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Introduccion

La teoria de cédigos, desarrollada a partir de los afios 50, siendo uno de sus fundadores Richard
Hamming quien propuso el Codigo Hamming (ver [I6], § 5.3.1), trata de resolver el problema de
cémo poder transmitir informaciéon de manera segura y fiable, a través de un canal que sea poco
seguro y poco fiable. Un canal es poco seguro si terceras personas, distintas al emisor o de
aquella a quien el mensaje estaba dirigido, pueden enterarse de lo que dice un mensaje, o bien
alterarlo. Por otro lado, un canal es poco fiable si en el canal hay ruido, es decir que el mensaje
puede llegar alterado a su destino.

La Criptografia sirve para mejorar la seguridad y los Codigos detectores y correctores sirven para
mejorar la fiabilidad. Nuestro estudio se centrara en estos tltimos tipos de cédigos.

En particular, la transmision de un mensaje puede ser representada por el siguiente esquemas:

ruido (=r)

EMISOR — CODIFICADOR = DESCODIFICADOR — RECEPTOR
m - u - v=utr — m

En base a este proceso, antes de enviar un mensaje m, el emisor lo codifica como u. Esto se hace
anadiendo a m informaciones redundantes, de manera que si en el canal de transmisién se produce
un ruido r y se recibe un mensaje alterado v, el receptor sea capaz de recuperar el mensaje enviado
u y decodificarlo en el mensaje original m.

Un ejemplo sencillo de codificacion es el siguiente: 0 representa un no y 1 representa un si. En
este caso, si se quiere transmitir un 1 y se recibe un 0 en vez de 1, el receptor del mensaje no
sabra que hubo un error. Pero si en cambio se conviene que 00 sea no y 11 sea si, entonces si

por ejemplo se recibe un 01, el receptor detectara que hubo un error, aunque no sabra cual es el
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mensaje enviado. Estas dos situaciones pueden ser mejoradas sencillamente. Si la convencion es
que 000 es no y 111 es un si, y se supiese que al transmitir un mensaje solo es posible cometer
a lo mas un error de digito, entonces al recibir un 001, el receptor sabra que se trata de un no,

detectando y corrigiendo el error.

En esta tesis, nos enfocaremos en la construccion de algunos tipos de codigos que permitan
una buena codificacion y decodificacion de mensajes y una eficaz detecciéon y correccion de
eventuales errores. En literatura se define un alfabeto como un conjunto finito de simbolos, una
palabra como una sucesion finita de estos simbolos y un co6digo como un conjunto de palabras.
Para nosotros el alfabeto serd un campo finito [F, con ¢ elementos, una palabra serd un vector del
espacio vectorial

F, =F;x--- xF,
n—Vveces

n
q)

y un codigo ¢ C Fy sera un subespacio vectorial de Fy, es decir € es tal que aZ + by € € para
todo a,b € F, y para todo &,y € €. Tales codigos seran llamados Cddigos lineales (ver Ch.
Definition 1.1.1). A partir de los anos 60, se comenzo a estudiar de forma sistematica un tipo de
codigos lineales llamados Cddigos Ciclicos (ver Ch. [2| Definition 2.1.1) que gozan de la propiedad

de ser invariantes por la matriz de permutacion

01

P =
0 1
110 ... 0

Mediante un isomorfismo de espacios vectoriales
m: Fy — F[X]/(X" = 1),

descrito en la §2.1 del Capitulo 2| podemos identificar un codigo ciclico ¢ C Fy con un ideal
I CF,[X]/(X™—1) y viceversa, para aprovechar todas las propiedades de los ideales y del anillo
cociente que permiten un mejor manejo de los coédigos desde un punto de vista computacional. Ya

en los anos 70 se comenzd a generalizar estos codigos y se llegd a un tipo de codigo lineal llamado
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A-constacyclic code (ver [21], Definition 2), invariante por la siguiente matriz

01

P = ,
0 1
A0 ... 0

donde A € [F,. En este caso el isomorfismo 7 se convierte en el siguiente
Ty s Ty — F[X]/(X™ = )),

otra vez con la propiedad que cada coédigo lineal invariante por P se corresponde a un ideal
I' CF,[X]/(X™ — \) y viceversa. En los afos posteriores surgieron mas generalizaciones de los
codigos ciclicos en un contexto conmutativo, como por ejemplo los Quasi Cyclic Codes (ver [15],
§ III) que son codigos invariantes por la matriz (P)® para algin s € N, y los Quasi- Twisted
Cyclic Codes (ver [1], Definnition 1.1) que son cédigos invariantes por la matriz (P)" para algin
r € N. Luego de estos, en un contexto no conmutativo, aparecieron otras generalizaciones, como
por ejemplo los Skew Cyclic Codes (ver [7], Definition 1) que son c6digos invariantes por las
composicion de una potencia de un automorfismo de Frobenius (ver Ch. {4, §4.1) con la matriz
P, y los Skew Quasi Cyclic Codes (ver |2], Definition 3) que son invariantes por las composicion
de una potencia de un automorfismo de Frobenius con la matriz (P)® para algin s € N. Cabe
mencionar que todos los codigos anteriores heredan de forma natural la gran mayoria de las ventajas
y propiedades de los codigos ciclicos.

En este trabajo, generalizaremos los cédigos ciclicos en ambos contextos, conmutativo y no
conmutativo. La primera generalizacion, descrita en el Capitulo [3] serd dada por codigos lineales

invariantes por una matriz

01

A= ,
0 1
folfv = faa

donde f; € F, y fo # 0. Al igual que en los codigos ciclicos, en este caso podemos establecer un




INTRODUCCION

isomorfismo de espacios vectoriales
myp By — Fq[X]/(f)

donde f es el polinomio X" — f, 1 X" ! — ... — fiX + f,. Esto nos permitira identificar un ideal
I CF,[X]/(f) con un codigo invariante por A y viceversa (ver Ch. 3| Proposition 3.2.7). A estos
tipos de codigos les llamaremos A-Generalized Cyclic Codes. Notar que el cociente lo hacemos por
cualquier polinomio, por lo que el anillo cociente resulta ser el mas general posible respecto a los
A-constacyclic codes. Por otro lado, este tipo de codigo es invariante por una matriz A de forma

particular. De aqui nace la siguiente pregunta:
Dada una matriz M con det M # 0, ; Cuéles son los codigos lineales %), invariantes por M?

Una respuesta se puede encontrar en la forma racional canénica de una matriz (ver Ch. 3| §3.1).
Toda matriz M con det M # 0 es similar a una matriz R de tipo especial, es decir existe una
matriz invertible S tal que M = SRS™!, con R una matriz a bloques y cada bloque tiene una
forma semejante a la de la matriz A descrita anteriormente. Gracias a esta propiedad se obtiene
una correspondencia uno a uno entre codigos ¢, invariantes por M y codigos € invariantes por R
(ver Ch.[3 §3.2). Para construir codigos @ sera entonces suficiente construir codigos 6. Ademas
se mostrara que cada %x es isomorfo como espacio vectorial a un producto 67 x --- X 6,, donde
cada %; es un A;-Generalized Cyclic Code para alguna matriz A; (ver Ch. |4] Theorem 4.1.10). De
aqui nace la definicion de Product M -codes. Estos tipos de codigos generalizan a los A-Generalized
Cyclic Codes, a los Quasi Cyclic Codes y a los Quasi-Twisted Cyclic Codes. Finalmente, en el
caso no conmutativo, se definen y estudian los Product T-Codes (ver Ch. |4] Definition 4.2.2), los
cuales son codigos lineales invariantes por cualquier transformacion semilineal 7" (ver Ch. 4] §4.1).
Bajo una biyeccion parecida a la anterior, nos enfocaremos en productos de codigos invariantes
por una particular transformacion semilineal (ver Ch. 4l Hypothesis (x)) como primeros ejemplos

no triviales de codigos invariantes bajo la accion de una transformacion semilineal de tipo general.

En el Capitulo [1] basado en [16], se definira el concepto de Linear Codes (Definition [1.6.3])
y se estudiaran algunas de sus propiedades: el codigo dual (ver §1.1), la distancia Hamming y el

peso Hamming (ver §1.2), una matriz generadora y una parity-check matrix (ver §1.4). Ademas,
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en la §1.5 se introducird la codificaciéon clasica con un codigo lineal y en la §1.6 dos tipos de
decodificacion: la “Nearest neighbour decoding” y la “Syndrome decoding”.

En el Capitulo [2] tambien basado en [I6], estudiaremos los Cyclic Codes (ver §2.1). En
los preliminares de este capitulo se definird un isomorfismo (ver §2.1) que permite conectar la
estructura gométrica de estos codigos con una estructura algebraica y hacer uso de ambas. Ademas,
se definira el polinomio generador asociado a un codigo ciclico (ver §2.2) que resultara ser una
herramienta importante en el contexto de estos tipos de codigos. El polinomio anterior describe
completamente un codigo ciclico, su dimensiéon, matriz generadora, etc. Por ultimo, en la §2.4
se mostraran tres nuevas formas de codificar que resultaran ser mas eficaces que la de un codigo
lineal, y un tipo de decodificacion, deteccion y correccion de errores, llamado Meggitt Decoding
(ver [12], Ch. 4, §4.6).

En el Capitulo se estudiard un nuevo tipo de cédigo lineal, llamado Generalized Cyclic
Code (ver §3.2) que resulta ser una generalizacion de los Cyclic Codes. En §3.2 y en §3.3 se

observard que muchas de las propiedades de los codigos ciclicos se heredan naturalmente (3.2.7

13.2.10} [3.3.1} [3.3.3). Sin embargo el dual de un Generalized Cyclic Code no resulta ser uno de estos

codigos . Ademas, en la §3.4 se analizaran estos c6digos como subespacios invariantes bajo
la accion de una companion matriz (ver Definition , entregando otro método para encontrar
propiedades algebraicas de estos codigos , una matriz generadora (3.4.9) y una parity-check
matrix , todo esto inspirado en el trabajo [21]. En la §3.5, definiremos un algoritmo para
construir estos tipos de codigos a travez de los espacios proyectivos. En la §3.6 mostraremos una
aplicacion inyectiva , que nos permitird estudiar nuevos tipos de cédigos duales, los
Quasi-Euclidean dual codes y los Hermitian dual codes (3.8.1] |3.8.3} [3.8.4] [3.8.8).

Finalizaremos este capitulo con una generalizacion de tipo Meggitt decoding como en la §2.4.2 del
Capitulo

Para concluir, en el Capitulo {4]introduciremos la nocion de Product Semi-Linear T-codes (ver
§4.2), una generalizacion de los Generalized Cyclic Codes en el contexto no conmutativo, de los

Skew Cyclic Codes, Module Skew Codes y Skew Quasi Cyclic Codes, y un caso especial de codigos

lineales invariantes bajo una transformacion semilineal (4.1.1] [4.1.5 [4.2.5)), todo esto inspirado

en los recientes trabajos [4], [5] y [6]. Cabe mencionar que estos codigos se definen en un anillo




INTRODUCCION

no conmutativo de polinomios, llamado skew polynomial ring (ver §4.1). En fin, se revisaran

propiedades asociadas a estos codigos (4.1.6, 4.1.11} [4.1.12 [4.2.8]), se estudiaran tres tipos de
codigos duales, como los Euclidean duals (4.3.3), los Quasi-Euclidean duals (4.3.11} [4.3.22] 4.3.28]
4.3.37, 1.3.38) v los Hermitian duals (4.3.35] 4.3.36)), v en las §84.4,4.5 se entregardn métodos de

codificacion y decodificacion y una generalizaciéon natural de la construccion de codigos dada en

la §3.6 del Capitulo [3




Chapter 1

Linear Codes

In this first chapter, we give some basic definitions and notation in coding theory, we introduce
a kind of classical codes, the so-called linear codes, and we discuss some of their elementary
properties, as the dual code, the weight and the Hamming distance, the concept of a generator
matrix and of a parity-check matrix of a linear code. Finally, we introduce a classical encoding

algorithm with a linear code and two types of decoding methods.

1.1 Linear Codes

Let us give the background material and some basic definitions about linear codes.
Definition 1.1.1. A linear code ¢ over F, is a vector subspace of Fy.
Definition 1.1.2. Let € C Fy be a linear code.

(i) The dual code €+ of € is the orthogonal complement of the € in [y

(1) The dimenston dim(%) of € is the dimension of € as a wvector space over F,, i.e.

dim(%) := dimg, €.
The following is a known result in linear algebra.

Theorem 1.1.3 ([16],Theorem 4.2.4). Let ¢ C Fy; be a linear code. Then,
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(1) |€] = q"™@), i.e. dim(€) =log,|€|, where |€| is the cardinality of € C Fy s

(ii) €+ is a linear code and dim(€) + dim(€+) = n;

(iii) (€+)+=.
Definition 1.1.4. Let € C IF;‘ be a linear code.

(i) € is self-orthogonal if € C ¢+.

(ii) € is self-dual if € = €+.
Proposition 1.1.5. Let ¢ C F} be a linear code.

(a) If € is a self-orthogonal code, then dim ¢ < %;

(b) If € is a self-dual code, then dim € = 7.
Proof. The statement are consequence of Theorem [1.1.3] (i) and Definitions [1.1.4] O

Example 1.1.6. (a) Consider € = {(0,0,0,0),(1,0,1,0),(0,1,0,1),(1,1,1,1)} C F3, then by
Theorem [1.1.3] (i) and (i7), we have dim(€) = log,|€| = log,4 = 2 and dim(€~+) = 2. It
is easy to see that €+ = {(0,0,0,0),(1,0,1,0),(0,1,0,1),(1,1,1,1)} = €. Note that in this

case € is self-dual code.

(b) Consider the linear code
% = 1{(0,0,0),(0,0,1),(0,0,2), (0,1,0), (0,2,0), (0,1, 1), (0,1, 2), (0,2,1), (0,2,2)} C F.
Then by Theorem [1.1.3] (i) and (i), we have dim(€) = logs|€| = logs9 = 2 and
dim(€+) = 1. Moreover one checks readily that €+ = {(0,0,0),(1,0,0),(2,0,0)}.
1.2 Hamming distance and Hamming weight

In this section we give the definitions of Hamming distance and Hamming weight.

10



1.2. Hamming distance and Hamming weight

Definition 1.2.1. If #,§ € [}, then the distance d(7,y) of ¥ and § is defined by
dZ,y)=|{i:1<i<n, z;#y}|
The weight w(7) of ¥ € Fyy is defined by
w(Z) := d(z,0)

where 0 := (0,...,0) € Fy. This distance is called Hammang distance and is indeed a metric on

F.

Remark 1.2.2. For every c € Fy, define the Hamming weight as follows:

1 sic#0
wp(c) =
UV G
Then, by writing ¥ € F} as ¥ = (21,...,2,), the Hamming weight of Z can be also defined as

—

w(Z) = wp(x1) + ... +wp(zy,)

Then by [[16], Lemma 4.3.3] for every ¥,y € Fy, we have d(7,y9) = w(Z — ) = w(y — 7). In
particular if ¢ = 2 then we get d(Z, 5) = w(Z + ¥) for every 7 € F}..

Definition 1.2.3. Let ¢ C F} be a linear code such that € # {0}. The minimum distance of
% 1s defined as
d(€) :=min{d(Z,7) : T, € €, T # §}.

and, equivalently, the minimum weight of € can be defined as
w(€) == min{w(Z) : T €€, T +#0}.
Theorem 1.2.4 ([16], Theorem 4.3.8). Let € C Fy be a linear code. Then d(€) = w(¥).

Example 1.2.5. Consider the linear code ¢ = {(0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,0,0)} C F3.
By Definition we see that w((1,0,0,0)) =1, w((0,1,0,0)) =1, w((1,1,0,0)) = 2. Hence, by
Theorem we easily obtain that d(€) = w(€) =1

11



1.3. Bases for linear codes

1.3 Bases for linear codes

Since a linear code is a vector space, all its elements can be described in terms of a basis. In this
section, we discuss three algorithms that yield either a basis for a given linear code or its dual. We

first recall some facts from linear algebra. (see [16], Ch 4, §4).

Definition 1.3.1. Let A be a matriz over F,. An elementary row operation performed on A

s any one of the following three operations:
(1) interchanging two rows (columns);
(13) multiplying a row (column) by a non-zero scalar;
(1ii) replacing a row (column) by its sum with the scalar multiple of another row (column).

Definition 1.3.2. Two matrices are row (column) equivalent if one can be obtained from the

other by a sequence of elementary row (column) operations.
We are now ready to describe the two useful algorithms in coding theory.

Algorithm 1.3.3. Input: A non-emply subset S of Fy.
Output: A basis for the linear code € = (S) generated by S.
Description: Form the matriz A whose rows are the vectors of S. By using elementary row

operations, find a row echelon form (REF) A" of A. Then the non-zero rows of A" form a basis for

% .

Example 1.3.4. Let S = {(1,2,1,0,1),(2,0,1,1,0),(0,1,1,2,2),(1,1,0,1,0)} a subset of F3 and

write
1 21 01
201 10
A —
011 2 2
11 010

12
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by elementary row operations we obtain

1 2101 12101
02 211 01 1 2 2
A— — = A
01 1 2 2 0 00O01
0 2 2 1 2 00 00O

By Algorithm {(1,2,1,0,1),(0,1,1,2,2),(0,0,0,0,1)} is a basis for € = (S5).

Remark 1.3.5. There exists an other algorithm similar to Algorithm[1.5.5 which operates columns
instead of rows (see [16], Ch 4, §4). We observe that in general the bases obtained by this algorithms

are different.

Algorithm 1.3.6. Input: A nonempty subset S of Fy .

Output: A basis for the dual code €+, where € = (S).

Description: Form the matriz A whose rows are the vectors of S. Use elementary row operations
to put A in reduced row echelon form (RREF) A" and let G be the k x n submatriz of A’ consisting
of all the non-zero rows of A’:

G
A— = A
O

where O denotes the zero matriz. The matriz G contains k leading columns. Permute the columns
of G to form
G' = (X|[k?) )

where I, denotes the k X k identity matriz. Then write the matriz H' as follows:

H' = (L] = X)),

where X, denotes the transpose matriz of X. Apply the inverse of the permutation applied to the
columns of G to the columns of H' to form the matriz H. Then the rows of H form a basis for

¢t

Example 1.3.7. Let S be a non-empty subset of F1° such that the matriz G of the Algorithm m

13



1.3. Bases for linear codes

15 as follows

@Q
I
© o o o =~

Note that the leading columns of G are columns 1,

wnto the order 2, 3, 6, 8, 10, 1, 4, 5,

G = (X|I5) =
Form the matrix
1
0
H=10
0
0
and finally rearrange its columns of H'

0
1
H=11
2
1

02002010 2

0010100O0°O0T1

000100200

000O0O0OT1TQO0TO0T1

000O0O0O0O0OT1 2
4,5

7, 9 to form the matriz

0221210000
0010101O0O0O0
000200O01O0®O0
00001TO0O0O0OT1Q0
0000200001
0000O0O0OO0OO0OQ 0
1 0001000O0O0
010012¢0¢0O0 ],
001020T1Q00
000112021

by using the inverse permutation to obtain

1000O0O0O0O0O
01 0000O0O0O0
002010000
000100100
002002011

By Algorithm the rows of H form a basis for €.

, 7 and 9. We permute the columns of G

14
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1.4 Generator matrix and parity-check matrix

Knowing a basis for a linear code enables us to describe all vectors explicitly. For this reason
from now on we can consider two kind of matrices which will play an important role in coding

theory.

Definition 1.4.1. (i) A generator matrix G of a linear code € is a matriz whose rows form

a basis for €.
(it) A parity-check matriz H of a linear code € is a generator matriz for the dual code €.

Remark 1.4.2. (i) Let ¢ C T} be a linear code of dimension k. Then a generator matriz of €

is a k X n matriz and its parity-check matriz of € is an (n — k) X n matriz.

(17) In fact Algorithm includes Algorithm and that it can be used to find both generator

and parity-check matrices for a linear code.

(1i1) A generator matriz for a linear code not is unique, since in general the vector space admit

many bases for the same linear code.
Definition 1.4.3. (i) A generator matriz of the form (X|I) is said to be in standard form.
(11) A parity-check matriz in the form (I,_x|Y") is said to be in standard form.

Lemma 1.4.4 ([I6], Lemma 4.5.4). Let € C F} be a linear code of dimension k with generator
matriz G. Then T € Fy belongs to €+ if and only if T is orthogonal to every row of G, i.e.
7 e €t e 7G, =0. In particular, given an (n—k) xn matriz H, then H is a parity-check matriz

for € if and only if the rows of H are linearly independent and HG, = O.

Remark 1.4.5. An equivalent but alternative formulation of the previous result can be obtained
by substituting in Lemma the generator matriz G with the parity-check matric H and € with
€+ (see [16], Remark 4.5.5).

One of the main consequences of Lemmal|l.4.4]is the following theorem wich relates the distance

of a linear code ¥ to some properties of its parity-check matrix.

15
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Theorem 1.4.6. Let ¢ C Fy be a linear code. Denote by H be a parity-check matriz of €. Then
(1) d(€) > d if and only if any d — 1 columns of H are linearly independent;
(17) d(€) < d if and only if H has d columns that are linearly dependent.

Proof. Let & = (x1,...,2,) € € be a vector of weight e > 0. Suppose the non-zero coordinates are
in the positions iy, ..., %, so that Z; = 0if j & {i1,...,i.}. Let ¢/ (1 <i < n) be the ith column of
H. By Lemma [1.4.4] (or its equivalent formulation in Remark [1.4.5)), 4" contains a non-zero word

T = (x1,...,2,) of weight e (whose non-zero coordinates are xz;,, ..., x; ) if and only if
0= th = xhﬁt + -+ xiec_leﬁ

which is true if and only if there are e columns of H (namely, Ciyyeees ¢;,) that are linearly

dependent. To say that the distance d(%) of € is > d is equivalent to saying that € does not
contain any non-zero word of weight < d—1, which is in turn equivalent to saying that any < d—1
columns of H are linearly independent. This proves (i). Similarly, to say that the (%) < dis
equivalent to saying that € contains a non-zero word of weight < d, which is equivalent to saying

that H has < d columns linearly dependent (and hence d columns). This proves (i7). O
An immediate consequence of Theorem [1.4.6]is the following result.

Corollary 1.4.7. Let ¢ C F} be a linear code. Denote by H be a parity-check matriz of €. Then

the following statements are equivalent:
(1) d(€¢)=d

(i) any d — 1 columns of H are linearly independent and H has d columns that are linearly

dependent.

Example 1.4.8. Let ¢ C Iy be a linear code with parity-check matriz

10100
H=111010
01001
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1.5. Encoding with linear codes

Observe that there are no zero columns and no two columns of H are linearly dependent, i.e. any
two columns of H are linearly independent. However, columns 1, 3 and 4 are linearly dependent.

Hence, by Corollary the distance of € is equal to 3.

Theorem 1.4.9. If G = (X|I}) is a generator matriz of a linear code € C Fy of dimension k

then a parity-check matriz for € is give by H = (I,,_x| — X3).

Proof. Obviously, the equation HG; = O is satisfied. Moreover it is clear that the rows of H are

linearly independent. Therefore, the conclusion follows from Lemma |1.4.4 O

Remark 1.4.10. Theorem show that Algorithm actually gives what it claims to yield.

1.5 Encoding with linear codes

Let ¥ C F} be a linear code of dimension k. Each vector of ¢ can represent one piece of
information, so ¢ can represent exactly ¢* distinct pieces of information. Once a basis {¢1, ..., }

is fixed for €, any its vector can be uniquely written as a linear combination
f:u151—|—~~+uk5k,

where uy,...,up € F,. Equivalently, set G to be the generator matrix of ¢ whose ith row is the

vector ¢; in the chosen basis. Given a vector @ = (ug,...,ux) € JF’;, it is clear that
f:ﬁG:U151++Uk5kECg

Conversely, any ¥ € € can be written uniquely as 4G, for some @ = (u,...,u) € F’;. Hence,
every vector u € IE"; can be encoded as ¥ = uG.
The encoding process with the linear code is nothing else that representing the elements u € IE";

as vectors ¥ = UG € €.

Example 1.5.1. Let € C F3 be a linear code with generator matriz

1 0110
G=|101011
00101
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1.6. Decoding with linear codes

Then the vector @ = (1,0,1) € F3 can be encoded as

10110
F=dG=(1,0,1) 01 0 1 1 |=(1,001,1).
00101

Remark 1.5.2. Let ¢ C Fy be a linear code € of dimension k. If its generator matriz G is in

standard form, G = (X|Iy), then it is trivial to recover the original vector U from UG, since
T =uG =u(X|I) = (uX|u);

i.e. the last k coordinates ¥ = UG give the vector u. The remaining n — k coordinates of ¥ € €
represent the redundancy which has been added to the vector u for protection against transmission

error.

1.6 Decoding with linear codes

A code is of practical use only if an efficient decoding scheme can be applied to it. In this section,
we discuss a rather simple but elegant decoding algorithm for linear codes, called the “nearest
neighbour decoding” as well as a modification of it, called “syndrome decoding”, that improves its

performance when the length of the code is large.

