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Mart́ınez, a quien no tengo más que palabras de gratitud por haberme enseñado
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Resumen

Para estudiar los efectos y consecuencias del campo escalar en gravitación, no-
sotros construimos y analizamos en detalle nuevas soluciones en dos escenarios dife-
rentes.

En el contexto de teoŕıas escalar-tensor, encontramos soluciones de agujero ne-
gro tanto asintintóticamente Anti-de Sitter (AdS) como planas para un caso par-
ticular de la acción de Horndeski. La solución es dada para dimensión arbitraria,
encontrando una nueva clase de agujeros negros esféricamente simétricos y asintóti-
camente localmente planos cuando la constante cosmológica Λ está presente en el
sector cinético no-minimal de la teoŕıa. Cuando la constante cosmológica se anula
la solución es asintóticamente plana con una perfecta correspondencia con el es-
paciotiempo de Minkowski en infinito. En este caso obtenemos una solución que
representa un universo con campo eléctrico constante. El campo eléctrico en infinito
es sustentado solamente por la constante cosmológica. Anulando la carga eléctrica
recuperamos la solución de Schwarzschild. Adicionalmente encontramos un solitón
gravitacional no trivial, lo cual permite un análisis termodinámico a través del en-
foque de Hawking-Page. Considerando los mismos acoplamientos, es decir, minimal
y no-minimal para el campo escalar y la extensión bi-escalar de gravedad de Horn-
deski, construimos y describimos una solución de estrella bosónica. En esta parte,
la estrella bosónica es estudiada para dos casos de especial interés: el caso donde el
potencial es dado por un término masivo solamente y el caso auto-interactuante que
presenta dos vaćıos locales degenerados. Las principales propiedades de la solución
son comparadas con las configuraciones estándar construidas con el término cinético
minimalmente acoplado.

En la segunda parte de esta tesis, la influencia del campo escalar es investiga-
da en un nivel más simple considerando un campo escalar minimalmente acoplado
como campo de materia. Sin embargo, un tipo de solución más compleja es encon-
trada, la cual corresponde a la solución general en cuatro dimensiones estacionaria
ciĺındricamente simétrica del sistema de Einstein con campo escalar no masivo y
con una constante cosmológica no positiva. La solución tiene dos constantes de inte-
gración con información local y adicionalmente dos topológicas. El efecto del campo
escalar es explorado usando el esquema de Petrov para la clasificación algebraica de
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la solución. Las cargas conservadas asociadas a las simetŕıas son calculadas usan-
do el método de Regge-Teitelboim. Finalmente, las singularidades de curvatura son
removidas cuando la constante cosmológica se anula, encontrando espaciotiempos
localmente homogéneos en la presencia de un campo escalar fantasma.

Esta tesis describe el trabajo que fue presentado en las siguientes publicaciones,
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Y. Brihaye, A. Cisterna and C. Erices,
Enviado a Physical Review D.
arXiv:1604.02121 [hep-th] (2016).

“Stationary cylindrically symmetric spacetimes with a massless scalar field and
a nonpositive cosmological constant”,
C. Erices and C. Mart́ınez,
Phys. Rev. D 92, 044051 (2015),
arXiv:1504.06321 [gr-qc].

“Asymptotically locally AdS and flat black holes in the presence of an electric
field in the Horndeski scenario”,
A. Cisterna and C. Erices,
Phys. Rev. D 89, 084038 (2014),
arXiv:1401.4479 [gr-qc].
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Abstract

In order to study the effect and consequences of scalar fields on gravitation, new
solutions in two different scenarios are constructed and analyzed in detail.

In the context of scalar-tensor theories, electrically charged asymptotically lo-
cally AdS and asymptotically flat black hole solutions are found for a particular
case of the Horndeski action. The solution is given for all dimensions and a new
class of asymptotically locally flat spherically symmetric black hole is found when
the cosmological constant Λ is present in the non-minimal kinetic sector. When the
cosmological constant vanishes the black hole is asymptotically flat in perfect mat-
ching with Minkowski spacetime at infinity. In this case we get a solution which
represents an electric Universe. The electric field at infinity is only supported by
Λ. Switching off the electric charge we recover Schwarzschild solution. Additionally
a nontrivial gravitational soliton is found, allowing the thermodynamical analysis
through the Hawking-Page approach. Considering the same couplings, i.e. minimal
and non-minimal for the scalar field and the bi-scalar extension of Horndeski gra-
vity, a boson star solution is constructed and described. In this part the boson star
is studied for two cases of special interest: the case where the potential is given
by a mass term only and the case of a six order self-interaction that presents two
degenerate local vacua. The principal properties of the solution are compared with
standard configurations constructed with the usual minimally coupled kinetic term.

In the second part of this thesis, the influence of scalar fields is investigated in a
simpler level considering a minimally coupled scalar field as a matter field. Nevert-
heless, a more complex kind of solution is found and the general four dimensional
stationary cylindrically symmetric solution of Einstein-massless scalar field system
with a non-positive cosmological constant is presented. The solution possesses two
integration constants of local meaning and additionally two topological ones. The
effect of the scalar field is explored using the Petrov scheme for the algebraic clas-
sification of the solution. Conserved charges associated with the symmetries are
computed using the Regge-Teitelboim method. Finally, curvature singularities are
removed when the cosmological constant vanishes and locally homogeneous space-
times are found in the presence of a phantom scalar field.
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Chapter 1

Introducción

Relatividad General (RG) es una teoŕıa clásica de gravedad basada en sólidos
fundamentos matemáticos y f́ısicos. Concuerda con una enorme precisión pruebas
observacionales locales tanto en el régimen de gravedad débil como en el fuerte
incluyendo experimentos en laboratorios de la ley de fuerza de Newton. RG, no
es solamente una teoŕıa f́ısica muy exitosa. Es teóricamente muy robusta y como
matemáticamente resulta, una teoŕıa métrica única. A pesar del gran progreso que
RG ha tenido, aún existen algunas preguntas abiertas en las escalas más bajas y más
altas de longitud. Puesto que RG no es una teoŕıa renormalizable, se espera que
desviaciones respecto a esta aparezcan a alguna escala entre la de Planck y la escala
de longitud más baja a la cual hemos accedido hasta ahora. Es tentador considerar
un escenario donde aquellas desviaciones persistan hasta escalas cosmológicas y den
cuenta de la Materia Oscura y/o Enerǵıa Oscura. Después de todo, nosotros sola-
mente detectamos este componente “oscuro” a través de gravedad. Sin embargo,
hay un problema mayor con esta forma de pensar. No hay señales de estas modi-
ficaciones en el rango de escalas para las cuales gravedad ha sido exhaustivamente
probada. De esta manera, ellas debeŕıan ser relevantes a escalas muy pequeñas,
luego de alguna manera desaparecer a escalas intermedias y contener RG, para de-
spués reaparecer a escalas mayores. Es dif́ıcil imaginar qué puede conducir a tal
comportamiento, que en realidad contradice nuestra intuición teórica básica sobre
la separación de escalas y las teoŕıas de campo efectivas. Esta es la razón por la cual
la comunidad ha puesto más atención a las teoŕıas de gravedad alternativas durante
la última década.

En 1971, Lovelock estableció [1] que si uno considera las siguientes cuatro propiedades

(i) Un principio de acción invariante bajo difeomorfismos y con ecuaciones de
campo simétricas.

(ii) Ecuaciones de campo de segundo orden.
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(iii) Espaciotiempo cuadridimensional.

(iv) Solamente la métrica está involucrada en la descripción puramente gravita-
cional de la teoŕıa.

la acción de Einstein-Hilbert

S =
m4
pl

2

ˆ
d4x
√
−g[R− 2Λ] (1.1)

es la única acción que provee ecuaciones de movimiento de segundo orden para el
campo métrico. De este modo, Lovelock nos muestra el camino que podemos seguir
para obtener una descripción modificada de la gravitación que contenga RG. Una de
las opciones más estudiadas en esta ĺınea, junto a teoŕıas en dimensiones mayores,
corresponde a teoŕıas donde nuevos grados de libertad entran en la descripción
gravitacional. De hecho, relajando la condición (iv) y dejando que le nuevo grado
de libertad sea un campo escalar es que surgen las teoŕıas escalar-tensor.

La teoŕıa escalar-tensor fue concebida originalmente por Jordan, quien comenzó
incorporando una variedad curva cuadridimensional en un espaciotiempo plano de
cinco dimensiones [2]. Él mostró que una restricción, cuando se formula la ge-
ometŕıa proyectiva, puede ser definida por un campo escalar cuadridimensional, lo
cual permite describir una “constante” gravitacional dependiente del espaciotiempo,
en concordancia con el argumento de Dirac sobre la constante gravitacional que de-
beŕıa ser dependiente del tiempo [3], lo cual obviamente está más allá de lo que
puede ser entendido dentro del ámbito de la teoŕıa estándar. Él también discutió
sobre la posible conexión de esta teoŕıa con otra teoŕıa en cinco dimensiones, que
hab́ıa sido desarrollada por Kaluza y Klein [4, 5]. La introducción de un campo
escalar no-minimalmente acoplado por Jordan, marcó el nacimiento de las teoŕıa
escalar-tensor. El esfuerzo de Jordan fue continuado particularmente por Brans y
Dicke e implementó el requerimiento de que el principio de equivalencia débil fuera
respetado, en contraste con el modelo de Jordan. El prototipo de la gravedad escalar-
tensor es la teoŕıa de Brans-Dicke [6] la cual ha sido extensivamente estudiada a lo
largo de los años (vea [7, 8, 9] y sus referencias). Nosotros debeŕıamos notar que en
la clase de teoŕıas escalar-tensor caen otras teoŕıas de gravedad modificadas como
f(R) o f(Ĝ) las cuales son precisamente teoŕıas escalar-tensor particulares de una
manera encubierta [10]. Es más, otras modificaciones de RG tales como bigravedad
o teoŕıas de gravedad masiva [11] admiten teoŕıas escalar-tensor como ĺımites par-
ticulares, por ejemplo el ĺımite de desacoplamiento para gravedad masiva [12]. Por
consiguiente, teoŕıas escalar-tensor son un prototipo consistente de modificación de
RG y sus propiedades más importantes son de alguna forma esperables en otras
teoŕıas consistentes de gravedad. Un progreso notable fue hecho por Horndeski du-
rante los 70’s cuando construyó la teoŕıa escalar-tensor más general con ecuaciones
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de movimiento de segundo orden para la métrica y el campo escalar [13]. Si bien es
cierto que el estudio de teoŕıas escalar-tensor no es un tópico nuevo, actualmente, ha
resurgido un gran interés debido al estudio de teoŕıas de Galileón y sus aplicaciones.
Fue mostrado que la generalización de los Galileones (originalmente formulados en
el espacio plano) a un espaciotiempo curvo, para una parametrización particular de
la teoŕıa, se reduce a una parte de la teoŕıa descrita por Horndeski.

En particular, hay un subconjunto de la acción de Horndeski donde la teoŕıa
provee un campo escalar con un acoplamiento cinético no-minimal dado por la cur-
vatura. Cuando este acoplamiento es dado por el tensor de Einstein, se ha mostrado
que es posible estudiar el proceso de inflación del Universo sin la necesidad de in-
cluir potencial alguno [14]. En este escenario, la teoŕıa exhibe soluciones de agu-
jero negro lo cual incrementó el interés en las teoŕıas de Horndeski. La primera
solución de agujero negro fue descubierta por Rinaldi [15] donde el teorema de no-
pelo para Galileones [16], que previene la existencia de soluciones de agujero negro
asintóticamente planas, es sorteada relajando el comportamiento asintótico, obte-
niendo una solución asintóticamente AdS. Sin embargo, en este caso, la configuración
de campo escalar es imaginaria fuera del horizonte de eventos violando la condición
de enerǵıa débil. Estos problemas fueron resueltos en [17] donde construyen una
solución de agujero negro, asintóticamente localmente tanto AdS como plana, con
un campo escalar real fuera del horizonte de eventos y que satisface la condición de
enerǵıa débil.

Agujeros negros y estrellas compactas son de una importancia significativa en
teoŕıas de gravedad alternativas puesto que constituyen pruebas potenciales del
régimen de gravedad fuerte. Ya habiendo explorado las soluciones de agujero negro
en el escenario de Horndeski y siguiendo la misma ĺınea de trabajo, nos dedicamos
al estudio de objetos compactos gravitacionales cuando los acoplamientos minimal y
no-minimal del campo escalar son considerados. En este caso, la construcción de es-
trella de neutrones ha sido primeramente abordada en [18]. Ah́ı, se muestra que las
estrellas de neutrones estáticas y las enanas blancas son sustentadas por este modelo,
imponiendo de una manera bastante natural, restricciones de tipo astrof́ısicas sobre
el único parámetro libre que estas soluciones exhiben. Su contraparte de rotación
lenta también ha sido estudiada en [19, 20, 21]. Sin embargo, hay soluciones grav-
itacionales solitónicas conocidas como estrellas bosónicas. Las estrellas de bosones
construidas originalmente en [22] son soluciones estacionarias compactas de las ecua-
ciones de Einstein-Klein-Gordon (EKG) con una configuración de campo escalar
complejo. Estas soluciones, que han mostrado la posibilidad de ser estables, repre-
sentan un balance entre la naturaleza atractiva de la gravedad y el comportamiento
dispersivo de los campos escalares, y puede ser pensada como una colección de cam-
pos escalares fundamentales estables limitados por la gravedad, donde la carga de
Noether representa el número total de part́ıculas bosónicas. Las estrellas bosónicas
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han sido ampliamente estudiadas durante las últimas tres décadas. Aún más, ha
sido mostrado que las propiedades observacionales de las estrellas bosónicas son bas-
tante similares a su contraparte en agujeros negros, siendo propuestas como posibles
candidatos para representar objetos súper masivos en el centro de las galaxias y se
espera que debido a su dinámica, sean detectadas por observaciones astronómicas
[23].

En una perspectiva diferente, los campos escalares han sido considerados como
una manera adecuada y representativa para describir fuentes de materia como es sug-
erido por una abrumadora literatura al respecto. Al mismo tiempo, como es señalado
por diversas observaciones astronómicas, las fuentes gravitacionales en nuestro Uni-
verso poseen rotación. Con esto en mente, soluciones exactas con rotación en cuarto
dimensiones en el contexto de GR describen objetos muy interesantes desde el punto
de vista astrof́ısico, y son particularmente dif́ıciles de encontrar debido a la com-
plejidad de las ecuaciones de campo para ansatz estacionarios. En este marco, la
configuración más simple está representada por espaciotiempos de simetŕıa ciĺındrica
interactuando con un campo escalar minimalmente acoplado.

A pesar que los espaciotiempos ciĺındricamente simétricos son bastante conocidos
en vaćıo, soluciones exactas que contienen un campo escalar sin masa como fuente
de materia no han sido obtenidas en su forma más general hasta ahora. Solamente
soluciones con simetŕıa plana, que son un caso particular de las ciĺındricas, han sido
reportadas [24, 25].

Para todos estos propósitos previamente mencionados, seŕıa provechoso e intere-
sante explorar y presentar nuestra contribución original en dos aspectos diferentes de
la influencia del campo escalar en gravitación. Primero, como un grado de libertad
adicional para la interacción gravitacional en el contexto de las teoŕıas de Horndeski
a través del estudio de soluciones de agujeros negros y estrellas bosónicas cuando
el sector cinético no-minimal es considerado. Segundo, como un campo de materia
analizando soluciones estacionarias ciĺındricamente simétricas con un campo escalar
no masivo en presencia de una constante cosmológica no positiva.

El plan de esta tesis es el siguiente:
En el Caṕıtulo 2 comienza la tesis en inglés con la traducción a dicho idioma de

esta introducción.
En el Caṕıtulo 3 se presenta una breve revisión de las teoŕıas escalar-tensor más

importantes. Damos algunos detalles sobre el origen y motivación de las teoŕıas
escalar-tensor presentando la teoŕıa de Brans-Dicke y su generalización natural.
Finalmente tratamos la acción de Horndeski dando un énfasis especial sobre el
acoplamiento cinético no-minimal.

El Caṕıtulo 4 contiene una completa descripción de una nueva solución de agu-
jero negro con carga eléctrica en el escenario de Horndeski [26]. Vamos un paso
más allá respecto al trabajo de [17] construyendo su contraparte de agujero negro
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eléctricamente cargado. Hay dos propiedades destacables cuando el acoplamiento
minimal se anula y solamente el acoplamiento cinético no-minimal es considerado.
Una de las principales caracteŕısticas, propio de esta solución, es que la inclusión de
carga eléctrica sustenta una configuración asintóticamente plana que asintóticamente
coincide con el espaciotiempo de Minkowski cuando la constante cosmológica es nula.
Adicionalmente, para constante cosmológica no nula, la solución representa un uni-
verso con campo eléctrico constante dado por la constante cosmológica. La solución
es también encontrada para dimensiones arbitrarias.

En el Caṕıtulo 5, después de una breve introducción sobre la historia de las es-
trellas bosónicas, discutimos sobre la naturaleza de ellas dando algunos detalles de
cómo sortear el teorema de Derrick aśı como también un argumento heuŕıstico para
estimar la masa cŕıtica para mini-estrellas bosónicas basado en criterios de estabil-
idad. Luego, presentamos el Lagrangiano considerado y las ecuaciones de EKG. Se
dan también expresiones para las caracteŕısticas básicas como la masa, radio de la
estrella bosónica y la carga de Noether asociada a la simetŕıa U(1). Las consecuen-
cias que el potencial tiene sobre la máxima masa de la estrella bosónica es discutido
para potenciales de campo libre y auto-interactuantes de cuarto orden. Finalmente
damos algunos comentarios breves sobre la estrella bosónica en el contexto de teoŕıas
de gravedad alternativa.

Caṕıtulo 6 es dedicado a las estrellas de bosones en la extensión bi-escalar de la
gravedad de Horndeski [27]. El modelo, ansatz para la solución y las ecuaciones de
campo son presentadas. Debido a su complejidad, las ecuaciones de campo son re-
sueltas numéricamente definiendo condiciones de borde apropiadas para soluciones
regulares asintóticamente planas y un adecuado conjunto de parámetros adimen-
sionales para métodos numéricos. Las soluciones son analizadas para un potencial
de campo libre y un auto-interactuante de sexto orden de particular interés, con
acoplamiento cinético no-minimal y comparado con las configuraciones minimal-
mente acopladas.

En el Caṕıtulo 7 damos una reseña sobre soluciones de vaćıo con simetŕıa ciĺındrica
y las presentamos para constante cosmológica nula y no nula. Estos espaciotiempos
corresponden a la familia de soluciones de Lewis y a la cuerda estática de simetŕıa
ciĺındrica. Finalmente revisamos la primera solución de este tipo con singularidad
de curvatura vestida por un horizonte de eventos encontrada por Lemos [28]. La
llamada cuerda negra es transformada a una solución estacionaria realizando una
transformación de coordenadas impropia la cual motivará nuestra solución esta-
cionaria en el caṕıtulo siguiente.

El Caṕıtulo 8 muestra la derivación y el estudio de la solución general ciĺındricamente
simétrica para un campo escalar no masivo minimalmente acoplado en presencia de
una constante cosmológica no positiva en un espaciotiempo cuadridimensional [29].
Inesperadamente una subfamilia de la solución no tiene limite estático. Sin em-
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bargo, enfocamos el análisis posterior a la clase de soluciones que śı poseen ĺımite
estático. Describimos sus propiedades locales y globales aśı como también damos
una interpretación a las constantes de integración. Para esto, calculamos las cargas
conservadas asociadas a las simetŕıas del espaciotiempo relacionándolas con aquel-
las constantes. El caso para constante cosmológica nula contiene un espaciotiempo
regular no trivial de especial interés. Este posee todos sus invariantes escalares
constantes (espaciotiempos CSI) y son localmente homogéneos.

Las conclusiones globales de esta tesis son presentadas en el Caṕıtulo 9 con
su respectiva traducción al español en Caṕıtulo 10. Posteriormente, el Apéndice
A muestra expĺıcitamente las ecuaciones de campo resueltas numéricamente en el
Caṕıtulo 6. Finalmente, la biliograf́ıa utilizada a lo largo de esta tesis.
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Chapter 2

Introduction

General Relativity (GR) is a classical theory of gravity which is based on very
solid mathematical and physical foundations. It agrees with overwhelming accuracy
local observational tests both for weak and strong gravity including laboratory tests
of Newton’s force law. GR, is not only a very successful physical theory. It is
theoretically very robust and as it turns out mathematically a unique metric theory.
Despite the great progress that GR has had, there is still some unanswered questions
at lower and higher scales. Since GR is not a renormalizable theory, it is expected
that deviations from it will show up at some scale between the Planck scale and the
lowest length scale we have currently accessed. It is tempting to consider a scenario
where those deviations persist all the way to cosmological scales and account for
Dark Matter and/or Dark Energy. After all, we do only detect these dark component
through gravity. However, there is a major problem with this way of thinking. There
is no sign of these modifications in the range of scales for which gravity has been
exhaustively tested. So, they would have to be relevant at very small scales, then
somehow switch off at intermediate scales and contain GR, then switch on again at
larger scales. It is hard to imagine what can lead to such behavior, which actually
contradicts our basic theoretical intuition about separation of scales and effective
field theory. This is the reason why the community has paid more attention to
alternative theories of gravity during the last decade or so.

It is known due to Lovelock [1] that taking into account a theory that satisfies
the following four statements

(i) Action principle invariant under diffeomorphisms and symmetric field equa-
tions.

(ii) Second order field equations.

