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Abstract

This thesis presents a novel extension of the Poincaré group with half-integer spin
generators and a reformulation of hypergravity. This theory describes fermionic
higher spin fields minimally coupled to gravity in three spacetime dimensions. The
subsequent studies of its asymptotically flat structure and energy bounds are also
carried out.

We start our discussion in the case of three spacetime dimensions, where it is
shown that the theory of hypergravity can be reformulated in order to incorporate
this structure as its local gauge symmetry. Since the algebra admits a nontrivial
Casimir operator, the theory can be described in terms of gauge fields associated to
the extension of the Poincaré group with a Chern-Simons action. We also show that
the Poincaré group can be extended with arbitrary half-integer spin generators for
d � 3 dimensions.

The asymptotic structure of three-dimensional hypergravity is also analyzed. In
the case of gravity minimally coupled to a spin-5/2 field, a consistent set of boundary
conditions is proposed, being wide enough so as to accommodate a generic choice of
chemical potentials associated to the global charges. The algebra of the canonical
generators of the asymptotic symmetries is given by a hypersymmetric nonlinear
extension of BMS3. It is shown that the asymptotic symmetry algebra can be
recovered from a subset of a suitable limit of the direct sum of the W(2,4) algebra with
its hypersymmetric extension. The presence of hypersymmetry generators allows to
construct bounds for the energy, which turn out to be nonlinear and saturate for
spacetimes that admit globally-defined Killing vector-spinors. The null orbifold or
Minkowski spacetime can then be seen as the corresponding ground state in the case
of fermions that fulfill periodic or antiperiodic boundary conditions, respectively.
The hypergravity theory is also explicitly extended so as to admit parity-odd terms
in the action. It is then shown that the asymptotic symmetry algebra includes an
additional central charge, being proportional to the coupling of the Lorentz-Chern-
Simons form. The generalization of these results in the case of gravity minimally
coupled to arbitrary half-integer spin fields is also carried out. The hypersymmetry
bounds are found to be given by a suitable polynomial of degree s + 1/2 in the
energy, where s is the spin of the fermionic generators.

iii



This thesis captures the work and results that were presented in the following
publications:
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Chapter 1

Introduction

Nowadays, we have the good fortune of witnessing the era in which the simplest
minimal realistic versions of supersymmetric field theories are about to be either
tested or falsified by the Large Hadron Collider (LHC). The underlying geometric
structure of these kind of theories, as well as most of their widely studied extensions,
relies on the super-Poincaré group. Its corresponding superalgebra has the following
nonvanishing (anti)commutators

[Jab, Jcd] = Jad⌘bc � Jbd⌘ac + Jca⌘bd � Jcb⌘ad ,

[Jab, Pc] = ⌘acPb � ⌘bcPa ,

[Jab, Q↵] =
1

2
(�ab)

�
↵Q� , (1.1)

{Q↵, Q�} = �1

2
(C�c)↵� Pc .

A supersymmetric field theory exhibits a symmetry between bosonic and fermionic
fields. In this kind of theories bosons and fermions occur always in pairs, and these
supersymmetric partners can be accommodated within an irreducible representation
of the super-Poincaré algebra (1.1) (see, e. g., [1, 2]). The case of the graviton is
particularly interesting because there are two possible interacting theories with dif-
ferent sypersymmetric partners; one possibility is supergravity and has undergone
spectacular developments [3, 4]. In this case the supersymmetric partner is a mass-
less spin-3/2 field called gravitino (Rarita-Schwinger field). The consistency of this
theory can be checked at least in two ways (see, e. g., [5]). The first one comes from
the consistency of the Rarita-Schwinger field equation yielding that the background
has to be curved, fulfilling the Einstein equations. The second one is the existence of
an appropriate set of gauge transformations from which the invariance of the action
can be verified. This is separately proved at the quadratic and quartic terms on
fermions.
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A second possibility for superpartner is considering a massless spin-5/2 field, a
theory that has been called hypergravity. Hypergravity was explored in the early
days of supergravity as a potentially interesting alternative, but it was soon realized
that su↵ers from various inconsistencies. The heart of these obstructions relies on
the fact that the action does not satisfy the appropriate higher-spin gauge invariance
conditions, leading to field equations that are not even algebraically consistent [6,
7]. Specifically, the gauge variation of Einstein-Hilbert action is proportional to
the Ricci-Tensor, but the variation of the minimally coupled higher spin action is
proportional to the full Riemann tensor instead. Then the contribution of both
actions cannot be generically cancelled out. However, in three spacetime dimension
there is a well-known relation between the Riemann tensor and the Ricci tensor,
which reads

Rµ⌫⇢� = gµ⇢R⌫� + g⌫�Rµ⇢ � g⌫⇢Rµ� � gµ�R⌫⇢ �
1

2
(gµ⇢g⌫� � gµ�g⌫⇢)R . (1.2)

Thus in principle is possible to circumvent this di�culty, and hence to formulate a
consistent interacting theory between gravity and the spin-5/2 field. Indeed, this
theory exists and it was found by Aragone and Deser in 1984 [8]. The invariance
of this theory was shown in the so-called “1.5 formalism” of standard supergravity
where the equation associated to the spin connection, which fixes the value of the
torsion, has to be fulfilled. Due to the complexities that come from the the theory
in this formalism, the corresponding study of its asymptotic structure was hard to
be carried out. In this point we would like to stress that a deeper understanding of
the theory cannot be attained unless it is endowed with a consistent set of boundary
conditions, which would allow to study the asymptotic structure of hypergravity.
The algebra of the asymptotic symmetries allows the possibility of analyzing of es-
tablishing energy bounds. This is because of the presence of fermionic generators
[9, 10]. For all these purposes it would be helpful to find the underlying geometrical
structure of hypergravity which would serve for its formulation as a gauge theory,
being this one of the main goals of the present work.

The plan of this thesis is the following:

Chapter 2 is devoted to a brief review of the canonical prescription of a three-
dimensional Chern-Simons action and its relation with pure gravity in the pres-
ence of either negative or vanishing cosmological constant. We will summarize the
formulation of the standard Brown-Henneaux boundary conditions for pure three-
dimensional gravity with negative cosmological constant in terms of gauge fields.
Its asymptotic symmetry algebra is also obtained, corresponding to an (infinite-
dimensional) central extension of the conformal algebra in two dimensions, specif-
ically, given by two copies of the Virasoro algebra endowed with a central charge
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c = 3`/2G. Analogously, we show the standard boundary conditions for pure grav-
ity with a vanishing cosmological constant in the language of gauge fields, obtaining
that the asymptotic symmetry algebra of the canonical generators is the infinite-
dimensional algebra with a central charge c = 3/G known as BMS3, being the
algebra of the Bondi-Metzer-Sachs group in three dimensions. Finally, we recover
the BMS3 algebra from the two copies of the Virasoro algebra by performing a
suitable Inönü-Wigner contraction.

In Chapter 3 a novel extension of the Poincaré group with half-integer fermionic
generators in d � 3 dimensions, is introduced, which we dub it the hyper-Poincaré

group. It is shown that the theory of Aragone and Deser of three-dimensional hy-
pergravity can be reformulated so as to incorporate this structure as its local gauge
symmetry. Since the algebra admits a nontrivial Casimir, the theory can be de-
scribed in terms of gauge fields, where the dynamical fields go along the generators
of the hyper-Poincaré group. The action is given by a three-dimensional Chern-
Simons form. The results will be generalized to the case of General Relativity
minimally coupled to arbitrary half-integer spin fields.

In Chapter 4 we summarize the recent results of the analysis of the asymptotic
structure of hypergravity in three spacetime dimensions with negative cosmological
constant, where consistency requires spin-4 fields [11]. This theory can be formulated
through a Chern-Simons action for OSp (1|4) ⌦ OSp (1|4), which has one fermion
per copy, i. e., N = (1, 1). The asymptotic symmetry superalgebra of the canonical
generators corresponds to two copies of the hypersymmetric extension W(2, 52 ,4)

of
W(2,4). The hypersymmetry bounds that come from the anticommutator of the
hypersymmetry generators, turn out to be nonlinear. As explained in [11] they
saturate for extremal higher spin black holes and sp (4)-solitonic solutions, where
the former possess 1/4 of the hypersymmetries and the latter ones are maximally
(hyper)symmetric.

In Chapter 5 we study the asymptotic structure of three-dimensional hypergrav-
ity with a vanishing cosmological constant. A consistent set of boundary conditions
is proposed, being wide enough so as to accommodate a generic choice of chemical
potentials associated to the global charges. In this case, the algebra of canonical
generators of the asymptotic symmetries is given by a hypersymmetric nonlinear
extension of BMS3, which can also be recovered from a subset of a suitable Inönü-
Wigner contraction of the direct sum of the W(2,4) algebra with its hypersymmetric
extension W(2, 52 ,4)

. As explained above, the presence of hypersymmetry generators
allows to construct bounds for the energy which, as in the case of negative cosmolog-
ical constant, are nonlinear and saturate for spacetimes that admit globally-defined
Killing vector-spinors, selecting the same spectrum as supergravity. The theory of
hypergravity is extended so as to include parity-odd terms in the action. In this case
the asymptotic symmetry algebra is also a nonlinear extension of BMS3 but it ac-
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quires an additional central charge along the Virasoro subalgebra being proportional
to the coupling constant of the Lorentz-Chern-Simons term. The generalization of
these results in the case of gravity minimally coupled to arbitrary half-integer spin
fields is also carried out.

Finally, Appendix A is devoted to our conventions and some useful identities.
The fundamental (5⇥ 5) matrix representation of the generators of OSp (1|4) is
shown in Appendix B. In Appendix C the Lie-algebra-valued parameter and the
transformation law of the fields for the case of the asymptotically AdS structure of
hypergravity are explicitly written. In Appendix D, an alternative interesting form
to obtain the explicit form of the Killing vector spinor is presented, while Appendix
E includes the asymptotic hypersymmetry algebra in the case of fermionic fields of
spin 3/2 (supergravity), as well as for fields of spin 7/2 and 9/2.
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Chapter 2

Asymptotic structure of
three-dimensional pure gravity

Three-dimensional gravity possesses an extraordinarily rich asymptotic structure,
even more than its four-dimensional counterpart. In the former case, it was shown
that the algebra of the canonical generators at space-like infinity of asymptotically
anti-de Sitter (AdS) spacetimes turns out to be two copies of the infinte-dimensional
Virasoro algebra endowed with a central charge [12]. On the other hand, in the latter
case, corresponding to four-dimensional gravity the asymptotic symmetry algebra is
only given by so(3, 2) [13]. The three-dimensional result has been very relevant and
indeed it can be seen as the precursor of the so-called AdS/CFT correspondence
(see e. g. [14]) and also has served to recover the Bekenstein-Hawking entropy for
the BTZ black hole [15, 16] through a microscopical derivation [17].

It is well known that the topological roots of gravity in three spacetime dimen-
sions allows to formulate it as a Chern-Simons theory for the (A)dS or Poincaré
group in the case of (negative) positive or vanishing cosmological constant, respec-
tively [18, 19]. This is reflected on the fact that all the solutions in vacuum have
constant curvature which agrees with the lack of local degrees of freedom, meaning
that the solutions are only sensitive to the topology of the spacetime manifold.

This chapter (based on the review article [20]) is devoted to reproduce the pure
gravity asymptotic structure with negative and vanishing cosmological constant in
terms of a Chern-Simons theory. Taking this into account, we first introduce the
Hamiltonian formulation and global charges of a three-dimensional Chern-Simons
theory through a very brief review. Then, we explicitly perform the formulation of
three-dimensional gravity as a Chern-Simons theory, and finally we will recover the
asymptotic symmetry algebra in the cases of asymptotically AdS and flat spacetimes.
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2.1 Hamiltonian formulation and global charges

A three-dimensional Chern-Simons theory is a topological theory, i. e., it does not
require the existence of a spacetime metric, being only sensitive to the topology of
the manifold upon which is defined. Let us consider a manifold M , locally described
by a set of coordinates xµ. The topology of M is assumed to be ⌃⇥ R, where ⌃ is
a spacelike surface and R is a real timelike line. The Chern-Simons action reads

ICS =
k

4⇡

ˆ
M

⌧

AdA+
2

3
A3

�

, (2.1)

where k is a constant, A = AI
µTIdx

µ is the gauge field, and TI stand for the genera-
tors of a Lie algebra g. This algebra is assumed to admit an invariant nondegenerate
bilinear form gIJ = hTI , TJi. The field equations in this case imply that the connec-
tion becomes locally flat on-shell, namely, it has a vanishing curvature

F = dA+ A2 = 0 . (2.2)

The theory is then devoid of local degrees of freedom. Note that the Chern-Simons
action (2.1) is of first order and then is already in a Hamiltonian form, where

IH = � k

4⇡

ˆ
⌃⇥R

dtd2x"ij
D

AiȦj � AtFij

E

+BH . (2.3)

Here BH is a boundary term that has to be included in order to ensure that the action
attains an extremum for a suitable set of boundary conditions. It is straightforward
to verify that Ai correspond to the dynamical fields, whose Poisson brackets are
given by

�

AI
i (x) , A

J
j (x

0)
 

=
2⇡

k
gIJ"ij� (x� x0) . (2.4)

From the Hamiltonian form of the action (2.3), one can read that the Lagrange
multiplier At is associated to the constraint

G =
k

4⇡
"ijFij . (2.5)

An infinitesimal gauge transformation on the dynamical fields �Ai = @i⇤ + [Ai,⇤]
spanned by a Lie-algebra-valued parameter ⇤ is generated by the following smeared
generator (see e. g. [21, 22, 23])

G (⇤) =

ˆ
⌃

d2x h⇤Gi . (2.6)
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Following the Regge-Teitelboim approach [24], in the case where the spacelike section
⌃ has a boundary (@⌃ 6= 0), the generator of the gauge transformations has to be
improved by a boundary term Q (⇤), being such that its functional variation is
well-defined everywhere , i. e.,

G̃ (⇤) = G (⇤) +Q (⇤) , (2.7)

where the variation of the conserved charge associated to the asymptotic gauge
symmetry spanned by ⇤ is given by

�Q (⇤) = � k

2⇡

ˆ
⌃

h⇤�A�i d� , (2.8)

which is determined by the dynamical fields at a fixed time slice at the boundary
@⌃. Note that if one requires the improved action to be invariant under gauge
transformations, the infinitesimal gauge transformation of the Lagrange multiplier
is recovered

�At = @t⇤+ [At,⇤] . (2.9)

On the other hand, di↵eomorphisms �⇠Aµ = �L⇠Aµ, are equivalent to gauge
transformations with parameter ⇤ = �⇠µAµ, only on-shell, by virtue of the identity
L⇠Aµ = rµ (⇠⌫A⌫) + ⇠⌫F⌫µ. Therefore, the variation of the asymptotic symmetry
generator spanned by an asymptotic Killing vector reads

�Q (⇠) =
k

2⇡

ˆ
@⌃

⇠µ hAµ�A�i d� . (2.10)

In order to integrate the variation of the canonical generators (2.8), a precise set of
asymptotic conditions must be given. This will be performed in the case of pure
gravity in Section 2.3. In the next section, we will explicitly show the relation
between three-dimensional gravity and a Chern-Simons theory.

2.2 General Relativity in three-spacetime dimen-
sions as a Chern-Simons theory

General Relativity in three spacetime dimensions shares important conceptual fea-
tures with the four-dimensional theory, however in the former case some di�culties
that arise in higher dimensions are avoided. In this sense, the absence of local de-
grees of freedom suggests that the theory can be formulated in terms of a topological
theory, requiring less structure in order to formulate it. Indeed, this fact can be ver-
ified by a very simple counting argument; in d spacetime dimensions, the phase
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space of the theory is characterized by a spatial metric defined on a constant-time
hypersurface of d(d � 1)/2 components, but its conjugate momentum has another
d(d � 1)/2 components, then one has d (d� 1) degrees of freedom per spacetime
point. Nonetheless, it is well-known that there are d first-class constraints, and then
one can eliminate d degrees of freedom by coordinate choices. Therefore, as a result,
one has d (d� 3) /2 local degrees of freedom per spacetime point, being evident the
absence of local degrees of freedom in three dimensions.

