UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

Profesor Patrocinante:

Dr. Alejandro Rojas N.

Informe de Memoria de Título para optar al título de:

Ingeniero Civil Electrónico

Estudio de interferencia en redes de 2.4 GHz

Concepción, Enero de 2015

Raúl Oscar Cortés Leigton

UNIVERSIDAD DE CONCEPCIÓN Facultad de Ingeniería Departamento de Ingeniería Eléctrica

Profesor Patrocinante: Dr. Alejandro Rojas N.

Estudio de interferencia en redes de 2.4 GHz

Raúl Oscar Cortés Leigton

Informe de Memoria de Título para optar al Título de

Ingeniero Civil Electrónico

Enero 2015

Resumen

En el presente trabajo se desea generar una interferencia en la banda ISM de 2.4GHz con el fin de estudiar el comportamiento de un sensor conectado mediante WirelessHART, y cómo esta interferencia afecta en el control del microcanal ubicado en el Laboratorio de Control del Departamento de Ingeniería Eléctrica de la Universidad de Concepción.

La generación de la interferencia se realiza mediante un equipo USRP B200 de la empresa Ettus, perteneciente a la National Instrument, que es capaz de generar señales en un amplio rango de frecuencias, como también en un gran rango de potencia y con la movilidad que un computador con puerto USB puede ofrecer. La generación se realiza mediante GNU Radio en Linux y con Matlab en Linux o Windows.

Mediante las mediciones realizadas, se observó que una simple señal emitida en la frecuencia correcta mediante el USRP es capaz de cortar completamente la comunicación entre dos computadores conectados por WiFi. Se mide el SIR mínimo para lograr comunicación y la disminución del thoughput al aumentar la potencia de emisión del USRP. También se analiza el comportamiento de la red WirelessHART y cómo es afectada la comunicación en presencia de ruido a diferentes frecuencias mediante un control PI en el microcanal.

A mis padres

Agradecimientos

Quisiera partir agradeciendo a mi profesor guía, Dr. Alejandro Rojas, por darme esta oportunidad de desarrollar mi Memoria de Título con él. También agradecer a todos los profesores que me guiaron durante todo mi largo proceso de formación académica, incluyendo también a mis profesores del colegio.

No podía pasar por la universidad sin disfrutar una de mis pasiones, y qué mejor que el Fotoclub Enfoques para eso. Estoy muy feliz de haber decidido unirme al fotoclub ese octubre que estábamos en paro, y así llegar a conocer a tanta gente maravillosa. Muchas gracias por todas esas largas caminatas en las que salíamos a tomar fotografías.

Agradecer también a Omar y Ricardo, eternos compañeros de trabajos, tareas y tardes de ocio, incluso cuando no trabajábamos juntos. Ya van 7 años aguantando todas mis tonteras. Otra persona que me permitió conocer la universidad fue Paulina, que me llevó por el mal camino de los conciertos musicales. Muchas gracias por estar conmigo y tenerme tanta paciencia.

No podía terminar sin agradecer también a mis padres, Angélica y Raúl (no le pongan el nombre del padre al hijo), que a pesar de todo siempre han estado conmigo, siempre preocupados de su niñito que se fue a estudiar a otra ciudad. A mi hermana Katty, que siempre estuvo ahí para poder molestar a alguien cuando estaba aburrido, y ahora me asalta la billetera.

Tabla de Contenidos

LISTA DE TABLAS	VIII
LISTA DE FIGURAS	IX
ABREVIACIONES	XI
CAPÍTULO 1. INTRODUCCIÓN	
1.1 INTRODUCCIÓN GENERAL	1
1.2. TRABAJOS PREVIOS	
1.2.1 Interferencia de señales	
1.2.2 USRP	4
1.3. Discusión	7
1.4. Hipótesis de Trabajo	8
1.5. Objetivos	8
1.5.1 Objetivo General	8
1.5.2 Objetivos Específicos	8
1.6. Alcances y Limitaciones	8
1.7. TEMARIO Y METODOLOGIA	9
CAPÍTULO 2. MARCO TEÓRICO	
2.1. Introducción	
2.2. Teoría	
2.2.1 Transformada de Fourier	
2.2.2 Indicadores de interferencia	
2.2.3 Estándar 802.11	
2.2.4 Teoría de Radioenlace	
2.2.5 Medición del canal	
2.3. RESUMEN	
CAPÍTULO 3. EQUIPO USRP B200	
3.1. INTRODUCCIÓN	19
3.2. INSTALACIÓN	
3.3. COMUNICACIÓN USRP-PC	
3.3.1 Ubuntu y GNU Radio	
A. GNU Radio	
A1 GNU Radio Companion	
3.3.2 Windows 10 y MATLAB	
A. MAILAB Δ 1 Simulink	
3.4 CARACTERIZACIÓN	
3.5. Resumen	
CAPÍTULO 4 CREACIÓN DE SEÑALES	35
4.1. INTRODUCCION	
4.3 GNURADIO	
4.4 SIMULINK	
4.5. RESUMEN	
CADÍTULO 5 - COMPDORACIÓN DE INTEDEEDENCIA	13
5.1 Ium contents	
5.1. INTRODUCCION	
J.2. SINK Y SIK	
5.2.1 Pruebas con frecuencia yariable	
5.3 THROUGHPUT	

5.3.1	Pruebas con frecuencia fija	51
5.3.2	Pruebas con frecuencia variable	55
5.4. Pr	UEBAS EN CANAL DE LABORATORIO DE CONTROL	
5.5. Re	SUMEN	60
CAPÍTULO	6. CONCLUSIONES	61
6.1. SU	MARIO	61
6.2. Co	NCLUSIONES	
6.3. Tr	ABAJO FUTURO	62
BIBLIOGRA	\FÍA	64
	·	
ANEXO A.	ESPECIFICACIONES TÉCNICAS	67
ANEXO A. <i>A.1.</i>	ESPECIFICACIONES TÉCNICAS USRP B200	67 67
ANEXO A. <i>A.1.</i> <i>A.2.</i>	ESPECIFICACIONES TÉCNICAS USRP B200 Antena VERT2450	67 67
ANEXO A. <i>A.1.</i> <i>A.2.</i> <i>A.3.</i>	ESPECIFICACIONES TÉCNICAS USRP B200 Antena VERT2450 Analizador de espectro HAMEG HMS3010	
ANEXO A. <i>A.1.</i> <i>A.2.</i> <i>A.3.</i> <i>A.4.</i>	ESPECIFICACIONES TÉCNICAS USRP B200 Antena VERT2450 Analizador de espectro HAMEG HMS3010 Antena Yagi 2.4 GHz	
ANEXO A. <i>A.1.</i> <i>A.2.</i> <i>A.3.</i> <i>A.4.</i> <i>A.5.</i>	ESPECIFICACIONES TÉCNICAS USRP B200 Antena VERT2450 Analizador de espectro HAMEG HMS3010 Antena Yagi 2.4 GHz WirelessHART Fieldgate SWG70	67 67 68 69 70 71
ANEXO A. A.1. A.2. A.3. A.4. A.5. A.6.	ESPECIFICACIONES TÉCNICAS USRP B200 Antena VERT2450 Analizador de espectro HAMEG HMS3010 Antena Yagi 2.4 GHz WirelessHART Fieldgate SWG70 WirelessHART Adapter SWA70	67 67 68 69 70 71 73
ANEXO A. A. I. A. 2. A. 3. A. 4. A. 5. A. 6. ANEXO B.	ESPECIFICACIONES TÉCNICAS USRP B200 Antena VERT2450 Analizador de espectro HAMEG HMS3010 Antena Yagi 2.4 GHz WirelessHART Fieldgate SWG70 WirelessHART Adapter SWA70 RESULTADOS CARACTERIZACIÓN	67 67 68 69 70 71 73 73

Lista de Tablas

Tabla 2.1 - Valores típicos de pérdidas en cable a 2.4GHz [13]	15
Tabla 5.1 – Resultados de mediciones	43
Tabla 5.2 – Resultados de mediciones	45
Tabla 5.3 - Resultados interferencia con frecuencia variable	46
Tabla 5.4 - Resultados sin uso de USRP	51
Tabla 5.5 - Valores obtenidos sin interferencia	57
Tabla 5.6 - Valores obtenidos con interferencia	59
Tabla 5.7 - Comparación resultados sin interferencia, recorrido de 4,5s y Gateway a 0dBm	60
Tabla A.1 - Especificaciones técnicas de SWG70	72
Tabla A.2 - Especificaciones técnicas SWA70	74
Tabla B.1 - Caracterización USRP	75
Tabla C.1 - Resultados mediciones con USRP al 30%, 40% y 50% sobre router 802.11n	76
Tabla C.2 - Resultados mediciones con USRP al 60%, 70% y 80% sobre router 802.11n	77
Tabla C.3 - Resultados mediciones con USRP al 30%, 40% y 50% sobre router 802.11b/g	78
Tabla C.4 - Resultados mediciones con USRP al 60%, 70% y 80% sobre router 802.11b/g	79
Tabla C.5 - Resultados USRP 100% con frecuencia variable	80

Lista de Figuras

Ilustración 2.1 - Representación gráfica de canales WiFi [11]	13
Ilustración 2.2 - Envío de paquetes en red inalámbrica mediante CSMA/CA [12]	14
Ilustración 2.3 - Esquema del Margen de Sistema [13]	16
Ilustración 3.1 - Diagrama de conexión del USRP B200/B210 [19]	19
Ilustración 3.2 - Carcasa original descargada de internet	21
Ilustración 3.3 - Carcasa modificada por el alumno	21
Ilustración 3.4 - Fotografía final de la carcasa impresa	22
Ilustración 3.5 - GNU-Radio Companion en Ubuntu	23
Ilustración 3.6 - Bloque Options	24
Ilustración 3.7 - Bloque Variable	25
Ilustración 3.8 - Bloque UHD: USRP Source	26
Ilustración 3.9 - Bloque UHD: USRP Sink	27
Ilustración 3.10 - Bloque QT GUI Sink	28
Ilustración 3.11 - Bloque Signal Source	28
Ilustración 3.12 - Interfaz inicial de MATLAB	29
Ilustración 3.13 - Interfaz gráfica de Simulink	30
Ilustración 3.14 - Instalador de paquetes para soporte de hardware en MATLAB	31
Ilustración 3.15 - Bloque SDRu Receiver	32
Ilustración 3.16 - Bloque SDRu Transmitter	33
Ilustración 3.17 - Caracterización de potencia del USRP	34
Ilustración 4.1 - Esquema de generación <mark>de se<mark>ñal sinus</mark>oidal</mark>	36
Ilustración 4.2 – Señal generada por el USRP	37
Ilustración 4.3 – Bloques en Simulink	38
Ilustración 4.4 - Información capturada por el USRP	39
Ilustración 4.5 - Variación de frecuencia en el tiempo	39
Ilustración 4.6 – Bloques simulink	40
Ilustración 4.7 - Configuración para retransmisión con el USRP	41
Ilustración 5.1 – SIR vs distancia	44
Ilustración 5.2 – Señal de interferencia y señal a Interferir	47
Ilustración 5.3 – Señal de interferencia sobre la frecuencia de la señal a interferir	48
Ilustración 5.4 - Diagrama de ubicación utilizado para mediciones	49
Ilustración 5.5 - Ventana de jPerf	50
Ilustración 5.6 - Troughput y ping sin interferencia	51
Ilustración 5.7 - Resultados de medición del throughput y ping utilizando router modo n	53
Ilustración 5.8 - Resultados de medición del throughput y ping utilizando router modo b/g	54
Ilustración 5.9 - Resultados de medición del throughput y ping utilizando router modo b/g y U	SRP
con frecuencia variable	55
Ilustración 5.10 - Condiciones de montaje para Sensor Prosonic FMU40	56
Ilustración 5.11 - Lazo cerrado sin interferencia	57
Ilustración 5.12 - Lazo cerrado con interferencia	58
Ilustración 5.13 - Interferencia de gateway con menor potencia	59
Ilustración A.1 - USRP B200 adquirido	67
Ilustración A.2 - Tabla de especificaciones técnicas [19]	68
Ilustración A.3 - Antena VERT2450	68
Ilustración A.4 - HAMEG HMS3010	69

Ilustración A.5 - Antena Yagi	. 70
Ilustración A.6 - Patrones de radiación de la antena	. 70
Ilustración A.7 - WirelessHART Fieldgate SWG70	. 71
Ilustración A.8 - Red típica de WirelessHART	. 72
Ilustración A.9 - Adaptador SWA70	. 73

Abreviaciones

Mayúsculas

AP: Access PointCAD: Computer-Aided DesignCR: Cognitive RadioCSMA: Carrier Sense Multiple AccessCSMA: Carrier Sense Multiple AccessCSMA/CA: CSMA with Collision AvoidanceDAC: Digital-to-Analog ConverterDFT: Discrete Fourier TransformFFT: Fast Fourier TransformFPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite System
CAD: Computer-Aided DesignCR: Cognitive RadioCSMA: Carrier Sense Multiple AccessCSMA: Carrier Sense Multiple AccessCSMA/CA: CSMA with Collision AvoidanceDAC: Digital-to-Analog ConverterDFT: Discrete Fourier TransformFFT: Fast Fourier TransformFPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite System
CR: Cognitive RadioCSMA: Carrier Sense Multiple AccessCSMA: CSMA with Collision AvoidanceDAC: Digital-to-Analog ConverterDFT: Discrete Fourier TransformFFT: Fast Fourier TransformFPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite System
CSMA: Carrier Sense Multiple AccessCSMA/CA: CSMA with Collision AvoidanceDAC: Digital-to-Analog ConverterDFT: Discrete Fourier TransformFFT: Fast Fourier TransformFPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite SystemGNSS: Global Navigation Satellite System
CSMA/CA: CSMA with Collision AvoidanceDAC: Digital-to-Analog ConverterDFT: Discrete Fourier TransformFFT: Fast Fourier TransformFPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite SystemGNSS: Global Navigation Satellite System
DAC: Digital-to-Analog ConverterDFT: Discrete Fourier TransformFFT: Fast Fourier TransformFPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite SystemGNSS: Global Navigation Satellite System
DFT: Discrete Fourier TransformFFT: Fast Fourier TransformFPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite SystemGNSS: Global Navigation Satellite System
FFT: Fast Fourier TransformFPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite SystemGNSS: Global Navigation Satellite System
FPGA: Field programmable Gate ArrayFSPL: Free Space Path LossGLONASS: Global Navigation Satellite SystemGNSS: Global Navigation Satellite System
FSPL: Free Space Path LossGLONASS: Global Navigation Satellite SystemGNSS: Global Navigation Satellite System
GLONASS: Global Navigation Satellite SystemGNSS: Global Navigation Satellite System
GNSS : Global Navigation Satellite System
GNU : GNU's Not Unix
GPS : Global Position System
GRC : GNU Radio Companion
GSM : Global System for Mobile communications
HDMI : High-Definition Multimedia Interface
IEEE : Institute of Electrical and Electronic Engineers
ISM : Industrial, Scientific and Medical
JPEG : Joint Photographic Experts Group
LAN : Local Area Network
LED : Light Emitting Diode
MAC : Medium Access Control
MACA : Multiple Access with Collision Avoidance
MATLAB : Matrix Laboratory
MIMO : Multiple Input Multiple Output
OMAP : Open Multimedia Applications Plataform
OTG : On The Go
RF : Radiofrecuencia
Rx : Receptor
SDR : Software Defined Radio
SINR : Signal to Interference plus Noise Ratio
SIR : Signal to Interference Ratio
SMA : SubMiniature version A
SNR : Signal to Noise Ratio
TCP : Transmission Control Protocol
Tx : Transmisor
UDP : User Datagram Protocol
UHD : USRP Hardware Driver
USB : Universal Serial Bus
USRP : Universal Software Radio Peripheral
WLAN : Wireless Local Access Network
WSAN : Wireless Sensor and Actuator Networks

1.1. Introducción General

Las redes WiFi se crearon con el fin de hacer frente a una problemática que toda red de comunicación cableada posee: la movilidad. El poder comunicarse entre equipos sin necesidad de un cable de datos hizo que los dispositivos móviles tuvieran un crecimiento explosivo, siendo posible hoy en día encontrar comunicación inalámbrica en dispositivos que antes era impensado. De esta forma, es que los sistemas de control también comenzaron con la utilización de esta tecnología, implementando sensores y actuadores que, conectados a un transmisor inalámbrico, eliminan la necesidad de un cable hasta el controlador para poder operar. Lamentablemente, con este boom de dispositivos, es que actualmente la banda ISM de 2.4GHz, disponible para WiFi y otros protocolos de comunicación, se encuentra saturada, lo que ocasiona interferencia entre los equipos, entorpeciendo la comunicación.