1.6.1 Cosets

We begin with the notion of a coset. Cosets play a crucial role in the decoding schemes to be

discussed in this section.

Definition 1.6.1. Let € C F} be a linear code, and let u € Fy. We define the coset of €

determined by i to be the set
U+C ={u+2:7€%}.
Let us give here some properties of coset.

Theorem 1.6.2 ([16], Theorem 4.8.4). Let ¢ C I}y be a linear code of dimension k. Then,
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1.6. Decoding with linear codes

(i) every vector of Fy is contained in some coset of €;
(i) for all W e T}, i+ C| = || =q" ;
(iii) for all W, v € F}, 4 € U+ € implies that U+ € = U+ € ;

q’

(iv) two cosets are either identical or they have emply intersection;
(v) there are ¢" % different cosets of €;

(vi) for all u,v € Fy, @ — ¥ € € if and only if @ and ¥ are in the same coset.

Example 1.6.3. Let € = {(0,0,0,0),(1,0,1,1),(0,1,0,1),(1,1,1,0)} € F3 be a linear code. The

cosets of € are as follows:

(0,0,0,0)+% : (0,0,0,0) (1,0,1,1) (0,1,0,1) (1,1,1,0)
(0,0,0,1) +% : (0,0,0,1) (1,0,1,0) (0,1,0,0) (1,1,1,1)
(0,0,1,0)+%: (0,0,1,0) (1,0,0,1) (0,1,1,1) (1,1,0,0)
(1,0,0,0)+ % : (1,0,0,0) (0,0,1,1) (1,1,0,1) (0,1,1,0)

The above array is called a (Slepian) standard array.
Definition 1.6.4. A vector of the least (Hamming) weight in a coset is called a coset leader.

Example 1.6.5. In Example the vectors of the first column of standard array are coset
leaders for the respective cosets. Note (0,0,0,1) + % have (0,1,0,0) as coset leader.

Proposition 1.6.6. Let € C F} be a linear code such that d(€') = d. Then a vector ¥ € FY is the
unique coset leader of T+ € if w(Z) < [(d —1)/2], where |a] is integer part of a.
Proof. Let & 4 @ be any vector of Z + %, where @€ % \ {0}. Then we have that

w(i@ + &) = d(7,—&) > d(0, —&) — d(7,0) > d — (d — 1)/2 > (d — 1)/2 > w(d).

Hence, 7 is the unique coset leader of ¥ + €. H
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1.6. Decoding with linear codes

1.6.2 Nearest neighbour decoding for linear codes

Let ¢ C Fy be a linear code. Assume the vector v’ is transmitted and the vector  is received,
with an error pattern.
E=w—vew+7E.
It is clear that both € and « are in W + %
Since error patterns of small weight are the most likely to occur, nearest neighbour decoding

works for a linear code % in the following manner. Upon receiving the vector w, we choose a vector

€ of least weight in the coset w + % and conclude that ¥ = w — € was the vector transmitted.

Example 1.6.7. Let € be as Example and assume that the following words are received:
(1) W= (1,1,0,1); (éi) @ = (1,1,1,1).
For the convenience of the reader, we recall here the (Slepian)standard array of € (exactly the

one in Example .'

(0,0,0,0)+% : (0,0,0,0) (1,0,1,1) (0,1,0,1) (1,1,1,0)
(0,0,0,1)+% : (0,0,0,1) (1,0,1,0) (0,1,0,0) (1,1,1,1)
(0,0,1,0)+% : (0,0,1,0) (1,0,0,1) (0,1,1,1) (1,1,0,0)
(1,0,0,0)+% : (1,0,0,0) (0,0,1,1) (1,1,0,1) (0,1,1,0)

(1) Note that W + € is the fourth coset which has (1,0,0,0) as a unique coset leader. Hence
(1,1,0,1) — (1,0,0,0) = (0,1,0,1) was the most likely vector transmitted.

(73) In this case W + € is the second coset. Note that there are two coset leader, (0,0,0,1) and
(0,1,0,0), in this coset. When a coset of a received vector has more than one possible coset
leader, the approach we take for decoding depends on the decoding scheme (i.e., incomplete or
complete) used. If we are doing incomplete decoding, we ask for a retransmission. If we are
doing complete decoding, we arbitrarily choose one of the coset leaders and than we decode
with this. Back to the example, if for instance we choose (0,0,0,1) as the coset leader of
W+ €, than we can conclude that (1,1,1,1) — (0,0,0,1) = (1,1,1,0) was the most likely

codeword sent.
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1.6. Decoding with linear codes

1.6.3 Syndrome decoding

The decoding scheme based on the standard array works reasonably well when the length n
of the linear code is small, but it may take a considerable amount of time when n is large. Some
this time can be saved by making use of the concept of syndrome to identify the coset to which

the received vector belongs.

Definition 1.6.8. Let ¢ C Fy be a linear code of dimension k and let H be a parity-check matriz

of € in standard form. For any @ € Fy, the syndrome of W is the vector Sy (W) = WH; € IE‘Z;"".

Theorem 1.6.9. Let ¢ C Fy be a linear code of dimension k and let H be a parity-check matriz

of € in standard form. For any u,v € Fy, we have
(i) Sp(d+7) = Su(d)+ Su(v);
(17) Sp(u) = 0 if and only if @ is a codeword in € ;
(1ii) Sp(u) = S () if and only if @ and v are in the same coset of €.

Proof. (i) Tt is an immediate consequence of Definition [1.6.8]
(#7) From Definition it follows, Sy (@) = 0 if and only if @H, = 0. By Remark [1.4.5} is
equivalent to @ € €.

(#43) It follows from (i), (i) and Theorem [1.6.2] (vi). O

Remark 1.6.10. Part (iii) of Theorem says that we can identify a coset by its syndrome.
Conversely, all the vectors in a given coset yield the same syndrome, so the syndrome of a coset is
the syndrome of any vector in it. In other words, there is a one-to-one correspondence between the
cosets and the syndromes. In particular by Theorem m (v) we know that there are ¢"~* distinct

syndromes, that is all the vectors in IFZ*’{ appear as syndromes.

Definition 1.6.11. A table which matches each coset leader with its syndrome is called a

syndrome look-up table. Sometimes such a table is called a standard decoding array (SDA).

To construct a syndrome look-up table by assuming complete nearest neighbour

decoding
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1.6. Decoding with linear codes

One can follows the following to steps are needed. Step 1: List all the cosets of the code and
choose from each coset a vector @ with least weight as coset leader .
Step 2: Find a parity-check matrix H for the code and for each coset leader  calculate its

syndrome Sy (@) = ©H;.

Example 1.6.12. By assuming complete nearest neighbour decoding, we construct the a syndrome

look-up table

Ne || Coset leader @ | Syndrome S(i)
1| (0,0,0,0,0,0) (0,0,0)
2 1 (1,0,0,0,0,0) (1,1,0)
3 | (0,1,0,0,0,0) (0,1,1)
4 | (0,0,1,0,0,0) (1,1,1)
5 | (0,0,0,1,0,0) (1,0,0)
6 | (0,0,0,0,1,0) (0,1,0)
7 1 (0,0,0,0,0,1) (0,0,1)
8 | (0,0,0,1,0,1) (1,0,1)x
for the linear code € C FS with parity-check matriz
1 00101

H=1010111
001011

By Corollary the distance d of € is equal to 3.

As |(d—1)/2] =1, by Proposition all the error patterns with weight 0 or 1 will be coset
leaders. Then it is sufficient to compute the syndrome for each of them to obtain only the first
seven rows of the syndrome look-up table. Since by Remark every vector of length 3 must
be a syndrome, the remaining coset leader U has syndrome wH; = (1,0,1). Moreover, 4 must have
weight > 2 since all the vectors of weight 0 or 1 have already been included in the syndrome look-up
table. Since we are looking for a coset leader, it is reasonable to start looking among the remaining

vectors of the smallest available weight, i.e. 2. Doing so, we find three possible coset leaders:
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1.6. Decoding with linear codes

(1,0,1,0,0,0), (0,1,0,0,0,1) and (0,0,0,1,1,0). Since we are using complete nearest neighbour
decoding, we can arbitrarily choose (1,0,1,0,0,0) as a coset leader and to complete the syndrome

look-up table.
Syndrome decoding

Step1: Compute the syndrome Sy (w) where i is the received vector.
Step 2: Find the coset leader @ such that the syndrome Spy(@) = Sy (@) in the syndrome
look-up table.

Step &: Decode w as v = W — u.

Example 1.6.13. Let ¢ = {(0,0,0,0),(1,0,1,1),(0,1,0,1),(1,1,1,0)} C F3 be a linear code. Use
the following syndrome look-up table to decode (i) W = (1,1,0,1); (i) w = (1,1,1,1).

Coset Leader u || Syndrome S()
(0,0,0,0) (0,0)
(0,0,0,1) (0,1)
(0,0,1,0) (1,0)
(1,0,0,0) (1,1)
1110
Since a generator matriz of € in standard form is G = , by Theorem [1.4.9
01 01
1 010
= is the parity-check matriz of € in standard form.
0111

(1) Since Sy(W) = WH, = (1,0). From the above table, we deduce that the coset leader is
(0,0,1,0). Hence (1,1,0,1) —(0,0,1,0) = (1,1,1,1) was a most likely vector sent.

(17) Since Sy(wW) = WHy = (0,1). From the above table, it follows that the coset leader is
(0,0,0,1). Then (1,1,1,1) +(0,0,0,1) = (1,1,1,0) was a most likely vector sent.
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Chapter 2

Cyclic Codes

In the previous chapter, we concentrated mostly on linear codes because they have algebraic
structures. These structures simplify the study of linear codes. For example, a linear code can
be described by its generator or parity-check matrix; the minimum distance is determined by the
Hamming weight, etc. However, we have to introduce more structures besides linearity in order for
codes to be implemented easily. For the sake of easy encoding and decoding, one naturally requires
a cyclic shift of a codeword in a code € to be still a codeword of €. This requirement looks like
a combinatorial structure and fortunately this structure can be converted into an algebraic one.
In this second chapter, we introduce the cyclic codes, a special case of linear codes, and we
discuss some of their algebraic structures and main properties. In the last two sections, some

further decoding algorithms are considered and studied.

2.1 Preliminaries

First of all let us give here the following

Definition 2.1.1. A linear code ¢ C F} is called cyclic code if it is invariant by the linear
transformation

¢:(ag, ..., an-1) —> (@n_1,00, ..., an_2).

Say that a linear code % is invariant under ¢ is equivalent to saying that % it is invariant under
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2.2. Generator polynomials

the action of the permutation matrix

01
P=|" ' (2.1.1)

0 1

100 0

ie. {CP:Ce¥}="¢%.
Theorem 2.1.2. [f € C Fy is a cyclic code then the dual code ¢+ C [y is also a cyclic code.
Proof. 1If h = (ho, ..., hn_1) € €+ then h-Z=0 for all = (coy. .. Cn1) € €. Thus we have
(h) - &= (hn-1,ho, . hz) - (coscrs -y amt)
= hn_lco + h001 F .k thCn_l
=h-¢"7'(0) =0,

since ¢"~1(¢) € € where ¢* = po---0¢ Vk € N. Hence, €+ is a cyclic code. O
—_—
k—times
In order to convert the combinatorial structure of cyclic codes into an algebraic one, we consider

the following correspondence:

T ]FZ HFQ[X]/(Xn_l)a (aﬂyalw'-aan—l) '—>a0+a1X+"'+an—1Xn_l‘ (212)

Observe that 7, is a linear F -isomorphism of vector spaces over F,. So, we will sometimes
identify [y with F,[X]/(X™ — 1) and a vector @ = (ag, . .., ap—1) with the polynomial 7, (@) : a =
S a X . Since Fy[X]/(X™ — 1) is a ring, we have a multiplicative operation on F,[X]/(X™ — 1)

besides the addition inherited by the one on Fy via 7.

2.2 Generator polynomials

The reason for defining 7, in the previous section is the following result which connects ideal with

cyclic codes.
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Theorem 2.2.1. Let 7, be as in (2.1.2)). Then a non-empty subset € of ¥y is a cyclic code if and
only if m,(€) is an ideal of F,[X]/(X™ —1).

Proof. Suppose that 7, (%) is an ideal of F,[X]/(X"—1). Then, for any o, 5 € F, C F,[X]/(X"—1)
and @,b € €, we have am, (@), Bmn(b) € m,(%). Thus 7, (@ + Bb) = am, (@) + S (b) € mu(€), ic.
ad + Bb € €. This shows that € is a linear code.

Now let ¢ = (cg,...,¢p 1) € € and m,(0) = o+ 1 X + -+ + o X" 2+, 1 X" € 7, ().
Since 7, (%) is an ideal, the polynomial

X m@ =cX +aX?+ -+ epo X" P X
=cCp1+ X+ X+ o X €T, (F)
(since X" —1=01in F,[X]/(X" —1))

l.e. (Cn_l, Coy+ -y Cn_g) € ©.

Conversely, suppose that ¢ C [y is a cyclic code. For any polynomial
f=fo+ AX + + fua X"+ fua X7 = mo(fo, f1o -0 fam1)
of m,(€¢) with (fo, f1,..., fu_1) € €, the polynomial
X f=foatfoX + AXP+ o+ foa X"}

is also an element of m, (%) since € is cyclic. Thus X? - f = X(X - f) € 7,(%) and by inductive
argument we see that X' - f € 7,(%) for all integer i > 0. Since ¥ is a linear code and 7, is a
linear transformation, 7,(¢) C F,[X]/(X™ — 1) is a group with respect to the sum and for any
g=go+ X+ -+ g1 X" €F,[X]/(X™— 1), the polynomial

n—1
af =) _g:(X'f)
i=0
is an element of 7, (%). Therefore, m,(%) is an ideal of F,[X]/(X" — 1). O

Example 2.2.2. The set I = {0,1+X? X + X3 1+ X + X2+ X3} is an ideal in Fo[X]/(X*—1).
The corresponding cyclic code is 7, (I) = {(0,0,0,0), (1,0,1,0),(0,1,0,1), (1,1,1,1)}.
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2.2. Generator polynomials

Remark 2.2.3. The trivial cyclic codes {0} and [y correspond to the trivial ideals (0) and
F,[X]/(X™—1), respectively.

The proof of the following results is easy and it makes use principally of the division algorithm

Theorem 2.2.4 (|I6|, Theorem 7.2.3). Let I be a non-zero ideal in F [X]/(X™ — 1) and let g be
a non-zero monic polynomial of the least degree in I. Then g is a generator of I and it divides

X" —1.

Since F,[X]/(X™ — 1) is a principal ideal domain (PID), we deduce that any of its ideal is
principal. Therefore any cyclic code € is uniquely determined by the monic generator of 7,(%),

as the following result shows

Proposition 2.2.5. There is a unique monic polynomial of the least degree in every non-zero ideal

I of Fy[X]/(X™ —1) and by Theorem [2.2.4] it is a generator of I.

Proof. Let gi1,¢g2, be two distinct monic generators of the least degree of the ideal I. Then a
suitable scalar multiple of g; — g2 is a non-zero monic polynomial of smaller degree in /. But this

give a contradiction. O]
From the above result, the following definition makes sense.

Definition 2.2.6. For a cyclic code ¢ C ¥y, the unique monic polynomial of the least degree of

7n(€) is called the generator polynomial of €.
From the above results we obtain the following

Corollary 2.2.7. There is a one-to-one correspondence between the cyclic codes € C Fy and the

monic divisors of X" —1 € F,[X].

Proof. Let ¢ C T} be a cyclic code. Then by Theorem (%) is an ideal of F [X]/(X™ —1).
Since Fy[X]/(X"—1) is a PID, from Proposition [2.2.5]it follows that m,(%") = (g) for a unique monic
polynomial g € F,[X]. Moreover, by Theorem we know that g divides X™ — 1. Conversely,
let g € F,[X] be a monic divisor of X™ — 1 and consider the unique ideal (g) C F,[X]/(X™ —1).
By Theorem we conclude that 7, 1((g)) is a cyclic code via the isomorphism 7. O
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Example 2.2.8. In order to find all cyclic codes € C FS we factorize the polynomial X% — 1 €
X0 —1=(01+X)214+ X+ X2

List all monic divisor of X% — 1:

1, 1+ X, 1+ X+ X?
(1+ X)2, 1I+X)1+X+X?), 1+X)?*(1+X+X?
14+ X+X%?2, 1+X)1+X+X?)?% (14 X9).

By Corollary there are mine cyclic codes ¢ C TFS. By the map w5, we can easily write
down all these cyclic codes. For instance, the cyclic code which corresponds to the polynomial
(14X + X?)? is

{(0,0,0,,0,0,0),(1,0,1,0,1,0), (0,1,0,1,0,1), (1,1,1,1,1,1)}.

From the above example, we deduce the number of cyclic codes 4" C F} can be determined if

we know the factorization of X™ — 1. We have the following

Theorem 2.2.9. If X" —1 = pr is the factorization of X™ — 1 € F,[X] where py,..., pr
i=1
are distinct monic irreducible polynomials and e; € N\ {0} for all i = 1,..., r, then there are

[T;_i(ei + 1) cyclic codes € C Fy.
Proof. The statement follows from Corollary by counting the number of all monic divisors of

X" —1. U

Since a cyclic code ¥ C Fy is totally determined by its generator polynomial g, all the
parameters of € are also determined by the g. For example, the following result gives the dimension

of € in terms of g.

Theorem 2.2.10. Let g be the generator polynomial of an ideal I € F,[X]|/(X™ —1). Then the

corresponding cyclic code w,;'(€) has dimension k if and only if the degree of g is equal to n — k.

Proof. Note that for two distinct polynomials ¢, co with deg(c;) < k —1 (i = 1,2), we have that
c19 # cog (mod X™ — 1). Hence, the set

A:={cg:ceF,[X]/(X"—1), deg(c) <k—1}
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has ¢* elements and it is a subset of the ideal (g). On the other hand, for any polynomial ag with
a € F,[X]/(X™—1), write

ag=u(X"—1)+r (2.2.1)
with deg(r) < n. By (2.2.1), we get that r = ag — u - (X" — 1). Hence, g divides r. Write r = bg
for some polynomial b. Then deg(b) < k — 1, so r € A. This shows that A is equal to (g). Hence,
by Theorem m (1), the dimension of the code 7, "((g)) is log, |A| = k. O

Example 2.2.11. Based on the factorization: X'—1 = (1+X)(1+X?+X?)(1+ X + X?) € Fy[X],
we know that there are only two cyclic codes €, and €5 in TS with dimendion 3:
¢ = ((1+X)(1+ X*+ X?) ={(0,0,0,0,0,0,0), (1,1,1,0,1,0,0), (0,1,1,1,,0, 1,0),

(0,0,1,1,1,0,1),(1,0,0,1,1,1,0),(0,1,0,0,1,1,1),
(1,0,1,0,0,1,1),(1,1,0,1,0,0,1)}

and

G = ((1+X)1+ X+ X?)) ={(0,0,0,0,0,0,0),(1,0,1,1,1,0,0), (0,1,0,1,1, 1, 0),

(0,0,1,0,1,1,1),(1,0,0,1,0,1,1),(1,1,0,0,1,0,1),

(1,1,1,0,0,1,0), (0,1,1,1,0,0,1)}.
2.3 Generator and parity-check matrices

In the previous section, we showed that a cyclic code is totally determined by its generator
polynomial. Hence, such a code should also have generator matrices related to this polynomial.

More precisely, we have the following

Theorem 2.3.1. Let g = go + 1. X + -+ + ¢ X" F be the generator polynomial of a cyclic code
¢ CFy in Ty with deg(g) =n — k. Then the matriz

-1(g) g9 91 -+ o Gk 0 0 0 ... O
o L 0. ) 99w ¢ oo oo Gpe O 0 ... 0
oYXk g) 0 0 ... ... go g1 i i ii Gnek

is a generator matriz of € .
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Proof. Consider the polynomials g, X - g¢,..., X*¥1.g of 7,(%¢). It is clear are linearly
independent over F,. Moreover, by Theorem [2.2.10, we know that dim(¢) = k. Then
. g), T, WX - g),..., m; L (X*k1. g) form a basis of €. O

Example 2.3.2. Consider the cyclic code € C F} with dimension 4 and generator polynomial

g =14+ X2+ X3. Then this code has a generator matriz given by

7' (g) 1011000

o (X - g) _[oto1r 100
(X% g) 0010110

T (X3 g) 000T10T11

This generator matriz is not in standard form. By elementary row operations on the rows of G we

can obtain the following

1011000
w1 110100
1100010
0110001

Remark 2.3.3. By knowing the generator matriz of a cyclic code, its parity-check matriz in
standard form can be easily obtained by Theorem [2.3.1| row elementary operations and Theorem

14,9

However, since the dual code of a cyclic code € is also cyclic, we should be able to find a
parity-check matrix from the generator polynomial of the dual code. The next problem will be to

find the generator polynomial of the dual code €*. To do this we need the following

Definition 2.3.4. Let h = Zf:o h; X" be a polynomial of degree k over F,. Define the reciprocal

polynomaal hr of h by

k
hp =X n(1/X) =) ap X",
1=0

Theorem 2.3.5 ([16], Theorem 7.3.7). Let g be the generator polynomial cyclic code € C Fy with
dimension k. Put h = (X" —1)/g. Then hy'hg is the generator polynomial of €+, where hq is

the constant term of h.
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Definition 2.3.6. Let € C Fy be a cyclic code. The polynomial hy'hyr of Theorem 15 called
the parity-check polynomaal of the cyclic code.

Corollary 2.3.7. Let € C T} be a cyclic code with generator polynomial g. Put h = (X" —1)/g =
ho +hX + -+ h,X*. Then the matric

W;l(hR) hip hi_1 ... ... hg 0 0 0O ... 0
7T;1<X'hR) 0 hy, hp_1 ... ... ho 0 0O ... 0

H: . = .
ng(Xnikfl'hR) 0 0 cee e hy hpr .. .. .0 hy

s a parity-check matriz of €.

Proof. The result immediately follows from Theorem [2.3.5| and [2.3.1] [

Example 2.3.8. Let ¢ C F1 be the cyclic code with generator polynomial g = 1+ X?+ X3. Write
h=(X"-1)/g =1+ X?+ X?+ X*. Then by Theorem hr =14+ X + X? + X* is the
parity-check polynomial of €. and by Corollary

1110100
H=10111010
b W] L agl] ]

s a parity.check matrix of €.

2.4 Encoding and Decoding methods with cyclic codes

Given a cyclic code ¢ C Fy of dimension k < n, a classical codification of a message M e IF’;
is given by MG, where GG is a generator matrix of 4. However, this encoding method is not

systematic, i.e. it is not strictly related with an easy decoding algorithm.

So, let us give here a non-trivial and systematic encoding method for cyclic codes. Let
M € IF’; be the original message. Let € be a cyclic code such that dim(%4) = k. Therefore,

consider the natural injective map i : ]F"qC — Fy such that i(ay,...,ax) = (a1,...,ax,0,...,0).
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2.4. Encoding and Decoding methods with cyclic codes

—

Define 7 := (M) = (M,0) € [y and denote by m € R, the representation of the message

—

m = i(M) € Fy, via the vector isomorphism
7 Fy — F[X]/(X"=1) .

At this point, we can encode the original message m = z(]\7[) by working equivalently on either

(i) F[X]/(X™ = 1), or (i) F?.

(i) Multiply the original messages m by X" % where m = mg + mX + ... + mp_1 X! and
k = dim(%). The result is X" % .- m = mo) X" % + m X" 4 4+ my_ XL Write
X"k .m = qg + r, where degr < n — k. Since qg € €, we can encode the original message
m € Fy by

m =1 Y X" m—r)e¥

Since degr < n — k, observe that all the information about the original messages m is contained
in the last powers X" % .. X" 1 of X" *.m —r € n(%).

(77) Define the map

2 FZ — ]FZ

r flpn—k

where the P is the permutation matrix as (2.1.1). By applying P to 13 we have

mP = (M,0)P" )
= (6’ M)

If 7/ := (¢, M) is such that /7' H, = 0, where H is the parity check matrix of € in standar form, i.e.
k| (

H = (I,— | (T);) is given by Proposition Then 1’ € € is the encoded message of m € .

Now, let m” be the received message. If during the transmission of the encoded message m/

there were not errors, i.e. m” € € X --- X %,, then in both cases (i) and (#i) we can decode

m” = (m},...,m") by applying ©~ "% to each component 1/ of 7”. The original components 7

—

of m = (1My, ..., m,) will be given by the last k; coordinates of (m/)©~"*ki for every i = 1,...,7.
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2.4. Encoding and Decoding methods with cyclic codes

2.4.1 Syndrome decoding of cyclic codes

The syndrome decoding of cyclic codes consists of the same three steps as the decoding of linear
codes: computing the syndrome, finding the syndrome corresponding to the error pattern; and
correcting the errors. Cyclic codes have considerable algebraic and geometric properties. If
these properties are properly used, simplicity in the decoding can be easily achieved. For this
all reasons,we will see that the above three steps for cyclic codes are usually simpler.

