
Universidad de Concepción
Dirección de Postgrado

Facultad de Ingenierı́a - Programa de Magı́ster en Ciencias de la Computación

Control de Acceso Basado en Roles para RDF

(Role Based Access Control for RDF)

Tesis para optar al grado de Magı́ster en Ciencias de la Computación

JORGE ANDRÉS MIRANDA VARGAS
CONCEPCIÓN, CHILE

2015

Profesora Guı́a: Loreto Bravo Celedón
Departamento de Ingenierı́a Informática y

Ciencias de la Computación, Facultad de Ingenierı́a
Universidad de Concepción

Acknowledgments

I would like to thank Fondecyt Project N°1130902 for funding this work.

ii

Table of Contents

Acknowledgments ii

List of Figures vi

Abstract 1

Chapter 1 Introduction 3

Chapter 2 Preliminaries 6

2.1 Access Control . 6

2.2 RDF . 9

2.3 SPARQL . 10

2.4 RDFS . 15

Chapter 3 Related Work 17

Chapter 4 Hypothesis and Objectives 22

4.1 Hypothesis . 22

4.2 Objectives . 22

Chapter 5 Policy Definition 24

5.1 Syntax of Fine-Grained Policies . 24

iii

5.2 Semantics of Fine-Grained Policies . 26

5.2.1 By Example . 27

5.2.2 Formalization . 31

5.3 Justifications of Design Decisions . 36

5.3.1 The Security Set Tree. 36

5.3.2 Triple Level Coherence . 38

5.3.3 Policy Consistency . 38

5.3.4 The Need for Forbidden Permissions 41

Chapter 6 Policy Enforcement 45

6.1 Enforcement Algorithm . 46

6.2 Time Cost Analysis . 48

6.2.1 Ans(CQ,G) . 49

6.2.2 ComputeM (G,Π) . 49

6.2.3 Anonymize (G,P) . 49

6.2.4 Enforcement (G,P,CQ) . 50

6.3 Space analysis . 51

Chapter 7 Management of Multiple Roles 52

7.1 Enforcement Algorithms for Multiple Roles 55

7.2 Space Analysis . 57

iv

7.3 Time Cost Analysis . 58

7.3.1 ComputePol (G,Γ) . 59

7.3.2 AnonymizeAll (G,Γ) . 60

7.3.3 RoleEnforcement (G,Γ,P,CQ) 60

Chapter 8 Conclusion 62

Bibliography 64

v

List of Figures

Figure 2.1 RDF statements. 10

Figure 2.2 Graph G1. 11

Figure 2.3 Node diagram of graph G1. 12

Figure 5.1 Graph Gex and the permissions affecting its triples. 27

Figure 5.2 Security set tree. 30

Figure 5.3 ACPs and matching permissions of graph G1. 32

Figure 5.4 Graph Anon(G1,P3). 35

Figure 5.5 Graph Gex (left) and its anonymized graph Gex6 (right) 42

Figure 5.6 Graph GexNew (left), Anon(GexNew,Pex6) (middle) and Anon(GexNew,Pnew)
(right). 42

Figure 6.1 Summary of parameters. 48

Figure 7.1 Summary of parameters. 59

vi

Abstract

In order to control the access to the information available on the Semantic Web, different
access control mechanisms have been proposed. As RDF is the standard format for pub-
lishing data on the Semantic Web, some of these mechanisms are able to enforce access
restrictions on the granularity level of triples. However, there exists the need for a finer-
grained access control that manages the access to the subject, predicate and object of the
triples, since there exist information requests that could be satisfied with only a part of a
triple, while still prohibiting the access to sensible data. The purpose of this thesis is to
formalize an access control policy model for RDF data, for which the smallest unit of pro-
tection are the parts of a triple, this is, its subject, predicate and object. First, we present
the syntax and semantics of our policies, which are based on permissions. A permission
consists of two parts: an APPLY statement that specifies the parts of the triples managed by
the permission and a query SELECT -WHERE that determines the triples to which the permis-
sion applies. The set of allowed and forbidden permissions will respectively grant or deny
access to data. In case of conflict deny overwrites an allow permission. Then, we study
under what conditions the leaks of hidden information are possible for our policies. We
found that our policies are consistent, which means that the answers of a series of queries,
performed on a graph, cannot be combined to safely obtain triples that are hidden. After
that, we propose an algorithm to enforce the policies defined with our model, in which the
process of computing the answers to queries is divided in three parts: obtaining for each
triple the permissions that apply on it, anonymizing the graph according to the permissions,
and performing the queries over the anonymized graph. The analysis of the running time
shows that enforcing a policy is done in polynomial time over the size of the graph under
data complexity, and the space analysis shows that the maximum space that will be used to
store one anonymized graph for each role is twice the size of the original graph. Finally,
considering these results and the fact that RDF graphs can be large enough that storing
multiple copies of the same information becomes infeasible for multiple roles, we propose
an algorithm that can store the anonymized data in a more compact way. Our time cost
analysis concludes that enforcing the policies for multiple roles is still done in polynomial
time over the size of the graph, even though it is slightly more inefficient than the first
algorithm. It shows too that the maximum space that will be used to store the anonymized

1

2

data is independent from the number of roles, and it is eight times the size of the original
graph.

Chapter 1

Introduction

The Web of Data, proposed by Tim Berners-Lee in 2006, is based on the idea of publishing
and linking data in the same way documents are being published and linked on the internet
[BL09]. For this, the RDF data format [Gro14b] has been established as the standard format
for publishing information on the internet with over 52 billion of RDF triples as of March
of 2012 [wLO14]. The information that can be found in the Web of Data belongs to several
areas such as biology, geography, literature, music, movies, tourism and government data.
The Web of Data has its own Wikipedia in the form of the DBPedia, which basically pub-
lishes the same data but in the RDF format, making it one of the biggest sources of RDF
data and the most connected to the rest of the Web.

This Semantic Web is structured in a way that is easily processed by computers, unlike
the Web of Documents that has been developed for ease of use by people. One of the
advantages of using RDF to publish data on the internet is that we get the possibility to
ask questions about the information by using structured query languages such as SPARQL
[PS08]. For example, if a student is trying to compare different university programs, and
he wants to know their cost and if the program is accredited, he could normally get all the
data he needs by searching through several web pages and collecting the information from
them, while on the Web of Data he could perform queries to obtain directly the information
he needs.

In order to allow companies and institutions to publish data on the RDF format for use on
the Semantic Web, it is necessary to address the problem of controlling the access to the
data, ensuring private data to be accessible only to authorized users. The development of
a powerful and flexible access control system is fundamental for data publishers who want
to enforce specific requirements on the access to their data.

There are several types of access control models that are based on identity, roles, clear-
ance or attributes [PSA01; PS99; YT05; BCEPM08]. For this work, we are adopting a

3

4

role based access control architecture [PSA01; PS99] and we are assuming that the proper
mechanisms for authentication of the users exist.

We say that an access control mechanism that manages the access to a data set in large
data chunks provides a coarse-grained level of control. In contrast, if the access control
mechanism handles individually the access to each data in the data set, we are in presence
of a fine-grained level of control. So, if we want to comply with the principle of least
privilege, our access control mechanism must allow the possibility to provide to each user
the minimal permissions needed to perform their tasks, i.e., our mechanism must provide a
fine-grained access control.

Research on access control for RDF is scarce. General frameworks for RDF access con-
trol are given in [PSA01; DA06; ACH+07]. It has also been proposed, by the authors of
[CVDG12], an access control framework that considers factors related to the access from
mobile devices. However, none of them provided formal semantics for the policies or en-
forcement techniques. Only in the work presented in [FFMA10] the access control policy
is formalized and an enforcement mechanism is implemented and tested. Their work is
based on permissions that are described using triple patterns, that either allow or forbid the
access to specific triples. Thereby, only the triples that are available for a user are used to
compute the answer to his queries, due to the fact that each triple will be annotated with
permissions. Even though triples are the smallest unit of information of RDF, we believe
that an access control mechanism of a finer-grained level is possible, since the parts of a
triple still contain useful information.

There is plenty of research about access control policies for other types of database models
[CFMS94]. Access control policies that specify permissions to allow users to read links and
to browse through them have been studied in the context of XML documents [BCFM00]

and unstructured HTML documents [SBJ96]. A European project called FASTER [Sam02]

was devoted to design an access control system for Web-publishing of statistical data. The
results of the project are used by a commercial partner of the project (Nesstar [wNE12])
and are not freely available.

This thesis focuses on the development of a fine-grained role based access control policy
for RDF data. Our access control policy will consist on sets of allowed and forbidden
permission. These permissions are based on queries and include information about the
parts of the RDF triples over which access is being controlled. We will define syntax and

5

semantics of the policy model from which we will propose an algorithm to enforce the rules
established by a policy. We will detail the design considerations that were made during the
creation of our policy model and enforcement algorithm. And then, we will determine
the algorithm’s running time and space cost. We propose a different algorithm to enforce
policies in the presence of multiple roles, one that could potentially outperform the first
algorithm in aspects like the quantity of the space utilized.

Chapter 2

Preliminaries

In this section we provide some concepts of access control, the RDF data model and its
SPARQL query language.

2.1 Access Control

There are multiple security mechanisms [FKC07; SS94] to satisfy the need to protect sen-
sible data on computer systems. Authentication, auditing and access control are security
needs that help to protect data from possible leaks. Ideally, there will be a clear separation
between the three, but sometimes they are handled as one or one or more of them could not
be present.

Authentication deals with the task of determining the correct identity of a user, some forms
of authentication include the use of user identifiers (IDs) and passwords, smart cards, and
fingerprints readers. Auditing is the analysis of users’ behavior in a system, so that at-
tempted and actual violations to the security system are detected, as well as possible flaws
in the security system. To perform the analysis, all requests and activities of users in the
system need to be stored in logs, which also serve to help to discourage users from attempt-
ing violations on the system and misusing their privileges. Access control is the selective
restriction of the actions and operations a user can perform in a computer system. The
focus of this thesis will be on access control.

Determine if a user has the right to use a resource, maintain private information safe from
the access of unauthorized users, and protect data from being altered by unscrupulous users
are tasks in the scope of access control. Access control allows the possibility to read the
data only to authorized users, tackling security risk related to confidentiality. Access con-
trol helps to maintain the integrity of the information in a system, guaranteeing that its mod-
ification is performed only by users accredited to do it and that they are doing it through

6

7

authorized ways.

An access control system has three levels of abstraction: access control policies, access
control models, and access control mechanisms. Access control policies are high-level
requirements that specify how access is managed and who, under what circumstances, may
access what information. Access control mechanisms are low-level software and hardware
functions that can be configured to implement a policy, that is to say, the mechanism is
in charge of the enforcement of the policy. Access control models are a way to describe
the properties and requirements of an access control system. These models are the link
connecting policies and mechanisms.

Access control policies can be classified as Discretionary Access Control (DAC) policies,
Mandatory Access Control (MAC) policies and Role Based Access Control (RBAC) poli-
cies. Access restriction to the resources on DAC policies are based on users’ identity and/or
the identity of the groups they belong. In DAC policies, the rules are stated for each user, or
group, and for each resource, so all requests to access a certain resource made by any user
have to be checked against the specified authorization rules. The flexibility of DAC policies
is the main advantage of this type of access control, and its main disadvantage is that any
users that has access to a resource can pass the information contained on it to unauthorized
users.

In MAC policies, security levels are assigned to each user and resource of the system.
Security levels are hierarchical, for example, starting on the bottom of the hierarchy we
could have the levels Unclassified (U), Confidential (C), Secret (S) and Top Secret (TS).
The security level of a user is called the clearance, and it reflects how much trust can be put
on him in regard to not disclose information to users not enabled to see the information.
To avoid leaking information to bottom levels of security, a user can start sessions at lower
levels than his clearance level. For example a user with authorization level S can start
sessions at the levels of security S, C and U. Access to resources are granted according to
the simple security property and star property. The former property states that if the user’s
security level dominates the security level of the resource, the user is allowed to read it.
The latter states that if the user’s security level is dominated by the security level of the
resource, the user is allowed to write on it. Thanks to the simple security property, users
are not able to read information above their clearance level, while the star property prevents
the flow of information from high to low levels by not letting users to write on levels lower

8

than the one of his current session.

On top of this, users and resources can be classified on categories, adding the possibility of
allowing access only when user and resource have at least one category in common.

To ensure information integrity, MAC can be applied to resources. For example, the levels
Crucial (C), Important (I), and Ordinary (O) could be the integrity levels, with C > I >
O. The integrity level of a resource suggests how sensitive it is to modifications while the
integrity level of a user shows the level of trust given to him to modify the data in that
level. As in the previous case, the access to the resources in the system will be managed
according to two properties. The simple integrity property allows users to read a resource
only if its security level is dominated by the security level of the resource, while the integrity

star property allows users to write on a resource only if its security level dominates the
security level of that resource. As a result, the users cannot write from lower levels, nor
read resources whose security level is lower than theirs.

The main advantage of the MAC model is that it allows us to define policies that control the
flow of information in the database, which is achieved by forbidding the reading/writing of
data based on trust levels and categories. MAC’s main disadvantage is that policies defined
with this model are difficult to manage when the number of users and resources is large or
when the relations between them are constantly changing, making it prone to leaks.

In RBAC policies, permissions over the resources of the system are assigned to the defined
roles and each user is assigned to one or more roles depending on the tasks he has to
do. This type of policy is useful when the system is used by a big quantity of users, as
in a large company, since using a simple access control mechanism, to manage who has
rights over which resource, can be quite complicated and prone to leaks of information,
considering that users could be constantly leaving and entering the company or performing
new assignments inside it. In an organization, users can change faster than the roles they
perform, so it is reasonable to associate the permissions over the resources of the system
to the roles instead of the users, now when a user leaves or joins the company or changes
position within it, he is going to have his old role and permissions revoked and a new one,
with its corresponding permissions, will be assigned to him.

The main advantage of this model is that the authorization management is highly simplified
by breaking the task in two parts, assign roles to users and giving access rights for resources

9

to roles. Some other advantages of this model is the support of hierarchical roles, simpli-
fying further the authorization management; least privilege, by allowing users to sign on
with roles with powerful privileges only when needed. Also constraints like separation of

duties, preventing users to execute more than one role in order to perform actions that re-
quires more than one person to be executed. The main disadvantage of the RBAC model is
the lack of flexibility, this mean that we cannot establish additional permissions for specific
users.

The management of roles in RBAC is different from the one for groups in DAC policies.
In DAC, a user could have access to a resource directly and indirectly, if he has rights over
the resource explicitly and he is part of a group with rights over that resource. In RBAC,
a user can only have rights over a resource by means of a role. Thus, if we want to forbid
the access of that user to the resource, for the case of RBAC, we only need to remove the
role granting him with the access right from his roles, while in DAC, we need to change the
access rights of the user and each of its groups, with respect to the resource, to forbidden.

We will deal with RBAC read operations and, as stated earlier, we assume proper authen-
tication methods to ensure that users belong to specific roles. We chose RBAC over the
others because it is the most suited to help companies to adopt the RDF data format.