As mentioned above, General Relativity in vacuum can be formulated as a Chern-
Simons theory [18, 19]. In the case of negative cosmological constant, the dreibein,
and dualized spin connection

�

!a = 1
2"

abc!bc

�

correspond to the components of the
gauge connection given by

A =
ea

`
Pa + !aJa , (2.11)

that takes values in the so (2, 2) algebra, being spanned by the Lorentz generators
Ja and the generators of the AdS boosts Pa. Here ` corresponds to the AdS radius.
The commutation rules for so(2, 2) read

[Ja, Jb] = "abcJ
c , [Ja, Pb] = "abcP

c , [Pa, Pb] = "abcJ
c . (2.12)

Since this algebra admits an invariant bilinear form, whose only nonvanishing com-
ponents are given by hJaPbi = ⌘ab, the Chern-Simons action (2.1) reduces, up to a
boundary term, to

I [e,!] =
k

4⇡

ˆ
2Raea +

1

3`2
"abce

aebec , (2.13)

where Ra = d!a + 1
2"

abc!b!c is the dual of the curvature two-form and the level is
fixed in terms of the AdS radius and the Newton constant as k = `/4G. Note that
this is the precise form of the action of three-dimensional General Relativity with
negative cosmological constant �1/`2. The field equations F = 0 imply that

Ra = � 1

2`2
"abcebec , T a = Dea = 0 , (2.14)

which means that the spacetime curvature is constant and it has a vanishing tor-
sion. Here D denotes the Lorentz covariant derivative. By construction, the action
changes by a boundary term under the following infinitesimal local gauge transfor-
mations spanned by the parameter � = �a

`
Pa + �aJa,

�ea = D�a � "abc�bec , �!a = D�a � 1

`2
"abc�bec . (2.15)
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It is worth noting that the AdS algebra in three dimensions so (2, 2) is isomorphic
to two copies of the special linear algebra in two dimensions, sl (2, R). Then g =
g+ + g�, where g± stands for two copies of sl (2, R). The sl(2, R) algebra reads

[Li, Lj] = (i� j)Li+j , (2.16)

where the generators Li, with i = �1, 0, 1, are assumed to be same for both copies
and are chosen to be

L�1 =

✓

0 0
1 0

◆

, L0 =
1

2

✓

�1 0
0 1

◆

, L1 =

✓

0 �1
0 0

◆

. (2.17)

Splitting the connection in two independent sl (2, R)-valued gauge fields, according
to A = A+ + A�, the Chern-Simons action (2.1) reduces to

ICS = ICS

⇥

A+
⇤

� ICS

⇥

A�⇤ , (2.18)

so that the invariant bilinear form corresponds to the trace in the representation
(2.17), i. e., h...i = tr (...). The relation between the Chern-Simons connections
written in terms of the spin connection ! and the dreibein e is now given by

A± = ! ± e

`
. (2.19)

The metric is recovered from gµ⌫ = 2tr (eµe⌫), which is manifestly invariant under the
local Lorentz transformations which is the diagonal subgroup of SL(2, R)⌦SL(2, R).

On the other hand, General Relativity without cosmological constant is a Chern-
Simons theory for the Poincaré group. In this case the gauge connection simply reads

A = eaPa + !aJa , (2.20)

where the nonvanishing commutators of the Poincaré algebra reads

[Ja, Jb] = "abcJ
c , [Ja, Pb] = "abcP

c . (2.21)

By using the same invariant bilinear form that in the case of negative cosmological
constant, it is straightforward to verify that the Chern-Simons action (2.1) now
reduces, up to a boundary term, to

I [e,!] =
k

4⇡

ˆ
2Raea , (2.22)

where the level is now fixed only in terms of the Newton constant as k = 1/4G, and
the Chern-Simons field equations imply now that

Ra = 0 , T a = Dea = 0 . (2.23)
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By construction, the action (2.22) is invariant under the following local gauge trans-
formation generated by � = �aPa + �aJa,

�ea = D�a � "abc�bec , �!a = D�a . (2.24)

Note that, as expected, the results coincide with those after performing the flat
space limit `! 1 for which the so(2, 2) algebra leads to the Poincaré algebra after
an Inönü-Wigner contraction.

2.3 Asymptotic structure of General Relativity in
three spacetime dimensions

In General Relativity and in other gauge theories formulated on spacetimes with
boundaries, asymptotic symmetries play a fundamental role. Actually, they are
the physical symmetries of the theory being necessary for a suitable definition of
conserved charges [12, 24]. The asymptotic symmetries, in the context of General
Relativity, are those gauge transformations that leave the spacetime configurations
asymptotically invariant. The procedure for obtaining them is the following; one
starts with a group of global symmetries which is related with a background solution,
and one must find appropriate boundary conditions at infinity that should contain
solutions of physical interest. These conditions must be unchanged under the action
of the group of the global symmetries. Then one tries to find the most general
set of transformations that leave invariant the asymptotic conditions. One would
expect to recover the global symmetry group but in some cases the situation is
rather di↵erent, obtaining a group much bigger than the group of isometries of the
background configuration. These symmetry transformations must have well-defined
canonical generators [24], and these should obey an isomorphic central extension of
the Lie algebra of the infinitesimal symmetries with a possible central charge that
cannot be eliminated by adding terms to the canonical generators. There are two
important examples that reflects the e↵ects aforementioned, the first was observed
in the 60’s in the case of four-dimensional asymptotically flat spacetimes, where the
vacuum configuration is the Minkowski spacetime and its corresponding isometry is
given by the Poincaré group. In this case the algebra of the canonical generators of
the asymptotic symmetries turns out to be the infinite-dimensional Bondi-Metzer-
Sachs (BMS4) group [25, 26]. The second one was the aforementioned case of three-
dimensional asymptotically AdS spacetimes addressed by Brown and Henneaux in
1986 [12], where the Poisson brackets of canonical generators of the asymptotic
symmetry correspond to two copies of the Virasoro algebra with a central term.
The last case will be analyzed in detail but from the Chern-Simons point of view,
by writting the analog of the Brown-Henneaux boundary conditions in the language
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of gauge fields, which leads to the expected results. Analogously, by following the
same procedure we will review how to find the asymptotic structure associated
to three-dimensional asymptotically flat spacetimes, where we recover the infinite-
dimensional BMS3 algebra endowed with a central charge found in [27, 28].

2.3.1 Negative cosmological constant: Brown-Henneaux bound-
ary conditions

The Brown-Henneaux boundary conditions of three-dimensional gravity with nega-
tive cosmological constant written in terms of gauge fields [29] read

A±
� = L±1 �

2⇡

k
L±L⌥1 +O

✓

1

r

◆

, A±
r = O

✓

1

r

◆

, (2.25)

where L± is a function of time t and the angular coordinate �. It is worth to note
that the radial coordinate can be entirely captured by a gauge transformation on
the connection

A± = g�1
± a±g± + g�1

± dg± , (2.26)

where the group element is given by g± = e±rL0 . The dynamical fields in this case
are the leading terms of the asymptotic behaviour (2.25), i. e.,

a±� = L±1 �
2⇡

k
L±L⌥1 , a±r = 0 . (2.27)

Then, the relevant terms of the dynamical field go only along the angular components
of the gauge connection a. The asymptotic form of the dynamical fields must be
preserved under gauge transformations of the form

�a±� = @��
± +

⇥

a±� ,�
±⇤ . (2.28)

Thus, the Lie-algebra valued parameters have to be given by

�± [✏±] = ✏±L±1 ⌥ ✏±
0L0 +

1

2

✓

✏±
00 � 4⇡

k
✏±L±

◆

L⌥1 , (2.29)

provided the functions L± transform as

�L± = ✏±L±0 + 2✏±0L± � k

4⇡
✏±

000 , (2.30)

where ✏± = ✏± (t,�) are arbitrary functions and primes denote derivatives with
respect to �.
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Considering that at spatial infinity, the time evolution of the dynamical fields
of the connection a±� is a gauge transformation with gauge parameters equal to the
Lagrange multipliers a±t , the most general Lagrange multipliers that preserve the
asymptotic conditions (2.27) are of the form [30]

a±t = �± [⇠±] . (2.31)

Here ⇠± are also arbitrary functions of t and �, and they are assumed to be fixed at
the boundary. Consistency of the Lagrange multipliers under gauge transformations
demands that the fields L± satisfy the following field equations at the asymptotic
region

L̇± = ⇠±L±0 + 2⇠±0L± � k

4⇡
⇠±

000 , (2.32)

while the parameters of the asymptotic symmetries fulfill

✏̇± = ✏±
0⇠± � ✏±⇠±

0 . (2.33)

These conditions are necessary in order to ensure the conservation of the global
charges.

Replacing the gauge parameters (2.29) and the asymptotic conditions (2.27) in
the variation of the canonical generators (2.8) we get that

�Q [�] = �Q
⇥

�+
⇤

� �Q
⇥

��
⇤

, (2.34)

which can be readily integrated as

Q
⇥

�±
⇤

= �
ˆ
✏±L±d� . (2.35)

Since the Poisson brackets fulfill

�

Q
⇥

�±1
⇤

, Q
⇥

�±2
⇤ 

= ��±2 Q
⇥

�±1
⇤

, (2.36)

the algebra of the canonical generators can be directly obtained from the trans-
formation of the fields (2.30). Expanding in Fourier modes according to X =
1
2⇡

P

n Xne
in�, the Poisson brackets reduce to two copies of the Virasoro algebra

with the same central charge c = 6k = 3`/2G. The algebras explicitly read

i
�

L±
m,L±

n

 

= (m� n)L±
m+n +

k

2
m3�m+n,0 , (2.37)

which coincide with the asymptotic symmetry algebra found in the metric formula-
tion [12].
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2.3.2 Vanishing cosmological constant

This subsection is devoted to the asymptotic structure in the case of three-dimensional
asymptotically flat spacetimes. The asymptotic conditions in terms of gauge fields
were first proposed in the context of flat higher spin gravity in [32, 33], and in the
context of flat supergravity in [34]. For this purpose we are going to relabel the
Poincaré generators according to

Ĵ�1 = �2J0 , Ĵ1 = J1 , Ĵ0 = J2 ,

P̂�1 = �2P0 , P̂1 = P1 , P̂0 = P2 , (2.38)

so as the nonvanishing commutators of the Poincaré algebra (2.21) now read
h

Ĵm, Ĵn

i

= (m� n) Ĵm+n ,
h

Ĵm, P̂n

i

= (m� n) P̂m+n . (2.39)

Considering this, the asymptotic behaviour in this case is given by

a� = Ĵ1 �
⇡

k

⇣

J P̂�1 + PP̂�1

⌘

, (2.40)

where the radial coordinate can be switched on by a gauge transformation with
group element g = e

r
2 P̂�1 . Here J and P depend on the null coordinate u and the

angular coordinate �. The asymptotic form of the dynamical fields, in this case,
is preserved under the action of gauge transformations spanned by the following
parameter

� [T, Y ] = T P̂1 + Y Ĵ1 +�T 0P̂0 � Y 0Ĵ0

�1

2

✓

2⇡

k
Y P � Y 00

◆

Ĵ�1 �
⇡

k

✓

TP + Y J � k

2⇡
T 00
◆

P̂�1 , (2.41)

provided the transformation law of the fields is given by

�P = 2PY 0 + P 0Y � k

2⇡
Y 000 ,

�J = 2J Y 0 + J 0Y + 2PT 0 + P 0T � k

2⇡
T 000 . (2.42)

where the parameters T (u,�) and Y (u,�) are arbitrary functions. The Lagrange
multiplier reads [30]

au = � [µP , µJ ] . (2.43)

where µP , µJ also stand for arbitrary functions of u, � and they are assumed to
be fixed at the boundary. Consistency of preserving the asymptotic form of the
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Lagrange multiplier now leads to the following field equations

Ṗ = 2PµJ
0 + P 0µJ � k

2⇡
µJ

000 ,

J̇ = 2J µJ
0 + J 0µJ + 2PµP

0 + P 0µP � k

2⇡
µP

000 , (2.44)

which have to be fulfilled in the asymptotic region. In turn, the parameters of the
transformation satisfy the following conditions

Ẏ = µJY
0 � µJ

0Y ,

Ṫ = µJT
0 � µJ

0T + µPY
0 � µP

0Y . (2.45)

The canonical generator in this case is also easily integrated, which reads

Q [T, Y ] = �
ˆ

(TP + Y P) d� . (2.46)

Expanding in Fourier modes, the nonvanishing components of the Poisson brackets
are given by

i {Jm,Jn} = (m� n)Jm+n ,

i {Jm,Pn} = (m� n)Pm+n + km3�m+n,0 , (2.47)

which coincides with the infinite-dimensional BMS3 algebra with a central charge
c = 3/G found in [27, 28].

It is worth pointing out that by making the following change of basis on the
generators of the Virasoro algebras (2.37)

Pn =
1

`

�

L+
n + L�

�n

�

, Jn = L+
n � L�

�n , (2.48)

and rescaling the AdS level according to k ! k`, in the large AdS radius limit
`! 1, the BMS3 algebra (2.47) is recovered.
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Chapter 3

Extension of the Poincaré group
with half-integer spin generators
and hypergravity

According to the Haag- Lopuszański-Sohnius theorem [35], the super-Poincaré group
is a consistent extension of the Poincaré group that includes fermionic generators of
spin 1/2. Indeed, in flat spacetimes of dimension greater than three, the addition of
fermionic generators of spin s � 3/2 would imply that the irreducible representations
necessarily contained higher spin fields, which are known to su↵er from inconsisten-
cies (see, e.g., [36, 6, 7, 37, 38, 39, 40],). However, in three spacetime dimensions,
higher spin fields do not possess local propagating degrees of freedom, and as a
consequence, it is possible to describe them consistently [41, 42, 43, 44, 45, 30, 46]
even on locally flat spacetimes [32, 33, 47, 48]. Hence, in the latter context, since
no-go theorems about massless higher spin fields can be circumvented, it is natu-
ral to look for an extension of the Poincaré group with fermionic half-integer spin
generators. Results along these lines have already been explored in [49]. In what
follows, we begin with the construction of the searched for extension of the Poincaré
group in the case of spin 3/2 generators, that for short, hereafter we dub it the
hyper-Poincaré group. It is shown that the algebra admits a nontrivial Casimir op-
erator and, as an application, we explain how the hypergravity theory of Aragone
and Deser [8] can be formulated so as to incorporate the hyper-Poincaré group as
its local gauge symmetry. Concretely, we show how hypergravity can be described
in terms of hyper-Poincaré-valued gauge fields with a Chern-Simons action. The
results are then extended to the case of fermionic generators of spin n + 1

2 , as well
as to the minimal coupling of General Relativity with gauge fields of spin n + 3

2 ,
so that the super-Poincaré group and supergravity are recovered for n = 0. The
hyper-Poincaré algebra is also shown to admit an infinite-dimensional nonlinear ex-
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tension that contains the BMS3 algebra as it is shown in detail in Chapter 5, which
in the case of spin-3/2 generators, reduces to a subset of a suitable contraction the
direct sum of the W(2,4) algebra with its hypersymmetric extension W(2, 52 ,4)

. We
conclude explaining how the hyper-Poincaré group is extended to the case of d � 3
dimensions.

3.1 Fermionic spin-3/2 generators

In three spacetime dimensions, the nonvanishing commutators of the Poincaré alge-
bra can be written as

[Ja, Jb] = "abcJ
c , [Ja, Pb] = "abcP

c . (3.1)

The additional fermionic generators are assumed to transform in an irreducible spin-
3/2 representation of the Lorentz group, so that they are described by “�-traceless”
vector-spinors that fulfill

Qa�a = 0 , (3.2)

where �a stand for the Dirac matrices. Their corresponding commutation rules with
the Lorentz generators are then given by

[Ja, Q↵b] =
1

2
(�a)

�
↵Q�b + "abcQ

c
↵ . (3.3)

Therefore, requiring consistency of the closure as well as the Jacobi identity, implies
that the only remaining nonvanishing (anti)commutators of the algebra read

�

Qa
↵, Q

b
�

 

= �2

3
(C�c)↵� Pc⌘

ab +
5

6
"abcC↵�Pc +

1

6
(C�(a)↵�P

b) , (3.4)

where C is the charge conjugation matrix (see Apenndix A). It is then simple to
verify that apart from I1 = P aPa, the algebra admits another Casimir operator
given by

I2 = 2JaPa +Qa
↵C

↵�Q�a , (3.5)

which implies the existence of an invariant (anti)symmetric bilinear form, whose
only nonvanishing components are of the form

hJa, Pbi = ⌘ab ,
⌦

Qa
↵, Q

b
�

↵

=
2

3
C↵�⌘

ab � 1

3
"abc(C�c)↵� . (3.6)

It is worth highlighting that the inclusion of the higher spin generators Qa
↵ does not

jeopardize the causal structure, since there is no need to enlarge the Lorentz group.
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3.1.1 Hypergravity

In order to describe a massless spin-52 field minimally coupled to General Relativity,
let us consider a connection 1-form that takes values in the hyper-Poincaré algebra
described above, which reads

A = eaPa + !aJa +  ↵aQ
a
↵ , (3.7)

where ea, !a and  ↵a stand for the dreibein, the dualized spin connection

!a =
1

2
"abc!bc , (3.8)

and the �-traceless spin-5/2 field (�a a = 0), respectively. The components of the
field strength F = dA+ A2 are then given by

F = RaJa + T̃ aPa +D ↵aQ
a
↵ , (3.9)

where Ra = d!a + 1
2"

abc!b!c is the dualized curvature 2-form and the covariant
derivative of the spin-5/2 field reads

D a = d a +
1

2
!b�b 

a + "abc!b c , (3.10)

which by virtue of the Fierz expansion of the product of three �-matrices (see
Appendix A) can be written as

D a = d a +
3

2
!b�b 

a � !b�
a b . (3.11)

Note that in the eq. (3.11) the covariant derivative of the vector-spinor field  a is
manifestly �-traceless. The hypercovariant torsion 2-form then reads

T̃ a := T a � 3

4
i ̄b�

a b , (3.12)

with T a = dea + "abc!bec, and  ̄a↵ =  �aC�↵ is the Majorana conjugate.
Note that under an infinitesimal gauge transformation �A = d�+[A,�], spanned

by a hyper-Poincaré-valued zero-form given by

� = �aPa + �aJa + ✏↵aQ
a
↵ , (3.13)

the components of the gauge field transform according to

�ea = D�a � "abc�bec +
3

2
i✏̄b�

a b ,

�!a = D�a , (3.14)

� a = �3

2
�b�b 

a + �b�
a b +D✏a .
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The invariant bilinear form (3.6) then allows to construct a Chern-Simons action
for the gauge field (3.7), given by

I =
k

4⇡

ˆ ⌧
AdA+

2

3
A3

�

, (3.15)

which up to a boundary term, reduces to

I =
k

4⇡

ˆ
2Raea + i ̄aD 

a . (3.16)

It is worth pointing out that, despite the action (3.16) is formally the same as the one
considered by Aragone and Deser in [8], it does possess a di↵erent local structure.
Indeed, note that under local hypersymmetry transformations spanned by � = ✏↵aQ

a
↵,

the nonvanishing transformation rule for the spin connection considered in [8], agrees
with ours only on-shell. Actually, by construction, as in the case of supergravity
[50], here the algebra of the local gauge symmetries (3.14) closes o↵-shell according
to the hyper-Poincaré group, without the need of auxiliary fields.

