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Introducción

La teoría de códigos, desarrollada a partir de los años 50, siendo uno de sus fundadores Richard

Hamming quien propuso el Código Hamming (ver [16], § 5.3.1), trata de resolver el problema de

cómo poder transmitir información de manera segura y �able, a través de un canal que sea poco

seguro y poco �able. Un canal es poco seguro si terceras personas, distintas al emisor o de

aquella a quien el mensaje estaba dirigido, pueden enterarse de lo que dice un mensaje, o bien

alterarlo. Por otro lado, un canal es poco �able si en el canal hay ruido, es decir que el mensaje

puede llegar alterado a su destino.

La Criptografía sirve para mejorar la seguridad y los Códigos detectores y correctores sirven para

mejorar la �abilidad. Nuestro estudio se centrará en estos últimos tipos de códigos.

En particular, la transmisión de un mensaje puede ser representada por el siguiente esquema:

En base a este proceso, antes de enviar un mensaje m, el emisor lo codi�ca como u. Esto se hace

añadiendo a m informaciones redundantes, de manera que si en el canal de transmisión se produce

un ruido r y se recibe un mensaje alterado v, el receptor sea capaz de recuperar el mensaje enviado

u y decodi�carlo en el mensaje original m.

Un ejemplo sencillo de codi�cación es el siguiente: 0 representa un no y 1 representa un si. En

este caso, si se quiere transmitir un 1 y se recibe un 0 en vez de 1, el receptor del mensaje no

sabrá que hubo un error. Pero si en cambio se conviene que 00 sea no y 11 sea si, entonces si

por ejemplo se recibe un 01, el receptor detectará que hubo un error, aunque no sabrá cual es el
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mensaje enviado. Estas dos situaciones pueden ser mejoradas sencillamente. Si la convención es

que 000 es no y 111 es un si, y se supiese que al transmitir un mensaje solo es posible cometer

a lo más un error de dígito, entonces al recibir un 001, el receptor sabrá que se trata de un no,

detectando y corrigiendo el error.

En esta tesis, nos enfocaremos en la construcción de algunos tipos de códigos que permitan

una buena codi�cación y decodi�cación de mensajes y una e�caz detección y corrección de

eventuales errores. En literatura se de�ne un alfabeto como un conjunto �nito de símbolos, una

palabra como una sucesión �nita de estos símbolos y un código como un conjunto de palabras.

Para nosotros el alfabeto será un campo �nito Fq con q elementos, una palabra será un vector del

espacio vectorial

Fnq = Fq × · · · × Fq︸ ︷︷ ︸
n−veces

y un código C ⊆ Fnq será un subespacio vectorial de Fnq , es decir C es tal que a~x + b~y ∈ C para

todo a, b ∈ Fq y para todo ~x, ~y ∈ C . Tales códigos serán llamados Códigos lineales (ver Ch. 1,

De�nition 1.1.1). A partir de los años 60, se comenzó a estudiar de forma sistemática un tipo de

códigos lineales llamados Códigos Cíclicos (ver Ch. 2, De�nition 2.1.1) que gozan de la propiedad

de ser invariantes por la matriz de permutación

P :=


0 1
...

. . .

0 1

1 0 . . . 0

 .

Mediante un isomor�smo de espacios vectoriales

π : Fnq −→ Fq[X]/(Xn − 1),

descrito en la §2.1 del Capítulo 2, podemos identi�car un código cíclico C ⊆ Fnq con un ideal

I ⊆ Fq[X]/(Xn − 1) y viceversa, para aprovechar todas las propiedades de los ideales y del anillo

cociente que permiten un mejor manejo de los códigos desde un punto de vista computacional. Ya

en los años 70 se comenzó a generalizar estos códigos y se llegó a un tipo de código lineal llamado
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λ-constacyclic code (ver [21], De�nition 2), invariante por la siguiente matriz

P :=


0 1
...

. . .

0 1

λ 0 . . . 0

 ,

donde λ ∈ Fq. En este caso el isomor�smo π se convierte en el siguiente

πλ : Fnq −→ Fq[X]/(Xn − λ),

otra vez con la propiedad que cada código lineal invariante por P se corresponde a un ideal

I ′ ⊆ Fq[X]/(Xn − λ) y viceversa. En los años posteriores surgieron más generalizaciones de los

códigos cíclicos en un contexto conmutativo, como por ejemplo los Quasi Cyclic Codes (ver [15],

§ III) que son códigos invariantes por la matriz (P )s para algún s ∈ N, y los Quasi-Twisted

Cyclic Codes (ver [1], De�nnition 1.1) que son códigos invariantes por la matriz (P )r para algún

r ∈ N. Luego de estos, en un contexto no conmutativo, aparecieron otras generalizaciones, como

por ejemplo los Skew Cyclic Codes (ver [7], De�nition 1) que son códigos invariantes por las

composición de una potencia de un automor�smo de Frobenius (ver Ch. 4, §4.1) con la matriz

P , y los Skew Quasi Cyclic Codes (ver [2], De�nition 3) que son invariantes por las composición

de una potencia de un automor�smo de Frobenius con la matriz (P )s para algún s ∈ N. Cabe

mencionar que todos los códigos anteriores heredan de forma natural la gran mayoría de las ventajas

y propiedades de los códigos cíclicos.

En este trabajo, generalizaremos los códigos cíclicos en ambos contextos, conmutativo y no

conmutativo. La primera generalización, descrita en el Capítulo 3, será dada por códigos lineales

invariantes por una matriz

A :=


0 1
...

. . .

0 1

f0 f1 · · · fn−1

 ,

donde fi ∈ Fq y f0 6= 0. Al igual que en los códigos cíclicos, en este caso podemos establecer un
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isomor�smo de espacios vectoriales

πf : Fnq −→ Fq[X]/(f)

donde f es el polinomio Xn − fn−1Xn−1 − . . .− f1X + f0. Esto nos permitirá identi�car un ideal

I ⊆ Fq[X]/(f) con un código invariante por A y viceversa (ver Ch. 3, Proposition 3.2.7). A estos

tipos de códigos les llamaremos A-Generalized Cyclic Codes. Notar que el cociente lo hacemos por

cualquier polinomio, por lo que el anillo cociente resulta ser el más general posible respecto a los

λ-constacyclic codes. Por otro lado, este tipo de código es invariante por una matriz A de forma

particular. De aquí nace la siguiente pregunta:

Dada una matriz M con detM 6= 0, ¾Cuáles son los códigos lineales CM invariantes por M?

Una respuesta se puede encontrar en la forma racional canónica de una matriz (ver Ch. 3, §3.1).

Toda matriz M con detM 6= 0 es similar a una matriz R de tipo especial, es decir existe una

matriz invertible S tal que M = SRS−1, con R una matriz a bloques y cada bloque tiene una

forma semejante a la de la matriz A descrita anteriormente. Gracias a esta propiedad se obtiene

una correspondencia uno a uno entre códigos CM invariantes porM y códigos CR invariantes por R

(ver Ch. 3, §3.2). Para construir códigos CM será entonces su�ciente construir códigos CR. Además

se mostrará que cada CR es isomorfo como espacio vectorial a un producto C1 × · · · × Cs, donde

cada Ci es un Ai-Generalized Cyclic Code para alguna matriz Ai (ver Ch. 4, Theorem 4.1.10). De

aquí nace la de�nición de Product M-codes. Estos tipos de códigos generalizan a los A-Generalized

Cyclic Codes, a los Quasi Cyclic Codes y a los Quasi-Twisted Cyclic Codes. Finalmente, en el

caso no conmutativo, se de�nen y estudian los Product T -Codes (ver Ch. 4, De�nition 4.2.2), los

cuales son códigos lineales invariantes por cualquier transformación semilineal T (ver Ch. 4, §4.1).

Bajo una biyección parecida a la anterior, nos enfocaremos en productos de códigos invariantes

por una particular transformación semilineal (ver Ch. 4, Hypothesis (∗)) como primeros ejemplos

no triviales de códigos invariantes bajo la acción de una transformación semilineal de tipo general.

En el Capítulo 1, basado en [16], se de�nirá el concepto de Linear Codes (De�nition 1.6.3 )

y se estudiarán algunas de sus propiedades: el código dual (ver §1.1), la distancia Hamming y el

peso Hamming (ver §1.2), una matriz generadora y una parity-check matrix (ver §1.4). Además,
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en la §1.5 se introducirá la codi�cación clásica con un código lineal y en la §1.6 dos tipos de

decodi�cación: la �Nearest neighbour decoding� y la �Syndrome decoding�.

En el Capítulo 2, tambien basado en [16], estudiaremos los Cyclic Codes (ver §2.1). En

los preliminares de este capítulo se de�nirá un isomor�smo (ver §2.1) que permite conectar la

estructura gométrica de estos códigos con una estructura algebraica y hacer uso de ambas. Además,

se de�nirá el polinomio generador asociado a un código cíclico (ver §2.2) que resultará ser una

herramienta importante en el contexto de estos tipos de códigos. El polinomio anterior describe

completamente un código cíclico, su dimensión, matriz generadora, etc. Por último, en la §2.4

se mostrarán tres nuevas formas de codi�car que resultarán ser más e�caces que la de un código

lineal, y un tipo de decodi�cación, detección y corrección de errores, llamado Meggitt Decoding

(ver [12], Ch. 4, §4.6).

En el Capítulo 3, se estudiará un nuevo tipo de código lineal, llamado Generalized Cyclic

Code (ver §3.2) que resulta ser una generalización de los Cyclic Codes. En §3.2 y en §3.3 se

observará que muchas de las propiedades de los códigos cíclicos se heredan naturalmente (3.2.7,

3.2.10, 3.3.1, 3.3.3). Sin embargo el dual de un Generalized Cyclic Code no resulta ser uno de estos

códigos (3.2.4). Además, en la §3.4 se analizarán estos códigos como subespacios invariantes bajo

la acción de una companion matrix (ver De�nition 3.1.4), entregando otro método para encontrar

propiedades algebraicas de estos códigos (3.4.8), una matriz generadora (3.4.9) y una parity-check

matrix (3.4.10), todo esto inspirado en el trabajo [21]. En la §3.5, de�niremos un algoritmo para

construir estos tipos de códigos a travez de los espacios proyectivos. En la §3.6 mostraremos una

aplicación inyectiva (3.6.1, 3.6.2) que nos permitirá estudiar nuevos tipos de códigos duales, los

Quasi-Euclidean dual codes (3.7.3, 3.7.7) y los Hermitian dual codes (3.8.1, 3.8.3, 3.8.4, 3.8.8).

Finalizaremos este capítulo con una generalización de tipo Meggitt decoding como en la §2.4.2 del

Capítulo 2.

Para concluir, en el Capítulo 4 introduciremos la noción de Product Semi-Linear T -codes (ver

§4.2), una generalización de los Generalized Cyclic Codes en el contexto no conmutativo, de los

Skew Cyclic Codes, Module Skew Codes y Skew Quasi Cyclic Codes, y un caso especial de códigos

lineales invariantes bajo una transformación semilineal (4.1.1, 4.1.5, 4.2.5), todo esto inspirado

en los recientes trabajos [4], [5] y [6]. Cabe mencionar que estos códigos se de�nen en un anillo

7
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no conmutativo de polinomios, llamado skew polynomial ring (ver §4.1). En fín, se revisarán

propiedades asociadas a estos códigos (4.1.6, 4.1.11, 4.1.12, 4.2.8), se estudiarán tres tipos de

códigos duales, como los Euclidean duals (4.3.3), los Quasi-Euclidean duals (4.3.11, 4.3.22, 4.3.28,

4.3.37, 4.3.38) y los Hermitian duals (4.3.35, 4.3.36), y en las §§4.4, 4.5 se entregarán métodos de

codi�cación y decodi�cación y una generalización natural de la construcción de códigos dada en

la §3.6 del Capítulo 3.
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Chapter 1

Linear Codes

In this �rst chapter, we give some basic de�nitions and notation in coding theory, we introduce

a kind of classical codes, the so-called linear codes, and we discuss some of their elementary

properties, as the dual code, the weight and the Hamming distance, the concept of a generator

matrix and of a parity-check matrix of a linear code. Finally, we introduce a classical encoding

algorithm with a linear code and two types of decoding methods.

1.1 Linear Codes

Let us give the background material and some basic de�nitions about linear codes.

De�nition 1.1.1. A linear code C over Fq is a vector subspace of Fnq .

De�nition 1.1.2. Let C ⊆ Fnq be a linear code.

(i) The dual code C ⊥ of C is the orthogonal complement of the C in Fnq .

(ii) The dimension dim(C ) of C is the dimension of C as a vector space over Fq, i.e.

dim(C ) := dimFq C .

The following is a known result in linear algebra.

Theorem 1.1.3 ([16],Theorem 4.2.4). Let C ⊆ Fnq be a linear code. Then,

9
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(i) |C | = qdim(C ), i.e. dim(C ) = logq |C |, where |C | is the cardinality of C ⊆ Fnq ;

(ii) C ⊥ is a linear code and dim(C ) + dim(C ⊥) = n;

(iii) (C ⊥)⊥ = C .

De�nition 1.1.4. Let C ⊆ Fnq be a linear code.

(i) C is self-orthogonal if C ⊆ C ⊥.

(ii) C is self-dual if C = C ⊥.

Proposition 1.1.5. Let C ⊆ Fnq be a linear code.

(a) If C is a self-orthogonal code, then dim C ≤ n
2
;

(b) If C is a self-dual code, then dim C = n
2
.

Proof. The statement are consequence of Theorem 1.1.3 (ii) and De�nitions 1.1.4.

Example 1.1.6. (a) Consider C = {(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)} ⊂ F4
2, then by

Theorem 1.1.3 (i) and (ii), we have dim(C ) = log2 |C | = log2 4 = 2 and dim(C ⊥) = 2. It

is easy to see that C ⊥ = {(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)} = C . Note that in this

case C is self-dual code.

(b) Consider the linear code

C = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 2, 0), (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)} ⊂ F3
3.

Then by Theorem 1.1.3 (i) and (ii), we have dim(C ) = log3 |C | = log3 9 = 2 and

dim(C ⊥) = 1. Moreover one checks readily that C ⊥ = {(0, 0, 0), (1, 0, 0), (2, 0, 0)}.

1.2 Hamming distance and Hamming weight

In this section we give the de�nitions of Hamming distance and Hamming weight.

10



1.2. Hamming distance and Hamming weight

De�nition 1.2.1. If ~x, ~y ∈ Fnq , then the distance d(~x, ~y) of ~x and ~y is de�ned by

d(~x, ~y) := | {i : 1 ≤ i ≤ n, xi 6= yi} |.

The weight w(~x) of ~x ∈ Fnq is de�ned by

w(~x) := d(~x,~0)

where ~0 := (0, . . . , 0) ∈ Fnq . This distance is called Hamming distance and is indeed a metric on

Fnq .

Remark 1.2.2. For every c ∈ Fq, de�ne the Hamming weight as follows:

wh(c) :=

1 si c 6= 0

0 si c = 0.

Then, by writing ~x ∈ Fnq as ~x = (x1, . . . , xn), the Hamming weight of ~x can be also de�ned as

w(~x) := wh(x1) + . . .+ wh(xn)

Then by [[16], Lemma 4.3.3] for every ~x, ~y ∈ Fnq , we have d(~x, ~y) = w(~x − ~y) = w(~y − ~x). In

particular if q = 2 then we get d(~x, ~y) = w(~x+ ~y) for every ~x ∈ Fnq .

De�nition 1.2.3. Let C ⊆ Fnq be a linear code such that C 6= {~0}. The minimum distance of

C is de�ned as

d(C ) := min{d(~x, ~y) : ~x, ~y ∈ C , ~x 6= ~y}.

and, equivalently, the minimum weight of C can be de�ned as

w(C ) := min{w(~x) : ~x ∈ C , ~x 6= ~0}.

Theorem 1.2.4 ([16], Theorem 4.3.8). Let C ⊆ Fnq be a linear code. Then d(C ) = w(C ).

Example 1.2.5. Consider the linear code C = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)} ⊂ F4
2.

By De�nition 1.2.1 we see that w((1, 0, 0, 0)) = 1, w((0, 1, 0, 0)) = 1, w((1, 1, 0, 0)) = 2. Hence, by

Theorem 1.2.4 we easily obtain that d(C ) = w(C ) = 1

11



1.3. Bases for linear codes

1.3 Bases for linear codes

Since a linear code is a vector space, all its elements can be described in terms of a basis. In this

section, we discuss three algorithms that yield either a basis for a given linear code or its dual. We

�rst recall some facts from linear algebra. (see [16], Ch 4, §4).

De�nition 1.3.1. Let A be a matrix over Fq. An elementary row operation performed on A

is any one of the following three operations:

(i) interchanging two rows (columns);

(ii) multiplying a row (column) by a non-zero scalar;

(iii) replacing a row (column) by its sum with the scalar multiple of another row (column).

De�nition 1.3.2. Two matrices are row (column) equivalent if one can be obtained from the

other by a sequence of elementary row (column) operations.

We are now ready to describe the two useful algorithms in coding theory.

Algorithm 1.3.3. Input: A non-empty subset S of Fnq .

Output: A basis for the linear code C = 〈S〉 generated by S.

Description: Form the matrix A whose rows are the vectors of S. By using elementary row

operations, �nd a row echelon form (REF) A′ of A. Then the non-zero rows of A′ form a basis for

C .

Example 1.3.4. Let S = {(1, 2, 1, 0, 1), (2, 0, 1, 1, 0), (0, 1, 1, 2, 2), (1, 1, 0, 1, 0)} a subset of F5
3 and

write

A =


1 2 1 0 1

2 0 1 1 0

0 1 1 2 2

1 1 0 1 0



12
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by elementary row operations we obtain

A→


1 2 1 0 1

0 2 2 1 1

0 1 1 2 2

0 2 2 1 2

→


1 2 1 0 1

0 1 1 2 2

0 0 0 0 1

0 0 0 0 0

 := A′.

By Algorithm 1.3.3, {(1, 2, 1, 0, 1), (0, 1, 1, 2, 2), (0, 0, 0, 0, 1)} is a basis for C = 〈S〉.

Remark 1.3.5. There exists an other algorithm similar to Algorithm 1.3.3 which operates columns

instead of rows (see [16], Ch 4, §4). We observe that in general the bases obtained by this algorithms

are di�erent.

Algorithm 1.3.6. Input: A nonempty subset S of Fnq .

Output: A basis for the dual code C ⊥, where C = 〈S〉.

Description: Form the matrix A whose rows are the vectors of S. Use elementary row operations

to put A in reduced row echelon form (RREF) A′ and let G be the k×n submatrix of A′ consisting

of all the non-zero rows of A′:

A→

 G

O

 := A′,

where O denotes the zero matrix. The matrix G contains k leading columns. Permute the columns

of G to form

G′ = (X|Ik) ,

where Ik denotes the k × k identity matrix. Then write the matrix H ′ as follows:

H ′ = (In−k| −Xt) ,

where Xt denotes the transpose matrix of X. Apply the inverse of the permutation applied to the

columns of G to the columns of H ′ to form the matrix H. Then the rows of H form a basis for

C ⊥.

Example 1.3.7. Let S be a non-empty subset of F10
3 such that the matrix G of the Algorithm 1.3.6

13



1.3. Bases for linear codes

is as follows

G =



1 0 2 0 0 2 0 1 0 2

0 0 0 1 0 1 0 0 0 1

0 0 0 0 1 0 0 2 0 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 2


Note that the leading columns of G are columns 1, 4, 5, 7 and 9. We permute the columns of G

into the order 2, 3, 6, 8, 10, 1, 4, 5, 7, 9 to form the matrix

G′ = (X|I5) =



0 2 2 1 2 1 0 0 0 0

0 0 1 0 1 0 1 0 0 0

0 0 0 2 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 2 0 0 0 0 1


.

Form the matrix

H ′ =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 1 2 0 0 0

0 0 0 1 0 2 0 1 0 0

0 0 0 0 1 1 2 0 2 1


,

and �nally rearrange its columns of H ′ by using the inverse permutation to obtain

H =



0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

1 0 0 2 0 1 0 0 0 0

2 0 0 0 1 0 0 1 0 0

1 0 0 2 0 0 2 0 1 1


By Algorithm 1.3.6, the rows of H form a basis for C ⊥.
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1.4 Generator matrix and parity-check matrix

Knowing a basis for a linear code enables us to describe all vectors explicitly. For this reason

from now on we can consider two kind of matrices which will play an important role in coding

theory.

De�nition 1.4.1. (i) A generator matrix G of a linear code C is a matrix whose rows form

a basis for C .

(ii) A parity-check matrix H of a linear code C is a generator matrix for the dual code C ⊥.

Remark 1.4.2. (i) Let C ⊆ Fnq be a linear code of dimension k. Then a generator matrix of C

is a k × n matrix and its parity-check matrix of C is an (n− k)× n matrix.

(ii) In fact Algorithm 1.3.6 includes Algorithm 1.3.3 and that it can be used to �nd both generator

and parity-check matrices for a linear code.

(iii) A generator matrix for a linear code not is unique, since in general the vector space admit

many bases for the same linear code.

De�nition 1.4.3. (i) A generator matrix of the form (X|Ik) is said to be in standard form.

(ii) A parity-check matrix in the form (In−k|Y ) is said to be in standard form.

Lemma 1.4.4 ([16], Lemma 4.5.4). Let C ⊆ Fnq be a linear code of dimension k with generator

matrix G. Then ~x ∈ Fnq belongs to C ⊥ if and only if ~x is orthogonal to every row of G, i.e.

~x ∈ C ⊥ ⇔ ~xGt = ~0. In particular, given an (n−k)×n matrix H, then H is a parity-check matrix

for C if and only if the rows of H are linearly independent and HGt = O.

Remark 1.4.5. An equivalent but alternative formulation of the previous result can be obtained

by substituting in Lemma 1.4.4 the generator matrix G with the parity-check matrix H and C with

C ⊥ (see [16], Remark 4.5.5).

One of the main consequences of Lemma 1.4.4 is the following theorem wich relates the distance

of a linear code C to some properties of its parity-check matrix.
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Theorem 1.4.6. Let C ⊆ Fnq be a linear code. Denote by H be a parity-check matrix of C . Then

(i) d(C ) ≥ d if and only if any d− 1 columns of H are linearly independent;

(ii) d(C ) ≤ d if and only if H has d columns that are linearly dependent.

Proof. Let ~x = (x1, . . . , xn) ∈ C be a vector of weight e > 0. Suppose the non-zero coordinates are

in the positions i1, . . . , ie, so that ~xj = 0 if j /∈ {i1, . . . , ie}. Let ci (1 ≤ i ≤ n) be the ith column of

H. By Lemma 1.4.4 (or its equivalent formulation in Remark 1.4.5), C contains a non-zero word

~x = (x1, . . . , xn) of weight e (whose non-zero coordinates are xi1 , . . . , xie) if and only if

~0 = ~xHt = xi1c
i1
t + · · ·+ xiec

ie
t,

which is true if and only if there are e columns of H (namely, ci1 , . . . , cie) that are linearly

dependent. To say that the distance d(C ) of C is ≥ d is equivalent to saying that C does not

contain any non-zero word of weight ≤ d−1, which is in turn equivalent to saying that any ≤ d−1

columns of H are linearly independent. This proves (i). Similarly, to say that the (.C ) ≤ d is

equivalent to saying that C contains a non-zero word of weight ≤ d, which is equivalent to saying

that H has ≤ d columns linearly dependent (and hence d columns). This proves (ii).

An immediate consequence of Theorem 1.4.6 is the following result.

Corollary 1.4.7. Let C ⊆ Fnq be a linear code. Denote by H be a parity-check matrix of C . Then

the following statements are equivalent:

(i) d(C ) = d

(ii) any d − 1 columns of H are linearly independent and H has d columns that are linearly

dependent.

Example 1.4.8. Let C ⊆ Fnq be a linear code with parity-check matrix

H =


1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

 .
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Observe that there are no zero columns and no two columns of H are linearly dependent, i.e. any

two columns of H are linearly independent. However, columns 1, 3 and 4 are linearly dependent.

Hence, by Corollary 1.4.7 the distance of C is equal to 3.

Theorem 1.4.9. If G = (X|Ik) is a generator matrix of a linear code C ⊆ Fnq of dimension k

then a parity-check matrix for C is give by H = (In−k| −Xt).

Proof. Obviously, the equation HGt = O is satis�ed. Moreover it is clear that the rows of H are

linearly independent. Therefore, the conclusion follows from Lemma 1.4.4.

Remark 1.4.10. Theorem 1.4.9 show that Algorithm 1.3.6 actually gives what it claims to yield.

1.5 Encoding with linear codes

Let C ⊆ Fnq be a linear code of dimension k. Each vector of C can represent one piece of

information, so C can represent exactly qk distinct pieces of information. Once a basis {~c1, . . . ,~ck}

is �xed for C , any its vector can be uniquely written as a linear combination

~x = u1~c1 + · · ·+ uk~ck,

where u1, . . . , uk ∈ Fq. Equivalently, set G to be the generator matrix of C whose ith row is the

vector ci in the chosen basis. Given a vector ~u = (u1, . . . , uk) ∈ Fkq , it is clear that

~x = ~uG = u1~c1 + · · ·+ uk~ck ∈ C .

Conversely, any ~x ∈ C can be written uniquely as ~uG, for some ~u = (u1, . . . , uk) ∈ Fkq . Hence,

every vector ~u ∈ Fkq can be encoded as ~x = ~uG.

The encoding process with the linear code is nothing else that representing the elements ~u ∈ Fkq
as vectors ~x = ~uG ∈ C .

Example 1.5.1. Let C ⊂ F5
2 be a linear code with generator matrix

G =


1 0 1 1 0

0 1 0 1 1

0 0 1 0 1

 .
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Then the vector ~u = (1, 0, 1) ∈ F3
2 can be encoded as

~x = ~uG = (1, 0, 1)


1 0 1 1 0

0 1 0 1 1

0 0 1 0 1

 = (1, 0, 0, 1, 1).

Remark 1.5.2. Let C ⊆ Fnq be a linear code C of dimension k. If its generator matrix G is in

standard form, G = (X|Ik), then it is trivial to recover the original vector ~u from ~uG, since

~x = ~uG = ~u(X|Ik) = (~uX|~u);

i.e. the last k coordinates ~x = ~uG give the vector ~u. The remaining n − k coordinates of ~x ∈ C

represent the redundancy which has been added to the vector ~u for protection against transmission

error.

1.6 Decoding with linear codes

A code is of practical use only if an e�cient decoding scheme can be applied to it. In this section,

we discuss a rather simple but elegant decoding algorithm for linear codes, called the �nearest

neighbour decoding� as well as a modi�cation of it, called �syndrome decoding�, that improves its

performance when the length of the code is large.

1.6.1 Cosets

We begin with the notion of a coset. Cosets play a crucial role in the decoding schemes to be

discussed in this section.

De�nition 1.6.1. Let C ⊆ Fnq be a linear code, and let ~u ∈ Fnq . We de�ne the coset of C

determined by ~u to be the set

~u+ C := {~u+ ~x : ~x ∈ C }.

Let us give here some properties of coset.

Theorem 1.6.2 ([16], Theorem 4.8.4). Let C ⊆ Fnq be a linear code of dimension k. Then,
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1.6. Decoding with linear codes

(i) every vector of Fnq is contained in some coset of C ;

(ii) for all ~u ∈ Fnq , |~u+ C | = |C | = qk ;

(iii) for all ~u,~v ∈ Fnq , ~u ∈ ~v + C implies that ~u+ C = ~v + C ;

(iv) two cosets are either identical or they have empty intersection;

(v) there are qn−k di�erent cosets of C ;

(vi) for all ~u,~v ∈ Fnq , ~u− ~v ∈ C if and only if ~u and ~v are in the same coset.

Example 1.6.3. Let C = {(0, 0, 0, 0), (1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0)} ∈ F4
2 be a linear code. The

cosets of C are as follows:

(0, 0, 0, 0) + C : (0, 0, 0, 0) (1, 0, 1, 1) (0, 1, 0, 1) (1, 1, 1, 0)

(0, 0, 0, 1) + C : (0, 0, 0, 1) (1, 0, 1, 0) (0, 1, 0, 0) (1, 1, 1, 1)

(0, 0, 1, 0) + C : (0, 0, 1, 0) (1, 0, 0, 1) (0, 1, 1, 1) (1, 1, 0, 0)

(1, 0, 0, 0) + C : (1, 0, 0, 0) (0, 0, 1, 1) (1, 1, 0, 1) (0, 1, 1, 0)

The above array is called a (Slepian) standard array.

De�nition 1.6.4. A vector of the least (Hamming) weight in a coset is called a coset leader.

Example 1.6.5. In Example 1.6.3, the vectors of the �rst column of standard array are coset

leaders for the respective cosets. Note (0, 0, 0, 1) + C have (0, 1, 0, 0) as coset leader.

Proposition 1.6.6. Let C ⊆ Fnq be a linear code such that d(C ) = d. Then a vector ~x ∈ Fnq is the

unique coset leader of ~x+ C if w(~x) ≤ b(d− 1)/2c, where bac is integer part of a.

Proof. Let ~x+ ~c be any vector of ~x+ C , where ~c ∈ C \ {~0}. Then we have that

w(~x+ ~c) = d(~x,−~c) ≥ d(~0,−~c)− d(~x,~0) ≥ d− (d− 1)/2 > (d− 1)/2 ≥ w(~x).

Hence, ~x is the unique coset leader of ~x+ C .
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1.6.2 Nearest neighbour decoding for linear codes

Let C ⊆ Fnq be a linear code. Assume the vector ~v is transmitted and the vector ~w is received,

with an error pattern.