2.2 RDF

RDF stands for Resource Description Framework and is a data model composed by re-
sources, properties and statements. A resource is anything that has an identity, and they are
identified through Uniform Resource Identifiers (URI). Some examples of URIs are:

• file:///home/username/Document.pdf
• urn:isbn:1-59693-113-2
• doi:10.1000/182
• ftp://asmith@ftp.example.org

RDF properties are specific aspects, characteristics, attributes or relations of a resource.
Each property is a resource, has a specific meaning, defines its permitted values, the types
of resources it can describe, and its relationship with other properties. An RDF statement,
or triple, consists of three parts: a subject, a predicate and an object. The subject can be

10

any resource, the predicate is a property of that resource and a resource by itself, and the
object is a resource or the value of that property. Examples of statements and its parts are
presented in Figure 2.1. In Figure 2.1, all subjects, predicates and objects are resources,
i.e., they represent URIs. For example, Dave stands for http://www.example.com/Dave.
In general, URIs are represented in ovals, while objects that are values, formally called
literals, are represented in squares in the graph.

Figure 2.1: RDF statements.

Formally, a triple t is of the form (s,p,o), where s is the subject, p is the predicate and o

is the object, with s,p ∈ U and o ∈ U ∪ L, where U is an infinite set of Universal Resource
Identifiers (URIs) and L is an infinite set of Literals. To refer to the value of the subject,
predicate and object of a triple t, we are going to use t[s], t[p] and t[o], respectively.

A set of RDF triples is called an RDF Graph, RDF data set or RDF store. The graph
G1 shown in Figure 2.2 is an example of an RDF graph, and will be used as an ongoing
example. For this purpose, we labeled the triples t1 . . . t22 to reference them through out
the document. We can also represent it in a node diagram as in Figure 2.3 for ease of
understanding.

2.3 SPARQL

SPARQL is a query language used primarily to obtain specific data from data sets in the
RDF format. The recursive acronym SPARQL stands for SPARQL Protocol and RDF
Query Language and one of its features is that the rules for the exchange of SPARQL
queries and results, between the client program and the SPARQL processing server, are
defined in their own document [DuC11].

11

subject(s) predicate(p) object(o)
t1 foaf:Person rdfs:subClassOf foaf:Agent
t2 ex:Student rdfs:subClassOf foaf:Person
t3 ex:Teacher rdfs:subClassOf foaf:Person
t4 ex:area rdfs:domain ex:Teacher
t5 ex:area rdfs:range rdfs:Literal
t6 ex:collaborateWith rdfs:domain ex:Student
t7 ex:collaborateWith rdfs:range ex:Student
t8 ex:completedProject rdfs:domain ex:Student
t9 ex:completedProject rdfs:range rdfs:Literal
t10 foaf:firstName rdfs:domain foaf:Person
t11 foaf:firstName rdfs:range rdfs:Literal
t12 &a rdf:type ex:Student
t13 &a foaf:firstName William
t14 &a ex:completedProject 5
t15 &b rdf:type ex:Student
t16 &b foaf:firstName Emma
t17 &b ex:collaborateWith &a
t18 &b ex:completedProject 1
t19 &c rdf:type ex:Teacher
t20 &c foaf:firstName Allen
t21 &c ex:completedProject 20
t22 &c ex:area Physics

Figure 2.2: Graph G1.

In this work we will focus on conjunctive SPARQL queries (CQ). These queries are com-
posed by two parts, a SELECT statement describing the data variables we want, and a
WHERE statement using triple patterns to describe the conditions the data needs to meet.
Triple patterns, defined as in [PS08], are used to express groups of triples that conform to
a particular form.

Let V be an infinite set of variables such that V ∩ U = ∅ and V ∩ L = ∅, and the variables
always start with the symbol ?, e.g. V = {?x, ?y, ?z, ?x2, . . .}.

Definition 2.1 A triple pattern tp is of the form tp = (p1, p2, p3), where p1, p2 ∈ V ∪U and
p3 ∈ V ∪U ∪L. ◻

Intuitively, a triple pattern has the same form of a triple, with the difference that the
subject, predicate and object can also be a variable. For example, using the variables

12

Figure 2.3: Node diagram of graph G1.

?x, ?z, ?u and ?s, we can define the triple patterns tp1 = (?x, foaf:firstName, ?z), tp2 =
(?u, ?s,ex:Student), tp3 = (?s,ex:area,Physics).

Definition 2.2 A conjunctive query (CQ) is of the form

SELECT ?x1, ?x2, . . . , ?xn WHERE TP,C

where (i) ?x1, ?x2, . . . , ?xn ∈ V and they appear in TP , (ii) TP is a conjunction of triple
patterns and (iii) C is an optional conjunction of constraints of the form ?u op c where
?u ∈ V and it appears in TP , op ∈ {<,>,≤,≥,=,≠} and c ∈ V ∪U ∪L.

◻

For simplicity, we are restricting the form of the constraints in C, but there are other types
of constraints that allow more complex queries. For example, we can ask if a variable is
mapped to a boolean value, numeric value or string, etc. To perform these complex queries

13

we need to include more built-in SPARQL functions. For a complete list of SPARQL
functions see [SHP13].

Example 2.1 Consider the following queries and graph G1 from Figure 2.2:

The query to ask for the names of all people in the graph is SELECT ?z WHERE (&a, foaf:first-

Name, ?z) and the answer is ?z = {William, Emma, Allen}. If we want to ask for the names
of the people who have completed five or more projects, we use the query SELECT ?z

WHERE (?x, foaf:firstName, ?z), (?x,ex:completedProject, ?w), ?w ≥ 5, and the answer
to this is ?z = {William, Allen}. To ask what types of persons are present in graph G1,
we perform the query SELECT ?v WHERE (?v, rdfs:subClassOf, foaf:Person), that gets for
answer ?v = {ex:Student, ex:Teacher}. ◻

In order to formally define the answers to a query CQ we need to define a mapping µ that
assigns values to variables in V . Mapping µ ∶ V∪U∪L→ U∪Lwhere µ(a) = a for every a ∈
U∪L. To simplify presentation we will write µ as a set of pairs so that for every variable ?x,
if µ(?x) = u then (?x,u) ∈ µ. We will also omit the mapping for elements in U ∪L which
map to themselves. For example, if µ(?x) = &a, µ(?y) = foaf:firstName, µ(?z) = William,
then its set representation would be µ = {(?x,&a), (?y, foaf:firstName), (?z,William)},
and if µ(?u) = &b, µ(rdf:type) = rdf:type, µ(?v) = ex:Student, then its set representa-
tion would be µ = {(?u,&b), (?v,ex:Student)}. Given a triple pattern tp = (p1, p2, p3),
we denote by µ(tp) the result of applying the mapping to each element, i.e., µ(tp) =
(µ(p1), µ(p2), µ(p3)).

We are also interested in the triples in a graph that match a conjunction of triple patterns.
Given a graph G and a conjunction of triple patterns TP = {tp1, ..., tpn}, we will denote
by ⟪TP⟫G the set of mappings that if applied to each tp in TP result in triples in G. More
formally: ⟪TP⟫G = {µ∣ for all tp ∈ TP, µ(tp) ∈ G}.

Example 2.2 Consider graph G1, the triple patterns tp1 = (&a, ?y, ?z), tp2 = (?x, rdf:type,

ex:Student), tp3 = (?x, ex:collaborateWith, ?z) and the conjunctions of patterns TP1 =
{tp1}, TP2 = {tp2}, TP3 = {tp3} and TP4 = {tp2, tp3}. The set of mappings that match
these conjunctions of patterns are:

14

⟪TP1⟫G1 = {{(?y, rdf:type), (?z,ex:Student)},{(?y, foaf:firstName), (?z, William)},
{(?y, ex:completedProject), (?z,5)}}

⟪TP2⟫G1 = {µ(?x, rdf:type,ex:Student)} = {{µ(?x), µ(rdf:type), µ(ex:Student)}} =
{{(?x, &a)},{(?x,&b)}}

⟪TP3⟫G1 = {µ(?x,ex:collaborateWith, ?z)} = {µ(?x), µ(ex:collaborateWith), µ(?z)} =
{{(?x,&b), (?z,&a)}}

⟪TP4⟫G1 = {{(?x,&b), (?z,&a)}}.
◻

Let µ be a mapping and c = ?u op w a constraint in C where ?u is a variable; w is a variable, a
URI or a Literal; and op ∈ {<,>,≤,≥,=,≠}. If µ(?u) opµ(w) is true, we say that µ satisfies
?u op w. Therefore, for a conjunction of constraints C and a mapping µ, if each ?u op

w ∈ C is satisfied by µ, then C is satisfied by µ. For example, the constraint c1 = ?z < 10 is
satisfied by the set of mappings ⟪C⟫G1 = {µ1, µ2} = {{(?x, &a), (?y, ex:completedProject),
(?z,5)}, {(?x, &b), (?y, ex:completedProject), (?z,1)}}. Note that the operators <, >, ≤, ≥,
=, ≠ follow the rules for mapping defined for SPARQL [PS08]. This means that when the
variables ?u and w are mapped to different types of resources, they will be incompatible
and do not satisfy the constraint, e.g. ?z = &a does not satisfy the constraint c1.

Given a graph G, a conjunction of triple patterns TP and a conjunction of constraints C, we
will denote by ⟪TP,C⟫G the set of mappings that match every triple pattern in TP and for
each c ∈ C, µ satisfies c. More formally: ⟪TP,C⟫G = {µ∣ for all tp ∈ TP, µ(tp) ∈ G and µ
satisfies C}.

For example, if we have TP5 = {(?x, ex:completedProject, ?z)} and C1 = {(?z < 10)},
⟪TP5,C1⟫G1 = {{(?x, &a), (?z,5)}, {(?x, &b), (?z,1)}}.

Definition 2.3 Given a graph G and a query CQ = SELECT ?x1, ?x2,. . . , ?xn WHERE TP,C.
The answer to query CQ is the set Ans(CQ,G) = {µ ∣ µ ∈ ⟪TP,C⟫G}

◻

Example 2.3 Consider a query CQ1 that asks for the rdfs:literals on graph G1 from Figure
2.2, a query CQ2 that asks for the name of people on the graph with their corresponding
rdf:type, and a query CQ3 that asks for William’s information. These queries and their
respective answers are shown below.

15

CQ1 = SELECT ?z WHERE (?x, ?y, ?z), (?y, ?u, ?v), ?v = rdfs:Literal

Ans(CQ1,G1) = {{(?z,Physics)}, {(?z,5)}, {(?z,1)}, {(?z,20)}, {(?z,William)}, {(?z,
Emma)}, {(?z,Allen)}}

CQ2 = SELECT ?x, ?y WHERE (?z, foaf:firstName, ?y), (?z, rdf:type, ?x)

Ans(CQ2,G1) = {{(?x,ex:Student),(?y,William)},{(?x,ex:Student),(?y,Emma)}, {(?x,
ex:Teacher), (?y,Allen)}}

CQ3 = SELECT ?y, ?z WHERE (?x, ?y, ?z), (?x, ?v, ?w), ?w = William

Ans(CQ3,G1) = {{(?y,ex:completedProject), (?z,5)},{(?y, rdf:type), (?z,ex:Student)}}
◻

2.4 RDFS

In the graph G1 shown in Figure 2.2 we can see that some predicates include the prefix
rdfs:. This prefix references the RDF Schema (RDFS) [DBM14] vocabulary, which is
expressed in RDF and provides the necessary mechanisms to describe groups of resources
and the relationships between them, allowing us to infer new triples that are not included
in an RDF graph, but are implicit.

In RDFS, resources can be grouped in classes. These classes are defined in RDF with triples
of the form (s,rdf:type,o), where the predicate rdf:type states that the resource in the
subject is an instance of the class in the object of the triple. Subclasses can be specified with
triples of the form (s,rdfs:subClassOf,o), where the predicate rdfs:subClassOf

states that the subject s is a subclass of the class o. In the same way, subproperties can be
specified with the predicate rdfs:subPropertyOf.

RDFS let us explicitly state what types of resources the properties can affect, which is
achieved with the predicates rdfs:domain and rdfs:range. When a resource appears
in a triple as a predicate, the subject of that triple has to be an instance of the class related by
rdfs:domain, and the object has to be an instance of the class related by rdfs:range.

For example, considering the graph in Figure 2.2, the predicate foaf:firstName can be
present in t13 because the subject of the triple is an instance of a subclass of foaf:Person,

16

and we can assume that the object of the triple is a Literal. Some other data that we can ob-
tain, which is not explicitly included in the graph, are the triples (&a, rdf:type, foaf:Person),
(&b, rdf:type, foaf:Person), (&c, rdf:type, foaf:Person).

RDFS inference is the process of deducing new information from an RDF graph. The
inferred triples are obviously not part of the graph, however, they are valid and could be
used by users to obtain information that has been hidden to them, if the access control
mechanism does not enforce the restrictions on the inferred triples. E.g. if we hide the triple
(&c, rdf:type, ex:Teacher) from the graph G1, but we show triples (&c, ex:area, Physics) and
(ex:area, rdfs:domain, ex:Teacher), we can infer the hidden triple because only instances
of the class ex:Teacher can be subjects in a triple whose predicate is ex:area.

In addition to RDFS, there exist other vocabularies and ontologies that help people to infer
information from RDF graphs, e.g., OWL.

Chapter 3

Related Work

There is not a lot of work focused on access control for RDF. In most of them the smallest
unit of protection is the RDF triple. Thus, in order to let users access to information about a
determined resource, this resource has to be part of an allowed triple. By restricting access
at triple level we are losing the possibility of answering queries that could be replied only
with a part of a triple, i.e., with only the subject, predicate or object.

Consider the queries 1 and 2 as described below, if we want to allow users to retrieve the id
of students with phone numbers associated to them, but we want to forbid the access to the
number, we should allow query 1 to be answered, while query 2 should be forbidden and
should give no results.

#Query 1 #Query 2

SELECT ?id SELECT ?id, ?x, ?phone

WHERE (?id, :phoneNum, ?phone) WHERE (?id, ?x, ?phone), ?x = :phoneNum

Under a policy that controls the access to data at triple level, like the one in [FFMA10],
to deny access to phone numbers, we need to forbid access to triples of the form (?id,
:phoneNum, ?phone) and, therefore, both queries would provide no results. Thus, policies
that possess the capability to control access at a finer level could be used in this type of
situation.

In the work of Abel et al. [ACH+07], the access control is handled on a layer built on
top of the RDF store, in such a way that it is portable across different RDF graphs. The
enforcement of policies is through query rewriting, so that queries cannot access nor return
forbidden triples. They limit the access at triples level by defining policy rules of the form
pred(triple(s,p,o))← cp1, ..., cpn, pe1, ..., pem, be1, ..., bep. The access to triples matching
the path expression triple(s,p,o), where s, p and o are URIs or variables and o can also
be a literal, will be determined according to if pred is allow or disallow. To express

17

18

contextual conditions that are not related to the data, like time, location, properties of the
requester, etc; the contextual predicates cpi are used. The path expressions pei and boolean
expressions bei are used to specify graph patterns that the RDF graph needs to meet. They
deny the access to triples that have no policy rules being applied to them, as well as denying
the access to the triples that have deny and allow policy rules being applied to them at the
same time. We want our policies to have the same default policy and conflict resolution as
theirs. Their policies are expressed in a high level syntax that needs to be mapped to policy
languages such as SeRQL and SPARQL. If they store a graph for each set of policy rules,
they would need large amounts of memory for answering queries, because of the endless
quantity of contextual conditions that could exist. They avoided this problem by taking the
query rewriting approach, but this comes at the expense of increasing the response time.