In the case of negative cosmological constant, it can be seen that hypergravity
requires the presence of additional spin-4 fields [51, 52, 11]. This will be addressed
in detail in Chapter 4.

3.2 Fermionic generators of arbitrary half-integer
spin

In this case, the fermionic generators correspond to tensor-spinors Qa1...an
↵ , trans-

forming in an irreducible representation of the Lorentz group, so that they are
completely symmetric in the vector indices, as well as �-traceless, i. e.,

Qa1...an�a1 = 0 . (3.17)

These conditions imply that their anticommutation rules acquire a somehow cum-
bersome expression, and it is then more convenient to write the hyper-Poincaré
algebra in the Maurer-Cartan formalism. The Maurer-Cartan 1-form is given by

⌦ = ⇢aPa + ⌧aJa + �↵a1...anQ
a1...an
↵ , (3.18)
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where �a1...an is �-traceless and completely symmetric in the vector indices, which
can be seen as a flat connection that fulfills

d⌧a = �1

2
✏abc⌧b⌧c , (3.19)

d⇢a = �✏abc⌧b⇢c +
1

2

✓

n+
1

2

◆

i�̄a1...an�
a�a1...an ,

d�a1...an = �
✓

n+
1

2

◆

⌧ b�b�
a1...an + ⌧b�

(a1�a2...an)b .

Note that the Jacobi identity now translates into the consistency of the nilpotence
of the exterior derivative (d2 = 0), which for the algebra (3.19) is clearly satisfied.

The nontrivial Casimir operator now reads

I2 = 2JaPa +Q↵a1...anC
↵�Qa1...an

� . (3.20)

It is also worth pointing out that the super-Poincaré algebra corresponds to the case
of n = 0, while the hyper-Poincaré algebra described in Section 3.1 is recovered for
n = 1.

3.2.1 Hypergravity in the generic case

The minimal coupling of General Relativity with a massless fermionic field of spin
s = n+ 3

2 , described by a completely symmetric �-traceless 1-form  a1...an , can then
be formulated in terms of a gauge field for the hyper-Poincaré algebra, which now
reads

A = eaPa + !aJa +  ↵a1...anQ
a1...an
↵ . (3.21)

The components of the curvature 2-form are then given by

F = RaJa + T̃ aPa +D ↵a1...anQ
a1...an
↵ , (3.22)

where the covariant derivative of the spin-
�

n+ 3
2

�

field can be written as

D a1...an = d a1...an +

✓

n+
1

2

◆

!b�b 
a1...an � !b�

(a1 a2...an)b , (3.23)

and

T̃ a = T a � 1

2

✓

n+
1

2

◆

i ̄a1...an�
a a1...an . (3.24)
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The transformation rules of the fields under local hypersymmetry can then be ob-
tained from a gauge transformation of the connection (3.21) with a fermionic pa-
rameter given by � = ✏↵a1...anQ

a1...an
↵ , so that they read

�ea =

✓

n+
1

2

◆

i✏̄a1...an�
a a1...an ,

�!a = 0 , (3.25)

� a1...an = D✏a1...an .

The Casimir operator (3.20) then implies the existence of an (anti)symmetric tensor
of rank 2, which once contracted with the wedge product of two curvatures, gives

⌦

F 2
↵

= 2RaT̃a + iD ̄a1...anD 
a1...an

= d
�

2Raea + i ̄a1...anD 
a1...an

�

, (3.26)

being an exact form that is manifestly invariant under the hypersymmetry transfor-
mations (3.25). Therefore, as in the case of (super)gravity [18, 19], the action can
also be written as a Chern-Simons one (3.15), which up to a boundary term reduces
to

I =
k

4⇡

ˆ
2Raea + i ̄a1...anD 

a1...an , (3.27)

so that the field equations now read F = 0, with F given by (3.22).
Note that the standard supergravity action in [53, 54, 55] is recovered for n = 0;

and as it occurs in the spin-5/2 case, the generic theory agrees with the one of
Aragone and Deser only on-shell.

3.3 Remarks

We would like to stress that a deeper understanding of the theory cannot be attained
unless it is endowed with a consistent set of boundary conditions. In this sense, one
of the advantages of formulating hypergravity as a Chern-Simons theory is that the
analysis of its asymptotic structure can be directly performed in a canonical form,
as in the case of negative cosmological constant [11]. Indeed, in analogy with the
case of three-dimensional flat supergravity [34], in Chapter 5 it is shown that the
mode expansion of the asymptotic symmetry algebra of hypergravity with a spin-5/2
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fermionic field is defined through the following Poisson brackets

i {Jm,Jn} = (m� n)Jm+n ,

i {Jm,Pn} = (m� n)Pm+n + km
�

m2 � 1
�

�m+n,0 ,

i {Pm,Pn} = 0 , i {Pm, n} = 0 ,

i {Jm, n} =

✓

3m

2
� n

◆

 m+n , (3.28)

i { m, n} =
1

4

�

6m2 � 8mn+ 6n2 � 9
�

Pm+n +
9

4k

X

q

Pm+n�qPq

+k

✓

m2 � 9

4

◆✓

m2 � 1

4

◆

�m+n,0 ,

which describe a nonlinear hypersymmetric extension of the BMS3 algebra [27, 28,
56]. This algebra corresponds to a subset of a suitable contraction the direct sum
of the W(2,4) algebra with its hypersymmetric extension W(2, 52 ,4)

[57, 58, 11], as it is
explicitly shown in Section 5.3.1.

When fermions fulfill antiperiodic boundary conditions, the modes of the fermionic
global charges  m are labelled by half-integers, so that the wedge algebra of (3.28)
reduces to the one of the hyper-Poincaré group. In fact, dropping the nonlinear
terms, and restricting the modes according to |n| < �, where � stands for the
conformal weight of the generators, the hyper-Poincaré algebra is manifestly recov-
ered provided the modes in (3.28) are identified with the generators Ja, Pa, Q↵a,
according to

J�1 = �
p
2J0 , J1 =

p
2J1 , J0 = J2 ,

P�1 = �
p
2P0 , P1 =

p
2P1 , P0 = P2 ,

 � 3
2
= 2

5
4

p
3Q+0 ,  � 1

2
= 2

3
4

p
3Q�0 , (3.29)

 1
2
= �2

1
4

p
3Q+1 ,  3

2
= �2�

1
4

p
3Q�1 .

It is also worth noting that (3.28) can then be regarded as a hypersymmetric
extension of the Galilean conformal algebra in two dimensions [59, 60], which is
isomorphic to BMS3 and turns out to be relevant in the context of non-relativistic
holography.

Another advantage of formulating hypergravity in terms of a Chern-Simons ac-
tion is that, as in case of supergravity [61, 34], the theory can be readily extended
to include parity odd terms in the Lagrangian, as will be explicitly performed in
Section 5.5. This is made by a simple modification of the invariant bilinear form,
so that it acquires an additional component given by hJa, Jbi = µ⌘ab, followed by
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a shift in the spin connection of the form !a ! !a + �ea, so that the constants
µ, � parametrize the new allowed couplings in the action. As a consecuence, when
hypergravity is extended in this way, the hyper-BMS3 algebra (3.28) acquires an
additional nontrivial central extension along its Virasoro subgroup.

The hyper-Poincaré group admits a consistent generalization to the case of d � 3
spacetime dimensions. In the case of fermionic �-traceless spin-32 generators, the
nonvanishing (anti)commutators of the algebra are given by

[Jab, Jcd] = Jad⌘bc � Jbd⌘ac + Jca⌘bd � Jcb⌘ad ,

[Jab, Pc] = ⌘acPb � ⌘bcPa ,

[Jab, Q
↵
c ] = �1

2
(�ab)

↵
�Q

�
c + ⌘acQ

↵
b � ⌘bcQ

↵
a , (3.30)

⇥

Jab, Q̄↵c

⇤

=
1

2
(�ab)

�
↵Q̄�c + ⌘acQ̄↵b � ⌘bcQ̄↵a ,

�

Q↵a, Q̄b
�

 

=
3 (d� 2)

d2
i
⇥

(d+ 1) (�c)↵�Pc⌘
ab � d+ 2

d� 2
(�abc)↵�Pc � (�(a|)↵�P

|b)
�

,

where Q̄a = Q†
a�

0 stands for the Dirac conjugate.
In the generic case, the spin-

�

n+ 1
2

�

generators correspond to completely sym-
metric �-traceless tensor-spinors that fulfill �a1Qa1...an = 0. In order to avoid the in-
tricacies related to the latter condition, as well as with the suitable (anti)symmetrization
of the (anti)commutation rules of the generators, it is better to express the algebra
in terms of its Maurer-Cartan form. It is now given by

⌦ = ⇢aPa +
1

2
⌧abJab + �̄a1...an

↵ Q↵
a1...an

� Q̄a1...an
↵ �↵a1...an , (3.31)

where �a1...an is �-traceless and completely symmetric in the vector indices, so that
its components fulfill1

d⌧ab = �⌧ac⌧ cb , (3.32)

d⇢a = �⌧ab⇢b +
1

2

✓

n+
1

2

◆

i�̄a1...an�
a�a1...an ,

d�a1...an = �1

4
⌧ab�ab�

a1...an � ⌧
(a1

b�
a2...an)b ,

d�̄a1...an = �1

4
�̄a1...an⌧ab�ab � ⌧

(a1
b�̄

a2...an)b .

This algebra can be easily written in terms of Majorana spinors when they exist,
and it reduces to super-Poincaré for n = 0.

1In the case of d = 2 spacetime dimensions the algebra is consistent. However, the subset
spanned by translations and the fermionic generators is an abelian ideal.
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Note that there was no need to enlarge the Lorentz group in order to accom-
modate the higher spin generators, so that the additional symmetries do not seem
to interfere with the causal structure. Indeed, as in the case of supersymmetry,
the quotient of the hyper-Poincaré group over the Lorentz subgroup now defines
a hyperspace which is an extension of Minkowski spacetime with additional �-
traceless tensor-spinor coordinates. However, as anticipated by Haag,  Lopuszański
and Sohnius, the irreducible representations, which could be obtained from suitable
hyperfields, necessarily contain higher spin fields. Nevertheless, it would be worth
to explore whether the hyper-Poincaré algebra may manifest itself through theo-
ries or models whose fundamental fields do not transform as linear multiplets, as it
would be the case of nonlinear realizations, hyper-Poincaré-valued gauge fields, or
extended objects.
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Chapter 4

Asymptotically anti-de Sitter
structure of hypergravity

The three-dimensional hypergravity theory in presence of negative cosmological
constant needs by consistency additional spin-4 fields besides the spin-2 and spin-
5/2 fields [11]. Then, this theory turns out to be within the framework of three-
dimensional higher spin gravity [41, 42, 43] which recently has attracted a great deal
of interest. The asymptotic symmetry algebra in these cases is given by two copies of
a nonlinear W -algebra, where the detailed structure depends on the spin content of
the model [44, 45]. In the particular case of hypergravity, it contains fermionic gen-
erators of (conformal) spin 5/2 and bosonic generators of (conformal) spin 4, which
extends the two copies of the infinite-dimensional Virasoro algebra of pure gravity
with negative cosmological constant [12], with the same central charge. Specifically,
the theory is described by a Chern-Simons action for two copies of the OSp (1|4)
group. The asymptotic symmetry superalgebra is the direct sum of two copies of the
hypersymmetric extension W(2, 52 ,4)

of W(2,4). A remarkable feature of this theory is
the presence of black holes endowed with spin-4 charges, where its thermodynamics
can be studied by considering the Euclidean continuation of the theory, even though
the causal structure of this kind of black holes is di�cult to define because the
metric is not invariant under higher spin gauge transformations. It is known that
in four dimensions extreme black holes have interesting properties, which can often
be related to the fact that they possess unbroken supersymmetries, saturating the
Bogomol’nyi–Prasad–Sommerfield (BPS) bounds [62, 63, 64, 65, 66, 67, 68, 69, 70].
This was also shown in the three-dimensional case of the extreme BTZ black hole by
Coussaert and Henneaux [71]. Taking this into account, in this chapter the recent
results of [11] are revisited related to the study of the asymptotic AdS structure
of hypergravity in three spacetime dimensions, which allowed the analysis of the
hypersymmetry bounds on higher spin black holes. In this case, supersymmetry
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is naturally enlarged to the case of hypersymmetry generators, which are fermionic
generators of half-integer spins greater than 1/2. Then, along the lines of supergrav-
ity, one can derive bounds for the conserved charges from the anticommutator of
these hypersymmetry generators, which turn out to be nonlinear, and as explained
in detail in [11], they are saturated by extreme higher spin black holes which have
1/4 of the hypersymmetries and also by maximally (hyper)symmetric sp (4)-solitonic
solutions.

The theory of hypergravity in three spacetime dimensions with negative cos-
mological constant is described by a three-dimensional Chern-Simons theory for
OSp (1|4)�OSp (1|4). The gauge connection is given by A = A+ + A�, where

A± =

✓

!i ± ei

`

◆

Li +

✓

Wm ± Em

`

◆

Um +  p
±Sp . (4.1)

Here ! and e are the spin-2 dualized spin connection and dreibein, respectively. In
turn, W is the spin-4 spin connection and E is the spin-4 dreiben, and  stands
for the spin-5/2 field. These connections take values in the osp (1|4) algebra, being
spanned by Li, with i = 0,±1, which stand for the (conformal) spin-2 generators of
the sl (2,R) subalgebra, while Um and Sp, with m = 0,±1,±2,±3 and p = ±1

2 ,±
3
2 ,

correspond to the (conformal) spin-4 and fermionic (conformal) spin-5/2 generators,
respectively. The (anti)commutation rules of osp (1|4) read

[Li, Lj] = (i� j)Li+j ,

[Li, Um] = (3i�m)Ui+m ,

[Li,Sp] =

✓

3i

2
� p

◆

Si+p ,

[Um, Un] =
1

223
(m� n)

✓

�

m2 + n2 � 4
�

✓

m2 + n2 � 2

3
mn� 9

◆

� 2

3
(mn� 6)mn

◆

Lm+n

+
1

6
(m� n)

�

m2 �mn+ n2 � 7
�

Um+n , (4.2)

[Um,Sp] =
1

233

�

2m3 � 8m2p+ 20mp2 + 82p� 23m� 40p3
�

Si+p ,

{Sp,Sq} = Up+q +
1

223

�

6p2 � 8pq + 6q2 � 9
�

Lp+q .

