn for any n ∈ ω. Separately, consider
three subsequences, namely, those on the diagonal, those in the sets of the form
TU and those in the sets of the form TL. Let A0, A1, A2 denote the indexes of

1Note that TU is the upper half of T , TL is the lower half of T and TS is the reflection of T
across the diagonal ∆.
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the corresponding subsequences. If there are infinitely many points of the first
type, then their images under h converges to (x, x) since h is the identity at such
points.

If there are infinitely many points of the second type, then their images under
h have the form (2yn − dn, xn), where Tn = [an, bn[× [cn, dn[ is the element of T
so that TU

n contains (xn, yn). Notice that x < cn, as the elements of T are strictly
above the diagonal and (xn, yn) ∈ [x, 1[× [x, 1[. Since (xn, yn) ∈ TU

n , we have that
cn+dn

2
≤ yn < dn. It follows

2yn − dn < (yn + dn)− dn = yn and x < cn = 2

(
cn + dn

2

)
− dn ≤ 2yn − dn

Thus, x < 2yn−dn < yn which implies lim
n∈A1

h(xn, yn) = lim
n∈A1

(2yn−dn, xn) = (x, x).
If there are infinitely many points of the third type, then their images under h

have the form (xn, 2yn − cn), where Tn = [an, bn[× [cn, dn[ is the element of T so
that TL

n contains (xn, yn). Notice that x < cn, as the elements of T are strictly
above the diagonal and (xn, yn) ∈ [x, 1[× [x, 1[. Since (xn, yn) ∈ TL

n , we have that
cn ≤ yn < cn+dn

2
. It follows

x < cn ≤ yn + (yn − cn) = 2yn − cn and 2yn − cn < 2

(
cn + dn

2

)
− cn = dn

Hence, x < 2yn − cn < dn. Therefore, it is sufficient to prove that:

Claim 3.2.4. If lim
n∈A2

(xn, yn) = (x, x), then lim
n∈A2

(xn, dn) = (x, x).

Proof. Let V = [x, x + ϵ[2 ∩ ∆2 be a given open neighborhood of (x, x). Fix
k such that 1

k
< ϵ

2
. Since (xn, yn) converges to (x, x), we can find N so that

(xn, yn) ∈ [x, x+ ϵ
2
[2 and it is below the line Lk+2 for all n ≥ N . We are left to

show that (xn, dn) ∈ V for all n ≥ N . Let n ≥ N be given. Since (xn, yn) is below
the line Lk+2 and every rectangle T ∈ T is between two lines Lℓ and Lℓ+2 for
some ℓ, it follows that Tn = [an, bn[× [cn, dn[ is below Lk. Hence, dn− cn < 1

k
< ϵ

2

and x < yn < x+ ϵ
2
. Therefore, (xn, dn) ∈ V as required.

We are left to show that the inverse mapping h−1 is continuous on the diagonal.
Let (x, x) ∈ ∆ be given and let (xn, yn)(n ∈ ω) be a sequence that converges
to (x, x). We may assume, without loss of generality, that all elements of the
sequence belong to the open neighborhood [x, 1[× [x, 1[ of (x, x). Thus, we have
that x ≤ xn, x ≤ yn for any n ∈ ω. Separately, consider three subsequences,
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namely, those on the diagonal, those elements above the diagonal and those in the
sets below the diagonal. Let A0, A1, A2 denote the indexes of the corresponding
subsequences. If there are infinitely many points of the first type, then their
images under h−1 converges to (x, x) since h−1 is the identity at such points.

If there are infinitely many points of the second type, then their images under
h−1 have the form (xn,

cn+yn
2

) where Tn = [an, bn[ × [cn, dn[ are the elements of
T that contains (xn, yn). Notice that x < cn, as the elements of T are strictly
above the diagonal and (xn, yn) ∈ [x, 1[× [x, 1[. Since (xn, yn) ∈ Tn, we have that
cn ≤ yn < dn. It follows

x < cn =
cn + cn

2
≤ cn + yn

2
≤ yn + yn

2
= yn

Thus, x < cn+yn
2

< yn which implies lim
n∈A1

h(xn, yn) = lim
n∈A1

(
xn,

cn+yn
2

)
= (x, x).

If there are infinitely many points of the third type, then their images under
h−1 have the form (yn,

xn+dn
2

) where T S
n = [cn, dn[ × [an, bn[ are the elements of

T S such that T S
n contains (xn, yn). Notice that x < cn since all elements of T S

are strictly below the diagonal and (xn, yn) ∈ [x, 1[× [x, 1[. Since x < xn+dn
2

< dn,
it is sufficient to prove that:

Claim 3.2.5. If lim
n∈A2

(xn, yn) = (x, x), then lim
n∈A2

(yn, dn) = (x, x).

Proof. Let V = [x, x+ ϵ[2 be a given open neighborhood of (x, x). Let L̃k denote
the line from ( 1

k
, 0) to (1, 1) for k ≥ 1. Fix k such that 1

k
< ϵ

2
. Since (xn, yn)

converges to (x, x), we can find N so that (xn, yn) ∈ [x, x+ ϵ
2
[2 and it is above the

line L̃k+2 for all n ≥ N . We are left to show that (yn, dn) ∈ V for all n ≥ N . Let
n ≥ N be given. Since (xn, yn) is above the line L̃k+2 and every rectangle T ∈ T S

is between two lines L̃ℓ and L̃ℓ+2 for some ℓ, it follows that T S
n = [cn, dn[× [an, bn[

is above L̃k. Hence, dn− cn < 1
k
< ϵ

2
and x < xn < x+ ϵ

2
. Therefore, (yn, dn) ∈ V

as required.

This concludes the proof of the Theorem.

Proposition 3.2.6 (Ganea (1954)). The map ρ : ∆2 → F2(S) given by ρ(x) =

{π1(x), π2(x)} is a homeomorphism.

Corollary 3.2.7. F2(S) is homogeneous.

Proof. By proposition 3.2.6 and theorem 3.2.3, F2(S) is homeomorphic to S2. As
S2 is homogeneous, F2(S) is also homogeneous.
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By Proposition 1.2.5 we have that S is homeomorphic to F1(S). Since S is
homogeneous, it is natural to ask the following.

Question 3.2.8. Is Fn(S) homogeneous for all n ∈ Z+?

3.3 Homogeneity of the space of non-empty closed

intervals

Let Cn(S) ⊂ Exp(S) be the hyperspace of all unions of at most n non-empty closed
intervals of S.

Proposition 3.3.1. The function ρ : ∆2 → C1(S) defined by ρ(a, b) = [a, b] is a
homeomorphism.

Proof. It is easy to see that ρ is a bijection. For the continuity, we will prove that
the preimages under ρ of [V ] and ⟨W ⟩, with V an open set and W = [c, d[ a basic
open set, are open.