The access control policies defined using the RAP framework, developed by Reddivari
et al. [RFJ05], let “agents” manage an RDF store through a set of “actions” that can
be allowed or forbidden by an explicit collection of policy rules. With this framework
they can control write operations, unlike us who manage read operations. If T1 and T2

are triples and Tc is a set of triples, the actions that an agent A can perform, directly
or indirectly, on the store are: insert or remove a triple or set of triples from the graph
(insert(A,T1), remove(A,T1), insertSet(A,Tc), removeSet(A,Tc)), insert or remove in-
ferred triples from a graph (insertModel(A,T1), removeModel(A,T1)), update a triple
(update(A, T1, T2)) and see or use a triple for query processing (see(A,T1), use(A, T1)).
Policy rules have the form Modality(Action(A,T)) ∶ −Condition, where Modality is
permit or prohibit, Action is one of the actions already defined, A is an agent, T is a
triple of the form (subject, predicate, object) where any of its parts can be a “?” to de-
scribe triple patterns, and Condition is a boolean combination of triples for expressing
constraints, which can use metadata about the triples maintained on the store. For example
permit(insert(A,(?,rdf:type, C))):-createNode(A,C) allows agent A
the possibility of inserting triples whose rdf:type is C only if he created the node C. Also,
it allows the creation of custom predicates that are useful for building policies. An agent
can only perform an action if he is allowed to do the action to the requested triple and he
is permitted to do all its effects, for example inserting or deleting inferred triples. On their
implementation the inferred triples are added to the store, it can only register one proof per
inferred triple, even when more are possible, and it requires the temporal removal of all
triples that cannot be seen by the agent making a query before query execution.

19

Jain and Farkas [JF06] developed an access control model for RDF and RDFS data that
considers entailments. In this model, the security policy is defined by a set of pairs (pattern,
security label), which are used to create a set of Security Objects with the triples obtained
by pattern mapping. These security objects are pairs (triple, security label), making this
a MAC policy. A Security Cover is the set of security objects that contains each triple in
the graph only once, so in order to label the triples that can be mapped with more than one
pattern, their security object is going to store the security label with the most restrictive
classification, which has been obtained from the policy. From this, an Extended Security
Cover is created to include triples obtained by inference of RDF and RDFS entailments.
Warnings are generated when triples with a higher security levels can be inferred from
triples with lower security levels. The difference between their model and our model is
that, in their model, the access to the data is controlled at triples level and their policies can
be classified as MAC, while our model provides a finer level of protection and is based on
Roles.

Kim et al. [KJP08] proposed an access control model that focuses on read operations
of RDF graphs described in XML, considering RDFS subclasses and subproperties and
treating the problems of inheritance and inference. The access is managed through access
authorizations, which are tuples of the form < subj, obj, act, sign, type >, where subj is
the user (subject) being granted the authorization, obj is a pattern that matches the triples
to be protected, act is the operation (read in their work) to be controlled, sign is a symbol
(+ or -) that determines if the access to the triples is allowed or forbidden, and type is R
(Recursive) or L (Local) and says if the authorization is propagated to lower subclasses
and subproperties recursively or not. The difference with our model is that the access to
the data is protected at triple level; the patterns defined by them are too simple and, as a
result of this, they do not allow restricting the access by means of SPARQL queries, e.g.
the object in their patterns can only be a variable. The effects of recursive authorization
can be obtained with our approach, but additional permissions need to be produced.

Flouris et al. [FFMA10] formalize an access control policy, and they present enforcement
techniques. In their work, the access to specific triples is controlled through permissions
of the form include/exclude (x, p, y) where TP,C. The triples in the scope of the triple
pattern (x, p, y) and the constraints TP,C will be accessible if there is an include permission
associated to them or inaccessible otherwise. The conjunction of triple patterns TP and
conjunction of constraints C, let us express permissions in a way that is similar to SPARQL

20

queries. Thanks to this, one can think in controlling the access to triples by granting and
denying the possibility to answer specific queries. This thesis is based on their work and
extends it to develop a finer access control that is capable of managing restrictions at the
level of subjects, predicates and objects.

Finin et al. [FJK+08] use the Web Ontology Language (OWL) to express authorization
policies, focusing on RBAC. They define OWL ontologies that represent the RBAC model,
taking two different approaches to represent roles, as OWL classes and subclasses, and
as instances of the generic Role class. Under the former approach, roles are defined as
subclasses of the Role class, an ActiveRole class is defined to manage actives roles and for
each role a subclass activeRoleName is created. The use of the predicate rdfs:subclassOf
allows them to handle role hierarchy, while OWL’s property disjointWith handles static
and dynamic separation of duties. The class Action and its subclasses PermittedAction and
PhohibitedAction are used to associate permissions and prohibitions to the roles.

Under the latter approach, roles are instances of the generic Role class and the properties
role and activeRole tie them to the subjects, role hierarchy is managed through additional
rules and static and dynamic separation of duty are expressed with the properties ssod and
dsod. The properties permitted and prohibited are used to associate permissions to the
roles. The main disadvantage of this way of expressing policies is that we cannot control
easily the access to groups of data, to deny/grant read access to triples, or part of them, we
need to do it individually, instead of using a pattern followed by them.

Dietzold and Auer [DA06] describe an access control model based on RDF whose granu-
larity is at triple level and provides access control to RDFS, OWL and other metamodels
based on RDF. The operations managed are reading, adding and removing a set of triples
from a store, through rules and query filters, both described in RDF with the vocabulary
provided by the Lightweight Access Control Schema (LACS). The rules are represented in
the Semantic Web Rule Language and the filters that can be triggered by them are defined
in the RDF format. For example, if we want admins to be able to read all triples, the rule
would be rdf:type(lacs:CurrentAction,lacs:Read) ∧ rdf:sameAs(lacs:CurrentAccount, ?a) ∧
foaf:member(:Admins,?a) → lacs:addAndStop(:currentAction,:AllFilter), and this rule refer-
ence the filter:
:AllFilter a lacs:Filder;

rdfs:label "no restriction filter";

lacs:sparql "CONSTRUCT{ ?s ?p ?o } WHERE { ?s ?p ?o }".

21

Their framework creates a virtual model from the real graph and these three models: a
Session Model, which contains information pertaining to the active session, a User Model,
which is the data that the user wants to get access, and a Maintenance Model, which con-
sists of decision rules, filters and data pertaining to groups or accounts. To process an
action, the access control processor changes the Session Model for the current session, a
rule is evaluated by the rule processor to decide if query filters are fired or not and then
the query engine applies the filters to the corresponding model. Rules with lower priority
number (lacs:priority) are evaluated first, and after all the rules have been processed, the
Virtual Model is presented.

Access control policies have been studied for data in the XML format. The authors in
[BCF07] control write operations on XML documents that conform to a DTD. Their poli-
cies do not control precisely what data is being modified, instead they control which actions
are performed based in the atomic updates, e.g., replacing a node in an XML tree with an-
other. An update access type is a pair (node, operation(subnode)), that is used to specify the
access permissions. The operations can be insert(subnode), replace(subnode1, subnode2),
replace(string, string) or delete(subnode), where all the subnodes conform to the rules of
the DTD of their parent node. A pair (A, F) constitutes a policy, where A is the set of
allowed update access types and F is the set of forbidden update access types. When a
subtree in an XML graph is replaced by another, the permissions over the root node of the
subtree are checked and the action is performed if it is allowed. Now, for example, if the
user is not allowed to deleted a node X, but he can delete or replace a parent node of X,
he can bypass his prohibition by performing some of the operations on the parent node.
They call this situation an inconsistency and they propose algorithms to repair the policies,
which means transforming policies that are inconsistent to consistent. As in their policies,
our policies are defined in function of the set of allowed and forbidden authorizations, but,
unlike their work, our policies take care of controlling read access to the data. Check-
ing if forbidden operations can be emulated or not by a series of allowed operations is an
important part of their and our work.

Chapter 4

Hypothesis and Objectives

We propose to do the following work in this thesis:

1. Define the syntax and semantics of an access control policy for RDF that allows
controlling the access to subjects, predicates and objects.

2. Propose, study and compare different enforcement mechanisms for the policy de-
fined.

4.1 Hypothesis

Our main hypothesis is that it is possible to define access control policies for RDF data
which:

1. Provides finer-grained control than the one defined in [FFMA10] where permissions
are defined at the triple level.

2. Has, under a set of conditions over the policy, no sequence of allowed queries that
allow a user to deduce forbidden data. Checking these conditions can be done in
polynomial time over the size of the policy.

3. Has an enforcement algorithm that runs in polynomial time on the size of the RDF
database.

4.2 Objectives

The objectives of the thesis are:

1. Policy Definition: define a suitable access control policy language for RDF data
that provides control not only over triples but also over their subjects, predicates and

22

23

objects.
2. Enforcement: provide an efficient algorithm that enforces a policy and study its

running time and space cost.
3. Enforcement for Multiple Roles: propose an algorithm that is able to handle mul-

tiple roles, and therefore multiple policies. This algorithm has to improve the naive
version that would use separately the algorithm suggested in Objective 2. We will
study its running time and space cost.

Chapter 5

Policy Definition

In [FFMA10], the smallest unit of information on which the security is managed is the RDF
triple. The access to information is handled by a policy, which is a set of permissions that
can grant or deny access to triples, according to the conditions stated by each permission.
In order to obtain a finer-grained policy, we will add to these permissions a statement that
describes exactly to what part of the data (triple) the access will be granted or denied.

5.1 Syntax of Fine-Grained Policies

As shown previously, controlling the access to RDF data at triples level is not enough to
answer some queries that one could wish to perform on the graph. Imagine we want to
collect data regarding the age of people in the system to get some statistics, but the person
in charge of performing this task should not be able to relate the people to their respective
age. If we block the access to the entire triple, and the triples are of the form (ID 1, age,
25), we would not obtain any data; however, if we restrict the access to the part of the
triple that contains the ID of the people, there would be no leaks of information, because
the person performing the queries will not be able to link the people to their age.

The set Σ of valid security patterns is Σ = {{s,p,o},{s,p},{p,o},{s},{o}} and corre-
sponds to all the possible ways in which we want to control a triple. For example, {p,o}
corresponds to control over the predicate, object and their relationship. For a discussion of
why {s,o} and {p} are not considered valid refer to the discussion in Section 5.3.

Definition 5.1 An access control permission (ACP) ρ is of the form

ρ = APPLY S SELECT ?x, ?y, ?z WHERE TP,C

where S is called the security set with S ⊆ Σ, TP is a conjunction of triple patterns that

24

25

contain at least variables ?x, ?y and ?z; and C is a conjunction of constraints of the form ?u

op c, where ?u is a variable, op ∈ {<,>,≤,≥,=,≠} and c can be a variable, a URI or a literal.
We refer to the elements in S by security patterns. ◻

Intuitively, an access control permission selects, with the query SELECT ?x, ?y, ?z WHERE

TP,C, the set of triples to which the permission refers to, and then, with the expression
APPLY S , it states which data and relations within the triple the restriction should apply to.
For example, if we want to apply the restriction only on the subject of the selected triples,
then {s} would belong to S . If S = {{s,p}} we want to put a restriction on the relationships
between subjects and predicates but we are saying nothing about restricting access to the
objects {o}. Besides, the access to subject {s} will depend on the type of the restriction
being imposed on {s,p}: the access to {s} will be granted if the access to {s,p} is being
granted, and denying the access to {s,p} has no implications on the access restrictions of
{s}. This will be explained on the next section.

Example 5.1 Consider graph G1 in Figure 2.2 and the following set of ACP:

ρ1 = APPLY S1 S1 = {{s,p,o}}

SELECT ?x, ?w, ?y

WHERE (?x, foaf:firstName, ?y), (?x,ex:completedProject, ?z), ?z > 3, ?w = foaf:firstName
ρ2 = APPLY S2 S2 = {{p,o},{s,p},{s}}

SELECT ?x, ?y, ?z

WHERE (?x,ex:area, ?z), ?y = ex:area
ρ3 = APPLY S3 S3 = {{p,o}}

SELECT ?x, ?y, ?z

WHERE (?x, foaf:firstName, ?z), (?x, rdf:type, foaf:Student), (?x,ex:collaborateWith, ?w),

?y = foaf:firstName
ρ4 = APPLY S4 S4 = {{o}}

SELECT ?x, ?y, ?z

WHERE (?x, foaf:firstName, ?z), ?y = foaf:firstName

Permission ρ1 selects triples (&c, foaf:firstName, Allen) and (&a, foaf:firstName, William)
from Graph G1. The fact that {s,p,o} belongs to S1 implies that we want to hide or allow
access to the relationship between all the elements in these triples but not necessarily to

26

the individual elements in s, p and o. On the other hand, permission ρ2 selects the triple
(&c, ex:area, Physics). The security set S2 = {{p,o},{s,p},{s}} says that we want to
control both the data in s and the relationships between p and o, and s and p. In this case
in particular, the permission would apply over (ex:area, Physics), (&c, ex:area) and (&c).
Permission ρ3 will select (&b, foaf:firstName, Emma), and the security set S3 will control
the access to (foaf:firstName, Emma). Finally, permission ρ4 selects the same triples as ρ1

and ρ3 together, that is to say (&c, foaf:firstName, Allen), (&a, foaf:firstName, William) and
(&b, foaf:firstName, Emma), but will control the access to the object of the triples. ◻

ACPs allow us to represent the data or relationships in an RDF graph which we want to
control. Now, we need to provide a syntax for the policies that will specify if those are
going to be accessible or inaccessible.

Definition 5.2 An access control policy P is a tuple (A,F) where A and F are sets of
ACPs and correspond to the allowed and forbidden permissions, respectively.

Example 5.2 (example 5.1 continued) Intuitively, a policyP1 = (A1,F1) withA1 = {ρ1, ρ4}
and F1 = {ρ2, ρ3} enforces that the tuples controlled by ρ1 and ρ4 can be accessed by the
user, but the ones controlled by ρ2 and ρ3 cannot be seen by him. ◻

The issues of default permissions and conflict between them is going to be addressed in the
next section where we formally define the semantics of our policy.

5.2 Semantics of Fine-Grained Policies

In this section we provide the semantics of the access control policies. To understand
the intuition behind it, we will first explain the semantics through examples, and then we
proceed to formalize it.

A policy P = (A,F) controls the access to an entire RDF graph. The triples to which
access is being allowed are determined from the set of permissions A, and the triples to
which access is being forbidden are determined from the set of permissions F . The triples
in the graph that are not affected by any permission from these sets are dealt with the

27

default permission, which states if the triples are going to be forbidden or allowed. There is
a conflict if a triple is affected by permissions that belong to A and permissions that belong
to F at the same time. Triples that are in conflict follow the rule for conflict resolution. In
this work, the default permission forbids the access to the triples, in accordance with the
principle of least privilege, and the rule for conflict resolution states that the access to the
parts of a triple affected by both types of permissions will be forbidden. Note, however,
that the default permission can be modified simply by adding a permission that gives access
to the whole graph, APPLY {{s,p,o}} SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z).

5.2.1 By Example

A policy that affects a graph will control the access to its triples through permissions.
Each Triple can be affected by none, one or multiple permissions. There are four possible
scenarios for a triple.

1. It is affected only by permissions that allow access to it.
2. It has no permissions affecting it.
3. It is affected only by permissions forbidding access to it.
4. It is affected by both types of permissions.

To explain each case we will use RDF graph Gex in Figure 5.1 and the following permis-
sions:

s p o Allowed ACP Forbidden ACP

tex1 a b c ⇒ ρA1, ρA2, ρA3, ρA4 ρF2, ρF3

tex2 d c e ⇒ ρA1, ρA3, ρA4 ρF1, ρF2, ρF3

tex3 e f b ⇒ ρA1, ρA3, ρA4 ρF3

Figure 5.1: Graph Gex and the permissions affecting its triples.

