
UNIVERSIDAD DE CONCEPCIÓN
Dirección de Postgrado

Facultad de Ciencias F́ısicas y Matemáticas
Departamento de Ingenieŕıa Matemática

Algunas Propiedades Dinámicas de
Modelos de máquinas de Turing

(Some Dynamical Properties of Turing Machine Dynamical Models)

Tesis para optar al grado de
Doctor en Ciencias Aplicadas con mención en Ingenieŕıa Matemática

Rodrigo Ariel Torres Avilés
Concepción-Chile

Enero, 2016

Profesor Gúıa: Anah́ı Gajardo Schulz
Departamento de Ingenieŕıa Matemática

Universidad de Concepción, Chile

Co-tutor: Nicolas Ollinger
Collegium Sciences et Techniques

Université d’Orléans, France

Co-tutor: Eric A. Goles Chacc
Facultad de Ciencia y Tecnoloǵıa

Universidad Adolfo Ibanñez, Chile

Some Dynamical Properties of Turing
Machine Dynamical Models

Rodrigo Ariel Torres Avilés

Profesora Gúıa: Anah́ı Gajardo Schulz, Universidad de Concepción, Chile.
Co-tutor: Nicolas Ollinger, Université d’Orléans, France.
Co-tutor: Eric Goles Chacc, Universidad Adolfo Ibáñez, Chile.

Director del Programa: Raimund Bürger, Universidad de Concepción, Chile.

COMISIÓN EVALUADORA

Emmanuel Jeandel, Université de Lorraine, France.
Jarkko Kari, Turun Yliopisto, Suomen Tasavalta.
Marie-Pierre Béal, Université Paris-Est Marne-la-Vallée, France.
Petr Kůrka, Univerzita Karlova v Praze, C̆eská Republika.
Véronique Terrier, Université de Caen Normandie, France.

COMISIÓN EXAMINADORA

Firma:
Alejandro Maass, Universidad de Chile, Chile.
Firma:
Anah́ı Gajardo Schulz, Universidad de Concepción, Chile.
Firma:
Nicolas Ollinger, Université d’Orléans, France.
Firma:
Pierre Guillon, CNRS, Aix-Marsseille, France.
Firma:
Xavier Vidaux, Universidad de Concepción, Chile.

Calificación:

Concepción, 8 de Enero de 2016

Agradecimientos

”Pon en manos de Dios todas tus obras,
y tus proyectos se cumplirán”. Proverbios 16:3.

Agradezco a mi tutores de tesis, PhD. Anah́ı Gajardo Schulz y PhD. Nicolas Ollinger,
los cuales, con paciencia, enseñanza, constancia y perserverancia, ayudaron enormemente a la
realización y finalización de esta tesis.

Además, quiero agredecer a varios investigadores a quienes tuve la dicha de conocer y
compartir, cuyo consejo y conversación enriquecieron y mejoraron mis resultados, como PhD.
Pierre Guillon y PhD. Eric Goles Chacc. Además, de manera especial a PhD. Julien Cassaigne y
PhD. Emmanuel Jeandel, cuyos resultados sentaron base para la construcción de los resultados
expuestos en esta tesis.

También deseo agradecer al Centro de Investigación en Ingenieŕıa Matemática (CI2MA),
CAMPUS FRANCE, ECOS C12E05, MECESUP UCO 0713 y FONDECYT 1140684 por el
apoyo económico en las distintas pasant́ıas, viajes y conferencias.

Finalmente, quiero agradecer a mi familia, en especial a mi madre y mis hermanos, los
cuales fueron el pilar fundamental en toda mi formación académica escolar y universitaria.

Dedico este trabajo a mi esposa Nadia, la cual fue el apoyo sentimental y espiritual durante
todo el desarrollo de mis estudios de postgrado. Sin ella ni Dios de mi parte, esto no seŕıa posible.

Abstract

This doctoral thesis is centered on the study of the dynamical properties concerning Turing
machines. A Turing machine is quite simple, yet powerful, consisting in a bi-infinite tape of finite
alphabet, finite internal states, a head pointing an unique position on the tape and under finite
instructions. If the symbol under the head and the internal state match with any instruction,
then it is applied, exchanging the symbol, the internal state, and moving the head one position to
the left or the right. The Turing machine is the main mechanical model to study computation.
As computation is a powerful tool to study large phenomena as the dynamic, therefore it is
interesting and fruitfully to study dynamic through Turing machine.

It is not quite natural to see Turing machines as dynamical system, mainly due to headless
configurations, as it is on other computation models (as cellular automata), therefore it is tackled
from three different systems. The first is commonly called Turing machine with Moving Head
(TMH), when the evolution is performed by moving the head, other called Turing machine with
Moving Tape (TMT), where it evolves by moving the tape instead of the head, and another
one called t-shift, which consist in words of pairs symbol-state, viewing only the content of the
head and the internal state in orbits of configurations, and it evolves shifting the words.

The object of the thesis is to study some open questions regarding specific Turing machine
dynamical systems, as surjectivity, periodicity in complete and reversible machines, topological
entropy, topological transitivity and topological minimality.

The surjectivity in Turing machine is quite easy to decide, but this is not inherited by its
t-shift dynamical system. To address this matter, it is defined a new concept called blocking
words, which is a finite configuration that does not allow the head to visit a certain part of the
tape. We prove that having a blocking word in a Turing machine is an undecidable question.
Through a reduction from the previous problem, it is then possible to show that the surjectivity
is an undecidable property for the t-shift. We prove, using an adaptation of the proof for
blocking words that it is undecidable to know if a Turing machine has a positive entropy or not.

Later on, we study a machine created by Julien Cassaigne that we call SMART, and we
prove that it has several good properties, as being aperiodic, time symmetric, transitive in all
three dynamical models, minimal in TMT and with a substitutive t-shift. This machine is the
first example of complete and reversible machine that has a transitive TMH dynamical model,
a minimal TMT and t-shift dynamical model and it has not a periodic orbit. We show that its
existence allows to study in depth the former matters.

With a technique, called embedding, we prove the undecidability of aperiodicity and tran-
sitivity on Turing machine dynamical systems by using a reduction from the emptiness and
mortality problems. We also prove the undecidability of minimality for TMT and t-shift, but
no for TMH, as there is no minimal TMH machine. We go further in the study of transitivity by
showing that the classes of machines with transitive TMH, TMT and t-shift system are nested
and we exhibit examples that prove the inclusions are strict.

In the transitive context, we study that class of the coded systems. We exhibit examples
to show the diversity of the known subclasses of the coded systems inside t-shifts.

Contents

1 Introducción en Español 5

2 Introduction in English 13

3 Definitions 20
3.1 Dynamical System . 21

3.1.1 Orbit . 21
3.1.2 Dynamical relations . 22
3.1.3 Subshifts, languages and words . 22

3.2 Topology . 24
3.2.1 Neighborhood, isolated points and closure 24
3.2.2 Topological transitivity, minimality and entropy 25

3.3 Turing machine . 26
3.3.1 Determinism and completeness in Turing machine 29
3.3.2 Reversibility in Turing machine . 31

3.4 Turing machine seen as dynamical system . 33
3.4.1 Turing machine dynamical system . 34
3.4.2 Turing machine with moving head (TMH) 34
3.4.3 Turing machine with moving tape (TMT) 35
3.4.4 Relations between dynamical systems of Turing machines 36
3.4.5 The t-shift . 36
3.4.6 Turing machine dynamical properties . 37

3.5 Arithmetical Hierarchy . 40
3.5.1 Hardness and completeness . 40
3.5.2 Turing machine examples . 41

3.6 Coded systems . 42
3.7 Discussion . 44

4 Some undecidable problems about the trace-subshift associated to a Turing
machine 45
4.1 Problems and concepts . 46

4.1.1 Blocking words . 46
4.1.2 Surjectivity . 48
4.1.3 Positive entropy . 50

4.2 Simulating counter machines . 52
4.2.1 Construction of the reversible Turing machine that simulates a 2-RCM. . 53
4.2.2 Reversing the computation . 56

4.3 Undecidability of the problems . 57
4.3.1 Undecidability of the blocking state problem in complete RTMs 57
4.3.2 Undecidability of the surjectivity of the subshift associated to a Turing

machine . 59
4.3.3 Undecidability of the entropy positiveness on reversible one-tape Turing

machines . 60

5 A SMART machine 63
5.1 A small aperiodic complete and reversible Turing Machine (SMART) 64

5.1.1 The SMART machine. 64
5.1.2 Basic movements of SMART . 64
5.1.3 Aperiodicity . 66

5.2 Other properties of the SMART machine . 69
5.2.1 Some more lemmas . 69
5.2.2 The t-shift is substitutive . 73

5.3 An application of SMART . 76
5.3.1 Proof techniques . 76
5.3.2 Undecidability of the aperiodicity of complete reversible Turing machines 77

6 Transitivity and Computability in Turing Machine dynamical systems 80
6.1 The universe of machines with transitive t-shift 81

6.1.1 Machine of type a: Transitive on TMH model 82
6.1.2 Machine of type b: Transitive on TMT, but not in TMH, and without

blocking words . 87
6.1.3 Machine of type c: Transitive on TMT, with a blocking word 87
6.1.4 Machine of type d: Transitive just for the trace-shift 88

6.2 Undecidability . 91
6.2.1 Undecidability results . 93

6.3 Complexity of Transitivity Problem and Minimality Problem 98
6.3.1 Transitivity Problem and Minimality Problem are Π0

2 98
6.4 Coded Systems associated to Turing machines 99

7 Conclusions 102

Bibliography 107

List of Figures

1.1 Un esquema de una máquina de Turing. 6

2.1 A scheme of a Turing machine. 14

3.1 Instruction of Turing Machine . 27
3.2 Example of Turing Machine . 28
3.3 Deterministic and non-Deterministic Machine 29
3.4 Example of Turing Machine concepts . 30
3.5 Inverting a Turing machine . 33
3.6 Turing machine dynamical systems relations . 36
3.7 Example of TM, TMH, TMT and t-shift . 37

4.1 Transition function of MC . 53
4.2 The routine that writes the sequence “< | >” in the tape. 53
4.3 Subrutine depending on sign. 56
4.4 Sequence of states added to MC . 60

5.1 The SMART machine . 64
5.2 Two representations of the inverse of the SMART machine 69
5.3 Embedding used in the proof of Theorem 5.4 . 79

6.1 Universe of the topologically transitive machines. 82
6.2 The SMART machine. 83
6.3 The SMART machine with twice its movement. 87
6.4 Shift machine . 88
6.5 The lexicographical ant machine. 88
6.6 Invited machine used in theorem 6.2.1. 96
6.7 Invited machine used in theorem 6.4. 97
6.8 Machine J . 100
6.9 Machine J ′ . 101

List of Tables

4.1 Sub-routines corresponding to the different adding instructions. 54
4.2 Sub-routines corresponding to subtraction instructions. 55

7.1 Research on Turing machine dynamical systems. 106

Chapter 1

Introducción en Español

5

6

El trabajo que usted está a punto de leer se centra en el estudio de algunas propiedades
dinámicas, considerando a la máquina de Turing como el sistema dinámico. La máquina de
Turing no solo es la primera definición del modelo computacional, sino que además es simple
y funciona mecánicamente similar al computador actual: comenzando con una entrada finita,
sólo puede escribir en un lugar dentro de su memoria y moverse a algún lugar vecino. La
máquina de Turing clásica consiste en un arreglo unidimensional de celdas llamado cinta, lo
cual es similar a la memoria de un computador (RAM), un cabezal con un estado interno
apuntando hacia una celda, lo que puedeser interpretado como la CPU, un conjunto finito de
instrucciones, que pueden corresponder al software, y dependiendo de la celda apuntada por el
cabezal, puede escribir en dicha celda o moverse a una celda adyacente, las cuales corresponden
a las posibles acciones dentro de la memoria del computador (para ver un esquema de una
máquina de Turing, refiérase a la figura 2.1). La máquina de Turing ha sido utilizada en
diferentes campos de investigación, como en complejidad ([44]), pero en esta tesis, estamos
interesados en computabilidad y dinámica.

Figure 1.1: Un esquema de una máquina de Turing.

El estudio de la computabilidad comenzó con la concepción de la máquina de Turing. La
noción de algoritmo, un procedimiento auto-contenido que corre paso a paso por un tiempo
finito, existe hace milenios. La definición formal de algoritmo, fuertemente ligada al concepto
de procedimiento efectivo, está relacionada con entscheidungsproblem.

El entscheidungsproblem, expresión en alemán para problema de decisión pide un algo-
ritmo que decida la veracidad o falsedad de una expresión lógica de primer orden. Este fue
concebida por David Hilbert y Wilhelm Ackermann en 1928 [21] en un estudio destinado a
formalizar la lógica de primer orden. Este problema, aunque fue concebido más tarde, está
incluido en la lista de los veintitres problemas propuestos por Hilbert en 1900, los que se en-
lazan a una amplia variedad de áreas en la matemática y muchos de ellos, más tarde, muy

Chapter 1: Introducción en Español

7

importantes en su respectivo campo. Basados en la enumeración de Gödel [18] (la que asigna
números naturales a fórmulas lógicas), Church mediante el λ-Cálculo [8] y más tarde Turing
con máquinas de Turing [49] (de forma independiente) probaron que el cálculo de predicados es
indecidible; esto es, no existe un algoritmo que decida el valor de verdad de sus proposiciónes.
Turing probó que su máquina de Turing es equivalente al λ-Cálculo de Church, y la tesis de
Church-Turing establece que todo posible algoritmo (o procedimiento efectivo) es equivalente a
una máquina de Turing y de Church. Entonces, el término algoritmo está ligado a las máquinas
de Turing, de tal manera que hoy en d́ıa es considerada la definición formal de algoritmo, como
establece Gödel en un postcriptum de su trabajo [9] «El trabajo de Turing da un análisis del
concepto de “procedimiento efectivo” (alias “algoritmo” o “procedimiento de computación” o
“procedimiento finito combinatorial”) este concepto demostró ser equivalente al de máquina de
Turing». Turing usó un problema inherente a las máquinas de Turing para probar la indecidi-
bilidad del entscheidungsproblem. El problema usado fue el problema del alto, que pide decidir
si una máquina de Turing, comenzando en un estado dado con cierta entrada finita, esta se
detiene. Con un argumento de diagonalización, se probó que esto último es indecidible. Hasta
el d́ıa de hoy, este problema es utilizado para probar la indecidibilidad de varios otros problemas
relacionados con computación.

Ya que los problemas relacionados con las máquinas de Turing son descritos en el cálculo
de predicados, es posible definir una jerarqúıa entre los lenguajes descritos por las máquinas de
Turing de acuerdo a la complejidad de las fórmulas lógicas que que los describen. Esta jerar-
quización se denomina Jerarqúıa Aritmet́ıca [46], la que categoriza las relaciones por la cantidad
de cuantificadores existenciales y universales intercalados. El nivel cero, sin cuantificadores,
corresponde a los problemas decidibles por una máquina de Turing. El Problema del alto está
clasificado en esta jerarq́ıa con solo un cuantificador de existencia, También es posible encontar
problemas más complejos en esta jerarqúıa (por ejemplo ver [19]).

Antes de entrar en el campo de la dinámica de máquinas de Turing, introduciremos el con-
cepto sistema dinámico, el cual consiste en un espacio de estados y una regla fija que determina
el futuro inmediato del estado presente del sistema. Este concepto es muy general, el espacio y
el tiempo pueden ser discretos o continuos, y la regla, puede ser determinista o no. Ejemplos
t́ıpicos incluyen la modelación de un péndulo de un reloj, el tamaño de cierta población de
animales, o el flujo de agua en una tubeŕıa.

Cuando el tiempo es medido en tiempo discreto, se hablará de sistema dinámico discreto.
esta noción puede ser vista como tomar fotografias del sistema cada cierto intervalo de tiempo
(una vez al año, una vez cada milisegundo, etc.). La regla en este caso transforma el estado del
sistema en el tiempo n, en el estado del sistema en el tiempo n+ 1, sin darnos la descripción del

Chapter 1: Introducción en Español

8

sistema entre dichos tiempos. Para nociones, propiedades y ejemplos de este tipo de sistemas,
refierase a [31].

Nosotros estamos interesados en sistemas dinámicos discretos con espacio de estados dis-
creto. En este trabajo, llamamos a este sistema simplemente sistema dinámico. Un ejemplo
interesante, más bien clásico, de sistema dinámico son los autómatas celulares. Un autómata
celular consiste en una grilla de celdas cada una en un estado perteneciente a un conjunto finito
de estos. El estado de cada celda es actualizado a tiempo discreto de acuerdo a una regla de-
terminista que depende de los estados de las celdas pertenecientes a una vecindad de la celda a
actualizar. Este concepto fue introducido a partir de una discusión entre von Newman y Ulam
en 1951 [41, 50], ambos contemporanios en Los Alamos National Laboratory. Los autómatas
celulares han sido usados como modelo para procesos de vida real en biologia y f́ısica, como
neuronas, turbulencia en sistemas hidrodinámicos y crecimiento ramificado de cristales [24].

Algunos trabajos importantes en autómatas celulares incluyen al autómata celular bidi-
mensional Game of Life de Conway en 1970 [34] y el estudio de las reglas unidimensionales
elementales por Wolfram en 1983 [53]. Game of Life es un juego bidimensional con dos estados
y cero jugadores, que, aunque es simple, muestra una dinámica muy compleja. Es uno de los
modelos más simples que ha demostrado ser universal (resuelve cualquier algoritmo que resuelve
una máquina de Turing) [1] e incluso hubo un bolet́ın dedicado completamente a los resultados
de Game of Life (Lifeline, por Robert Wainwright, 1971-1973). El estudio de Wolfram mostro
un comportamiento complejo inesperado en la dinámica de autómatas celulares muy simples,
«legitimizando el campo para la labor de investigación para f́ısicos» ([24] pag. 4). Más tarde, en
1900, Cook descubrió que una de estas reglas es universal [35].

Tan evidente como era, los autómatas celulares resultaron ser muy ricos en términos de su
dinámica, lo que justifica la amplia variedad de estudios en el campo. Existen varios trabajos
que prueban la indecidibilidad de ciertas propiedades dinámicas de los autómatas celulares
unidimensionales (incluyendo las propiedades que estudiaremos en esta tesis para máquinas de
Turing), como las propiedades transitividad topológica, mixing y sensitividad por Lukkarila
en 2009 [33], nilpotencia y periodicidad por Kari y Ollinger en 2008 [28] y reversibilidad y
sobreyectividad en dos dimensiones en 1994 por Kari [27].

El estudio acerca de la dinámica de máquinas de Turing es relativamente nuevo. El primer
acercamiento a este tópico fue hecho por Moore [36] en 1990. En ese trabajo, Moore presentó
un sistema dinámico llamado generalized shift, en que es una generalización de la máquina de
Turing. Más tarde, Kůrka [30] propuso dos diferentes topoloǵıas para máquinas de Turing, una
de ellas le da preponderancia a las celdas alrededor del cabezal (Turing Moving Tape model

Chapter 1: Introducción en Español

9

(TMT)) y la otra se enfoca en la celdas que rodean a la posición “0” de la cinta (Turing Moving
Head model (TMH)). Más trabajos acerca de los sistemas dinámicos de Kůrka han aparecido,
estudiando propiedades dinámicas como periodicidad [5, 28], entroṕıa [43, 26] y equicontinuidad
[14]. Además, otro sistema simbólico fue asociado con las máquinas de Turing [15], tomando el
factor columna del TMT, llamado t-shift. Esta perspectiva aprovecha el hecho de que todos los
cambioa en una máquina de Turing ocurren solo en la posición en la q se encuentra el cabezal.
Gajardo y sus co-investigadores han estudiado algunas propiedades en este sistema simbólico,
como lo son el reconocimiento en tiempo real [14] y la soficidad [13].

Ahora, surge la segunda pregunta: ¿Por qué tomar en cuenta la dinámica en sistemas de
computación? Normalmente, un programa computacional toma una entrada finita, y corre por
una cantidad finita de tiempo. Surgen preguntas interesantes cuando la entrada o el tiempo se
vuelven infinitos, ¿Podemos predecir el comportamiento del computador? ¿Podemos determinar
si el programa alcanzará algún estado en el cómputo? ¿Podemos predecir si el cómputo caerá
en algún loop? Si el cómputo no cae en un loop, ¿alcanzará todo estado posible de computo?
¿Qué tanto nos dirá acerca del computo el punto de vista dinámico? Por otra parte, el com-
putador es una poderosa herramienta que nos permite analizar variados fenómenos naturales,
en este sentido muchos sistemas y su evolución pueden ser analizadas a través del estudio de
su comportamiento dinámico discreto, como la población de ciertos animales, plantas o incluso
el universo mismo. En consecuencia, puede ser muy fruct́ıfero el analizar la dinámica desde un
punto de vista computacional.

A pesar de las similitudes entre las máquinas de Turing y los sistemas dinámicos discre-
tos, no es tan simple modelar una máquina de Turing como un sistema dinámico, ya que una
transformación tan directa tiene sus inconvenientes. Una configuración de una máquina de
Turing está normalmente definida por su estado interno, el contenido de la cinta y la posición
del cabezal. Ya que la posición del cabezal es un elemento en Z, una secuencia infinita de
configuraciones con el cabezal arbitrariamente lejano tiene un punto ĺımite sin cabezal, aśı el
espacio definido por las configuraciones no es compacto, lo que constituye un serio inconve-
niente en dinámica topológica [30], ya que muchas propiedades topológicas no están presentes
en espacios no compactos. Los tres modelos que mencionamos previamente son compactos para
la topoloǵıa de cantor. TMT mantiene su compacidad atando el cabezal a la posición central
y TMH incorpora el cabezal a la cinta, incluyendo la configuración sin cabezal como un punto
fijo. El modelo t-shift es compacto pues es un factor de TMT.

Tópicos comunes que aparecen dentro de los sistemas dinámicos incluyen propiedades como
la inyectividad, sobreyectividad, periodicidad y propiedades topológicas. En este documento
algunas de estas propiedades serán discutidas para máquinas de Turing, estudiando principal-

Chapter 1: Introducción en Español

10

mente la existencia de una máquina que tenga la propiedad, y su decidibilidad: ¿es posible
decidir si el sistema dinámico asociado a una máquina de Turing tiene la propiedad?

La inyectividad y sobreyectividad están fuertemente relacionadas en las máquinas de Tur-
ing, siendo incluso equivalentes cuando la máquina no se detiene. La sobreyectividad es una
propiedad fácil de decidir en máquinas de Turing, solo require de analizar la lista de instruc-
ciones, pero no es el caso con su t-shift, existen t-shifts sobreyectivos cuya máquina de Turing
asociada no lo es. Bajo este tema, se introduce el concepto de palabras bloqueantes, un bloque
de la cinta con un estado que no permite al cabezal atravesarlo. La relación exacta entre esos
conceptos y detalles acerca de la sobreyectividad en t-shifts son cubiertos en el caṕıtulo 4.

La entroṕıa topológica para máquinas de Turing ya ha sido estudiada. Esta propiedad da
una medida de cuán heterogéneo es el sistema. La entroṕıa es un número no negativo que, en
un subshift, describe la diversidad de los patrones finitos que contiene. Oprocha [43] probó que
la entroṕıa para máquinas de Turing con cinta movible (TMT) es equivalente a la entroṕıa del
t-shift. Más tarde fue probado por Blondel et al. [4] que la entroṕıa de una máquina de Turing
con dos o más cintas es incomputable. Ahora, Jeandel [26] ha dado un algoritmo que aproxima
la entroṕıa de una máquina de Turing de una cinta por debajo. Este último trabajo muestra que
la entroṕıa de una máquina de Turing está relacionada con la tasa de nuevas celdas visitadas
por el cabezal y usa una aproximación del grafo de secuencias cruzadas (como en [20]). La
indecidibilidad de la positividad de la entroṕıa topológica de una máquina de Turing con una
cinta es demostrada en el caṕıtulo 4.