A pesar de que en los últimos quince años la tecnología 802.11 ha dado pasos considerables, volviéndose cada vez más rápida, más fuerte y más escalable, hay un problema que aún persigue al Wi-Fi: La fiabilidad. Manejar un entorno Wi-Fi que no se puede ver y que cambia constantemente es un problema, y las interferencias de radio frecuencia son las culpables.

Cuando un dispositivo conectado a la red oye otra señal, ya sea que se trate de una señal Wi-Fi o no, aplazará la transmisión hasta que cese la señal. La interferencia que se produce durante la transmisión también causa pérdida de paquetes, lo que obliga a las retransmisiones Wi-Fi. Estas retransmisiones ralentizan el tráfico y ocasionan un rendimiento extremadamente fluctuante para todos los usuarios que comparten un determinado AP. Diferentes soluciones se han propuesto para sortear este problema, pero la interferencia siempre existirá en las comunicaciones.

Bajo este pensamiento es que se desea hacer un estudio sobre los tipos de interferencia que es posible encontrar en algún ambiente específico, y ver experimentalmente cómo se comporta el rendimiento de la red bajo esas condiciones.

1.2. Trabajos Previos

Existen estudios previos en temas similares, los cuales se utilizarán de referencia en este proyecto. Dichos estudios puedes clasificarse en interferencia de señales y uso de USRP.

1.2.1 Interferencia de señales

T. Keller y J. Modelski, «Experimental Results of Testing Interferences in 2.4 GHz ISM Band,» *Microwave Conference*, 2003. 33rd European, vol. III, pp. 1043-1046, 2003 [1]

En este paper se presentan resultados experimentales de mediciones realizadas en interferencia entre dispositivos Bluetooth y WLAN. Se diseñó un ambiente de pruebas especial para la realización de las mediciones, la cual consiste en un AP para conectar los equipos a la red Wi-Fi, equipos Bluetooth para la creación de interferencia, y equipos inalámbricos Wi-Fi, para la medición de esa interferencia. Primero se realiza una prueba sin ninguna interferencia para tener un punto de comparación con las futuras mediciones, luego se realizan pruebas de transmisión mediante Wi-Fi y con dispositivos Bluetooth como fuentes de interferencia en distintas ubicaciones y distancias, para finalmente concluir los experimentos utilizando fuentes Wi-Fi como interferencia de una red Bluetooth, en las mismas condiciones que en el caso anterior. En ambos casos se presentan efectos negativos sobre el rendimiento de la red producto de estas interferencias, y a su vez se discuten algunos temas sobre cómo evitarlas, como un sistema de escaneo activo de canales para utilizar el menos congestionado. Otra solución propuesta es la fragmentación de los paquetes, así los paquetes enviados serían de menor longitud, y en caso de pérdida, es menos la información perdida.

N. Golmie, «Interference in the 2.4 GHz ISM Band: Challenges and Solutions,» National Institute of Standards and Technology, 2001. [2]

En este trabajo, al igual que en el paper de Keller [1], se trabaja con la interferencia producida por dos tecnologías que coexisten en la banda ISM de 2.4GHz, Bluetooth y dispositivos IEEE 802.11 (Wi-Fi). El alcance de tema es debido a la importancia de la situación, ya que ambas tecnologías, al coexistir en la misma banda, producen mucha interferencia entre ellas y es necesario mucho estudio para buscar soluciones. El objetivo principal de esta publicación es el describir el problema de la interferencia entre dichos dispositivos y dar las primeras luces de cómo operar en el mismo entorno sin problemas. En el paper se explica cómo el diseño del protocolo está pensado para soportar en cierto grado interferencias entre dispositivos de la misma familia (Bluetooth con Bluetooth o Wi-Fi con Wi-Fi), pero el peor escenario es cuando se mezclan dispositivos de diferentes clases en el mismo espectro de frecuencia. Diversos estudios en el área han propuesto una modificación en el estándar IEEE 802.11 y Bluetooth para una correcta coexistencia de estos dispositivos.

M. Kochlán y J. Micek, «2.4GHz ISM Band Radio Frequency Signal Indoor Propagation,» Computer Science and Information Systems, vol. II, p. 1027–1034, 2014. [3]

Un lugar cerrado es, desde el punto de vista de las comunicaciones inalámbricas, un ambiente extremadamente hostil. A pesar de este hecho, son muy comunes aplicaciones con redes de sensores inalámbricos en ambientes cerrados, como es el caso de los "edificios inteligentes", diseñados con el fin de ahorrar energía con el uso de sensores para controlar luces, puertas, calefacción, seguridad etc. La instalación de todos estos sensores en un gran edificio implica un enorme gasto en cableado, por lo que la solución más recurrente es la utilización de redes inalámbricas de sensor y actuador (WSAN por sus siglas en inglés). En este paper se estudia la propagación de una señal inalámbrica en entornos cerrados, abordando 4 fenómenos básicos: pérdida de trayectoria (path-loss), reflexión, difracción y dispersión, mediante modelos de propagación y resultados experimentales. Se comprueba que cada uno de esos efectos impacta negativamente en la distribución, atenuación y distorsión de la señal. Para la descripción de la propagación de la señal se utilizan modelos aproximados basados en resultados experimentales.

P. Jin-A, P. Seung-Keun, K. Dong-Ho, C. Pyung-Dong y C. Kyoung-Rok, «Experiments on radio interference between wireless LAN and other radio devices on a 2.4 GHz ISM band,» *Vehicular Technology Conference*, 2003. VTC 2003-Spring. The 57th IEEE Semiannual, vol. III, pp. 1798-1801, 2003. [4]

En esta publicación se realizan experimentos para investigar la interferencia producida por distintos equipos en redes WLAN operando en la banda 2.4 GHz. Muchos experimentos se han realizado para medir el nivel de interferencia entre equipos WLAN y Bluetooth, por lo que los autores de este paper se enfocan en mediciones de otro tipo de equipos, como un horno microondas, los cuales son fácil de encontrar en los hogares; también se estudia el efecto de los sistemas de iluminación mediante plasma, los cuales son comúnmente usado para la iluminación de espacios comunes antes de la inclusión de la tecnología LED; y finalmente se estudia el efecto producido por el dispositivo de transmisión inalámbrica de video utilizado para controlar robots antibombas usados por las fuerzas especiales de policías.

Se realizaron mediciones con el fin de obtener el grado de sobrepaso en el espectro de las señales producidas por los distintos equipos, en donde se obtiene que el microondas produce interferencia en todo el ancho de banda de WLAN, abarcando más de un canal simultáneamente. Sin

embargo, el espectro producido por el horno es muy variable, según la potencia y tipo de producto que se coloque en su interior. Por otra parte, el espectro producido por el sistema de iluminación mediante plasma es fijo, y abarca los primeros canales de WLAN y una ventana alrededor de los 3.5GHz, lo que deja una ventana sin interferencia disponible a partir del canal 10 de WLAN. El efecto del dispositivo de transmisión de video inalámbrica del robot se observa a partir del canal 10, dejando libre de interferencia los primeros 9 canales.

1.2.2 USRP

R. Di, S. Pen, S. Taylor y Y. Morton, «A USRP-Based GNSS and Interference Signal Generator and Playback System,» *Position Location and Navigation Symposium (PLANS)*, pp. 470-478, 2012. [5]

En este paper los autores presentan un generador de señales GNSS y de interferencia a bajo costo, portable y flexible utilizando equipos USRP. Las señales de GNSS son muy propensas a las interferencias naturales y creadas por el hombre, es por esto que se realizó este estudio. El objetivo principal de este trabajo es generar señales centellantes de la ionósfera para una mejora en los algoritmos de recepción de GNSS. Se utilizó un USRP modelo N210 conectado a un computador mediante cable ethernet, el cual es el encargado de generar las señales utilizando MATLAB y luego enviarlas al dispositivo para que las emita en la frecuencia correspondiente. Se explica cómo realiza la modulación de los datos para enviarlos mediante GPS y GLONASS, como también el set up de los equipos para recibir las señales de GPS L1, GPS L2C, GPS L5 y GLONAS L1. Se comprueba la generación de señales para los distintos sistemas de posicionamiento, como también la captura de señales reales enviadas por satélites y su retransmisión.

J. A. Santana Fuentes, GNU Radio en la enseñanza de comunicaciones inalámbricas, Concepción: Universidad de Concepción, 2012. [6]

Esta memoria de título creada por el alumno J. Santana de Ingeniería Civil en Telecomunicaciones se aborda el tema del uso del software GNU Radio en conjunto con un USRP en clases prácticas en laboratorio y así mejorar la calidad de la enseñanza y aumentar la motivación de los alumnos al ofrecer experiencias más prácticas. Los temas propuestos para la enseñanza en laboratorio son: Caracterización de canales, respuesta del canal, diversidad de antenas, modulaciones, transmisión de paquetes y sincronización.

 Z. Tong, M. S. Arifianto y C. F. Liau, «Wireless Transmission using Universal Software Radio Peripheral,» *Space Science and Communication*, vol. International Conference on, pp. 19-23, 2009. [7]

En este trabajo se aborda el tema de la transmisión de señales inalámbricas mediante el uso de equipos USRP conectados a un PC de una forma muy general, sin especificar en la frecuencia utilizada, ya que el USRP posee la capacidad de trabajar en cualquier frecuencia, teniendo la placa hija correcta. El software utilizado fue el GNU Radio al ser la opción más versátil y completa del mercado. Se realizan distintas pruebas de transmisión y recepción de datos, partiendo por la emisión de un archivo JPEG usando GNU Radio y USRP, el cual llega dañado al destino. Luego se propone la implementación de un buffer en el sistema, para la correcta recepción del archivo, pero esta solución es lenta y baja el rendimiento de todo el sistema, por lo que se propone el envío de bloques de paquetes, y el receptor así puede pedir la retransmisión en caso de encontrar un bloque fallido. Esto reduce el tiempo total del proceso. Para el soporte de comunicaciones con más de dos nodos, se agrega una cabecera con información del transmisor y receptor. Así se prueba una configuración en que el emisor y receptor están fuera de alcance, por lo que se utiliza un repetidor inalámbrico para establecer la comunicación, provocando inestabilidad en la red y la pérdida de casi la mitad de los paquetes enviados. Una solución propuesta es la de agregar un retraso de tiempo entre cada paquete enviado, para que el repetidor tenga tiempo suficiente de recibir, procesar y retransmitir. Finalmente se implementa el algoritmo Leaky Bucket, el cual envía "por gotera" ráfagas de paquetes, agrega un retardo de unos segundos y envía la segunda ráfaga. Con éste método se asegura la correcta recepción de todos los paquetes.

 C. Weber y G. Hildebrandt, «Evaluation of Blind Sensing Algorithms in the 2.4 GHz ISM-Band on GNU Radio and USRP2,» *Wireless Communication Systems (ISWCS)*, vol. 2012 International Symposium on, pp. 551-555, 2012. [8]

En entornos industriales se vuelve cada vez más común el uso de tecnología inalámbrica para comunicar sensores y actuadores, por lo que requerimientos como la confiabilidad para dispositivos inalámbricos es mandatoria. Como cada día un mayor número de dispositivos inalámbricos son utilizados, se hace más fácil que unos con otros se interfieran entre sí, por lo que es necesaria la implementación de algoritmos capaces de mantener al mínimo dichas interferencias. Cognitive Radio (CR) es la tecnología que promete solucionar los problemas anteriores mediante un uso más eficiente

del espectro de radiofrecuencias, sensando el entorno para buscar espacios libres en el rango de frecuencias y así ir cambiando el canal de transmisión de la señal. La funcionalidad adaptativa de CR puede resumirse en 4 pasos: Sensado de espectro, toma de decisiones, movilidad e intercambio. El paso más crucial del proceso es el de sensado del espectro, que es en donde se concentran los trabajos de este paper.

Weber y Hildebrandt nos presentan este trabajo en donde exhiben una aplicación práctica de 3 algoritmos de sensado de espectro, detección de energía, banco de filtros alargados y covarianza estadística. Se utiliza GNU Radio (corriendo en un PC con Linux) en conjunto de un USRP2 para evaluar el rendimiento de los algoritmos en base a la precisión de la detección y al consumo de recursos, ambos muy importantes a la hora de utilizar CR.

M. Abirami, V. Hariharam, R. Gandhiraj y K. P. Soman, «Exploiting GNU Radio and USRP An Economical Test Bed for Real Time Communication Systems,» *Computing, Communications and Networking Technologies (ICCCNT)*, vol. 2013 Fourth International Conference on, pp. 1-6, 2013. [9]

Generalmente los experimentos en el área de comunicaciones utilizan costosos equipos de laboratorio para la realización de pruebas. En este paper, Abirami y su equipo proponen un nuevo acercamiento por el cual todos los experimentos análogos y digitales pueden ser ejecutados mediante el uso de USRP (Universal Software Radio Peripheral) en conjunto del software GNU Radio Companion (GRC).

Bajo el método convencional, la realización de experimentos como modulación/demodulación de señales análogas o digitales requiere de un gran número de hardware especializado, lo que aumenta el costo total del proyecto. La solución propuesta, el uso de USRP, puede reemplazar la necesidad de componentes tales como un generador de funciones, almacenador digital, osciloscopio, entre otros. A su vez, y si se adquiere el USRP adecuado, es posible conectarlo a una red privada y realizar la comunicación a más de un computador a la vez, permitiendo el trabajo con múltiples usuarios en el mismo equipo. Comparando todas las funciones capaces de realizar por el USRP, versus el costo de los equipos necesarios para realizar dichas funciones, el USRP es una gran solución.

 R. Zitouni, S. Ataman y L. George, «RF Measurements of the RFX 900 and RFX 2400 Daughter Boards with the USRP N210 driven by the GNU Radio Software,» *Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)*, vol. 2013 International Conference on, pp. 490-494, 2013. [10]

En este paper, Zitouni, Ataman y George realizaron mediciones de RF utilizando un USRP y GNU Radio. Se midieron dos tarjetas hijas de USRP, teniendo como foco de medición el ancho de banda de salida de la señal RF y la linealidad de la potencia versus el valor del conversor digitalanálogo (DAC) de cada placa hija.

Producto de las mediciones se determinó que ambas placas hijas tienen un ancho de banda menor al que prometen, pero poseen un rendimiento bastante lineal entre potencia y DAC.

1.3. Discusión

Kochlán y Micek explican en [3] la propagación de señales en redes WiFi en un entorno cerrado, lo que nos ayuda a entender más sobre este tipo de comunicación y sus puntos débiles, y así saber el tipo de interferencia a generar y dónde ubicarla en el espacio físico. En [7], Tong, Arifianto y Liau nos explican cómo se produce la comunicación mediante equipos USRP, demostrando que es posible comunicarse entre equipos utilizando los USRP, y explica su funcionamiento según distintas configuraciones.

Keller y Modelsky [1], junto a Golmie [2] y Jin-A y sus compañeros [4] nos muestran la disminución en el rendimiento de distintos tipos de dispositivos que utilizan la misma banda ISM de 2.4 GHz cuando son utilizados simultáneamente y a distancias cortas entre los mismos dispositivos. La literatura de Di, Pen, Taylor y Morton [5] muestra que es posible usar el kit USRP para generar funciones de interferencia a través de MATLAB para frecuencias 1150 – 1450 MHz correspondiente a la banda L1 de GLONASS. Si mezclamos ambas ideas, sería posible la creación de interferencia utilizando un dispositivo USRP equipado con los componentes necesarios para trabajar en la banda ISM de 2.4 GHz y así poder inyectar datos para interferir señales en dicha banda.

A su vez, en este trabajo se busca implementar esta solución en GNU Radio, un software completamente libre, nativamente compatible y desarrollado para los dispositivos USRP, cómo es el caso de Weber y Hildebrandt [8] en donde utilizan un equipo USRP (diferente al usado en este proyecto) en conjunto con GNU Radio para el análisis de algoritmos para el sensado de espectro.

Santana en [6] nos muestra que es posible usar los USRP con GNU Radio programando en Python para realizar acciones específicas que no se encuentran disponibles en los bloques de GNU Radio Companion, haciendo el software totalmente flexible según las necesidades del usuario. Similar es la publicación de Abirami [9] que nos expresa las ventajas de usar un equipo USRP en conjunto con GNU Radio, especialmente en el área académica.

Todo lo anterior nos abre las puertas para la utilización de un dispositivo USRP equipado con lo necesario para operar en la banda ISM de 2.4 GHz, el cual se conectaría a un computador y mediante software (GNU Radio, MATLAB) generar diferentes señales que interfieran en la red, entorpeciendo la conectividad de los dispositivos cercanos.