ρA1 = APPLY SA1 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z) SA1 = {{s}}

ρA2 = APPLY SA2 SELECT ?x, ?y, ?z WHERE (?x,b, ?z), ?y = b SA2 = {{p,o}}

ρA3 = APPLY SA3 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z) SA3 = {{o}}

ρA4 = APPLY SA4 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z) SA4 = {{s,p,o}}

ρF1 = APPLY SF1 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z), (?z, ?v, ?w) SF1 = {{s}}

28

ρF2 = APPLY SF2 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z), (?m, ?n, ?y) SF2 = {{o}}

ρF3 = APPLY SF3 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z) SF3 = {{p,o}}

To understand what means that a triple is affected by a permission, we need to know the
concept of matching permissions. The matching permissions of a triple, given a set of
permissions Π, are the union of the security patterns of the permission in Π that affect the
triple.

Now that we know when a triple is being affected by a permission, we can explain in detail
the cases previously stated.

Case 1: The triple is affected only by allowed permissions. In this case, the data from
the triple will be available according to the security sets of the permissions involved. Let
us consider policy Pex1 = (Aex1,Fex1) with Aex1 = {ρA1, ρA2} and Fex1 = ∅.

The triple (a, b, c) is affected by both permissions in Aex1. This means that we want to
provide access only to the subject, because the permission ρA1 provides the security set
SA1 = {{s}}; and we want to permit the access to the pair predicate-object, because the
permission ρA2 affects the parts of the triple indicated by the set SA2 = {{p,o}}. This is,
the matching permissions of (a, b, c), according toAex1, is the setM = {{s},{p,o}}. From
this set we get that (a, ,) is visible thanks to {s} and (, b, c) thanks to {p,o}.

For the other two triples only permission ρA1 applies and, therefore, only their subject
should be visible. The user is expected to have access to the data as shown in graph G′ex,
where some of the values are missing.

Graph G′ex: s p o

t′ex1 a
t′′ex1 b c
t′ex2 d
t′ex3 e

If we add permission ρA3 toAex1 we would be providing access to the objects of the triples,
thanks to its set SA3 = {{o}}. However, in the case of (a, b, c), this new permission is
subsumed by ρA2 that already gives access to the object of the triple. Thus, the user has
access to the data as shown below, on graph G′′ex.

29

Graph G′′ex: s p o

t′ex1 a
t′′ex1 b c
t′ex2 d
t′′ex2 e
t′ex3 e
t′′ex3 b

Case 2: The triple is not affected by any permission. If the triple has no permissions
associated with it, the rules for the default case will be enforced. Which means that the
triple would be entirely hidden. This is aligned with the principle of least privilege. For
example, for policy Pex2 = (Aex2,Fex2) and Aex2 = {ρA2} and Fex2 = ∅, we have that no
permission applies to triples (d, c, e) and (e, f, b) in Gex. Therefore, these triples will not be
visible to the user, who will be able to access data as shown in graph G′′′ex.

Graph G′′′ex: s p o

t′ex1 b c

Case 3: The triple is affected only by forbidden permissions. Consider the policy Pex3 =
(Aex3,Fex3) with Aex3 = ∅ and Fex3 = {ρF1, ρF2}. Permission ρF1 will affect the triple (d,
c, e) of graph Gex, whose object is also the subject of (e, f, b) in the graph. Permission ρF2

will affect triples (d, c, e) and (a, b, c) of graph Gex because the predicate of these triples are
the object of some triple in the graph. The triple (e, f, b) will not be affected by forbidden
permissions. The next graph shows the permissions affecting each triple in graph Gex.

s p o ACP matching permissions
a b c ⇒ ρF2 SF2 = {{o}}
d c e ⇒ ρF1, ρF2 SF1 ∪ SF2 = {{s}, {o}}
e f b ⇒ – –

Since there are no permissions that give access to any of the triples, all of them will be
hidden.

Case 4: The triple is affected by both types of permissions. In order to provide semantics
in the case of conflict we use the security set tree shown in Figure 5.2, which is based on
the relationships between the security sets.

30

Figure 5.2: Security set tree.

When we are giving access to parts of a triple, we are implicitly allowing access to all the
subparts of it. For example, if {p,o} is allowed, we are implicitly also giving access to {o}.
If we want to allow the access to the entire triple the security set {s,p,o} is allowed and the
parts {s,p}, {p,o}, {s} and {o} have to be allowed too. This is because if we know a triple
we can infer all its parts. Thus, when access is given to a security set, all the nodes below
it in the security set tree are also implicitly allowed.

To deny access to a security set of the triple, we apply the permission over the security
set and implicitly over all the security sets that are its ancestors on the tree. This is, if
we restrict access to {s}, the nodes {s,p} and {s,p,o} have to be hidden because they are
showing the existence of {s} from that specific triple in the graph.

The interaction/conflict between ACPs could be used, for example, to hide {s,p,o} and
show the parts {s,p} and {p,o} of triples. However, if we try to give access to {s,p,o} and
forbid {s,p} the conflict would result in that only {p,o} can be accessed.

Under policy Pex4 = (Aex4,Fex4) with Aex4 = {ρA4} and Fex4 = {ρF1}, the only triple with
a conflict is (d, c, e) which is affected by both ρA4 and ρF1. The ACP ρF1 forbids the access
to the subject of the triple so {s}, {s,p} and {s,p,o} are forbidden, but ρA3 allows access
to {s,p,o} and consequently to {s}, {o}, {s,p} and {p,o}. There are conflicts between
the ACPs and we will only want to provide access when it is not forbidden (explicitly or
implicitly). Therefore, even though there are allow ACPs for {s}, {s,p} and {s,p,o}, none
of these parts are going to be available for the users associated with this policy, since they
are also forbidden by ρF1. As a consequence the only security sets that are allowed and not
involved in conflicts are {o} and {p,o}. As it was shown in Case 1, {p,o} subsumes {o}.
Graph G′′′′ex shows the visible data for policy Pex4.

Graph G′′′′ex : s p o

t′ex1 a b c
t′ex2 c e
t′ex3 e f b

31

Now, let us add ρF3 to the set of forbidden permissions Fex4. In this case all triples in the
graph will have conflicts. Using the same method we will obtain the graph G′′′′′ex . From the
triple (d, c, e) only e will be shown because {s} and {p,o} are forbidden.

Graph G′′′′′ex : s p o

t′ex1 c
t′′ex1 a b
t′ex2 e
t′ex3 b
t′′ex3 e f

5.2.2 Formalization

Now that we have shown the intuition of the enforcement of the policies through examples,
we will proceed to formalize the semantics. We will first associate with each triple the
permissions that apply over it, compute the allowed permissions that are a consequence
of them (the conflict-clear permissions) and then we compute an anonymized graph that
shows only the data that should be visible under the policy.

Definition 5.3 Given a graph G and a set of permissions Π, the matching permissions of
triple t ∈ G, denotedM(G,Π, t) are:

M(G,Π, t) = {b ∣ b ∈ S, (APPLY S SELECT ?x, ?y, ?z WHERE TP,C) ∈ Π,

µ ∈ ⟪TP,C⟫G, µ(?x) = t[s], µ(?y) = t[p], µ(?z) = t[o]}
◻

Example 5.3 (example 5.1 continued) For graph G1 and a set Π1 = {ρ1, ρ2, ρ3, ρ4} we have,
for example:

M(G1,Π1, t13) = {b ∣ b ∈ S2, ρ ∈ Π1, µ ∈ ⟪TP,C⟫G1, µ(?x) = &a, µ(?y) = foaf:firstName,

µ(?z) = William} = {{s,p,o},{o}}
M(G1,Π1, t22) = {b ∣ b ∈ S2, ρ ∈ Π1, µ ∈ ⟪TP,C⟫G1, µ(?x) = &c, µ(?y) = ex:area, µ(?z) =

Physics} = {{p,o},{s,p},{s}}
◻

32

Example 5.4 (example 5.1 continued) Consider the graph G1 and a set Π2 = {ρ1, ρ2, ρ3, ρ4,

ρ5, ρ6, ρ7}, with ρ5, ρ6 and ρ7 as defined below. Figure 5.3 shows the triples in G1, the
permissions affecting them, and the matching permissions generated by the set Π2.

ρ5 = APPLY S5 S5 = {{o}}

SELECT ?x, ?y, ?z

WHERE (?x, foaf:firstName, ?z), (?x, rdf:type,ex:Teacher), ?y = foaf:firstName
ρ6 = APPLY S6 S6 = {{s}}

SELECT ?x, ?y, ?z

WHERE (?x, ?y, ?z)

ρ7 = APPLY S7 S7 = {{s,p}}

SELECT ?x, ?y, ?z

WHERE (?x, ?y,ex:Student), ?z = ex:Student

◻
s p o ACP M(G1,Π2, t)

t1 foaf:Person rdfs:subClassOf foaf:Agent ρ6 {{s}}
t2 ex:Student rdfs:subClassOf foaf:Person ρ6 {{s}}
t3 ex:Teacher rdfs:subClassOf foaf:Person ρ6 {{s}}
t4 ex:area rdfs:domain ex:Teacher ρ6 {{s}}
t5 ex:area rdfs:range rdfs:Literal ρ6 {{s}}
t6 ex:collaborateWith rdfs:domain ex:Student ρ6, ρ7 {{s},{s,p}}
t7 ex:collaborateWith rdfs:range ex:Student ρ6, ρ7 {{s},{s,p}}
t8 ex:completedProject rdfs:domain ex:Student ρ6, ρ7 {{s},{s,p}}
t9 ex:completedProject rdfs:range rdfs:Literal ρ6 {{s}}
t10 foaf:firstName rdfs:domain foaf:Person ρ6 {{s}}
t11 foaf:firstName rdfs:range rdfs:Literal ρ6 {{s}}
t12 &a rdf:type ex:Student ρ6, ρ7 {{s},{s,p}}
t13 &a foaf:firstName William ρ1, ρ4, ρ6 {{s,p,o},{o},{s}}
t14 &a ex:completedProject 5 ρ6 {{s}}
t15 &b rdf:type ex:Student ρ6, ρ7 {{s},{s,p}}
t16 &b foaf:firstName Emma ρ3, ρ4, ρ6 {{p,o},{o},{s}}
t17 &b ex:collaborateWith &a ρ6 {{s}}
t18 &b ex:completedProject 1 ρ6 {{s}}
t19 &c rdf:type ex:Teacher ρ6 {{s}}
t20 &c foaf:firstName Allen ρ1, ρ4, ρ5, ρ6 {{s,p,o},{o},{s}}
t21 &c ex:completedProject 20 ρ6 {{s}}
t22 &c ex:area Physics ρ2, ρ6 {{p,o},{s,p},{s}}

Figure 5.3: ACPs and matching permissions of graph G1.

Of particular interest are the sets associated with allowed and forbidden permissions in a
policy P because they will be used to determine the restrictions imposed on the triple.

33

Example 5.5 (example 5.1 continued) If we have A1 = {ρ1, ρ4} and F1 = {ρ2, ρ3}, the
triples that have a non-empty set of matching permissions are:

s p o M(G1,A1, t) M(G1,F1, t)

t13 &a foaf:firstName William S1 ∪ S4 ={{s,p,o},{o}} –

t16 &b foaf:firstName Emma S4 ={{o}} S3 = {{p,o}}

t20 &c foaf:firstName Allen S1 ∪ S4 = {{s,p,o},{o}} –

t22 &c ex:area Physics – S2 = {{p,o},{s,p},{s}}

◻

Example 5.6 (example 5.1 continued) Intuitively, a policy P2 = (A2,F2) with A2 = {ρ1}
and F2 = {ρ2, ρ3} enforces that the tuples controlled by ρ1 can be accessed by the user,
but the ones controlled by ρ2 and ρ3 cannot be seen by him. The triples with non-empty
matching permissions are:

Triple ACP M(G1,A2, t) M(G1,F2, t) Availability

t13 ρ1 S1 = {{s,p,o}} – Accessible

t16 ρ3 – S3 = {{p,o}} Inaccessible

t20 ρ1 S1 = {{s,p,o}} – Accessible

t22 ρ2 – S2 = {{p,o},{s,p},{s}} Inaccessible

We should be able to access the triples t13 = (&a, foaf:firstName, William) and t20 = (&c,
foaf:firstName, Allen) thanks to the security set S1. The rest of the tuples in Graph G1

should be hidden. Note that in this case there is no conflict between the allowed and
forbidden matching permissions. ◻

Given a set of security patterns S , we denote by S⊆ (and S⊇ respectively) the set of security
patterns that are subsets (superset), of the elements in S . More formally, S⊆ = {b′∣b′ is a
security pattern, exists b ∈ S and b′ ⊆ b}, and S⊇ = {b′∣b′ is a security pattern, exists b ∈ S
and b′ ⊇ b}. In other words S⊆ (and S⊇) contain the descendants (ancestor) of the elements
in S in the security set tree. Also, let S↓ be a set of permissions such that

i. S↓ ⊆ S;
ii. for all b ∈ S there exists b′ ∈ S↓ such that b′ ⊇ b; and

iii. there are no b, b′ ∈ S↓ such that b ⊆ b′.

34

Definition 5.4 Given a graph G, the conflict-clear permissions for a triple t over a policy
P = (A,F) is the set of permissions CCP(G,P, t) = (M(G,A, t)⊆ ∖M(G,F , t)⊇)↓. ◻

Intuitively, the conflict-clear permissions corresponds to the parts of the triple for which
the policy allows access after removing all conflicts. Note that the set of conflict-clear per-
missions will always be one of the following: {{s}}, {{o}}, {{s,p}}, {{p,o}}, {{s,p,o}},
{{s}, {o}}, {{s}, {p,o}}, {{s,p}, {o}} or {{s,p}, {p,o}}. With the CCP of a triple we
know exactly what we can show.

Example 5.7 (example 5.4 continued) Consider the graph G1 and an access control policy
P3 = (A3,F3), A3 = {ρ1, ρ2, ρ3} and F3 = {ρ5}.

From the access control policy P3 we get the following matching permissions:

s p o M(G1,A3, t) M(G1,F3, t)
t13 &a foaf:firstName William S1 ={{s,p,o}} –
t16 &b foaf:firstName Emma S3 ={{p,o}} –
t20 &c foaf:firstName Allen S1 ={{s,p,o}} S5 ={{o}}
t22 &c ex:area Physics S2 ={{s,p},{p,o},{s}} –

Now we need to determine the CCP of each triple using the definition CCP(G,P, t) =
(M(G,A, t)⊆ ∖M(G,F , t)⊇)↓.

The CCP of triples t13 and t16 will be the same as their security sets, CCP(G1,P3, t13) =
CCP(G1,P3, (&a, foaf:firstName,William)) = ({s,p,o}⊆ ∖ ∅⊇)↓ = ({{s,p,o},{s,p},{p,o},
{s},{o}})↓ = {{s,p,o}} and CCP(G1,P3, t16) = {{p,o}}.

The only triple with conflicting permissions is t20 = (&c, foaf:firstName, Allen), and its
conflict-clear permission is CCP(G1,P3, t20) = CCP(G1,P3, (&c, foaf:firstName,Allen)) =
({s,p,o}⊆∖{o}⊇)↓ = ({{s,p,o},{s,p},{p,o},{s},{o}}∖{{s,p,o},{p,o},{o}})↓ = ({{s,p},
{s}})↓ = {{s,p}}.

