
Universidad de Concepción
Dirección de Postgrado

Facultad de Ingenieŕıa Agŕıcola
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trabajábamos en la oficina chica con la Maŕıa Paz Lisboa, Mat́ıas Mendoza, Feliciano

Aguilera...Ah́ı olvido un poco el orden de la gente con la cual estuve...mi memoria es frágil
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Estimation of the crop water requirement is critical in the optimization of agricultural

production process, due yield and costs are directly affected by this estimation. Important

benefits of a correct estimation of water requirement are the increasing irrigated area, and

a high production due a better root condition.

Actually in most cases the crop water requirement, represented by the

Evapotranspiration (ET), is estimated through local approaches. Some of these approaches

use classical and novel techniques, that can estimate ET with high accurate but precluding

the spatial crop representation of ET.

In this sense, remote sensing appears as a way to ET estimation considering spatial

and temporal variability. ET models using satellite images have been developed in the

last decades, using in most cases the surface energy balance which has generated good

ET representation in different study sites. One of these models is METRIC (Mapping

Evapotranspiration at high Resolution using Internalized Calibration) that using a simple

and physical-empirical basis solving the surface energy balance to estimate ET.

The main drawback of METRIC model is the low robustness in the selection of a pair of

parameters called anchor pixels, that in the original version of METRIC were selected by an

operator, but aiming to standardize this selection and avoid the effect of different operator

criteria an automation was proposed. Although this automation standardizes the model

response, this requires a selection of an area where to find these anchor pixels, moreover

a high sensibility to different anchor pixel candidates still can be observed. In addition,

where this automation is implemented selecting different areas where anchor pixels are

found, important differences in the ET estimation are generated.

In this dissertation an object based image analysis (GEOBIA) is implemented to anchor

objects (changing the approach from pixel to object) identification. With the GEOBIA

approach, segmentation and classification processes are used to a correct selection of

segments in the image that fulfill the requirements for anchor objects, considering spectral

and contextual information. The implementation of this approach aiming to increase the

model robustness regarding to anchor objects selection.

Image segmentation was done using an adaptation of SLIC algorithm proposed to carry

out a hierarchical segmentation, in order to identify the optimal scale segmentation for each

parent segment. While, classification was divided in two processes: a primary classification

using Random Forest that was trained considering seasonal and humidity conditions; and

a post-classification step considering contextual and statistical information.

Results showed that the proposed GEOBIA approach allows to improve the robustness
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in the selection of anchor objects, which was validated through comparison with original

selection of anchor pixels in two scenes, moreover, entire set of scenes where the

methodology was implemented showed a decrease in the variability of the result.

Homogeneity analysis showed that ET objects with classes where crops can be found

have low intra-object variability and high inter-object separability. These results are a

good indicator of that segmentation process allowed to generate homogeneous segments

without loss of spectral characteristics and correctly separated from one another.

Validation of the proposed methodology comparing estimated with measured data

showed that the proposed methodology generates a slight error greater than original

model. This result suggest that some improvements to final selection of anchor objects

can be carried out, in this sense, could be considered different metrics to describe the

segments, additional maps, and to explore other relations between segments considering

spatial, temporal and hierarchical characteristics.
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Water requirement estimation is performed through the quantification of ET, using

local estimation or quantification models. In Allen et al. (2010), it is stated that, although

the ET estimation using lysimeters, Eddy covariance systems and Bowen ratio are accurate,

there are still limitations extrapolating local estimates at regional scale. It is also stated in

Allen et al. (2010) that local estimates do not represent the real amount of crop ET with

spatial and temporal variation caused by the rainfall heterogeneity, soil, vegetation types,

density, climate variability and phenological stage. About this, remote sensing allows ET

quantification in both local and regional scales, monitoring the crops in temporal and/or

spatial sense.

Remote sensing is the method used for information extraction without a direct contact

with an object of interest. Nowadays, this is performed by processing and analysis satellite

imagery captured by sensors mounted in spacecrafts. The increasing availability of imagery

allows to perform the crop monitoring, and use these images as a tool for crop management.

In this sense, ET estimation models that using satellite imagery have been developed,

considering different approaches and input data.

METRIC (Allen et al., 2007) model is one of the latest and widely used models of ET

estimation over full coverage crops through of surface energy balance using multispectral

satellite imagery with optical and thermal bands. METRIC is based on SEBAL (Surface

Energy Balance Algorithm for Land) model (Bastiaanssen et al., 1998a,b), that did a

great contribution to solving the estimation of sensible heat flux from satellite imagery

through the relation found between the temperature difference at different heights and

surface temperature considering pixels of the same images with extreme water conditions.

The main contribution done by METRIC was the model calibration by means the use of

reference ET which allows an inclusion of the local ET conditions.

In Gowda et al. (2008), a description of the main methods used in ET models using

satellite imagery was presented. The main methods are those based on surface energy

balance and models that estimate the relationship between the ET and reference ET (ETr)

through of a coefficient.

In last models that use a coefficient, two approaches can be followed. On one hand,

to generate the coefficient from ground data following the assumption that crops have a

standard management (without water restriction and with optimal soil condition). These

ensure that the fraction between ET and ETr corresponds to crop coefficient (Kc), widely

used in agriculture (Kc= ET
ETr ). On the other hand, if the coefficient is generated from

remote sensing data, the relationship is similar to Kc but with the exceptions that
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assumptions related with water restriction and management are not ensured. In this

work, coefficient generated from remote sensing data will be called ETrF using same

denomination of METRIC and SEBAL models. Models that use crop coefficient relations

(Kc or ETrF) are widely implemented with high spatial resolution images, because the

majority of these kind of images lacks the thermal band, which does not allow to estimate

ET through surface energy balance models. NDVI-Kc (Kc or ETrF) relation is the

most used of these models, where NDVI refers to Normalized Difference Vegetation Index.

NDVI-Kc estimates Kc from NDVI, which is then multiplied by ETr estimated from ground

data. It is stated in Gowda et al. (2008) that, although the NDVI-Kc models are relatively

easy to implement, require consider the water stress and calibration for each individual

crop.

METRIC and SEBAL are among the mostly used models to generate ET maps through

satellite imagery at this time. This is because of the physical basis, relatively easy

to implement models and the good results observed in different study sites. However,

despite the good results obtained by implementing these models, a sensitive dependence

of the results to the selection of anchor pixels that have to be identified on the image

for deployment of models SEBAL and METRIC has been found (Long et al., 2011). The

anchor pixels consist of two pixels located in the scene of the satellite image with extreme

water conditions. While the hot pixel is a bare soil pixel without evaporating water, the

cold pixel corresponds to a pixel with a full vegetation cover without water restrictions.

The anchor pixels are used to estimate the temperature difference between the surface

and the air through the relation developed in Bastiaanssen et al. (1998a,b), being this a

fundamental parameter in the estimation of sensitive heat flux in the scene and therefore

the crop ET estimation as residual of the surface energy balance.

In Choi et al. (2009) there is a comparison between three models to estimate ET from

satellite imagery, METRIC, TSEB (Two-Source Energy Balance) and TIM (Trapezoid

Interpolation Model). The results showed that METRIC and TSEB presented a better

adjustment of the estimations of heat fluxes regarding the ground-based measurements.

However, with a further analysis of the results discrepancies appeared in the estimations in

low vegetation cover zones (Leaf area index less than 2) concluding that, in the METRIC

model, special attention should be paid to both the selection of the hot pixel and the

parameter that defines the fraction of reference ET that the hot pixel evaporates.

Long et al. (2011) provides a sensitivity analysis of the SEBAL model regarding the

input of model and the anchor pixels. The sensitivity of the model, related to the scale
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and spatial resolution of the image was also assessed. The results showed that SEBAL

model is highly sensitive to the selection of anchor pixels, especially to the hot pixel. It

was also observed that the model results vary in relation to the employed scales and the

spatial resolution of the image. Long and Singh (2013) evaluated the RMSE (Root mean

square error) of METRIC model in the evaporative fraction produced by 3 anchor pixels

(3 cold and 3 hot pixels) versus flux tower measurements, the RMSE ranged from 0.08

to 0.13, showing that despite a manual selection of good anchor pixels candidates, exist

a probability of error in the estimation. In this same sense, Morton (2013) showed the

differences in the evaporative fraction estimated by 5 trained users, that reinforces the

high sensitivity of the model to manual selection of anchor pixels.

In Choragudi (2011) a sensitivity analysis of the METRIC model was performed in

relation to several input, the information from satellite imagery and anchor pixels. The

results showed that the METRIC model is particularly sensitive to selection of anchor

pixels, especially to the hot pixel which is also showed in Wang et al. (2009).

This model sensitivity regarding to anchor pixel selection was tried to be reduced

via automation of the selection of these parameters. In Morton (2013) an automatic

methodology to select the anchor pixels was proposed. The automation generated good

estimation compared with measurement on ground, but the main problem was the use of

a key assumption about a similarity across image dates and study areas. In Allen et al.

(2013) was proposed a methodology to try to avoid the high variability of the results

due different criteria of supervisors that select the anchor pixels. This automation helps

standardize this selection but also needs to be supervised by an operator that select the

areas of interest where the anchor pixels can be found. These areas of interest are done

up of agricultural zones where vegetation covers without water restriction and bare soil

without water contribution can be found. Also, with this methodology there is still the

possibility of selecting an incorrect anchor pixel that does not fulfill the requirements due

to the sole use of dichotomous rules that are applied to the spectral characteristics of the

pixels, not taking into account textural, morphological or contextual characteristics.

Nowadays, most water resource management in agriculture does not take into account

the intra-heterogeneity of farmland, using the same amount of water on cropland regardless

their differences in behavior or state. In this sense, satellite imagery appears as the tool

for the identification of variability in temporal and spatial scale, allowing the crop analysis

and management by homogeneous sectors.

The actual ET estimation models based in satellite images still have limitation about
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the use of pixel based approach to generate ET maps, causing that maps are composed

by a large ET points that do not provide a clear information to farmers. This is because

the pixels, by themselves, have not information about shape, variability or neighborhood,

which do not allows the identification of areas with a specific behavior (Blaschke, 2010).

Moreover, this pixel based information is not useful for farmers since the manage their

crops considering management zones instead of management points or pixels.

GEOBIA (Geographic Object based image analysis) approach correspond to the

development of methods to divide images into objects that are useful for information

extraction (Hay and Castilla, 2008). GEOBIA approach have the same guidelines than

OBIA (Object based image analysis) approach, but OBIA is applied in Computer Vision

and Biomedical field while GEOBIA is used in images from remote sensing characterized by

have a geographical meaningful. From now on, the term GEOBIA will be used to designate

both approaches, GEOBIA and OBIA, considering that this dissertation is developed in

the field of remote sensing.

GEOBIA approach has been used more widely since approximately the year 2000 due

to its advantages over the pixel based approach in spatial information extraction from

satellite imagery (Blaschke, 2010). GEOBIA approach has been implemented to reduce

noise generated by the large amount of pixels from covers in high or very high resolution

images and to extract more relevant information from objects, such as size, shape, location,

variability and cover classes. Another advantage of GEOBIA over the pixel based approach

is the considerable computing workload reduction of the classification process because it

considers image objects instead of pixels (Hay and Castilla, 2008).

Segmentation and classification are the main processes in GEOBIA (Gao and Mas,

2008). Segmentation consists on separating the images into several regions or segments

that have homogeneous features, among others, spectral and/or textural. After this

process, the generation of features is performed using spectral, textural, morphological

and/or contextual information for each individual segment. Classification consists of groups

generation from similar regions created in the segmentation process using its features

(Vieira et al., 2012).

The main differences in the GEOBIA implementations are the methods used for the

segmentation and classification, and the inputs of both processes. In Castillejo-González

et al. (2009), pixel and GEOBIA approaches using different supervised classification

methods and spatial resolution images are evaluated, concluding that the use of GEOBIA

improves the classification of farmland covers.
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An associated concept to the implementation of GEOBIA in remote sensing is the

spatial scale. The scale is defined as the period or space over which the signals are integrated

or smoothed to deliver a message (Allen, 1982). Humans are capable of identifying multiple

scales and analyzing them naturally, integrating information from multiples scales or

considering only one. This analysis is known as multi-scale analysis and it is a matter

of interest in the remote sensing field because the selection of one or another scale can

generate different information of a same scene (Burnett and Blaschke, 2003). Levin (1992)

proposed that the problem is not the recognition of the correct scale, but the identification

of phenomena at different scales and their interaction. This analysis suggests that remote

sensing research must consider different scales in order to identify and analyze the scene.

GEOBIA approach allows the incorporation of contextual, variability and hierarchical

information to improve the selection of classes of interest in the image, as in the METRIC

model are the anchor pixels.

Finally, scenario previously detailed encourages the design and implementation of a

methodology allowing to increase the robustness in the ET estimation using METRIC

model, via GEOBIA approach in the automatic anchor pixel selection (designated as anchor

objects in the GEOBIA context) considering spectral, textural and contextual information.
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0.1 Hypothesis

For the realization of the present Doctoral Thesis following hypotheses were proposed:

• Through GEOBIA approach the generation of homogeneous evapotranspiration

objects at different scales is possible.

This hypothesis is based in the conceptual definition of the segmentation process, i.e,

the subdivision of an image into homogeneous regions considering homogeneity and

heterogeneity criteria (Baatz et al., 2004).

• The implementation of ET estimation model through GEOBIA approach allows to

improve the robustness in the selection of anchor pixels.

GEOBIA approach is a relatively novel methodology that allows to improve the

generation of useful information based in spatial patterns, compared with the classical

pixel approach analysis. This useful information is an advantage that can be used to

incorporate them in the identification of anchor pixels using different criteria, e.g.,

textural, morphological and/or contextual.

0.2 Main Objective

• To design, implement and evaluate a methodology to ET estimation through

GEOBIA approach.

0.2.1 Specific Objectives

1. To design the GEOBIA architecture to ET estimation.

2. To design and implement the methodologies to multi-scale segmentation and optimal

scale definition of objects.

3. To design and implement the methodology to automatic selection of anchor objects.

4. To validate the robustness of anchor objects selection, ET estimated and ET object.

0.3 Expected contributions

1. ET estimation using the GEOBIA approach and surface energy balance would

increase the robustness of the automatic selection of anchor objects compared to the
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classical selection of anchor pixels, due to the incorporation of spectral, contextual

and/or morphological information in the selection.

2. Considering the GEOBIA approach, ET objects can be generated at different spatial

scales, which provides the ability to address attributes at different levels. This

additional information can be used by final users to analyze different management

units with an area-based behavioral approach.
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The first Chapter highlights the need of carry out this Thesis. In this sense, Chapters

1 shows the sensitivity of METRIC model regarding to some intermediate parameters

and inputs, generating relevant information about the importance of some parameters and

relationship between parameters and ET estimation. But mainly, this Chapter stated the

robustness problem referent to anchor pixel selection, which is the main problematic that

is addressed in this Thesis.

The remaining parts of the Thesis development are explained below. The main

proposal of the methodology is related to the identification of uniform areas, represented by

segments, to select the anchor objects. In this sense, Figure 1 shows the principal processes

of the methodology: Preprocessing, Training and Implementation.

The goals of the preprocessing step are to correct the gap of pixels of Landsat-7 EMT+

and to generate an uniform data-set from satellite images. In this sense, a brief evaluation of

3 methods to the gap filling process of Landsat-7 ETM+ images is showed in the Chapter C

in the Appendix.

The objective in training process is that a machine learning be able to classify any

scene in a specific number of classes previously settled. This is done through a training

process using Regions of Interest (ROI) generated by manual delineation in specific scenes.

To allow the use of homogeneous information, training is carried out over segments instead

pixels, for this reason an oversegmentation is applied previously to classifier generation.

This is a primary classification, then the objects are re-classified to identify anchor objects.

Full explanation of training process is done in Chapter 2.

Classifier, previously generated, is implemented to classify the segments of new scenes,

producing the desired classes. Moreover, as is showed in the Figure 1, an Anchor Objects

Identification process is implemented through a contextual and statistics rules. Finally,

the METRIC model is implemented considering two experiments, over original pixels and

over segments at optimal spatial scale. Full details of this process is explained in Chapter 3,

where results of the proposed methodology are generated and validated.

In Appendix some researches that contributed to accomplish the Thesis are shown. In

this sense, Chapter A is a research carried out to evaluate how can improve the METRIC

model if some parameters are locally calibrated. In addition, Chapter B is a research that

addresses the generation of optimal scale object through a hierarchical segmentation.
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Figure 1: Conceptual diagram of the proposed methodology.



Part V

Results of the proposed

methodology

30



Chapter 1

Sensitivity analysis of METRIC

model

1.1 Introduction

SEBAL and METRIC models are the most popular methods to estimate ET using satellite

images at medium-high scale considering them being a good combination between a

physical based approach and not very complex process to generate ET maps. SEBAL

model has been implemented in several locations with different climatic conditions, with

accuracy in the results ranging from 67% to 95% for instantaneous ET, and 70% to 98% for

daily ET (Bastiaanssen et al., 2005). In Tang et al. (2009) is showed that instantaneous and

daily ET estimation have 10% and 15% error, respectively. Despite this good result in the

ET estimation, additional analysis on the response of the model to input and intermediate

parameters is necessary.

As mentioned in Part II of this dissertation, some sensitivity analysis of SEBAL and

METRIC models has been carried out addressing the input, intermediate parameters and

domain scale which based the analysis in a possible error in the estimation of an input, or

if some values in intermediate parameters were incorrect. Although these results generated

an extensive amount of information about the response of METRIC/SEBAL model in

function of most of the parameters, some of the research do not consider the possible error

in realistic conditions, limited to an analysis on a range based on a percentage of the basic

condition. In this sense, in a sensitivity analysis done by Tasumi (2003) on METRIC

model showed a minimal sensitivity to surface roughness, even if doubling this value, but

31
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this result hides a possible condition since the values of surface roughness for different land

covers can vary from 0.02 to 1 m, for pasture and tree respectively.