Las propiedades restantes de esta tesis tienen fuerte relación con la reversibilidad. En
términos dinámicos, un sistema dinámico se dice reversible si la regla es uno a uno, de este
modo cada estado del sistema dinámico tiene un único predecesor. La reversibilidad tiene un
trasfondo f́ısico, pues las leyes de movimiento son todas reversibles, y la computación cuántica
[42], que necesita una cantidad inalcanzable de disipación de calor para funcionar sin reversibil-
idad. Esta propiedad, apesar de la simpleza en máquinas de Turing, es altamente estudiada
en sistemas dinámicos [27, 33] y sistemas computacionales [39, 37, 40]. Las máquinas de Tur-
ing reversibles de un cabezal son universales [39], en el sentido de que pueden realizar cualquier
cómputo que una máquina de Turing arbitraria pueda hacer. Existen estudios acerca de sistemas
dinámicos asociados a máquinas de Turing reversibles, como el trabajo de Kari y Ollinger [28]
que consideran nilpotencia, periodicidad y orbitas periódicas en máquinas de Turing reversibles
y otros sistemas computacionales reversibles.

Como se indicó antes, la periodicidad fue estudiada en varios modelos computacionales en
[30],[28] y [5]. Kůrka conjeturó que toda máquina completa debe tener al menos una orbita

Chapter 1: Introducción en Español

11

periódica para el modelo TMT; esta aseveración fue demostrada falsa por Blondel, Cassaigne
y Nichitiu, quienes presentaros una máquina completa sin orbitas periódicas. Más tarde Kari
y Ollinger presentaron una máquina de Turing reversible no completa sin orbitas periódicas, y
probaron que decidir si una máquina de Turing completa, o una máquina de Turing reversible
no necesariamente completa, tiene una órbita periódica es indecidible. La existencia y decidi-
bilidad de la existencia de orbitas periódicas en máquinas de Turing reversibles completas fue
conjeturada. Una demostración de ambas conjeturas se adjunta en el caṕıtulo 5, gracias a una
máquina de Turing particular creada por Julien Cassaigne.

Un sistema es topológicamente transitivo si admite una órbita densa. Como una car-
acteŕıstica global, la transitividad topológica ha sido estudiada en varios sistemas dinámicos,
incluyendo autómatas celulares [33], pues es una propiedad importante para describir el com-
portamiento del sistema a largo plazo, además de estar relacionadacon el caos. Aunque la
transitividad puede parecer muy restrictiva, existe una amplia gama de sistemas dinámicos
topológicamente transitivos, incluyendo sistemas minimales, sistemas con un conjunto denso de
puntos periódicos o incluso sistemas sin puntos periódicos. Un estudio acerca de la transitividad
topológica en sistemas dinámicos asociados a máquinas de Turing es presentado en el caṕıtulo
6, junto con algunos ejemplos de existencia de máquinas transitivas en cada modelo dinámico
y la indecidibilidad de la propiedad.

Un punto en común en las demostraciones de esta tesis es la técnica llamada embedding.
Embedding consiste en poner una máquina de Turing entera entre dos o más estados de otra
máquina de Turing. Si la primera mantiene una propiedad que se sabe indecidible, entonces
la máquina entera tiene la propiedad que se desea probar indecidible. La existencia de orbitas
periódicas, transitividad topológica, y minimalidad topológica son demostradas indecidibles
usando embedding.

El documento está organidado en los próximos cuatro caṕıtulos como sigue: Caṕıtulo 3
introduce definiciones generales necesarias para entender los caṕıtulos siguientes y poner la in-
vestigación en el contexto correcto. El caṕıtulo 4 se centra en el estudio de la sobreyectividad,
palabras bloqueantes y entroṕıa del t-shift, constituyendo una transcripción directa del art́ıculo
«Some dynamical propreties on Turing machines dynamical systems», aceptado en Journal Dis-
crete Mathematics & Theoretical Computer Science, en 2015. En el caṕıtulo 5 se discutirá
una máquina particular que exhibe muchas propiedades dinámicas, como time-symmetry, min-
imalidad, transitividad y otras; y demuestra la conjetura de aperiodicidad en [28]. Esto es una
traducción directa del articulo A Small Minimal Aperiodic Reversible Turing machine, sometido
a un journal en 2014. El caṕıtulo 6 presenta un estudio de la transitividad en diferentes mod-
elos dinámicos de la máquina de Turing, para finalmente demostrar la indecidibilidad de la

Chapter 1: Introducción en Español

12

propiedad en los tres modelos y también la indecidibilidad de la propiedad de minimalidad en
TMT y t-shift. El último caṕıtulo está dedicado a conclusiones y perspectivas.

Chapter 1: Introducción en Español

Chapter 2

Introduction in English

13

14

The following work you are about to read is centered on studying some dynamical prop-
erties, using Turing machines as the dynamical system. The Turing machine is not only the
first definition of computation model, but also it is simple and it works mechanically similar
to a modern computer: Starting from a finite input, it just can write in a unique place inside
its memory and move to a neighboring place. A classical Turing machine consists in an infi-
nite uni-dimensional ribbon of cells called tape, which is similar to the memory of a computer
(RAM), a head with an internal state pointing to a cell, which can be interpreted as the CPU,
a finite set of instructions, which can correspond to the software, and depending on the cell
pointed by the head, it can write in that cell or move to an adjacent one, which are the possible
actions within a computer memory (to see a scheme of a Turing machine, refer to Figure 2.1).
The Turing machine has been used as an object in different research fields, as complexity ([44]),
but in this thesis, we are interested in computability and dynamics.

Figure 2.1: A scheme of a Turing machine.

The study about computability began even before the introduction of the Turing machine.
The notion of algorithm, an step by step self-contained procedure that runs in a finite time,
exists since millenniums. The formal definition of algorithm, strongly tied with the concept of
effective procedure, is linked with the entscheidungsproblem.

The entscheidungsproblem, German expression for Decision Problem, asks for an algorithm
which decides the true or falsehood of any given expression of first order logic. It was conceived
by David Hilbert and Wilhelm Ackermann in 1928 [21], inside a study intended to formalize
first order logic. This problem, although conceived later, is considered inside the list of twenty
three problems given by Hilbert in 1900, which are binded to a wide variety of mathematic
fields and most of them were very important afterward in each of its fields. Based on the Gödel
numbering [18] (to assign numbers to logic formulas), Church through λ-calculus [8] and later
on Turing with Turing machines [49] (independently) proved in 1936 that predicate calculus

Chapter 2: Introduction in English

15

is undecidable; that is, there exists no algorithm to decide the truth value of its propositions.
Turing proved that its Turing machine is equivalent to Church’s λ-calculus, and Church-Turing
thesis says that every possible algorithm (or effective procedure) is equivalent to both Church
and Turing machines. Then, the term algorithm was tied with Turing machines, in such a way
that nowadays it is considered as the formal definition of algorithm, as stated by Gödel in a
Postscriptum of his work in [9] «Turing’s work gives an analysis of the concept of “mechanical
procedure” (alias “algorithm” or “computation procedure” or “finite combinatorial procedure”).
This concept is shown to be equivalent to that of a Turing machine».
Turing used a problem inherent of Turing machines to prove that the entscheidungsproblem
was undecidable. The problem used was the Halting Problem, which asks to decide if a Turing
machine, starting from a certain state with a certain finite input, halts. By an argument of
diagonalization, the latter was proved to be undecidable. Till today, this problem is used to
prove the undecidability of various other problems related with computation.

As the problems linked to Turing machines are described in predicate calculus, it is possible
to hierarchize the languages described by a Turing machine according to the complexity of the
logical formula that define them. This hierarchization is called arithmetical hierarchy [46], which
categorizes relations by the amount of intercalated existential and universal quantifiers. The
level zero, without quantifiers, are the problems that can be decided by a Turing machine. The
halting problem is classified in the hierarchy with just one existential quantifier, and also it is
possible to encounter problems higher in the hierarchy (for example, see [19]).

Before entering in the dynamical field of Turing machine, let us introduce dynamical system,
which consists in a state space and a fixed rule that determines the immediate future of the
present state of the system. This concept is very general, space and time can be discrete or
continuous, and the rule, in addition, can be deterministic or not. Typical examples include
modeling a pendulum of a clock, the size of an animal population, or the flow of the water inside
a pipe.

When the time is measured in discrete time, it is called discrete dynamical system. This
notion can be seen as taking a snapshot of the system from time to time (once a year, once
a millisecond, etc.). The rule in this case transforms the system in time n, to the system in
the state n+ 1, giving us no description of the system in between. For notions, properties and
examples in this type of systems, refer to [31].

We are interested in discrete dynamical system with a discrete state space. In this work,
we call to this system simply as dynamical system. An interesting and rather classical example
of dynamical systems are cellular automata. A cellular automaton consists in a grid of cells

Chapter 2: Introduction in English

16

each one with a state from a finite set of them. The state of each cell in the grid is updated in
discrete time according to an homogeneous deterministic rule depending on the states of the cells
on a neighborhood around the cell. The concept was introduced by a discussion between von
Neumann and Ulam in 1951 [41, 50], both contemporaries at Los Alamos National Laboratory.
Cellular automata have been taken as a model of real life process in biology and physics, as
neurons, turbulence in hydrodynamical systems and dendritic crystal grow [24].

Some important works in cellular automata include two dimensional cellular automaton
Game of Life by Conway in 1970 [34] and a study of the elementary one-dimensional rules by
Wolfram in 1983 [53]. Conway’s Game of Life is a zero-player two-dimensional two states game,
which, although simple, shows a very complex dynamic. It is one of the simplest models proven
to be universal (it resolves any algorithm that a Turing machine resolves) [1] and there was even
a newsletter entirely dedicated to results of The Game of Life (Lifeline. by Robert Wainwright,
1971-1973). The study of Wolfram showed unexpected complex behavior in the dynamics of
very simple cellular automata, «legitimizing the field as research endeavor for physicists» ([24],
pag. 4). Later on, one of those rules was discover to be universal by Cook in 1990’s [35].

As evident as it was, cellular automata are very rich in terms of its dynamics, which justifies
the wide variety of studies in the field. There exist several works proving the undecidability
of dynamical properties of one-dimensional cellular automata (including the properties that we
will study in this thesis for Turing machines), as topological transitivity, mixing property and
sensitivity by Lukkarila in 2009 [33], nilpotency and periodicity by Kari and Ollinger in 2008
[28] and Reversibility and Surjectivity in two dimensions in 1994 by Kari [27].

The study about the dynamics of Turing machines is relatively new. The first approach
in this direction was made by Moore [36] in 1990. In that work, Moore presented a dynamical
system called generalized shift, which is a generalization of Turing machines. Later on, Kůrka
[30] proposed two different topologies for Turing machines, one of them gives preponderance to
the cell contents around the head (Turing Moving Tape model (TMT)) and the other focuses
on the cells that surround the position “0” of the tape (Turing Moving Head model (TMH)).
More works about Kůrka’s dynamical systems have arisen, studying dynamical properties like
periodicity [5, 28], entropy [43, 26] and equicontinuity [14]. In addition, another symbolic system
was associated with Turing machines [15], taking the column factor of TMT, called t-shift. This
approach takes advantage of the fact that all the changes on the Turing machine happen only
on the head position. Gajardo and her co-researchers have investigated some properties in this
symbolic system, as real time recognition [14] and soficity [13].

Now, the second question arises: Why take into account the dynamics of computing sys-

Chapter 2: Introduction in English

17

tems? Normally, a computation program takes a finite input, and runs for a finite amount of
time. Interesting questions emerge when the input or the time becomes infinite. Can we predict
the behavior of the computer? Can we determine if the program will reach some state of the
computation? Can we predict if the computation will fall into a loop? If the computation does
not fall into loop, will it reach any possible state of the computation? How much the dynamical
point of view can tell us about computation? In the opposite side, the computer is a powerful
tool that allows us to analyze several natural phenomena; in that sense, many systems and
their evolution can be analyzed through the study of its discrete dynamic behavior, such as
populations of certain animals, plants or even the universe itself. Therefore, it may be fruitful
to analyze dynamics from a computational point of view.

Despite the similarities between Turing machines and discrete dynamical systems, it is not
that simple to model a Turing machine as a dynamical system, as a straightforward transfor-
mation has some drawbacks. A Turing machine configuration is normally defined by its internal
state, the content of the tape and the position of the head. As the position of the head is an
element of Z, an infinite sequence of configurations with the head arbitrarily far has a limit
point without head, thus the space defined by the configurations is not compact, which is «a
serious drawback in topological dynamics» [30], as many topological properties are not present
in non compact spaces. The three models that we have previously mentioned are compact for
the Cantor topology. TMT keeps the compacity by tying the head to the central position and
TMH incorporates the head into the tape, including the headless configuration as a fixed point.
The t-shift model is compact as it is a factor of TMT.

Common topics that appear within dynamical systems include properties as injectivity,
surjectivity, periodicity and topological properties. In this document some of these properties
will be discussed for Turing machines, studying mainly the existence of a machine having the
property, and decidability: is it possible to decide if a Turing machine dynamical system has
the property?

Injectivity and surjectivity are highly related in Turing machines, being even equivalent
when the machine does not halt. Surjectivity is an easily decidable property in Turing machines,
one just need to analyze the list of instructions, but it is not the case with its t-shift. There
exist t-shifts that are surjective, while the associated Turing machine is not. In this fashion, it
is introduced the concept blocking words, a block of the tape with a state that prevents the head
from passing through. The exact relation between these concepts and details about surjectivity
on t-shifts is covered in Chapter 4.

Topological entropy of Turing machines has been already studied. This property gives a

Chapter 2: Introduction in English

18

measure of how heterogeneous is the system. The entropy is a non-negative number that, in
a subshift, describes the diversity of finite patterns that it contains. Oprocha [43] proved that
entropy for Turing machine with Moving Tape is equivalent to the t-shift entropy. Later, it was
proved by Blondel et al. [4] that the entropy of a Turing machine with two or more tapes is
uncomputable. Now, Jeandel [26] has given an algorithm that approaches the entropy of a one-
tape Turing machine from below. This last work shows that the entropy of a Turing machine is
related to the rate of new cells that the head visits and it uses an approximation of the graph of
crossing sequences (as in [20]). The undecidability of the positiveness of the topological entropy
of one-tape Turing machines is proved in Chapter 4.

The remaining properties of the thesis have a high relation with reversibility. In dynamical
terms, a dynamical system is said to be reversible if the rule is one-to-one, therefore every state
of the dynamical system has a unique predecessor. Reversibility has a physics background,
as the laws of motion are all reversible, and the Quantum Computation [42], which needs an
unreachable amount of heat dissipation to work without reversibility. This property, despite
simple in Turing machines, is highly studied in dynamical systems [27, 33] and computing
systems [39, 37, 40]. Reversible (one-head) Turing machines are universal [39], in the sense that
they can perform all the computation that an arbitrary Turing machine can do. There exist
studies about reversible Turing machine dynamical systems, as the work of Kari and Ollinger
[28] which consider nilpotency, periodicity and periodic orbits in reversible Turing machines and
other reversible computing systems.

As stated early, periodicity was studied in various computing models in [30],[28] and [5].
Kůrka conjectured that every complete machine must have at least one periodic orbit for the
TMT model; this assertion was disproved by Blondel, Cassaigne and Nichitiu, who presented
a complete Turing machine without a periodic orbit. Later on, Kari and Ollinger presented a
reversible non-complete Turing machine without a periodic orbit, and proved that deciding if a
complete Turing machine, or a reversible not necessary complete Turing machine, has a periodic
orbit is undecidable. The existence and the decidability of the existence of periodic orbits in
complete reversible Turing machine was conjectured. A proof of both conjectures is addressed
in Chapter 5, thanks to a particular Turing machine created by Julien Cassaigne.

A system is topologically transitive if it admits a dense orbit. As a global characteris-
tic, topological transitivity has been studied in various dynamical systems, including cellular
automata [33], because it is an important property to describe the general behavior of the
dynamics in the long term, in addition to be related with Chaos. Although transitivity may
seem very restrictive, there exist a wide variety of topologically transitive dynamical systems,
including minimal systems, systems with a dense set of periodic points or even systems with

Chapter 2: Introduction in English

19

no periodic point at all. A study about topological transitivity in Turing machine dynamical
systems is given in Chapter 6, along with some examples of existence of transitive machines in
each dynamical model and the undecidability of the property.

One common point of the proofs in this thesis is the proof technique, called embedding.
Embedding consists in putting a whole Turing machine between two or more states of another
Turing machine. If the former maintains some known undecidable property, then the whole ma-
chine keeps the property to be proven undecidable. The existence of periodic orbits, topological
transitivity and topological minimality are proved to be undecidable by using embedding.

The document is organized in the next four chapters as follows: Chapter 3 introduces
general definitions necessary to understand the following chapters and puts the investigation
in the correct context. Chapter 4 will focus on the study of surjectivity, blocking words and
entropy on the t-shift, being an almost direct transcription of the results in “Some dynamical
properties on Turing machine dynamical systems”, accepted in the journal Discrete Mathematics
& Theoretical Computer Science, in 2015. Chapter 5 will discuss a particular machine that
meets many rich dynamical properties, as time-symmetry, minimality, transitivity and others;
and proves the aperiodicity conjecture in [28]. This is a direct translation of the results of
the article “A Small Minimal Aperiodic Reversible Turing machine”, submitted to a journal in
2014. Chapter 6 presents a study of transitivity in different dynamical models of the Turing
machine, to finally prove the undecidability of the property on all three models and also the
undecidability of the minimality property on TMT and t-shift. The last chapter is dedicated to
conclusions and perspectives.

Chapter 2: Introduction in English

Chapter 3

Definitions

20

3.1 Dynamical System 21

In this chapter, we present definitions which are the common factor of the different chapters.
Note that the theory behind those subjects is wide and rich, and this chapter provides just about
the definitions and gives a reduced state of the art that focuses on the more relevant topics of
the presented research. Any specific notion related to just one of the next chapters is presented
in that chapter.

3.1 Dynamical System

In a very general context, a dynamical system is a 3-tuple (X,T,M), where X is a set
called phase space, M is a monoid and T : X ×M → X is a function called global transition
function, satisfying ∀i, j ∈ M : T (x, i + j) = T (T (x, i), j). The phase space evolves in time M
through the global transition function. This general concept about dynamical systems unifies
many different types of global transition functions (or commonly called rules). The various ways
of measuring the time and the different types of phase spaces determines a variety of different
dynamical systems. In this document we focus on discrete dynamical system (from now on,
called just dynamical system for simplicity), where the space is a compact metric space, and
the time M = N is measured by positive discrete time (in this thesis we consider that 0 6∈ N).
We will omit M in the definition of Dynamical System and thus T (x,m) = Tm(x).

3.1.1 Orbit

In a dynamical system (X,T), the orbit OT (x) of a point x ∈ X is simply defined as
OT (x) = (T n(x))n∈N. Orbits are introduced to study the long-term behavior dynamics of a
system, and such, an important topic to help us in this research.

Pre-periodic and periodic orbits: Also, there exist some interesting types of orbits. In a
dynamical system (X,T) a point x ∈ X has a periodic orbit or cycle if there exists n ∈ N such
that x = T n(x). The point x ∈ X is called a periodic point with period n. If n = 1, x is a fixed
point.

If there exists two distinct numbers n,m ∈ N such that T n(x) = Tm(x), then OT (x) is
called pre-periodic orbit, in which case x ∈ X is called pre-periodic point.

If there exists a n ∈ N such that T n = Id, the system itself is called periodic.

Aperiodic orbits: In a dynamical system (X,T) an orbit is aperiodic if no point is repeated

Chapter 3: Definitions

3.1 Dynamical System 22

in the orbit.

3.1.2 Dynamical relations

Suppose that we have two dynamical systems (X,T) and (X ′, T ′). Let τ : X → X ′ be a
continuous map such that: T o τ = τ o T ′.

This function relates these two dynamical systems, and it allows us to study one system
through the other one, depending on the character of τ .

The function τ is called a conjugacy if τ is a bijective map. It is called a factor map if τ
is surjective. Finally, it is called a embedding if τ is injective.

3.1.3 Subshifts, languages and words

Another type of dynamical system is called subshift, which is based in a space of words
evolving through the shift function. To give a formal definition, we need first emphatize in some
definitions about words.

Given a finite set A, called alphabet, AZ is the set of bi-infinite sequences of elements of A,
called bi-infinite words. Aω (ωA) represents the set of right (left) infinite sequences of elements
of A, called infinite words to the right (left). The set of infinite words to the right can be also
represented by AN; we will use both notations as appropriate to the context. Finally, A∗ denotes
the set of finite sequences of elements of A, called finite words, including the word of length 0;
the empty word ε. Two finite words v = v0...vn and v′ = v′0...v

′
m can be concatenated by just

putting them one after the other: vv′ = v0...vnv
′
0...v

′
m. A finite word v can also be concatenated

with a right infinite word u: vu = v0...vnu0u1 . . . A finite word v is said to be a subword1 of
another (finite or infinite) word u, if there exists two indexes i < j, such that v = uiui+1...uj.
In this case we write: v v u (and u w v). We use the usual Cantor metric for bi-infinite words:
d(u, v) = 2−i, where i = min{|n| : un 6= vn, n ∈ Z}. When it is needed, we mark the center of
a (bi-infinite) word by a dot “.”: ...u−3u−2u−1.u0u1u2...

We will use two functions over words. First, the shift function σ, which is defined both
in AZ and AN by σ(y)i = yi+1. It is a bijective function in the first case. Second, the prefix

1The notion of subword usually refers to a sequence obtained by deleting (not necessarily adjacent) symbols
in the original word. The former concept is normally called factor. In this work, however, we prefer to use
subword at the place of factor, because the latter has another meaning in the context of dynamical systems.

Chapter 3: Definitions

3.1 Dynamical System 23

function ()|n : AN → An by z|n = z0z1...zn−1. We also define this function for entire sets
()|n : P(AN)→ P(An) as S|n = {z|n : z ∈ S}.

Subsets of A∗ are called languages. Given a subset S ⊆ AZ (or S ⊆ AN), the language of
the subwords of S is defined as:

L(S) = {v ∈ A∗ | ∃u ∈ S, v v u}.

Reciprocally, given a language L ⊆ A∗, a set of infinite sequences can be defined in AM (M ∈
{Z,N}):

SM
L = {u ∈ AM | ∀v v u, v ∈ L}.

When S satisfies SM
L(S) = S, it is called subshift. In this work, we omit the superscript M, as we

will center in subshifts defined for N (also called one-sided subshifts).

Types of subshifts

Subshifts can be equivalently defined by Forbidden Words. The subshift defined by a set
F of finite words, called forbidden, is the following:

S[F] = {u ∈ AN | ∀v ∈ F, v 6v u}.

In fact, any subshift can be defined by a set of forbidden words [31].

When F is finite, we say that S[F] is a Subshift of Finite Type (SFT). An example of a
SFT is the golden mean shift, defined by S[{11}] ⊆ {0, 1}N (subshift consisting in the sequences
with no consecutive pair of 1s). One example of a non SFT is the even shift, defined by the
set F = {102n+11 : n ≥ 0} (subshift consisting on all the sequences with no odd amount of 0s
between 1s).

A factor of a SFT is called Sofic shift. Any SFT is, of course, a sofic shift. The even shift
is a sofic shift as it is a factor of S[{11}], although it is not a SFT . One example of a non sofic
shift is the prime shift, defined by the set F = {10n1 : n is prime}.

There are more types of subshifts based on their structure. Two examples of that are
substitutive subshift and synchronized subshift.

A substitution φ is a morphism φ : A∗ → A∗, which can be extended to AN. A fixed point
of φ is a word w ∈ AN such that φ(w) = w. A substitutive subshift is the closure of the orbit of

Chapter 3: Definitions

3.2 Topology 24

a fixed point of some substitution.

A word v is called synchronizing for a transitive subshift S if whenever uv, vu′ ∈ L(S),
then uvu′ ∈ L(S). A Synchronized Subshift is a subshift with a synchronizing word.

3.2 Topology

When we work over dynamical systems, some interesting properties (mainly the ones that
we are interested) need aditional restrictions to be even defined. In this topic, let us introduce
topology.

A set X, together with a collection of subsets T , called open subsets, is a Topological Space,
if it satisfies:

1. ∅ ∈ T

2. X ∈ T

3. Finite intersections of sets in T are also in T .

4. Arbitrary unions of sets in T are also in T .

A topological dynamical system (X,T, T) is a dynamical system (X,T) with a topology
such that T is continuous. When we refer to a topological dynamical system, we omit the
collection T , which it is defined by the open sets of the metric d : X ×X → N in our cases, by
the balls Bx as: T = {Bx(r) : x ∈ X, r > 0}, where Bx(r) = {y ∈ X : d(x, y) < r}. Topological
dynamics is interested in the asymptotic properties of the Orbits.