Let V an open set of S. There exists basic intervals Vj such that V =
⋃

j Vj.
Let (a, b) ∈ ρ−1([V ]) = {(x, y) ∈ ∆2 : [x, y] ⊂

⋃
j Vj}. We define B =

⋃
{Vj :

[a, b] ∩ Vj ̸= ∅}. We have that B is an interval and open set that contains [a, b].
Let (x, y) ∈ ∆2 ∩ B2. Since x, y ∈ B, we have that [x, y] ⊂ B ⊂

⋃
j Vj = V .

Therefore, (a, b) ∈ ∆2 ∩B2 ⊂ ρ−1([V ]) and ρ−1([V ]) is open.
Let W = [c, d[ a basic interval of S and (a, b) ∈ ρ−1(⟨W ⟩). By definition,

[a, b] ∩W ̸= ∅. We have two cases.
Case 1. If c ≤ b < d, let us consider (x, y) ∈ ∆2∩(S×W ). Thus, [x, y]∩W ̸= ∅.

In this way, (a, b) ∈ ∆2 ∩ (S×W ) ⊂ ρ−1(⟨W ⟩).
Case 2. If b ≥ d, necessarily a < d. Let (x, y) ∈ ∆2 ∩ (] ←, d[×[d,→ [). By

definition, [x, y] ∩W ̸= ∅. Therefore, (a, b) ∈ ∆2 ∩ (]←, d[×[d,→ [) ⊂ ρ−1(⟨W ⟩).
We conclude that ρ−1(⟨W ⟩) is open.

To show that ρ−1 is continuous, we will prove that ρ is an open map. Without
loss of generality, let V = ∆2 ∩ (C × S) an open set of ∆2, with C a basic interval
of S and [a, b] ∈ ρ′′(V ). Thus, (a, b) ∈ V , that is to say a ≤ b and a ∈ C. Let
B = [a,→ [ and consider [x, y] ∈ ⟨C⟩∩ [B]. Since [x, y]∩C ̸= ∅ and [x, y] ⊂ B, we
have that x ∈ C, so (x, y) ∈ V . In this way, [a, b] ∈ ⟨C⟩ ∩ [B] ⊂ ρ′′(V ). Therefore,
ρ′′(V ) is an open set.

Corollary 3.3.2. C1(S) is homogeneous.
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Proof. By the previous proposition, C1(S) is homeomorphic to ∆2. By theorem
3.2.3 the results holds.

Question 3.3.3. Is the hyperspace C2(S) homogeneous?
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Chapter 4

Hyperspaces of the double arrow

In section 4.1 we prove that the space of nontrivial convergent sequences of A is
homogeneous in a very similar way as for S. In section 4.2 we prove Theorem
4.2.7. In section 4.3 we prove Theorem 4.3.5. Finally, in section 4.4 we give a
geometric characterization for spaces of unions of at most m closed intervals of a
compact linearly ordered space and we prove that in the case of the double arrow
this spaces are non-homogeneous in a similar way as for symmetric products.

4.1 Homogeneity of the space of nontrivial

convergent sequences

Proposition 4.1.1. If S, T ∈ Sc(A), then there exists a homeomorphism h : A→
A such that h′′(S) = T .

Proof. Let S, T ∈ Sc(A). First, we will prove that if S = {x}∪ {xn : n ∈ Z+} and
P = {⟨0, 1⟩} ∪ {⟨1/2n, 1⟩ : n ∈ Z+}, then there is a homeomorphism h1 : A→ A
such that h′′

1(S) = P . Since A is homogeneous, there is a homeomorphism
f : A → A with f(x) = ⟨0, 1⟩. We have that the sequence f(xn) converges
to f(x) = ⟨0, 1⟩, so we can define inductively z1 = max{f(xn) : n ∈ Z+} and
zm = max{f(xn) : n ∈ Z+} \ {z1, . . . , zm−1} for m ≥ 2. By convergence, we can
choose a clopen neighborhood V1 of ⟨0, 1⟩ such that f(xn) ∈ V1 for every n with
f(xn) ̸= z1 and z1 /∈ V1. Because A \ V1 and [⟨1/2, 1⟩, ⟨1, 0⟩] are homeomorphic
to A and A is homogeneous, there exists a homeomorphism g1 : A \ V1 →
[⟨1/2, 1⟩, ⟨1, 0⟩] such that g1(z1) = ⟨1/2, 1⟩. As before, we can choose a clopen
neighborhood V2 of ⟨0, 1⟩ such that f(xn) ∈ V2 for every n with f(xn) ̸= z1, z2 and
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z1, z2 /∈ V2. There exists a homeomorphism g2 : V1 \V2 → [(⟨1/22, 1⟩, ⟨1/2, 0⟩] with
g2(z2) = ⟨1/22, 1⟩. Recursively, we can choose a clopen neighborhood Vm of ⟨0, 1⟩
such that f(xn) ∈ Vm for every n with f(xn) ̸= z1, . . . , zm and z1, . . . , zm /∈ Vm.
There exists a homeomorphism gm : Vm−1 \ Vm → [⟨1/2m, 1⟩, ⟨1/2m−1, 0⟩] with
gm(zm) = ⟨1/2m, 1⟩.

We define the homeomorphism g =
⋃
gm : ]⟨0, 1⟩, ⟨1, 0⟩] → ]⟨0, 1⟩, ⟨1, 0⟩].

Hence, we have the homeomorphism g : A→ A with g(x) = g(x) if x ̸= ⟨0, 1⟩ and
g(⟨0, 1⟩) = ⟨0, 1⟩. In this way, h1 := g ◦ f is the desired homeomorphism.

Finally, by the previous argument there is a homeomorphism h2 : A→ A such
that h′′

2(P ) = T . Therefore, the homeomorphism h := h2 ◦ h1 is as required.

Proposition 4.1.2. Sc(A) is homogeneous.

Proof. Let S, T ∈ Sc(A) and h ∈ Aut(A) as in the previous proposition. Let
h : Sc(A)→ Sc(A) such that h(X) = h′′(X). If X ∈ Sc(A), then h−1(X) ∈ Sc(A),
so h(h−1(X)) = X and h is onto. If X, Y ∈ Sc(A) and h(X) = h(Y ), then
h′′(X) = h′′(Y ), so X = Y by the injectivity of h. Thus, h is bijective and
h(S) = T .

We will prove that h is continuous. Let B a basic set of Sc(A). We have
two cases. If B = Sc(A) ∩ [V ] with V an open set of A, then h

−1
(B) = Sc(A) ∩

h
−1
([V ]) = Sc(A) ∩ [h−1(V )]. If B = Sc(A) ∩ ⟨V ⟩ with V a basic set of A, then

h
−1
(B) = Sc(A) ∩ h

−1
(⟨V ⟩) = Sc(A) ∩ ⟨h−1(V )⟩. Therefore, h is continuous.