Important parameters in METRIC and SEBAL models are the anchor pixels. These

are two pixels in extreme water condition: the cold pixel which is a full vegetative pixel

without water stress; while the hot pixel is a bare soil pixel without soil moisture. In

the first approaches of these models, the selection of these anchor pixels was performed

by an operator, but the possible error induced by different criteria of these operators

became necessary to investigate about the automatic selection of anchor pixels. In

Allen et al. (2013) a methodology to automation of anchor pixels selection was proposed

using statistical analysis of NDVI (Normalized Difference Vegetation Index) and surface

temperature. Another proposal was done in Morton (2013), where an iterative statistical

analysis considering simulations and assumption of population distribution was designed.

These approaches have good results but could need some calibrations for a new landscape.

In this research a sensitivity analysis of METRIC model was made over a study site

located in the Central Valley of Chile considering the following parameters: reference

Evapotranspiration (ETr), wind speed (WS), near surface vapor pressure (ea), albedo,

surface temperature (Ts), reflectance at the surface in different bands (Refsband), surface

roughness (zom) for cold anchor pixel and zom for the analyzed crop. Furthermore, a

sensitivity analysis of METRIC depending of different anchor pixels candidates was done.

1.2 Materials and Methods

The full description of METRIC model can be found in Allen et al. (2007, 2010), while a

brief description is shown in Chapter D.

In this research the sensitivity analysis is implemented by varying the analyzed

parameters and computing the fraction of reference evapotranspiration (ETrF, which is

the fraction of estimated ET and ETr, ETrF= ET
ETr ) and instantaneous ET (ETins). ETrF

is analyzed for two reasons: this output of METRIC is used to daily ET calculation,

therefore the impact of the parameters on ETrF directly affects the daily ET; considering

ETrF, possible errors in the incorporation of daily ETr from meteorological station are

avoided. ETins is analyzed since this is the primary output of the model derived from the

surface energy balance. This methodology (varying parameters and analyzing the output)

was implemented in other researches (Tasumi, 2003; Long et al., 2011; Choragudi, 2011)

being it a simple way to evaluate the influence of each parameters in the estimation model.
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An important step is the definition of the range for each parameters analyzed, since

an erroneous range can hide or increase the sensitivity of some parameters. Different

approaches to define the ranges were used. For ETr a percentage of possible error in the

estimation was used based in Estévez et al. (2009), where it was stated that around a 20%

of error in ETr can be possible incorporating random and systematic errors. WS was varied

between +-50%, based on similar research (Long et al., 2011; Choragudi, 2011). ea is not a

recurrently analyzed parameter, but in this research it is considered because it is an input

in the atmospheric correction process, and this analysis can give a guide to replace it for a

best process. In our case, the ea varied between +-20% from base condition. Albedo is an

important parameter to analyze because it has been shown that random deviation, canopy

structure and shadows can affect the albedo values (Choragudi, 2011). Also, estimation of

albedo for inclusive similar sensor, e.g. Landsat-7 and Landsat-8, shows differences that

can likely affect the ET estimation. Based on the range of albedo for soil and vegetation

covers, albedo was varied +-20% from the base condition. About Ts, results in Tasumi

(2003) showed that an uncorrected surface temperature can generate an error of more than

5 degrees. However, this error was seen in extreme hot pixel, while in more cold surface the

error was less. Following this, Ts was varied by +-2◦K from base condition based on that

inaccuracy in Ts estimation (Coll et al., 2010). Refsband was varied in a +-50% from base

condition, based on that shadow effect can vary the value of Refsband in this range (Leblon

et al., 1996). Finally, the sensitivity for zom was analyzed considering an erroneously

estimation for the cold pixel (zomcp) and for a specific crop pixel zomsp. zomcp was varied

considering the possible error generated by the empirical equations used to estimate it.

This is that there exist a possibility that a cold pixel could be a full covered crop pixel or a

pixel composed by trees, ranging the zomcp from 0.2 to 1 m, respectively. While analyzing

a specific pixel from our study site (in this case Sugar Beet crop), the possible errors in the

estimation of zomsp should be less, due to that the equations to estimate it were developed

in Tasumi (2003) and Allen et al. (2007) for annual irrigated crops, like Sugar Beet. In this

case zomsp was varied in +-50% from base condition. However, a third condition can be

analyzed: if the specific crop analyzed is a tree crop, the error in the zom estimation could

be greater, in this case the zom for hypothetical tree crop (zomtc) was analyzed ranging

from 0.2 to 1 m.

In Table 1.1 the ranges for all parameters are shown. It should be also mentioned

that two scenes were evaluated, 2012-092 and 2012-364 (where the denotation consider

the year and the Julian day). The values of base condition for both scenes are shown in
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Table 1.2. In addition, values of NDVI for Sugar beet crop; and Ts, NDVI, fraction of

evapotranspiration (ETrF, which corresponds to ) for cold and hot pixels are shown (all of

them with a respective sub-index cold or hot).

Parameter Range

ETr +-20%
WS +-50%
ea +-20%

Albedo +-20%
Ts +-2◦K (around 0.68%)

Refsband +-50%
zomcp 0.02 to 1
zomsp +-50%
zomtc 0.02 to 1

Table 1.1: Ranges of variation for all parameters analyzed.

Parameter
Base value Unit

2012-092 2012-364

ETr 0.43 0.67 mm*h−1

ETins 0.41 0.57 mm*h−1

ETrF 0.95 0.85 -
WS 4.39 3.79 m*s−1

ea 1.18 1.24 KPa
Albedo 0.15 0.21 -

Ts 293.6 296.0 ◦K
RefsNIR 0.44 0.58 -
zomcp 0.07 0.06 m
zomsp 0.07 0.09 m
Tscold 292.8 294.7 ◦K
Tshot 302.3 306.1 ◦K

NDVIcold 0.78 0.76 -
NDVIhot 0.21 0.34 -
NDVIcrop 0.79 0.83 -
ETrFhot 0.1 0.33 -
ETrFcold 1.0 1.0 -

Table 1.2: Values of base condition.

In the sensitivity analysis based on the anchor pixels a range of variation was not used,

since this is not a realistic scenario. The analysis was performed considering different
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anchor pixels candidates, so that the sensitivity is estimated for different possible anchor

pixels selected, either by a different operator that selects the pixels, or by changes in the

automatic criteria for pixels selection. The selection of these anchor pixels candidates was

implemented using the proposal of Allen et al. (2013).

To evaluate the sensitivity for each parameter, a sensitivity coefficient was calculated.

This coefficient allows comparing the sensitivity of different parameters and a better

interpretation of the results. In Gong et al. (2006) a non-dimensional relative sensitivity

coefficient that analyzes the model output and the punctual value of the parameter analyzed

(equation 1.1) is showed. This coefficients was first adopted by McCuen (1974) and allows

to compare variables with different dimensions and ranges of values. Si represents the

fraction of change in pi (where i denote the parameter analyzed) that is transmitted to

the Out of model, i.e. a Si equal to 0.1 would suggest that a 10% of increasing in pi may

increase the Out by 1% (Aydin and Keçecioğlu, 2010). The coefficient is calculated from

the values resulting from each model simulation considering the variation of the parameter

analyzed.

Si =
∂Out

∂pi
∗ pi
Out

(1.1)

1.2.1 Study site

In this research, one area was analyzed, with coordinates in the center of the image of 36.53◦

S and 72.10◦ W, with an extension of 25x25 kilometers. The climate is warm temperate,

the annual mean temperature is 14◦C, with a short dry season and annual rainfall that

varies from 1,000 to 1,300 mm (Novoa et al., 1989). The study site corresponds to a central

valley located in central-south of Chile, predominated by annual crops and some orchards.

In the scene a city (Chillán) and the principal river of the region (Ñuble river) can be

observed.

Sensitivity analysis was implemented over a rotation Sugar Beet crop of Sandrina,

Magnolia and Donella varieties, which can be observed in Figure 1.10 in 5952200 S and

219000 W coordinates (WGS 84 / UTM 19S). The plantation frame is 0.5 m between rows

and 0.07 m between plants, with a center pivot irrigation system with I-Wob emitters. The

total area of the farm is around 450 ha, and the area of crop covered for the center pivot

(study site) is around 17 ha. The extraction of information from the images was carried

out considering a window of 3x3 pixels around the location of a Surface Renewal station
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installed over the crop (for more detail about the station please refer to Site 2 in Chapter

A).

1.2.2 Data set

Images were captured by the ETM+ sensor on board of Landsat-7 satellite. Images

corresponding to the path/row : 233/85 were used, which were downloaded from the USGS

Glovis official site (http://glovis.usgs.gov), with 1T preprocessing level. The year and

DOY (Day of year) of each scene used are: 2012-092 and 2012-364. These two scenes allow

evaluating the different responses of METRIC in different phenological conditions.

Due to the failure in the “scan line corrector” (SLC) mechanism of the Landsat-7

EMT+ sensor on May 31, 2003, the images required the implementation of a preprocessing

consisting of the gap filling process of pixels without information. In order to achieve this,

the method proposed by Scaramuzza et al. (2004) (later published in Storey et al. (2005))

was implemented. In Chapter C an evaluation of different methods to gap filling is showed.

Meteorological parameters to estimate ETr were obtained from a meteorological

stations network, with website http://agromet.inia.cl/, this is managed by the Instituto

de Investigaciones Agropecuarias (Agricultural Research Institute appointed under the

Chilean Ministry of Agriculture).

1.3 Results and discussion

1.3.1 Sensitivity analysis for albedo

The albedo corresponds to the fraction of incident radiation that is reflected by the land

cover. It is calculated by METRIC using a empirical model that considers different weights

determined for each band by Tasumi et al. (2008). The importance of the analysis about

the effect of albedo in ET, arises because there are different methodologies to estimate

albedo from satellite images, which can generate different values. Furthermore, since the

launch of Landsat-8 satellite, new sources of images to implement the METRIC model

exist. The problems appear since the spectral ranges of the bands in Landsat-8 are different

that Landsat-7, therefore weights used in Landsat-7 are unable to be used in the albedo

estimation. This analysis seeks to find the importance that the albedo can have in the

estimation of ET, considering scenarios with differences in the procedure to estimate it or

different sources of information (sensors).
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Figure 1.1 shows that ETrF and ETins decrease with an increment of albedo. Albedo

affects the estimation of net radiation (NR) and soil heat flux (G), generating a decrease of

NR due mainly to an increase of the outgoing shortwave radiation, and a direct proportion

of change of G (insignificant considering the change of NR). Reduction of NR due to an

increase of albedo, generates an important reduction of ETins since there is less available

energy to use in evapotranspiration process.
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Figure 1.1: Model behavior regarding Albedo.

1.3.2 Sensitivity analysis for surface temperature

Surface temperature is, according to previous research, one of the most important factors

that influence ET estimation with METRIC and SEBAL models. Moreover, Ts is used to

estimate NR, G and sensible heat flux (H), which can affect to each component of surface

energy balance in different manners and therefore latent energy flux (LE).

In Figure 1.2 it is observed that with an increase of Ts, a decrease of ETrF and ETins is

generated. This can be explained since NR decrease, due to an increment in the outgoing

longwave radiation, and H increase due to an increase in the temperature gradient over the

surface. The effect over G is a minimal increase, due to a greater flux to the soil.

If the sensitivity analysis is performed, considering the change of Ts before to estimate

dT and Ts relation, the impact over ETrF and ETins would be less, because dT estimation

would absorb it, as it is shown in Tasumi (2003). In this sense, the analysis presented here

addresses possible local error in Ts estimation, generated by possible local conditions of
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shadows, atmospheric humidity or anomalies caused by the instrumental equipment (Jacob

et al., 2004).
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Figure 1.2: Model behavior regarding surface temperature.

1.3.3 Sensitivity analysis for reflectance at the surface

In this research all reflectance bands are evaluated, but only Near Infrared band (NIR)

is shown because this band has the most influence over ET estimation. This analysis is

very important since it can helps to consider the use of other methods for radiometric

and atmospheric corrections. In this instance, these corrections have been done using the

manual refereed in Allen et al. (2010).

The model response to an increasing of RefsNIR possess a similar explanation that for

albedo, because it generates an increase in the albedo, affecting the NR. The important

effect of RefsNIR over the albedo can be explained since this band represents around 30%

of the energy captured by the Landsat-7 sensor in shortwave radiation.

1.3.4 Sensitivity analysis for zomcp

As it was explained above, the zom can be analyzed over the anchor pixels or the studied

crops. zomcp represents the zom of the cold pixel identified in the image following some of

the proposed methodologies to select these anchor pixels. zomcp can vary (erroneously) in

an extensive range due that knows the real coverage of cold pixel is not easy, unless that

a land cover map be available.
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Figure 1.3: Model behavior regarding surface reflectance of near infrared band.

In Figure 1.4, the base condition is in the zomcp equals to 0.07 and 0.06 m for 2012-092

and 2012-364 scenes, respectively. It is observed that the sensitivity has a non lineal

response as a result of the estimation of friction velocity using a logarithm function. When

zomcp increases, the friction velocity (u∗ in Chapter D) also increases, then the resistance

of heat transport (rah in Chapter D) decreases, but, as H for cold pixel is maintained then

dT decreases. This effect generates that dT for all pixels in the image decrease, therefore

H decreases, and ETins increases.
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Figure 1.4: Model behavior regarding zom of cold pixel.
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1.3.5 Sensitivity analysis for zomsp and zomtc

Despite this parameter is the same as above, the effect generated by varying the zom for

cold pixel and analyzed pixel (crop of interest) is very different. In Figure 1.5, different

effects of zomsp over ETrF and ETins in comparison to zomcp can be observed. In this

case an increase in zomsp generates an increase in friction velocity and a decrease in the

resistance of heat transport. Then, as dT is maintained, H increases and ETins decreases.
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Figure 1.5: Model behavior regarding zom of the crop analyzed.

The behavior of the model regarding to zomtc is the same as the above, the only

advantage of this analysis it is able to show the possible impact by greater error in the

estimation of zom for a crop different than full coverage crop. The Figure 1.6 presents the

same non lineal behavior than Figure 1.4, hidden in Figure 1.5 due to the lesser range of

analysis.

The model response regarding zomsp is similar to that shown in Choragudi (2011).

However, as in our case the range of analysis was extended (zomtc), the model response

shows the real impact if METRIC is erroneously implemented over a tree crop assuming

that is a full coverage crop.

1.3.6 Sensitivity analysis for reference evapotranspiration

ETr is an important input of METRIC model as that ETr helps to calibrate the

method for sensible heat flux estimation, moreover, using ETr the fraction of reference

evapotranspiration (ETrF, Chapter D in the Appendix) is estimated to calculate ET for
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Figure 1.6: Model behavior regarding zom, supposing an error in zom ranging for pasture
to tree crop.

a daily scale. Some errors in ETr may be due to instrumentation (installation, sensor

problems, errors in reading code, etc.) or calculation.

The results presented in Figure 1.7 show the response of the model regarding ETr.

While ETr increases, H and dT for cold pixel decreases, then dT and H for all pixels in the

image decreases and therefore ETins increases.
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Figure 1.7: Model behavior regarding reference evapotranspiration.
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1.3.7 Sensitivity analysis for wind speed

WS is analyzed individually because both, WS and ETr, are used separately in the

estimation of sensible heat flux, and some error in WS can be compensated in the estimation

of ETr by other input.

In the METRIC model, WS has different ways to make an impact on the ET estimation.

First, WS generates an increase in the ETr estimation. Then WS is used in the calibration

to obtain the relation between dT and Ts. Finally, WS is used for ET estimation of all

pixels in the image. In some research, the sensitivity regarding WS was done considering

only the effect of WS on METRIC model, and not over the ETr estimation. In this research

the change in WS was incorporated in ETr estimation and METRIC model.

Figure 1.8 shows that an increase in WS generates an increase in ETins, due mainly

to the effect over the ETr estimation. However, the effect of an increase in WS generates

a decrease in ETrF, due to the increase in ETr being greater than the increase of ETins.

This behavior of ETrF is similar to the results showed in Choragudi (2011).
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Figure 1.8: Model behavior regarding wind speed.

1.3.8 Sensitivity analysis for near surface vapor pressure

ea is a parameter used in atmospheric correction, net radiation estimation and ETr

estimation (out of METRIC model). This parameter can impact in different ways the

ET estimation given the different steps where it is used.

The increase of ea induces a decrease in the atmosphere transmissivity that generates
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NR decreases. This effect over the atmospheric correction is minimal, with around 10

W*m−2 of change in NR ranging from minimum to maximum ea in the 2012-092 scene.

The main effect of change in ea affects to ETr estimation, causing that ETins decreases

when ea increases. This decrease in ETins is mostly canceled in the estimation of ETrF

because both, ETins and ETrF, decrease in similar magnitude.
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Figure 1.9: Model behavior regarding near surface vapor pressure.

1.3.9 Sensitivity coefficient (Si)

Table 1.3 shows all sensitivity coefficients calculated for the parameters analyzed. Si was

estimated from ETrF for all parameters, and additionally was estimated from ETins for

parameters that affect ETr estimation in order to shows the effects over instantaneous

(ETins) and daily (ETrF) results. Furthermore, in Table 1.3 the maximum % of change

in output (ETrF and ETins) are shown (Max%−change), estimated multiplying the Max Si

by maximum % of change from Table 1.1.

Considering Max%−change, for two scenes and two output analyzed, Ts and RefsNIR

are the most important parameters that make an impact on the model, with % of change

in the outputs greater than 24%.

When ETins is analyzed; RefsNIR, Ts and ETr affect more than 20%; ea, albedo and

WS between 5 and 18%; while zomsp generates 2.6% of change. It is worth mentioning

that the effect of zomcp and zomtc cannot be analyzed using Max%−change as the responses

are not linear and may increase the effect.
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On the other hand, when ETrF is analyzed, the main impacts are from RefsNIR, Ts

and albedo, with Max%−change greater than 8%, while ETr do not alter so much ETrF as

the change in ETins is canceled by the change in the input ETr. All the rest of parameters,

including ETr, generate a Max%−change less than 4%.