From Corollary by performing elementary row operations, we can easily produce for a

cyclic code the unique parity-check matrix of the form
H = (I,—¢|A). (2.4.1)

Recall that all syndromes considered in this section will be computed with respect to the parity-

check matrix of the form as in (2.4.1)).

Theorem 2.4.1. Let H = (I, |A) be the parity-check matriz of a cyclic code € C Fy. Let g be
the generator polynomial of €. Then the syndrome of a vector v € Fy correspond to the principal

remainder of vmod g via m,_j, where m,(V) = v.

Proof. Denote by a; the polynomial of degree at most n — k — 1 which correspond to the i-th
column vector of A by m,_r. By Theorem , we know that G = (—AT|I;) is a generator
matrix for €. Therefore, [X" ¥+ — g;] is a polynomial class of 7,(¢). Put X" * — a; = ¢;g for
some ¢; € F,[X], that is

[ai] = [X"7* — gig]

where deg(a;) <n—k —1forevery i =0,...,k—1. Write v =vg +v; X +... +v, X", For

the syndrome vH; of U, the corresponding polynomial is

S = vy + UlX + ...+ vn,k,lX”*kfl + VUp_kQo + ... + Un_10k_1

n—k—1

k—1
= Z ’UiXi + Z Un,kJrj (ankJrj — q].Q)
=0 7=0

n—1 k—1
= ZUlXZ — (ZvnkJrjqj) 9,
i=0 Jj=0
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2.4. Encoding and Decoding methods with cyclic codes

ie. v= (Zf;é vn,kﬂqj) g+ 5. As the polynomial s has degree at most n — k — 1, by the unicity
of the Division Algorithm we conclude that s = v(mod g). ]

The three steps of the syndrome decoding (see Ch 1, § 1.6) for cyclic codes can be resumed in

the following result

Corollary 2.4.2. Let g be the generator polynomial of a cyclic code € C Fy. For a received
polynomial v, if the remainder s of v divided by g correspond to a vector with weight less than or
equal to | (d(€) —1)/2], then s is the error pattern of v and v can be decoded by v — s. Otherwise,

we ask for a retransmission of v.

Proof. From Theorem we know that v and s are in the same coset v+ (g). Furthermore, by
Proposition s is the unique coset leader since w(m, (s)) < |(d(€) — 1)/2]. So the desired

result follows. O

Example 2.4.3. Consider the cyclic code ¢ C Fy with generator polynomial g = 1 + X? + X3
such that d(€¢) = 3. Then, by performing elementary row operations on the matriz of Example

2.3.8, we obtain a parity-check matrizc H = (I3|A), where A is the matriz

1 110
A=101 11
i s

For v = (0,1,1,0,1,1,0), the syndrome is vH; = (0,1,0). On the other hand, v = X +
X? + X'+ X5 = X + X?.g. Thus, the remainder v (mod g) is X, which corresponds to
(0,1,0,0,0,0,0,) € Fi. Therefore, v is decoded as v — X = X? + X* + X® which corresponds
to the word (0,0,1,0,1,1,0) € F5. If the polynomial v = 1+ X% + X3 + X* is received, then the
remainder v; (mod g) is 1 + X + X?. In this case, we can use syndrome decoding to obtain the
codeword vy — X* =1+ X2+ X3 = (1,0,1,1,0,0,0) as the word (0,0,0,0,1,0,0) is the coset leader

for the coset in which vy lies.
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2.4. Encoding and Decoding methods with cyclic codes

2.4.2 Meggitt decoding of cyclic codes

In this subsection we present a technique for decoding of cyclic codes called Meggitt decoding.
This decoding is performing in quotient F,[X]/(X"™ — 1).

Let ¢ C T} be a cyclic code with d(%’) = d and generator polynomial g of degree n — k. By
working with polynomials instead of vectors, suppose that ¢ € 7,(%) is transmitted and y = c+e
is received, where e is the error vector with w(m, '(e)) < [(d — 1)/2]. The Meggitt decoder stores
syndromes of error patterns (see § 1.6.2) with n coordinate. By shifting y at most n times, the
decoder finds the error polynomials e from a list and then corrects this error e we will see that
Meggitt decoding takes advantages of the nature of the cyclic codes.

Define the shift syndrome polynomial 5([v]) of any [v] € F,[X]/(X™ — 1) to be:

3([v]) := [X" "] (mod g),
where ¢ is the monic polynomial such that 7,(%) = (g).
Lemma 2.4.4. If [v] € F,[X]/(X" = 1), then 5([v]) = 0 if and only if [v] € m,(F).

Proof. Let [v] € F,[X]/(X™ — 1) such that 5([v]) = 0, i.e. (X" *.0v) =0 (mod g). Hence we
can deduce that [X"% - v] € 7,(%), that is X" % - v = h- g for some h € F,[X]/(X™ —1). Since
X" =1, we get

(X" gl = [XF (X" )] = (X" 0] =[],

that is, [v] € m,(%). On the other hand, if [v] € 7, (%), then v = ¢ - g for some ¢ € F,[X]. Thus

by definition we can conclude that 3([v]) = 0. O

Lemma 2.4.5 ([12], Theorem 4.6.2). Let g be a monic divisor of X™ — 1 of degree n — k. If
s = [X"*v](mod g), then
S([X -s]) =[X - s+ sp—k-19]

where s,_y_1 15 the coefficient of X" *~1 in s.

We now describe Meggitt Decoding Algorithm and we use an example to illustrate each of

its steps.
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2.4. Encoding and Decoding methods with cyclic codes

Step I
n—1

Find all the shift syndrome polynomials S([e]) of error patterns e = > e, X" such that

w(€) < |[(d—1)/2| and e, # 0, where €= (eq,...,e,_1) is the vector corresponding to e.

Example 2.4.6. Let € C Fi® be a cyclic code with d(¢) = 5 and generator polynomial
g=1+X*+ X5+ X"+ X8 Then, with an abuse of notation, the shift syndrome polynomial 3([e])

of an error pattern e is equal to X% (mod g). The Step I produces the following shift syndrome

polynomials:
¢ 5(lel)
ey = e 5((e)
0+ x| x4 X7 Xo+ X" X2+ X+ X0+ X0 4 XT
+ +
X0+ XM X+ X7+ XO

X2+ X" X0+ X7
X4 x| x4 4 X7
X10+X14 X3+X7

She Y g X+ X3+ X4+ XP 4+ X7
X3+ Xt 1+ X224+ X3+ X4 4 X7

X2+X14 X+X2—|-X5—|—X6
X9+X14 X2—|—X7
x| x4 x7 X+ X" 1+ X+ X4+ X504+ X064+ X7
+ +
18 x4 1+ X4+ X6

X7+X14 1—|—X7

Setp II:
Suppose that y is the received polynomial. Compute the syndrome polynomial 35([y]) =
[X"*y] (mod g). Since y = c+e, where ¢ € 7,(%), then by Lemma|2. 4.4 we see that 5([y]) = 3([e]).

Example 2.4.7. Continuing with Example suppose that y = 1+ X4+ X7+ X% 4 X104 x12
18 received. Then

3([y]) = [X® - y](mod g) = X + X? + X® + X7

Step III:
If 5([y]) belongs to the list computed in Step I, then we have the error polynomial e and we

¢ =y —e. If 5([y]) does not appear in the list, go on to Step IV.
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2.4. Encoding and Decoding methods with cyclic codes

Example 2.4.8. We see that 5([y|) does not appear in the list of shift syndrome polynomial.

Step IV:
Since 5([y]) is not appear in the list we can write y = ¢ + €’ with ¢ € m,(€’), where €' is the error
pattern such that w(r,'(¢/)) < [%*] and deg(¢’) < n — 1. By Lemma compute the shift
syndrome polynomial of X -y = X-c+X-€/, X%y = X%.c+X2-¢,..., Xn1-deale) .y = xn—1-dea(e).
c+Xn1mdeele) . ¢! Observe that deg(X™1-4(€).¢') = n—1 and w(m;, (X 1-dee(). ¢)) < [£L].
Then 3([X"~17d&(¢) . y]) belongs to the list and it is associated with the error polynomial

¢ = Xn1-deal€) . o/ Then the received vector can be decoded as y — Xdes()+1 . ¢,

Remark 2.4.9. The definition of the shift syndrome polynomial is typical of the Meggitt decoding
algorithm. Moreover it allows us to construct a table of shift syndrome polynomial smaller than

the classical one we have to consider in syndrome decoding of §1.6.2.

Example 2.4.10. Continuing with Example2.4.7, we have 3([X -y]) = X (X+X*+ X4+ X")—1.g =
1+ X%+ X3 + X* + X which is not in the list of Example 2.4.6, Thus consider 5(X?%y) =
X(1+X2+ X34+ X414 X0)—0-g = X+ X34+ X*+ X+ X", Since 5([X?-y]) corresponds to the error
X4+ X" we can decoded y as y— XB( X4+ X") = y— (X?4+X1?) = 1+ X2+ X+ X"+ X9+ X110,
Note that this is equal to (1 + X?)g € m,(%).
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Chapter 3

(Generalized Cyclic Codes

In this third chapter, we study a new type of linear code, called Generalized Cyclic Code, which
happens to be a generalization of cyclic codes. Furthermore, we show that in this case many of
the main properties of cyclic codes are naturally inherited and that these codes can be analyzed
as subspaces invariant under the action of a companion matrix, providing a method to find other
algebraic properties of these codes, a generator matrix and a parity-check matrix. In the last part
of this chapter, we give an algorithm to construct these kind of codes via projective spaces and
by an immersion map we explore two further dual codes, the Quasi-Euclidean and the Hermitian

dual codes, by ending with a generalization of a Meggitt type algorithm as in Chapter 2]

3.1 Preliminaries and Background Material

In this section we study the main tools to construct a class of generalized cyclic codes. Each matrix
M of order n x n, with coefficients in a finite field [F,, can be associated to an n x n matrix R
called the rational canonical form of M. The matrix R is a block matrix whose blocks are matrices
of special type called companion matrices.

From now on, denote by A an n x n matrix with coefficients in [F,.

Definition 3.1.1. A monic polynomial of minimum degree that annihilates the matriz A is called

minimal polynomial of A.
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3.1. Preliminaries and Background Material

Remark 3.1.2. The minimal polynomial of A is unique.

We have the following

Lemma 3.1.3 ([9], Lemma 6.7.1). Suppose that f(X) = X" — f, 1 X" ... — fiX — fo is the
minimal polynomial of A. Then there is a basis {71,...,7n} of Fy such that
01
A=S St
0 1
folfv -+ fama

where S = ( Tt

' ‘rnt )‘

Definition 3.1.4. If f = X" — f, X" ' — ... — f1X — fo € F,[X] then the matriz
0|1
AC’f =
0 1
folfi -+ fam

is called the companion matrix of f. When [ is known we simply write A..

Remark 3.1.5. Lemma says that if f is the minimal polynomial of A in F,[X] then for some

basis of Fy the matriz A is similar to A.y. Thus f is also the minimal polynomial of A. ;.

Let f € F,[X] be the minimal polynomial of A. Since F,[X] is an Euclidean Domain, up to

permutation we can write
f=q .. qF (3.1.1)
for some ¢; € Nyg and distinct monic irreducible polynomials ¢; for every ¢ = 1,... k.

Theorem 3.1.6 ([9], Theorem 6.7.1). If f = ¢° is the minimal polynomial of A where q is a monic

irreducible polynomial in F,[X], then there exists a basis {r1,..., 7.} of F such that

Acges
A=S - s,
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3.1. Preliminaries and Background Material

where Ac 4o denotes the companion matriz of ¢*, S = ( Tig | - ‘ Tt ) ande=e > ... > e.
The following Corollary is an immediate consequence of the above result.
Corollary 3.1.7. If f = qi* - ... - ¢;* is the minimal polynomial of A, where g; are as in (3.1.1),
then there exists a basis {71,...,7,} of Fy such that
Ry
A=SRS'=5 St
Ry,
with each
AC,q,L-eil
Ri = . )
A .eis,bv

.4,

where Acq‘?ij denote the companion matriz of ¢;° for all 1 < j < s; and 1 < i < k,
S = ( 1t

Definition 3.1.8. The matriz R of Corollary is called the rational canonical form of A.

. ‘Fm) and e; = €;1 > ... > €.

Example 3.1.9. Consider the following matriz with coefficients in Fqy

0 00O0T1PO0

00 0O0O01

100000
A=

010000

0010O0O0

000100

By the following Magma Program

A:=Matrix(GF(11),6,6,[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,
1,0,0,0,0,0,0,1,0,0]1);

R,T:=RationalForm(A);

R,T"(-1);
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3.2. Generalized Cyclic Codes

the rational canonical form of A is

010000
001000
100000
R: )

00 0O0T1OQ0
0 00O0O0T1
000100

4 4 4 8 77

34 4 4 4 4

4 4 4 77 8

that is, A= SRS™! where S =

4 4 3 4 4 4

4 4 4 7 8 7

4 3 4 4 4 4

3.2 Generalized Cyclic Codes

The main results of the previous section says that an n X n matrix A is similar to its rational

canonical form R, i.e. there exists a non-singular matrix S such that
A= SRS (3.2.1)

Let €4 C F} be a linear code invariant by the matrix A. Define €4 x S := {cS: ¢ € €} and
Cr:= %a*S. Then by (3.2.1) we obtain

Cr*R=Csx(SR) =C4*(S(ST'AS)) = (€ax A) xS C Ca % S = Cr,

i.e. %g is invariant by R. Since S is an invertible matrix, this shows that we can construct a
one-to-one correspondence between the set of linear codes invariant by A and the set of linear
codes invariant by R.

By using this argument, we first reduce the study of linear codes invariant by a matrix to that

of linear codes invariant by companion matrices. The general case will be consider in Chapter [4]
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3.2. Generalized Cyclic Codes

Definition 3.2.1. A linear code ¢ C Fy is called p-generalized cyclic code, or simply o-GC

code, if it is invariant by the linear transformation
@ (cocry. s nm1) = (fon—1,¢0 4 fien—1, ..., Cna + fac1Cno1)
where fo, ..., fao1 € Fy and fo # 0.

Remark 3.2.2. The linear transformation ¢ can be represented by the right multiplication of the

following matrix

01

A= | : (3.2.2)
0 1
ol i - fan

where det(A.) = fo # 0. Then a linear code € C F} is a p-GC code if only if € x A. = €.

From now on, by Remark we simply refer to a o-GC code as an A.-GC code and
viceversa, where ¢ and A, are as in Definition and the equation (3.2.2) respectively.

Remark 3.2.3. If ¢ C F} is an A.-GC code with [, = ... = f,1 =0, then € is an fo-constacyclic
code, i.e. € 1is invariant by the matrix
011
P = :
0 1
flo ... 0

. In particular, if furthermore fo =1, then € is a cyclic code.

Proposition 3.2.4. If € C F}! is an A.-GC code, then € % (A.)y = €+, where €+ is the dual
code of €.

Proof. If @ € €+, then we have
a(Ap) - ¢=d(A )6 = a(cA.)y =a- (GA.) =0, YCeF.

Since dim(€*) = dim(%* = (A.):), we conclude that €+ x (A4.); = €. O
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3.2. Generalized Cyclic Codes

The following consequence of Proposition is well-know (see [21], Proposition 4).

Corollary 3.2.5. Let € C Fy be an fo-constacyclic code, then €+ is an fy '-constacyclic code.

O | I
Proof. Note that A, = ! — | and fy'At = . By Proposition [3.2.4] it follows
Jo| O
L 0, |1
that € is invariant under — O
fo |0

Remark 3.2.6. Theorem is a consequence of Corollary when fo = 1.

Consider now the polynomial ring R := F [ X] with the usual addition and multiplication.

Denote by
n—1
f=X"-) fiX'€R
1=0

a polynomial of degree n. Define 7 : F} — R/Rf as the linear transformation defined by

=1
7((coy ey Cna)) == [Z ¢ X'| € R/Rf Y (co, .-y Cn_1) € R.
=0
Consider the companion matrix of f given by
0|1
A, =

0 1
folfiv - fama

Proposition 3.2.7. A non-empty subset € of ¥y is an A.-GC code if and only if 7;(%) is an
ideal of R/Rf.

Proof. Observe that for any ¢'= (co,...,c,-1) € F} we have
X -mp(C) =[coX +---+ Cpo X1 4+ Cn1 X"

= [fotn1+ (co+ fren—1)X + - + (Cnoa + fro16n1) X" = 74(CAL).

The rest of the proof is similar to that of Theorem [2.2.1] O
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3.2. Generalized Cyclic Codes

Remark 3.2.8. From Proposition we can deduce that X*-ms(0) = mp((0)(AE)) for all U € F}
and k € N.

As in §2 of Chapter [2] the following definition makes sense.

Definition 3.2.9. For an A.-GC code € C F}, the generator polynomial of w;(€) is called the

generator polynomial of €.

Remark 3.2.10. Theorems 2.2.10f and Corollary hold with f instead of X™ — 1.

If ¢ C Fy is an A.-GC code with generator polynomial g = go + - + g X" F € R/RS, we

k
n?q.

By Remark [3.2.10] we can focus on finding divisors of f to construct A.-GC codes.

simply write ¢ = (g)

Example 3.2.11. Let f = o*+aX + X3+ X* € Fy[X], where F, := Fy[a] 2 Fy[X]/(X?+ X +1)
and o € F, is such that o* + a +1 = 0. Since f = (a+ X?) - (a + X + X?), the linear codes
6= (a+ X7, and 6, = (o + X + X?)7, are A.-GC codes, where

o o = O
—_ = O O

Remark 3.2.12. Let € = (g)}; , be an A.-GC code and take [h] € ([g]) such that [h] = [p- g] for
some p € R, where [a] is the class of the polynomial a in R/Rf. Observe that [h] = [h'] for some
h' € R with deg(h') < n—1. Since [W'] = [p-g] we deduce that h' = p-g+q- f for some q € R. By the
Division Algorithm write p-g = ¢ - f+71" for some ¢',r" € R such that deg(r') < deg(f)—1=n—1.
This gives " = p'-g for somep’ € R. Note that deg(p') < deg(r’)—deg(g)—1 < deg(f’)—deg(g)—1.
Then we have
[h] = [0 =p-g] =[] = [P]lg],
i.e. for any [h] € ([g]) we can write [h] = [p][g] with

deg(f)—deg(g)—1

= > X

1=0
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3.3 Generator and parity-check matrices

As in §3 of Chapter [2 the generator polynomial characterizes an A.-GC code.

Theorem 3.3.1. If € = (9)* _ is an A.-GC code with g = go + -+ + gn_s X" %, then

n,q
T (9)
- 7rfl('g)AC
T (g)As!
18 a generator matriz of €.
Proof. The proof is similar to that of Theorem [2.3.1] O

Example 3.3.2. Let f and A, be as in Example [3.2.11, Consider € = (o + X + XQ)ZA. Then a

generator matriz for € is

(a,1,1,0) a 110
G: =
(a,1,1,0) A, 0 a 11

The following result provides a matrix in standard form for the dual code of an A,-GC code. This
allows us to encode and decode easily. Moreover, by Corollary the distance of the code can

be calculated immediately.

Proposition 3.3.3. Let € = (g); , be an A.-GC code. For any integer i such that 0 <i <k —1,
write in R

X — g g+, with 0 < degr; <n —k.

Denote by T the following matriz

pu—i(77 " (o))
pu k(77 (r))

pr—i(my " (r1-1))
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3.3. Generator and parity-check matrices

where p,_ s the projection map onto the first n — k coordinates, i.e.

Pn—k(Uh vy Un—ky Un—k+15 «-) UTL) = (U17 SRRD) Un—k)-

Then a parity check matriz H of € is given by H := < L g ‘ T, ) , where I,y is the (n—k) x (n—k)

identity matriz and Ty is the transpose matriz of T'.

Proof. Since degr; < n — k, note that
ﬂ_;l(anlH»i . ri) c¥

are linearly independent for 0 < i < k — 1. Thus ( -T ‘ I > is a generator matrix for ¢. Since
(¢+)+ = €, this implies that the matrix H as in the statement is a parity check matrix for the
code €. O

The MAGMA Program 0 (Ch. |5)) gives the list of all the reminders r; of Proposition which

we need to construct the parity check matrix H as in the above result.

Remark 3.3.4. Proposition giwes immediately the generator matrix and the parity-check

matriz of € in standard form. Moreover in the cyclic case, this result is useful in the syndrome

decoding (see Ch.[2], §2.4.1).

Example 3.3.5. Write f = o* + aX + X3 + aX* + aX® + X" + X% € FyX] and let
€ = (a® + X2+ a2 X3 + X1 be an A.-GC code, where Fy = Fy[a] with o> +a +1 =0 and

0O 100 00 O0O

0O 01000 O0O

0O 001 00 00

A 0O 000 1O0O0O
0O 000 O0OT1O0TO0

0 000 O0O0T1T0O0

0O 000 O0O0O01

> a 01 a 0 al
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3.4. Generalized cyclic codes as invariants subspaces

Divide X* by o® + X2+ o?X3 + X* fori=1,...,4. By MAGMA Program 0 (Ch.[5) we obtain

r o= a4+ X?0?X3, ry =a+a’X + o?X? 4+ X3,
rs = a+aX + X3, ry=a’+aX +a?X?+ a2 X3

Then by Proposition [3.3.3] we have

a o o a?
T —
o o« 1
o> a o o
Hence
1000 o> a a o
0100 0 & a «
H =
0010 1 o 0 a?
0001 a® a2 1 a?

is the parity-check matriz of € C F$ in standard form.

3.4 Generalized cyclic codes as invariants subspaces

Since linear codes are linear subspaces of Fy, the description of generalized cyclic codes in terms

of linear algebra becomes natural. Observe that the linear transformation ¢ as in Definition is

a linear operator on Fj. Our approach is to consider generalized cyclic codes as invariant subspaces

of Fy with respect to this operator and then to obtain a description of them.

Let ¢ and
01
A. =
0 1
o | ar -+ Qp-1

be as in Definition
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3.4. Generalized cyclic codes as invariants subspaces

The characteristic polynomial y 4, of A. is

-X 1
S G X
Xp i= XAc:det :<—1)H(Xn—an_1Xn_ —...—alX—(lo).
0 —X 1
Qo aq Ap—1 - X

For simplicity, we will write x instead of x4, or x.,.
Definition 3.4.1. A subspace U of Fy is said p-invariant if p(i) € U for all @ € U.
For our purposes we need the following well known fact.

Proposition 3.4.2 (|9], Lemma 6.6.1.). Let U be a p-invariant subspace of Fy. Then Xy divides
Xos where X, is the characteristic polynomial of py. In particular, if Fy = U ® W and W is a

p-invariant subspace of Fy, then Xy = Xey Xy -

Lemma 3.4.3. Let K be a finite field and let A be a square matriz with coefficients in K. Then
K[X]/(ma) = K[A],

where my is the minimal polynomial of A.

Proof. Consider the module homomorphism o : K[X| — K[A], defined by p — p(A). By
construction, ¢ is an onto homomorphism and ker(c) = (m4). Then there exists an isomorphism
o between K[X]/(ma) and K[A]. Moreover, 7 is defined by [p] — p(A), where [p] is the class of a
polynomial p. O

Remark 3.4.4. If p=q in K[X], then [p| = [q| in K[X]|/(ma). Thus p(A) = q(A) via .

Let x = (—1)"x1-...-x¢ be the factorization of x into irreducible factors over F,[X]. According

to Cayley-Hamilton Theorem, the matrix A. satisfies
X(A.) = O, where O is the null matrix.

Moreover, A, is a companion matrix and the polynomial y is equal to the minimal polynomial of

A..
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3.4. Generalized cyclic codes as invariants subspaces

Lemma 3.4.5. Let f = by + b1 X + ...+ b, X" be a polynomial of degree n in F,[X]. Denote by
fi-... - fi the factorization of f into irreducible factors over Fy[X|. Then, f; # f; for alli # j, if
and only if ged(f,0f) = 1, where Of :=nX""! — Z?:_f ia; X7t is the usual first derivative of f.

Proof. Write ¢ = p* for some prime number p = Char(F,) and s € N-g. Assume that f = ¢*- h
with g,h € F,[X] and degg > 1. Then 0f = 2g-9g-h + ¢g*-0h = ¢g(20g - h + g - Oh), so
ged(f,0f) # 1. This proves the "if" part of the statement. Suppose now that ged(f,0f) = d
with deg(d) > 1. If d is not irreducible, take an irreducible factor of d and write f = d’' - h, where
h € F,[X] and deg(d') > 1. Hence 0f = 0d' - h+ d' - Oh. Since d’ divides also Jf, we see that d’
divides Od’ - h. Because of the irreducibility of d', it follows that either d’ divides dd' or d' divides
h. If d' divides h, we have f = d”* - I/ for some b’ € F,[X]. On the other hand, if d’ divides dd’,
then 0d' = 0, since 0 < deg(dd') < deg(d').