1.4. Hipótesis de Trabajo

Es posible crear interferencia en la banda ISM de 2.4 GHz utilizando un equipo USRP en laboratorio.

1.5. Objetivos

1.5.1 Objetivo General

1.5.2 Objetivos Específicos

- Familiarización del equipo USRP adquirido
- Crear interferencia en distintas frecuencias y a diferentes magnitudes de potencia utilizando equipo USRP B200
- Comprobar la repetibilidad de la interferencia creada

1.6. Alcances y Limitaciones

Se tienen los siguientes alcances y limitaciones para el proyecto:

- Se utilizará el equipo USRP B200 en el Laboratorio de Microondas y Antenas del DIE.

- Se utilizarán dos antenas VERT2450 conectadas a los puertos Tx/Rx y Rx del USRP antes mencionado.

- El estudio de interferencia se centrará en torno a la banda de 2.4 GHz.

- Se trabajará con el software GNU Radio y MATLAB corriendo en sistema operativo Ubuntu y Windows, respectivamente.

- Se utilizará el computador personal del alumno para los trabajos necesarios.

1.7. Temario y Metodología

La metodología utilizada para el cumplimiento de los objetivos es la de ensayo en laboratorio, cumpliendo metas semanales para lograr el objetivo en el tiempo especificado, comenzando con la instalación del equipo en el laboratorio de Microondas y Antenas, realizar pruebas simuladas en PC y luego migrar las pruebas a experimentos reales en el USRP.

Se escoge como transmisor a interferir el router Linksys WRT54G ubicado en el laboratorio de microondas y antenas. En base a éste se realizan las pruebas y mediciones, en donde se busca interferir la comunicación de dicha señal.

Se documentará el trabajo en el presente documento comenzando con una breve revisión de la teoría detrás de las comunicaciones, para luego introducir el equipo con el que se trabajará y todos los pasos a seguir desde la apertura de su caja hasta la conexión con el software instalado en el PC. Se procede a describir el diseño y creación de las señales para la generación de la interferencia, para finalizar con las mediciones realizadas para evaluar dicha interferencia y las conclusiones respectivas de todo el trabajo realizado.

2.1. Introducción

Se desea implementar un equipo capaz de crear interferencias repetibles en la banda 2.4 GHz, con el objetivo de estudiar dicho fenómeno y ver cómo afecta al rendimiento de los diversos dispositivos inalámbricos que operan en dicha frecuencia. Se define como **interferencia** a la superposición de dos o más ondas de la misma frecuencia, degradando el contenido de la señal original, induciendo pérdida o modificación de información.

Existe una gran cantidad de aparatos que usan la frecuencia 2.4 GHz, por lo que es necesario enfocarse en uno en particular. Es por ello que se aborda el problema en base a un AP WiFi, de esta manera es posible detectar fácilmente si existen problemas debido a la interferencias, ya que esto provocaría un pobre desempeño en la conexión a internet o comunicación entre equipos. Para la generación de la interferencia se escoge el USRP B200 como hardware principal debido a su versatilidad en las comunicaciones en radio frecuencia, en donde es posible generar una onda sinusoidal con una amplitud y frecuencia deseada.

2.2. Teoría

2.2.1 Transformada de Fourier

Mediante la variación de alguna propiedad física, como lo es el voltaje o corriente, es posible transmitir información a través de algún medio físico, como cables u ondas de radio. Si se representa este valor de voltaje o corriente como una función del tiempo f(t), es posible modelar el comportamiento de la señal y analizarlo matemáticamente. Uno de estos análisis es el de Fourier y su transformada.

El matemático francés Jean-Baptiste Fourier demostró que cualquier función periódica es expresable como la suma de un número (posiblemente infinito) de senos y cosenos:

$$g(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t),$$
(2.1)

En donde f = 1/T es la frecuencia fundamental, a_0 , a_n y b_n son los coeficientes de Fourier, definidos por:

$$a_0 = \frac{2}{T} \int_0^T g(t) dt \quad a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt \qquad b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt.$$
(2.2)

Dicha descomposición recibe el nombre de **Serie de Fourier**. De esta descomposición nace la Transformada de Fourier Discreta, para obtener de una función en el dominio del tiempo, su representación en el domino de la frecuencia. La DTF se define como:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi j}{N}kn} \qquad k = 0, \dots, N-1.$$
(2.3)

Como la entrada de la DFT es una secuencia finita de números reales o complejos, se convierte en un modo ideal para procesar información de medios digitales, en particular, es ampliamente utilizada en el procesamiento digital de señales, análisis frecuencial de una señal muestreada, resolución de ecuaciones diferenciales parciales, entre otros. En la práctica, esta transformada puede tomar considerable tiempo de cálculo, es por esto que Cooley y Tukey desarrollaron un algoritmo llamado **Transformada Rápida de Fourier** (FFT) que permite obtener esta transformada de una forma más rápida y eficiente.

Ninguna instalación transmisora puede enviar señales sin perder cierta potencia en el proceso. Si todos los componentes de Fourier disminuyeran en la misma proporción, la señal resultante se reduciría en amplitud pero no se distorsionaría. Lamentablemente, todo equipo transmisor disminuye los componentes de Fourier en distinto grado, agregando distorsión a la señal. Se denomina **ancho de banda** al rango de frecuencias en que la señal no se ve degradada por el equipo transmisor.

2.2.2 Indicadores de interferencia

Otro término importante al momento de hablar de redes, es la **relación señal a ruido** (SNR). Esta medida se utiliza para comparar el nivel de la señal deseada con el nivel de ruido de fondo presente en el ambiente, es la razón entre la potencia de la señal y la potencia del ruido, medido en decibeles. Un SNR mayor a 1 indica una señal mayor al ruido. Sus expresiones en potencia y decibeles:

$$SNR = \frac{P_{señal}}{P_{ruido}},$$
(2.4)

$$SNR_{db} = 10 \log_{10}(SNR).$$
 (2.5)

Desarrollando la expresión (2.5) se llega a:

$$SNR_{db} = 10\log_{10}\left(\frac{P_{se\tilde{n}al}}{P_{ruido}}\right) = 10\log_{10}(P_{se\tilde{n}al}) - 10\log_{10}(P_{ruido}),$$
(2.6)

$$SNR_{db} = P_{se\tilde{n}al,db} - P_{ruido,db}.$$
(2.7)

Existe un indicador para medir el nivel de interferencia de una señal, con respecto a la señal interferida, llamado **Signal to Interference Ratio**, midiendo la potencia promedio de la señal recibida con respecto a la potencia promedio de la interferencia detectada.

$$SIR = \frac{P_{señal}}{P_{interferencia}}.$$
(2.8)

Realizando el mismo procedimiento para el SNR_{db} (2.8) se llega a una expresión para SIR_{db}

$$SIR_{db} = P_{se\tilde{n}al,db} - P_{interferencia,db}.$$
(2.9)

Un indicador más real es el **Signal to Interference plus Noise Ratio** (SINR), el cual agrega el efecto del ruido en el canal al indicador.

$$SINR = \frac{P_{señal}}{P_{interferencia} + P_{ruido}}.$$
(2.10)

2.2.3 Estándar 802.11

Todo lo anterior es útil al momento de realizar análisis de señales emitidas en algún medio físico, en nuestro caso, radiofrecuencias. Las ondas RF son fáciles de generar, pueden recorrer grandes distancias y traspasar obstáculos, de modo que son muy utilizadas en comunicación. Las propiedades de propagación de las ondas de radio dependen de su frecuencia; las ondas de baja frecuencia no tienen problema en atravesar los obstáculos, pero pierden potencia drásticamente a medida que aumenta su distancia recorrida. En cambio, las ondas de frecuencias altas tienden a desplazarse en línea recta y a

rebotar en los obstáculos. En todas las frecuencias las ondas de radio están sujetas a interferencia de los motores y demás equipos eléctricos.

Los enlaces de red se pueden dividir en dos categorías: los que utilizan conexiones punto a punto y los que utilizan canales de difusión. En cualquier red de difusión, el asunto clave es la manera de determinar quién puede utilizar el canal cuando hay competencia por él. En la literatura, los canales de difusión a veces se denominan canales multiacceso o canales de acceso aleatorio. Como la tecnología inalámbrica es un medio de difusión por naturaleza, los radios 802.11 también tienen que lidiar con el problema de que las múltiples transmisiones que se envían al mismo tiempo tendrán colisiones, lo cual puede interferir con la recepción. Para la transmisión de datos en una red, ya sea alámbrica o inalámbrica, se envían ráfagas de paquetes al medio, los cuales tienen encabezados para saber a quién va dirigido el paquete, como para indicar el largo del paquete, la codificación u alguna otra característica. La forma más básica para evitar colisiones de paquetes entre distintos equipos, son los canales. La banda ISM de 2.4 GHz posee 14 canales para la transmisión de datos, cada canal de 22MHz de ancho. La Ilustración 2.1 muestra una representación gráfica de estos canales. Otra forma para evitar las colisiones de estos paquetes de datos, son los distintos protocolos MAC o de acceso al medio, los cuales son diferentes entre un medio alámbrico y uno inalámbrico.

Ilustración 2.1 - Representación gráfica de canales WiFi [11]

Uno de los primeros protocolos para evitar la colisión de paquetes en redes inalámbricas fue el MACA (Multiple Access with Collision Avoidance) que consiste en que el transmisor envía un paquete al receptor avisando que transmitirá datos, así el receptor envía un paquete indicando a los demás dispositivos que recibirá datos, evitando así colisiones con los demás equipos. A pesar de existir protocolos para evitar colisiones, estos de igual forma pueden ocurrir. Cuando eso pasa, el emisor espera un tiempo aleatorio y vuelve a intentar el envío de paquetes.

Actualmente el estándar 802.11 utiliza el protocolo CSMA/CA [12], que consiste en un sensado previo del canal antes de enviar. Si el canal está libre, el transmisor envía el paquete completo y luego el receptor envía una confirmación de recepción. Si el transmisor no recibe la confirmación, espera un tiempo aleatorio para retransmitir. Si otro equipo desea transmitir mientras se está utilizando el canal, detecta esta transmisión de datos, espera un tiempo aleatorio y vuelve a intentar, hasta que detecte libre el medio. La Ilustración 2.2 muestra este caso.

2.2.4 Teoría de Radioenlace

El término "Teoría de Radioenlace" suena mucho al hablar de sistemas de comunicación inalámbricos de grandes distancias, como lo es la telefonía celular, pero la teoría es la misma para cualquier comunicación inalámbrica que utilice ondas electromagnéticas para la transmisión de datos, sea cual sea la distancia.

Para el diseño de sistemas de comunicación inalámbricos es importante que la señal enviada desde el transmisor al receptor tenga un nivel de potencia aceptable después de sufrir todas las pérdidas a las que es sometida en el canal. Es por eso que se debe verificar la vialidad del enlace realizando los cálculos correspondientes al momento del diseño del sistema.

Todo enlace punto a punto de comunicación está compuesto básicamente por los mismos elementos: El transmisor, que envía la señal a través de un cable hacia la antena, la cual transforma la señal en ondas electromagnéticas para enviarlas a través del aire hacia la antena receptora, la cual transforma esas ondas en señales de voltaje para enviarlas a través de un cable y ser recibidas por el equipo receptor. Todos estos pasos introducen ganancias y pérdidas, por lo que es importante su consideración para la realización del enlace.

Partiendo por la **Potencia de transmisión** (Tx), que es la potencia de salida del equipo, y depende de las regulaciones vigentes de cada país. Para el estándar IEEE 802.11, la potencia de salida típica del Tx va desde los 15 a los 26 dBm.

Las **Pérdidas en el cable** dependen del mismo cable, tecnología y calidad de fabricación, como también de la frecuencia utilizada. Se miden en dB/m.

Tipo de cable	Pérdidas [dB/100m]	
RG 58	80-100	-
RG 213	50	
LMR-200	50	
LMR-400	22	
Aircom plus	22	
LMR-600	14	
Flexline de 1/2"	12	\star \star \star \star \star
Flexline de 7/8"	6,6	
C2FCP	21	
Heliax de 1/2"	12	4
Heliax de 7/8"	7	3.5

Tabla 2.1 - Valores típicos de pérdidas en cable a 2.4GHz [13]

La **Pérdida por conectores** se puede estimar por lo menos en 0.25dBm por cada uno, siempre y cuando sean conectores bien hechos y en buen estado. Un conector hecho "a la rápida" puede poseer una pérdida mayor, además de introducir ruido a la señal.

La **Ganancia de la antena** puede variar desde los 2dBi (antena interna) hasta los 30dBi (antena parabólica). La ganancia final de la antena depende de la correcta instalación de ésta.

La mayor parte de la potencia de la señal se perderá debido a las **Pérdidas de espacio libre** (FSPL), la cual mide la disminución de la potencia de la señal al ser transmitida en el aire, sin considerar la presencia de elementos externos que pudieran atenuar más la señal. El cálculo se puede realizar mediante la expresión (2.11), en donde d = Distancia (m), f = frecuencia (Hz) y c = Velocidad de la luz en el vacío.

$$FSPL = \left(\frac{4\pi df}{c}\right)^2 \tag{2.11}$$

Es más conveniente el trabajo con decibeles, por lo que se procede a realizar la transformación de unidad.

$$FSPL_{(dB)} = 10\log\left(\frac{4\pi df}{c}\right)^2 \tag{2.12}$$

$$FSPL_{(dB)} = 20log\left(\frac{4\pi df}{c}\right)$$
(2.13)

$$FSPL_{(dB)} = 20log(d) + 20\log(f) + 20\log\left(\frac{4\pi}{c}\right)$$
 (2.14)

$$FSPL_{(dB)} = 20\log(d) + 20\log(f) - 147.55$$
(2.15)

Luego es el proceso inverso, por lo que las ganancias y pérdidas son las mismas al momento de recibir la señal y enviarla al receptor. Luego, se puede calcular el margen completo del sistema simplemente realizando la suma de las ganancias y las restas de las potencias, quedando la siguiente expresión:

Ilustración 2.3 - Esquema del Margen de Sistema [13]

La Ilustración 2.3 muestra gráficamente el cálculo del margen del sistema. Teniendo este cálculo hecho, es posible diseñar un sistema inalámbrico para establecer una intensidad de señal mínimo en el equipo receptor.

2.2.5 Medición del canal

Si bien un enlace WiFi tiene un ancho de banda teórico que va desde los 11Mbps hasta los 6.93Gbps [14] según la tecnología y estándar utilizado, éste dista mucho de la realidad, ya que depende mucho del entorno en dónde se encuentra operando, específicamente del ruido electromagnético del ambiente y otros dispositivos conectados a la misma red. Para obtener una referencia un poco más real del ancho de banda según el entorno en donde se encuentre el canal utilizado para la comunicación, es que existe el llamado Teorema de Shanon-Hartley [15], el cual define mediante la expresión (2.12) la capacidad del canal en función de la relación de la potencia emitida con la potencia del ruido, es decir, el SNR.

donde B = Ancho de banda del canal (Hz), S = Potencia de la señal (dBm), y N = Potencia del ruido (dBm).

Lo que nos entrega el teorema de Shanon-Hartley es la capacidad máxima **teórica** del canal de comunicación según la cantidad de ruido en el ambiente, por lo que es necesaria una medición práctica del ancho de banda real de una conexión.

Uno de los conceptos que más se repite al momento de medir el ancho de banda efectivo de una conexión, es el *Throughput*, que se define como caudal o tasa neta de información de usuario transmitida por una red de telecomunicación digital [16]. Este concepto es ampliamente utilizado al momento de diseñar redes para que soporten cierto flujo de datos sin llegar a la saturación del canal o los equipos.

La medición del Throughput es un excelente indicador del rendimiento actual de la conexión medida, convirtiéndolo así en nuestra medición indicada para establecer la degradación de comunicación producida por el USRP.

Para la realización de la medición del Throughput, es necesario contar con dos computadores y un software especial de código abierto disponible en la red, iPerf, el cual puede ser descargado

gratuitamente desde su página web [17], o si se prefiere, una versión gráfica que corre mediante Java, jPerf [18]. El modo de operación de iPerf es simple: Se crea una conexión punto a punto entre dos computadores y se envían paquetes por la red, midiendo la velocidad a la que salen del emisor y a la que el receptor los recibe. Así se obtiene la velocidad máxima posible del canal, ya sea una red cableada o inalámbrica.

2.3. Resumen

En este capítulo se vio toda la teoría necesaria para la correcta utilización del equipo, y tener una correcta noción de lo que se entiende por WiFi y su operación. Se detallaron las ecuaciones necesarias para el cálculo de las pérdidas que se producen al transmitir inalámbricamente una señal, pérdidas que son importantes a tener en consideración a la hora de generar cierto nivel ganancia con el fin de crear un nivel de interferencia específico.