In both scenes, the results tends to be similar, only presenting minimal changes in the

order of the impact of the parameters in the model.

Parameter
Si

2012-092 2012-364
Min Max BC1 Max%−change Min Max BC Max%−change

ETr 1.2394e-04 0.0373 0.0098 0.746 0.1701 0.2040 0.1729 4.08
ETr 0.9991 1.0379 1.0100 20.76 1.1733 1.2091 1.1764 24.18
WS 0.0115 0.0273 -0.0198 1.37 2.0013e-04 0.0344 -0.0156 1.72
WS 0.0416 0.0938 0.0724 4.69 0.0308 0.1121 0.0765 5.61
ea 6.6494e-04 0.0081 -0.0043 0.16 0.0404 0.0785 -0.0580 1.57
ea 0.4787 0.9085 -0.6767 18.17 0.2996 0.5237 -0.4087 10.47

Albedo 0.2439 0.4022 -0.3228 8.04 0.3647 0.6400 -0.4975 12.80
Ts 29.2661 53.2237 -40.2560 36.19 22.6665 34.6442 -28.5263 23.56

RefsNIR 0.1293 0.4831 -0.2929 24.16 0.1768 0.7423 -0.4218 37.12
zomcp 0.0170 0.0302 0.0249 *2 0.0190 0.0344 0.0281 *
zomsp 0.0369 0.0516 -0.0458 2.58 0.0441 0.0635 -0.0557 3.18
zomtc 0.0280 0.1267 -0.0443 * 0.0307 0.1485 -0.0541 *

Table 1.3: Si coefficients. Gray rows refers to Si estimated from ETins. Min and max
values are calculated from |Si|.

1.3.10 Analysis regarding to Anchor pixels

Aforementioned, the sensitive analysis in function of anchor pixels was done changing

the pixels that are identified as candidates, unlike in others researches were only their

characteristics were varied (Long et al., 2011; Long and Singh, 2013). Moreover, different

regions of interest (ROIs) where the anchor pixels can be identified, were considered (Figure

1.10). This analysis shows the robustness of the method for anchor pixel selection, regarding

the rules of selection and delimitation of the region of interest.

Anchor pixels identified, have been ranked following the criteria presented in Allen et al.

(2013), so that the first pixels shown in following figures are the pixels that have a better

fulfillment of criteria than the last pixels.

Figures 1.11 and 1.12 show ETrF values generated by different anchor pixels selected

on different ROIs defined. All ROIs fulfill the same requirements: farm areas that include

1BC refers to Si in Base Condition.
2* means that estimation is not applicable due response is non linear in analyzed range
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Figure 1.10: Four ROIs where anchor pixels were identified are shown. These ROIs are
overlapped to the IGB composition of the scene 2012-092. The coordinates system showed
is WGS 84 / UTM zone 19S.

pixels with full crop coverage and agricultural soil; without urban and river classes.

However, variations of ETrF from around 0.6 to 1.1 can be observed, mainly because NDVI

and Ts histograms for all ROIs are different, then anchor pixels selected in each ROI have

different attributes (NR, Ts, albedo, etc.). In Figure 1.13 different NDVI histograms of

the 2012-092 scene for all ROIs are shown, moreover the NDVI threshold values used as

the primary criterion to select the anchor pixels are also shown. It can be seen that there

are slight differences in the NDVI threshold and histograms.

Figures 1.14 and 1.15 shows the available energy (AE) for the first pair of anchor pixels

selected in each ROI for scenes 2012-092 and 2012-364, respectively. For scene 2012-092,

AE for hot pixels vary between around 340 and 390 W*m−2, while AE for cold pixels

has not a standard range, e.g., for ROI (a) vary between around 370 and 380 W*m−2

versus in ROI (b) vary between around 410 and 430 W*m−2. This indicates that the slight

differences in the populations showed in Figure 1.13, although at the definition of these
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ROIs are the same, generate differences in the attributes of the anchor pixels selected, and

finally different estimated ET. These results also shows the high sensitivity of METRIC

respect to AE from cold pixel, more than hot pixel. In this sense, also were analyzed other

parameters from anchor pixels, such as NDVI, Ts and albedo, but AE shows the highest

correlation with ETrF.

Considering that the correct ETrF are 0.95 and 0.85 (calculated from estimated ET

by Surface Renewal system and ETr), for 2012-092 and 2012-364 scenes respectively, the

best results are generated with the ROI (a) in both scenes. Analyzing Figure 1.13, it can

be seen that ROI (a) has a greater population, with a high variety of crops with different

phenological stages and more similar to a normal distribution in comparison with other

ROIs. Additionally, it can be observed that selecting a ROI with a heterogeneous presence

of different classes of soil and vegetative cover is important, unlike ROIs (b) and (d).

Furthermore, Figures 1.11 and 1.12 show that there is not a clear major sensitivity

between cold and hot pixels, because depending of the ROI selected, the characteristics of

both anchor pixels vary.

1.4 Conclusions

The sensitivity of METRIC model is relatively consistent for different stages of the

crop, maintaining similar order and values of impact of the parameters over the outputs.

Differences are found in the model sensitivity analyzing different output, as some impacts

over ETins are canceled in the estimation of ETrF, is the case of ETr and near surface

vapor pressure. Most important parameters in the generation of ETins and ETrF are Ts

and RefsNIR parameters, that generate Max%−change greater than 24% in both scenes.

About the anchor pixels, it was detected that different ROIs, used to find the anchor

pixels, can generate values of ETrF from around 0.6 to 1.1, which can change the daily

ET from 3.6 to 6.6 mm*day−1, considering a hypothetical daily ETr of 6 mm*day−1.

One recommendation to avoid this high sensitivity is to define a ROI composed by

different phenological stages of vegetative cover in order to avoid specific coverage and

pixel distribution not representative.
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Figure 1.11: Variation in ETrF generated by different ROIs (a, b, c and d) for anchor
pixels selection in the scene 2012-092. Rows and Columns represent the different cold and
hot pixels identified and ranked, respectively.
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Figure 1.12: Variation in ETrF generated by different ROIs (a, b, c and d) for anchor
pixels selection in the scene 2012-364. Rows and Columns represent the different cold and
hot pixels identified and ranked, respectively.
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Figure 1.13: NDVI histograms for all ROIs evaluated, including the NDVI threshold value
for 5% more high NDVI used as criterion to identify the cold pixel. (a), (b), (c) and (d)
histograms corresponds to ROIs with same names showed in Figure 1.10.
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Figure 1.14: Available energy (NR-G, in W*m−2) versus ETrF in the different ROIs, for
scene 2012-092. Hot points were generated using all hot pixels and the first ranked cold
pixel, while Cold points were generated using all cold pixels and the first ranked hot pixel.
(a), (b), (c) and (d) plots corresponds to ROIs with same names showed in Figure 1.10.
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Figure 1.15: Available energy (NR-G, in W*m−2) versus ETrF in the different ROIs, for
scene 2012-364. Hot points were generated using all hot pixels and the first ranked cold
pixel, while Cold points were generated using all cold pixels and the first ranked hot pixel.
(a), (b), (c) and (d) plots corresponds to ROIs with same names showed in Figure 1.10.
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2.1 Introduction

The image classification is one of the main applications in remote sensing, considering

visual interpretation or digital analysis Chuvieco (2002). Since the first applications of

remote sensing, the image classification has been used in the agricultural area in order to

generate knowledge related to the distribution and state of agricultural land cover and to

allow the authorities to create effective development plans (Anderson, 1976). In addition,

the classification process allows mapping and monitoring of the land cover, identifying

changes produced on temporal and spatial scale (Rodriguez-Galiano et al., 2012b).

The availability of satellite images has increased in the last decades with multiple

kinds of images related to spatial resolution (low, medium, high and very high), temporal

resolution (daily, close to weekly and by programmed capture), spectral range (visible,

thermal infrared or hyperspectral), preprocess (digital numbers, geometrically corrected,

reflectivity, at surface reflectivity or final products) and price (free or with charge). This

major availability allows, among other goals, to improve the image classification in order

to mapping land cover changes (Körting et al., 2012; Rodriguez-Galiano et al., 2012b).

Different classification methods have been developed in the past, within these methods

we can mention: common algorithms such as K-means, Isodata, minimum distance; and

more advanced algorithms such as artificial neural networks, decision trees and support

vector machines (Otukei and Blaschke, 2010; Lu and Weng, 2007). However, during the last

decades, it has been reported that a combination of individual classifiers, called ensemble

can generate more accurate results than any individual classifier (Breiman, 1996; Pal, 2005;

Kuncheva and Rodŕıguez, 2014). In Breiman (2001) was proposed a classifier called random

forest (RF) which is an ensemble of numerous trees that provides a prediction considering

the most frequent individual vote by each tree, that in addition the prediction can be a class

label (classification) or a numerical value (regression) (Breiman, 2001; Rodriguez-Galiano

et al., 2012b). RF generates the classification with each tree using a random subset of

input features, this helps to reduce generalization errors. Additionally, it uses different

training data subsets created by techniques as bagging (bootstrap aggregating) (Walker

et al., 2010; Bauer and Kohavi, 1999; Rodriguez-Galiano et al., 2012a).

In this dissertation, the proposed methodology requires a primary classification process

to identify the anchor objects to be used in the METRIC model. Primary classification

uses different information from the images to assign a segment to a specific class. These

results will be used for anchor objects identification considering contextual information,
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among others. The main goal of the present chapter is to train a RF classifier considering

different experiments in order to select an optimal methodology implementation.

2.2 Methodology

In this Chapter, a classifier is trained using manually delineated classes over specific

Landsat-7 ETM+ scenes. In this sense, an improvement in the classification process is

possible considering segments as minimum units instead of pixels, which can be explained

because segments can be used to generate more features than from pixels, e.g. textural,

geometrical, neighborhood, contextual and hierarchical relations. Furthermore, problems

related to high variability of pixels can be solved since segments can be generated

considering neighborhood variability, then these segments comprise pixels variability in

a set of features (Baatz and Schäpe, 2000; Blaschke, 2010; Peña Barragan et al., 2011;

Whiteside et al., 2011; Corcoran et al., 2015).

The proposed methodology consists in a classifiers that learns taking into account

different attributes from all segments within the training ROIs. To accomplish this, the

segmentation process must be done considering an oversegmentation, so that each ROI will

be composed by numerous small segments, then the ensemble will be generated considering

all attributes in these segments. These steps are similar to the methodology proposed by

Corcoran et al. (2015), which concluded that Random Forest classifier trained using image

objects is most accurate than pixel and windowing approaches.

In order to accomplish an accurate classification, different land cover conditions had to

be considered. In this sense, following same criteria of Sexton et al. (2013) and Homer et al.

(2004), annual season was divided into triplets aiming to consider different climatic and

vegetative characteristics, in order to avoid that these different conditions could difficult

the training process. In our case, the ground-truth data used in training was generated

considering three climatic seasons, in addition two humidity conditions for each season

were considered, i.e. wet and dry conditions, based on the previous precipitation for each

training scene.

Study site corresponds to Site 2, detailed in the Chapter A of this dissertation. Satellite

images for training process were captured from year 2011, 2012 and 2013 by the Landsat-7

ETM+ sensor. The images were preprocessed with a gap-filling process detailed in the

appendices section, Chapter C. Detail about the images used in the training process is

shown in Table 2.1.
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DOY-Year Season Humidity condition Previous precipitation ETrFsoil
1

345-2011 Spring Dry - 0
361-2011 Summer Dry - 0
092-2012 Autumn Dry - 0
316-2012 Spring Wet 25mm, 2 days before 1
364-2012 Summer Wet 26mm, 4 days before 0.1
126-2013 Autumn Wet 42mm, 3 days before 1

Table 2.1: Training scenes and their characteristics in order to consider most of conditions
in the season.

2.2.1 Ground-truth data set

A recurrent problem in the classification process is the imbalanced data set used in the

training, i.e., one class is underrepresented compared with other classes which can generate

problems in the classifier learning (Cieslak and Chawla, 2008), in addition, the classifier

could erroneously ignore these underrepresented classes treating them as noise (Galar et al.,

2012).

In our case, the training data set was defined in order to generate a uniform distribution

between all classes, and then they were equally represented. Table 2.2 shows the area

distribution for each class for all training data set (abbreviated names will be detailed in

the next paragraph). Considering this, it can be assumed that training data set is balanced,

so it is not necessary to use a specific method to work with imbalanced data set (Cieslak

and Chawla, 2008; Galar et al., 2012).

Training data set was generated by supervised ROIs delineation, using different false

color combination as a reference to identify the different classes. These ROIs were

delineated considering small areas to achieve pure information of each class. Classes were

defined considering that the main objective was the identification of objects that have

similar conditions to anchor pixels, i.e., objects with full vegetation coverage and high

vigor (cold pixel), and objects of bare agricultural soil (hot pixel). To accomplish this,

initial classes were identified to then separate the classes of interest (cold and hot objects)

using contextual rules (in a post classification process). The classes are shown in the Table

2.2: Vegetation with high vigor (VCHV ), Vegetation with low vigor (VCLV ), Forest and

shrub, Urban, Water bodies, Stubble, Mixture between soil and vegetation (MixtureS−V ),

1Fraction of water evaporation from soil in function to reference evapotranspiration. Estimated through
a water balance using soil and weather information, following (Allen et al., 1998).
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and Bare soil. In the post classification (Chapter 3), the classes of interest for anchor

objects were homogeneous VCHV and Bare soil located away from Water bodies (to avoid

Bare soil that be part of banks of a river) and Urban (to avoid non agricultural Bare soil

and VCHV classes) classes.

Class Percentage

VCHV 16%
VCLV 13%

Forest and shrub 20%
Urban 10%
Water 7%

Stubble 11%
MixtureS−V 12%

Bare soil 11%

Table 2.2: Percentage of area for each class in relation to total training data.

Using the same steps as training data set, validation data sets were generated over each

scene, but considering to delineate entire covers of the same class to evaluate classification

process. An example of two validation data sets is shown in the Figure 2.1 for scenes

2011-361 and 2012-092.

2.2.2 Segmentation

Segmentation process involves the generation of multiples groups of similar pixels in the

neighborhood for an entire image. This is an essential first process in GEOBIA approaches

since the most important and meaningful information is not represented by single pixels

but by objects (or segments) and by their relation (Blaschke, 2003). This process was

performed by the simple linear iterative clustering (SLIC) algorithm categorized as a

superpixel method. Superpixel method and SLIC algorithm are described in the Chapter

B, for this reason only parameters about the implementation will be presented.

Two inputs to the SLIC algorithm were evaluated. Due the high correlation between ET

and NDVI (Normalized Difference Vegetation Index), this index was selected as one input

to be evaluated (SLICndvi). While, on the other hand, a set of bands of Landsat image was

selected (SLICbands). These bands correspond to the surface reflectivity for blue, green, red,

near infrared, shortwave infrared-1, shortwave infrared-2 bands and surface temperature

in Kelvin degrees.
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Figure 2.1: Validation data set overlapped to RGB composition (red-green-blue bands) of
the scenes 2011-361 and 2012-092. Coordinates system showed is WGS 84 / UTM zone
19S.

Evaluation of both inputs used in SLIC is done considering results of the classification

through of out-of-bag (OOB) error estimated by RF. OOB will be explained in the following

section.

In this initial segmentation, in order to train the classifier, a fine scale for the SLIC

was selected. Segmentation at fine scale means that objects are smaller and purer than

a coarser scale, allowing that the classifier can extract more segments from the training

ROIs, increasing the samples for the training data set. A fine scale of around 9 pixels was

selected for the segmentation process, this means that each segment has an area close to 1

ha, being a sufficient extension for small farmland representation.



CHAPTER 2. TRAINING PROCESS TO PRIMARY CLASSIFICATION 58

2.2.3 Classifier

As was mentioned above, ensembles have been very popular in the last decades since

generate more accurate results that an individual classifier. One of these ensemble methods

is the bagging. It which is a combination of individual tree classifiers, each one of them

trained through of replicas randomly selected of the original training data set. These

replicas are close to 37% of the total original data set and are selected using the algorithm

called bootstrap aggregation, introduced by Breiman (1996). This process leave out about

37% of the samples (1/e) allowing to use them later to estimate a classification error called

out-of-bag (OOB). This OOB error is useful when a classifier evaluation has to be carried

out without a validation data set (Chan and Paelinckx, 2008).

This algorithm has the advantage of reducing the variance component of the output

error. In Breiman (2001), a new ensemble classifier called Random Forest was proposed,

which is similar to bagging except that each tree grows using a random subset of predictors

or features. This procedure keeps a low bias and generates a robust classifier considering

the noise in training data set (Breiman, 2001; Prasad et al., 2006).

RF was selected in this dissertation due training data are extracted from segments

that belonging to manually delineated polygons, these can have noisy data or erroneously

training classes.

Random forest algorithm extracts information from a set of ground-truth ROIs,

considering all segments that are completely and partially inside them. Some details about

characteristics and conditions about these scenes used as training data set are shown in

Table 2.1. Each scene generates a model for the specific conditions (annual season and

humidity).

To implement these classifiers to new scenes, both season and humidity conditions are

considered, i.e., all new scenes that are captured in spring are classified using 316-2012

or 364-2012, selecting one of them depending if the new scene has a wet or dry humidity

condition. In order to estimate the humidity condition of the new scene, a water balance

model is carried out in the scene using soil information and data from a weather station

(Allen et al., 1998). Then, the fraction of evaporation from soil in function of reference

evapotranspiration (ETrFsoil) is calculated. A threshold value is considered to separate a

wet from a dry condition, i.e. with a ETrFsoil less than 0.05 the scene is considered in dry

condition, while with ETrFsoil greater than 0.05 the scene is considered in wet condition.