To end, we will prove that h is an open map. Let B a basic set of Sc(A).
If B = Sc(A) ∩ [V ] with V an open set of A, then h

′′
(B) = Sc(A) ∩ h

′′
([V ]) =

Sc(A) ∩ [h′′(V )]. If B = Sc(A) ∩ ⟨V ⟩ with V a basic set of A, then h
′′
(B) =

Sc(A) ∩ h
′′
(⟨V ⟩) = Sc(A) ∩ ⟨h′′(V )⟩.

4.2 Autohomeomorphisms of the finite powers of

the double arrow

It will be convenient to introduce some notation. Let π : A → [0, 1] be the
projection onto the first factor π(⟨x, r⟩) = x. We will think of an element of the
finite power x ∈ mA as function x : m → A. For any a ∈ A we will denote by
a the constant sequence a of finite length m, where the value of m should be
understood by context. Let πi :

mA→ A be the projection onto the i-coordinate,
and for any function h : mA → mA, let hi = πi ◦ h denote its i-th coordinate
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function. Recall that a partial function f : A → A is monotone if it is either
non-decreasing or non-increasing, and f is strictly monotone if it is either strictly
increasing or strictly decreasing.

We now recall the following result by R. Hernández-Gutiérrez.

Proposition 4.2.1 (Hernández-Gutiérrez (2013), Proposition 3.1). Let h : A→ A
be a continuous function, then there exists a pairwise disjoint sequence Jn(n ∈ ω)

of clopen intervals such that
⋃
n∈ω

Jn is dense in A and h ↾ Jn is monotone for any
n ∈ ω.

The following proposition tell us how continuous monotone functions look like
locally. It will be a key factor in the proof of the main theorems of the chapter.

Proposition 4.2.2 (Barría and Martínez-Ranero (2023), Proposition 2.2). Let
h : A→ A be a monotone continuous function. Then there is a clopen interval J
so that either h ↾ J is constant or h ↾ J is strictly monotone.

Proof. We may assume that h is a non-decreasing function since the argument
is similar in the other case. On one hand, if there is a clopen interval J so that
h ↾ J is an injection, then there is nothing to prove. On the other hand, if there
are x, y ∈ A so that π(x) ̸= π(y) and h(x) = h(y), then there is a clopen interval
J such that h ↾ J is constant. If neither of the above alternatives hold, then:

• For any nonempty open set U there is a ∈ [0, 1] such that ⟨a, 0⟩, ⟨a, 1⟩ ∈ U

and h(⟨a, 0⟩) = h(⟨a, 1⟩);

• For any x, y ∈ A, if π(x) < π(y) then h(x) < h(y).

Pick ⟨a, 0⟩, ⟨a, 1⟩ ∈ A such that h(⟨a, 0⟩) = h(⟨a, 1⟩). We may assume that
h(⟨a, 0⟩) = ⟨b, 0⟩ since the other case is analogous. Choose a strictly decreasing
sequence an(n ∈ ω) of real numbers converging to a. Hence, the sequence ⟨an, 0⟩
converges to ⟨a, 1⟩. Since a < an, it follows that h(⟨a, 1⟩) < h(⟨an, 0⟩). However,
this implies that h(⟨an, 0⟩) does not belong to the open neighbourhood [⟨0, 1⟩, ⟨b, 1⟩[
of ⟨b, 0⟩ for any n ∈ ω, which contradicts the continuity of h. This finishes the
proof of the Proposition.

Definition 4.2.3. Let h : A → mA and j0 ∈ m be given. We say that a clopen
interval J is j0-good for h if hj0 ↾ J is strictly monotone and hj ↾ J is constant
for any j ∈ m \ {j0}. We say that J is good for h if it is j0-good for some j0 ∈ m.
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Remark 4.2.4. Informally, J is j0-good for h if h sends J into a line parallel to
the j0-th coordinate axis.

The following lemma gives an indication as to why this definition will play a
role. It will be used in the verification of theorem 4.2.7.

Lemma 4.2.5 (Barría and Martínez-Ranero (2023), Lemma 2.5). Let h : A→ mA
be an embedding such that h′′(A) is a Gδ set in mA. Then there exists a pairwise
disjoint sequence Jn(n ∈ ω) of clopen intervals such that

⋃
n∈ω

Jn is dense in A and

for each n, there is j ∈ m such that Jn is j-good for h.

Proof. Let U denote the union of all clopen intervals which are good for h. Since
A is separable, it suffices to show that U is dense. In order to get a contradiction,
suppose that there is a nonempty clopen interval J disjoint from U . By going
to a clopen sub-interval of J if necessary, and applying, Proposition 4.2.1 and
Proposition 4.2.2, m times, we may assume that hj ↾ J is either constant or
strictly monotone, for any j ∈ m. Since h is an embedding there exists j0 ∈ m,

such that hj0 is non-constant (equivalently, strictly monotone). As J is not good
for h, it follows that there is a j1 ̸= j0 such that hj1 is also strictly monotone.

Claim 4.2.6. The subspace X = h′′(J ] is not a Gδ set in mA.

Proof. Let X ⊆
⋂
n∈ω

Un, where each Un is an open set. Since X is compact, we

may assume that Un =
⋃

i∈kn

∏
j∈m

Ijn,i, where Ijn,i are clopen intervals and kn ∈ ω.

Let A be equal to

{π(x) : ∃n ∈ ω∃i < kn (x ∈ {min(Ij0n,i),max(Ij0n,i)})}

Pick x0 ∈ J such that π(hj0(x0)) does not belong to A, this is possible as A is
countable and hj0 ↾ J is an injection. We claim that both points

h(x0) ↾ (m \ {j0}) ∪ {(j0, ⟨π(hj0(x0)), 0⟩)} and

h(x0) ↾ (m \ {j0}) ∪ {(j0, ⟨π(hj0(x0)), 1⟩)} 1

belong to
⋂
n∈ω

Un. However, only one of them belongs to X as hj1 ↾ J is injective,

which implies that X is not a Gδ set. In order to prove this, fix N ∈ ω. As

1Since h(x0) ∈ mA, we consider h(x0) as a subset of m× A.
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h(x0) ∈ X ⊆
⋂
n∈ω

Un, we can find i ∈ kN so that h(x0) ∈
∏
j∈m

IjN,i. Notice that,

⟨π(hj0(x0)), 0⟩ and ⟨π(hj0(x0)), 1⟩, both belong to Ij0N,i, as neither of them are the
maximum nor the minimum of the interval. Thus, both h(x0) ↾ (m \ {j0}) ∪
{(j0, ⟨π(hj0(x0)), 0⟩)} and h(x0) ↾ (m \ {j0})∪{(j0, ⟨π(hj0(x0)), 1⟩)} belong to UN

as required. This finishes the proof of the Claim.

Observe that since h′′(A) is a Gδ set in mA and J is clopen in A, then it follows
that X is also a Gδ set in mA, which contradicts the previous Claim.

We are now ready to prove the main theorem of the section.