Claim. d' = Y d;XP. Write d' = > d;X™ = dgX™ + d; X™ + ...+ d,X™, with d; # 0
and my < my < ... < m,. Since 0 = dd' = dgmeX™ ! + dym X™ 1 4+ .+ dym XM =
Xm0 (dymo + dymy X™ ™0+ 4+ dgme X ™ ™) and since F,[X] is an integer domain, we obtain
that domg + dym X"™ ™0 + ..+ +dsm X0 is the zero polynomial. Thus when X = 0, since
dy # 0, we deduce mgy = 0, i.e. my = phg for some hy € F,. By an inductive argument, we can

conclude that m, = ph, for some h, € F, and for any s =0,...,deg(d'). Q.E.D.

Since the Frobenius map a +— a” is an automorphism of F,, we can write

d = ZdiXphi = Zeprhi = <Z eiXhi)p for some e;,

but this gives a contradiction. O]

Remark 3.4.6. When f = X" —a with a € F,\{0}, the condition gcd(f,0f) = 1 is also equivalent
to ged(n, p) = 1, where p is the characteristic of F,,.

From now on, assume that ged(x,dx) = 1, where x is the characteristic polynomial of A..
In this case x has distinct factors y; € F,[X] such that their leader coefficients are +1 for every

t=1,...,t. Furthermore, consider the set of homogeneous equations

Zxi(A;) =0, £ € F! (3.4.1)

fori =1,...,t. If U; is the solution space of equation (3.4.1), then we write U; = Kery;(A.).
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3.4. Generalized cyclic codes as invariants subspaces

Theorem 3.4.7. The subspaces U; of Fy satisfy the following conditions:
(a) U is a p-invariant subspace of Fy;

(b) if W is a p-invariant subspace of ¥y and W; := W N U; for i = 1,...,t, then W; is a
p-invariant subspace of By and W =W, @ --- @ Wy,

(c) FZZUl@'--@Ut;
(d) dimU; = deg(x;);

(e) Xew, = (_1)]%)(1':’
(f) Ui is a minimal p-invariant subspace of Fy.

Proof. (a) Let @ € U;. Then we have @0x;(A.) = 0. Hence @(@0)x:(A.) = @A (Ae) = txi(A) A, =
04, =0, i.e. (@) € U;.

(b) Denote by X; := ~foreveryi=1... t. Since the x;s are all distinct irreducible polynomial,
we get ged(Xi, ..., X:) = 1. Then, by Bézout’s identity there exist polynomials ay,...,a; € F [X]
such that

ap X4 a X = 1.

By Remark [3.4.4] for every vector « € W the equality @ = wa;(A:)X1(Ac) + - - - + War(Ac) X (Ae)
holds.  Define w; = wa;(A.)Xi(A:) € W. Then wixi(A:) = wa;(A)Xi(A)xi(Ae) =
wa;(Ac)x(Ae) = Wa;(A.)O = 0, and so @; € U; N W = W;. Hence we can write

W =W+ + W,

Assume now that @ € W; N Y, W If @ € Y, W; then of = . ; and so wx;(A.) =

(D WXi(Ae) = D252 WX (Ae) = 0. Since @ € W; C U, by definition we have wy;(A.) = 0.
Since ged(x;, Xi) = 1, we know that there exist polynomials a,b € F,[X] such that x;-a+X;-b = 1.
Hence

W = wa(A)xi(Ae) + Wh(A)X:(Ae) = 0,
and this give W; N>, W; = {0} for every i =,...,t. Then W =W, & --- @ W,.
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3.4. Generalized cyclic codes as invariants subspaces

(c) This follows from b) with W = .
(d) Take § € U; with § # 0. Let k > 1 be the smallest positive integer such that

Gl,GA., ..., gAk are linearly dependent. Then there exist co,...,c,_; € F, such that
gAIg = Cogj + -+ Ck_lgAgi_l

Define ¢ := X% — ¢, X*1 — . — ¢ Since Gt(A,) = Gxi(A.) = 0 and ged(t, x;) =t-a+ x; - b
for some a,b € F,[X], we see that glged(, x;)(A)] = 0. Since y; is irreducible, ged(t, x;) is either
1 or x;. Suppose that ged(¢, x;) = 1. Then

0= gt(A)a(Ac) + Gri(A)b(A) = g,

Qi

but this give a contradiction. So ged(t, x;) = x; and deg(x;) < deg(t) = k;.
On the other hand, the vectors g, §Ae, ..., GASEX) are linearly dependent, since gy;(A.) =

—

0. From the minimality of k;, we get k; = deg(x;). Then dim(U;) > deg(y;) because

—»Adeg(xi)fl

G, GA., ..., GA: are linearly independent. Therefore by (¢) we obtain that

t
n = dim( IF” Zdlm > Zd(ngz‘ = deg(x) =

i=1
i.e. dim(U;) = deg(x;)-

() Let g® {g1 fee ,gdeg(x } be a basis of U; over Fy, fori = 1,...,¢ and let A; be the matrix
of ¢y, with respect to g™, Let Xy, be as Proposition m Suppose that ged(xy,. , xi) = 1.
Hence there are polynomials a,b € F,[X] such that a(A;)x,,, (Ai) + b(Ai)xi(Ai)) = I. Since
Xow, (Ai) = O, we obtain that b(4;)x;(A;) = I.

By Property (c) we see that & = {g1 e ,‘(7,2)7 - ,§<1t), o ,g?,(c?} is a basis of Fy and ¢ can be
represented by
Ay
A =
Ay

with respect to &. Furthermore, A’ = TAT~!, where T is the transformation matrix from the

standard basis of Fy to the basis g. Let T; be the matrix which represents the change of basis
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3.4. Generalized cyclic codes as invariants subspaces

between ¢ and the corresponding vector of the standard basis of [Fy. Then T, A;T; " represents

©u,- Hence

Xi(A1)
xi(4") = = Xi(TAT ™) = Txi(A)T .

Xi(Ar)
) _ ()= (0> g o N Qinew D 71 ,
Put g; A€+ ..o+ A6, for j=1,... deg(x;). Since g;’ € U;, we obtain that

En = i(A) = ETx(A)T ™ = §xi(A)T 1 =0

with & = k1 +. .. k;_1+j. Thus we have x;(A;) = O but this contradicts b(A;)x(A4;) = I. Therefore
gcd(Xin,Xi) # 1. Since y; and Xep, are polynomials of the same degree and y; is monic and
irreducible, for the Proposition we can conclude that x,, = (=1)kix;.

(f) Assume that U C U; with U # {0} a @y,-invariant subspace. Then by Proposition m
we know that x,, divides ;. Since x; is irreducible, we have dim(U) = dim(U;), i.e. U="U;. O

Theorem 3.4.8. Let € C Fy be an A.-GC code. Then the following facts hold.

(i) €=U, @ - @U, for some minimal -invariant subspaces U;, of Fy, where k := dim(%’) =
iy + - + ki, with k;, = dim(U;,).

(1) Xoly = (=1)*x4, ... xi., where Xi; = X‘P\Uij'

(iii) €€ € if and only if Exyl, (Ae) = 0.

(iv) The polynomial x|, is the minimal polynomial which satisfies the equivalence (iii).
(v) tk(Xpl, (Ac)) = n — k, where tk(xy|, (Ac)) is the rank of the matriz x|, (Ac).

Proof. (i) This follows from Theorem [3.4.7] (b) and (f).
(¢¢) This is a consequence of Theorem [3.4.7) (e) and its proof.
(17i) Let ¢ € €. Then by (i) we can write ¢ = @;, + --- + @;, for some @; € U;, r=1,...,s.

By commutativity in F,[X], we obtain that

ol (Ac) = (DM (Xiy - xa)(A) + -+ T (X - X0 ) (Ae)] = 0.
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3.4. Generalized cyclic codes as invariants subspaces

Conversely, suppose that ¢y, (Ac) = 0 for some & € . According to Theorem (c), we

have ¢ =t + - - - + 4y, with w; € U;. Then
ol (Ae) = (=DM O, - - X)) (Ae) + -+ X -- X ) (Ae)] = 0,

Le. (U + -+ Ulxp,(Ae) = 0, where {j1,...,5} = {1,...,t} \ {i1,...,is}. Denote by
U=y 4+, and h = x/Xgl, = (=1)""xj, - ... - xj,- Since ged(h, xy,) = 1, there are

two polynomials a,b € Fy[X] such that h-a + x|, - b= 1. Hence
7 = Th(Ad)a(Ae) + Uxpl, (A)b(A,) = 0,

thatisc=4;, +---+u;, €C.

(iv) Suppose that b € F,[X] is a non-zero polynomial of smallest degree such that @(A.) = 0
for all ¢ € €. By division algorithm there are polynomials ¢,r € F,[X] such that x,, =b-q+7,
where degr < degb. Then for each vector ¢ € ¢ we have cx, (A:) = cb(A:)q(Ae) + cr(A.) and
hence @ (A.) = 0. But this contradicts the choice of b unless r is identically zero. Thus, b divides
Xl 1f degb < deg(xy),) then b is a product of some of the irreducible factors of x,,. Up to

renaming we can suppose that b = (—1)kat-+k

MGyt - - Xiy, With m < s. Let us consider the code
¢ =U,® --0U;,, C€. TakeC=¢, +---+C, +Cipyy +-+G, €C. Writed =&, +---+G,

and b = Cipyr T+ + Ci, and note that bb(A.) = 0. Since ged((xi, - - -- - Xi,,)s (Xippya Xi.)) = 1,

there exist two polynomials «, 8 € F,[X] such that o (x4, -+ Xin) T8 Xips = -+ Xio) = L.
Thus
b=ba(Ac) - (xi, - Xim)(Ae) +0B(Ae) - Xy -+ Xi, ) (Ac)

1

I
o>

b(Ac) ’ a(Ac) + E(Xu T Xz’m)<Ac) ’ /B(AC)

I
=T

So that ¢ € ¥”’. This contradiction proves the statement.

(v) By property (iii) € is the kernel of the linear transformation x,, (A4:). Then
n = 1k(Xp, (Ae)) + ker xgp, (Ae) = k(X (Ac)) + dim (%) = rk(xyl, (Ac)) + £,

ie. rk(xg), (Ac)) =n — k. O
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3.4. Generalized cyclic codes as invariants subspaces

Corollary 3.4.9. The matriz whose rows are a set of n — k linearly independent columns of

Xol (Ac) 18 a parity-check matriz for the code € = U, @ -+ © Uy, CFy.

Proof. The statement follows from Theorem [3.4.8] (¢ii) and (v). O

Corollary 3.4.10. The matriz G, the rows of which are a set of k linearly independent rows of
(h(A.))e, is a generator matriz of the code € .

Proof. Since h(A.)Xy|, (Ac) = X(Ac) = O, note that all the rows h; of h(A.) are vectors of €.
We show now that rk(h(A.)) = k. By Sylvester’s rank inequality, we obtain that

0 = 1K(0) > r(xy, (Ao) + rk(h(AL)) —n.

i.e. tk(h(A.)) < k. On the other hand, Sylvester’s rank inequality applied to the product h(A,)
(~1)7 x5 (Ae) - (Ao gives us that tk(h(A.)) =tk (A0) + - - + tk(x; (A) — nll — 1) =
K (Xt (A) -1k, (Ac)) ~mln = n—dim(ker(xpig, (A) ... —dim(ker(x, (A) =
n— (dim(U;,) + +d1m(U )=n—(kjy+---+kj,)=n—mn—Fky,—...— k) —n—(n—k’) = k.
Therefore 1k(h(A.)) =

U

Example 3.4.11. Consider the finite field Fy = Fla] with o® + a4+ 1 = 0 and the matriz

01000 0 0
0010 0 0 0
0001 0 0 0

Ace=100 00 1 0 0
00000 1 0
0000O0 0 1
11 al o o «

Thus we have
Xe = X4, =1+ X +aX? + X° +®X' + 0®X° + aX® + X,
By the Magma command Factorization we obtain

X¢:X1'X2'X3'X4=(l-l—X)-(a+X)-(a2+X+X2)-(1—|—X+X3).
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3.4. Generalized cyclic codes as invariants subspaces

The factors x; define minimal p-invariant subspaces U;, for i =1,2,3,4. Define the A.-GC code
€ = Uy @ Us.
According to Theorem [3.4.8(a), we have dim(€) = 3 and
9= Xppe = (@+X)- (& + X+ X?) =1+ X +*X* + X°.
So the by Magma Program

A:=Matrix(¥,7,7,[0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,w,1,w"2,w"2,w]);

g:=X"3+w"2xX"2+X+1;

gA:=A"3+w"2*xA"2+A+E;

it follows that

1
0
0
0
1
1

0

0

0 0

00 1 1 a® 1

l a 1 a ol

0 0
01 0 a* o®> a 1
By Theorem [3.4.8| (v) the rank of this matriz is tk(g(A.)) = 7T—3 = 4. If we take the last 4 linearly
independent columns of g(A.), then by Proposition we have the following parity check matrix
for the code €

21 1 1 o &

2

2 1 a a o
1 o o 1 «

o
1
0
0

o o o =

0 1 1 0 1
Furthermore, since h = x/g = (1+X)-(1+ X+ X?) = 1+ X2+ X3+ X", by the Magma command

S
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3.5. A construction of an A.-GC code

h:=1+X"2+X"3+X"4;
hA:=E+A~2+A~3+A"4;

we get
1 0 1 1 1 0 0
0O 1 0 1 1 1 O
o 0 1 o0 1 1 1
h(A.) = 1 1 a 0 o a o
o? 1 a 1 o
o? a? o? o 0
0 o> 0 o o o® 0

From the Magma command
gAxhA;

it follows h(A.)g(A.) = O and rk(h(A.)) = 3. By Proposition [3.4.10, if we take 3 linearly

independent rows of h(A.), then we obtain the following generator matriz of €

10 0 1 o o a?
G=1010 1 a 0 &
00 1 a2 a2 0 0

3.5 A construction of an A,-GC code

First of all, inspired by [14], let us give here the following definitions.

Definition 3.5.1. An A.-GC code € is a code of type [n,k,d], if € C Fy, dim(¢) = k and
d(¢) =d.

Definition 3.5.2.
ch(n, k) := max{d | 3 an A.—GC code of type [n,k,d],}

Similarly to [14], Proposition 3.1|, we have the following
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3.5. A construction of an A.-GC code

Proposition 3.5.3.
Ac Ac
D, (n, k) > Dy, (n+1,k+1).

Proof. Let g = go+ ¢1X + ... + gn_x X" * be the generator polynomial of an A.-GC code %,,41 111
with parameters [n+1,k+1, Di*(n+1,k+1)]. Observe that go and g, are distinct to zero and

that the generator matrix G411 of €41 4+1 has the form

go|g1 - Gn-r 0 ... O
0

Gk ’
0

where G, is the following matrix

go -+ Gn—k 0 0
0 9 . Gk -~ O
0 .. 0 Jo oo On—k

Note that the minimum (Hamming) distance obtained from G, is at least D;'*(n+1,k+1). Since
g can be considered as also a generator polynomial of an A.-GC code %, of type [n,k, d], with

d>Dp(n+1,k+1), we get D**(n, k) >d > Die(n+1,k+1). O

Remark 3.5.4. If € is an A.-GC code of type [n,k,A|, with distance A > 1, then we have
DfC(n, k) > A. Therefore by Proposition we see that for any integer 0 such that 0 < 0 < k
there exists at least an A.-GC code €' of type [n — 6,k — 0,d], with d > A > 1. Thus the above
result can be useful to ensure the existence and the construction of A.-GC code’s of type [n,k,d|,

with distance d greater than or equal to some fized value A and small values for n and k.

In what follows we try to construct vectors v € I such that 1 < dim[v] < k for some integer
k <n, where [0] C F} is the vector subspace generated by {7, 7A,, TA% .}

For any integer h such that 1 < h <n — 1, consider the equation

GAM ), + ...+ TAL 2y + Txo = 0. (3.5.1)
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3.5. A construction of an A.-GC code

If there exist a non-trivial vector ¢ and non-zero z, € I, which satisfy the above
equation (3.5.1), we can deduce that 7A" can be written as a linear combination of vectors in
{#,0A., .., 5A" 1} e, 1 < dim[d] < .

Thus the existence of a non-trivial vector @ € ) which satisfies equation (3.5.1) is ensured by

the existence of non-trivial solutions xy, ..., x1, xo of the equation
det(A’c‘a:h + ...+ Ay + Izg) = 0. (3.5.2)

So we have reduced the problem of finding a vector 7 # 0 in [y which is a solution of (3.5.1) to

the problem of finding non-trivial solutions xy, ..., 1,z in F, of (3.5.2). Define
Fy (2o, 21, ..., ) := det(Alzy + ... + Agxy + Txy).
We have the following

Lemma 3.5.5. The polynomial Fy(xg, 1, ...,Tp) is a homogeneous polynomial of degree n in the

variables xqy, x1, ..., Tp.
Proof. For any A € F,, we get

Fr(Axzo, Az, ..., Amy) = det(A"(Aap) 4 ... + A (Axy) + T(Azg))
= det(M - (APray + ... + Aoy + Ixp))
= det(A]) - det(A"zy, + ... + Awy + I3p)
= A" Fy(zo, 1, .oy Tp),

and this gives the statement. O]

From Lemma [3.5.5]it follows that the zero locus Z(F},(xo, x1, ..., z1)) of Fy(zo, 21, ..., z) on the
projective space P"(F,) is well defined. Put

Zhm = Z(Fp(w0, 21, ..., x1)) C PM(F,).

Then Zj,, is a hypersurface of P*(F,), i.e. dimZ, = h — 1, of degree n > h + 1. Moreover,
all the points of Z;, represent non-trivial solutions of (3.5.2). This gives a relation between the
construction of an A.-GC code ¢ = [v], with ¢ € F}, of dimension less or equal to h with the

existence of (rational) points on the hypersurface 7, C P"(F,).
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3.5. A construction of an A.-GC code

Remark 3.5.6. We know from [10] that the number N, of F,-points of the hypersurface Z,, is
bounded for the following inequalities: (i) Ny < (n—1)q+ 1 if h =2, except for a curve Zy, over

Fy; (45) Ny < (n—1)¢" ' +ng" 2+ qhqi# if h > 3.

Example 3.5.7. Consider the vector space F3 and the matriz

N
o
Il
N O O o o

O O O =

_ o O = O
N O =
_ = O O O

Consider now the following equation
TA s + GA s + TA%xy + GAxy + U1y = 0,
where T # 0 and z; € Fs fori=0,...,4. Hence
det(Alxy + Adxs + A2 + Aezy + I24) = 0.

Define
Fy(wo, 71, 79, 13, 74) = det(ASmy + Alzs + A220 + Acxy + I10).

By Lemma we see that Fy 1is a homogeneous polynomial of degree 5. So Zy; =
Z(Fy(xg, x1, 22, w3, 74) C PYF3) is a hypersurface with dim Z, = 3 and degree 5. By Remark
we have Ny < 341. Moreover, the following Magma Program

A:=Matrix(GF(3),5,5,[0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,2,2,1,2,1]);
PointsCode := function(M);

k:=Parent (M[1,1]);

n:=Nrows (M) ;

P<[x]>:=ProjectiveSpace(k,n);

X:=Scheme (P,Determinant (&+[x[i+1]*A~i : i in [0..n]]1));

pts:=Points(X);
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3.6. An immersion map for an A.-GC code

11:=[1;
for pp in pts do

p:=Eltseq(pp);

11 := 11 cat [NullSpace(&+[p[i+1]*A~i : i in [0..n]])];
end for;
return 11;

end function;

we can find all the solutions of Fy(xg,x1,x2,x3,24) = 0. The two rational points py =[2:0: 1 :

2:1 andpy=10:2:1:1:1] of Zy5 C PYFs3) give the matrices

AIZ ,AZZ

= = NN O

N DN = O
— N = =
I S == I )

NSO O NN
N = O O =
=N O NN
NN = O =
NN = O =
O NN =

and the vector vy = (1,0,1,1,2) and U5 = (1,0,0,0, 1) of the null spaces of Ay and Ay respectively.
By the following Magma Command

[Basis(PointsCode(A) [1]) [1]*A~i : i in [0..Nrows(A)-1]];
we obtain the codes
€ = (0, 01 A, 11 A2, 01 A2) = ((1,0,1,1,2),(1,2,2,2,0),(0,1,2,2,2),(1,1,0,0,1)) and
Gy = (T, UhAe, T A2, 1, A2) = ((1,0,0,0,1),(2,0,1,2,1),(2,1,1,0,0), (0,2,1,1,0)),
1.€.

¢ =((1,0,1,1,2),(1,2,2,2,0)) and % =((1,0,0,0,1),(2,0,1,2,1),(2,1,1,0,0)).

3.6 An immersion map for an A.-GC code

In this section we will construct an immersion map of Fy into F;* which will be useful for finding

duals codes of A.-GC codes.
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3.6. An immersion map for an A.-GC code

Define f := X" — "' f;X" € R :=TF,[X] and put m := min {i € N | AL = I}, where A, is as
in (3.2.2). Note that the polynomial X™ — 1 is satisfied by A, and n < m. Then by the Division
Algorithm there are ¢,r € R such that X™ — 1 = (=1)"f - ¢ + r, where degr < deg f. Suppose
that r # 0. By replacing the matrix A. in the last equation, we get

0= AT —I= (_1)nf(Ac)Q(Ac) + T(Ac> = T(Ac)

which contradicts the minimality of (—1)"f. Hence r = 0, that is X — 1 = (—1)"f - ¢. This tells

us that we can always find a natural number m such that

X" —1=f-q; forsome q; € R. (3.6.1)
m—n—1
Note that gy can be written as gy = X™ ™" + Z ¢: X" with ¢o # 0.
i=0

It is easy to see from (3.6.1) that (X™ —1) C (f), i.e. R/Rf C R/(X™ —1).

This is the motivation for the following

Lemma 3.6.1. Let m be as in (3.6.1) and let P be the m X m matriz

01
0 1
110 ... O

Denote by ¢; = (qo, -, gm-n,0,...,0) € F"

u» where the q;’s are the coefficients of qf € R as in

(3.6.1). Then there exists a commutative diagram

S

q

Tf l l Tm

such that m,, oi = jomys, where R, := R/(X™ — 1) and i(V) := vQ with ) the matriz

—

qr
qr P

q—}Pn—l
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3.6. An immersion map for an A.-GC code

and jla+ f) = (a-qr) + (X™ —1) for any a € R.

Proof. This follows from the linearity of the maps ¢, j, m¢ and 7,,, by considering the canonical basis

of Fy. ]
Proposition 3.6.2. With the same notation as in Lemma we have

i(EAF) = i) P*
Jor any ¢ € ¥y and k € N.

Proof. Let ¢ € F;. By Lemma and Remark we have the following two commutative
diagrams:
¢———i(c)
g
71(0) — i (n1(@)

where j(m¢(C)) = m,,(i(¢)), and

cA¥ L j(eAk)

,rfl lwm

XE - mp(€) —=J(X* - m(0)

where j(X* - 7;(C)) = mm(i(CAY)). Since 7, is an isomorphism, by the commutative diagram of

Lemma [3.6.1, we obtain

that is, i(CA¥) = i(¢) P* for any k € N. O

Remark 3.6.3. The maps i and j in Lemma are injective. Moreover, Proposition [3.6.2]
shows that the image via i of an A.-GC code in ¥y is a cyclic code in Fy', where m is defined as

q 7
in (3.6.1).

62



3.6. An immersion map for an A.-GC code

Finally, let us give also some upper bounds and estimations about the integer m of (3.6.1).
Let GL,, be the linear group of matrices n x n with coefficients in F,. From [20, p. 3| we know

that
|G Ly|
|Gy (k,n)|’

where G,(k,n) is the grassmannian variety over F, and Stabgy, (U) is the stabilizer of any

U € Gy(k,n). Since

|StabGLn(U)| ==

GLl =TTt - o)
and
("= 1)(q" —q)...(¢" — ¢")
Golkom)l = (" =" —q).(¢" =)

we obtain that

(= D" = q)(d* = T (@ — )
Stabe., (V)] = (¢" = D)(q" — q)...(¢" — ¢" 1) a

n—1 k—1
=[[@ - a)-J[" - ). (3.6.2)
ik j=0

This allows us to prove the following upper bound for m.

Lemma 3.6.4.

n—1 k—1
m < min — — k=mn—de )
< mi {Hq ¢) [ - ) | gg}

i=k J=0
Proof. Let g be any divisor of f in R. By Proposition we deduce that the A.-GC code
7 ((9)k ,) is invariant with respect to A.. Thus (A.) C Stabgy, (77" ((9)k ,)) and since m := |[(A.)],
the statement follows from (3.6.2). O

Remark 3.6.5. Let F, C K be a finite extension of Fy such that f = [, (X — a;) with a; € K

and A. is diagonalizable over K. If m; := min {hi ] a?i = 1}, then m = lem(my, ..., my,).