~e = ~w − ~v ∈ ~w + C .

It is clear that both ~e and ~w are in ~w + C .

Since error patterns of small weight are the most likely to occur, nearest neighbour decoding

works for a linear code C in the following manner. Upon receiving the vector ~w, we choose a vector

~e of least weight in the coset ~w + C and conclude that ~v = ~w − ~e was the vector transmitted.

Example 1.6.7. Let C be as Example 1.6.3 and assume that the following words are received:

(i) ~w = (1, 1, 0, 1); (ii) ~w = (1, 1, 1, 1).

For the convenience of the reader, we recall here the (Slepian)standard array of C (exactly the

one in Example 1.6.3):

(0, 0, 0, 0) + C : (0, 0, 0, 0) (1, 0, 1, 1) (0, 1, 0, 1) (1, 1, 1, 0)

(0, 0, 0, 1) + C : (0, 0, 0, 1) (1, 0, 1, 0) (0, 1, 0, 0) (1, 1, 1, 1)

(0, 0, 1, 0) + C : (0, 0, 1, 0) (1, 0, 0, 1) (0, 1, 1, 1) (1, 1, 0, 0)

(1, 0, 0, 0) + C : (1, 0, 0, 0) (0, 0, 1, 1) (1, 1, 0, 1) (0, 1, 1, 0)

(i) Note that ~w + C is the fourth coset which has (1, 0, 0, 0) as a unique coset leader. Hence

(1, 1, 0, 1)− (1, 0, 0, 0) = (0, 1, 0, 1) was the most likely vector transmitted.

(ii) In this case ~w + C is the second coset. Note that there are two coset leader, (0, 0, 0, 1) and

(0, 1, 0, 0), in this coset. When a coset of a received vector has more than one possible coset

leader, the approach we take for decoding depends on the decoding scheme (i.e., incomplete or

complete) used. If we are doing incomplete decoding, we ask for a retransmission. If we are

doing complete decoding, we arbitrarily choose one of the coset leaders and than we decode

with this. Back to the example, if for instance we choose (0, 0, 0, 1) as the coset leader of

~w + C , than we can conclude that (1, 1, 1, 1) − (0, 0, 0, 1) = (1, 1, 1, 0) was the most likely

codeword sent.
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1.6.3 Syndrome decoding

The decoding scheme based on the standard array works reasonably well when the length n

of the linear code is small, but it may take a considerable amount of time when n is large. Some

this time can be saved by making use of the concept of syndrome to identify the coset to which

the received vector belongs.

De�nition 1.6.8. Let C ⊆ Fnq be a linear code of dimension k and let H be a parity-check matrix

of C in standard form. For any ~w ∈ Fnq , the syndrome of ~w is the vector SH(~w) = ~wHt ∈ Fn−kq .

Theorem 1.6.9. Let C ⊆ Fnq be a linear code of dimension k and let H be a parity-check matrix

of C in standard form. For any ~u,~v ∈ Fnq , we have

(i) SH(~u+ ~v) = SH(~u) + SH(~v);

(ii) SH(~u) = ~0 if and only if ~u is a codeword in C ;

(iii) SH(~u) = SH(~v) if and only if ~u and ~v are in the same coset of C .

Proof. (i) It is an immediate consequence of De�nition 1.6.8.

(ii) From De�nition 1.6.8 it follows, SH(~u) = ~0 if and only if ~uHt = ~0. By Remark 1.4.5, is

equivalent to ~u ∈ C .

(iii) It follows from (i), (ii) and Theorem 1.6.2 (vi).

Remark 1.6.10. Part (iii) of Theorem 1.6.9 says that we can identify a coset by its syndrome.

Conversely, all the vectors in a given coset yield the same syndrome, so the syndrome of a coset is

the syndrome of any vector in it. In other words, there is a one-to-one correspondence between the

cosets and the syndromes. In particular by Theorem 1.6.2 (v) we know that there are qn−k distinct

syndromes, that is all the vectors in Fn−kq appear as syndromes.

De�nition 1.6.11. A table which matches each coset leader with its syndrome is called a

syndrome look-up table. Sometimes such a table is called a standard decoding array (SDA).

To construct a syndrome look-up table by assuming complete nearest neighbour

decoding
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One can follows the following to steps are needed. Step 1 : List all the cosets of the code and

choose from each coset a vector ~u with least weight as coset leader ~u.

Step 2 : Find a parity-check matrix H for the code and for each coset leader ~u calculate its

syndrome SH(~u) = ~uHt.

Example 1.6.12. By assuming complete nearest neighbour decoding, we construct the a syndrome

look-up table

N◦ Coset leader ~u Syndrome S(~u)

1 (0, 0, 0, 0, 0, 0) (0, 0, 0)

2 (1, 0, 0, 0, 0, 0) (1, 1, 0)

3 (0, 1, 0, 0, 0, 0) (0, 1, 1)

4 (0, 0, 1, 0, 0, 0) (1, 1, 1)

5 (0, 0, 0, 1, 0, 0) (1, 0, 0)

6 (0, 0, 0, 0, 1, 0) (0, 1, 0)

7 (0, 0, 0, 0, 0, 1) (0, 0, 1)

8 (0, 0, 0, 1, 0, 1) (1, 0, 1)?

for the linear code C ⊂ F6
2 with parity-check matrix

H =


1 0 0 1 0 1

0 1 0 1 1 1

0 0 1 0 1 1

 .

By Corollary 1.4.7 the distance d of C is equal to 3.

As b(d− 1)/2c = 1, by Proposition 1.6.6, all the error patterns with weight 0 or 1 will be coset

leaders. Then it is su�cient to compute the syndrome for each of them to obtain only the �rst

seven rows of the syndrome look-up table. Since by Remark 1.6.10 every vector of length 3 must

be a syndrome, the remaining coset leader ~u has syndrome ~uHt = (1, 0, 1). Moreover, ~u must have

weight ≥ 2 since all the vectors of weight 0 or 1 have already been included in the syndrome look-up

table. Since we are looking for a coset leader, it is reasonable to start looking among the remaining

vectors of the smallest available weight, i.e. 2. Doing so, we �nd three possible coset leaders:
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(1, 0, 1, 0, 0, 0), (0, 1, 0, 0, 0, 1) and (0, 0, 0, 1, 1, 0). Since we are using complete nearest neighbour

decoding, we can arbitrarily choose (1, 0, 1, 0, 0, 0) as a coset leader and to complete the syndrome

look-up table.

Syndrome decoding

Step1 : Compute the syndrome SH(~w) where ~w is the received vector.

Step 2 : Find the coset leader ~u such that the syndrome SH(~u) = SH(~w) in the syndrome

look-up table.

Step 3 : Decode ~w as ~v = ~w − ~u.

Example 1.6.13. Let C = {(0, 0, 0, 0), (1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0)} ⊂ F4
2 be a linear code. Use

the following syndrome look-up table to decode (i) ~w = (1, 1, 0, 1); (ii) ~w = (1, 1, 1, 1).

Coset Leader ~u Syndrome S(~u)

(0, 0, 0, 0) (0, 0)

(0, 0, 0, 1) (0, 1)

(0, 0, 1, 0) (1, 0)

(1, 0, 0, 0) (1, 1)

Since a generator matrix of C in standard form is G =

 1 1 1 0

0 1 0 1

, by Theorem 1.4.9

H =

 1 0 1 0

0 1 1 1

 is the parity-check matrix of C in standard form.

(i) Since SH(~w) = ~wHt = (1, 0). From the above table, we deduce that the coset leader is

(0, 0, 1, 0). Hence (1, 1, 0, 1)− (0, 0, 1, 0) = (1, 1, 1, 1) was a most likely vector sent.

(ii) Since SH(~w) = ~wHt = (0, 1). From the above table, it follows that the coset leader is

(0, 0, 0, 1). Then (1, 1, 1, 1) + (0, 0, 0, 1) = (1, 1, 1, 0) was a most likely vector sent.
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Chapter 2

Cyclic Codes

In the previous chapter, we concentrated mostly on linear codes because they have algebraic

structures. These structures simplify the study of linear codes. For example, a linear code can

be described by its generator or parity-check matrix; the minimum distance is determined by the

Hamming weight, etc. However, we have to introduce more structures besides linearity in order for

codes to be implemented easily. For the sake of easy encoding and decoding, one naturally requires

a cyclic shift of a codeword in a code C to be still a codeword of C . This requirement looks like

a combinatorial structure and fortunately this structure can be converted into an algebraic one.

In this second chapter, we introduce the cyclic codes, a special case of linear codes, and we

discuss some of their algebraic structures and main properties. In the last two sections, some

further decoding algorithms are considered and studied.

2.1 Preliminaries

First of all let us give here the following

De�nition 2.1.1. A linear code C ⊆ Fnq is called cyclic code if it is invariant by the linear

transformation

φ : (a0, . . . , an−1) 7−→ (an−1, a0, . . . , an−2).

Say that a linear code C is invariant under φ is equivalent to saying that C it is invariant under
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the action of the permutation matrix

P =


0 1
...

. . .

0 1

1 0 · · · 0

 (2.1.1)

i.e. {~cP : ~c ∈ C } = C .

Theorem 2.1.2. If C ⊆ Fnq is a cyclic code then the dual code C ⊥ ⊆ Fnq is also a cyclic code.

Proof. If ~h = (h0, . . . , hn−1) ∈ C ⊥ then ~h · ~c = 0 for all ~c = (c0, . . . , cn−1) ∈ C . Thus we have

φ(~h) · ~c = (hn−1, h0, . . . , hn−2) · (c0, c1, . . . , cn−1)

= hn−1c0 + h0c1 + . . . hn2cn−1

= ~h · φn−1(~c) = 0,

since φn−1(~c) ∈ C where φk = φ ◦ · · · ◦ φ︸ ︷︷ ︸
k−times

∀k ∈ N. Hence, C ⊥ is a cyclic code.

In order to convert the combinatorial structure of cyclic codes into an algebraic one, we consider

the following correspondence:

πn : Fnq −→ Fq[X]/(Xn − 1), (a0, a1, . . . , an−1) 7−→ a0 + a1X + · · ·+ an−1X
n−1. (2.1.2)

Observe that πn is a linear Fq-isomorphism of vector spaces over Fq. So, we will sometimes

identify Fnq with Fq[X]/(Xn − 1) and a vector ~a = (a0, . . . , an−1) with the polynomial πn(~a) : a =∑n−1
i=0 aiX

i. Since Fq[X]/(Xn− 1) is a ring, we have a multiplicative operation on Fq[X]/(Xn− 1)

besides the addition inherited by the one on Fnq via πn.

2.2 Generator polynomials

The reason for de�ning πn in the previous section is the following result which connects ideal with

cyclic codes.
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Theorem 2.2.1. Let πn be as in (2.1.2). Then a non-empty subset C of Fnq is a cyclic code if and

only if πn(C ) is an ideal of Fq[X]/(Xn − 1).

Proof. Suppose that πn(C ) is an ideal of Fq[X]/(Xn−1). Then, for any α, β ∈ Fq ⊂ Fq[X]/(Xn−1)

and ~a,~b ∈ C , we have απn(~a), βπn(~b) ∈ πn(C ). Thus πn(α~a+ β~b) = απn(~a) + βπn(~b) ∈ πn(C ), i.e.

α~a+ β~b ∈ C . This shows that C is a linear code.

Now let ~c = (c0, . . . , cn−1) ∈ C and πn(~c) = c0 + c1X + · · · + cn−2X
n−2 + cn−1X

n−1 ∈ πn(C ).

Since πn(C ) is an ideal, the polynomial

X · πn(~c) = c0X + c1X
2 + · · ·+ cn−2X

n−1 + cn−1X
n

= cn−1 + c0X + c1X
2 + · · ·+ cn−2X

n−1 ∈ πn(C )

(since Xn − 1 = 0 in Fq[X]/(Xn − 1))

i.e. (cn−1, c0, . . . , cn−2) ∈ C .

Conversely, suppose that C ⊆ Fnq is a cyclic code. For any polynomial

f := f0 + f1X + · · ·+ fn−2X
n−2 + fn−1X

n−1 = πn(f0, f1, . . . , fn−1)

of πn(C ) with (f0, f1, . . . , fn−1) ∈ C , the polynomial

X · f = fn−1 + f0X + f1X
2 + · · ·+ fn−2X

n−1

is also an element of πn(C ) since C is cyclic. Thus X2 · f = X(X · f) ∈ πn(C ) and by inductive

argument we see that X i · f ∈ πn(C ) for all integer i ≥ 0. Since C is a linear code and πn is a

linear transformation, πn(C ) ⊆ Fq[X]/(Xn − 1) is a group with respect to the sum and for any

g = g0 + g1X + · · ·+ gn−1X
n−1 ∈ Fq[X]/(Xn − 1), the polynomial

gf =
n−1∑
i=0

gi(X
if)

is an element of πn(C ). Therefore, πn(C ) is an ideal of Fq[X]/(Xn − 1).

Example 2.2.2. The set I = {0, 1 +X2, X+X3, 1 +X+X2 +X3} is an ideal in F2[X]/(X4−1).

The corresponding cyclic code is π−1n (I) = {(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)}.
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Remark 2.2.3. The trivial cyclic codes {~0} and Fnq correspond to the trivial ideals (0) and

Fq[X]/(Xn − 1), respectively.

The proof of the following results is easy and it makes use principally of the division algorithm

Theorem 2.2.4 ([16], Theorem 7.2.3). Let I be a non-zero ideal in Fq[X]/(Xn − 1) and let g be

a non-zero monic polynomial of the least degree in I. Then g is a generator of I and it divides

Xn − 1.

Since Fq[X]/(Xn − 1) is a principal ideal domain (PID), we deduce that any of its ideal is

principal. Therefore any cyclic code C is uniquely determined by the monic generator of πn(C ),

as the following result shows

Proposition 2.2.5. There is a unique monic polynomial of the least degree in every non-zero ideal

I of Fq[X]/(Xn − 1) and by Theorem 2.2.4, it is a generator of I.

Proof. Let g1, g2, be two distinct monic generators of the least degree of the ideal I. Then a

suitable scalar multiple of g1 − g2 is a non-zero monic polynomial of smaller degree in I. But this

give a contradiction.

From the above result, the following de�nition makes sense.

De�nition 2.2.6. For a cyclic code C ⊆ Fnq , the unique monic polynomial of the least degree of

πn(C ) is called the generator polynomial of C .

From the above results we obtain the following

Corollary 2.2.7. There is a one-to-one correspondence between the cyclic codes C ⊆ Fnq and the

monic divisors of Xn − 1 ∈ Fq[X].

Proof. Let C ⊆ Fnq be a cyclic code. Then by Theorem 2.2.1 πn(C ) is an ideal of Fq[X]/(Xn− 1).

Since Fq[X]/(Xn−1) is a PID, from Proposition 2.2.5 it follows that πn(C ) = (g) for a unique monic

polynomial g ∈ Fq[X]. Moreover, by Theorem 2.2.4 we know that g divides Xn − 1. Conversely,

let g ∈ Fq[X] be a monic divisor of Xn − 1 and consider the unique ideal (g) ⊆ Fq[X]/(Xn − 1).

By Theorem 2.2.1 we conclude that π−1n ((g)) is a cyclic code via the isomorphism πn.
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Example 2.2.8. In order to �nd all cyclic codes C ⊂ F6
2 we factorize the polynomial X6 − 1 ∈

F2[X]:

X6 − 1 = (1 +X)2(1 +X +X2)2.

List all monic divisor of X6 − 1:

1, 1 +X, 1 +X +X2

(1 +X)2, (1 +X)(1 +X +X2), (1 +X)2(1 +X +X2)

(1 +X +X2)2, (1 +X)(1 +X +X2)2, (1 +X6).

By Corollary 2.2.7 there are nine cyclic codes C ⊂ F6
2. By the map π−16 , we can easily write

down all these cyclic codes. For instance, the cyclic code which corresponds to the polynomial

(1 +X +X2)2 is

{(0, 0, 0, , 0, 0, 0), (1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1), (1, 1, 1, 1, 1, 1)}.

From the above example, we deduce the number of cyclic codes C ⊆ Fnq can be determined if

we know the factorization of Xn − 1. We have the following

Theorem 2.2.9. If Xn − 1 =
r∏
i=1

peii is the factorization of Xn − 1 ∈ Fq[X] where p1, . . . , pr

are distinct monic irreducible polynomials and ei ∈ N \ {0} for all i = 1, . . . , r, then there are∏r
i=1(ei + 1) cyclic codes C ⊆ Fnq .

Proof. The statement follows from Corollary 2.2.7 by counting the number of all monic divisors of

Xn − 1.

Since a cyclic code C ⊆ Fnq is totally determined by its generator polynomial g, all the

parameters of C are also determined by the g. For example, the following result gives the dimension

of C in terms of g.

Theorem 2.2.10. Let g be the generator polynomial of an ideal I ∈ Fq[X]/(Xn − 1). Then the

corresponding cyclic code π−1n (C ) has dimension k if and only if the degree of g is equal to n− k.

Proof. Note that for two distinct polynomials c1, c2 with deg(ci) ≤ k − 1 (i = 1, 2), we have that

c1g 6= c2g (mod Xn − 1). Hence, the set

A := {cg : c ∈ Fq[X]/(Xn − 1), deg(c) ≤ k − 1}
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has qk elements and it is a subset of the ideal (g). On the other hand, for any polynomial ag with

a ∈ Fq[X]/(Xn − 1), write

ag = u(Xn − 1) + r (2.2.1)

with deg(r) < n. By (2.2.1), we get that r = ag − u · (Xn − 1). Hence, g divides r. Write r = bg

for some polynomial b. Then deg(b) ≤ k − 1, so r ∈ A. This shows that A is equal to (g). Hence,

by Theorem 1.1.3 (i), the dimension of the code π−1n ((g)) is logq |A| = k.

Example 2.2.11. Based on the factorization: X7−1 = (1+X)(1+X2+X3)(1+X+X3) ∈ F2[X],

we know that there are only two cyclic codes C1 and C2 in F7
2 with dimendion 3:

C1 = π−17 ((1 +X)(1 +X2 +X3)) ={(0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 0, 1, 0, 0), (0, 1, 1, 1, , 0, 1, 0),

(0, 0, 1, 1, 1, 0, 1), (1, 0, 0, 1, 1, 1, 0), (0, 1, 0, 0, 1, 1, 1),

(1, 0, 1, 0, 0, 1, 1), (1, 1, 0, 1, 0, 0, 1)}

and

C2 = π−17 ((1 +X)(1 +X +X3)) ={(0, 0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 1, 0),

(0, 0, 1, 0, 1, 1, 1), (1, 0, 0, 1, 0, 1, 1), (1, 1, 0, 0, 1, 0, 1),

(1, 1, 1, 0, 0, 1, 0), (0, 1, 1, 1, 0, 0, 1)}.

2.3 Generator and parity-check matrices

In the previous section, we showed that a cyclic code is totally determined by its generator

polynomial. Hence, such a code should also have generator matrices related to this polynomial.

More precisely, we have the following

Theorem 2.3.1. Let g = g0 + g1X + · · ·+ gn−kX
n−k be the generator polynomial of a cyclic code

C ⊆ Fnq in Fnq with deg(g) = n− k. Then the matrix

G =


π−1n (g)

π−1n (X · g)
...

π−1n (Xk−1 · g)

 =


g0 g1 . . . . . . gn−k 0 0 0 . . . 0

0 g0 g1 . . . . . . gn−k 0 0 . . . 0
...

...

0 0 . . . . . . g0 g1 . . . . . . . . . gn−k


is a generator matrix of C .
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Proof. Consider the polynomials g, X · g, . . . , Xk−1 · g of πn(C ). It is clear are linearly

independent over Fq. Moreover, by Theorem 2.2.10, we know that dim(C ) = k. Then

π−1n (g), π−1n (X · g), . . . , π−1n (Xk−1 · g) form a basis of C .

Example 2.3.2. Consider the cyclic code C ⊂ F7
2 with dimension 4 and generator polynomial

g = 1 +X2 +X3. Then this code has a generator matrix given by

G =


π−17 (g)

π−17 (X · g)

π−17 (X2 · g)

π−17 (X3 · g)

 =


1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1


This generator matrix is not in standard form. By elementary row operations on the rows of G we

can obtain the following

G′ =


1 0 1 1 0 0 0

1 1 1 0 1 0 0

1 1 0 0 0 1 0

0 1 1 0 0 0 1


Remark 2.3.3. By knowing the generator matrix of a cyclic code, its parity-check matrix in

standard form can be easily obtained by Theorem 2.3.1 row elementary operations and Theorem

1.4.9.

However, since the dual code of a cyclic code C is also cyclic, we should be able to �nd a

parity-check matrix from the generator polynomial of the dual code. The next problem will be to

�nd the generator polynomial of the dual code C ⊥. To do this we need the following

De�nition 2.3.4. Let h =
∑k

i=0 hiX
i be a polynomial of degree k over Fq. De�ne the reciprocal

polynomial hR of h by

hR := Xk · h(1/X) =
k∑
i=0

ak−iX
i.

Theorem 2.3.5 ([16], Theorem 7.3.7). Let g be the generator polynomial cyclic code C ⊆ Fnq with

dimension k. Put h = (Xn − 1)/g. Then h−10 hR is the generator polynomial of C ⊥, where h0 is

the constant term of h.
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De�nition 2.3.6. Let C ⊆ Fnq be a cyclic code. The polynomial h−10 hR of Theorem 2.3.5 is called

the parity-check polynomial of the cyclic code.

Corollary 2.3.7. Let C ⊆ Fnq be a cyclic code with generator polynomial g. Put h = (Xn−1)/g =

h0 + h1X + · · ·+ hkX
k. Then the matrix

H =


π−1n (hR)

π−1n (X · hR)
...

π−1n (Xn−k−1 · hR)

 =


hk hk−1 . . . . . . h0 0 0 0 . . . 0

0 hk hk−1 . . . . . . h0 0 0 . . . 0
...

...

0 0 . . . . . . hk hk−1 . . . . . . . . . h0


is a parity-check matrix of C .

Proof. The result immediately follows from Theorem 2.3.5 and 2.3.1.

Example 2.3.8. Let C ⊂ F7
2 be the cyclic code with generator polynomial g = 1 +X2 +X3. Write

h = (X7 − 1)/g = 1 + X2 + X3 + X4. Then by Theorem 2.3.5 hR = 1 + X + X2 + X4 is the

parity-check polynomial of C . and by Corollary 2.3.7

H =


1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1


is a parity.check matrix of C .

2.4 Encoding and Decoding methods with cyclic codes

Given a cyclic code C ⊂ Fnq of dimension k < n, a classical codi�cation of a message ~M ∈ Fkq
is given by ~MG, where G is a generator matrix of C . However, this encoding method is not

systematic, i.e. it is not strictly related with an easy decoding algorithm.

So, let us give here a non-trivial and systematic encoding method for cyclic codes. Let

~M ∈ Fkq be the original message. Let C be a cyclic code such that dim(C ) = k. Therefore,

consider the natural injective map i : Fkq → Fnq such that i(a1, ..., ak) := (a1, ..., ak, 0, ..., 0).
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De�ne ~m := i( ~M) = ( ~M,~0) ∈ Fnq and denote by m ∈ Rn the representation of the message

~m = i( ~M) ∈ Fnq , via the vector isomorphism

π : Fnq → Fq[X]/(Xn − 1) .

At this point, we can encode the original message ~m := i( ~M) by working equivalently on either

(i) Fq[X]/(Xn − 1), or (ii) Fnq .

(i) Multiply the original messages m by Xn−k, where m = m,0 + m1X + ... + mk−1X
k−1 and

k = dim(C ). The result is Xn−k · m = m0)X
n−k + m1X

n−k+1 + ... + mk−1X
n−1. Write

Xn−k · m = qg + r, where deg r < n − k. Since qg ∈ C , we can encode the original message

~m ∈ Fnq by

~m′ := π−1(Xn−k ·m− r) ∈ C

Since deg r < n − k, observe that all the information about the original messages m is contained

in the last powers Xn−k, ..., Xn−1 of Xn−k ·m− r ∈ π(C ).

(ii) De�ne the map

P :
Fnq −→ Fnq
~x 7−→ ~x1P

n−k
,

where the P is the permutation matrix as (2.1.1). By applying P to ~m we have

~mP = ( ~M,~0)P n−k)

= (~0, ~M)

If ~m′ := (~c, ~M) is such that ~m′Ht = ~0, where H is the parity check matrix of C in standar form, i.e.

H = (In−k | (T )t) is given by Proposition 3.3.3. Then ~m′ ∈ C is the encoded message of ~m ∈ Fnq .

Now, let ~m′′ be the received message. If during the transmission of the encoded message ~m′

there were not errors, i.e. ~m′′ ∈ C1 × · · · × Cr, then in both cases (i) and (ii) we can decode

~m′′ = (~m′′1, ..., ~m
′′
r) by applying Θ−ni+ki to each component ~m′′i of ~m

′′. The original components ~mi

of ~m = (~m1, ..., ~mr) will be given by the last ki coordinates of (~m′′i )Θ
−ni+ki for every i = 1, ..., r.
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2.4.1 Syndrome decoding of cyclic codes

The syndrome decoding of cyclic codes consists of the same three steps as the decoding of linear

codes: computing the syndrome, �nding the syndrome corresponding to the error pattern; and

correcting the errors. Cyclic codes have considerable algebraic and geometric properties. If

these properties are properly used, simplicity in the decoding can be easily achieved. For this

all reasons,we will see that the above three steps for cyclic codes are usually simpler.

From Corollary 2.3.7, by performing elementary row operations, we can easily produce for a

cyclic code the unique parity-check matrix of the form

H = (In−k|A). (2.4.1)

Recall that all syndromes considered in this section will be computed with respect to the parity-

check matrix of the form as in (2.4.1).

Theorem 2.4.1. Let H = (In−k|A) be the parity-check matrix of a cyclic code C ⊆ Fnq . Let g be

the generator polynomial of C . Then the syndrome of a vector ~v ∈ Fnq correspond to the principal

remainder of vmod g via πn−k, where πn(~v) = v.

Proof. Denote by ai the polynomial of degree at most n − k − 1 which correspond to the i-th

column vector of A by πn−k. By Theorem 1.4.9 , we know that G = (−AT |Ik) is a generator

matrix for C . Therefore, [Xn−k+i − ai] is a polynomial class of πn(C ). Put Xn−k+i − ai = qig for

some qi ∈ Fq[X], that is

[ai] = [Xn−k+i − qig]

where deg(ai) ≤ n − k − 1 for every i = 0, . . . , k − 1. Write v = v0 + v1X + . . . + vn−1X
n−1. For

the syndrome ~vHt of ~v, the corresponding polynomial is

s = v0 + v1X + . . .+ vn−k−1X
n−k−1 + vn−ka0 + . . .+ vn−1ak−1

=
n−k−1∑
i=0

viX
i +

k−1∑
j=0

vn−k+j(X
n−k+j − qjg)

=
n−1∑
i=0

viX
i −

(
k−1∑
j=0

vn−k+jqj

)
· g,
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i.e. v =
(∑k−1

j=0 vn−k+jqj

)
· g+ s. As the polynomial s has degree at most n− k− 1, by the unicity

of the Division Algorithm we conclude that s = v(mod g).

The three steps of the syndrome decoding (see Ch 1, § 1.6) for cyclic codes can be resumed in

the following result

Corollary 2.4.2. Let g be the generator polynomial of a cyclic code C ⊆ Fnq . For a received

polynomial v, if the remainder s of v divided by g correspond to a vector with weight less than or

equal to b(d(C )− 1)/2c, then s is the error pattern of v and v can be decoded by v− s. Otherwise,

we ask for a retransmission of v.

Proof. From Theorem 2.4.1, we know that v and s are in the same coset v+ (g). Furthermore, by

Proposition 1.6.6 s is the unique coset leader since w(π−1n (s)) ≤ b(d(C ) − 1)/2c. So the desired

result follows.

Example 2.4.3. Consider the cyclic code C ⊆ Fnq with generator polynomial g = 1 + X2 + X3

such that d(C ) = 3. Then, by performing elementary row operations on the matrix of Example

2.3.8, we obtain a parity-check matrix H = (I3|A), where A is the matrix

A =


1 1 1 0

0 1 1 1

1 1 0 1

 .

For ~v = (0, 1, 1, 0, 1, 1, 0), the syndrome is ~vHt = (0, 1, 0). On the other hand, v = X +

X2 + X4 + X5 = X + X2 · g. Thus, the remainder v (mod g) is X, which corresponds to

(0, 1, 0, 0, 0, 0, 0, ) ∈ F7
2. Therefore, v is decoded as v − X = X2 + X4 + X5 which corresponds

to the word (0, 0, 1, 0, 1, 1, 0) ∈ F7
2. If the polynomial v1 = 1 + X2 + X3 + X4 is received, then the

remainder v1 (mod g) is 1 + X + X2. In this case, we can use syndrome decoding to obtain the

codeword v1−X4 = 1+X2 +X3 = (1, 0, 1, 1, 0, 0, 0) as the word (0, 0, 0, 0, 1, 0, 0) is the coset leader

for the coset in which v1 lies.
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2.4.2 Meggitt decoding of cyclic codes

In this subsection we present a technique for decoding of cyclic codes called Meggitt decoding.

This decoding is performing in quotient Fq[X]/(Xn − 1).