(iii) Four-dimensional spacetime.
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(iv) Only the metric field enters in the purely gravitational description of the the-
ory.

then the Einstein-Hilbert action

S =
m4
pl

2

ˆ
d4x
√
−g[R− 2Λ] (2.1)

is the unique action giving equations of motion of second order in the metric field
variable. In these lines Lovelock give us the possible paths we can follow in order
to obtain a modified description of gravity containing GR. One of the most studied
options in this line, along with theories in higher dimensions, corresponds to theories
where new degrees of freedom enter in the gravitational description. Indeed, by
relaxing the condition (iv) and leaving this new degree of freedom to be a scalar
field, scalar-tensor theories arise.

The scalar-tensor theory was conceived originally by Jordan, who started to
embed a four-dimensional curved manifold in five-dimensional flat spacetime [2].
He showed that a constraint in formulating projective geometry can be a four-
dimensional scalar field, which enables one to describe a spacetime-dependent grav-
itational “constant”, in accordance with Dirac’s argument that the gravitational
constant should be time-dependent [3], which is obviously beyond what can be un-
derstood within the scope of the standard theory. He also discussed the possible
connection of his theory with another five-dimensional theory, which had been of-
fered by Kaluza and Klein [4, 5]. The introduction of a non-minimally coupled scalar
field by Jordan, marked the birth of the scalar-tensor theory. Jordan’s effort was
taken over particularly by Brans and Dicke and implemented the requirement that
the weak equivalence principle be respected, in contrast to Jordan’s model. The
prototype of scalar-tensor gravity is Brans-Dicke theory [6] which has been studied
extensively throughout the years (see [7, 8, 9] and references within). We should
note that in the class of scalar-tensor theories fall also other modified gravity the-
ories like f(R) or f(Ĝ) which are just particular scalar-tensor theories in disguise
[10]. Furthermore, other interesting GR modifications such as bigravity or massive
gravity theories [11] admit scalar-tensor theories as particular limits, for example
the decoupling limit for massive gravity [12]. Hence, scalar-tensor theories are a con-
sistent prototype of GR modification and their important properties are expected
in some form, in other consistent gravity theories. A remarkable progress was made
by Horndeski during the 70’s when he built the most general scalar-tensor theory
with equations of motion of second order for both the metric and for the scalar field
[13]. While it is true that the study of scalar-tensor theories is not a new topic,
currently, great interest resurfaced due to the study of Galileon theories and their
applications. It was shown that the generalization of the Galileons (originally for-
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mulated in flat space) to a curved background, for a particular parameterization of
the theory, reduces to part of the theory before described by Horndeski.

In particular, there is some subset of Horndeski action where the theory provides
scalar field with non-minimal kinetic coupling given by the curvature. When this
coupling is given by the Einstein tensor, it has been shown that it is possible to
study the inflation process of the Universe without need to include any potential
term [14]. In this scenario, the theory exhibits black hole solutions regaining the
interest in Horndeski theories. The first black hole solution was discovered by Rinaldi
[15] where the no-hair theorem for Galileons [16], which prevents the existence of
asymptotically flat black hole solutions, is circumvented by relaxing the asymptotic
behavior, obtaining an asymptotically AdS solution. However, in this case, the
scalar field configuration is imaginary outside the event horizon violating the weak
energy condition. Those problems were solved in [17] where they construct an
asymptotically locally AdS and flat black hole solution with a real scalar field outside
the event horizon and satisfying the weak energy condition.

Black holes and compact stars are of significant importance in alternative theories
of gravity as they constitute potential probes of the strong gravity regime. Having
explored the black hole solutions in the Horndeski scenario and following the same
line of work, we dedicate to the study of compact gravitational objects when the
minimal and non-minimal kinetic couplings to the scalar field are considered. In this
case, the construction of neutron stars has been tackled first in [18]. There, static
neutron stars and white dwarfs are shown to be supported by this model, imposing
in a very natural way, astrophysical constraints on the only free parameter that these
solutions exhibit. Its slowly rotating counterpart have been also studied in [19, 20,
21]. Nevertheless, there are gravitating solitonic solutions known as boson stars.
Boson stars originally constructed in [22] are compact stationary solutions of the
Einstein-Klein-Gordon (EKG) equations with a complex scalar field configuration.
These solutions, which have shown the possibility to be stable, represent a balance
between the attractive nature of gravity and the dispersive behavior of scalar fields,
and can be thought as a collection of stable fundamental scalar fields bounded by
gravity, where the Noether charge represent the total number of bosonic particles.
Boson stars have been widely studied during the last three decades. Furthermore, it
has been showed that observational properties of boson star are quite similar to its
counterpart in black holes, having proposed as possible candidates to represent super
massive objects at the center of galaxies and it is expected due to their dynamics,
to be detected by astronomical observations [23].

In a different perspective, scalar fields has been considered as a suitable and
representative way to describe matter sources as it is suggested by the overwhelming
literature to this respect. At the same time, as it is pointed by several astronomical
observations, gravitational sources in our Universe do posses rotation. With this

9



in mind, four dimensional exact rotating solutions in the context of GR describe
very interesting object from an astrophysical point of view, and are particularly
difficult to find due to the complexity of the field equations for stationary ansatz. In
this setting, the simplest configuration are represented by cylindrically symmetric
spacetimes interacting with a minimally coupled scalar field.

Despite the static cylindrically symmetric spacetimes are widely known in vac-
uum, exact solutions containing a massless scalar field as matter source have not been
obtained in the most general form until now. Only solutions with plane symmetry,
which are a particular case of the cylindrical ones, have been reported [24, 25].

For all the purposes previously mentioned, it would be helpful and interesting to
explore and present our original contributions in two different aspects of the influ-
ence of the scalar field in gravitation. First, as an additional degree of freedom for
the gravitational interaction in the context of Horndeski theories through the study
of black hole and boson star solutions when the non-minimal kinetic sector is con-
sidered. Second, as a matter field analyzing the stationary cylindrically symmetric
solution with a massless scalar field in the presence of a nonpositive cosmological
constant.

The plan of this thesis is the following:
In Chapter 3 a short review of the most important scalar-tensor theories is pre-

sented. We give some details about the origin and motivation of scalar-tensor the-
ories presenting the Brans-Dicke theory and its natural generalization. Finally we
treat the Horndeski action giving special emphasis on the non-minimal kinetic cou-
pling.

Chapter 4 is a complete description of a new electrically charged black hole solu-
tion in the Horndeski scenario [26]. We go one step further than the work presented
in [17] constructing the electrically charged black hole counterpart. There are two
remarkable properties when the minimal coupling to the scalar field is switched off
and only the non-minimal kinetic coupling is considered. One of the main features,
proper from this solution, is that the inclusion of electric charge supports an asymp-
totically flat configuration which asymptotically match Minkowski spacetime when
the cosmological constant vanishes. In addition, for non zero cosmological constant,
the solution represents asymptotically an Electric Universe presenting an asymptot-
ically constant electric field supported by the cosmological constant. The solution
is also found for arbitrary dimensions.

In Chapter 5, after a brief introduction of boson star about the precedent history
of these kind of solutions, we discuss on the nature of boson star giving some de-
tails about how to circumvent Derrick’s theorem as well as a heuristic argument to
estimate critical mass for mini-boson stars based on a stability criterion. Next, we
present the Lagrangian considered and the EKG equations. Expressions for basic
features as the mass, radius of the boson star and the Noether charge associated
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with the U(1) symmetry are provided as well. The consequences that the potential
has on the maximum mass of the boson star is discussed for free-field and quartic
self-interacting potential. Finally we give some brief remarks on the boson star in
the context of alternative theories of gravity.

Chapter 6 is devoted to boson stars in bi-scalar extensions of Horndeski gravity
[27]. The model, ansatz for the solution and field equations are presented. Due to
its complexity, field equations are solved numerically by defining suitable boundary
conditions for regular asymptotically flat solutions and an adequate set of dimen-
sionless parameters for numerical methods. Solutions are analyzed for free-field and
six order self-interacting potentials of particular interest, with non-minimally kinetic
coupling and compared to the minimally coupled configurations.

In Chapter 7 we give a short overview on the history of cylindrically symmetric
vacuum solutions and we present them for vanishing and non vanishing cosmologi-
cal constant. These spacetimes correspond to the Lewis family of solutions and the
static cylindrically symmetric string respectively. Finally we review the first solution
of this type with curvature singularity dressed by an event horizon found by Lemos
[28]. The so called black string is transformed to the stationary solution by per-
forming an improper coordinate transformation which will motivate our stationary
solution in the next chapter.

Chapter 8 displays the derivation and study of the general stationary cylindri-
cally symmetric solution for a minimally coupled massless scalar field in presence
of a non-positive cosmological constant in four spacetime dimensions [29]. Surpris-
ingly a subfamily of the solution does not posses static limit. However, we focus
the subsequent analysis to the class of solutions that do possesses this limit. We
describe its local and global properties as well as provide an interpretation to the
integration constants. For this, we compute the conserved charges associated to
the symmetries of the spacetime relating them with those constants. The case for
vanishing cosmological constant contains a nontrivial regular spacetime of special
interest. It possesses all its scalar invariants constant (CSI spacetimes). These are
particular regular spacetimes since they are locally homogeneous.

Global conclusions of this thesis are presented in Chapter 9 and its translation
to spanish in the next Chapter 10. Then, Appendix A shows explicitly the field
equations solved numerically in Chapter 6. Finally, the bibliography employed along
this thesis.
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Chapter 3

Scalar-tensor theories

Considering alternatives to a theory as successful as General Relativity can be
seen as a very radical move. However, from a different perspective it can actu-
ally be though of as a very modest approach to the challenges gravity is facing
today. Developing a fundamental theory of quantum gravity from first principle
and reaching the stage where this theory can make testable predictions has proved
to be a very lengthy process. At the same time, it is hard to imagine that we will
gain access to experimental data at scales directly relevant to quantum gravity any
time soon. Alternative theories of gravity, thought of as effective field theories, are
the phenomenological tools that provide the much needs contact between quantum
gravity candidates and observations at intermediate and large scales. In this way
the so called scalar-tensor theories arises as an alternative modification of General
Relativity where a scalar field is an additional degree of freedom that describes the
gravitational interaction1.

3.1. Fundamental properties

The possible scalar-tensor theories could be infinite if we ignore some funda-
mental properties. In order to get a physically reasonable modification of General
Relativity those properties are

1. Precision tests. The theory must generate predictions that pass all Solar
system, binary pulsar, cosmological and experimental tests carried out to date.
This is a threefold requirement in the following aspects:

a) General Relativity Limit. In some limit, such as the weak field one,
the theory must predicts the same phenomena than General Relativity

1A complete review on modifications of Einstein’s theory of gravity and scalar-tensor theories
can be found in [30, 31] respectively. This introductory chapter is based on these references.
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within experimental precision.

b) Existence of Known Solutions. The theory should admit solutions
corresponding closely to what we observe, such as (nearly) flat spacetime,
(nearly) Newtonian stars, cosmological solutions, etc.

c) Stability of Solutions. Solutions of the previous item must be stable
to small perturbations on timescales smaller than the age of the Universe.

These properties are not necessarily independent. The existence of weak-field
limit usually implies the existence of known solutions. Additionally, the ex-
istence of solutions does not necessarily imply stability. In addition to these
fundamental properties the modified gravity theory should have some theoret-
ical properties. The most common ones are:

2. Well-motivated from Fundamental Physics. One expects that, as a mod-
ification of General Relativity, the theory solve some fundamental problem in
physics such as late time acceleration or the quantum gravitational description
of nature. In other words, there must be some fundamental theory or principle
from which the modified theory (effective or not) derives.

3. Well-posed Initial Value Formulation. The initial data must uniquely
determine the solution to the modified field equations and this must depends
continuously on this data.

4. Strong Field Inconsistency. The theory must lead to observable deviations
from General Relativity in the strong-field regime.

A purely metric description of gravitational interaction which gives second order
field equations and is diffeomorphism-invariant restricts terms allowed in the action.
In this way, the dynamics of the metric field is left to be governed by Lovelock’s
action. This is the result of Lovelock’s theorem [1] and provide us an action princi-
ple which is the natural generalization of General Relativity to higher dimensions.
Consequently, in four dimensions this reduces to Einstein-Hilbert action. However,
any attempt to modify the action of General Relativity will generically lead to extra
degrees of freedom. The simplest way to do this, is not considering a purely metric
gravitational description of gravitation but one with an additional degree of free-
dom as a scalar field. In this way, scalar-tensor theories arise as modified theories of
General Relativity when in addition to the metric field the gravitational interaction
is described by a scalar field.
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3.2. Brans-Dicke theory

Originally, Brans-Dicke proposed the following action [6],

SBD[gµν , ϕ, ψ] =
1

16πG

ˆ
d4x
√
−g
(
ϕR− ω0

ϕ
∇µϕ∇µϕ− V (ϕ)

)
+ Sm[gµν , ψ] ,

(3.1)
where φ is the scalar field degree of freedom, ω0 is the so called Brans-Dicke

parameter and Sm represents the action for generic matter fields understood to
couple minimally to the metric2. The field equations derived from this action take
the form

Rµν −
1

2
Rgµν =

8ϕG

ϕ
Tµν +

ω0

ϕ2

(
∇µϕ∇νϕ−

1

2
gµν∇αϕ∇αϕ

)
+

1

ϕ
(∇µϕ∇νϕ− gµν�ϕ)− V (ϕ)

2ϕ
gµν ,

(3.2)

(2ω0 + 3)�ϕ = ϕV ′ − 2V + 8πG T , (3.3)

with � = ∇α∇α and a prime stands for differentiation respect to the argument. It
is worth to mention that in its original form Brans-Dicke theory did not contain a
potential. It is clear that in vacuum, i.e. when Tµν = 0, the possible solutions for
the theory admit a constant scalar field ϕ = ϕ0, provided ϕ0V

′(ϕ0) − 2V (ϕ0) = 0.
This equation determines an effective cosmological constant V (ϕ0) and the metric
satisfies the Einstein’s equations. Therefore, a suitable value for V (ϕ), could predict
the same phenomena as General Relativity. As an example, the spacetime around
the Sun, could be described by that solution, and the constraints associated with
the solar system would by satisfied. In contrast to this, the scalar field could have
nontrivial configurations, forcing the metric field to deviates from the solutions given
by General Relativity.

As a matter of fact, this is what happen in the case of spherically symmetric
solutions. Following with our example, lets consider the Sun and in concrete a
potential V (ϕ) = m2(ϕ − ϕ0)2. When the newtonian expansion is performed, it
is possible to compute the newtonian limit for the metric coefficients. One finds
that the standard 1/r potential in the perturbations of the metric h00 and hij,
gets a Yukawa-like correction. In order to identify new features introduced by the
new scalar degree of freedom, it is useful to compute the Eddington parameter

2Hereafter, in this thesis we use the “mostly plus signature” and Greek indices stand for indices
in the coordinate basis.
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γ = hij|i=j/h00. It is clear that γ = 1 recovers General Relativity, which demands
ω0 or m tends to infinity. Additionally, by the equation for the potential, the scalar
field ϕ goes to a constant value ϕ0, and the metric gµν satisfying Einstein equations
becomes unique. However, current constraints suggest γ − 1 = (2.1 ± 2.3) × 10−5

[32]. Turns out that, for m = 0, this constraint requires a value for ω0 larger
than 4 × 104 making the theory undistinguishable from General Relativity at any
scale. Moreover, for ω0 = O(1), the Yukawa correction would be smaller than a few
microns, which is lowest scale that the inverse square law has been tested.

Summarizing, the weak gravity constraints are so powerful, that it seems very
difficult to satisfy them and have new phenomenology at scales where General Rel-
ativity has been recently tested.

3.3. The generalized Brans-Dicke theory

Commonly in literature, scalar-tensor theories are considered as the direct gen-
eralization of original Brans-Dicke theory. This refers to promote ω0 to a general
function of the scalar field ϕ. In this context, the action is

Sst[gµν , ϕ, ψ] =
1

16πG

ˆ
d4x
√
−g
(
ϕR− ω(ϕ)

ϕ
∇µϕ∇µϕ− V (ϕ)

)
+ Sm[gµν , ψ] .

(3.4)
After some work, the fields equations are

Rµν −
1

2
Rgµν =

8ϕG

ϕ
Tµν +

ω(ϕ)

ϕ2

(
∇µϕ∇νϕ−

1

2
gµν∇αϕ∇αϕ

)
+

1

ϕ
(∇µϕ∇νϕ− gµν�ϕ)− V (ϕ)

2ϕ
gµν ,

(3.5)

(2ω(ϕ) + 3)�ϕ = ϕV ′ − 2V + 8πG T − ω′(ϕ)∇αϕ∇αϕ , (3.6)

It is expected that in the weak limit, scalar-tensor theories of this kind present
the same behavior as Brans-Dicke theory. However, the advantage to allow ω be
a function of ϕ is the possibility to get new phenomenology in the strong gravity
regime. Up to now, the scalar-tensor theories have been presented with a metric
that minimally couples to matter in the so called Jordan frame. In spite of that,
it is quite common to write them in the conformal or Einstein frame, where the
scalar field is redefined in such a way that couples minimally to gravity and matter.
To see this, a conformal transformation is performed ĝµν = ϕgµν , supplemented by

the scalar field redefinition 4
√
πϕdφ =

√
2ω(ϕ) + 3dϕ, obtaining the action in the

Einstein frame

Sst =

ˆ
d4x
√
−ĝ

(
R̂

16πG
− 1

2
ĝµν∇̂µφ∇̂νφ− U(φ)

)
+ Sm(gµν , ψ) . (3.7)
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where the potential is U(φ) = V (ϕ)/ϕ2, ĝµν is the conformal (or Einstein) frame
metric as well as the quantities with a hat are defined with this metric. The corre-
sponding field equations are

R̂µν −
1

2
R̂ĝµν = 8πGT φµν +

8πG

ϕ(φ)
Tµν , �̂φ− U ′(φ) =

√
4πG

(2ω + 3)
T , (3.8)

with

T φµν = ∇̂µφ∇̂νφ−
1

2
ĝµν∇̂αφ∇̂αφ− U(φ)ĝµν , (3.9)

and the stress-energy tensor and its trace in the Jordan frame given by Tµν and T
respectively.

One special thing of the Einstein frame is that as the scalar field φ is minimally
coupled to ĝµν calculations can be much simpler, specially in vacuum. Although,
computations can be performed in any frame, there are some subtleties about the
physical interpretation of the two metrics. The reader can refer to [33] for a complete
discussion about this.

3.4. The Horndeski action

So far, up to boundary terms, it has been presented the most general scalar-
tensor theory (3.4) quadratic in the derivatives of the scalar field. Nevertheless,
this is not the most general one, that can lead to second order field equations. The
most general scalar-tensor theory in four dimensional spacetime yielding second
order field equations was found by Horndeski [13] and reconsidered recently [34].
It is the analogue to Lovelock theorem in General Relativity but in the context of
scalar-tensor theories. A we mention, as a scalar-tensor theory, Horndeski theory
possesses a scalar field φ an a metric gµν as the gravitational degrees of freedom of
some Lorentzian manifold endowed with a Levi-Civita connection. Let us consider
a theory that depends on these degrees of freedom and an arbitrary number of their
derivatives

L = L(gµν , gµν,i1 , . . . , gµν,i1...ip , φ, φ,i1 , . . . , φ,i1...iq ) , (3.10)

with p, q > 2. As in the previous sections, we consider that matter fields couple only
to the metric and not to the scalar field. Therefore the metric and this frame, which
is the Jordan frame, are the physical one. In this frame the metric will continue to
verify the weak equivalence principle. In simple words, locally the spacetime can
be equipped by a normal frame where Christoffel symbols vanish. The Horndeski
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action can be put in such a way that only second derivatives are involved. Namely,

L =κ1(φ, ρ)δαβγµνσ∇µ∇αφR
νσ
βγ −

4

3
κ1,ρ(φ, ρ)δαβγµνσ∇µ∇αφ∇ν∇βφ∇σ∇γφ

+ κ3(φ, ρ)δαβγµνσ∇αφ∇µφRνσ
βγ − 4κ3,ρ(φ, ρ)δαβγµνσ∇αφ∇µφ∇ν∇βφ∇σ∇γφ

+ [F (φ, ρ) + 2W (φ)]δαβµνR
µν
αβ − 4F (φ, ρ),ρδ

αβ
µν∇αφ∇µφ∇ν∇βφ

− 3[2F (φ, ρ),φ + 4W (φ),φ + ρκ8(φ, ρ)]∇µ∇µφ+ 2κ8δ
αβ
µν∇αφ∇µφ∇ν∇βφ+ κ9(φ, ρ) ,

(3.11)

where ρ = ∇µφ∇µφ. The Lagrangian (3.11) contains four arbitrary functions
κi(φ, ρ), i = {1, 3, 8, 9} depending on the scalar field and its kinetic term ρ. Addi-
tionally, function F (φ, ρ) fulfills,

F,ρ = κ1,φ − κ3 − 2ρκ3,ρ (3.12)

and W (φ) is an arbitrary function of the scalar field. Without loss of generality,
it can be set to zero by redefining F (φ, ρ). Horndeski’s theorem [13] states that
(3.11) is the unique action -up to total divergence terms- that provides second order
field equations for the metric and scalar field, and Bianchi identities. Equations of
motion reads,

Eµν =
1

2
T µν , (3.13)

Eφ = 0 , (3.14)

with T µν = 2√
−g

δSm
δgµν

as the energy-momentum tensor. It can be proved that tensor
Eµν is divergenceless. In flat space, a subclass of Horndeski action enjoys of Galilean
symmetry, giving rise to Galileon action, which is invariant under φ→ φ+ cµx

µ + c,
where c is a constant and cµ is a constant one-form. By this reason, these fields are
also known as Galileons. However, this symmetry is lost when one tries to generalize
Galileon action to curved spacetime [35] (it is local symmetry). Therefore, Horndeski
action does not reduce to Galileon action in flat space. In spite of that, the scalar
field in the Horndeski scenario is known as Generalised Galileons (GG) [36]. A
simpler way to obtain Horndeski Lagrangian is through the general Galileon action

LGG =K(φ, ρ)−G3(φ, ρ)�φ+G4(φ, ρ)R +G4,ρ[(�φ)2 − (∇µ∇νφ)2]

+G5(φ, ρ)Gµν∇µ∇νφ− G5,ρ

6
[(∇2φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3] ,

(3.15)

in which is clearly easier to identify other theories like GR, Brans-Dicke, K-essence,
etc. as particular subsets of this theory. In [37] it is proved that this theory is
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equivalent to Horndeski theory when its arbitrary functions K, G3, G4 and G5 are
given by

K = κ9 + ρ

ˆ ρ

dρ′(κ8,φ − 2κ3,φφ) (3.16)

G3 = 6(F + 2W ),φ + ρκ8 + 4ρκ3,φ −
ˆ ρ

dρ′(κ8 − 2κ3,φ) (3.17)

G4 = 2(F + 2W ) + 2ρκ3 (3.18)

G5 = −4κ1 . (3.19)

Along this thesis we present two works where a subset of special interest of four
dimensional Horndeski Lagrangian is considered. In particular, this action provides
cosmological as well as black hole solutions. Namely, by choosing

K(φ, ρ) = − Λ

8πG
, (3.20)

G3(φ, ρ) = −α
2
φ , (3.21)

G4(φ, ρ) =
1

16πG
, (3.22)

G5(φ, ρ) = −η
2
φ , (3.23)

(3.24)

the theory exhibits a scalar degree of freedom coupled to gravitation through a
non-minimal kinetic term that contains the Einstein tensor in the presence of a cos-
mological constant. The minimal coupling is mediated by the parameter α while the
non-minimal coupling is provided through the factor η. Thus, the action principle
is given by

I[gµν , φ] =

ˆ √
−gdnx

[
κ (R− 2Λ)− 1

2
(αgµν − ηGµν)∇µφ∇νφ

]
. (3.25)

where κ := 1
16πG

. The variation of the action (3.25) with respect to the metric tensor
and the scalar field

Gµν + Λgµν =
α

2κ
T (1)
µν +

η

2κ
T (2)
µν , (3.26)

∇µ [(αgµν − ηGµν)∇νφ] = 0 , (3.27)
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respectively. Here we have defined3

T (1)
µν = ∇µφ∇νφ−

1

2
gµν∇λφ∇λφ ,

T (2)
µν =

1

2
∇µφ∇νφR− 2∇λφ∇(µφR

λ
ν) −∇λφ∇ρφRµλνρ

−(∇µ∇λφ)(∇ν∇λφ) + (∇µ∇νφ)�φ+
1

2
Gµν(∇φ)2

−gµν
[
−1

2
(∇λ∇ρφ)(∇λ∇ρφ) +

1

2
(�φ)2 −∇λφ∇ρφR

λρ

]
.