Information used in RF is composed by different maps generated from the original
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Landsat bands, which are useful for separating classes. These maps are: surface reflectivity

for blue, green, red, near infrared (NIR), shortwave infrared-1 (SIR1) and shortwave

infrared-2 (SIR2) bands; surface temperature in Kelvin degrees, surface albedo, NDVI,

Soil-adjusted vegetation index (SAVI), 3 components of Tasseled Cap transformation

(Brightness, Greenness and Wetness) (Huang et al., 2002), Water index (Xu, 2006) and

Entropy (Gonzalez et al., 2004). In an image, this index is calculated in the neighborhood

of a specific pixel, generating a textural map for all pixels. In this step, a neighborhood of

31x31 pixels was used for entropy estimation.

Due to the different ranges for each map, these were scaled to a specific range for each

map. The metrics extracted from the segments are mean, median, standard deviation and

mode, for all maps described above.

Training process was done using segments at the finest scale in each ROIs, i.e.,

considering an oversegmented image. However, the implementation of the classifiers

on new scenes considers segments at optimal scale. This can be explained since

the segmentation at optimal scale provides a more comprehensive segments, generated

considering the intra-variability and inter-heterogeneity in the analysis of parents-children

relation (Chapter B). This hierarchical approach to image segmentation allows generating

less or equal number of segments than fine scale segmentation, used in training, with

a meaningful consistency between homogeneity and neighborhood separability. In this

hierarchical analysis, number of segments associated with each scale were generated using

a dyadic succession from 1 to 50 ha, getting 7 scales with number of segments ranging from

65536 to 1024 for finest and coarsest scale, respectively (Figure 2.2). Information in detail

about optimal scale segmentation can be observed in the Chapter B.

2.3 Results and discussion

As it was mentioned in the section 2.2, two inputs for the SLIC algorithm were evaluated.

Figures 2.3 and 2.4 shows the OOB errors for the SLICndvi and SLICbands inputs in all

scenes. These results showed that the OOB errors are similar in both cases. Moreover, the

error stabilization is accomplished around 300 trees in all scenes and inputs. Because

this similarity the following results will be generated using SLICndvi as an input in

the segmentation process, this input also allows to decrease the time execution of the

implementation.

Figures 2.5, 2.6 and 2.7 show the importance of all features used in the classification
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Figure 2.2: Scales and number of segments generated to perform the segmentation at
optimal scale.

process, estimated using OOB data generated by RF from training data set. In all scenes,

the main features were blue, near infrared, surface temperature, NDVI, Water index,

greenness, and entropy bands, using the mean metric. Almost of other metrics had low

importance, specially the standard deviation.

Figures 2.8, 2.9 and 2.10 shows the classification maps generated using the trained RF’s.

The urban class is clearly detected, not only in the main city but also in small villages. This

result is due to the Entropy descriptor that has high values in zones with high variability,

generated by the combination of buildings, street and small vegetated areas (Shackelford

and Davis, 2003). The river is also detected, even a small river close to the main city.

Some bodies of water were correctly detected, like small irrigation reservoirs. However,

some bodies of water were erroneously identified in some forested areas. These two classes,

Urban and Water, are very important for validation due that anchor objects should not be

neighbors to these classes.

Confusion matrix was uses to evaluate and visualize the performance of classification

process. Confusion matrix for all training scenes are shown in Tables 2.3, 2.4, 2.5, 2.6,
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(a) Spring-dry. SLICbands
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(b) Spring-dry. SLICndvi
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(c) Summer-dry. SLICbands
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(d) Summer-dry. SLICndvi
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(e) Autumn-dry. SLICbands
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(f) Autumn-dry. SLICndvi

Figure 2.3: OOB error for two inputs evaluated in the SLIC algorithm for the three seasons
and dry conditions.
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(a) Spring-wet. SLICbands
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(b) Spring-wet. SLICndvi
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(c) Summer-wet. SLICbands
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(d) Summer-wet. SLICndvi
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(e) Autumn-wet. SLICbands
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Figure 2.4: OOB error for two inputs evaluated in the SLIC algorithm for the three seasons
and wet conditions.
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(a) OOB for Spring-dry
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(b) OOB for Spring-wet

Figure 2.5: OOB Feature importance for Spring scenes.
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(a) OOB for Summer-dry
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(b) OOB for Summer-wet

Figure 2.6: OOB Feature importance for Summer scenes.
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(a) OOB for Autumn-dry
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(b) OOB for Autumn-wet

Figure 2.7: OOB Feature importance for Autumn scenes.
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Figure 2.8: Classification maps for training scenes for Spring season.
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Figure 2.9: Classification maps for training scenes for Summer season.
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Figure 2.10: Classification maps for training scenes for Autumn season.
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2.7 and 2.6. It can be observed that ensembles tend to misclassify between Forest and

shrub, VCHV and VCLV ; and between Bare soil with Urban and MixtureS−V . In addition,

MixtureS−V is misclassified by all rest of classes. Also is observed that VCHV is detected in

some covers of Water class because similar low temperatures are found in both classes. In

addition, this misclassification can be explained since all validation ROIs for water class are

very small, then these small ROIs of water can be integrated in VCHV class that are located

around a river or reservoirs. About the classes that will be candidates to anchor objects

in the post classification process, VCHV have main errors when is erroneously classified

by VCLV , but using simple conditions this error can be solved in a post classification

process (e.g., considering temperature). Bare soil have a good accuracy, having small

misclassification with Urban and MixtureS−V classes. Even though all Urban ROIs were

not detected, the advantage is that this class was not misclassified with other classes.

Through the comparison of generated classes with validation ROIs delineated manually

by a user, overall accuracies for all scenes ranged between 83% and 90%.

Table 2.3: Confusion matrix for scene 2011-345

Forest and shrub Water Stubble Urban VCHV VCLV MixtureS−V Bare soil %

Forest and shrub 94,72 0,00 0,00 0,00 4,80 0,47 0,00 0,00 100,00
Water 0,03 89,17 0,18 2,62 1,15 5,37 1,49 0,00 100,00

Stubble 0,00 0,00 77,41 0,00 0,90 1,51 0,00 20,18 100,00
Urban 0,00 0,00 0,00 86,91 0,00 13,09 0,00 0,00 100,00
VCHV 21,00 0,00 0,59 0,00 68,53 9,87 0,00 0,00 100,00
VCLV 0,00 0,00 0,00 2,03 5,08 92,55 0,34 0,00 100,00

MixtureS−V 0,00 0,00 0,10 1,91 29,73 6,21 62,05 0,00 100,00
Bare soil 8,44 0,00 14,66 0,00 2,93 26,85 0,00 47,13 100,00

% 124,19 89,17 92,93 93,47 113,13 155,92 63,87 67,31 82,78

Table 2.4: Confusion matrix for scene 2011-361

Forest and shrub Water Stubble Urban VCHV VCLV MixtureS−V Bare soil %

Forest and shrub 89,89 0,00 0,00 0,00 8,98 0,75 0,19 0,19 100,00
Water 0,00 91,08 0,18 2,28 0,06 4,70 1,68 0,02 100,00

Stubble 0,00 0,21 76,07 0,00 0,21 6,20 0,43 16,88 100,00
Urban 0,00 1,83 0,00 81,75 0,00 10,17 6,25 0,00 100,00
VCHV 13,85 0,00 0,00 0,00 62,81 22,33 0,22 0,79 100,00
VCLV 0,00 0,00 0,00 0,12 1,09 98,36 0,43 0,00 100,00

MixtureS−V 0,00 0,00 0,00 0,17 3,86 4,15 91,82 0,00 100,00
Bare soil 0,00 0,00 0,15 0,06 2,41 35,56 0,00 61,83 100,00

% 103,74 93,12 76,40 84,38 79,44 182,20 101,02 79,71 85,69
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Table 2.5: Confusion matrix for scene 2012-092

Forest and shrub Water Stubble Urban VCHV VCLV MixtureS−V Bare soil %

Forest and shrub 64,04 0,00 0,00 0,00 8,38 16,55 0,26 10,78 100,00
Water 0,00 92,18 0,27 0,70 0,03 1,10 5,71 0,00 100,00

Stubble 0,00 0,00 67,01 0,00 0,77 4,35 17,14 10,74 100,00
Urban 0,00 0,00 8,12 73,48 0,00 16,29 1,00 1,10 100,00
VCHV 0,08 0,00 0,00 0,00 77,79 21,39 0,74 0,00 100,00
VCLV 0,00 0,00 0,00 4,22 0,58 88,72 0,00 6,48 100,00

MixtureS−V 0,00 0,00 0,00 0,97 0,06 24,64 74,34 0,00 100,00
Bare soil 0,07 0,00 0,00 0,02 0,00 6,55 0,00 93,36 100,00

% 64,20 92,18 75,40 79,39 87,60 179,59 99,17 122,47 88,63

Table 2.6: Confusion matrix for scene 2012-316

Forest and shrub Water Stubble Urban VCHV VCLV MixtureS−V Bare soil %

Forest and shrub 83,44 0,00 0,00 0,00 5,49 11,07 0,00 0,00 100,00
Water 0,00 91,54 0,00 4,49 0,21 2,91 0,85 0,00 100,00

Stubble 0,00 0,00 79,35 0,00 0,00 16,30 0,00 4,35 100,00
Urban 0,00 0,00 3,19 82,20 0,00 14,60 0,00 0,00 100,00
VCHV 2,39 0,00 0,00 0,00 82,91 14,45 0,08 0,16 100,00
VCLV 0,00 0,12 0,00 1,15 11,63 81,25 5,85 0,00 100,00

MixtureS−V 0,00 0,00 0,00 0,00 0,16 25,83 74,02 0,00 100,00
Bare soil 1,06 0,11 3,14 0,00 0,00 8,17 0,00 87,52 100,00

% 86,88 91,78 85,68 87,83 100,41 174,59 80,80 92,03 89,02

Table 2.7: Confusion matrix for scene 2012-364

Forest and shrub Water Stubble Urban VCHV VCLV MixtureS−V Bare soil %

Forest and shrub 83,16 0,00 0,20 0,00 11,68 4,35 0,00 0,61 100,00
Water 0,00 93,25 0,04 1,00 0,15 2,54 3,00 0,01 100,00

Stubble 0,00 0,00 83,33 5,41 0,00 7,66 0,00 3,60 100,00
Urban 0,45 0,00 0,09 69,75 1,18 15,49 13,04 0,00 100,00
VCHV 0,00 0,00 0,00 0,40 86,15 13,45 0,00 0,00 100,00
VCLV 0,00 0,00 0,00 2,79 2,63 94,58 0,00 0,00 100,00

MixtureS−V 0,00 0,00 0,00 0,71 0,47 22,13 76,69 0,00 100,00
Bare soil 0,56 0,00 9,62 3,91 0,06 2,37 0,00 83,49 100,00

% 84,18 93,25 93,28 83,95 102,32 162,56 92,74 87,71 90,10
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Table 2.8: Confusion matrix for scene 2013-126

Forest and shrub Water Stubble Urban VCHV VCLV MixtureS−V Bare soil %

Forest and shrub 71,07 0,00 0,14 0,00 23,77 4,75 0,00 0,27 100,00
Water 0,00 90,36 0,07 0,06 3,34 0,19 5,98 0,00 100,00

Stubble 0,00 0,00 67,82 0,00 0,00 7,92 0,00 24,26 100,00
Urban 0,00 0,00 0,30 71,39 0,20 28,11 0,00 0,00 100,00
VCHV 1,39 0,00 0,00 0,00 90,10 8,51 0,00 0,00 100,00
VCLV 0,00 0,00 6,75 3,09 1,60 69,11 2,97 16,48 100,00

MixtureS−V 0,00 0,00 0,00 0,00 4,94 1,90 93,16 0,00 100,00
Bare soil 0,22 0,00 3,15 0,06 0,00 3,77 0,00 92,81 100,00

% 72,68 90,36 78,23 74,59 123,94 124,27 102,11 133,81 88,65

2.4 Conclusions

A set of classifiers based on RF were developed and implemented. These classifiers were

trained considering 3 seasons (spring, summer and autumn) and 2 humidity conditions

for each season (wet and dry) using different Landsat images. Classifier selection for a

new scene was based considering humidity condition estimated through a water balance

using ground data. Classifiers were trained using an oversegmented image generated via

SLIC algorithm. Afterwards, classifiers were implemented over segments at optimal scale

generated with an adaptation of SLIC aiming to have comprehensible segments with a

meaningful consistency between homogeneity and neighborhood separability.

Different data set were used as input (NDVI and a set of bands) to SLIC algorithm,

showing similar results when OOB errors were compared in both data sets. As a validation

of segmentation process generally is complicated because in some cases requires delineated

segments to validate, the use OOB error is a feasible and easy option because the

classification with generated segments is evaluated. Due similar results between both data

sets, NDVI was used to generate the results and the following steps in the thesis.

Features used in the classifiers were mean, standard deviation, mode and median from

a set of original Landsat bands and different indexes. OOB feature importance showed that

metric mean for blue, near infrared, surface temperature, NDVI, Water index, greenness,

and entropy bands had the main influence over the classification. This results suggests that

in our case the other metrics have not a clear relation with the classes and these metrics

can be not considered in a similar application.

Classification accuracies were over 83% in all scenes, while main misclassifications

(considering classes that then can be selected as anchor objects) occurred when Bare soil
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was misclassified by Urban and MixtureS−V classes, and when VCHV was misclassified by

Water. However, these errors can be solved using some conditions in the post classification

process.

These results shows that this methodology can be used in similar implementations of

image classification, in which a temporal range of images composed by different conditions

(humidity and seasonal) are considered.
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3.1 Introduction

In this Chapter the main proposed methodology of the present Thesis is described, which

consists in the generation of ET maps based on the GEOBIA approach following the

conceptual diagram showed in Figure 1 in Part IV of this Thesis.

The need for a robust selection of anchor pixels in the METRIC model has motivated

some methodologies to accomplish this goal. Morton (2013) and Allen et al. (2013)

proposed different approaches to minimize the error occurrence produced by the users

and to improve ET estimation. Despite this, these approaches still require some human

intervention and some calibrations for new landscapes, which was demonstrated in Chapter

1 with a low robustness in the ET estimation regarding different areas to identify anchor

pixels, even when these areas have similar land covers. Moreover, even in the same ROI

some anchor pixels generate very different ET estimation.

Classification generated via GEOBIA approach presents advantages compared with

traditional pixel based approach because GEOBIA provides more information from object

shape and contextual association that can be used to re-classify a preliminary class

(Johansen et al., 2010). This contextual information can be generated considering spatial

and temporal relationship, in the first case the neighborhood of segments are analyzed,

while in the second one the contextual information is also extracted from scenes captured

in different time but in the same location and it is used mainly in video processing (Sun

et al., 2009).

Previous Chapter carried out training process of the classifiers based in spectral features

of segments in order to generate 8 classes, which in the present Chapter will be used to

find the anchor objects considering additional contextual rules. This implementation will

be carried out in new scenes for the same training site, such as in a different study site.

3.2 Materials and methods

As it was mentioned in Chapter 2, multiple classifiers were trained from different scenes

considering seasonal and humidity conditions, and will be applied to new scenes considering

both season and humidity attributes.
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3.2.1 Preprocessing

As in the Training process, the bands have to be preprocessed in order to generate a

standard set of at surface reflectance used as input to the classifier.

The selected gap filling methodology is the G-Flocal, which is implemented using the at

top of atmosphere reflectance estimated following steps found in Allen et al. (2010).

Implementation process is carried out over segments at optimal scale aiming to generate

objects with a meaningful consistency between homogeneity and neighborhood separability,

and generate fewer segments to reduce the computational load. Scales and number of

segments for each one is shown in Figure 2.2. Details about optimal scale segmentation

are found in Chapter B.

Data set used in segmentation and classification processes are the same than those

explained in Chapter 2, i.e. NDVI for segmentation process and for classification process:

surface reflectivity for blue, green, red, NIR, SIR1 and SIR2 bands; surface temperature

in Kelvin degrees, surface albedo, NDVI, SAVI, Tasseled Cap transformation, Water index

and Entropy. With the exception of that the metrics are extracted from segments at

optimal scale instead of being at finest scale.

3.2.2 Implementation process

Output in the first classification corresponds to 8 classes, which are: Vegetation cover with

high vigor (VCHV ), Vegetation cover with low vigor (VCLV ), Forest and shrub, Urban,

Water bodies, Stubble, Mixture between soil and vegetation (MixtureS−V ), and Bare soil.

From these classes, anchor objects have to be selected considering that cold object has to

be a crop coverage without water stress, while hot object has to be agricultural soil. Since

these conditions, cold and hot objects will be selected from VCHV and Bare soil classes,

respectively. Anchor objects identification consists in two steps: contextual analysis and

application of statistic filters.

Contextual analysis

This analysis allows to avoid anchor objects that can be erroneously selected from an urban

or from banks of river coverages. In addition, object size is considered for two reasons,

to avoid the selection of small objects in order to select more extensive and homogeneous

coverages of soil bare or VCHV , and to avoid an object to be rejected if a very small neighbor

is urban or water class, supposing that some small misclassification can be generated. Also,



CHAPTER 3. GENERATION OF ET MAPS THROUGH GEOBIA APPROACH 76

DEM (Digital Elevation Map) is used to reject objects that are located on mountainous

zones, filtering all objects that have a slope greater than 10 degrees. All rules related with

this analysis are shown in the Algorithm 1.

Algorithm 1 Anchor objects identification

Input: Object O with a preliminary class
Output: Object O with a final class (Cold or Hot candidate; Other class)
{All considered Neighbors must be greater than O}
if O is VCHV then

if Neighborhood is Urban or Water or Size is less than 100 pixels or Slope is greater
than 10 degrees then
O=Other class

else
O=Cold Object Candidate

end if
else if O is Bare soil then

if Neighborhood is Urban or Water or Size is less than 100 pixels or Slope is greater
than 10 degrees then
O=Other class

else
O=Hot Object Candidate

end if
else
O=Other class

end if

Filtering

In order to select the final anchor objects, statistical filtering was done considering the

extreme temperature in the selection of both anchor objects, similar concept followed by

Allen et al. (2013) in the automation of anchor pixels selection. In this sense, the coolest

and hottest objects were selected as final candidates to anchor objects. In Allen et al.