The action is given by the di↵erence of two Chern-Simons forms

I = ICS

⇥

A+
⇤

� ICS

⇥

A�⇤ , (4.3)

with

ICS [A] =
k4
4⇡

ˆ
str



AdA+
2

3
A3

�

, (4.4)
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where k4 = /10, and str [...] stands for the supertrace of the fundamental matrix
representation given in Appendix B. As shown in Chapter 2, it is possible to gauge
away the radial dependence of the asymptotic form of the connections by virtue of
a suitable gauge group element g± (r), so that

A± = g�1
± a±g± + g�1

± dg± , (4.5)

with
a± = a±t dt+ a±� d� , (4.6)

where the components of the gauged connection depend on the temporal coordinate
t and the angular coordinate �. The asymptotic behaviour of the dynamical fields
go along the highest weight generators [44, 45, 72, 73], such that

a±� = L±1 �
2⇡

k

✓

L±L⌥1 �
1

10
U±U⌥3 + 

±S⌥3

◆

. (4.7)

Here L± = L± (t,�), U± = U± (t,�), and  ± =  ± (t,�). The asymptotic conditions
are preserved under gauge transformations �a±� = d�± +

⇥

a±� ,�
±⇤ spanned by the

Lie-algebra-valued parameters �± = �± [✏±,�±,#±]. They depend on two bosonic
functions ✏± (t,�), �± (t,�) and one Grassmann-valued function #± (t,�). Moreover,
the fields have to transform in a precise way under the transformations generated
by these parameters for having so. The Lie-algebra-valued parameters and the
transformation law of the fields are explicitly shown in Appendix C.

As explained above, the asymptotic form of the Lagrange multipliers have to be
of the form

a±t = ±�±
⇥

µ±
L , µ

±
U , µ

±
 

⇤

. (4.8)

This is in order to preserve the asymptotic symmetries under time evolution. The
arbitrary functions µ±

L (t,�), µ±
U (t,�), µ±

 (t,�) are fixed at the boundary. Note
that consistency of the asymptotic form of the Lagrangian multipliers under the
asymptotic symmetries implies that the gauge parameters ✏±,�±,#± have to satisfy
suitable “deformed chirality conditions”, which are di↵erential equations of first
order in time (see e. g. [30, 46]).

By replacing the Lie-algebra-valued-parameters (C.1) and the asymptotic condi-
tions for the dynamical fields (4.7) in the variation of the canonical generators (2.8),
it is straightforward to integrate the value of the global charges, which reads

Q = Q+ [✏+,�+,#+]�Q� [✏�,��,#�] , (4.9)

where

Q± [✏±,�±,#±] = �
ˆ
�

✏±L± + �±U± � i#± 
±� d� . (4.10)
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By using that the Poisson brackets fulfill

{Q [�1] , Q [�2]} = ��2Q [�1] , (4.11)

it is possible to compute the algebra of the canonical generators from the transfor-
mation law of the fields given in (C.3). The asymptotic symmetry algebra of one
copy then reads

i {Lm,Ln} = (m� n)Lm+n +


2
m3�m+n,0 ,

i {Lm,Un} = (3m� n)Um+n ,

i {Lm, n} =

✓

3m

2
� n

◆

 m+n ,

i {Um,Un} =
1

2232
(m� n)

�

3m4 � 2m3n+ 4m2n2 � 2mn3 + 3n4
�

Lm+n

+
1

6
(m� n)

�

m2 �mn+ n2
�

Um+n �
233⇡


(m� n)⇤(6)

m+n (4.12)

�72⇡

32
(m� n)

�

m2 + 4mn+ n2
�

⇤(4)
m+n +



2332
m7�m+n,0 ,

i {Um, n} =
1

223

�

m3 � 4m2n+ 10mn2 � 20n3
�

 m+n �
23⇡

3
i⇤(11/2)

m+n

+
⇡

3
(23m� 82n)⇤(9/2)

m+n ,

i { m, n} = Um+n +
1

2

✓

m2 � 4

3
mn+ n2

◆

Lm+n +
3⇡


⇤(4)

m+n +


6
m4�m+n,0 ,

where the coe�cients ⇤(l)
m correspond to the expansion of the terms in Appendix

C, while the fermionic modes are labeled by integers or half-integers in the case of
periodic or antiperiodic boundary conditions, respectively. Note that only in the
case of antiperiodic boundary conditions, the wedge algebra of (4.12) reduces to one
copy of osp (1|4) (4.2). This is reached by dropping the nonlinear terms of (4.12),
restricting the modes according to |n| < s (where s in the conformal spin of the
generators) and provided the zero modes of the sl (2,R) generators are shifted as

L0 ! L0 +


4⇡
. (4.13)

Note that the asymptotic symmetry algebra (4.12) is the hypersymmetric extension
of the W(2,4) known as W(2, 52 ,4)

. This algebra corresponds to a classical limit of WB2

[57, 58].
Hypersymmetry should imply bounds for the bosonic conserved charges, then

once the asymptotic symmetry algebra is obtained one could wonder which are the
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consequences of having hypersymmetry bounds and whether they are similar to the
supersymmetry ones.

We will consider bosonic configurations carrying global charges with only zero
modes for each copy,

L0 = 2⇡L , U0 = 2⇡U . (4.14)

As the in the case of supergravity, the bounds can be derived from unitarity by
following the semi-classical considerations [9, 74, 75, 10, 76, 77]. To derive these
bounds, one starts from the anticommutators of the hypersymmetry generators in
(4.12) with m = �n = p � 0, which are reduced to

1

2⇡

⇣

 ̂p ̂�p +  ̂�p ̂p

⌘

= Û +
5

3
p2L̂+

3⇡


L̂2 +



12⇡
p4 . (4.15)

Since the hermitian operator at the left hand side of eq. (4.15) is positive definite,
in the classical limit, the global charges fulfill the following manifestly nonlinear
bounds

U +
5

3
p2L+

3⇡


L2 +



12⇡
p4 � 0 . (4.16)

This expression can be factorized as
�

p2 + �2[+]

� �

p2 + �2[�]

�

� 0 , (4.17)

where ±�[±] coincide with the eigenvalues of the dynamical field a� (by using the
sp (4,R) matrix representation that can be read from Appendix B), given by

�2[±] =
10⇡



 

L ± 4

5

r

L2 � 3

16⇡
U
!

, (4.18)

which completely characterize the holonomies of a� along a circle,

H� = P exp

ˆ
a�d�

�

. (4.19)

Then, the bounds on the conserved charges (4.16) can be seen as bounds on the
holonomies. The reality condition of both eigenvalues implies that L � 0 and
moreover it leads to the following bounds for the charges

� L2  

3⇡
U  24

32
L2 , (4.20)

These bounds have remarkable consequences; first of all, as shown in [11], from the
thermodynamical analysis (by solving the trivial holonomy condition along a ther-
mal cycle and evaluating the entropy) one concludes that the bounds in (4.20) are
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saturated for di↵erent classes of extreme black holes. Only the class with spin-4
charge negative, i. e. �L2 = 

3⇡U , is hypersymmetric and has 1/4 of the hyper-
symmetries (per copy), and besides saturates the unitarity bounds. On the other

hand, the other class of extreme black holes
⇣


3⇡U = 24

32L2
⌘

do satisfy the bound

(4.16), but it does not saturate it. Hence, all the black holes that saturate the
unitarity bounds are extremal, but not all extreme black holes are hypersymmetric.
Second, in the Lorentzian sector of the theory, where contractible cycles go along of
the angular coordinate, one finds solitonic-like solutions which are maximally (hy-
per)symmetric. These are analogs of the conical defects and surpluses of references
[78, 79, 80, 81, 82]. In this case only one class of solitonic-like solutions is compatible
with the unitarity bounds.
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Chapter 5

Asymptotically flat structure of
hypergravity and energy bounds

It has been shown that the inconsistencies arising in the minimal coupling of a
massless spin-5/2 field to General Relativity [36, 6, 7, 38] can be successfully sur-
mounted in three-dimensional spacetimes [8] with the theory of hypergravity of
Aragone and Deser. As explained in Chapter 3, hypergravity can be reformulated
as a Chern-Simons theory of an extension of the Poincaré group with fermionic gen-
erators of spin 3/2. As shown in Chapter 4, in the case of negative cosmological
constant, additional spin-4 fields are required by consistency, and the anticommu-
tator of the generators of the asymptotic hypersymmetries, associated to fermionic
spin-3/2 parameters, leads to interesting nonlinear bounds for the bosonic global
charges of spin 2 and 4 [11]. The bounds saturate provided the bosonic configu-
rations admit globally-defined Killing vector-spinors. One of the main purposes of
this chapter is to show how these results extend to the case of asymptotically flat
spacetimes in hypergravity, also in the case of arbitrary half-integer spin fields. In
the next section we briefly summarize the results of Chapter 3, showing the formu-
lation of hypergravity as a Chern-Simons theory for the hyper-Poincaré group in
the simplest case of fermionic spin-5/2 fields, while section 5.2 is devoted to explore
the global hypersymmetry properties of cosmological spacetimes and solutions with
conical defects. In the case of fermions that fulfill periodic boundary conditions,
it is shown that the null orbifold possesses a single constant Killing vector-spinor.
Analogously, for antiperiodic boundary conditions, Minkowski spacetime is singled
out as the maximally (hyper)symmetric configuration, and the explicit expression of
the globally-defined Killing vector-spinors is found. The asymptotically flat struc-
ture of hypergravity in three spacetime dimensions is analyzed in section 5.3, where
a precise set of boundary conditions that includes “chemical potentials” associated
to the global charges is proposed. The algebra of the canonical generators of the
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asymptotic symmetries is found to be given by a suitable hypersymmetric nonlinear
extension of the BMS3 algebra. It is also shown that this algebra corresponds to a
subset of a suitable Inönü-Wigner contraction of the direct sum of the W (2,4) algebra
with its hypersymmetric extension W (2, 52 ,4)

. The hypersymmetry bounds that arise
from the anticommutator of the fermionic generators are found to be nonlinear, and
are shown to saturate for spacetimes that admit unbroken hypersymmetries, like
the ones aforementioned. This is explicitly carried out in section 5.4. In section 5.5,
the previous analysis is performed in the case of an extension of the hypergravity
theory that includes additional parity-odd terms in the action. It is found that the
asymptotic symmetry algebra admits an additional central charge along the Virasoro
subgroup. The results are then extended to the case of General Relativity minimally
coupled to half-integer spin fields in section 5.6, including the asymptotically flat
structure, and the explicit expression of the Killing tensor-spinors. The hypersym-
metry bounds are shown to be described by a polynomial of degree s + 1/2 in the
energy, where s is the spin of the fermionic generators. We conclude in section 6 with
some remarks, including the extension of these results to the case of hypergravity
with additional parity-odd terms and fermions of arbitrary half-integer spin.

5.1 General Relativity minimally coupled to a spin-
5/2 field

It was shown in Chapter 3 that the hypergravity theory of Aragone and Deser [8] can
be reformulated as a gauge theory of a suitable extension of the Poincaré group with
fermionic spin-3/2 generators. The action is described by a Chern-Simons form, so
that the dreibein, the (dualized) spin connection, and the spin-5/2 field correspond
to the components of a gauge field given by

A = eaPa + !aJa +  ↵aQ
a
↵ , (5.1)

that takes values in the hyper-Poincaré algebra, being spanned by the set {Pa, Ja, Q
a
↵}.

The fermionic fields and generators are assumed to be �-traceless, i. e., �a a = 0,
and Qa�a = 0, so that the nonvanishing (anti)commutation rules read

[Ja, Jb] = "abcJ
c , [Ja, Pb] = "abcP

c ,

[Ja, Q↵b] =
1

2
(�a)

�
↵Q�b + "abcQ

c
↵ , (5.2)

�

Qa
↵, Q

b
�

 

= �2

3
(C�c)↵� Pc⌘

ab +
5

6
"abcC↵�Pc +

1

6
(C�(a)↵�P

b) ,

where C stands for the charge conjugation matrix. The Majorana conjugate then
reads  ̄↵a =  �aC�↵. Since the algebra admits an invariant bilinear form, whose only
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nonvanishing components are given by

hJa, Pbi = ⌘ab ,
⌦

Qa
↵, Q

b
�

↵

=
2

3
C↵�⌘

ab � 1

3
"abc(C�c)↵� , (5.3)

the action can be written as

I [A] =
k

4⇡

ˆ ⌧
AdA+

2

3
A3

�

, (5.4)

which up to a surface term reduces to

I =
k

4⇡

ˆ
2Raea + i ̄aD 

a. (5.5)

Here Ra = d!a + 1
2"

abc!b!c is the dual of the curvature two-form, and since the
fermionic field is �-traceless, its Lorentz covariant derivative fulfills

D a = d a +
3

2
!b�b 

a � !b�
a b .

The field equations are then given by F = dA+A2 = 0, whose components read

Ra = 0 , T a =
3

4
i ̄b�

a b , D a = 0 , (5.6)

where T a = Dea corresponds to the torsion two-form.
Therefore, by construction, the action changes by a boundary term under local

hypersymmetry transformations spanned by �A = dA + [A,�], with � = ✏↵aQ
a
↵, so

that the transformation law of the fields reduces to

�ea =
3

2
i✏̄b�

a b , �!a = 0 , � a = D✏a . (5.7)

Note that the transformation rules of the fields in [8] agree with the ones in (5.7),
on-shell.

5.2 Unbroken hypersymmetries: Killing vector-
spinors

It is interesting to explore the set of bosonic solutions that possess unbroken global
hypersymmetries. According to the transformation rules of the fields in (5.7), this
class of configurations has to fulfill the following Killing vector-spinor equation:

� a = d✏a +
1

2
!b�b✏

a + "abc!b✏c = 0 , (5.8)
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where the spin-3/2 parameter ✏a is �-traceless.
As it follows from the field equations (5.6), the spin connection is locally flat,

and it can then be written as

! = !aJa = g�1dg , (5.9)

with g = e�
aJa . Therefore, the general solution of the Killing vector-spinor equation

(5.8) is given by
✏↵a =

�

g�1
S

�↵

�
(gV )

b
a ⌘

�
b , (5.10)

where ⌘�b is a �-traceless constant vector-spinor. Here, gS and gV stand for the same
group element g, but expressed in the spinor and the vector (adjoint) representations,
respectively. Since the generators of the Lorentz group in the spinor and vector
representations are given by

(Ja)
↵
� =

1

2
(�a)

↵
� , (Ja)bc = �"abc , (5.11)

the group elements explicitly read

(gS)
↵
� = exp



1

2
�a (�a)

↵
�

�

, (gV )bc = exp [��a"abc] . (5.12)

The proof of this fact is indeed straightforward. By introducing (5.10) in (5.8),
we have that the first term is given by

d✏a = d
�

g�1
S

�↵

�

�

g�1
V

�a

b
⌘b� +

�

g�1
S

�↵

�
d
�

g�1
V

�a

b
⌘b� , (5.13)

the second term of (5.8) leads to the following result

1

2
!b�b✏

a =
�

g�1
S

�↵

�
d (gS)

�
�

�

g�1
S

��

�

�

g�1
V

�a

b
⌘b�

= �d
�

g�1
S

�↵

�

�

g�1
V

�a

b
⌘b� , (5.14)

while the third term of (5.8) gives that

"abc!b✏c =
�

g�1
V

�a

b
d (gV )

b
c

�

g�1
S

�↵

�

�

g�1
V

�c

d
⌘d�

= �
�

g�1
S

�↵

�
d
�

g�1
V

�a

d
⌘d� . (5.15)

Here it is clear that (5.14) and (5.15) exactly cancel out the first and second terms
of the right hand side of (5.13), respectively.

Hence, bosonic configurations that admit unbroken hypersymmetries possess
Killing vector-spinors of the form (5.10) provided they are globally well-defined,
either for periodic or antiperiodic boundary conditions.
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5.2.1 Cosmological spacetimes and solutions with conical
defects

Let us focus on an interesting class of circularly symmetric solutions that describe
cosmological spacetimes as well as configurations with conical defects. The latter
class was introduced in [83, 84], while the former one was explored in [85, 86, 87].
The thermodynamic properties of cosmological spacetimes have been analyzed in
[88, 89, 90, 91]. As explained in [30, 46, 11], it is useful to express the solution for a
fixed range of the coordinates, so that the Hawking temperature and the chemical
potential for the angular momentum manifestly appear in the metric. Hereafter we
follow the conventions of [91], and for latter purposes, it is convenient to write the
line element in outgoing null coordinates, which reads

ds2 = �4⇡

k

✓

⇡J 2

kr2
� P

◆

µ2
Pdu

2 � 2µPdudr + r2


d�+

✓

µJ +
2⇡µPJ
kr2

◆

du

�2

.