The non-minimal derivative coupling are an interesting source of new cosmological
dynamics. As we mentioned, this theory in particular can explain and describe the
accelerated expansion of the Universe without the use of any fine-tuned potential
[14]. This work motivated many subsequent researches about inflationary cosmology
and late-time cosmology [38, 39, 40]. The research of exact solutions is rather recent.
In [16] the authors present the no-hair theorem for Galileon gravity, which prevents
the existence of asymptotically flat black holes endowed by a nontrivial regular
scalar field configuration. Undoubtedly, the strategy in the quest of black solutions
is circumvent such a no-hair theorem by relaxing some of its hypothesis. In this way,
Rinaldi [15] found the first black hole solution by allowing an asymptotically AdS
behavior with a cosmological constant given in terms of the non-minimal coupling
factor. However, such black hole solution does not satisfy the weak energy condition
and the scalar field is imaginary in the domain of outer communications. A later
work presented in [17] found the way to solve this problem by adding a cosmological
constant as an additional free parameter. This allowed new remarkable solutions.
Namely, asymptotically locally flat black hole and the first gravitational soliton
found in the theory opening the possibility of regularizing the Euclidean action and
to describe the thermodynamics of the system using the Hawking-Page approach
[41]. In this way, phase transitions are found between the soliton and the large black
hole for specific value of the parameters. In this thesis our original contribution relies
on the same line of research as an extension of work [17] where we include a Maxwell
field. The inclusion of electric field confers unique properties compared with the
aforementioned ones. To be specific, switching off the minimal coupling we obtain
an asymptotically flat black hole, i.e. it matches perfectly with Minkowski spacetime
at infinity and recover Schwarzschild solution when electric charge vanishes. This
work will be presented in detail in the next chapter. Additionally, a gravitational
soliton is also found. Other exact solutions are time-dependent galileons, where the
scalar field is allowed to depend linearly on time [34] and many other were found
subsequently [42, 43, 44].

3We use a normalized symmetrization A(µν) := 1
2 (Aµν +Aνµ).
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Chapter 4

Asymptotically locally AdS and
flat black holes in the presence of
an electric field in the Horndeski
scenario

A great interest has been generated by spacetimes which are asymptotically of
constant curvature, particularly asymptotically AdS spacetimes. This interest is
largely motivated by the AdS/CFT correspondence [45] which relates the observ-
ables in a gauged supergravity theory with those of a conformal field theory in
one dimension less. In this way, black hole solutions with a negative cosmological
constant are important because in principle they could provide the possibility of
studying the phase diagram of a CFT theory. Therefore, it seems natural to study
the case where a negative cosmological constant is present. This was done in [17],
where a real scalar field outside the horizon was found and where the positivity of
the energy density is given by this reality condition. Recently in reference [34] it
has been shown that allowing the scalar to depend on time permits to construct a
black hole solution in which the scalar field is analytic at the future or at the past
horizon. In a similar context exact solutions were found in [42].

In this chapter we present asymptotically locally AdS and asymptotically flat
black hole solutions for a particular case of the Horndeski action. The action contains
the Einstein-Hilbert term with a cosmological constant, a real scalar field with a non-
minimal kinetic coupling given by the Einstein tensor, the minimal kinetic coupling
and the Maxwell term. There is no scalar potential. The solution has two integration
constants related with the mass and the electric charge. The solution is given for all
dimensions. A new class of asymptotically locally flat spherically symmetric black
holes is found when the minimal kinetic coupling vanishes and the cosmological
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constant is present. In this case we get a solution which represents an electric
Universe. The electric field at infinity is only supported by Λ. When the cosmological
constant vanishes the black hole is asymptotically flat.

The outline of this chapter is as follows: Section 4.1 presents the field equations
and the ansatz employed to solve them. In Section 4.2 the four-dimensional solution
is given for arbitrary K, and the energy density is computed. In Section 4.3, the
spherically symmetric solution is described in detail and the constraints on the
coupling parameters are described in order to obtain a real scalar field and positive
energy density. We comment as well on some of the thermodynamical properties of
the solution. In Section 4.4, the solution in arbitrary dimension n is given. Finally
in Section 4.5 the solution in the special case when α = 0 is analyzed.

4.1. Field equations

The aim of this work is to continue in this line and generalize the results in
reference [17] by adding a Maxwell term given by a spherically symmetric gauge
field A = A0(r)dt. As was emphasized in 3.4 we consider the non-minimal kinetic
sector of Horndeski theory. In the work presented in this chapter we shall focus on
the study of black hole solutions and their properties that emerge from this theory.
The action principle is given by

I[gµν , φ] =

ˆ √
−gdnx

[
κ (R− 2Λ)− 1

2
(αgµν − ηGµν)∇µφ∇νφ− 1

4
FµνF

µν

]
.

(4.1)
The strength of the non-minimal kinetic coupling is controlled by η. Here κ := 1

16πG
.

The possible values of the dimensionful parameters α and η will be determined below
requiring the positivity of the energy density of the matter field. The variation of
the action (8.1) with respect to the metric tensor, the scalar field and the gauge
field yields

Gµν + Λgµν =
α

2κ
T (1)
µν +

η

2κ
T (2)
µν +

1

2κ
T emµν , (4.2)

∇µ [(αgµν − ηGµν)∇νφ] = 0 , (4.3)

∇µF
µν = 0 , (4.4)
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respectively. Here we have defined1

T (1)
µν = ∇µφ∇νφ−

1

2
gµν∇λφ∇λφ ,

T (2)
µν =

1

2
∇µφ∇νφR− 2∇λφ∇(µφR

λ
ν) −∇λφ∇ρφRµλνρ

−(∇µ∇λφ)(∇ν∇λφ) + (∇µ∇νφ)�φ+
1

2
Gµν(∇φ)2

−gµν
[
−1

2
(∇λ∇ρφ)(∇λ∇ρφ) +

1

2
(�φ)2 −∇λφ∇ρφR

λρ

]
,

T emµν = Fµ
λFνλ −

1

4
gµνF

2 .

We will consider the family of spacetimes

ds2 = −F (r)dt2 +G(r)dr2 + r2dΣ2
K , (4.5)

where dΣK is the line element of a closed, (n − 2)-dimensional Euclidean space of
constant curvature K = 0,±1. The metric (6.2) corresponds to the most general
static spacetime compatible with the possible local isometries of ΣK acting on a
spacelike section. For K = 1, the space ΣK is locally a sphere, for K = 0 it is locally
flat, while for K = −1 it locally reduces to the hyperbolic space. Hereafter we will
consider a static and isotropic scalar field, i.e. φ = φ (r).

4.2. Four dimensional solution

Using the ansatz (6.2) the equation of motion for the scalar field (4.3) admits a
first integral, which implies the equation

r
F ′(r)

F (r)
=

[
K +

α

η
r2 − C0

η

G(r)

ψ(r)
√
F (r)G(r)

]
G(r)− 1 , (4.6)

where C0 is an integration constant, ψ(r) := φ′(r), and (′) stands for derivation with
respect to r. As it was done in reference [15], and then in [17] we (arbitrarily2) set
C0 = 0, which allows to find a simple relation between the metric functions F (r)
and G(r)

G(r) =
η

F (r)

(
rF ′(r) + F (r)

r2α + ηK

)
. (4.7)

1We use a normalized symmetrization A(µν) := 1
2 (Aµν +Aνµ).

2After the publication of this result, in [46] was proved that this is the unique choice compatible
with black hole solutions.
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The Maxwell equation admits a first integral as well, providing the following relation

G(r) =
r4

q2F (r)
(A′0(r))2 , (4.8)

where 1
q2

is an integration constant. These two last equations allow us to find an
expression for the first radial derivative of the electric potential

(A′0(r))2 =
q2η

r4

(
rF ′(r) + F (r)

r2α + ηK

)
. (4.9)

In this way, equations (4.7) and (4.9) together with the tt and rr components of
(4.2), provide a consistent system which for K = ±1 and ηΛ 6= α, has the following
solution

F (r) =
r2

l2
+
K

α

√
αηK

(
α + Λη + α2

4ηκK
q2

α− Λη

)2
arctan

(√
αηK
ηK

r
)
− µ

r

+
α2

κ(α− Λη)2

q2

r2
+

α3

16ηκ2K2(α− Λη)2

q4

r2
− α2

48κ2K(α− Λη)2

q4

r4
+

3α + Λη

α− Λη
K ,

G(r) =
1

16

α2(4κ (α− ηΛ) r4 + 8ηκKr2 − ηq2)2

r4κ2(α− ηΛ)2(αr2 + ηK)2F (r)
,

ψ2(r) = − 1

32

α2(4κ(α + ηΛ)r4 + ηq2)(4κ (α− ηΛ) r4 + 8ηκKr2 − ηq2)2

r6ηκ2(α− ηΛ)2(αr2 + ηK)3F (r)
,

A0(r) =
1

4

q
√
α

η
3
2K

5
2κ

(
4βκK2(α + ηΛ) + α2q

(α− ηΛ)

)
arctan

(√
αηK

ηK
r

)
+ α

(
8ηκK2 + αq

4ηκK2(α− ηΛ)

)
q

r
− α

12κK(α− ηΛ)

q3

r
.

Here we have defined the effective (A)dS radius l by l−2 := α
3η

and µ is an
integration constant related with the mass. In the case of a locally flat transverse
section (K = 0) the system integrates in a different manner and the solution takes
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the form

F (r) =
r2

l2
− µ

r
+

α

2κ(α− ηΛ)

q2

r2
+

αη

80κ2(α− ηΛ)2

q4

r6
,

G(r) =
1

16

(4κ(α− ηΛ)r4 − ηq2)
2

κ2(α− Λη)r8F (r)
,

ψ(r)2 = − 1

32

(4κ(α + ηΛ)r4 + ηq2) (4κ(α− ηΛ)r4 + ηq2)2

αηr12κ2(α− Λη)2F (r)
,

A0(r) = −
(

20κ(α− ηΛ)r4 − ηq2

20κ(α− ηΛ)r5

)
q .

In the case when we set q → 0 we recover the result obtained in [17] for the
cases K = ±1 as well as for the case K = 0. The later case reduces to topological
Schwarzschild solution with locally flat horizon [28].

It can be seen that this solution is asymptotically locally dS or AdS for α/η < 0
or α/η > 0, respectively, since when r →∞ the components of the Riemann tensor
go to

Rab
cd =

r→∞
− α

3η
δabcd := − 1

l2
δabcd ,

justifying our previous definition of the effective (A)dS radius. The asymptotic
expansion (r →∞) of the metric functions and of the gauge field reads

gtt =
r→∞

r2

l2
+

3α + ηΛ

α− ηΛ
K +

K

2α

√
αηK

(
(α + ηΛ) + α2q2

4ηκK2

α− ηΛ

)2

πσ − 2µ

r
+O

(
r−2
)
,

grr =
r→∞

r2

l2
+

7α + ηΛ

3(α− ηΛ)
K +

K

2α

√
αηK

(
(α + ηΛ) + α2q2

4ηκK2

α− ηΛ

)2

πσ − 2µ

r
+O

(
r−2
)
,

A0(r) =
r→∞

a0 −
q

r
+O(r−2) ,

where σ is the sign of ηK and a0 is a constant. From here it is possible to see
that our electric potential reproduces the Coulomb potential at infinity. There is a
curvature singularity at r = 0 since for example the Ricci scalar diverges as

R =
r→0

4K

r2
+O(1) . (4.10)

If ρ(r) is the energy density, then the total energy E is given by

E = V (Σ)

ˆ
drρ (r) , (4.11)
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where V (Σ) stands for the volume of Σ. Therefore

ρ (r) := r2
√
G (r)F (r)−1 Ttt . (4.12)

Now, the tt component of the energy momentum tensor reads

Ttt = −(α + Λη)

ηκ2
F (r) [1−H(r)F (r)] , (4.13)

where H(r) is the given by the expression

H(r) =
64η2r2(α− Λη)2(r2α + ηK)

α2κ2(α + Λη)

(
q2κ(2r2α + ηK)− 4K(α + Λη)r4

4(α− Λη)r4 + 8r2ηK − ηκq2

)
.

If we take the limit q → 0 we recover the Ttt component of the uncharged case.

4.3. Spherically symmetric case

Now we study the particular case with a spherically symmetric transverse section
K = 1. The solution for the metric components and for the square of the derivative
of the scalar field reduces to

F (r) =
r2

l2
+

1

α

√
αη

(
α + Λη + α2

4ηκ
q2

α− Λη

)2
arctan

(√
αη

η
r
)
− µ

r

+
α2

κ(α− Λη)2

q2

r2
+

α3

16ηκ2(α− Λη)2

q4

r2
− α2

48κ2(α− Λη)2

q4

r4
+

3α + Λη

α− Λη
,

G(r) =
1

16

α2(4κ (α− ηΛ) r4 + 8ηκr2 − ηq2)2

r4κ2(α− ηΛ)2(αr2 + η)2F (r)
,

ψ2(r) = − 1

32

α2(4κ(α + ηΛ)r4 + ηq2)(4κ (α− ηΛ) r4 + 8ηκr2 − ηq2)2

r6ηκ2(α− ηΛ)2(αr2 + η)3F (r)
,

A0(r) =
1

4

q
√
α

η
3
2κ

(
4βκ2(α + ηΛ) + α2q

(α− ηΛ)

)
arctan

(√
αη

η
r

)

+ α

(
8ηκ+ αq

4ηκ(α− ηΛ)

)
q

r
− α

12κ(α− ηΛ)

q3

r
.

In order to analyze the proper features of a black hole in our solution we need to
analyze the lapse function F (r). As we approach the origin, the lapse function goes

25



to minus infinity. On the other hand, as we go to infinity along coordinate r, F (r)
tends to plus infinity. Therefore, it is clear that this function being continuous has
at least one zero. We can prove that this function has more than one zero. Since
we know the existence of at least one zero rH , we can parametrize the function with
rH as parameter. From the equation F (rH) = 0 we get µ ≡ µ(rH) which can be
used to express the lapse function as F (r, µ(rH)). To prove the existence of the
second event horizon, we can do the same as before but with the electric charge. We
propose the existence of rh, then F (rh) = 0, and using this we get q2 ≡ q2(rh, rH).
It is possible to find two roots for F (rh) = 0 or in other words, two suitable values
of q2 for a possible rh. This values in some cases are both negatives, both positive
or one positive and the second negative, but at least the existence of one positive
root is enough to prove the existence of rh. As we said, due to the shape of the lapse
function near the origin and at infinity, the existence of two zeros of the function
implies the existence of a third zero for some range of parameters. Therefore F (r)
can have just one zero, two zeros3 or three zeros. Each of these cases exist for a
specific set of values of the coupling and cosmological constants. From hereafter and
for simplicity, we will focus in the case when the lapse function has just one zero.

Reality condition of the lapse function requires αη > 0. Therefore l−2 := α
3η

is
positively defined and the spacetime is asymptotically AdS. As it was noted in the
uncharged case [17] without loss of generality it is possible to choose both parameters
positive, since the solution with both α and η negative is equivalent to the former
by changing µ→ −µ.

In order to obtain a real scalar field in the domain of outer communications
and satisfy the positivity of the energy, we need to impose some constraints in our
parameters. In fact, the value of the cosmological constant is restricted to be

Λ < − q2

4r4
Hκ
− α

η
. (4.14)

It is important to note that we cannot switch off the scalar field. This implies that
our solution is not continuously connected with the maximally symmetric back-
ground. Despite of this, setting µ = 0 and q = 0 we observe that the spacetime is
regular, actually is the only regular spacetime that can be found within this family.
Such a case describes an asymptotically AdS gravitational soliton. Close to r = 0
and after a proper rescaling on the time coordinate the spacetime metric takes the
following form

ds2
soliton = −

(
1− Λ

3
r2 +O(r4)

)
dt2 +

(
1− 3α + 2Λη

3η
r2 +O(r4)

)
dr2 + r2dΩ2 .

(4.15)

3This case is an special case in the sense that contains a zero which is a local minimum. When
that local minimum is the outer horizon this corresponds to an extremal black hole.

26



The thermal version of this spacetime can be used as the background metric for
obtain a regularized euclidean action which could be used to obtain the thermody-
namical properties of the black holes in the Hawking-Page approach.

4.4. n-dimensional case

In this section we analyze the n−dimensional solution to the action principle
defined by (8.1). For doing this, we take the variation of our Lagrangian with
respect to all the functions involved F (r), G(r), φ(r) and A0(r). This procedure
gives us the equations of motion of the system.

Therefore, following the same strategy than in four dimensions, the equation of
motion for the scalar field admits a first integral. Setting to zero the integration
constant of this equation we obtain a relation between the metric coefficients, but
now in arbitrary dimension

Gn(r) =
η(n− 2)

Fn(r)

(
F ′n(r)r + Fn(r)(n− 3)

2r2α + ηK(n− 2)(n− 3)

)
. (4.16)

The equation coming from the variation with respect to the electric field gives us
the following relation (

A′0n(r)
)2

= q2Fn(r)Gn(r)r(4−2n) .

In the same spirit, and using the last result, it is possible to obtain a relation for
ψ(r)2. Then

ψn(r)2 = −1

2
(n− 2)

(
Ξ1
n + Ξ2

n

Ξ3
n

)
,

where we have defined

Ξ1
n = (n− 3)2(4κΛηr2 + 4κr2α + q2r(−2n+6)η)Fn(r)2

+ 2(n− 3)(q2r(−2n+7)η + 4κΛηr3 + 4αr3κ)F ′n(r)Fn(r) ,

Ξ2
n = (4κΛηr4 + q2r(−2n+8)η + 4αr4κ)F ′n(r)2 ,

Ξ3
n = Fn(r)(2r2αηKn2 − 5ηKn+ 6ηK)2((n− 3)Fn(r) + F ′n(r)r) .

Using these expressions and the equation resulting from the variation with re-
spect to the function Fn(r), we can obtain a relation which allows to obtain the
explicit form of Fn(r) for an arbitrary value of the dimension n, and in this way, the
complete solution to our system. We checked the result from n = 4 to n = 10.
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4.5. Asymptotically locally flat black holes with

charge supported by the Einstein-kinetic cou-

pling

In this section we will study the particular case where the scalar field is coupled
to the background only with the Einstein tensor. It is possible to do this by setting
α = 0. Under the presence of an electric field, we obtain asymptotically locally
flat black hole solutions in the case where the cosmological constant is present.
Therefore, the action principle is given by

I[gµν , φ] =

ˆ √
−gd4x

[
κ (R− 2Λ) +

η

2
Gµν∇µφ∇νφ− 1

4
FµνF

µν

]
. (4.17)

Following the same procedure (with α 6= 0 and K = 1)4 we obtain

ds2 = −F (r)dt2 +
15[4κr2(2− Λr2)− q2]2

r4

dr2

F (r)
+ r2dΩ2 , (4.18)

where

F (r) = 48κ2Λ2r4 − 320κ2Λr2 + 120κ(8κ+ Λq2)− µ

r
+ 240κ

q2

r2
− 5

q4

r4
,

ψ(r)2 = −15

2

(4κΛr4 + q2)(4κr2(2− Λr2)− q2)2

r6η

1

F (r)
,

A0(r) =
√

15

(
q3

3r3
− 8κ

q

r
− 4κΛrq

)
.