(2013) a primary filter of the top 5% of NDVI in an agricultural region of interest achieve

identify almost of vegetative coverage, then, a new filter of pixels in the bottom 20% of

temperature is implemented to find the final candidates to cold pixel. In our case, the first

filter is unnecessary since RF classifier achieves the high vigor crops identification. Since

this and aiming to implement similar criteria for the filtering to Allen et al. (2013), the

implemented filtering in the present research are:
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• Cold Object Candidate in the bottom 20% of temperature

• Hot Object Candidate in the top 20% of temperature

In addition, to select the final cold and hot object, homogeneity characteristics are

considered. To accomplish this goal, cold and hot objects that have the least standard

deviation in the temperature attribute are selected as final anchor objects.

3.2.3 METRIC model with GEOBIA approach

Main algorithms of METRIC model are detailed in Chapter D in the Appendix. In

addition, as it was detailed in section IV, two METRIC implementations are carried

out in this research, the first one is done over original pixels maps of Landsat

images (METRICGeobia−pixels), while the second implementation is done over segments

(METRICGeobia−segments) generated using the optimal scale segmentation. In both

implementations, anchor objects selected are used in METRIC model, making it possible

to compare both results and to find differences attributable to segmentation process.

Implementation of METRICGeobia−pixels is simpler because, in comparison with classical

METRIC, only change the consideration of attributes from anchor objects instead anchor

pixels. Implementation of METRICGeobia−segments is more complex, because an assignation

for each intermediate parameters must be done for all segments in the image. In this sense,

the mean is considered for attribute assignation for all input bands.

3.2.4 Validation process

Validation is done considering to accomplish the proposed hypothesis, i.e., to validate the

homogeneity of the ET segments, and validate the robustness of the proposed methodology

considering the anchor objects selection.

Validation of ET segments homogeneity is accomplished considering ET

pixels generated by METRICGeobia−pixels, that belong to segments generated by

METRICGeobia−segments. This analysis provides an indicator of how homogeneous the

segments are considering ET values generated with same parameters of METRIC model.

Robustness validation is perfofmed comparing the response of fraction of reference

evapotranspiration (ETrF) in function to different candidates of anchor objects, similar

approach used in Chapter 1 in order to analyze the sensitivity of the original METRIC

model (METRICOriginal). This validation method allows to compare both implementations
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of METRIC model: selecting anchor pixels with classical rules, and METRIC model with

GEOBIA approach.

In addition, a validation of ETrF magnitudes is done comparing estimated

(METRICGeobia−pixels) versus measured ETrF (henceforth called ETrFmeasured). In this

regard, segments that are inside of measurement station footprints are averaged to be

able to obtain a correct comparison between estimated and measured. ETrFmeasured is

estimated considering the ET (measured by the Eddy Covariance and Surface Renewall

systems installed in each study site) and calculated ETr using meteorological data, i.e.,

ETrFmeasured=ET/ETr.

3.2.5 Study Site

Results were generated for different seasons in two study sites, the first site is the same

that was used in the training process but considering all scenes in the seasons 2011-2012

and 2012-2013 (henceforth called Site a). While the second site is the same considered in

Chapter A, which have an Eddy Covariance station installed in a Cherry crop (henceforth

called Site b). In that Chapter, more details about crop, location, management and climatic

characteristics of this site can be found.

3.3 Results

3.3.1 Robustness validation

As it was detailed in Chapter 2, the first step to implementing the methodology is a

hierarchical segmentation at optimal scale, considering NDVI as dataset for segmentation

algorithm. Then, classification using the Random Forest classifiers is implemented,

moreover, using a contextual analysis all segments that have same class and are neighbor,

are joint in a new segment. Next, the rules to identify the anchor objects from classes

VCHV and Bare soil are implemented.

As anchor object candidates come from specific land covers, then, it is possible to

analyze their temporal evolution. Figure 3.1 shows temporal evolution of anchor objects

identified for all scenes in the Site a. These temporal evolutions are: total area, number

of objects and mean size of each object. A logical increasing of the area in cold anchor

objects is observed in period of full crop status, near January in this site (Summer), due

to optimal environmental and irrigation condition for the crops. Following this idea, area
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of cold anchor objects decreases when Autumn season is coming due to environmental

conditions and harvest period.

Figure 3.2 shows the variation in the ETrF generated through METRICGeobia−pixels

using different anchor objects identified in the image. These results can be compared

directly with those showed in Chapter 1 for 2012-092 and 2012-364 scenes. Those results

showed approximated variations ranging from 0.6 to 1.15, and from 0.6 to 0.95, for 2012-092

and 2012-364 respectively. Otherwise, results in Figure 3.2 show variations from 0.85 to 1.1

for scene 2012-092, and from 0.7 to 0.9 for scene 2012-364. A reduction of the variation of

ETrF values was detected when anchor objects were used. Moreover, 0.05 was the average

standard deviation for ETrF in all scenes showed in Figure 3.2, with a maximum of 0.075,

indicating that this minimal variation is consistent in all scenes.

Similar behavior of ETrF is observed in Figure 3.3 for Site b, but in this site it is not

possible to compare the robustness because this site is different than the one used in the

sensitive analysis. Despite this, it can also be seen a low variation of ETrF in each scene,

with an average standard deviation of 0.04.

3.3.2 Validation with ground measurements

Table 3.1 shows the comparison of estimated and measured ETrF for both study sites and

the scenes where both, measured and estimated data, were available. Estimated ETrF

was extracted from METRICGeobia−pixels, because this experiment generates pixel maps

as well as METRICOriginal implementation. Moreover, ETrF from METRICOriginal is

shown, aiming to have a comparison with METRICGeobia−pixels. This comparison allows

to evaluating only anchor objects selection, without incorporating the influence that the

objects generation could induce.

Results in Table 3.1 show that in Site a the RMSE is slightly greater in

METRICGeobia−pixels than METRICOriginal. But, in contrast, the MSE (mean signed

error) for METRICGeobia−pixels is less than in METRICOriginal. This indicates that while

METRICGeobia−pixels have estimated points that overestimate and underestimate ETrF,

all together are closer than estimated using METRICOriginal. On the other hand, Site

b shows better results using METRICOriginal than METRICGeobia−pixels. In addition, in

both implementations a consistent overestimation is shown. This overestimation can be

explained because original implementation of METRIC model in orchards generates an

overestimation due mainly to the surface roughness estimation, which is done considering

empirical equation developed to annual crops.
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Figure 3.1: Spatial evolution of anchor objects identified in each scene for Site a. 1 pixel
corresponds to 900 m2.
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Figure 3.2: Variation in ETrF generated by all anchor objects identified by the proposed
methodology in all scenes of Site a. Variations in columns represent hot anchor objects,
while variations in rows represent cold anchor objects.
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Figure 3.3: Variation in ETrF generated by all anchor objects identified by the proposed
methodology in all scenes of Site b. Variations in columns represent hot anchor objects,
while variations in rows represent cold anchor objects.
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Site a Site b

ETrFmeasured METRICGeobia−pixels METRICOriginal ETrFmeasured METRICGeobia−pixels METRICOriginal

2011-345 0,67 1,07 0,84
2011-361 1,16 1,05 0,93 0,67 1,10 0,76
2012-12 0,99 1,12 0,93 0,67 1,14 0,95
2012-28 1,05 1,11 0,97 0,71 1,20 1,04
2012-44 0,66 1,11 0,91
2012-92 0,95 1,09 0,89
2012-108 0,47 1,13 1,05
2012-348 0,84 1,14 0,97
2012-364 1,01 0,68 0,87
2013-30 1,00 1,06 0,90
2013-46 0,83 1,17 0,98
2013-62 0,71 1,22 1,06
2013-78 0,86 1,04 0,79
2013-126 0,67 0,86 0,85

RMSE 0,17 0,12 0,45 0,30
MSE 0,02 -0,11 0,42 0,25

Table 3.1: Comparison between measured crop coefficient (ETrFmeasured) and estimated
ETrF using METRICGeobia−pixels and METRICOriginal approach in both study sites for all
images.

3.3.3 Homogeneity validation

Previous sections addressed the improvement in robustness and validation with

measurements of METRIC model using the proposed GEOBIA approach in the selection

of anchor objects. In this section the homogeneity of ET objects is validated comparing

pixel values from METRICGeobia−pixels with values of ET segments generated through

METRICGeobia−segments.

Table 3.2 shows the analysis for objects with classes Vegetation with high vigor

and Vegetation with low vigor, including the standard deviation of ET pixels generated

by METRICGeobia−pixels belonging to objects generated with METRICGeobia−segments

(STDintra), and the absolute difference of ET between each objects and their neighbors

(|Diffneighbors|). STDintra for all objects was 0.35 mm day−1 for all scenes, which is a good

result considering that all objects of these classes were included in this analysis. In addition,

|Diffneighbors| averaged for all scenes and sites was 0.77 mm day−1 and the magnitude had

a relation with the season analyzed, i.e., that in summer |Diffneighbors| tends to be greater

than other seasons due that in summer there are many irrigated coverages with high ET

unlike their neighbors of natural landscape with water restriction.

Maps of ET for all scenes in Site a and Site b are shown in Figures 3.4 and 3.5,

respectively. In these maps can be observed the seasonal change in ET, presenting
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Site a Site b

STDintra (mm day−1) |Diffneighbors| (mm day−1) STDintra (mm day−1) |Diffneighbors| (mm day−1)
2011-345 0.519 0.919 0.326 0.703
2011-361 0.275 0.571 0.426 0.913
2012-12 0.450 0.845 0.408 0.874
2012-28 0.371 0.709 0.249 0.518
2012-44 0.344 0.626
2012-92 0.365 0.536
2012-108 0.194 0.346
2012-316 0.189 0.253
2012-348 0.297 0.614
2012-364 0.393 0.571
2013-30 0.429 0.792
2013-46 0.249 0.514
2013-62 0.372 0.651 0.227 0.469
2013-78 0.335 0.564
2013-126 0.135 0.160 0.073 0.135

Table 3.2: Homogeneity analysis of ET segments for all scenes and both study sites
analyzed.

the highest ET in January. In the Table 3.2 is observed that in Site a the minimum

|Diffneighbors| are on scenes 2012-316 and 2013-126. This can be observed more clearly

in the Figure 3.4 where in both scenes there are a similar ET over all coverages in the

image. Both scenes correspond to beginning and ending of summer, where differences in

the soil water condition between irrigated crops and natural landscapes are minimal, for

this reason |Diffneighbors| is low. Similar analysis can be done for Site b.

3.4 Conclusions

GEOBIA approach to estimate ET using the METRIC model were proposed, implemented

and validated. The proposed methodology use anchor objects selected considering

segmentation and classification processes, followed by contextual and statistical criteria.

The main goal of the proposed methodology was to increase the robustness of METRIC

respect to the selection of anchor objects (classically called anchor pixels).

Robustness to select anchor objects was improved by the decreasing of the variability of

ETrF for candidates to anchor objects in comparison with anchor pixel candidates, which

was validated analyzing two scenes. This validation considers that anchor pixels were

identified in 4 sectors in the image, while anchor objects were identified in entire image,

being an advantages for the proposed methodology because is not necessary to delineate
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Figure 3.4: Maps of daily ET (mm day−1) generated for Site a using
METRICGeobia−segments methodology.
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region of interest where find these objects.

In addition, although the robustness of the methodology was validate only in two scenes,

in remaining analyzed scenes the standard deviation of ETrF for all objects candidates was

low.

Homogeneity analysis for ET objects for classes Vegetation with high vigor and

Vegetation with low vigor showed a low standard deviation which indicated that

segmentation process generated meaningful and consistent segments, in a spatial and

spectral sense. Furthermore, inter variability of object was calculated using the absolute

difference of ET between each segments and their neighbors, which was 0.6 mm day−1

in average for all scenes and sites. These both results indicate that ET objects are

homogeneous and correctly separated from one another.

Despite this, it is important to mention that validation of ETrF with measured

data showed that the error of the proposed methodology was slightly higher to original

implementation of METRIC model.

The improvement in the robustness of anchor objects selection contributes to avoid

human dependency and to implement models that can be reproduced in different scenarios

without considering great changes. Following this idea, it is important to mention that the

classifiers used in this work can be implemented in images with similar landscapes used in

training process.
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GEOBIA approach allowed to improve the robustness in the selection of anchor objects,

decreasing the variation in the model response in function of all candidates to anchor objects

identified in the image. Using the proposed methodology is not necessary to delineate

regions of interest where to find anchor parameters. In addition, trained classifiers were

used in a different study site to where they were trained, which is an improvement because

allows to estimate ET maps in different sites without supervision.

This improvement was possible through: an oversegmentation process for training

and segmentation in optimal scale for ET objects generation; classification process using

random forest that considered phenological and meteorological information allowing to

separate classes of interest for anchor objects selection; and geometrical, contextual and

statistical information that were used to final selection of anchor objects from all candidates.

Homogeneity analysis showed that in ET objects with classes Vegetation with high

vigor and Vegetation with low vigor the standard deviation was 0.34 mm day−1 while the

averaged absolute value of the difference of each generated ET objects and their neighbors

was 0.6 mm day−1 for all scenes and sites analyzed, suggesting that all ET objects are

homogeneous and correctly separated from one another.

However, it has to be mentioned that the proposed approach showed an error slightly

greater than original implementation of METRIC model. This disadvantage can be

addressed considering additional experiments, e.g., to use different segment descriptors,

such as median or mode, in the segments characterization.

In this sense, future lines of this research can be oriented to improve the object

description, using different metrics such as those mentioned, moreover to use new maps to

consider additional information to improve the object characterization. On the other hand,

it is possible to explore other physical or nonphysical parameters that can be used to refine

the selection of final anchor objects (e.g., albedo, net radiation, indexes from images, etc.),

and to consider spatial, temporal and hierarchical (relations between objects at different

scales) characteristics in order to extract information that is potentially available in the

images.



Appendices

90



Appendix A

. Local parameterization of

METRIC model in Cherry and

Sugar beet crops (sent to Chilean

Journal of Agricultural Research)

91



APPENDIX A. LOCAL PARAMETERIZATION OF METRIC MODEL IN... 92

Local parameterization of METRIC model in Cherry and
Sugar beet crops

The format of the publication has been adapted to the Thesis format.

Authors: David Fonseca-Luengo, Luis Octavio Lagos and Mario Lillo-Saavedra.

A.1 Abstract

The use of remote sensing data for estimating crop evapotranspiration (ET) has been

implemented and validated in numerous regions around the world. One of the models

used to generate ET maps is METRIC (Mapping EvapoTranspiration at high Resolution

using Internalized Calibration), that considers a surface energy balance (SEB) to estimate

the latent heat flux. Until now, the majority of crops analyzed with METRIC model

has been annual crops with homogeneous and full canopy coverage, same crops for which

the model has been developed. The main objective of this study is to analyze the local

surface roughness parameterization of METRIC model over 2 different crops (Cherry and

Sugar beet) with measurements, using Landsat-7 ETM+ images during seasons 2011-2012

and 2012-2013. Results were validated comparing ET estimated and measured from Eddy

Covariance and Surface Renewal systems. The implementation of the parameterization

decreased the RMSE (Root mean square error) from 1.31 to 1.13 mm day−1 in Cherry

crop, while in Sugar beet crop the RMSE slightly increased from 0.74 to 0.84 mm day−1.

In addition, MSE (Mean signed error) decreased from 1.22 to 0.86 mm day−1 in Cherry

crop, and 0.07 to 0.06 mm day−1 in Sugar beet crop. Results indicate that the local

roughness parameterization improve the estimation of ET on partially covered crops (such

as tree crops).

Keywords: Local parameterization, METRIC, Remote sensing and surface energy

balance.

A.2 Introduction

Through remote sensing techniques several models to estimate crop evapotranspiration

(ET) have been developed. Normally, physically-based and empirical approaches and
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their combination have been considered including input data from visible, near infrared

and thermal infrared spectral bands. Among the physical-empirical models based on the

surface energy balance (SEB) approach, SEBI (Surface energy balance index) (Meneti

and Choudhary, 1993), TSM (Two-source model) (Kustas and Norman, 1999) and ETMA

(Evapotranspiration mapping algorithm) (Loheide and Gorelick, 2005) can be mentioned.

There are other models that use the reflectance-based crop coefficient method to estimate

ET; these models are simpler to implement but they need to consider the water stress

status and specific calibration for each crop type (Gowda et al., 2008).

One of the latest models widely utilized is the METRIC model (Allen et al., 2007),

based almost entirely on the SEBAL model (Surface Energy Balance Algorithm for Land)

developed by Bastiaanssen et al. (1998a,b). Both models perform ET estimation of a crop

solving the surface energy balance using multispectral satellite images in the optical, near

infrared and thermal ranges. In the original implementation, SEBAL and METRIC models

requires supervision and the selection of model parameters (named anchor pixels) by the

operator. This supervision generates a dependence of the model and it could be a source

for human error in the generation of results. In order to decrease this dependency and the

associated human error possibilities, in Allen et al. (2013) an automation of the METRIC

model based on statistics was developed. This is also intended to be helpful to the use of

the model by inexperienced operators in the selection of anchor pixels.

ET estimation by SEBAL and METRIC models has been widely validated in several

agro-climatic conditions in countries such as Spain, Turkey, India, Sri Lanka, China, Mali

and United States among others (Hemakumara et al., 2003; Bastiaanssen et al., 2005;

Zwart and Leclert, 2010). SEBAL and METRIC models have been used to estimate ET to

irrigation scheduling (Santos et al., 2008, 2010; Droogers et al., 2010; Kamble et al., 2013),

the generation of crop coefficients (Singh et al., 2012; Tasumi et al., 2005; Singh and Irmak,

2009), and the development of strategies for the assessment of irrigation performance at a

basin scale (Awan et al., 2011; Burkhalter et al., 2013). However, these applications have

been mainly carried out in full coverage crops. These full coverage crops were for which

somes equation of SEBAL and METRIC models were initially developed, and then a full

validation in partially covered crops such as orchards it is needed (Poças et al., 2014).