Let C ⊆ Fnq be a cyclic code with d(C ) = d and generator polynomial g of degree n − k. By

working with polynomials instead of vectors, suppose that c ∈ πn(C ) is transmitted and y = c+ e

is received, where e is the error vector with w(π−1n (e)) ≤ b(d− 1)/2c. The Meggitt decoder stores

syndromes of error patterns (see § 1.6.2) with n coordinate. By shifting y at most n times, the

decoder �nds the error polynomials e from a list and then corrects this error e we will see that

Meggitt decoding takes advantages of the nature of the cyclic codes.

De�ne the shift syndrome polynomial s([v]) of any [v] ∈ Fq[X]/(Xn − 1) to be:

s([v]) := [Xn−kv] (mod g),

where g is the monic polynomial such that πn(C ) = (g).

Lemma 2.4.4. If [v] ∈ Fq[X]/(Xn − 1), then s([v]) = 0 if and only if [v] ∈ πn(C ).

Proof. Let [v] ∈ Fq[X]/(Xn − 1) such that s([v]) = 0, i.e. (Xn−k · v) = 0 (mod g). Hence we

can deduce that [Xn−k · v] ∈ πn(C ), that is Xn−k · v = h · g for some h ∈ Fq[X]/(Xn − 1). Since

Xn = 1, we get

[Xk · h · g] = [Xk · (Xn−k · v)] = [(Xn · v] = [v],

that is, [v] ∈ πn(C ). On the other hand, if [v] ∈ πn(C ), then v = q · g for some q ∈ Fq[X]. Thus

by de�nition we can conclude that s([v]) = 0.

Lemma 2.4.5 ([12], Theorem 4.6.2). Let g be a monic divisor of Xn − 1 of degree n − k. If

s = [Xn−kv](mod g), then

s([X · s]) = [X · s+ sn−k−1g]

where sn−k−1 is the coe�cient of Xn−k−1 in s.

We now describe Meggitt Decoding Algorithm and we use an example to illustrate each of

its steps.
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Step I:

Find all the shift syndrome polynomials s([e]) of error patterns e =
∑n−1

i=0 eiX
i such that

w(~e) ≤ b(d− 1)/2c and en−1 6= 0, where ~e = (e0, . . . , en−1) is the vector corresponding to e.

Example 2.4.6. Let C ⊆ F15
2 be a cyclic code with d(C ) = 5 and generator polynomial

g = 1 +X4 +X6 +X7 +X8. Then, with an abuse of notation, the shift syndrome polynomial s([e])

of an error pattern e is equal to X8e (mod g). The Step I produces the following shift syndrome

polynomials:

e s([e])

X14 X7

X13 +X14 X6 +X7

X12 +X14 X5 +X7

X11 +X14 X4 +X7

X10 +X14 X3 +X7

X9 +X14 X2 +X7

X8 +X14 X +X7

X7 +X14 1 +X7

e s([e])

X5 +X14 X2 +X4 +X5 +X6 +X7

X6 +X14 X3 +X5 +X6

X4 +X14 X +X3 +X4 +X5 +X7

X3 +X14 1 +X2 +X3 +X4 +X7

X2 +X14 X +X2 +X5 +X6

X +X14 1 +X +X4 +X5 +X6 +X7

1 +X14 1 +X4 +X6

Setp II:

Suppose that y is the received polynomial. Compute the syndrome polynomial s([y]) =

[Xn−ky] (mod g). Since y = c+e, where c ∈ πn(C ), then by Lemma 2.4.4 we see that s([y]) = s([e]).

Example 2.4.7. Continuing with Example 2.4.6, suppose that y = 1 +X4 +X7 +X9 +X10 +X12

is received. Then

s([y]) = [X8 · y](mod g) = X +X2 +X6 +X7

.

Step III:

If s([y]) belongs to the list computed in Step I, then we have the error polynomial e and we

c = y − e. If s([y]) does not appear in the list, go on to Step IV.
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Example 2.4.8. We see that s([y]) does not appear in the list of shift syndrome polynomial.

Step IV:

Since s([y]) is not appear in the list we can write y = c + e′ with c ∈ πn(C ), where e′ is the error

pattern such that w(π−1n (e′)) ≤ bd−1
2
c and deg(e′) < n − 1. By Lemma 2.4.5 compute the shift

syndrome polynomial ofX ·y = X ·c+X ·e′, X2y = X2 ·c+X2 ·e′, . . . , Xn−1−deg(e′) ·y = Xn−1−deg(e′) ·

c+Xn−1−deg(e′) ·e′. Observe that deg(Xn−1−deg(e′) ·e′) = n−1 and w(π−1n (Xn−1−deg(e′) ·e′)) ≤ bd−1
2
c.

Then s([Xn−1−deg(e′) · y]) belongs to the list and it is associated with the error polynomial

e′′ := Xn−1−deg(e′) · e′. Then the received vector can be decoded as y −Xdeg(e′)+1 · e′′.

Remark 2.4.9. The de�nition of the shift syndrome polynomial is typical of the Meggitt decoding

algorithm. Moreover it allows us to construct a table of shift syndrome polynomial smaller than

the classical one we have to consider in syndrome decoding of §1.6.2.

Example 2.4.10. Continuing with Example 2.4.7, we have s([X·y]) = X(X+X2+X6+X7)−1·g =

1 + X2 + X3 + X4 + X6 which is not in the list of Example 2.4.6. Thus consider s(X2y) =

X(1+X2+X3+X4+X6)−0·g = X+X3+X4+X5+X7. Since s([X2 ·y]) corresponds to the error

X4+X14, we can decoded y as y−X13(X4+X14) = y−(X2+X12) = 1+X2+X4+X7+X9+X10.

Note that this is equal to (1 +X2)g ∈ πn(C ).
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Chapter 3

Generalized Cyclic Codes

In this third chapter, we study a new type of linear code, called Generalized Cyclic Code, which

happens to be a generalization of cyclic codes. Furthermore, we show that in this case many of

the main properties of cyclic codes are naturally inherited and that these codes can be analyzed

as subspaces invariant under the action of a companion matrix, providing a method to �nd other

algebraic properties of these codes, a generator matrix and a parity-check matrix. In the last part

of this chapter, we give an algorithm to construct these kind of codes via projective spaces and

by an immersion map we explore two further dual codes, the Quasi-Euclidean and the Hermitian

dual codes, by ending with a generalization of a Meggitt type algorithm as in Chapter 2.

3.1 Preliminaries and Background Material

In this section we study the main tools to construct a class of generalized cyclic codes. Each matrix

M of order n × n, with coe�cients in a �nite �eld Fq, can be associated to an n × n matrix R

called the rational canonical form ofM . The matrix R is a block matrix whose blocks are matrices

of special type called companion matrices.

From now on, denote by A an n× n matrix with coe�cients in Fq.

De�nition 3.1.1. A monic polynomial of minimum degree that annihilates the matrix A is called

minimal polynomial of A.
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Remark 3.1.2. The minimal polynomial of A is unique.

We have the following

Lemma 3.1.3 ([9], Lemma 6.7.1). Suppose that f(X) = Xn − fn−1X
n−1 . . . − f1X − f0 is the

minimal polynomial of A. Then there is a basis {~r1, . . . , ~rn} of Fnq such that

A = S


0 1
...

. . .

0 1

f0 f1 · · · fn−1

S−1

where S =
(
~r1t · · · ~rnt

)
.

De�nition 3.1.4. If f = Xn − fn−1Xn−1 − . . .− f1X − f0 ∈ Fq[X] then the matrix

Ac,f :=


0 1
...

. . .

0 1

f0 f1 · · · fn−1


is called the companion matrix of f . When f is known we simply write Ac.

Remark 3.1.5. Lemma 3.1.3 says that if f is the minimal polynomial of A in Fq[X] then for some

basis of Fnq the matrix A is similar to Ac,f . Thus f is also the minimal polynomial of Ac,f .

Let f ∈ Fq[X] be the minimal polynomial of A. Since Fq[X] is an Euclidean Domain, up to

permutation we can write

f = qe11 · . . . · q
ek
k (3.1.1)

for some ei ∈ N>0 and distinct monic irreducible polynomials qi for every i = 1, . . . , k.

Theorem 3.1.6 ([9], Theorem 6.7.1). If f = qe is the minimal polynomial of A where q is a monic

irreducible polynomial in Fq[X], then there exists a basis {~r1, . . . , ~rn} of Fnq such that

A = S


Ac,qe1

. . .

Ac,qek

S−1,
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3.1. Preliminaries and Background Material

where Ac,qei denotes the companion matrix of qei, S =
(
~r1t · · · ~rnt

)
and e = e1 ≥ . . . ≥ ek.

The following Corollary is an immediate consequence of the above result.

Corollary 3.1.7. If f = qe11 · . . . · q
ek
k is the minimal polynomial of A, where qi are as in (3.1.1),

then there exists a basis {~r1, . . . , ~rn} of Fnq such that

A = SRS−1 = S


R1

. . .

Rk

S−1

with each

Ri =


Ac,qei1i

. . .

A
c,q

eisi
i

 ,

where A
c,qe

ij
i

denote the companion matrix of q
eij
i for all 1 ≤ j ≤ si and 1 ≤ i ≤ k,

S =
(
~r1t · · · ~rnt

)
and ei = ei1 ≥ . . . ≥ eisi.

De�nition 3.1.8. The matrix R of Corollary 3.1.7 is called the rational canonical form of A.

Example 3.1.9. Consider the following matrix with coe�cients in F11

A =



0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


.

By the following Magma Program

A:=Matrix(GF(11),6,6,[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,

1,0,0,0,0,0,0,1,0,0]);

R,T:=RationalForm(A);

R,T^(-1);
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the rational canonical form of A is

R =



0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0


,

that is, A = SRS−1 where S =



4 4 4 8 7 7

3 4 4 4 4 4

4 4 4 7 7 8

4 4 3 4 4 4

4 4 4 7 8 7

4 3 4 4 4 4


.

3.2 Generalized Cyclic Codes

The main results of the previous section says that an n × n matrix A is similar to its rational

canonical form R, i.e. there exists a non-singular matrix S such that

A = SRS−1. (3.2.1)

Let CA ⊆ Fnq be a linear code invariant by the matrix A. De�ne CA ? S := {~cS : ~c ∈ CA} and

CR := CA ? S. Then by (3.2.1) we obtain

CR ? R = CA ? (SR) = CA ? (S(S−1AS)) = (CA ? A) ? S ⊆ CA ? S = CR,

i.e. CR is invariant by R. Since S is an invertible matrix, this shows that we can construct a

one-to-one correspondence between the set of linear codes invariant by A and the set of linear

codes invariant by R.

By using this argument, we �rst reduce the study of linear codes invariant by a matrix to that

of linear codes invariant by companion matrices. The general case will be consider in Chapter 4.
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De�nition 3.2.1. A linear code C ⊆ Fnq is called ϕ-generalized cyclic code, or simply ϕ-GC

code, if it is invariant by the linear transformation

ϕ : (c0, c1, . . . , cn−1) 7→ (f0cn−1, c0 + f1cn−1, . . . , cn−2 + fn−1cn−1)

where f0, . . . , fn−1 ∈ Fq and f0 6= 0.

Remark 3.2.2. The linear transformation ϕ can be represented by the right multiplication of the

following matrix

Ac :=


0 1
...

. . .

0 1

f0 f1 · · · fn−1

 , (3.2.2)

where det(Ac) = f0 6= 0. Then a linear code C ⊆ Fnq is a ϕ-GC code if only if C ? Ac = C .

From now on, by Remark 3.2.2 we simply refer to a ϕ-GC code as an Ac-GC code and

viceversa, where ϕ and Ac are as in De�nition 3.2.1 and the equation (3.2.2) respectively.

Remark 3.2.3. If C ⊆ Fnq is an Ac-GC code with f1 = . . . = fn−1 = 0, then C is an f0-constacyclic

code, i.e. C is invariant by the matrix

P :=


0 1
...

. . .

0 1

f0 0 . . . 0

 ,

. In particular, if furthermore f0 = 1, then C is a cyclic code.

Proposition 3.2.4. If C ⊆ Fnq is an Ac-GC code, then C ⊥ ? (Ac)t = C ⊥, where C ⊥ is the dual

code of C .

Proof. If ~a ∈ C ⊥, then we have

~a(Ac)t · ~c = ~a(Ac)t~ct = ~a(~cAc)t = ~a · (~cAc) = 0, ∀~c ∈ C .

Since dim(C ⊥) = dim(C ⊥ ? (Ac)t), we conclude that C ⊥ ? (Ac)t = C ⊥.
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3.2. Generalized Cyclic Codes

The following consequence of Proposition 3.2.4 is well-know (see [21], Proposition 4).

Corollary 3.2.5. Let C ⊆ Fnq be an f0-constacyclic code, then C ⊥ is an f−10 -constacyclic code.

Proof. Note that Ac =

 ~0t I

f0 ~0

 and f−10 An−1c =

 ~0t I

f−10
~0

. By Proposition 3.2.4, it follows

that C is invariant under

 ~0t I

f−10
~0

.

Remark 3.2.6. Theorem 2.1.2 is a consequence of Corollary 3.2.5 when f0 = 1.

Consider now the polynomial ring R := Fq[X] with the usual addition and multiplication.

Denote by

f = Xn −
n−1∑
i=0

fiX
i ∈ R

a polynomial of degree n. De�ne πf : Fnq → R/Rf as the linear transformation de�ned by

πf ((c0, ..., cn−1)) :=

[
n−1∑
i=0

ciX
i

]
∈ R/Rf ∀ (c0, ..., cn−1) ∈ R.

Consider the companion matrix of f given by

Ac =


0 1
...

. . .

0 1

f0 f1 · · · fn−1

 .

Proposition 3.2.7. A non-empty subset C of Fnq is an Ac-GC code if and only if πf (C ) is an

ideal of R/Rf .

Proof. Observe that for any ~c = (c0, . . . , cn−1) ∈ Fnq we have

X · πf (~c) = [c0X + · · ·+ cn−2X
n−1 + cn−1X

n]

= [f0cn−1 + (c0 + f1cn−1)X + · · ·+ (cn−2 + fn−1cn−1)X
n−1] = πf (~cAc).

The rest of the proof is similar to that of Theorem 2.2.1.
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Remark 3.2.8. From Proposition 3.2.7, we can deduce that Xk ·πf (~v) = πf ((~v)(Akc )) for all ~v ∈ Fnq
and k ∈ N.

As in §2 of Chapter 2, the following de�nition makes sense.

De�nition 3.2.9. For an Ac-GC code C ⊆ Fnq , the generator polynomial of πf (C ) is called the

generator polynomial of C .

Remark 3.2.10. Theorems 2.2.9, 2.2.10 and Corollary 2.2.7 hold with f instead of Xn − 1.

If C ⊆ Fnq is an Ac-GC code with generator polynomial g = g0 + · · · + gn−kX
n−k ∈ R/Rf , we

simply write C = (g)kn,q.

By Remark 3.2.10 we can focus on �nding divisors of f to construct Ac-GC codes.

Example 3.2.11. Let f = α2 +αX +X3 +X4 ∈ F4[X], where F4 := F2[α] ∼= F2[X]/(X2 +X + 1)

and α ∈ Fq is such that α2 + α + 1 = 0. Since f = (α + X2) · (α + X + X2), the linear codes

C1 = (α +X2)24,4 and C2 = (α +X +X2)24,4 are Ac-GC codes, where

Ac =


0 1 0 0

0 0 1 0

0 0 0 1

α2 α 0 1

 .

Remark 3.2.12. Let C = (g)kn,q be an Ac-GC code and take [h] ∈ ([g]) such that [h] = [p · g] for

some p ∈ R, where [a] is the class of the polynomial a in R/Rf . Observe that [h] = [h′] for some

h′ ∈ R with deg(h′) ≤ n−1. Since [h′] = [p·g] we deduce that h′ = p·g+q ·f for some q ∈ R. By the

Division Algorithm write p ·g = q′ ·f+r′ for some q′, r′ ∈ R such that deg(r′) ≤ deg(f)−1 = n−1.

This gives r′ = p′·g for some p′ ∈ R. Note that deg(p′) ≤ deg(r′)−deg(g)−1 ≤ deg(f ′)−deg(g)−1.

Then we have

[h] = [h′] = [p · g] = [r′] = [p′][g],

i.e. for any [h] ∈ ([g]) we can write [h] = [p′][g] with

p′ =

deg(f)−deg(g)−1∑
i=0

p′iX
i.
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3.3 Generator and parity-check matrices

As in §3 of Chapter 2, the generator polynomial characterizes an Ac-GC code.

Theorem 3.3.1. If C = (g)kn,q is an Ac-GC code with g = g0 + · · ·+ gn−kX
n−k, then

G =


π−1f (g)

π−1f (g)Ac
...

π−1f (g)Ak−1c


is a generator matrix of C .

Proof. The proof is similar to that of Theorem 2.3.1.

Example 3.3.2. Let f and Ac be as in Example 3.2.11. Consider C = (α +X +X2)24,4. Then a

generator matrix for C is

G =

 (α, 1, 1, 0)

(α, 1, 1, 0)Ac

 =

 α 1 1 0

0 α 1 1

 .

The following result provides a matrix in standard form for the dual code of an Ac-GC code. This

allows us to encode and decode easily. Moreover, by Corollary 1.4.7 the distance of the code can

be calculated immediately.

Proposition 3.3.3. Let C = (g)kn,q be an Ac-GC code. For any integer i such that 0 ≤ i ≤ k − 1,

write in R

Xn−k+i = qi · g + ri, with 0 ≤ deg ri < n− k.

Denote by T the following matrix

T :=


ρn−k(π

−1
f (r0))

ρn−k(π
−1
f (r1))
...

ρn−k(π
−1
f (rk−1))

 ,
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3.3. Generator and parity-check matrices

where ρn−k is the projection map onto the �rst n− k coordinates, i.e.

ρn−k(v1, ..., vn−k, vn−k+1, ..., vn) := (v1, ..., vn−k).

Then a parity check matrix H of C is given by H :=
(
In−k Tt

)
, where In−k is the (n−k)×(n−k)

identity matrix and Tt is the transpose matrix of T .

Proof. Since deg ri < n− k, note that

π−1f (Xn−k+i − ri) ∈ C

are linearly independent for 0 ≤ i ≤ k − 1. Thus
(
−T Ik

)
is a generator matrix for C . Since

(C ⊥)⊥ = C , this implies that the matrix H as in the statement is a parity check matrix for the

code C .

The MAGMA Program 0 (Ch. 5) gives the list of all the reminders ri of Proposition 3.3.3 which

we need to construct the parity check matrix H as in the above result.

Remark 3.3.4. Proposition 3.3.3 gives immediately the generator matrix and the parity-check

matrix of C in standard form. Moreover in the cyclic case, this result is useful in the syndrome

decoding (see Ch. 2, §2.4.1).

Example 3.3.5. Write f = α2 + αX + X3 + αX4 + αX6 + X7 + X8 ∈ F4[X] and let

C = (α2 +X2 + α2X3 +X4)48 be an Ac-GC code, where F4 = F2[α] with α2 + α + 1 = 0 and

Ac =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

α2 α 0 1 α 0 α 1



.
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Divide X4+i by α2 +X2 + α2X3 +X4 for i = 1, . . . , 4. By MAGMA Program 0 (Ch. 5) we obtain

r1 = α2 +X2α2X3, r2 = α + α2X + α2X2 + α2X3,

r3 = α + αX +X3, r4 = α2 + αX + α2X2 + α2X3.

Then by Proposition 3.3.3 we have

T =


α2 0 1 α2

α α2 α2 α2

α α 0 1

α2 α α2 α2

 .

Hence

H =


1 0 0 0 α2 α α α2

0 1 0 0 0 α2 α α

0 0 1 0 1 α2 0 α2

0 0 0 1 α2 α2 1 α2


is the parity-check matrix of C ⊆ F8

4 in standard form.

3.4 Generalized cyclic codes as invariants subspaces

Since linear codes are linear subspaces of Fnq , the description of generalized cyclic codes in terms

of linear algebra becomes natural. Observe that the linear transformation ϕ as in De�nition 3.2.1 is

a linear operator on Fnq . Our approach is to consider generalized cyclic codes as invariant subspaces

of Fnq with respect to this operator and then to obtain a description of them.

Let ϕ and

Ac =


0 1
...

. . .

0 1

a0 a1 · · · an−1


be as in De�nition 3.2.1.

47



3.4. Generalized cyclic codes as invariants subspaces

The characteristic polynomial χAc of Ac is

χϕ := χAc = det


−X 1
... −X . . .

0 −X 1

a0 a1 · · · an−1 −X

 = (−1)n(Xn − an−1Xn−1 − . . .− a1X − a0).

For simplicity, we will write χ instead of χAc or χϕ.

De�nition 3.4.1. A subspace U of Fnq is said ϕ-invariant if ϕ(~u) ∈ U for all ~u ∈ U .

For our purposes we need the following well known fact.

Proposition 3.4.2 ([9], Lemma 6.6.1.). Let U be a ϕ-invariant subspace of Fnq . Then χϕ|U divides

χϕ, where χϕ|U is the characteristic polynomial of ϕ|U . In particular, if Fnq = U ⊕W and W is a

ϕ-invariant subspace of Fnq , then χϕ = χϕ|Uχϕ|W .

Lemma 3.4.3. Let K be a �nite �eld and let A be a square matrix with coe�cients in K. Then

K[X]/(mA) ∼= K[A],

where mA is the minimal polynomial of A.

Proof. Consider the module homomorphism σ : K[X] → K[A], de�ned by p 7→ p(A). By

construction, σ is an onto homomorphism and ker(σ) = (mA). Then there exists an isomorphism

σ between K[X]/(mA) and K[A]. Moreover, σ is de�ned by [p] 7→ p(A), where [p] is the class of a

polynomial p.

Remark 3.4.4. If p = q in K[X], then [p] = [q] in K[X]/(mA). Thus p(A) = q(A) via σ.

Let χ = (−1)nχ1 · . . . ·χt be the factorization of χ into irreducible factors over Fq[X]. According

to Cayley-Hamilton Theorem, the matrix Ac satis�es

χ(Ac) = O, where O is the null matrix.

Moreover, Ac is a companion matrix and the polynomial χ is equal to the minimal polynomial of

Ac.
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Lemma 3.4.5. Let f = b0 + b1X + . . . + bnX
n be a polynomial of degree n in Fq[X]. Denote by

f1 · . . . · ft the factorization of f into irreducible factors over Fq[X]. Then, fi 6= fj for all i 6= j, if

and only if gcd(f, ∂f) = 1, where ∂f := nXn−1 −
∑n−1

i=1 iaiX
i−1 is the usual �rst derivative of f .

Proof. Write q = ps for some prime number p = Char(Fq) and s ∈ N>0. Assume that f = g2 · h

with g, h ∈ Fq[X] and deg g ≥ 1. Then ∂f = 2g · ∂g · h + g2 · ∂h = g(2∂g · h + g · ∂h), so

gcd(f, ∂f) 6= 1. This proves the "if" part of the statement. Suppose now that gcd(f, ∂f) = d

with deg(d) ≥ 1. If d is not irreducible, take an irreducible factor of d and write f = d′ · h, where

h ∈ Fq[X] and deg(d′) ≥ 1. Hence ∂f = ∂d′ · h + d′ · ∂h. Since d′ divides also ∂f , we see that d′

divides ∂d′ · h. Because of the irreducibility of d′, it follows that either d′ divides ∂d′ or d′ divides

h. If d′ divides h, we have f = d′2 · h′ for some h′ ∈ Fq[X]. On the other hand, if d′ divides ∂d′,

then ∂d′ = 0, since 0 ≤ deg(∂d′) < deg(d′).

Claim. d′ =
∑
diX

phi . Write d′ =
∑
diX

mi = d0X
m0 + d1X

m1 + . . . + dsX
ms , with di 6= 0

and m0 < m1 < . . . < ms. Since 0 = ∂d′ = d0m0X
m0−1 + d1m1X

m1−1 + . . . + dsmsX
ms−1 =

Xm0−1(d0m0 +d1m1X
m1−m0 + . . .+dsmsX

ms−m0) and since Fq[X] is an integer domain, we obtain

that d0m0 + d1m1X
m1−m0 + . . .+ +dsmsX

ms−m0 is the zero polynomial. Thus when X = 0, since

d0 6= 0, we deduce m0 = 0, i.e. m0 = ph0 for some h0 ∈ Fq. By an inductive argument, we can

conclude that ms = phs for some hs ∈ Fq and for any s = 0, . . . , deg(d′). Q.E.D.

Since the Frobenius map a 7→ ap is an automorphism of Fq, we can write

d′ =
∑

diX
phi =

∑
epiX

phi =
(∑

eiX
hi
)p

for some ei,

but this gives a contradiction.

Remark 3.4.6. When f = Xn−a with a ∈ Fq\{0}, the condition gcd(f, ∂f) = 1 is also equivalent

to gcd(n, p) = 1, where p is the characteristic of Fq.

From now on, assume that gcd(χ, ∂χ) = 1, where χ is the characteristic polynomial of Ac.

In this case χ has distinct factors χi ∈ Fq[X] such that their leader coe�cients are ±1 for every

i = 1, . . . , t. Furthermore, consider the set of homogeneous equations

~xχi(Ac) = ~0, ~x ∈ Fnq (3.4.1)

for i = 1, . . . , t. If Ui is the solution space of equation (3.4.1), then we write Ui = Kerχi(Ac).
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Theorem 3.4.7. The subspaces Ui of Fnq satisfy the following conditions:

(a) Ui is a ϕ-invariant subspace of Fnq ;

(b) if W is a ϕ-invariant subspace of Fnq and Wi := W ∩ Ui for i = 1, . . . , t, then Wi is a

ϕ-invariant subspace of Fq and W = W1 ⊕ · · · ⊕Wt;

(c) Fnq = U1 ⊕ · · · ⊕ Ut;

(d) dimUi = deg(χi);

(e) χϕ|Ui
= (−1)kiχi;

(f) Ui is a minimal ϕ-invariant subspace of Fnq .

Proof. (a) Let ~u ∈ Ui. Then we have ~uχi(Ac) = ~0. Hence ϕ(~u)χi(Ac) = ~uAcχi(Ac) = ~uχi(Ac)Ac =

~0Ac = ~0, i.e. ϕ(~u) ∈ Ui.

(b) Denote by χ̂i := χ
χi
for every i = 1 . . . , t. Since the χi's are all distinct irreducible polynomial,

we get gcd(χ̂1, . . . , χ̂t) = 1. Then, by Bézout's identity there exist polynomials a1, . . . , at ∈ Fq[X]

such that

a1 · χ̂1 + · · ·+ at · χ̂t = 1.

By Remark 3.4.4, for every vector ~w ∈ W the equality ~w = ~wa1(Ac)χ̂1(Ac) + · · ·+ ~wat(Ac)χ̂t(Ac)

holds. De�ne ~wi = ~wai(Ac)χ̂i(Ac) ∈ W . Then ~wiχi(Ac) = ~wai(Ac)χ̂i(Ac)χi(Ac) =

~wai(Ac)χ(Ac) = ~wai(Ac)O = ~0, and so ~wi ∈ Ui ∩W = Wi. Hence we can write

W = W1 + · · ·+Wt.

Assume now that ~w ∈ Wi ∩
∑

i 6=jWj. If ~w ∈
∑

i 6=jWj then ~w =
∑

i 6=j ~wj and so ~wχ̂i(Ac) =

(
∑

i 6=j ~wj)χ̂i(Ac) =
∑

i 6=j ~wjχ̂i(Ac) = ~0. Since ~w ∈ Wi ⊂ Ui, by de�nition we have ~wχi(Ac) = ~0.

Since gcd(χi, χ̂i) = 1, we know that there exist polynomials a, b ∈ Fq[X] such that χi ·a+ χ̂i ·b = 1.

Hence

~w = ~wa(Ac)χi(Ac) + ~wb(Ac)χ̂i(Ac) = ~0,

and this give Wi ∩
∑

i 6=jWj = {~0} for every i =, . . . , t. Then W = W1 ⊕ · · · ⊕Wt.
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(c) This follows from b) with W = Fnq .

(d) Take ~g ∈ Ui with ~g 6= ~0. Let ki ≥ 1 be the smallest positive integer such that

~gI,~gAc, . . . , ~gA
ki
c are linearly dependent. Then there exist c0, . . . , cki−1 ∈ Fq such that

~gAkc = c0~gI + · · ·+ ck−1~gA
ki−1
c .

De�ne t := Xki − cki−1Xki−1 − . . .− c0. Since ~gt(Ac) = ~gχi(Ac) = ~0 and gcd(t, χi) = t · a + χi · b

for some a, b ∈ Fq[X], we see that ~g[gcd(t, χi)(Ac)] = ~0. Since χi is irreducible, gcd(t, χi) is either

1 or χi. Suppose that gcd(t, χi) = 1. Then

~0 = ~gt(Ac)a(Ac) + ~gχi(Ac)b(Ac) = ~g,

but this give a contradiction. So gcd(t, χi) = χi and deg(χi) ≤ deg(t) = ki.

On the other hand, the vectors ~g,~gAc, . . . , ~gA
deg(χi)
c are linearly dependent, since ~gχi(Ac) =

~0. From the minimality of ki, we get ki = deg(χi). Then dim(Ui) ≥ deg(χi) because

~g,~gAc, . . . , ~gA
deg(χi)−1
c are linearly independent. Therefore by (c) we obtain that

n = dim(Fnq ) =
t∑
i=1

dim(Ui) ≥
t∑
i=1

degχi = deg(χ) = n,

i.e. dim(Ui) = deg(χi).