Theorem 4.2.7 (Barría and Martínez-Ranero (2023), Theorem 1.5). Let h :
mA → mA be a homeomorphism. Then there is a pairwise disjoint sequence of
basic clopen boxes Un :=

∏
j∈m

Ijn(n ∈ ω) such that
⋃
n∈ω

Un is dense in mA and

h ↾ Un = σ ◦ (h0 × · · · × hm−1), where each hj : Ijn → A is an strictly monotone
homeomorphism onto a clopen interval, and σ is a permutation of mA.

Proof. Since mA is separable, and every clopen box is homeomorphic to mA via
a product of strictly increasing homeomorphisms, then it suffices to show that
there is a clopen box, so that h restricted to it, is as desired. For each i ∈ m

and a ∈ m\{i}A define the line Ea,i = {x ∈ mA : x ↾ (m \ {i}) = a}, and define
an embedding ea,i : A → Ea,i by ea,i(p) = a ∪ {(i, p)}. For each i ∈ m, let
πm\{i} : mA → m\{i}A be the projection defined by πm\{i}(x) = x ↾ (m \ {i}).
Notice that h′′(Ea,i) is a Gδ set in mA, since Ea,i is a Gδ set in mA, and h

is a homeomorphism. We will recursively construct, for j ∈ m, clopen boxes
Vj :=

∏
i∈m

J j
i ⊂ mA and functions σj : {0, . . . , j} → m such that

i. Vj+1 ⊂ Vj for j ∈ m− 1.

ii. For each i ≤ j and a ∈ π′′
m\{i}(Vj), J j

i is σj(i)-good for h ◦ ea,i. 2

iii. σj+1 ↾ j = σj and σj is injective for j ∈ m− 1.

Suppose we have constructed Vj, σj for j < k ≤ m. By applying Lemma 4.2.5
to the map h ◦ ea,k ↾ Jk−1

i , we can find for each a ∈ A := π′′
m\{k}(Vk−1), rationals

numbers qa, ra ∈ Q and an integer ja,k such that [⟨qa, 1⟩, ⟨ra, 0⟩]) ⊂ Jk−1
i is

2Roughly speaking, in case m = 2, we construct a rectangle V0 where all vertical lines in V0 are
mapped into horizontal lines say, and a subrectangle V1 where all vertical lines are mapped
into horizontal lines and also all horizontal lines are mapped into vertical lines.
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ja,k-good for h ◦ ea,k. Since A is a Baire space, there exists j0, q, r such that
Aj0,q,r := {a ∈ A : qa = q, ra = r, ja,0 = j0} is dense in some clopen box
V := J0 × · · · × Jk−1 × Jk+1 × · · · × Jm−1 ⊆ A.

Claim 4.2.8. The interval [⟨q, 1⟩, ⟨r, 0⟩] is j0-good, for h ◦ ex,k for any x ∈ V .

Proof. Let

A<
j0,q,r

:= {a ∈ Aj0,q,r : hj0 ◦ ea,k ↾ [⟨q, 1⟩, ⟨r, 0⟩] is strictly increasing}

and

A>
j0,q,r

:= {a ∈ Aj0,q,r : hj0 ◦ ea,k ↾ [⟨q, 1⟩, ⟨r, 0⟩] is strictly decreasing}.

We may assume, without loss of generality, that the set A<
j0,q,r

is dense in V .
Fix x ∈ V . We shall first show that hj ◦ ex,k ↾ [⟨q, 1⟩, ⟨r, 0⟩] is constant for any
j ∈ m \ {j0}. In order to do so, pick j ∈ m \ {j0}, x ∈ V and s < t ∈ [⟨q, 1⟩, ⟨r, 0⟩].
Choose a sequence xn of elements of A<

j0,q,r
converging to x, this is possible as

A<
j0,q,r

is dense in V . Notice that exn,k(s) and exn,k(t) converges to ex,k(s) and
ex,k(t), respectively. By assumption, we have that hj(ex,k(s)) = lim

n→∞
hj(exn,k(s)) =

lim
n→∞

hj(exn,k(t)) = hj(ex,k(t)). We are now left to show that hj0◦ex,k ↾ [⟨q, 1⟩, ⟨r, 0⟩]
is strictly monotone. Observe that hj0 ◦ ex,k ↾ [⟨q, 1⟩, ⟨r, 0⟩] is injective as h ◦ ex,k
is injective and all the other coordinate functions are constant. Notice that, by
assumption, hj0(exn,k(s)) < hj0(exn,k(t)) for any n ∈ ω. Hence, it follows that
hj0(ex,k(s)) = lim

n→∞
hj0(exn,k(s)) ≤ lim

n→∞
hj0(exn,k(t)) = hj0(ex,k(t)). Since s < t

were arbitrary, it follows that hj0 ◦ ex,k ↾ [⟨q, 1⟩, ⟨r, 0⟩] is strictly monotone as
required.

We now define

Vk = J0×· · ·×Jk−1× [⟨q, 1⟩, ⟨r, 0⟩]×Jk+1×· · ·×Jm−1 and σk = σk−1∪{(k, j0)}.

It follows from the previous claim that properties i. and ii. hold and also clearly
σk extends σk−1. Hence, we are only left to show that σk is injective. Aiming
towards a contradiction, assume that σk(i) = ℓ0 = σk(j) for some i ̸= j.

In order to simplify the notation, define xℓ = x ↾ (m \ {ℓ}) for any x ∈ mA and
any ℓ ∈ m. Pick a ∈ Vk and let P = {x ∈ Vk : x ↾ (m \ {i, j}) = a ↾ (m \ {i, j})}.
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We shall prove that h′′(P ) ⊆ Eh(a)ℓ0 ,ℓ0 . In order to do so, fix b ∈ P . Notice that

a ↾ (m \ {i, j}) ∪ {(j, a(j)), (i, b(i))} ∈ Eai,i ∩ Ebj ,j.

Thus, it follows that h′′(Eai,i ∩P )∩h′′(Ebj ,j ∩P ) ̸= ∅. By definition of σk we have
that:

• h′′(Eai,i ∩ P ) ⊆ Eh(a)σk(i),σk(i)
= Eh(a)ℓ0 ,ℓ0 ,

• h′′(Ebj ,j ∩ P ) ⊆ Eh(b)σk(j),σk(j)
= Eh(b)ℓ0 ,ℓ0 .

Hence, h(b) ∈ Eh(b)ℓ0 ,ℓ0 = Eh(a)ℓ0 ,ℓ0 . It follows that, h ↾ P : P → Eh(a)ℓ0 ,ℓ0 is an
embedding. However, P is homeomorphic to 2A and Eh(a)ℓ0 ,ℓ0 is homeomorphic to
A, which is impossible since A is hereditarily normal [Engelking (1989), Problem
2.7.5.(c)] and 2A contains the non-normal subspace 2S.