A validation in partially covered crops has been mentioned in Poças et al. (2014),

Pôças et al. (2013) and Santos et al. (2012). In these works the implementation of the

METRIC model in olive crops was analyzed, adjusting the length of roughness (zom) to the

actual crop conditions based on the crop density and Perrier roughness function (Perrier,
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1982), that integrate information from the leaf area index and canopy architecture. The

implementation of this new approach for the length of roughness estimation improved the

ET estimations with METRIC, which in Santos et al. (2012) resulted in a decrease of the

RMSE (Root mean square error) from 1.12 to 0.25 mm day−1.

The main objective of this study was to analyze the parameterization of surface

roughness in Cherry and Sugar beet crops using the METRIC model. This was done

aiming to highlight the possible improvements in ET estimation considering measured

parameters. Results were compared with ET measurements from an Eddy Covariance and

a Surface Renewal systems.

A.3 Materials and methods

A.3.1 Study sites

Two study sites were considered, where Site 1 and Site 2 correspond to Cherry and Sugar

beet crops respectively:

Site 1: This site is located in the coordinates 34◦ 6’ 43” S and 70◦ 41’ 9” W, the total

area of the farm is 63 ha, while the area of the study site is 6 ha. The crop corresponds to

Bing variety Cherries planted in 2003, with a plantation frame of 4 m between rows and

3 m between plants, with a rows orientation from northeast to southwest, a canopy height

of 5 m and a drip irrigation system using 2 drippers per plant of 4 L h−1 each one. This

zone has a Mediterranean climate, with prolonged dry season and an annual rainfall of 370

mm, the annual mean temperature is 13.9 ◦C (Novoa et al., 1989). The soil corresponds

to an OHiggins series, which is an alluvial soil composed by a mixture between loam and

clay. In depth the soil texture changes from loam to sandy clay loam until 110 cm (Ciren,

1996).

Site 2: This site is located in the coordinates 36◦ 32’ 11”S and 72◦ 8’ 25” W. It

corresponds to an annual sugar beet crop, which is changed annually between Sandrina,

Magnolia and Donella varieties. The plantation frame is 0.5 m between rows and 0.07 m

between plants, with a center pivot irrigation system with I-Wob emitters. The total area

of the farm is 450 ha, and the area of crop covered for the center pivot (study site) is 17

ha. The climate is warm temperate, the annual mean temperature is 14◦C, with short dry

season and annual rainfall that varies from 1,000 to 1,300 mm (Novoa et al., 1989). The

soil corresponds to a Macal Poniente series, which is Inceptisol soil. This soil is formed by

recent alluvial sediments with contribution of volcanic ash, located close to Ñuble river.
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This soil has a well drained deep sandy loam texture (Ciren, 1999; Garćıa et al., 2005).

A.3.2 Instrumentation

Site 1: The Eddy Covariance system consists of a tridimensional sonic anemometer

(CSAT3Campbell Scientific, Logan, UT, USA); a CO2/H2O open-path gas analyzer

(model EC150, Campbell Scientific, Logan, UT, USA) mounted at 1.5 m above the canopy;

humidity and air temperature sensors (HMP45C Campbell Scientific, Logan, UT, USA);

a net radiometer placed at 1.5 m above the canopy (Kipp & Zonen model NR-Litle 2,

Delft, NLD); a pyranometer (Li-Cor LI200X, Campbell Scientific, Logan, UTUSA); two

soil heat flux measurement plates placed above the row of crop (Hukseflux model HFP01SC

Campbell Scientific, Logan, UT, USA); soil moisture using Em5b Analog Data Logger

(Decagon Devices, Pullman, WA, USA) and 4 10HS sensors at different depths (Decagon

Devices, Pullman, WA); thermocouples for measuring soil temperature (TCAV, Campbell

Scientific, Logan, UT, USA); and a pluviometer(Texas Electronics TE525, Campbell

Scientific, Logan, UT, USA).

Site 2: The Surface Renewal (SR) system consists of a net radiometer sensor mounted

at 1.5 m above the canopy (Kipp & Zonen model NR-Litle 2, Delft, NLD net radiometer);

a pyranometer (Li-Cor LI200X, Campbell Scientific, Logan, UTUSA); two plates for

soil heat flux measurement (Hukseflux model HFP01SC Campbell Scientific, Logan, UT,

USA); thermocouples for soil temperature (TCAV, Campbell Scientific, Logan, UT, USA),

a 3-D sonic anemometer (Model 81000, RM Young Company, USA), measurements

of temperature and air humidity (HMP45C Campbell Scientific, Logan, UT, USA);

high-frequency temperature using two fine-wire 76.2 µm diameter FW3 thermocouples

(Campbell Scientific, Inc., Logan, UT), pluviometry (Texas Electronics TE525, Campbell

Scientific, Logan, UT, USA), and measurements of soil moisture using Em5b Analog Data

Logger (Decagon Devices, Pullman, WA, USA) and 4 10HS sensors sensors at different

depths (Decagon Devices, Pullman, WA).

The data measured by the EC and SR systems were collected every half hour. Sonic

temperature corrections were performed to EC(Webb et al., 1980; Allen et al., 2011).

In addition, corrections due to rotation were also performed to the EC and SR systems

(Wilczak et al., 2001). Correction in EC was performed using the Bowen ratio (Twine

et al., 2000) because has been described that the error in the closure can reach 30%, i.e.

the energy used in sensible and latent heat flux can be lower up to 30% respect to the

available energy (Rn−G) (Twine et al., 2000; Allen et al., 2011; Foken, 2008). This error
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can be attributed to the stored energy in the canopy, horizontal advection, energy used in

photosynthesis, change in the heat storage in the limit layer below the instrumentation,

problems in the frequency response of the sensors and error in the Rn or G (Allen et al.,

2011).

Regarding to the area of influence of the measurements in both systems, footprint

analysis was calculated in each site using the method developed in Hsieh et al. (2000).

Results showed that 90% of the fluxes were coming from less than around 100 m of distance

in the Site 1, and less than around 280 m in the Site 2 (more detail in the Validation

Section). In both sites the fluxes comes from southwest direction, in our case these assure

that almost of the fluxes comes from the surface of interest in both sites.

A.3.3 Satellite images

Images were captured by the ETM+ sensor on board of Landsat-7 satellite. Agricultural

seasons 2011-2012 and 2012-2013, corresponding to the path/row 233/84 (Site 1) and

233/85 (Site 2) were used. Images were downloaded from the USGS Glovis official site

(http://glovis.usgs.gov), with 1T preprocessing level of standard field correction. Days

(DOY, day of year) and season of image capture are presented in Table A.1.

Due to the failure in the “scan line corrector” (SLC) mechanism of the Landsat-7

EMT+ sensor on May 31, 2003, the imagery requires the implementation of a preprocessing

consisting in the gap filling process of pixels without information. In order to achieve this,

the method proposed by Scaramuzza et al. (2004) (later published in Storey et al. (2005))

was implemented. In this sense, only in the scenes DOY 92 for Site 1 and DOY 46 for Site

2, the pixels located in the field stations EC and SR were filled.

A.3.4 Meteorological data

The METRIC model requires satellite imagery and environmental parameters (wind speed,

solar radiation, air temperature and relative humidity) necessary to calculate alfalfa based

reference evapotranspiration (ETr) using the Penman-Monteith equation recommended by

the American Society of Civil Engineers, ASCE (Walter et al., 2005). The recommendation

to use weather station data is to consider station located in an agricultural area with

weather conditions similar to the analyzed scene, and near (within 50 km) the anchor pixels.

For Site 1 environmental parameters were obtained from a meteorological stations network

administrated by the INIA (Agricultural Research Institute depending from the Chilean
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Study site Season DOY

Site 1
2011-2012

345, 361, 12,
28, 44, 92,

108

2012-2013
348, 46, 62,

126

Site 2
2011-2012

361, 12, 28,
92

2012-2013
364, 30, 46

62, 78

Table A.1: Landsat-7 ETM+ satellite images used in this study. DOY, day of the year.

Ministry of Agriculture) website http://agromet.inia.cl/. Environmental parameters for

Site 2 were collected from a weather station located in the Faculty of Agricultural

Engineering of the Universidad de Concepción, Chillán Campus. In both sites the weather

stations are located within 50 km from each study site.

A.3.5 Preprocessing

As initial step, all bands of satellite images were automatically cut with the use of an

interest area mask for each study site. Then, Landsat-7 ETM+ images were transformed

into radiance, to reflectance at the top of the atmosphere and finally to surface reflectance

with atmospheric correction based in Tasumi et al. (2008) and Allen et al. (2007).

Subsequently a gap filling process was implemented using a local regression method from

adjacent scenes (Storey et al., 2005). Furthermore, the thermal band was resampled to

spatial resolution of multispectral bands to maintain a consistence in the analysis process.

A.3.6 ET estimation model

METRIC model estimates crop ET as a residual of the surface energy balance. It is

mainly based on SEBAL model (Surface Energy Balance Algorithm for Land) developed

by Bastiaanssen et al. (1998a,b). In SEBAL, to estimate sensible heat fluxes, a relationship

between the difference of temperature (dT ) (at different heights) and surface temperature

(Ts) for two extreme conditions pixels, named as anchor pixels (hot and cold pixels), was

proposed.
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Using the relation from Equation A.1 it is possible to obtain the dT of each pixel

for the whole image. Coefficients a and b are obtained from anchor pixels using an

iterative process, proposed in Bastiaanssen et al. (1998a) and modified in Allen et al. (2007).

Subsequently, dT is used to estimate sensible heat flux for each pixel. Instantaneous latent

heat fluxes are estimated from the surface energy balance model (Equation A.2). Using

Equation A.3 the Fraction of the ET estimated and reference ET is estimated (ETrF ),

that in general sense is similar to the wydely used crop coefficient (Kc), but with the

difference that ETrF can include local behavior and conditions of the crop. ETr is the

reference ET calculated from station data in the instant of image capture, and ETinst is

the instantaneous ET estimated from METRIC model. Finally, using the Equation A.4 it

is possible to estimate the daily ET (ETd) through of ETrF and reference ET for daily

period (ETr−d).

dT = b+ a ∗ Ts (A.1)

LE = Rn−G−H (A.2)

ETrF =
ETinst
ETr

(A.3)

ETd = ETrF ∗ ETr−d (A.4)

A.3.7 Automatic selection of anchor pixels

The automatic selection of anchor pixels was implemented based on the method proposed

by Allen et al. (2013), except that previous knowledge of the study zone for the selection

of zones of interest were used instead of land use maps.

Two groups of cold and hot pixels candidates are generated. These groups are sorted

depending on the quality of these pixels to be selected as anchor pixels, according to Allen

et al. (2013).

In the current methodology, a test of each pair of anchor pixels candidates is

implemented setting 20 iterations per default in the process proposed by Bastiaanssen

et al. (1998a) to obtain a and b coefficients. The next criteria were developed by personal

experiences aiming to select the correct anchor pixels, considering to pass to the next pair
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of candidates: if the standard deviation of b (from iteration 15 to 20) was higher than 5;

or the difference between the value of the current a and the previous a (previous iteration)

was higher than 10 (from 6 to 20 iteration). If these criteria do not occur, then the actual

pair of pixels is selected as anchor pixels.

In addition, soil water balance with field data was used to estimate the fraction of

water evaporation from the soil (ETrFsoil). This procedure adjust the evaporation from

the hot pixel depending on the soil moisture condition, that consequently influence to a

and b parameters of METRIC model.

Finally, all process (image preprocessing, input parameters, automatic selection of

anchor pixels, and ET maps generation) were coding in MATLAB software, allowing

improve the generation time results and facilitate the experiments implementation.

A.3.8 Estimation of the zom parameter

In SEBAL and METRIC models, zom is calculated from the leaf area index (LAI), Equation

A.5 and Equation A.6. These equations were developed in Tasumi (2003) and Allen et al.

(2007) for annual irrigated crops from the Kimberly, Idaho, USA. In crops of partial

coverage such as orchard, Equation A.6 tends to underestimate the value of crop height

(h), which underestimates zom and increase the aerodynamic resistance for sensible heat

flux. This process generates a decrease in the sensible heat flux and an overestimation of

the latent heat flux (Santos et al., 2012).

zom = 0.12 ∗ h (A.5)

h = 0.15 ∗ LAI (A.6)

In order to estimate correct zom values, data extracted from EC and SR stations and

the Equation A.7 were used (Rooney, 2001). From Equation A.7 it is possible to estimate

zom for stable condition in function of the friction speed (u∗), the von Karman’s constant

(k) and the wind speed (ux) measured at the aerodynamic measurement height zx; where

zx = zm − d, with zx being the measurement height above the soil surface and d is the

zero-plane displacement which is considered 2/3 of canopy height (Foken, 2008).

ux =
u∗ ∗ ln( zx

zom
)

k
(A.7)
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A.3.9 Validation

Validation was carried out comparing ET estimated by METRIC model versus ET

measured by the EC and SR systems. Results of ET estimated were extracted from

ET maps as the weighted ET from a mask generated using the footprint analysis (Hsieh

et al., 2000). In this sense, three sectors with respective contribution weights considering

the results of footprint analysis for around the 90% of the fluxes (Figure A.1). This

methodology aims to avoid discrepancies between spatial representativeness of remote

sensing products with ground flux measurements (Gelybó et al., 2013; Folhes et al., 2009;

Li et al., 2008). Information about each sector of footprint for both sites is shown in Table

A.2. Differences in both footprints can be explained by surface roughness, measurement

height and wind speed/stability conditions of each site (Hsieh et al., 2000; Li et al., 2008).

This validation method is valid for parameters related with latent energy flux, i.e.

evapotranspiration (such as energy flux or water) and ETrF . Other parameters generated

through METRIC model were analyzed using a 3x3 window centered on EC or SR pixel

location.

Study site Sector weight (%) Distance (m)

Site 1
A 70 21
B 18 64
C 5 106

Total=93%

Site 2
A 68 64
B 16 150
C 7 277

Total=91%

Table A.2: Details of footprint illustrations showed in Figure A.1 that were used in the
validation process.

A.4 Results and discussion

A.4.1 Automatic process

The general process was automated, that include the gap filling process and follow the

recommendation of Allen et al. (2013) to select anchor pixels. According to this, one ET

map of 817x818 pixels was generated in 1.5 min (Processor: Intel Core i7 950 with 4 cores
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Figure A.1: Illustration that represents both footprints for study sites, these were used
to validate ET estimations with EC and SR measurements. The X letter represents the
locations of EC and SR systems. Each cell corresponds one pixel of Landsat image, i.e.
30x30 m.
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at 3.07GHz; RAM: 8 GB; Operating System: Windows 7 Ultimate). This automation

avoids the dependency to operators decreasing possible human errors.

About the stability of a and b parameters, Figures A.2 and A.3 shows the stability

for sites 1 and 2, respectively. In both cases the parameters achieve the stability around

iteration 7. This indicates that this automation accomplishes a correct pixel selection

considering the stability.

(a) Parameter a (b) Parameter b

Figure A.2: Stability of parameters a and b for Site 1.

A.4.2 Quality of the ET measurements

In order to ensure the quality of measurements of EC systems, the energy balance closure

was performed. Previous to the Bowen ratio correction, the closure between available

energy (NR-G) versus the energy used in latent and sensible heat flux generated a linear

regression with slope and R2 of 0.68 and 0.89, respectively. After of Bowen ratio correction,

the energy balance closure has a slope and R2 of 0.72 and 0.63. In comparison with

literature, this results of the energy balance closure are good, since in literature it has been

documented that even after the EC corrections, errors can be higher than 30% (Wilson

et al., 2002; Twine et al., 2000; Foken, 2008).
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(a) Parameter a (b) Parameter b

Figure A.3: Stability of parameters a and b for Site 2.

A.4.3 Water balance in the soil

In Figure A.4 and Figure A.5 can be observed ETrFsoil and precipitation values for sites

1 and 2, respectively. Circles correspond to capture dates of the satellite images. In sites 1

and 2, three scenes were captured after an important rain event. This indicates that there

is available soil moisture to be evaporated, then ETrFsoil is different from zero (ETrFsoil

equal to 1). These days correspond to DOY 126 for both sites.

A.4.4 Parameterization of METRIC model using zom

In Table A.3 values of the roughness parameter, zom-METRIC, are shown. These values

were estimated by the model recommended by Tasumi (2003) and Allen et al. (2007)

(Equation A.5 and Equation A.6). The zom-field was calculated with field data through

Equation A.7. In addition, zom and the ∆error1 in ETd are shown.

Through the use of zom-field in the Site 1 the RMSE decreased from 1.31 to 1.13 mm

day−1; whereas in Site 2 the RMSE slightly increased from 0.74 to 0.84 mm day−1. Using

the MSE2 (Mean signed error), the results showed a decrease of MSE in both sites, from

1.22 to 0.86 mm day−1 in Cherry crop, and 0.07 to 0.06 mm day−1 in Sugar beet crop.

These results indicate that model overestimation decreased.

Regarding the ∆error, negative values indicate a major error using zom-field, while
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Figure A.4: Temporary series of ETrFsoil (black dotted line), precipitation (blue solid line)
measured from the monitoring station and capture dates of the satellite images (circles)
for Site 1.

Figure A.5: Temporary series of ETrFsoil (black dotted line), precipitation (blue solid line)
measured from the monitoring station and capture dates of the satellite images (circles)
for Site 2.
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positive values indicate a major error using zom-METRIC. It can be observed that for

Site 1 in only two scenes the error through zom-field was higher than using zom-METRIC

(Table A.3). These results indicate an improvement in the ET estimations for Site 1 by

using the roughness estimated in the field, which reinforces the need of parameterize the

models that compose METRIC to the conditions of partially covered crops, such as tree

crops. In addition, it is observed that in Site 1 in all cases, zom-field exceeded the values

of the zom-METRIC.

In the Site 2, almost of the zom-field values are similar to those of zom-METRIC.