3.1. Introducción

El equipo USRP B200 ofrece una cobertura de señales RF a partir de los 70MHz de frecuencia, hasta los 6GHz, todo dependiendo de la antena que se conecte al equipo. En su interior posee una FPGA Spartan6 y conexión mediante un puerto USB en su versión 3.0 para una alta transferencia de datos. Esta plataforma permite la experimentación en una amplia variedad de señales, incluyendo difusión de TV y FM, redes GSM (celular) y WiFi. Este modelo de USRP posee un canal para transmisión y otro para recepción de las señales, capaz de realizar una comunicación Half o Full Duplex, a diferencia de su hermano mayor, el USRP B210, que posee dos canales de transmisión y dos de recepción, permitiendo así soluciones MIMO. Gracias al uso del USRP Hardware Driver (UHD), es posible desarrollar aplicaciones y exportarlas sin problemas a los equipos de mayor rendimiento de USRP, tales como la familia X300. Además, el UHD es un driver de código abierto multiplataforma, que puede correr bajo Windows, Linux y MacOS.

Ilustración 3.1 - Diagrama de conexión del USRP B200/B210 [19]

3.2. Instalación

Por decisión del fabricante, la serie B200 de los USRP se vende sin una carcasa exterior que contenga al equipo, es decir, sólo la placa electrónica con los cables necesarios para su funcionamiento (cable USB). Puesto que operar una placa electrónica sin una carcasa protectora puede ser perjudicial para el mismo equipo, es necesario el diseño y fabricación de esta carcasa. Para esto, el fabricante provee los planos con las dimensiones físicas de la placa, así queda en manos del usuario el cómo quiere que luzca su equipo.

Aprovechando esta libertad, y de la gran comunidad que existe tras el universo USRP, se encontró unos planos 3D creados por un usuario de USRP y ofrecido a toda la comunidad. Aprovechando la tecnología del momento, se decidió realizar la carcasa en una impresora 3D, por lo que se contactó con el Laboratorio de Innovación Tridimensional del Centro de Rehabilitación Oral Avanzada e Implantología de la Universidad de Concepción para la utilización de una de sus impresoras para realizar el trabajo.

Ya que se poseían los planos 3D, se decidió realizar una modificación en ellos para que la carcasa posea el logo de la Universidad. Para esto se utilizó el programa OpenSCAD, software libre dedicado a la creación de modelos CAD 3D. A diferencia de otro software, tales como Inventor de Autodesk o Sketch Up que ofrecen una modelación más interactiva, OpenSCAD se comporta como un compilador 3D, que lee líneas de código escritas por el usuario para transformarlas en un objeto en tres dimensiones. Así se pudo pasar desde la carcasa original (Ilustración 3.2) a una carcasa más institucional acorde con el proyecto (Ilustración 3.3). Con el modelo 3D modificado, se procede a realizar la impresión de la carcasa en el laboratorio destinado para ello.

Ilustración 3.2 - Carcasa original descargada de internet

Ilustración 3.3 - Carcasa modificada por el alumno

La Ilustración 3.4 muestra una fotografía de la carcasa una vez impresa. Para el montaje final sólo falta ubicar la placa del USRP correctamente en el interior de la carcasa y proceder a la conexión de las antenas VERT24 en los conectores SMA para los canales Rx y Tx. No es necesario el uso de tornillos para la sujeción, ya que la misma carcasa se cierra a presión, encargándose que nada quede suelto, protegiendo así el equipo.

3.3. Comunicación USRP-PC

Una vez realizado el montaje del equipo, es posible proceder a trabajar con seguridad en él, realizando la comunicación mediante el puerto USB 3.0 que incluye el equipo. Si bien la versión 3.0 de USB posee retrocompatibilidad con la versión 2.0, no es recomendado su uso en este tipo de puertos, ya que la tasa de transferencia disminuye de 600MB/s (USB 3.0) a 60 MB/s (USB 2.0), lo cual no es suficiente para una correcta operación del equipo en tiempo real.

Ilustración 3.4 - Fotografía final de la carcasa impresa

3.3.1 Ubuntu y GNU Radio

Siguiendo las instrucciones del fabricante, se instala el driver UHD utilizando el Instalador de Paquetes del mismo sistema operativo, o mediante consola con el comando "*sudo apt-get install libuhd-dev libuhd003 uhd-host*". Una vez descargado e instalado el driver, ya es posible conectar el USRP y que el computador sea capaz de reconocerlo e interactuar con él. Sólo falta la instalación de GNU Radio, también mediante el Instalador de Paquetes y está todo listo para funcionar.

A. GNU Radio

GNU-Radio es una herramienta gratis y de código abierto para desarrollo de software que provee bloques de procesamiento de señales para implementar programas de radiofrecuencia. Puede ser usado

con equipos de RF externos de bajo costo y de fácil adquisición para crear radios definidas por software, o SDR. Es ampliamente utilizado por entusiastas, académicos y personas del área comercial para la realización de estudios en las comunicaciones inalámbricas y en los sistemas de radio del mundo real.

El programa consiste en un conjunto de módulos con funciones específicas en el campo del procesamiento de señales en tiempo real. Estos módulos son del tipo bloque con entradas y salidas, y cada bloque posee parámetros modificables para determinar el comportamiento del mismo bloque. La unión de estos bloques se realiza mediante lenguaje Python, con el que se crea un gráfico de flujos de información, logrando así implementar desde simples sistemas de comunicaciones hasta la construcción de sofisticados esquemas de radio definidas por software.

A ...1 GNU Radio Companion

GNU-Radio Companion es la herramienta gráfica del software GNU-Radio, la cual permite la creación de diagramas de bloques de forma fácil y rápida. La creación de sistemas se realiza simplemente uniendo las entradas y salidas de los bloques que uno desea que interactúen entre sí, para luego generar un código en lenguaje Python, el cual llama a todos los módulos necesarios para su correcta ejecución. La interfaz de usuario y los bloques mencionados anteriormente se visualizan en la Ilustración 3.5.

Con el fin de utilizar todo el potencial que entrega el software GNU-Radio, la empresa Ettus

Research, actualmente propiedad de National Instrument, desarrolló un hardware de adquisición y transmisión de señales que permite trabajar en varias bandas de radiofrecuencias mediante módulos intercambiables que definen la banda de operación. Este hardware fue denominado "Universal Software Radio Pheripheral" (USRP)

Para la realización de las pruebas preliminares, se realizó un sencillo diagrama de bloques en GNU Radio Companion, similar al de la Ilustración 3.5, el cual tomaba la señal a través del USRP, le aplicaba FFT y la mostraba en una ventana. El funcionamiento de los bloques se explica a continuación:

A ..1.1 Options

El bloque Options define parámetros especiales para todo el diagrama de trabajo y sólo es posible colocar uno de estos. *Título, autor y descripción* son parámetros puramente con motivos de identificación del documento. *Windows Size* define el tamaño de la ventana del flujo de trabajo, sus límites son (300, 300) y (4096, 4096). *Generate Options* controla el tipo de motor gráfico que utilizará el trabajo. Las opciones son WX, QT, o ninguno, para un ambiente de trabajo sin interfaz gráfica. *Run* determina el comportamiento de la interfaz gráfica a usar, si se abrirá automáticamente, o mediante alguna variable. *Max Number of Output* define la cantidad máxima de bloques de salida que tendrá el documento. 0 es para deshabilitar este parámetro.

Options	😣 🗆 💷 Properties:	Options
ID: top_block Generate Options: WX GUI	General Advanced	Documentation
	ID	top_block
	Title	
	Author	
	Description	
	Window Size	1280, 1024
	Generate Options	WX GUI 💲
	Run	Autostart 👻
	Max Number of Output	0
	Realtime Scheduling	Off ‡

Ilustración 3.6 - Bloque Options

A ..1.2 Variable

El bloque Variable permite definir una variable a usar en el área de trabajo, asignándole una *ID* y un *valor*.

	😣 🖨 🗉 Properties: Variable	
	General Advanced	Documentation
	ID	samp_rate
ariable samp_rate ae: 32k	<u>Value</u>	32000

Ilustración 3.7 - Bloque Variable

A ..1.3 UHD: USRP Source

El bloque UHD: USRP Source permite la obtención de data desde el USRP para trabajarla en el programa. Los parámetros más importantes de este bloque son *Device Address*, el cual le indica la dirección del equipo para realizar la comunicación, ya sea por Ethernet o USB, *Sample Rate*, es la frecuencia a la que se debe obtener (o enviar) los datos. Center Freq es la frecuencia a la que se quiere operar el dispositivo. *Bandwidth* define el ancho de banda del filtro pasabanda centrado en *Center Freq*. Este valor depende del modelo del USRP que se esté utilizando.
	😣 🗖 🗊 Properties:	UHD: USRP Source
	General Advanced	Documentation
	ID	uhd_usrp_source_0
	Output Type	Complex float32 ‡
	Wire Format	Automatic 🔻
UHD: USRP Source	Stream args	•
Ch0: Center Freq (Hz): 0	Stream channels	0
Chu: Gain Value: 0	Device Address	
	Device Arguments	••
	Sync	don't sync 💲
	Clock Rate (Hz)	Default
	Num Mboards	1
	Mb0: Clock Source	Default
	Mb0: Time Source	Default
	Mb0: Subdev Spec	
	Num Channels	1 v
	Samp Rate (Sps)	samp_rate
	Ch0: Center Freq (Hz)	0
	Ch0: Gain Value	0
	Ch0: Gain Type	Absolute (dB)
l/ arc	Ch0: Antenna	
y,g,c	Ch0: Bandwidth (Hz)	0
iio c/blocks		
		Aceptar Cancelar Aplicar

Ilustración 3.8 - Bloque UHD: USRP Source

A ..1.4 UHD: USRP Sink

El bloque UHD: USRP Sink es el utilizado para enviar datos a través del USRP a la red inalámbrica. Los parámetros de configuración son los mismos utilizados en el bloque UHD: USRP Source.

B Properties:	UHD: USRP Sink	
General Advanced	Documentation	
ID	uhd_usrp_sink_0	
Input Type	Complex float32 ‡	
Wire Format	Automatic	
Stream args		
Stream channels	Π	UHD: USRP Sink Samp Rate (Sps): 32k
Device Address		Ch0: Center Freq (Hz): 0 Ch0: Gain Value: 0
Device Arguments		Length tag name:
Sync	don't sync 🗘	
Clock Rate (Hz)	Default	
Num Mboards	1	
Mb0: Clock Source	Default	
Mb0: Time Source	Default	
Mb0: Subdev Spec		
Num Channels	1	
Samp Rate (Sps)	samp_rate	
Ch0: Center Freq (Hz)	0	
Ch0: Gain Value	0	
Ch0: Gain Type	Absolute (dB)	
Ch0: Antenna		
Ch0: Bandwidth (Hz)	0	
Length tag name		
	Aceptar Cancelar Aplicar	

Ilustración 3.9 - Bloque UHD: USRP Sink

A ..1.5 QT GUI Sink

Como se mencionó en la descripción del bloque *Options*, hay dos herramientas para la generación de interfaces gráficas, WX y QT. Para este proyecto se utilizó QT, mediante el bloque QT *GUI Sink* el cual permite crear una ventana en donde mostrar la FFT de la señal, como también otros gráficos de utilidad, como lo son el waterfall y en el plano temporal. Si no se desea generar tanto gráfico, es posible desactivarlos para evitar su creación.

	😣 🖨 💷 Properties:	QT GUI Sink				
	General Advanced	Documentation				
	ID	qtgui_sink_x_0				
	Туре	Complex 💲				
	Name	""				
	FFT Size	1024				
	Window Type	Blackman-harris 🔻				
QT GUI Sink	Center Frequency (Hz)	0				
FFT Size: 1.024k Center Frequency (Hz): 0	Bandwidth (Hz)	samp_rate				
Bandwidth (Hz): 32k	Update Rate	10				
	Show RF Freq	No ‡				
	Plot Frequency	On v				
	Plot Waterfall	On 🔻				
	Plot Time	On v				
	Plot Const	On 💌				
	GUI Hint					
	Clicked freq variable	None				
	Show Msg Ports	No ‡				
dio/test123.grc"		Aceptar Cancelar Aplicar				

Ilustración 3.10 - Bloque QT GUI Sink

A ..1.6 Signal Source

Este bloque es el encargado de la generación de la señal dentro del software. Tiene como parámetros de entrada el tipo de señal a generar (seno, coseno, triangular, diente de sierra, constante o cuadrada), su frecuencia, amplitud y offset.

	😣 🖱 💷 Properties:	Signal Source			
	General Advanced	Documentation			
	ID	analog_sig_source_x_0			
	Output Type	Complex 🛟			
	Sample Rate	samp_rate			
	<u>Waveform</u>	Cosine 🔻			
	Frequency	1000			
Signal Source Sample Rate: 32k	Amplitude	1			
Waveform: Cosine	Offset	0			
Amplitude: 1					
Offset: 0					
	Source - out(0):	•			
	Port is not connect	ed.			
		Aceptar Cancelar Aplicar			
,					

Ilustración 3.11 - Bloque Signal Source

3.3.2 Windows 10 y MATLAB

Una vez conectado al computador, éste automáticamente reconocerá el dispositivo y pedirá instalar el driver UHD disponible para descargar en la página de Ettus, fabricante del USRP. Si bien el fabricante advierte que el driver sólo es soportado por Windows XP y 7, una pequeña búsqueda por los foros de soporte de Ettus nos informa que es posible forzar la instalación del driver sobre Windows 8/8.1 y Windows 10.

El driver UHD nos permite trabajar con una gran cantidad de aplicaciones que soporten comunicación con USRP, tales como MATLAB, GNU Radio, LabView, OpenBTS, entre otros

A. MATLAB

MATLAB es el lenguaje de alto nivel y entorno interactivo utilizado por millones de ingenieros y científicos alrededor del mundo. Permite la exploración y visualización de ideas, como también la colaboración entre disciplinas tales como procesamiento de señales e imágenes, comunicaciones, sistemas de control y finanzas computacionales.

Entre sus principales características destaca su lenguaje de programación propio (Lenguaje M). Este lenguaje puede ser interpretado y ejecutado tanto en el entorno interactivo como mediante scripts, o archivos .m. Además, este lenguaje permite operaciones con vectores y matrices, funciones, cálculo lambda y programación orientada a objetos, como también la creación de gráficos para la visualización de resultados, tanto en 2D como 3D.

HOME PLOTS APPS	EDITO	R PUBL	ISH VIEW					3 🖬 🏑 🛙	1 1 9 ¢	🔁 🕐 Search	Documentation	∡ م
New New Open D Compare Data W	Save Vorkspace	lew Variable Open Variable ❤ Clear Workspace ❤	Analyze Code	Simulink Library	O Preferences Layout FNUIRONMENT	? Help	Community					
	Documents +	MEGA + UdeC	▶ 2015-2 ▶ Matlab ▶									- Q
Current Folder	۲	Z Editor - C:\U	sers\racor\Documents\ME(GA\UdeC\201	5-2\Matlab\var_freq_m.n	n						▼ ×
🗋 Name 🔺		var_freq_m.	m 🗙 var_freq_ci.m >	var_freq.n	m × +							
Slopi Slopi Sim_var_freq.slx Sim_var_freq.slx Sim_var_freq.slx Test_m.x.m Test_m.x.m Test_m.x.slx.original Test_m.x.cic.exp Test_m.x.cic.exp Test_m.x.cic.exp Test_t.m.acc.mexw64 Test_t.m.acc.mexw64	•	1 % c. 2 % c. 3 4 % i 5 % s: 6 - if: 7 - 8 - 9 - else 10 - 11 - 12 - else Command Wind fx >>	<pre>lear all lc =0; j=0; in freq=2.4e9; i<10 sin freq=sin freq i=1+1; eif i==10 && j<10 sin freq=sin freq j=j+1; eif i==10 && j==10 low</pre>	+10e6; -10e6;								Ŷ
Workspace												
Name ▲ Value IB Bd 1.9260e+03 IB Bd [1.9260e+03,1.920e+ IB Blx [1.9760e+03,1.9540e+												
IIII A Ready												

Ilustración 3.12 - Interfaz inicial de MATLAB

Uno de los aspectos más fuertes de MATLAB, es Simulink, un ambiente aparte que permite la simulación de sistemas mediante el uso de bloques.

A ..1 Simulink

Simulink es un entorno de diagramas de bloque para la simulación multidominio y el diseño basado en modelos. Soporta la simulación, generación automática de código, y pruebas y verificación continua de sistemas embebidos.