Finally, let σ = σm−1 and let hj = hj ◦ eaj ,j ↾ Im−1
j for some fixed a ∈ Vm−1

and j ∈ m. It follows from our construction that h ↾ Vm−1 = σ ◦ (h0 × · · · × hm)

as required.

Definition 4.2.9. A space X is countable dense homogeneous if it is Hausdorff,
separable and given two countable dense subsets D and E of X there is a
homeomorphism h : X → X such that h′′(D) = E.

Examples 4.2.10. The euclidean spaces, the Cantor set and the Hilbert cube are
countable dense homogeneous Klee (1957).

The previous theorem gives us a posteriori explanation of why the space mA
is not countable dense homogeneous for any m ≥ 2. This was first proved in
Arhangel’skii and van Mill (2013) for m = 1 and for m ≥ 2 in Hernández-Gutiérrez
(2013).

Corollary 4.2.11 (Hernández-Gutiérrez (2013), Corollary 2.5). The space mA is
not countable dense homogeneous for any m ∈ Z+.

Proof. Let Q = Q ∩ ]0, 1[, D0 =
m(Q× {0}) and D1 =

m(Q× {0, 1}). It is easy
to see that no autohomeomorphism of mA can map D1 onto D0.
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4.3 Non-homogeneity of symmetric products

In this section, for m ∈ Z+ \ {1} we denote ∆m = {x ∈m A : ∀i ∈ m− 1(x(i) ≤
x(i+ 1))}.

We recall proposition 1.2.6 with X = A that gives us a more geometric
representation of Fm(A).

Proposition 4.3.1. The map ρ̃ : ∆m/∼ → Fm(A) given by ρ̃([x]) = ρ(x) is a
homeomorphism.

Proposition 4.3.2 (Barría and Martínez-Ranero (2023), Proposition 3.2). Every
clopen subset of mA is homeomorphic to mA.

Proof. Since mA is compact, then any clopen subset is a finite union of clopen
boxes. Thus, it is sufficient to show that any clopen subset is equal to a disjoint
union of clopen boxes. In order to do this, we shall prove the following Claim.

Claim 4.3.3. Let I i(i ∈ N) be a finite sequence of clopen intervals of A. Then
there exists a finite sequence of pairwise disjoint clopen intervals J j(j ∈M) such
that:

1.
⋃
i∈N

I i =
⊔

j∈M
J j;

2. For any i ∈ N and j ∈M either J j ⊂ I i or J j ∩ I i = ∅.

Proof. Let A = {π(x) : ∃i ∈ N(x ∈ {min(I i),max(I i)})}, and let {a0, . . . , aℓ} be
the increasing enumeration of A. Consider the following pairwise disjoint sequence
of clopen intervals

J0 := [⟨a0, 1⟩, ⟨a1, 0⟩], . . . , J j := [⟨aj, 1⟩, ⟨aj+1, 0⟩], . . . , J ℓ−1 := [⟨aℓ−1, 1⟩, ⟨aℓ, 0⟩].

Set F = {j ∈ ℓ : J j ∩
⋃
i∈N

I i ≠ ∅}. We claim that the sequence J j(j ∈ F ) is as

required. First of all, notice that
⋃
i∈N

I i ⊆
⋃
j∈F

J j as
⋃
i∈N

I i ⊆ [⟨a0, 1⟩, ⟨aℓ, 0⟩] =⋃
j∈ℓ J

j. We are left to show the sequence satisfies clause (2). Fix j0 ∈ F,

and let i0 ∈ N be given. If J j0 ∩ I i0 = ∅, then there is nothing to show.
So we may assume that J j0 ∩ I i0 ̸= ∅. Observe that if J j0 ̸⊂ I i0 , then either
min(I i0) < min(J j0) < max(I i0) or min(I i0) < max(J j0) < max(I i0), which
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contradicts the definition of J j0 . 3 Therefore, the sequence J j(j ∈ F ) is as
required.

Let V be a clopen subset of mA. We can express V as a finite union of clopen
boxes, say,

V =
⋃
k∈N

∏
k∈m

I ik

where I ik are clopen intervals for any i ∈ N, k ∈ m.

By the previous Claim, we can find a sequence J j
k(j ∈Mk) witnessing clauses (1)

and (2) for the sequence I ik(i ∈ N), for any k ∈ m respectively. For each function
σ ∈

∏
k∈m

Mk, let Cσ =
∏
k∈m

J
σ(k)
k , and let F := {σ ∈

∏
k∈m Mk : Cσ ∩ V ̸= ∅}.

We claim that V =
⊔
σ∈F

Cσ. It follows from (1) that V ⊆
⊔
σ∈F

Cσ. Notice that if

Cσ ∩
∏
k∈m

I ik ̸= ∅, then J j
σ(k) ⊂ I ik. Thus, Cσ ⊆

∏
k∈m

I ik which implies
⊔
σ∈F

Cσ ⊆ V.

This finishes the proof of the Proposition.

Lemma 4.3.4 (Barría and Martínez-Ranero (2023), Lemma 3.4). If Fm(A) is
homogeneous, then it is homeomorphic to mA.

Proof. Suppose Fm(A) is homogeneous, then there is an autohomeomorphism
h : ∆m/∼ → ∆m/∼ such that h([⟨0, 1⟩]) = [x], where x is some fixed point such
that x(0) < x(1) < · · · < x(m− 1). On one hand, notice that, if J0 < · · · < Jm−1

is a sequence of pairwise disjoint clopen intervals with x(i) ∈ Ji for i ∈ m, then
q ↾

∏
i∈m

Ji :
∏
i∈m

Ji → ∆m/∼ is an embedding. On the other hand, observe that for

any 0 < ϵ < 1 the clopen cube m[⟨0, 1⟩, ⟨ϵ, 0⟩] is a saturated neighborhood of ⟨0, 1⟩
such that q′′(m[⟨0, 1⟩, ⟨ϵ, 0⟩]) is homeomorphic to ∆m/∼. Since h is continuous,
there is an ϵ > 0 such that h′′(m[⟨0, 1⟩, ⟨ϵ, 0⟩]/ ∼) ⊆

∏
i∈m

Ji. Thus, we have that

mA ∼=
∏
i∈m

Ji ∼= h′′(m[⟨0, 1⟩, ⟨ϵ, 0⟩])/∼) ∼= m[⟨0, 1⟩, ⟨ϵ, 0⟩]/∼ ∼= ∆m/∼

where the second homeomorphism follows from Proposition 4.3.2.

We are now ready to prove the main result of the section.

Theorem 4.3.5 (Barría and Martínez-Ranero (2023), Theorem 1.3). The
symmetric product Fm(A) is not homogeneous for any m ≥ 2.