(5.16)
Here P determines the mass, whose associated “chemical potential” relates to the
inverse Hawking temperature according to µP = ���1. Analogously, µJ stands for
the chemical potential associated to the angular momentum J . We also assume a
non-diagonal form for the Minkowski metric in a local frame, so that its nonvanishing
components are given by ⌘01 = ⌘10 = ⌘22 = 1. The dreibein can then be chosen as

e0 = �dr+
2⇡µPP

k
du+

2⇡J
k

(d�+ µJ du) , e1 = µPdu , e2 = r (d�+ µJ du) ,

(5.17)
and hence, the components of the dualized spin connection are given by

!0 =
2⇡P
k

(d�+ µJ du) , !1 = d�+ µJ du , !2 = 0 . (5.18)

As explained at the beginning of section 5.2, since the curvature two-form vanishes,
the spin connection (5.18) is locally flat, and it can then be generically written as
! = g�1dg, with

g = exp

✓

J1 +
2⇡P
k

J0

◆

�̂

�

, (5.19)

and �̂ = �+ µJu.
Note that in the case of P 6= 0, for the spinor and vector representations, the

group element g in (5.19) exponentiates as

gS = cosh

"

r

⇡P
k
�̂

#
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r

k

⇡P sinh

"

r

⇡P
k
�̂

#

✓

J1 +
2⇡P
k

J0

◆

, (5.20)
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gV = I3⇥3+
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2
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⇡P sinh

"
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k
�̂

#

✓
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2⇡P
k

J0

◆

+
k

2⇡P sinh

"

r

⇡P
k
�̂

#2
✓

J1 +
2⇡P
k

J0

◆2

,

(5.21)
respectively, while for P = 0, it reduces to

gS = I2⇥2 + �̂J1 , gV = I3⇥3 + �̂J1 +
1

2
�̂2J2

1 . (5.22)

One then concludes that cosmological spacetimes, for which P > 0, necessar-
ily break all the hypersymmetries. Indeed, this class of solutions cannot admit
globally-defined Killing vector-spinors because, according to (5.20) and (5.21), the
(anti)periodic boundary conditions for the vector-spinor ✏a in (5.10) fail to be ful-
filled.

In the case of configurations with P = 0, equations (5.10) and (5.22) imply that
the Killing vector-spinor is constant and satisfies:

3

2
�1✏a � �a✏1 = 0 , (5.23)

so that it fulfills periodic boundary conditions, and possesses a single nonvanishing
component given by ✏�0 = ⌘�0 .

For the remaining case,

P := �kj2

⇡
< 0 , (5.24)

describing solutions with conical defects, the group element in both representations
reduces to

gS = cos
h

j�̂
i

I2⇥2 +
1

j
sin
h

j�̂
i

�

J1 � 2j2J0
�

, (5.25)

gV = I3⇥3 +
1

2j
sin
h

2j�̂
i

�

J1 � 2j2J0
�

+
1

2j2
sin
h

j�̂
i2
�

J1 � 2j2J0
�2

. (5.26)

Therefore, this class of configurations possesses four independent Killing vector-
spinors that fulfill (anti)periodic boundary conditions provided j is a (half-)integer.
The explicit form of the Killing vector-spinors is then obtained from (5.10), where
gS and gV are given by eqs. (5.25) and (5.26). Note that this is the maximum
number of hypersymmetries. Indeed, for these configurations the holonomy of the
spin connection becomes trivial, which in the spinor representation means that

g�1
S (�̂)gS(�̂+ 2⇡) = �I2⇥2 , (5.27)

while in the vector representation the condition reads

g�1
V (�̂)gV (�̂+ 2⇡) = I3⇥3 . (5.28)

35



It is worth pointing out that if j were di↵erent from a (half-)integer, the configu-
rations would not solve the field equations in vacuum. This is because they would
possess a conical singularity at the origin, and hence they should necessarily be
supported by an external source.

As it occurs in the case of supersymmetry, it is natural to expect that the bosonic
global charges fulfill suitable bounds that turn out to be saturated for configura-
tions that possess unbroken hypersymmetries. Indeed, as shown in [34], the bounds
that correspond to three-dimensional supergravity with asymptotically flat bound-
ary conditions certainly do so. Actually, the bounds also exclude conical surplus
solutions, in particular those whose angular coordinate ranges from zero to 4⇡j,
with j > 1/2, despite they are maximally supersymmetric. When a negative cos-
mological constant is considered, this is also the case not only for supergravity [71],
but also for hypergravity [11], where in the latter case the bounds turn out to be
nonlinear. Thus, one of the main purposes of the following sections is showing how
these results can be extended to the case of hypergravity endowed with a suitable
set of asymptotically flat boundary conditions, as well as how to recover them in
the vanishing cosmological constant limit.

5.3 Asymptotically flat behaviour and the hyper-
BMS3 algebra

Let us introduce a suitable set of asymptotic conditions that allows to describe the
dynamics of asymptotically flat spacetimes in hypergravity. The set must be relaxed
enough so as to accommodate the solutions of interest that have been described in
section 5.2.1, and simultaneously, restricted in an appropriate way in order to ensure
finiteness of the canonical generators associated to the asymptotic symmetries. As
shown above, in the case of pure General Relativity, a consistent set of boundary
conditions exists, whose asymptotic symmetry algebra corresponds to BMS3 with
a nontrivial central extension [27, 28, 56]. These results have been extended to
the case of supergravity [34], as well as for General Relativity coupled to higher
spin fields [32, 33, 90, 91]. In order to carry out this task in hypergravity, we take
advantage of the Chern-Simons formulation of the theory, depicted in section 5.1.
Since the hypersymmetry generators are �-traceless, it is useful to get rid of

Q2 = Q1�0 �Q0�1 , (5.29)
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so that once the remaining generators are relabeled according to

Ĵ�1 = �2J0 , Ĵ1 = J1 , Ĵ0 = J2 ,

P̂�1 = �2P0 , P̂1 = P1 , P̂0 = P2 ,

Q̂� 3
2
= 2

5
4

p
3Q+0 , Q̂� 1

2
= 2

3
4

p
3Q�0 , (5.30)

Q̂ 1
2
= �2

1
4

p
3Q+1 , Q̂ 3

2
= �2�

1
4

p
3Q�1 ,

the hyper-Poincaré algebra (5.2) reads
h

Ĵm, Ĵn

i

= (m� n) Ĵm+n ,
h

Ĵm, P̂n

i

= (m� n) P̂m+n ,

h

Ĵm, Q̂p

i

=

✓

3m

2
� p

◆

Q̂m+p , (5.31)

n

Q̂p, Q̂q

o

=
1

4

�

6p2 � 8pq + 6q2 � 9
�

P̂p+q ,

with m,n = ±1, 0, and p, q = ±1
2 ,±

3
2 .

Thus, following the lines of [29], and as explained in [33, 34], the radial depen-
dence of the asymptotic form of the gauge field can be gauged away by a suitable
group element of the form h = e

r
2 P̂�1 , so that

A = h�1ah+ h�1dh , (5.32)

and hence, the remaining analysis can be entirely performed in terms of the connec-
tion a = audu + a�d�, that depends only on time and the angular coordinate. As
explained in [30, 46], one starts prescribing the asymptotic form of the dynamical
gauge field at a fixed time slice with u = u0, so that the asymptotic fall-o↵ of a� is
assumed to be such that the deviations with respect to the reference background go
along the highest weight generators of (5.31). Choosing the reference background
to be given by the null orbifold [92], that corresponds to the configuration in (5.16)
with J = P = 0, the asymptotic form of the dynamical field reads

a� = Ĵ1 �
⇡

k

✓

J P̂�1 + P Ĵ�1 �
 

3
Q̂� 3

2

◆

, (5.33)

where J , P and  stand for arbitrary functions of u, �. The asymptotic symmetries
then correspond to gauge transformations �a = d� + [a,�] that preserve the form
of (5.33). Therefore, the hyper-Poincaré-valued parameter � is found to depend on
three arbitrary functions of u and �, so that

� = T P̂1 + Y Ĵ1 + EQ̂ 3
2
+ ⌘( 3

2)
[T, Y, E ] , (5.34)
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where E is Grassmann-valued, and

⌘( 3
2)
[T, Y, E ] = �T 0P̂0 � Y 0Ĵ0 � E 0Q̂ 1

2
� 1

2

✓

2⇡

k
Y P � Y 00

◆

Ĵ�1

�⇡
k

✓

TP + Y J � 3

2
i E � k

2⇡
T 00
◆

P̂�1 �
1

2

✓

3⇡

k
EP � E 00

◆

Q̂� 1
2

� ⇡

3k

✓

Y  � 7

2
E 0P � 3

2
EP 0 +

k

2⇡
E 000
◆

Q̂� 3
2
; (5.35)

while the transformation law of the fields reads

�P = 2PY 0 + P 0Y � k

2⇡
Y 000 ,

�J = 2J Y 0 + J 0Y + 2PT 0 + P 0T � k

2⇡
T 000 +

5

2
i E 0 +

3

2
i 0E , (5.36)

� =
5

2
 Y 0 +  0Y � 9⇡

2k
P2E +

3

2
P 00E + 5P 0E 0 + 5PE 00 � k

2⇡
E 0000 .

Hereafter, prime stands for @�. Since the time evolution of a� corresponds to a gauge
transformation parametrized by the Lagrange multiplier au, its asymptotic form will
be maintained along di↵erent time slices provided au is of the allowed form, i. e.,

au = � [µP , µJ , µ ] , (5.37)

where the chemical potentials µP , µJ , µ stand for arbitrary functions of u, �, that
are assumed to be fixed at the boundary. Consistency then demands that the field
equations, which now reduce to

Ṗ = 2PµJ
0 + P 0µJ � k

2⇡
µJ

000 ,

J̇ = 2J µJ
0 + J 0µJ + 2PµP

0 + P 0µP � k

2⇡
µP

000 +
5

2
i µ 

0 +
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2
i 0µ , (5.38)
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2
 µJ
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2k
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2
P 00µ + 5P 0µ 

0 + 5Pµ 
00 � k

2⇡
µ 

0000 ,

have to hold in the asymptotic region, while the parameters of the asymptotic sym-
metries fulfill the following conditions

Ẏ = µJY
0 � µJ

0Y ,

Ṫ = µJT
0 � µJ

0T + µPY
0 � µP

0Y +
9⇡

k
iµ EP � 3

2
iµ 

00E + 2iµ 0E 0 � 3

2
iµ E 00 ,(5.39)

Ė =
3

2
µ Y

0 � µ 
0Y � 3

2
µJ

0E + µJ E 0 ,
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which are needed in order to ensure that the global charges are conserved.1

Following the Regge-Teitelboim approach [24], the variation of the canonical
generators is found to be generically given by

�Q [�] = � k

2⇡

ˆ
h��a�i d� , (5.40)

which by virtue of (5.33) and (5.34), up to an arbitrary constant without variation,
integrate as

Q [T, Y, E ] = �
ˆ

(TP + Y J � iE ) d� . (5.41)

It is worth highlighting that the global charges are manifestly independent of the
radial coordinate r. Therefore, the boundary can be located at an arbitrary fixed
value r = r0, and it corresponds to a timelike surface with the topology of a cylinder.

Since the Poisson brackets fulfill {Q [�1] , Q [�2]} = ��2Q [�1], the algebra of the
canonical generators can be directly obtained from the transformation law of the
fields in (5.36). Expanding in Fourier modes, the nonvanishing Poisson brackets
read

i {Jm,Jn} = (m� n)Jm+n ,

i {Jm,Pn} = (m� n)Pm+n + km3�m+n,0 ,

i {Jm, n} =

✓

3m

2
� n

◆

 m+n , (5.42)

i { m, n} =
1

2

�

3m2 � 4mn+ 3n2
�

Pm+n +
9

4k

X

q

Pm+n�qPq + km4�m+n,0 ,

where the modes of the generators  m are labeled by (half-)integers when the
fermions fulfill (anti)periodic boundary conditions.

It is then clear that, with respect to Jm, the conformal weight of the generators
Pm and  n, is given by 2 and 5/2, respectively. Note that the subset spanned by
Jm and Pm corresponds to the BMS3 algebra of General Relativity with the same
central extension, and hence (5.42) stands for its hypersymmetric extension that is
manifestly nonlinear.

It is useful to perform the following shift in the generators:

Pn ! Pn �
k

2
�n,0 , (5.43)

1Since global symmetries are necessarily contained within the asymptotic ones, these results
provide an interesting alternative path to find the explicit expression of the Killing vector-spinors.
See appendix D.
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so that the algebra now reads

i {Jm,Jn} = (m� n)Jm+n ,

i {Jm,Pn} = (m� n)Pm+n + km
�

m2 � 1
�

�m+n,0 ,

i {Jm, n} =

✓

3m
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 m+n , (5.44)

i { m, n} =
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6m2 � 8mn+ 6n2 � 9
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Pm+n +
9

4k

X

q

Pm+n�qPq

+k

✓
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4

◆✓

m2 � 1

4

◆

�m+n,0 ,

in agreement with the result that was anticipated in Chapter 3. Indeed, dropping the
nonlinear terms in (5.44), when the fermions fulfill antiperiodic boundary conditions,
the wedge algebra, which is spanned by the subset of {Jm,Pm, n} with m = ±1, 0
and n = ±3/2,±1/2, reduces to the hyper-Poincaré algebra in eq. (5.31).

It can also be seen that the hyper-BMS3 algebra (5.42) turns out to be a subset
of a precise Inönü-Wigner contraction of the direct sum of the W (2,4) algebra with its
hypersymmetric extension W (2, 52 ,4)

. This is the main subject of the next subsection.

5.3.1 Flat limit of the asymptotic symmetry algebra from
the case of negative cosmological constant

As explained in Chapter 4, it has been recently shown that the asymptotic sym-
metries of three-dimensional hypergravity with negative cosmological constant are
spanned by two copies of the classical limit of the WB2 algebra [11]. This algebra is
also known as W (2, 52 ,4)

and corresponds to the hypersymmetric extension of W (2,4)

[57, 58]. The hypergravity theory that was discussed in [11] possesses the minimum
number of hypersymmetries in each sector, so that the gauge group is given by
OSp (1|4) ⌦ OSp (1|4). In analogy with the case of three-dimensional supergravity
[18], one may say that the theory aforementioned corresponds to the N = (1, 1)
AdS3 hypergravity. In this sense, there are two inequivalent minimal locally hy-
persymmetric extensions of General Relativity with negative cosmological constant,
which correspond to the (1, 0) and the (0, 1) theories. It is then simple to verify
that both minimal theories possess the same vanishing cosmological constant limit,
and hence in order to proceed with the analysis we will consider the (0, 1) one,
whose gauge group is given by Sp (4)⌦OSp (1|4). According to [11], the asymptotic
symmetry algebra of the minimal hypergravity theory with negative cosmological
constant then corresponds to W (2,4)�W (2, 52 ,4)

.
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The classical limit of the W (2, 52 ,4)
algebra reads
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
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where the fermionic modes are labeled by (half-)integers in the case of (anti)periodic

boundary conditions, and ⇤(l)
m =

´
⇤(l)e�im�d� stand for the mode expansion of the

nonlinear terms, given by

⇤(4) = L2 , (5.46)

⇤(9/2) = L , (5.47)
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L0 , (5.48)
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i  0 . (5.49)

The bosonic generators Lm and Um span the W (2,4) subalgebra.
In order to take the vanishing cosmological constant limit of the asymptotic

symmetry algebra of the minimal theory, given by W (2,4)�W (2, 52 ,4)
, it is useful to

perform the following change of basis:
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1
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6

`
 +

n , (5.50)
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where L�
n , U�

n stand for the generators of the (left) W (2,4) algebra, and L+
n , U+

n ,  
+
n

span the (right) W (2, 52 ,4)
algebra. Therefore, rescaling the level according to  = k`,

in the large AdS radius limit, ` ! 1, one obtains that the nonvanishing brackets
of the contracted algebra read

i {Jm,Jn} = (m� n)Jm+n ,

i {Jm,Pn} = (m� n)Pm+n + km3�m+n,0 ,

i {Jm,Wn} = (3m� n)Wm+n ,

i {Jm,Vn} = (3m� n)Vm+n ,
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Pm+n�qPq + km4�m+n,0 ,

with

⇤̃(6) = � 7

12
WP � 2⇡

k
P3 +

295

288
(P 0)2 +

11

9
PP 00 . (5.52)

It is then apparent that one can consistently get rid of the (conformal) spin-4
generators Vm, Wn, since the Inönü-Wigner contraction of W (2,4)�W (2, 52 ,4)

in eq.

(5.51) possesses a subset spanned by {Pm,Jm, m}, which precisely corresponds to
the hyper-BMS3 algebra in (5.42). Note that this is just a reflection of the fact
that in the vanishing cosmological constant limit, the hypergravity theory can be
consistently formulated without the need of spin-4 fields.