Remark 3.6.6. Let p := Char(F,). If f has a root of multiplicity > 2, then X™ — 1 has a root of
multiplicity > 2. By Remark we have ged(m,p) # 1 and since p is a prime number, we get
m =0 mod p.
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3.6. An immersion map for an A.-GC code

The next result gives a more simple computation for m.

Proposition 3.6.7. Denote by f:: W;I(X” — f) and let
k= min{he NuU{0} | fAi’zgl}.
Then m = n+ k. In particular, we have degqy :=m —n = k.

Proof. For every h = 1,...,n, we have
& AT = (@A AD AL = (€A ADAT =

= (fAhAI =g Al = g,

Hence A?““ = I and for the minimality of m we deduce that m < n + k. Furthermore, since
AT =T we get
&1 = (1AL A) AT = (6,A)AP~" = fAT ™,

that is, fAZ”_" = €1. S0, by definition of £ we can conclude that kK <m —n,ie. m>n+k. [

Let po be the order of det(A.). Since A7 = [, it follows that (det A.)™ =1, i.e. m =0 mod py

with po the order of det A.. This gives immediately also the following

Proposition 3.6.8. Denote by B := AP, Let m/ be the minimum integer such that B™ = I.

Then m = pom’. In particular, we have degqr = pom’ — n.

All the above results produce the following

Algorithm 1:
Input: f

° Deﬁne ap ‘= det Ac;
e Compute the order py of ag;
o Define B := AP°;

e Find the rational canonical form B’ of B;
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3.7. Quasi-Euclidean dual Codes

e For any diagonal block B;, i =1,...,s, of B" compute m = min {h | Bl = I} .

Output: m = lem(mf,...,m.) - po.
By using the computer algebra system Magma [3], the MAGMA Program 1 (Ch. [5)) allows us
to find the integer m as in (3.6.1) for any polynomial f € R.

3.7 Quasi-Euclidean dual Codes

In what follows we study another kind of dual codes, the Quasi-Euclidean dual codes, and we
investigate some of their properties and connections between them and the Euclidean dual codes.

Let .
f=X"-) fX'€R

1=0

be a monic polynomial of degree n. By Lemma [3.6.1] we know that there exists an injective map
i 2 Fy — FY" with m > n. Denote by .# the image of ¢ and by P the m X m permutation matrix of
Lemma [3.6.1] Define B := QQ; with @ as in Lemma where (), is the transpose of (). Note
that B is a symmetric matrix.

Let r be the rank of the matrix B and observe that
r:=rkB =n — dim(Ker Q; N .¥)
with 0 < r <n.

Remark 3.7.1. When r = 0, we see that B is the null matriz and in this case () represents the

generator matriz of a self-orthogonal cyclic code of dimension n in Fy.

Definition 3.7.2. Let ¢ C Fy be a linear code. We denote by -. the quasi-euclidean scalar
product on ) defined by a - b := iBb, for any a, be [y and by €~ the linear quasi-euclidean

dual code of € with respect to -, i.e.
E* = {fEFZ | ©-, =0 for every 56(5}.

Proposition 3.7.3. Let ¢ C F} be a linear code. Then we have
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3.7. Quasi-Euclidean dual Codes

(i) €* = (¢ B)-.
(i) dim%* = dim ¢ + dim(€ N Ker B) > dim ¢~
(iii) €*x B =%+ (Im B);
(iv) (€*)* =€ + Ker B;
(v) i(€¢*) =i(€)' NI =i(€ +Ker Byt n.7;
(vi) (F")* = Ker B = (Im B)*, (Ker B)* =F", (Ker B)* = Ker B.
Proof. (i) To prove ¢* = (¢ x B)*, we observe that

We (€xB)t < w-(GB)=0, Yce¥
< wWhBic;=0, Vce€
<—— wBc =0, VYce€

<— w-c=0, Vce¥

(73) This follows from
dim(% * B) = dim € — dim(% N Ker B)

and dim ¢* = n — dim(% + B).
(i3i) If Z € €* x B, then & € Im B and & = ¢*B with ¢* € €*. Hence for every ¢ € € we get

— —

r-c=c'B-c=c"-,c=0,

ie. €*«BCCtn(Im B).
On the other hand, let ¥ € €N (Im B). Then § = 7B € € for some ¢ € F. Thus for every

C € ¥ we have

that is, €+ N (Im B) C ¢* % B.
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3.7. Quasi-Euclidean dual Codes

(iv) If @+ b € € + Ker B where @€ € and b € Ker B, then for every &, € €* we get

-

(@+b) -, & = (C+ b)BF, = éBT, + bBT, = ¢BZ, = ¢-, T =0,

that is, € + ker(B) C (€*)*.
Conversely, to prove (¢*)* C ¢ + Ker B it is sufficient to observe that

Fe(€)

B =¢B, for some € €
= (§—&B =0, forsomecc¥
= U —ce€ Ker B, forsomece®
= U € €+ Ker B.

(v) If & € i(€"), then ¥ = (V) = 0Q € .Z for some U € €*. Hence for every ¢ € € and

b € Ker B, we have

-, -, —

Zi(@+0) =7 i(@)+ T i(b) =T 47 (bB) =0,

that is, (¢*) C i(€¢ + Ker B)t N .. Now, let # € (¢ + Ker B)t N .7, ie. T = (¥) = 0Q €
i(€ + Ker B)* Ci(€)* for some ¢ € F. Thus for every i € € we have

U = UBY, = (UQ)(§Q): = T - () = 0,

i.e. U € €*. Hence we get ¥ = i(7) € i(€*), that is, i(4 + Ker B)* N .Z Ci(€™).
Let us prove now that i(¢™*) is also equal to i(4)* N .#. Let ¥ € i(€*). Then ¥ = i(c*) € &

for some vector ¢t € €*. Therefore for every & € € we have

—
*

Z-i(d) = i(ch) -i( =c

wC=0,

ie. 7 €i(€)" N.Z. On the other hand, let § € i(¢)* N .#. Then § = i(Z) € J for some 7 € F

and for every ¢ € € we get
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3.7. Quasi-Euclidean dual Codes

Hence 2 € €, ie. ¥ €i(€*).

(vi) Since ({0})* = F?, the equalities (F)* = (Im B)* and (F})* = Ker B follow easily from
(i) with ¢ = F and from (iv) with ¢ = {0} respectively. Finally, by taking ¥ = Ker B, the
equalities (Ker B)* = F and (Ker B)™ = Ker B are immediate consequences of (i) and (iv),

respectively. ]
Remark 3.7.4. From Theorem [3.7.4] (iv) it follows that € C (€*)*.
Corollary 3.7.5. Let ¢ C ) be a linear code. If r = n, then we have
(j) €* =€¢++~B7Y;
(jj) dim€* = dim€¢*;
(475) (€7)" =€

(jv) i(€*) =i(€)* N7,

Proof. Parts (j) and (j7) follow from Proposition [3.7.3(ii) and (zii). As to (jjj), it is sufficient to
note that r = n implies that Ker B = {0}. O

Remark 3.7.6. When r = n, from Corollary we know that €* = ¢*+xB~'. Thus Proposition
allows us to find easily a generator matriz of €* by multiplying on the right the parity check
matriz of € in Proposition by B~L.

Corollary 3.7.7. Let € C Fy be a linear code. Then
€ CE = i(F) Ci(€),
i.e. € is self-ortogonal with respect to -, if and only if i(€) is self-ortogonal with respect to -.

Proof. Since i is injective, the statement is an immediate consequence of Proposition [3.7.3] (v) and

the following equivalence: i(%€) C i(€)t NI < i(€¢) Ci(€)*. O
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3.7. Quasi-Euclidean dual Codes

Remark 3.7.8. If € C Fy is an A.-GC code and Ker B C €, then the code € + Ker B is an

A.-GC code. In particular, when r = n, it follows that

€ =%+ < €+ B'is the dual code €* of €.

Example 3.7.9. In F3, where F, = Fyla] with o> + a + 1 = 0, consider the following four

polynomials:
(a) fo=X>+X*+1;
(b) fi = X3 +a’X?+ X + 1;
(c) fo=X3+aX?+aX +1;

(d) f3 :X3+O./2.

By applying Program 2 (Ch. [51), we obtain m = 7 for the first case, m =9 for the fourth case and

m =5 for the other cases. Then
X7_1:f0.qf0’ XS_l:fl'qf1:f2'Qf2> X9_1:f3'qf3

where
G =X+ XP+ X2+ 1, qf =X +a°X +1,

qf2:X2+aX+1, qf3:X6—|—onX3—|—oz.

Therefore this gives

1011100 1 o> 1 0 0
Q=10101110], =01 a* 1 0 |,
0010111 00 1 o1
1L o1l 00 a 00> 0 0 100
Q=10 a1 0], @=]10a 0 0 o> 0 010
00 1 ol 00a 0 0 o001
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3.7. Quasi-Euclidean dual Codes

and
000 a 0 1
Bo=1000],Bi=| 0 «a 0 |,
000 1 0 «
a2 0 1 0 00
By = 0 o 0 , Bs=| 00 0 [,
1 0 o 000

with tk By = Bs = 0 and tk B; = rk By = 3. Note that from Remark it follows that Qg and
Q3 are the generator matrices of self-orthogonal cyclic codes of T} and Y respectively.

By Magma Program 5 (Ch. Ea']) we see that fo and f3 are irreducible polynomial in F4[X] and

=X+ (X?*+aX +1), o= (X+1D(X?*+a*X +1)
Therefore, we have the following non-trivial codes
G =(X+1)3, (XP+aX+1)i,, G=X+15, (X*+a°X+1)j,,

with generator matrices

1 10 1 10
G, = ,<10z1) and Gy = ,(1 a21);
011 01 1

respectively. From Proposition [3.3.3] we deduce that the parity check matrices of the €;’s for

1=1,2 are

10 1 1 0 1
Hl=<111)7 and H2=<111>, ;
01 a 01 o?
Therefore we have

C) = (X2 +aX + 1):13,47 (X + 1)%,43

G = (X?+ o+ 1)y, (X+1),
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3.8 Hermitian dual Codes

We can introduce also the notion of dual Hermitian codes and give some of their properties.

We define a “conjugation” map ® on R/RF for some F' € R such that
d(aX’) = aXder

where 0 < ¢ < degF — 1, which is extended to all elements of R/RE by linearity. We
then define a Hermitian product of two elements p(X) = py + ;X + ... + pp1 X™ ! and
HX) =ty + X + .o+t X of R/(X™ — 1) by

p(X) xp t(X) = p(X)P(t(X)).

By Lemma we can also define the Hermitian product of two elements a(X) = ag + a1 X +
o @ X7 and B(X) = by + 51X + oo + by1 X" L of R/RS by

< a(X),b(X) >:=j(a(X)) xp j(b(X)).

The following two results are now an immediate generalization of [I5] Proposition 3.2 and

Corollary 3.3].

Theorem 3.8.1. If @b € e and let a(X) and b(X) be their polynomial representation in R/Rf

via s, respectively. Then
@, bA"=0 forall0<h<m-—-1 <= <a(X),bX)>=0.

Proof. The condition < a(X),b(X) >= 0 is equivalent to

j(a(X)) *p j(b(X)) =0 = a(X)q;®(b(X)qs) =0
= (gor)o(gow)
o (Far) (Sr) -
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where the subscript i + h is taken modulo m. Comparing the coefficients of X" on both sides of

the last equation, we get
m—1

> al b =0, forall0 <h<m-—1.
i=0
By Proposition the above equation is equivalent for all 0 < h <m — 1 to

-
/

@ b(O"o P =0 < i(@)-i(b)P" =0

— i(a@) - i(bA") =0
— aQ- (bAMHQ =0
ie. @, bAM =0forall 0 <h<m—1. O

Let I be a left ideal of R/Rf.
We define I” to be the dual of I in R/Rf taken with respect to the Hermitian scalar product
<,>, as
I" :={a(X) € RIRf | <a(X),t(X)>=0, Vt(X) eI}

Remark 3.8.2. Note that IV is an ideal of R/Rf with respect to the addition in R/Rf.
From Theorem we deduce the following

Theorem 3.8.3. Let € C IFZ be a A.-GC code. We have

T (€7) = m ()"

-

Proof. Let w;(b) € m;(€*) for some b € €*. Then we have for any @ € € and h € Zxg
b-, @A = 0.

Thus by Theorem we get

=,

<7Tf(b),7Tf(C_I:) >=0Vadegz,

ie. mp(b) € mp(€)”. Hence ms(€*) C mp(€)". Finally, let b(X) € m¢(€)”. Then we see that

<b(X),ms(@) >=0, Va € F.
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By Theorem with h = 0, this implies that
W;I(b(X)) wa=0, VaetE,

i.e. 7;1(b(X)) € €. This shows that

ie. Wf(%)y Q ﬂf((g*>. O
Corollary 3.8.4. Let € C IFZ be a linear code. We have

(i) If € is a A.-GC code then €* is also a A.-GC code.

(i1) €* is an A.-GC code if and only if € + Ker B is an A.-GC code.

Proof. (i) If € is an A.-GC code then 74(%) is an ideal of R/Rf. By Remark and Corollary
we have that 7,(¢™*) = 7;(%)" is an ideal of R/Rf, so that €* is an A.-GC code.
(17) By Part (i), if €* is an A.-GC code, then (¢*)* = € + Ker B is an A~GC code.
Conversely we note that if € + Ker B is an A.-GC code, then (% + Ker B) is a cyclic code,
thus i(¢ + Ker B)* is a cyclic code. Since .# is a cyclic code, by Proposition m (v) we obtain
that i(¢*) = i(¢ + Ker B)t N .7 is a cyclic code, so that €* is an A.-GC code. O

Let us note here that the converse of Corollary is not true in general, as the following

example shows.

Example 3.8.5. In F3, where Fy, = Fyla] with o*> + a + 1 = 0, consider the polynomial
fo= X%+ 0a’X? + a?X + a. Then by Magma Program 2 (Ch.[5), we obtain m = 6 and

Bo=1 a2 0 o |,

with tk By = 2. Consider the linear code € C F3 generated by the vectors ¢ = (1,0,0) and
é; = (0,0,1). Since

0O 1 0
(@Ac=(@) | 0 0 1 |=(xa*a?)¢?,
@8] 062 Oé2
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we see that € is not an A.-GC code. On the other hand, since Ker By is generated by the vector
(1,1,1) and € N Ker B, = {0}, we obtain that

€ + Ker By =% @ Ker By =T}
1s an A.-GC code. By Corollary we get that €* is an A.-GC code.

Example 3.8.6. Consider the vector space F3 where Fy = Fo(a) with o> + a +1 = 0. Let

01 0
f=X34+a?’X+aX+1and write A. = | 0 0 1 |. By applying the Magma Program 2
1 a o

(Ch.[5), we obtain m =12, i.e. A}> =1. Then by Lemma there exist a commutative diagram

3 i 12
I[5"14 - IF4

ﬂfl lﬂm

R/Rf ]—> R12

such that ™ oi = jom;, where Ryg := RJ/R(X" — 1), R=F4[X], i(7) := 7Q with

1 a 00 aa> 0 0 o> 1 0 0
Q=101 a 0 0 a o> 0 0 o*> 1 0
001l a0 0 a > 0 0 o1

Since f = (X +0a?)3 = (X +a?)(X?+a), we considering the A.-GC code’s 61 = (X +a?)3 and
000
G = (X?+ «)i. Is easy to see that B:=QQ;=| 0 0 0 |, then ¢; = ¢5 =F}. By Theorem

000
m(¢1)" = 7(¢7) = 7(¢5) = R/RS.

By Corollary |3.7.5, the following proposition is immediate.
Corollary 3.8.7. Let € C Fy be a linear code and r = n, then

€ is an A.-GC code & €* is an A.-GC code.
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Corollary 3.8.8. If ¢ CFy be a A.-GC code, then
C=¢ — ,ﬂ.f(cg) :Wf(cg)l/ ,
i.e. € is self-dual with respect to -, if and only if 7;(€) is self-dual with respect to <,>.

Proof. Since 7 is an isomorphism, this follows immediately from Corollary |3.8.3 O

3.9 A Meggitt type decoding

In this section, we give here a generalization of Meggitt Decoding of Chapter 2] §2.6.
Let € = (9)f , an A-GC code. Denote by R,(v) the rest of the division of v € R by g and

n,q

define the syndrome S(v) of v as S(v) := R, (X" " - v), where degg =n — k.
Lemma 3.9.1. Under the same hypothesis as above, we have
S(v)=0€ R if and only if v € 7 (F).

Proof. Let v € R such that S(v) = 0 € R. Then R, (X" % .v) = 0 and so we can deduce that
X kv en(€),ie. X" F.v=h-gforsomeh € R.
Put t := fi ' X" ! — ... — f;' fi and note that - X = 1 in R. Hence

tn—k “h- g = tn—k . (Xn—k X ?J) — (tn—k . (Xn—k)) v =,

that is, v € m¢(%). On the other hand, if v € n(¥¢), then v = ¢ - g for some ¢ € R. Thus by
definition we can conclude that S(v) =0 € R. O

Let m € IF’; be the original message and code m as
m =m-GeE,
where G is the above generator matrix of ¢ = (g)*. Note that

mp(m) = mp(ni - G) = mp(m) - g € (9) C R.
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We now give here a Meggitt algorithm for an A.-GC code. For any ¢ € R, denote by wt(c) the
Hamming weight of 77'(c) € Fy. Let us recall that in this situation the main hypothesis is that
the error € defined by

c=m"—-m'em'+%€
has weight < %, where d is the distance of & and m” is the received message. Moreover, by
Lemma [3.9.1] we have
S(my(m")) = S(mp(e))
and recall that
(fo' X" — .= fy'fi)- X =1€ R/Rf.

Algorithm 2 (An A.-Meggitt type algorithm):
Input: m”

e Step 1: Compute all the syndromes S(€’), where ¢ = Z?:_Ol e, X" is such that wt(e') < &1
and e/,_, # 0;

Step 2: Compute S(7(m”)) and define s := S(7(m"));

Step 3: If s = 0 € R then write € = 0;

Step 4: If s is equal to some of the syndromes S(e’) of Step 1, then write ¢ = 7~ (¢’);

Step 5: If s is not in the list of Step 1, then

for some error € € R such that wt(e) < &L and & = Z;'L:o €; X7 with &, # 0 and h <n — 1.

Always there exists an integer k := n — h — 1 such that
e =X".e

is an error as in Step 1, that is, ¢’ = Z?;ol e/ Xt with wt(e”) < % and e!!_; # 0. Thus by

Lemma the syndrome S(X*7(1m")) is equal to S(e”) with €” as in Step 1 and we write

e=m (S X" — = o)),
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Output: m/' =m" — €.

Example 3.9.2. This decoding is analogous to Meggitt Decoding of Chapter 3, However, in step 5,
the decoding is different. Let € = (1+X*+ X5+ X"+ X®)1. be a binary A.-GC code with d(€),such
that 7¢(€) is an ideal of R/Rf where f = 14+ X+ X*+ X4 XO042X8+ X4 X4 X134 X144 XI5,
As in Example the polynomial ¢’ := 1+ X2 + X3 + X* + X is not in the list in Example
2.4.6. In this case k =1 and

=X =X+X+ X'+ X°+ X7
s an error as in Step 1. We write

€

71';1((1—|—X3—|—X4+X5+2X7+X8+X10+X12+X13+X14)'6”)

and decoding m/ =m" — €.
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Chapter 4

Product Semi-Linear Codes

Recently there has been a lot of interest in algebraic codes in the setting of skew polynomial rings
which form an important family of non-commutative rings. Skew polynomials rings have found
applications in the construction of algebraic codes, where codes are defined as ideals (submodules)
in the quotient rings (modules) of skew polynomials rings. The main motivation for considering
these codes is that polynomials in skew polynomial rings exhibit many factorizations and hence
there are many more ideals in a skew polynomial ring than in the commutative case. Furthermore,
the research on codes in this setting has resulted in the discovery of many new codes with better
Hamming distance than any previously known linear code with same parameters.

In this chapter, we introduce the notion of product semi-linear T-codes, a generalization of
module skew codes and a subcase of linear codes invariant under a semi-linear transformation 7'
of F} with n > 2. In particular, we study from a theoretical point of view some properties of
the Euclidean, Quasi-Euclidean and Hermitian dual codes of products semi-linear T-codes and
the main relations among them. Finally, we show a method for encoding, decoding and detecting
errors by the above code and we give an algorithm to construct a code invariant under any given

semi-linear transformation.
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4.1. Notation and background material

4.1 Notation and background material

Denote by 0 : F, — IF, an automorphism of the finite field F,. Let us recall here that if ¢ = p°
for some prime number p, then the map 6 : F, — IF, defined by é(a) = ¢” is an automorphism on
the field IF, which fixes the subfield with p elements. This automorphism 0 is called the Frobenius
automorphism and it has order s. Moreover, it is known that the cyclic group it generates is the
full group of automorphisms of Fy, i.e. Aut(F,) =< 6 >. Therefore, any 6 € Aut(F,) is defined as
0(a) := 0'(a) = a”', where a € F, and t is an integer such that 0 < t < s. Furthermore, when 6
will be the identity automorphism id : F, — F,, we will write simply 0 = id.

From [8], a semi-linear map 7" : Fy — F7 is the composition of an automorphism 6 of F, with
an F,-linear transformation M, i.e. (¥)1 := (0)O o M, where (vy,...,v,)0 = (0(v1), ...,0(v,)) and
M is an n X n matrix with coordinates in F,. In this case we call T" a 0-semi-linear map, or a
0-semi-linear transformation.

For any v € F} and any T as above, let [U] denote the T-cyclic subspace of [y, spanned by
{v, (0T, (0)T?,...}.

Vector subspaces @7 C Fy invariant by a @-semi-linear transformation 7" will be called here

semi-linear T'-codes, or T'-codes for simplicity.

Remark 4.1.1. If 0 = id, then 67 is invariant by M. If 0 # id and M = A., where A, is as in
Definition then €7 is invariant by © o A. and we can observe that this code is a generalization
of an A.-GC code.

The main result of [13] allows us to decompose the vector space Fy into a direct sum of very

special vector subspaces and to find a normal canonical form for any #-semi-linear transformation.

Definition 4.1.2. Let A and B be two matrices. We say that A is 0-similar to B, and we
write A ~¢ B, if there exists an invertible matriz C' such that A = (Cy)"'BC, where Cy is the
matriz obtained by applying the automorphism 6 to each entry of C'. Moreover, we say that two
0-semi-linear maps T = © o M and T' = © o M" of B} are O-similar if M ~¢ M' and in this case

we simply write T ~g T,

79



4.1. Notation and background material

By choosing the basis of Fy/ to be the union of appropriate bases
{a@;, T(@), T*(@;), ..., T ()}

of T-cyclic subspaces [4;], ¢ = 1,...,7, it follows immediately the existence of a normal canonical

form for any -semi-linear map 7.

Theorem 4.1.3 ([13], Theorem 5). Let 6 and T' be an automorphism of F, and a 0-semi-linear

mn

o> respectively. Then

transformation on F

F? = [i] @ ... © [@],

for T-cyclic subspaces [4;] satisfying dim[d;] > dim[ds] > ... > dim[d,.]. Moreover, if T = © o M
then
T ~y © odiag(My, ..., M,),

where M ~q diag(My, ..., M,) and each M; is a n; X n; matriz of the following form

0 1
0 1
;o | i1 - Qin;—1

with n; > 1 and such that Y ;_, n; = n.

Construction: We recall here the construction of the vectors u;, © = 1, ...,r, which appear in the
above result (see [13, §6]). Let {€1,...,€,} be a basis for F} and suppose that the f-semi-linear
map 1 sends €), into

ng = nglk 4+ ...+ gnTnka

for k =1, ...,n, or using the usual rule of matrix multiplication
(ng, ceey gnT) - (51, ceey é’n)ﬂ,

where I = [1;;].
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4.1. Notation and background material

Let F7[t] be the extension of Fy obtained by allowing the coefficients to range in F[t, 0],
i.e. Fp[t] is the totally of forms Z(t) := 7" &&(t), where &(t) € Fy[t,0]. Note that this
definition is independent of the choice of basis of F} and that F[t] is an abelian group under
addition. The correspondence Z(t) — Z(t)a(t) with a(t) € F,[t,0] is an automorphism of this
group. Thus F7[t] may be looked upon as an abelian group (Fp[t],[F,[t, 0]) with operators F,[t, ].
With Z(t) := >, €&(t) we associate the vector @ := > " | €&;(T) and with the automorphism

—

Z(t) — Z(t)a(t) we associate the automorphism # — Za(T). These correspondences define a

surjective operator homomorphism @ of (Fy[t], F,[t, 0]) onto (Fy,F, [T, 0]). Define fi(t),..., f.(t) by

(f1(8); s () = (€1, o E)(T — L),

where .7 = [7;;] and I denotes the unit matrix. From [I3] Lemma 4] we know that {fi(¢), ..., fu(¢)}
is a basis for Ker @, the kernel of ®. We may replace the bases {é1, ...,¢€,} and {fi(t), ..., fu(t)} of
Fp[t] and Ker ® respectively by

(€1 (), oy € () = (&1, .o, €)U (1)

and
(1), s fa () = (f1(8)s s fu(@))V (B),

where U(t) and V(t) are invertible matrices in the ring of matrices of n rows and columns with

coordinates in Fy[t,]. Then we have

— —
*

(F1 (@) o fr (1) = (e51(2), ., X n(O)U () (T = 1)V (1),
and in view of [I3] §5] we may choose U(t) and V' (t) so that V(¢)(.7 — tI)U(t) has the form

1

pa(t)

pir (1)
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4.1. Notation and background material

where the invariant factors u;(t) are bounded with bounds uf () = p;(t)h;(t) dividing p;(t) if i < r
and i < j (e.g., see the Appendix [5.1).