This solution shows the following features:

The solution is asymptotically locally flat, namely we have

lim
r→∞

Rµν
λρ → 0 .

For a non degenerated horizon r = rH we have F (rH) = 0, then the scalar
field vanishes at the horizon and is not analytic there.

In order to obtain a real scalar field outside of the horizon we can impose two
different conditions:

4In the case where K = 0, the system integrate in a different manner. In fact, Λ and q have to
vanish in order to fulfil the field equations. Then, we obtain the same degenerated system found
in [17].
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1. Λ > 0 and η < 0 or

2. Λ < − q2

4κr4H
and η > 0.

For any value of the integration constant µ we have the curvature singularities

r0 = 0 ,

r1,2 =

√
2κΛ(2κ±

√
4κ2 − κΛq2)

2κΛ
.

Then for Λ < 0 the only singularity is located at the origin of coordinates.
If the cosmological constant is positive, in order to rule out the existence of
singularities different than r = 0, we need to impose the following constraint
on the value of Λ

Λ >
4κ

q2
. (4.19)

We point out that in the limit r → ∞ our electric potential represents a
constant electric field at that point supported by the cosmological constant,
and in this way we obtain an asymptotically electric Universe.

Finally the limit q → 0 we recover the results obtained in [17].

Let us put Λ = 0, then the solution takes the form

ds2 = −F (r)dt2 +
3(8κr2 − q2)2

r4

dr2

F (r)
+ r2dΩ2 ,

where

F (r) = 192κ2 − µ

r
+ 48κ

q2

r2
− q4

r4
,

ψ(r)2 = −15

2

(8κr2 − q2)2

r6η

q2

F (r)
,

A0(r) =
√

15

(
q3

3r3
− 8κ

q

r

)
.

In this case we have:

The solution is asymptotically flat

ds2 = −
(

1− µ

r
+O(r−2)

)
dt2 +

(
1 +

µ

r
+O(r−2)

)
dr2 + r2dΩ2 ,

which is reasonable because when we have Λ = 0, the electric field at infinity
vanishes.
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For a non degenerated horizon r = rH we have F (rH) = 0, then the scalar
field vanish at the horizon, as in the previous cases, is not analytic there.

In order to obtain a real scalar field outside of the horizon we impose

η < 0 .

For any value of the integration constant µ we have the curvature singularities

r0 = 0 ,

r1 =

√
1

8κ
|q| .

The electric field goes to zero at infinity.

Taking the limit when q → 0 we obtain a trivial scalar field and then we
recover the Schwarzschild solution.

4.6. Ending remarks

In this work a particular sector of the Horndeski theory was considered where the
gravity part is given by the Einstein-Hilbert term, and where the matter source is
represented by a scalar field which has a non-minimal kinetic coupling constructed
with the Einstein tensor. The main novelty of this work is the inclusion of the
Maxwell field. We found exact solutions to this system for a spherically symmet-
ric and topological horizons in all dimensions. The solution gives a new class of
asymptotically locally AdS and asymptotically locally flat black hole solutions.

These solutions are obtained using two important observations. The first one, is
the fact that the equation of motion for the scalar field admits a first integral, which
after setting the integration constant to zero (arbitrarily) gives a simple relation
between the two metric functions. The second one, is that the Maxwell equations
are easily integrated for our ansatz and symmetry conditions, given a simple relation
between the electric potential term and the metric functions. Mixing these two
results we obtain a complete description of the system, obtaining in that way the
exact solution for the topological case in n ≥ 4 dimensions.

We observe and point out that in the case of the asymptotically locally AdS
solution, the cosmological constant at infinity is not given by the cosmological Λ
term in the action but rather in terms of the coupling constants α and η that
appear in the kinetic coefficients of the field. The electric field is well behaved and
goes to the Coulombic one at infinity.
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The solutions are not continuously connected with the maximally symmetric AdS
or flat backgrounds since the scalar field cannot be turned off. Nevertheless, since
our family of metrics contains a further integration constant, it is possible to show
that within such a family there is a unique regular spacetime. Such spacetime is a
gravitational soliton and it is useful in the four dimensional spherically symmetric
case to define a regularized Euclidean action and to explore the thermodynamics of
the black hole solution. A similar situation occurs with the AdS soliton, which can
be considered as the background for the planar AdS black holes, as well as in gravity
in 2+1 with scalar fields, where the gravitational solitons are the right backgrounds
to give a microscopic description of the black hole entropies [47, 48, 49].

In the particular case when the scalar field is only coupled to the metric through
the Einstein tensor, namely, α = 0 we obtain an asymptotically locally flat black
hole solution. When Λ 6= 0 this solution presents some interesting properties. The
solution exist in both cases, where the cosmological constant is positive and when
is negative, given a real scalar field configuration depending on constraints imposed
on the electric charge and on the coupling constant η. In any of these cases we
obtain a constant electric field at infinity, representing in this way our solution a
electric Universe. This constant electric field at infinity is just supported by the
cosmological constant.

In the case where Λ = 0 we obtain a real scalar configuration just in case where
the coupling constant is negative. The solution is asymptotically flat and the electric
field vanishes at infinity when Λ = 0. If we switch off the electric field setting q = 0,
we get a trivial scalar field and then we recover the Schwarzschild solution.

It is important to note that Horndeski theory offers the possibility of exploring
its solutions in many different ways. In another context, using the same action
principle, but without the Maxwell term an asymptotically Lifshitz solution was
recently found in [43]. Moreover, even if it is not possible to obtain an analytic
solution to the most general case of the Horndeski theory for the general static
black hole solution, it would be interesting to study the cases where the non-minimal
coupling is given by more general tensors than the Einstein one, namely the Lovelock
tensors.
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Chapter 5

Boson Stars

In the same way as the scalar fields have been used to tackle cosmological prob-
lems, these fields can be employed to describe astrophysical objects composed of
massive scalar particles (or bosons). In this context, it is possible to find config-
urations which are held together simply by gravitational force. These configura-
tions were dubbed as Boson Stars (BSs) and were found theoretically almost 50
years ago by Kaup [22] and by Ruffini and Bonazzola [50]. Astrophysical objects of
fermionic nature like neutron stars and white dwarfs, are prevented from collapse
due to the Pauli exclusion principle. Instead, as bosons, scalar particles experience
Bose-Einstein condensation, i.e. all the bosons may occupy the same ground state.
However, by the Heisenberg uncertainty principle, the scalar particles can not be
localized within the Compton wavelength, preventing the gravitational collapse of
the boson star into a black hole. This is the same mechanism that confers stability
to atoms [51]. For this reason, boson stars are also called “gravitational atoms”.

The study of boson stars got stuck until its rediscovery during the 1980’s when
scalar fields acquired much more attention since its discovery [52, 53, 54, 55]. Dur-
ing these years, boson star configurations with self-coupling additionally to a mass
term were found [56]. The study of boson star including a scalar field non-minimally
coupled to gravity were also studied [57] and consequently the electrically charged
version [58]. Configurations mixing bosonic and fermionic particles were also con-
structed [59, 60].

It is of particular interest the study of mechanisms that allow the formation of
boson star. To this respect, two possibilities are apparently possible: gravitational
collapse as occurs with galaxies and clusters [61] and phase transitions. The latter
was investigated for non-topological solitons [62], however a large object as a boson
star is very unlikely to form by this mechanism and gravitational collapse is more
interesting in this context.

Other regular solutions related to boson stars have been studied. For example,
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nontopological soliton stars [55, 63, 64], which are nontopological solitons with grav-
itational interaction. The Q-star [65, 66], which is the gravitating version of a Q-ball
[67]. These solutions consider additional fields which localize the scalar initially, and
then gravity is incorporated. Even so, the simplicity of boson star makes them a
more appealing and interesting object. For this reason different kind of boson stars
has been explored in the literature. In this way, it is possible to find boson stars
with electric charge [58], rotation [68, 69] and even with fermionic component [59],
each one with different kind of potentials for the scalar field.

This chapter is devoted to present a brief review of boson stars and is organized
as follows1. Section 5.1 is dedicated to give an introduction to boson stars as well
as to provide an insight about the nature of this objects and a heuristic estimation
of the maximum mass attainable by the simplest configuration. In Section 5.2 we
present the Lagrangian, evolution equations and conserved quantities. In Section
5.3 the mini-boson star is presented, which are the simplest spherically symmetric
configurations with only massive term in the scalar potential. Boson stars with self
coupled scalar field are also considered with simple potentials that retain the global
gauge symmetry U(1) in Section 5.4. The form in which gravitational interaction
is described can be modified too, namely, in the Newtonian gravity context, scalar-
tensor theories or even with no gravity at all as in the case of Q-balls.This chapter
gives the basic foundations to understand our main result in this stage of the thesis,
presented in the next chapter where we give a complete analysis of boson stars in
bi-scalar extensions of Horndeski gravity.

5.1. Nature of boson star

Boson stars are described by a complex scalar field coupled to gravity. A complex
scalar field φ(t, r) can be decomposed into two real scalar fields φR and φI

φ(t, r) ≡ φr(t, r) + iφI(t, r) . (5.1)

The energy of this field -determined by its stress-energy tensor- gravitates hold-
ing the star together. On the other hand, to know what prevents the gravitational
collapse one must to consider that the scalar field obeys a Klein-Gordon wave equa-
tion which confers a dispersive behavior to the fields. To this respect, Kaup found
the energy eigenstates for semi-classical, complex scalar field, concluding that grav-
itational collapse was not inevitable [22]. This work was continued by Ruffini and
Bonazzola [50], quantizing a real scalar field and finding the same equations.

None of the arguments previously exposed ensure a balance between the dis-
persion and gravitational attraction of the scalar field. Indeed, Derrick’s theorem

1The reader may refer to [70, 71, 72] for detailed reviews on boson stars.
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proves that in three spatial dimensional flat space there are no stable configurations
which are regular, static, nontopological scalar field solutions [73]. It is possible to
circumvent this constraint by considering a harmonic ansatz for the complex scalar
field

φ(t, r) = φ0e
iωt . (5.2)

and turns the configuration stable. Although the scalar field is no longer static, the
spacetime remains static. This can be seen by computing the stress-energy tensor
which is independent of the time coordinate. Therefore, the star itself is a stationary,
soliton-like solution.

A good estimation of the maximum mass of a boson star can be made considering,
on the one hand, the Heisenberg uncertainty principle

∆p∆x > ~ , (5.3)

assuming m as the mass of the constituent particle and a star confined to a radius
∆x = R. We determine its minimum possible value when the maximum momentum
for a relativistic boson star ∆p = mc is reached and the uncertainty bound is
saturated. Namely

R =
~
mc
≡ λC , (5.4)

which is precisely its Compton wavelength λC . On the other hand to prevent grav-
itational collapse of the boson star, it requires R to get a minimum value given by
its Schwarzschild radius RS ≡ 2GM/c2. This means that R = RS determines the
maximum value Mmax or2

2GMmax

c2
=

~
mc

, (5.5)

giving

Mmax =
1

2

~c
Gm

. (5.6)

The estimation is Mmax = 0.5M2
Planck/m where MPlanck ≡

√
~c/G is the Planck

mass . This inverse relationship is modified by self-interaction terms and the strength
of the coupling m. Thus, depending on those conditions, the mass and size of the
boson stars can vary from atomic to astrophysical scales.

More than just an analogy, boson stars can serve as a very useful model of
a compact star, having certain advantages over a fluid neutron star model: (i) the

2In some literature the criterion to avoid an instability against complete gravitational collapse
requires a star’s radius bigger than the last stable Kepler orbit 3RS . Furthermore, some numerical
calculation shows that Mmax = 0.633M2

Planck/m.
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equations governing its dynamics avoid developing discontinuities, in particular there
is no sharp stellar surface, (ii) there is no concern about resolving turbulence, and
(iii) one avoids uncertainties in the equation of state.

5.2. Lagrangian, field equations and conserved

charges

The equations governing boson star are the Einstein equations for the geometric
description and the Klein-Gordon equation determining the scalar field dynamics.
Hereafter, we will refer to this system as the Einstein-Klein-Gordon (EKG) equa-
tions.

The action to be considered is as follows,

S =

ˆ √
−gd4x

(
R

16πG
+ Lm

)
(5.7)

where R is the Ricci scalar given by the metric gµν . The matter Lagrangian is
given by

Lm = −1

2

[
gµν∇µφ̄∇νφ+ V (|φ|2)

]
(5.8)

where we have denoted to the complex conjugate of the field as φ̄ and V (|φ|2) as a
potential depending only on the magnitude of the scalar field, which enjoys of U(1)
invariance of the field in the complex plane.

The Einstein field equations for this system turn out to be

Rµν −
1

2
Rgµν = 8πGTµν (5.9)

with Tµν =
1

2

[
∇µφ̄∇νφ+∇µφ∇νφ̄

]
− 1

2
gµν
[
gαβ∇αφ̄∇βφ+ V (|φ|2)

]
.

On the other hand Klein-Gordon (KG) equation is

�φ = φ
dV

d|φ|2
, (5.10)

which is equivalent to the equation of motion for φ̄.
According to Noether’s theorem, the global symmetry of the KG Lagrangian

under the group U(1) implies a conserved current

Jµ =
i

2
(φ̄∇µφ− φ∇µφ̄), (5.11)
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satisfying the conservation law

∇µJ
µ =

1√
−g

∂µ(
√
−ggµνJν) = 0 . (5.12)

Therefore, the conserved Noether current, given by the spatial integral of the
time component of this current is

N =

ˆ
g0µJµ

√
−gd3x , (5.13)

which is interpreted as the total number of bosonic particles.
Other important quantities that describe the boson star is the mass and the

notion of radius. The mass is given by the expression

M = 4π

ˆ ∞
0

ρr2dr (5.14)

where ρ is the mass-energy density of the scalar field. Equivalently, outside the star
the solution can be matched with a Schwarzschild solution obtaining,

M = lim
r→∞

r

2

[
1− 1

A(r)

]
. (5.15)

We require suitable boundary conditions for our desired boson star configurations.
The appropriate set of boundary conditions requires that our solution must be

non-singular,

asymptotically flat,

of finite mass.

The radius of the boson star has many definitions in the literature. The cause
of this, is that the scalar field does not reach zero until radial infinity, therefore
there is nonzero probability to find the presence of the scalar field at any radius. A
definition by Gleiser [74] defines de radius R as

R ≡ 4π

M

ˆ ∞
0

ρr3dr , (5.16)

which is nothing else than the mean value of the radius with respect to the mass
function integral given above. Other alternative definitions as the distance enclosing
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95% of the total mass or the maximum of the radial metric function, gives similar
results confirming a radius comparable to the Compton wavelength 1/m. This is
expected as all the bosons are in their ground state.

Finally and non less important the binding energy EB of the star which is a
measure of the difference in mass between the gravitationally bound configuration
and the same number of particles dispersed to infinity. The expression for this
quantity is defined as

EB = Nm−M . (5.17)

Positive binding energy configurations are unable to disperse completely to infin-
ity, and those configurations are the most likely to be stable. In contrast, negative
binding energy makes the entire star unstable, so the star disperse to infinity radi-
ating off some particles, leaving a less centrally condensed stable configuration.

5.3. Mini-boson stars

Mini-boson stars are the simplest boson star solutions. These configurations
are supported by a free-field potential for Lagrangian (5.7) which consist only in a
massive term

V (|φ|2) = m2|φ|2 , (5.18)

with m as a parameter that can be recognized as the bare mass of the field theory.
As it was proved in [55], real scalar fields are not compatible with a regular and

stationary gravitational field. Even so, one can assume a harmonic ansatz for the
scalar field

φ(t, r) = φ0(r)eiωt , (5.19)

and obtain time-independent equation of motion. Here φ0 is a real scalar field which
is the profile of the boson star and ω is the angular frequency of the phase of the
complex scalar field. The variable ω is determined via an eigenvalue equation and
is crucial for obtaining configurations of finite mass. For simplicity, let us consider
spherically symmetric and static ansatz for the spacetime according to the minimal
energy configuration requirement. Then

ds2 = −B(r)2dt2 + A(r)2dr2 + r2dθ2 + r2 sin2(θ)dψ2 , (5.20)

where the real metric functions are A and B. The structure equations follow from
the Einstein equations and the scalar wave equations for each of the two compo-
nents. It is convenient also to include the equation of energy conservation. The
Bianchi identities enforce energy conservation from the Einstein equations alone,
thus implying that there are redundancies between these equations. This allows us
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to choose any set of independent ones. There are three nontrivial Einstein equa-
tions coming from the Gtt, Grr and Gθθ components of the Einstein tensor. Once
the scalar field has been reduced to one nonzero component as described above, the
scalar wave equation and the energy conservation equation ∇νT

ν
µ = 0 (which here

has the only one nontrivial component) give the same equation. Furthermore, the
Bianchi identities then imply that this equation is a consequence of the Einstein
equations. The most convenient set of independent equations to take are the Gtt

and Grr Einstein equations together with the scalar wave equation, so the EKG
system can be written after a little manipulation as( r

A

)′
= 1− 8πGr2

[(
m2 +

ω2

B

)
φ2 +

φ′2

A

]
, (5.21)

B′

ABr
− 1

r2

(
1− 1

A

)
= −8πG

[(
m2 − ω2

B

)
φ2 − φ′2

A

]
, (5.22)

φ′′ +

[
2

r
+

1

2

(
B′

B
− A′

A

)]
− A

(
m2 − ω2

B

)
φ = 0 , (5.23)

with prime as differentiation respect to r. For the numerical methods, it is more
practical, to express the equations using dimensionless variables

x = mr , σ(x) =
√

8πGφ(x/m) , Ω = ω/m . (5.24)

Now, prime denotes differentiation respect to new variable x and the redefinition
of the scalar field is given by σ. Finally we get the EKG system as follows

A′ = xA2

[(
Ω2

B
+ 1

)
σ2 +

σ′2

A

]
− A

x
(A− 1) , (5.25)

B′ = xAB

[(
Ω2

B
− 1

)
σ2 +

σ′2

A

]
+
B

x
(A− 1) , (5.26)

σ′′ = −
(

2

x
+
B′

2B
− A′

2A

)
σ′ − Aσ

(
Ω2

B
− 1

)
. (5.27)

The use of dimensionless variables makes equations of motion explicitly non depen-
dent on the boson mass m obtaining configurations with no dependence on this
quantity. In order to obtain a physical and reasonable solution of this system, we
have to impose suitable boundary conditions,
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σ(0) = σ0 , (5.28)

σ′(0) = 0 , (5.29)

A(0) = 1 , (5.30)

B(0) = B0 , (5.31)

lim
x→∞

σ(x) = 0 , (5.32)

lim
x→∞

B(x) = lim
x→∞

1

A(x)
, (5.33)

which guarantee regularity at the origin and asymptotic flatness and therefore being
consistent with the requirements given in the previous Section 5.2.

Once the value for σ0 is fixed, we need to adjust the eigenvalue ω(n) in order to
find solutions matching the asymptotic behavior (5.32) and (5.33). The system can
be solved as a shooting problem by integrating from the origin r = 0 towards the
boundary r = rout. The configuration without nodes ω(0) is the ground state, while
all those with any nodes are excited states. As the number of nodes increases, the
distribution of the mass as a function of the radius becomes more homogeneous.

As the amplitude σ0 increases, the stable configuration has a larger mass while
its effective radius decreases. This trend indicates that the compactness of the boson
star increases. However, there is a point in which the mass decreases while the central
amplitude increases. So, in the ground state there is a maximum allowed mass for
a boson star, which is numerically found with the value Mmax = 0.633M2

Planck/m in
very good agreement with the heuristic arguments provided in Section 5.1.
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Figure 5.1: Mass M and particle number Nm respect to the central value of scalar
field σ0 for a ground state mini-boson star configuration. The first peak shows the
maximum mass attainable for a boson star Mmax = 0.633M2

Planck/m.

This can be seen in Fig. 5.1, as well as the particle number Nm respect to σ0.
Positive values for the binding energy EB are presented even after the maximum
mass, until a value for σ0 ≈ 0.5. This means that our maximum mass configuration is
stable, and even more, that for σ0 & 0.5 is not possible to find stable configurations.

This behavior is the same exhibited by neutron stars, where static configurations
are a function dependent only on the central density and they present a similar shape.

5.4. Boson stars in presence of self-interacting po-

tentials

As we mentioned in 5.3, the first boson star solution was constructed with a
free-field potential, without any kind of self-interaction, and with a maximum mass
going like Mmax ≈ M2

Planck/m. This mass is much smaller than the Chrandasekhar
mass MCh ≈ M3

Planck/m
2 obtained for fermionic stars. For this reason those con-

figurations are known as mini-boson stars. The main motivation for introducing
self-interaction terms in the potential, is to reach astrophysical masses comparable
to the Chandrasekhar mass since these terms provide an extra pressure against grav-
itational collapse.
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The action (5.7) for these configurations contains a potential given by

V (|φ|2) = m2|φ|2 − λ

2
|φ|4 , (5.34)

which retains global phase invariance and particle number conservation. In this part
we restrict ourselves to positive λ, although a negative one is not excluded a priori.
Indeed, in the next chapter we will consider that case where the system exhibits two
degenerate local vacua but in the context of Horndeski Lagrangians where we explore
the consequences of the non-minimal kinetic term. Let us check how important is
the coupling constant λ. The values of central density for the most massive boson
star is approximately φ0 ∼MPlanck/20. Thus, the ratio of the self-coupling term to
the mass term at the centre of the star is

λφ4
0/2

m2φ2
0

∼ λ

1000

M2
Planck

m2
, (5.35)

which determines that the self-coupling term is important for,

λ > 1000
m2

M2
Planck

. (5.36)

Even for a boson with mass equivalent to that of the neutron, the self-coupling
terms only needs λ > 10−35. This tell us, that the case λ = 0 examined previously
is unlikely to be of astrophysical relevance.