5.4 Hypersymmetry bounds

In the case of hypergravity with negative cosmological constant, it has been recently
shown that the anticommutator of the generators of the asymptotic hypersymme-
tries implies the existence of interesting nonlinear bounds for the bosonic charges,
that saturate for configurations that admit unbroken hypersymmetries [11]. In this
section, following these lines, we explicitly show that this is also the case for hy-
pergravity with asymptotically flat boundary conditions. In order to perform this
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task, it is useful to assume that the bosonic global charges are just determined by
the zero modes. Indeed, as explained in [46], a generic bosonic configuration can be
brought to the “rest frame” through the action of suitable elements of the asymp-
totic symmetry algebra. The searched for bounds can then be found along the same
semi-classical reasoning as in the case of supergravity [9, 74, 75, 10, 76, 77, 71].
Hence, the fermionic bracket in (5.42) becomes an anticommutator, which in the
rest frame, and for m = �n = p, reads

1

2⇡

⇣

 ̂p ̂�p +  ̂�p ̂p

⌘

= 5p2P̂ +
9⇡

2k
P̂2 +

k

2⇡
p4 � 0 , (5.53)

with P̂0 = 2⇡P̂ . Thus, since the left-hand side of (5.53) is a positive-definite her-
mitian operator, in the classical limit, and for any value of the (half-)integer p, the
energy has to fulfill the following bounds:

✓

p2 +
9⇡

k
P
◆

⇣

p2 +
⇡

k
P
⌘

� 0 , (5.54)

which are manifestly nonlinear.
Note that for any configuration with P > 0, the bounds in (5.54) are auto-

matically fulfilled, but never saturate. Indeed, this is the case of the cosmological
spacetimes in (5.16), which goes by hand with the fact that they do not admit
globally-defined Killing vector-spinors, and hence, break all the hypersymmetries.

These bounds are also clearly fulfilled in the case of P = 0, and for fermions
with periodic boundary conditions, the one for p = 0 is saturated. This relates to
the fact that this class of configurations, that includes the null orbifold, possesses a
single unbroken hypersymmetry spanned by a constant Killing vector-spinor.

In the case of P < 0, the class of smooth configurations are the ones for which
the holonomy of the connection around an angular cycle is trivial. This means that
they are maximally (hyper)symmetric, and then possess four Killing vector-spinors.
As explained in section 5.2.1, their energy is given by P = �kj2/⇡, and the bounds
in (5.54) then reduce to

�

p2 � 9j2
� �

p2 � j2
�

� 0 . (5.55)

Remarkably, the bounds are only fulfilled in the case of j2 = 1/4, so that four of
them saturate, corresponding to p = ±1/2, and p = ±3/2. This is the case of
Minkowski spacetime (P = �k/4⇡), with Killing vector-spinors that fulfill antiperi-
odic boundary conditions. Hence, in spite of being maximally hypersymmetric,
smooth solutions whose energy is lower than the one of Minkowski spacetime are
excluded by the hypersymmetry bounds.

It is worth highlighting that one arrives to similar conclusions in the case of
asymptotically flat spacetimes in supergravity [34]. In fact, despite the analysis

43



is fairly di↵erent, the supersymmetry bounds precisely select the same spectrum,
including the corresponding ground states who saturate the bounds for spinors that
fulfill di↵erent periodicity conditions.

5.5 Hypergravity reloaded

Let us look for a di↵erent theory of three-dimensional (hyper)gravity that is still
compatible with the asymptotically flat boundary conditions described above, but
now allowing the presence of spacetime torsion even in vacuum. For simplicity, we
consider modifications such that the field equations are still of first order for the
dreibein and the spin connection. One interesting possibility is to include additional
terms, so that the action is given by

I� =
k

4⇡

ˆ
2Raea + �2✏abce

aebec + 2�T aea . (5.56)

Remarkably, despite the second (volume) term in the action looks like a cosmological
constant ⇤ = �3�2, the field equations actually imply that the Riemann curvature
vanishes. Indeed, the presence of the last (parity-odd) term in the action has the
e↵ect of making the volume term to act as the source for a fully antisymmetric
torsion in vacuum, being proportional to the volume element, given by

T a = ��"abcebec , (5.57)

so that the remaining field equations fix the curvature two-form according to

Ra =
1

2
�2"abcebec . (5.58)

Therefore, eq. (5.57) implies that the spin connection splits as

!a = !̄a + a , (5.59)

where !̄a is the (torsionless) Levi-Civita connection, and the contorsion reads a =
��ea. The curvature two-form is then given by

Ra = R̄a +
1

2
�2"abcebec , (5.60)

and hence, equation (5.58) implies the vanishing of the Riemann tensor, i. e.,

R̄a =
1

4
"a⇢⌧R

⇢⌧
µ⌫dx

µdx⌫ = 0 . (5.61)
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The most general theory that possesses the features described above is obtained
by considering the addition of the Lorentz-Chern-Simons form,

L(!) = !ad!a +
1

3
"abc!

a!b!c , (5.62)

with an independent coupling µ, provided the remaining couplings in (5.56) are
suitable shifted. The action is then given by

Iµ,� =
k

4⇡

ˆ
2 (1 + µ�)Raea + �2

⇣

1 + µ
�

3

⌘

✏abce
aebec + µL(!) + � (2 + µ�)T aea .

(5.63)
Noteworthy, despite the fact that the Lorentz-Chern-Simons form is not a boundary
term, the shifts in the other couplings are such that the field equations in vacuum
just become reshu✏ed, coinciding with the previous ones for µ = 0, given by (5.57)
and (5.58). Actually, one should highlight that both actions, (5.56) and (5.63), di↵er
o↵-shell, which reflects through the fact that the canonical generators do not have
the same form. Consequently, as in the case of supergravity [34], the asymptotic
symmetry algebra of the latter acquires an additional central extension with respect
to the former (see below).

The locally hypersymmetric extension of the theory described by (5.63) is given
by the following action

Iµ,�, = Iµ,� +
k

4⇡

ˆ
i ̄a

✓

D +
3

2
�eb�b

◆

 a , (5.64)

which is invariant under the following local hypersymmetry transformations:

�ea =
3

2
i✏̄b�

a b , �!a = �3

2
i�✏̄b�

a b , � a = D✏a +
3

2
�eb�b✏

a � �eb�a✏b .

(5.65)
The field equations now read

Ra =
1

2
�2"abcebec �

3

4
i� ̄b�

a b , T a = ��"abcebec +
3

4
i ̄b�

a b ,

D a = �3

2
�eb�b 

a + �eb�a b . (5.66)

Note that in the case of µ = � = 0, the action (5.64), the transformations rules
(5.65), and the field equations (5.66), reduce to the ones of the locally hypersymmet-
ric extension of General Relativity, given by eqs. (5.5), (5.7), and (5.6), respectively.

As outlined in Section 3.2.1, in analogy with the case of supergravity [61], [34],
the action (5.63) can be formulated as a Chern-Simons one for the hyper-Poincaré
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group (5.2) by virtue of a simple modification of the invariant bilinear form, and a
suitable shift of the spin connection. Indeed, the invariant bilinear form in (5.3) can
be consistently modified to admit an additional nonvanishing component given by

hJa, Jbi = µ⌘ab , (5.67)

so that the Chern-Simons action (5.4) now depends on a di↵erent hyper-Poincaré-
algebra-valued gauge field, defined as

A = eaPa + !̂aJa +  ↵aQ
a
↵ , (5.68)

with !̂a := !a + �ea. Therefore, in terms of the covariant derivative with respect to
!̂a and its corresponding curvature, given by D̂ and R̂a, respectively, up to a surface
term, the Chern-Simons action reduces to

Iµ,�, =
k

4⇡

ˆ
2R̂aea + µL(!̂) + i ̄aD̂ 

a , (5.69)

which precisely agrees with (5.64). Note that the field equations (5.66) correspond
to the vanishing of the components of the curvature associated to (5.68), so that
they can be compactly written as F = dA + A2 = 0, being manifestly covariant
under the full hyper-Poincaré group.

One of the advantages of having formulated the extension of hypergravity with
parity-odd terms as a Chern-Simons theory, is that its asymptotically flat structure
can be directly obtained along the lines of the results in section 5.3.

The asymptotically flat boundary conditions for the connection (5.68) are then
proposed to be precisely as in eqs. (5.32), (5.33), and (5.37), so that the asymptotic
fall-o↵ of the spin connection !a becomes modified. Therefore, the asymptotic
symmetries remain the same as in section 5.3, being spanned by the hyper-Poincaré
algebra valued parameter � = � [T, Y, E ] given by (5.34). The global charges are
then found to acquire a correction due to the additional component of the invariant
bilinear form in (5.67), so that they now read

Q [T, Y, E ] = �
ˆ
⇣

TP + Y J̃ � iE 
⌘

d� , (5.70)

with J̃=J+µP , and do not depend on the parameter �. Note that the shift in
the canonical generator associated to Y implies that in the extended theory, even
static configurations, as it is the case of Minkowski spacetime, may carry angular
momentum.
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It is then simple to verify that, once the canonical generators are expanded in
modes, their nonvanishing Poisson brackets are given by

i
n

J̃m, J̃n

o

= (m� n) J̃m+n + µkm3�m+n,0 ,

i
n

J̃m,Pn

o

= (m� n)Pm+n + km3�m+n,0 ,

i
n

J̃m, n

o

=

✓

3m

2
� n

◆

 m+n , (5.71)

i { m, n} =
1

2

�

3m2 � 4mn+ 3n2
�

Pm+n +
9

4k

X

q

Pm+n�qPq + km4�m+n,0 ,

which corresponds to a hypersymmetric extension of the BMS3 algebra, with an
additional central extension along its Virasoro subalgebra.

5.6 General Relativity minimally coupled to half-
integer spin fields

In the generic case of fermionic fields of spin n+ 3
2 , and in the absence of cosmological

constant, the hypergravity action reads [8],

I =
k

4⇡

ˆ
2Raea + i ̄a1...anD 

a1...an , (5.72)

where  a1...an describes a Grassmann-valued 1-form that is ��traceless, i. e., �a1 a1...an =
0, and completely symmetric in its vector indices. Its covariant derivative can be
conveniently written as

D a1...an = d a1...an +

✓

n+
1

2

◆

!b�b 
a1...an � !b�

(a1 a2...an)b . (5.73)

The standard supergravity action in [93, 94, 95], is then recovered for n = 0, while
the theory discussed in section 5.1 corresponds to n = 1.

The generic theory can also be formulated in terms of a Chern-Simons action for
a gauge field that takes values in the hyper-Poincaré algebra, given by

A = eaPa + !aJa +  ↵a1...anQ
a1...an
↵ . (5.74)

Here Qa1...an
↵ correspond to ��traceless fermionic generators of spin n + 1

2 . The
explicit expression of the generic hyper-Poincaré algebra can be compactly written
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in terms of its Maurer-Cartan form (see Section 3.2). The field equations then read
F = dA+ A2 = 0, with

F = RaJa + T̃ aPa +D ↵a1...anQ
a1...an
↵ , (5.75)

where the hypercovariant torsion is now given by

T̃ a = T a � 1

2

✓

n+
1

2

◆

i ̄a1...an�
a a1...an . (5.76)

Thus, by construction, the action is invariant under gauge transformations generated
by � = ✏↵a1...anQ

a1...an
↵ , so that

�ea =

✓

n+
1

2

◆

i✏̄a1...an�
a a1...an ,

�!a = 0 , (5.77)

� a1...an = D✏a1...an .

5.6.1 Killing tensor-spinors

According to (5.77), a purely bosonic configuration is invariant under local hyper-
symmetry transformations provided the following “Killing tensor-spinor equation”
is fulfilled:

d✏a1...an +

✓

n+
1

2

◆

!b�b✏a1...an � !b�(a1✏a2...an)b = 0 . (5.78)

Since the field equations imply the vanishing of the curvature two-form Ra, the
general solution of (5.78) is now given by

✏↵a1···an =
�

g�1
S

�↵

�
(gV )

b1
a1
· · · (gV )bnan ⌘

�
b1···bn , (5.79)

where gS and gV are defined in eq. (5.12). As explained in section 5.2, both stand
for the same group element g that determines the spin connection, ! = g�1dg, but
expressed in the spinor and the vector representations, respectively. In the generic
case, ⌘�b1···bn is a constant ��traceless tensor-spinor. Unbroken hypersymmetries
then correspond to Killing tensor-spinors of the form (5.79), that are globally well-
defined.

The hypersymmetry properties of the class of solutions discussed in section 5.2.1,
describing cosmological spacetimes and configurations with conical defects, then
go as follows. For any configuration with P 6= 0, gS and gV are given by (5.20)
and (5.21), respectively; while in the case of P = 0, they read as in eq. (5.22).
Therefore, in the case of P > 0 the solutions cannot possess globally-defined Killing
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tensor-spinors, because ✏↵a1···an in (5.79) do not fulfill neither periodic nor antiperiodic
boundary conditions. This means that hypersymmetries are necessarily broken for
cosmological spacetimes.

By virtue of (5.79) and (5.22), configurations with P = 0 only admit constant
Killing tensor-spinors that fulfill the following condition:

✓

n+
1

2

◆

�1✏a1...an � �(a1✏a2...an)1 = 0 , (5.80)

which implies that they have a single nonvanishing component given by ✏�00···0 =
⌘�00···0. Therefore, this class of spacetimes possesses just one unbroken hypersym-
metry, which relates to the fact that there is only one hypersymmetry bound that
saturates for fermions with periodic boundary conditions (see below).

As explained in section 5.2.1, smooth solutions with conical defects are maximally
hypersymmetric and their energy is determined by P = �kj2/⇡ < 0, where j is
a (half-)integer. For this class of configurations, the explicit form of the Killing
tensor-spinors is then given by (5.79), with gS and gV being described by eqs. (5.25)
and (5.26), respectively. It will also be shown below that conical surpluses are
excluded by the hypersymmetry bounds, which are fulfilled only for j2 = 1/4, which
corresponds to the case of Minkowski spacetime.

5.6.2 Asymptotically flat structure and hypersymmetry bounds

In order to describe the asymptotically flat behaviour of hypergravity in the generic
case, it is convenient to make use of the ��traceless condition of the fields and the
generators, which amounts to reduce the number of independent components. The
hyper-Poincaré algebra in (3.19) can then be alternatively written as

h

Ĵm, Ĵn

i

= (m� n) Ĵm+n

h

Ĵm, P̂n

i

= (m� n) P̂m+n ,
h

Ĵm, Q̂p

i

= (sm� p) Q̂m+p , (5.81)
n

Q̂p, Q̂q

o

= f (s)
p,q P̂p+q ,

with m,n = 0,±1, and p, q = ±1
2 ,±

3
2 . . . ,±s, where s stands for the spin of the

fermionic generators Q̂p. The structure constants fulfill f (s)
p,q = f

(s)
q,p = f

(s)
�p,�q, and

the nonvanishing ones are given by

f
(s)
p,�p = � 2p

s+ p+ 1
f
(s)
p,�p�1 = (�1)p+

1
2 2p

|p|
Y

k= 1
2

(2s+ 2k)

(2s� 2 (k � 1))
, (5.82)
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provided |p+ q|  1. Here the fermionic generators have been normalized according

to f
(s)
1
2 ,�

1
2

= �1.

It is amusing to verify that the Jacobi identity now translates into the fact that
the structure constants f (s)

p,q solve the following recursion relation:

(m� (p+ q)) f (s)
q,p � (sm� p) f (s)

q,m+p � (sm� q) f (s)
p,m+q = 0 . (5.83)

For later purposes it is useful to note that

f
(s)
s,�s = (�1)s+

1
2

2s

2s+ 1

(4s)!!

(2s� 1)!!2
. (5.84)

The structure constants can also be conveniently written as

f (s)
m,n =

s� 1
2

X

l=0

h(l)
m,n , (5.85)

where h
(l)
m,n stand for homogeneous polynomials of degree 2l in m, n, i. e., h(l)

�m,�n =

�2lh
(l)
m,n. Indeed, as it is shown below, the asymptotic symmetry algebra can be

naturally expressed in terms of h(l)
m,n, where m, n are extended to be arbitrary (half-

)integers. Note that in the case of supergravity f
(1/2)
m,n = �1, while for fermionic

generators of spin s = 3/2, the form of f (3/2)
m,n can be read from eq. (5.31). In the

case of fermionic generators with s = 5/2, 7/2 the explicit form of f (5/2)
m,n and f

(7/2)
m,n

is given in Appendices E.2 and E.3, respectively.
Following the lines of Section 5.3, the asymptotic form of the gauge field can be

written as in eq. (5.32), so that at a fixed time slice, the dynamical field is proposed
to be given by

a� = Ĵ1 �
⇡

k

⇣

J P̂�1 + P Ĵ�1 + ↵s Q̂�s

⌘

, (5.86)

with

↵s =
⇣

f
(s)
�s,s+1

⌘�1

= �2s
⇣

f
(s)
s,�s

⌘�1

, (5.87)

and f
(s)
s,�s can be read from eq. (5.84).

The asymptotic symmetries are then generically spanned by a hyper-Poincaré-
valued parameter of the form

� = T P̂1 + Y Ĵ1 + EQ̂s + ⌘(s) [T, Y, E ] , (5.88)

where ⌘(s) [T, Y, E ] goes along all but the lowest weight generators, provided the fields
J , P ,  transform in a suitable way.
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The asymptotic form of the Lagrange multiplier can then be written in terms of
the chemical potentials according to

au = � [µP , µJ , µ ] . (5.89)

Its form is preserved under evolution in time as long as the field equations are fulfilled
in the asymptotic region, and the parameters are subject to appropriate conditions,
being described by first order equations in time.