3.2.1 Neighborhood, isolated points and closure

A neighborhood of a point x ∈ X is a set V ⊆ X for which there exists an open set U ∈ T
such that:

p ∈ U ⊆ V.

Chapter 3: Definitions

3.2 Topology 25

It is important to note that V does not need to be an open set. If V is an open set, it is
called an open neighborhood. We denote by N(x) the collection of all neighborhoods of x.

If there exists a point x which have a neighborhood not containing any other point, x is
called an isolated point.

The closure of a set W ⊆ X, the set W , is defined by:

W = {x ∈ X| ∀V ∈ N(x) , V ∩W 6= ∅}.

A set W is called closed if W = W .

A point x ∈ X is the limit of a sequence (x(n))n∈N if: ∀U ∈ N(x),∃m ∈ N,∀n > m | xn ∈ U .

It is important to note that, if all convergence sequences (x(n))n∈N in a set W have a limit
x ∈ W , then W is closed.

3.2.2 Topological transitivity, minimality and entropy

Now, we introduce three of the main properties aborded in this research. As stated earlier,
these properties are topological, therefore, their definition is based in open sets.

In a topological dynamical system (X,T), a transitive point x ∈ X is a point in the system
such that OT (x) = X. The existence of such a point in the system leads to some important
concepts.

Topological transitivity: A dynamical system (X,T) is topologically transitive if it has at
least one transitive point.

In the literature, however, there exists another non-equivalent definition for topological
transitivity: ∀U, V ∈ T ,∃n ∈ N : T n(U) ∩ V 6= ∅. However, if we impose X to be a compact
metric space without isolated points, the two definitions are equivalent.

Topological minimality: A dynamical system (X,T) is topologically minimal if the orbit of
any point is transitive.

Now, let us define the following: For ε ≥ 0 and n ∈ N, we say E ⊂ X is an (n, ε)-separated
set if, for every x, y ∈ E, there exists 0 ≤ i ≤ n such that d(T i(x), T i(y)) > ε.

Chapter 3: Definitions

3.3 Turing machine 26

Topological entropy: The topological entropy of a dynamical system is a measure of the
diversity of its dynamics. The topological entropy for a topological dynamical system is defined
by:

H(T) = limε→0

{
lim supn→∞

1
n
log N(n, ε)

}
,

where N(n, ε) is the cardinality of the maximum (n, ε)-separated set.

For more details about dynamical systems, subshifts and topology, please refer to [51, 31,
29].

3.3 Turing machine

Turing machine (TM) constitutes a simple, yet powerful model of computation. Turing
machines are mainly used to define computability (can this problem be solved by a computer?)
and complexity (how much time/space is necessary for a machine to solve this problem?). In this
thesis, the dynamics of Turing machine is studied, therefore some preliminary considerations
have to be made in order to specify, in the best way, Turing machines in the context of dynamical
systems.

An important syntactic consideration concerns the elementary action of a Turing machine.
Turing machines classically write and move at the same time, but these can also be restricted
to either write or move (but not both) at a given step. The latter is a more dynamical way
to construct a Turing machine, as it is easy to reverse the time and therefore keep track of it.
Both definitions are equivalent in computational terms, but they are not in dynamical terms.
We consider both definitions.

A Turing machine M is a tuple (Q,Σ, δ), where Q is a finite set of states, Σ is a finite set
of symbols and δ is a relation that can be defined according the model of Turing machine.

Turing machine written in quadruples

In this model, δ ⊆ (Q×Σ×Q×Σ) ∪ (Q× {/} ×Q× {−1, 0,+1}) is the writing/moving
relation of the machine [39].

Chapter 3: Definitions

3.3 Turing machine 27

Turing machine written in quintuples

More classically, δ can be defined as the writing/moving relation considered as δ ⊆ Q ×
Σ×Q× Σ× {−1, 0,+1}.

Configuration of a Turing machine

The machine works on a tape, usually bi-infinite, full of symbols from Σ.

A configuration is an element (r, i, w) of Q× Z× ΣZ. A finite configuration is an element
(r, i, v) of Q × {0, 1, ...,m − 1} × Σm, for some m ∈ N. A right semi-finite configuration is
an element (r, i, u) of Q × N × Σω. A left semi-finite configuration is an element (r, i, u) of
Q× (−N)× ωΣ.

Instructions and evolution of a Turing machine

A writing instruction is a quadruple (r, α, r′, α′) ∈ Q × Σ × Q × Σ; it can be applied to
a configuration (r′′, i, w) if wi = α and r = r′′, leading to the configuration (r′, i, w′), where
w′i = α′ and w′k = wk for all k 6= i. A moving instruction is a quadruple (r, /, r′, c); it can
be applied to a configuration (r′′, i, w) if r = r′′, leading to the configuration (r′, i + c, w). A
quintuple instruction (r, α, r′, α′, c) can be applied to a configuration (r′′, i, w) if wi = α and
r′′ = r, leading to the configuration (r′, i + c, w′), where w′i = α′ and w′k = wk for all k 6= i. It
is said that the instruction (r, α, r′, α′, c) starts from state r and goes to state r′.

It is forbidden to apply an instruction (r, α, r′, α′, c) to a finite or (right or left) semi-finite
configuration (r′′, i, u) ∈ Q× {0, ...,m− 1} × Σm, if i+ c 6∈ {0, ...,m− 1}.

r r′

(r, α, r′, α′)

α/α′
r r′

(r, /, r′, c)

c
r r′

(r, α, r′, α′,+1)

α|α′I

Figure 3.1: Graph representation of instructions in Turing machine. In quintuple context, we
use the following symbols to represent movements: I = +1, J = −1 and • = 0.

Turing machines, when viewed as computing model, have a particular starting state r0, and
a particular symbol called blank symbol; the computation is intended to start over a configuration

Chapter 3: Definitions

3.3 Turing machine 28

(r0, 0, w), where w represents the input and it is a word with a finite number of non-blank
symbols, usually in the right part of the tape. The computation process stops correctly when
the machine reaches another particular state: the halting state rF . In general, we are omitting
these three parameters, since we do not want the machine to halt in the next chapters, and we
will study its dynamics for arbitrary initial configurations. In any case, the halting problem can
be translated to the present context as the problem of deciding whether the machine reaches a
particular state when starting in another particular state with an homogeneous configuration
except for a finite number of cells. We will call this problem as reachability problem.

One can translate any machine written in quadruples into a machine written in quintuples
in a simple way because writing instructions are just quintuple instructions that do not cause
any movement, and moving instructions are those that do not modify the tape. The reverse
transformation is also possible but a quintuple instruction will need to be replaced by a writing
instruction followed by a moving instruction (if there is any movement), thus, if every quintuple
instruction includes a movement, the set of states needs to be duplicated and the time is
also multiplied by two. Therefore, both models are equivalent as computing system, but not
as dynamical system. An example of the same Turing machine written in quintuples and in
quadruples can be seen in Figure 3.2

r1 r2 r1 r′1

r2

0|0•

1|1I

0/0

1/1

+1

Figure 3.2: Graph representation of a Turing machine M . M calculates binary AND; M starts
in r1 with the input in the first two cells, and it gives the solution in the position of the head when
it reaches state r3. At the left the quintuple representation of M , at the right the quadruple
representation of it.

Definition 3.1. For configurations x, x′, we say that M reaches y from x if applying a finite
amount of instructions of M to configuration x, configuration y is obtained. We denote this by
x
∗
` y. Analogously, for finite configurations z, z′, we say that M reaches z′ from z, if, applying

the instructions of M to the finite configuration z, the finite configuration z′ is attained without
exiting the interval {1, ..,m}, and we also denote this by z

∗
` z′.

Chapter 3: Definitions

3.3 Turing machine 29

3.3.1 Determinism and completeness in Turing machine

As we stated before, Turing machines have a set of instructions, where one, none or more
of them can be applied to a configuration. In this sense, we can define special Turing machines
considering restrictions in the amount of instructions that can be applied or lead to the con-
figurations of the machine. There are plenty of studies in this sub-classes, as studies about
complexity, for example, the well known conjecture about P vs NP , related with deterministic
and non-deterministic Turing machine (see for example [23] and [17]).

Deterministic Turing machine

A Turing machine M is deterministic if, for any configuration (r, i, w) ∈ X, at most one
instruction can be applied (regardless of the machine being written in quadruples or quintuples).
In terms of quintuples, this is equivalent to give δ as a (possibly partial) function δ : Q× Σ→
Q×Σ×{−1, 0,+1}. This function δ can be projected into three components δQ : Q×Σ→ Q,
δS : Q × Σ → Σ and δD : Q × Σ → {−1, 0,+1}. An example for quintuple model can be seen
in Figure 3.3.

N A N A

a|aI

a|aI

a|aI

a|aI

Figure 3.3: Graph representation of δ (left) and δ′ (right) of non-deterministic machine
M = ({N,A}, {a, b}, δ) and deterministic machine M ′ = ({N,A}, {a, b}, δ′) accepting a+. The
machine accepts the input when it halts in state A.

From now on, we will work only with deterministic Turing machines. In this context we
consider defective and error states.

A state r ∈ Q of a Turing machine M = (Q,Σ, δ) is said to be defective if there exists a
configuration x with state r, such that for all configurations y, applying any instruction to y

will not produce x.
The characterization for quadruple model is straightforward: no movement instruction leads
to state r, and some pair symbol-state including r does not belong to the image of δ. But for
quintuple model it is a little more subtle, as the machine writes and moves at the same time.
The characterization for each model can be seen below.

Definition 3.2. A state r is defective if:

Chapter 3: Definitions

3.3 Turing machine 30

1. (Quadruple model) There exist α′ ∈ Σ such that neither (r, 1), (r, 0), (r,−1) nor (r, α′)
belong to the image of δ.

2. (Quintuple model) There exist symbols α, α′, α′′ ∈ Σ such that neither (r, α,+1), (r, α′, 0)
nor (r, α′′,−1) belong to the image of δ.

Given c ∈ {−1, 0, 1}, we also define the defective set of state r in direction c, as Dc(r) = {α ∈
Σ : ∀r′ ∈ Q, λ ∈ Σ, δ(r′, λ) 6= (r, α, c)}.

Analogously, we define the error states for both models.

Definition 3.3. A state r′ is an error state if:

1. (Quintuple model) There exists a symbol α′ ∈ Σ such that δ(r′, α′) is undefined.

2. (Quadruple model) There exists a symbol α′ ∈ Σ such that both δ(r′, α′) and δ(r′, /) are
undefined.

Definition 3.4. A state r is said to be reachable from the left (right) if there exist a state r′

and symbols α, α′ such that δ(r′, α′) = (r, α, 1) (resp. −1).

Examples can be seen in Figure 3.4

N A

a|aI

b|bI

a|aI

Figure 3.4: Graph representation of machine M = ({N,A}, {a, b, c}, δ) accepting a∗ba∗. The
machine accepts the input when it halts in state A. Defective State: N , Error State: A,
D+1(N) = {b}, D0(N) = D−1(N) = {a, b}. Both states N and A are reachable from the left,
but not from the right.

Complete Turing machine

In any of the two models, if no instruction can be applied, the machine halts. A Turing
machine M is complete if for each configuration (r, i, w), at least one instruction can be applied,
i.e., it never halts or equivalently it has no error state.

Analogous notions of complete and deterministic can be defined when going backward in
time.

Chapter 3: Definitions

3.3 Turing machine 31

Backward deterministic Turing machine

A Turing machine M is backward deterministic if each configuration comes from at most
one previous configuration. More formally, a Turing machine written in quadruples is backward
deterministic (as seen in [39]) if and only if for any r, r′, r′′ ∈ Q,α, α′, α′′, α′′′ ∈ Σ, if (r, α, r′, α′)
and (r′′, α′′, r′, α′′′) are two different instructions in δ, then:

α 6= / ∧ α′′ 6= / ∧ α′ 6= α′′′.

A Turing machine in quintuple model is backward deterministic if and only if for all state
r ∈ Q, r is reachable from at most one direction and for all α ∈ Σ, (r, α, d) has at most one
pre-image in δ.

Backward complete Turing machine

A Turing machine M is backward complete if each configuration comes from at least one
pre-image or equivalently if it has no defective states.

3.3.2 Reversibility in Turing machine

We will put special emphasis in this subclass of Turing machines. Reversibility is an
important property, as many natural process can be reversed without loss of information (as the
laws of motion in physics, or quantum mechanics within weak nuclear force). Many studies have
been made about reversible computing systems [33, 37, 38], in particular for Turing machines
[39, 28, 40]. In this last context, reversibility gains special importance as it could improve the
energy efficiency of computation, specially in Quantum Computation [42].

Reversible Turing machine

A Turing machine is reversible if it is deterministic both forward and backward. For a
machine written in quadruples, reversing the quadruples gives the reverse machine. The reverse
instruction of a writing instruction (r, α, r′, α′) is (r′, α′, r, α). The reverse instruction of a
movement instruction (r, /, r′, c) is (r′, /, r,−c). We call δ−1 to the set of reversed instructions.
The machine M−1 = (Q,Σ, δ−1) is the inverse of M = (Q,Σ, δ), and M ◦M−1 = Id, the partial

Chapter 3: Definitions

3.3 Turing machine 32

Identity, defined for the subset of halting configurations.

Lemma 3.1. A reversible Turing machine is complete if and only if its reverse is complete.

Proof. If a Turing machine M is complete and deterministic, then there are |Σ| instructions
starting with state r, each with one different symbol (in the quadruple model, each movement
instruction count as |Σ| instructions). Then, we have |Σ| ∗ |Q| different instructions. Now, each
state receives at most |Σ| different instructions, because M is reversible, thus each state should
receive exactly |Σ| instructions. As such, the reverse machine will have |Σ| different instructions
(or one movement instruction) starting at each state, therefore it will be complete. If the reverse
is complete, we can act analogously, taking the reverse machine as the original one.

In quintuple model, the inverse of a Turing machine is not, in general, a Turing machine.
A quintuple instruction changes the current content at the head position, and moves the head to
an adjacent position. If we want to reverse this, we need to, first move the head to the previous
position, then change the content, as Turing machine can not work on other cell than the head
position, this is not a valid instruction.

We propose to transform the quintuple model machine in an equivalent quadruple model
machine, reverse it and then transform it to quintuple model again. As we stated before, for
every quintuple instruction (r, α, r′, α′, c) in a machine M = (Q,Σ, δ), we have two equivalent
quadruple instructions (r, α, ra, α′), (ra, /, r′, c), with ra a new auxiliary state that does not
belong to set Q. Please note that, in this case, every writing instruction goes to auxiliary
states, and every movement instruction goes to main states. Then, we reverse the instructions
to obtain (ra, α′, r, α) and (r′, /, ra,−c).

Here, we can do two things: One option is to replace the writing instruction by a no
movement quintuple instruction: (ra, α′, r, α, 0)) and the movement instruction by no writing
quintuple instructions: ∀β ∈ Q : (r, β, ra, β,−c).
The second option is to merge the writing instruction (ra, α′, r, α) with the inverse of the move-
ment instruction that goes to r (if any). If we have a reversible and complete Turing machine,
we can keep the same amount of instructions than in the original machine.

In this work, we use the second option. An example in reversing a complete and reversible
Turing machine in quintuple model is presented in Figure 3.5. As you can note, the resulting
machine has not the same states than the original machine, as we have to use the writing
instruction of the auxiliary states to construct a proper quintuple model Turing machine. The
inverse machine in this case is defined by M−1 = (Qa,Σ, δ−1) where δ−1 is obtained as we

Chapter 3: Definitions

3.4 Turing machine seen as dynamical system 33

described. If we define the map Aux : Q×Z×ΣZ → Qa×Z×ΣZ by Aux(r, i, w) = (ra, i+c, w),
where c ∈ {−1, 0,+1} is the opposite of the unique direction of the instructions reaching the
state r, we can have the following: M ◦ Aux ◦M−1 ◦ Aux−1 = Id. This is always well defined,
because in a reversible Turing machine, all the instructions reaching a state r ∈ Q have the
same movement direction.

1.-

→ ←

0|0I

1|1J

1|0J

0|1I
2.-

→→a

← ←a

+

0/0

0/1

−

1/0

1/1

3.-

→→a

← ←a

−

0/0

1/0

+

0/1

1/1 4.- →a ←a

0|0J

1|1J

0|1I

1|0I

Figure 3.5: The process to invert a reversible and complete Turing machine that counts for-
ward. This machine will be of great use in Chapter 6. 1.- Original machine M ; 2.- Quadruple
representation of M , machine M̄ ; 3.- The inverse of M̄ , machine M̄−1 and 4.- Machine M−1, a
quintuple representation of M̄−1.

All of these last properties are local, and they can be checked by scanning the instructions
set in a finite number of steps.

3.4 Turing machine seen as dynamical system

A Turing machine is a mechanical model of computation. The computation by itself is
(ideally) a finite process, with a finite input and, hopefully, a finite amount of calculus to give
an answer. It is not natural to view Turing machines as a dynamical system. Nevertheless, we

Chapter 3: Definitions

3.4 Turing machine seen as dynamical system 34

present several ways to tackle this problem, mostly addressed by Kůrka [30].

3.4.1 Turing machine dynamical system

A Turing machine M = (Q,Σ, δ) is modeled as a dynamical system as the pair (X,M)
where X = Q× Z× ΣZ and M also represents one application of δ to X.

This model has some problems to be considered as a topological dynamical system. The
first one is that X is a non compact space, because a headless configuration is the limit point of
a series of configurations where the head position goes arbitrarily to the right (left). The second
problem is that dynamical systems have total maps, and that M is partial when the original
Turing machine M is not complete.

The first problem was solved by Kůrka in two different ways that we describe in sections
3.4.2 and 3.4.3. To solve the second problem, the following definition is introduced.

Immortal Turing machines and immortal configurations

A Turing machine is said Mortal if it eventually halts, regardless of the starting configu-
ration. A Turing machine M is called Immortal otherwise (as seen in [28, 25]).

Given a Turing machine M , we can define the set I(M) ⊆ X as the set of configurations
where M never halts (Immortal configurations [25]). This set is closed for the application of
M , as an immortal configuration cannot lead to a mortal configuration. As we will state later
in section 3.5, to decide if a configuration belongs to this set is not possible.

Restricting a Turing machine to its set of immortal configurations, we obtain a dynamical
system (I(M),M).

3.4.2 Turing machine with moving head (TMH)

A way to avoid the first problem (as proposed in [30]) is to add the head as an element
of the tape; the configuration (w, i, r) becomes the infinite word x defined by ∀j < i, xj = wj,
xi = r and ∀k ≥ i, xk+1 = wk. Thus, the pair (Xh,Mh) consists in: Xh ⊂ H = {x ∈ (Σ ∪Q)Z :
|{i : xi ∈ Q}| <= 1}, and Mh is one application of δ, taking the consideration that the head is
at the right of the position of the unique state on the tape, if there is one, and it acts as the

Chapter 3: Definitions

3.4 Turing machine seen as dynamical system 35

identity map otherwise. The metric on TMH is the usual Cantor metric defined in the previous
subsection.

An element of H is called a TMH configuration. We use a version of the operator I() in
this system by IH(M) ⊂ H, such that Xh = IH(M) is the set of immortal TMH configurations.

We call finite configuration of TMH to a finite word w = u.v, where u, v ∈ (Σ ∪ Q)∗ and
|{i : wi ∈ Q}| ≤ 1, and Mh extends as a partial function to work over finite configuration (Mh

is undefined if the head goes out of the domain of the configuration). The point represents the
origin. The set of finite configurations of TMH is denoted by Xh∗

3.4.3 Turing machine with moving tape (TMT)

Another model of the Turing machine consists in putting the head at the center of the tape
(the 0 position) and only moving the tape instead. The dynamical system (Xt,Mt) for TMT
consists in: Xt ⊆ ωΣ × Q × Σω and Mt is one application of δ by moving the tape instead of
the head.

An element of ωΣ × Q × Σω is called a TMT configuration. Here again, we use another
version of operator I() by IT (M) ⊆ ωΣ × Q × Σω, such that Xt = IT (M) is the set of the
immortal TMT configurations.

To understand better how the system works, we specify the way in which the instructions
are applied: Instruction (r, u0, s

′, r′, c) is applied to a TMT configuration (...w2w1w0, r, u0u1u2...),
resulting in:

• If c = −1, (...w3w2w1, r
′, w0s

′u1...)

• If c = 0, (...w2w1w0, r
′, s′u1u2...)

• If c = +1, (...w1w0s
′, r′, u1u2u3...)

We can define the following metric inXt by d : Xt×Xt → R+
0 , where d((w, r, u), (w′, r′, u′)) =

2−k, with k = 0 if r′ 6= r or k = min{i ∈ N : ui 6= u′i or wi 6= w′i}. (Xt, d) is indeed a compact
space [30].

We call finite configuration of TMT, a tuple (v, r, v′) ∈ Σ∗ × Q× Σ∗, and Mt is extended
to these finite configurations respecting the domain of the configuration as in TMH. We denote
Xt∗ the set of TMT finite configurations.

Chapter 3: Definitions

3.4 Turing machine seen as dynamical system 36

In this context, let us abuse the notation for words, and we will say that x = (v, r, v′) ∈ Xt∗

is a subconfiguration of a finite or infinite configuration y = (w, r′, w′), denoted as x v y, if:
∀n < |v|,m < |v′| : wn = vn, w

′
m = v′m, r = r′.

Remark 3.1. Both Turing machine with Moving Tape and Turing machine with Moving Head
are, in fact, topological dynamical systems. Indeed, TMT is homeomorphic to the Cantor middle
third set and TMH is a subshift [30], and, as we know from the literature, every compact metric
space is a continuous image of the Cantor set [52].

3.4.4 Relations between dynamical systems of Turing machines

The relation between the Turing machine dynamical systems presented until now is showed
in Figure 3.6. The map ψ : I(M) → Xh is injective but not surjective, because Xh can have
a headless configuration. The map γ : I(M) → Xh is surjective but not injective, because the
information of the head position is lost.

I(M) XhXt

I(M) XhXt

ψγ

M MhMt

ψγ

Figure 3.6: Turing machine dynamical systems relations. (I(M),M) is embedded in (Xh,Mh),
(Xt,Mt) is a factor of (I(M),M).

3.4.5 The t-shift

Taking into account the TMT dynamical system, we can define πt : Xt → Q × Σ by
πt(w, r, w′) = (r, w′0).

Let us define the function τ : Xt → (Q × Σ)N by τ(x) = (πt(Mn(x)))n∈N. The t-shift SM
associated to M is SM = {τ(x) : x ∈ Xt}. The map τ is in fact a factor map from (Xt, Tt) to
(SM , σ), therefore, SM is a subshift, because it is σ-invariant and topologically closed [15].

We extended τ to finite words in the following way: τ(v) = (π(M j(v)))j∈{0,...,m}, where

Chapter 3: Definitions

3.4 Turing machine seen as dynamical system 37

the number m ∈ N represents the amount of instructions that can be applied before the head
reaches the limits of the finite configuration v ∈ Xt∗.

In Figure 3.7, a comparison between TMT, TMH and t-shift can be seen through an
example.

1 .0 1 1 1 0
q0

1 .0 q0 1 1 1 0 1 0 .1 1 1 0
q0

1 0 0 1 ...
q0 q1 q0 q2

1 .0 0 1 1 0
q1

1 .q1 0 0 1 1 0 0 1 .0 0 1 1
q1

0 0 1 1 ...
q1 q0 q2 q2

1 .0 0 1 1 0
q0

1 .0 q0 0 1 1 0 1 0 .0 1 1 0
q0

0 1 1 0 ...
q0 q2 q2 q2

1 .0 1 1 1 0
q2

1 .0 1 q2 1 1 0 0 1 .1 1 0 0
q2

1 1 0 0 ...
q2 q2 q2 q2

...
Turing machine model TMH model TMT model t-shift model

Figure 3.7: Examples of the evolution of a TM in its four dynamical models. The rep-
resented machine has the instructions (q0, 0, q2, 1,+1), (q0, 1, q1, 1,−1), (q1, 0, q0, 0,+1) and
(q2, α, q2, α,+1), ∀α ∈ Σ.