Simulink ofrece un editor gráfico, bibliotecas de bloques personalizables, y solvers para modelar y simular sistemas dinámicos. Está integrado con MATLAB, permitiendo la incorporación de algoritmos de MATLAB en modelos y exportar resultados de simulación a MATLAB para futuros análisis.

En la Ilustración 3.13 se observa la interfaz gráfica de Simulink ejecutando un modelo de ejemplo que muestra gráficamente la diferencia de los distintos tipos de datos.

Ilustración 3.13 - Interfaz gráfica de Simulink

Para que MATLAB pueda comunicarse con el USRP, es necesaria la instalación de un agregado en MATLAB que permita el trabajo con hardware externo. Desde el mismo programa es posible obtener la lista con todos los agregados disponibles para trabajar con hardware, entre los que

se puede encontrar el soporte para dispositivos Android o iOS, procesadores ARM Cortex, Arduino y Rasberry Pi, incluso para la serie Mindstorms de juguetes Lego.

Si bien el soporte para hardware se encuentra disponible para todas las versiones de MATLAB, no es hasta la versión 2011a que se agrega el soporte para los equipos USRP, y en nuestro caso, el USRP B200/210 tiene soporte sólo a partir de la versión 2014b en adelante.

Ilustración 3.14 - Instalador de paquetes para soporte de hardware en MATLAB

Con el paquete de soporte para USRP ya instalado, no queda nada más que comenzar a utilizar el USRP con MATLAB. Los bloques importantes para trabajar en Simulink son el SDRu Receiver y SDRu Transmitter.

A ..1.1 SDRu Receiver

Este bloque posee por defecto dos salidas, *Data*, que es la salida de datos del USRP; y *Data Len*, que entrega valores 0 ó 1, dependiendo de si la salida del puerto *Data* es válida como información leída por el USRP. La Ilustración 3.15 muestra el cuadro de configuración del bloque, en donde es posible configurar todos los parámetros de operación, dando la posibilidad de establecerlos como entradas del bloque, y así ser determinados por una señal externa, obteniendo un mayor control del comportamiento del equipo.

🚹 Source Block Parame	ters: SDRu Recei	ver				×				
SDRu Receiver	SDRu Receiver									
Receive data from the Universal Software Radio Peripheral (USRP).							Diag <u>r</u> am	<u>S</u> imulation	<u>A</u> nalysis	<u>C</u> ode
Devier)	- ¢					
Device										
Platform:	B200				•					
USRP serial number:					~					
Control										
	Source	Desired Value			Device Value					
Center frequency (Hz)	: Dialog	• 2.45e9								
LO offset (Hz):	Dialog	• 0								
Gain (dB):	Dialog	32								
Master clock rate (Hz)	:	32e6						SDR	u D	ata 🕨
Decimation:	Dialog	512						Neder	Data L	.en >
Outputs							*	SDRu Re	ceiver	
Enable overrun out	put port									
Sample time:	1									
Output data type:	int16				•					
Frame length:	362									
Buffering							-			100
Enable burst mode										
						~				
	0	КС	ancel	Help	Apply					

Ilustración 3.15 - Bloque SDRu Receiver

También se observa la existencia de un puerto de salida *Overrun*, el cual entrega valores 0 ó 1, dependiendo si los valores entregados por el USRP son en tiempo real o se está produciendo una pérdida de información ya sea por falta de ancho de banda al momento de transmitir desde el USRP, o por falta de computo en el procesador.

A ..1.2 SDRu Trasnmitter

Muy similar al bloque receptor del USRP, con la misma pantalla de configuración capaz de obtener los parámetros de operación de señales externas. Al ser un transmisor, éste debe poseer la entrada de datos, la cual debe tener el mismo formato que la salida de datos del receptor, es decir, un vector de valores a enviar. Toda la pantalla de configuración se encuentra en la Ilustración 3.16.

5	Ê	Þ	È	Ð	?	Sea
				_		

×

📔 Sink Block Parameters: SDRu Transmitter							-	-			0		
SDRu Transmitter							Ē		9 ¢	0	?	Searc	:h
Send data to the Univer	sal Software Ra	adio Perip	heral (USRP).							_			
Device										2		- (i
Platform: E	3200			•									
USRP serial number:				~									
Control													
	Source	Desired Value		Device Value		ſ						_	
Center frequency (Hz):	Dialog 🔹 🔻	2.45e9]			Data		SDR	u ittor			
LO offset (Hz):	Dialog 🔹 🔻	0]		1			mansm	illei			
Gain (dB):	Dialog 🔹	8]			♥	SD	Ru Tran	smitter			
Master clock rate (Hz):		32e6]									
Interpolation:	Dialog 🔹	512]									
Outputs					1								
Enable underrun out	put port												
Buffering													
Enable burst mode													
Hardware					~								
	ОК С	ancel	Help	Apply	•							0	d

Ilustración 3.16 - Bloque SDRu Transmitter

Caracterización 3.4.

Como se pudo apreciar en los capítulos anteriores, al momento de utilizar el software para operar el USRP, éste permite la modificación de la ganancia del equipo ingresando un valor numérico, que según la ventana de control, es en dB, pero en la práctica no es así. Es por esto que se debe caracterizar el equipo, para saber qué valor corresponde a qué potencia en dBm, y así poder emitir a cierta potencia sin tener que estar adivinando. Según el fabricante [Anexo A.1], el USRP B200 posee una potencia de salida máxima de al menos 10dBm, pero no da mayores características como curvas de ganancia u alguna otra información por lo que se procede a realizar la caracterización conectando el USRP directamente al analizador de espectro mediante un cable RG58 de 50 Ω y los conectores correspondientes, evitando así las pérdidas por propagación, y obteniendo un valor más acertado.

Los resultados completos de la prueba se pueden ver en la tabla Tabla B.1 del Anexo B, y la Ilustración 3.17 muestra el gráfico resultante de dicha tabla. Como se puede apreciar, el USRP posee una respuesta prácticamente lineal en todo el rango de potencias admisibles por Matlab [1,90].

Ilustración 3.17 - Caracterización de potencia del USRP

3.5. Resumen

En este capítulo se vio el tema de la instalación del equipo USRP, desde la creación de la carcasa contenedora hasta su comunicación con el PC y el comportamiento del equipo.

Para la creación de la carcasa, se modificó un modelo 3D obtenido de internet para luego, mediante una impresora 3D, crear la carcasa para poder manipular seguramente el equipo sin un posible daño a los circuitos.

También se vio cómo realizar la instalación del software y drivers necesarios para utilizar el USRP en el PC, ya sea en Linux o el Windows.

4.1. Introducción

En este capítulo de presenta todo lo necesario para lograr crear señales a través del USRP, comenzando con el diseño de la señal para obtener una potencia deseada, hasta la configuración del software a usar para la correcta emisión de dicha señal, ya sea en GNU Radio o en Simulink.

4.2. Diseño

La interferencia de una señal con respecto a una señal interferida es relacionada mediante la ecuación (2.9). Para que una señal sea inestable debido a una interferencia, produciendo una probabilidad de error de ¹/₂ en la transmisión de datos, es necesario que se cumpla lo estipulado por *Sridhara* [20]:

$SIR_{db} < 12 \ dBm$.		(4.1)

Por otra parte, se tiene que las especificaciones técnicas del Linksys WRT54G indican una potencia de 15 dBm, pero este valor es la potencia de transmisión del equipo inalámbrico, potencia que se pierde a medida que se aumenta la distancia según la expresión de FSPL (2.15).

Si se considera una distancia de 2 metros, se obtiene un $FSPL_{db} = 46,075 \ dB$. Según la teoría de radioenlace explicada en la sección 2 del capítulo 2, el margen de sistema es la suma de la ganancia de Tx considerando emisor, antena y pérdida por cables y conectores, menos el FSPL, más ganancia asociada a Rx menos las pérdidas correspondientes. Si se considera sólo Tx y FSPL, se obtiene un margen de $-31,075 \ dBm$.

Teniendo esto en cuenta, y considerando (4.1), se debe generar una señal que a dos metros de distancia posea una potencia en dBm de:

$$-31,075 \, dBm - P_{interferencia,dBm} = SIR_{db} < 12 \, dBm \,, \tag{4.2}$$

$$P_{interferencia,dBm} > -43,075 \ dBm \ . \tag{4.3}$$

A esta potencia estimada, aun es necesario considerar las ganancias y pérdidas asociadas al lado Rx, por lo que al momento de realizar las mediciones, estos valores serán diferentes dependiendo de la antena, conectores, cables y equipo a utilizar.

4.3. GNU Radio

Utilizando el programa GNU Radio Companion y los bloques anteriormente descritos, se realizó un programa capaz de generar una señal sinusoidal y emitirla mediante el USRP, mostrado en la Ilustración 4.1. Dicha señal fue visualizada utilizando un analizador de espectro Hameg Instruments HMS3010, conectado a una antena Yagi unidireccional apuntando directamente (90°) a la antena del USRP. Con el mismo código en GRC se fue variando la amplitud y frecuencia de la señal para observar los distintos cambios producidos.

La Ilustración 4.2 muestra la señal generada mediante GRC vista con el analizador de espectro. Esta medición se realizó a 2.5 metros del USRP. Se observa que el ancho de banda de esta señal es de 3.4 MHz y una potencia de -35 dBm.

Ilustración 4.1 - Esquema de generación de señal sinusoidal

Ilustración 4.2 – Señal generada por el USRP

4.4. Simulink

Muy similar a GNU Radio Companion, en Simulink también se trabaja con diagrama de bloques, pero más orientado a las matemáticas, por lo que el trabajo en Simulink será levemente distinto.

Se presentan dos configuraciones en Simulink, una para recibir la señal del USRP, y otra para emitir, ambas mostradas en la Ilustración 4.3. Se observa tanto en el sistema Rx como en el Tx que se utilizó una configuración con parámetros de señales externas. Esto permite poder modificar a gusto los parámetros durante la ejecución del modelo y ver los cambios instantáneamente, sin tener que detener el programa, cambiar el valor, y volver a ejecutarlo.

En la Ilustración 4.4 se observa el uso del sistema Rx, en donde, mediante el uso del bloque *Spectrum Analyser* en la Ilustración 4.3(b), podemos ver "ruido ambiente" del laboratorio a una frecuencia de 2.446 GHz. Además se observa el uso de sliders para definir la frecuencia y ganancia de recepción, y del gráfico de Overrun, el cual indica que el USRP está operando saturadamente, por lo que no todos los datos son leídos en tiempo real.

Ilustración 4.4 - Información capturada por el USRP

Se propone una actualización de la configuración ya mostrada en la Ilustración 4.3 (c) para la generación de señales en donde la frecuencia de generación varíe en el tiempo en forma de escalera ascendente y descendente entre el rango de la banda ISM 2.4GHz, tal como se muestra en la Ilustración 4.5

Ilustración 4.5 - Variación de frecuencia en el tiempo

Dicha variación en la frecuencia es creada por el conjunto de bloques mostrado en la Ilustración 4.6, en donde se observa el uso de bloques condicionales If que según las condiciones de 4 entradas, realiza la acción descrita por el subsistema 1 ó 2, para aumentar o disminuir la frecuencia.

Ilustración 4.6 – Bloques simulink

(a) Sistema variador de frecuencia. (b) Acción if (aumentar). (c) Acción elseif (disminuir).

Se utiliza un bloque Merge para unir las señales, y es posible, ya que el bloque if sólo permite la ejecución de un sistema, por lo que nunca habrá conflictos de señal al unir ambas salidas. Luego la salida del Merge se conecta a la entrada de frecuencia del bloque USRP Tx y está listo para ser utilizado.

La lógica para determinar si aumentar la frecuencia o disminuirla es la siguiente: Si la frecuencia va aumentando (bloque U > U/z de Simulink), o alcanzó el límite inferior (== $2.4x10^9$), se realiza la acción para aumentar frecuencia (Ilustración 4.6 (b)). En cambio, si la frecuencia va disminuyendo (bloque U < U/z de Simulink), o alcanzó el límite superior (== $2.5x10^9$), se realiza la acción para disminuir (Ilustración 4.6 (c)).

Una última propuesta para la utilización del USRP, es la de retransmitir la señal capturada, utilizando el bloque SDRu Receiver en conjunto con el SDRu Transmitter. Se observa que ambos utilizan la misma frecuencia, esto porque el modelo del USRO, B200 posee un sólo canal de operación, por lo que sólo se puede enviar y recibir en la misma frecuencia. Las ganancias de emisión y recepción son independientes, por lo que cada una tiene su slider propio. La señal recibida se multiplica por una fuente binaria para hacer más aleatorios los datos emitidos.

Ilustración 4.7 - Configuración para retransmisión con el USRP

4.5. Resumen

Este capítulo explica los pasos a realizar para la generación de señales con el USRP, comenzando con el diseño, y la instalación de drivers y software necesario en los distintos sistemas operativos.

Para el diseño de la señal, es necesario considerar el SIR que se desea generar, y las pérdidas de espacio libre para así saber qué valor de ganancia generar con el equipo.

Si se desea utilizar GNU Radio en Linux, se explica cómo utilizar el software y una pequeña descripción de los bloques más importantes a la hora de trabajar con el USRP. De igual manera se explica para el trabajo mediante Simulink en Matlab.

Capítulo 5. Comprobación de interferencia

5.1. Introducción

Las mediciones de SNR y SIR se realizan a través del analizador de espectro HAMEG HMS3010, en conjunto con una antena Yagi de 12 dBi, apuntando directamente a la antena de router y posteriormente apuntando a la antena del USRP. De esta forma fue posible medir la potencia de las señales a diversas distancias y calcular los indicadores de ruido e interferencia.

Para las mediciones del throughput se utilizaron dos computadores corriendo el software jPerf en el sistema operativo Ubuntu.

5.2. SNR y SIR

5.2.1 Pruebas con frecuencia fija

Como primera medición se quiere ver el comportamiento del USRP y el router a medida que la distancia aumenta, y realizar los cálculos necesarios para obtener el SNR, SIR y SINR.

La Tabla 5.1 resume las mediciones obtenidas en el laboratorio de Antenas y Microondas y los resultados de los indicadores calculados.

Distancia	Potencia Router	Potencia USRP	Ruido	SNR	SIR	SINR
[m]	[dBm]	[dBm]	[dBm]	[dBm]	[dBm]	[dBm]
1	-13.22	-25.54	-69.9	56.68	12.32	82.22
1.5	-16.59	-29.76	-69.9	53.31	13.17	83.07
2	-19.55	-32.66	-69.9	50.35	13.11	83.01
2.5	-21.8	-34.2	-69.9	48.1	12.4	82.3
3	-22.42	-34.81	-69.9	47.48	12.39	82.29
3.5	-23.57	-36.51	-69.9	46.33	12.94	82.84
4	-26.71	-38.18	-69.9	43.19	11.47	81.37
4.5	-27.15	-40.6	-69.9	42.75	13.45	83.35
5	-28.5	-41.1	-69.9	41.4	12.6	82.5
5.5	-31.73	-41.7	-69.9	38.17	9.97	79.87
6	-31.86	-42.79	-69.9	38.04	10.93	80.83

Tabla 5.1 – Resultados de mediciones

El ruido es intrínseco del analizador de espectro, producido por los conectores de la antena y características internas de éste. Es por esta razón que es constante, independiente a la distancia de medición. Además es posible notar que a medida que se aleja de los transmisores tanto del USRP como del Router, la potencia disminuye en cantidades similares. Esto se debe a que ambos equipos poseen antenas omnidireccionales, por lo que el espectro de radiación es de forma equivalente, siendo la única diferencia la ganancia de cada antena.

Ilustración 5.1 - SIR vs distancia

La Ilustración 5.1 muestra el valor del SIR a diferentes distancias. Se observa que el valor obtenido es cercano a 12, obteniendo un valor máximo de 13.45 dBm a los 4.5 metros de distancia. Los resultados están dentro de lo esperado, sin embargo es necesario enfatizar que esta medición no es lineal, ya que el sondeo de la potencia de las ondas electromagnéticas no es trivial y dependen de factores tales como: el tipo de antena para medir y transmitir, distribución espacial física del ambiente u otras posibles señales que interfieren en la medición.

Se midió la comunicación entre un computador y el router al que estaba conectado en el momento que la señal de interferencia se encontraba fija sobre la frecuencia del router. Para esto se fijó la frecuencia de la señal generada por el USRP en 2.457 GHz con amplitud cero y se fue aumentando, mientras en el computador se realizaba el comando *ping* para medir el tiempo que demora un paquete en llegar a su destino. Las mediciones de potencia se realizan a 4 metros de

distancia y se calcula el SIR en función de la potencia generada. Los resultados se muestran en la Tabla 5.2.