(e) Let g(i) = {~g(i)1 , . . . , ~g
(i)
deg(χi)

} be a basis of Ui over Fq, for i = 1, . . . , t and let Ai be the matrix

of ϕ|Ui
with respect to g(i). Let χϕ|Ui

be as Proposition 3.4.2. Suppose that gcd(χϕ|Ui
, χi) = 1.

Hence there are polynomials a, b ∈ Fq[X] such that a(Ai)χϕ|Ui
(Ai) + b(Ai)χi(Ai) = I. Since

χϕ|Ui
(Ai) = O, we obtain that b(Ai)χi(Ai) = I.

By Property (c) we see that G = {~g(1)1 , . . . , ~g
(1)
k1
, . . . , ~g

(t)
1 , . . . , ~g

(t)
kt
} is a basis of Fnq and ϕ can be

represented by

A′ =


A1

. . .

At


with respect to G. Furthermore, A′ = TAT−1, where T is the transformation matrix from the

standard basis of Fnq to the basis g. Let Ti be the matrix which represents the change of basis
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between g(i) and the corresponding vector of the standard basis of Fnq . Then TiAiT
−1
i represents

ϕ|Ui
. Hence

χi(A
′) =


χi(A1)

. . .

χi(At)

 = χi(TAcT
−1) = Tχi(Ac)T

−1.

Put ~g(i)j = λ
(i)
j1~e1 + . . .+ λ

(i)
jn~en for j = 1, . . . , deg(χi). Since ~g

(i)
j ∈ Ui, we obtain that

~eα = χi(A
′) = ~eαTχi(Ac)T

−1 = ~g
(i)
j χi(Ac)T

−1 = ~0

with α = k1+. . . ki−1+j. Thus we have χi(Ai) = O but this contradicts b(Ai)χ(Ai) = I. Therefore

gcd(χϕ|Ui
, χi) 6= 1. Since χi and χϕ|Ui

are polynomials of the same degree and χi is monic and

irreducible, for the Proposition 3.4.2, we can conclude that χϕ|Ui
= (−1)kiχi.

(f) Assume that U ⊂ Ui with U 6= {~0} a ϕ|Ui
-invariant subspace. Then by Proposition 3.4.2

we know that χϕ|U divides χi. Since χi is irreducible, we have dim(U) = dim(Ui), i.e. U = Ui.

Theorem 3.4.8. Let C ⊆ Fnq be an Ac-GC code. Then the following facts hold.

(i) C = Ui1 ⊕· · ·⊕Uis for some minimal ϕ-invariant subspaces Uir of Fnq , where k := dim(C ) =

ki1 + · · ·+ kis, with kir = dim(Uir).

(ii) χϕ|C = (−1)kχi1 · . . . · χis, where χij = χϕ|Uij
.

(iii) ~c ∈ C if and only if ~cχϕ|C (Ac) = ~0.

(iv) The polynomial χϕ|C is the minimal polynomial which satis�es the equivalence (iii).

(v) rk(χϕ|C (Ac)) = n− k, where rk(χϕ|C (Ac)) is the rank of the matrix χϕ|C (Ac).

Proof. (i) This follows from Theorem 3.4.7 (b) and (f).

(ii) This is a consequence of Theorem 3.4.7 (e) and its proof.

(iii) Let ~c ∈ C . Then by (i) we can write ~c = ~ui1 + · · · + ~uis for some ~uir ∈ Uir , r = 1, . . . , s.

By commutativity in Fq[X], we obtain that

~cχϕ|C (Ac) = (−1)k[~ui1(χi1 · . . . · χis)(Ac) + · · ·+ ~uis(χi1 · . . . · χis)(Ac)] = ~0.
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Conversely, suppose that ~cχϕ|C (Ac) = ~0 for some ~c ∈ Fnq . According to Theorem 3.4.7 (c), we

have ~c = ~u1 + · · ·+ ~ut, with ~ui ∈ Ui. Then

~cχϕ|C (Ac) = (−1)k[~u1(χi1 · . . . · χis)(Ac) + · · ·+ ~ut(χi1 · . . . · χis)(Ac)] = ~0,

i.e. [~uj1 + · · · + ~ujl ]χϕ|C (Ac) = ~0, where {j1, . . . , jl} = {1, . . . , t} \ {i1, . . . , is}. Denote by

~v := ~uj1 + · · · + ~ujl and h = χ/χϕ|C = (−1)n−kχj1 · . . . · χjl . Since gcd(h, χϕ|C ) = 1, there are

two polynomials a, b ∈ Fq[X] such that h · a+ χϕ|C · b = 1. Hence

~v = ~vh(Ac)a(Ac) + ~vχϕ|C (Ac)b(Ac) = ~0,

that is ~c = ~ui1 + · · ·+ ~uis ∈ C .

(iv) Suppose that b ∈ Fq[X] is a non-zero polynomial of smallest degree such that ~cb(Ac) = ~0

for all ~c ∈ C . By division algorithm there are polynomials q, r ∈ Fq[X] such that χϕ|C = b · q + r,

where deg r < deg b. Then for each vector ~c ∈ C we have ~cχϕ|C (Ac) = ~cb(Ac)q(Ac) + ~cr(Ac) and

hence ~cr(Ac) = ~0. But this contradicts the choice of b unless r is identically zero. Thus, b divides

χϕ|C . If deg b < deg(χϕ|C ) then b is a product of some of the irreducible factors of χϕ|C . Up to

renaming we can suppose that b = (−1)ki1+···+kimχi1 · . . . ·χim with m < s. Let us consider the code

C ′ = Ui1 ⊕ · · ·⊕Uim ⊂ C . Take ~c = ~ci1 + · · ·+~cim +~cim+1 + · · ·+~cis ∈ C . Write ~a = ~ci1 + · · ·+~cim

and ~b = ~cim+1 + · · ·+~cis and note that ~bb(Ac) = ~0. Since gcd((χi1 · . . . ·χim), (χim+1 · · · · · χis)) = 1,

there exist two polynomials α, β ∈ Fq[X] such that α · (χi1 · · · · · χim) + β · (χim+1 · · · · · χis) = 1.

Thus

~b = ~bα(Ac) · (χi1 · · · · · χim)(Ac) +~bβ(Ac) · (χim+1 · · · · · χis)(Ac)

= ~bb(Ac) · α(Ac) +~b(χi1 · · · · · χim)(Ac) · β(Ac)

= ~0.

So that ~c ∈ C ′. This contradiction proves the statement.

(v) By property (iii) C is the kernel of the linear transformation χϕ|C (Ac). Then

n = rk(χϕ|C (Ac)) + kerχϕ|C (Ac) = rk(χϕ|C (Ac)) + dim(C ) = rk(χϕ|C (Ac)) + k,

i.e. rk(χϕ|C (Ac)) = n− k.
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Corollary 3.4.9. The matrix whose rows are a set of n − k linearly independent columns of

χϕ|C (Ac) is a parity-check matrix for the code C = Ui1 ⊕ · · · ⊕ Uis ⊆ Fnq .

Proof. The statement follows from Theorem 3.4.8 (iii) and (v).

Corollary 3.4.10. The matrix G, the rows of which are a set of k linearly independent rows of

(h(Ac))t, is a generator matrix of the code C .

Proof. Since h(Ac)χϕ|C (Ac) = χ(Ac) = O, note that all the rows hi of h(Ac) are vectors of C .

We show now that rk(h(Ac)) = k. By Sylvester's rank inequality, we obtain that

0 = rk(O) ≥ rk(χϕ|C (Ac)) + rk(h(Ac))− n,

i.e. rk(h(Ac)) ≤ k. On the other hand, Sylvester's rank inequality applied to the product h(Ac) =

(−1)n−kχj1(Ac) · · ·χjl(Ac) gives us that rk(h(Ac)) ≥ rk(χj1(Ac)) + · · · + rk(χjl(Ac)) − n(l − 1) =

rk(χϕ|Uj1
(Ac))+· · ·+rk(χϕ|Ujl

(Ac))−nl+n = n−dim(ker(χϕ|Uj1
(Ac)))−. . .−dim(ker(χϕ|Ujl

(Ac))) =

n− (dim(Uj1) + · · ·+ dim(Ujl)) = n− (kj1 + · · ·+ kjl) = n− (n− ki1 − . . .− kis) = n− (n− k) = k.

Therefore rk(h(Ac)) = k.

Example 3.4.11. Consider the �nite �eld F4 = F[α] with α2 + α + 1 = 0 and the matrix

Ac =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 1 α 1 α2 α2 α


.

Thus we have

χϕ = χAc = 1 +X + αX2 +X3 + α2X4 + α2X5 + αX6 +X7.

By the Magma command Factorization we obtain

χϕ = χ1 · χ2 · χ3 · χ4 = (1 +X) · (α +X) · (α2 +X +X2) · (1 +X +X3).
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The factors χi de�ne minimal ϕ-invariant subspaces Ui, for i = 1, 2, 3, 4. De�ne the Ac-GC code

C := U2 ⊕ U3.

According to Theorem 3.4.8(a), we have dim(C ) = 3 and

g := χϕ|C = (α +X) · (α2 +X +X2) = 1 +X + α2X2 +X3.

So the by Magma Program

A:=Matrix(F,7,7,[0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,w,1,w^2,w^2,w]);

g:=X^3+w^2*X^2+X+1;

gA:=A^3+w^2*A^2+A+E;

it follows that

g(Ac) =



1 1 α2 1 0 0 0

0 1 1 α2 1 0 0

0 0 1 1 α2 1 0

0 0 0 1 1 α2 1

1 1 α 1 α α 1

1 0 α2 α2 α 1 0

0 1 0 α2 α2 α 1


.

By Theorem 3.4.8 (v) the rank of this matrix is rk(g(Ac)) = 7−3 = 4. If we take the last 4 linearly

independent columns of g(Ac), then by Proposition 3.4.9 we have the following parity check matrix

for the code C

H =


1 α2 1 1 1 α2 α2

0 1 α2 1 α α α2

0 0 1 α2 α 1 α

0 0 0 1 1 0 1

 .

Furthermore, since h = χ/g = (1+X) · (1+X+X3) = 1+X2 +X3 +X4, by the Magma command

s
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h:=1+X^2+X^3+X^4;

hA:=E+A^2+A^3+A^4;

we get

h(Ac) =



1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

1 1 α 0 α2 α α2

α2 α 0 1 α 1 α2

α2 0 α2 α2 α2 0 0

0 α2 0 α2 α2 α2 0


.

From the Magma command

gA*hA;

it follows h(Ac)g(Ac) = O and rk(h(Ac)) = 3. By Proposition 3.4.10, if we take 3 linearly

independent rows of h(Ac), then we obtain the following generator matrix of C

G =


1 0 0 1 α2 α2 α2

0 1 0 1 α 0 α2

0 0 1 α2 α2 0 0

 .

3.5 A construction of an Ac-GC code

First of all, inspired by [14], let us give here the following de�nitions.

De�nition 3.5.1. An Ac-GC code C is a code of type [n, k, d]q if C ⊆ Fnq , dim(C ) = k and

d(C ) = d.

De�nition 3.5.2.

DAc
q (n, k) := max {d | ∃ an Ac−GC code of type [n, k, d]q}

Similarly to [14, Proposition 3.1], we have the following
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Proposition 3.5.3.

DAc
q (n, k) ≥ DAc

q (n+ 1, k + 1).

Proof. Let g = g0 + g1X + ...+ gn−kX
n−k be the generator polynomial of an Ac-GC code Cn+1,k+1

with parameters [n+ 1, k+ 1, DAc
q (n+ 1, k+ 1)]. Observe that g0 and gn−k are distinct to zero and

that the generator matrix Gn+1,k+1 of Cn+1,k+1 has the form
g0 g1 ... gn−k 0 ... 0

0
... Gn,k

0

 ,

where Gn,k is the following matrix
g0 ... gn−k 0 ... 0

0 g0 ... gn−k ... 0
...

. . . . . .
...

0 ... 0 g0 ... gn−k

 .

Note that the minimum (Hamming) distance obtained from Gn,k is at least DAc
q (n+1, k+1). Since

g can be considered as also a generator polynomial of an Ac-GC code Cn,k of type [n, k, d]q with

d ≥ DAc
q (n+ 1, k + 1), we get DAc

q (n, k) ≥ d ≥ DAc
q (n+ 1, k + 1).

Remark 3.5.4. If C is an Ac-GC code of type [n, k,∆]q with distance ∆ ≥ 1, then we have

DAc
q (n, k) ≥ ∆. Therefore by Proposition 3.5.3 we see that for any integer δ such that 0 ≤ δ < k

there exists at least an Ac-GC code C ′ of type [n − δ, k − δ, d]q with d ≥ ∆ ≥ 1. Thus the above

result can be useful to ensure the existence and the construction of Ac-GC code's of type [n, k, d]q

with distance d greater than or equal to some �xed value ∆ and small values for n and k.

In what follows we try to construct vectors ~v ∈ Fnq such that 1 ≤ dim[~v] ≤ k for some integer

k < n, where [~v] ⊂ Fnq is the vector subspace generated by {~v,~vAc, ~vA2
c , ...}.

For any integer h such that 1 ≤ h ≤ n− 1, consider the equation

~vAhcxh + ...+ ~vA1
cx1 + ~vx0 = ~0. (3.5.1)

57



3.5. A construction of an Ac-GC code

If there exist a non-trivial vector ~v and non-zero xh ∈ Fq which satisfy the above

equation (3.5.1), we can deduce that ~vAhc can be written as a linear combination of vectors in{
~v,~vAc, ..., ~vA

h−1
c

}
, i.e. 1 ≤ dim[~v] ≤ h.

Thus the existence of a non-trivial vector ~v ∈ Fnq which satis�es equation (3.5.1) is ensured by

the existence of non-trivial solutions xh, ..., x1, x0 of the equation

det(Ahcxh + ...+ Acx1 + Ix0) = 0. (3.5.2)

So we have reduced the problem of �nding a vector ~v 6= ~0 in Fnq which is a solution of (3.5.1) to

the problem of �nding non-trivial solutions xh, ..., x1, x0 in Fq of (3.5.2). De�ne

Fh(x0, x1, ..., xh) := det(Ahcxh + ...+ Acx1 + Ix0).

We have the following

Lemma 3.5.5. The polynomial Fh(x0, x1, ..., xh) is a homogeneous polynomial of degree n in the

variables x0, x1, ..., xh.

Proof. For any λ ∈ Fq, we get

Fh(λx0, λx1, ..., λxh) = det(Ahc (λxh) + ...+ Ac(λx1) + I(λx0))

= det(λI · (Ahcxh + ...+ Acx1 + Ix0))

= det(λI) · det(Ahcxh + ...+ Acx1 + Ix0)

= λn · Fh(x0, x1, ..., xh),

and this gives the statement.

From Lemma 3.5.5 it follows that the zero locus Z(Fh(x0, x1, ..., xh)) of Fh(x0, x1, ..., xh) on the

projective space Ph(Fq) is well de�ned. Put

Zh,n := Z(Fh(x0, x1, ..., xh)) ⊂ Ph(Fq).

Then Zh,n is a hypersurface of Ph(Fq), i.e. dimZh = h − 1, of degree n ≥ h + 1. Moreover,

all the points of Zh,n represent non-trivial solutions of (3.5.2). This gives a relation between the

construction of an Ac-GC code C = [~v], with ~v ∈ Fnq , of dimension less or equal to h with the

existence of (rational) points on the hypersurface Zh,n ⊆ Ph(Fq).
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Remark 3.5.6. We know from [10] that the number Nq of Fq-points of the hypersurface Zh,n is

bounded for the following inequalities: (i) Nq ≤ (n− 1)q + 1 if h = 2, except for a curve Z2,4 over

F4; (ii) Nq ≤ (n− 1)qh−1 + nqh−2 + qh−2−1
q−1 if h ≥ 3.

Example 3.5.7. Consider the vector space F5
3 and the matrix

Ac =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2 2 1 2 1


.

Consider now the following equation

~vA4
cx4 + ~vA3

cx3 + ~vA2
cx2 + ~vAcx1 + ~vIx0 = ~0,

where ~v 6= ~0 and xi ∈ F3 for i = 0, . . . , 4. Hence

det(A4
cx4 + A3

cx3 + A2
cx2 + Acx1 + Ix0) = 0.

De�ne

F4(x0, x1, x2, x3, x4) := det(A4
cx4 + A3

cx3 + A2
cx2 + Acx1 + Ix0).

By Lemma 3.5.5, we see that F4 is a homogeneous polynomial of degree 5. So Z4,5 :=

Z(F4(x0, x1, x2, x3, x4) ⊂ P4(F3) is a hypersurface with dimZ4 = 3 and degree 5. By Remark

3.5.6 we have N4 ≤ 341. Moreover, the following Magma Program

A:=Matrix(GF(3),5,5,[0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,2,2,1,2,1]);

PointsCode := function(M);

k:=Parent(M[1,1]);

n:=Nrows(M);

P<[x]>:=ProjectiveSpace(k,n);

X:=Scheme(P,Determinant(&+[x[i+1]*A^i : i in [0..n]]));

pts:=Points(X);
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ll:=[];

for pp in pts do

p:=Eltseq(pp);

ll := ll cat [NullSpace(&+[p[i+1]*A^i : i in [0..n]])];

end for;

return ll;

end function;

we can �nd all the solutions of F4(x0, x1, x2, x3, x4) = 0. The two rational points p1 = [2 : 0 : 1 :

2 : 1] and p2 = [0 : 2 : 1 : 1 : 1] of Z4,5 ⊂ P4(F3) give the matrices

A1 =



2 0 1 2 1

2 1 1 0 0

0 2 1 1 0

0 0 2 1 1

2 2 1 1 2


, A2 =



0 2 1 1 1

2 2 0 0 2

1 0 1 1 2

1 2 2 2 0

0 1 2 2 2


,

and the vector ~v1 = (1, 0, 1, 1, 2) and ~v2 = (1, 0, 0, 0, 1) of the null spaces of A1 and A2 respectively.

By the following Magma Command

[Basis(PointsCode(A)[1])[1]*A^i : i in [0..Nrows(A)-1]];

we obtain the codes

C1 = 〈~v1, ~v1Ac, ~v1A2
c , ~v1A

3
c〉 = 〈(1, 0, 1, 1, 2), (1, 2, 2, 2, 0), (0, 1, 2, 2, 2), (1, 1, 0, 0, 1)〉 and

C2 = 〈~v2, ~v2Ac, ~v2A2
c , ~v2A

3
c〉 = 〈(1, 0, 0, 0, 1), (2, 0, 1, 2, 1), (2, 1, 1, 0, 0), (0, 2, 1, 1, 0)〉,

i.e.

C1 = 〈(1, 0, 1, 1, 2), (1, 2, 2, 2, 0)〉 and C2 = 〈(1, 0, 0, 0, 1), (2, 0, 1, 2, 1), (2, 1, 1, 0, 0)〉.

3.6 An immersion map for an Ac-GC code

In this section we will construct an immersion map of Fnq into Fmq which will be useful for �nding

duals codes of Ac-GC codes.
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De�ne f := Xn −
∑n−1

i=0 fiX
i ∈ R := Fq[X] and put m := min {i ∈ N | Aic = I}, where Ac is as

in (3.2.2). Note that the polynomial Xm − 1 is satis�ed by Ac and n ≤ m. Then by the Division

Algorithm there are q, r ∈ R such that Xm − 1 = (−1)nf · q + r, where deg r < deg f . Suppose

that r 6= 0. By replacing the matrix Ac in the last equation, we get

O = Amc − I = (−1)nf(Ac)q(Ac) + r(Ac) = r(Ac)

which contradicts the minimality of (−1)nf . Hence r = 0, that is Xm − 1 = (−1)nf · q. This tells

us that we can always �nd a natural number m such that

Xm − 1 = f · qf for some qf ∈ R. (3.6.1)

Note that qf can be written as qf = Xm−n +
m−n−1∑
i=0

qiX
i with q0 6= 0.

It is easy to see from (3.6.1) that (Xm − 1) ⊆ (f), i.e. R/Rf ⊆ R/(Xm − 1).

This is the motivation for the following

Lemma 3.6.1. Let m be as in (3.6.1) and let P be the m×m matrix
0 1
...

. . .

0 1

1 0 . . . 0

 .

Denote by ~qf := (q0, ..., qm−n, 0, ..., 0) ∈ Fmq , where the qi's are the coe�cients of qf ∈ R as in

(3.6.1). Then there exists a commutative diagram

Fnq
i //

πf

��

Fmq
πm

��
R/Rf

j
// Rm

such that πm ◦ i = j ◦ πf , where Rm := R/(Xm − 1) and i(~v) := ~vQ with Q the matrix
~qf

~qfP
...

~qfP
n−1


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and j(a+ f) := (a · qf ) + (Xm − 1) for any a ∈ R.

Proof. This follows from the linearity of the maps i, j, πf and πm by considering the canonical basis

of Fnq .

Proposition 3.6.2. With the same notation as in Lemma 3.6.1, we have

i(~cAkc ) = i(~c)P k

for any ~c ∈ Fnq and k ∈ N.

Proof. Let ~c ∈ Fnq . By Lemma 3.6.1 and Remark 3.2.8, we have the following two commutative

diagrams:

~c i //

πf

��

i(~c)

πm
��

πf (~c) j
// j(πf (~c))

where j(πf (~c)) = πm(i(~c)), and

~cAkc
i //

πf
��

i(~cAkc )

πm
��

Xk · πf (~c) j
// j(Xk · πf (~c))

where j(Xk · πf (~c)) = πm(i(~cAkc )). Since πm is an isomorphism, by the commutative diagram of

Lemma 3.6.1, we obtain

i(~cAkc ) = (πm)−1(j(Xk · πf (~c))) =

= (πm)−1(Xk · πf (~c) · qf ) = (πm)−1(Xk · j(πf (~c))) =

= (πm)−1(Xk · πm(i(~c))) = πm)−1 ◦ πm(i(~c)P k,

that is, i(~cAkc ) = i(~c)P k for any k ∈ N.

Remark 3.6.3. The maps i and j in Lemma 3.6.1 are injective. Moreover, Proposition 3.6.2

shows that the image via i of an Ac-GC code in Fnq is a cyclic code in Fmq , where m is de�ned as

in (3.6.1).

62



3.6. An immersion map for an Ac-GC code

Finally, let us give also some upper bounds and estimations about the integer m of (3.6.1).

Let GLn be the linear group of matrices n × n with coe�cients in Fq. From [20, p. 3] we know

that

|StabGLn(U)| = |GLn|
|Gq(k, n)|

,

where Gq(k, n) is the grassmannian variety over Fq and StabGLn(U) is the stabilizer of any

U ∈ Gq(k, n). Since

|GLn| =
n−1∏
i=0

(qn − qi)

and

|Gq(k, n)| = (qn − 1)(qn − q)...(qn − qk−1)
(qk − 1)(qk − q)...(qk − qk−1)

,

we obtain that

|StabGLn(U)| = (qk − 1)(qk − q)...(qk − qk−1)
∏n−1

i=0 (qn − qi)
(qn − 1)(qn − q)...(qn − qk−1)

=

=
n−1∏
i=k

(qn − qi) ·
k−1∏
j=0

(qk − qj). (3.6.2)

This allows us to prove the following upper bound for m.

Lemma 3.6.4.

m ≤ min
g|f

{
n−1∏
i=k

(qn − qi) ·
k−1∏
j=0

(qk − qj) | k = n− deg g

}
.

Proof. Let g be any divisor of f in R. By Proposition 3.2.7 we deduce that the Ac-GC code

π−1f ((g)kn,q) is invariant with respect to Ac. Thus 〈Ac〉 ⊆ StabGLn(π−1f ((g)kn,q)) and sincem := |〈Ac〉|,

the statement follows from (3.6.2).

Remark 3.6.5. Let Fq ⊆ K be a �nite extension of Fq such that f =
∏n

i=1(X − ai) with ai ∈ K

and Ac is diagonalizable over K. If mi := min
{
hi | ahii = 1

}
, then m = lcm(m1, ...,mn).

Remark 3.6.6. Let p := Char(Fq). If f has a root of multiplicity ≥ 2, then Xm − 1 has a root of

multiplicity ≥ 2. By Remark 3.4.6 we have gcd(m, p) 6= 1 and since p is a prime number, we get

m ≡ 0 mod p.
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3.6. An immersion map for an Ac-GC code

The next result gives a more simple computation for m.

Proposition 3.6.7. Denote by ~f := π−1f (Xn − f) and let

k := min
{
h ∈ N ∪ {0} | ~fAhc = ~e1

}
.

Then m = n+ k. In particular, we have deg qf := m− n = k.

Proof. For every h = 1, ..., n, we have

~eh A
n+k
c = ((~ehA

n−h+1
c )Akc )A

h−1
c = ((~enAc)A

k
c )A

h−1
c =

= (~fAkc )A
h−1
c = ~e1A

h−1
c = ~eh.

Hence An+kc = I and for the minimality of m we deduce that m ≤ n + k. Furthermore, since

Amc = I we get

~e1 = ((~e1A
n−1
c )Ac)A

m−n
c = (~enAc)A

m−n
c = ~fAm−nc ,

that is, ~fAm−nc = ~e1. So, by de�nition of k we can conclude that k ≤ m− n, i.e. m ≥ n+ k.

Let p0 be the order of det(Ac). Since Amc = I, it follows that (detAc)
m = 1, i.e. m ≡ 0 mod p0

with p0 the order of detAc. This gives immediately also the following

Proposition 3.6.8. Denote by B := Ap0c . Let m′ be the minimum integer such that Bm′ = I.

Then m = p0m
′. In particular, we have deg qf = p0m

′ − n.

All the above results produce the following

Algorithm 1:

Input: f

• De�ne a0 := detAc;

• Compute the order p0 of a0;

• De�ne B := Ap0c ;

• Find the rational canonical form B′ of B;
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• For any diagonal block Bi, i = 1, ..., s, of B′ compute m′i = min
{
h | Bh

i = I
}
.

Output: m = lcm(m′1, ...,m
′
s) · p0.

By using the computer algebra system Magma [3], the MAGMA Program 1 (Ch. 5) allows us

to �nd the integer m as in (3.6.1) for any polynomial f ∈ R.

3.7 Quasi-Euclidean dual Codes

In what follows we study another kind of dual codes, the Quasi-Euclidean dual codes, and we

investigate some of their properties and connections between them and the Euclidean dual codes.

Let

f = Xn −
n−1∑
i=0

fiX
i ∈ R

be a monic polynomial of degree n. By Lemma 3.6.1, we know that there exists an injective map

i : Fnq → Fmq with m ≥ n. Denote by I the image of i and by P the m×m permutation matrix of

Lemma 3.6.1. De�ne B := QQt with Q as in Lemma 3.6.1, where Qt is the transpose of Q. Note

that B is a symmetric matrix.

Let r be the rank of the matrix B and observe that

r := rkB = n− dim(Ker Qt ∩I )

with 0 ≤ r ≤ n.

Remark 3.7.1. When r = 0, we see that B is the null matrix and in this case Q represents the

generator matrix of a self-orthogonal cyclic code of dimension n in Fmq .

De�nition 3.7.2. Let C ⊆ Fnq be a linear code. We denote by ·∗ the quasi-euclidean scalar

product on Fnq de�ned by ~a ·∗ ~b := ~aB~bt for any ~a,~b ∈ Fnq and by C ∗ the linear quasi-euclidean

dual code of C with respect to ·∗, i.e.

C ∗ :=
{
~x ∈ Fnq | ~x ·∗ ~c = 0 for every ~c ∈ C

}
.

Proposition 3.7.3. Let C ⊆ Fnq be a linear code. Then we have
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3.7. Quasi-Euclidean dual Codes

(i) C ∗ = (C ? B)⊥.

(ii) dim C ∗ = dim C ⊥ + dim(C ∩Ker B) ≥ dim C ⊥;

(iii) C ∗ ? B = C ⊥ ∩ (Im B);

(iv) (C ∗)∗ = C + Ker B;

(v) i(C ∗) = i(C )⊥ ∩I = i(C + Ker B)⊥ ∩I ;

(vi) (Fnq )∗ = Ker B = (Im B)⊥, (Ker B)∗ = Fnq , (Ker B)∗∗ = Ker B.

Proof. (i) To prove C ∗ = (C ? B)⊥, we observe that

~w ∈ (C ? B)⊥ ⇐⇒ ~w · (~cB) = 0, ∀~c ∈ C

⇐⇒ ~wBt~ct = 0, ∀~c ∈ C

⇐⇒ ~wB~ct = 0, ∀~c ∈ C

⇐⇒ ~w ·∗ ~c = 0, ∀~c ∈ C

⇐⇒ ~w ∈ C ∗ .

(ii) This follows from

dim(C ? B) = dim C − dim(C ∩Ker B)

and dim C ∗ = n− dim(C ? B).

(iii) If ~x ∈ C ∗ ? B, then ~x ∈ Im B and ~x = ~c∗B with ~c∗ ∈ C ∗. Hence for every ~c ∈ C we get

~x · ~c = ~c∗B · ~c = ~c∗ ·∗ ~c = 0,

i.e. C ∗ ? B ⊆ C⊥ ∩ (Im B).

On the other hand, let ~y ∈ C ⊥ ∩ (Im B). Then ~y = ~vB ∈ C ⊥ for some ~v ∈ Fnq . Thus for every

~c ∈ C we have

~v ·∗ ~c = ~vB~ct = ~y · ~c = 0,

that is, C ⊥ ∩ (Im B) ⊆ C ∗ ? B.
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(iv) If ~c+~b ∈ C + Ker B where ~c ∈ C and ~b ∈ Ker B, then for every ~xt ∈ C ∗ we get

(~c+~b) ·∗ ~x = (~c+~b)B~xt = ~cB~xt +~bB~xt = ~cB~xt = ~c ·∗ ~x = 0,

that is, C + ker(B) ⊆ (C ∗)∗.