3For any j ∈M, the interval Jj contains exactly two extreme points of the intervals Ii’s.
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Proof. Aiming towards a contradiction, assume that there is a homeomorphism
h : ∆m/∼ → mA, and let Γ = {[x] ∈ ∆m/∼ : x ∈ A}. Recall that the diagonal
{(x, x) ∈ 2A : x ∈ A} is not a Gδ subspace as A is a non-metrizable compact
space. It follows from this that Γ is not a Gδ in ∆m/∼ as otherwise this would
imply that π′′

{0,1}(q
−1(Γ)) = {(x, x) ∈ 2A : x ∈ A} would also be one, where

π{0,1} :
mA→ 2A denotes the projection onto the first 2 coordinates. Notice that,

since A×m−1{⟨0, 1⟩} =
⋂
n∈ω

A×m−1{[⟨0, 1⟩, ⟨ 1
n
, 0⟩]} ⊆ mA and A is a perfect space,

then every closed subset of A× m−1{⟨0, 1⟩} is a Gδ set in mA. Analogously, every
closed subset of any line parallel to one of coordinates axis, is also a Gδ set in
mA. We now consider the embedding α : A → mA given by α(x) = h([x]). By
applying Proposition 4.2.2 m-times, we can find a clopen interval J such that
αj := πj ◦ α ↾ J is monotone for every j ∈ m. Since h′′(Γ) is not a Gδ in mA, it
follows, by our previous observations, that there exists j0 ̸= j1 ∈ m such that
αj0 and αj1 are strictly monotone restricted to J . We will assume that both
αj0 ↾ J, αj1 ↾ J are strictly increasing, as the other cases are analogous.

Claim 4.3.6. There is a countable subset C ⊆ π′′(J) such that

π(αj0(⟨a, 0⟩)) = π(αj0(⟨a, 1⟩))

and
π(αj1(⟨a, 0⟩)) = π(αj1(⟨a, 1⟩))

for any a ∈ π′′(J) \ C. In other words, αjk(⟨a, 1⟩) is the immediate successor of
αjk(⟨a, 0⟩) for k ∈ 2.

Proof. Let Ck = {a ∈ π′′(J) : π(αjk(⟨a, 0⟩)) < π(αjk(⟨a, 1⟩))} for k ∈ 2. For each
a ∈ Ck, pick a rational ra such that π(αjk(⟨a, 0⟩)) < ra < π(αjk(⟨a, 1⟩)). Observe
that since αjk is strictly increasing, the map f : Ck → Q given by f(a) = ra, is
one-to-one. Thus, C = C0 ∪ C1 is countable as desired.

For each a ∈ A := π′′(J) \ C, let P−
a = α(⟨a, 0⟩), Q+

a = α(⟨a, 1⟩) and let

P+
a = α(⟨a, 0⟩) ↾(m\{j0}) ∪ (j0, ⟨π(αj0(⟨a, 0⟩)), 1⟩)

and
Q−

a = α(⟨a, 1⟩) ↾(m\{j1}) ∪ (j1, ⟨π(αj1(⟨a, 0⟩)), 0⟩).
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Pick an element [xa] belonging to h−1({P+
a , Q−

a })\ρ̃−1({⟨a, 0⟩, ⟨a, 1⟩}). Observe
that, by our choice of xa, there is a ℓa ∈ m so that π(xa(ℓa)) ̸= a. Let

AP,< = {a ∈ A : h([xa]) = P+
a , π(xa(ℓa)) < a},

AP,> = {a ∈ A : h([xa]) = P+
a , π(xa(ℓa)) > a},

AQ,< = {a ∈ A : h([xa]) = Q−
a , π(xa(ℓa)) < a}

and
AQ,> = {a ∈ A : h([xa]) = Q−

a , π(xa(ℓa)) > a}.

We may assume, without loss of generality, that AP,< is uncountable as the other
cases are similar. By successively refining AP,<, we can find an uncountable subset
B ⊆ AP,<, a natural number ℓ and a rational number r ∈ Q such that ℓa = ℓ and
π(xa(ℓ)) < r < a for any a ∈ B.

Consider the disjoint clopen sets

U :=
⋃
j∈m

π−1
j ([⟨0, 1⟩, ⟨r, 0⟩]) and V :=

⋂
j∈m

π−1
j ([⟨r, 1⟩, ⟨1, 0⟩]).

Since U, V are saturated, then we have that Ũ := q′′(U) and Ṽ := q′′(V ) are clopen
and disjoint. Notice that X := {[xa] : a ∈ B} ⊂ Ũ and Y := {[⟨a, 0⟩] : a ∈ B} ⊂
Ṽ . Also observe that as B is infinite (uncountable) and ∆m/∼ is compact, then
the accumulation points X ′ and Y ′ of X and Y , respectively, are both nonempty.
It follows that X ′ ∩ Y ′ = ∅.

Claim 4.3.7. The sets h′′(X) = {P+
a : a ∈ B} and h′′(Y ) := {P−

a : a ∈ B} have
the same accumulations points.

Proof. We shall prove that the accumulation points of h′′(X) are contained in
the accumulation points of h′′(Y ) as the other case is analogous. Let P be an
accumulation point of h′′(X) and let W :=

∏
j∈m Jj be a clopen neighborhood

of P where each Jj is a clopen interval. Since P is an accumulation point, then
there is an infinite subset B′ ⊆ B such that {P+

a : a ∈ B′} ⊆ W. By construction
P−
a (j) = P+

a (j) for any j ∈ m \ {j0} and a ∈ B. In particular, P−
a (j) ∈ Jj for

any j ∈ m \ {j0} and a ∈ B′. Observe that P+
a (j0) ̸= P+

b (j0) for any a ̸= b ∈ B

as αj0 ↾ J is strictly monotone. Thus, there is an infinite subset B′′ ⊆ B′

such that π(P+
a (j0)) /∈ {π(min(Jj0)), π(max(Jj0))} for all a ∈ B′′. It follows
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that, {P−
a : a ∈ B′′} ⊆ W and hence, P is an accumulation point of h′′(Y ) as

required.

Since h is a homeomorphism, then X and Y have the same accumulation
points which is a contradiction. This finishes the proof of the Theorem.

It would be interesting to see if the above theorem can be extended to the
hyperspace of all non-empty finite subsets F(A).

Question 4.3.8. Is the hyperspace F(A) homogeneous?

4.4 Non-homogeneity of the space of unions of at

most m closed intervals

Let (X,<) be a linearly ordered space. For m ∈ Z+, we denote Cm(X) ⊂ Exp(X)

as the subspace of all unions of at most m non-empty closed intervals in X and
∆2m = {x ∈ 2mX : ∀i ∈ 2m − 1(x(i) ≤ x(i + 1))}. Let ϱ : ∆2m(X) −→ Cm(X)

be the map defined by ϱ(x) =
⋃

i∈m[x(2i), x(2i + 1)] and let ≈ the equivalence
relation on ∆2m(X) defined by x ≈ y if and only if ϱ(x) = ϱ(y). Let p : ∆2m(X)→
∆2m(X)/≈ be the quotient map. We will sometimes write [x] instead of p(x) to
represent the equivalence class. We consider ∆2m(X)/≈ as a topological space
with the quotient topology.