3.4.6 Turing machine dynamical properties

Here, we present some of the properties linked with Turing machine dynamical systems
that we will study. The first one, Time Symmetry is related to reversibility, while the rest are
linked to its topology.

Time symmetry

In physics systems, a property is observed in real dynamical systems that is stronger than
being reversible, is time symmetry. This property «has been mostly neglected when considering
(...) discrete dynamics in general.» ([16], pag. 180). When a system presents this property, it
is undistinguished if the system goes forward or backward in time. The concept to be presented
is an adaptation of the definition of time symmetry for cellular automata [16].

A reversible Turing machine M = (Q,Σ, δ) is said to be time-symmetric if there exist
involutions hQ : Q→ Q and hΣ : Σ→ Σ such that:

(hQ(r), hΣ(s), hΣ(s′), hQ(r′), c) ∈ δ−1 ⇐⇒ (r, s, s′, r′, c) ∈ δ.

Chapter 3: Definitions

3.4 Turing machine seen as dynamical system 38

In this case, we can define a function h : Xt → Xt by

h(w′, r, w′′) = (hΣ(...w′−2w
′
−1), hQ(r), hΣ(w′0w′′)),

if state r is reached from the left and

h(w′, r, w′′) = (hΣ(w′w′′0), hQ(r), hΣ(w′′1w′′2 ...)),

if state r is reached from the right. The function h satisfy:

Mt ◦ h = h ◦M−1
t .

Topological transitivity

Topological transitivity in the Turing machine context has certain special implications.
First, even when we restrict to immortal configurations to talk about Turing machine dynamical
systems, we will center in complete Turing machines, as it is not natural to talk about a
transitive Turing machine when it halts. Second, the reachability problem, the adaptation of
halting problem for complete Turing machines, is meaningless in this context, as every possible
input starting in any state has to reach any other possible state.

A second point to take into account, is the two different definitions in general topological
dynamical systems. As we stated, the transitive point definition is equivalent to the open set
definition when the topological dynamical system has no isolated points. By the definition of
TMH and TMT, isolated points are not possible.

Finally, Devaney, in his book [10], call chaotic all continuous map with sensitivity on initial
conditions, topological transitivity and density of periodic points.

For TMH and TMT dynamical models, the existence of a periodic point in TMH is re-
strictive for transitivity, as the machine works on a finite part of the tape, and thus unable to
modify the rest of it.

In TMH, topological transitivity means that every finite configuration in Xh∗, can reach
every other one:

∀x, z ∈ X∗h, ∃y ∈ X∗h, ∃n ∈ N : x v y ∧Mn
h (y) w z.

Chapter 3: Definitions

3.4 Turing machine seen as dynamical system 39

In TMT, topological transitivity means that every finite configuration in Xt can reach
every other one:

∀(u, r, u′), (v, r′, v′) ∈ Σ∗ × Q × Σ∗, ∃(w, r, w′) ∈ Σ∗ × Q × Σ∗, ∃n ∈ N : (u, r, u′) v
(w, r, w′) ∧ Mn

t (w, r, w′) w (v, r′, v′).

In t-shift, however, we have two different definition. The open set definition: If every two
finite words can be linked by a third one: ∀u, v ∈ L(ST), ∃w ∈ L(ST) : uwv ∈ L(ST); and the
transitive point definition: ∃w ∈ ST , ∀u ∈ L(ST) : u v w.

Nevertheless, the two definitions are equivalent in our context, because we are centered
just in complete Turing machine, which implies topological transitive t-shift without isolated
points.

Lemma 3.2. A topological transitive t-shift of a complete Turing machine has no transitive
point.

Proof. Taking into account the word metric which define the topology in t-shift, there always
exists more than one elements in the neighborhood of any point while the Turing machine sees
new cells. If the Turing machine do not see new cells, then we are in a periodic point in TMH,
making impossible to have topological transitivity.

Notation: If a particular Turing machine M has a particular topologically transitive
dynamical system, we will say that M is (topologically) transitive in this system, either TMH,
TMT or t-shift.

Topological minimality

Topological minimality is stronger than transitivity, as this property needs that every orbit
is dense, and such, every finite configuration can be found in every orbit.

In TMT, topological minimality means that: ∀x ∈ Xt, ∀(u, r′, u′) ∈ Σ∗ × Q × Σ∗, ∃n ∈
N : Mn

t (x) w (u, r′, u′).

In the t-shift context, minimality means: ∀x ∈ X, ∀v ∈ L(ST) : τ(T (x)) w v.

It is important to note that TMH can not be topologically minimal, as the headless con-
figuration can not reach any finite configurations with a head in it.

Chapter 3: Definitions

3.5 Arithmetical Hierarchy 40

3.5 Arithmetical Hierarchy

A n-ary relation R ⊆ Nn is called recursive if there exists an algorithm that decides, in
finite time, the truth or falsehood of R(b), for all b ∈ Nn, or equivalently, there exists a Turing
machine that decides R. Now, a relation P is called arithmetic if it can be expressed as:

P (b) ⇐⇒ Q1x1Q2x2...QnxnR(b, x1, x2, ..., xn),

where R is a recursive relation and Qi ∈ {∀,∃} is a quantifier.

Two quantifiers of the same type can be contracted to one quantifier if they are adjacent.
In this sense, an arithmetical relation belongs to Σ0

n (Π0
n) if there is no two adjacent quantifiers

of the same kind and the first quantifier is ∃ (∀). When no quantifier exists (n = 0), then
Σ0

0 = Π0
0 are the sets of recursive relations.

Some important properties of the arithmetical hierarchy are:

1. If P ∈ Σ0
m or P ∈ Π0

m, then P belongs to P ∈ Σ0
n and P ∈ Π0

n for all n > m.

2. For all n > 0, Σ0
n is closed for existential quantification and Π0

n is closed for universal
quantification.

3. Σ0
n and Π0

n are closed for conjunction and disjunction.

4. If P ∈ Σ0
n then ¬P ∈ Π0

n and vice versa.

5. Σ0
n and Π0

n are closed under bounded quantifiers (Qx < a).

6. The arithmetical hierarchy does not collapse.

When the quantifiers are applied to function variables, then the hierarchy is called analyt-
ical, being equivalent to use infinite no-numerable sets instead of natural sets (numerable). For
more details about arithmetical and analytical hierarchy, refer to [46].

3.5.1 Hardness and completeness

A relation P is called Π0
n-hard if all relations R ∈ Π0

n can be reduced to P in the sense that
an oracle for caractheristic function of P can resolve the caractheristic function of R. Also, it
is said that P is Π0

n-complete if it is Π0
n-hard and P ∈ Π0

n. The same is applicable to Σ0
n.

Chapter 3: Definitions

3.5 Arithmetical Hierarchy 41

3.5.2 Turing machine examples

Now, let us list some examples of Turing machine problems in relation with the arithmetical
hierarchy, in order to understand this relation.

Halting Problem

Given an homogeneous tape with a word v ∈ Σ∗ in the center position, a state r0 and a
machine M , decide whether M halts when starting in position 0 and state r0. Halting problem
is Σ0

1-complete. The problem is also Σ0
1-complete for reversible Turing machines [40]. The

arithmetical form of this problem is: HP (M,x) ⇐⇒ ∃tR(M,x, t), such that R(M,x, t) is
defined as M starting from finite configuration x, with homogeneous tape, halts on time t.

Mortality problem

Given a Turing machine M , decide whether M is a mortal (Section 3.4.1). Mortality
problem is Σ0

1-complete [22]. The problem is also Σ0
1-complete for reversible Turing machines

[28]. The arithmetical form of this problem is: MP (M) ⇐⇒ ∃tR(M, t), such that R(M, t) is
defined as M halts at time t, regardless of the starting configuration.

Immortality problem

Given a Turing machine M , decide whether machine M is an immortal machine. As the
complement of Mortality Problem, this problem is also undecidable and is Π0

1-complete.

Periodicity orbit problem

Given a Turing machine M , decide whether machine M allows a periodic orbit. Periodic
orbit problem is Σ0

1-complete [28]. The arithmetical form of this problem is: PO(M) ⇐⇒
∃x∃tR(M,x, t), where R(M,x, t) is defined as x is a periodic point with period t for M .

Chapter 3: Definitions

3.6 Coded systems 42

Totality problem

Given a Turing machine M , decide whether M halts on every input. Totality problem is
Π0

2-complete [6]. The arithmetical form of this problem is: TT (M, r0) ⇐⇒ ∀x∃tR(M,x, t),
such that R(M,x, t) is defined as M starting from finite configuration x, with homogeneous tape,
halts on time t. In this way, we can say that the Totality problem is more complex than Halting
problem.

3.6 Coded systems

In practical and coding problems, when we treat with subshifts, SFT and sofic shifts arise
more naturally than other more general subshifts. Although, sofic shifts are just an small part
of all the universe of subshifts. Also, as t-shifts are related with Turing machines, it is not
likely to have sofic t-shifts from most of transitive TMT dynamical systems [13]. In this sense,
we present a generalization of sofic shifts, called coded systems, introduced by Blanchard and
Hansel in 1986 [2].

Countable labeled directed graph

A countable labeled directed graph is a directed multi-edge graph (G,L) with countable
many states and edges together with a labeling L of the edges by a finite alphabet.

Irreducible graph

A countable labeled directed graph is called irreducible if there is a path from any state to
another one (it is strongly connected).

Locally finite graph

A locally finite graph is a potentially infinite graph with finite in and out-degree from any
of its nodes.

Chapter 3: Definitions

3.6 Coded systems 43

Follower set

A follower set of a left infinite word w in a subshift S ⊂ ΣZ, fs(w), is the set of all
possible right infinite words w′ such that ww′ ∈ S. Follower set can be defined for finite words
in the same way. For a subshift S, we can define the collection of all follower sets in S as
Fs(S) = {fs(w) : w ∈ ωΣ}. Depending on the amount of sets in Fs(S), it is said that S has
countable many follower sets or uncountable many follower sets.

Now, the set X of bi-infinite words presented by bi-infinite paths in (G,L) is not topolog-
ically closed, therefore it is not a shift space. The subshift presented by (G,L) is X. It turns
out that every shift can be presented in this way.

Coded System definition

A shift space that can be presented by an irreducible and countable labeled graph is called
coded system. It is important to note that a shift presented by an irreducible labeled graph is
transitive.

Remark 3.1. If v ∈ L(S) is a synchronizing word, vu ∈ L(S) and wvu a left infinite word for
S, it holds fs(wvu) = fs(vu).

types of Coded Systems

There exists distinct types of coded systems, depending on certain properties of the graph
or the follower set. In particular, if the labeled graph is finite, the system is called Irreducible
Sofic Shift. If the shift has a synchronizing word, then it is called a Synchronized System. Now,
we can hierarchize the subclassification of coded systems by the next proposition.

Proposition 3.1. In the context of transitive shifts, the next relations hold [32]:
X is sofic
=⇒ X has countable many follower sets of left-infinite words
=⇒ X is a synchronized system
=⇒ X is a coded system.

None of these implications can be reversed in the general shift context as proved in [2, 12].

Chapter 3: Definitions

3.7 Discussion 44

3.7 Discussion

We took some decisions with respect to several of the concepts in this chapter, as skipping
some components or deciding to include non canonical definitions. Here we want to discuss the
reasons and implications of these elections.

A dynamical system needs not to be defined with a topology. The original dynamical
system (X,M) of a Turing machine is more natural than TMT and TMH models of Kůrka, but
the theory behind non topological dynamical system is poorer, as several properties can not be
defined, as those related with neighborhood, topological entropy, transitivity and minimality.

With respect to Turing machines in themselves, these are usually defined with 3 additional
elements to the three that we use; an initial state, a set of final states and a special character
called blank. We implicitly use the initial and final states in a more general context, as defective
and error states. These can be calculated from δ, rather than being something explicitly defined.
With regard to the blank character, it is meaningless for us because we care about the infinite
inputs; the blank character is just another symbol within the set Σ. We discard to study
problems related with finite initial conditions, because this kind of restriction is not compatible
with compactness, thus not compatible with the dynamical properties that we consider.

In addition, the transition relation δ in Turing machines is normally defined in quintuples,
being the model of quadruples a more comfortable way to work with reversible machines. This
is not a conflict when dealing with computability, both models are fully equivalent due to the
transformation between quintuple and quadruple models, but this is not always the case for
the dynamics. Properties as transitivity and periodicity are unaffected by these transformation.
Then, the only thing that concerns us is that the time taken for a certain path increases twofold
from quintuple to quadruple model.
However, when we look at the t-shift, we are actually losing information with a quintuple model.
In the model of quadruples the head does not leave its position after writing, whereas in the
quintuple model, the head can leave the position as it write, so that information (which the
head wrote) is lost if the head does not return to visit that position. This fact makes us consider
both models as it has particular impact on the surjectivity, as will be seen in chapter 4.

When we talk about Turing machines, they are usually not complete. In this sense, we
could only watch them as dynamical systems when they are complete. In order to overcome this
problem, we define the set I(M) of configurations where the machine does not halt. Although
this set is uncomputable (thanks to the halting problem) we know that it is a topological closed
set, so our dynamical system is well defined.

Chapter 3: Definitions

Chapter 4

Some undecidable problems about the
trace-subshift associated to a Turing

machine

This chapter is based on a work [47] published in the post-proceedings of Reverse Computa-
tion 2012, Lecture Notes on Computer Science, 2013, later completed and accepted in Discrete
Mathematics & Theoretical Computer Science in 2015. In this chapter will be presented the
concept of Blocking Words, a notion playing a role similar to Blocking Words in Cellular Au-
tomata, a block of cells/symbols that does not allow information to pass through it (in our
case, the head). Several results are presented: Undecidibility of both Blocking Words existence,
surjectivity on subshift associated to a Turing machine, and positive Topological Entropy in
One Head Turing machine.The surjectivity as a Turing Machine property is very simple, it is
enough to check the transition rule to decide if a Turing machine is surjective and has direct
relation with its reversibility. But this property works more complex in the subshift associated
to the Turing machine, depending on blocking words.

45

4.1 Problems and concepts 46

4.1 Problems and concepts

4.1.1 Blocking words

The idea of a blocking word that prevents the head from going beyond some limit appears
in several contexts, and it is related to stability and information travel. In the context of Turing
machines, there are several ways of defining it. In a first approach, in a sequence of cells that
acts as a “wall”, one can think that if the head goes over these cells, it will read the symbols that
they contain and it will “rebound”. But it can change these symbols; then the new configuration
should be also “blocking”. On the other hand, the state of the machine is also important; the
blocking effect can be a consequence of the combination between the state and the symbols in
the tape. In order to fix this notion, we consider the following definitions.

Definition 4.1. Given a word u ∈ Σ∗, we say that the partial configuration (r, 0, v) is a blocking
word to the left for a machine M if for every extension w ∈ ΣZ : v v w and every time n,
the position of the head in Mn(r, 0, w) is greater than or equal to 0. Analogously, we say that
(r, |v| − 1, v) is a blocking word to the right if for every extension w of v and every time n, the
position of the head in T n(r, |v| − 1, w) is less than or equal to |v| − 1.

• If |v| = 1 we say that (r, v0) is a blocking pair to the left (right).

• If v = ε, we just say that q is a blocking state to the left (right).

Finally, we say that r is just a blocking state if for every α ∈ Σ, (r, α) is a blocking pair either
to the left or to the right.

These definitions assume that the head starts at the left (right) border of the blocking
word. This way of defining blocking words is arbitrary, because the position of the head is
independent with the property of block the head to surpass the block of cells, but it allow us
to relate this notion with surjectivity in Section 4.3.2.

We consider now the problems of deciding whether a configuration, pair or state is blocking.

(BC-c) Given a Turing machine M and a partial configuration (r, 0, v) (or (r, |v|− 1, v) for c =
1), decide whether the configuration is blocking in direction c ∈ {−1,+1} (or equivalently
{left,right}).

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.1 Problems and concepts 47

(BP-c) Given a Turing machine M and a pair (r, α), decide whether (r, α) is a blocking pair
in direction c.

(BS-c) Given a Turing machine M and a state r, decide whether r is a blocking state in
direction c.

(BS) Given a Turing machine M and a state r, decide whether r is a blocking state.

It is important to note that the complexity of these problems does not depend on whether
the machine is in the quadruple or quintuple model, since the blocking property talks about the
long-term movements of the head.

Since (BS-c) reduces to (BS), (BC-c) and (BP-c), the undecidability of the first implies
the undecidability of the other three. The undecidability of (BS-left) can be directly obtained
by reduction from the Emptiness problem of Turing machines.

Lemma 4.1. (BS-left) is undecidable.

Proof. We prove undecidability by reduction from the Emptiness Problem. Let M = (Q,Σ, δ)
be a Turing machine, and let r0, rF ∈ Q be two states. We will assume, without loss of generality,
that M is written in quintuples, and that starting with r0 the head never goes to the left of
position 0 (this is equivalent to say that the machine works only on the right side of the tape).
Let us define M ′ just like M but with an additional state raux, and some small differences in
its transition function δ:

δ(rF , α) = (raux, α,−1), and δ(raux, α) = (raux, α,−1), for every α ∈ Σ . (4.1)

Thus, M reaches rF for some input (r0, 0, w) if and only if the state r0 is not a blocking
state to the left for M ′.

We can also consider the reversible versions of these problems. The importance of consid-
ering reversible Turing machines lies in the implications of blocking information in properties
related to reversibility, such as surjectivity. This relation can be seen in the next section. The
undecidability of the reversible version will be established in section 4.3.1.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.1 Problems and concepts 48

4.1.2 Surjectivity

A function is called surjective if it is onto, i. e., if every point has a pre-image; in other
words, if M(X) = X. Surjectivity of Turing machines is a local property; one can decide if a
configuration has or not a pre-image just by looking at the state of the head and its surrounding
symbols.

Property 4.1. A machine M is surjective if and only if it has no defective state.

When δ is a total function –i. e., when it is defined over its whole domain–, surjectivity of
M is equivalent to its injectivity. This fact can be easily established through a combinatorial
analysis.

A machine in quadruple model can be directly transformed into the quintuple model,
because writing instructions can be replaced by instructions with 0 movement, and movement
instructions can be replaced by |Q| instructions of the quintuple model. The global function M
does not change with this transformation.

A machine in quintuple model can also be transformed into the quadruple model; but the
global function changes, because one instruction is needed to be changed by two instructions.

Surjectivity of (SM , σ).

In a subshift, surjectivity simply means that every element is extensible to the left: A
subshift S ⊆ AN is surjective if and only if: ∀w ∈ S,∃a ∈ A : aw ∈ S.

Since (SM , σ) is a factor of (M,X), the surjectivity of M is inherited by σ in SM . However,
depending on the model, if M is not surjective, σ can still be surjective in SM .

In the quadruple model, the surjectivity of M is held by the subshift SM and vice versa. In
fact, if we have a defective state r0, then there exist no moving instruction leading to r0. Thus,
in the previous step, the head is on the same cell, and if (r, α) can precede (r0, α0) in SM , one
needs δ(r, α) = (r0, α0); thus r0 is not defective.

However, in the quintuple model, there exist non surjective machines with a surjective
trace-shift. Let us illustrate this in the following example.

Example 4.1. Let M be the Turing machine that simply moves to the right by always writing
a 0. This machine is not surjective, but its associated subshift is. The unique state of the

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.1 Problems and concepts 49

machine is defective; it does not admit the symbol ‘1’ at the left of the head, but position −1
is never revisited. That is why any symbol can be appended at the beginning of any w ∈ SM .

Surjectivity will be possible when defective states avoid the head from going into the
“conflictive” positions. If w = (r0 r1 ...

α0 α1 ...) ∈ SM and a =
(
r
α

)
, condition aw ∈ SM says that

δ(r, α) = (r0, β, c) and that the configuration which produces w should have the symbol β at
position −c. If the machine does not visit the position −c any more, β can be any symbol.
We next give a necessary and sufficient condition for a complete machine to have a surjective
t-shift.

Proposition 4.1. Suppose M a complete Turing machine. The function σ is surjective on SM ,
if and only if for each r0 ∈ Q at least one of the following holds:

1. r0 is not defective.

2. r0 is blocking to the left (right) and is reachable from the left (right).

3. for every α ∈ D1(r0), α′ ∈ D0(r0) and α′′ ∈ D−1(r0) either

(a) (r0, 0, α′α′′) is blocking to the left and r0 is reachable from the left, or

(b) (r0, 1, αα′) is blocking to the right and r0 is reachable from the right.

Proof. We first remark that 2 implies 3; thus 2 can be suppressed from this proposition. We
chose to state it this way because property 2 will be relevant in the next sections.

(⇒) Let us suppose that σ is surjective in SM , and let us suppose that neither 1 nor 3 hold
for some r0. Let us suppose, of course, that r0 is reachable; otherwise σ cannot be surjective.
Let α, α′ and α′′ be on D1, D0 and D−1, respectively, such that they make statement 3 false.
Let us suppose first that δ(r0, α

′) = (r1, γ,+1) for some γ ∈ Σ and r1 ∈ Q. Now, let x be
any extension of

(
α α′ α′′
r0

)
and w = (r0 r1 ...

α′ α′′ ...) = τ(x). We can assume that r0 is reachable from
the left; if not, w cannot be extensible to the left because, with any other movement, α′ or
α′′ should be written, which is not possible. Now, as (r0, 0, α′α′′) is not blocking to the left,
there is an extension of (r0, 0, α′α′′) that makes the head go to position −1. We can take x as
this extension (at least over the cells in N) and equal to α at −1. We can see that w cannot
be extensible because, if x is produced with a movement from the left, α should be written.
Therefore, ST is not surjective and we have a contradiction.

Now, if δ(r0, α
′) = (r1, γ,−1), the proof is analogous. The last case is δ(r0, α

′) = (r1, γ, 0).
We have two possibilities: 1) The head eventually moves in some direction; we proceed as before

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.1 Problems and concepts 50

in that direction. 2) The head remains in the same cell forever; we have a contradiction again
because, in this case, (r0, α

′) is a blocking pair in both directions, and then r0 is only reachable
from the center; thus any predecessor of x should write α′ and stay in place, which was supposed
impossible.

(⇐) Let w = (r0 r1 ...
α0 α1 ...) be an element of SM , generated by a configuration x.

Let us suppose that 1, 2 or 3 hold for r0.

1. If r0 is not defective, then, independently on the context, x can be reached from some
configuration.

2. If r0 happens to be a blocking state to the left (right), no configuration producing w is
able to revisit the position −1 (+1) (with respect to the initial head position), so any
(r, α) ∈ Q×Σ, such that δ(r, α) = (r0, α

′,+1) ((r0, α
′,−1)) for some α′, can be appended

at the beginning of w.

3. Let us suppose that x =
(
... β−1 β0 β1 ...

r0

)
(with β0 = α0). If βd /∈ D−c, for some d ∈

{−1, 0, 1}, then we can extend w to the left (right) with a pair (r′, λ) such that δ(r′, λ) =
(r0, βc,−c). If βc ∈ D−c, for all d ∈ {−1, 0, 1}, then, due to 3, we can extend w to the
left (right) with any (r, λ) ∈ Q×Σ, such that δ(r, λ) = (r0, λ

′, c′) for some λ′ ∈ Σ, with c′

depending on whether β−1,β0 and β1 satisfy 3.a or 3.b.

Therefore, w has a preimage by σ. Since w is arbitrary, σ is surjective on SM .

We consider the following problem.

(Surj) Given a deterministic and complete Turing machine written in quintuples, decide whether
its t-shift is surjective.

(Surj) is related to (BS-c) and (BP-c) as can be appreciated in Proposition 4.1, but they
are all undecidable, as we will see in Section 4.3.