Conversely, to prove (C ∗)∗ ⊆ C + Ker B it is su�cient to observe that

~x ∈ (C ∗)∗ ⇒ ~v ·∗ ~x = 0, ∀~x ∈ C ∗

⇒ ~vB~xt = 0, ∀~x ∈ C ∗

⇒ ~vB ∈ (C ∗)⊥ = C ? B

⇒ ~vB = ~cB, for some ~c ∈ C

⇒ (~v − ~c)B = ~0, for some ~c ∈ C

⇒ ~v − ~c ∈ Ker B, for some ~c ∈ C

⇒ ~v ∈ C + Ker B.

(v) If ~x ∈ i(C ∗), then ~x = i(~v) = ~vQ ∈ I for some ~v ∈ C ∗. Hence for every ~c ∈ C and

~b ∈ Ker B, we have

~x · i(~c+~b) = ~x · i(~c) + ~x · i(~b) = ~v ·∗ ~c+ ~v · (~bB) = 0,

that is, (C ∗) ⊆ i(C + Ker B)⊥ ∩ I . Now, let ~x ∈ (C + Ker B)⊥ ∩ I , i.e. ~x = (~v) = ~vQ ∈

i(C + Ker B)⊥ ⊆ i(C )⊥ for some ~v ∈ Fnq . Thus for every ~y ∈ C we have

~v ·∗ ~y = ~vB~yt = (~vQ)(~yQ)t = ~x · i(~y) = 0,

i.e. ~v ∈ C ∗. Hence we get ~x = i(~v) ∈ i(C ∗), that is, i(C + Ker B)⊥ ∩I ⊆ i(C ∗).

Let us prove now that i(C ∗) is also equal to i(C )⊥ ∩I . Let ~x ∈ i(C ∗). Then ~x = i(~c∗) ∈ I

for some vector ~c∗ ∈ C ∗. Therefore for every ~c ∈ C we have

~x · i(~c) = i(~c∗) · i(~c) = ~c∗ ·∗ ~c = 0,

i.e. ~x ∈ i(C )⊥ ∩I . On the other hand, let ~y ∈ i(C )⊥ ∩I . Then ~y = i(~z) ∈ I for some ~z ∈ Fnq
and for every ~c ∈ C we get

0 = i(c) · ~y = i(c) · i(z) = ~c ·∗ ~z.
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Hence ~z ∈ C ∗, i.e. ~y ∈ i(C ∗).

(vi) Since ({~0})∗ = Fnq , the equalities (Fnq )∗ = (Im B)⊥ and (Fnq )∗ = Ker B follow easily from

(i) with C = Fnq and from (iv) with C = {~0} respectively. Finally, by taking C = Ker B, the

equalities (Ker B)∗ = Fnq and (Ker B)∗∗ = Ker B are immediate consequences of (i) and (iv),

respectively.

Remark 3.7.4. From Theorem 3.7.4 (iv) it follows that C ⊆ (C ∗)∗.

Corollary 3.7.5. Let C ⊆ Fnq be a linear code. If r = n, then we have

(j) C ∗ = C ⊥ ? B−1;

(jj) dim C ∗ = dim C ⊥;

(jjj) (C ∗)∗ = C .

(jv) i(C ∗) = i(C )⊥ ∩I ;

(v) (Fnq )∗ = {~0}, ({~0})∗ = Fnq .

Proof. Parts (j) and (jj) follow from Proposition 3.7.3(ii) and (iii). As to (jjj), it is su�cient to

note that r = n implies that Ker B = {~0}.

Remark 3.7.6. When r = n, from Corollary 3.7.5 we know that C ∗ = C ⊥?B−1. Thus Proposition

3.3.3 allows us to �nd easily a generator matrix of C ∗ by multiplying on the right the parity check

matrix of C in Proposition 3.3.3 by B−1.

Corollary 3.7.7. Let C ⊆ Fnq be a linear code. Then

C ⊆ C ∗ ⇐⇒ i(C ) ⊆ i(C )⊥,

i.e. C is self-ortogonal with respect to ·∗ if and only if i(C ) is self-ortogonal with respect to ·.

Proof. Since i is injective, the statement is an immediate consequence of Proposition 3.7.3 (v) and

the following equivalence: i(C ) ⊆ i(C )⊥ ∩I ⇐⇒ i(C ) ⊆ i(C )⊥.
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Remark 3.7.8. If C ⊆ Fnq is an Ac-GC code and Ker B ⊆ C , then the code C + Ker B is an

Ac-GC code. In particular, when r = n, it follows that

C = C ⊥ ⇐⇒ C ? B−1 is the dual code C ∗ of C .

Example 3.7.9. In F3
4, where F4 = F2[α] with α2 + α + 1 = 0, consider the following four

polynomials:

(a) f0 = X3 +X2 + 1;

(b) f1 = X3 + α2X2 + α2X + 1;

(c) f2 = X3 + αX2 + αX + 1;

(d) f3 = X3 + α2.

By applying Program 2 (Ch. 5), we obtain m = 7 for the �rst case, m = 9 for the fourth case and

m = 5 for the other cases. Then

X7 − 1 = f0 · qf0 , X5 − 1 = f1 · qf1 = f2 · qf2 , X9 − 1 = f3 · qf3

where

qf0 = X4 +X3 +X2 + 1, qf1 = X2 + α2X + 1,

qf2 = X2 + αX + 1, qf3 = X6 + α2X3 + α.

Therefore this gives

Q0 =


1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

 , Q1 =


1 α2 1 0 0

0 1 α2 1 0

0 0 1 α2 1

 ,

Q2 =


1 α 1 0 0

0 1 α 1 0

0 0 1 α 1

 , Q3 =


α 0 0 α2 0 0 1 0 0

0 α 0 0 α2 0 0 1 0

0 0 α 0 0 α2 0 0 1

 ,
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and

B0 =


0 0 0

0 0 0

0 0 0

 , B1 =


α 0 1

0 α 0

1 0 α

 ,

B2 =


α2 0 1

0 α2 0

1 0 α2

 , B3 =


0 0 0

0 0 0

0 0 0

 ,

with rk B0 = B3 = 0 and rk B1 = rk B2 = 3. Note that from Remark 3.7.1 it follows that Q0 and

Q3 are the generator matrices of self-orthogonal cyclic codes of F7
4 and F9

4 respectively.

By Magma Program 5 (Ch. 5) we see that f0 and f3 are irreducible polynomial in F4[X] and

f1 = (X + 1) · (X2 + αX + 1), f2 = (X + 1)(X2 + α2X + 1)

Therefore, we have the following non-trivial codes

C1 = (X + 1)23,4, (X2 + αX + 1)13,4 , C2 = (X + 1)23,4, (X2 + α2X + 1)13,4 ,

with generator matrices

G1 =

 1 1 0

0 1 1

 ,
(

1 α 1
)

and G2 =

 1 1 0

0 1 1

 ,
(

1 α2 1
)

;

respectively. From Proposition 3.3.3 we deduce that the parity check matrices of the Ci's for

i = 1, 2 are

H1 =
(

1 1 1
)
,

 1 0 1

0 1 α

 and H2 =
(

1 1 1
)
,

 1 0 1

0 1 α2

 ;

Therefore we have

C ∗1 = (X2 + αX + 1)13,4, (X + 1)23,4;

C ∗2 = (X2 + α2 + 1)13,4, (X + 1)23,4.
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3.8 Hermitian dual Codes

We can introduce also the notion of dual Hermitian codes and give some of their properties.

We de�ne a �conjugation� map Φ on R/RF for some F ∈ R such that

Φ(aX i) := aXdegF−i,

where 0 ≤ i ≤ degF − 1, which is extended to all elements of R/RF by linearity. We

then de�ne a Hermitian product of two elements p(X) = p0 + p1X + ... + pm−1X
m−1 and

t(X) = t0 + t1X + ...+ tm−1X
m−1 of R/(Xm − 1) by

p(X) ∗P t(X) := p(X)Φ(t(X)).

By Lemma 3.6.1 we can also de�ne the Hermitian product of two elements a(X) = a0 + a1X +

...+ an−1X
n−1 and b(X) = b0 + b1X + ...+ bn−1X

n−1 of R/Rf by

< a(X), b(X) >:= j(a(X)) ∗P j(b(X)).

The following two results are now an immediate generalization of [15, Proposition 3.2 and

Corollary 3.3].

Theorem 3.8.1. If ~a,~b ∈ Fnq and let a(X) and b(X) be their polynomial representation in R/Rf

via πf , respectively. Then

~a ·∗ ~bAhc = 0 for all 0 ≤ h ≤ m− 1 ⇐⇒ < a(X), b(X) >= 0.

Proof. The condition < a(X), b(X) >= 0 is equivalent to

j(a(X)) ∗P j(b(X)) = 0 ⇐⇒ a(X)qfΦ(b(X)qf ) = 0

⇐⇒

(
m−1∑
i=0

a′iX
i

)
· Φ

(
m−1∑
k=0

b′kX
k

)
= 0

⇐⇒

(
m−1∑
i=0

a′iX
i

)
·

(
m−1∑
k=0

b′kX
m−k

)
= 0

⇐⇒
m−1∑
h=0

(
m−1∑
i=0

a′i+hb
′
i

)
Xh = 0,
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where the subscript i + h is taken modulo m. Comparing the coe�cients of Xh on both sides of

the last equation, we get
m−1∑
i=0

a′i+hb
′
i = 0, for all 0 ≤ h ≤ m− 1.

By Proposition 3.6.2 the above equation is equivalent for all 0 ≤ h ≤ m− 1 to

~a′ · ~b′(Θh ◦ P h) = 0 ⇐⇒ i(~a) · i(~b)P h = 0

⇐⇒ i(~a) · i(~bAhc ) = 0

⇐⇒ ~aQ · (~bAhc )Q = 0

i.e. ~a ·∗ ~bAhc = 0 for all 0 ≤ h ≤ m− 1.

Let I be a left ideal of R/Rf .

We de�ne Iν to be the dual of I in R/Rf taken with respect to the Hermitian scalar product

<,>, as

Iν := {a(X) ∈ R/Rf | < a(X), t(X) >= 0 , ∀t(X) ∈ I }.

Remark 3.8.2. Note that Iν is an ideal of R/Rf with respect to the addition in R/Rf .

From Theorem 3.8.1, we deduce the following

Theorem 3.8.3. Let C ⊆ Fnq be a Ac-GC code. We have

πf (C
∗) = πf (C )ν .

Proof. Let πf (~b) ∈ πf (C ∗) for some ~b ∈ C ∗. Then we have for any ~a ∈ C and h ∈ Z≥0

~b ·∗ ~aAhc = 0.

Thus by Theorem 3.8.1 we get

< πf (~b), πf (~a) >= 0 ∀ ~a ∈ C ,

i.e. πf (~b) ∈ πf (C )ν . Hence πf (C ∗) ⊆ πf (C )ν . Finally, let b(X) ∈ πf (C )ν . Then we see that

< b(X), πf (~a) >= 0, ∀~a ∈ C .
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By Theorem 3.8.1 with h = 0, this implies that

π−1f (b(X)) ·∗ ~a = 0, ∀~a ∈ C ,

i.e. π−1f (b(X)) ∈ C ∗. This shows that

b(X) = πf (π
−1
f (b(X)) ∈ πf (C ∗),

i.e. πf (C )ν ⊆ πf (C ∗).

Corollary 3.8.4. Let C ⊆ Fnq be a linear code. We have

(i) If C is a Ac-GC code then C ∗ is also a Ac-GC code.

(ii) C ∗ is an Ac-GC code if and only if C + Ker B is an Ac-GC code.

Proof. (i) If C is an Ac-GC code then πf (C ) is an ideal of R/Rf . By Remark 3.8.2 and Corollary

3.8.3 we have that πf (C ∗) = πf (C )ν is an ideal of R/Rf , so that C ∗ is an Ac-GC code.

(ii) By Part (i), if C ∗ is an Ac-GC code, then (C ∗)∗ = C + Ker B is an Ac-GC code.

Conversely we note that if C + Ker B is an Ac-GC code, then i(C + Ker B) is a cyclic code,

thus i(C + Ker B)⊥ is a cyclic code. Since I is a cyclic code, by Proposition 3.7.3 (v) we obtain

that i(C ∗) = i(C + Ker B)⊥ ∩I is a cyclic code, so that C ∗ is an Ac-GC code.

Let us note here that the converse of Corollary 3.8.4 is not true in general, as the following

example shows.

Example 3.8.5. In F3
4, where F4 = F2[α] with α2 + α + 1 = 0, consider the polynomial

f2 = X3 + α2X2 + α2X + α. Then by Magma Program 2 (Ch. 5), we obtain m = 6 and

B2 =


0 α2 α2

α2 0 α2

α2 α2 0

 ,

with rk B2 = 2. Consider the linear code C ⊂ F3
4 generated by the vectors ~e1 = (1, 0, 0) and

~e3 = (0, 0, 1). Since

(~e3Ac = (~e3)


0 1 0

0 0 1

α α2 α2

 = (α, α2, α2) /∈ C ,
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we see that C is not an Ac-GC code. On the other hand, since Ker B2 is generated by the vector

(1, 1, 1) and C ∩Ker B2 = {~0}, we obtain that

C + Ker B2 = C ⊕Ker B2 = F3
4

is an Ac-GC code. By Corollary 3.8.4 we get that C ∗ is an Ac-GC code.

Example 3.8.6. Consider the vector space F3
4 where F4 = F2(α) with α2 + α + 1 = 0. Let

f = X3 + α2X + αX + 1 and write Ac =


0 1 0

0 0 1

1 α α2

. By applying the Magma Program 2

(Ch. 5), we obtain m = 12, i.e. A12
c = I. Then by Lemma 3.6.1 there exist a commutative diagram

F3
4

i //

πf

��

F12
4

πm

��
R/Rf

j
// R12

such that π′ ◦ i = j ◦ πf , where R12 := R/R(X12 − 1), R = F4[X], i(~v) := ~vQ with

Q =


1 α 0 0 α α2 0 0 α2 1 0 0

0 1 α 0 0 α α2 0 0 α2 1 0

0 0 1 α 0 0 α α2 0 0 α2 1

 .

Since f = (X+α2)3 = (X+α2)(X2 +α), we considering the Ac-GC code's C1 = (X+α2)23 and

C2 = (X2 + α)13. Is easy to see that B := QQt =


0 0 0

0 0 0

0 0 0

, then C ∗1 = C ∗2 = F3
4. By Theorem

3.8.3 π(C1)
ν = π(C ∗1 ) = π(C ∗2 ) = R/Rf.

By Corollary 3.7.5, the following proposition is immediate.

Corollary 3.8.7. Let C ⊆ Fnq be a linear code and r = n, then

C is an Ac-GC code ⇔ C ∗ is an Ac-GC code.
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Corollary 3.8.8. If C ⊆ Fnq be a Ac-GC code, then

C = C ∗ ⇐⇒ πf (C ) = πf (C )ν ,

i.e. C is self-dual with respect to ·∗ if and only if πf (C ) is self-dual with respect to <,>.

Proof. Since πf is an isomorphism, this follows immediately from Corollary 3.8.3.

3.9 A Meggitt type decoding

In this section, we give here a generalization of Meggitt Decoding of Chapter 2, §2.6.

Let C = (g)kn,q an Ac-GC code. Denote by Rg(v) the rest of the division of v ∈ R by g and

de�ne the syndrome S(v) of v as S(v) := Rg(X
n−k · v), where deg g = n− k.

Lemma 3.9.1. Under the same hypothesis as above, we have

S(v) = 0 ∈ R if and only if v ∈ πf (C ).

Proof. Let v ∈ R such that S(v) = 0 ∈ R. Then Rg(X
n−k · v) = 0 and so we can deduce that

Xn−k · v ∈ πf (C ), i.e. Xn−k · v = h · g for some h ∈ R.

Put t := f−10 Xn−1 − ...− f−10 f1 and note that t ·X = 1 in R. Hence

tn−k · h · g = tn−k · (Xn−k · v) = (tn−k · (Xn−k)) · v = v,

that is, v ∈ πf (C ). On the other hand, if v ∈ π(C ), then v = q · g for some q ∈ R. Thus by

de�nition we can conclude that S(v) = 0 ∈ R.

Let ~m ∈ Fkq be the original message and code ~m as

~m′ := ~m ·G ∈ C ,

where G is the above generator matrix of C = (g)kn. Note that

πf (~m
′) = πf (~m ·G) = πf (~m) · g ∈ (g) ⊂ R.
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We now give here a Meggitt algorithm for an Ac-GC code. For any c ∈ R, denote by wt(c) the

Hamming weight of π−1(c) ∈ Fnq . Let us recall that in this situation the main hypothesis is that

the error ~e de�ned by

~e := ~m′′ − ~m′ ∈ ~m′′ + C

has weight ≤ d−1
2
, where d is the distance of C and ~m′′ is the received message. Moreover, by

Lemma 3.9.1 we have

S(πf (~m
′′)) = S(πf (~e))

and recall that

(f−10 Xn−1 − ...− f−10 f1) ·X = 1 ∈ R/Rf.

Algorithm 2 (An Ac-Meggitt type algorithm):

Input: ~m′′

• Step 1: Compute all the syndromes S(e′), where e′ =
∑n−1

i=0 e
′
iX

i is such that wt(e′) ≤ d−1
2

and e′n−1 6= 0;

• Step 2: Compute S(π(~m′′)) and de�ne s := S(π(~m′′));

• Step 3: If s = 0 ∈ R then write ~e = ~0;

• Step 4: If s is equal to some of the syndromes S(e′) of Step 1, then write ~e = π−1(e′);

• Step 5: If s is not in the list of Step 1, then

~m′′ = ~m′ + π−1(e)

for some error e ∈ R such that wt(e) ≤ d−1
2

and e =
∑h

j=0 ejX
j with eh 6= 0 and h < n− 1.

Always there exists an integer k := n− h− 1 such that

e′′ := Xk · e

is an error as in Step 1, that is, e′′ =
∑n−1

i=0 e
′′
iX

i with wt(e′′) ≤ d−1
2

and e′′n−1 6= 0. Thus by

Lemma 3.9.1 the syndrome S(Xkπ(~m′′)) is equal to S(e′′) with e′′ as in Step 1 and we write

~e = π−1f ((f−10 Xn−1 − ...− f−10 f1)
ke′′);
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3.9. A Meggitt type decoding

Output: ~m′ = ~m′′ − ~e.

Example 3.9.2. This decoding is analogous to Meggitt Decoding of Chapter 3. However, in step 5,

the decoding is di�erent. Let C = (1+X4+X6+X7+X8)715 be a binary Ac-GC code with d(C ),such

that πf (C ) is an ideal of R/Rf where f = 1+X+X4+X5+X6+2X8+X9+X11+X13+X14+X15.

As in Example 2.4.10, the polynomial e′ := 1 +X2 +X3 +X4 +X6 is not in the list in Example

2.4.6. In this case k = 1 and

e′′ := X · e′ = X +X3 +X4 +X5 +X7

is an error as in Step 1. We write

~e = π−1f ((1 +X3 +X4 +X5 + 2X7 +X8 +X10 +X12 +X13 +X14) · e′′)

and decoding ~m′ = ~m′′ − ~e.
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Chapter 4

Product Semi-Linear Codes

Recently there has been a lot of interest in algebraic codes in the setting of skew polynomial rings

which form an important family of non-commutative rings. Skew polynomials rings have found

applications in the construction of algebraic codes, where codes are de�ned as ideals (submodules)

in the quotient rings (modules) of skew polynomials rings. The main motivation for considering

these codes is that polynomials in skew polynomial rings exhibit many factorizations and hence

there are many more ideals in a skew polynomial ring than in the commutative case. Furthermore,

the research on codes in this setting has resulted in the discovery of many new codes with better

Hamming distance than any previously known linear code with same parameters.

In this chapter, we introduce the notion of product semi-linear T -codes, a generalization of

module skew codes and a subcase of linear codes invariant under a semi-linear transformation T

of Fnq with n ≥ 2. In particular, we study from a theoretical point of view some properties of

the Euclidean, Quasi-Euclidean and Hermitian dual codes of products semi-linear T -codes and

the main relations among them. Finally, we show a method for encoding, decoding and detecting

errors by the above code and we give an algorithm to construct a code invariant under any given

semi-linear transformation.
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4.1. Notation and background material

4.1 Notation and background material

Denote by θ : Fq → Fq an automorphism of the �nite �eld Fq. Let us recall here that if q = ps

for some prime number p, then the map θ̃ : Fq → Fq de�ned by θ̃(a) = ap is an automorphism on

the �eld Fq which �xes the sub�eld with p elements. This automorphism θ̃ is called the Frobenius

automorphism and it has order s. Moreover, it is known that the cyclic group it generates is the

full group of automorphisms of Fq, i.e. Aut(Fq) =< θ̃ >. Therefore, any θ ∈ Aut(Fq) is de�ned as

θ(a) := θ̃t(a) = ap
t
, where a ∈ Fq and t is an integer such that 0 ≤ t ≤ s. Furthermore, when θ

will be the identity automorphism id : Fq → Fq, we will write simply θ = id.

From [8], a semi-linear map T : Fnq → Fnq is the composition of an automorphism θ of Fq with

an Fq-linear transformation M , i.e. (~v)T := (~v)Θ ◦M , where (v1, ..., vn)Θ := (θ(v1), ..., θ(vn)) and

M is an n × n matrix with coordinates in Fq. In this case we call T a θ-semi-linear map, or a

θ-semi-linear transformation.

For any ~v ∈ Fnq and any T as above, let [~v] denote the T -cyclic subspace of Fnq spanned by

{~v, (~v)T, (~v)T 2, ...}.

Vector subspaces CT ⊂ Fnq invariant by a θ-semi-linear transformation T will be called here

semi-linear T -codes, or T -codes for simplicity.

Remark 4.1.1. If θ = id, then CT is invariant by M . If θ 6= id and M = Ac, where Ac is as in

De�nition 3.2.1, then CT is invariant by Θ◦Ac and we can observe that this code is a generalization

of an Ac-GC code.

The main result of [13] allows us to decompose the vector space Fnq into a direct sum of very

special vector subspaces and to �nd a normal canonical form for any θ-semi-linear transformation.

De�nition 4.1.2. Let A and B be two matrices. We say that A is θ-similar to B, and we

write A ∼θ B, if there exists an invertible matrix C such that A = (Cθ)
−1BC, where Cθ is the

matrix obtained by applying the automorphism θ to each entry of C. Moreover, we say that two

θ-semi-linear maps T = Θ ◦M and T ′ = Θ ◦M ′ of Fnq are θ-similar if M ∼θ M ′ and in this case

we simply write T ∼θ T ′.

79



4.1. Notation and background material

By choosing the basis of Fnq to be the union of appropriate bases

{
~ui, T (~ui), T

2(~ui), ..., T
dim[~ui]−1(~ui)

}
of T -cyclic subspaces [~ui], i = 1, ..., r, it follows immediately the existence of a normal canonical

form for any θ-semi-linear map T .

Theorem 4.1.3 ([13], Theorem 5). Let θ and T be an automorphism of Fq and a θ-semi-linear

transformation on Fnq , respectively. Then

Fnq = [~u1]⊕ ...⊕ [~ur],

for T -cyclic subspaces [~ui] satisfying dim[~u1] ≥ dim[~u2] ≥ ... ≥ dim[~ur]. Moreover, if T = Θ ◦M

then

T ∼θ Θ ◦ diag(M1, ...,Mr),

where M ∼θ diag(M1, ...,Mr) and each Mi is a ni × ni matrix of the following form
0 1
...

. . .

0 1

ai,0 ai,1 . . . ai,ni−1


with ni ≥ 1 and such that

∑r
i=1 ni = n.

Construction: We recall here the construction of the vectors ~ui, i = 1, ..., r, which appear in the

above result (see [13, §6]). Let {~e1, ..., ~en} be a basis for Fnq and suppose that the θ-semi-linear

map T sends ~ek into

~ekT = ~e1τ1k + ...+ ~enτnk,

for k = 1, ..., n, or using the usual rule of matrix multiplication

(~e1T, ..., ~enT ) = (~e1, ..., ~en)T ,

where T = [τij].
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Let Fnq [t] be the extension of Fnq obtained by allowing the coe�cients to range in Fq[t, θ],

i.e. Fnq [t] is the totally of forms ~x(t) :=
∑n

i=1 ~eiξi(t), where ξi(t) ∈ Fq[t, θ]. Note that this

de�nition is independent of the choice of basis of Fnq and that Fnq [t] is an abelian group under

addition. The correspondence ~x(t) → ~x(t)a(t) with a(t) ∈ Fq[t, θ] is an automorphism of this

group. Thus Fnq [t] may be looked upon as an abelian group (Fnq [t],Fq[t, θ]) with operators Fq[t, θ].

With ~x(t) :=
∑n

i=1 ~eiξi(t) we associate the vector ~x :=
∑n

i=1 ~eiξi(T ) and with the automorphism

~x(t) → ~x(t)a(t) we associate the automorphism ~x → ~xa(T ). These correspondences de�ne a

surjective operator homomorphism Φ of (Fnq [t],Fq[t, θ]) onto (Fnq ,Fq[T, θ]). De�ne f1(t), ..., fn(t) by

(f1(t), ..., fn(t)) = (~e1, ..., ~en)(T − tI),

where T = [τij] and I denotes the unit matrix. From [13, Lemma 4] we know that {f1(t), ..., fn(t)}

is a basis for Ker Φ, the kernel of Φ. We may replace the bases {~e1, ..., ~en} and {f1(t), ..., fn(t)} of

Fnq [t] and Ker Φ respectively by

(~e∗1(t), ..., ~e∗n(t)) = (~e1, ..., ~en)U(t)−1

and

(f ∗1 (t), ..., f ∗n(t)) = (f1(t), ..., fn(t))V (t),

where U(t) and V (t) are invertible matrices in the ring of matrices of n rows and columns with

coordinates in Fq[t, θ]. Then we have

(f ∗1 (t), ..., f ∗n(t)) = (~e∗1(t), ..., ~e∗n(t))U(t)(T − tI)V (t),

and in view of [13, §5] we may choose U(t) and V (t) so that V (t)(T − tI)U(t) has the form

1
. . .

1

µ1(t)
. . .

µr(t)


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where the invariant factors µi(t) are bounded with bounds µ∗i (t) = µi(t)hi(t) dividing µi(t) if i < r

and i < j (e.g., see the Appendix 5.1).

De�ne ~e∗i := Φ(~e∗i(t)) for i = 1, ..., r. Since ~e∗j(t) ∈ Ker Φ for j = 1, ..., n − r, we have

~e∗1 = ~0, ..., ~e∗n−r = ~0. Thus denote by

~ui := ~e∗n−r+i = Φ(~e∗n−r+i(t)),

for i = 1, ..., r. From [13, p. 496] it follows that if

µi(t) = tmi − ai,mi−1t
mi−1 − ...− ai,2t2 − ai,1t− ai,0,

then

(~u1, ~u1T, ..., ~u1T
m1−1, ..., ..., ~ur, ~urT, ..., ~urT

mr−1)

is a basis for Fnq .

This gives a construction method to �nd the vectors ~ui of Theorem 4.1.3.

Remark 4.1.4. By Theorem 4.1.3, we know that any θ-semi-linear transformation T = Θ ◦M is

θ-similar to

D := Θ ◦ diag(M1, ...,Mr) = (Θ ◦M1, ...,Θ ◦Mr),

i.e. there exists an invertible matrix

C :=


C1

...

Cr

 , where Ci :=


~ui

(~ui)T
...

(~ui)T
ni−1

 for every i = 1, ..., r,

such that

T = C−1DC = C−1(Θ ◦ diag(M1, ...,Mr))C = C−1(Θ ◦M1, ...,Θ ◦Mr)C,

where ni := dim[~ui] for i = 1, ..., r and each Θ ◦Mi is the θ-semi-linear transformation on Fni
q

such that Fnq = Fn1
q × ...× Fnr

q with
∑r

i=1 ni = n. This gives a one -to-one correspondence between

linear codes invariant under T and linear codes invariant under D. Therefore we can construct

any semi-linear D-code CD := CT ? C
−1 from a semi-linear T -code CT , and vice versa.
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Remark 4.1.5. Let T = Θ ◦M be a θ-semi-linear transformation. If M is an n× n matrix with

coordinates in Fθq ⊆ Fq, the sub�elds of Fq �xed by θ, then M admits a rational normal form (by

Magma command RationalForm(M), i.e. there exists an invertible matrix C with coordinates in

Fθq such that M = C−1M ′C, where M ′ := diag(M1, ...,Mk) and each Mi is a ni × ni matrix as in

Theorem 4.1.3 de�ned over Fθq (see Example 3.1.9) . Thus we have

CTC−1 = C(Θ ◦M)C−1 = Θ ◦ CMC−1 = Θ ◦M ′ = D

and in this case it is easy to �nd a matrix C which transforms a T -code into a D-code, and vice

versa. Typical examples of this situation are the skew quasi-cyclic codes, where the matrix M is a

permutation matrix P such that P = Pθ = Pθ−1.

Consider the ring structure de�ned on the following set:

R := Fq[X; θ] = {asXs + ...+ a1X + a0 | ai ∈ Fq and s ∈ N} .

The addition in R is de�ned to be the usual addition of polynomials and the multiplication is

de�ned by the basic rule X · a = θ(a)X for any a ∈ Fq and extended to all elements of R by

associativity and distributivity. The ring R is known as skew polynomial ring and its elements are

skew polynomials. Moreover, it is right Euclidean ring whose left ideals are principals.