Nevertheless, unlike Site 1, the use of zom-field tends to increase the error of ET estimation

in the Site 2.

Estimation accuracy for sites 1 and 2 increased and decreased, respectively, which can

be explained due that models proposed by Tasumi (2003) and Allen et al. (2007) were

developed for fully covered annual crops, similar to Site 2, thus the use of zom-field can

improve the results in the Site 1 and not necessarily in the Site 2.

In the DOY 46 of Site 2 it was not possible to estimate the zom-field due to a failure in

the system. Hence, the zom-field value was maintained but not considered in the statistic

analysis.

Figure A.6 shows the comparison between ET estimations through METRIC (zom-field)

and ET measurements from EC and SR systems in both study sites, this comparison

generate a RMSE of 1.01 mm day−1. Separate analysis by crop shows that Site 1 has a

slope of 1.15, and R2 of 0.82. On the other hand, Site 2 has a slope of 1.00, and R2 of

0.77. These results are similar to the shown in Poças et al. (2014) for an olive crop, R2

and slope equal to 0.85 and 1.11, respectively.

In the Table A.4, results using zom-field for parameters a, b and AE for each site are

shown. The DOY=126 in the Site 1 present atypical values of a and b in comparison with

the other scenes, this behavior is due in this scene the ETrFsoil is equal to 1, producing a

minimal difference of dT according to surface temperature.

1∆error corresponding to the absolute value of estimated minus measured ETd using
zom-METRIC, minus the absolute value of estimated minus measured ETd using zom-field.
(|ETdest − ETdmea|zom−METRIC - |ETdest − ETdmea|zom−field)

2MSE is the average of the Absolute Error (AE) of each scenes.
3zom-METRIC is used due to a failure in extraction of zom-field from the system.
4AE correspond to Absolute Error of ET, i.e., estimated minus measured ET
5Bold DOY correspond to day with ETrsoil=1.
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DOY

Site 1 Site 2

zom-METRIC zom-field ∆error zom-METRIC zom-field ∆error
(m) (m) (mm day−1) (m) (m) (mm day−1)

345 0.042 1.037 0.880
361 0.037 0.926 -0.314 0.088 0.161 0.002
12 0.040 1.628 -0.371 0.087 0.076 -0.039
28 0.033 1.351 0.445 0.088 0.496 0.000
44 0.026 1.451 0.562
92 0.020 1.270 0.248 0.068 0.085 0.015
108 0.022 1.025 0.202
348 0.056 0.739 0.469
364 0.094 0.071 -0.181
30 0.093 0.095 -0.034
46 0.046 0.491 0.173 0.079 0.0793 -
62 0.044 0.865 0.025 0.072 0.002 -0.608
78 0.050 0.542 -0.449
126 0.002 0.755 0.196

mean 0.033 1.049 0.229 0.080 0.191 -0.144

Table A.3: zom and ∆error values estimated from field data (zom-field) and through
empirical original function of the METRIC (zom-METRIC).
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Figure A.6: Goodness of fit of estimated ETd respect to measurements of EC and SR. Solid
line corresponds to 1:1 line.
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DOY

Site 1 Site 2

a b AE 4 (mm day−1) a b AE (mm day−1)

345 0.28 -83.51 0.84
361 0.26 -78.02 -0.70 0.16 -44.81 -1.07
12 0.35 -106.09 2.58 0.27 -79.69 1.25
28 0.32 -95.16 0.69 0.27 -78.30 0.03
44 0.33 -96.37 1.01
92 0.44 -129.52 1.02 0.29 -82.64 0.54
108 0.43 -126.36 1.26
348 0.23 -67.84 0.74
364 0.33 -96.48 0.28
30 0.29 -84.88 0.38
46 0.34 -100.22 0.72 0.30 -86.82 -1.25
62 0.36 -106.09 0.92 0.30 -88.23 1.05
78 0.23 -64.73 -0.73

1265 0.16 -44.84 0.40

mean 0.32 -94.18 0.27 -78.51

Table A.4: Results of a and b obtained from anchor pixels in both sites.
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A.4.5 Surface energy balance components

Figure A.7 and Figure A.8 shows the comparison between measured and estimated net

radiation (NR), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) for

Site 1 and 2, respectively. Was observed that peak of G had a temporal lag of 3 hours

respect to NR in both sites, which was considered to extract the measured G for the

comparison (Foken et al., 2006). In both sites the LE and NR components have the better

linear adjusts, while H and G do not show some relation between estimated and measured.

Although the error in G and H estimation, the effect over LE is not so important due

the magnitude of G and H fluxes. LE of Site 2 presented better adjust than Site 1 (with

slope/R2 of 0.84/0.80 and 1.23/0.46, respectively), this is ratified with the results previously

showed about the better estimation of ETd in the Site 2 with full cover crop. Singh and

Irmak (2011) proposed an improvement to METRIC model, where surface energy balance

components were compared with measures from Bowen ratio system, where the NR and

LE showed a linear adjust with slope/R2 of 1.09/0.90 and 1.50/0.70, respectively, showing

similar to our results.

Figure A.7: Comparison of surface energy balance components measured and estimated
for the Site 1.
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Figure A.8: Comparison of surface energy balance components measured and estimated
for the Site 2.
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A.5 Conclusions

The parameterization of surface roughness in partially covered crop using ground data

allowed decreasing the RMSE from 1.31 to 1.13 mm day−1, due that the mean of zom-field

was 1.049, whereas the mean of zom-METRIC was 0.033 meters. In the case of full covered

crop the effect of the parameterization was slightly negative, with a increase of RMSE

from 0.74 to 0.84 mm day−1, mainly because the METRIC model was developed for fully

covered annual crop and, theoretically, it does not need roughness parameterization.

These results motivate to improve the ET estimation using a better estimation of zom

for partially covered crops, without the use of measurement from ground systems (Eddy

Covariance, Surface Renewal or other systems). One option may be to develop empirical

equations of zom according to some vegetation index for partially covered crops.

A.6 Acknowledgments

The author (David Fonseca-Luengo) thanks to the National Commission for Scientific

and Technological Research (CONICYT) for support the accomplishment of the Doctoral

Thesis.

Authors also thanks to grants FONDEF D09I1069, FONDECYT 11100083, FONDAP

15130015, BMBF-CONICYT 231-2010 and ITECMA2 Laboratory (Faculty of Agricultural

Engineering, Universidad de Concepción, Chillán, Chile.), in which the current research

has been framed.



Appendix B

. Optimal scale in a hierarchical

segmentation method for satellite

images (published in Lecture

Notes in Computer Science)

112



APPENDIX B. OPTIMAL SCALE IN A HIERARCHICAL SEGMENTATION... 113

The format of the publication has been adapted to the Thesis format.

Journal: Lecture Notes in Computer Science (LNCS).

Authors: David Fonseca-Luengo, Angel Garćıa-Pedrero, Mario Lillo-Saavedra,
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B.1 Abstract

Even though images with high and very high spatial resolution exhibit higher levels of

detailed features, traditional image processing algorithms based on single pixel analysis are

often not capable of extracting all their information. To solve this limitation, object-based

image analysis approaches (OBIA) have been proposed in recent years.

One of the most important steps in the OBIA approach is the segmentation process;

whose aim is grouping neighboring pixels according to some homogeneity criteria. Different

segmentations will allow extracting different information from the same image in multiples

scales. Thus, the major challenge is to determine the adequate scale segmentation that

allows to characterize different objects or phenomena, in a single image.

In this work, an adaptation of SLIC algorithm to perform a hierarchical segmentation

of the image is proposed. An evaluation method consisting of an objective function that

considers the intra-variability and inter-heterogeneity of the object is implemented to select

the optimal size of each region in the image. The preliminary results show that the proposed

algorithm is capable to detect objects at different scale and represent in a single image,

allowing a better comprehension of the land-cover, their objects and phenomena.

Keywords:Remote sensing, hierarchical segmentation, multi-scale and high resolution
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images.

B.2 Introduction

High resolution images are an important part of the big volume of information generated in

almost every domain: health, Earth observation, biology, to name a few. Two main image

analysis approaches can be found in the literature. On the one hand, pixel-based approaches

interpret images as a set of disconnected pixels, employing only spectral information. On

the other hand, images in OBIA (Object Based Image Analysis) paradigm are interpreted

as a set of homogeneous areas in the scene (segments), which are considered the minimal

unit instead the pixels Benz et al. (2004). The main advantages of the OBIA approach

are: i) its capacity of extracting information such as shape, size, texture and contextual

relationship from the objects and ii) reducing the computational requirements Homeyer A

(2010). Even though in the last years more of the OBIA approaches have been developed

in the area of Remote Sensing and Geographical Information Systems Blaschke (2010);

Hay and Castilla (2008), applications in other areas like medicine Chitiboi et al. (2013) or

neurosciences Lucchi et al. (2012) can also be found.

The OBIA approach consists of two main processes: an initial segmentation for

generating segments by grouping neighboring pixels according to some homogeneity

criteria, such as color, texture, among others. And a second step, a classification process

in which each segment is assigned to a class depending on its features Vieira et al. (2012).

Numerous researches have shown that the segmentation process is a critical step in the

OBIA approach. This is due to the fact that the results of the classification step strongly

depend on the initial segmentation Gao and Mas (2008); Yan et al. (2006).

Nowadays it is fully accepted that natural processes are scale dependent, and most

of them are hierarchically structured. Therefore an appropriate understanding of these

processes and interactions among them requires the determination of optimal scales Levin

(1992). Different segmentations will allow extracting different information from the same

image in multiple scales Burnett and Blaschke (2003). Some studies have designed

methodologies for estimating a single optimal scale of segmentation for the scene Espindola

et al. (2006); Kim et al. (2009). Other studies have implemented a multi-scale approach

Zhou and Troy (2009); Trias-Sanz et al. (2008) to address this problem, but in this case

the selection of the segmentation scales typically is based on an extensive knowledge of

the study site Johnson and Xie (2011). In our approach, image segmentation is carried
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out by an adaptation of SLIC algorithm to deal with objects that are scale dependent and

hierarchically related in a scene. On the other hand, in our case the selection of the optimal

scale segmentation is performed by evaluating the intra-variability and inter-heterogeneity

of the regions defined by the coarsest scale in contrast to the evaluation method presented

in Johnson and Xie (2011) where the complete scene is used for evaluation.

B.3 Materials and Methods

B.3.1 Data Set

The satellite image was collected on January 18th, 2013 by Pléiades Satellite, in the central

irrigated valley of Chile (36◦ 31’ 54” S; 72◦ 08’ 03” O). The area of the scene has 420 hectares

and corresponds to 1024×1024 pixels in the multispectral image. The acquired image has a

spatial resolution of 2 meters and corresponds to ORTHO-BASIC products, characterized

by a basic radiometric normalization (for detector’s calibration) and geometric correction

(WGS84/UTM 18S projection).

In this work Blue, Green, Red and Near Infrared bands were used to segmentation

process. Furthermore, these 4 bands were used in the calculation of the metrics to determine

the optimal scale for each parent superpixel.

B.3.2 Methodology

The methodology we propose, inspired by the one presented in Johnson and Xie (2011),

is composed of two main processing modules: i) image segmentation, and ii) segmentation

evaluation. Though it differs from that one, both in the algorithm used for image

segmentation and in the evaluation process followed. In what follows we detail the

components of our approach.

Image segmentation.

Simple Linear Iterative Clustering (SLIC) Achanta et al. (2012) is a segmentation procedure

based on the well-known k-means clustering algorithm to group image pixels into disjoint

regions called superpixels. Superpixels are generated according to two criteria: i) color

similarity and ii) spatial proximity. Moreover, a weighted distance that combines color

and spatial proximity allows the control of the size and compactness of the superpixels

Achanta et al. (2012). Two parameters: i) k the desired number of superpixels, and ii) c
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the compactness factor have to be settled to run SLIC. Larger values of c results in more

compact superpixels as the importance of spatial proximity is emphasized.

A detailed description of the SLIC algorithm working in CIELAB space can be found

in Achanta et al. (2012), in this work also the authors demonstrate that the computational

complexity of SLIC is linear on the number of pixels in the image.

Superpixels generated by SLIC reduce the influence of noise, preserve most of the

edges of the images, and are approximated in size and shape. However, SLIC is not

able to generate a hierarchical segmentation. Our approach fills this gap by proposing an

adaptation of SLIC that makes the generation of a hierarchical multi-scale segmentation

possible.

Based on the fact that in SLIC low values of k results in a coarser segmentation

in comparison to finer segmentations obtained increasing the values of k, we propose

to generate segmentations at different scales by varying the superpixels size and then

combining resulting segmentations.

To establish the different segmentation scales, a vector K = [k1, k2, . . . , kn] containing

different values for the size of the superpixels in ascending order is defined. Each value of

the vector corresponds to a different scale (i). Consequently, segments corresponding to

a segmentation performed according to ki will be larger than those of the segmentation

according to ki+1. A segment Ai in scale i is considered as the parent of a segment Bi+1

in scale i+ 1, if the area of Bi+1 can be entirely covered by segment Ai. The relationship

parent-children among segments is shown in Figure B.1. In order to ensure that the

resulting segmentation process is hierarchical, segments in scale ki+1 are partitioned by

segments in scale ki, obtaining a new segmentation that generally contains a higher number

of segments than in the segmentation achieved in scale ki+1. To adjust the number of

superpixels in scale i + 1 to its original number of superpixels, smaller size segment are

joined to the most similar neighboring segment belonging to the same parent. We use

euclidean distance in the spectral space (color) to define the similarity between neighboring

segments.

Evaluation.

The evaluation process that we propose is based on the one proposed in Johnson and Xie

(2011) but adapting that one to deal with the hierarchical image segmentation process

that has been followed. Thus, in our case we evaluate for each parent segment at the first

scale those segments related to it instead of evaluating all the scene as in Johnson and Xie
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Figure B.1: Segment Ai is considered the parent of segments Bi+1 and Ci+1, as both
segments can be covered entirely by segment Ai. Each square of the grid represents an
image pixel.

(2011).

The main advantage of this scheme is that it provides different optimal scales for

different image regions, against the results showed in Johnson and Xie (2011), where an

optimal scale for the whole image is provided. This fact is especially relevant in images

where the variability inter-regions is high, as it is the case of natural land-covers in satellite

images. A general overview of the evaluation scheme is shown in Figure B.2.

In order to evaluate the segmentation, the following inter and intra-segments quality

measures are used:

• the global Moran’s index is used to measure the inter-heterogeneity between segments;

• the weighted variance is used for intra-segment homogeneity.

The global Moran’s index measures the correlation among segments. It is used to

evaluate the similarity of a segment with its neighborhood and is calculated as follows:

MIp =
n
∑n
i=1

∑n
j=1wij(y

p
i − ŷp)(y

p
j − ŷp)∑n

i=1(y
p
i − ŷp)2

(∑
i 6=j
∑
wij
) (B.1)

where:

• w is an adjacency matrix among neighbor regions that are relatives of the segment

p at scale 1, therefore wij is equal to 1 if regions i and j are adjacent, otherwise,

wij = 0.
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Figure B.2: General overview of the Evaluation process.

• yi is the spectral average of region i.

• n is the total number of regions at the analysis scale that are related to segment p.

In order to calculate the similarity at a particular scale level only those regions belonging

to a certain parent segment p at scale 1 are considered.

The Global Moran’s index ranges from the value −1, that corresponds to the perfect

dispersion, to 1, that indicates a complete correlation. The 0 value corresponds to a random

correlation.

The weighted variance is used for intra-segment quality measure, and is calculated as

follows:

wV arp =

∑n
i=1 a

p
i v
p
i∑n

i=1 a
p
i

(B.2)

where vi is the variance pixel that compound the segment i and ai corresponds to the

size of segment i. Values of variance closed to zero indicates homogeneity of a segment.

Note that, when calculating this measure bigger size segments have a higher effect in the

evaluation than those of a smaller size.
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In this paper, the best scale is defined as one the value of the objective function F pi
is closer to zero, being F pi calculated by adding the normalized (range 0-1) of intra and

inter-segments measures.

The objective function is calculated as:

F pi = wV arpi +MIpi (B.3)

where p represents the region of the parent at the scale 1 to which the segments at the

evaluation scale i are related.

B.3.3 Experiments

Two experiments were carried out. In the first one, the number of superpixels associated

with each scale was generated with a linear spacing. In the second one, the number of

superpixels of each scale was generated with a dyadic spacing (2n). The number of scales

used in both experiments was 7, varying from 64 to 4096 superpixels.

B.4 Results and discussion

A color composition of the analyzed multispectral scene is shown in Figure B.3(a). Figures

B.3(b) and B.3(c) display the segmented images for the experiments where the scales

were generated by a linear and dyadic spacing, respectively. Figures B.3(d) and B.3(e)

depict the optimal scales for each parent superpixel (superpixel at the first scale). It

can be observed that the number of segments generated by the linear spacing (Figures

B.3(b) and B.3(d)) is higher than for the dyadic case (Figures B.3(c) and B.3(e)). This

difference is due to the fact that linear spacing generates a higher number of superpixels

in the intermediate scales, producing an abrupt change from coarsest to finest scale, and

generating an over-segmentation in some homogeneous areas like the irrigation pivots.

This is a problem when the results are used as information to improve the agricultural

management.

B.5 Conclusions

In this work, a new methodology for optimal scale determination of a hierarchical

segmentation method for satellite images has been proposed. An objective function, that
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((a)) ((b)) ((c))

((d)) ((e))

Figure B.3: (a) Color composition (Near Infrared-Green-Blue) of the analyzed scene. (b)
and (c) Segmented images for the lineal and the dyadic succession of scales. (d) and (e)
the corresponding optimal scales for each parent superpixel.

combines weighted variance and global Moran’s index, was used to select the selection of

the optimal scale. The main outreach of this proposal is that it provides different optimal

scales for different image regions, against the results showed in Espindola et al. (2006),

where an optimal scale for the whole image is provided. This fact is especially relevant in

images where the variability inter-regions is high, as it is the case of natural land covers in

satellite images.