4.1.3 Positive entropy

The entropy of a subshift S is given by the following limit,

H(S) = lim
n

1
n
log(#(S|n))

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.1 Problems and concepts 51

This definition is based on the words of the trace-shift, which correspond to partial devel-
opments of the machine dynamics. The interesting work of [7] proves that entropy of a subshift
can be computed as a maximum over its elements, i. e., over complete traces; more precisely,
a maximum of the Kolgomorov complexity of the elements. The Kolgomorov complexity K(v)
is defined as the length of the shorter program that computes a finite word v. For an infinite
sequence u ∈ S, the upper complexity of u is defined by K(u) = lim

n
supK(u|n)

n
. Brudno proves

that the entropy of a given subshift S is given by the next equality.

Theorem 4.1.
H(S) = max

u∈S
K(u)[[7]]

There is a rich theory about Kolmogorov complexity, a good reference on the subject is
the book of [11]. Here we will only use two classical properties.

Property 4.2. 1. There exists a constant C such that, for all finite words v, v′, K(vv′) ≤
K(v) +K(v′) + C.

2. For every α ∈ Σ and n ∈ N, K(αn) = O(log(n)).

These allow us to prove the next simple lemma.

Lemma 4.2. For any finite word v and symbol α, it holds that K(vαN) = 0.

Proof. If we define u = vαN, from the last properties, we have

K(u) = lim
n

sup
K(u|n)
n

≤ lim
n

sup
K(v) +K(αn−|u|) + C

n
= 0.

In [26], an algorithm that approximates the entropy of the trace-shift of a one-dimensional
Turing machine is developed. His result is strongly based on the next property.

Property 4.3 ([26]). 1. A positive upper complexity is reached on configurations on which
the head visits each position of the tape finitely many times.

2. From the last assertion, we know that some of the configurations with maximal upper
complexity never cross the origin.

We will show that, although computable by approximation, the entropy of a trace-shift
cannot be distinguished from 0 in finite time. In other words, we will prove that the next
problem is undecidable.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.2 Simulating counter machines 52

(PE) Given a deterministic and complete Turing machine T , decide whether H(ST) > 0.

Remark 4.1. It is important to point out that, if we transform a TM from the quintuple model
to the quadruple model, the trace-subshift and its entropy change, but only by a factor of two.
Thus, its positiveness is not affected. Thus the complexity of (PE) does not depend on the model
in which T is expressed.

4.2 Simulating counter machines

The main difficulty when proving undecidability of a TM property that comes from dy-
namical systems theory is that it has to do with the whole set of trajectories; it is not restricted
to trajectories that start at particular points. The three undecidability proofs that we present
here are based on a machine that persistently simulates a counter machine from a particular
state. In this way, some of the dynamical properties of our Turing machine will talk about
the behavior of the counter machine over its initial state, inheriting, in this way, some of its
undecidable properties.

Definition 4.2. A k-counter machine (k-CM) is a triple (Ω, k, R), where Ω is a finite set of
states, k ∈ N is the number of counters, and R ⊆ Ω×{0,+}k×{1, .., k}×{−1, 0,+1}×Ω is the
transition relation. A configuration of the machine is a pair (s, ν), where s is the current state
and ν ∈ Nk is the content of the k counters. By considering the function sign: Nk → {0,+}k

defined by sign(ν)j = 0 if νj = 0 and + otherwise, an instruction (s, θ, i, c, t) ∈ R can be applied
to a configuration (s, ν) if sign(ν) = θ, and the new configuration is (t, ν ′) where ν ′j = νj for
every j 6= i and ν ′i = νi + c. R cannot contain the instruction (s, θ, i,−1, t) if θi = 0.

Since the transition relation is not necessarily a function, the defined system is not necessar-
ily deterministic, nor defined for all configurations. We will restrict our attention to deterministic
and one-to-one (reversible) 2-counter machines (2-RCM). [38] proves that a two-counter ma-
chine is reversible if for every state s ∈ Ω and θ ∈ {0,+}2, the machine can reach a configuration
(s, ν), with sign(ν) = θ, from at most one state.

In the next section, we define a reversible Turing machine that simulates a given arbitrary
2-RCM. The simulation is fairly standard, using special symbols to separate each counter, which
are represented by series of cells containing 1s. In a first stage we define an incomplete RTM,
but in section 5.3.1, we recall one of the methods presented in [28] that allows to complete any
reversible transition rule.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.2 Simulating counter machines 53

4.2.1 Construction of the reversible Turing machine that simulates
a 2-RCM.

Given a 2-reversible counter machine C = (Ω, 2, R), we construct a reversible Turing
machine MC = (QC ,Σ, δ) defined in quadruples. Its state set is QC = Ω ∪Q0 ∪ Ω1 ∪ ... ∪ Ω|R|,
where Q0 is the set of states destined for initialization, and Ωi is the set of states needed to
simulate the i-th instruction of R. The symbol set is Σ = {<, |, >, 1} ∪ {0,+}2. The first set
recreates the counters on the machine, and the second contains auxiliary symbols indicating
the status of the counters. We describe the transition function of MC with figures; the used
notation is specified in Figure 4.1.

s t
+

s t
/a b

(a) (b) (c)

Figure 4.1: (a): Instruction δ(s, /) = (t,+). (b): Instruction δ(s, a) = (t, b). (c): Subroutine.

The idea behind this simulation is that each configuration (s, (n,m)) of the counter machine
will be represented in the Turing machine by the configuration (s, 0, .(sign(n), sign(m))1n|1m >

111...). The machine simulates C starting from configuration (s0, (0, 0)) by writing “< | >” on
the tape. State q0 ∈ Q0 initiates a subroutine (see figure 4.2) that first writes “< | >” on the
tape, and then comes back to replace “<” by “(0, 0)” and to pass to state s0. Subsequently, the
machine adds and removes 1’s from the tape, according to the instructions of C.

q0

s0

/1 < + /1 | + /1 > −

−

/< (0, 0)

Figure 4.2: The routine that writes the sequence “< | >” in the tape.

Each sub-routine uses an exclusive set of states. The state set Ωi is dedicated to perform
the i-th instruction of R. There are several cases, depending on the action over the counters,
the affected counter and its sign. There are eight addition instructions represented by four

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.2 Simulating counter machines 54

subroutines that can be found in table 4.1. There are only four subtraction instructions, since
the counter must be non-empty if we want to subtract from it. Subtractions are represented in
table 4.2. Instructions with no action on the counter are simpler; instruction (s, (c, c′), i, 0, t) is
simply represented by the transition δ(s, (c, c′)) = (t, (c, c′), 0).

(s, (0, 0), 2,+, t) and (s, (0,+), 2,+, t)

t

+ /| | +

/1 1

/> 1 + /1 >

−/1 1

/| |−/< (0,+)

(s, (0, 0), 1,+, t) and (s, (+, 0), 1,+, t)

t

+

/1 1

/| 1 + /> | + /1 >

−

/| |−

/1 1

/< (+, 0)

(s, (0,+), 1,+, t) and (s, (+,+), 1,+, t)

t

+

/1 1

/| 1 + /1 | +

/1 1

/> 1

+

/1 >−

/1 1

/| |−

/1 1

/< (+,+)

(s, (+, 0), 2,+, t) and (s, (+,+), 2,+, t)

t

+

/1 1

/| | +

/1 1

/> 1 + /1 >

−/1 1

/| |−

/1 1

/< (+,+)

Table 4.1: Sub-routines corresponding to the different adding instructions.

The machine will work as long as the background is full of 1’s (the new visited cells). If it
encounters any other symbol, it halts. It is important to note that, before reaching any state
of C, the machine replaces the symbol “<” by the pair (c, c′) ∈ {0,+}2 in order to indicate
the sign of each counter at the end of each instruction. In this way, the machine knows which
instruction of the counter machine is the next to be applied. If MC is in a state of C, reading
a sign (c, c′) will call a subroutine which executes the corresponding instruction of R. This is
illustrated in figure 4.3.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.2 Simulating counter machines 55

(s, (0,+), 2,−, t)

+ /| | +

/1 1

/> 1 − /1 >

−

/1 1+/> >−

/1 1

/| |−

/< (0,+)

/| |

−/< (0, 0)

(s, (+, 0), 1,−, t)

t

+

/1 1

/| | + /> 1 − /| >

−

/1 |−/1 1+/| |−

/1 1

/< (+, 0)

/< (0, 0)

(s, (+,+), 1,−, t)

t

+

/1 1

/| | +

/1 1

/> 1 − /1 >

−/1 1

/| 1−/1 |−/1 1+

/| |

−

/1 1

/< (+,+)

/< (0,+)

(s, (+,+), 2,−, t)

t

+

/1 1

/| | +

/1 1

/> 1 − /1 >

−

/1 1+/> >−

/1 1

/| |−

/1 1

/< (+,+)

/| |

−

/1 1

/< (+, 0)

Table 4.2: Sub-routines corresponding to subtraction instructions.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.2 Simulating counter machines 56

s

(s, (0, 0), i, d, t) (s, (0,+), i′, d′, t′) (s, (+, 0), i′′, d′′, t′′) (s, (+,+), i′′′, d′′′, t′′′)

(0, 0)/ <
(0,+)/ < (+, 0)/ <

(+,+)/ <

Figure 4.3: Depending on the sign of the counters, the machine performs the instruction
(s, (0, 0), i, d, t), (s, (0,+), i′, d′, t′), (s, (+, 0), i′′, d′′, t′′) or (s, (+,+), i′′′, d′′′, t′′′).

The head will recurrently come back to the position where the symbol ′ <′ was placed. MC

will halt if at some moment it encounters an unexpected symbol. It will also halt if it attains a
halting state of C.

Remark 4.1. The Turing machine MC that simulates 2-RCM machine C is reversible.
In fact, in the quadruple model, a machine is reversible if for every two different instructions
going to the same state δ(q1, α) = (q, α′), δ(q2, α

′′) = (q, α′′′), we have that α′ 6= α′′′ and α 6=
/, α′′ 6= /. From tables 4.1 and 4.2, and figures 4.2 and 4.3 it can be directly verified that every
state in Q0∪Ω1∪...∪Ω|R| satisfies these requirements. We need to be more careful with the states
in Ω. Different sub-routines can arrive to the same state in Ω, but they always write the sign of
the counters on the tape. Therefore, since C is reversible, MC will always write different signs
when arriving to the same state from different subroutines, which imply that MC is reversible.

4.2.2 Reversing the computation

In [28] a technique is presented that allows completing a reversible Turing machine. We
recall it here. Given a reversible Turing machine M = (Q,Σ, δ) written in quadruples, a new
machine M ′ = (Q× {−,+},Σ, δ′) is defined as follows.

δ(r, /) = (r′, c) ⇒ δ′((r,+), /) = ((r′,+), c) and δ′((r′,−), /) = ((r,−),−c)

δ(r, α) = (r′, α′) ⇒ δ′((r,+), α) = ((r′,+), α′) and δ′((r′,−), α′) = ((r,−), α)

In other words, (r,+) and (r,−) represent M in state r running forwards or backwards,
respectively.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.3 Undecidability of the problems 57

Moreover, if at some iteration no instruction of M can be applied, the “time direction” is
switched. This is performed by adding the next instructions.

no transition defined for r ⇒ δ′((r,+), /) = ((r,−), 0)

else if neither δ(r, /) nor δ(r, α) are defined ⇒ δ′((r,+), α) = ((r,−), α)

no transition arrives to state r ⇒ δ′((r,−), /) = ((r,+), 0)

else if neither (r, α), (r,−1), (r, 0) nor (r, 1) are in the image of δ ⇒ δ′((r,−), α) = ((r,+), α)

We will apply this technique not only to machine MC but also to some modified versions
of it.

4.3 Undecidability of the problems

4.3.1 Undecidability of the blocking state problem in complete RTMs

The problem we study in this section is not exactly the one described in section 4.1.1. It
is a restriction of the reversible version of (BS-left), thus it directly reduces to (BS-left). The
interest behind this restriction will be clear in section 4.3.2.

(BS-left Artm) Given a complete and reversible Turing machine M and a state r that is
reachable from the left, decide whether r is a blocking state to the left.

We prove the undecidability of this problem by reduction from the halting problem of
reversible two-counter machines, which is proved undecidable in [38]. The halting problem in
this case consists in determining, given an initial configuration (s, ν), whether the machine
reaches a given halting state sf . It is undecidable for k = 2, even if the initial configuration is
fixed to (s0, (0, 0)).

(Halt2rcm) Given a 2-RCM C and two states s0 and sf , decide whether C arrives to sf when
starting from configuration (s0, (0, 0)).

Theorem 4.2. (BS-left Artm) is undecidable.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.3 Undecidability of the problems 58

Proof. Let C = (Ω, 2, R) be a 2-RCM, with initial configuration (s0, (0, 0)) and final state
sf ∈ Ω. We will define a Turing machine M and a state r = r0 meeting the next conditions:

1. it simulates C on the right side of the tape,

2. it is reversible,

3. it reaches the position −1 starting at 0 from r0 if and only if C halts (reaches sf) starting
from (s0, (0, 0)),

4. it is complete, and

5. r0 is reachable from the left.

If the machine meets the above objectives, r0 will not be blocking to the left if and only
if, C halts when it starts from (s0, (0, 0)).

The machine MC defined in section 4.2.1 satisfies the first 2 objectives.

Now, in order to reach the third goal, we add an extra state and an extra rule to MC :
δ(sf , /) = (raux,−1). In this way, MC is able to reach the position −1, starting from r0, if and
only if C halts when it starts from (s, (0, 0)).

We next apply the technique reversing the computation described in section 5.3.1 to obtain
a complete machine M ′

C = (Q′,Σ, δ′), with Q′ = QC × {+,−}.

The fifth goal is attained by modifying M ′
C in only one instruction:

δ′((r0,−), /) = ((r0,+), 0) is switched to δ′((r0,−), /) = ((r0,+), 1).

This instruction exists because r0 is not attained by δ.

Thus, r0 is a blocking state to the left, reachable from the left, for the complete reversible
TM M ′

C if and only if C does not halt (reaches the sf state) from (s0, (0, 0)).

We would like to remark that in this proof we assume M in the quadruple model; but MC

can be transformed to the quintuple model at the end of the proof, the result remaining the
same.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.3 Undecidability of the problems 59

4.3.2 Undecidability of the surjectivity of the subshift associated to
a Turing machine

We will use problem (BS-left Artm) to prove the undecidability of the surjectivity on the
trace-shift.

(Surj) Given a deterministic and complete Turing machine written in quintuples, decide whether
its trace-shift is surjective.

Theorem 4.3. (Surj) is undecidable.

Proof. We prove this by reduction from (BS-left Artm). Let M = (Q,Σ, δ) be a complete and
reversible Turing machine written in quintuples. Let r′ be a state that is reachable from the left,
and let r, α and α′ be such that δ(r, α) = (r′, α′,+1). We know that this machine is surjective.

Now let us define M ′ as M , but with an additional state raux and the following new
instructions:

(∀β ∈ Σ) δ(raux, β) = (r′, β, 0) . (4.2)

And changing

δ(r, α) = (r′, α′,+1) by δ(r, α) = (raux, α′,+1). (4.3)

M ′ is not surjective, because the configuration (raux, i, w) has not preimage if wi−1 6= α′. So
raux is the unique defective state of M ′, with D1(qaux) = Σ−{α′} and D0(raux) = D−1(raux) = Σ.

In this way, if r′ is a blocking state to the left for M , then so is raux for M ′, and it is also
reachable from the left. Therefore, by Proposition 4.1, SM ′ is surjective if and only if r′ is a
blocking state to the left for M .

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.3 Undecidability of the problems 60

4.3.3 Undecidability of the entropy positiveness on reversible one-
tape Turing machines

(PE) Given a deterministic and reversible Turing machine, decide whether its entropy is posi-
tive.

Theorem 4.4. (PE) is undecidable.

Proof. We prove it by reduction from the halting problem with empty counters of 2-RCM.

Let C = (Ω, 2, R) be a 2-RCM, with initial configuration (s0, (0, 0)) and final state sf ∈ Ω.
For this proof we use the Turing machine MC defined in section 4.2.1. This machine:

1. simulates C on the right side of the tape,

2. is reversible.

We distinguish four types of configurations:

1. Configurations where MC finds error(s) in its computation and halts.

2. Configurations where MC goes to unbounded searches of symbols like <, |, >.

3. Configurations where MC has a successful infinite computation of C.

4. Configurations where MC has a successful finite computation of C.

We slightly modify MC by adding the rules depicted in figure 4.4. These rules allow a new
computation to start if the initial one is achieved. A second simulation will correspond to the
machine C starting from (s0, (0, 0)).

sf t1 t2 t3 t4 t5 t6 q0
+

/1 1

/| | +

/1 1

/> > +

/1 1

/| | +

Figure 4.4: Sequence of states added to MC .

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.3 Undecidability of the problems 61

Configurations type 1 have a finite computation, then it is not part of the machine t-shift.
Now, the upper complexity of configurations type 2 is 0, by Lemma 4.2, as all the searches are
done over symbol 1. Configurations type 3 revisit infinitely the starting cell, therefore its upper
complexity is 0. Configurations type 4 will reach state t, and it starts a search of symbol |, and
then it starts a simulation of the 2-RCM from configuration (s0, (0, 0)).

If the machine C halts from (s0, (0, 0)), MC can repeat simulations of C several times.
More precisely, we can consider a configuration (s0, 0, w), where w ∈ (u+v)Z, with u = 1m| and
v = 1|τ((q0,0,u))|. If m is taken as the minimum space needed to perform a complete simulation
of C from (s0, (0, 0)), MC will make a simulation of C with the same frequency as the word u

appears in w. We thus have a lower bound for the entropy of SM ′C :

H(MC) = lim
n

1
n
log(#(SMC

|n)) ≥ lim
k

log2k
k(|τ((q0, 0, u))|) = log2

|τ((q0, 0, u))| > 0

On the other hand, if the machine C does not halt from (s0, (0, 0)), even if a configuration of
type 4 reaches sf , MC will start a search of symbol ‘|’. Three cases appear:

• Symbol | is found. In this case, the machine starts a new computation of C from (s0, (0, 0)),
the configuration becomes of type 1 or 3, and its upper complexity is 0.

• Symbol | is not found. We are over a configuration of type 2. By Lemma 4.2, its upper
complexity is 0.

• A symbol different from | and 1 is found. The machine halts (type 1), therefore this trace
is not part of the t-shift.

We conclude that C halts on (s0, 0, 0) if and only if MC has positive entropy.

(EntrC) Given a deterministic, complete and reversible Turing machine, decide whether its
entropy is 0.

Corollary 4.1. (EntrC) is undecidable.

Proof. Take the same machine MC = (Q,Σ, δ) from the previous result and 2-RCM C. We use
again the technique reversing the computation, as described in section 5.3.1, to obtain a complete
machine M ′

C . In this new machine, configurations of type 1 simply loop into a periodic behavior,
always visiting the same cells. Its upper complexity is 0.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

4.3 Undecidability of the problems 62

As this new machine M ′
C works in the same way than M ′ on every configuration (trace), but

in the halting ones, then machine C halts on (s0, 0, 0) if and only if M ′
C has positive entropy.

Chapter 4: Some undecidable problems about the trace-subshift associated to a Turing machine

Chapter 5

A SMART machine

This chapter is based in a work submitted in 2014 to a journal. It will be presented a certain
Turing machine that is aperiodic, transitive for all its dynamical models, minimal for its t-
shift, time symmetric, complete and reversible. This machine was created to prove that exists a
reversible and complete machine without periodic behavior, proving one conjecture proposed by
Jarko Kari and Nicolas Ollinger [28]. It will be also proved that is undecidable the periodicity
problem for complete and reversible Turing Machine, proving the second part of the conjecture,
by using two techniques to insert machines inside others.

63

5.1 A small aperiodic complete and reversible Turing Machine (SMART) 64

5.1 A small aperiodic complete and reversible Turing
Machine (SMART)

5.1.1 The SMART machine.

The machine which is the object of this chapter is described in figure 5.1. We remark the
symmetry between states b and d, and between p and q. State b writes the same as d on the
tape, but it goes in the opposite direction of d. The analogous occurs with p and q.

p

b

d

q

0|1I

1|1I
2|2I

0|1J

1|1J
2|2J

2|0J

0|2I
1|0I2|0I

0|2J
1|0J

Figure 5.1: The SMART machine. An arrow from r to r′ labelled α|α′c represents the instruction
(r, α, α′, r′, c) of the machine.

5.1.2 Basic movements of SMART

The behavior of SMART consists in recursively applying different types of bounded searches.
These can be described by the next four propositions. They say that the machine finally
transverse every block of 0s. But in the proof of these propositions, we can see that it does it
by recursive calling smaller bounded searches in a nested way.

B(n): (∀α+ ∈ {1, 2})(∀α∗ ∈ {0, 1, 2})
(
α∗ 0n 0 α+

b

) ∗
`
(
α∗ 0n+1 α+
b

)
D(n): (∀α+ ∈ {1, 2})(∀α∗ ∈ {0, 1, 2})

(
α+ 0 0n α∗

d

) ∗
`
(
α+ 0n+1 α∗

d

)
P (n): (∀α+ ∈ {1, 2})

(
0 0n α+
p

) ∗
`
(

0n+1 α+
p

)

Chapter 5: A SMART machine

5.1 A small aperiodic complete and reversible Turing Machine (SMART) 65

Q(n): (∀α+ ∈ {1, 2})
(
α+ 0n 0

q

) ∗
`
(
α+ 0n+1
q

)
Lemma 5.1. B(n), D(n), P (n) and Q(n) are true for all n ∈ N.

Proof. We make an induction over n. The basis can be done by hand by simulating the machine.

Let us take n ≥ 1. We will do the proofs just for B(n) and P (n), because D(n) and Q(n)
are symmetric. Let us suppose that B(n− 1), D(n− 1), P (n− 1) and Q(n− 1) are true. First
we prove B(n).

(
α∗ 0 0 0n−2 0 α+

b

)
Apply B(n− 1)(

α∗ 0 0 0n−2 0 α+
b

)
One step(

α∗ 1 0 0n−2 0 α+
d

)
Apply D(n− 1)(

α∗ 1 0 0n−2 0 α+
d

)
One step(

α∗ 1 0 0n−2 0 α+
q

)
Apply Q(n− 1)(

α∗ 1 0 0n−2 0 α+
q

)
One step(

α∗ 0 0 0n−2 0 α+
b

)

(5.1)

Now, for P (n):

Chapter 5: A SMART machine

5.1 A small aperiodic complete and reversible Turing Machine (SMART) 66

(
0 0 0n−2 0 α+
p

)
One step(

2 0 0n−2 0 α+
d

)
Apply D(n− 1)(

2 0 0n−2 0 α+
d

)
One step(

2 0 0n−2 0 α+
q

)
Apply Q(n− 1)(

2 0 0n−2 0 α+
q

)
One step(

0 0 0n−2 0 α+
p

)
Apply P (n− 1)(

0 0 0n−2 0 α+
p

)

(5.2)

It is important to remark that applying B(n) always implies to apply B(n− 1) as the first
step, and also B(n − 2) and B(0). Analogously, applying P (n) implies to apply P (n − 1) and
P (0) as the last step. Interestingly, just before applying P (0) by the last time, i.e., 3 steps
before finishing P (n), the head is on the rightmost 0 with state p. This will be used in the
future. Thus, we define the next two propositions which also hold.
P ′(n): (∀α+ ∈ {1, 2})

(
0 0n α+
p

) ∗
`
(

0n 0 α+
p

)
Q′(n): (∀α+ ∈ {1, 2})

(
α+ 0n 0

q

) ∗
`
(
α+ 0 0n

q

)

5.1.3 Aperiodicity

Following [28], we say that a Turing machine M is aperiodic if its associated moving tape
system T has no periodic point. Let us remark that periodic points in the moving tape system
can correspond to periodic configurations where the machine makes repetitive movements in a
fixed direction. First, we prove the aperiodicity of two particular but important points.

Lemma 5.2.
(

α+ 0 0n 1 0
p

) ∗
`
(

α+ 0 0n+1 1
p

)
Chapter 5: A SMART machine

5.1 A small aperiodic complete and reversible Turing Machine (SMART) 67

Proof.
(

α+ 0 0n 1 0
p

)
Apply P (n)(

α+ 0 0n 1 0
p

)
Two steps(

α+ 0 0n 0 1
b

)
Apply B(n+ 1)(

α+ 0 0n 0 1
b

)
One step(

α+ 0 0n 0 1
p

)

(5.3)

Lemma 5.3. The semi-infinite configurations (0 0w

b) and
(

0 0w

p

)
are not periodic.