From now on, together with the same notation as above, we will always assume the following

Hypothesis (∗) : T = Θ ◦M is a �xed θ-semi-linear transformation of Fnq which is θ-similar

to D := Θ ◦ diag(M1, ...,Mr) by a matrix C and fj := (−1)nj(Xnj −
∑nj−1

i=0 aj,iX
i) ∈ R is the

characteristic polynomial of Mj with aj,0 6= 0, where the coe�cients aj,i are given by Theorem

4.1.3 for every j = 1, ..., r and i = 0, ..., nj − 1.

Denote by πj : Fnj
q → R/Rfj the linear transformation which sends a vector ~cj = (c0, ..., cnj−1) ∈

Fnj
q to the polynomial class cj(X) =

∑nj−1
i=0 ciX

i of R/Rfj.

Moreover, consider the linear map

π : Fn1
q × ...× Fnr

q → Rn := R/Rf1 × ...×R/Rfr,
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where π = (π1, ..., πr) and the linear transformation πj : Fnj
q → R/Rfj is de�ned as above for each

j = 1, ..., r.

Let C ⊆ Fnq be a linear code and de�ne the linear code

C ? C−1 := { ~c C−1 ∈ Fnq | ~c ∈ C }.

We can obtain now the following characterization of any T -code in Fnq .

Theorem 4.1.6. With the same notation as in (∗), let C ⊆ Fnq be a linear code and put

C ′ := C ? C−1. Then

C is a T -code ⇐⇒ C ′ is a linear code invariant under D ⇐⇒ π(C ′) is a left R-submodule

of Rn.

Proof. . From Remark 4.1.4, we know that any T -code can be written as C ′ ? C, where C ′ is

a linear code invariant by D, and vice versa. So it is su�cient to show that a linear code C ′

is invariant under D if and only if π(C ′) is a left R-submodule of Rn. Let C ′ be a linear code

invariant by D. Note that π(C ′) is an abelian group with respect to the sum. Moreover, observe

that X · π(~v) = π(~vD) ∈ π(C ′) for any ~v ∈ C ′. By an inductive argument and linearity, this

implies that g · π(~v) ∈ π(C ′) for any g ∈ R, that is, π(C ′) is an R-submodule of Rn. On the other

hand, let π(C ′) be an R-submodule of Rn. Then C ′ = π−1(π(C ′)) is a vector subspace of Fnq and

for every ~c ∈ C ′ we have ~cD = π−1(X · π(~c)) ∈ π−1(π(C ′)) = C ′, since X · π(~c) ∈ π(C ′).

Remark 4.1.7. If T = Θ ◦ M1, where M1 is a matrix as in Theorem 4.1.3 with a1,0 6= 0,

then C in (∗) is the identity matrix and the above result becomes a geometric characterization

of the module θ-codes (see [4, De�nition 1 and Proposition 1]) associated to the polynomial

f1 := (−1)n1(Xn1 − a1,n1−1X
n1−1 − ...− a1,0). Moreover, if θ = id, then Theorem 4.1.6 generalizes

[14, (2.1)].

Example 4.1.8. In F6
4, where F4 = F2[α] with α2 + α + 1 = 0, consider the matrix

D =

 E O

O E

 , where E =


0 1 0

0 0 1

1 0 0

 and O =


0 0 0

0 0 0

0 0 0

 ,
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4.1. Notation and background material

and the semi-linear transformation Θ ◦D. The code C = 〈 (1, 1, 1, 1, 1, 1) 〉 is invariant by Θ ◦D,

C ∼= 〈 (1, 1, 1, 0, 0, 0) 〉 = 〈 (1, 1, 1) 〉 × 〈 (0, 0, 0) 〉, but C 6= C1 × C2 for any θ-code Ci ⊆ F3
4

invariant by Θ ◦ E for i = 1, 2.

Remark 4.1.9. In the commutative case, i.e. θ = id, the Chinese Remainder Theorem says

that if (f1), ..., (fk) are ideals of R which are pairwise coprime, that is (fi) + (fj) = R for all

i 6= j, then I := (f1) ∩ ... ∩ (fk) = (f1) · ... · (fk) and the quotient ring R/I is isomorphic to the

product ring R/(f1)× ...×R/(fk) via the isomorphism ψ : R/I → R/(f1)× ...×R/(fk) such that

ψ(a+ I) := (a+ (f1), ..., a+ (fk)).

In the non-commutative case there exists an analogous of the above result. When θ 6= id, if

Rf1, ..., Rfk are pairwise coprime two-sided ideals of R, then

R/(Rf1 ∩ ... ∩Rfk) ∼= R/Rf1 × ...×R/Rfk

as R-modules and I := Rf1 ∩ ... ∩ Rfk can be replaced by a sum over all orderings of Rf1, ..., Rfk

of their product (or just a sum over enough orderings, using inductively that J ∩K = JK + KJ

for coprimes ideals J,K). In both situations, we have a method to �nd all the R-submodules of

R/Rf1 × ...×R/Rfk via R/I.

Example 4.1.10. In the case θ = id, consider the �nite �eld F4 = F2[α] with α2 + α + 1 = 0

and the polynomials f1 = X + α2, f2 = X2 + α2X + α in R := F4[X]. By the Magma

command Factorization, we can see that gcd(f1, f2) = 1. Then we can consider the ideal

I := (f1) ∩ (f2) = (lcm(f1, f2)) = (X3 + 1) and the isomorphism

ψ : R/I −→ R/(f1)×R/(f2)

p+ I 7−→ (p+ (f1), p+ (f2))
.

By the Magma command Factorization we obtain X3+1 = (X+1)(X+α)(X+α2). Thus R/I has

6 non-trivials R-submodules which correspond to 6 non-trivials R-submodules of R/(f1) × R/(f2)

via f . For instance, since ((X + α)(X + α2)) = (X2 + X + 1) is an R-submodule of R/I and

ψ(X2+X+1) = (0, αX+α2+(f2)), the ideal (0)×(X+α) is an R-submodule of R/(f1)×R/(f2).

Finally, we have the following two results.
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4.1. Notation and background material

Theorem 4.1.11. Suppose that θ = id. Then any R-submodule S of Rn = R/Rf1 × ...× R/Rfr
is R-isomorphic to a product S1 × ... × Sr, where each Sj is an R-submodule of R/Rfj for every

j = 1, ..., r. In particular, any D-code CD ⊆ Fnq with D = diag(M1, ...,Mr) is isomorphic to a

product code C1 × · · · × Cr ⊆ Fn1
q × ... × Fnr

q as a vector subspace of Fnq = Fn1
q × ... × Fnr

q , i.e.

CD = (C1 × · · · × Cr) ? Ĉ for some invertible matrix Ĉ, where each Ci ⊆ Fni
q is a linear code

invariant by Mi, Mi being the ni × ni matrix of Theorem 4.1.3.

Proof. It is su�cient to prove the �rst part of the statement for r ≥ 2, since the second one follows

immediately from this by putting ni := deg fi for i = 1, ..., r.

If each polynomial fj ∈ R is written as a product F
aj1
j1 · · ·F

ajtj
jtj

of distinct irreducible

polynomials Fjk for some integers aji ≥ 1, then by the Chinese Reminder Theorem we can obtain

via isomorphisms a decomposition A of Rn = R/Rf1 × ...×R/Rfr such that

A := (R/RF a11
11 × ...×R/RF

a1t1
1t1

)× ...× (R/RF ar1
r1 × ...×R/RF

artr
rtr ) ∼= Rn.

Let S be an R-submodule of Rn. Then, up to isomorphisms, S corresponds to an R-submodule

S ′ of A. Thus we have to prove only that every R-submodule S ′ of A is isomorphic to a product

S11 × ...× Srtr ⊆ A of R-submodules Siji ⊆ R/RF
aiji
iji

for every i = 1, ..., r and ji = 1, ..., ti.

So, letW be an R-submodule of A. ThenW is R-isomorphic to a direct sum Rg1⊕· · ·⊕Rgk of

non-zero distinct cyclic R-submodules Rgi of A with gi ∈ A for i = 1, ..., k. Consider the surjective

R-homomorphism πi : R → Rgi and note that Rgi ∼= R/(Ker πi) for any i = 1, ..., k. Since R

is a principal ideal domain, we see that Ker πi = (pi) for some pi ∈ R. Let F be the product

F a11
11 · ... · F

asts
sts of all distinct polynomials with the respective maximum powers which appear in

the decompositions F aj1
j1 · · ·F

ajtj
jtj

of the polynomials fj. Then we deduce that F ∈ Ker πi = (pi),

i.e. for every i = 1, ..., k there exists a polynomial qi such that F = qipi. This implies that

pi = F c11
11 · ... · F

csts
sts for some integers cjtj such that 0 ≤ cjtj ≤ ajtj for every i = 1, ..., k and

j = 1, ..., s. So we conclude that

Rgi ∼= R/(pi) = R/(F c11
11 · ... · F

csts
sts ) ∼= R/F c11

11 × ...×R/F
csts
sts ⊆ A,

i.e. Rgi ∼= RF a11−c11
11 /F a11

11 × ... × RF
asts−csts
sts /F

asts
sts
∼= S11 × ... × Srtr ⊆ A, where {0} ⊆ Siji ⊆

R/RF
aiji
iji

is an R-submodule for every i = 1, ..., r and ji = 1, ..., ti.
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4.2. Product semi-linear codes

Proposition 4.1.12. Suppose that θ 6= id. If Rn = R/Rf1 × ... × R/Rfr with Rf1, ..., Rfr

pairwise coprime two-sided ideals of R, then any R-submodule S of Rn = R/Rf1 × ... × R/Rfr

is R-isomorphic to a product S1 × ... × Sr, where each Sj is an R-submodule of R/Rfj for

every j = 1, ..., r. In particular, any D-code CD ⊆ Fnq is isomorphic to a product code

C1×· · ·×Cr ⊆ Fn1
q ×...×Fnr

q as a vector subspace of Fnq = Fn1
q ×...×Fnr

q , i.e. CD = (C1×· · ·×Cr)?Ĉ

for some invertible matrix Ĉ, where each Ci ⊆ Fni
q is a linear code invariant by Θ ◦Mi, Mi being

the ni × ni matrix of Theorem 4.1.3.

Proof. Let S be an R-submodule of Rn. Then S is R-isomorphic to a direct sum Rg1⊕· · ·⊕Rgk of

non-zero distinct cyclic R-submodules Rgi of Rn with gi ∈ Rn for i = 1, ..., k. Write gi = (gi1, ..., gir)

and consider the polynomial F := f1 · ... · fr. Denote by Fh the product F without the factor fh.

Then we get

Fhgi = (0, ..., 0, Fhgih, 0, ..., 0).

Since the (right) g.c.m.(fh, Fh) = 1, we know that there exist two polynomials a, b ∈ R such that

afh + bFh = 1. Hence bFhgi = (0, ..., 0, gih, 0, ..., 0) for every i = 1, ..., k and h = 1, ..., r. Therefore

we have

Rgi = R(gi1, 0, ..., 0)⊕ ...⊕R(0, ..., 0, gir) ∼= (Rgi1, ..., Rgir)

for every i = 1, ..., k, i.e. S ∼= Rg1 ⊕ · · · ⊕ Rgk ∼= (S1, ..., Sr) for some R-submodules Sj ⊂ R/Rfj,

where j = 1, ..., r.

4.2 Product semi-linear codes

Let us recall here the following

De�nition 4.2.1 (see [4]). An fj-module θ-code (or simply a module θ-code) Cj is a linear

code in Fnj
q which corresponds via πj : Fnj

q → R/Rfj to a left R-submodule Rgj/Rfj ⊂ R/Rfj

in the basis 1, X, ..., Xnj−1, where gj is a right divisor of fj in R. The length of the code Cj is

nj = deg(fj) and its dimension is kj = deg(fj)− deg(gj). For simplicity, we will denote this code

Cj = (gj)
kj ,θ
nj ,q and when there will not be any confusion, we will call an fj-module θ-code simply a

module θ-code.
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4.2. Product semi-linear codes

Remark 4.2.2. When θ = id, by Proposition 3.2.7 the above De�nition 4.2.1 coincides with the

de�nition of an Ac-GC code (see De�nition 3.2.1).

From Theorem 4.1.11, Proposition 4.1.12 and De�nition 4.2.1, it follows naturally the below

De�nition 4.2.3. Let CT ⊆ Fnq be a semi-linear T -code invariant by a θ-semi-linear map T

as in (∗). We say that CT is a product semi-linear T -code, or a product T -code, if

CT = (C1 × ... × Cr) ? C ⊆ Fn1
q × ... × Fnr

q , where any Cj ⊆ Fnj
q is an fj-module θ-codes with

respect to Θ ◦Mj and fj = (−1)nj(Xnj −
∑nj−1

k=0 aj,kX
k) is as in (∗) for every j = 1, ..., r and

n =
∑r

j=1 nj.

Remark 4.2.4. When C is the identity matrix and r = 1, then De�nition 4.2.3 is nothing else

that the de�nition of an f1-module θ-code.

Remark 4.2.5. When either θ = id, or θ 6= id and Rn = R/Rf1 × ... × R/Rfr with

Rf1, ..., Rfr pairwise coprime two-sided ideals of R, Theorem 4.1.11 and Proposition 4.1.12 show

that any T -code CT is isomorphic to a product T -code as vector spaces, i.e. for any T -code

CT ⊆ Fnq = Fn1
q × ...×Fnr

q there exists an invertible matrix C ′ such that CT = (C1× ...×Cr) ? CC
′

for some T -product code (C1 × ...× Cr) ? C ⊆ Fn1
q × ...× Fnr

q .

From De�nition 4.2.3 we deduce that a generator matrix of a product semi-linear code

CT = (C1 × ...× Cr) ? C is given by



G1

G2

. . .

Gr


· C,

where ki := dim Ci,
∑r

i=1 ki = dim CT and each block

Gi :=


~gi

(~gi)(Θ ◦Mi)
...

(~gi)(Θ ◦Mi)
ki−1


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4.2. Product semi-linear codes

is a ki × ni generator matrix of the module θ-code Ci = (gi)
ki
ni,θ

, where ~gi = π−1i (gi) and

πi : Fni
q → R/Rfi for every i = 1, ..., r.

Example 4.2.6. Consider the vector space F6
4, where F4 = F2[α] with α2 + α + 1 = 0, and

θ ∈ Aut(F4) such that θ(x) = x2. Let T = Θ ◦M be a semi-linear transformation where

M =



1 0 1 0 1 1

1 0 1 1 0 0

0 0 0 1 1 0

1 0 1 1 1 0

0 0 1 0 1 1

0 1 1 0 0 1


.

Then T is θ-similar to Θ ◦ diag(M1,M2), where M1 =

 0 1

1 0

 and M2 =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0

 , i.e.

T = C−1(Θ ◦ diag(M1,M2))C with

C =



1 1 0 1 0 0

1 0 1 0 0 1

0 0 1 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

0 1 1 0 1 0


.

Let C1 = (X + α2)1,θ2,4 be an f1-module θ-code with f1 = X2 + 1 and let C2 = (X2 + αX + 1)2,θ4,4 be

an f2-module θ-code with f2 = X4 + X2 + 1. Since both π1(C1) and π2(C2) are R-submodules of

R/Rf1 and R/Rf2 respectively, π(C1 × C2) is a R-submodules of R/Rf1 × R/Rf2. Furthermore,

by the Magma Program

F<w>:=GF(4);

E:=[x : x in F | x ne 0];
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4.2. Product semi-linear codes

RightDivisors := function(qq,g)

R<x>:=TwistedPolynomials(F:q:=qq);

f:=R!g;

n:=Degree(f);

S:=CartesianProduct(E,CartesianPower(F,n-1));

dd:=[];

for ss in S do

ll:=[ss[1]] cat [p : p in ss[2]];

q,r:=Quotrem(f,R!ll);

if r eq R![0] then dd := dd cat [[q,R!ll]]; end if;

end for;

return dd;

end function;

we see that the polynomials X2+1 and X4+X2+1 are coprimes. Since R(X2+1) and R(X4+X2+1)

are two-sided ideal of R, by Proposition 4.1.12 we conclude that CT := (C1 × C2) ? C is a product

T -code. Note that C is a code of type [6, 3]4. Furthermore, the following matrix

G =


α2 1 0 0 0 0

0 0 1 α 1 0

0 0 0 1 α2 1

 · C =


α α2 1 α2 0 1

1 0 0 0 0 1

α 1 α2 α2 1 α2


is a generator matrix of CT .

De�nition 4.2.7. A linear code C is a code of type [n, k]q if C ⊆ Fnq and dim C = k.

The following result gives in the commutative case a necessary and su�cient condition for the

existence of T -codes CT of type [n, k]q.

Theorem 4.2.8. Suppose that θ = id and let T = M be a linear transformation over Fnq as in (∗).

Let Fnq = FN1
q × ... × FNs

q be a decomposition of Fnq as in the proof of Theorem 4.1.11 and denote

by π the corresponding isomorphism

π : Fnq = FN1
q × ...× FNs

q → R/RF α1
1 × ...×R/RF αs

s ,
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4.3. Dual codes of product T -codes

where π = (π1, ..., πs) and πj : FNj
q → R/RFj are the usual isomorphisms and the Fj's are

irreducible (not necessarily distinct) polynomials on R such that Nj = αj degFj ≥ 1 for j = 1, ..., s.

Then

∃ a T -code of type [n, k]q ⇐⇒ k =
∑s

i=1 ai degFi, where 0 ≤ ai ≤ αi.

Proof. . Note that for every i = 1, ..., s an R-submodule of R/RF αi
i is of type RF h

i /RF
αi
i
∼=

R/RF αi−h
i for some integer h such that 0 ≤ h ≤ αi. Moreover, observe that by Remark

4.1.4 the set of the T -codes CT is in one-to-one correspondence with the set of linear codes CD

invariant by the linear transformation D := diag(M1, ...,Mr) of type [n, k]q. Let CT ⊂ Fnq be a

T -code of type [n, k]q. Then CT ? C
−1 is a linear code CD invariant by the linear transformation

D := diag(M1, ...,Mr). With the same notation as in the statement, π(CD) is an R-submodule of

R/RF α1
1 × ...×R/RFαs

s . Since by Theorem 4.1.11 every R-submodule of R/RF α1
1 × ...×R/RFαs

s

is isomorphic to I1 × ...× Is with Ij an R-submdule of R/RF αj

j for every j = 1, ..., s, we conclude

that k := dim CT = dim CD =
∑s

i=1 ai degFi, where 0 ≤ ai ≤ αi. On the other hand, assume that

k =
∑s

i=1 ai degFi with 0 ≤ ai ≤ αi. Then the product code

π−11 (RFα1−a1
1 /RFα1

1 )× ...× π−1s (RFαs−as
s /RFαs

1 ) =

= π−1(RFα1−a1
1 /RFα1

1 × ...×RFαs−as
s /RFαs

1 )

is a T -code of type [n, k]q.

4.3 Dual codes of product T -codes

In this section we study three kind of dual codes of product semi-linear T -codes and some main

relations between them.

4.3.1 Euclidean duals

In [4] the authors prove that the Euclidean dual code of a module θ-code is a module θ-code if

and only if it is a θ-constacyclic code. Moreover, they establish that a module θ-code which is not

θ-constacyclic code is a shortened θ-constacyclic code and that its Euclidean dual is a punctured
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4.3. Dual codes of product T -codes

θ-constacyclic code. This enables them to give a form of the parity-check matrix for module

θ-codes.

Let us only observe here that there exists an alternative method to �nd a parity-check matrix

for any module θ-code.

Proposition 4.3.1. Let Cj = (gj)
kj
nj ,θ
⊆ Fnj

q be a module θ-code. For any integer i such that

0 ≤ i ≤ kj − 1, write in R

Xnj−kj+i = qigj + ri, with 0 ≤ deg ri < nj − kj.

Denote by S the following matrix

S :=


ρnj−kj(π

−1
j (r0))

ρnj−kj(π
−1
j (r1))
...

ρnj−kj(π
−1
j (rkj−1))

 ,

where πj : Fnj
q → R/Rfj and ρnj−kj is the projection map onto the �rst nj − kj coordinates, i.e.

ρnj−kj(v1, ..., vnj−kj , vnj−kj+1, ..., vnj
) := (v1, ..., vnj−kj).

Then a generator matrix Gj of Cj is

Gj :=
(
−S Ikj

)
and a parity check matrix Hj is given by

Hj :=
(
Inj−kj St

)
,

where Inj−kj is the (nj − kj)× (nj − kj) identity matrix and St is the transpose matrix of S.

Proof. Since deg ri < nj − kj, note that π−1j (Xnj−kj+i − ri) ∈ Cj are linearly independent for

0 ≤ i ≤ kj − 1. Thus
(
−S Ikj

)
is a generator matrix Gj for the code Cj. Moreover, since

(C ⊥j )⊥ = Cj, we see that the matrix Hj :=
(
Inj−kj St

)
as in the statement is a parity check

matrix for Cj.
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4.3. Dual codes of product T -codes

By the Magma program

F<w>:=GF(4);

PcMatrix:=function(qq,g,n)

R<x>:=TwistedPolynomials(F:q:=qq);

g:=R!g;

d:=Degree(g);

ll:=[];

for i in [0.. n-d-1] do

a,b:=Quotrem(R![1]*R![0,1]^(d+i),g);

ll:=ll cat [b];

end for;

return ll;

end function;

we can �nd the parity-check matrix of Proposition 4.3.1

Remark 4.3.2. Proposition 4.3.1 works also for any module (θ, δ)-code (see [5, De�nition 1]),

where δ : Fq → Fq is a derivation, and it allows us to obtain directly a generator and a parity-check

matrix in standard form for any module (θ, δ)-code.

Theorem 4.3.3. Let CT = (C1 × ...× Cr) ? Ĉ ⊆ Fnq be a linear code, Ci ⊆ Fni
q being a linear code

and Fnq = Fn1
q × ...× Fnr

q . If Ĉ is an invertible matrix, then

CT
⊥ = (C ⊥1 × ...× C ⊥r ) ? Ĉ−1t ,

where Ĉt is the transpose matrix of Ĉ and C ⊥i ⊆ Fni
q is the Euclidean dual code of Ci for every

i = 1, ..., r. Furthermore, a parity check matrix of CT is
H1

. . .

Hr

 · Ĉ−1t
where hi := dim C ⊥i ,

∑r
i=1 hi = dim C ⊥T and Hi is the hi × ni parity check matrix of Ci given by

Proposition 4.3.1 for every i = 1, ..., r.
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4.3. Dual codes of product T -codes

Proof. Put C := (C ⊥1 × ...× C ⊥r ) ? Ĉ−1t and note that

dim C = dim(C ⊥1 × ...× C ⊥r ) =
r∑
i=1

dim C ⊥i =
r∑
i=1

(mi − dim Ci) =

=
r∑
i=1

mi −
r∑
i=1

dim(Ci) = n− dim CT = dim CT
⊥.

Let ~v ∈ C . Since C = (C ⊥1 × ... × C ⊥r ) ? Ĉ−1t , we deduce that ~v = ~wĈ−1t for some vector

~w = (~c1
⊥, ..., ~cr

⊥) ∈ (C ⊥1 × ...× C ⊥r ). Thus for every ~c = (~c1, ..., ~cr)Ĉ ∈ CT , we see that

~v · ~c = ~wC−1t ~ct = (~c1
⊥, ..., ~cr

⊥)Ĉ−1t ((~c1, ..., ~cr)Ĉ)t =

= (~c1
⊥, ..., ~cr

⊥)(~c1, ..., ~cr)t = ~c1
⊥ · ~c1 + ...+ ~cr

⊥ · ~cr = 0,

i.e. C ⊆ CT
⊥. Since dim C = dim CT

⊥, we conclude C = CT
⊥.

Finally, the second part of the statement follows easily from the �rst one.

Example 4.3.4. Continuing with Example 4.2.6, by the Magma Program

F<w>:=GF(4);

PcMatrix:=function(qq,g,n)

R<x>:=TwistedPolynomials(F:q:=qq);

g:=R!g;

d:=Degree(g);

ll:=[];

for i in [0.. n-d-1] do

a,b:=Quotrem(R![1]*R![0,1]^(d+i),g);

ll:=ll cat [b];

end for;

return ll;

end function;

and Proposition 4.3.1, we deduce that the matrix

H =


1 α2 0 0 0 0

0 0 1 0 1 α2

0 0 0 1 α 0

 · C−1t
94



4.3. Dual codes of product T -codes

is a parity-check matrix of CT , where H1 = (1 α2) and H2 =

 1 0 1 α2

0 1 α 0

 are the parity-check

matrices of C1 and C2 respectively. Furthermore, by Theorem 4.3.3 we can conclude that

C ⊥T = (C ⊥1 × C ⊥2 ) ? C−1t

is the dual code of CT , where C ⊥1 = 〈(1, α2)〉 and C ⊥2 = 〈(1, 0, 1, α2), (0, 1, α, 0)〉.

Remark 4.3.5. The above result is useful to construct the Euclidean dual code and to calculate the

minimum Hamming distance of any product T -code. In particular, when either θ = id, or θ 6= id

and Rn = R/Rf1× ...×R/Rfr with Rf1, ..., Rfr pairwise coprime two-sided ideals of R, Theorem

4.3.3 together with Theorem 4.1.11 and Proposition 4.1.12 allow us to �nd the Euclidean dual code

of every T -code.

The proof of the below result is immediate.

Lemma 4.3.6. We have the following two properties:

(a) Θ ◦M θ = M ◦Θ, for any matrix M = [mij], where M θ := [θ(mij)];

(b) (~a Θ−1) ·~b = 0 ⇐⇒ ~a · (~b Θ) = 0, ∀ ~a,~b ∈ Fnq .

Finally, we obtain the following characterization of Euclidean dual codes of T -codes.

Proposition 4.3.7. Let CT ⊆ Fnq be a T -code invariant under a θ-semi-linear transformation

T = Θ ◦M . Then the Euclidean dual code C ⊥T is a T ′-code, where T ′ = Θ−1 ◦ (M t)θ−1.

Proof. If ~a ∈ C ⊥T , then for every ~c ∈ CT we have

(~aM t) · (~c Θ) = ~a(~c Θ ◦M)t = ~a · (~c T ) = 0.

Thus by Lemma 4.3.6 we deduce that

(~a T ′) · ~c = (~aΘ−1 ◦ (M t)θ−1) · ~c = (~aM t ◦Θ−1) · ~c = 0,

for every ~c ∈ CT , i.e. C ⊥T is invariant under the semi-linear transformation T ′.
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4.3. Dual codes of product T -codes

4.3.2 Quasi-Euclidean duals

In this subsection we introduce the new concept of quasi-Euclidean dual codes and some of their

properties related to the Euclidean dual codes. Before to do this, we have to de�ne a special

injective map for module θ-codes.

An injective map for an f-module θ-code.

Given a polynomial f ∈ R of degree n ≥ 2, we present here an algorithm to show that there exists

always a suitable integer m ≥ n such that Xm − 1 is a right multiple of f . This will allow us to

construct an immersion map of the code space Fnq into an Fmq which will be useful for the de�nition

of quasi-Euclidean dual codes of a product T -code.

Let f = (−1)n(Xn −
∑n−1

i=0 fiX
i) ∈ R and consider the right division

Xn − 1 = f · qn + rn,

where qn, rn ∈ R and 0 ≤ deg rn < deg f . Assume that rn is not equal to zero, otherwise we are

done.

Let k be an integer such that k > n and consider again the right divisions

Xk − 1 = f · qk + rk,

where qk, rk ∈ R and 0 ≤ deg rk < deg f . Since there are at most qdeg rk+1 distinct polynomials rk,

we see that for some k2 > k1 ≥ n we get rk1 = rk2 . Thus we obtain that

Xk1 · (Xk2−k1 − 1) = (Xk2−k1 − 1) ·Xk1 = f · (qk2 − qk1).

Put q′ := qk2 − qk1 and note that q′ 6= 0 ∈ R. This shows that X = 0 is a root of f · q′. Since

f(0) 6= 0, we deduce that q′(0) = 0. Hence q′ = q1 ·X for some q1 ∈ R.

Thus we have

(Xk2−k1 − 1) ·Xk1 = f · q1 ·X

and since R has not non-zero zero divisors, we can deduce that

(Xk2−k1 − 1) ·Xk1−1 = f · q1
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4.3. Dual codes of product T -codes

where q1 ∈ R. By an inductive argument, we can conclude that

Xk2−k1 − 1 = f · q′′

for some q′′ ∈ R. This shows that there exists always an integer t ≥ n such that X t − 1 = f · qf
for some non-zero qf =

∑m−n
i=0 qiX

i ∈ R.

From now on, we denote by m the minimum integer such that m ≥ n and Xm − 1 is a right

multiple of f , i.e.

m := min
{
i ∈ N | X i − 1 = f · p for some p ∈ R

}
. (**)

In this case, we write

Xm − 1 = f · qf .

Moreover, by the above construction, we have

n ≤ m ≤ qn + n− 2.

By the Magma program

F<w>:=GF(4);

PeriodNc:=function(qq,g)

R<x>:=TwistedPolynomials(F:q:=qq);

f:=R!g;

n:=Degree(f)-1;

repeat

n:=n+1;

_,r:=Quotrem(X^n-1,f);

until r eq R![0];

return n;

end function;

we can calculate m in (**).
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4.3. Dual codes of product T -codes

Let us introduce the following isomorphism of rings Θ : R→ R de�ned as

(
t∑
i=0

aiX
i)Θ :=

t∑
i=0

θ(ai)X
i .