In order to integrate the variation of the canonical generators in (5.40), one needs
the relevant fermionic component of the invariant bilinear form, which is given by

D

Q̂s, Q̂�s

E

= 2↵�1
s , (5.90)

so that the global charges in the generic case acquire the same form as in eq. (5.41),
i. e.,

Q [T, Y, E ] = �
ˆ

(TP + Y J � iE ) d� . (5.91)

Once expanded in Fourier modes, the nonvanishing Poisson brackets of the canonical
generators are given by

i {Jm,Jn} = (m� n)Jm+n ,

i {Jm,Pn} = (m� n)Pm+n + km3�m+n,0 ,

i {Jm, n} = (sm� n) m+n , (5.92)

i { m, n} =
s�1/2
X

q=0

(�1)2s�q

s� q + 1
2

✓

2

k

◆s�q� 1
2

h(q)
m,nP

s�q� 1
2

m+n + (�1)s�
1
2
2km2s+1

↵s (2s)!
�m+n,0 + ⌅

(s)
m+n .

The conformal weight of the fermionic generators  n with respect to Jm is given by
� = s + 1. Here h

(q)
m,n stand for the homogeneous polynomials defined through eq.

(5.85), extended to the case of (half-)integers, and

Pr
m+n :=

X

i1,···ir

Pm+n�i1···�irPi1 · · · Pir . (5.93)

Here ⌅(s)
m+n stands for the mode expansion of nonlinear terms that contains deriva-

tives of P , and becomes nontrivial provided s > 3/2. Indeed, according to eqs.
(E.9) and (5.42), in the case of supergravity (s = 1/2), and for s = 3/2, one finds

that ⌅(1/2)
m+n = ⌅(3/2)

m+n = 0; while for s = 5/2 it is proportional to the mode expansion
of (P 0)2 (see eq. (E.20)). The explicit form of ⌅(7/2) is given in eq. (E.30).

As in Section 5.4, the asymptotic symmetry algebra (5.92) also implies the ex-
istence of nonlinear bounds for the energy. Indeed, making the same assumptions,
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for m = �n = p, the (fermionic) anticommutator is manifestly positive-definite.
Furthermore, since in the “rest frame” the bosonic global charges just correspond
to P0, the nonlinear terms described by ⌅(s)

m+n in the fermionic anticommutator do
not contribute. Therefore, in the generic case the bounds are given by

n
Y

i=0

✓

p2 + (2i+ 1)2
⇡P
k

◆

� 0 , (5.94)

where p is a (half-)integer for the case of fermionic fields of spin s = n + 3/2 that
fulfill (anti)periodic boundary conditions.

It is then clear that the bounds are fulfilled for configurations with P > 0, as it is
the case of cosmological spacetimes. The fact that they never saturate agrees with
the nonexistence of globally-defined Killing tensor-spinors. Note that in the case
of P = 0 the bounds are also satisfied, while the one with p = 0 saturates, which
corresponds to the fact that configurations of this sort admit a single unbroken
hypersymmetry, being generated by a constant Killing tensor-spinor.

For the class of maximally hypersymmetric smooth solutions with negative en-
ergy (P = �kj2/⇡) described in section 5.2.1, the bounds (5.94) read

n
Y

i=0

�

p2 � (2i+ 1)2 j2
�

� 0 , (5.95)

which implies that the only case that fulfills all of them, also saturate the ones for
p = ±(2i+1)/2, with i = 0, 1, . . . , n, and corresponds to j2 = 1/4. Thus, Minkowski
spacetime becomes naturally selected at the ground state in the case of fermions that
satisfy antiperiodic boundary conditions, possessing the maximum number of Killing
tensor-spinors described by (5.79), with (5.25) and (5.26).

5.7 Remarks

In sum, in the case of fermions that fulfill periodic boundary conditions the energy
spectrum is nonnegative (P � 0), so that the allowed class of solutions is generically
characterized by the cosmological spacetimes described in section 5.2.1. The ground
state is then given by a configuration of vanishing energy that saturates only one of
the bounds (p = 0). This corresponds to the null orbifold which, as shown in Section
5.6.1, possesses a single Killing tensor-spinor. If the fermions satisfy antiperiodic
boundary conditions, the spectrum becomes enlarged since the bounds now imply
that P � �k/4⇡. Nonetheless, since conical defects and surpluses generically do
not fulfill the field equation in vacuum, they are discarded unless they are smooth.
According to (5.94), in this case the ground state saturates as many bounds as the
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maximum number of Killing tensor-spinors, and it can be identified with Minkowski
spacetime, so that the spectrum acquires a gap.

In the case of fermionic fields of spin s = n + 3
2 , the locally hypersymmetric

extension of the action Iµ,� in (5.63), that includes parity-odd terms, can also be
formulated as a Chern-Simons theory for the hyper-Poincaré group in (3.19). In
order to carry out this task, the invariant bilinear form has to be suitably modified,
so that it acquires additional components being determined by eq. (5.67). The
gauge field reads

A = eaPa + !̂aJa +  ↵a1...anQ
a1...an
↵ , (5.96)

where, as in section 5.5, !̂a = !a + �ea. Therefore, up to a boundary term, the
action of the extended hypergravity theory reduces to

Iµ,�, n = Iµ,� +
k

4⇡

ˆ
i ̄a1...an



D +

✓

n+
1

2

◆

�eb�b

�

 a1...an , (5.97)

being by construction locally invariant under

�ea =

✓

n+
1

2

◆

i✏̄a1...an�
a a1...an ,

�!a = �
✓

n+
1

2

◆

i�✏̄a1...an�
a a1...an , (5.98)

� a1...an =



D +

✓

n+
1

2

◆

�eb�b

�

✏a1...an � �eb�
(a1✏a2...an)b .

Note that the extended hypergravity action (5.97), and its corresponding local hy-
persymmetry transformations (5.98), agree with the corresponding ones for the lo-
cally hypersymmetric extension of General Relativity, given by (5.72) and (5.77),
respectively, in the case of µ = � = 0. Consequently, a suitable set of asymptotically
flat boundary conditions for the extended theory is also proposed to be described by
gauge fields of the form (5.32), (5.86), and (5.89). The canonical generators of the
asymptotic symmetries then reduce to the ones in eq. (5.70), with J̃=J+µP , so
that their algebra is readily found to be described by (5.92), but with an additional
central extension along the Virasoro subalgebra, precisely as in eq. (5.71).

53



Chapter 6

Conclusions and forthcoming
results

In this thesis, a novel extension of the Poincaré group with half-integers spin gen-
erators was explored. Specifically, in the case of three spacetime dimensions, it was
shown that the theory of Aragone and Deser of hypergravity can be reformulated
in order to incorporate this new group as its local gauge symmetry. The nontrivial
Casimir operator for this algebra allowed to express the theory in terms of hyper-
Poincaré-valued gauge fields, where the action of the theory is given by a three-
dimensional Chern-Simons form. It was also shown that it is possible to extend this
algebra for d � 3 dimensions and for arbitrary half-integer spin generators through
the Maurer-Cartan form of the algebra. A consistent set of boundary conditions was
proposed, being wide enough in order to accommodate a generic choice of chemical
potentials associated to the global charges. The asymptotic symmetry algebra of
the canonical generators turned out to be a hypersymmetric nonlinear extension of
BMS3, which could be recovered from a subset of a suitable limit of W (2,4)�W (2, 52 ,4)

.
The bounds for the energy are nonlinear and it was explicitly shown that saturate
for spacetimes that admit globally-defined Killing vector-spinors, selecting the same
spectrum as supergravity. The extended theory admitting parity-odd terms in the
action and the consequences on its asymptotic structure were analyzed. Finally, the
generalization for arbitrary half-integer spin was also carried out, determining the
explicit form of the hyper-BMS3 algebra and hypersymmetry bounds.

It is worth pointing out that prescribing the asymptotic behaviour of gauge
fields to be described by deviations with respect to a reference background that go
along the highest weight generators of the algebra, turns out to be a very successful
strategy. Indeed, this is not only the case of General Relativity in three spacetime
dimensions [29], but it is also so for its locally supersymmetric extension with or
without cosmological constant [72, 34], or even when the theory is nonminimally
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coupled to higher spin fields [44, 45, 73, 32, 33, 30, 96, 46, 90, 91, 97].
One of the interesting features of dealing with hypersymmetry, is that nonlinear

bounds for the energy have been shown to naturally emerge from the anticom-
mutator of fermionic generators. In the case of vanishing cosmological constant,
the hypersymmetry bounds for the theory in vacuum turn out to exclude solutions
that describe conical defects and surpluses [83, 84], despite the latter are maxi-
mally (hyper)symmetric. In presence of higher spin fields, the analogue of this
class of configurations has been discussed in [78, 98, 51, 79, 80, 81, 82, 11]. It is
then worth highlighting that, according to the results that have been recently ob-
tained for hypergravity with negative cosmological constant [11], one is naturally led
to expect that only a suitable subset of asymptotically flat solitonic-like solutions
might fulfill the hypersymmetry bounds, for which the higher spin charges become
tuned in terms of the mass. Indeed, it is amusing to verify that the gauge group
Sp (4) ⌦ OSp (1|4) admits an inequivalent Inönü-Wigner contraction as compared
with the one described in section 5.3.1, so that the electric-like spin-4 charges can-
not be consistently decoupled in this alternative flat limit of the (0, 1) theory. This
contraction is defined through a di↵erent change of basis:1
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`
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i + L�

�i

�

, Ĵi = L+
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p , (6.1)

where L�
i , U

�
n stand for the generators of the (left) sp (4) algebra, and L+

i , U
+
n , S

+
p

span the (right) osp (1|4) algebra. Thus, in the limit of large AdS radius, ` ! 1,
the nonvanishing components of the (anti)commutators of the new algebra read

h
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Ĵi, P̂j

i
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3
mn� 9)� 2
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(mn� 6)mn
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Ĵm+n
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(m� n)
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�

V̂m+n , (6.2)

1Note that OSp (1|4), corresponding to the super-AdS4 group, as well as the superconformal
group in three spacetime dimensions, admits two interesting consistent “flat limits” (` ! 1), which
can be obtained rescaling the generators either as in eq. (5.50), or in (6.1), provided the left copy
is switched o↵.
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which is to be regarded to span the gauge group of flat hypergravity coupled to spin-
4 fields. Here, i, j = 0,±1, m,n = 0,±1,±2,±3, and p, q = ±1

2 ,±
3
2 . Preliminary

results point out that the mode expansion of the asymptotically flat symmetry
algebra of hypergravity with a fermionic spin-5/2 field, being coupled to spin-4
fields, is then expected to be such that the nonvanishing Poisson brackets are given
by

i {Jm,Jn} = (m� n)Jm+n , i {Jm,Pn} = (m� n)Pm+n + km3�m+n,0 ,

i {Jm,Wn} = (3m� n)Wm+n , i {Jm,Vn} = (3m� n)Vm+n ,

i {Pm,Vn} = (3m� n)Wm+n , i {Jm, n} =

✓

3m

2
� n

◆

 m+n ,

i {Vm,Vn} =
1

2232
(m� n)

�

3m4 � 2m3n+ 4m2n2 � 2mn3 + 3n4
�

Jm+n

+
1

6
(m� n)

�

m2 �mn+ n2
�

Vm+n �
233⇡

k
(m� n)⇥(6)

m+n

�72⇡

32k
(m� n)

�

m2 + 4mn+ n2
�

⇥(4)
m+n

i {Vm,Wn} =
1

2232
(m� n)

�

3m4 � 2m3n+ 4m2n2 � 2mn3 + 3n4
�

Pm+n (6.3)

+
1

6
(m� n)

�

m2 �mn+ n2
�

Wm+n �
233⇡

k
(m� n)⌦(6)

m+n

�72⇡

32k
(m� n)

�

m2 + 4mn+ n2
�

⌦(4)
m+n +

k

2232
m7�m+n,0 ,

i {Vm, n} =
1

223

�

m3 � 4m2n+ 10mn2 � 20n3
�

 m+n �
23⇡

3k
i⌦(11/2)

m+n

+
⇡

3k
(23m� 82n)⌦(9/2)

m+n ,

i { m, n} = 3Wm+n +
3

2

✓

m2 � 4

3
mn+ n2

◆

Pm+n +
9⇡

k
⌦(4)

m+n + km4�m+n,0 ,
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where ⌦(l)
m , and ⇥(l)

m stand for the mode expansion of the following nonlinear terms:2

⌦(4) =
1

2
P2 ,

⇥(4) = JP ,

⌦(9/2) =
1

2
P ,

⌦(11/2) =
27

46
P 0 , (6.4)

⌦(6) = � 7

36
WP � 2⇡

3k
P3 +

295

864
(P 0)2 +

11

27
PP 00 ,

⇥(6) = � 7

36
(VP +WJ )� 2⇡

k
P2J +

295

432
J 0P 0 +

11

27
(JP 00 + PJ 00) +

25

72
i  0 .

Indeed, this asymptotic symmetry algebra is recovered from a contraction that cor-
responds to a di↵erent flat limit of W(2,4)�W (2, 52 ,4)

, as compared with the one in
5.3.1. The flat limit is now defined according to

Pn =
1

`

�

L+
n + L�

�n

�

, Jn = L+
n � L�

�n ,

Wn =
1

`

�

U+
n + U�

�n

�

, Vn = U+
n � U�

�n ,  n =

r

6

`
 +

n , (6.5)

where the level also rescales as  = k`.
Moreover, once the modes Pm are shifted according to (5.43), it is simple to

verify that the wedge algebra of (6.3) reduces to the algebra of the gauge group in
(6.2).

From the anticommutator of the fermionic generators in (6.3), one then finds
that the zero modes of the energy and the electric-like spin-4 charge, 2⇡P = P0,
2⇡W = W0, fulfill the following bounds

3W +
9⇡

2k
P2 + 5p2P +

k

2⇡
p4 � 0 , (6.6)

which agree with the bounds in [11] in the flat limit. It would then be interesting
to explore di↵erent classes of solutions endowed with electric-like spin-4 charge,
including cosmological spacetimes and solitonic-like configurations that fulfill the

2The infinite-dimensional nonlinear algebras in eqs. (5.51) and (6.3), correspond to di↵er-
ent hypersymmetric extensions of the BMS3 algebra, being isomorphic to the Galilean confor-
mal algebra in two dimensions, and then relevant in the context of non-relativistic holography
[60, 59, 89, 99, 100].
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bounds (6.6), as well as the hypersymmetric ones that should saturate them. Note
that since the bounds (6.6) factorize as

�

p2 + �2[+]

� �

p2 + �2[�]

�

� 0 , (6.7)

it is natural to expect that the eigenvalues of the holonomy of the dynamical gauge
field a� along an angular cycle, for the class of solutions aforementioned, have to be
given by

�2[±] =
5⇡

k

 

P ± 4

5

r

P2 � 3k

8⇡
W
!

. (6.8)

In the case of solitonic-like solutions, these eigenvalues should then correspond to a
couple of purely imaginary integers, that become related for the class of configura-
tions that fulfill the bounds (6.7), saturating just some of them.