To obtain the CCP of triple t22 we need to determine the security sets that subsume the rest,
CCP(G1,P3, t2) = ({{s,p},{p,o}, {s}})↓ = {{s,p},{p,o}}. The following table resumes
the results.

◻

35

M1 =M(G1,A3, t)
⊆ M2 =M(G1,F3, t)

⊇ M1 ∖M2 CCP
t13 {{s,p,o},{s,p},{p,o},{s},{o}} {{s,p,o}}
t16 {{p,o},{o}} {{p,o}}
t20 {{s,p,o},{s,p},{p,o},{s},{o}} {{o},{p,o},{s,p,o}} {{s,p},{s}} {{s,p}}
t22 {{s,p},{p,o},{s},{o}} {{s,p},{p,o}}

Definition 5.5 Given a triple t and a non-empty security pattern b ⊆ {s,p,o}, the anonymized
triple Anon(t, b) = t′ with t′[a] = t[a] for a ∈ b and t′[a] = :λ otherwise, in which :λ de-
notes a fresh blank node. ◻

Intuitively, the fresh blank node :λ hides a value that the user is not permitted to see.
Considering that the predicate of an anonymized triple can be a blank node, we are now
working with generalized RDF triples. A generalized RDF triple is a triple in which its
subject, predicate and object can be an IRI, a blank node or a literal [Gro14a].

Considering also that the only difference between the triples we produce to hide infor-
mation with the standard triple is that the predicate can be a blank node, our anonymized
triples could be transformed into standard triples by creating a URI to replace the predicates
hiding information through blank nodes.

Definition 5.6 Given a graph G and a policy P , the anonymized graph Anon(G,P) = {t′∣
t ∈ G, b ∈ CCP(G,P, t) and t′ = Anon(t, b)}. ◻

Example 5.8 (example 5.7 continued) Given that we already have the CCP of triples t13,
t16, t20 and t22 we can generate Anon(G1,P3), graph composed by anonymized triples
according to the rules of the policy P3. The graph Anon(G1,P3) can be seen in Figure 5.4.

◻

s p o
Anon(t13,{s,p,o}) ⇒ &a foaf:firstName William
Anon(t16,{p,o}) ⇒ :λ1 foaf:firstName Emma
Anon(t20,{s,p}) ⇒ &c foaf:firstName :λ2
Anon(t22,{s,p}) ⇒ &c ex:area :λ3
Anon(t22,{p,o}) ⇒ :λ4 ex:area Physics

Figure 5.4: Graph Anon(G1,P3).

Now we need to define the answers to a query in the presence of an access control policy
as the traditional answers but over the anonymized graph.

36

Definition 5.7 Given a graph G, an access control policy P and a conjunctive query CQ,
the answers to query CQ from G under P is the set:

AnsP(CQ,G) =Ans(CQ,Anon(G,P)) ◻

Example 5.9 If we execute on graph Anon(G1,P3) the query CQ4 = SELECT ?x, ?z WHERE

(?x, foaf:firstName, ?z), we obtain AnsP3(CQ4,G1) = Ans(CQ4,Anon(G1,P3)) = {{(?x,
&a), (?z,William)}, {(?x, :λ1), (?z,Emma)}, {(?x,&c), (?z, :λ2)}}, while for CQ5 =
SELECT ?z WHERE (?x, foaf:firstName, ?z) we get AnsP3(CQ5,G1) =Ans(CQ5,Anon(G1,

P3)) = {{(?z, William)},{(?z,Emma)}, {(?z, :λ2)}}. ◻

5.3 Justifications of Design Decisions

The choice of syntax and semantics for the access control policies was not trivial since it
involved a lot of analysis to ensure that they were intuitive, easy to use and expressive while
ensuring well behaved properties such as avoiding leak of information. In what follows we
will discuss some of the issues that were considered at design time.

5.3.1 The Security Set Tree.

In order to provide a fine-grained access control, we opted for managing the access to
parts of a triple. Initially one could think that we are talking about imposing restrictions
directly over the subjects {s}, predicates {p} and objects {o}. However, that would be
like controlling access to the URIs in the RDF graph based on their presence as subjects,
predicates or objects. We would be neglecting the fact that triples are the smallest data unit
of RDF, so it does not make sense to leave them out of the definition of the permissions.

To preserve the sense given to the URIs by a triple, we need to control the access to its
subject, predicate, object and the relationships between them. By relationships we are
referring to the facts that can be extracted from an entire triple, as well as a triple that is
missing one of its parts. This is it, the subject is related to a predicate {s,p}, the predicate
is related to an object {p,o}, the subject is related to an object {s,o}. Therefore, we need
control over the security patterns {s,p,o}, {s,p}, {p,o}, {s,o}, {s}, {p} and {o}

Now if we compare this set with the security set shown in Definition 5.1 we can notice

37

that the patterns {s,o} and {p} are not present in it. We decided against considering them
because no interesting ACPs could be generated with them. The set {s,o} was removed
from the possible security sets because when a triple t is being granted access to {{s,o}}
the value of p can be generally inferred. Allowing access only to the predicate of a triple
would only let us ask if there exists a subject that has an object related to it by that predicate
in the graph, query that does not really tell us much if it is not accompanied by an specific
subject or object. Denying access to the predicate would be the same as forbidding access
to {s,p}, {p,o} and by extension to {s,p,o}, so it can be subsumed by these patterns.

We also studied whether removing security sets {s} and {o}, from the security tree, would
produce policies that are as expressive as the ones defined including them or not. For this
to be possible, each policy defined with security sets from our current security tree must
be able to be rewritten using ACPs without {s} and {o}. Considering the same semantics
as before, the sets of possible CCP for a triple obtained from policies defined with and
without {s} and {o} are equal. Sets {{s,p}}, {{p,o}}, {{s,p,o}} are easily obtained by
adding an ACP that allow access to them and {{s,p}, {p,o}} can be obtained by having
a triple affected by two ACPs, each one of them allowing access with one of the first two
security patterns. Sets {{s}}, {{o}}, {{s}, {o}} can be obtained if two ACPs grant and deny
access to a triple and both have the same security set. Finally, sets {{s}, {p,o}}, {{s,p},
{o}} can be obtained if a triple is affected by an ACP granting access to the entire triple and
an ACP denying access to {{s,p}} and {{p,o}}, respectively.

The problem lies in that, without these security patterns, we lose the capability of forbid-
ding and granting the access to specific subjects and objects from a triple. For example, in
order to hide the telephone number of the people in a system with triples of the form (ID,
:phoneNum, number), we need an ACP that restrict the access to the pair {p,o} of those
triples. If the user has access to those entire triples thanks to another permission, the result-
ing CCP will be {{s,p}, {o}}, thus the user will have access to the numbers even though
he does not know to which person they belong.

If we wanted to maintain the same CCP of the initial policy, new rules would be needed
for each triple in the graph. Another possibility is changing the semantics and consider a
smaller security set tree that lacks the patterns {s} and {o}, however, it is more intuitive
to try to forbid the access to the subject of a triple than forbidding the access to the pair
subject-predicate of it, action that can be a little confusing, making people believe that the
access to the predicate is being forbidden.

38

5.3.2 Triple Level Coherence

The way in which we defined the permissions and policies was inspired by the work in
[FFMA10]. Because of this, when the security sets of all allowed ACPs in a policy are
{{s,p,o}} and the ones of all forbidden ACPs are {{s},{o}}, we have a policy that should
be equivalent to one expressed with their definition. Their policies are defined as P =
(P,N, ds, cr), where P and N are the sets of permissions granting and denying access to
triples respectively, and so P and N are equivalent to our sets A and F ; ds and cr represent
the default permission and the conflict resolution rule, both of which deny the access to
triples in our policies, situation represented in both cases with the sign “−”. Therefore, if
all the ACPs in the set A of a policy have S = {{s,p,o}} and all the ACPs in the set F of
that policy have S = {{s},{o}}, that policy is equivalent to a policy P = (A,F ,−,−) as
defined in [FFMA10].

The accessible triples of a graph G for the policy we defined above, using their notation, is
the set [[(A,F ,−,−)]]G = TA ∖ TF , with TA = ⋃R∈A[[R]]G , TF = ⋃R∈F[[R]]G and R is
a permission. They defined [[R]]G as the triples in G that are mapped from the mappings
obtained from ⟪R⟫G , thus [[(A,F ,−,−)]]G is the set of triples that are allowed thanks to
permissions minus the set of triples that are forbidden thanks to permissions.

In contrast, we defined Anon(G,P) as the triples in G whose CCP is not empty. The CCP is
defined in terms of the matching permissions of the triple, and the matching permissions are
defined from the mappings of the ACPs for the set of allowed and forbidden permissions. As
all security sets in A and F are {{s,p,o}} and {{s},{o}}, respectively, when we compute
the CCP of the triples in G, we will be determining if the triple is allowed by the ACPs in
A and if it is forbidden by the ACPs in F , and the possible results from the subtraction of
these sets of matching permissions are that the triple is allowed or forbidden entirely.

Therefore, our policies are semantically equivalent to the ones in [FFMA10] when all se-
curity sets in A are {{s,p,o}} and all security sets F are {{s},{o}}.

5.3.3 Policy Consistency

After the policy has been defined, we need to check if it is possible to obtain or infer data
that has been forbidden when a user is performing queries over an RDF store. We will say

39

that a policy is inconsistent when it allows a user to access information that he should not
be able to by combining allowed information. In this section we show that our policies do
not have security leaks.

Policy consistency has been studied for XML Documents [BCF07]. They defined that con-
sistent policies are the ones for which it is not possible to simulate a forbidden update
through a sequence of allowed updates. Intuitively, for our policies that control read ac-
cess, we expect a policy to be consistent if it is not possible to obtain forbidden data by
combining the answers obtained by a series of queries over the data for which the user has
access.

Since SPARQL queries do not return triples but as many columns as variables in the
SELECT, we use SQL to combine the answers.

Definition 5.8 A policy P is inconsistent if there exists SPARQL queries Q1,Q2, . . . ,Qn

and a SQL query Qs such that for all RDF graphs G:

i. There exists triple t1 ∈ Result and t1 ∉ Anon(G,P)
ii. Result ⊆ G

where Result =AnsSQL(Qs, (AnsP(Q1,G)∪AnsP(Q2,G) ∪ ⋅ ⋅ ⋅ ∪AnsP(Qn,G)))
◻

This definition states that a policy will be inconsistent if the following conditions are met:
the result of combining the answers of multiple SPARQL queries through a SQL query
contains at least one triple that is not present in the anonymized graph, and the result set
does not contain triples that are not part of the original graph, which means that at least one
triple in the result set is a hidden triple from the original RDF graph. It is worth noting that
the result from a query AnsP(Qk,G), for k between 1 and n, is the result given by query
Ans(Qk,Anon(G,P)), which means that to perform the query, we first need to obtain the
anonymized graph.

It is required that the result set does not contain nonexistent triples. If we allowed them,
all policies could be inconsistent because performing a cartesian join between subjects,
predicates and objects could be enough to get triples that could be hidden from the user,
although most of the triples generated in this way would be triples that make no sense.
Since the user cannot distinguish between the correct and incorrect triples, there is no real

40

triple leak.

We know that there are policies defined at triple level, like the ones defined in [FFMA10],
that are consistent due to the way they are defined, so in order to ensure that all policies
defined with our model are consistent, we start by analyzing the case when all defined
permissions are applied over entire triples. When the access is controlled at triple level, the
queries are computed over the graph without considering hidden triples, so that there is no
way for the answers to contain forbidden data. Trying to infer new triples from the allowed
data is the same as guessing.

If we allow access to triples that only have the subject or object visible, a user could know
about their presence in the graph but he can assume nothing about the predicate and ob-
ject/subject being hidden. To be able to notice the existence of subjects and objects he was
not aware of but has the right to access them, a user would have to ask for all the triples
that he can access that have blank nodes as predicates. Combining this set of triples with
the rest of the triples the user can see will not leak hidden information. This is because
mixing the subjects and objects that are alone with predicates obtained from other triples
will produce triples that have no guaranty of corresponding to the hidden data.

Thereby, if we also allow users to see the others parts of a triple, by allowing access to
the triples of the form (s,p, :λ) and (:λ,p,o), a user could make assumptions about the
relations between the triples that lack a subject and the ones that lack an object if they have
the same predicate, and between the triples that lack a subject or object and the triples that
only have visible their subject or object. Considering that all :λ nodes will be fresh blank
nodes, they would need first to determine what triples have a blank node as the subject or
object and what triples have only a subject or object, to later combine them to create new
triples. There will be some particular cases in which these new triples will be in the original
graph, however there is no way for the user to know if they are indeed triples from the graph
or false information, thus there is no data leak. If the triples (s, :λ, :λ), (:λ, :λ,o) have
predicates that are not present in the anonymized graph, the users cannot infer the hidden
data.

The policies defined with our model are always consistent, even when the RDF graphs
are of a size considerably small. This is thanks to the definition of Anon(G,P) in terms
of the CCP and, as stated before, the form of the security tree. The CCP ensures that
each triple in Anon(G,P) hides the necessary information, while the security tree ensures

41

that Anon(G,P) cannot have triples of the form (s, :λ,o) whose predicate can be easy to
guess depending on the meaning of the subject and object, for example, from the triple
(Dave, :λ, Student) we can infer that the predicate is rdf:type or is a, while in (Dave, :λ,
18) the predicate could be age, approved classes or day of birth, predicates that are not
related but, depending on the type of data being stored on the graph, some of them could be
discarded. Thus, when the size of the graph is considerably small, one could think that it is
easy to create new triples and discard the triples that contain false information, however, the
policy is still consistent because triples created this way are not security leaks, but educated
assumptions.

5.3.4 The Need for Forbidden Permissions

To obtain the anonymized graph generated as result of a policy, we determine the set of
CCP of each triple in the graph. If we consider that the CCP of a triple consists only of its
allowed parts, we could think in rewriting the policies defined with allowed and forbidden
permissions as policies that only have allowed permissions. However, this is not possible
because policies without forbidden permissions are not as expressive as the policies that
have them.

The main factor that prevent us from rewriting the policies is the fact that RDF graphs may
change over time. When the original graph changes, the anonymized graph of each role
will change according to its policy, adding triples from the original graph, wherein some of
their parts could be hidden, and deleting triples from it.

The new triples added and deleted could make the ACPs act over a set of triples that is
different from the one before. If we remove the possibility to state explicitly what triples
need to be hidden, it is possible that some of the triples should be hidden for some roles but
they are not because there is no way to state that they must not be visible.

Example 5.10 Considering the graph and ACPs from section 5.2.1, if we apply policy
Pex6 = (Aex6,Fex6), with Aex6 = {ρA4} and Fex6 = {ρF1, ρF2}, to the graph Gex, we will
get the anonymized graph Gex6 as shown in Figure 5.5.

ρA4 = APPLY SA4 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z) SA4 = {{s,p,o}}

ρF1 = APPLY SF1 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z), (?z, ?v, ?w) SF1 = {{s}}

42

ρF2 = APPLY SF2 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z), (?m, ?n, ?y) SF2 = {{o}}

s p o s p o
a b c ⇒ a b :λ1
d c e ⇒
e f b ⇒ e f b

Figure 5.5: Graph Gex (left) and its anonymized graph Gex6 (right)

The user will have access to one entire triple in the new graph and to the pair (subject,
predicate) of the first triple of the original graph. The triple (d, c, e) will not be accessible
because the access to {s} and {o} has been forbidden. Therefore, we could attempt to
rewrite this policy as Pnew = (Anew,Fnew), with Anew = {ρNA1, ρNA2} and Fnew = ∅.