Lemma 4.3.8. Put

m∗ := min
{
j ∈ N | Xj − 1 = p · f ∗ for some p ∈ R

}
,

where f ∗ := 1−
∑n

i=1 θ
i(fn−i)X

i ∈ R. Then m∗ = m.

Proof. Let Xm−1 = f ·qf . By [4, Lemma 1(1)] we know that Xm−1 = (1−Xm)∗ = (f ·(−qf ))∗ =

q′ · f ∗ for some q′ ∈ R. This implies that m ≥ m∗. On the other hand, let Xm∗ − 1 = qf∗ · f ∗. By

[4, Lemma 1] we see that

Xm∗ − 1 = (1−Xm∗)∗ = ((−qf∗) · f ∗)∗ =

= ((f ∗)∗)Θm∗−n · q′′ = ((f)Θn)Θm∗−n · q′′ = (f)Θm∗ · q′′

for some q′′ ∈ R. Hence we get

Xm∗ − 1 = (Xm∗ − 1)Θ−m
∗

= ((f)Θm∗ · q′′)Θ−m∗ = f · (q′′)Θ−m∗ ,

i.e. m∗ ≥ m. This gives m∗ = m.

Remark 4.3.9. If θ = id, then the characteristic and minimal polynomial of

Ac :=


0 1
...

. . .

0 1

f0 f1 . . . fn−1


are both equal to f = (−1)n(Xn −

∑n−1
i=0 fiX

i) ∈ R. Let m′ := min {i ∈ N | Aic = I} and

note that the polynomial Xm′ − 1 is satis�ed by Ac. Therefore, it follows that there exists a

polynomial qf =
∑m−n

i=0 qiX
i ∈ R such that Xm′ − 1 = f · qf . This gives m = m′, that is,

m = min {i ∈ N | Aic = I} .
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4.3. Dual codes of product T -codes

By the Magma Command Order we can calculate m in the commutative context.

The following example shows that Remark 4.3.9 does not hold in general when θ is not equal

to the identity of Fq.

Example 4.3.10. In F3
4, where F4 = F2[α] with α2 + α + 1 = 0, consider the polynomial

f = X3 + αX + 1 associated to the matrix
0 1 0

0 0 1

1 α 0


and de�ne θ(x) = x2 for any x ∈ F4. It follows that min {i ∈ N | Aic = I} = 21. Moreover, we

have X21 − 1 = f · q + r, where

q = X18 + α2X16 +X15 + αX14 +X13 +X10 + α2X8 +X7 + αX6 +X5 +X2 + α2

and r = X2 + α2X + α 6= 0. This shows that m 6= min {i ∈ N | Aic = I}. Moreover, we get

m = 8(< 21). Hence X8 − 1 = (X3 + αX + 1) · qf with qf = X5 + α2X3 +X2 + αX + 1.

In connection with the above arguments, we have the following results.

Proposition 4.3.11. Let m be an integer as in (∗∗) and let P be the m×m matrix
0 1
...

. . .

0 1

1 0 . . . 0

 .

Denote by ~qf := (q0, ..., qm−n, 0, ..., 0) ∈ Fmq , where the qi's are the coe�cients of qf ∈ R as in (∗∗).

Then there exists a commutative diagram

Fnq
i //

π

��

Fmq
π′

��
Rn j

// Rm
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4.3. Dual codes of product T -codes

such that π′ ◦ i = j ◦ π, where Rn := R/Rf , Rm := R/R(Xm − 1), i(~v) := ~vQ with Q the matrix

~qf

(~qf )(Θ ◦ P )

(~qf )(Θ ◦ P )2

...

(~qf )(Θ ◦ P )n−1


and j(a+Rf) := (a · qf ) +R(Xm − 1) for any a ∈ R.

Proof. By using the canonical basis of Fnq , the statement follows easily from the linearity of the

maps i, j, π and π′.

Proposition 4.3.12. With the same notation as in Proposition 4.3.11, for any ~c ∈ Fnq and k ∈ N

we have

i((~c)(Θ ◦ Ac)k) = (i(~c))(Θ ◦ P )k,

where Ac is the matrix de�ned in Remark 4.3.9.

Proof. Let ~c ∈ Fnq . By Proposition 4.3.11, we have the following two commutative diagrams:

~c i //

π

��

i(~c)

π′

��
π(~c)

j
// j(π(~c))

where j(π(~c)) = π′(i(~c)), and

(~c)(Θ ◦ Ac)k i //

π
��

i((~c)(Θ ◦ Ac)k)

π′

��
Xk · π(~c)

j
// j(Xk · π(~c))

where j(Xk · π(~c)) = π′(i((~c)(Θ ◦Ac)k)). Since π′ is an isomorphism, by the commutative diagram

of Proposition 4.3.11, we obtain

i((~c)(Θ ◦ Ac)k) = (π′)−1(j(Xk · π(~c))) = (π′)−1(Xk · π(~c) · qf ) =

= (π′)−1(Xk · j(π(~c))) = (π′)−1(Xk · π′(i(~c))) = (π′)−1 ◦ π′((i(~c))(Θ ◦ P )k),

that is, i((~c)(Θ ◦ Ac)k) = (i(~c))(Θ ◦ P )k for any k ∈ N.

100



4.3. Dual codes of product T -codes

Remark 4.3.13. The maps i and j in Proposition 4.3.11 are injective. Moreover, em Proposition

4.3.12 shows that the image via i of an f -module θ-code in Fnq is a module θ-cyclic code in Fmq ,

where m is de�ned as in (∗∗) (or as in Remark 4.3.9).

Let s be the order of θ. From the above results, we can deduce the following two consequences.

Corollary 4.3.14. Let m be as in (∗∗). If m = as+ r, 0 ≤ r < s, then (~qf )Θ
r = ~qf .

Proof. Since Xm − 1 = f · qf and f, qf are monic polynomials, by [4, Lemma 2(2)] we see that

Xm = 1 + (qf )Θ
m · f . Since (Θ ◦ P )m = Θm ◦ Pm = Θm and Θs is the identity, from the following

commutative diagram

~e1(Θ ◦ Ac)m i //

π

��

i(~e1)(Θ ◦ P )m

π′

��
Xm = 1

j
// j(1) = qf

we conclude that ~qf = (π′)−1(qf ) = i(~e1)(Θ ◦ P )m = (~qf )Θ
m = (~qf )Θ

r.

Corollary 4.3.15. Let f = (−1)n(Xn −
∑n−1

i=0 fiX
i) ∈ R. If

(f0, f1, ..., fn−1)Θ
t 6= (f0, f1, ..., fn−1)

for every integer t such that 0 < t < s, then the order s of Θ divides m.

Proof. Since Xm − 1 = f · qf , from Corollary 4.3.14 it follows that

f · qf = Xm − 1 = (Xm − 1)Θm = (f)Θm · (qf )Θm = (f)Θm · qf ,

i.e. f = (f)Θm. Let m = as+ r with 0 ≤ r < s.

Assume now that r 6= 0. Then we get f = (f)Θm = (f)Θr, that is,

(f0, f1, ..., fn−1)Θ
r = (f0, f1, ..., fn−1)

for some 0 < r < s, but this is a contradiction. Thus r = 0 and s divides m.

Example 4.3.16. In F5
4, where F4 = F2[α] with α2 + α + 1 = 0 and θ is the Frobenius map,

consider the following two polynomials:
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4.3. Dual codes of product T -codes

(1) f = X5 +X3 +X2 + 1; (2) g = X5 +X2 + 1.

Note that in both cases the hypothesis of Corollary 4.3.15 is not satis�ed. Moreover, we have

m = 12 in case (1) and m = 31 in case (2).

Finally, let us give here also some results about the integer m in (∗∗) when θ = id.

Remark 4.3.17. Let Fq ⊆ K be a �nite extension of Fq such that f =
∏n

i=1(X − ai) with ai ∈ K

and Ac is diagonalizable over K. If mi := min
{
hi | ahii = 1

}
, then m = lcm(m1, ...,mn).

Remark 4.3.18. Let p := Char(Fq). If the polynomial f has a root of multiplicity ≥ 2, then

Xm − 1 has a root of multiplicity ≥ 2. This shows that gcd(m, p) 6= 1 and since p is a prime

number, we get m ≡ 0 mod p.

The next two results give a more simple computation of m.

Proposition 4.3.19. Denote by ~f := (f0, ..., fn−1) and let

k := min
{
h ∈ N ∪ {0} | ~fAhc = ~e1

}
.

Then m = n+ k. In particular, we have deg qf = k.

Proof. For any h = 1, ..., n, we have

~eh A
n+k
c = ((~ehA

n−h+1
c )Akc )A

h−1
c = ((~enAc)A

k
c )A

h−1
c =

= (~fAkc )A
h−1
c = ~e1A

h−1
c = ~eh.

Hence An+kc = I and for the minimality ofm we deduce thatm ≤ n+k. Furthermore, since Amc = I

we get ~e1 = ((~e1A
n−1
c )Ac)A

m−n
c = (~enAc)A

m−n
c = ~fAm−nc , that is, ~fAm−nc = ~e1. So, by de�nition of

k we can conclude that k ≤ m− n, i.e. m ≥ n+ k. Finally, observe that deg qf = m− n := k.

Let p0 be the order of detAc. Since Amc = I, it follows that (detAc)
m = 1, i.e. m ≡ 0 mod p0

with p0 the order of detAc. Denote by B := Ap0c . From this it follows immediately also the

following
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Proposition 4.3.20. Let m′ be the minimum integer such that Bm′ is the identity matrix. Then

m = p0m
′. In particular, we have deg qf = p0m

′ − n.

When θ = id, all the above results give the following

Algorithm 3:

Input: f

• De�ne a0 := detAc;

• Compute the order p0 of a0;

• De�ne B := Ap0c ;

• Find the rational canonical form B′ of B;

• For any diagonal block Bi, i = 1, ..., s, of B′ compute m′i = min
{
h | Bh

i = I
}
.

Output: m = lcm(m′1, ...,m
′
s) · p0.

De�nition and basic properties of quasi-Euclidean dual codes

Under the hypothesis (∗), write Fnq = Fn1
q ×...×Fnr

q with r ≥ 1 and n =
∑r

k=1 nk. From Proposition

4.3.11, we know that for every k = 1, ..., r there exists a commutative diagram

Fnk
q

ik //

πk
��

Fmk
q

π′k
��

R/Rfk jk
// R/R(Xmk − 1)

.

Consider the further commutative diagram:

Fnq
i

**
ϕ:=C−1

��
Fnq = Fn1

q × ...× Fnr
q i

//

π

��

Fm1
q × ...× Fmr

q = Fmq
π′

��
Rn j

// Rm
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where n =
∑r

i=1 ni, m =
∑r

i=1mi with the mi's as in (∗), fi = (−1)ni(Xni −
∑ni−1

j=0 fi,jX
j) ∈ R,

Rn := R/Rf1 × ...×R/Rfr,

Rm := R/R(Xm1 − 1)× ...×R/R(Xmr − 1),

i(~v) := ~vQ̂ with

Q̂ :=



Q1

Q2

. . .

Qr


and all the Qi's are matrices ni×mi as in Proposition 4.3.11, π = (π1, ..., πr) with πi : Fni

q → R/Rfi,

π′ = (π′1, ..., π
′
r) with π

′
i : Fmi

q → R/R(Xmi − 1) and

j(p1, ..., pr) := (p1 · qf1 , ..., pr · qfr)

with all the qfi 's polynomials in R as in Proposition 4.3.11.

Denote by I the image of i = i ◦ ϕ and de�ne

B := C−1Q̂ Q̂t(C
−1)t,

where Mt is the transpose of a matrix M . Note that B is a symmetric matrix.

Let r be the rank of B and observe that

r := rkB = rk(Q̂ · Q̂t) = n− dim(Ker Q̂t ∩I )

with 0 ≤ r ≤ n.

De�nition 4.3.21. Let T be a semi-linear transformation of Fnq as in (∗). We de�ne the quasi-

Euclidean scalar product ·∗ on Fnq as ~a ·∗ ~b := ~aB~bt for any ~a,~b ∈ Fnq , and we denote by C ∗ the

linear quasi-Euclidean dual code of a linear code C with respect to ·∗, i.e.

C ∗ :=
{
~x ∈ Fnq | ~x ·∗ ~c = 0 for every ~c ∈ C

}
.

Proposition 4.3.22. Let C ⊆ Fnq be a linear code. Then we have the following properties:
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(i) C ∗ = (C ? B)⊥;

(ii) dim C ∗ = dim C ⊥ + dim(C ∩Ker B);

(iii) C ∗ ? B = C ⊥ ∩ (Im B);

(iv) (C ∗)∗ = C + Ker B;

(v) i(C ∗) = i(C )⊥ ∩I = i(C + Ker B)⊥ ∩I ;

(vi) (Fnq )∗ = Ker B = (Im B)⊥, (Ker B)∗ = Fnq , (Ker B)∗∗ = Ker B.

Proof. (i) To prove C ∗ = (C ? B)⊥, we observe that

~w ∈ (C ? B)⊥ ⇐⇒ ~w · (~cB) = 0, ∀~c ∈ C

⇐⇒ ~wBt~ct = 0, ∀~c ∈ C

⇐⇒ ~wB~ct = 0, ∀~c ∈ C

⇐⇒ ~w ·∗ ~c = 0, ∀~c ∈ C

⇐⇒ ~w ∈ C ∗ .

(ii) This follows easily from

dim(C ? B) = dim C − dim(C ∩Ker B)

and dim C ∗ = n− dim(C ·B).

(iii) If ~x ∈ C ∗ ? B, then ~x ∈ Im B and ~x = ~c∗B for some ~c∗ ∈ C ∗. Hence for every ~c ∈ C we

get

~x · ~c = ~c∗B · ~c = ~c∗ ·∗ ~c = 0,

i.e. C ∗ ? B ⊆ C ⊥ ∩ (Im B). On the other hand, let ~y ∈ C ⊥ ∩ (Im B). Then ~y = ~vB ∈ C ⊥ for

some ~v ∈ Fnq . Thus for any ~c ∈ C we have

~v ·∗ ~c = ~vB~ct = ~y · ~c = 0,

that is, C ⊥ ∩ (Im B) ⊆ C ∗ ? B.
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(iv) Let ~x = ~c+~b ∈ C + Ker B. Then for every ~c∗ ∈ C ∗ by (i) we have

~x ·∗ ~c∗ = ~xB~c∗t = (~cB +~bB) · ~c∗ = (~cB) · ~c∗ = 0,

i.e. C + Ker B ⊆ (C ∗)∗. Let ~v ∈ (C ∗)∗. Then for any ~x ∈ C ∗ we get

~vB · ~x = ~vB~xt = ~v ·∗ ~x = 0,

i.e. ~vB ∈ (C ∗)⊥ = C ? B. Thus there exists a ~c ∈ C such that ~vB = ~cB. This implies that

(~v − ~c)B = ~0, that is, ~v − ~c ∈ Ker B and ~v = ~c+~b for some ~b ∈ Ker B.

(v) If ~x ∈ i(C ∗), then ~x = i(~v) = ~vC−1Q̂ ∈ I for some ~v ∈ C ∗. Hence for every ~c ∈ C and

~b ∈ Ker B, we have

~x · i(~c+~b) = ~x · i(~c) + ~x · i(~b) = ~v ·∗ ~c+ ~v · (~bB) = 0,

that is, i(C ∗) ⊆ i(C + Ker B)⊥ ∩I . Now, let ~x ∈ i(C + Ker B)⊥ ∩I , i.e. ~x = i(~v) = ~vC−1Q̂ ∈

i(C + Ker B)⊥ ⊆ i(C )⊥ for some ~v ∈ Fnq . Thus for every ~y ∈ C we have

~v ·∗ ~y = ~vB~yt = (~vC−1Q̂)(~yC−1Q̂)t = ~x · i(~y) = 0,

i.e. ~v ∈ C ∗. Hence we get ~x = i(~v) ∈ i(C ∗), that is, i(C + Ker B)⊥ ∩I ⊆ i(C ∗).

Let us prove now that i(C ∗) is also equal to i(C )⊥ ∩I . Let ~x ∈ i(C ∗). Then ~x = i(~c∗) ∈ I

for some vector ~c∗ ∈ C ∗. Therefore for every ~c ∈ C we have

~x · i(~c) = i(~c∗) · i(~c) = ~c∗ ·∗ ~c = 0,

i.e. ~x ∈ i(C )⊥ ∩I . On the other hand, let ~y ∈ i(C )⊥ ∩I . Then ~y = i(~z) ∈ I for some ~z ∈ Fnq
and for every ~c ∈ C we get

0 = i(c) · ~y = i(c) · i(z) = ~c ·∗ ~z.

Hence ~z ∈ C ∗, i.e. ~y ∈ i(C ∗).

(vi) Since ({~0})∗ = Fnq , the equalities (Fnq )∗ = (Im B)⊥ and (Fnq )∗ = Ker B follow easily from

(i) with C = Fnq and from (iv) with C = {~0} respectively. Finally, by taking C = Ker B, the

equalities (Ker B)∗ = Fnq and (Ker B)∗∗ = Ker B are immediate consequences of (i) and (iv),

respectively.
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Corollary 4.3.23. Let C ⊆ Fnq be a linear code. If r = n, then we have

(j) C ∗ = C ⊥ ? B−1;

(jj) dim C ∗ = dim C ⊥;

(jjj) (C ∗)∗ = C ;

(jv) i(C ∗) = i(C )⊥ ∩I ;

(v) (Fnq )∗ = {~0}, ({~0})∗ = Fnq .

Remark 4.3.24. When r = n, by Corollary 4.3.23 (j) we can easily obtain a generator matrix

of C ∗ by multiplying the parity check matrix of C with the matrix B−1. Moreover, when r = 0,

we see that B is the null matrix and in this case Q̂ represents a generator matrix of an euclidean

self-orthogonal code C (i.e. C ⊆ C ⊥) of dimension n in Fmq .

Remark 4.3.25. From Proposition 4.3.22 (vi), it follows that Ker B ⊆ {~v}∗ for any ~v ∈ Fnq . In

particular, we deduce that Ker B ⊆ C ∗ for any linear code C ⊆ Fnq .

Example 4.3.26. In F3
4, where F4 = F2[α] with α2 + α + 1 = 0, consider the following four

polynomials:

(1) f0 = X3 +X2 + 1; (2) f1 = X3 + α2X2 + α2X + α;

(3) f2 = X3 +X2 + αX + α2; (4) f3 = X3 + α2.

Note that m = 7 for the �rst case, while m = 6 for the other cases. Then

X6 − 1 = f1 · qf1 = f2 · qf2 = f3 · qf3 , X7 − 1 = f0 · qf0

where

qf0 = X4 +X3 +X2 + 1, qf1 = X3 + αX2 + α2X + α2,

qf2 = X3 +X2 + αX + α, qf3 = X3 + α.
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Therefore this gives

Q0 =


1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

 , Q1 =


α2 α2 α 1 0 0

0 α α α2 1 0

0 0 α2 α2 α 1

 ,

Q2 =


α α 1 1 0 0

0 α2 α2 1 1 0

0 0 α α 1 1

 , Q3 =


α 0 0 1 0 0

0 α2 0 0 1 0

0 0 α 0 0 1

 ,

and

B0 =


0 0 0

0 0 0

0 0 0

 , B1 =


α 1 α

1 α2 1

α 1 α

 ,

B2 =


0 α2 0

α2 0 α

0 α 0

 , B3 =


α 0 0

0 α2 0

0 0 α

 ,

with rk Bi = i for i = 0, ..., 3. Observe that from Remark 4.3.24 it follows that Q0 is the generator

matrix of an euclidean self-orthogonal code (in fact, an euclidean self-orthogonal cyclic code) of

type [7, 3]4 with minimum Hamming distance equal to three.

Corollary 4.3.27. Let C be a linear code in Fnq . Then

C ⊆ C ∗ ⇐⇒ i(C ) ⊆ i(C )⊥,

i.e. C is self-ortogonal with respect to ·∗ if and only if i(C ) is self-ortogonal with respect to ·.

Proof. Since i is injective, the statement is an immediate consequence of Proposition 4.3.22 (v)

and the following equivalence: i(C ) ⊆ i(C )⊥ ∩I ⇐⇒ i(C ) ⊆ i(C )⊥.

Lemma 4.3.28. For any ~c ∈ Fnq and k ∈ N, we have

i(~c T k) = i(~c)(Θ ◦ P̂ )k,
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where

P̂ :=



P1

P2

. . .

Pr


and the Pi's are the mi ×mi matrices as in Proposition 4.3.11 for every i = 1, ..., r.

Proof. It is su�cient to prove the statement for k = 1. Thus, for every ~c ∈ Fnq , let ~v = (~v1, ..., ~vr) ∈

Fn1
q × ...× Fnr

q be the vector such that ~c = ~vC. By de�nition and Proposition 4.3.12 we have

i(~c T ) = i(~c TC−1) = i(~c C−1(Θ ◦D)CC−1) = i((~v)(Θ ◦D)) =

= i((~v1Θ ◦M1, ..., ~vrΘ ◦Mr)) = ((~v1)(Θ ◦M1)Q1, ..., (~vr)(Θ ◦Mr)Qr) =

= (i1(~v1Θ ◦M1), ..., ir(~vrΘ ◦Mr)) = (i1(~v1)(Θ ◦ P1), ..., ir(~vr)(Θ ◦ Pr)) =

= (i1(~v1), ..., ir(~vr))(Θ ◦ P̂ ) = (~v1Q1, ..., ~vrQr)(Θ ◦ P̂ ) =

= (~v1, ..., ~vr)Q̂(Θ ◦ P̂ ) = (~v)Q̂(Θ ◦ P̂ ) = i(~v)(Θ ◦ P̂ ),

that is, i(~c T ) = i(~v)(Θ ◦ P̂ ) = i(~c)(Θ ◦ P̂ ).

Corollary 4.3.29. Let C ⊆ Fnq be a linear code. Then

C is a T -code ⇐⇒ i(C ) is a linear code invariant under Θ ◦ P̂ .

Proof. From Lemma 4.3.28 it follows that

C is a product T -code ⇐⇒ ϕ(C ) is a linear code invariant by Θ ◦D ⇐⇒ i(ϕ(C )) = i(C ) is

a linear code invariant by Θ ◦ P̂ .

Corollary 4.3.30. Let C = (C1× ...×Cr)?ĈC be a linear code in Fnq = Fn1
q × ...×Fnr

q , where Ĉ is

an invertible matrix and Ci ⊆ Fni
q is a linear code for every i = 1, ..., r. If there exists an invertible

matrix C such that Ĉ(Q̂Q̂t) = (Q̂Q̂t)C, then C ∗ = (C ∗1 × ...× C ∗r ) ? C
−1
t C, where C ∗i ⊆ Fni

q is the

quasi-Euclidean dual code of Ci for every i = 1, ..., r. In particular, if C = (C1 × ...× Cr) ? C is a

product T -code, then C ∗ = (C ∗1 × ...× C ∗r ) ? C.
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Proof. By Proposition 4.3.22(i) and Theorem 4.3.3, we have

C ∗ = (C ? B)⊥ = ((C1 × ...× Cr) ? ĈCB)⊥ = ((C1 × ...× Cr) ? ĈQ̂ Q̂tC
−1
t )⊥ =

= ((C1 × ...× Cr) ? Q̂ Q̂tCC
−1
t )⊥ = ((C1 × ...× Cr) ? CBCtCC

−1
t )⊥ =

= ((C1 × ...× Cr) ? CB)⊥ ? C−1C
−1
t C = ((C1 × ...× Cr) ? C)∗ ? C−1C

−1
t C =

= (C ∗1 × ...× C ∗r ) ? CC−1C
−1
t C = (C ∗1 × ...× C ∗r ) ? C

−1
t C,

i.e. C ∗ = (C ∗1 × ...× C ∗r ) ? C
−1
t C.

Finally, we have the following

Proposition 4.3.31. Let CT ⊆ Fnq be a semi-linear T -code invariant under a θ-semi-linear

transformation T = Θ ◦M . If there exists a matrix M̂ such that BθM̂ = MB, then the quasi-

Euclidean dual code C ∗T is a T ′-code, where T ′ = Θ−1 ◦ (M̂t)θ−1.

Proof. Note that the linear code CT ?B is invariant under the θ-semi-linear transformation Θ◦ M̂ .

Thus we can conclude by Propositions 4.3.22 (i) and 4.3.7.

4.3.3 Hermitian duals

Assume that the order s of θ ∈ Aut(Fq) divides mi for every i = 1, ..., r, i.e.

mi = m′i · s , m′i ∈ N . (��)

Note that assumption (��) is always satis�ed when θ = id.

De�ne a �conjugation� map Φ on Rm := R/R(Xm1 − 1)× ...×R/R(Xmr − 1) such that

Φ((ai1X
i1 , ..., airX

ir)) := (Φ1(ai1X
i1), ...,Φr(airX

ir)),

where

Φk(aikX
ik) := θ−ik(aik)Xmk−ik ∈ R/R(Xmk − 1)

for k = 1, ..., r, which is extended to all elements of Rm by linearity of addition.
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We then de�ne a product of two elements ~p(X) = (p1(X), ..., pr(X)) ∈ Rm and ~t(X) =

(t1(X), ..., tr(X)) ∈ Rm by

~p(X) ∗P̂ ~t(X) := (p1(X)Φ1(t1(X)), ..., pr(X)Φr(tr(X))).

By the above commutative diagram, we can also de�ne a Hermitian product of two elements

~a(X) := (a1(X), ..., ar(X)) and ~b(X) := (b1(X), ..., br(X)) of Rn := R/Rf1 × ...×R/Rfr by

< ~a(X),~b(X) >:= j(~a(X)) ∗P̂ j(~b(X)).

The next two results are now an immediate generalization of [15, Proposition 3.2 and Corollary

3.3].

Proposition 4.3.32. Assume that (∗) holds. Let ~a = (~a1, ..., ~ar),~b = (~b1, ..., ~br) ∈ Fn1
q × ... × Fnr

q

and denote by

~a(X) := (π1(~a1), ..., πr(~ar)) := (a1(X), ..., ar(X))

and

~b(X) := (π1(~b1), ..., πr(~br)) := (b1(X), ..., br(X))

their polynomial representation in R/Rf1 × ... × R/Rfr via π = (π1, ..., πr) respectively. If (��)

holds, then

~ai ·∗i ~bi(Θ ◦Mi)
hi = 0, for all 0 ≤ hi ≤ mi − 1, i = 1, ..., r ⇐⇒ < ~a(X),~b(X) >= ~0.

Proof. Without loss of generality, we can assume that r = 1, since the statement will follow easily

by applying the below argument to each component of < ~a(X),~b(X) >∈ Rm. Moreover, for

simplicity we omit the subindexes.

Since θm = id, the condition < a(X), b(X) >= 0 is equivalent to

j(a(X)) ∗P̂ j(b(X)) = 0 ⇐⇒ a(X)qfΦ(b(X)qf ) = 0

⇐⇒

(
m−1∑
i=0

a′iX
i

)
Φ

(
m−1∑
k=0

b′kX
k

)
= 0

⇐⇒

(
m−1∑
i=0

a′iX
i

)(
m−1∑
k=0

θ−k(b′k)X
m−k

)
= 0

⇐⇒
m−1∑
h=0

(
m−1∑
i=0

a′i+hθ
h(b′i)

)
Xh = 0,
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where the subscript i + h is taken modulo m. Comparing the coe�cients of Xh on both sides of

the last equation, we get

m−1∑
i=0

a′i+hθ
h(b′i) = 0, for all 0 ≤ h ≤ m− 1.

By Proposition 4.3.12 the above equation is equivalent for all 0 ≤ h ≤ m− 1 to

~a′ · ~b′(Θh ◦ P h) = 0 ⇐⇒ ~a′ · ~b′(Θ ◦ P )h = 0

⇐⇒ i(~a) · i(~b)(Θ ◦ P )h = 0

⇐⇒ i(~a) · i(~b(Θ ◦M)h) = 0

⇐⇒ ~aQ · (~b(Θ ◦M)h)Q = 0,

i.e. ~a ·∗ ~b(Θ ◦M)h = 0 for all 0 ≤ h ≤ m− 1.

Let I be a left R-submodule of Rn. We de�ne the dual Iν of I in Rn taken with respect to the

Hermitian product <,> as

Iν := {~a(X) ∈ Rn | < ~a(X),~t(X) >= ~0 , ∀~t(X) ∈ I }.

De�nition 4.3.33. Let T be a semi-linear transformation of Fnq as in (∗). We de�ne the Hermitian

dual code C ν of a linear code C with respect to <,> as the linear code

C ν :=
{
~x ∈ Fnq | < ~x(X),~c(X) >= 0 for every ~c ∈ C

}
.

Remark 4.3.34. If I ⊆ Rn is a left R-submodule, then Iν is again a left R-submodule of Rn.

Consequently, from Theorem 4.1.6 we can deduce that if C ′ is a code invariant under D as in (∗),

then C ′ν = π−1(π(C ′)ν) is again a code invariant by D.

From Proposition 4.3.32 we can deduce the following results which relate the quasi-Euclidean

duals with the Hermitian duals of product T -codes.

Theorem 4.3.35. Let CT = (C1 × ... × Cr) ? C be a product T -code and de�ne the isomorphism

π = π ◦ ϕ. If (��) holds, then

π(C ∗T ) = π(CT )ν .
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Proof. Since CT = (C1× ...×Cr)?C, from Corollary 4.3.30 we deduce that C ∗T = (C ∗1 × ...×C ∗r )?C.