As a final remark, since the hyper-Poincaré group actually exists for d � 3
spacetime dimensions, it would be interesting to explore whether similar results as
the ones obtained here could extend to higher-dimensional spacetimes. In this sense,
despite the no-go results in four dimensions [6, 7, 37, 39, 40], some interesting results
have been recently found in the case of hypergravity at the noninteracting level [101].
Whether these results correspond to a suitable weak field limit of Vasiliev higher
spin gravity [102, 103], or another theory that has yet to be found, remains as an
open question.
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Appendix A

Conventions

The orientation is chosen to be such that the Levi-Civita symbol fulfills "012 = 1,
and the Minkowski metric is assumed to be non-diagonal, whose only nonvanishing
components read ⌘01 = ⌘10 = ⌘22 = 1. Round brackets correspond to symmetrization
of the indices enclosed by them, so that

X(a|Y bZ |c) = XaY bZc +XcY bZa . (A.1)

Note that the three-dimensional Dirac matrices, that satisfy the Cli↵ord algebra
{�a,�b} = 2⌘ab, fulfill the following identity:

�a�b�c = "abc + ⌘ab�c + ⌘bc�a � ⌘ac�b . (A.2)

Note also that the presence of the imaginary unit “i” in the product of real Grass-
mann variables is because we assume that (✓1✓2)

⇤ = �✓1✓2.
The generators of the Lorentz group, in the spinorial and vector (adjoint) repre-

sentations, are assumed to be given by (Ja)
↵
� = 1

2 (�a)
↵
� , and (Ja)

b
c = �" b

a c, respec-
tively. The three-dimensional �-matrices are chosen as

�0 =
1p
2
(�1 + i�2) , �1 =

1p
2
(�1 � i�2) , �2 = �3 , (A.3)

where �i stand for the Pauli matrices:

�1 =

✓

0 1
1 0

◆

, �2 =

✓

0 �i
i 0

◆

, �3 =

✓

1 0
0 �1

◆

. (A.4)

For a vector-spinor  ↵a , with ↵ = +,�, and a = 0, 1, 2, the Majorana conjugate is
defined as  ̄↵a =  �aC�↵, where the charge conjugation matrix C, and its inverse are
chosen as

C↵� =

✓

0 �1
1 0

◆

, C↵� =

✓

0 1
�1 0

◆

, (A.5)

so that CT = �C, and (C�a)
T = C�a.
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Appendix B

Fundamental representation of the
OSp (1|4) generators

The fundamental matrix representation of the OSp (1|4) generators is explicitly
given by

L�1 =

0

B

B

B

B

@

0 �
p
3 0 0 0

0 0 �2 0 0
0 0 0 �

p
3 0

0 0 0 0 0
0 0 0 0 0

1

C

C

C

C

A

, L1 =

0

B

B

B

B

@

0 0 0 0 0p
3 0 0 0 0
0 2 0 0 0
0 0

p
3 0 0

0 0 0 0 0

1

C

C

C

C

A

,

L0 =
1

2

0

B

B

B

B

@

3 0 0 0 0
0 1 0 0 0
0 0 �1 0 0
0 0 0 �3 0
0 0 0 0 0

1

C

C

C

C

A

,

U�3 =

0

B

B

B

B

@

0 0 0 �10 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1

C

C

C

C

A

, U�2 =
5p
3

0

B

B

B

B

@

0 0 1 0 0
0 0 0 �1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1

C

C

C

C

A

,

U�1 =
2p
3

0

B

B

B

B

@

0 �1 0 0 0
0 0

p
3 0 0

0 0 0 �1 0
0 0 0 0 0
0 0 0 0 0

1

C

C

C

C

A

, U3 =

0

B

B

B

B

@

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
10 0 0 0 0
0 0 0 0 0

1

C

C

C

C

A

,
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U2 =
5p
3

0

B

B

B

B

@

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 �1 0 0 0
0 0 0 0 0

1

C

C

C

C

A

, U1 =
2p
3

0

B

B

B

B

@

0 0 0 0 0
1 0 0 0 0
0 �

p
3 0 0 0

0 0 1 0 0
0 0 0 0 0

1

C

C

C

C

A

,

U0 =
1

2

0

B

B

B

B

@

1 0 0 0 0
0 �3 0 0 0
0 0 3 0 0
0 0 0 �1 0
0 0 0 0 0

1

C

C

C

C

A

,

S� 3
2
=

2p
3

0

B

B

B

B

@

0 �1 0 0 0
0 0

p
3 0 0

0 0 0 �1 0
0 0 0 0 0
0 0 0 0 0

1

C

C

C

C

A

, S� 1
2
=

1p
3

0

B

B

B

B

@

0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 5 0 0

1

C

C

C

C

A

,

S 1
2
=

1p
3

0

B

B

B

B

@

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 �5 0 0 0

1

C

C

C

C

A

, S 3
2
=

0

B

B

B

B

@

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
5 0 0 0 0

1

C

C

C

C

A

.
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Appendix C

Asymptotically AdS structure:
Lie-algebra-valued parameters and
transformation law of the fields

The Lie-algebra-valued parameters that maintain the asymptotic form of the osp (1|4)-
valued gauge connections (4.7) are given by

�± [✏±,�±,#±] = ✏±L±1 � �±U±3 ⌥ #±S±3 + ⌘± [✏±,�±,#±] , (C.1)

with

⌘± [✏±,�±,#±] = �3⇡



✓

i ±#± +
2

3
✏±L± + 2�±U± � 

6⇡
✏00±

◆

L⌥1 ⌥ ✏0±L0

+
6⇡



⇣

�±L± � 

12⇡
�0
±

⌘

U±1 ⌥
2⇡



✓

�±L±0 +
8

3
�0
±L± � 

12⇡
�000
±

◆

U0

� ⇡

2



i ±#± + 2

✓

U± � 1

2
L±00 +

12⇡



�

L±�2
◆

�� 11

3
�0
±L±0

�14

3
�00
±L± +



12⇡
�
(4)
±

�

U⌥1 ± �0
±U±2 ±

⇡

2



i ±#0
± +

1

5
i ±0#±

�5

3
�00
±L±0 � 4

3
L±�000

± +
2

5

✓

U± � 1

2
L±00 +

18⇡



�

L±�2
◆0

�±

+
6

5

✓

U± � 7

9
L±00 +

44⇡

3

�

L±�2
◆

�0
± +



60⇡
�
(5)
±

�

U⌥2 (C.2)

� ⇡

4

⇢

i ±#00
± +

1

15
i

✓

 ±00 � 24
5⇡


L± ±

◆

#± +
2

5
i ±0#0

±
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��000
±L±0 � 4

5
✏±U± +

2

3

✓

U± � 13

10
L±00 +

272⇡

15

�

L±�2
◆

�00
±

+
8

15

✓

U± � 17

24
L±00 +

241⇡

12

�

L±�2
◆0

�0
± +

40⇡

3



i ± ±0 � 11

52
U±L±

�12⇡

5

�

L±�3 +


102⇡

✓

U± � 1

2
L±00

◆00

+
32

52
�

L±0�2 +
23

50
L±00L±

�

�±

�5

9
�
(4)
± L± +



180⇡
�
(6)
±

�

U⌥3 �
2⇡





✏± 
± +

1

2
#±L±0 +

7

6
#0
±L±

�5

3

✓

 ±00 +
52⇡

5
L± ±

◆

�± � 25

6
�0
± 

±0 � 17

6
�00
± 

± � 

12⇡
#000
±

�

S⌥ 3
2

±3⇡



✓

#±L± � 10

3
�± 

±0 � 5�0
± 

± � 

6⇡
#00
±

◆

S⌥ 1
2

+
20⇡



⇣

�± 
± +



20⇡
#0
±

⌘

S± 1
2
.

The transformation law of the fields L± (t,�), U± (t,�),  ± (t,�) read

�L± = 2✏0±L± + ✏±L±0 � 

4⇡
✏000± + 3U±0�± + 4U±�0

± +
5

2
i ±#0

± +
3

2
i ±0#± ,

� ± =
5

2
✏0± 

± + ✏± 
±0 �

✓

U± � 1

2
L±00 +

3⇡


⇤(4)

±

◆

#± +
5

3

⇣

L±#0
± � 

20⇡
#000
±

⌘0

+
82⇡

3

✓

⇤(9/2)0
± � 23

82
⇤(11/2)

± � 5

82⇡
 ±000

◆

�± +
35⇡



⇣

⇤(9/2)
± � 

6⇡
 ±00

⌘

�0
±

�7�00
± 

±0 � 35

12
�000
± 

± , (C.3)

�U± = 4✏0±U± + ✏±U±0 +
23⇡

3
i
⇣

⇤(11/2)
± + ⇤(9/2)0

± � 

92⇡
 ±000

⌘

#± � 7

4
i ±0#00

±

�35

12
i ±#000

± +
35⇡


i
⇣

⇤(9/2)
± � 

60⇡
 ±00

⌘

#0
± � 1

6

✓

U± � 1

2
L±00

◆00

+
144



✓

⇤(6)
± � 49

216
⇤(4)00

±

◆�0

�± � 5

6

✓

U± � 2

3
L±00

◆00

+
288

5
⇤(6)

±

�

�0
±

+
14

9

✓

L±00 � 27

28
U± � 21⇡


⇤(4)

±

◆0

�00
± +

7

3

✓

L±00 � 3

7
U± � 28⇡

3
⇤(4)

±

◆

�000

+
35

18
L±0�

(4)
± +

7

9
L±�

(5)
± � 

144⇡
�
(7)
± ,
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where

⇤(4)
± =

�

L±�2 ,

⇤(9/2)
± = L± ± ,

⇤(11/2)
± =

27

23
L±0 ± , (C.4)

⇤(6)
± = � 7

18
U±L± � 8⇡

3

�

L±�3 +
295

432

�

L±0�2 +
22

27
L±00L± +

25

12
i ± ±0 .
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Appendix D

Killing vector-spinors from an
alternative approach

Killing vector-spinors ✏↵a in (5.10) that are globally well defined can be recovered
as a particular case of the asymptotic symmetries discussed in section 5.3. Indeed,
they are of the form ✏↵aQ

a
↵ = � [0, 0, E ], with � given by (5.34). Hence, for the class

of bosonic configurations discussed in section 5.2.1, that only carries the zero modes
of the global charges, and their corresponding chemical potentials are constant, the
components of the Killing vector-spinors can be written as

� [0, 0, E ] = EQ̂ 3
2
� E 0Q̂ 1

2
� 1

2

✓

3⇡

k
EP � E 00

◆

Q̂� 1
2
� ⇡

3k

✓

�7

2
E 0P +

k

2⇡
E 000
◆

Q̂� 3
2
.

(D.1)

The requirements of invariance under hypersymmetry can then be read from eqs.
(5.36), (5.39), so that the Killing vector-spinor equation reduces to

� = �9⇡

2k
P2E + 5PE 00 � k

2⇡
E 0000 = 0 , (D.2)

Ė = µJ E 0 , (D.3)

which can be readily integrated. In fact, the solution of eq. (D.2) is generically
given by

E = A1e
p

⇡P
k � +A2e

�
p

⇡P
k � +A3e

3
p

⇡P
k � +A4e

�3
p

⇡P
k � , (D.4)

where AI = AI (u) stand for four arbitrary functions.
In the case of P > 0, E clearly cannot fulfill neither antiperiodic nor periodic

boundary conditions, and therefore, cosmological spacetimes break all the hyper-
symmetries.
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Note that if the energy vanishes (P = 0), eq. (D.2) integrates in a di↵erent way:

E = A0 +A1�+A2�
2 +A3�

3 . (D.5)

Periodicity then implies that E = A0 (u), while the remaining equation (D.3) fixes
the arbitrary function to be a constant. Hence, vanishing energy configurations, as
the null orbifold, admit a single constant Killing vector-spinor.

Finally, for P = �kn2/⇡ < 0, eq. (D.4) reads

E = A1e
in� +A⇤

1e
�in� +A3e

3in� +A⇤
3e

�3in� , (D.6)

so that n turns out to be a (half-)integer for fermions fulfilling (anti)periodic bound-
ary conditions. The remaining equation (D.3) then fixes the form of the arbitrary
functions AI (u), and hence there are four independent Killing vector-spinors, de-
termined by

E = E1ein(µJ u+�) + E⇤
1e

�in(µJ u+�) + E3e3in(µJ u+�) + E⇤
3e

�3in(µJ u+�) . (D.7)

It is worth pointing out that Minkowski spacetime, which corresponds to n2 = 1/4, is
the only one of this class that fulfills all the hypersymmetry bounds (5.55), saturating
precisely four of them in the case of antiperiodic boundary conditions. Indeed, the
remaining solutions of this sort, in spite of possessing the maximum number of
hypersymmetries, become manifestly excluded by the bounds. In the case of periodic
boundary conditions, the null orbifold also satisfies the bounds, but it saturates only
one of them.
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Appendix E

Asymptotic hypersymmetry
algebra

E.1 Spin-3/2 fields (supergravity)

In our conventions, the super-Poincaré algebra with N = 1 reads

[Ja, Jb] = "abcJ
c ,

[Ja, Pb] = "abcP
c , (E.1)

[Ja, Q↵] =
1

2
(�a)

�
↵Q�b , (E.2)

{Q↵, Q�} = �1

2
(C�c)↵� Pc ,

so that changing the basis according to

Ĵ�1 = �2J0 , Ĵ1 = J1 , Ĵ0 = J2 ,

P̂�1 = �2P0 , P̂1 = P1 , P̂0 = P2 , (E.3)

Q̂� 1
2
= 2

3
4Q+ , Q̂ 1

2
= 2

1
4Q� ,

it acquires the following form
h

Ĵm, Ĵn

i

= (m� n) Ĵm+n ,
h

Ĵm, P̂n

i

= (m� n) P̂m+n ,
h

Ĵm, Q̂p

i

=
⇣m

2
� p
⌘

Q̂m+p , (E.4)
n

Q̂p, Q̂q

o

= �P̂p+q .
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with m,n = 0,±1, and p, q = ±1
2 .

The asymptotic form of the dynamical gauge field then reads

a� = Ĵ1 �
⇡

k

⇣

P Ĵ�1 + J P̂�1 +  Q̂� 1
2

⌘

, (E.5)

which is mapped into itself under gauge transformations generated by

� = T P̂1 + Y Ĵ1 + EQ̂ 1
2
+ ⌘( 1

2)
[T, Y, E ] , (E.6)

with

⌘( 1
2)
[T, Y, E ] = �T 0P̂0 � Y 0Ĵ0 �

✓

E 0 +
⇡Y  

k

◆

Q̂� 1
2
+

1

2

✓

Y 00 � 2⇡Y P
k

◆

Ĵ�1

+
1

2

✓

T 00 � 2⇡TP
k

� 2⇡Y J
k

+
i⇡E 
k

◆

P̂�1 , (E.7)

provided the fields transform according to:

�P = 2PY 0 + P 0Y � k

2⇡
Y 000 ,

�J = 2J Y 0 + J 0Y + 2PT 0 + P 0T � k

2⇡
T 000 +

3

2
i E 0 +

1

2
i 0E , (E.8)

� =
3

2
 Y 0 +  0Y � PE +

k

⇡
E 00 .

Once expanded in modes, the asymptotic symmetry algebra is found to be given by

i {Jm,Jn} = (m� n)Jm+n ,

i {Jm,Pn} = (m� n)Pm+n + km3�m+n,0 ,

i {Jm, n} =
⇣m

2
� n

⌘

 m+n , (E.9)

i { m, n} = Pm+n + 2km2�m+n,0 ,

and hence in the case of fermions that fulfill periodic boundary conditions, the energy
P = P0

2⇡ is bounded to be nonnegative,

P � 0 , (E.10)

while in the case of fermions subject to antiperiodic boundary conditions, the energy
fulfills

1

4
+
⇡P
k

� 0 . (E.11)

These results agree with the ones in [34].
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E.2 Spin-7/2 fields

In the case of fermionic generators of (conformal) spin � = 7/2, the hyper-Poincaré
algebra can be written as

h

Ĵm, Ĵn

i

= (m� n) Ĵm+n ,
h

Ĵm, P̂n

i

= (m� n) P̂m+n , (E.12)
h

Ĵm, Q̂p

i

=

✓

5m

2
� p

◆

Q̂m+p , (E.13)
n

Q̂p, Q̂q

o

= f (5/2)
p,q P̂p+q ,

with

f (5/2)
p,q = � 1
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⇥

80
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p4 + q4
�
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�

p3q + pq3
�

+144p2q2 � 620
�

p2 + q2
�

+ 832pq + 675
⇤

, (E.14)

where m,n = 0,±1, and p, q = ±1
2 ,±

3
2 ,±

5
2 .

The asymptotic behaviour of the dynamical gauge field now reads

a� = Ĵ1 �
⇡

k

✓

J P̂�1 + P Ĵ�1 +
 

10
Q̂� 5

2

◆

, (E.15)

so that the asymptotic symmetries are now spanned by

� = T P̂1 + Y Ĵ1 + EQ̂ 1
2
+ ⌘( 5

2)
[T, Y, E ] , (E.16)

with
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and the transformation law of the fields is given by

�P = 2PY 0 + P 0Y � k

2⇡
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2
i 0E , (E.18)
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The Poisson brackets of the asymptotic symmetry algebra in this case read

i {Jm,Jn} = (m� n)Jm+n ,

i {Jm,Pn} = (m� n)Pm+n + km3�m+n,0 ,
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where ⌅(5/2)
m =

´
⌅(5/2)e�im�d� stands for the mode expansion of

⌅(5/2) =
25⇡ (P 0)2

12k
. (E.20)

The anticommutator of the fermionic charges then implies that the energy has to
fulfill the following bounds
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� 0 , (E.21)

with p given by a (half-)integer for fermions that fulfill (anti)periodic boundary
conditions.
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E.3 Spin-9/2 fields

The hyper-Poincaré algebra with fermionic generators of (conformal) spin � = 9/2
is described by
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Ĵm, P̂n

i

= (m� n) P̂m+n , (E.22)
h
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,

and with m,n = 0,±1, and p, q = ±1
2 ,±

3
2 ,±

5
2 ,±

7
2 .

The asymptotic fall-o↵ of the dynamical gauge field is now given by
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and the asymptotic symmetries turn out to be parametrized according to
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with

⌘( 7
2)
[T, Y, E ] = �T 0P̂0 � Y 0Ĵ0 � E 0Q̂ 5
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so that the fields transform as
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The mode expansion of the asymptotic symmetry algebra is then given by
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and ⇥m and �m correspond to the mode expansion of
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respectively.
The energy is then found to fulfill the following bounds
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where according to the (anti)periodicity conditions for the fermions, p corresponds
to a (half-)integer.
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