Proposition 4.4.1. If (X,<) is a linearly ordered space, then ϱ is continuous.

Proof. We will prove that the preimages under ϱ of [V ] and ⟨W ⟩, with V an open
set and W a basic interval, are open.

Let V an open set of X. There exists basic intervals Vj such that V =
⋃

j∈J Vj .
Let x ∈ ϱ−1([V ]) = {y ∈ ∆2m(X) :

⋃
i∈m[y(2i), y(2i + 1)] ⊂

⋃
j∈J Vj}. For each

i ∈ m we define Wi =
⋃
{Vj : [x(2i), x(2i+ 1)] ∩ Vj ≠ ∅}. We have that Wi is an

open interval that contains [x(2i), x(2i+1)]. Let y ∈ ∆2m(X)∩
∏

i∈m W 2
i . For all i,

y(2i) and y(2i+ 1) are in Wi, so
⋃

i∈m[y(2i), y(2i+ 1)] ⊂
⋃

i∈m Wi ⊂
⋃

j∈J Vj = V

. Therefore, x ∈ ∆2m(X) ∩
∏

i∈m W 2
i ⊂ ϱ−1([V ]) and ϱ−1([V ]) is open.

Let W be a basic open interval of X and let x ∈ ϱ−1(⟨W ⟩) be given. By
definition, there exists j such that [x(2j), x(2j+1)]∩W ̸= ∅. If W = ]←, a[, then
we define B =

∏
i∈2m Bi with Bi = X if i ̸= 2j and B2j = W . If y ∈ ∆2m(X)∩B,

then [y(2j), y(2j + 1)] ∩W ̸= ∅, that is to say
⋃

i∈m[y(2i), y(2i+ 1)] ∩W ̸= ∅. In
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this way, x ∈ ∆2m(X) ∩ B ⊂ ϱ−1(⟨W ⟩). The proof for W = ]a,→ [ is similar.
When W = ]a, b[ we have two cases.

Case 1. a < x(2j + 1) < b. Define B =
∏

i∈2m Bi with Bi = X if i ̸= 2j + 1

and B2j+1 = W . If y ∈ ∆2m(X) ∩ B, then [y(2j), y(2j + 1)] ∩W ̸= ∅. We have
that

⋃
i∈m[y(2i), y(2i+ 1)] ∩W ̸= ∅. In this way, x ∈ ∆2m(X) ∩B ⊂ ϱ−1(⟨W ⟩).

Case 2. x(2j + 1) ≥ b. Necessarily x(2j) < b. Define B =
∏

i∈2m Bi with
Bi = X if i ∈ 2m\{2j, 2j+1}, B2j =]←, b[ and B2j+1 =]a,→ [. If y ∈ ∆2m(X)∩B,
then [y(2j), y(2j + 1)] ∩W ̸= ∅. Therefore, x ∈ ∆2m(X) ∩B ⊂ ϱ−1(⟨W ⟩).

We conclude that ϱ−1(⟨W ⟩) is open.

Analogously to Proposition 1.2.6, the following result gives us a more geometric
representation of C2m(X).

Corollary 4.4.2. If (X,<) a compact linearly ordered space, then the map
ϱ̃ : ∆2m(X)/ ≈ → Cm(X) given by ϱ̃([x]) = ϱ(x) is a homeomorphism.

Proof. Since ϱ is continuous, we have that ϱ̃ is a continuous bijection. Let
x ∈ 2mX \∆2m(X). There are i, j ∈ 2m such that i < j and x(i) > x(j). Since
X is Hausdorff, there exists two disjoint basic intervals V and W with W < V

such that x(i) ∈ V and x(j) ∈ W . Let A =
∏

k∈2m Xk an open neighborhood
of x with Xk = X for all k ∈ 2m \ {i, j}, Xi = V and Xj = W . We have that
x ∈ A ⊂ 2mX \∆2m(X), so ∆2m(X) is closed in 2mX. Since 2mX is compact, so
is ∆2m(X). Therefore, ∆2m(X)/ ≈ is compact and ϱ̃ is a homeomorphism.

Remark 4.4.3. We note that ∆2(X) = ∆2(X)/ ≈. By the previous Corollary
and Proposition 1.2.6, we have that F2(X) ∼= C1(X).

Lemma 4.4.4. If Cm(A) is homogeneous, then it is homeomorphic to 2mA.

Proof. Suppose Cm(A) is homogeneous, then there is an autohomeomorphism
h : ∆2m/≈ → ∆2m/≈ such that h([⟨0, 1⟩]) = [x], where x is some fixed point
such that π(x(0)) < π(x(1)) < · · · < π(x(2m − 1)). On one hand, notice that,
if J0 < · · · < J2m−1 is a sequence of pairwise disjoint clopen intervals with
x(i) ∈ Ji for i ∈ 2m and max(π(Ji)) < min(π(Ji+1)) for i ∈ 2m − 1, then
p ↾

∏
i∈2m

Ji :
∏

i∈2m
Ji → ∆2m/≈ is an embedding. On the other hand, observe that

for any 0 < ϵ < 1 the clopen cube 2m[⟨0, 1⟩, ⟨ϵ, 0⟩] is a saturated neighborhood
of ⟨0, 1⟩ such that p′′(2m[⟨0, 1⟩, ⟨ϵ, 0⟩]) is homeomorphic to ∆2m/≈. Since h is
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continuous, there is an ϵ > 0 such that h′′(2m[⟨0, 1⟩, ⟨ϵ, 0⟩]/ ≈) ⊆
∏

i∈2m
Ji. Thus, we

have that

2mA ∼=
∏
i∈2m

Ji ∼= h′′(2m[⟨0, 1⟩, ⟨ϵ, 0⟩]/≈) ∼= 2m[⟨0, 1⟩, ⟨ϵ, 0⟩]/≈ ∼= ∆2m/≈

where the second homeomorphism follows from Proposition 4.3.2.

Theorem 4.4.5. Cm(A) is not homogeneous for any m ∈ Z+.

Proof. We proceed by contradiction. Suppose that there is a homeomorphism
h : ∆2m/≈ → 2mA, and let Γ = {[x] ∈ ∆2m/≈ : x ∈ A}. Recall that the diagonal
{(x, x) ∈ 2A : x ∈ A} is not a Gδ subspace as A is a non-metrizable compact space.
It follows from this that Γ is not a Gδ in ∆2m/≈ as otherwise this would imply that
π′′
{0,1}(p

−1(Γ)) = π′′
{0,1}({x ∈ ∆2m : x ∈ A}) = {(x, x) ∈ 2A : x ∈ A} would also be

one, where π{0,1} :
2mA→ 2A denotes the projection onto the first 2 coordinates.