ρNA1 = APPLY SNA1 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z), ?x = a SNA1 = {{s,p}}

ρNA2 = APPLY SNA2 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z), ?y = f SNA2 = {{s,p,o}}

Now, if we add the triple (c, f, g) to the original graph, and name it GexNew, the following
is going to happen: triple (a, b, c) needs to be entirely hidden in the anonymized graph,
because it is now affected by ρF1 and ρF2, and triple (c, f, g) needs to be added to it,
because it is affected by ρA4. Even though (c, f, g) will be added without problems to the
anonymized graph under policy Pnew, thanks to permission ρNA2, (a, b, :λ1) will not be
removed from the anonymized graph controlled by the rewritten policy. Therefore, it is not
feasible to rewrite a policy without using forbidden permissions in this way. These graphs
can be seen in Figure 5.6.

s p o s p o s p o
a b c a b :λ1
d c e
e f b e f b e f b
c f g c f g c f g

Figure 5.6: Graph GexNew (left), Anon(GexNew,Pex6) (middle) and Anon(GexNew,Pnew)
(right). ◻

To make rewriting the policies to have only allowed permissions, we would need a more
expressive language. If we add to the CQs the possibility of using the MINUS statement, we
could rewrite the ACPs from the A set into permissions that do not affect forbidden triples.
Continuing the above example, if we allow access to the entire triples with an ACP, and

43

then forbid some parts of them, we are going to have to create the following permissions
for our rewritten policy:

• A permission that allows access to entire triples, setting aside the forbidden triples.
This will be achieved by using the conditions of all forbidden permissions with
MINUS statements. For ρMi1, the first MINUS will delete the triples that are affected
by ρF1, and the second MINUS the ones that are affected by ρF2.
ρMi1 = APPLY SMi1 SELECT ?x, ?y, ?z WHERE {(?x, ?y, ?z) MINUS {(?x, ?y, ?z),
(?z, ?v, ?w)} MINUS {(?x, ?y, ?z), (?m, ?n, ?y)}} SMi1 = {{s,p,o}}

• For each forbidden permission in F , if its security set is not {{s,p,o}}, we will allow
access to the complement of its security set with a new permission, excluding the
triples affected by forbidden permissions sharing this security set with MINUS state-
ments. For example, the security set of the rewritten permission of ρF1 will be {p,o},
MINUS the other forbidden permissions with security sets {o}, {p,o}, because they
could affect the same triples .

• For forbidden permission that affect triples with a security set {s,p,o}, two new
permissions need to be created, one that affects {s,p} and other that affects {p,o},
following the same rules as above.

Example 5.11 (example 5.10 continued) The policy Pex6 would be rewritten as Pnew2 =
(Anew2,Fnew2), with Anew2 = {ρMi1, ρMi2, ρMi3} and Fnew2 = ∅.

ρMi1 = APPLY SMi1 SELECT ?x, ?y, ?z WHERE {(?x, ?y, ?z) MINUS {(?x, ?y, ?z), (?z, ?v, ?w)}

MINUS {(?x, ?y, ?z), (?m, ?n, ?y)}} SMi1 = {{s,p,o}}

ρMi2 = APPLY SMi2 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z), (?z, ?v, ?w) SMi2 = {{p,o}}

ρMi3 = APPLY SMi3 SELECT ?x, ?y, ?z WHERE (?x, ?y, ?z), (?m, ?n, ?y) SMi3 = {{s,p}}

◻

A similar process has to be executed for each ACP in the A set. The difference is that we
need to properly consider the security set of the ACP being rewritten and its relation with
the security sets of the ACPs in F . So, in the worst case, if all the ACPs in A allow access
to the set {s,p,o}, they would have to be rewritten into five permissions each, one for each
security pattern. To calculate the size of all the new ACPs we are going to denote by ∣F ∣b
the number of ACPs in F explicitly forbidding the security pattern b. The size of all the

44

new ACPs, for the {s,p,o} set, will grow by adding ∣F ∣ MINUS statements. The size of the
ACPs, for the {s,p} set, will grow by adding ∣F ∣sp + ∣F ∣s MINUS statements. The size of the
ACPs, for the {p,o} set, will grow by adding ∣F ∣po + ∣F ∣o MINUS statements. The size of the
ACPs, for the set {o}, will grow by adding ∣F ∣o MINUS statements, and for the {s} set, the
size will grow by adding ∣F ∣s MINUS statements. Thus, the size of the requests that need to
be performed to compute each ACP will be ∣F ∣ + ∣F ∣sp + 2 × ∣F ∣s + ∣F ∣po + 2 × ∣F ∣o, which is
at most 3 × ∣F ∣.

Therefore, in this way, we can rewrite the original policy as a policy that only contains
allowed permissions. Nonetheless, we can easily note that the process of rewriting a single
permission fromA gets more complex the bigger the set F . Another problem would be that
our new policy becomes more expensive to compute, because the quantity of comparisons
that need to be performed depends of the size of the WHERE statement. And if we consider
an enforcement mechanism that stores all anonymized graphs, there are no reasons to in-
crement the time it takes to generate them, if the space used to store the graphs will be
exactly the same.

Chapter 6

Policy Enforcement

In most settings, policy enforcement mechanism are based on either views or query rewrit-
ing. When deciding which approach is better suited the following variables need to be
considered:

• The time it takes to compute the answers.
• Frequency with which the data is updated: materialized views would need to be

recomputed. However, some incremental strategies can be considered.
• Existence and size of the rewriting.
• Space used by the materialized view.

We are adopting the views approach, by specifying an enforcement mechanism that uses
directly the semantics as described before. This approach has the advantage of being able
to solve queries faster than an implementation based on query rewriting, since the queries
do not have to be preprocessed to be computed. Besides, with our approach, the forbidden
triples are not used to obtain the answers. Thus, no time is wasted filtering triples from the
answer set.

One of the disadvantages of materialized views is the extra amount of data since both the
original graph and the materialized views for each role are stored. In contrast, mecha-
nisms using the query rewriting approach would not require that much space for answering
queries, since they perform a modified query on the original graph. To reduce the space
needed by the views approach, subgraphs containing the triples that are shared by multiple
roles could be defined and used, instead of repeating those triples in each graph.

A mechanism based on the query rewriting approach needs to rewrite the queries in a way
that it does not consider the forbidden information. A simple query rewriting mechanism
could add, to each query, a filter for each ACP in the set of forbidden permission of the
policy. Then, it would need to add filters, that consider the set of allowed permissions,
in order to separate the triples that are accessible from the ones forbidden by default. If

45

46

the process of computing each of these filters is like performing a query on the graph, the
filtering process could be done in a reasonable time when the size of the policy is small,
but as the size of the policy increases, computing a single rewritten query becomes a more
demanding task because, in this case, the number of filters is directly proportional to the
number of ACPs.

Thus, we consider a view based policy enforcement algorithm. Indeed, we will use the
anonymized graph as the view. Hence, to enforce an access control policy, a new RDF
Graph will be created for each defined role, from the original graph, to be used by users to
perform their queries, accordingly with their roles. In Section 7 we study how to decrease
the size of anonymized graphs in the presence of several roles.

6.1 Enforcement Algorithm

In order to compute the anonymized graph, we first need an algorithm to compute the set of
allowed matching permissionsM(G,A, t) and forbidden matching permissionsM(G,F , t)
of each triple. Given a graph G and a generic set of ACPs Π, Algorithm 1, called ComputeM,
creates a function r such that given a triple t, r(t) =M(G,Π, t). For efficiency purposes,
the matching permissions for all the triples in the graph are computed at the same time.
Algorithm ComputeM starts by initializing the function r to return an empty set for all
triples (line 1). Next, it computes the answers to all the queries in the ACPs in Π (lines 2-4)
and adds the respective security set to r(t) for every triple t in the result (lines 5-6).

Now, the anonymized graph Anon(G,P) can be calculated using Algorithm 2, named
Anonymize. The algorithm starts by creating an empty graph G′ to which we will add
all the triples of the anonymized graph (line 1). Next, it computes functions rA and rF that

Algorithm 1 ComputeM (G,Π)

Input: RDF Graph G, set of permissions Π
Output: A function r such that given a triple t, r(t) =M(G,Π, t)

1: r ← function that given a triple returns an empty set
2: for all (APPLY S SELECT (?x,?y,?z)WHERE TP,C) ∈ Π do
3: Q← SELECT (?x,?y,?z)WHERE TP,C
4: T ←Ans(Q,G)
5: for all t ∈ T do
6: r(t)← r(t) ∪ S

return r

47

Algorithm 2 Anonymize (G,P)

Input: RDF Graph G, Policy P = (A,F)

Output: A graph G′ that represents Anon(G,P)
1: G′ ← ∅

2: r
A
←ComputeM(G,A)

3: r
F
←ComputeM(G,F)

4: for all t ∈ G do
5: if r

A
(t) ≠ ∅ then

6: SA ← r
A
(t)⊆

7: if r
F
(t) ≠ ∅ then

8: SF ← r
F
(t)⊇

9: SA ← SA ∖ SF
10: SA ← S↓A
11: for all b ∈ SA do
12: t′ ← (:λ, :λ, :λ)
13: if s ∈ b then t′[s]← t[s]

14: if p ∈ b then t′[p]← t[p]

15: if o ∈ b then t′[o]← t[o]

16: G′ ← G′ ∪ {t′}
return G′

for each triple return the set of security patterns that are respectively allowed and forbidden
(lines 2-3). The CCP for each triple that has at least one allowed matching permission can
be computed using rA and rF (lines 6-10). Once these permissions have been determined,
an anonymized triple is computed for each security pattern (lines 11-15) and added to the
anonymized graph (line 16).

Now that we are able to determine the anonymized graph of a graph G with respect to a
policyP , we can perform queries over Anon(G,P). As we are interested in the enforcement
method for multiple queries, Algorithm 6, called Enforcement, will be used to compute
the answers to a list of conjunctive queries CQ = [CQ1, . . . ,CQn] that are performed on the
protected graph. This algorithm starts by obtaining the anonymized graph Anon(G,P) and
creating an empty list of URIs L (lines 1-2), list to which we will add all the URIs that will
be given as result. Then, it computes the answers to all the queries in the list CQ (lines 3-4)
and adds the rest of the results to the list of URIs L (line 5).

48

Algorithm 3 Enforcement (G,P,CQ)

Input: An RDF Graph G, a policy P = (A,F) and a list of conjunctive queries CQ =

[CQ1, . . . ,CQn]

Output: A list of URIs L
1: G′ ←Anonymize(G,P)
2: L← empty list
3: for all CQ ∈ CQ do
4: R ←Ans(CQ,G′)
5: L← Add R at the end of the list

return L

6.2 Time Cost Analysis

We will study the cost of makingm queries over a graph G with n triples and which is under
a policy P = (A,F), where ∣A∣ is a and ∣F ∣ is f . Figure 6.1 contains a summary of the
parameters used in this section. This cost is associated to the three algorithms presented
above, and to be able to obtain it, we need to determine first the cost of performing any
query.

Variables Meaning
m number of conjunctive queries in CQ, i.e. ∣CQ∣
n number of triples in a graph G, i.e. ∣G∣
a number of ACP in A, i.e. ∣A∣
f number of ACP in F , i.e. ∣F ∣

pat(CQ) number of triple patterns in a query CQ
com(CQ) number of comparisons in a query CQ
pCQmax maximum number of patterns in a query in the list of queries

CQ
cCQmax maximum number of comparisons in a query in the list of

queries CQ
qGCQ running time of Ans (CQ,G)
pΠ
max maximum number of patterns in an ACP in Π
cΠ
max maximum number of comparisons in an ACP in Π
pmax max{pCQmax, p

Π
max}

cmax max{cCQmax, c
Π
max}

mpGΠ running time of ComputeM (G,Π)
hGP running time of Anonymize (G,P)

Figure 6.1: Summary of parameters.

49

6.2.1 Ans(CQ,G)

We want the cost of answering query CQ over G in terms of the size of the query and the
graph. The size of the query is measured in terms of the numbers of triple patterns and
comparisons in it, denoted pat(CQ) and com(CQ) respectively. The size of the graph is the
number of triples in it, this is, n = ∣G∣.

The cost of determining if a triple matches a pattern is constant, so checking if a pattern
matches n triples in a graph is O(n). In the worst case, each pattern of the query would
match the n triples and we would need to compare them all to check for the common
variables in the triple patterns to determine the mapping that satisfy all of them. Thus, the
cost of matching all the triple patterns is O(npat(CQ)). For every mapping (which in the
worst case are O(npat(CQ))), we also need to check the satisfaction of the comparisons
in the query. As a consequence, Ans(CQ,G) runs in O(com(CQ)×npat(CQ)). We will
denote this running time by qGCQ .

6.2.2 ComputeM (G,Π)

Line 1 of Algorithm 1 is O(n) because it initializes the function for every triple. The for

all statement that follows will run ∣Π∣ times. Line 3 runs in constant time and line 4 is
qGQ. The for all statement in line 5 will be executed ∣T ∣ which, in the worst case, is n.
The cost of adding security sets to the function r is constant (line 6). If we denote by
pΠ
max the maximum number of patterns in an ACP in Π, and by cΠ

max the maximum number
of comparisons in an ACP in Π, we get that the cost of running ComputeM (G,Π) is
O(∣Π∣ × cΠ

max × npΠ
max). We will denote this running time by mpGΠ. If we consider data

complexity, ComputeM runs in polynomial time.

6.2.3 Anonymize (G,P)

Creating an empty graph takes a constant amount of time (line 1). Line 2 runs in mpGA =
O(a × cAmax × npAmax) and line 3 runs in mpGF = O(f × cFmax × npFmax). The for all statement
in line 4 will be executed n times. Lines 5 to 10 take a constant amount of time since
SA and SF can contain at most five security sets. Lines 11 to 16 run in constant time as
well, because here, SA contains at most two b, creating a triple and replacing its subject,

50

predicate and/or object with the values from some t in G, and adding the new triple to
the graph G′ take a constant amount of time. Therefore, the cost of running Anonymize

(G,P) is O(a× cAmax ×npAmax +f × cFmax ×npFmax). We can simplify this formula considering
the maximum number of patterns and comparisons in the policy P , instead of the maximum
number of patterns and comparisons in the sets A and F . Thus, we obtain that the cost of
running Anonymize (G,P) is O((a + f) × cPmax × npPmax). We will denote this running
time by hGP .

6.2.4 Enforcement (G,P,CQ)

The running time of algorithm Enforcement depends on hGP and the cost of performing
every query in CQ over graph G.

Line 1 is hGP = O((a + f) × cPmax × npPmax), because it computes the anonymized graph of
G. Creating an empty list takes a constant amount of time (line 2). The for all statement
in line 3 will be executed m times. The running time of answering a query is qG

′

CQ, and
considering that, in the worst case ∣G′∣ = 2 × ∣G∣ (see Section 6.3), we have qG

′

CQ equals

to O(cCQ
max × (2n)pCQ

max) (line 4). In line 5, adding the answers to the list takes a constant
amount of time. So, the cost of running Enforcement (G,P,CQ) is O((a + f) × cPmax ×
npPmax +m × cCQ

max × (2n)pCQ
max).