Potencia USRP [dBm]	Ping máx [ms]	SIR [dBm]
-66,8	2,08	41,09
-65,58	4,39	39,87
-64,75	5,64	39,04
-63,17	12,7	37,46
-61,47	39,2	35,76
-60,69	42	34,98
-59,23	47	33,52
-58,72	73,5	33,01
-58,17	530	32,46
-57,85	868	32,14
-57,47	-	31,76

Tabla 5.2 – Resultados de mediciones

Los resultados de la Tabla 5.2 sugieren que si la señal de interferencia permanece exactamente a la misma frecuencia de transmisión del router se puede realizar una interferencia o una interrupción total en la comunicación con tan sólo una señal de -57.47 dBm. Con esta potencia fue posible saturar la conexión WLAN, dando como resultado de la prueba de *ping* un total del 100% de paquetes de datos perdidos, perdiendo la conexión total de todos los dispositivos con el router. Antes de lograr una interrupción total en la comunicación, ésta se va degradando y dificultando cada vez más en establecerse, debido a que, como la potencia de la interferencia va aumentando, cada vez ocupa más el canal, por lo que el equipo que intenta comunicarse debe esperar un tiempo mayor para lograr establecer la comunicación. Es por esto que el ping aumenta junto con la potencia de la interferencia, hasta que ya no es posible esperar más a lograr una comunicación.

5.2.2 Pruebas con frecuencia variable

Las pruebas de interferencia realizadas consistieron en generar una señal sinusoidal variable en frecuencia, en todo el rango de los canales de transmisión WiFi, entre 2.401 GHz hasta 2.483 GHz. Para ello se realizaron distintas pruebas, en donde cada determinada cantidad de tiempo la señal aumentaba su frecuencia en 1 MHz, logrando así un barrido completo dentro de los 14 canales de transmisión de los router WiFi en 2.4 GHz. Para comprobar la interferencia se realizó la comunicación entre dos notebook, conectados entre sí por medio del router Linksys mediante WiFi. Para ello se

Paso [s]	Ping Min [s]	Ping Prom [s]	Ping Max [s]	Packet loss [%]
0.01	1.663	5.079	86.714	0
0.03	1.667	6.114	53.43	0
0.05	1.763	8.453	120.246	0
0.07	1.734	14.892	203.286	0
0.1	1.738	12.152	191.951	0
0.2	1.676	75.726	1540.661	1
0.3	1.698	38.562	539.642	0
0.4	1.703	23.984	393.437	2
0.5	1.768	42.989	380.839	5
0.6	1.704	63.418	1122.179	1
0.7	1.729	96.912	1582.05	3
0.8	1.502	214.886	3084.585	4
0.9	1.744	172.548	2134.263	7
1	1.675	210.971	2476.478	5
1.3	1.677	170.087	1058.045	29
1.4	1.701	265.26	2432.326	12
1.5	1.718	★ 152.552	6312.46	36

prueba el tiempo de respuesta de un computador a otro y se revisa la pérdida de paquetes de datos.

Paso [s]	Ping Min [s]	Ping Prom [s]	Ping Max [s]	Packet loss [%]
0.01	1.663	5.079	86.714	0
0.03	1.667	6.114	53.43	0
0.05	1.763	8.453	120.246	0
0.07	1.734	14.892	203.286	0
0.1	1.738	12.152	191.951	0
0.2	1.676	75.726	1540.661	1
0.3	1.698	38.562	539.642	0
0.4	1.703	23.984	393.437	2
0.5	1.768	42.989	380.839	5
0.6	1.704	63.418	1122.179	1
0.7	1.729	96.912	1582.05	3
0.8	1.502	214.886	3084.585	4
0.9	1.744	172.548	2134.263	7
1	1.675	210.971	2476.478	5
1.3	1.677	170.087	1058.045	29
1.4	1.701	265.26	2432.326	12
1.5	1.718	152.552	6312.46	36

 Tabla 5.3 - Resultados interferencia con frecuencia variable

Los resultados resumidos en la Tabla 5.3 muestran el efecto en la comunicación cuando se recorría el ancho de banda a distintas velocidades, observando que a medida que la señal del USRP permanecía más tiempo en el canal de transmisión, el tiempo de respuesta entre los dos equipos que se comunicaban era mayor y además aumentaba la pérdida de paquetes.

Cuando se realizó el barrido en frecuencia, se observó que la transmisión del router desaparecía del analizador de espectro cuando la señal de interferencia generada por el USRP entraba en su canal de transmisión. Esto demuestra el protocolo que utiliza el estándar 802.11 para acceder al medio, como se explica en el Capítulo 2. Si existe otra señal utilizando el canal de comunicación, el equipo esperará un tiempo determinado para reintentar, hasta que el medio se encuentre desocupado para poder transmitir.

La Ilustración 5.2 muestra la captura del analizador de espectro, en donde se pueden distinguir dos señales: La primera correspondiente al USRP ubicada en 2.413 GHz, una magnitud de -50 dBm y un ancho de banda de 2 MHz. La segunda señal correspondiente a la transmisión de datos del router Linksys, ubicada en la frecuencia 2.457 GHz correspondiente al canal 10, con una magnitud máxima de -25 dBm. Ésta última es una ráfaga de pulsos en cercanías a dicha frecuencia, por lo que posee un gran ancho de banda, aproximadamente 20 MHz en la zona de mayor potencia, para luego aumentar a 45 MHz con menor potencia.

Si se comienza a variar la frecuencia de la onda sinusoidal enviada por el USRP, esta señal comienza a desplazarse en el espectro. Si la señal de interferencia es situada justo en el centro de la señal emitida por el router (2.457 GHz), la señal a interferir se ve completamente interrumpida, desapareciendo incluso del analizador de espectro, como es ilustrado en la Ilustración 5.3.

Ilustración 5.2 - Señal de interferencia y señal a Interferir

Ilustración 5.3 – Señal de interferencia sobre la frecuencia de la señal a interferir

Finalmente, es posible afirmar que si se realiza un barrido de frecuencia por todo el espectro de la banda ISM 2.4 GHz, existen menos posibilidades de saturar de esta manera el canal, es decir, la imposibilidad del emisor para comunicarse con el receptor depende del tiempo de permanencia de la señal de interferencia sobre la señal a interferir.

5.3. Throughput

Como ya se explicó en la sección 2.2, el throughput representa el ancho de banda real que posee una conexión, en este caso, WiFi. Para la realización de las pruebas se utilizaron dos computadores, cada uno corriendo Ubuntu 14.04.3 LTS, en los cuales se instaló iPerf y jPerf para ser usados como servidor y cliente. Se prefirió el uso de Linux por sobre Windows porque en ejercicios previos utilizando dos computadores, uno con Linux y otro con Windows, ambos con tarjetas de red capaces de operar a velocidades de 1Gbps conectados a través de un switch gigabit y cables Cat 5e, se observó que los resultados obtenidos con Linux eran más cercanos a las velocidades esperadas según la teoría.

La Ilustración 5.4 explica la ubicación de los equipos al momento de realizar las mediciones inalámbricas: Se posee un equipo portátil conectado mediante WiFi 802.11n a un router inalámbrico

Level One WRB-6020 que se encentra a un metro de distancia, pero con una muralla entre ellos. Al router se conecta un PC de escritorio mediante un cable UTP Cat5e creando un enlace Fast Ethernet, y finalmente, es el PC de escritorio el que controla el USRP ubicado a un costado del computador portátil mediante una conexión USB 3.0.

Ilustración 5.4 - Diagrama de ubicación utilizado para mediciones

Una vez realizada la instalación de los equipos, se configura el programa para realizar las mediciones. Una vez instalado todo lo necesario (iPerf y Java), se ejecuta jPerf, donde se abre la ventana mostrada en la Ilustración 5.5. En el equipo que será servidor (notebook) se selecciona el modo Server y protocolo UDP, ya que éste envía los paquetes sin importar que el destinatario no pueda recibirlos, por ejemplo, una interferencia interrumpiendo la conexión. A diferencia de TCP, que establece una conexión entre los equipos antes de enviar algún paquete, asegurando así que el paquete llegue a destino, y que no llegue dañado. Además, el protocolo TCP utiliza control de flujo para evitar que el emisor envíe paquetes más rápido de lo que el receptor puede recibirlos. Por las características del experimento, el protocolo UDP es el más adecuado al momento de medir el ancho de banda.

En el lado del computador que hará de cliente, se selecciona el modo Client, y se ingresa la dirección IP del computador que hace de servidor. En Aplication layer options se puede escoger la duración en tiempo o tamaño de la prueba, la unidad de medición, el tiempo de actualización, y si se quieren enviar y recibir paquetes simultáneamente o secuencialmente. Para el experimento se optó por una duración de 30 segundos y que primero envíe paquetes hacia el servidor, y luego reciba desde el servidor. Finalmente se selecciona que el cliente igual opere con el protocolo UDP, y, a diferencia del servidor, acá es necesario escoger un ancho de banda máximo a transmitir.

Ilustración 5.5 - Ventana de jPerf

Como en todo experimento científico, es necesario un punto de comparación, por lo que se realiza una primera prueba sin el USRP en funcionamiento, en donde se obtiene un ancho de banda y ping promedio de 89,79 Mbpsy 0,245 ms respectivamente. El detalle de la velocidad y ping se muestran en la Tabla 5.4 e Ilustración 5.6.

Ilustración 5.6 - Troughput y ping sin interferencia

Tiempo	Velocidad	Ping	Tiempo	Velocidad	Ping	Tiempo	Velocidad	Ping
[s]	[Kbps]	[ms]	[s] 🗸	[Kbps]	[ms]	[s]	[Kbps]	[ms]
1	91469	0,199	11	<mark>95715</mark>	0 <mark>,166</mark>	21	95703	0,154
2	81603	0,289	12	<mark>95691</mark>	0 <mark>,209</mark>	22	91916	0,555
3	93398	0,148	1 <mark>3</mark>	<mark>95621</mark>	0 <mark>,143</mark>	23	87588	0,248
4	95703	0,205	1 <mark>4</mark>	<mark>89376</mark>	<mark>0</mark> ,271	24	95715	0,213
5	95703	0,207	15	85566	0,298	25	94903	0,248
6	82014	0,425	16	95726	0,179	26	87353	0,207
7	95703	0,15	17	95703	0,158	27	75993	0,336
8	95691	0,243	18	91469	0,381	28	95691	0,161
9	95703	0,263	19	83955	0,195	29	95691	0,374
10	90752	0,345	20	95703	0,203	30	95703	0,173

Tabla 5.4 - Resultados sin uso de USRP

5.3.1 Pruebas con frecuencia fija

En el transcurso del semestre, se observó que el USRP no es capaz de interrumpir una comunicación cuando se utiliza una ganancia baja, por lo que se decide comenzar a hacer las mediciones con una ganancia al 30% de lo permitido por el USRP. La Tabla C.1 muestra los resultados de dicha prueba, en donde se observa una leve disminución en el rendimiento, bajando a un enlace de 87,35 Mbps y aumentando el ping a 0,299 ms en promedio, lo que representa una disminución de 2,72% en la velocidad y un aumento de 22,46% del ping.

Además, se realizan pruebas a un 40, 50, 60, 70 y 80 por ciento de la ganancia, en donde las Tabla C.1 y Tabla C.2 (Anexo C) muestran los resultados. Además, la Ilustración 5.7 muestra un gráfico comparativo de las 6 mediciones y sus resultados finales. Como se puede observar, los resultados no son los esperados, ya que el throughput no disminuye considerablemente al aumentar la potencia de transmisión. Una teoría respecto a estos resultados es la utilización de un router operando bajo el estándar 802.11n, el cual posee varias mejoras, entre las cuales se encuentra el uso de múltiples antenas para una mejor transmisión de datos en entornos ruidosos. Para comprobar esta teoría, se repiten los experimentos, pero ahora se configura el router para operar bajo 802.11b/g. Los resultados se muestran en las Tabla C.3 y Tabla C.4, y se resumen en la Ilustración 5.8. Como se puede apreciar, en el estándar 802.11b/g si se aprecia una disminución del throughput a medida que se aumenta la potencia del USRP, además, se observa un aumento considerable del ping, llegando hasta valores máximos de 317ms al 70% de la potencia máxima del USRP. Se realizaron mediciones hasta un 80%, ya que con el 90% y 100% la comunicación se cortaba completamente.

Ilustración 5.7 - Resultados de medición del throughput y ping utilizando router modo n.

(a) Comparación sin USRP con 30% y 40% de potencia. (b) Comparación sin USRP con 50% y 60% de potencia. (c) Comparación sin USRP con 70% y 80% de potencia.

Ilustración 5.8 - Resultados de medición del throughput y ping utilizando router modo b/g.

(a) Comparación sin USRP con 30% y 40% de potencia. (b) Comparación sin USRP con 50% y 60% de potencia. (c) Comparación sin USRP con 70% y 80% de potencia.

5.3.2 Pruebas con frecuencia variable

Para la realización de esta prueba, se define una ganancia fija en 90, correspondiente a 10 dBm, y, al igual que en el caso de las mediciones de SNR y SIR, se comienza a variar el tiempo que demora la señal del USRP en recorrer el espectro de la banda ISB de 2.4GHz, comenzando en 2.4GHz y terminando en 2.5GHz, con un paso de 1MHz. Utilizando los mismos equipos con la misma distribución que en las mediciones pasadas, se procede a hacer los cálculos del Throughput y ping utilizando jPerf. Los resultados se muestran en la Tabla C.5, y en la Ilustración 5.9.

Ilustración 5.9 - Resultados de medición del throughput y ping utilizando router modo b/g y USRP con frecuencia variable.

(a) Comparación sin variación de frecuencia con USRP recorriendo espectro en 10 y 15 segundos. (b) Comparación sin variación de frecuencia con USRP recorriendo espectro en 20 y 25 segundos.

5.4. Pruebas en canal de Laboratorio de Control

Antes de realizar cualquier medición en el laboratorio, es necesario efectuar una familiarización con los equipos y verificar su correcto funcionamiento. Gracias a la memoria de Nolbert Cuevas [21], se comprendió el funcionamiento del sensor con el transmisor inalámbrico y el Gateway WirelessHART. La primera medición realizada en el canal mostró dos problemas que impedían la implementación de un correcto control utilizando dicho sensor. Primero, el valor medido del sensor cableado, y segundo, la medición mostraba un comportamiento errático, dando saltos aleatorios entre el valor real del nivel y el límite de sobrenivel en 111%. Primero se recalibra el sensor para corregir la diferencia del 5% con el sensor cableado, pero el comportamiento errático permanecía. Un par de lecturas al manual de instalación del sensor muestra el problema. Tal como advierte la llustración 5.10, la señal del sensor posee un ángulo de dispersión α , que en el modelo instalado en el laboratorio, corresponde a un ángulo de 11°. Un cálculo simple de geometría muestra que la altura de instalación rea mayor a la posor del sensor, siendo ese el motivo por el que, a bajo nivel de agua, el sensor enviara alarma de nivel alto.

Corregidos ambos problemas, el sensor se encuentra listo para la realización de las pruebas de interferencia. Como se calibró el sensor para obtener una medición lo más similar posible al sensor alámbrico, es factible la utilización de éste mismo como punto de comparación al aplicar interferencia en la comunicación del WirelessHART.

Para las mediciones de interferencia en el transmisor inalámbrico, se decidió medir la respuesta ante entrada escalón en lazo cerrado, calculando el sobrepaso que tenga el nivel, como también el tiempo que tarda en llegar al set point indicado. Las medidas se realizaron utilizando el control PI diseñado por el alumno Omar Castro [22] en su informe de Memoria de Título.

La primera prueba a realizar es la de lazo cerrado sin interferencia para obtener un punto de comparación. Todas las pruebas se realizan bajo las mismas condiciones: canal vacío, compuerta 1 al 0,5%, aplicar escalón de 30% al set point de nivel y medir tiempo. Los parámetros del controlador son los siguientes: $K_c = 1, T_i = 49$. El USRP se configura con su máxima ganancia de transmisión y con la frecuencia de la interferencia moviéndose dentro del rango de frecuencias en que opera el WirelessHART, las mismas utilizadas por el estándar 802.11 en la banda de 2.4 GHz. La Ilustración 5.11 muestra lo obtenido en la primera prueba, y lo que será el punto de comparación con las siguientes experiencias. El sensor de nivel cableado sólo es utilizado como referencia en el gráfico, sin formar parte del control.

Ilustración 5.11 - Lazo cerrado sin interferencia

Tabla 5.5 - Valores obtenidos sin interferencia

	Tiempo
Retardo	47 <i>s</i>
Constante de tiempo	55,5 <i>s</i>
Sobrepaso	7%
Tiempo asentamiento	183 s

De los datos obtenidos es posible calcular los tiempos antes establecidos, los cuales se resumen en la Tabla 5.5.