Proof. Starting with any of these configurations, the machine makes a few steps (≤ 9), leading
to
(

α+ 0 1 0w

p

)
, with α+ ∈ {1, 2} depending on the initial state (if p then α+ = 2, if b then

α+ = 1). Now we can apply Lemma 5.2 to see that the evolution of the machine cannot be
periodic.

In order to generalize aperiodicity to any configuration, we will prove that, in the evolution
of every configuration, arbitrary large blocks of 0s appear in a recurrent way.

Lemma 5.4. If we define, for every n ≥ 0, the set Cn = {x | x ∈
(
α+ 0 0n

q

)
∪
(

0n 0 α+
p

)
}, then

for every x ∈ Cn, either x or the orbit of x will eventually visit Cm for arbitrary large m.

Proof. We just make the proof for initial state q, since p is symmetrical. Let us start with n

maximal such that x ∈ Cn. If there is no maximal n, then x is already on every Cm.

(
α∗ α+ 0 0n α++

q

)
one step(

α∗ α+ 2 0n α++
b

)
one step

Chapter 5: A SMART machine

5.1 A small aperiodic complete and reversible Turing Machine (SMART) 68

If α+ = 1 If α+ = 2(
α∗ 1 2 0n α++

p

) (
α∗ 2 2 0n α++

p

)
one step one step(

α∗ 1 0 0n α++
q

) (
α∗ 2 0 0n α++

q

)
one step one step(

α∗ 0 0 0n α++
b

) (
α∗ 0 0 0n α++

p

)
If α∗ 6= 0 P ′(n)(

α∗ 0 0 0n α++
p

) (
α∗ 0 0n 0 α++

p

)
P ′(n+ 1) we are done(

α∗ 0 0n 0 α++
p

)
we are done

Now we study the case α∗ = 0.

(
0 0 0 0n α++
b

)
one step(

1 0 0 0n α++
d

)
D(n+ 1)(

1 0 0 0n α++
d

)
one step(

1 0 0n 0 α++
q

)
Q′(n+ 1)(

1 0 0n 0 α++
q

)
we are done

Theorem 5.1. The SMART machine has no periodic points.

Proof. Consider an arbitrary configuration. After less than 9 steps, the head will be reading a
0 symbol in either state q or p, after which, by propositions P ′ and Q′, it arrives to one of the
sets Cn described in Lemma 5.4. The amount of 0s will grow then, expanding to the right or
to the left. At some point, the machine will either reach a configuration of the form (0 0w

r),
with r ∈ {b, p} (or its symmetric), which we know to be aperiodic from Lemma 5.2, or it will
pass by an infinite sequence of configurations of the form

(
0 0n−1 α+
r

)
with r ∈ {b, p} (or its

symmetric), implying that its behaviour is not periodic.

Chapter 5: A SMART machine

5.2 Other properties of the SMART machine 69

Corollary 5.1. There exists a complete reversible Turing machine without any periodic point.

5.2 Other properties of the SMART machine

5.2.1 Some more lemmas

We will denote some other results about the behavior of this machine to simplify the proofs
of minimality and substitution.

Lemma 5.5. The SMART machine is time-symmetric.

Proof. Using involutions: hΣ(0) = 0, hΣ(1) = 2, hQ(d) = q and hQ(b) = p, we will have that
the SMART machine is time-symmetric as can be seen on the diagram of the inverse machine
in Fig. 5.2.

p

b

d

q

1|0J

2|0I
0|1I

1|0I

2|0J
0|1J

1|1I
2|2I

0|2I

1|1J
2|2J

0|2J

b

p

q

d

0|2I

1|1I
2|2I

0|2J

1|1J
2|2J

1|0J

0|1I
2|0I

1|0I

0|1J
2|0J

Figure 5.2: Two representations of the inverse of the SMART machine

With the previous result, we can now prove that every finite configuration can be reached
from a block of 0s of the appropriate size.

Lemma 5.6. For every finite word v′ ∈ {0, 1, 2}∗ of length n, and every i ∈ {1, . . . , n}, there
exist k1, k2 ∈ N and r ∈ Q such that

(
2 0n′ 0 2

b

) ∗
`
(

2k1 v′1 ... v
′
i ... v

′
n2k2

r

)
, where n′ = k1 +k2 +n−3.

Chapter 5: A SMART machine

5.2 Other properties of the SMART machine 70

Proof. First, we will use the fact that the SMART machine is time-symmetric, so applying
h ◦ T t ◦ h is the same as applying T−t, for any time t ∈ N. So now we just have to prove
that h

(
2k1 v′1 ... v

′
i ... v

′
n2k2

r

)
=
(

1k1 hΣ(v′1) hΣ(v′n) 1k2

hQ(r)

)
will eventually reach h

(
2 0n′ 0 2

b

)
=(

1 0n′ 0 1
p

)
.

Based on the proof of Theorem 5.1, we know that we can generate an increasing amount of
0 symbols in the tape. For this reason, we know that

(1 hΣ(v′1) hΣ(v′n) 1
hQ(r)

)
will eventually

reach one of the configurations considered in Lemma 5.4 with a block of 0s that will grow until
arriving to one of the next configurations:

(
1 0j 0 v1 ...vl 1

p

)
or

(
1 0 0j v1 ...vl 1
q

)
or

(
1 v1... vl 0 0j 1

q

)
or

(
1 v1...vl 0j 0 1

p

)
.

Thus, applying either Q(0) or P (0) we arrive to one of the next situations:

(i)(
1 0j 0 v1 ...vl 1

p

) or
(ii)(

1 0 0j v1 ...vl 1
q

) or
(iii)(

1 v1... vl 0 0j 1
q

) or
(iv)(

1 v1...vl 0j 0 1
p

)
,

(5.4)

for some v ∈ {0, 1, 2}n−j−1, and v1 6= 0 in situations (i) and (ii), and vl 6= 0 in the other
two.

In order to reach
(

1 0n′ 0 1
p

)
, we will need a certain amount of 1 symbols at the left or right

of the initial configuration; this amount depends on v. Let k(v) be the function that gives the
amount of non-0 symbols in v. As before, we will do the proof only for configurations of the
form (i) and (ii).

Chapter 5: A SMART machine

5.2 Other properties of the SMART machine 71

Case (i). We will prove first that every iteration will replace at least one element of v for
a 0.

- Case (i).1 v2 6= 0 or v1 = 2.
(

1k(v) 1 0 0j v1 v2 ... vl 1
p

)
Regardless of the value of v1 6= 0

in 1 or 2 steps we reach the next, with i = 0 or 1(
1k(v) 1 0j−i+1 0 0i v2 ... vl 1

q

)
Apply Q(j − i)(

1k(v) 1 0j 0 0 v2 ... vl 1
q

)
Two steps(

1k(v) 0 0j 0 0 v2 ... vl 1
p

)
P (j + 2)(

1k(v) 0 0j 0 0 v2 .. vl 1
p

)

(5.5)

- Case (i).2 v2 = 0 and v1 = 1.
(

1k(v) 1 0 0j 1 0 v3 ... vl 1
p

)
Two Steps(

1k(v) 1 0 0j 0 1 v3 ... vl 1
b

)
Apply B(j + 1)(

1k(v) 1 0 0j 0 1 v3 ... vl 1
b

)
One Step(

1k(v) 1 0 0j 0 1 v3 ... vl 1
p

)
Apply P (j + 1)(

1k(v) 1 0 0j 0 1 v3 ... vl 1
p

)

(5.6)

Finally, we repeat this steps l times and we are done.

Chapter 5: A SMART machine

5.2 Other properties of the SMART machine 72

Case (ii)
(

1k(v) 1 0 0j v1 v2 ... vl 1
q

)
Two steps(

1k(v) 0 0 0j v1 v2 ... vl 1
p

)
P (j + 1)(

1k(v) 0 0 0j v1 v2 ... vl 1
p

)
Which reduces to case (i)

(5.7)

In this way, we have proved that, for (i) and (ii), we will always reach
(

1 0n′ 0 1
p

)
, with

n′ = j + l + k(v). For cases (iii) and (iv), we can assure, by symmetry, that the machine will
reach

(
1 0n′ 0 1
q

)
, then:

(
1 1 0n′ 0 1
q

)
Two steps(

1 0 0n′ 0 1
p

)
Apply P (n′ + 1)(

1 0 0n′ 0 1
p

)
(5.8)

Concluding that, for the last two cases, we need just one additional 1 symbol to reach the
desired configuration.

Lemma 5.7. The orbits of configurations (0 0ω

r1) and (ω0 0
r2) are dense in X, with r1 ∈ {b, p}

and r2 ∈ {d, q}.

Proof. We just need to prove that any finite configuration can be reached from (0 0ω

b). The
other cases can be proved by symmetry and time symmetry. Since any finite configuration can
be reached from (2 0n 0 2

b) for some n, we just need to prove that (0 0ω

b) can reach (2 0n 0 2
b), for

any n ∈ N.

Chapter 5: A SMART machine

5.2 Other properties of the SMART machine 73

(0 0ω

b)
One step

(1 0 0ω

d)
Apply D(n+ 3)(

1 0 0n+1 0 0 0ω

d

)
One step(

1 0 0n+1 0 1 0ω

b

)
Apply B(n+ 2)(

1 0 0 0n+1 1 0ω

b

)
Two steps(

1 2 0 0n+1 1 0ω

d

)
Apply D(n+ 1)(

1 2 0n+1 0 1 0ω

d

)
Two steps

(1 2 0n 0 2 1 0ω

b)

Corollary 5.2. The SMART machine is transitive as well as its t-shift.

Theorem 5.2. The SMART machine is minimal as well as its t-shift.

Proof. As we know from Lemma 5.4 and Theorem 5.1, we can “create” an arbitrary amount of
0s starting from any initial configuration. Now, from Lemma 5.6, if the correct amount of 0 is
provided, we can reach any finite configuration. This proves that every point is transitive, and
so SMART is minimal. Since its t-shift is a factor of (X,M), it inherits minimality.

5.2.2 The t-shift is substitutive

In this part, we will prove that the t-shift is not only minimal, but also substitutive. For
this, we will present a substitution and, with a pair of results, prove that the t-shift of SMART
is the closure of the shift orbit of a fixed point of that substitution.

First, we recursively define the following functions.

• B : {1, 2} × N→ (Q× Σ)∗

B(α+, n) = B(α+, n− 1) 0
bD(1, n− 1) α+

d Q(1, n− 1) 1
q

B(α+, 0) = 0 α+ 1
b d q

Chapter 5: A SMART machine

5.2 Other properties of the SMART machine 74

• D : {1, 2} × N→ (Q× Σ)∗

D(α+, n) = D(α+, n− 1) 0
dB(1, n− 1) α+

b P (1, n− 1) 1
p

D(α+, 0) = 0 α+ 1
d b p

• P : {1, 2} × N→ (Q× Σ)∗

P (α+, n) = 0
pD(2, n− 1) α+

d Q(2, n− 1) 2
q P (α+, n− 1)

P (α+, 0) = 0 α+ 2
p d q

• Q : {1, 2} × N→ (Q× Σ)∗

Q(α+, n) = 0
qB(2, n− 1) α+

b P (2, n− 1) 2
pQ(α+, n− 1)

Q(α+, 0) = 0 α+ 2
q b p

Lemma 5.8. B(α+, n) is the trace corresponding to applying proposition B(n) to
(

α∗ 0n 0 α+
b

)
until

(
α∗ 0n+1 α+
b

)
. The analogous goes for D(α+, n), P (α+, n) and Q(α+, n).

Proof. It is enough to see the proof of lemma 5.1 and take the trace.

Now, let us define the substitution.

φ : (Q× Σ)∗ → (Q× Σ)∗

φ(0
b) = 0 0 1 1

b d b p = 0
bD(1, 0)

φ(α+
b) = α+

b

φ(0
p) = 0 0 2 1

p d b p = 0
pD(2, 0)

φ(α+
p) = 0 α+ 2 α+

p d q p = P (α+, 0) α+
p

φ(0
d) = 0 0 1 1

d b d q = 0
dB(1, 0)

φ(α+
d) = α+

d

Chapter 5: A SMART machine

5.2 Other properties of the SMART machine 75

φ(0
q) = 0 0 2 1

q b d q = 0
qB(2, 0)

φ(α+
q) = 0 α+ 2 α+

q b p q = Q(α+, 0) α+
q

Lemma 5.9. For all a+ ∈ {1, 2} and for all n ∈ N
B(α+, n) = B(α+, 0)φ(B(α+, n− 1))
D(α+, n) = D(α+, 0)φ(D(α+, n− 1))
P (α+, n) = φ(P (α+, n− 1))P (α+, 0)
Q(α+, n) = φ(Q(α+, n− 1))Q(α+, 0)

Proof. It is enough to prove the lemma for B(α+, n) and P (α+, n), the other cases can be proved
by symmetry.

B(α+, 0)φ(B(α+, n)) = B(α+, 0)φ(B(α+, n− 1) 0
bD(1, n− 1) α+

d Q(1, n− 1) 1
q)

= B(α+, 0)φ(B(α+, n− 1)) 0
bD(1, 0)φ(D(1, n− 1)) α+

d φ(Q(1, n− 1))Q(1, 0) 1
q)

= B(α+, n) 0
bD(1, n) α+

d Q(1, n) 1
q = B(α+, n+ 1)

φ(P (α+, n))P (α+, 0) = φ(0
pD(2, n− 1) α+

d Q(2, n− 1) 2
q P (α+, n− 1))P (α+, 0)

= 0
pD(2, 0)φ(D(2, n− 1)) α+

d φ(Q(2, n− 1))Q(2, 0) 2
q φ(P (α+, n− 1))P (α+, 0)

= 0
pD(2, n) α+

d Q(2, n) 2
q P (α+, n) = P (α+, n+ 1)

Theorem 5.3. The t-shift of SMART is the closure of a fixed point of substitution φ.

Proof. It is enough to prove that φn(0
b) = 0

bD(1, n− 1) for all n ∈ N, because, from lemma 5.8,
0
bD(1, n− 1) is the trace of (0 0ω

b) over the first steps and, as the configuration is transitive, the
orbit of this configuration is dense. We will prove it by induction.

Base of induction: φ(0
b) = 0 0 1 1

b d b p = 0
bD(1, 0)

Chapter 5: A SMART machine

5.3 An application of SMART 76

Induction hypothesis: φn(0
b) = 0

bD(1, n− 1)

Induction thesis:

φn+1(0
b) = φ(φn(0

b)) // Induction hypothesis

= φ(0
bD(1, n− 1))

= 0
bD(1, 0)φ(D(1, n− 1)) // Lemma 5.9

= 0
bD(1, n)

(5.9)

5.3 An application of SMART

We will prove the second part of the conjecture in [28]: “it is undecidable whether a given
complete RTM admits a periodic configuration”.

In order to ease the understanding of the proof, we will present two key proof techniques.

5.3.1 Proof techniques

Reversing the computation

This technique is used in [28]. It takes a reversible Turing machine M = (Q,Σ, δ), and
creates a new reversible and complete machine M ′ = (Q×{−,+},Σ, δ′), where (r,+) and (r,−)
states represent M in state q running forwards or backwards in time, respectively. If at some
iteration no instruction of M can be applied, the time direction is switched.

It is noteworthy to say that we can choose to switch the direction on just a set of pairs
(state,symbol), defining in this way a possibly incomplete machine. For example, we can just
switch the sign on the halting state of M ; then M ′ will come back to the initial configuration
if M halts from it.

Chapter 5: A SMART machine

5.3 An application of SMART 77

Embedding

This technique consists in inserting a machine M inside a machine N to produce a new
machine N , in such a way that some property of M will be translated into a property of N . In
order to do this, some states of N are duplicated and connected to particular states of M .

For example, in order to insert M = (Q,Σ, δ) inside N = (Q′,Σ, δ′), we select a state
r ∈ Q′ and split it into two new states, r′ and r′′, and connect the input instructions of r to r′

and the outputs to r′′. Now one can connect r′ with the starting state of M , and r′′ with the
halting state of M . The connection can be done by a no movement and no writing instruction
((r′, ∗, ∗, r0, 0)). We can also connect other states of M to those of N . In order to do this, we
can use another state from N or we can split one of the new states r′ or r′′ into series.

5.3.2 Undecidability of the aperiodicity of complete reversible Tur-
ing machines

In [28], it is proved that the aperiodicity of (non-complete) reversible Turing machines is
undecidable. There the proof is performed by reduction from the reachability problem of
aperiodic reversible Turing machines: Given an aperiodic and reversible Turing machine
M = (Q,Σ, δ) and two states r1, r2, decide whether from r1 M can reach r2 or not, which is
proved undecidable in the same paper. The proof uses the technique of “reversing the computa-
tion” between r1 and r2 in order to define a reversible machine which has a periodic point if and
only if (M , r1, r2) satisfies reachability. Now we will combine this idea with the technique of
“embedding” and the SMART machine to define a complete reversible machine with the same
characteristic.

Theorem 5.4. It is undecidable whether a given complete RTM admits a periodic orbit.

Proof. Let us take an aperiodic RTM machine M = (Q,Σ, δ) and two states r1, r2 ∈ Q. Let us
suppose that M has m defective states and n error states. Now, let us remove all transitions
starting at state r2 and all transitions arriving to state r1. Using the technique of “reversing
the computation”, we create a new RTM machine M ′ = (Q× {+,−},Σ, δ′) such that machine
M is simulated forwards and backwards in time as we explained before, but now the direction
is switched from - to + only in state r1 and from + to - in state r2.

The machine M ′ is next duplicated to obtain two machines M ′
1 and M ′

2. We will denote
their forward and backward parts by M ′

i+ and M ′
i− respectively.

Chapter 5: A SMART machine

5.3 An application of SMART 78

The embedding into SMART is performed as follows. We invite the reader to look at
figure 6.6 for a better understanding. We first split two states of SMART as many times as
needed to have the necessary connections. We will denote by q′i, q′′i , with i ∈ {1, ...,m} the set
of split states of the first group, and by p′j and p′′j , with j ∈ {1, ..., n}, the set of split states of
the second group.

• States q′i are connected to defective states of M ′
1+ and states p′j are connected to M ′

1−.

• Error states of machine M ′
1 are directly connected to defective states of machine M ′

2 (going
from M ′

1+ to M ′
2−, and from M ′

1− to M ′
2+).

• Error states of machine M ′
2− are connected to states q′′i , and error states of M ′

2+ are
connected to p′′j .

The obtained machine will be called SMART .

We first remark that if the machine M can reach r2 from r1, then SMART has a periodic
point. Now let us suppose that r2 is not reachable from r1 through M .

This new machine is constructed such that, if we enter M ′
1 through one of the split states

r′i and we exit, then we exit by r′′i and we find that the tape and the position of the head are
not modified. We call this property innocuity of the embedding.

Let us prove innocuity for the split states q′i (the proof for states p′j is analogous). If we
enter M ′

1+ by state q′i we have three possibilities:

• The first one is to stay inside M ′
1+ and never exit.

• The second is to go to M ′
1− through state r2; then the dynamics is reversed an we are

forced to go to M ′
2+ . Now the dynamics is repeated and we go again to state r2 of M ′

2 to
finally exit by state q′′i . As any computation is next reversed, the tape and the position
of the head do not change.

• The third is to go through error states of M ′
1+ to M ′

2−. Here the computation is reversed
to exit by state q′′i . Again the tape and the position of the head do not change.

Thus, if we start on a state of SMART, the SMART dynamics is respected (except in the
case we enter an infinite computation of M at some moment, but since M is aperiodic, this is
not a problem). Therefore, since SMART is aperiodic, no periodic points appear. Let us study
now the case when we start inside M . Three possibilities appear again.

Chapter 5: A SMART machine

5.3 An application of SMART 79

• The first one is to exit the M ′
i system. Then we arrive to the previous case, and we already

know that the dynamics will not be periodic.

• The second is to fall into an infinite computation inside one of the parts of M ′
1 or M ′

2.
This again cannot be periodic because M has no periodic points.

• The third is to move internally through the different machines M ′
1+, M ′

1−, M ′
2+ and

M ′
2−. But, by construction, the only way of doing this is to alternate between M ′

i+ and
M ′

i−, and this needs to go from r1 to r2, which is supposed impossible.

We conclude that r2 is not reachable from r1 by M , if and only if SMART has no periodic
points.

M ′
2− M ′

2+r1 r2 r1

p′′1
...
p′′nq′′1 ... q

′′
m

M ′
1+ M ′

1−r1 r2 r1

q′1 ... q
′
m p′1 ... p

′
n

Figure 5.3: Embedding used in the proof of Theorem 5.4

Chapter 5: A SMART machine

Chapter 6

Transitivity and Computability in
Turing Machine dynamical systems

In this chapter will be presented the study for topological transitivity in the dynamical models
for Turing machines. Bloking words (as defined in Chapter 1) take an important role in differ-
entiate topological transitivity in different dynamical models. It will also prove that transitivity
and minimality are undecidable properties for dynamical models of Turing machines.
This chapter is based in an accepted article [48] published in the post-proceedings of Mathe-
matical Foundations of Computer Science 2015, Lecture Notes on Computer Science, 2015.

80

6.1 The universe of machines with transitive t-shift 81

6.1 The universe of machines with transitive t-shift

Transitivity in Turing machines models has relation with various other properties. One
particularity of Turing models is the relation between transitivity and periodic points of Th. In
these points, the head is enclosed in a finite part of the tape. Any perturbation of the config-
uration that does not affect this part of the tape will not perturb the head. Thus, no periodic
point can be attained by a non periodic orbit, and the system cannot be transitive. Moreover,
when Th has a periodic point, transitivity is excluded both from (Xt, Tt) and (St, σ) [15].

Proposition 6.1. Given a Turing machine M , the next implications hold.

(Xh, Th) transitive ⇒
1

(Xt, Tt) transitive ⇒
2

(St, σ) transitive

Proof. (⇒
1

) Any finite configuration of Xt corresponds to several finite configurations of Xh,
thus if a point exists that visits any finite configuration of Xh, the same point will visit
any finite configuration of Xt.

(⇒
2

) (St, σ) is a factor of (Xt, Tt) thus it inherits its transitivity.

Blocking words are also relevant to transitivity as the next propositions show. The idea
of a “blocking” configuration that avoids the head from going beyond some limit appears in
several contexts, and it is related to stability and information travel. The next definition gives
a concept that is results to be significant for transitivity, as we will see below. We state it in
the original model of Turing machines.

Proposition 6.2. If M has a blocking word, then (Xh, Th) is not transitive.

Proof. If M = (Q,Σ, δ) has a blocking word to the left (r, 0, u), then no extension of .ru can
visit a finite configuration of the form (r′α.u′) ∈ Xh, at any time, for any r′ ∈ Q, α ∈ Σ, u′ ∈ Σ∗.
This means that (Xh, Th) is not transitive.

Proposition 6.3. If M has no blocking word, then the next equivalence holds.

(Xt, Tt) is transitive ⇔ (St, σ) is transitive

Proof. The left to right implication was already proved, thus let us prove the converse. Let us
assume that (St, σ) is transitive and that M has no blocking word. Let (u, r, u′) and (v, r′, v′)

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 82

be two finite configurations of Xt. Since M has no blocking words, there exist finite extensions
(su, r, u′s′) and (wv, r′, v′w′) such that the head visits all the cells of (u, r, u′) and (v, r′, v′)
respectively. Let us consider now the words τ(su, r, u′s′) and τ(wv, r′, v′w′). Since (St, σ) is
transitive, there exists a point (x, r, y) ∈ Xt such that τ(x, r, y) starts with τ(su, r, u′s′) and
contains τ(wv, r′, v′w′) afterward. As we have commented, τ(su, r, u′s′) determines the state
of all the cells that the head visits when producing it, then (x, r, y) needs to be an extension
of (u, r, u′). By the same reason, there exist a time t such that T tt (x, r, y) is an extension of
(v, r′, v′), which concludes the proof.

With all of these results, we can depict the universe of Turing machines with a transitive
trace-shift as figure 6.1 shows. None of the classes are empty, in the next four section we exhibit
examples at each of them.

Figure 6.1: Universe of the topologically transitive machines.