Define e*; := ®(e*;(t)) for i = 1,...,r. Since e*;(t) € Ker ® for j = 1,...,n — r, we have
¢*1=0,...,¢%,_, = 0. Thus denote by

v *

U; = € n—ryi = (I)<e_:knfr+i(t))a
for i =1,...,r. From [I3] p. 496] it follows that if
,uz(t) =M — ai,mi,ltmfl — ... = Clijgt2 — ath — G40,

then

- — mi1—1 - - — my—1
(U, UL T,y iy T™ oy o Uy T W, T )

is a basis for FZ.

This gives a construction method to find the vectors @; of Theorem [4.1.3]

Remark 4.1.4. By Theorem [1.1.3, we know that any 6-semi-linear transformation T = © o M s
0-similar to

D := © odiag(M, ..., M) = (0o My, ...,0 0o M,),

1.e. there exists an invertible matrix

U;
G
(@:)T
C .= : , where C; := . for every i =1, ..., 1,
C,
(@)1t
such that
T =C'DC = C'(©odiag(My,..., M))C =C" O oM,..00M)C,

where n; = dim[t;] for i = 1,...,r and each © o M; is the 0-semi-linear transformation on Fy

such that Ty = Tt x .. < Fpr with Y7 n; = n. This gives a one -to-one correspondence between
linear codes invariant under T and linear codes invariant under D. Therefore we can construct

any semi-linear D-code €p := Cr » C~' from a semi-linear T-code €r, and vice versa.
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4.1. Notation and background material

Remark 4.1.5. Let T'= 0 o M be a 0-semi-linear transformation. If M is an n X n matriz with
coordinates in ]FZ C F,, the subfields of F, fized by 6, then M admits a rational normal form (by
Magma command RationalForm(M), i.e. there exists an invertible matrizc C with coordinates in
Iﬁ‘z such that M = C~*M'C, where M’ := diag(Mj, ..., My) and each M; is a n; X n; matriz as in
Theorem defined over IFZ (see Example . Thus we have

CTC™ =C(O@oM)C =00CMC=600M =D

and in this case it is easy to find a matriz C' which transforms a T-code into a D-code, and vice
versa. Typical examples of this situation are the skew quasi-cyclic codes, where the matriz M s a

permutation matriz P such that P = Py = Py-1.

Consider the ring structure defined on the following set:
R:=TF,[X;0] ={a: X°+ ...+ a1 X +ao | @; € F, and s € N}.

The addition in R is defined to be the usual addition of polynomials and the multiplication is
defined by the basic rule X - a = 6(a)X for any a € F, and extended to all elements of R by
associativity and distributivity. The ring R is known as skew polynomial ring and its elements are

skew polynomials. Moreover, it is right Euclidean ring whose left ideals are principals.

From now on, together with the same notation as above, we will always assume the following

Hypothesis (x) : T =00 M is a fized 0-semi-linear transformation of ¥y which is 0-similar
to D := O odiag(My, ..., M,) by a matriz C and f; = (—1)"(X"™ — E;ZO_I a;; X") € R is the
characteristic polynomial of M; with ajo # 0, where the coefficients a;; are given by Theorem

4.1.3| for every j =1,...,7 and i =0, ...,n; — 1.

Denote by m; : Fg” — R/Rf; the linear transformation which sends a vector ¢; = (co, ..., ¢n,-1) €
Fg’ to the polynomial class ¢;(X) = St e X of R/Rf;.

Moreover, consider the linear map

m: Fp' x .. xFym = R, == R/Rf1 x ... x R/Rf,,
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4.1. Notation and background material

where m = (7, ..., m,) and the linear transformation 7; : Fy” — R/Rf; is defined as above for each
jg=1,...r.

Let € C ]Fg be a linear code and define the linear code
CxC T ={cC ' eF | et}
We can obtain now the following characterization of any T-code in Fy.

Theorem 4.1.6. With the same notation as in (x), let ¢ C Fy be a linear code and put
¢ =€ xC~'. Then

€ is a T-code <= €' is a linear code invariant under D <= 7(%") is a left R-submodule
of R,,.

Proof. . From Remark we know that any T-code can be written as ¢’ x C, where ¢’ is
a linear code invariant by D, and vice versa. So it is sufficient to show that a linear code %"’
is invariant under D if and only if 7(%”) is a left R-submodule of R,. Let €’ be a linear code
invariant by D. Note that 7(%¢”) is an abelian group with respect to the sum. Moreover, observe
that X - 7(0) = 7n(vD) € w(%€’) for any v € ¢’. By an inductive argument and linearity, this
implies that g - 7(V) € 7(¥¢”) for any g € R, that is, 7(%”) is an R-submodule of R,,. On the other
hand, let 7(¢”) be an R-submodule of R,. Then ¢’ = 7~ (n(%")) is a vector subspace of F7 and
for every ¢ € €' we have ¢D = m (X - 7(¢)) € 7 (7(€")) = €, since X - 7(C) € n(¥"). O

Remark 4.1.7. If T = O o My, where M is a matriz as in Theorem with a9 # 0,
then C in (%) is the identity matriz and the above result becomes a geometric characterization
of the module 0-codes (see [4, Definition 1 and Proposition 1|) associated to the polynomial
fi:=(=1)"(X™ —ayp, 1 X" — ... —ayg). Moreover, if @ = id, then Theorem generalizes
[14, (2.1)].

Example 4.1.8. In FS, where Fy = Fyla] with o® + a+ 1 =0, consider the matriz

010 000
E|O
D= , Where F = 00 1 and O = 000 |,
O|F
1 0 0 0 00
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4.1. Notation and background material

and the semi-linear transformation © o D. The code € = ( (1,1,1,1,1,1) ) is invariant by © o D,
¢ = ((1,1,1,0,0,0) ) = ( (1,1,1) ) x { (0,0,0) ), but € # € x €, for any O-code €; C F3
invariant by © o £ for i =1,2.

Remark 4.1.9. In the commutative case, i.e. 0 = id, the Chinese Remainder Theorem says
that if (f1),..., (fr) are ideals of R which are pairwise coprime, that is (f;) + (f;) = R for all
i # j, then I := (fi)N .0 (fx) = (f1) - ... - (fx) and the quotient ring R/I is isomorphic to the
product ring R/(f1) X ... x R/(fx) via the isomorphism ¢ : R/I — R/(f1) X ... x R/(fx) such that
ba+ 1) = (@t (f), o+ (i)

In the non-commutative case there exists an analogous of the above result. When 0 # id, if

Rfi, ..., Rf are pairwise coprime two-sided ideals of R, then
R/(Rfin...NRfy) = R/Rf) X ...x R/Rfy

as R-modules and I := Rf; N ...N Rfy can be replaced by a sum over all orderings of Rf1, ..., Rfx
of their product (or just a sum over enough orderings, using inductively that JN K = JK + KJ
for coprimes ideals J, K ). In both situations, we have a method to find all the R-submodules of
R/Rf1 X ... x R/Rfy via R/I.

Example 4.1.10. In the case 6 = id, consider the finite field Fy = Fola] with a* + a+1 =0
and the polynomials fi = X + o2, fo = X? + X + a in R := F4[X]|. By the Magma
command Factorization, we can see that ged(fi, fo) = 1. Then we can consider the ideal

I:=(f1)N(f2) = (lem(f1, f2)) = (X® + 1) and the isomorphism

Y: R/I —  R/(fi) X R/(f2) .
p+1 — (p+(fi)p+(f2)

By the Magma command Factorization we obtain X3+1 = (X +1)(X+a)(X+a?). Thus R/I has
6 non-trivials R-submodules which correspond to 6 non-trivials R-submodules of R/(f1) x R/(f2)
via f. For instance, since (X + a)(X + a?)) = (X?+ X + 1) is an R-submodule of R/I and
P(X2+X+1) = (0,aX +a?+(fs)), the ideal (0) x (X +a) is an R-submodule of R/(f1) x R/(f2).

Finally, we have the following two results.
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4.1. Notation and background material

Theorem 4.1.11. Suppose that 0 = id. Then any R-submodule S of R, = R/Rf; X ... x R/Rf,
is R-isomorphic to a product Sy x ... x Sy, where each S; is an R-submodule of R/Rf; for every
J = 1,..,r. In particular, any D-code €p C Fy with D = diag(My, ..., M,.) is isomorphic to a
product code €1 X -+ x 6. C Fpt X ... x Fy" as a vector subspace of Fy = Fyt x ... x Fyr, i.e.
¢p = (€1 X -+ X C,) x C for some invertible matriz 6, where each €, C Fy* is a linear code

invariant by M;, M; being the n; x n; matriz of Theorem [.1.3]

Proof. 1t is sufficient to prove the first part of the statement for » > 2, since the second one follows
immediately from this by putting n; := deg f; fort =1, ..., r.

If each polynomial f; € R is written as a product Fjj'- - F]atjytj of distinct irreducible
polynomials Fj; for some integers a;; > 1, then by the Chinese Reminder Theorem we can obtain

via isomorphisms a decomposition A of R, = R/Rf, x ... x R/Rf, such that
A= (R/RF{' x .. x RJRF}") x ... x (R/REY* x ... x R/RE;}"") & R,.

Let S be an R-submodule of R,,. Then, up to isomorphisms, S corresponds to an R-submodule
S’" of A. Thus we have to prove only that every R-submodule S’ of A is isomorphic to a product
S11 X ... X Sy, € A of R-submodules S;;, C R/RFZJ for every i =1,...,7and j;, = 1, ..., ;.

So, let W be an R-submodule of A. Then W is R-isomorphic to a direct sum Rg, ®- - - ® Ry of
non-zero distinct cyclic R-submodules Rg; of A with g; € A for i =1, ..., k. Consider the surjective
R-homomorphism 7; : R — Rg; and note that Rg; = R/(Ker m;) for any ¢ = 1,...,k. Since R
is a principal ideal domain, we see that Ker m; = (p;) for some p; € R. Let F be the product
Fiit - .- Fye's of all distinct polynomials with the respective maximum powers which appear in

“ . aj1 ajtj
the decompositions F{" --- Fj.

of the polynomials f;. Then we deduce that ' € Ker m; = (p;),
i.e. for every ¢ = 1,...,k there exists a polynomial ¢; such that F' = ¢;p;. This implies that
pi = Fii' - .- Fg' for some integers c¢;;, such that 0 < ¢j;; < aj, for every i = 1,...,k and

j=1,...,s. So we conclude that
Rg; = R/(pi)) = R/(F' - ...- F*) 2 R/F{1' x .. x R/Fy" C A,

Pe. Rg; & RFSITOUJFM 5 | x RFSS™% JF%% = 8 x . x S, C A, where {0} C S;;, C
R/RFZJ is an R-submodule for every i = 1,...,7 and 7, = 1, ..., t,. O
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4.2. Product semi-linear codes

Proposition 4.1.12. Suppose that 0 # id. If R, = R/Rf1 X ... x R/Rf. with Rf1,...,Rf,
pairwise coprime two-sided ideals of R, then any R-submodule S of R, = R/Rf; x ... x R/Rf,
is R-isomorphic to a product Sy x ... X S,, where each S; is an R-submodule of R/Rf; for
every j = 1,..,r. In particular, any D-code €p C T, is isomorphic to a product code
C1 X XC CFy <. xFym as a vector subspace of Fy =Tyt ... Xy, i.e. €p = (€ x-- -X%)*a
for some invertible matriz (7, where each 6; C Ty’ is a linear code invariant by © o M;, M; being

the n; x n; matriz of Theorem [1.1.3]

Proof. Let S be an R-submodule of R,,. Then S is R-isomorphic to a direct sum Rg; ®- - -® Rgy of
non-zero distinct cyclic R-submodules Rg; of R, with g; € R, fori = 1,..., k. Write g; = (g1, ---, Gir)
and consider the polynomial F' := f; - ... - f.. Denote by F}, the product F without the factor f.
Then we get

Frg; = (0, ...,0, F1g1, 0, ..., 0).

Since the (right) g.c.m.(fn, F) = 1, we know that there exist two polynomials a,b € R such that
afn + bFy, = 1. Hence bF,g; = (0, ...,0, gin, 0, ..., 0) for every i = 1, ...,k and h = 1,...,r. Therefore
we have

Rgi = R(911,0,...,0) @ ... ® R(0, ..., 0, g;) = (Rgi1, -, Rgir)

for every i =1,....k, i.e. S= Rg1 @& -+ @ Ry = (51, ..., 5;) for some R-submodules S; C R/Rf;,
where j =1,...,7. O

4.2 Product semi-linear codes

Let us recall here the following

Definition 4.2.1 (see [4]). An f;-module 0-code (or simply a module 6-code) €; is a linear
code in Fy’ which corresponds via 7; : Fg’ — R/Rf; to a left R-submodule Rg;/Rf; C R/Rf;
in the basis 1,X,..., X"~ where g; is a right divisor of f; in R. The length of the code €; is
n; = deg(f;) and its dimension is k; = deg(f;) — deg(g;). For simplicity, we will denote this code
C; = (gj)%’z and when there will not be any confusion, we will call an f;-module 0-code simply a

module 6-code.
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4.2. Product semi-linear codes

Remark 4.2.2. When 6 = id, by Proposition the above Definition coincides with the
definition of an A.-GC code (see Definition .

From Theorem [£.1.11] Proposition [£.1.12] and Definition [£.2.1] it follows naturally the below

Definition 4.2.3. Let 67 C ]Fg be a semi-linear T-code invariant by a 0-semi-linear map T

as in (x). We say that €r is a product semi-linear T-code, or a product T-code, if

Cr = (61 %X ... x6)xC CFt x ... xFpr

s where any ¢; C Fg’ is an f;-module -codes with

respect to © o M; and f; = (—1)"(X™ — ZZ]:Bl a;x X") is as in () for every j = 1,...,r and

Remark 4.2.4. When C is the identity matriz and r = 1, then Definition [4.2.3] is nothing else
that the definition of an fi-module 0-code.

Remark 4.2.5. When either 0 = id, or 0 # id and R, = R/Rfi x ... X R/Rf, with
Rfi, ..., Rf, pairwise coprime two-sided ideals of R, Theorem and Proposition show
that any T-code € is isomorphic to a product T-code as vector spaces, i.e. for any T-code
Cr CF, =F x ... <" there exists an invertible matriz C" such that € = (6 X ... X 6,) xCC’
for some T-product code (61 X ... X €;) x C' T Fpt x ... x Fp.

From Definition we deduce that a gemerator matrix of a product semi-linear code

Cr = (61 X ... X 6,) »C is given by

G
G

G,
where k; :=dim%;, Y., k; = dim @7 and each block

Gi
(G:)(© o M;)

(@)(© 0 !
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4.2. Product semi-linear codes

is a k; x n; generator matrix of the module 6-code &, = (gi)fji,@, where i = m; '(g;) and

Tt Fpt — R/Rf; for every i = 1,...7.

Example 4.2.6. Consider the vector space FS, where Fy = Foa] with o* + a +1 = 0, and
0 € Aut(IFy) such that 0(x) = 2. Let T = © o M be a semi-linear transformation where

1 01 011
1 01100
000110
M =
1 01110
001011
01 1001
01 00
S 01 0010/
Then T is 0-similar to © o diag(My, My), where M; = and My = , 1.e.
1 0 0 0 01
1 010
T = C YO odiag(My, M>))C with
1 1 01 00
1 01 0 01
0011060
C =
1 01000
1 01101
01 1010

Let 6 = (X + a?)y] be an fi-module -code with fi = X> + 1 and let € = (X2 + aX + 1)1 be
an fa-module 0-code with fo = X* + X? + 1. Since both m (%)) and m (%) are R-submodules of
R/Rf, and R/Rfy respectively, (€1 X 6z2) is a R-submodules of R/Rf1 x R/Rfs. Furthermore,
by the Magma Program

F<w>:=GF(4);

E:=[x : x in F | x ne 0];

89



4.2. Product semi-linear codes

RightDivisors := function(qq,g)
R<x>:=TwistedPolynomials(F:q:=qq);

f:=Rlg;

n:=Degree(f);

S:=CartesianProduct (E,CartesianPower(F,n-1));
dd:=[1;

for ss in S do

11:=[ss[1]] cat [p : p in ss[2]];
q,r:=Quotrem(f,R!11);

if r eq R![0] then dd := dd cat [[q,R'11]]; end if;
end for;

return dd;

end function;

we see that the polynomials X*>+1 and X*+X?+1 are coprimes. Since R(X?+1) and R(X*+X%+1)
are two-sided ideal of R, by Proposition |4.1.12| we conclude that € := (6 x 62) x C is a product
T-code. Note that € is a code of type [6,3]s. Furthermore, the following matriz

a? 1‘0 0 0 0 a a2 1 o> 0 1
G=]10 0/l a1 0|-C=]1 10 0 001
0 010 1 o 1 a 1 a? o> 1 o2

is a generator matriz of €r.

Definition 4.2.7. A linear code € is a code of type [n, k|, if € C F} and dim € = k.

The following result gives in the commutative case a necessary and sufficient condition for the

existence of T-codes €7 of type [n, kl,.

Theorem 4.2.8. Suppose that 0 = id and let T = M be a linear transformation over Fyy as in (x).
Let F) = Fflvl X . X IFfIVS be a decomposition of I as in the proof of Theorem 4.1.11} and denote

by 7 the corresponding isomorphism

m:Fl =FM x .. xFY — R/RF{" x ... x R/RF.*,

q
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where m = (my,...,m5) and 7; : Févj — R/RF; are the usual isomorphisms and the Fj’s are
irreducible (not necessarily distinct) polynomials on R such that N; = a;deg F; > 1 forj =1,..,s.
Then

3 a T-code of type [n, k|, <= k=>._, a;degF;, where 0 < a; < o;.

Proof. . Note that for every i = 1,...,s an R-submodule of R/RF/ is of type RF'/RF" =
R/RFiai_h for some integer h such that 0 < h < «;. Moreover, observe that by Remark
the set of the T-codes %7 is in one-to-one correspondence with the set of linear codes %p
invariant by the linear transformation D := diag(M, ..., M,) of type [n, k], Let €7 C Fy be a
T-code of type [n,k],. Then €7 C~! is a linear code €p invariant by the linear transformation
D := diag(M,, ..., M,). With the same notation as in the statement, 7(%p) is an R-submodule of
R/RF{" x ...x R/RF?. Since by Theorem [4.1.11] every R-submodule of R/RF{" x ... x R/RF®
is isomorphic to I; x ... x I, with [; an R-submdule of R/RFjaj for every j =1, ..., s, we conclude
that £k :=dimér = dimép = Zle a; deg F;, where 0 < a; < a;. On the other hand, assume that
k= Zle a; deg F; with 0 < a; < «;. Then the product code

T (RFPT/RFYY) x o x i (RES ™ [RFY) =

= 1 (RF{'T" /RF{* X ... X RF{*~% | RF{*)

is a T-code of type [n, k],. O

4.3 Dual codes of product T-codes

In this section we study three kind of dual codes of product semi-linear T-codes and some main

relations between them.

4.3.1 Euclidean duals

In [4] the authors prove that the Euclidean dual code of a module #-code is a module 6-code if
and only if it is a #-constacyclic code. Moreover, they establish that a module 6-code which is not

f-constacyclic code is a shortened #-constacyclic code and that its Euclidean dual is a punctured
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4.3. Dual codes of product T-codes

f-constacyclic code. This enables them to give a form of the parity-check matrix for module

f-codes.

Let us only observe here that there exists an alternative method to find a parity-check matrix

for any module #-code.

Proposition 4.3.1. Let 6; = (gj)]:é,e C Fy’ be a module 0-code. For any integer i such that

0<i¢<kj—1, writein R
X Rt = gigs 4y, with 0 < degry < nj — k;.
Denote by S the following matrix
Prs—i; (5 (0))
S Pnj—kj(fj_l(ﬁ)) |
Prj iy (M5 (Tj=1))
where 7; : Fy’ — R/Rf; and Pn;—k; 18 the projection map onto the first nj; — k; coordinales, i.e.
Prj—k; (UL, ooy Uy s Uny—kejls ooy Uny) 2= (U1, ooy Unj—i;)-
Then a generator matriz G of € is

6= (5| )

and a parity check matriz H; is given by

5).

where I, i, is the (n; — kj) x (n; — kj) identity matriz and S, is the transpose matriz of S.

Hj = ( [njfkj

Proof. Since degr; < n; — k;, note that ﬂjfl(X"j_kj“ — 1;) € ¢; are linearly independent for

0 <i<kj—1. Thus ( -8 Iy, ) is a generator matrix G, for the code ;. Moreover, since

(€;")" = €}, we see that the matrix H; := ( Lok, ‘ S, ) as in the statement is a parity check

matrix for ;. O
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4.3. Dual codes of product T-codes

By the Magma program

F<w>:=GF(4) ;
PcMatrix:=function(qq,g,n)
R<x>:=TwistedPolynomials(F:q:=qq);
g:=Rlg;

d:=Degree(g) ;

11:=[1;

for i in [0.. n-d-1] do
a,b:=Quotrem(R! [11*R![0,1]~(d+1i),g);
11:=11 cat [b];

end for;

return 11;

end function;

we can find the parity-check matrix of Proposition [£.3.1]

Remark 4.3.2. Proposition works also for any module (6,9)-code (see [5, Definition 1]),
where 6 : ¥y — Fy is a derivation, and it allows us to obtain directly a generator and a parity-check

matriz in standard form for any module (0, 0)-code.

Theorem 4.3.3. Let 67 = (61 X ... X €6,) xC CFY be a linear code, €; C Fy' being a linear code

and Fy = Fpt x . x Fyr. Ifa 15 an tnvertible matriz, then
Crt = (EF x . x ) <O

where C'\t is the transpose matriz of C and €t C [Fy* is the Buclidean dual code of 6; for every
i =1,...,r. Furthermore, a parity check matriz of € is
H,
.Cgl
H,
where h; := dim €+, > hi =dim € and H; is the h; x n; parity check matriz of €; given by
Proposition for everyi=1,....r.
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Proof. Put € := (€ x ... x €+) « C;"! and note that
dim ¢ = dim(6;" x ... x €F) = Zdim‘él = Z(mz —dim%;) =
=1

i=1
= Zmz — Zdim(‘@) =n —dim %y = dim 6.
i=1 i=1

Let @ € €. Since € = (€ x ... x ) » C;', we deduce that 7 = wC; " for some vector

W= (G, ., ah) € (€ x ... x €L). Thus for every &= (1, ...,¢)C € G, we see that

=(G* L, eN)E, )y =T a4+t -6 =0,
ie. € C%rt. Since dim € = dim %Tl, we conclude € = €.
Finally, the second part of the statement follows easily from the first one. O

Example 4.3.4. Continuing with Example by the Magma Program

F<w>:=GF(4) ;
PcMatrix:=function(qq,g,n)
R<x>:=TwistedPolynomials(F:q:=qq) ;
g:=R!'g;

d:=Degree(g) ;

11:=[1;

for i in [0.. n-d-1] do
a,b:=Quotrem(R! [1]*R![0,1]~(d+i),g);
11:=11 cat [b];

end for;

return 11;

end function;

and Proposition [£.3.1, we deduce that the matriz

1 210 0 0 0
H=|0 0101 o |-C7

0 001 o O
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1 01 o
is a parity-check matriz of €1, where Hy = (1 o®) and Hy = are the parity-check

01 a O
matrices of €1 and 65 respectively. Furthermore, by Theorem we can conclude that

Cp = (€ x € )xC
is the dual code of €r, where €i- = ((1,a?)) and €5 = {(1,0,1,0?),(0,1,a,0)).

Remark 4.3.5. The above result is useful to construct the Fuclidean dual code and to calculate the
minimum Hamming distance of any product T-code. In particular, when either 0 = id, or 0 # id
and R, = R/Rf) X ... x R/Rf, with Rf1, ..., Rf. pairwise coprime two-sided ideals of R, Theorem
together with Theorem and Proposition allow us to find the Euclidean dual code
of every T-code.

The proof of the below result is immediate.
Lemma 4.3.6. We have the following two properties:
(a) © c Mg =M 0O, for any matriz M = [my;], where Mg := [0(my;)];
(b) (@07 b=0 < @ (b0)=0, VabeF.
Finally, we obtain the following characterization of Euclidean dual codes of T-codes.

Proposition 4.3.7. Let 61 C IFZ be a T-code invariant under a 0-semi-linear transformation

T =©o M. Then the Euclidean dual code €} is a T'-code, where T' = O~ o (M,)g-1.