Como se dijo anteriormente, la interferencia se implementa con una señal a máxima ganancia del USRP recorriendo el ancho de banda en la que opera el transmisor inalámbrico. Esto principalmente por el modo de operación del WirelessHART, el cual escanea el medio buscando interferencias y cambia el canal de operación, siguiendo la vía con menos obstrucciones posible. Es por esto que se definen diferentes valores de velocidad para recorrer el espectro, entre 2.45GHz y 2.48GHz. El USRP se ubica a un metro del Gateway, por debajo de la línea de visión entre el Gateway y el transmisor.

La Ilustración 5.12 muestra las 4 mediciones realizadas, cada una a un tiempo de barrido de 1,5, 3, 4.5 y 6 segundos respectivamente, y la Tabla 5.6 los valores de los tiempos medidos.

Ilustración 5.12 - Lazo cerrado con interferencia

Como se puede ver en la Ilustración 5.12, el sobrepaso va disminuyendo a medida que se aumenta el tiempo de recorrido de la interferencia. Esta disminución del sobrepaso va de la mano con el aumento de la constante de tiempo, pero a medida que aumentamos el tiempo de recorrido, el sobrepaso y el tiempo de asentamiento cada vez son más similares a la prueba sin interferencia, por lo que es posible deducir que el WirelessHART posee un muy buen tiempo de respuesta ante interferencias en la comunicación.

Tiempo recorrido	1,5 s	3 s	4,5 s	6 s
Retardo	61,5 <i>s</i>	57 <i>s</i>	52,5 <i>s</i>	47 s
Constante de tiempo	32 <i>s</i>	40,5 <i>s</i>	40,5 <i>s</i>	56 <i>s</i>
Sobrepaso	24,63%	14,9%	10,3%	6,5%
Tiempo asentamiento	246 <i>s</i>	209 s	196,5 s	191 s

Tabla 5.6 - Valores obtenidos con interferencia

Como prueba experimental, se ubica el USRP en medio de la línea directa entre el Gateway y el transmisor, a pocos centímetros de Gateway, y luego a pocos centímetros del transmisor. Ambas pruebas resultaron sin ningún cambio en el comportamiento del lazo cerrado.

Otro experimento que si mostró resultados favorables, fue la de disminuir la potencia de transmisión del Gateway, dejándolo en 0 dBm, manteniendo los 10 dBm del USRP.

Ilustración 5.13 - Interferencia de gateway con menor potencia

Como se puede observar en la Ilustración 5.13, una gran diferencia ocurre al momento de interferir con una señal de mayor potencia que la del sensor. Una posible explicación para esto es que, debido a la latencia introducida por el USRP, al controlador le toma unos ciclos extras el recibir la información, realizando un control menos eficiente. También el hecho que la potencia de la interferencia sea mayor a la señal de WirelessHART hace que éste tenga mayor dificultad a la hora de encontrar un espacio libre en alguna frecuencia. Los tiempos medidos se resumen en la Tabla 5.7, donde ya no queda duda que al disminuir la potencia de transmisión del Gateway, se produce una baja considerable en el rendimiento.

Tiempo recorrido	Sin interferencia	4,5 s	4,5 s y 0 dBm
Retardo	47 <i>s</i>	52,5 <i>s</i>	49,5 <i>s</i>
Constante de tiempo	55,5 <i>s</i>	40,5 <i>s</i>	40
Sobrepaso	7%	10,3%	28,46%
Tiempo asentamiento	183 <i>s</i>	196,5 s	257,5 <i>s</i>
	*	<u>د</u>	*
5.5. Resumen		-	

Tabla 5.7 - Comparación resultados sin interferencia, recorrido de 4.5s y Gateway a 0dBm

J.J. Resumen

En este capítulo se vieron todos los resultados de las pruebas anteriormente descritas, desde SIR y SNR, hasta Throughput y pruebas de respuesta en el control del microcanal.

En el ámbito del SIR y SNR, se vio que el USRP es capaz de generar una señal a determinada frecuencia y potencia para aumentar el ruido de una comunicación, incluso hasta interferirla completamente.

Lo mismo se vio con el throughput, en donde las pruebas mostraron los diferentes comportamientos que posee una red WiFi a distintos niveles de interferencia, y cómo varía según el estándar utilizado.

Finalmente se realiza una prueba en el laboratorio de control, realizando un control PI sobre el nivel del microcanal mientras se interfiere la señal, en donde se observa un comportamiento más lento en presencia de interferencia.

6.1. Sumario

Este trabajo de Memoria de Título comenzó con la asignatura de Proyecto Electrónico en conjunto con Proyecto de Memoria de Título. El tema del proyecto fue implementar un equipo que fuera capaz de generar una interferencia repetible en la frecuencia y potencia deseada. Para esto se decidió el uso de un USRP, familia de productos de la empresa Ettus Research, perteneciente a la National Instrument. El fin del proyecto era la generación de interferencia a la comunicación del sensor de nivel Prosonic FMU40, el cual se conecta inalámbricamente al PLC mediante un transmisor WirelessHART SWA70 y un Gateway SWG70.

Los alcances del proyecto son el uso del USRP, específicamente el modelo B200, con antenas de 3 dBi provistas por el mismo fabricante, operando en la banda de 2.4GHz y utilizando GNU Radio y Matlab para utilizar el equipo.

Se comenzó por la revisión bibliográfica, para así tener información suficiente sobre el modo de operación y las capacidades del USRP seleccionado. También se buscó bibliografía correspondiente a todo lo que es redes inalámbricas y su interferencia, especialmente en la banda ISM de 2.4 GHz, que es la frecuencia en la que opera el WirelessHART.

Como el modelo de USRP que se adquirió venía sin una carcasa protectora, antes de comenzar a utilizarlo fue necesario buscar algún método para la creación de dicha carcasa. Así se decidió buscar un modelo 3D y enviarlo al Laboratorio de Innovación Tridimensional del Centro de Rehabilitación Oral Avanzada e Implantología de la Universidad de Concepción, en donde nos permitieron utilizar una de sus impresoras 3D y así obtener nuestra carcasa. Luego se procedió a realizar la instalación de los programas y drivers necesarios para la comunicación del USRP con el PC, ya sea para usar GNU Radio en Linux, o Matlab en Linux o Windows.

Luego se explica el procedimiento para recibir y transmitir señales mediante el equipo y los diferentes softwares utilizados, comenzando con el diseño de la señal transmitida, y la ganancia estimada necesaria para cierto valor de SIR deseado

Finalmente se realizan las pruebas necesarias para comprobar la interferencia generada, y su efecto tanto en la red WiFi y WirelessHART. Primero se mide el SNR y SIR en laboratorio, luego el throughput entre dos computadores y finalmente la diferencia al controlar el nivel en el microcanal al aplicar interferencia.
6.2. Conclusiones

Aplicar interferencia a una red WiFi posee resultados muy diferentes que al aplicarla a una red WirelessHART, debido a la robustez de ésta última. Incluso dentro del mismo WiFi los resultados difieren bastante según el estándar utilizado. Como bien se observó en el Capítulo 5, al aumentar un poco la ganancia de transmisión de la señal de interferencia sobre una red WiFi b/g, el SIR comienza a disminuir, lo que produce de inmediato un aumento en el ping de la comunicación, cortándose totalmente al poseer un SIR de 30 dBm, lo que también se refleja en los resultados obtenidos de las pruebas de throughput, en donde al aplicar una potencia entre 50 y 60% del USRP, la comunicación ya se hacía insostenible. En cambio, en la red WirelessHART, a pesar de aplicarse la máxima potencia, no hubo un cambio extremo en la forma de comunicación, sólo unos pocos segundos de latencia.

Si se revisa con más detalles los experimentos del througput, se tiene que al 60% de la potencia máxima del USRP la velocidad real de transmisión bajó de 24.510 Kbps a apenas 336,39 Kbps, lo que significa una disminución del 98,63%, y el ping sube un 62.250%, de 0,962ms hasta 60,824ms, en cambio, a la misma potencia, pero en un router operando en el estándar 802.11n, la velocidad máxima solo cae un 8,71% y el ping aumenta un 4,51%.

Para las pruebas en el microcanal, se determinó el tiempo de retardo, constante de tiempo, sobrepaso y tiempo de asentamiento del control PI aplicado al nivel del microcanal a diferentes velocidades de recorrido de la interferencia en el ancho de banda del WirelessHART. La Ilustración 5.12 muestra que, a mayor tiempo de recorrido, el comportamiento se asemeja más al obtenido sin aplicar interferencia, siendo la reacción más lenta la realizada con una interferencia con tiempo de recorrido de 1,5s. Acá se obtuvo un retardo de 61,5s, 14,5s más lento que sin interferencia. Si bien se obtuvo una constante de tiempo más rápida (32s contra 55,5s), esto se traduce en un sobrepaso mayor, de 24,63% sobre el set point indicado. Finalmente el tiempo de asentamiento aumentó de 183s hasta 246s, lo que se traduce en un aumento de un 32,26%, comprobando que la interferencia en la comunicación produce un control más lento, sin quitar estabilidad al resultado.

6.3. Trabajo Futuro

Como trabajo futuro para este proyecto se propone la implementación de un sistema MIMO que permita realizar un seguimiento de la señal del Gateway WirelessHART a lo largo de todo el ancho de banda disponible para así efectuar una interferencia más precisa, sin la necesidad de implementar un barrido en el ancho de banda. Otra recomendación sería la implementación de un equipo que logre generar interferencia a todos los canales del WirelessHART simultáneamente, ya sea mediante un tren de pulsos o que sea capaz de emitir un ancho de banda suficiente para abarcar todos los canales.

Para finalizar, se propone una conexión más directa entre las áreas ingenieras de Telecomunicación y Sistemas de Control, para así aplicar términos como nivel de ruido o interferencia a sistemas de control automático.

Bibliografía

- T. Keller y J. Modelski, «Experimental Results of Testing Interferences in 2.4 GHz ISM Band,» Microwave Conference, 2003. 33rd European, vol. III, pp. 1043-1046, 2003.
- [2] N. Golmie, «Interference in the 2.4 GHz ISM Band: Challenges and Solutions,» National Institute of Standards and Technology, 2001.
- [3] M. Kochlán y J. Micek, «2.4GHz ISM Band Radio Frequency Signal Indoor Propagation,» Computer Science and Information Systems, vol. II, p. 1027–1034, 2014.
- [4] P. Jin-A, P. Seung-Keun, K. Dong-Ho, C. Pyung-Dong y C. Kyoung-Rok, «Experiments on radio interference between wireless LAN and other radio devices on a 2.4 GHz ISM band,» *Vehicular Technology Conference*, 2003. VTC 2003-Spring. The 57th IEEE Semiannual, vol. III, pp. 1798-1801, 2003.
- [5] R. Di, S. Pen, S. Taylor y Y. Morton, «A USRP-Based GNSS and Interference Signal Generator and Playback System,» *Position Location and Navigation Symposium (PLANS)*, pp. 470-478, 2012.
- [6] J. A. Santana Fuentes, «GNU-Radio en la enseñanza de comunicaciones inalámbricas,» Universidad de Concepción, Concepción, 2012.
- [7] Z. Tong, M. S. Arifianto y C. F. Liau, «Wireless Transmission using Universal Software Radio Peripheral,» *Space Science and Communication*, vol. International Conference, pp. 19-23, 2009.
- [8] C. Weber y G. Hildebrandt, «Evaluation of Blind Sensing Algorithms in the 2.4 GHz ISM-Band on GNU Radio and USRP2,» *Wireless Communication Systems (ISWCS)*, vol. 2012 International Symposium on, pp. 551-555, 2012.
- [9] M. Abirami, V. Hariharam, R. Gandhiraj y K. P. Soman, «Exploiting GNU Radio and USRP An Economical Test Bed for Real Time Communication Systems,» *Computing*,

Communications and Networking Technologies (ICCCNT), vol. 2013 Fourth International Conference on, pp. 1-6, 2013.

- [10] R. Zitouni, S. Ataman y L. George, «RF Measurements of the RFX 900 and RFX 2400 Daughter Boards with the USRP N210 driven by the GNU Radio Software,» *Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)*, vol. 2013 International Conference on, pp. 490-494, 2013.
- [11] M. Arenas, «PC Actual,» RBA, 30 Mayo 2013. [En línea]. Available: http://www.pcactual.com/articulo/laboratorio/especiales/10831/toma_control_red_probamos_ routers_wifi.html. [Último acceso: 23 Octubre 2015].
- [12] A. S. Tanenbaum y D. J. Wetherall, Redes de Computadoras, Mexico: Pearson Education, 2012.
- [13] S. Buettrich, «Unidad 06: Cálculo de Radioenlace,» Wilac, Tshwane, 2005.
- [14] I. Poole, «Radio-Electronics,» Adrio Communications, [En línea]. Available: http://www.radio-electronics.com/info/wireless/wi-fi/80211-channels-number-frequenciesbandwidth.php. [Último acceso: 03 Noviembre 2015].
- [15] Research & Education Association, The Handbook of Electrical Engineering, New Jersey, 1996.
- [16] Gobierno de España, «Real Academia de Ingeniería,» [En línea]. Available: http://diccionario.raing.es/es/lema/throughput. [Último acceso: 03 Noviembre 2015].
- [17] iPerf, «iPerf The TCP, UDP and SCTP network bandwidth measurement tool,» [En línea].
 Available: https://iperf.fr/. [Último acceso: 03 Noviembre 2015].
- [18] N. Richasse, «xjperf Graphical frontend for IPERF written in Java,» Mayo 2009. [En línea]. Available: https://code.google.com/p/xjperf/.

- [19] Ettus Research, «Ettus Research USRP B200 Software Defined Radio (SDR),» 2015. [En línea]. Available: http://www.ettus.com/content/files/b200-b210_spec_sheet.pdf. [Último acceso: 04 Diciembre 2015].
- [20] V. Sridhara, H. Shin y S. Bohacek, «Performance of 802.11b/g in the Interference Limited Regime,» *Computer Communications and Networks*, vol. Proceedings of 16th International Conference, pp. 979-984, 2007.
- [21] N. A. Cuevas Alarcón, «Control de Microcanal de regadío utilizando sensor/transmisor inalámbrico de nivel alimentado sistema de generación a través de paneles solares,» Universidad de Concepción, Concepción, 2014.
- [22] O. I. Castro Conejero, «Uso de estrategia de control de Predictor Smith en Microcanal,» Universidad de Concepción, Concepción, 2015.

Anexo A. Especificaciones Técnicas

A.1. USRP B200

El equipo que se adquirió para continuar los trabajos en la Memoria de Título es el USRP B200. Sus especificaciones se listan a continuación:

- RF coverage from 70 MHz 6 GHz
- GNU Radio, C++ and Python APIs
- USB 3.0 SuperSpeed interface
- Standard-B USB 3.0 connector
- Flexible rate 12 bit ADC/DAC
- Grounded mounting holes
- 1 TX & 1 RX, Half or Full Duplex
- Xilinx Spartan 6 XC6SLX75 FPGA
- Up to 56 MHz of instantaneous bandwidth
- USB Bus powered

Ilustración A.1 - USRP B200 adquirido

El equipo USRP B200 cubre frecuencias RF desde los 70MHz hasta los 6GHz, posee una FPGA Spartan6 y conexión USB 3.0 para máxima transferencia de datos. Esta plataforma permite la experimentación con una amplia gama de señales, incluyendo FM, difusión de TV, GSM, WiFi y más.

El B200 posee una canal para transmitir y otro para recibir señales, siendo así un equipo capaz de operar half y full dúplex.