We can simplify this considering the maximum number of patterns and comparisons be-
tween the conjunctive queries in CQ and the ACPs in the policy P , with pmax and cmax,
respectively. At the end, the cost of running Enforcement (G,P,CQ) will be O((a + f +
m) × cmax × (2n)pmax), which is polynomial on the size of G under data complexity.

We calculated the cost of the enforcement algorithm for the case in which we have to
anonymize the graph each time a set of questions is performed, however, we are supposed to
store the anonymized graphs, and recompute them only when the original graph is modified.
In this way, the cost of the enforcement algorithm is reduced, so when a user with a certain
role performs a set of CQ over a graph that already has an anonymized graph for that role,
we can ignore the cost of anonymizing it. Thus, the cost of enforcing the policy with
algorithm Enforcement, for this case, will be O(m × cmax × (2n)pmax).

51

6.3 Space analysis

For a number of roles r, each with its respective policy, and a graph G which contains n
triples, the space that an anonymized graph will use is 2 × ∣G∣ = 2 × n, this is because each
triple from graph G can be present in Anon(G) and could use the space of two triples, if the
security set applied to it is one of the following: {{s}, {o}}, {{s}, {p,o}}, {{s,p}, {o}} or
{{s,p}, {p,o}}. So the maximum total space that will be used to store all the anonymized
graphs, in the worst case, is twice the size of the original graph multiplied by the number
of roles, i.e., O(r × 2 × ∣G∣) = O(2 × r × n) = O(r × n).

Chapter 7

Management of Multiple Roles

In this section we study the problem of dealing with multiple roles that might have different
policies and, therefore, different anonymized graphs. Considering that every access control
policy is defined for a specific role, and that our policy enforcement algorithm relies in
creating and storing an additional graph for each policy, there exists the possibility that any
triple could be present in multiple anonymized graphs. This clear duplicity of information
results in too much storage space wasted. Thus, we need to consider ways in which we can
reduce the quantity of wasted space.

In order to efficiently store all the anonymized versions of a graph, we could determine
subgraphs which contain the triples that are shared between the anonymized graphs of
different roles, so when a user needs his data, the system will answer his queries from the
anonymized graph obtained from composing all the subgraphs that are part of it.

We want to be able to store all the anonymized graphs in a compact way. To do this, we will
first treat all blank nodes created in the process of anonymizing the graphs as a constant λ,
this is a triple (a,b, :λ1) which is added when anonymizing is equal to (a,b,λ). A problem
with this replacemente is that if the anomymized graph has, for example, (a,b, :λ1) and
(a,b, :λ2), we would get the same triple (a,b,λ). To avoid loosing the information that the
anonymized graph has two such triples, we will use a multiset (bag) semantics to represent
the graph with blank nodes replaced by λ. Also, to simplify presentation we will assume
next that the graph G has no blank nodes. The definitions can be extended by distinguishing
the blank nodes added from anonymization from the ones present in the original graph.

Definition 7.1 Given a graph G, and a policy P , the multiset anonymized graph, denoted
Anonms(G,P), is multiset obtained from Anon(G,P) by replacing each triple in Anon(G,P)
by its version with blank nodes replaced by λ. ◻

Now, as a first step to represent the anonymized graph in a compact way we want to repre-
sent the data shared by several of them.

52

53

Definition 7.2 Given an RDF Graph G, a set of policies Γ, and a subset Γ′ ⊆ Γ, the
anonymized graph for Γ′ is a multiset Anon(G,Γ′) = ⋂P∈Γ′ Anonms(G,P). ◻

If we want to efficiently store the anonymized graphs for subsets of Γ we need to get
rid of the redundancy between multisets Anon(G,Γ′) and Anon(G,Γ′′) when Γ′ ⊆ Γ′′.
For example, if t ∈ Anon(G,{P1}) and t ∈ Anon(G,{P1,P2}) it is enough to store it in
Anon(G,{P1,P2}) to reduce space. Thus, we define the reduced anonymized graph which
can be recursively defined as:

Definition 7.3 Given a graph G, a set of policies Γ, and a subset Γ′ ⊆ Γ, the reduced

anonymized graph can be recursively defined as:

Anon↓Γ(G,Γ′) = {
Anon(G,Γ′) for Γ′ = Γ

Anon(G,Γ′) ∖ (⊎Γ′⫋Γ′′ Anon
↓Γ(G,Γ′′)) else

where ⊎ is the multiset sum. ◻

Note that then we can compute the anonymized graph for each policy P ∈ Γ as Anon(G,
P) = ⊎Γ′⊆Γ,P∈Γ′ Anon

↓Γ(G,Γ′).

Example 7.1 Consider a graph G and Γ = {P1,P2,P3}. We will determine the subgraphs
Anon↓Γ(G,{P1,P2,P3}), Anon↓Γ(G,{P1,P2}), Anon↓Γ(G,{P2,P3}), Anon↓Γ(G,{P1,P3}),
Anon↓Γ (G,{P1}), Anon↓Γ(G,{P2}) and Anon↓Γ(G,{P3}). The graph Anon↓Γ(G,{P1,P2,

P3})will only contain triples that are shared by all the anonymized graphs, i.e. Anon(G,P1),
Anon(G,P2) and Anon(G,P3). Graph Anon↓Γ(G,{P1,P2}) will contain triples that are
shared exclusively by the graphs Anon(G,P1) and Anon(G,P2). Graph Anon↓Γ(G,{P2,P3})
will contain triples that are shared exclusively by Anon(G,P2) and Anon(G,P3), while
graph Anon↓Γ(G,{P1,P3}) will store the triples shared exclusively by Anon(G,P1) and
Anon(G, P3). Last, graphs Anon↓Γ(G,{P1}), Anon↓Γ(G,{P2}) and Anon↓Γ(G,{P3}) will
include the triples that are exclusive to each anonymized graph, i.e. Anon(G,P1), Anon(G,
P2) and Anon(G,P3) respectively. This is:

Anon↓Γ(G,{P1,P2,P3}) = Anon(G,{P1,P2,P3}) = Anon(G,P1) ∩ Anon(G,P2) ∩ Anon(G,P3),

Anon↓Γ(G,{P1,P2}) = Anon(G,{P1,P2}) ∖ Anon↓Γ(G,{P1,P2,P3})

= {Anon(G,P1) ∩ Anon(G,P2) } ∖ Anon↓Γ(G,{P1,P2,P3}),

Anon↓Γ(G,{P2,P3}) = Anon(G,{P2,P3}) ∖ Anon↓Γ(G,{P1,P2,P3})

= {Anon(G,P2) ∩ Anon(G,P3) } ∖ Anon↓Γ(G,{P1,P2,P3}),

54

Anon↓Γ(G,{P1,P3}) = Anon(G,{P1,P3}) ∖ Anon↓Γ(G,{P1,P2,P3})

= {Anon(G,P1) ∩ Anon(G,P3) } ∖ Anon↓Γ(G,{P1,P2,P3}),

Anon↓Γ(G,{P1}) = {{Anon(G,P1) ∖ Anon↓Γ(G,{P1,P2,P3})} ∖ Anon↓Γ(G,{P1,P2})} ∖

Anon↓Γ(G,{P1,P3}),

Anon↓Γ(G,{P2}) = {{Anon(G,P2) ∖ Anon↓Γ(G,{P1,P2,P3})} ∖ Anon↓Γ(G,{P1,P2})} ∖

Anon↓Γ(G,{P2,P3}),

Anon↓Γ(G,{P3}) = {{Anon(G,P3) ∖ Anon↓Γ(G,{P1,P2,P3})} ∖ Anon↓Γ(G,{P2,P3})} ∖

Anon↓Γ(G,{P1,P3}). ◻

Example 7.2 (example 7.1 continued) Consider graphs Anon(G,P1), Anon(G,P2) and
Anon(G,P3) as defined below. We will determine all the necessary subgraphs to compute
Anon(G,P1), Anon(G,P2), and Anon(G,P3) using space efficiently.

Anon(G,P1) Anonms(G,P1)

s p o s p o

:λ1 rdf:type ex:Student ⇒ λ rdf:type ex:Student
:λ2 rdf:type ex:Student ⇒ λ rdf:type ex:Student
:λ3 rdf:type ex:Student ⇒ λ rdf:type ex:Student
&c foaf:firstName Allen ⇒ &c foaf:firstName Allen

Anon(G,P2) Anonms(G,P2)

s p o s p o

&c rdf:type ex:Teacher ⇒ &c rdf:type ex:Teacher
:λ4 rdf:type ex:Student ⇒ λ rdf:type ex:Student
:λ5 rdf:type ex:Student ⇒ λ rdf:type ex:Student

Anon(G,P3) Anonms(G,P3)

s p o s p o

:λ6 rdf:type ex:Student ⇒ λ rdf:type ex:Student
&a foaf:firstName William ⇒ &a foaf:firstName William

&b foaf:firstName Emma ⇒ &b foaf:firstName Emma

Following the rules states previously, we will obtain Anon↓Γ(G,{P1,P2,P3}), Anon↓Γ(G,
{P1,P2}), Anon↓Γ(G,{P2,P3}), Anon↓Γ(G,{P1,P3}), Anon↓Γ(G,{P1}), Anon↓Γ(G,{P2})
and Anon↓Γ(G,{P3}).

55

Anon↓Γ(G,{P1,P2,P3})

s p o

λ rdf:type ex:Student

Anon↓Γ(G,{P1,P2})

s p o

λ rdf:type ex:Student

Anon↓Γ(G,{P1})

s p o

λ rdf:type ex:Student
&c foaf:firstName Allen

Anon↓Γ(G,{P2})

s p o

&c rdf:type ex:Teacher

Anon↓Γ(G,{P3})

s p o

&a foaf:firstName William

&b foaf:firstName Emma

Anon↓Γ(G,{P2,P3}) and Anon↓Γ(G,{P1,P3}) are empty. If a user belongs to a role that is
under a policy P1, queries will be computed over the graph Anon(G,P1) = Anon↓Γ(G,{P1,

P2,P3}) ⊎ Anon↓Γ(G,{P1,P2}) ⊎ Anon↓Γ(G,{P1,P3}) ⊎ Anon↓Γ(G,{P1}). For a user un-
der policy P2, his queries will be computed over the graph Anon(G,P2) = Anon↓Γ(G,{P1,

P2,P3}) ⊎ Anon↓Γ(G,{P1,P2}) ⊎ Anon↓Γ(G,{P2,P3}) ⊎ Anon↓Γ(G,{P2}). Last, the
queries of a user under policyP3 will be computed over the graph Anon(G,P3) =Anon↓Γ(G,
{P1,P2,P3}) ⊎ Anon↓Γ(G,{P1,P3}) ⊎ Anon↓Γ(G,{P2,P3}) ⊎ Anon↓Γ(G,{P3}). ◻

We will now modify the enforcement algorithms presented in Chapter 6 to deal with mul-
tiple roles.

7.1 Enforcement Algorithms for Multiple Roles

Now that we proposed a way to store the anonymized graphs more efficiently, we need a
method to create these graphs. Initially, we could directly use our enforcement algorithm
to obtain the corresponding anonymized graphs, and then compute the subgraphs required
to reduce the space used by the data. However, it would be less problematic if we could
obtain these subgraphs without computing the anonymized graphs, and we would require
less space too.

A brute force algorithm could first compute all anonymized graphs to compute from them

56

the reduced anonymized graphs. However, this will be very inefficient. Instead, we com-
pute for each triple in the graph the CCP of each policy and then determine to which
anonymized graphs it would belong. Indeed, the first step to compute these reduced anony-
mized graphs is to compute the set of allowed and forbidden matching permissions by using
the algorithm ComputeM, in the same way it is done for our first enforcement algorithm.
This process will be performed for both sets A and F composing each policy P .

Given a graph G and the set of policies Γ, the next step is to determine which policies in Γ

affect each one of the triples in G. This can be done with algorithm 4, called ComputePol.
It starts by initializing the function L, that will return an empty set for each triple in G and
each b in Σ (line 1). Then, it will compute for each policy the functions r

A
and r

F
, that will

return the set of security patterns that are allowed and forbidden for each triple in G (line
3-4). Each triple that has at least one allowed matching permission gets its CCP computed
using r

A
and r

F
, in the same way as with our previous algorithm. However, instead of

storing an anonymized triple, we add the policy affecting the triple to the set L (lines 6-12).

Now that we have the set of policies affecting each triple, we can anonymize the graphs
with algorithm 5, called AnonymizeAll. This algorithm first obtains the set of policies
affecting each triple (line 1) and initialize the multisets where the reduced anonymized
graphs will be stored (line 2). Then, it computes the anonymized triple for all triples in
G and security patterns in Σ (lines 3-9), and adds them to the respective multiset of the
reduced anonymized graph (line 10).

Now that we are able to determine the reduced anonymized graphs of a graph G with respect
to a set of policies Γ, a user under a policy P can perform queries over G. Again, we are
interested in enforcing the policies for a user performing multiple queries. Algorithm 6,
called RoleEnforcement, will be used to compute the answers for the user’s queries.
This algorithm starts by obtaining the reduced anonymized graphs and creating an empty
graph to store the triples allowed for the user (lines 1-2). Next, it determines the multisets
that correspond to the policy affecting the user and add their triples to graph G′, replacing
each λ by a fresh blank node (lines 3-6). Finally, it creates an empty list of URIs L,
computes the answers to all the conjunctive queries in the list CQ = [CQ1, . . . ,CQn] and
adds the results to the list L (lines 7-10).

57

Algorithm 4 ComputePol (G,Γ)

Input: RDF Graph G, set of policies Γ
Output: A function L such that given a triple t and a security pattern b, L(t, b) returns the set of

policies affecting t for security pattern b.
1: L(t, b)← ∅ for every t ∈ G and b ∈ Σ
2: for all P ∈ Γ do
3: r

A
←ComputeM(G,AP)

4: r
F
←ComputeM(G,FP)

5: for all t ∈ G do
6: if r

A
(t) ≠ ∅ then

7: SA ← r
A
(t)⊆

8: if r
F
(t) ≠ ∅ then

9: SF ← r
F
(t)⊇

10: SA ← SA ∖ SF
11: for all b ∈ S↓A do
12: L(t, b)← L(t, b) ∪ {P}

return L

Algorithm 5 AnonymizeAll (G,Γ)

Input: RDF Graph G, set of policies Γ
Output: The set of reduced anonymized graphs

1: L← ComputePol (G,Γ)

2: Anon↓Γ(G,Γ′)← empty multiset for every Γ′ ⊆ Γ
3: for all t ∈ G do
4: for all b ∈ Σ do
5: if L(t, b) ≠ ∅ then
6: t′ ← (λ,λ, λ)
7: if s ∈ b then t′[s]← t[s]

8: if p ∈ b then t′[p]← t[p]

9: if o ∈ b then t′[o]← t[o]

10: Anon↓Γ(G,Γ′)← Anon↓Γ(G,Γ′) ⊎ {t′} where Γ′ = L(t, b)
return {Anon↓Γ(G,Γ′) ∣ Γ′ ⊆ Γ}

7.2 Space Analysis

For a graph G, which contains n triples, and a number r of role policies contained in a set
Γ, the space that the reduced anonymized graphs will use is 5× ∣G∣ = 5×n. This is because
each triple from graph G can be present in multiple Anon↓Γ(G,Γ′) at the same time, in
all these forms: (s,p,o), (s,p, λ), (λ,p,o), (s, λ, λ) and (λ,λ,o). So the maximum total
space that will be used to store all the reduced anonymized graphs, in the worst case, is 5
times the size of the original graph. To this number, we have to add the size of the original

58

Algorithm 6 RoleEnforcement (G,Γ,P,CQ)

Input: RDF Graph G, set of policies Γ, the user’s policy P , with P ∈ Γ, and a list of conjunctive
queries CQ = [CQ1, . . . ,CQn].