Proof. If @ € €3, then for every & € €1 we have

Thus by Lemma we deduce that
(@T)-¢= (@0 ‘to(My)g1) = (@M, 007 ") -c=0,

for every ¢ € €r, i.e. €4 is invariant under the semi-linear transformation 7. m
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4.3.2 Quasi-Euclidean duals

In this subsection we introduce the new concept of quasi-Euclidean dual codes and some of their
properties related to the Euclidean dual codes. Before to do this, we have to define a special

injective map for module #-codes.

An injective map for an f-module f-code.

Given a polynomial f € R of degree n > 2, we present here an algorithm to show that there exists
always a suitable integer m > n such that X™ — 1 is a right multiple of f. This will allow us to
construct an immersion map of the code space Fy into an Fi* which will be useful for the definition
of quasi-Euclidean dual codes of a product T-code.

Let f = (—1)"(X" — 321, f:X?) € R and consider the right division
Xn_lZf'Qn‘i_Tm

where ¢,,7, € R and 0 < degr, < deg f. Assume that r, is not equal to zero, otherwise we are
done.

Let k£ be an integer such that £ > n and consider again the right divisions
X —1=f g+

where g, 7, € R and 0 < degr;, < deg f. Since there are at most ¢g®8"+*! distinct polynomials 7y,

we see that for some ko > k; > n we get 1, = r,. Thus we obtain that
b (k1) = (k1) XR = (g - g,

Put ¢’ := qx, — qx, and note that ¢’ # 0 € R. This shows that X = 0 is a root of f -¢’. Since
f(0) # 0, we deduce that ¢’(0) = 0. Hence ¢’ = ¢; - X for some ¢; € R.
Thus we have

(Xkh 1) XM = g X

and since R has not non-zero zero divisors, we can deduce that

(xXhh 1) XM = f g,
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where ¢; € R. By an inductive argument, we can conclude that
Xk‘z—k:1 _ 1 — f‘ . q//

for some ¢” € R. This shows that there exists always an integer ¢ > n such that X* — 1= f . ¢,
for some non-zero ¢y = Y " " ¢; X" € R.
From now on, we denote by m the minimum integer such that m > n and X™ — 1 is a right

multiple of f, i.e.

m:=min{i e N| X'~ 1= f-p for some p € R} . (**)

In this case, we write

X" —1=f-qf.
Moreover, by the above construction, we have
n<m<q"+n-—2.
By the Magma program

F<w>:=GF(4) ;
PeriodNc:=function(qq,g)
R<x>:=TwistedPolynomials(F:q:=qq);
f:=Rlg;

n:=Degree(f)-1;

repeat

n:=n+1;

_,r:=Quotrem(X~n-1,f);

until r eq R![0];

return n;

end function;

we can calculate m in (**).
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4.3. Dual codes of product T-codes

Let us introduce the following isomorphism of rings © : R — R defined as

Zaz )0 = Z@ a;) X
Lemma 4.3.8. Pul
m* ::min{jEN | X7 —1=p-f* forsomepGR} ,
where f*:=1—=>"" 0 (f,—i)X" € R. Then m* = m.

Proof. Let X™—1 = f-q;. By [4, Lemma 1(1)] we know that X" —1 = (1-X")" = (f-(—qs))* =
q - f* for some ¢’ € R. This implies that m > m*. On the other hand, let X™ — 1 = g - f*. By

[4, Lemma 1| we see that
X" 1= (1 X = ((gp) - ) =

= (/e "= ((Hemem " ¢ = (/o™ ¢

for some ¢” € R. Hence we get

i.,e. m* > m. This gives m* = m. [l

Remark 4.3.9. If 0 = id, then the characteristic and minimal polynomial of

0|1

A=
0 1
Jol i oo fam

are both equal to f = (—1)"(X" — S0 f;X?) € R. Let m' := min{i € N| AL = I} and
note that the polynomial X™ — 1 is satisfied by A.. Therefore, it follows that there ezists a
polynomial qf = Y " ;X" € R such that X" 1 =f. qr. This gives m = m/, that is,
m=min{i e N | AL =T}.
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4.3. Dual codes of product T-codes

By the Magma Command Order we can calculate m in the commutative context.
The following example shows that Remark does not hold in general when 6 is not equal

to the identity of IF,.

Example 4.3.10. In F3, where Fy = Fyla] with o> + a + 1 = 0, consider the polynomial
f = X3+ aX +1 associated to the matriz

010
0 0 1
1 o O

and define 0(z) = z* for any v € Fy. It follows that min{i € N | AL = I} = 21. Moreover, we
have X?* —1 = f-q+r, where

q:X18+OC2X16+X15+&X14+X13+X10+Oz2X8+X7—|—OéX6+X5+X2+Oé2

and r = X% + a?X + a # 0. This shows that m # min{i € N | AL =I}. Moreover, we get
m = 8(< 21). Hence X® —1=(X>+aX +1)-qr with gy = X° + ?X?> + X? + aX + 1.

In connection with the above arguments, we have the following results.

Proposition 4.3.11. Let m be an integer as in (xx) and let P be the m x m matriz

01
0 1
110 ... 0O

Denote by G == (qo, ---s Gm—n, 0, ...,0) € FI"

o> where the q;’s are the coefficients of ¢ € R as in (xx).

Then there exists a commutalive diagram
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such that 7’ oi = jom, where R, := R/Rf, Ry, .= R/R(X™ — 1), i(V) := 0vQ with Q the matriz
g5

(47)(© 0 P)

(47)(© o P)?

(q7)(© o P~
and j(a+ Rf) := (a-qs) + R(X™ = 1) for any a € R.

Proof. By using the canonical basis of Fy, the statement follows easily from the linearity of the

maps i, j, 7 and 7’ H

Proposition 4.3.12. With the same notation as in Proposition 4.3.11}, for any ¢ € Fy and k € N

we have
(B0 A)*) = (i(&)(© 0 P)*,
where A, is the matriz defined in Remark [£.3.9]

Proof. Let ¢ € Fy. By Proposition 4.3.11} we have the following two commutative diagrams:

f—i()
j ' l”’
(@) —> j(n(@)

J

where j(7(c)) = 7'(i(¢)), and

X+ (@) JXE (@)

where j(X*-7(¢)) = 7'(i((¢)(© 0 A.)¥)). Since 7’ is an isomorphism, by the commutative diagram

of Proposition [£.3.11], we obtain
i(()(O0A)") = (x) (X" () = (") (X" 7(0) - qp) =

= ()N (X" (7 (@) = (=) THX" - 7'(i(8) = (7)o 7' ((i(8)(© 0 P)F),
that is, i((2)(0 o A,)*) = (i(&))(© o P)* for any k € N. O

J
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Remark 4.3.13. The maps i and j in Proposition [4.3.11] are injective. Moreover, em Proposition
4.3.12| shows that the image via i of an f-module 6-code in Fy is a module 0-cyclic code in F}',
where m is defined as in (xx) (or as in Remark .

Let s be the order of 6. From the above results, we can deduce the following two consequences.
Corollary 4.3.14. Let m be as in (xx). If m =as+r, 0 <r <s, then (¢;)O" = ¢;.

Proof. Since X™ — 1 = f-q; and f,q; are monic polynomials, by [4, Lemma 2(2)| we see that
X™ =1+ (qp)O™ - f. Since (O o P)"™ = O™ o P™ = ©™ and ©° is the identity, from the following
commutative diagram

€(O0 A" —=i(&)(O 0 P)"

ﬂj l”’

Xm=1 J(1) = g5

J

we conclude that ¢; = (7')(qy) = i(€1)(© o P)™ = (q;)O™ = (¢;)O". O
Corollary 4.3.15. Let f = (=1)*(X" = 3" ;X)) € R. If
(va f17 sy fn—l)@t 7é (f07 fla ooy fn—l)

for every integer t such that 0 <t < s, then the order s of © divides m.

Proof. Since X™ — 1 = f - q¢, from Corollary it follows that
frgp=X"—1=(X"-1)0" = (f)0" - (¢;)0" = (f)O™ - ¢y,

ie. f=(f)O@™ Let m=as+r with0 <r <s.
Assume now that r # 0. Then we get f = (f)©™ = (f)O", that is,

(fo, f1, s fa1)O" = (fo, f1, s fr1)

for some 0 < r < s, but this is a contradiction. Thus » = 0 and s divides m. O

Example 4.3.16. In F3, where Fy = Fyla] with o> + a +1 = 0 and 0 is the Frobenius map,

consider the following two polynomials:
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(1) =X+ X3+ X2+1; (2)g=X"+X?+1.

Note that in both cases the hypothesis of Corollary [4.3.15| is not satisfied. Moreover, we have

m = 12 in case (1) and m = 31 in case (2).
Finally, let us give here also some results about the integer m in (%) when 6 = id.

Remark 4.3.17. Let F, C K be a finite extension of F, such that f = [[_,(X — a;) with a; € K

and A. is diagonalizable over K. If m; := min {hi | a?i = 1}, then m = lem(my, ..., my,).

Remark 4.3.18. Let p := Char(F,). If the polynomial f has a root of multiplicity > 2, then
X™ — 1 has a root of multiplicity > 2. This shows that gcd(m,p) # 1 and since p is a prime

number, we get m =0 mod p.
The next two results give a more simple computation of m.
Proposition 4.3.19. Denote by f:: (fos -y fn1) and let
k.= min{he NuU{0} | fAi‘:é’l}.
Then m =n + k. In particular, we have degq; = k.
Proof. For any h =1, ...,n, we have
G AT = (G AL A AR = ((GA) AR A =

= (fAR AT =g A =g,

Hence A% = I and for the minimality of m we deduce that m < n+k. Furthermore, since A™ = |
we get & = ((ELA" A )A™™ = (8,A,)A™" = FA™™ that is, fA™ ™ = &. So, by definition of

k we can conclude that £ < m —n, i.e. m > n+ k. Finally, observe that degqgf =m —n:=k. O

Let po be the order of det A.. Since A" = I, it follows that (det A.)™ =1, i.e. m =0 mod py
with py the order of det A.. Denote by B := AZ°. From this it follows immediately also the

following
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Proposition 4.3.20. Let m’ be the minimum integer such that B™ is the identity matriz. Then

m = pom'. In particular, we have degq; = pom’ — n.

When 6 = id, all the above results give the following

Algorithm 3:
Input: f

Define ag := det A;

Compute the order pg of ag;

Define B := APo;

Find the rational canonical form B’ of B;

For any diagonal block B;, i = 1,...; s, of B’ compute m/ = min {h | Bl = I} )

Output: m = lem(m/,...,m.) - po.

Definition and basic properties of quasi-Euclidean dual codes

Under the hypothesis (x), write Fyy = Fpt x... xFp» with » > 1 and n = > 51 - From Proposition
4.3.11, we know that for every k = 1,...,r there exists a commutative diagram

i
N m
Fq Fq

|k

R/Rfi— R/R(X™ — 1)

Consider the further commutative diagram:

n __ 1 M m1 My m
Fq—IFq ><...><]Fq —i>IE‘q ><...><1Fq =F

WL ﬂfl

R, Ry,
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where n =3, n;, m =Y. m; with the m;’s as in (%), f; = (=1)™(X™ — Z?;Ol fi;X?) € R,
R, :=R/Rf; x .. x R/Rf,,
R, :=R/R(X™ —1) X ... x R/R(X™ — 1),
i(V) == 7Q with
@1
Q2

o))
i

Q-
and all the @;’s are matrices n; xm; as in Proposition|4.3.11} 7 = (71, ..., m.) with m; : Fpe — R/Rf;,
7 = (7, ..., m,) with m} : F* — R/R(X™ — 1) and

j(plv "'7p7’) = (pl “qfyy -y Pr qf'r)

with all the gy,’s polynomials in R as in Proposition |4.3.11
Denote by .# the image of i = i 0 ¢ and define

B:=C7'Q Q:(C™ "),

where M, is the transpose of a matrix M. Note that B is a symmetric matrix.

Let r be the rank of B and observe that
r:=1kB =1k(Q - Q) = n — dim(Ker Q, N .#)
with 0 <r <n.

Definition 4.3.21. Let T be a semi-linear transformation of By as in (x). We define the quasi-
Euclidean scalar product -. on Fy as @ -. b = aBb, for any d’,l; € [}, and we denote by ¢~ the

linear quasi-FEuclidean dual code of a linear code C with respect to -, i.e.
= {fng | 7+, &= 0 for every 56(5}.

Proposition 4.3.22. Let ¢ C F be a linear code. Then we have the following properties:
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(i) € = (€ % B)*
(ii) dim€* = dim €+ + dim(€ N Ker B);
(iii) €*x B =%+ (Im B);
(iv) (€*)* =€ + Ker B;
(v) i(€¢*)=i(€)' NI =i(€ +Ker Byt n.7;
(vi) (F")* = Ker B = (Im B)*, (Ker B)* = F?, (Ker B)* = Ker B.
Proof. (i) To prove ¢* = (¢ x B)*, we observe that

We (€xB)t < w-(GB)=0, Yce¥
< wWhBic;=0, Vce€
<—— wBc =0, VYce€

<— w-c=0, Vce¥

(74) This follows easily from
dim(% * B) = dim € — dim(% N Ker B)

and dim ¢* = n — dim(% - B).
(i3i) If £ € €* * B, then ¥ € Im B and ¥ = ¢*B for some ¢* € €*. Hence for every ¢ € € we
get

—
*

T-C=c

-
*

B-c=c¢-.c=0,

ie. €*xB C ¢+ N (Im B). On the other hand, let ¥ € €+ N (Im B). Then i = B € €~ for

some v € Fy. Thus for any ¢ € ¢ we have
UC=1UB¢ =vy-c=0,

that is, €+ N (Im B) C ¢* x B.
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(iv) Let =+ b € € + Ker B. Then for every ¢* € ¢€* by (i) we have

-
*

T, c* = ZBc

— (GB+bB) - ¢t = (B) - & =0,
ie. € +Ker B C (¢*)*. Let v € (¢*)*. Then for any ¥ € €* we get
UB-¥=9UB#; =0-.7 =0,
ie. UB € (¢*)t = € « B. Thus there exists a ¢ € € such that ¥B = ¢B. This implies that
(T — @B =0, that is, 7 — ¢ € Ker B and ¥ = &+ b for some b € Ker B.

(v) If Z € i(€*), then ¥ = i(¥) = C~'Q € .# for some 7 € €*. Hence for every @ € € and
b € Ker B, we have

-, — - =

T T+ b) =T i) +7-i(b) =T+ 7T (bB) =0,

that is, i(¢*) C i(€ + Ker B)* N .. Now, let # € i(€ + Ker B N .7, i.e. & =i(7) =7C'Q €
i(¢ + Ker B)*= Ci(€)" for some ¢ € F}. Thus for every i € ¢ we have

i =BG, = ([@CT'Q)FC Q) =T i(7) = 0,
i.e. 7€ €*. Hence we get ¥ = i(7) € i(¢*), that is, i(€ + Ker B)t N.# Ci(¢™).

Let us prove now that i(€*) is also equal to i(€)" N .Z. Let ¥ € i(€*). Then ¥ = i(¢*) € &

for some vector ¢t € €*. Therefore for every & € € we have
Z-i(@) =i(c*) -i(&) =, =0,

ie. 7 €i(€)" N.#. On the other hand, let § € i(%)* N .#. Then § = i(Z) € 5 for some Z € F
and for every ¢ € € we get
0=i(c) - g=1i(c)-i(z) =C 7.

Hence 7 € €*, i.e. ij € i(€™).

(vi) Since ({0})* = F?, the equalities (F})* = (Im B)* and (F})* = Ker B follow easily from
(i) with ¢ = Fy and from (iv) with ¢ = {0} respectively. Finally, by taking € = Ker B, the
equalities (Ker B)* = Fy and (Ker B)™ = Ker B are immediate consequences of (i) and (iv),
respectively. O
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Corollary 4.3.23. Let ¢ C Fy be a linear code. If r = n, then we have
(j) €*=¢+xB7!;
(jj) dim %™ = dim €+;
(773) (€7)" =€
(jv) i(€*) =i(€)- NI,
(v) (Fy)* ={0}, ({0})" =Fy.

Remark 4.3.24. When r = n, by Corollary [4.3.23| (j) we can easily obtain a generator matrix
of €* by multiplying the parity check matriz of € with the matriz B~'. Moreover, when r = 0,

we see that B is the null matriz and in this case @\ represents a generator matrixz of an euclidean

self-orthogonal code € (i.e. € C € ) of dimension n in F}".

Remark 4.3.25. From Proposition {4.3.22| (vi), it follows that Ker B C {0} for any v € Fy. In

particular, we deduce that Ker B C €~ for any linear code ¢ C IFy.

Example 4.3.26. In F3, where Fy = Fsla] with o®> + a + 1 = 0, consider the following four

polynomials:
1) fo=X2+X%2+1; (2) i=X3+2X2+02X +q;
(B) o=X+X?’+aX+a* @) f3=X>+a”
Note that m =7 for the first case, while m = 6 for the other cases. Then
XG_l:fl'Qfl = fo apn = f5 qp, X7_1:f0"]fo

where
g = X"+ X+ X?+1, qp =X’ +aX?+a’X +a?,

qf2:X3—|—X2—|—04X—|—oz, qf3:X3—|—a.
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Therefore this gives

1011100 a?> o> a 1 0 0
Q=10101110], =0 a a o> 10 |,
0010111 0 0 o o a1
a o 1 1 00 a 0 0 100
@=]102a>a>1 10|, @=]0a 0010 ],
0 0 a a1 1 0 0 o 0 01
and
000 a 1 «
Bo=|1000|,B=|124a* 1|,
000 a 1 «
0 o 0 a 0 0
By=1a> 0 a |,B=]0 o* 0 [,
0 a O 0 0 «

with rk B; =1 fori=0,...,3. Observe that from Remark 4.3.24) it follows that Qg is the generator
matriz of an euclidean self-orthogonal code (in fact, an euclidean self-orthogonal cyclic code) of

type [7, 3]s with minimum Hamming distance equal to three.

Corollary 4.3.27. Let ¢ be a linear code in Fy. Then
C CE = i(F) Ci(€),
i.e. € is self-ortogonal with respect to -, if and only if i(€) is self-ortogonal with respect to -.

Proof. Since 1 is injective, the statement is an immediate consequence of Proposition |4.3.22 (v)
and the following equivalence: i(¢) C i(¢)* NI < i(€) Ci(€)*. O

Lemma 4.3.28. For any ¢ € F} and k € N, we have

(eTh =i(&)(©0 P,
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4.3. Dual codes of product T-codes

where
Py

Py

)
Il

F,

and the P;’s are the m; X m; matrices as in Proposition [4.3.11| for every 1 =1, ...,r.

—

Proof. 1t is sufficient to prove the statement for k = 1. Thus, for every ¢ € Fy, let v = (1, ..., %) €

Fyt x ... x Fy7 be the vector such that ¢ = ¢C. By definition and Proposition we have
W(CT)=i(cTC™) =i(cC ' (©oD)CC™) =i((¥)(00D)) =
= i((0h©® o My, ..., 0,0 o M,.)) = ((#1)(© o M1)Qy, .., (7,)(© o M,)Q,) =
= (i1 (1O 0 My), ..., i, (5,0 0 M,)) = (i1(31)(© 0 P,), ....i,(T,) (O 0 P,)) =
= (i1(@), -y i (B))(© © P) = (61Q1,,7,Q,) (@ 0 P) =
= (1, .., 5)Q(O 0 P) = (¥)Q(O 0 P) = i(7)(© o P),

that is, i(¢ T) = i(7)(© o P) = i(&)(© o P). O
Corollary 4.3.29. Let ¢ C FZL be a linear code. Then

€ is a T-code < i(€) is a linear code invariant under © o P.

Proof. From Lemma [4.3.28| it follows that

% is a product T-code <= ¢(%) is a linear code invariant by O o D <= i(p(%)) = i(%) is

a linear code invariant by © o P. [

Corollary 4.3.30. Let € = (6, x ... x€,) xCC be a linear code in Fy =Fpt x ... xFpr, where C is

q
an invertible matriz and ¢; C ¥y is a linear code for every i = 1,...,r. If there exists an invertible
matriz C such that 6(@@) = (@@t)a, then €* = (6} x ... X €) *6;10, where ¢ C Fyi is the
quasi-Euclidean dual code of €; for every i = 1,...,r. In particular, if € = (€1 X ... X 6,) xC is a
product T-code, then €* = (€ x ... x €) * C.
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4.3. Dual codes of product T-codes

Proof. By Proposition [4.3.22(¢) and Theorem we have
€ = (€*B)" = (€1 x ... x6)*CCB)* = (6 x ... x €,) » CQ Q,C;7 )" =

= (G % ... x€)*Q Q,CC" = (€ x ... x €,) » CBC,CC;7 ) =
— (G x ... xC)x OB xC7'C,'C = (€1 % ... x€,)xC)* «C'C, 'C =
— (€ X . xC)*COT'C,'C= (€7 x .. x€)xC, C,

ie. €= (€7 x .. x€)«C, C. O

Finally, we have the following

Proposition 4.3.31. Let ¢y C IF;‘ be a semi-linear T-code invariant under a 0-semi-linear
transformation T = © o M. If there exists a matriz M such that ng/[\ = MB, then the quasi-
Euclidean dual code €5 1s a T'-code, where T" = ©~1 o (]\/4\,5)071,

Proof. Note that the linear code %7 x B is invariant under the #-semi-linear transformation © o M.

Thus we can conclude by Propositions |4.3.22( (¢) and O

4.3.3 Hermitian duals

Assume that the order s of 0 € Aut(F,) divides m; for every i = 1,...,7, i.e.

/

s, m;eN. (00)

Note that assumption (o¢) is always satisfied when 6 = id.

Define a “conjugation” map ® on R, := R/R(X™ — 1) x ... x R/R(X™ — 1) such that
®((a;, X", . 0, X)) = (P1(a;, X, ..., B (a;, X)),

where

for k =1, ...,r, which is extended to all elements of R, by linearity of addition.
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4.3. Dual codes of product T-codes

We then define a product of two elements p(X) = (pi1(X),....,pr(X)) € R, and t{(X) =
(t1(X), ..., t:(X)) € Ry by

—,

PX) #p H(X) == (p1(X) @1 (82(X), .., pr (X) B (£ (X))

By the above commutative diagram, we can also define a Hermitian product of two elements

Q(X) = (ar(X), ..., a,(X)) and b(X) := (b1 (X), ..., b,(X)) of Ry := R/Rf % ... x R/Rf, by
< A@(X),b(X) >:= j(@(X)) #p j(b(X)).

The next two results are now an immediate generalization of [I5, Proposition 3.2 and Corollary

3.3

Proposition 4.3.32. Assume that (%) holds. Let @ = (aj, ...,a?),I;: (bz, b)) e Fot x ... x Fpr

and denote by

and

B(X) o= (ma(Ba)se. e (62) o= (Br(X), .. b (X))
their polynomial representation in R/Rfy X ... x R/Rf. via m = (my,...,m,) respectively. If (0o)
holds, then

@ (@0 M) =0, forall 0 <h; <m;—1,i=1,..1r < <aX),bX)>=0.

Proof. Without loss of generality, we can assume that » = 1, since the statement will follow easily
by applying the below argument to each component of < d’(X),I;(X) >€ R,,. Moreover, for
simplicity we omit the subindexes.

Since 0™ = id, the condition < a(X),b(X) >= 0 is equivalent to

j(a(X)) #5 j(b(X)) =0 <= a(X)q;@(b(X)qs) =0
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4.3. Dual codes of product T-codes

where the subscript i + h is taken modulo m. Comparing the coefficients of X" on both sides of

the last equation, we get

m—1
Z al ,0"(b;) =0, forall 0 < h <m — 1.

=0
By Proposition the above equation is equivalent for all 0 < h <m — 1 to
@ V(O P =0 < d-V(OocP) =0
— (@) -i(b)(©oP) =0
— (@) - i(b(O© o M)") =0
— Q- (b(® o M)")Q =0,

ie. @ b(OoM)r=0forall0<h<m—1. O

Let I be a left R-submodule of R,,. We define the dual [” of I in R,, taken with respect to the

Hermitian product <, > as

—

I":={dX)eR, | <aX).{(X)>=0, Vi(X) eI}

Definition 4.3.33. Let T' be a semi-linear transformation of B} as in (x). We define the Hermitian

dual code € of a linear code € with respect to <,> as the linear code
¢ ={ZeF, | <#X),dX)>=0 for every € €} .

Remark 4.3.34. If I C R, is a left R-submodule, then IV is again a left R-submodule of R,.
Consequently, from Theorem we can deduce that if €' is a code invariant under D as in (x),

then €' = 7w~ Y(w(€")") is again a code invariant by D.

From Proposition [4.3.32] we can deduce the following results which relate the quasi-Euclidean

duals with the Hermitian duals of product T-codes.