6.1.1 Machine of type a: Transitive on TMH model

The machine in figure 6.2 is called SMART machine, it has several strong properties as it
is shown in Chapter 5. In particular, its TMT system is minimal and trace-shift is substitutive.
Now, we will prove that its TMH model is also transitive.

Basic movements of SMART

The behavior of SMART can be described by the next four propositions, as it was proven
in Chapter 5, which takes values for any n ∈ N. They basically says that the head glides over
the lagoons of 0s either to the right or to the left, depending on its states and the surrounding
symbol.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 83

p

b

d

q

0|1I

1|1I
2|2I

0|1J

1|1J
2|2J

2|0J

0|2I
1|0I2|0I

0|2J
1|0J

Figure 6.2: The SMART machine.

B(n): (∀s+ ∈ {1, 2})(∀s∗ ∈ {0, 1, 2})
(
s∗ 0n 0 s+

b

) ∗
`
(
s∗ 0n+1 s+
b

)
D(n): (∀s+ ∈ {1, 2})(∀s∗ ∈ {0, 1, 2})

(
s+ 0 0n s∗

d

) ∗
`
(
s+ 0n+1 s∗

d

)
P (n): (∀s+ ∈ {1, 2})

(
0 0n s+
p

) ∗
`
(

0n+1 s+
p

)
Q(n): (∀s+ ∈ {1, 2})

(
s+ 0n 0

q

) ∗
`
(
s+ 0n+1
q

)

Transitivity of the SMART machine in the TMH model

In order to prove the topological transitivity of SMART in the TMH model, we will prove
that the configuration

(
w2 .2 2 2w

p

)
reaches any finite configuration of Xh. In order to accomplish

this, we first prove that
(

w2 .2 2 2w

p

)
will progressively visit a family of patterns with a growing

amount of 0s in any given position. Then we use a lemma proved in the chapter 5, that roughly
says that from this family, we can attain any finite configuration.

Lemma 6.1. The configuration
(

w2 .2 2 2w

p

)
reaches each of the configurations of the family

{
(

w2 0k .0k 0 2 0 2w

b

)
}k∈N ∪ {

(
w2 0k .0k−1 0 2 0 0 2w

b

)
}k∈N.

Proof. We will prove this by induction over k. For k = 0, it is enough to simulate the machine
during 7 steps. Now, let us suppose that the assertion is true for k− 1, and let us prove that it
is also true for k.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 84

(
w2 2 2 2k−1 .2 2 2k−1 2 2 2 2w

p

)
Induction hypothesis(

w2 2 0 0k−1 .0k−1 0 2 0 2 2 2w

b

)
Apply B(2k)(

w2 2 0 0k−1 .0k−1 0 2 0 2 2 2w

b

)
One step(

w2 2 0 0k−1 .0k−1 0 2 0 2 2 2w

p

)
Apply P (2k)(

w2 2 0 0k−1 .0k−1 0 2 0 2 2 2w

p

)
One step(

w2 2 0 0k−1 .0k−1 0 0 0 2 2 2w

q

)

(6.1)

From this we obtain the “even” case in one step:
(

w2 2 0 0k−1 .0k−2 0 2 0 0 2 2 2w

b

)
.

Continuing from the last step of the former development we obtain the “odd” case.

Apply Q(2k)(
w2 2 0 0k−1 .0k−1 0 0 0 2 2 2w

q

)
One step(

w2 0 0 0k−1 .0k−1 0 0 0 2 2 2w

p

)
Apply P (2k + 2)(

w2 0 0 0k−1 .0k−1 0 0 0 2 2 2w

p

)
Two steps(

w2 0 0 0k−1 .0k−1 0 0 2 0 2 2w

b

)

(6.2)

Lemma 6.2. For every k ≤ n−1,
(
.2 0n+2 0 2

b

) ∗
`
(
.2 2 0k 0 2 0n−k 2

b

)
and

(
.2 0n+2 0 2

b

) ∗
`
(
.2 0n−k 2 0k 0 2 2

b

)
.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 85

Proof.
(
.2 0 0 0k 0 0n−k−2 0 0 2

b

)
Apply B(n+ 2)(

.2 0 0 0k 0 0n−k−2 0 0 2
b

)
Two steps(

.2 2 0 0k 0 0n−k−2 0 0 2
d

)
Apply D(n+ 1)(

.2 2 0 0k 0 0n−k−2 0 0 2
d

)
Two steps(

.2 2 0 0k 0 0n−k−2 0 2 2
b

)
Apply B(n+ 2)(

.2 2 0 0k 0 0n−k−2 0 2 2
b

)
One step(

.2 2 0 0k 0 0n−k−2 0 2 2
p

)
Apply P (n+ 1)(

.2 2 0 0k 0 0n−k−2 0 2 2
p

)
Two steps(

.2 2 0 0k 0n−k−2 0 2 0 2
b

)
Repeat four last steps n− k − 1 times(

.2 2 0k 0 2 0 0n−k−2 0 2
b

)

(6.3)

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 86

Now we prove the second part.
(
.2 0 0 0 0n−k−1 0k−1 0 0 2

b

)
Apply B(n+ 2)(

.2 0 0 0 0n−k−1 0k−1 0 0 2
b

)
Two steps(

.2 2 0 0 0n−k−1 0k−1 0 0 2
d

)
Apply D(n+ 1)(

.2 2 0 0 0n−k−1 0k−1 0 0 2
d

)
One step(

.2 2 0 0 0n−k−1 0k−1 0 0 2
q

)
Apply Q(n+ 1)(

.2 2 0 0 0n−k−1 0k−1 0 0 2
q

)
Two steps(

.2 0 2 0 0n−k−1 0k−1 0 0 2
d

)
Apply D(n)(

.2 0 2 0 0n−k−1 0k−1 0 0 2
d

)
Repeat last two steps n− k − 1 times(

.2 0 0n−k−1 2 0 0k−1 0 0 2
d

)
Two steps(

.2 0 0n−k−1 2 0 0k−1 0 2 2
b

)

(6.4)

Lemma 6.3 (5). For every finite word v′ ∈ {0, 1, 2}∗ of length n, every state r and every
i ∈ {1, . . . , n}, there exist k1, k2 ∈ N such that

(
.2 0k1+k2+n−3 0 2

b

) ∗
`
(
.2k1 v′1 ... v

′
i ... v

′
n2k2

r

)
.

Theorem 6.1. The SMART machine is topologically transitive in TMH.

Proof. The idea of the proof is the following: Lemma 6.3 tell us that any possible finite con-
figuration is reachable from a finite configuration x′ with a certain amount of 0 in a certain
position. Lemma 6.2 establishes that x′ is reachable from a configuration x′′ with the 0s in
the center. Finally, lemma 6.1 asserts that x′′ is always reachable from

(
w2 .2 2 2w

p

)
. Therefore,

configuration
(

w2 .2 2 2w

p

)
is a transitive point, and the TMH model of SMART is transitive.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 87

6.1.2 Machine of type b: Transitive on TMT, but not in TMH, and
without blocking words

In order to have an example of this class, it is enough to take a machine of the precedent
class and to multiply its movements two, i. e., instead of moving one cell to the left or right,
to move twice (see figure 6.3). The resulting machine will not be transitive in TMH because,
if the head starts on a even cell, it will not be able to modify the content of any odd cell, thus
many configurations will be unreachable.

p p2

b2

b

d d2

q2

q

0|1I
1|1I
2|2I

J

0|1J

1|1J
2|2J

I

2|0J

0|2I
1|0II2|0I

0|2J
1|0J

J

Figure 6.3: The SMART machine with twice its movement.

6.1.3 Machine of type c: Transitive on TMT, with a blocking word

The following is a machine that is transitive on TMT, but not on TMH, with the blocking
word to the left: (r0, 1, .ε).

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 88

r0

0|0I
1|1I

Figure 6.4: Shift machine

We call this machine the shift machine. Its trace-shift is the fullshift on {(r0, 0), (r0, 1)},
because the head just sequentially reads the tape, therefore its trace-shift is transitive. Now, as
this machine goes forward in the tape, it can reach any finite configuration around the head,
thus it is transitive on its TMT model.

6.1.4 Machine of type d: Transitive just for the trace-shift

Now we present a machine that we call Lexicographical Ant (LA) that has a transitive
trace-shift, which is not transitive neither in TMT, nor in TMH, and that has a blocking word.
Its transition function is depicted in figure 6.5. It has the particularity that it is always counting,
when it starts from configuration (→, 0, ω0.1∗ω), it will persistently comeback to the position
0 and we will see all the binary sequences appearing in increasing order. The configuration
(→, 1, .1) is a blocking word to the right. It avoids transitivity in the TMT model because the
finite configuration (u 0 v

→) cannot reach the finite configuration (u 0 w
→), if v 6= w, as we will

prove in the following.

Given two words v = v0...vn−1, v′ = v′0...v
′
n−1 ∈ {0, 1}n, let us define the lexicographical

order by v < v′ if ∑n−1
i=0 vi2n−i−1 <

∑n−1
i=0 v

′
i2n−i−1.

→ ←
1|1J

0|0I

0|1I

1|0J

Figure 6.5: The lexicographical ant machine.

Lemma 6.4. The finite configuration (0n 1
→) will produce the sequence of finite configurations

of the form (v 1
→), in lexicographical order, for every v ∈ {0, 1}n, without exiting the interval

[−n, 0].

Proof. Proof by induction on n.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 89

Basis (n = 1): (0 1
→) ` (0 1

←) ` (1 1
→)

Induction hypothesis (n = k):
(

0k 1
→

)
`∗ (v 1

→) `∗ (v′ 1
→) `∗

(
1k 1
→

)
, for all v, v′ ∈ {0, 1}k

such that v < v′.

Induction thesis (n = k + 1):
(

0k+1 1
→

)
`∗ (v′′ 1

→) `∗ (v′′′ 1
→) `∗

(
1k+1 1

→

)
, for all

v′′, v′′′ ∈ {0, 1}k+1 such that v′′ < v′′′.

Case 1. v′′ = 0u′′ and v′′′ = 0u′′′

(
0 0k 1

→

)
`H.I. (0 u′′ 1

→)

`H.I. (0 u′′′ 1
→) `H.I.

(
0 1k 1

→

)
`∗
(

0 0k 1
←

)
`
(

1 0k 1
→

)
`∗
(

1 0k 1
→

)

`H.I.
(

1 1k 1
→

)

Case 2. v′′ = 0u′′ and v′′′ = 1u′′′

(
0 0k 1

→

)
`H.I. (0 u′′ 1

→)

`H.I.
(

0 1k 1
→

)
`∗
(

0 0k 1
←

)
`
(

1 0k 1
→

)
`∗
(

1 0k 1
→

)

`H.I. (1 u′′′ 1
→) `H.I.

(
1 1k 1

→

)

Case 3. v′′ = 1u′′ and v′′′ = 1u′′′

(
0 0k 1

→

)
`H.I.

(
0 1k 1

→

)
`∗
(

0 0k 1
←

)
`
(

1 0k 1
→

)
`∗
(

1 0k 1
→

)

`H.I. (1 u′′ 1
→) `H.I. (1 u′′′ 1

→) `H.I.
(

1 1k 1
→

)
Corollary 6.1. The finite configuration 1

→ is a blocking word to the right.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.1 The universe of machines with transitive t-shift 90

Proof. By lemma 6.4, we have that starting from any configuration of the form v 1
→ , where

v ∈ {0, 1}n, the machine will arrive to 1n 1
→ , without going to the right of cell 0. But there

again it is on a configuration of this form, for a larger ‘n′, thus it will never go to the right of
cell 0.

Let us take the following function:

a(n) =
{

1+a(n−1
2) if n = odd

0 if not . (6.5)

This function describes the amount of 1s at the beginning of each number represented in
binary.

It is easy to see that, if we start counting from x = (ω0 1
→), we have that the corresponding

sequence in the trace-shift is the following.

τ(x) =
∏
i∈N

(
1 1a(i) 0 0a(i)
→ ← ← →

)
(6.6)

The head of the machine will start at 1
→ . As we already explained, it will switch all the

1s next to this position. The amount of 1s to convert is given by the a function.

Lemma 6.5. The trace-shift of the Lexicographical Ant is described by:

SLA = SL({u}) = O(u), with u =
∏
i∈N

(
1 1a(i) 0 0a(i)
→ ← ← →

)
(6.7)

Proof. :

O(u) ⊆ SLA. It is clear from equation 6.6 and the fact that SLA is closed.

SLA ⊆ O(u). It is enough to prove that L(SLA) ⊆ L(u). Let w ∈ L(SLA), and let (v, r, v′) be its
canonical pre-image by τ , i. e., τ(v, r, v′) = w and every coordinate of (v.v′) is visited
during the evolution of LA on (v, r, v′). Let us suppose that v = v0...vm and v′ = v′0...v

′
n.

We need to prove that x(ω0,→, 1)
∗
` (v, r, v′). Four cases appear.

r =→ :

v′0 = 1. By corollary 6.1, v′ has length equal to 1: v′ = v′0, and by lemma 6.4 (ω0 1
→)

∗
`

(ω0 v 1
→) which proves that w is a subword of u.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.2 Undecidability 91

v′0 = 0. The machine will move to the right until to find a 1.
If v′ has a 1, then by corollary 6.1 it is the last symbol of v′. Now let us sup-
pose that j is the last coordinate of v such that vj = 1 (if v = 0m+1 we are
already in a pre-image of u). By lemma 6.4 (ω0 1

→)
∗
` (ω0 v0 .. vj−1 0 1 .. 1 1

→)
∗
`

(ω0 v0 .. vj−1 0 0 .. 0 1
←)

∗
` (ω0 v0 .. vj−1 1 0 .. 0 1

→) which contains (v, r, v′), proving
that w is a subword of u.
If v′ is identically equal to 0, then the head exit (v, r, v′) at iteration n, v = ε,
and w = (→, 0)n which in clearly a subword of u.

r =← :

v′0 = 0. In this case,
(
v 0 v′1 .. v

′
n←

) ∗
`
(
v 1 v′1 .. v′n→

)
. This configuration fits in one of the for-

mer cases, thus it is attained by x. Since the machine is reversible, its predecessor
is also attained by x.

v′0 = 1. Let j be the last coordinate of v such that vj = 0 (if v = 1m+1, v′ = ε and
w = (←, 1)m, which is clearly a subword of u), then

(
v0 .. vj−1 0 1 .. 1 1 v′1 .. v

′
n←

) ∗
`(

v0 .. vj−1 0 0 .. 0 0 v′1 .. v′n←

)
. Which is proved to be in the orbit of x in the last

case, and again this implies, by reversibility, that the original configuration is
reached by x.

We can note that, in fact, the Lexicographical Ant is not transitive in TMT. This is
because from configuration (1 1

→) Tt can never get to (1 0
→), due to Corollary 6.1. Although,

Lexicographical Ant has a transitive trace-shift, because this is described as the closure of the
orbit of a unique infinite word.

Theorem 6.2. The trace-shift of the Lexicographical Ant is transitive.

6.2 Undecidability

The following definitions are already described in Chapter 5, but it will be discussed again
in order to preserve the independence of each Chapter.

Reversing the time
This technique is used in [28]. It takes a deterministic and reversible Turing machine M =
(Q,Σ, δ), and creates two new reversible machines M+ = (Q × {+},Σ, δ+), and M− =

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.2 Undecidability 92

(Q × {−},Σ, δ−), where (r,+) and (r,−) states represent M in state r running forwards or
backwards in time, respectively.

Embedding
This technique serves to put a machine inside another in such a way that the new machine has
a property(ies) that depends on some properties of the original machines. We distinguish the
host machine H = (Q,Σ, δ) and the invited machine I.

The invited machine needs to be deterministic and reversible and we will assume that it
has the gentle property of innocuousness.

Definition 6.1. A machine is innocuous if:

• every defective pair (rd, β) is associated to a unique error pair (re, β), in such a way that

• for every defective configuration (rd, i, w), its evolution is either infinite or it leads to a
halting configuration of the form (re, i, w).

In other words, if it halts, it does it at the initial position and with the initial tape contents.

Innocuous machines can be obtained by gluing together the error states of M+ with the
defective states of M−. The defective states of M corresponds to the defective states of M+
and so the error states of M−. In the next section we will give two different constructions of
innocuous machines, that will serve to different purposes.

The alphabet of the invited machine will be coded in such a way that H and I work with
the same alphabet. This can be done, by modifying the transition rule of I, without losing its
determinism, reversibility and innocuousness, but maybe augmenting the number of defective
and error states.

The invited machine I will be embedded in the host machine in the following way:

• Every pair defective-error state (r, r′) of machine I will be connected to a unique state p
of machine H.

• In order to do that, state p is replaced by two states p′ and p′′, called splitted states.

• Every instruction δ(q, α) = (p, β) in H is now replaced by δ(q, α) = (p′, β) and every
instruction δ(p, α′) = (q′, β′) is replaced by δ(p′′, α′) = (q′, β′).

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.2 Undecidability 93

• Now, for every defective pair (β, r), we add the instructions δ(p′, β) = (r, β) and δ(r′, β) =
(p′′, β).

• Finally, we add the instructions δ(p′, α) = (p′′, α), with α a no-defective symbol for r.

If necessary for the amount of pair defective-error states, we can iteratively replace one splitted
state into two more.

In the resulting machine we will observe that, if we start at a state of H, we will see the
evolution of H, interrupted by the action of I when the state p is attained. We can always
suppose that we start at H, because evolving I backward will carry us to a defective state, and
finally to H, except if we are over a backward infinite orbit of I.

The embedding will be particularly useful when H is minimal and I is mortal, because
in this case, only one initial configuration of H will allow to test the behavior of I over all its
defective configurations.

6.2.1 Undecidability results

(c-RtransTMH) Given a reversible and complete Turing machine M , decide whether its
TMH system is transitive or not.

(c-RtransTMT) Given a reversible and complete Turing machine M , decide whether its
TMT system is transitive or not.

(c-RtransTS) Given a reversible and complete Turing machine M , decide whether its trace-
shift is transitive or not.

Theorem 6.3. (c-RtransTMH), (c-RtransTMT) and (c-RtransTS) are undecidable.

Proof. We will do it by reduction from the Reachability problem for reversible and aperiodic
machines, proved undecidable in [28].

(Reachability) Given a reversible and aperiodic Turing machine M and two states r1 and
r2, decide whether there exists a configuration (r1, 0, w) that reaches the state r2 at some
iteration.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.2 Undecidability 94

Let us take a reversible and aperiodic machine M = (Q,Σ, δ) and two states r1, r2 ∈ Q. We
start by eliminating every exiting transition from r2 and every entering transition to r1. Let $
be a symbol which is not in Σ, an let us add it to it. We obtain in this way a new machine
that is not complete, because non instruction is defined for this new symbol. Moreover, all of
its states are both error and defective states.

We will embed this machine into SMART; in order to do this, we recode its alphabet in
base three, by adding new additional symbols $1,... ,$k, if necessary, called error symbols. Let
us call M ′ = (Q′,Σ′, δ′) the so obtained machine.

Now, we create two copies of the machine M ′+ and other two of M ′−, by using the
technique of “reversing the time”, and we connect them as shown in figure 6.6 to create an
“invited” machine I to be embedded into SMART. The state (r2,+) of M ′

i+ is identified to the
state (r2,−) of M ′

i−, the same happens with (r1,+) and (r1,−); in this way, these states are
not defective not error states of I. The arrows labeled by q1,..., q|Q′|−2 are connected to each
state of M ′

1+, with exception of r1 and r2. The arrows labeled by p1,..., p|Q′|−2 are connected to
each state of M ′

1−, with exception of r1 and r2. The analogous happens with the arrows labeled
by q′1,..., q′|Q′|−2 and p′1,..., p′|Q′|−2 with respect to machines M ′

2− and M ′
2+, respectively.

The machine I defined in this way is innocuous, in fact, when starting at qi (or pi) we
distinguish three cases.

1. The machine stays in M ′
1+ forever.

2. The machine attains r2, and enters M ′
1−. From there, the computation is “reversed” and

it exit by (qi,−) to M ′
2+, where the history is repeated, and the machine exits by q′i, by

leaving as it was at the beginning.

3. The machine attains an error state of M ′
1+. In this case it enters M ′

2−, the computation
is reversed and it exits by q′i as we wanted.

If we embed I using SMART as the host machine, we obtain a machine SMART I .

Now, we will prove that, if M machine can not reach r2 from r1, then the new machine is
transitive in TMH.

A machine is transitive in TMH if every two finite configurations on TMH can reach each
other. We already know that every two configurations with states on SMART can reach each

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.2 Undecidability 95

other, because SMART is transitive on TMH and to enter through splitting states to I is in-
nocuous.

Also, any finite configuration with an state on I can always reach any configuration with
an state on SMART. This is because, as stated before, any finite configuration inside I can exit
to SMART if it can not be reached r2 from r1 through M ; and on SMART we can reach any
finite configuration.

We just need to prove that any configuration with a state on SMART can reach any
finite configuration on M ′. As SMART is transitive by itself, then we just need that finite
configurations on M ′ can be reached from any splitted state.

Suppose without loss of generality that a finite configuration x on M ′
1+ is unreachable

from SMART. Next, we put error symbols on the context of the configuration. Here we have
two possible paths:

M ′
1+ reaches an error pair and it go to machine M ′

2−. Here the computation is reversed
to reach the same initial configuration, but with the state in M ′

2−. Now, as machine M has
no periodic points, the computation will evolve until reach an error pair or state r2. In any of
the previous cases, the computation will reach a state of SMART, in the first case directly, and
in the second one, computation in M ′

2+ will reach an error pair because M ′
1+ reached it. This

path is forbidden, because if we exit to SMART, then, as machine I is innocuous, we should
enter in some point and the configuration x would be reachable.

M ′
1+ reaches state r2 and it go to machine M ′

1−. Here the computation is reversed to
reach the same initial configuration, but with the state in M ′

1−. Now, as machine M has no
periodic points, the computation will evolve until reach an error pair. Here, we are in machine
M ′

2+, when the computation is repeated to exit to SMART through M ′
2−. This path is also

forbidden for the same reasons that before.

As there not exist more possible paths, because M has no periodic points and r1 is un-
reachable from r1, we have a contradiction.

Therefore, the new machine is transitive in TMH if the original M machine can not reach
r2 from r1. Also, the transitivity in TMT and t-shift are inherit from TMH, so if M can not
reach r2 from r1, then the new machine is transitive in both TMT and t-shift.

Now, if M machine can reach r2 from r1, then machine M ′ has a periodic configuration

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.2 Undecidability 96

for TMH. As we remarked in section 6.1, this implies that SMART I cannot be transitive for
its trace shift, neither for its TMT system nor for its TMH system [15].

Finally, we conclude that all these three problems are undecidable.

M ′
2− M ′

2+r1 r2 r1

p′1
...
p′|Q′|−2q′1

...
q′|Q′|−2

M ′
1+ M ′

1−r1 r2 r1

q1 ...q|Q′|−2 p1 ...p|Q′|−2

Figure 6.6: Invited machine for an embedding that is transitive if and only if r1 cannot reach
r2 in the evolution of M , used in the proof of theorem 6.2.1.

(c-RminTMT) Given a reversible and complete Turing machine M , decide whether its TMT
system is minimal or not.

(c-RminTS) Given a reversible and complete Turing machine M , decide whether its trace-
shift is minimal or not.

Theorem 6.4. (c-RminTMT) and (c-RminTS) are undecidable.

Proof. We will do it by reduction from the Mortality problem for reversible and aperiodic
machines, proved undecidable in [28]. Mortal machines are machines that, independently in the
starting configuration, they always attains a defective pair that halts them.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.2 Undecidability 97

(Mortality) Given a reversible and aperiodic Turing machine M , decide whether it is mortal
or not.

Let us take a reversible and aperiodic Turing machine M = (Q,Σ, δ) and let us code its
alphabet Σ in base three to embed it into SMART. We use the technique of reversing the time
to define the machines M+ and M− and produce the invited machine I described in figure 6.7.

This machine is clearly innocuous, and we embed it into SMART to produce SMART I .

First, if M is not mortal, there is a trace that starts in a state of M+ and never exits
from this machine. Such a behavior is impossible in a machine with a minimal TMT or t-shift
system, where all the trajectories need to be transitive, and so they must visit all the states of
the machine.