The additional parameter λ increases the size of the space of configurations.
As in the previous Section 5.3 it is convenient to redefine it by a dimensionless
parameter,

Λ̃ =
λM2

Planck

4πm2
. (5.37)

Any value of Λ̃ will label a family of equilibrium solutions of different central den-
sities.

The equations of motion are quite similar to equations (5.25)-(5.27) but with an
additional term coming from the self-interacting part of the potential,

A′ = xA2

[(
Ω2

B
+ 1

)
σ2 +

Λ̃

2
σ4 +

σ′2

A

]
− A

x
(A− 1) , (5.38)

B′ = xAB

[(
Ω2

B
− 1

)
σ2 − Λ̃

2
σ4 +

σ′2

A

]
+
B

x
(A− 1) , (5.39)

σ′′ = −
(

2

x
+
B′

2B
− A′

2A

)
σ′ − A

[(
Ω2

B
− 1

)
σ − Λ̃σ3

]
. (5.40)
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Large values for Λ̃ become a problem at the time of solving these equations
numerically since the terms involved in the system differ by many orders of magni-
tude. In spite of that, Colpi, Shapiro and Wasserman [56] were able to construct
a method to get numerical solutions with arbitrarily accuracy in the large Λ̃ limit.
Let us redefine the radial metric function

A(x) =

(
1− M(x)

x

)−1

, (5.41)

and then we can rewrite (5.38) as

M′(x) =
1

2
x2

[(
Ω2

B
+ 1

)
σ2 +

Λ̃

2
σ4 +

σ′2

A

]
. (5.42)

As we mentioned above, the matching with the Schwarzschild solution at large
values of the radial coordinates makes possible a definition for the boson star given
by M =M(∞). In the same way as in the case of mini-boson star, we redefine our
variables in terms of dimensionless ones

σ∗ = Λ̃1/2σ , x∗ = Λ̃1/2x , M∗ = Λ̃1/2M . (5.43)

Then, the large Λ̃ approximation neglects terms of order 1/Λ̃ and higher [56]
yielding to an algebraic equation for the scalar field (5.40),

σ∗ =

(
Ω2

2
− 1

)1/2

. (5.44)

This algebraic relation can be substituted into the other equations of motion
which are consistently restricted to the same approximation. Thus, we left with the
remaining equations as

M∗′ =
1

4
x∗2
(

3
Ω2

B
+ 1

)(
Ω2

B
− 1

)2

, (5.45)

B′

ABx∗
− 1

x∗2

(
1− 1

A

)
=

1

2

(
Ω2

B
− 1

)2

. (5.46)

By using this approximation, numerical solutions become functions of a new free
parameter Ω/B(0). The maximum mass is shown to be [74]

Mmax ∼ 0.22Λ̃1/2M
2
Planck

m
= 0.06λ1/2M

3
Planck

m2
. (5.47)

Boson star masses with self-interacting coupling are much greater than the masses
achieved by mini-boson stars as it can be seen in Fig. 5.2, suggesting a different range
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of possible masses from the uncoupled case discussed above. Indeed, for a boson
mass of the order of a neutron mass and λ ∼ 1 the boson star mass is comparable
with a neutron star mass. For less heavier particles, boson star configurations can
reach a huge mass. Because of their astrophysical relevance to this respect, in the
literature the name “boson star” is reserved to this configuration, making an explicit
distinction with the smallest mass configuration described in the previous Section
5.3 which is called “mini-boson star”.

Figure 5.2: Mass M respect to the central value of scalar field σ0 for a ground state
boson star configuration. It can be seen that the maximum mass increases as Λ̃ is
increased.

5.5. Alternative theories of gravity

Instead of modifying the scalar field potential, one can explore boson star in
the context of alternative theories of gravity. It has been found that scalar-tensor
theories exhibit spontaneous scalarization in which the scalar field, as new degree
of freedom for the gravitational interaction, undergoes a transition to a nontrivial
configuration, in the same way as happens with ferromagnetism in neutron stars
[75]. Such effect is also found in the context of boson star evolution [76].

Some examples of boson star in scalar-tensor extensions in conformal gravity are
in [77, 78]. Alternative theories of gravity have rise as a explanation to the apparent
existence of dark matter without employing an unknown dark matter component.
The most well known case is the Modified Newtonian Dynamics (MOND) in which
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gravity suffers modifications only at large distances (for a review reader may refer
[79]). The boson star has been studied in the frame of Tensor-Vector Scalar theories
(TeVeS), as a generalization of MOND [80]. In particular, their evolutions for boson
stars develop caustic singularities, which has motivated several modifications of the
theory in order to avoid such problems.

In the next chapter we will explore boson stars in bi-scalar extensions of Horn-
deski gravity. This is the most general ghost-free scalar-tensor theory with non-
minimal coupling. We will analyze the influence and consequences on stability and
critical masses of the new non-minimal coupling constant by comparing to the mini-
boson star and Q-ball cases as well as a detailed description for two different potential
of special interest.
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Chapter 6

Boson Stars in bi-scalar extensions
of Horndeski gravity

This chapter is concerned with the construction and analysis of boson stars in
the context of non-minimal derivative coupling theories. In particular we embed
our model in the bi-scalar extension of Horndeski gravity, considering a scalar field
theory displaying a non-minimally coupled kinetic term given by the Einstein tensor.
We focus on the case where the potential is given by a mass term only, and when a six
order self-interaction is included. In the latter case we consider specific couplings in
the self-interacting terms in such a way that our self-interaction is given by a positive
definite potential presenting two degenerate local vacua. We show how solutions can
be obtained and we compare its principal properties with standard configurations
constructed with the usual minimally coupled kinetic term.

This chapter is organized as follows: Section 6.1 is devoted to present our model
and the general setting in which we will study boson star configurations. In Section
6.2 we will construct BS’s considering no self-interaction, this means considering
only a mass term, and we will compare them with the results obtained for the
standard case of minimally coupled scalar field theories. Section 6.3 considers the
inclusion of self-interaction, in particular the sixth order potential with nontrivial
vacuum manifold. Finally we conclude in Section 6.4.
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6.1. General setting

6.1.1. The model

In the following we will extend (3.25) to contain a complex scalar field. The
action then reads

S =

ˆ
d4x
√
−g
(

R

16πGN

)
−
ˆ
d4x
√
−g[(αgµν − ηGµν)∇µΦ∇νΦ

∗ + U(|Φ|)] (6.1)

where Φ denotes a complex scalar field. We work in the “mostly plus” signature. As
we mention above α and η are the dimensionful parameters controlling the standard
and nonminimal couplings. The potential U(|Φ|) contains the mass term m and,
eventually, a self-interaction to be specified below.
To embed this model in the context of the STT we are considering here, it is nec-
essary to go beyond the original Horndeski theory and to consider its extension.
Indeed, as we know, a system composed by a complex scalar field can be treated
as a system composed by two real scalar fields. Extensions of Galileon theory or
Horndeski gravity for the case in which two scalar fields degrees of freedom are con-
sidered have already been constructed in [81, 82, 83, 84, 85]. We observe that in
the bi-scalar extension also appears the nonminimal kinetic sector described above
in (3.15) and that our model can be supported by that kind of Lagrangians. Con-
struction of relativistic stars on these kind of models have been considered in [19].
We point out that these kind of theories have been recently considered in cosmology
[86, 87, 88] where the authors have studied theories beyond Horndeski (higher order
terms) imposing conformal invariance, thus arriving to a healthy ghost free bi-scalar
tensor theory.

6.1.2. The Ansatz

Due to the complexity of the equations, we will limit ourselves to stationary
non-spinning solutions. For this purpose we use a spherically symmetric ansatz for
the metric and specify the radial variable through the isotropic coordinates

ds2 = −F (r)dt2 +
G(r)

F (r)

[
dr2 + r2dθ2 + r2 sin2 θdϕ2

]
. (6.2)

The scalar field will be given by

Φ = Φ0φ(r)eiω̃t (6.3)

where the constant Φ0 supports the dimension of the scalar field and the frequency
ω̃ encodes the harmonic dependence of the solution. The harmonic ansatz is used
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in order to circumvent Derrick’s theorem [73], which states that time-independent
localized solutions of nonlinear wave equations in spacetime with three or more space
dimensions are unstable. For this precise form of the scalar field we obtain that the
contribution of the scalar field in the equations of motion remains static, even if the
scalar field degree of freedom is no longer static, not sharing in this way the same
symmetries than the spacetime. The coupled system of non-linear equations then
reads

A11F
′′ + A12G

′′ + A13φ
′′ = K1(F, F ′, G,G′, φ, φ′, ω̃)

A21F
′′ + A22G

′′ + A23φ
′′ = K2(F, F ′, G,G′, φ, φ′, ω̃)

A31F
′′ + A32G

′′ + A33φ
′′ = K3(F, F ′, G,G′, φ, φ′, ω̃) (6.4)

where the prime denotes the derivative with respect to r. Ka are polynomials given
in term of the metric functions, the scalar field and their first derivatives respectively.
The coefficients Aab depends on the fields in the same way than the polynomials Ka.
They are given in the Appendix 8.1.

In the case of a minimal coupling, i.e. for η = 0, the matrix A is diagonal and
positive definite. Nevertheless, for η 6= 0, this matrix becomes non-diagonal and
the determinant |detA(r)| plays a fundamental role in the existence of solutions.
When this determinant presents zeros the corresponding system is singular and no
regular solution can be found. We will see that this affects significantly the pattern
of solutions.

6.1.3. Boundary conditions

For the construction of BSs, the system has to be solved with the following
boundary conditions:

F (0) = 1 , G(0) = 1 , φ(0) = φ0 , F
′(0) = 0 , G′(0) = 0 , φ′(0) = 0 ,

F (∞) = 1 , G(∞) = 1 , φ(∞) = 0 .
(6.5)

Here φ0 represents the central value of the scalar field. On the one hand, the
conditions at r = 0 are necessary for soliton solutions to be regular at the origin.
On the other hand the conditions at r =∞ ensure localized and asymptotically flat
solutions. To find solutions respecting these conditions on r = 0 and r = ∞, the
eigenvalue ω̃ has to be fine tuned for a given central value, φ0, of the scalar function
φ. This leads in general to a relation of the form ω(φ0). In principle, the equations
can be solved by a shooting technique; we used instead the routine Colsys [89, 90]
based on the Newton-Raphson algorithm.
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6.1.4. Rescaling

For the numerical study of our system (6.4), it is convenient to perform suitable
rescalings of the parameters leading to dimensionless quantities. For this purpose,
we define the dimensionless variable x and parameters κ, ξ, ω by mean of

x = mr , κ = 8πGNΦ2
0 , ξ =

η

m2
, ω̃ = mω . (6.6)

where m denotes the mass of the scalar field. One reason for including the parameter
α is to allow -if they would exist- exotic solutions corresponding to α = 0 and η = 1.
Since we failed to construct such solutions in the model under consideration, we set,
without loosing generality, α = 1 throughout the paper.

6.1.5. Physical Quantities

The solutions can be characterized by several quantities. The global symmetry
of the action under phase change of the scalar field leads to a conserved current jµ

and conserved charge Q :

jµ = −i(Φ∗∂µΦ− (∂µΦ∗)Φ) , Qphys = −
ˆ
j0
√
−gd3r (6.7)

With the ansatz and rescaling used above, the conserved charge is computed as
follow

Qphys = 8π
Φ2

0

m2

∞̂

0

√
G3

F 2
x2ω̃φ2dx ,

Φ2
0

m2
= κ

M2
Pl

m2
, (6.8)

where 8πGN ≡M−2
Pl is the Planck mass; the quantity Q is interpreted as the number

of bosonic particles. The solution is also characterized by the mass M , it can be
read out of the asymptotic decay of the metric function F

F (r) = 1− 2GNMphys

r
+ o(

1

r2
) = 1− 2mMphys

8πM2
Pl

1

x
+ o(

1

x2
). (6.9)

The quantities Q and M reported on the figures will be related to the physical
quantities according to

Qphys = κ
M2

Pl

m2
Q , Mphys = κ

M2
Pl

m
M (6.10)

The boson star can also be characterized by a radius. There are many ways to define
such a parameter since the scalar field does not strictly vanish, along many authors
(see namely [91]) we define the dimensionless radius R of the boson star as

R

m
=

1

Qphys

ˆ
r j0
√
−gd3r . (6.11)
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We will find R of order one, as a consequence, a mass m for the boson field of order
one MeV would corresponds to Rphys of order 200 Fermi. The ratio M/mQ provides
some informations about the stability of the soliton. The condition M < mQ is
necessary for the soliton to be stable; indeed if M > mQ the mass of the full soliton
exceeds the mass of Q scalar field quanta and no binding energy is left to stabilize
the lump. In the discussion of the solutions we will refer to this argument only; the
full study of the stability is out of the scope of this paper.

6.1.6. The potentials

BS solutions minimally coupled to Einstein gravity with no self-interaction (mass
term only) have been studied in great detail in [91]. As we pointed out, the non-
gravitating counterpart of BSs, Q-balls, do not exist. Indeed, to obtain the later
configurations is necessary to consider self-interaction with at least six order powers
of the scalar field (see [92]). Motivated by this, we will also investigate BSs in
the context of this kind of potentials for our non minimally coupled model. The
potential reads

V = λ3|Φ|6 − λ2|Φ|4 + λ1|Φ|2 , λ1 ≡ m2. (6.12)

Because of the numerous parameters, we will put the emphasis on the following two
cases

λ2 = 0, λ3 = 0 which corresponds to a mass term only. We will examine the
influence of the nonminimal coupling on the spectrum of the solutions.

λ2/λ1 = 2λ3/λ1 = 2. This corresponds to a positive definite potential pre-
senting two degenerate local minima at φ = 0 and φ = 1. We will denote it
V6.

6.2. Boson Stars with the mass potential

As pointed out already, the occurrence of nodes of the quantity |detA(r, ξ)| play a
role in the construction of the solutions. For all parameters that we have explored,
the minimum of this determinant is always located at the origin (i.e. x = 0).
Therefore we find it convenient to define

∆(ξ) =
detA(0, ξ)

detA(0, 0)
(6.13)

as a control parameter. The set of numerical routines employed lead to reliable
solutions as long as ∆ > 10−6.
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6.2.1. Mini Boson Stars with ξ = 0

In this section we comment on some properties of BSs when the nonminimal
coupling is absent. For more details please see [70]. In this case, the constant κ can
be rescaled in the scalar field and the mass m of the scalar field can be rescaled in the
radial variable. We can therefore set κ = 1, m = 1 without loosing generality. BSs
are then essentially characterized by the value φ(0) ≡ φ0 of the soliton at the center.
In particular, the numerical integration determines the frequency of the scalar field
ω as a function of φ0. In this paper, we discuss only the fundamental solutions where
the function φ(r) has no nodes, a series of excited solutions presenting zeros of φ(r)
exists as well. In the limit φ0 → 0, the vacuum solution is approached (M = Q = 0)
and this corresponds to ω → 1. Increasing gradually the parameter φ0, it turn out
that the frequency ω first reaches a minimal value ωm ≈ 0.7677 and then oscillates
around an asymptotic mean value ωa ∼ 0.8425 (see top part of Fig. 6.1). In spite
of the fact the the frequency ω does not characterize the solutions uniquely, it is
common to display the mass M and the charge Q as functions of this parameter.
Due to the oscillations, these plots currently present the form of spirals as seen in
the bottom part of Fig. 6.1.
The three symbols -bullet, triangle and square- symbolise the special values where
the charge Q reaches its absolute maximum and minimum (Qmax, Qmin and Qc where
M = mQc; these values will play a role in the discussion of stability. Completing
Fig.6.1, we show on the top panel of Fig.6.2 the dependance of the mass M and of the
charge Q as functions of the central value of the scalar field φ0. The three exeptional
values Qmax, Qc, Qmin refer to the minimal case ξ = 0 and correspons respectively
to φ0 ∼ 0.6, 1.37, 2.6. On the bottom panel of the figure, the dependance of Q,M
on the radius R are reported. Referring to the argument of stability invoked above,
it turns out that the condition M/Q < 1 is fulfilled only for the small values of φ0,
typically for φ0 ≤ 1.25. The value φ0 = 1.37 corresponds to M = Q = Qc ≈ 67, as
seen on Fig. 6.3. The plot of the ratio M/Q as function of Q reveals the occurrence
of at least three branches joining at spikes. For later convenience let us call the
branch connected to the vacuum (i.e. with M = Q = 0) the main branch and
the other branches as the second, third branch and so on. The spike connecting
the main and the second branches corresponds to the maximal value of the charge,
say Q = Qmax. We find it for Qmax ≈ 82, M ≈ 79.5, ω ∼ 0.85, φ0 = 0.6; it
belongs in the domain of classical stability. The second spike connects the second
and third branches and corresponds to a local minimum of Q, say Q = Qmin. We find
Qmin ≈ 36.00, M ≈ 43.0. This second spike belongs to a region where the solutions
are unstable. On the second branch, only the BSs corresponding to Qc ≤ Q ≤ Qmax

are classically stable.
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Figure 6.1: Top: The frequency ω as function of φ(0) for BSs without self-interacting
scalar fields and for different values of ξ. Bottom: The mass and charge as functions
of ω for the same values of ξ. The three symbols (bullet,etc...) show up three critical
values of Q on the the ξ = 0 line.

6.2.2. Mini Boson Stars with ξ 6= 0

We now discuss how the spectrum of the BSs is affected by the inclusion of the
non minimal coupling, i.e. for ξ 6= 0. The classical equations now depend on two
non trivial parameters ω and ξ. As expected by a continuity argument, integrating
the field equations for a fixed value of φ0, the minimally coupled BSs (i.e. with
ξ = 0) can be continuously deformed by increasing (or decreasing) gradually the
coupling parameter ξ.
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Figure 6.2: Top: The mass and charge as functions of φ(0) for ξ = 0 and ξ = ±0.2
. Bottom: The mass and charge as functions of the radius R for the same values of
ξ.

Let us first discuss the case ξ 6= 0. Similarly to the case ξ = 0, a branch of BSs
can then be constructed by increasing the parameter φ(0). This leads to families
of solutions characterized by the frequency ω, the charge Q and the mass M . In
Fig. 6.1 we present some data corresponding to different values of ξ together with
the case ξ = 0. For ξ 6= 0, the curves stop at some critical values of φ(0); the
numerical integration indeed becomes problematic at some stage for high values
of φ(0). Our numerical results suggest that the critical phenomena limiting the
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Figure 6.3: The ratio M/Q as a function of Q for several values of ξ.

solutions for positive and negative values of ξ have different origins :

For positive values of ξ the solutions cannot be constructed for large values
of φ0 because the determinant ∆ approaches zero at a critical value of the
parameter φ0, say φ0 = φ0,max. For example for ξ = 0.2, we find φ0,max ≈ 1.15.

For negative values of ξ, the situation is different : ∆ decreases monotonically
but not reaching zero while φ0 increases.

One of the main effect of the non minimal coupling is then to limit the possible
values of the central value φ0 of the boson field. In particular setting |ξ| > 0 has
the tendency to ‘unwind’ the spiral curves M(ω) as seen in Fig. 6.1. Qualitatively,
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this resemble the effects of the Gauss-Bonnet interaction in the pattern of higher
dimensional boson stars in Einstein-Gauss-Bonnet Gravity. These solutions have
been studied in [93] where it was shown that the origin of the critical phenomenon
is related to the occurrence of a singularity of the metric at the origin. In the
present case, the geometry remain regular in the critical limit, instead the system
of equations becomes singular when the determinant ∆ approaches to zero.

Before reexamining this phenomenon with a different point of view, let us discuss
the effects of the non-minimal coupling on the classical stability of the BSs. For small
values of |ξ|, the plot of the ratio M/Q as a function of Q generally presents two
branches joining in a spike at, say Q = Qmax (see Fig. 6.3). The main branch
is stable all long. On the other hand a piece of the second branch is stable for
Qc ≤ Q ≤ Qmax where we define Qc as the value of the charge where M/Q = 1.
For Q ≤ Qc, the solutions of the second branch are unstable. Both values Qc, Qmax

increase while ξ decreases. This scenario holds true for small enough values of |ξ|.
Interestingly, for ξ < −0.15 the pattern changes: both the main and second branches
are classically stable. Hence, negative values of the non-minimal coupling have the
tendency to enhance the stability of the solutions.

To complete the discussion we study how solutions corresponding to a particular
central value φ0 are affected by the non minimal coupling. The results are the object
of Figs. 6.4. The ratio M/(mQ) is reported as a function of ξ for three values of φ0

on the top panel: it shows that the ratio increases monotonically with ξ. As noticed
already, the lump is more bounded. for negative values of ξ The critical phenomenon
limiting the BSs for |ξ| 6= 0 is revealed on the bottom side of Fig 6.4. We see that
the determinant ∆(ξ) suddenly approaches to zero for a positive critical value of ξ
(this value, depends of course on φ0). In contrast, for ξ < 0, the value ∆ regularly
decreases to zero, although not reaching ∆ = 0, while decreasing ξ. The numerical
difficulties occur typically when ∆ becomes of the order of the tolerance imposed for
the numerical integrator. We manage to construct robust solutions up to ∆ ∼ 10−8.
For large values of φ0 (typically φ0 ≥ 2) the following features, illustrated by the
red curve in Fig. 6.4, should be stressed

the value ∆ becomes very sensitive to ξ

the interval of ξ where the solutions exist decreases.