Output: A list of URIs L
1: G←AnonymizeAll(G,Γ)

2: G′ ← ∅

3: for all Anon↓Γ(G,Γ′) ∈ G do
4: if P ∈ Γ′ then
5: G′ ← G′ ⊎Anon↓Γ(G,Γ′)
6: G′ ← G′ with all ocurrences of λ replaced by a fresh blank node
7: L← empty list
8: for all CQ ∈ CQ do
9: R ←Ans(CQ,G′)

10: L← Add R at the end of the list
return L

graph, which will be stored to recompute the reduced anonymized graphs in case that the
original graph is modified or if the policies are modified. Last, we need twice the size of
the original graph in order to temporarily store the graph that will be generated to answer
user’s queries, i.e., the total space that will be needed to manage an RDF database with this
method is O(5 × ∣G∣ + ∣G∣ + 2 × ∣G∣) = O(5 × n + n + 2 × n) = O(8n) = O(n).

In section 6.3 we showed that given a policy the space used by its anonymized graph is
O(2 × n). Thus, for a policy with r roles, if we store each anonymized graph separately,
we require O(2× r ×n) space. Compared with the technique provided in this section, both
algorithm will use a similar amount of space when the number of policies is small. How-
ever, as the number of policies increases, our new enforcement algorithm is considerably
better at managing the space used.

7.3 Time Cost Analysis

We will study the cost of computing when a user, under a policy P = (A,F) with P ∈ Γ,
wants to perform m queries over a graph G with n triples, where ∣A∣ is a, ∣F ∣ is f and ∣Γ∣ is
r. Figure 7.1 contains a summary of the parameters used in this section. We are going to
continue using simplifications like in the previous chapter, so we are going to consider that
cΓ
max and pΓ

max are the maximum number of comparisons and patterns, respectively, of any
conjunctive query CQ in CQ and any ACP in Γ.

59

As we already know the cost of performing any query on a graph and the cost of the
algorithm ComputeM, in order to be able to obtain the cost of performing m queries, we
need to determine the cost associated to the three algorithms presented in this chapter.

Variables Meaning
m number of conjunctive queries in CQ
n number of triples in a graph G
r number of policies in Γ

amax number of ACP in A, for all A in Γ
fmax number of ACP in F , for all F in Γ
pΓ
max maximum number of patterns between the queries in CQ and

the ACPs in Γ
cΓ
max maximum number of comparisons between the queries in

CQ and the ACPs in Γ
qGCQ running time of Ans (CQ,G)
mpGΠ running time of ComputeM (G,Π)
cpGΓ running time of ComputePol (G,Γ)
haGΓ running time of AnonymizeAll (G,Γ)

Figure 7.1: Summary of parameters.

7.3.1 ComputePol (G,Γ)

Line 1 of Algorithm 4 is O(n) because it initializes the function for every triple in G and
∣Σ∣ = 5. The for all statement that follows will run r times. To simplify the calculation
process, we will consider amax as the maximum number of ACP in A, for all A in Γ, and
fmax will be the maximum number of ACP in F , for all F in Γ. Now, Line 3 will run in
mpGAP =O(amax×cΓ

max×npΓ
max) and line 4 will run inmpGFP =O(fmax×cΓ

max×npΓ
max). The

for all statement in line 5 will be executed n times. Lines 6 to 12 take a constant amount of
time since SA and SF can contain at most five security sets and S↓A contains at most two b.
Therefore, the cost of running ComputePol (G,Γ) is O(n + r × (amax × cΓ

max × npΓ
max +

fmax × cΓ
max × npΓ

max + n)) = O(r × (amax + fmax) × cΓ
max × npΓ

max). We will denote this
running time by cpGΓ.

60

7.3.2 AnonymizeAll (G,Γ)

Line 1 runs in cpGΓ = O(r × (amax + fmax) × cΓ
max × npΓ

max). Creating an empty multiset
takes a constant amount of time, so line 2 runs in O(2r). The for all statement in line 3 will
be executed n times. Lines 4 to 10 take a constant amount of time since Σ contains five b
and creating a triple and replacing its subject, predicate and/or object with the values from
a t in G, and adding the new triple to its corresponding reduced graph are operations that
take a constant amount of time. Therefore, the cost of running AnonymizeAll (G,Γ) is
O(r × (amax + fmax) × cΓ

max × npΓ
max + 2r + n) = O(r × (amax + fmax) × cΓ

max × npΓ
max + 2r).

We will denote this running time by haGΓ.

7.3.3 RoleEnforcement (G,Γ,P,CQ)

The running time of algorithm RoleEnforcement depends on the cost of running algo-
rithm AnonymizeAll haGΓ, the cost of creating the anonymized graph G′ from the reduced
anonymized graphs related to the policy P , and the cost of performing ∣CQ∣ =m queries on
the graph G′.

The first part of the time cost analysis for this algorithm comprises lines 1 and 2. Line 1 is
haGΓ = O(r× (amax +fmax)× cΓ

max ×npΓ
max +2r), since it computes the reduced anonymized

graphs of G, and line 2 takes a constant amount of time to create an empty graph.

The second part comprises lines 3 to 6. The for all statement in line 3 will be executed 2r

times. Line 4 takes a constant amount of time. Line 5 can run a maximum ofO(2×n) times,
because the maximum number of triples that could be added to the anonymized graph is
2 × n. Finally, Line 6 runs in O(2 × n). Therefore, the process of creating the anonymized
graph G′ takes O(2r + 2 × n + 2 × n) = O(2r + 4 × n).

The last part comprises the cost of performing the queries. Line 7 takes a constant amount
of time to create an empty list. The for all statement in line 8 will be executed m times.
The running time of answering a query is qG

′

CQ, and considering that, in the worst case,
∣G′∣ = 2 × ∣G∣ (see Section 6.3), we have qG

′

CQ equals to O(cΓ
max × (2n)pΓ

max) (line 9). In
line 10, adding the answers to the list takes a constant amount of time. So, the cost of
performing queries over an anonymized graph is O(m × cΓ

max × (2n)pΓ
max)

61

Thereby, the cost of running RoleEnforcement (G,Γ,P,CQ) is O(r × (amax + fmax) ×
cΓ
max × npΓ

max + 2r) + O(2r + 4 × n) + O(m × cΓ
max × (2n)pΓ

max).

As we already know, anonymizing the graph is not an operation that will be performed each
time a user needs to perform queries, but only when the original graph is modified. This is
because the reduced anonymized graphs will be stored, allowing us to ignore that part of
the cost of algorithm RoleEnforcement. In the end, the cost of enforcing the policy for
a user under a certain role with this algorithm is O(2r + 4 × n) + O(m × cΓ

max × (2n)pΓ
max)

= O(2r + 4 × n +m × cΓ
max × (2n)pΓ

max).

If we compare this result to the one obtained in section 6.2.4, O(m× cmax × (2n)pmax), we
can see that the method presented in this section takes more time to compute queries. This
difference in cost is due to the process of creating the anonymized graph from the reduced
anonymized graphs.

Deciding at glance which of the two methods for controlling the access to RDF graphs
is the best choice will depend on the number of roles being enforced and the number of
triples of the original graph. However, it is more common that the number of triples of
a graph is far greater than the number of policies, making irrelevant the cost of creating
the anonymized graph compared to the cost of answering queries. Considering this, and
the fact that admins could add more policies in the future, implementing an enforcement
algorithm for multiple roles is recommended over the algorithm described in chapter 6.

Chapter 8

Conclusion

Companies and institutions that want to publish data in the semantic web could need to
put restrictions over the access to their data. Therefore, as RDF is the standard format
to publish data in the semantic web, there is a need for access control mechanisms that
provide a fine-grained access control for RDF graphs. Current work in RDF access control
can enforce restrictions over data units as smallest as an RDF triple. However, with these
approaches, we cannot grant nor deny the access to parts of the triples.

In this thesis, we presented the syntax and semantics of a fine-grained access control policy
for RDF graphs. The policies defined with our model handle the access to the subject,
predicate and object of a triple, filling the gap left by current approaches. These policies are
based on sets of allowed and forbidden permissions that specify which triples are affected
by the restriction. We presented an algorithm for the enforcement of the policies that is
derived from the formal definition of the semantics, and studied its time cost and space cost.
Considering that for this algorithm all access control policies are defined for a specific role,
we handled the problem of dealing with multiple policies and their respective anonymized
graphs by proposing an algorithm that improved the previous one in terms of the space
it needs for storing the data. This means that given a set of roles, their respective access
control policies and an RDF graph G, it stores all the anonymized versions obtained from
each policy applied to graph G without storing multiple copies of the triples that these
graphs have in common. We analyzed its time cost to discover that it takes more time to
compute queries than our first algorithm.

In the future, we will consider studying how RDFS affects our policy and enforcement
methods, and propose alternatives to ensure that our policy and enforcement algorithms
can handle RDFS properly. Another issue that can be addressed is controlling the updates
that can be performed in an RDF graph, considering the SPARQL 1.1 update language
[PGP13]. The last issue to consider for future work is the incremental maintenance of
anonymized graphs, which means avoiding the need to compute a new anonymized graph

62

63

for each role when update operations, such as insert or delete a triple, are performed on the
original graph. We dedicated part of our study to this last topic, however, the results we
obtained with the algorithms we created were not useful. This is, in the worst case, they
needed to recompute all anonymized graphs.

Bibliography

[ACH+07] Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koesling, Daniel
Krause, and Daniel Olmedilla. Enabling advanced and context-dependent
access control in RDF stores. In ISWC/ASWC, volume 4825 of Lecture Notes
in Computer Science, pages 1–14. Springer, 2007.

[BCEPM08] Robert Bunge, Sam Chung, Barbara Endicott-Popovsky, and Don McLane.
An operational framework for service oriented architecture network security.
In Hawaii International Conference on System Sciences, Proceedings of the
41st Annual, pages 312–312. IEEE, 2008.

[BCF07] Loreto Bravo, James Cheney, and Irini Fundulaki. Repairing inconsistent
XML write-access control policies. CoRR, abs/0708.2076, 2007.

[BCFM00] Elisa Bertino, Silvana Castano, Elena Ferrari, and Marco Mesiti. Specifying
and enforcing access control policies for xml document sources. World Wide
Web, 3(3):139–151, 2000.

[BL09] Tim Berners-Lee. Linked Data, 18 June, 2009. Web. Accessed 10 November,
2014. http://www.w3.org/DesignIssues/LinkedData.html.

[CFMS94] Silvana Castano, Maria Grazia Fugini, Giancarlo Martella, and Pierangela
Samarati. Database Security. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1994.

[CVDG12] Luca Costabello, Serena Villata, Nicolas Delaforge, and Fabien Gandon.
Ubiquitous access control for sparql endpoints: lessons learned and future
challenges. In Proceedings of the 21st international conference companion
on World Wide Web, pages 487–488. ACM, 2012.

[DA06] Sebastian Dietzold and Sören Auer. Access control on rdf triple stores from a
semantic wiki perspective. In ESWC Workshop on Scripting for the Semantic
Web. Citeseer, 2006.

[DBM14] R.V. Guha Dan Brickley and Brian McBride. RDF Schema 1.1, 25 Febru-
ary, 2014. Web. Accessed 10 November, 2014, http://www.w3.org/TR/
rdf-schema/.

[DuC11] Bob DuCharme. Learning SPARQL. O’Reilly Media, Inc., Sebastopol, CA,
USA, 2011.

64

65

[FFMA10] Giorgos Flouris, Irini Fundulaki, Maria Michou, and Grigoris Antoniou.
Controlling access to RDF graphs. In Proceedings of the Third future internet
conference on Future internet, FIS’10, pages 107–117, Berlin, Heidelberg,
2010. Springer-Verlag.

[FJK+08] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and B. Thu-
raisingham. Rowlbac: Representing role based access control in owl. In Pro-
ceedings of the 13th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT ’08, pages 73–82, New York, NY, USA, 2008. ACM.

[FKC07] David F. Ferraiolo, Richard D. Kuhn, and Ramaswamy Chandramouli. Role-
Based Access Control, Second Edition. Artech House, Inc., Norwood, MA,
USA, 2007.

[Gro14a] RDF Working Group. RDF 1.1 Concepts and Abstract Syntax, 25 Febru-
ary 2014. Web. Accessed 15 April, 2015, http://www.w3.org/TR/

rdf11-concepts/#section-generalized-rdf.

[Gro14b] RDF Working Group. Resource Description Framework (RDF), 25 February,
2014. Web. Accessed 10 November, 2014, http://www.w3.org/RDF/.

[JF06] Amit Jain and Csilla Farkas. Secure resource description framework: An
access control model. In Proceedings of the Eleventh ACM Symposium on
Access Control Models and Technologies, SACMAT ’06, pages 121–129,
New York, NY, USA, 2006. ACM.

[KJP08] Jaehoon Kim, Kangsoo Jung, and Seog Park. An introduction to authoriza-
tion conflict problem in RDF access control. In Ignac Lovrek, Robert J.
Howlett, and Lakhmi C. Jain, editors, KES (2), volume 5178 of Lecture Notes
in Computer Science, pages 583–592. Springer, 2008.

[PGP13] A. Passant P. Gearon and A. Polleres. SPARQL 1.1 Update, 21 March,
2013. Web. Accessed 10 November, 2014, http://www.w3.org/TR/

sparql11-update/.

[PS99] Joon S Park and Ravi Sandhu. Rbac on the web by smart certificates. In Pro-
ceedings of the fourth ACM workshop on Role-based access control, pages
1–9. ACM, 1999.

[PS08] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF, 15
January, 2008. Web. Accessed 10 November, 2014, http://www.w3.org/
TR/rdf-sparql-query/.

[PSA01] Joon S Park, Ravi Sandhu, and Gail-Joon Ahn. Role-based access control on
the web. ACM Transactions on Information and System Security (TISSEC),
4(1):37–71, 2001.

66

[RFJ05] Pavan Reddivari, Tim Finin, and Anupam Joshi. Policy based access control
for an RDF store. In Lalana Kagal, Tim Finin, and Jim Hendler, editors,
Policy Management for the Web, pages 78–81, 2005.

[Sam02] Pierangela Samarati. Regulating access to web-published data. In ERCIM
News, 49, page 10, 2002.

[SBJ96] Pierangela Samarati, Elisa Bertino, and Sushil Jajodia. An authorization
model for a distributed hypertext system. Knowledge and Data Engineer-
ing, IEEE Transactions on, 8(4):555–562, 1996.

[SHP13] A. Seaborne S. Harris and E. Prud’hommeaux. SPARQL 1.1 Query Lan-
guage, 21 March, 2013. Web. Accessed 10 November, 2014, http://www.
w3.org/TR/sparql11-query/#SparqlOps.

[SS94] R.S. Sandhu and P. Samarati. Access control: principle and practice. Com-
munications Magazine, IEEE, 32(9):40–48, Sept 1994.

[wLO14] W3C Linking Open Data Project, 24 September, 2014. Web. Accessed
10 November, 2014, http://www.w3.org/wiki/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData.

[wNE12] Nesstar Publisher, 2012. Web. Accessed 10 November, 2014, http://www.
nesstar.com.

[YT05] Eric Yuan and Jin Tong. Attributed based access control (abac) for web ser-
vices. In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE Interna-
tional Conference on. IEEE, 2005.