Thus it is su�cient to prove that

π(C ∗1 × ...× C ∗r ) = π(C1 × ...× Cr)
ν .

Moreover, without loss of generality, we can assume that r = 1. Therefore, let π(~b) = π1(~b) ∈

π1(C ∗1 ) for some ~b ∈ C ∗1 . Then for every ~a ∈ C1 and h ∈ Z≥0 we have ~b ·∗ ~a(Θ ◦M1)
h = 0. Thus

by Proposition 4.3.32 we get < π1(~b), π1(~a) >= 0 for all ~a ∈ C1, i.e. π1(~b) ∈ π1(C1)
ν . Hence

π1(C ∗1 ) ⊆ π1(C1)
ν . Finally, let b(X) ∈ π1(C1)

ν . Then we get < b(X), π1(~a) >= 0, ∀~a ∈ C1. By

Proposition 4.3.32 with h = 0, this implies that π−11 (b(X)) ·∗ ~a = 0, ∀~a ∈ C1, i.e. π
−1
1 (b(X)) ∈ C ∗1 .

This shows that b(X) = π1(π
−1
1 (b(X))) ∈ π1(C ∗1 ), that is, π1(C1)

ν ⊆ π1(C ∗1 ).

Corollary 4.3.36. Let CT = (C1× ...×Cr) ? C be a product T -code, where C is as in (∗). If (��)

holds, then

CT = C ∗T ⇐⇒ π(CT ) = π(CT )ν ,

i.e., CT is self-dual with respect to ·∗ ⇐⇒ π(CT ) is self-dual with respect to <,>.

Proof. Since π is an isomorphism, this follows immediately from Theorem 4.3.35.

Theorem 4.3.37. Let CT = (C1 × ... × Cr) ? C be a product T -code, where Ci = (gi)
ki,θ
ni,q

is an

fi-module θ-codes for every i = 1, ..., r. If (��) holds, then C ∗T = (C ∗1 × ... × C ∗r ) ? C is a product

T -code, where C ∗i = (Ci ?Bi)
⊥ with Bi := Qi(Qi)t for i = 1, ..., r. Furthermore, a generator matrix

for C ∗T is given by

G∗ :=


G∗1

G∗2
. . .

G∗r

 · C ,

where

G∗i :=



π−1i (g∗i )

π−1i (g∗i )(Θ ◦Mi)

...

π−1i (g∗i )(Θ ◦Mi)
si−1


,
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with si := dim C ∗i , g
∗
i qfi = l.l.c.m(h⊥i , qi) mod (Xm

i − 1), h⊥i =
∑ki

j=0 θ
i(hki−j)X

j and Xmi − 1 =

giqfi(
∑ki

j=0 hjX
j), is the generator matrix of the quasi-Euclidean code C ∗i for every i = 1, ..., r.

Proof. Since CT = (C1 × ... × Cr) ? C is a product T -code, then π(CT ) is a left R-submodule of

Rn. Hence π(CT )ν is a left R-submodule. By Proposition 4.3.30 and Theorems 4.3.35 and 4.1.6,

we conclude that C ∗T = (C ∗1 × ...× C ∗r ) ? C is a product T -code.

Consider the following commutative diagrams

Ck
ik //

πk
��

ik(Ck)

π′k
��

(gk) jk
// (gkqfk)

C ∗k
ik //

πk
��

ik(C ∗k )

π′k
��

(g∗k) jk
// (Gk)

for every k = 1, ..., r. By Proposition 4.3.12 we see that ik(Ck) is a θ-cyclic code. So from [6,

Theorem 8] we know that ik(Ck)
⊥ is again a θ-cyclic code generated by the skew polynomial

h⊥k := h∗k ∈ R such that Xmk − 1 = gkqfkhk, where h
∗ is as in [4, De�nition 3]. Since Ik := Im ik

is generated by qfk ∈ R, from Proposition 4.3.22 (v) it follows that π′k(ik(C
∗
k )) = (h⊥k ) ∩ (qfk),

i.e. π′k(ik(C
∗
k )) = (Gk) with Gk = l.l.c.m.(h⊥k , qfk). From Proposition 4.3.11 we deduce that

πk(C ∗k ) = (g∗k) with g
∗
k such that Gk = g∗kqfk .

Corollary 4.3.38. Let C = (C1 × ...× Cr) ? C be a product T -code, where C is as in (∗). If (��)

holds, then

C ∗ is a product T -code ⇐⇒ C + Ker B is a product T -code.

Proof. Suppose that C ∗ = (C ∗1 × ... × C ∗r ) ? C is a product T -code. Then by Proposition 4.3.22

(iv) and Corollary 4.3.37 we see that C + Ker B = (C ∗)∗ is a product T -code. Finally, assume

that C + Ker B is a product T -code. Then by Proposition 4.3.22 (vi) and Corollary 4.3.37, we

deduce that C ∗ = C ∗ ∩ (Ker B)∗ = (C + Ker B)∗ is a product T -code.

Let us note here that the converse of Corollary 4.3.37 is not true in general, as the following

example shows.
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Example 4.3.39. In F3
4, where F4 = F2[α] with α2 + α + 1 = 0, consider the polynomial

f2 = X3 +X2 + αX + α2. Then from Example 4.3.26 we know that m = 6 and

B2 =


0 α2 0

α2 0 α

0 α 0

 ,

with rk B2 = 2. Consider the linear code C ⊂ F3
4 generated by the vectors ~e2 = (0, 1, 0) and

~e3 = (0, 0, 1). Since

(~e3) Θ ◦


0 1 0

0 0 1

α2 α 1

 = ~e3


0 1 0

0 0 1

α2 α 1

 = (α2, α, 1) /∈ C ,

we see that C is not an f2-module θ-code. On the other hand, since Ker B2 is generated by the

vector (α2, 0, 1) and C ∩Ker B2 = {~0}, we obtain that

C + Ker B2 = C ⊕Ker B2 = F3
4

is an f2-module θ-code. By Corollary 4.3.38 we get that C ∗ is an f2-module θ-code.

Remark 4.3.40. If (��) holds, then Ker B ⊆ Fnq is a T -code such that Ker B = (Ker B1 × ... ×

Ker Br), Ker B⊥ = Im B, (Ker B⊥)⊥ = Ker B and Ker B∗ = Fnq , (Ker B∗)∗ = Ker B. In

particular, Ker B ⊆ Fnq does not contain any T -code C ⊆ Fnq with C ∗ 6= Fnq .

4.4 An encoding and decoding algorithm

Given a θ-semi-linear transformation T = Θ ◦M and a product T -code CT ⊂ Fnq of dimension

k < n, a classical codi�cation of a message ~M ∈ Fkq is given by ~MGTC
−1, where GT is a generator

matrix of CT and C is the invertible matrix such that CT = (C1×...×Cr)?C. Note that ~MGT ∈ CT

and

~m := ~MGTC
−1 ∈ CT ? C

−1 = C1 × ...× Cr

for some fi-module θ-codes Ci = (gi), where the gi's are right divisors of the fi's respectively (see

Remark 4.1.4 and assumption (*)). However, this encoding method is not systematic, i.e. it is not

strictly related with an easy decoding algorithm.
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So, let us give here a non-trivial and systematic encoding method for product T -codes. Let

~M ∈ Fkq = Fk1q × ...× Fkrq be the original message such that ~M = ( ~M1, ..., ~Mr), where ~Mi ∈ Fkiq for

every i = 1, ..., r. Let CT = (C1× ...×Cr) ?C be a product T -code such that dimFq Ci = ki for any

i = 1, ..., r. Note that Ci ⊆ Fni
q with ni ≥ ki for every i = 1, ..., r. Therefore, consider the natural

injective map ij : Fkjq → Fnj
q such that ij(a1, ..., akj) := (a1, ..., akj , 0, ..., 0) for any j = 1, ..., r, and

de�ne the injective map

i := (i1, ..., ir) : Fk1q × ...× Fkrq → Fn1
q × ...× Fnr

q .

De�ne ~m := i( ~M) = (( ~M1,~0), . . . , ( ~Mr,~0)) ∈ Fn1
q × ...×Fnr

q and denote by m = (m1, . . . ,mr) ∈ Rn

the representation of the message ~m = i( ~M) ∈ Fnq = Fn1
q × ...× Fnr

q , via the vector isomorphism

π := (π1, ..., πr) : Fn1
q × ...× Fnr

q → Rn := R/Rf1 × ...×R/Rfr .

At this point, we can encode the original message ~m := i( ~M) by working equivalently on either

(i) Rn, or (ii) Fnq := Fn1
q × ...× Fnr

q .

(i) Multiply the original messages mi by Xni−ki , where mi = mi,0 + mi,1X + ... + mi,ki−1X
ki−1

and ki = dimFq Ci. The result is Xni−ki · mi = θni−ki(mi,0)X
ni−ki + θni−ki(mi,1)X

ni−ki+1 + ... +

θni−ki(mi,ki−1)X
ni−1 for i = 1, . . . , r. Write Xni−ki · mi = qigi + ri for every i = 1, ..., r, where

deg ri < ni − ki. Since qigi ∈ Ci, we can encode the original message ~m ∈ Fnq by

~m′ := (π−11 (Xn1−k1 − r1), ..., π−1r (Xnr−kr − rr)) ∈ C1 × ...× Cr.

Since deg ri < ni − ki for every i = 1, ..., r, observe that all the information about the original

messages mi is contained in the last powers Xni−ki , ..., Xni−1 of Xni−ki ·mi − ri ∈ πi(Ci).

(ii) De�ne the map

Θ :
Fn1
q × · · · × Fnr

q −→ Fn1
q × · · · × Fnr

q

(~x1, . . . , ~xr) 7−→ (~x1(Θ ◦M1)
n1−k1 , . . . , ~xr(Θ ◦Mr)

nr−kr)
,

where the Mi's are matrices as in Theorem 4.1.3. By applying Θ to ~m we have

~mΘ = (( ~M1,~0)(Θ ◦M1)
n1−k1 , . . . , ( ~Mr,~0)(Θ ◦Mr)

nr−kr)

= ((~0, ( ~M1)Θ
n1−k1), . . . , (~0, ( ~Mr)Θ

nr−kr))
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If ~m′ := ((~c1, ( ~M1)Θ
n1−k1), . . . , (~cr, ( ~Mr)Θ

nr−kr)) is such that ~m′Ht = ~0, where

H =


H1

. . .

Hr


is the parity check matrix of C1 × ... × Cr and the matrices Hi = (Ini−ki | (Ti)t) are given by

Proposition 4.3.1 for every i = 1, ..., r. Then ~m′ ∈ C1×· · ·×Cr is the encoded message of ~m ∈ Fnq .

Now, let ~m′′ be the received message. If during the transmission of the encoded message ~m′

there were not errors, i.e. ~m′′ ∈ C1 × · · · × Cr, then in both cases (i) and (ii) we can decode

~m′′ = (~m′′1, ..., ~m
′′
r) by applying Θ−ni+ki to each component ~m′′i of ~m

′′. The original components ~mi

of ~m = (~m1, ..., ~mr) will be given by the last ki coordinates of (~m′′i )Θ
−ni+ki for every i = 1, ..., r.

Finally, if there were errors during the transmission of the message ~m′, i.e. ~m′′ /∈ C1× · · ·×Cr,

then by assuming that the error ~e, de�ned as

~e := ~m′′ − ~m′ ∈ ~m′′ + (C1 × ...× Cr),

where ~m′′ and ~m′ are the received and the encoded messages respectively, has small weight wt(~e),

we can use the below error detecting and correcting algorithm inspired by [12] and then the above

decoding procedure.

A Meggitt type error correcting algorithm.

Put dmin := mini=1,...,r{d(Ci)}, where d(Ci) := di is the minimum Hamming distance of the

code Ci for i = 1, ..., r, and assume that

wt(~e) ≤ dmin − 1

2
.

Let πj : Fnj
q → R/Rfj be the usual isomorphism for every j = 1, ..., r.

For any vector ~v = (~v1, ..., ~vr) ∈ Fnq = Fn1
q × ...× Fnr

q put π(~v) := (π1(~v1), ..., πr(~vr)) and de�ne

the syndrome of π(~v) as follows:

S(π(~v)) := (Rg1(π1(~v1)), ..., Rgr(πr(~vr))),

where Rgi(πi(~vi)) is the rest of the division of πi(~vi) by gi for every i = 1, ..., r.
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Observe that S(π(~m′)) = (0, ..., 0). Hence S(π(~e)) = S(π(~m′′)). Denote by ti the polynomials

in R such that ti ·X = 1 in R/Rfi for every i = 1, ..., r.

Algorithm 4:

Input: ~m′′ = (~m′′1, ..., ~m
′′
r)

• Step 1: Compute all the syndromes

S(π(~e′)) = S((π1(~e′1), ..., πr(~e′r)),

where πi(~e′i) =
∑ni−1

j=0 e′j,iX
j is such that wt(~e′i) = wt(πi(~e′i)) ≤ di−1

2
with di the minimum

Hamming distance of Ci and e′i,ni−1 6= 0;

• Step 2: Compute S(π(~m′′)) and de�ne ~s := S(π(~m′′));

• Step 3: If ~s = ~0 ∈ R/Rf1 × ...×R/Rfr then write ~e = ~0;

• Step 4: If ~s is equal to some of the syndromes S(π(~e′)) of Step 1, then write ~e = ~e′;

• Step 5: If ~s is not in the list of Step 1, then

~m′′ = ~m′ + ~e′′

for some error ~e′′ = (~e′′1, ..., ~e′′r) ∈ Fn1
q × ... × Fnr

q such that wt(~e′′) ≤ dmin−1
2

and

π(~e′′) = (
∑h1

j=0 e
′′
j,1X

j, ...,
∑hr

j=0 e
′′
j,rX

j) with e
′′

hi,i
6= 0, hi ≤ ni − 1 and hk < nk − 1 for

some k = 1, ..., r. Since θ is an automorphism of Fq, there exists an integer δk := nk− hk− 1

such that

ek := Xδk ·

(
hk∑
j=0

e
′′

j,kX
j

)
,

i.e. πk( ~Ek) := ek =
∑nk−1

j=0 ej,kX
j is such that wt( ~Ek) ≤ dk−1

2
and enk−1,k 6= 0. Thus the

syndrome

S((π1(~e′1), ..., ek, ..., πr(~e′r))

is as in Step 1, where πi(~e′i) =
∑ni−1

j=0 e′j,iX
j is such that wt(πi(~e′i)) ≤ di−1

2
and e′i,ni−1 6= 0

for i 6= k. Then write

~e = (~e′1, ..., π
−1
k (tδkk · ek), ..., ~e′r);

Output: ~m′ = ~m′′ − ~e.
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4.5 A construction method for T -codes

Observe that to construct a product T -code (see De�nition 4.2.3) it is su�cient to construct module

θ-codes (see De�nition 4.2.1).

Note that in R there are exactly qr−1(q − 1) di�erent polynomials of the form g = g0 + g1X +

...+ gr−1X
r−1 +Xr with g0 6= 0. Thus if h is another monic polynomial of degree r, then it follows

that (g) 6= (h) whenever g 6= h. Furthermore, for any given monic polynomial g ∈ R of degree

r < n as above there exists a polynomial f ∈ R of degree n such that g is a (right) divisor of f .

This shows that there exist qr−1(q − 1) module θ-codes with parameters of [n, n− r]q.

From now on, a linear code C of type [n, k]q with Hamming distance equal to d will be called

simply a code of type [n, k, d]q.

So, let us give here the following

De�nition 4.5.1.

Dθ
q(n, k) := max {d | ∃ a module θ−code of type [n, k, d]q}

Similarly to [14, Proposition 3.1], we can obtain the following

Proposition 4.5.2.

Dθ
q(n, k) ≥ Dθ

q(n+ 1, k + 1).

Proof. Let g = g0 +g1X+ ...+gn−kX
n−k be the generator polynomial of a module θ-code Cn+1,k+1

with parameters [n+ 1, k + 1, Dθ
q(n+ 1, k + 1)]. Observe that g0 and gn−k are distinct to zero and

that the generator matrix Gn+1,k+1 of Cn+1,k+1 has the form
g0 g1 ... gn−k 0 ... 0

0
... Gn,k

0

 ,
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where Gn,k is the following matrix
θ(g0) ... θ(gn−k) 0 ... 0

0 θ2(g0) ... θ2(gn−k) ... 0
...

. . . . . .
...

0 ... 0 θk(g0) ... θk(gn−k)

 .

Note that the minimum (Hamming) distance decided by Gn,k is at least Dθ
q(n + 1, k + 1). De�ne

G := θ(g0) + θ(g1)X... + θ(gn−k)X
n−k. Then G is the generator polynomial of a module θ-code

Cn,k of type [n, k, d]q with d ≥ Dθ
q(n+ 1, k+ 1). Hence we get Dθ

q(n, k) ≥ d ≥ Dθ
q(n+ 1, k+ 1).

Remark 4.5.3. If C is a module θ-code of type [n, k,∆]q with distance ∆ ≥ 1, then we have

Dθ
q(n, k) ≥ ∆. Therefore by Proposition 4.5.2 we see that for any integer δ such that 0 ≤ δ < k

there exists at least a module θ-code C ′ of type [n− δ, k − δ, d]q with d ≥ ∆. Thus the above result

can be useful to ensure the existence and the construction of module θ-codes of type [n, k, d]q with

distance d greater than or equal to some �xed value ∆ and small values for n and k.

Denote by Fθq ⊆ Fq the �eld �xed by θ. In what follows we try to construct vectors ~v ∈ Fnq such

that 1 ≤ dim[~v] ≤ k for some integer k < n, where [~v] ⊂ Fnq is the vector subspace generated by

{~v, (~v)(Θ ◦ Ac), (~v)(Θ ◦ Ac)2, ...} and Ac is the companion matrix of f ∈ R as in Remark 4.3.9.

For simplicity, put A := Ac and note that

(~v)(Θ ◦ Aθ) = (~v)(A ◦Θ)

for any ~v ∈ (Fq)n, where Aθ := [θ(aij)] if A = [aij]. This gives the following

Lemma 4.5.4. For every integer k ≥ 1, we have

(Θ ◦ A)k = Θk ◦ Ak,

where Ak := Aθk−1 · ... · Aθ2 · Aθ · A for k ≥ 2 and A1 := A.

Let h be an integer such that 1 ≤ h ≤ n− 1 and consider the equation:

(#) (~v)(Θ ◦ A)hxh + ...+ (~v)(Θ ◦ A)1x1 + (~v)x0 = ~0.
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If there exists a non-trivial vector ~v and a non-zero xh ∈ Fq which satis�es the above equation

(#), we can deduce that (~v)(Θ ◦ A)h can be written as a linear combination of vectors in{
~v, (~v)(Θ ◦ A), ..., (~v)(Θ ◦ A)h−1

}
, i.e. 1 ≤ dim[~v] ≤ h.

In order to simplify equation (#), we will consider only vectors ~v ∈ (Fθq)n. In this case, by

Lemma 4.5.4 (#) becomes

(#′) ~v · (Ahxh + ...+ A1x1 + Ix0) = ~0,

where ~v ∈ (Fθq)n. Thus the existence of a non-trivial vectors ~v ∈ (Fθq)n which satisfy equation (#′)

implies the existence of non-trivial solutions xh, ..., x1, x0 of the equation

(#′′) det(Ahxh + ...+ A1x1 + Ix0) = 0.

So we can translate the problem of �nding a vector ~v 6= ~0 in (Fθq)n which is a solution of (#) to

the problem of �nding non-trivial solutions xh, ..., x1, x0 in Fq of (#′′). De�ne

Fh(x0, x1, ..., xh) := det(Ahxh + ...+ A1x1 + Ix0).

We have the following

Lemma 4.5.5. The polynomial Fh(x0, x1, ..., xh) is an homogeneous polynomial of degree n in the

variables x0, x1, ..., xh.

Proof. For any λ ∈ Fq, we get

Fh(λx0, λx1, ..., λxh) = det(Ah(λxh) + ...+ A1(λx1) + I(λx0))

= det(λI) · det(Ahxh + ...+ A1x1 + Ix0)

= λn · Fh(x0, x1, ..., xh),

and this gives the statement.

From Lemma 4.5.5 it follows that the zero locus Z(Fh(x0, x1, ..., xh)) of Fh(x0, x1, ..., xh) on the

projective space Ph(Fq) is well de�ned. Put

Zh,n := Z(Fh(x0, x1, ..., xh)) ⊂ Ph(Fq).
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Then Zh,n is a hypersurface of Ph(Fq), i.e. dimZh = h − 1, of degree n ≥ h + 1. Moreover,

all the points of Zh,n represent no trivial solutions of (#′′). This gives a relation between

the construction of a module θ-code C = [~v] of dimension less or equal to h, where ~v ∈

(Fθq)n ∩Ker (Ahxh + ...+A1x1 + Ix0), with the existence of (rational) points on the hypersurface

Zh,n of Ph(Fq).

Remark 4.5.6. When θ is the identity of Fnq , e.g. if q is a prime number, we know from [10] that

the number Nq of Fq-points of the hypersurface Zh,n is bounded for the following inequalities: (i)

Nq ≤ (n− 1)q+ 1 if h = 2, except for a curve Z2,4 over F4; (ii) Nq ≤ (n− 1)qh−1 + nqh−2 + qh−2−1
q−1

if h ≥ 3.

For the general case of T -codes, an argument similar to the above can be directly applied to a

semi-linear transformation Θ◦D := Θ◦diag(M1, ...,Mr) instead of Θ◦Ac. Recall that any T -code

CT can be obtained from a code CD invariant by Θ ◦D by the relation CT = CD ? C, where C is

an invertible matrix such that CTC−1 = Θ ◦ D. Therefore, to obtain a T -code it is su�cient to

construct a code CD invariant by Θ◦D. As above, this allows us to �nd (rational) solutions of the

following equation

(##) (~v)(Θ ◦D)hxh + ...+ (~v)(Θ ◦D)1x1 + (~v)x0 = ~0

for some integer h such that 1 ≤ h ≤ n − 1. By considering only non-trivial vectors ~v ∈ (Fθq)n,

(##) becomes simply

(##′) ~v · (Dhxh + ...+D1x1 + Ix0) = ~0

which immediately implies the existence of non-trivial solutions xh, ..., x1, x0 ∈ Fq of the following

equation

(##′′) det(Dhxh + ...+D1x1 + Ix0) = 0,

where Di = diag((M1)i, ..., (Mr)i) and (Mj)i is as in Lemma 4.5.4 for every j = 1, ..., r and

i = 1, ..., h. Observe that (##′′) is equivalent to

det(diag((M1)hxh + ...+ (M1)x1 + Ix0, ..., (Mr)hxh + ...+ (Mr)x1 + Ix0)) =

= det((M1)hxh + ...+ (M1)x1 + Ix0) · ... · det((Mr)hxh + ...+ (Mr)x1 + Ix0) = 0,
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i.e.

F (x0, x1, ..., xh) := F1,h(x0, x1, ..., xh) · ... · Fr,h(x0, x1, ..., xh) = 0,

where Fi,h(x0, x1, ..., xh) := det((Mi)hxh + ... + (Mi)x1 + Ix0) for every i = 1, ..., r. In this case,

the zero locus Z(F (x0, x1, ..., xh)) of F (x0, x1, ..., xh) on the projective space Ph(Fq) is a complete

intersection of type (d1, ..., dr), where di := degFi,h(x0, x1, ..., xh), and its (rational) points are

solutions of (##′′).

Thus by any point (x0, x1, ..., xn−1) ∈ Zn−1,n we can construct a polynomial p = p(X) ∈ Fq[X]

such that det p(M) = 0. In this situation, we can say more about the polynomial p(x) ∈ Fq[x].

Proposition 4.5.7. Assume that θ = id. Let m =∈ Fq[X] be the minimal polynomial of an

invertible matrix M . If g = gcd(p,m) for some polynomial p ∈ Fq[X], then

(a) Ker p(M) = Ker g(M);

(b) Ker p(M) 6= ~0 ⇐⇒ g 6= 1.

Proof. Let us note that g(M) = p(M)a(M) and p(M) = g(M)b(M) for some polynomials

a, b ∈ Fq[X]. This gives Ker p(M) ⊆ Ker g(M) and Ker g(M) ⊆ Ker p(M) respectively, i.e.

Ker p(M) = Ker g(M).

To prove (2), observe that g = p · a + m · b for some polynomials a, b ∈ Fq[X]. If g = 1,

then g(M) = p(M)a(M) is the identity matrix. This shows that det p(M) · det a(M) = 1, i.e.

det p(M) 6= 0, but this gives a contradiction. On the other hand, if g 6= 1 then m = h · g

and p = l′cdotg for some polynomials h, l ∈ Fq[X]. Hence h(M)g(M) is the zero matrix. Since

deg h < degm and m is the minimal polynomial of M , we deduce that det g(M) = 0. Thus we get

det p(M) = det(l(M)g(M)) = 0, i.e. Ker p(M) 6= ~0.
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Chapter 5

Appendix

5.1 A normal form of a polynomial matrix

Recall that R := Fq[X, θ]. First of all, let us show as follows: if A =

 a11 a12

a21 a22

 is a 2 × 2

matrix with coordinates in R, then there exist elementary matrices E,F such that EAF has the

normal form

EAF =

 α1 0

0 α2

 .

Up to exchange rows and columns by left and right multiplication of A with the matrix 0 1

1 0

, we can assume that a11 6= 0 and a11 = p ·a21 +r, where p, r ∈ R and deg(r) < deg(a21).

Then  1 0

1 −p

 ·
 a11 a12

a21 a22

 =

 a11 a12

r a12 − p · a22

 .

Since deg(r) < deg(a11), we obtain that a11 = p′r+ r′, where p′, r′ ∈ Fq[X, θ] and deg(r′) < deg(r).

Then

 1 0

1 −p′

 ·
 a11 a12

r a12 − pa22

 =

 a11 a12

a11 − p′ · r a12 − p′ · (a12 − p′a22)

 =
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=

 a11 a12

r′ a12 − p′ · (a12 − p′ · a22)

 .

Thus with an inductive argument, by a �nite numbers of steps we can obtain the following matrix a11 a12

0 a′22

 .

The goal now is to obtain zero instead of a12 by a similar process. Write a11 = a12 · s + t, where

s, t ∈ Fq[X, θ] with deg(t) < deg(a12). Then a11 a12

0 a′22

 ·
 1 1

0 −s

 =

 a11 a11 − a12 · s

0 −a′22 · s

 =

 a11 t

0 −a′22 · s

 .

By applying again right division between a11 and t, we �nally obtain a matrix α1 0

0 α2

 .

This process can be realized by the fact that when we apply the algorithm of the left (right)

division, the degrees of the remainders decrease. This gives easily the matrices E and F .

The above result can be generalized to the case of n × n matrices with n ≥ 3. For instance,

when n = 3, if the matrix A has the form

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

up to exchange rows and columns by permutation matrices, we can suppose again that a11 6= 0.

By multiplying the matrix A on the right and on the left with matrices as
1 1 0

0 −q1 0

0 0 1

 ,


1 0 1

0 1 0

0 0 −q2

 and


1 0 0

1 −q3 0

0 0 1

 ,


1 0 0

0 1 0

1 0 −q4


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for some qi ∈ Fq respectively, we lead to the following matrix

A′ =


a11 0 0

0 a′22 a′23

0 a′32 a′33

 .

By a similar argument as above, we can reduce A′ to the following matrix
a11 0 0

0 α2 0

0 0 α3


by multiplying A′ on the left and on the right with matrices of type

1 0 0

0 1 0

0 1 −a

 ,


1 0 0

0 1 1

0 0 −b


for some a, b ∈ Fq, respectively.

5.2 MAGMA programs

Program 0.

F<w>:=GF(4);

PcMatrix:=function(qq,g,n)

R<x>:=TwistedPolynomials(F:q:=qq);

g:=R!g;

d:=Degree(g);

ll:=[];

for i in [0.. n-d-1] do

a,b:=Quotrem(R![1]*R![0,1]^(d+i),g);
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ll:=ll cat [b];

end for;

return ll;

end function;

Program 1.

F<w>:=GF(4);

P<x>:=PolynomialRing(F);

Period := function(f)

d:=Degree(f);

A:=CompanionMatrix(f);

p:=Order(Determinant(A));

_,_,E:=PrimaryRationalForm(A^p);

// Calculate the m'_i's

ll:=[];

for j in [1..#E] do

ll := ll cat [Order(CompanionMatrix(E[j][1]))];

end for;

return LCM(ll);

end function;

Program 2.

F<w>:=GF(4);

P<x>:=PolynomialRing(F);

PeriodF := function(f)
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return Order(CompanionMatrix(f));

end function;

Program 3.

Order(Matrix(GF(4), 3, 3, [0,0,1,1,0,F.1,0,1,0]));

Program 4.

F<w>:=GF(4);

PeriodNc:=function(qq,g)

R<x>:=TwistedPolynomials(F:q:=qq);

f:=R!g;

n:=Degree(f)-1;

repeat

n:=n+1;

_,r:=Quotrem(X^n-1,f);

until r eq R![0];

return n;

end function;

Program 5.

F<w>:=GF(4);

E:=[x : x in F | x ne 0];

RightDivisors := function(qq,g)

R<x>:=TwistedPolynomials(F:q:=qq);

f:=R!g;
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n:=Degree(f);

S:=CartesianProduct(E,CartesianPower(F,n-1));

dd:=[];

for ss in S do

ll:=[ss[1]] cat [p : p in ss[2]];

q,r:=Quotrem(f,R!ll);

if r eq R![0] then dd := dd cat [[q,R!ll]]; end if;

end for;

return dd;

end function;
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