Conversely, if M is mortal, so it its reverse and we will prove that any arbitrary TMT
configuration x of SMART I is a transitive point. Every finite configuration with a state in
SMART can be reached from x, because SMART is minimal, and the invited machine is
innocuous and it has not an infinite computation. Now, every finite configuration with a state
in the invited machine can be reached from a finite configuration y with a defective state,
because M is mortal, and we already know that configuration y can be reached from x, because
SMART is minimal and y is reached directly from a splitted state. Then, SMART I is minimal
in its TMT dynamical model. Also, the minimality is inherited from TMT to t-shift, therefore
SMART I is minimal in its t-shift.

Finally, machine SMART I is minimal in its trace-shift and its TMT model if and only if
M is mortal.

M ′+ M ′−
q′1
...

q′m

q′′1
...

q′′m

Figure 6.7: Invited machine for an embedding that is minimal if and only if M is mortal, used
in the proof of theorem 6.4.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.3 Complexity of Transitivity Problem and Minimality Problem 98

6.3 Complexity of Transitivity Problem and Minimality
Problem

In this section, we will discuss how complex is the transitivity problem and minimality
problem.

6.3.1 Transitivity Problem and Minimality Problem are Π0
2

As we proved in the previous section, transitivity problem is Π0
1-hard and minimality

problem is Σ0
1-hard, as the emptiness problem is reducible to the first, and mortality problem

is reducible to the second. Both problems naturally arise from Analytical Hierarchy, as it can
be defined by uncountable quantifiers (second order). We will prove that both problems can be
classified in arithmetical hierarchy, more specifically in Π0

2.

Lemma 6.6. Transitivity Problem and Minimality Problem belong to Π0
2.

Proof. To prove this, we need to write the formulas that define them in first order arithmetic.
The Transitivity Problem can be written as:

(TMT) A machine M is transitive in TMT dynamical model ⇐⇒

∀x, y ∈ Σ∗ ×Q× Σ∗,∃t ∈ N : R(M,x, y, t)

With R(M,x, y, t) is the recursive function that computes machine M starting in finite
configuration x, making t steps of computation (proving all the possible finite context if needed),
and test if finite configuration y is part of the finite configuration reached.

It is easy to see that this definition is equivalent to the definition in section 3.5, because
the uncountable part is replaced by finite context, as the rest of the tape can not be reached in
time t. For TMH, we just need to change the countable quantifiers for finite configurations. The
definition of transitivity in t-shift is already in first order arithmetic with a universal quantifier,
followed by an existential quantifier.

Now, the Minimality problem can be written as:

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.4 Coded Systems associated to Turing machines 99

(TMT) A machine M is minimal in TMT dynamical model ⇐⇒ ∀n ∈ N,∃t ∈ N : Q(M,n, t)

With Q(M,n, t) the recursive function that computes finite orbits of all possible finite
configurations of size t (computes until it reaches the bound of the configuration, or it loops),
and test if all configurations of size n are present in all finite orbits.

It is easy to see that if the previous statement is true, then the machine is topologically
minimal in TMT. Now for the other implications, let prove it by contradiction: Imagine that
the previous statement is false:

Then, exists a size n, such that for all size t, the orbit of a configuration of size t does not
have all finite configurations of size n. Therefore, for compacity, there exists an infinite config-
uration that does not includes all finite configurations of certain size, therefore, the machine is
not minimal.

For the t-shift, we just need to change finite configurations for finite words, and everything
will work of the same way.

6.4 Coded Systems associated to Turing machines

We have worked with several Turing machines with transitive no sofic t-shifts, but, can
we have examples with every type of coded systems? Recall that we have four types of coded
systems that have the following relation: sofic shifts ⊂ shifts with countable many follower sets
of left-infinite words ⊂ synchronized systems ⊂ coded system. It is easy to see that a machine
that erase symbols to the right has an irreducible sofic t-shift. On the other hand, the SMART
machine (Figure 6.2) is not even a coded system, because its t-shift has no periodic points.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.4 Coded Systems associated to Turing machines 100

→

> <

0|0I

1|1I

0|0I

1|1J

0|0J

1/1I

Figure 6.8: Machine J : Synchronized machine with countable follower sets in its t-shift.

Note: We will call to a Turing machine with a sofic t-shift as sofic machine. This will
also be true with machines with synchronized t-shifts, therefore these machines will be called
synchronized machines.

Now, we take into account the machine in Figure 6.8:

This machine is just the quintuple representation of an Embedding (see Section 5.3.1)
inside the shift machine (see figure 6.4) of a machine that reads symbol 0 and goes to the right
until it reads symbol 1, together with its reverse. This machine is, by definition, transitive in its
t-shift, and then its representative labeled graph is irreducible. It has the synchronizing words
1
→ , therefore its t-shift is a synchronized system.

Now, we have that 1 0n 1
→ > > has as many follower sets as n. Therefore, the t-shift of machine

J has infinite countable many follower set. Then, we have a non sofic synchronizing t-shift with
countable many follower set.

Now, if we made a little modification, we can get a synchronized machine with uncountable
follower sets, as can be seen in Figure 6.9.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

6.4 Coded Systems associated to Turing machines 101

→

> <

0|0I 2|2I

1|1I

0|0I 2|2I

1|1J

0|0J 2|2I

1/1I

Figure 6.9: Machine J ′: Synchronized machine with uncountable follower sets in its t-shift.

This machine has the same behavior that the previous one, taking symbols 2 and 0 as
the same. Then, this machine is synchronized, with synchronized word 1

→ . But, we have that
1 0|2n 1
→ > > has as many follower set as {0, 2}n. Therefore, the t-shift of machine J ′ has infinite
uncountable many follower set. Then, we have a no sofic synchronizing t-shift with uncountable
many follower set.

Now, we just need a machine without a synchronized word, but coded. Is it possible?

Conjecture 6.1. If S is the t-shift of a Turing machine, then if S is a coded system, then it is
a synchronized system.

Chapter 6: Transitivity and Computability in Turing Machine dynamical systems

Chapter 7

Conclusions

102

103

This thesis was based on the study of dynamical properties of three dynamical systems
related to Turing machines. Turing machines are not naturally translatable to topological
dynamical systems, because the position of the head is measured in the set Z, implying that the
phase space is not compact. That is why in this thesis we consider three dynamical systems,
Turing model with Moving Head (TMH), Turing model with Moving Tape (TMT) and the
column factor of TMT model, the t-shift. While other dynamical models have been associated
with Turing machines (including generalized shifts and cellular automata), they do not faithfully
represent the mechanics of the machine, not entirely reflecting the original dynamics.

The questions addressed in this study were based on interesting dynamical properties
within the dynamical and topological field that had not yet been fully addressed in the context
of Turing machines. The considered properties are the surjectivity of the t-shift, the entropy of
the TMT model, periodicity in reversible and complete machines, transitivity of all models and
minimality of TMT and t -shift. We focus on proving the existence of machines with each of
this properties and the decidability of them.

In general terms, consider quadruple or quintuple model of a Turing machine does not
affect the existence or decidability of topological properties, but the surjectivity in t-shift and
its dichotomy with the surjectivity in Turing machines depends of the selected model, as there
not exists a non-surjective quadruple model Turing machine with a surjective t-shift.

To address the problem of surjectivity in the t-shift of quintuple model Turing machine,
the notion of blocking word was considered. This concept was born in cellular automata, as
a sequence of states that do not allow information to pass through. In the universe of Turing
machine, the information is transferred through the head, so that our translation considered a
finite configuration that prevents the head from passing through a part of the tape.
We prove that there exists non surjective quintuple model Turing machines with a surjective
t-shift. But this is possible only when a blocking word exists. Performing a reduction from the
problem of blocking words, it was possible to show that the problem of surjectivity in t-shift is
undecidable.

Blocking words resulted to be fundamental, not only in the surjective context, but also
in the transitive context. Non surjective machine can be transitive in its t-shift model. Also,
the presence of blocking words prevents the machine to have a transitive TMH model, and the
absence of blocking words implies the equivalence between transitivity in TMT and t-shift.

The topological entropy of Turing machines has been widely discussed in literature. Blondel
et al. demonstrated that entropy is uncomputable for Turing machines with two or more tapes
and Jeandel proved that it is computable for one-tape Turing machines, in the sense that it is

Chapter 7: Conclusions

104

possible to approach the entropy value as well as one wishes. However, as suggested by the study
and properties exposed by E. Jeandel himself, it is not possible to decide if a Turing machine
has positive entropy. This demonstration was carried out by reduction from the halting problem
for counter machines.

Most of our work concerns a particular Turing machine, called SMART, created by J.
Cassaigne. Until the presentation of such a machine, there was no evidence of a complete
and reversible machine with the property of aperiodicity, topological transitivity in TMH and
topological minimality in TMT. Furthermore, SMART resulted to have a substitutive subshift
and be time-symmetric. The latter concept is introduced from cellular automata, and allowed
us to more easily demonstrate many lemmas about the machine.

In the study of transitivity, we have presented several Turing machines that have transitive
dynamical systems. It was possible to hierarchize Turing machines in nested classes depend-
ing on which associated dynamical system had the topological transitivity property, including
examples in each category that prove that the hierarchy is strict.

To prove the undecidability of aperiodicity in complete and reversible Turing machines,
transitivity on all dynamical models, and minimality in the t-shift and the TMT model, we have
used the same reduction technique, that we call embedding. This technique allows us to connect
an Invited machine I with a Host machine H that has the property we want to study. Machine
I must have the property of innocuity in order to keep machine H dynamics. Thus, the property
to study depends on another property, which is known to be undecidable, that machine I should
hold. In addition, this technique allows us to create families of Turing machines with properties
such as minimality and transitivity. As an example, embedding mortal machines into SMART,
allows us to have infinitely many Turing machines with a topologically minimal TMT model.
Also, as the prove of Aperiodicity in complete and reversible Turing machine, and the prove of
Transitivity in all dynamical models are the same (except for the error symbol in the second
prove, which did not affect Periodicity), we can conclude that the set of Turing machine with
periodic points and the set of Turing machine with transitive t-shift are recursively inseparable
sets.

TMH is a cellular automaton based on a subshift. The study of cellular automata based
on subshifts started with the Curtis-Hedlund-Lyndon theorem, which states the locality of maps
from subshifts to subshifts that are continuous and shift-commuting [3]. The undecidability
results in TMH, as a shift space cellular automaton, are applicable in that context. Thus, the
transitivity problem is undecidable for shift space cellular automata.

In addition to the hierarchization by dynamical model, there exists a hierarchization within

Chapter 7: Conclusions

105

the class of coded shifts. We also exhibit examples that proves that this hierarchitazion is proper,
except that we could not find an example of a Turing machine with a coded t-shift without
synchronizing words. Does there exists a Turing machine with a coded systems without a
synchronized word?

It was possible to include the problems of transitivity and minimality in the arithmetical
hierarchy although both problems come from the analytical hierarchy. We were not able to prove
their completeness, nevertheless we proved that they are Π0

1-hard and Σ0
1-hard, respectively. Are

these problems complete in any hierarchical set?

In addition with the conjecture given in chapter 6, also exists another classification on
subshifts, called almost sofic shifts [32]. Those are shifts that can be entropically approximated
through sofic shifts. In the general subshift universe, there are subshifts that are not almost
sofic, those are shift with positive entropy but without periodic points. But all the examples
known to be aperiodic on Turing machines have zero entropy. Are all t-shift almost sofic?

The Rice’s theorem [45] states the undecidability of any non-trivial problem about the
language that a given Turing machine recognizes. In fact, our problems are defined over infinite
words in the tape, being, intrinsically, harder to solve. In this fashion, we could think that
any non-trivial problem defined with infinite inputs would have the same fate, but there are
no simple way to translate the finite input version to the infinite input version. An example
of this could be seen in [22], where the undecidability of the infinite input version of totality
problem, the immortal problem, is proved in a very clever way, passing through recursive-like
calls in Turing machines. These two problems are complete in different levels of the arithmetical
hierarchy.
On the other hand, some problems are decidable, even when defined for infinite inputs, as the
reversibility problem. Also, it is not easy to determine the triviality of a problem, because the
difficulty to prove the existence of a Turing machine with a certain property. As an example,
the existence of an aperiodic Turing machine was questioned by Kůrka, and then years later
proved by Blondel, Cassagne and Nichitiu. Also, the minimality for TMH is trivial, as there
not exists a minimal TMH machine.
Nevertheless, the embedding technique has proved to be highly powerful and versatile. In this
way, it may allow to prove a Rice-like theorem for infinite inputs. If there exists some common
property between long term dynamical concepts, it would be possible to prove that this property
depends of another undecidable property in an embedding. Does a Rice-like theorem exists in
this context?

Even when computers, represented here by Turing machines, are used to study dynamical

Chapter 7: Conclusions

106

Topic Worked by and Results
Blocking Words This Work (Characterization, Existence and Undecidability)
Entropy Jeandel (Computability in One Head TM) [26]

Blondel and Delvene (Unidecidability in Two or more Heads TM) [4]
This Work (Undecidability in One Head TM)

Equicontinuity Gajardo and Guillon (Characterization and Existence) [14]
Open (decidability)

Immortality Hooper (Characterization, Existence and Undecidability) [22]
Jeandel (Immortal Configurations) [25]
Kari and Ollinger (Undecidability in Reversible TM) [28]

Periodic Orbit Blondel, Cassaigne and Nichitiu (Existence) [5]
Kari and Ollinger (Undecidability in RTM and c-TM) [28]
This Work (Undecidability in c-RTM)

Relation between This work (Periodicity with Transitivity)
Topological Properties Open (Relation between Transitivity, Minimality and Mixing)
Rice-Like Theorem Open
Sofic on t-shift Gajardo (Characterization and Existence) [13]

Open (Decidability, Almost Sofic)
Subshift based in TMH Open
Surjectivity on t-shift This Work (Characterization, Existence and Undecidability)
Topological Transitivity This Work (Characterization, Existence and Undecidability)
Topological Minimality This Work (Existence and Undecidability)

Open (Characterization)
Topological Mixing Open

Table 7.1: Research on Turing machine dynamical systems.

systems, much of our results are not translatable directly to the simulated dynamical systems.
The topological properties use the information of all possible contents of the tape, and Universal
Turing machines, when simulating other systems, use just a subset of configurations sets.

It was possible to study dynamical properties associated to one-tape Turing machines and
prove its undecidability. We hope that the inclusion of this new understanding about periodicity,
entropy, transitivity and minimality in Turing machines encourages other researchers to fill the
gaps inside one-tape Turing machines dynamics.

Finally, let us give a summary chart of the present state of Turing Machine dynamic.

Chapter 7: Conclusions

Bibliography 107

Bibliography

[1] Berlekamp, E., J. Conway, and R. Guy: Winning ways for your mathematical plays. Aca-
demic Press, 2:334–343, 2012.

[2] Blanchard, F. and G. Hansel: Coded systems. Theor. Comput. Sci., 44(1):17–49, August
1986, ISSN 0304-3975.

[3] Blanchard, F., A. Maass, and A. Nogueira: Topics in Symbolic Dynamics and Applications.
Cambridge University Press, 2000, ISBN 9780521796606.

[4] Blondel, V. and J. Delvenne: Quasi-periodic configurations and undecidable dynamics for
tilings, infinite words and Turing machines. Theoret. Comput. Sci., 319:127–143, 2004.

[5] Blondel, V. D., J. Cassaigne, and C. Nichitiu: On the presence of periodic configurations
in Turing machines and in counter machines. Theoret. Comput. Sci., 289:573–590, 2002.

[6] Börger, E.: Computability, complexity, logic. Elsevier Science Publishers, Holland, 1989,
ISBN 978-0-444-87406-1.

[7] Brudno, A.: Entropy and the complexity of the trajectories of a dynamical system. Trans-
actions of the Moscow Mathematical Society, 44(2):127–151, 1983.

[8] Church, A.: An unsolvable problem of elementary number theory. American Journal of
Math, 58:345–363, 1936.

[9] Davis, M.: The undecidable, basic papers on undecidable propositions, unsolvable problems
and computable functions. Raven Press, New York, 1965, ISBN 0-911216-01-4.

[10] Devaney, R.: An introduction to chaotic dynamical systems. Addison-Wesley, 1989,
ISBN 978-081-334-085-2.

[11] Downey, R. and D Hirschfeldt: Algorithmic randomness and complexity. Springer, 2010.

[12] Fiebig, D. and U. Fiebig: Covers for coded systems, in symbolic dynamics and its applica-
tions. Contemporary Mathematics, 135:139–180, 1992.

[13] Gajardo, A.: Sofic one head machines. In Durand, B. (editor): Journées Automates Cellu-
laires, pages 54–64, 2008.

[14] Gajardo, A. and P Guillon: Zigzags in Turing machines. In Ablayev, Farid M. and Ernst W.
Mayr (editors): CSR, volume 6072 of Lecture Notes in Computer Science, pages 109–119.
Springer, 2010, ISBN 978-3-642-13181-3.

Bibliography

Bibliography 108

[15] Gajardo, A. and J. Mazoyer: One head machines from a symbolic approach. Theor. Comput.
Sci., 370:34–47, 2007.

[16] Gajardo, A., Kari J. and A. Moreira: On time-symmetry in cellular automata. Journal of
Computer and System Sciences, (78):1115–1126, 2012.

[17] Garby, M. and S. Johnson: Computers and intractability: a guide to the theory of NP-
completeness. Freeman, 1979, ISBN 0-716-71045-5.

[18] Gödel, K. and B. Meltzer: On formally undecidable propositions of principia mathematica
and related systems. Dover Publications, New York, 1992, ISBN 0-486-66980-7.

[19] Hájek, P.: Arithmetical hierarchy and complexity of computation. Theorical Computer
Science, 8:227–237, 1979.

[20] Hennie, F.: One-tape, off-line Turing machine computations. Information and Control,
8:553–578, 1965.

[21] Hilbert, D. and W. Ackermann: Grundzüge der theoretischen Logik (Principles of Mathe-
matical Logic). Springer-Verlag, 1928, ISBN 0-8218-2024-9.

[22] Hooper, Philip K.: The undecidability of the Turing machine immortality problem. Journal
of Symbolic Logic, 31(2):219–234, 1966.

[23] Hopcroft, J. and J. Ullman: Introduction to automata theory, languages, and computation.
Addison-Wesley, 1979, ISBN 0-321-45536-3.

[24] Ilachinski, A.: Cellular automata: A discrete universe. World Scientific, 2001,
ISBN 978-981-238-183-5.

[25] Jeandel, E.: On immortal configurations in Turing machines. Lecture Notes in Computer
Science, 7318:Ch. 25, 1982.

[26] Jeandel, E.: Computability of the entropy of one-tape Turing machines. STACS, 25:421–432,
2014.

[27] Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of Computer
and System Sciences, 48(1):149–182, 1994.

[28] Kari, J. and N. Ollinger: Periodicity and immortality in reversible computing. In Ochman-
ski, Edward and Jerzy Tyszkiewicz (editors): MFCS, volume 5162 of Lecture Notes in
Computer Science, pages 419–430. Springer, 2008, ISBN 978-3-540-85237-7.

[29] Kůrka, P.: Language complexity of unimodal systems. Complex Systems, 10:283–300, 1996.

[30] Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput. Sci., 174(1-
2):203–216, 1997.

[31] Kůrka, P.: Topological and Symbolic Dynamics. Société Mathématique de France, Paris,
France, 2003.

Bibliography

Bibliography 109

[32] Lind, D. and B. Marcus: An introduction to symbolic dynamics and coding. Cambridge
University Press, New York, NY, USA, 1995, ISBN 0-521-55900-6.

[33] Lukkarila, V.: Sensitivity and topological mixing are undecidable for reversible one-
dimensional cellular automata. TUCS, (927), 2009.

[34] Martin, G.: Mathematical games: The fantastic combinations of john conway’s new solitaire
game “life”. Scientific American, 223:120–123, 1970.

[35] Melanie, M.: Is the universe a universal computer? Science, 298:65–68, 2002.

[36] Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett.,
(64), 1990.

[37] Morita, K.: A simple construction method of a reversible finite automaton out of Fredkin
gates, and its related problem. The Trans. of the IEICE, E73(6):978–984, 1990.

[38] Morita, K.: Universality of a reversible two-counter machine. Theor. Comput. Sci.,
168(2):303–320, 1996.

[39] Morita, K., A. Shirasaki, and Y. Gono: A 1-tape 2-symbol reversible Turing machine. IEICE
TRANSACTIONS, E72-E(3):223–228, 1989.

[40] Morita, K. and Y. Yamaguchi: An universal reversible Turing machine. LNCS, 4664:90–98,
2007.

[41] Neumann, J. von: Theory of self-reproducing automata. Univ. Illinois Press, 1970.

[42] Nielsen, M. and I. Chuang: Quantum computation and quantum information. Cambridge
University Press, Cambridge, UK, 2000, ISBN 0-521-63503-9.

[43] Oprocha, P.: On entropy and Turing machine with moving tape dynamical model. Nonlin-
earity, 19:2475–2487, October 2006.

[44] Papadimitriou, M.: Computational complexity. Addison-Wesley, Reading, Massachusetts,
1994, ISBN 0201530821.

[45] Rice, H.: Classes of recursively enumerable sets and their decision problems. Trans. Amer.
Math. Soc., 74:358–366, 1953.

[46] Shoenfield, J.: Mathematical logic. Association for Symbolic Logic, 2001.

[47] Torres, R., N. Ollinger, and A. Gajardo: Undecidability of the surjectivity of the subshift
associated to a Turing machine. LNCS, (7581):44–56, 2013.

[48] Torres, R., N. Ollinger, and A. Gajardo: The transitivity problem of Turing machine. LNCS,
(9234):231–242, 2015.

[49] Turing, A.: On computable numbers, with an application to the entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 2(42):230–265, 1936.

Bibliography

Bibliography 110

[50] Ulam, S.: Random processes and transformations. Proc. Int. Congress of Math, 2:264–275,
1952.

[51] Weiss, B.: Subshifts of finite type and sofic systems. Monats. Math., 77:462–474, 1973.

[52] Willard, S.: General topology. Addison-Wesley, Reading, Massachusetts, 1968,
ISBN 0486434796.

[53] Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics,
55:601–644, 1983.

Bibliography

	Introducción en Español
	Introduction in English
	Definitions
	Dynamical System
	Orbit
	Dynamical relations
	Subshifts, languages and words

	Topology
	Neighborhood, isolated points and closure
	Topological transitivity, minimality and entropy

	Turing machine
	Determinism and completeness in Turing machine
	Reversibility in Turing machine

	Turing machine seen as dynamical system
	Turing machine dynamical system
	Turing machine with moving head (TMH)
	Turing machine with moving tape (TMT)
	Relations between dynamical systems of Turing machines
	The t-shift
	Turing machine dynamical properties

	Arithmetical Hierarchy
	Hardness and completeness
	Turing machine examples

	Coded systems
	Discussion

	Some undecidable problems about the trace-subshift associated to a Turing machine
	Problems and concepts
	Blocking words
	Surjectivity
	Positive entropy

	Simulating counter machines
	Construction of the reversible Turing machine that simulates a 2-RCM.
	Reversing the computation

	Undecidability of the problems
	Undecidability of the blocking state problem in complete RTMs
	Undecidability of the surjectivity of the subshift associated to a Turing machine
	Undecidability of the entropy positiveness on reversible one-tape Turing machines

	A SMART machine
	A small aperiodic complete and reversible Turing Machine (SMART)
	The SMART machine.
	Basic movements of SMART
	Aperiodicity

	Other properties of the SMART machine
	Some more lemmas
	The t-shift is substitutive

	An application of SMART
	Proof techniques
	Undecidability of the aperiodicity of complete reversible Turing machines

	Transitivity and Computability in Turing Machine dynamical systems
	The universe of machines with transitive t-shift
	Machine of type a: Transitive on TMH model
	Machine of type b: Transitive on TMT, but not in TMH, and without blocking words
	Machine of type c: Transitive on TMT, with a blocking word
	Machine of type d: Transitive just for the trace-shift

	Undecidability
	Undecidability results

	Complexity of Transitivity Problem and Minimality Problem
	Transitivity Problem and Minimality Problem are 02

	Coded Systems associated to Turing machines

	Conclusions
	Bibliography