Theorem 4.3.35. Let 61 = (61 X ... Xx 6,) x C be a product T-code and define the isomorphism
T =mo . If (00) holds, then
T(6r) =7 (1) .
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4.3. Dual codes of product T-codes

Proof. Since €1 = (€1 x ... x6,)*C, from Corollary |4.3.30| we deduce that €} = (€} x...x€)xC.
Thus it is sufficient to prove that

T(6) X ... xE€)=7(61 X ... x 6)" .

-

Moreover, without loss of generality, we can assume that r = 1. Therefore, let 7(b) = 71'1(5) €
m (%) for some b € €. Then for every @ € 61 and h € Zs, we have b -, @(© o M;)* = 0. Thus
by Proposition we get < m(b), (@) >= 0 foralld € %, i.e. m(b) € m(€,)". Hence
m (%)) C m(%))". Finally, let b(X) € m(%))". Then we get < b(X),m (a@) >= 0, Vd € 6. By
Proposition with h = 0, this implies that 7, '(b(X))-. @ = 0, Va € €, i.e. 7, (b(X)) € €.
This shows that b(X) = m (7,1 (b(X))) € m (%), that is, 71 (61)” C m (7). O

Corollary 4.3.36. Let 61 = (€1 X ... X 6,) xC be a product T-code, where C is as in (x). If (00)
holds, then
Cr = %ﬂ; <~ f(ch) = 7(%7*)” ,

i.e., Cr is self-dual with respect to -, <= T(6r) is self-dual with respect to <,>.
Proof. Since 7 is an isomorphism, this follows immediately from Theorem [4.3.35] [

Theorem 4.3.37. Let ¢p = (61 X ... X 6,) % C be a product T-code, where 6; = (g;)%% is an
fi-module 6-codes for every i = 1,...,r. If (00) holds, then €} = (€, X ... x €*) % C is a product
T-code, where € = (6;% B;)* with B; := Q;(Q;); for i = 1,...,r. Furthermore, a generator matriz

for €5 is given by
G* = . : C )

where
m (g7)
T (97)(© o M)

i (95)(© 0 M;)* !
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4.3. Dual codes of product T-codes

with s; := dim €}, giqs, = l.l.em(hi-, ¢;) mod (X" —1), hi- = Z?;O 0" (hg,—;) X7 and X™ —1 =
giqfi(Z?:o h;X7), is the generator matriz of the quasi-Euclidean code € for every i =1,...,r.

Proof. Since €r = (¢, X ... X 6,) x C is a product T-code, then 7(%7) is a left R-submodule of
R,. Hence 7(%r)” is a left R-submodule. By Proposition [4.3.30| and Theorems [4.3.35| and [4.1.6]
we conclude that € = (€} X ... Xx €) x C'is a product T-code.

Consider the following commutative diagrams

T—Mk(%) G — i (€7)
(gr) — (grqy,) (g7) — (Gr)

for every k = 1,...,r. By Proposition we see that ix(%) is a f-cyclic code. So from [6],
Theorem 8] we know that i,(%;)" is again a f-cyclic code generated by the skew polynomial
hif := h} € R such that X™ — 1 = gpqy, hi, where h* is as in [4, Definition 3]. Since ., := Im iy,
is generated by ¢5, € R, from Proposition (v) it follows that 7} (ir.(67)) = (hi) N (qz,.),
Le. . (in(€7)) = (Gg) with Gy = Ll.e.m.(hi,qyp,). From Proposition we deduce that
T(6y) = (g5) with g; such that G, = g;qy, - O

Corollary 4.3.38. Let € = (61 X ... X 6,.) * C be a product T-code, where C' is as in (x). If (00)
holds, then

€™ is a product T-code <= € + Ker B is a product T-code.

Proof. Suppose that €* = (6 x ... x €*) x C' is a product T-code. Then by Proposition
(iv) and Corollary we see that € + Ker B = (¢*)* is a product T-code. Finally, assume
that ¢ + Ker B is a product T-code. Then by Proposition (vi) and Corollary we
deduce that €* = €* N (Ker B)* = (¢ + Ker B)* is a product T-code. O

Let us note here that the converse of Corollary [4.3.37] is not true in general, as the following

example shows.
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4.4. An encoding and decoding algorithm

Example 4.3.39. In F3, where Fy = Fola] with o> + a + 1 = 0, consider the polynomial
fo= X3+ X2+ aX +a® Then from Example we know that m = 6 and
0 a* 0
By=1a*> 0 «a |,
0 «
with tk By = 2. Consider the linear code € C F3 generated by the vectors é&; = (0,1,0) and
é; = (0,0,1). Since

0 1 0 0 1 0
(@)ec|l 0 0 1 |=a&] 0 01 |=(00al)¢s,
o a1 o> a1

we see that € is not an fo-module 0-code. On the other hand, since Ker By is generated by the
vector (a?,0,1) and € N Ker By = {0}, we obtain that

€ +Ker By =€ @ Ker By = 3
1s an fa-module 0-code. By Corollary [4.3.38| we get that €* is an fy-module 6-code.

Remark 4.3.40. If (00) holds, then Ker B C Fy is a T-code such that Ker B = (Ker By X ... X
Ker B,), Ker B+ = Im B, (Ker B*)" = Ker B and Ker B* = F}!, (Ker B*)* = Ker B. In
particular, Ker B C Fy does not contain any T'-code € C T} with € # Fy.

4.4 An encoding and decoding algorithm

Given a f-semi-linear transformation 7' = © o M and a product T-code é7 C F7 of dimension
k < n, a classical codification of a message M e ]F’; is given by ]\ZGTCA, where G is a generator
matrix of € and C is the invertible matrix such that €r = (%) x ... X%, )xC. Note that MGT € 6r
and

W= MGrC e CrxC ' =%, x ... x €,

for some f;-module 6-codes 6; = (g;), where the g;’s are right divisors of the f;’s respectively (see
Remark and assumption (*)). However, this encoding method is not systematic, i.e. it is not

strictly related with an easy decoding algorithm.
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4.4. An encoding and decoding algorithm

So, let us give here a non-trivial and systematic encoding method for product T-codes. Let
M e F =Tk x .. x Fi be the original message such that M = (M, ..., M,), where M; € F% for
every i = 1,...,r. Let ¢p = (€1 x ... x €,) »C be a product T-code such that dimg, €; = k; for any
i =1,...,r. Note that ¢; C Fy* with n; > k; for every i = 1,...,r. Therefore, consider the natural
injective map i; : IFZ? — Fy’ such that ij(ay, ..., ax,) == (a1, ...,a,,0,...,0) for any j =1,...,7, and

define the injective map
b= (1, ey By) :F’;l X X IE";T = Fyt <o x Fy.

Define 171 := i(M) = ((M,,0), ..., (M,,0)) € Fyt x ... x Fpm and denote by m = (my,...,m,) € R,

the representation of the message m = Z(M) e Fy =F;* x ... x Fy7, via the vector isomorphism
= (my, ) tF XL X FY — R, = R/RfL X .. X RIRf, .

At this point, we can encode the original message m = z(M ) by working equivalently on either

(i) Ry, or (i) Fy =Tyt x ... x Fpr.

(1) Multiply the original messages m; by X" % where m; = m;o +mi1 X + ... + mp, 1 X!
and k; = dimg, 6;. The result is X" K m; = 07 (my o) X7k 4 gmi=Fi(my ) Xkt 44
G”i_ki(mi,ki_l)X”i_l for i = 1,...,r. Write X™ % .m; = q;¢; + r; for every i = 1,...,r, where

degr; <mn; — k;. Since ¢;g; € ¢}, we can encode the original message m € Fy by
m o= (ry (XM ), (X TR — ) €6 XL X G

Since degr; < n; — k; for every ¢ = 1,...;r, observe that all the information about the original
messages m; is contained in the last powers X™ ki X"i~l of Xni=ki.m, —r; € 1,(6).
(77) Define the map

5. Fyt x - xFpr — Fyt x - x For

(fl, - ,fr) — (fl(@ o A]\41)nlfl€17 o 757’(9 o Mr)ankr> )

where the M;’s are matrices as in Theorem [4.1.3] By applying © to m we have
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If i/ = (¢, (My)O™ k), ... (&, (M,)©m™*)) is such that 7' H, = 0, where

H,

H,

is the parity check matrix of 4, x ... x €, and the matrices H; = (I,,,_,

K3

Proposition for every i = 1,...,r. Then m' € 61 X - - - x €, is the encoded message of 1m € [y .

(T});) are given by

"

Now, let m” be the received message. If during the transmission of the encoded message m/

there were not errors, i.e. m” € €| X --- X %,, then in both cases (i) and (i7) we can decode

m” = (m},...,m") by applying © "% to each component 1} of 1m”. The original components 77

—

of m = (M, ...,m,) will be given by the last k; coordinates of (m/)©~"* for every i = 1,...,7.

Finally, if there were errors during the transmission of the message m/, i.e. m” ¢ €1 x -+ X 6,

then by assuming that the error €, defined as
c=m"—m' en’ + (€ X ... XxE,),

where 7" and m/ are the received and the encoded messages respectively, has small weight wt(é),
we can use the below error detecting and correcting algorithm inspired by [12] and then the above

decoding procedure.

A Meggitt type error correcting algorithm.

Put dpin = min;—q {d(%;)}, where d(%;) := d; is the minimum Hamming distance of the

-----

code €; for i = 1,...,r, and assume that

wi(e) <

Let m; : Fy — R/Rf; be the usual isomorphism for every j =1,...,7.
For any vector 7 = (47, ..., i) € Fy =F;* x ... x Fp™ put 7n() := (71 (1), ..., 7(¥,)) and define

the syndrome of 7(¥) as follows:

S(m(0)) := (Rg, (m1(W1)), ., Ry, (w0 (0r))),

where Ry, (m;(0;)) is the rest of the division of m;(¥;) by ¢; for every i =1,...,r.
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Observe that S(m(m')) = (0,...,0). Hence S(w(€)) = S(m(m”)). Denote by t; the polynomials
in R such that t;- X =11in R/Rf; for every i = 1,...,7

Algorithm 4:

Input: m" = (i, ..., m))

T

Step 1: Compute all the syndromes
—; —

S(r(e)) = S((mi(eh), ey mr(¢l)),

where m;(€;) = Z?‘Bl ¢/ ;X7 is such that wt(e';) = wit(m;(€;)) < 4L with d; the minimum

Hamming distance of €; and €], # 0;

Step 2: Compute S(m(m”)) and define §:= S(7(m"));

Step 3: If §=0 € R/Rf, x ... x R/Rf, then write &= 0;

Step 4: If 5is equal to some of the syndromes S(m(e’)) of Step 1, then write & = ¢’;
Step 5: If §'is not in the list of Step 1, then

for some error ¢’ = (e’1,....€",) € Fyt x .. x FPr such that wt(e”) < dmin=l and

7r(e7’) = (Z] Oele Z] 0e”XJ) with e;;m # 0, hy <n; —1and hy < ni — 1 for

some k = 1,...,r. Since 0 is an automorphism of [F, there exists an integer 6, := ny — hy, — 1

hi
)

J=0

such that

le. Wk(Ek) = = Z o e] x X7 is such that wt(ﬁk) < % and €,,_1, # 0. Thus the

syndrome

—

S((m((zl), ...,Ek, ...,m(e’T))
is as in Step 1, where 7;(¢/;) = Z?’Bl ¢/;: X7 is such that wt(m;(;)) < 4l and €, , #0
for i # k. Then write

=1

Output: m/' =m" —¢.
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4.5 A construction method for T-codes

Observe that to construct a product T-code (see Definition [4.2.3)) it is sufficient to construct module
6-codes (see Definition [4.2.1)).

Note that in R there are exactly ¢"~'(q — 1) different polynomials of the form g = gy + g: X +
oo g1 X"+ X7 with gg # 0. Thus if b is another monic polynomial of degree r, then it follows
that (g) # (h) whenever g # h. Furthermore, for any given monic polynomial ¢ € R of degree
r < n as above there exists a polynomial f € R of degree n such that g is a (right) divisor of f.
This shows that there exist ¢"'(¢ — 1) module #-codes with parameters of [n,n — r],.

From now on, a linear code & of type [n, k], with Hamming distance equal to d will be called
simply a code of type [n, k, d],.

So, let us give here the following

Definition 4.5.1.
Dg(n, k) := max {d | 3 a module #—code of type [n,k,d|,}
Similarly to [14, Proposition 3.1|, we can obtain the following

Proposition 4.5.2.
0 0
Dy(n,k) = Dy(n+ 1,k +1).

Proof. Let g = go+¢1X + ...+ gn_x X" * be the generator polynomial of a module 6-code 6,11 111
with parameters [n+1,k+1, D?(n+1,k+1)]. Observe that gy and g, are distinct to zero and

that the generator matrix G,41 x+1 of €p414+1 has the form

g |91 - Gn—r 0 ... 0O
0

Gn,k
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where G, , is the following matrix

0(g0) - O(gn-s) 0 0
0 6%(go0) 0?(gn_r) .. 0
0 0 0%(g0) ... 0%(gn_1)

Note that the minimum (Hamming) distance decided by Gy is at least Df(n + 1,k + 1). Define
G = 0(g0) +0(91)X... + 0(gpn_r) X" *. Then G is the generator polynomial of a module f-code
Gy Of type [n, k,d]g with d > Dé(n+1,k+1). Hence we get D?(n, k) >d > Di(n+1,k+1). O

Remark 4.5.3. If € is a module 0-code of type [n,k,A|, with distance A > 1, then we have
Dg(n, k) > A. Therefore by Proposition we see that for any integer 6 such that 0 < 6 < k
there exists at least a module 0-code €' of type [n — 6,k — d,d], with d > A. Thus the above result
can be useful to ensure the existence and the construction of module 0-codes of type [n, k. d], with

distance d greater than or equal to some fixed value A and small values for n and k.

Denote by Fg C F, the field fixed by 6. Tn what follows we try to construct vectors v € F such
that 1 < dim[] < k for some integer k& < n, where [v] C F}! is the vector subspace generated by
{U,(¥)(© 0 A,), (0)(© 0 A.)? ...} and A, is the companion matrix of f € R as in Remark

For simplicity, put A := A. and note that

(#)(6 0 Ag) = (7)(4 0 ©)
for any ' € (F,)", where Ay := [0(a;;)] if A = [a;;]. This gives the following
Lemma 4.5.4. For every integer k > 1, we have
(B0 A)F =6%0 Ay,
where Ay, = Agr—1 - ... Ag2 - Ag - A for k> 2 and A, := A.
Let h be an integer such that 1 < h < n — 1 and consider the equation:

(#)  (D)(O© o0 Az + ...+ (0)(© 0 A)lxy + (¥)x = 0.
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If there exists a non-trivial vector v and a non-zero z; € [, which satisfies the above equation
(#), we can deduce that (7)(© o A)" can be written as a linear combination of vectors in
{7,(0)(©0A),..(0)(00A)" 1} ie 1 <dim[t] < h.

In order to simplify equation (#), we will consider only vectors v € (]Fg)". In this case, by

Lemma [4.5.4] (#) becomes
(#/) U(Ahl'h++A1$1+Il’0) :6,

where ¢ € (F9)". Thus the existence of a non-trivial vectors ¢ € (F?)" which satisfy equation (#')

implies the existence of non-trivial solutions zy, ..., x1, xg of the equation
(#”) det(Ah.Th + ...+ Al.flﬁ'l + Iﬂfo) = 0.

So we can translate the problem of finding a vector @ # 0 in (F9)™ which is a solution of (#) to

the problem of finding non-trivial solutions xy, ..., z1, zo in F, of (#”). Define
Fr(zo,x1, ..., xp) = det(Apzp + ... + Ayzq + Ix0).
We have the following

Lemma 4.5.5. The polynomial Fy,(xg, Z1,...,x1) is an homogeneous polynomial of degree n in the

variables xqy, x1, ..., Tp.
Proof. For any A € F,, we get

Fr(Azo, Axq, ..., Axp) = det(Ap(Axp) + ... + A1 (Axq) + 1(Axp))
= det(AI) - det(Apzp + ... + Ay + L10)
= A\"- Fy(o, X1, .oy Tp),

and this gives the statement. O

From Lemma [£.5.5] it follows that the zero locus Z(Fy(zo, x1, ..., 21)) of Fy(zg, 21, ...,x5) on the
projective space P"(F,) is well defined. Put

Zhm = Z(Fp(w0, 21, ..., z1)) C PM(F,).
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Then Zj,, is a hypersurface of P*(F,), i.e. dimZ, = h — 1, of degree n > h + 1. Moreover,
all the points of Z,, represent no trivial solutions of (#”). This gives a relation between
the construction of a module f-code ¥ = [0] of dimension less or equal to h, where v €
(F&)" NKer (Ayxp + ... + Ay + Ixg), with the existence of (rational) points on the hypersurface
Zpn of P(F,).

Remark 4.5.6. When 0 is the identity of F}, e.g. if q is a prime number, we know from [10] that
the number N, of F,-points of the hypersurface Z,,, is bounded for the following inequalities: (i)
N, < (n—1)g+ 1 if h =2, except for a curve Zyy over Fy; (ii) N, < (n—1)¢" ' +ng" 2+ qhq__#
of h > 3.

For the general case of T-codes, an argument similar to the above can be directly applied to a
semi-linear transformation © o D := © odiag(My, ..., M,.) instead of © o A.. Recall that any T-code
%r can be obtained from a code %p invariant by © o D by the relation 67 = ép ~ C, where C' is
an invertible matrix such that CTC~! = © o D. Therefore, to obtain a T-code it is sufficient to
construct a code €p invariant by © o D. As above, this allows us to find (rational) solutions of the

following equation
(##) (DO oD)zy+ ...+ (¥)(© o D)'zy + (¥)zo =0

for some integer h such that 1 < h < n — 1. By considering only non-trivial vectors v € (FZ)”,

(##) becomes simply
(##I> U - (Dhl’h—l-...—'—Dl{El—i-[on) :6

which immediately implies the existence of non-trivial solutions zp, ..., x1, 29 € F, of the following
equation

(##") det(Dpxp, + ... + Dizy + I0) = 0,

where D; = diag((M);,..., (M,);) and (M;); is as in Lemma for every j = 1,...,r and
i =1,...,h. Observe that (##”) is equivalent to

det(diag((My)pxp + ... + (My)zy + L20, ooy (M) gy, + ... + (M) + [20)) =

= det((My)pzp + ... + (My)xy + Lxg) - ... - det (M, )pzp + ... + (M) xy + I20) =0,
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4.5. A construction method for T-codes

i.e.

F(xo, 21, ...,xn) == Fip(zo, 21, ooy xp) - oo - Fyp(To, 21, .0y zp) = 0,

where F;p(zo, 21, ..., xp) = det((M;)pzp + ... + (M;)xy + Ixg) for every ¢ = 1,...,7. In this case,
the zero locus Z(F(xg, x1, ..., x1)) of F(zg, 1, ...,xs) on the projective space P"(F,) is a complete
intersection of type (di,...,d,), where d; := deg F; (zo, 1, ..., ), and its (rational) points are
solutions of (##").

Thus by any point (zg, 21, ..., Tn—1) € Zy_1, We can construct a polynomial p = p(X) € F,[X]
such that det p(M) = 0. In this situation, we can say more about the polynomial p(x) € F,[z].

Proposition 4.5.7. Assume that 0 = id. Let m =€ F[X] be the minimal polynomial of an
invertible matriz M. If g = ged(p, m) for some polynomial p € F [ X], then

(a) Ker p(M) = Ker g(M);
(b) Ker p(M) #0 <= g# 1.

Proof. Let us note that g(M) = p(M)a(M) and p(M) = g(M)b(M) for some polynomials
a,b € F,[X]. This gives Ker p(M) C Ker g(M) and Ker g(M) C Ker p(M) respectively, i.e.
Ker p(M) = Ker g(M).

To prove (2), observe that ¢ = p-a+ m - b for some polynomials a,b € F [X]. If g = 1,
then g(M) = p(M)a(M) is the identity matrix. This shows that detp(M) - deta(M) = 1, i.e.
detp(M) # 0, but this gives a contradiction. On the other hand, if ¢ # 1 then m = h-g
and p = l'cdotg for some polynomials h,l € F,[X]. Hence h(M)g(M) is the zero matrix. Since
deg h < degm and m is the minimal polynomial of M, we deduce that det g(M) = 0. Thus we get
det p(M) = det(I(M)g(M)) = 0, i.e. Ker p(M) # 0. O
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Chapter 5

Appendix

5.1 A normal form of a polynomial matrix

a a
Recall that R := F,[X,0]. First of all, let us show as follows: if A = | =~ |isa2x2

Qg1 a22
matrix with coordinates in R, then there exist elementary matrices E, F' such that FAF has the

normal form

(03] 0
FAF =

0 (%)
Up to exchange rows and columns by left and right multiplication of A with the matrix

0 1

10
Then

, we can assume that ay; # 0 and a; = p-ag; +r, where p,r € R and deg(r) < deg(asq).

1 0 a2 an a12

I —p 21 Q22 T Q12 — P A

Since deg(r) < deg(ai1), we obtain that aj;; = p'r+71/, where p/, 1" € F,[X, 0] and deg(r’) < deg(r).
Then

1 0 a1 12 ai Q12

/ / / /
I —p T Q12 — Paz ay; —p T alg—p-(a12—pa22)
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5.1. A normal form of a polynomial matrix

a1 Q12
/ / /
r Q12 — P '(alz—p 'CL22)

Thus with an inductive argument, by a finite numbers of steps we can obtain the following matrix

ailr aig

/
0 ay

The goal now is to obtain zero instead of a5 by a similar process. Write a;; = a2 - s + t, where

s,t € T, [X, 6] with deg(t) < deg(aiz). Then

ail a2 1 1 ayn aip — a2+ S ai t

0 ab 0 —s 0 —ahy - S 0 —a)y-s
By applying again right division between a;; and ¢, we finally obtain a matrix

(05} 0

0 (65

This process can be realized by the fact that when we apply the algorithm of the left (right)
division, the degrees of the remainders decrease. This gives easily the matrices £ and F.
The above result can be generalized to the case of n X n matrices with n > 3. For instance,

when n = 3, if the matrix A has the form

a1 G12 a13
A= Q21 Q22 0G23 )
g1 az2 a33
up to exchange rows and columns by permutation matrices, we can suppose again that a;; # 0.

By multiplying the matrix A on the right and on the left with matrices as

1 1 0 10 1 1 0 0 10 0
0 -, 0,]o1 o Jad]| 1 —¢g5 0,01 o0
0 0 1 00 —q 0 0 1 10 —q
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5.2. MAGMA programs

for some ¢; € I, respectively, we lead to the following matrix

a1 0 0
I / /
A= 0 ag agy

! !
0 az asg

By a similar argument as above, we can reduce A’ to the following matrix

a1 0 0
0 (6) 0
0 0 Q3

by multiplying A" on the left and on the right with matrices of type

10 0 1 0 O
01 O 5 (IR
01 —a 00 —b

for some a,b € F,, respectively.

5.2 MAGMA programs

Program 0.

F<w>:=GF(4);

PcMatrix:=function(qq,g,n)
R<x>:=TwistedPolynomials(F:q:=qq) ;
g:=R!g;
d:=Degree(g) ;
11:=[1;
for i in [0.. n-d-1] do

a,b:=Quotrem(R! [1]1*R! [0,1]1~(d+1),g);
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5.2. MAGMA programs

11:=11 cat [b];
end for;
return 11;

end function;

Program 1.

F<w>:=GF(4) ;

P<x>:=PolynomialRing(F);

Period := function(f)
d:=Degree(f);
A:=CompanionMatrix(f);
p:=0rder(Determinant (A)) ;

_,_,E:=PrimaryRationalForm(A~p);

// Calculate the m’_i’s
11:=[1;
for j in [1..#E] do
11 := 11 cat [Order(CompanionMatrix(E[j]1[1]1))];
end for;
return LCM(11);

end function;

Program 2.

F<w>:=GF(4) ;

P<x>:=PolynomialRing(F);

PeriodF := function(f)
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5.2. MAGMA programs

return Order(CompanionMatrix(f));

end function;

Program 3.

Order (Matrix(GF(4), 3, 3, [0,0,1,1,0,F.1,0,1,01));

Program 4.

F<w>:=GF(4) ;

PeriodNc:=function(qq,g)
R<x>:=TwistedPolynomials(F:q:=qq);
f:=R!g;
n:=Degree(f)-1;
repeat

n:=n+1;
_,r:=Quotrem(X~n-1,f);
until r eq R![0];
return n;

end function;

Program 5.

F<w>:=GF(4);

E:=[x : x in F | x ne 0];

RightDivisors := function(qq,g)
R<x>:=TwistedPolynomials(F:q:=qq);
f:=R!'g;
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5.2. MAGMA programs

n:=Degree(f);
S:=CartesianProduct (E,CartesianPower(F,n-1));
dd:=[1;
for ss in S do
11:=[ss[1]] cat [p : p in ss[2]];
q,r:=Quotrem(f,R!11);
if r eq R![0] then dd := dd cat [[q,R'11]]; end if;
end for;
return dd;

end function;
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