Notice that, since A× 2m−1{⟨0, 1⟩} =
⋂
n∈ω

A× 2m−1{[⟨0, 1⟩, ⟨ 1
n
, 0⟩]} ⊆ 2mA and A

is a perfect space, then every closed subset of A× 2m−1{⟨0, 1⟩} is a Gδ set in 2mA.
Analogously, every closed subset of any line parallel to one of coordinates axis,
is also a Gδ set in 2mA. We now consider the embedding α : A→ 2mA given by
α(x) = h([x]). By applying Proposition 4.2.2 2m-times, we can find a clopen
interval J such that αj := πj ◦ α ↾ J is monotone for every j ∈ 2m. Since h′′(Γ)

is not a Gδ in 2mA, it follows, by our previous observations, that there exists
j0 ≠ j1 ∈ 2m such that αj0 and αj1 are strictly monotone restricted to J . We will
assume that both αj0 ↾ J, αj1 ↾ J are strictly increasing, as the other cases are
analogous.

The proof of the following result is analogous to the proof of Claim 4.3.6.

Claim 4.4.6. There is a countable subset C ⊆ π′′(J) such that

π(αj0(⟨a, 0⟩)) = π(αj0(⟨a, 1⟩))

and
π(αj1(⟨a, 0⟩)) = π(αj1(⟨a, 1⟩))

for any a ∈ π′′(J) \ C. In other words, αjk(⟨a, 1⟩) is the immediate successor of
αjk(⟨a, 0⟩) for k ∈ 2.
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For each a ∈ A := π′′(J) \ C, let P−
a = α(⟨a, 0⟩), Q+

a = α(⟨a, 1⟩) and let

P+
a = α(⟨a, 0⟩) ↾(2m\{j0}) ∪ (j0, ⟨π(αj0(⟨a, 0⟩)), 1⟩)

and
Q−

a = α(⟨a, 1⟩) ↾(2m\{j1}) ∪ (j1, ⟨π(αj1(⟨a, 0⟩)), 0⟩).

Pick an element [xa] belonging to h−1({P+
a , Q−

a })\ ϱ̃−1([⟨a, 0⟩, ⟨a, 1⟩]). Observe
that, by our choice of xa, there is a ℓa ∈ 2m so that π(xa(ℓa)) ̸= a. Let

AP,< = {a ∈ A : h([xa]) = P+
a , π(xa(ℓa)) < a},

AP,> = {a ∈ A : h([xa]) = P+
a , π(xa(ℓa)) > a},

AQ,< = {a ∈ A : h([xa]) = Q−
a , π(xa(ℓa)) < a}

and
AQ,> = {a ∈ A : h([xa]) = Q−

a , π(xa(ℓa)) > a}.

We may assume, without loss of generality, that AP,< is uncountable as the other
cases are similar. By successively refining AP,<, we can find an uncountable subset
B ⊆ AP,<, a natural number ℓ and a rational number r ∈ Q such that ℓa = ℓ and
π(xa(ℓ)) < r < a for any a ∈ B.

Consider the clopen sets

U :=
⋃

j∈2m

π−1
j ([⟨0, 1⟩, ⟨r, 0⟩]) and V :=

⋂
j∈2m

π−1
j ([⟨r, 1⟩, ⟨1, 0⟩]).

Claim 4.4.7. The sets U and V are saturated.

Proof. Let x ∈ p−1(p′′(U)). There is y ∈ U such that
⋃

i∈m[x(2i), x(2i + 1)] =⋃
i∈m[y(2i), y(2i+1)]. Since there is j ∈ 2m and k ∈ m with ⟨0, 1⟩ ≤ y(j) ≤ ⟨r, 0⟩

and y(j) ∈ [x(2k), x(2k + 1)], then ⟨0, 1⟩ ≤ x(2k) ≤ ⟨r, 0⟩. Thus, x ∈ U .
Let x ∈ p−1(p′′(V )). There is y ∈ V such that

⋃
i∈m[x(2i), x(2i + 1)] =⋃

i∈m[y(2i), y(2i + 1)]. Since y(j) ∈ [⟨r, 1⟩, ⟨1, 0⟩] for any j ∈ 2m, we have
that

⋃
i∈m[x(2i), x(2i + 1)] ⊂ [⟨r, 1⟩, ⟨1, 0⟩] for any j ∈ 2m. It follows that

x(j) ∈ [⟨r, 1⟩, ⟨1, 0⟩] for any j ∈ 2m, that is to say, x ∈ V .

We have that Ũ := p′′(U) and Ṽ := p′′(V ) form a clopen partition of ∆2m/≈.
Notice that X := {[xa] : a ∈ B} ⊂ Ũ and Y := {[⟨a, 0⟩] : a ∈ B} ⊂ Ṽ . Since B
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is infinite (uncountable) and ∆2m/≈ is compact, then the set of accumulation
points X ′ and Y ′ of X and Y , respectively, are both non-empty. It follows that
X ′ ∩ Y ′ = ∅.

Claim 4.4.8. The sets h′′(X) = {P+
a : a ∈ B} and h′′(Y ) := {P−

a : a ∈ B} have
the same accumulations points.

Proof. We shall prove that the accumulation points of h′′(X) are contained in
the accumulation points of h′′(Y ) as the other case is analogous. Let P be an
accumulation point of h′′(X) and let W :=

∏
j∈2m Jj be a clopen neighborhood

of P where each Jj is a clopen interval. Since P is an accumulation point, then
there is an infinite subset B′ ⊆ B such that {P+

a : a ∈ B′} ⊆ W. By construction
P−
a (j) = P+

a (j) for any j ∈ 2m \ {j0} and a ∈ B. In particular, P−
a (j) ∈ Jj

for any j ∈ 2m \ {j0} and a ∈ B′. Observe that P+
a (j0) ̸= P+

b (j0) for any
a ̸= b ∈ B as αj0 ↾ J is strictly monotone. Thus, there is an infinite subset
B′′ ⊆ B′ such that π(P+

a (j0)) /∈ {π(min(Jj0)), π(max(Jj0))} for all a ∈ B′′. It
follows that, {P−

a : a ∈ B′′} ⊆ W and hence, P is an accumulation point of h′′(Y )

as required.

Since h is a homeomorphism, then X and Y have the same accumulation
points which is a contradiction. This finishes the proof of the Theorem.

Since Fm(A) ⊂ Cm(A) for m ≥ 2, now we are a little more closer to answer
Question 2.

It would be interesting to see if the above theorem can be extended to the
hyperspace of all finite unions of non-empty closed intervals C(A).

Question 4.4.9. Is the hyperspace C(A) homogeneous?
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Appendix A

Symbols used

Z+ : the positive integers

ω : Z+ ∪ {0}

Q : the rational numbers

R : the real numbers

f ↾ A : f restricted to the set A

f ′′(A) : image of the set A, {f(x) : x ∈ A}

f−1(A) : preimage of the set A, {x : f(x) ∈ A}

∼= : homeomorphic

Aut(X): homeomorphisms from X to X

∂A: topological boundary of A

πi: projection on the ith coordinate
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