Spec	Тур.	Unit				
Power						
DC Input 6 V						
Conversion Performance and Clocks						
ADC Sample Rate (max)	61.44	MS/s				
ADC Resolution	12	bits				
ADC Wideband SFDR	78	dBc				
DAC Sample Rate (max)	61.44	MS/s				
DAC Resolution	12	bits				
Host Sample Rate (16b) **	61.44	MS/s				
Frequency Accuracy	±2.0	ppm				
W/ GPS Unlocked TCXO Reference	±75	ppb				
W/ GPS Locked TCXO Reference	< 1	ppb				

Spec	Тур.	Unit					
RF Performance (single channel)							
SSB/LO Suppression	-35/50	dBc					
3.5 GHz	1.0	deg RMS					
6 GHz	1.5	deg RMS					
Power Output	>10	dBm					
IIP3 (@ typ NF)	-20	dBm					
Receive Noise Figure	<8	dB					
Phy	sical						
Dimensions	9.7x15.5x1.5	cm					
Weight	350	g					

Ilustración A.2 - Tabla de especificaciones técnicas [19]

A.2. Antena VERT2450

Se utilizan dos antenas VERT 2450, Ilustración A.3, una para transmitir y la otra para recibir señales. Ambas son conectadas al conector SMA que posee la misma placa del USRP. Las especificaciones técnicas de la VERT2450 son:

- Tipo Omnidireccional
- Potencia 3dBi
- Banda dual 2.4 a 2.48 GHz y 4.9 a 5.9 GHz

Ilustración A.3 - Antena VERT2450

A.3. Analizador de espectro HAMEG HMS3010

Ilustración A.4 - HAMEG HMS3010

El analizador de espectro utilizado para realizar las mediciones de la señal generada por el USRP en el laboratorio fue un HAMEG HMS3010

- Frequency Range 100kHz... 3GHz
- Tracking Generator HMS3010 -20...0dBm
- Amplitude Measurement Range -114...+20dBm
- Sweep Time 20ms...1000s
- Resolution Bandwidth 100Hz...1MHz in 1–3 Steps, 200kHz (-3dB); additional 200Hz, 9kHz, 120kHz, 1MHz (-6dB)
- Spectral Purity
- Video Bandwidth 10Hz...1 MHz in 1–3 Steps
- Integrated AM and FM Demodulator (Phone and int. Speaker)
- Detectors: Auto-, Min-, Max-Peak, Sample, RMS, Quasi-Peak
- 8 Marker with Delta Marker, miscellaneous Peak Functions
- Crisp 16.5cm (6.5") TFT VGA Display, DVI Output
- 3 x USB for Mass-Storage, Printer and Remote Control

A.4. Antena Yagi 2.4 GHz

Se utiliza una antena Yagi de frecuencia 2.4 GHz conectada al analizador de espectro para medir la potencia de las señales en frecuencia. La Ilustración A.6 muestra el patrón de radiación producido por esta antena Yagi.

Ilustración A.6 - Patrones de radiación de la antena

A.5. WirelessHART Fieldgate SWG70

Para las pruebas realizadas en el microcal del laboratorio de control, se utilizó un Gateway WirelessHART. Este equipo permite la comunicación entre equipos y administra la seguridad y conectividad de la red. El SWG70 fue diseñado para operar como puente entre sistemas que utilicen Ethernet o RS-485 y WirelessHART.

Ilustración A.7 - WirelessHART Fieldgate SWG70

Soporta las siguientes funciones:

- Administración y configuración de la red inalámbrica.
- Adquisición de datos desde los dispositivos de la red y presentación al sistema conectado
- Servidor web capaz de soportar protocolos HART y MODBUS para transmisión de datos.
- Configuración de la red, Fieldgate y dispositivos a través de la interfaz web

	$\star \star \star \star \star$
Tabla A.1 - Especificaciones técnicas	s de SWG70 🗶 🥢 🔸
Entrada	
Capa física	IEEE 802.15.4; 2006
Ratio de transmisión	250 Kbits/s nominal
Frecuencia de operación	2.4 GHz (Banda ISM)
Rango de transmisión	250m exterior, 50m interior
Potencia de RF	0 dB o 10 dB, según regulaciones nacionales
Salida Ethernet 100 BASE-T	X
Ratio de transmisión	100 Mbits/s
Tipo de protección	Ninguna
Salida Serial RS-485	
Ratio de transmisión	1200 bits/s hasta 115200 bits/s
Tipo de protección	Ninguna
Alimentación eléctrica	
Voltaje de alimentación	20 Vdc a 30 Vdc
Potencia	< 5 W

A.6. WirelessHART Adapter SWA70

El adaptador WirelessHART SWA70 permite conectar dispositivos HART y 4..20 mA a redes WirelessHART. Es posible alimentarlo eléctricamente mediante una batería u otro sistema de energía. Un solo adaptador soporta hasta un equipo 4..20 mA o hasta 4 equipos HART.

Características y beneficios

- Dispositivos HART fácilmente actualizables a WirelessHART
- Dispositivos 4..20 mA rápidamente integrados a una red WirelessHART
- Modo ráfaga y notificación de eventos
- Dispositivos HART que se encuentren en ubicaciones remotas y de difícil acceso ahora son fácilmente conectables a la sala de control sin necesidad de caros cables de comunicación.
- Planeación simple, fácil instalación y rápida integración.

.....

Comunicación HART, Señal de corriente 420 mA			
HART v7.0			
1200 bits/s			
Intrínsecamente seguro			
Adaptador montado directamente en el equipo			
WirelessHART			
250 Kbits/s nominal			
2.4 GHz (Banda ISM)			
250m exterior, 50m interior			
0 dB o 10 dB, según regulaciones nacionales			
• Baterías			
 Fuente intrínsecamente segura 			
• Módulo solar			
• Fuente intrínsecamente segura: 8 Vdc a 30 Vdc			
• Módulo solar: 8 Vdc a 50 Vdc			
• Fuente intrínsecamente segura: < 350 mA			
• Módulo solar: < 100 mA			
• Fuente intrínsecamente segura: < 2.2 W			
• Módulo solar: < 0.1 W			

Ganancia	Potencia	Ganancia	Potencia	Ganancia	Potencia
Matlab [pu]	emitida USRP	Matlab [pu]	emitida USRP	Matlab [pu]	emitida USRP
1					
1	-67,10	31	-44,03	61	-15,17
2	-67,04	32	-42,74	62	-14,11
3	-66,57	33	-41,85	63	-13,06
4	-66,05	34	-40,99	64	-12,19
5	-65,50	35	-40,13	65	-11,13
6	-65,11	36	-39,36	66	-9,97
7	-64,61	37	-38,51	67	-8,94
8	-63,90	38	-37,56	68	-8,16
9	-63,30	39	-36,55	69	-7,10
10	-62,80	40	-35,71	70	-6,07
11	-62,02	41	-34,78	71	-5,22
12	-61,65	42	-33,90	72	-4,25
13	-60,73	\star \star 43	★ ★ -32,96	73	-3,33
14	-60,16	+ 44	-32,04	74	-2,28
15	-59,31	45	-30,99	75	-1,29
16	-58,60	46	-30,06	76	-0,37
17	-57,75	47	-29,02	77	0,56
18	-57,06	48	-28,06	78	1,51
19	-56,23	49	-27,10	79	2,41
20	-55,03	50	-26,10	80	3,43
21	-54,12	51	-25,08	81	4,22
22	-52,89	52	-24,09	82	5,12
23	-51,37	53	-23,07	83	5,97
24	-50,55	54	-22,15	84	6,89
25	-49,68	55	-21,16	85	7,78
26	-48.81	56	-20.17	86	8.67
27	-47.91	57	-19.12	87	9.46
28	-47.12	58	-18.14	88	10.05
29	-46.26	59	-17.10	89	10.74
30	-45,19	60	-16,20	90	11,08

Anexo C. Mediciones de Throughput

USRP al 3	USRP al 30%)%	USRP al 50%	
Velocidad [Kbps]	Ping [ms]	Velocidad [Kbps]	Ping [ms]	Velocidad [Kbps]	Ping [ms]
72571	1,543	81814	0,178	92610	0,218
87730	0,175	95491	0,134	95691	0,287
77969	0,135	94997	0,178	95703	0,139
84719	0,239	95715	0,183	95080	0,36
76028	0,319	72406	0,226	85401	0,213
95668	0,256	88953	0,144	95668	0,209
77734	0,171	95679	0,185	95726	0,404
83261	0,504	95691	0,335	92563	0,138
95715	0,193	79415	0,465	87142	0,313
94574	0,324	94950	0,231	95703	0,204
87212	0,13	95691	0,169	95703	0,142
95056	0,207	95679	0,149	93492	1,285
95691	0,173	85907	0,309	81038	0,342
95715	0,158	95715	0,288	91493	0,192
78757	1,221	× 95703	× 0,19	95726	0,149
88118	0,227	93810	0,293	95703	0,167
95632	0,223	84731	0,183	92492	0,332
95715	0,352	95715	0,158	88141	0,144
90329	0,225	95691	0,164	95715	0,16
85707	0,189	95726	0,221	93292	0,856
95091	0,175	81920	0,217	79356	0,414
95679	0,21	95715	0,163	95715	0,161
82132	0,225	95691	0,327	95715	0,134
95691	0,181	95715	0,208	92351	0,216
95679	0,134	76475	0,185	72700	0,295
95691	0,301	95715	0,303	83461	0,252
82367	0,199	95691	0,179	80874	0,129
95715	0,199	95679	0,264	70866	0,909
95691	0,138	75946	0,142	74805	0,152
95715	0,27	90999	0,388	95715	0,142

Tabla C.1 - Resultados mediciones con USRP al 30%, 40% y 50% sobre router 802.11n

USRP al 6	USRP al 60%		0%	USRP al 80%	
Velocidad [Kbps]	Ping [ms]	Velocidad [Kbps]	Ping [ms]	Velocidad [Kbps]	Ping [ms]
74923	0,682	71124	0,601	78228	0,437
73335	0,286	95468	0,183	89646	0,195
61281	0,374	80532	0,286	39772	0,329
58283	0,229	67044	0,197	82720	0,184
51873	0,599	95185	0,174	83649	0,214
60129	0,149	95138	0,364	93774	0,359
73288	0,158	95703	0,15	84472	0,14
80333	0,22	92857	0,235	95574	0,166
79815	0,162	92340	0,289	95150	0,162
95691	0,203	95280	0,133	81955	3,867
95691	0,264	71748	0,556	88035	0,372
83143	0,154	61070	0,272	95162	0,15
90505	0,302	90987	0,179	95715	0,165
95703	0,206	79944	0,19	95162	0,138
95597	0,324	70431	0,144	95703	0,166
95726	0,234	79815	0,498	95103	0,207
75781	0,278	70254	0,705	95162	0,339
73688	0,164	× 63304	0,146	82814	0,272
89258	0,184	83414	0,404	91622	0,145
95679	0,157	91387	0,465	93927	0,157
95691	0,151	86448	0,254	95174	0,34
95703	0,246	95185	0,125	89423	0,147
95715	0,213	95668	0,157	92481	0,264
86942	0,332	78651	0,133	94409	0,149
93069	0,167	95703	0,315	78463	0,279
84354	0,288	95715	0,151	74488	0,174
90905	0,184	74206	0,136	92775	0,234
86812	0,174	80991	0,151	74946	0,48
95691	0,241	84519	0,155	79897	0,664
93527	0,352	87553	0,283	93433	0,152

Tabla C.2 - Resultados mediciones con USRP al 60%, 70% y 80% sobre router 802.11n

USRP al 30	USRP al 30%		0%	USRP al 50%	
Velocidad [Kbps]	Ping [ms]	Velocidad [Kbps]	Ping [ms]	Velocidad [Kbps]	Ping [ms]
19475	2,851	14159	2,005	16382	1,932
20745	0,525	11807	1,677	18052	0,753
26142	0,561	18957	1,168	23779	2,645
26542	1,385	27824	1,357	15100	5,581
25872	1,025	25437	0,588	17111	0,604
22238	1,36	23602	1,749	26707	0,588
26495	0,629	26825	0,588	28024	1,328
26084	1,138	26578	0,597	20404	1,161
27342	1,11	27565	1,067	24778	1,372
20145	0,886	22003	2,354	26754	0,535
26260	1,698	27060	1,068	26719	0,69
25460	1,426	25754	1,469	21062	1,315
26166	0,535	27636	0,538	27589	0,499
22767	1,03	22767	1,992	27601	1,136
26260	0,939	26025	1,316	27013	0,497
26778	1,082	27354	1,059	21438	1,744
22368	1,636	25413	0,803	25437	0,56
27236	1,327	× 23673	× 2,821	27495	0,551
26966	0,577	21603	0,565	26578	0,669
27401	1,248	1 26 895	0,469	20251	0,732
26472	0,964	26307	1,197	25919	1,599
23402	0,776	23461	1,567	27742	1,557
26448	0,662	23932	0,463	26672	0,529
26531	0,716	26154	0,493	17417	3,291
26519	0,498	26448	1,698	27119	0,523
21215	0,51	23214	1,762	25425	0,851
26672	0,525	25707	0,504	25719	0,629
25766	1,534	27189	0,625	19616	1,289
27318	1,113	27318	0,523	25519	0,456
23685	0,635	23026	2,493	27224	0,695

Tabla C.3 - Resultados mediciones con USRP al 30%, 40% y 50% sobre router 802.11b/g

USRP al 60%		USRP al 70	0%	USRP al 80%	
Velocidad [Kbps]	Ping [ms]	Velocidad [Kbps]	Ping [ms]	Velocidad [Kbps]	Ping [ms]
165	17,448	82,3	30,142	94,1	51,495
11,8	88,508	106	77,025	141	64,152
70,6	121,74	35,3	115,112	376	27,968
0	121,74	70,6	131,053	247	38,365
282	69,874	235	68,969	259	216,231
388	20,716	306	36,621	388	47,839
953	29,121	459	146,264	129	64,394
212	58,08	23,5	194,39	212	106,648
329	28,123	318	57,12	247	60,533
82,3	71,33	153	105,452	235	116,329
365	111,97	94,1	113,44	129	111,607
400	39,352	129	103,591	223	77,663
353	68,17	106	95,663	165	165,518
200	55,776	223	145,378	188	97,045
400	44,565	188	80,39	365	159,642
223	50,539	270	272,543	129	118,254
294	56,536	153	1 <mark>5</mark> 8,427	129	111,758
188	53,903	223	× 82,303	247	170,326
1117	29,254	294	97,088	235	84,189
459	25,802	188	83,57	282	243,19
717	8,992	353	1 11,896	188	120,744
282	47,441	153	98,929	129	103,924
412	64,087	47	81,861	223	63,724
600	67,285	329	89,203	259	71,72
353	26,502	235	130,573	153	64,574
235	56,121	118	116,226	176	229,822
235	68,477	23,5	133,889	235	104,638
141	173,823	58,8	224,618	270	48,271
318	108,954	106	170,274	153	139,449
306	40,483	35,3	204,827	247	67,217

Tabla C.4 - Resultados mediciones con USRP al 60%, 70% y 80% sobre router 802.11b/g

Tiemp	Tiempo 10 s		Tiempo 15 s		Tiempo 20 s		o 25 s
Velocidad	Ping [ms]	Velocidad	Ping	Velocidad	Ping	Velocidad	Ping
[Kbps]	0	[Kbps]	[ms]	[Kbps]	[ms]	[Kbps]	[ms]
13877	15,653	6433	4,477	1105	3,38	25237	1,152
10737	0,59	8067	6,461	2764	4,841	26625	0,533
7903	18,794	7538	3,417	1752	1,342	18240	1,441
9937	0,764	7785	3,025	8232	1,016	28059	0,954
9972	9,157	8938	3,798	9196	2,122	17417	1,778
8714	3,202	8644	3,093	22744	0,908	1611	2,812
11760	5,496	9726	4,861	23708	0,783	1505	6,191
7597	6,221	8079	2,496	13595	4,623	1505	9,036
11090	1,064	8996	3,796	4998	5,238	1576	5,599
6797	1,36	5280	1,929	4434	6,93	1399	7,068
10384	4,15	9185	2,597	4245	7,66	2152	5,985
10878	0,713	4598	3,495	4281	3,052	2270	3,043
23567	1,082	7468	7,044	5245	9,398	1294	7,669
8891	1,513	22744	0,54	3093	5,362	2140	4,15
6033	1,749	25907	0,593	69 <mark>5</mark> 0	4,328	1305	6,143
3998	2,097	17464	0, <mark>543</mark>	3552	3,604	2658	6,68
6080	2,181	9773	4,246	67 27	2,619	1294	7,571
3587	5,599	1799	8, <mark>975</mark>	33 <mark>6</mark> 3	1,79	2881	7,096
5927	0,724	4034	2,407	51 <mark>3</mark> 9	4,569	1964	16,296
14606	4,426	1599	6,73	3222	5,39	19569	0,587
25108	1,426	4398	6,374	6621	0,814	25613	0,532
7162	2,602	2105	7,382	4092	3,419	26119	0,793
10231	1,503	3716	2,495	6174	1,815	23626	0,566
7562	15,854	2058	2,411	2470	15,915	11137	6,312
10502	0,722	5680	1,864	6127	5,659	2470	17,972
9561	8,354	17852	1,214	3246	14,832	5504	1,431
10631	2,568	21180	0,808	5139	5,166	5833	17,211
7785	10,107	13148	6,052	3622	6,038	8091	2,494
8726	0,52	6703	5,787	5457	3,218	9043	7,405
11442	1,53	5998	7,531	19475	0,69	7785	2,788

Tabla C.5 - Resultados USRP 100% con frecuencia variable