The proposed method allows users to benefit from detecting objects in a image at

different scales. This allow a better comprehension of the land-cover, their objects and

phenomena.

Finally, given the flexibility of the proposed methodology, is possible to apply in almost
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every domain where multi-scale images analysis are required (e.g. health, astronomy,

biology).
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la Mineŕıa (CONICYT/FONDAP/1513001).



Appendix C

. Gap filling for Landsat-7 ETM+

images

122



APPENDIX C. . GAP FILLING FOR LANDSAT-7 ETM+ IMAGES 123

C.1 Introduction

The gap filling process is implemented due to a failure in the “scan line corrector” (SLC)

mechanism of the Landsat-7 EMT+ sensor occurred on May 31, 2003. This failure

generates pixels without information in some sector of the image affecting around 22%

of all pixels (Ju and Roy, 2008). In order to predict the value of each null pixel, some

methodologies have been proposed based mainly on three approaches: (1) direct prediction

based on the pixel neighborhood, depending only of the image to be filled; (2) prediction

based on other temporal Landsat images, which depend of the availability of temporally

adjacent images; (3) prediction from other sensors, that depend on spectral and spatial

compatibility and capture conditions (Zeng et al., 2013).

One of the first gap filling methodologies was proposed by Scaramuzza et al. (2004)

(later published in Storey et al. (2005)). This methodology is based in a linear regression

between 2 images of the same scene and near in the temporal space, considering a spatial

window around of the pixel to be filled. This methodology is a simple and effective solution

to the gaps, but some errors have been detected in some heterogeneous scenes with abrupt

changes in the spectral response (Zeng et al., 2013).

There are some methodologies that have the same goal, for example in Chen et al.

(2011) was proposed a methodology that implements a similar conceptual process that

of Scaramuzza et al. (2004) except that only pixels with spectral response similar to the

pixel to be filled are considered in the prediction. According to (Chen et al., 2011) this

methodology generates slightly better results that methodology presented in Scaramuzza

et al. (2004).

In this research three methodologies were evaluated, which implement the filling of

gaps using the prediction based on temporally adjacent images. These methodologies

corresponds to the proposed by Scaramuzza et al. (2004) (G-Flocal), Chen et al. (2011)

(G-FNSPI based in the method named Neighborhood Similar Pixel Interpolator) and a

third methodology proposed in this research, which is similar to G-Flocal but implementing

a simple classification by threshold to generate the linear regression (G-Fclass).

C.2 Materials and methods

The general methodology consists in the implementation of different gap filling methods on

a scene with artificial gaps, i.e., in a scene without gaps several lines with zero-values are
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superposed on the scene. This technique allows the validation of the gap filling methods

comparing with the real values in the scene.

C.2.1 Methodologies

The detail of the methodologies implemented in this research are:

1. G-Flocal implements a local linear regression between the scene to be filled and a scene

close in the temporal space. The assumption of this methodology is that there exists a

temporal correlation between the pixels behavior in these two scenes. In Storey et al.

(2005) three matching methods between the scenes were evaluated: Global linear,

global nonlinear, and local linear. The results showed that the best reconstruction

of pixels was with the local linear method, with a mean RMS (Root mean squared

error) of 6, in unit of digital number (DN), for bands: 1, 2, 3, 4, 5 and 7. However,

the three methods have problems in the prediction in presence of clouds. In the

present research, the local linear regression was implemented using an initial window

of 12x12 pixels, that is extended iteratively with 2 pixels if less that 5 pixels for the

regression are found.

2. The methodology G-FNSPI implements a similar technique that G-Flocal following

the same assumption that the neighboring pixels have similar spectral characteristics

and temporal pattern changes (Chen et al., 2011). In G-FNSPI an additional step

is implemented to select only the similar pixels in the neighborhood to generate

the regression. This step is made using the root mean square deviation (RMSD)

between all bands in the windows of neighborhood, so that if the RMSD is less than

a threshold, the pixel is similar to the pixels to be filled. The threshold is determined

by the standard deviation of the image considering an empirical number of classes in

the image. In this methodology an initial windows of 20x20 pixels was predefined,

and the increase of window size was implemented following the proposed by Chen

et al. (2011). Additionally, a weight to similar pixel is proposed in Chen et al. (2011),

trying to give more contribution to the pixels that are more similar than the pixel

to be filled. Finally, in the Equation C.1 the value (radiance or reflectance) of the

predicted pixel for each band (b) is estimated using the multiplication between the

weight (W ) and the value of the similar pixels (N) in the scene of the pixel to be

filled (T ). For more detail of this methodology, please refer to Chen et al. (2011).
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Pixel
′
T,b =

N∑
j=1

Wj ∗ Pixelsimilar,T,b (C.1)

3. The proposed methodology (G-Fclass) has the same approach than that G-Flocal but

a classification of neighboring pixels is implemented before to the linear regression

model. The classification allows to select only similar pixels to generate the

regression, similar to the goal of G-FNSPI . The classification generates 5 land covers

based on a thresholding of the Normalized Difference Vegetation Index (NDVI):

Crops (0.7≤NDVI≤1), Vegetal1 (0.5≤NDVI<0.7), Vegetal2 (0.3≤NDVI<0.5), Soil

(0≤NDVI<0.3) and Water (NDVI≤0). All following processes are the same than

those in G-Flocal.

C.2.2 Study site and images

The evaluation of the methodologies described is implemented on a scene located on the

coordinates 32◦20’00” S and 70◦53’00” O, in the path/row: 233/83. The study site is

located in the center of the Landsat since an image without gaps is necessary to implement

the evaluation process.

The study site corresponds to a small scene with crops in different phenological

stages, bare soil and hills. Figure C.1 shows the scenes of the study site in the false

color composition IGB (Infrared-Green-Blue). In the Figure C.1, some pivot irrigation

systems can be observed, which have high dynamic changes in temporal and spatial scale

(considering the neighborhood of pixel that are not pivot) which make difficult the behavior

modeling of the pixels by the methodologies.

Two masks of artificial lines of gap pixels are extracted from two consecutive (in

temporal space) similar Landsat scenes but in other location, therefore the gaps have

the original characteristics of form, length and orientation. The different artificial lines

masks are overlapping in the scene to be filled and the scene close in the temporal space

in order to represent a real gap condition.

The scene to be filled corresponds to November 25, 2011; and the scene used to extract

information for prediction is from December 11, 2011. The evaluated bands in this research

are: blue, green, red, near infrared, shortwave infrared-1, thermal infrared and shortwave

infrared-2 (corresponding to 1, 2, 3, 4, 5, 6 and 7 bands in Landsat-7 ETM+ order). All

images were transformed to surface reflectance using the equations detailed in Allen et al.
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(a) Scene used to filling pixels (b) Scene to be filled (c) (b) with artificial lines of gap

Figure C.1: Scenes used in the evaluation. The intense red color represent a vigorous
vegetative cover.

(2010).

C.3 Results

Figure C.2 shows the different results in prediction of pixels without information. It can

be observed that there are not great differences between the results and the original image,

despite that there are differences in the stage of the crop in some irrigation pivots.

For more detail on the results, in Table C.1 the normalized RMSE can be observed for

each band (in Landsat-7 ETM+ order) and methodology used. The G-Flocal methodology

generates the lowest error incidence in the pixel prediction, although all methodologies

have low RMSE.

Methodology B1 B2 B3 B4 B5 B6 B7 Mean RMSE

G-Flocal 3,1 3,2 3,2 4,6 4,9 4,8 4,4 4,1

G-FNSPI 3,8 3,8 3,9 6,3 6,3 6,5 5,6 5,2

G-Fclass 3,4 3,7 3,6 4,8 6,4 5,5 5,0 4,6

Table C.1: Normalized RMSE (%) in each band filled by the different methodologies.
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(a) Original scene to be filled

(b) Filling using G-Flocal (c) Filling using G-FNSPI (d) Filling using G-Fclass

Figure C.2: IGB composition of the filled scene using the different methodologies.
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In Figures C.3, C.4 y C.5 the 1:1 scatter plots can be observed between the original and

predicted pixel values of each band and methodology. The most notorious difference is that

found between the estimation by G-FNSPI for the band 6 and the other methodologies.

G-FNSPI underestimates the thermal values in a small range at medium temperature

(around 310◦ K), maybe this can be produced because G-FNSPI finds the similar pixel in

the neighborhood using all bands, but the response of thermal band can be not related to

multispectral bands.

C.4 Conclusions

Analyzing the results showed, it can be observed that the best methodology in the

prediction of pixel values is G-Flocal. This contradicts the result of Chen et al. (2011),

because in that research G-FNSPI presented best result that G-Flocal. This contradiction

can be explained by the fact that in Chen et al. (2011) the parameters required in the

methodology were estimated for the scene used, however in the present research some

parameters were used directly.

About the G-Fclass methodology, this can improve the result if some better classification

process or inclusive segmentation process is implemented.

Finally, according to our results, G-Flocal methodology is the best option to predict

pixel without values for Landsat 7-ETM+ images. This is due to the best results in the

prediction, the null requirements of parameters in the implementation (this is useful to

implement over other scenes with different landscapes) and the runtime of execution (that

not was shown in this research but can be mentioned).
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Figure C.3: Scatter plots of original (x axis) versus predicted (y axis) values by G-Flocal
methodology for each band. Unit for 1, 2, 3, 4, 5 and 7 bands is reflectance at top of
atmosphere, while the unit for band 6 is Kelvin degrees.



APPENDIX C. . GAP FILLING FOR LANDSAT-7 ETM+ IMAGES 130

Figure C.4: Scatter plots of original (x axis) versus predicted (y axis) value by G-FNSPI
methodology for each band. Unit for 1, 2, 3, 4, 5 and 7 bands is reflectance at top of
atmosphere, while the unit for band 6 is Kelvin degrees.
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Figure C.5: Scatter plots of original (x axis) versus predicted (y axis) value by G-Fclass
methodology for each band. Unit for 1, 2, 3, 4, 5 and 7 bands is reflectance at top of
atmosphere, while the unit for band 6 is Kelvin degrees.
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D.1 Modelo METRIC

METRIC model uses satellite images and some data from meteorological stations to

estimate ET as residual of the surface energy balance, where the latent heat flux is in

function of net radiation, soil heat flux and sensible heat flux. The major advantage of

METRIC is the calibration with the reference ET (ETr) to estimate the sensible heat flux,

which improves the ET estimation.

Data required by METRIC are: satellite image that includes the thermal band and

information about image capture, and data from a meteorological station to estimate the

ETr in the instant of image capture using the standardized ASCE-EWRI Penman-Monteith

procedure.

The surface energy balance is shown in the equation D.1, where LE ( W
m2 ) is the latent

heat flux, Rn ( W
m2 ) is the net radiation, G ( W

m2 ) is the soil heat flux and H ( W
m2 ) is the

sensible heat flux.

LE = Rn−G−H (D.1)

Rn, albedo and the surface temperature, are estimate using satellite image information.

To estimate the net radiation, the energy fluxes at the surface (equation D.2) are balanced.

Where α is the albedo, Rsin is the incoming solar radiation ( W
m2 ), Rlin is the incoming long

wave radiation ( W
m2 ), Rlout is the outgoing long wave radiation ( W

m2 ) and εo is the surface

thermal emissivity of broad band.

Rn = (1− α) ∗Rsin +Rlin −Rlout − (1− εo) ∗Rlin (D.2)

Rsin is estimated in function of the date, time and relative humidity in the time of

image capture (equation D.3). Where Gsc is the solar constant (1367 W
m2 ), θ is the angle

of solar incidence, τsw is the atmospheric transmissivity of broad band.

Rsin =
Gsc ∗ cos θ ∗ τsw

d2
(D.3)

The outgoing long wave radiation (Rlout) is estimated with the Stefan-Boltzmann

equation (equation D.4). Where σ is the Stefan-Boltzmann constant (5.67∗10−8 W
m2∗◦K−4 ),

and Ts is the surface temperature in Kelvin degree.

Rlout = ε0 ∗ σ ∗ T 4
s (D.4)
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The surface temperature (Ts), in Kelvin degrees, is calculated with the equation D.5

developed by Markham and Barker (1986), which is a modification of Plank’s equation.

Where k1 (◦K) and k2 ( W
m2∗µm∗st) are constants for each sensor, Rc ( W

m2∗µm∗st) is the

thermal radiance corrected by the effects of the atmosphere. εNB is the surface thermal

emissivity in the narrow band (10.4 a 12.5 µm). εNB is calculated with an empiric model

developed by Tasumi et al. (2003c).

Ts =
k2

ln
(
εNB∗k1
Rc

)
+ 1

(D.5)

Rc is obtained with equation D.6, based in Wukelic et al. (1989). Where L6 is the

thermal radiance ( W
m2∗µm∗st), Rp ( W

m2∗µm∗st) is the radiance emitted in the path from the

surface to sensor; τNB is the air transmissivity in the narrow band and Rsky ( W
m2∗µm∗st) is

the incoming thermal radiance from a clear sky in the narrow band.

Rc =
L6 −Rp
τNB

− (1− εNB) ∗Rsky (D.6)

Correction of L6 is necessary due that in the path of the surface to the atmosphere there

is a process that absorbs and reflects radiation. In addition, thermal radiation is emitted

by the atmosphere in sensor direction, causing that the sensor erroneously captures this

radiation together surface radiation. Rp and τNB need an atmospheric radiation transfer

simulation model. In Allen et al. (2007), values of Rp = 0.91, τNB = 0.866 and Rsky = 1.32

for clear sky conditions were suggested.

Incoming long wave radiation (Rlin) is estimated with equation D.7, which is based in

Stefan-Boltzmann equation. In equation refeq24, εa is the effective atmospheric emissivity

and Ta is the near-surface temperature.

εa is estimated with an empiric equation developed in Bastiaanssen (1995) and the

coefficients estimated in Allen et al. (2000) over alfalfa in Idaho (equation D.8). In the

most of the METRIC applications, Ts is used like Ta.

Rlin = εa ∗ σ ∗ T 4
a (D.7)

εa = 0.85 ∗ (− ln (τsw))0.09 (D.8)

Soil heat flux (G) is estimated with an empirical model developed by Bastiaanssen
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(2000), that represents values for noonday (equation D.9). In which NDV I (Normalized

Difference Vegetation Index) is a vegetation index that shows the status of vegetation vigor

(equation D.10). In the equation D.9 the value of surface temperature is Celsius degrees.

G/Rn = Ts ∗ (0.0038 + 0.0074 ∗ α) ∗ (1− 0.98 ∗NDV I4) (D.9)

NDV I =
ρt,IFRC − ρt,R
ρt,IFRC + ρt,R

(D.10)

H ( W
m2 ) is determined from the equation of heat transport (equation D.11), where the

difference of temperature between the surface and air (dT ), and aerodynamic resistance to

heat transport (rah) present a major complication in the estimation. These complications

are due that dT requires the surface and air temperatures for all pixels in the image; and

the estimation of rah require to know the friction velocity (u∗) of each pixel. In the equation

D.11 the parameter cp corresponds to the specific heat of air, 1004 J
kg∗◦K ).

H =
ρ ∗ cp ∗ dT

rah
(D.11)

To estimate of rah requires an extrapolation of wind speed to an height where it can

be assumed constant (200 meters), and an iterative correction process of stability based

on the equations of Monin-Obhukov Allen (1996).

Two pixels with specific characteristics must be identified to implement the linear

relationship described in Bastiaanssen (1995), Wang et al. (1995), Franks and Beven (1999)

and Jacob et al. (2002). This relationship allows to obtain dT from the previously calculated

surface temperature, using the equation D.12, where b corresponding to the intercept of

the relationship with the axes of dT , while a is the slope of the relationship.

dT = b+ a ∗ Ts (D.12)

The selected pixels are identified as hot and cold pixel. While the cold pixel corresponds

to a pixel with a full vegetal cover and without water restrictions, while hot pixel

corresponds to a pixel covered by agricultural bare soil without some irrigation. Using the

relationship in equation D.12 can be estimated dT for the entire image with the coefficients

a and b obtained from the hot and cold pixels. The values of a and b are estimated with

the equations D.13 and D.14 respectively, where the subscripts hot and cold refer to the

pixel values of the hot and cold pixel, respectively.
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a =
dThot − dTcold
Ts−hot − Ts−cold

(D.13)

b = dThot − a ∗ Ts−hot (D.14)

dThot−cold are estimated using the equation D.11, this equation requires values of

Hhot−cold, rahhot−cold and ρhot−cold. Hhot is estimated using the surface energy balance

showed in equation D.1, assuming that hot pixel corresponds to a soil cover without

vegetation and soil moisture, with LE equal or close to 0 W
m2 . Thus the balance is:

Hhot = Rnhot−Ghot. Hcold is estimated using the same procedure described above, except

that the LE is assumed to be a 5 % higher than LE of meteorological station, i.e., the ET

of cold pixel is 5 % higher than ETr (considering alfalfa as reference crop) (Tasumi, 2003;

Tasumi et al., 2005).

In summary, with the first iterative process that only consider the hot and cold pixels,

is possible estimate the a and b values, that then are used in the equation D.12. Then is

possible to estimate the instantaneous LE as residual of the surface energy balance.

To estimate the instantaneous ET (ETinst) in mm
h the equation D.15 can be used, where

λ ( Jkg ) is the latent heat of vaporization, and can be estimated with the equation D.16.

ETinst = 3600 ∗ LE
λ

(D.15)

λ = (2.501− 0.00236 ∗ (Ts − 273)) ∗ 106 (D.16)

To transform the values from instantaneous ET to daily ET (mmday ), the concept of

“fraction of the reference evapotranspiration” (ETrF ) is considered (Allen et al., 2007).

ETrF is estimated with the equation D.17.

ETrF =
ETinst
ETr

(D.17)

Extrapolated ET to daily period (ET24) is estimated using the equation D.18, where

ETr24 is the ETr for the daily period estimated at the meteorological station.

ET24 = ETrF ∗ ETr24 (D.18)
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