These constitute the sources of the numerical difficulties.
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Figure 6.4: Top: Ratio M/(mQ) as functions of ξ for different values of φ0. Bottom:
Discriminant ∆ as function of ξ for several values of φ0.
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6.3. Self-interacting solutions

6.3.1. ξ = 0 case

We now discuss the effects of the self-interaction of the scalar field on the solu-
tions. As stated above, we choose the particular potential

V6(|Φ|) = m2|Φ|2(|Φ|2 − 1)2 (6.14)

which possesses a non trivial vacuum manifold : |Φ| = 0 and |Φ| = 1. Many
properties of BSs in this potential (including also the effect of an electric charge)
have been discussed in [94]. Perhaps one of the main property is that the BSs
can be continued to the non gravitating limit κ = 0, constituting a family of Q-ball
solutions labelled by ω. The self-interaction due to the potential confers very specific
features to the Q-balls, some of which are shown on Fig. 6.5 (dashed lines) :

The solutions exist up to a maximal value of φ(0).

The solutions exist for arbitrarily small values of ω. The limit ω → 0 corre-
sponds to φ(0) → 1; the profile of the scalar field approaches a step function
with φ(r) ∼ 1 for r < R and with φ(r) ∼ 0 for r > R, so that the boson
field is essentially concentrated in a sphere of radius R. This corresponds to
the so-called “thin-wall limit”; the mass, the charge and the radius R diverge
while ω approaches zero.

In the limit φ(0) → 0 the matter field approaches uniformly the vacuum
configuration φ(r) = 0 although the mass and the charge remain finite, forming
a “mass gap”. This is denoted by Y on the bottom side of Fig.6.5.

The coupling to gravity has the effect to regularize the Q-balls configurations. This
is shown in Fig. 6.5 where the data corresponding to κ = 0.1 (we set ξ = 0 in
this section) is reported by means of the solid lines. In contrast with Q-balls, the
following features hold :

BSs exist for large values of φ(0). The mass and charge remain finite and
bounded.

There is a minimal value of ω. The minimal value depend on the constant κ.

In the limit φ(0) → 0 the matter field approaches uniformly the vacuum
configuration φ(r) = 0. The mass and the charge converge to zero.
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Figure 6.5: Top: The dependence of ω on φ0 for Q-balls (dashed) and BSs (solid).
Bottom: The mass, charge dependance of φ(0).

The classical stability of self-interacting Q-balls and (minimal-coupled) BSs can
be read from the M/Q plot provided in Fig.6.6. The curve corresponding to BSs is
the black-solid line. It shows the occurrence of three branches joining in two spikes
(labelled A and B in the figure) and forming a curve with the shape of a butterfly.
The main branch, connected to the vacuum and terminating at A, corresponds to a
set of stable solutions. The intermediate branch A−B is essentially unstable (only
on a small fraction of it the solutions are stable). The third branch terminating at
B is stable in its part corresponding to large values of φ(0).
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Figure 6.6: The ratio M/(mQ) as function of Q for different self-interacting solu-
tions.

6.3.2. ξ 6= 0 case

We now discuss the influence of the non-minimal coupling to the solutions. For
definiteness we set κ = 0.1 in our numerical construction. Following the same
lines as in the previous section, we analyzed the deformation of the BSs for ξ 6= 0.
As expected, it turns out that the non-minimal coupling reduces considerably the
domain of existence of the BSs : for both signs of ξ the solutions exist only for
small enough values of φ0. In particular the quantity ∆(ξ) approaches zero while
increasing the value of φ0 of the solution; leading to a maximal value, say φ0,max.
The precise determination of φ0,max(ξ) is beyond the scope of this paper but our
numerical results demonstrate that it is monotonically decreasing while |ξ| increases.
The data corresponding to ξ = ±4 is shown in Fig. 6.5 (the blue lines for the charge
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Q, the curve for the corresponding mass is very close and not reported).
Remembering that the self-interaction allows for solutions to exist in the absence

of normal gravity, the question arises naturally whether solitons could interact with
gravity through the non-minimal derivative term only, i.e. with α = 0, ξ = 1. We
therefore put some emphasis on solutions with α/|ξ| � 1. Our numerical results
strongly suggest that the standard BSs do not survive in the limit α/|ξ| → 0; their
domain being too restricted by the condition ∆(ξ) > 0. It is possible, however,
that new types of solitons exist on a domain of the parameter space connected to
α = 0, ξ = 1. This would constitute a bosonic counterpart of the neutron stars
obtained in [18]. So far, we failed to construct such solutions numerically.

Let us finally comment on the way how the stability pattern is affected for ξ 6= 0.
Due to the reduction of the domain of the solutions, the “butterfly” curve occurring
for ξ = 0 is progressively reduced as well. For the cases ξ = 4 and ξ = −4, chosen
for Fig. 6.6, only two of the three branches remain; They are joining at points A′

and A′′ respectively. The solutions on the branch joining to the vacuum are stable,
irrespectively of the sign of ξ. Negative values of ξ allow for stable solutions with
higher values of the charge Q and of the energy binding M/Q− 1.

6.4. Final remarks

In this work we have constructed BS configurations for STT possessing a non-
standard kinetic term coupled through the Einstein tensor. This particular coupling
is contained in the most general STT with second order equations of motion for a
single new scalar degree of freedom, the so called Horndeski theory.
Due to the fact that we are dealing with a complex scalar field, instead of Hordenski
gravity, our model is embedded in its bi-scalar extension, namely, in the context
of the most general STT with second order equations of motion, constructed with
a single massless metric tensor and with two real scalar field degrees of freedom.
In this scenario BSs are supported by new degrees of freedom and not by external
matter sources. It is important to stress that along with the new degrees of freedom
also external matter fields may be included. In the context of STT, in [76, 95] the
authors have tackled this problem showing that the phenomenon of spontaneous
scalarization originally predicted for neutron stars, can also occur for BSs. More-
over, we are not considering here any kind of interaction between external fields and
new scalar degrees of freedom.
We have analyzed the existence of mini-BSs configurations (where only a mass term
is considered) and of self-interacting BSs where the self interaction possesses a six-
order potential which can be written, for specific values of the involved couplings,
as a positive definite potential presenting two degenerate local vacua. In both cases
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we have shown that the determinant of our system of equations (6.4) plays a fun-
damental role in the pattern of solutions. Indeed, when this determinant approach
to zero no solutions can be obtained. In practice we have seen that the pole of this
determinant is always located at the origin, luring as to define the control parameter
∆ (6.13) in order to look for non-singular solutions.
Mini-BS solutions exist for both, positive and negative values of the nonminimal
rescaled parameter ξ. For ξ > 0 the solutions cannot be obtained when the central
value φ0 exceed some maximal value φ0 = φ0,max, for which our function ∆ goes
to zero. On the other hand, the ξ < 0 case, is different. ∆ shows a monotonically
decreasing behavior when increasing φ0 not reaching the conflictual point ∆ = 0,
nevertheless complications arise when this function approaches to values of the same
order than the tolerance imposed by the numerical integrator. The ξ negative branch
also shows a tendency to enhance the stability of the solutions.
For the self-interacting solutions considered here, the situation is similar to the mass
term case. The pattern of solutions is harshly constrained and exists for a limited
branch of values of φ0, later that indeed depend on ξ. For this particular case we
have also investigated the existence of configurations supported only by the pres-
ence of the nonminimal kinetic coupling, this means, for the α/|ξ| → 0 case. Our
results suggest that BSs do not survive in this case. It would be interesting to cir-
cumvent this problem in oder to construct the bosonic counterpart of the neutron
stars constructed in [18], and make qualitative comparisons. We leave this for future
work.
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Chapter 7

Cylindrically symmetric
spacetimes

In vacuum, the static cylindrically symmetric spacetimes, in absence of a cos-
mological constant, was found by Levi-Civita [96] just few years after the emerging
of General Relativity. However, the inclusion of a nonzero cosmological constant
was only achieved almost 70 years later by Linet [97] and Tian [98]. More recently,
some geometrical properties of these spacetimes, such as the presence of conical
singularities, were reviewed in [99, 100]. The stationary cylindrically symmetric
vacuum solution was discovered independently by Lanczos [101] and Lewis [102].
The general solution contains a number of integration constant, whose physical in-
terpretation has been studied in [103, 104]. In vacuum, the cylindrical stationary
spacetime with a nonvanishing cosmological constant was derived in [105] and [106].
The interpretation of the integration constants was clarified in [107], where it was
proved that three of them are indeed essential parameters. Two integration constant
have a topological origin [108], and a third one characterizes the local gravitational
field.

The physical interpretation of this kind of solutions are far from being trivial.
As an example, the identification of points associated with the periodic coordinate
represents a problem in this context, since without such identifications, spacetimes
with both temporal and spatial symmetries may be alternatively interpreted as
being plane symmetric. An additional problem appears when singularities, normally
located at the axis, depend on the direction from which they are approached. The
aim of this chapter is to present this kind of solutions and to describe their physical
properties.

In this chapter we will give a short review of the main cylindrically symmetric
vacuum solutions. This will be useful in order to gain familiarity with this kind of
solutions which will be generalized in the next chapter when there is gravitational
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interaction with a matter field and in presence of a cosmological constant.
Let us consider this family of spacetimes but with an additional Killing vector

∂z, so that components of the metric depends on ρ only. With the periodicity of
φ we can interpret this metric as a stationary spacetime provided with cylindrical
symmetry. It is convenient to perform the substitution γ = µ+ 1

2
log f . Then,

ds2 = −f(dt+ Adφ)2 + e2µ(dρ2 + dz2) + ρ2f−1dφ2 . (7.1)

This substitution makes easier analytical extension of coordinates in regions
where f becomes negative.

7.1. The Lewis family of vacuum solutions

Lanczos [101] and Lewis [102] found independently the general family of exact
stationary cylindrically symmetric vacuum solutions using the WLP form of the
metric. It turns out to be,

f = ρ

(
aρ−n − c2

n2a
ρn
)

e2µ = k2ρ(n2−1)/2

A =
c

na
ρn+1f−1 + b

(7.2)

where n, a, b, c and k are five constant parameters and one expects to gauge away
some of them; for example, fixing k = 1 by using a coordinate rescaling. This line
element is known as the Lewis metric. There are two classes of spacetimes depending
on whether n is real or imaginary. In the case n real the other parameters must be
real. However, when n is imaginary, the remaining parameters have to be chosen so
that the metric is real.

Forcing to have a regular axis at ρ = 0 implies only the flat case n = 1 as
possible spacetime as was proved by Davis and Caplan [109]. In some cases, it could
be considered to exclude this infinite axis from the spacetime assuming that we are
describing the gravitational interaction with a source located there. The general
interpretation of these parameters and the constraint relating them is still not clear
at all.

However in the next chapter we will find a natural extension of this solution, but
including a minimally coupled scalar field as a matter source. To find the solution it
is convenient to use other coordinate system where the radial coordinate is the radial
proper distance (gρρ = 1), and as expected many of the integration constants can
be gauged away by using a proper interpretation of the global and local properties
as it will become clear. Additionally we will compute the conserved charges in
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order to have a deeper insight about this interpretation by relating them with these
quantities.

7.1.1. The Weyl class of Lewis metrics

In the case of n real, we say that Lewis metric belongs to the Weyl class. In this
case a, b, c and k must be real. It is possible to diagonalize the metric performing
a coordinate transformation. Namely, when a > 0,

t =
1√
a

(
1− bc

n

)
τ − b

√
aφ̃ , φ =

c

n
√
a
τ +
√
aφ̃ , (7.3)

put the Lewis metric in the form,

ds2 = −ρ1−ndτ 2 + k2ρ(n2−1)/2(dρ2 + dz2) + ρn+1dφ̃2 , (7.4)

which is nothing else than the static Levi-Civita solution with n = 1−4σ considering
a = 1, b = 0 and c = 0. In the Newtonian limit σ can be identified as the mass per
unit length of an infinite line source located on the axis. If a < 0, the transformation,

t = b
√
−aτ +

1√
−a

(
1− bc

n

)
φ̃ φ = −

√
−aτ +

c

n
√
−a

φ̃ (7.5)

takes the Lewis metric to the form,

ds2 = −ρ1+ndτ 2 + k2ρ(n2−1)/2(dρ2 + dz2) + ρ1−ndφ̃2 (7.6)

which in any case is the known Levi-Civita solution with n = 4σ − 1. Therefore,
we can conclude that this family of spacetime is locally isomorphic to the static
Levi-Civita solutions. Levi-Civita solution corresponds to a static and cyllindrically
symmetric form of the Weyl metric. Consequently, (7.4) and (7.6) are referred as the
locally static Weyl class of Lewis solution. However, since φ is a periodic coordinate,
the time coordinate τ is periodic unless b = 0. When b 6= 0 spacetime contains closed
timelike curves, this implies that these spacetimes are topologically different from
the Levi-Civita solution [103].

It is worth to mention that f function possesses a zero at ρ1 = |na
c
|1/n when

na > 0. The opposite occurs for na < 0. When f < 0 the time coordinate b
becomes spacelike. However this is not a Killing horizon since the metric can always
be transformed to Levi-Civita form for al values of ρ, thus it does not have a local
significance. It comes from the rotational part of the coordinates resembling much
the same the properties of an ergosphere like in Kerr spacetime.

Additionally the angular metric function also possesses a zero. This means that
there is a region where φ is a timelike coordinate. In fact, closed timelike curves
occur asymptotically when na < 0 or near the axis when na > 0.
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Excluding the flat case, these solutions contain a curvature singularity at ρ = 0.
These spacetimes are appropriate as exterior matched solutions to infinite cylindrical
sources. Like the Levi-Civita solution, they are asymptotically locally flat and not
asymptotic to a flat cylindrically symmetric spacetime if n 6= 1 with a > 0.

7.1.2. The Lewis class of Lewis metrics

When the parameter n is purely imaginary, the functions (7.2) represent a dif-
ferent class of spacetimes. The reality condition for the metric requires a and b
have to be complex. Then, these parameters can be expressed in terms of the real
parameter ñ, a1, b1, a2 and b2 where a1b2 − a2b1 = 1, and

n = iñ , a =
1

2
(a2

1 − b2
1) + ia1b1 ,

b =
a1a2 + b1b2 + i

a2
1 + b2

1

, c =
1

2
ñ(a2

1 + b2
1) ,

this allows us to rewrite the metric functions (7.2) as,

f = ρ[(a2
1 − b2

1) cos(ñ log ρ) + 2a1b1 sin(ñ log ρ)] ,

e2µ = k2ρ−(ñ2+1)/2 ,

A = ρf−1[(a1a2 − b1b2) cos(ñ log ρ) + (a1b2 + a2b1) sin(ñ log ρ)] .

(7.7)

In [104] it was shown that these spacetimes which belong to Lewis class are not
locally isomorphic to the Levi-Civita solutions. There is no a suitable coordinate
transformation that diagonalize the metric and even more, they do not contain any
locally flat spacetime. They are asymptotically locally when ñ2 < 3 and in the
opposite case a curvature singularity is located at ρ = ∞ but at a finite proper
radial distance from the axis.

7.2. Static, cylindrically symmetric strings with

cosmological constant

In this section we present the generic four dimensional static solution with cylin-
drical symmetry and cosmological constant in General Relativity found by Linet in
[97]. The action for this system gives us the field equations

Rµν −
1

2
Rgµν + Λgµν = 0 . (7.8)
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To find static, cylindrically symmetric strings with cosmological constant it is simpler
to use the following ansatz for the metric

ds2 = −g0(r)dt2 + g1(r)l2dφ2 + g2(r)dz2 + dr2. (7.9)

where the coordinates system (t, r, z, φ) is considered with proper radial distance
as coordinate r with r > 0 and compact coordinate φ with 0 6 φ < 2π. Then,
hypersurfaces φ = 0 and φ = 2π are identified. The square root of the determinant
of metric (7.9) is conveniently defined as

u =
√
g0g1g2 . (7.10)

This is useful since allows us to express the field equations in a very compact and
simple form ((

u

gi

)
g′i

)′
= 0, i = 0, 1, 2, (7.11)

g′0g
′
1

g0g1

+
g′1g
′
2

g1g2

+
g′2g
′
3

g2g3

+ 4Λ = 0 (7.12)

where a prime means differentiation wit respect to r. Using (7.11) it is obtained an
equation for u

u′′ + 3Λu = 0 , (7.13)

which can be recast as follows

u′2 = −3Λu2 +K2 , (7.14)

with K a positive integration constant. Plugging this into (7.12) we get

g′i
gi

=
KKi

u
+

2u′

3u
, i = 0, 1, 2 , (7.15)

where Ki are three integration constants. They are algebraically related in order to
fulfill the field equations

K0 +K1 +K2 = 0 , (7.16)

K0K1 +K1K2 +K2K0 = −4

3
, (7.17)

which tell us that there is only one independent parameter. Solving equation (7.14)
and fixing the axis at r = 0 we obtain

u(r) =
K√
3Λ

sin
[√

3Λr
]
, Λ > 0 , (7.18)

u(r) =
K√
−3Λ

sinh
[√
−3Λr

]
, Λ < 0 . (7.19)
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From this and using equation (7.15) the solution for the metric functions gi is

gi(r) = g0
i

{
tan

[√
3Λ

2
r

]}Ki

sin2/3[
√

3Λr] , Λ > 0 , (7.20)

gi(r) = g0
i

{
tanh

[√
−3Λ

2
r

]}Ki
sinh2/3[

√
−3Λr] , Λ < 0 , (7.21)

where g0
i are three integration constant that satisfy g0

0g
0
1g

0
2 = K2/|3Λ| for consistency

with relation (7.10). It is clear that integration constant g0
0 and g0

2 can always be
gauged away by a coordinate rescaling. This is not the case for g0

1 as it is related
with an angular defect since φ is a compact coordinate with period 2π. In fact, as
was pointed out in [97] the geometry near the axis corresponds to a cosmic string.
When K0 = K2 = −2/3 and K1 = 4/3 and

g0
0 = g0

2 = 2−2/3 , g0
1 = 24/3K2/|3Λ| , (7.22)

the geometry near the origin r = 0 is

ds2 = −dt2 +K2dφ2 + dz2 + dr2. (7.23)

This near-origin form induces a stress-energy momentum

T tt = T zz =
1−K

4G

δ(r)√
−γ

, T rr = T φφ = 0 , (7.24)

where γ is the induced metric on the 2-hypersurface t = const and z = const. This
stress-energy tensor is characteristic of a static, cylindrically symmetric string of
mass per unit length M given by

M =
1−K

4G
, (7.25)

where K 6= 1. We see clearly that the integration constant g0
1 confers the mass to the

cosmic string. Imposing regularity on the origin implies K = 1 and flat spacetime
geometry at the origin.

7.3. The black string

A solution of special interest was found in [28]. This is a four dimensional
black hole solution of Einstein’s field equations with cylindrical symmetry in the
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presence of a cosmological constant. Due to its geometry is commonly referred in
the literature as “black string”. In a coordinate system (t, r, φ, z) this solution is

ds2 = −
(
α2r2 − b

αr

)
dt2 +

dr2

α2r2 − b
αr

+ r2dφ2 + α2r2dz2 , (7.26)

with −∞ < t < ∞, 0 6 r < ∞, 0 6 φ < 2π, −∞ < z < ∞ . Here r is the
radial circumferencial coordinate, α2 ≡ −Λ/3 > 0 and b is an integration constant
directly related with the mass per unit length of the black string. The Kretschmann
scalar given by RαβµνR

αβµν = 24α4(1 + b2

α6r6
) determines a curvature singularity at

the origin r = 0 which is dressed by the event horizon of the black string located at
rH = b1/3/α. The spacetime can be provided of angular momentum by performing
coordinate transformations on the t− φ plane

t = λτ − ω

α2
θ , φ = λθ − ωτ , (7.27)

where ω and λ are constant parameters of the transformations. Once we apply them
on (7.26) we obtain

ds2 =−
[(

λ2 − ω2

α2

)
α2r2 − bλ2

αr

]
dτ 2 +

dr2

α2r2 − b
αr

− ωb

α3r
2dθdτ

+

[(
λ2 − ω2

α2

)
r2 +

ω2b

α5r

]
dθ2 + α2r2dz2 ,

(7.28)

with −∞ < τ < ∞, 0 6 r < ∞, 0 6 θ < 2π, −∞ < z < ∞ . The transformation
(7.27) is not a proper coordinate transformation, since it changes the topology of
the original spacetime. In other words it converts an exact 1-form into a closed but
not exact 1-form [110]. Therefore, although solutions (7.26) and (7.28) are locally
equivalent, they are globally different. This is the reason why (7.28) is a new metric,
being the stationary version of the original static one.

As we mention in Section 7.2, Linet found the generic cylindrically symmetric
solutions in the presence of cosmological constant for General Relativity. Unfor-
tunately, the coordinate system he employed makes quite difficult to identify the
black string solution. However, there is an essential clue mentioned by Linet that
makes possible to obtain the black string solution presented here from Linet’s solu-
tion presented in the previous section. In his work he mention that the Weyl tensor
is regular when Ki integration constants from (7.16) takes any circular permutation
of values −2

3
, −2

3
and 4

3
. The fact is that all the scalar invariants are regular with

this condition, which means that there is no curvature singularity in the range of co-
ordinate considered. Thus, the coordinate r from (7.9) can be analytically extended
and by performing a suitable radial coordinate transformation it possible to obtain

67



the black string solution (7.26) starting from metric (7.9) with (7.21). We will show
this explicitly (see relation (8.87)) in Section 8.3 of the next chapter, since some
comments about the role of parameter b are needed previously. There we show that
the origin in the Linet side is mapped to the event horizon. Therefore, the cosmic
string described by (7.23) is nothing but the regularized near horizon geometry of
the black string up to a double Wick rotation.
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Chapter 8

Stationary cylindrically symmetric
spacetimes with a massless scalar
field and a nonpositive
cosmological constant

Cylindrically symmetric spacetimes are widely known in vacuum, however exact
solutions containing a massless scalar field as matter source in presence of a cosmo-
logical constant have received almost null attention until now. Previously, solutions
with plane symmetry, which are a particular case of the cylindrical ones, have been
reported [24, 25] and other particular solutions in [111, 112]1. The main efforts on
this subject can be found in [113, 114] and [115] for the static and stationary cases,
respectively. In these articles the existence of soliton and wormhole solutions in
the presence of an arbitrary self-interaction potential for the scalar field were ana-
lyzed, providing also a useful method for obtaining general cylindrically symmetric
solutions.

In this chapter, the general stationary cylindrically symmetric solution of Einstein-
massless scalar field system with a nonpositive cosmological constant Λ is found, and
its geometrical properties are studied. Our aim is to determine the implications of a
massless scalar field in a cylindrically symmetric system. Due to the high interest in
exact solutions whose asymptotic behavior approaches the anti-de Sitter spacetime,
we include in the analysis a negative cosmological constant. In fact, the solutions
presented here, for Λ < 0, have that asymptotic behavior. Moreover, we study the
effect of a massless scalar field in the case of a vanishing cosmological constant,

1Unfortunately, along these two articles there are inconsistencies in the signs of the cosmological
constant and the kinetic term of the scalar field. Additionally, the solution provided there is not
general.
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i.e., we explore the backreaction generated by the scalar field in the well-known
Lanczos-Lewis and Levi-Civita spacetimes.

As is expected, in the absence of suitable potentials and non-minimal couplings
for the scalar field, the no-hair theorem rules out solutions having event horizons,
and this is precisely our case. We are just considering a massless scalar field with a
constant potential (zero or negative). Thus, in general, the solutions presented here
contain naked singularities, which however could have some physical interest [116].

We find that the general stationary cylindrically symmetric solution contains
two different classes. In the first of them, the stationary spacetimes become static
by adjusting smoothly the integration constants related with the rotation. For the
second class this process is not possible, and in consequence, such a class of solutions
does not have a static limit. In this sense, this class has an unclear physical relevance.
The first section of this chapter is devoted to present all the solutions, however, along
the subsequent sections we will focus our analysis on the first class of solutions.

The chapter is organized as follows. Section 8.1 presents the action and offers
a very detailed derivation of the general solution. The key point is to reduce the
field equations to a very simple uncoupled system of differential equations, which
allows us to find (i) all the solutions and (ii) figure out how they split in two classes:
the one containing the static solution, and the other one lacking a static limit. In
Section 8.2, the ansatz is established and the general solution with static limit is
presented as a linear combination of three functions, according to the cosmological
constant. In Section 8.3, the local properties of the solutions are studied using the
Newman-Penrose (NP) formalism, where the Weyl-NP scalars allow to obtain the
Petrov classification of these spacetimes. It is shown that a parameter included
through the scalar field enlarges the family of spacetimes with respect to the vac-
uum ones. Afterwards, following [108] and inspired in [28], the stationary spacetime
is obtained from the static one by means of a topological construction. These for-
malisms allow us to identify the four essential parameters of the general solution.
One of them is the amplitude of the scalar field, which in conjunction with a second
one describe the strength of the gravitational field. The remaining parameters have
a topological origin and are just globally defined, because they cannot be removed
by a proper coordinate transformation. Moreover, the mass and angular momentum
are computed by using the Regge-Teitelboim method [117]. These conserved charges
illustrate the physical meaning of the essential parameters. The case of a vanishing
cosmological constant is considered in Section 8.4. We note that it is necessary to
integrate the field equations from scratch, because a special class of solutions is not
available by just taking the limit Λ → 0 in the solutions presented in Section 8.2.
We found that these spacetimes have all their scalar invariants constant, and are
supported by a phantom scalar field. The last section contains some concluding
remarks.
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8.1. Solving the field equations

In this section we present a complete and detailed derivation of the general
solution for a massless stationary cylindrically symmetric scalar field in presence of a
non-positive cosmological constant in four spacetime dimensions. The methodology
used in this derivation is based on that proposed in [115]2.

We consider the Einstein-Hilbert action with a massless scalar field and a cos-
mological constant Λ,

I =

ˆ
d4x
√
−g
[
R− 2Λ

2κ
− 1

2
gµν∂µΦ∂νΦ

]
, (8.1)

where κ = 8πG is the gravitational constant. The stress-energy tensor turns out to
be

Tµν = ∂µΦ∂νΦ−
1

2
gµνg

αβ∂αΦ∂βΦ, (8.2)

and the field equations are given by

Gµν + Λgµν = κTµν , �Φ = 0. (8.3)

Let us consider the general stationary cylindrically symmetric metric

ds2 = e2αdr2 + e2µdz2 + e2βdφ2 − e2γ(dt− Se−2γ dφ)2, (8.4)

where α, β, γ, µ, S are functions of the radial coordinate r. The nonvanishing com-
ponents of the Ricci tensor are

Rr
r = R̄r

r + 2ω2, (8.5)

Rz
z = R̄z

z, (8.6)

Rφ
φ = R̄φ

φ + 2ω2 +WSe−2γ, (8.7)

Rt
t = R̄t

t − 2ω2 −WSe−2γ, (8.8)

Rφ
t = −W, (8.9)

Rt
φ = e−2γ

[
S(R̄φ

φ − R̄t
t + 4ω2) +W (e2β + S2e−2γ)

]
. (8.10)

The auxiliary functions ω and W appearing above are defined as

ω ≡ 1

2
eγ−β−α(Se−2γ)′, (8.11)

W ≡ e−α−β−γ−µ(ωe2γ+µ)′, (8.12)

2Our results contain the static solution with Λ < 0 in [114], and the stationary solution with
Λ = 0 in [115].
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and the barred symbols denote the Ricci tensor components for the static metric
obtained from (8.4) by setting S = 0, which are

−e2αR̄r
r = β′′ + γ′′ + µ′′ + β′2 + γ′2 + µ′2 − α′(β′ + γ′ + µ′), (8.13)

−e2αR̄z
z = µ′′ + µ′(β′ + γ′ + µ′ − α′), (8.14)

−e2αR̄φ
φ = β′′ + β′(β′ + γ′ + µ′ − α′), (8.15)

−e2αR̄t
t = γ′′ + γ′(β′ + γ′ + µ′ − α′). (8.16)

The field equations can be expressed as

Rµ
ν = Λδµν + κ∂µΦ∂νΦ ≡ τµν , (8.17)

where τµν is reduced to diag(Λ +κe−2αΦ′2,Λ,Λ,Λ) for the metric (8.4) and a scalar
field depending only on r.

Since τφt = 0, Eq. (8.9) implies W = 0. Then, from (8.12) we obtain

ω = ω0e
−2γ−µ, (8.18)

where ω0 is an integration constant.
The definition (8.11) yields (Se−2γ)′ = 2ω0e

β+α−3γ−µ, so that

S = e2γ

(
S0 + 2ω0

ˆ
eα+β−3γ−µ dr

)
, (8.19)

where S0 is a second integration constant (hereafter, all the quantities with sub-
scripts 0, 1 or 2 denote integration constants). Then, the the field equations are
reduced to

R̄r
r = Λ + κe−2αΦ′2 − 2ω2, (8.20)

R̄z
z = Λ, (8.21)

R̄φ
φ = Λ− 2ω2, (8.22)

R̄t
t = Λ + 2ω2. (8.23)

The components φ
t and t

φ of the field equations are satisfied by virtue of W = 0
and Eqs. (8.22, 8.23). The equation for the scalar field,

Φ′′ + (β′ + γ′ + µ′ − α′)Φ′ = 0, (8.24)

admits a first integral given by

Φ′ =
P0√
2κ
eα−β−γ−µ. (8.25)
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We choose the gauge α = 0. Introducing the functions U, V, σ as follows,

µ = logU − σ, β =
1

2
(σ − log V ), γ =

1

2
(σ + log V ), (8.26)

an equivalent system of equations is obtained,

R̄z
z + R̄φ

φ + R̄t
t = −U

′′

U
= 3Λ, (8.27)

R̄φ
φ + R̄t

t = −σ′′ − U ′

U
σ′ = 2Λ, (8.28)

R̄φ
φ − R̄t

t =
V ′′

V
− V ′2

V 2
+
U ′V ′

UV
= − 4ω2

0

U2V 2
, (8.29)

R̄r
r = −3

2
σ′2 − U ′′

U
+

2σ′U ′

U
− V ′2

2V 2
= Λ +

P 2
0

2U2
− 2ω2

0

U2V 2
. (8.30)

In terms of these functions, the scalar field and the metric reads

Φ = Φ0 +
P0√
2κ

ˆ
dr

U
, (8.31)

and

ds2 = dr2 + U2e−2σdz2 +
eσ

V
dφ2 − V eσ(dt− S

V eσ
dφ)2, (8.32)

respectively, with

S = V eσ
(
S0 + 2ω0

ˆ
dr

UV 2

)
. (8.33)

Note that U2V ′V ×Eq. (8.29) = −(U2×Eq. (8.30))′, so that in the general case
V ′ 6= 0 it is enough to consider just Eq. (8.30) because it implies (8.29). In the
special case V ′ = 0, Eq. (8.29) yields ω0 = 0 and (8.30) becomes

− 3

2
σ′2 +

2σ′U ′

U
= −2Λ +

P 2
0

2U2
. (8.34)

Equations (8.28) and (8.27) yield

σ =


σ0 + σ1

ˆ
dr

U
: Λ = 0,

σ0 + logU2/3 + σ1

ˆ
dr

U
: Λ 6= 0.

(8.35)

Replacing (8.35) and (8.27) in (8.30) we get

U2V ′2 − aV 2 − 4ω2
0 = 0, (8.36)
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where a = 4σ1U
′−3σ2

1−P 2
0 for Λ = 0, and a = 4U ′2/3+4ΛU2−P 2

0 −3σ2
1 otherwise.

Equation(8.27) implies that U ′ and 4U ′2/3 + 4ΛU2 are constants for Λ = 0 and
Λ 6= 0, respectively. Therefore, in both cases a is a constant.

The change of variable

x =

ˆ
dr

U
, (8.37)

transforms Eq. (8.36) into (
dV

dx

)2

− aV 2 − 4ω2
0 = 0, (8.38)

which can be integrated by quadrature yielding

V =


e
√
a(x−x0) − ω2

0

a
e−
√
a(x−x0), if a > 0, (8.39a)

2ω0 x+ V0, if a = 0, (8.39b)
2ω0√
−a

sin
[√
−a(x− x0)

]
, if a < 0. (8.39c)

The integral appearing in Eq. (8.33) is equivalent to
´
dxV −2. Then, from (8.39)

we obtain

ˆ
dx

V 2
=



−
√
a

2

e−
√
a(x−x0)

ae
√
a(x−x0) − ω2

0e
−
√
a(x−x0)

: a > 0,

− 1

2ω0(2ω0 x+ V0)
: a = 0, ω0 6= 0,

x

V 2
0

: a = 0, ω0 = 0,

−
√
−a

4ω2
0 tan

[√
−a(x− x0)

] : a < 0.

(8.40)

An important consequence can be derived from Eq. (8.36) (or equivalently from
(8.38)). For a < 0 there are no real nonvanishing solutions for this equation if
ω0 = 0. This means that all the real solutions are stationary, but they do not
contain a static limit. As opposite, the solutions in the case a > 0 can be reduced
to static ones. The case a = 0 has two different branches. The first one, defined by
the conditions V ′ 6= 0, ω0 6= 0, provides stationary solutions that fail in containing
a static limit. The second branch, V ′ = 0, ω0 = 0, corresponds to the special case
mentioned before. In fact, Eq. (8.34) implies a = 0 regardless the value of the
cosmological constant. This special branch contains solutions with static limit.

In what follows, we explicitly show all the possible solutions, which will classify
according the value of a.
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8.1.1. General solution with Λ = 0

From (8.27) we obtain
U = u0 + u1r , (8.41)

and from (8.35),

σ =


σ0 +

σ1

u1

log(u0 + u1r) if u1 6= 0, (8.42a)

σ0 +
σ1

u0

r if u1 = 0. (8.42b)

Moreover, from (8.37) we get

x =


log(u0 + u1r)

u1

if u1 6= 0, (8.43a)

r

u0

if u1 = 0. (8.43b)

and the constant a is given by

a = 4σ1u1 − 3σ2
1 − P 2

0 . (8.44)

8.1.1.1. Type A solutions: a > 0

A necessary condition for a > 0 is σ1u1 > 0. Then, from (8.39a) and (8.43a) we
obtain

V = V0(u0 + u1r)
√
a

u1 − ω2
0

aV0

(u0 + u1r)
−
√
a

u1 , (8.45)

where the constant V0 is a redefinition of e−
√
ax0 .

After some algebraic manipulations we can express the general solution in a
manner that will be presented in Section 8.4.1. The functions g0, g1 and g2 are given
by

gi = (r + ū0)Ki+
2
3 , (8.46)

where

K0 =
σ1 +

√
a

u1

− 2

3
, K1 =

σ1 −
√
a

u1

− 2

3
, K2 =

4

3
− 2σ1

u1

, (8.47)

and ū0 = u0/u1. The constants a0, a1, b0, b1, c0 and α are given by

a0 = eσ0V0u
σ1+
√
a

u1
1 , b0 = S2

0a0 (8.48)

a1 =
eσ0ω2

0

aV0

u
σ1−
√
a

u1
1 , b1 =

eσ0

aV0

(
1 +

ω0S0√
a

)
u
σ1−
√
a

u1
1 (8.49)

c0 = e−2σ0u
2− 2σ1

u1
1 , α =

P 2
0

u2
1

. (8.50)
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It is possible to map the condition a > 0 to an equivalent one in terms of K2 and α,

(K2)2 <
4

3

(
4

3
− α

)
. (8.51)

8.1.1.2. Type B solutions: a = 0

As before, this case requires σ1u1 > 0. From (8.39b) and (8.43a) we get

V = V0 +
2ω0

u1

log(u0 + u1r). (8.52)

In the general case ω0 6= 0, the function V is not a constant and the metric has no
a static limit. The special case V = V0 appears provided ω0 = 0 and corresponding
metric can be obtained from an improper gauge transformation in the t− φ plane.
In this case, the functions g0, g1 and g2 are given by (8.46), where

K0 = K1 =
σ1

u1

− 2

3
, K2 =

4

3
− 2σ1

u1

. (8.53)

The constants a0, a1, b0, b1, c0 and α are given by

a0 = eσ0V0u
σ1
u1
1 , b0 = S2

0a0 (8.54)

a1 = 0, b1 =
eσ0

V0

u
σ1
u1
1 (8.55)

c0 = e−2σ0u
2− 2σ1

u1
1 , α =

P 2
0

u2
1

. (8.56)

In terms of K2 and α, the condition a = 0 becomes

(K2)2 =
4

3

(
4

3
− α

)
. (8.57)

8.1.1.3. Type C solutions: a < 0

From (8.39c) and (8.43a)-(8.43b), we get

V =


2ω0√
−a

sin

[√
−a
(

log(u0 + u1r)

u1

− x0

)]
: u1 6= 0

2ω0√
−a

sin

[√
−a
(
r

u0

− x0

)]
: u1 = 0

(8.58)

Since that V has no a definitive sign, the norm of the Killing vectors ∂t and ∂φ does
not maintain a fixed sign. This type of solutions has no a static limit.
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8.1.2. General solution with Λ = −3l−2 < 0

Let us consider a negative cosmological constant Λ = −3l−2. The Eq. (8.27) is
easily solved. It gives

U = c1e
3r/l − c2e

−3r/l, (8.59)

and Eq. (8.35) provides σ as

σ = σ0 + logU2/3 + σ1

ˆ
dr

U
, (8.60)

where

x =

ˆ
dr

U
=



l

6
√
c1c2

log

(
e3r/l −

√
c2/c1

e3r/l +
√
c2/c1

)
: c1c2 > 0,

− le
−3r/l

3c1

: c2 = 0,

− le
3r/l

3c2

: c1 = 0,

− l

3
√
−c1c2

arctan
(√
−c1/c2 e

3r/l
)

: c1c2 < 0.

(8.61)

In this case, the constant a becomes

a = 48c1c2l
−2 − 3σ2

1 − P 2
0 . (8.62)

8.1.2.1. Type A solutions: a > 0

The case a > 0 requires the necessary condition c1c2 > 0. From (8.39a) and the
first line in (8.61)

V = V0

(
e3r/l −

√
c2/c1

e3r/l +
√
c2/c1

) l
√
a

6
√
c1c2

− ω2
0

aV0

(
e3r/l −

√
c2/c1

e3r/l +
√
c2/c1

)− l
√
a

6
√
c1c2

. (8.63)

In the same way as for the case Λ = 0, algebraic manipulations allow us to
express the general solution in a convenient manner that will be used in the next
section as a linear combination of functions g0, g1 and g2 given by

gi =
(
e3r/l − b2e−3r/l

)2/3
(
e3r/l − b
e3r/l + b

)Ki
, (8.64)

where

K0 =
(σ1 +

√
a)l

6
√
c1c2

, K1 =
(σ1 −

√
a)l

6
√
c1c2

, K2 =
−2σ1l

6
√
c1c2

, (8.65)
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and b =
√
c2/c1. The constants a0, a1, b0, b1, c0 and α are given by

a0 = eσ0V0c
2/3
1 , b0 = S2

0a0, (8.66)

a1 =
eσ0ω2

0

aV0

c
2/3
1 , b1 =

eσ0

aV0

(
1 +

ω0S0√
a

)
c

2/3
1 , (8.67)

c0 = e−2σ0c
2/3
1 , α =

P 2
0 l

2

36c1c2

. (8.68)

In terms of K2 and α the condition a > 0 reads

(K2)2 <
4

3

(
4

3
− α

)
. (8.69)

8.1.2.2. Type B solutions: a = 0

For a = 0, the condition c1c2 > 0 is also necessary. From (8.39b) and the first
line in (8.61) we get

V = V0 +
ω0l

3
√
c1c2

log

(
e3r/l −

√
c2/c1

e3r/l +
√
c2/c1

)
. (8.70)

The special case V = V0 appears provided ω0 = 0 and corresponding metric can
be obtained from an improper gauge transformation in the t−φ plane. In this case,
the functions g0, g1 and g2 are given by (8.64), where

K0 = K1 =
σ1l

6
√
c1c2

, K2 =
−2σ1l

6
√
c1c2

, (8.71)

The constants a0, a1, b0, b1, c0 and α are given by

a0 = eσ0V0c
2/3
1 , b0 = S2

0a0 (8.72)

a1 = 0, b1 =
eσ0

V0

c
2/3
1 (8.73)

c0 = e−2σ0c
2/3
1 , α =

P 2
0 l

2

36c1c2

. (8.74)

In terms of K2 and α, the condition a = 0 becomes

(K2)2 =
4

3

(
4

3
− α

)
. (8.75)
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8.1.2.3. Class C solutions: a < 0

In this case V is given by (8.39c), where x is provided by (8.61) according to the
constants c1 and c2 appearing in the definition of U in Eq. (8.59). Analogously to
the case of a vanishing cosmological constant, the Killing vectors ∂t and ∂φ have not
a norm with definite sign, and the solutions do not contain a static limit.

8.2. General stationary cylindrically symmetric so-

lutions with static limit

The general stationary, cylindrically symmetric3 configuration can be described
by the line element

ds2 =gtt(r)dt
2 + gφφ(r)dφ2 + gzz(r)dz

2 + 2gtφ(r)dtdφ+ dr2, (8.76)

where the coordinates range as t ∈ (−∞,∞), r ∈ [0,∞), z ∈ (−∞,∞) and φ ∈
[0, 2π), and a scalar field depending just on the radial coordinate, Φ = Φ(r).

As we showed in the previous section, the general solution with static limit (8.76)
of the field equations (8.3) can be written as a linear combination of three functions

gtt(r) = a1g1(r)− a0g0(r),

gφφ(r) = b1g1(r)− b0g0(r),

gtφ(r) =
√
a0b0g0(r)−

√
a1b1g1(r),

gzz(r) = c0g2(r).

(8.77)

where for a negative cosmological constant Λ = −3l−2,

gi(r) =

(
e3r/l − b
e3r/l + b

)Ki(
e3r/l − b2e−3r/l

)2/3
, i = {0, 1, 2}, (8.78)

and the scalar field is given by

Φ(r) = Φ0 +
1

2

√
α

2κ
log

(
e3r/l − b
e3r/l + b

)2

. (8.79)

For Λ = 0, the functions are

gi(r) = r2/3+Ki , i = {0, 1, 2}, (8.80)

3In order to include spacetimes lacking of a regular axis, we are adopting the less restrictive
definition of cylindrical symmetry given in [107].
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and the scalar field is

Φ = Φ0 +

√
α

2κ
log(r) , (8.81)

where the origin has been chosen at r = 0. Here Ki, a0, a1, b, b0, b1, c0, α and Φ0

are integration constants. The constants Ki are not independent, since they verify
the algebraic relations

K0 +K1 +K2 = 0, (8.82)

K0K1 +K1K2 +K2K0 = −4

3
+ α. (8.83)

In order to ensure a real metric and scalar field, the previous algebraic relations fix
bounds for the constants. The constant α runs in the interval 0 ≤ α ≤ 4/3, and the
constants |Ki| are bounded from above by 2

3

√
4− 3α, 1

3

√
4− 3α, and 1

3

√
4− 3α in

any order.
Note that the presence of the scalar field is encoded in the additional integration

constant α in (8.83). In absence of the scalar field, the stationary solutions presented
in [105], and the static ones in [97, 98], are recovered.

The constant c0 can be absorbed by rescaling the noncompact coordinate z, and
only one of the constants a0, a1, b0, b1 is essential, as it will become clear in the next
section.

8.3. Analysis of the solution with Λ < 0

In order to get insight about the parameter b, it is convenient to start with static
metric

ds2 = −g0(r)dt2 + g1(r)l2dφ2 + g2(r)dz2 + dr2. (8.84)

The constant b determines the location of the axis of symmetry at r0 = l/3 log |b|, and
it can be removed from the scalar field by a shift of the radial coordinate r → r+r0.
With this shift, b just appears as a multiplicative factor b2/3 in gi, and consequently,
the invariants do not depend on b. In other words, b could be removed from the
solution by rescaling the coordinates t, z, φ. However, φ is a compact coordinate and
global properties will be modified with this rescaling. In fact, the metric with the
shifted radial coordinate reduces in absence of the scalar field to that shown in [100],
where a conicity parameter equivalent to b−1/3 is explicitly exhibited. In summary,
b has no relevance for the local properties, but it is a topological parameter that
contributes to the mass of the solution (see Subsection 8.3.4). On the contrary, note
that for Λ = 0 a shift of the radial coordinate does not have any local or global
implication.
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The general solution previously considered for the vacuum case do not contain a
locally anti-de Sitter (AdS) spacetime [99]. Indeed, the locally AdS solution appears
as a special branch disconnected from the general one [100]. The advantage of our
general static solution is that it is smoothly connected to a locally AdS spacetime,
and in fact, this is achieved just doing b = 0 in (8.84). Explicitly, we obtain

ds2 = dr2 + e2r/l
(
−dt2 + l2dφ2 + dz2

)
, (8.85)

which becomes the background required for computing the conserved charges in
Subsection 8.3.4.

8.3.1. Local properties

In order to obtain a deeper insight into the geometrical properties of the solution,
we make use of an invariant characterization of the spacetimes. Spacetimes are usu-
ally classified according to the Petrov classification of their Weyl invariants. Note
that for analyzing the local properties it is enough to consider the static solutions
because, as it will be shown in the next subsection, the stationary solutions can
be obtained from a topological construction, and therefore they are locally equiv-
alent. The general solution presented above, (8.84), is of type I (named normally
algebraically general). However, as Linet pointed out in [97], a particular choice
of the constants K0, K1 and K2, makes the solution to be an algebraically spe-
cial spacetime of type D. We find that, with the inclusion of the scalar field, i.e.
by means of the constant α, the Petrov type D spacetimes are no longer deter-
mined only by those particular values of Ki, but by a range of values driven by α.
Namely, Petrov type D spacetimes are found for values of Ki taken as any ordering
of ±2

3

√
4− 3α, ∓1

3

√
4− 3α, and ∓1

3

√
4− 3α, provided 0 ≤ α < 4/3. These type

D spacetimes have a planar section (two Ki are equal), which allows an additional
symmetry. This fourth Killing vector corresponds to a rotation or a boost in this
plane depending on its signature.

A novel feature introduced by the scalar field, is a nontrivial Petrov type O
subfamily. In fact, for α = 4

3
, b 6= 0 and vanishing Ki, a conformally flat spacetime

arises, and it is given by

ds2 = dr2 + (e3r/l − b2e−3r/l)2/3(−dt2 + dz2 + l2dφ2). (8.86)

In other words, the scalar field gives rise to a wider family of spacetimes. This
Petrov type O is a new subfamily parametrized by b, which strictly emerges due
to the scalar field. In this case the number of isometries is enlarged to six since
we are dealing with a conformally flat spacetime. It is remarkable to have such a
number of symmetries in a space endowed with a matter source, in particular since
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for the vacuum (nontrivial) case there are at most four Killing vectors [99]. For
b = 0 the scalar field is trivial —it is a constant— and (8.86) reduces to the locally
AdS spacetime (8.85).

Studying the Weyl and Ricci scalars of the Newman-Penrose formalism it is
shown that they are singular at the axis for the whole family of solutions, except in
two cases. The first one, corresponds to the CSI spacetimes, which will be discussed
in Section 8.4.2. The second case appears for a constant scalar field (α = 0) provided
the constants Ki take the values {±4

3
,∓2

3
,∓2

3
}, or any permutation of them [97].

Since this special solution is regular at the axis, a change of the radial coordinate r
can be performed to prove that this type D solution is a black string. In fact, for
K0 = 4/3, and K1 = K2 = −2/3 the transformation reads

r =
2l

3
log

[
ρ3/2 +

√
ρ3 − 4bl3

2l3/2

]
, (8.87)

yielding the black string

ds2 = −
(
ρ2

l2
− 4lb

ρ

)
dt2 +

dρ2

ρ2

l2
− 4lb

ρ

+
ρ2

l2
dz2 + ρ2dφ2. (8.88)

Note that the original axis of symmetry at r0 = l/3 log |b| is mapped to the horizon
ρ+ = 22/3lb1/3, and the new axis of symmetry is located at ρ = 0. This black string
was previously found by solving the Einstein field equations in [28], and by using an
adequate coordinate transformation in [100].

8.3.2. Topological construction of the rotating solution from
a static one

As explained in [108], a diagonal static metric with dependence on the spacelike
coordinates r and z, and with the “angular” coordinate stretched to infinity, can be
locally equivalent but globally different to a stationary axisymmetric metric obtained
from a topological identification in the static spacetime. This identification is defined
by two essential parameters. This kind of essential parameters can not be removed
by a permissible change of coordinates since they encode topological information.
In this section we are going to build the stationary solution (8.76) with the metric
coefficients (8.77), using the procedure presented in [108] in the particular case of
cylindrical symmetry.

Let us consider the static solution with scalar field

ds2 = −g0(r)dt̂2 + g1(r)l2dφ̂2 + g2(r)dz2 + dr2, (8.89)
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where gi is given by (8.78) in a coordinate system (t̂, r, z, φ̂) with t̂ ∈ (−∞,∞), r ∈
[0,∞), z ∈ (−∞,∞) and φ̂ ∈ (−∞,∞). Note that φ̂ is not a compact coordinate.
We perform a coordinate transformation on the (t̂, φ̂) plane given by

t̂ = β0φ+ β1t, φ̂ = α0φ+ α1t, (8.90)

where α0, α1, β0 and β1 are parameters. This transforms (8.89) into (8.77) by
defining these parameters as follows

α0 =

√
b1

l
, α1 = −

√
a1

l
,

β0 = −
√
b0, β1 =

√
a0. (8.91)

As shown in [108], α1 and β1 are not essential parameters, and they can be set
as α1 = 0 and β1 = 1. On the contrary, α0 and β0 are essential. However, after
a topological identification, which transforms the (t̂, φ̂) plane into a cylinder, one
can fix the period of the angular coordinate φ to 2π by choosing α0 = 1. Since
that in (8.89) all the coordinates are not compact, b can be absorbed by rescaling
the coordinates. After identification, φ̂ becomes periodic and b has a topological
meaning. The parameter α0 plays the same topological role, and in fact it redefines
b. Therefore, without loss of generality α0 can be fixed, but not simultaneously with
b. In other words, since from the beginning the static solution contains an arbitrary
conicity parameter b, the constant α0 can be fixed. Going back to relations (8.91)
we find that a0 = 1, a1 = 0 and b1 = l2 reproduce the set of values chosen for α0, α1

and β1. Then, after fixing the period as 2π there is just one essential parameter β0

in the transformation, which will be named −a hereafter. Then, the transformation
(8.90) reduces to

t̂ = t− aφ, φ̂ = φ. (8.92)

In summary, a topological construction can bring the solution (8.89) into a locally
equivalent, but globally different, solution by doing the transformation (8.92) to get

ds2 = −g0(r)(dt− adφ)2 + g1(r)l2dφ2 + g2(r)dz2 + dr2. (8.93)

Transformation (8.92) is not a proper coordinate transformation, since it converts an
exact 1-form into a closed but not exact 1-form, as was discussed in detail in [110].
Hence, (8.92) only preserves the local geometry, but not the global one. Therefore,
the resulting manifold is globally stationary but locally static. Hereafter, we will
consider (8.93) instead of (8.77) as the general solution, because it already contains
all the local and global essential information.
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8.3.3. Asymptotic behavior

In order to display the asymptotic behavior of the fields, it is convenient to use
the coordinate ρ = ler/l. In this way, the behavior at large ρ is given by

gtt(ρ) = −ρ
2

l2
+

2blK0

ρ
+O(ρ−4),

gφφ(ρ) = ρ2(1− a2

l2
) +

2lb(−l2K1 + a2K0)

ρ
+O(ρ−4),

gtφ(ρ) =
ρ2a

l2
− 2blaK0

ρ
+O(ρ−4),

gzz(ρ) =
ρ2

l2
− 2blK2

ρ
+O(ρ−4), gρρ(ρ) =

l2

ρ2
,

Φ(ρ) = Φ0 +

√
2α

κ

bl3

ρ3
+O(ρ−9).

(8.94)

One can note that the metric asymptotically approaches a locally AdS spacetime,
as the scalar field becomes constant. The background is fixed by setting a = b =
α = Φ0 = 0, which corresponds to a locally AdS spacetime.

8.3.4. Mass and angular momentum

The mass and angular momentum of the solutions are determined using the
Regge-Teitelboim method [117]. In the canonical formalism, the generator of an
asymptotic symmetry associated to the vector ξ = (ξ⊥, ξi) is built as a linear com-
bination of the constraints H⊥,Hi, with an additional surface term Q[ξ]

H[ξ] =

ˆ
d3x

(
ξ⊥H⊥ + ξiHi

)
+Q[ξ]. (8.95)

A suitable choice of this surface term attains the generator has well-defined func-
tional derivatives with respect to the canonical variables [117]. The surface term
Q[ξ] is the conserved charge under deformations ξ provided the constraints vanish.
For the action (8.1), the variation of Q[ξ] is given by

δQ[ξ] =

˛
d2Sl

[
Gijkl

2κ
(ξ⊥δgij;k − ξ⊥,kδgij) + 2ξkδπ

kl

+(2ξkπjl−ξlπjk)δgjk−(
√
gξ⊥gljΦ,j+ξ

lπΦ)δΦ
]
, (8.96)

where Gijkl ≡ √g(gikgjl +gilgjk−2gijgkl)/2. The canonical variables are the spatial
metric gij and the scalar field Φ together with their respective conjugate momenta
πij and πΦ.
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To evaluate δQ[ξ] we consider as asymptotic conditions just the asymptotic be-
havior of the solutions with a negative cosmological constant (8.94), where the inte-
gration constants Ki, a, b, α are allowed to be varied. The additive constant of the
scalar field Φ0 is considered as a fixed constant without variation, in order to save the
asymptotic scale invariance4. Since the solution is in the comoving frame along z,
the corresponding momentum Q[∂z] vanishes. Then, the only nonvanishing charges
are those associated to symmetry under time translations and the rotational invari-
ance, the mass and angular momentum, respectively. Defining q[ξ] as the charge by
unit length Q[ξ] =

´
q[ξ]dz, we can obtain from (8.94) and (8.96), the explicit form

of δq[ξ]

δq[ξ] =
6π

κ

[
−ξtδ(b(K1 +K2)) + ξφδ(ab(K1 −K0))

]
. (8.97)

Thus, using κ = 8πG, the mass M = q[∂t] and angular momentum J = q[∂φ] per
unit length are

M =
3b

4G
K0, J =

3ab

4G
(K1 −K0). (8.98)

These global charges are defined up to an additive constant without variation. In or-
der to set the locally AdS spacetime (8.85) as a background, these additive constants
must be chosen to be null.

As we can see from the expression for the angular momentum, there are two
manners of turning off the angular momentum. The first one is by doing a = 0,
which cancels the off-diagonal term gtφ in the metric. The second way is less obvious,
since it is achieved by considering K0 = K1. Indeed, this particular choice of the
parameters yields a static solution of type D. This can be shown from the coordinate
transformation

dφ→ dφ+
a

(a2 − l2)
dt, dt→ dt. (8.99)

As analyzed in [108], this transformation contains an inessential parameter α1 =
a/(a2− l2), which does not change the topology. Therefore, the solution with K0 =
K1 is no just locally equivalent to the static solution, but also globally.

8.4. Analysis of the solutions with Λ = 0

The limit Λ → 0, or equivalently l → ∞, in the configurations given by Eqs.
(8.78) and (8.79) in Section 8.2, does not provide all the solutions coming from a

4For δΦ0 6= 0, δQ[ξ] contains a term proportional to
¸
d2Sξt

√
αbδΦ0. The integration of this

term requires a boundary condition relating Φ0 with α and b.
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direct integration of the field equations. In fact, as shown in Section 8.1, two classes
of solutions are obtained. The first type corresponds to solutions that match the
limit Λ → 0 in the configurations introduced in Section 8.3, and they are dubbed
as Levi-Civita type spacetimes. The second type is formed by spacetimes having
all their invariants constant. These two types will be analyzed in detail below. The
discussion in this section is focused on static solutions. The topological construction
explained in Section 8.3 does not depend on the value of the cosmological constant,
and in consequence, the stationary solutions for Λ = 0 can be obtained from the
improper transformation (8.92). Since (8.92) is a local transformation, the static
configuration and its stationary counterpart share the same local properties.

8.4.1. Levi-Civita type spacetimes

In this subsection, we show analyze a Levi-Civita type spacetime in presence
of a massless scalar field. The algebraic relations (8.82) and (8.83) determine two
essential constants related to the gravitational and scalar field strengths. Since φ
is an angular coordinate with a given period, the constant b1 in (8.77) cannot be
absorbed by a rescaling of this coordinate keeping the same period. Then, b1 is
a third essential parameter and plays a topological role in the same way as b in
Section 8.3. The transformation (8.92) provides the fourth essential parameter for
the stationary solution.

As in Section 8.3, we study the local properties through the Petrov classifi-
cation. Normally the solution is algebraically general as occurs in vacuum [118],
but algebraically special spacetimes are also possible to be found. The scalar field
parametrizes three families of type D spacetimes, which will be described in Table
1. Two of these families (S1 and S2) are allowed only for a nonvanishing scalar
field, while the third one (S3) reduces to the three known vacuum type D Levi-
Civita spacetimes by switching off the scalar field and by circular permutations of
Ki. A nontrivial type O spacetime emerges strictly from the scalar field. In this
case K0 = K1 = K2 = 0 and α = 4/3 yielding the conformally flat metric

ds2 = dr2 + r2/3(−dt2 + dz2 + g0
1dφ

2). (8.100)

This is the counterpart with Λ = 0 of the conformally flat spacetime described in
(8.86).

It is found that the nonvanishing components of the Riemann tensor Rµν
λρ and

Kretschmann scalar are proportional to r−2 and r−4, respectively. Then, the space-
time is asymptotically locally flat.

Until now, we have assumed a nonvanishing constant u1, defined by (8.41) in
Section 8.1 . However, when we consider u1 = 0, the functional form of gi(r) is

86



K0 K1 K2 α

S1
2
3

√
4− 3α −1

3

√
4− 3α −1

3

√
4− 3α (0, 4

3
)

S2 −2
3

1
3
±
√

1− α 1
3
∓
√

1− α (0, 1]
S3 −2

3

√
4− 3α 1

3

√
4− 3α 1

3

√
4− 3α [0, 4

3
)

Table 8.1: Petrov D spacetimes for Λ = 0. The constants Ki are classified in three
sets, and depend on the amplitude of the scalar field α. Within each set K0, K1

and K2 can be taken in any order. The last column shows the range of α allowed
for each set. The first two sets are exclusive for a non-constant scalar field (α 6= 0),
and the third one also includes a trivial scalar field.

drastically modified. This new branch of solutions, which is not directly provided
by the limit Λ→ 0 in Section 8.3, are analyzed in next subsection.

8.4.2. CSI spacetimes

In general, the Levi-Civita type spacetimes discussed above possess curvature
invariants which are singular at r = 0. However, it is possible to find regular
spacetimes, i.e spacetimes free of any curvature singularity, where in addition, all
polynomial scalar invariants constructed from the Riemann tensor and its covariant
derivatives are constant. These spacetimes are known as constant scalar invariant
(CSI) spacetimes. In this subsection, a nontrivial CSI spacetime due to the presence
of the scalar field is presented. It is found that it is required to switch off the cos-
mological constant in order to get this class of spacetimes. This case is of particular
interest since it provides a non-vacuum solution with constant curvature scalars.
For simplicity, only the static cases will be considered, since the stationary CSI
spacetimes containing a static limit can be obtained by performing the coordinate
transformation (8.92).

From the field equations 8.3 one can obtain the Ricci scalar, which reads

R = 4Λ + κΦ′2 = 4Λ +
P 2

0

2U2
, (8.101)

where the last equality comes from (8.31). Assuming P0 6= 0, i.e., a nontrivial
scalar field, U = u0 = constant is a necessary condition for a CSI spacetime. Since
U ′ = 0 is not a solution for a nonvanishing Λ, there are no CSI spacetimes in this
case. However, for Λ = 0 the function U becomes a constant by setting u1 = 0
in Eq. (8.41), and consequently, a must be negative. Thus, the candidates to CSI
spacetimes are the ones lacking a static limit. Nevertheless, if a phantom scalar field
is considered, i.e., if we replace P 2

0 by −P 2
0 , there are no restrictions on the sign of

a for u1 = 0. In this way, it is possible to find the static CSI solution with a > 0.
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The solution in this case is given by exponentials,

gi(r) = g0
i e
Kir, (8.102)

and the scalar field is a linear function, Φ(r) = Φ0 +
√
α/(2κ)r, where α = −P 2

0 /u
2
0.

The integration constants satisfy the algebraic relations,

K0 +K1 +K2 = 0,

K0K1 +K1K2 +K2K0 = α.
(8.103)

Thus, from (8.103) we obtain,

K0 =
1

2
(−K2 ±

√
−3(K2)2 − 4α), (8.104)

K1 =
1

2
(−K2 ∓

√
−3(K2)2 − 4α). (8.105)

Note that the reality condition of the line element demands α < −3
4
(K2)2 and as

a consequence the scalar field becomes imaginary. This means that the presence of
a phantom scalar field makes possible to remove curvature singularities present in
the vacuum solutions. The Petrov classification indicates that these spacetimes are
type D.

In order to verify that these spacetimes are indeed CSI spacetimes, we make use
of a theorem proved in [119, 120]. The theorem states that any four dimensional
locally homogeneous spacetime is a CSI spacetime. The static line element with the
metric coefficients (8.102) has three trivial Killing vectors ∂t, ∂z, and ∂φ. However,
it is possible to find a fourth Killing vector given by

ξ(4) = (−1

2
K0t,−

1

2
K1φ,−

1

2
K2z, 1), (8.106)

in the coordinate system (t, φ, z, r), which in addition to the trivial ones, form a
transitive group of isometries. Therefore, this spacetime is locally homogeneous.

8.5. Concluding remarks

In the presented chapter, the general stationary cylindrically symmetric solution
of Einstein-massless scalar field system with a non-positive cosmological constant
has been found, and its local and global properties has been studied. As shown in
Section 8.1, there is an additional class of solutions, which fail in having a static
limit.
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Four integration constants are essential parameters for the general solution. This
means that these parameters encode all the relevant physical information. One is
the amplitude of the scalar field, which beside a second one present in the met-
ric, characterize the gravitational field strength. The other two parameters have a
topological origin, since they appearing in the improper gauge transformation that
allow us to obtain the stationary solution from the static one. The meaning of these
parameters can be also analyzed from the expressions for the mass and angular
momentum of the solutions with a negative cosmological constant.

The Petrov classification was performed to explore the effects of the scalar field
on the vacuum solutions for a negative and a vanishing cosmological constant. The
inclusion of the scalar field enlarges the family of solutions in comparison with
the vacuum case. Thus, type D solutions are now parametrized by the amplitude
of the scalar field and nontrivial type O solutions have been found in presence of
nonvanishing scalar field. These conformally flat solutions endowed with a matter
field have six Killing vectors. Note that in the vacuum case, there are not type O
solutions apart from the trivial ones, the locally Minkowski (for Λ = 0) and the
locally AdS spacetime (for Λ < 0).

Other interesting case occurs for Λ = 0. There are special type D solutions which
are possible only if the scalar field is present. We have shown that these space-
times have a fourth Killing vector, which completes a transitive group of isometries,
and consequently they are locally homogeneous. Thus, these solutions become CSI
spacetimes dressed by a phantom scalar field.
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Chapter 9

Conclusions

In this thesis gravitational solutions have been explored in order to study the
influence of the scalar field and its coupling in two different aspect of relevant inter-
est: as a degree of freedom in Hordenski theory and as a minimally coupled matter
field.

First we constructed and studied black hole and boson stars solutions in the
Horndeski scenario when the non-minimal kinetic coupling is considered. The inclu-
sion of a Maxwell field confers remarkable features to the solution. Black hole solu-
tions were found for arbitrary dimensions n > 4 with a real scalar field in the domain
of outer communications satisfying the weak energy condition. The asymptotically
locally AdS configurations exhibit an effective cosmological constant determined by
the coupling constants and a Coulombic electric field. Although the solutions are
not smoothly connected to maximally symmetric spaces, they contain a spherically
symmetric asymptotically AdS soliton spacetime which could be used to obtain
the thermodynamical properties of the black holes in the Hawking-Page approach.
When the minimal coupling is switched off, i.e. when only the non-minimal kinetic
coupling is present we obtain an asymptotically AdS solution for Λ < 0 provided
some constraints on the electric charge and non-minimal coupling constant. The
electric field is constant and its supported by the cosmological constant at infinity.
For vanishing cosmological constant the black hole exhibits an asymptotically flat
behavior and the electric field is zero at infinity. At the same time, switching off the
electric charge the scalar field is constants and the solution recovers Schwarzschild
black hole.

In the same context of Horndeski theory, we constructed a four dimensional boson
star configuration for the non-minimal kinetic sector in its bi-scalar extension. In this
way, complex scalar field supports a boson star solution and represents two degrees
of freedom of the theory. We investigated the mini-boson star as well as the boson
star with sixth order self-interacting potential when it possesses two degenerate local
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vacua. The determinant of the system of equations is the parameter that determines
the existence of this kind of solutions. The analysis is carried out by its value at
the origin ∆, where this quantity reach its minimum and the scalar field reaches its
central amplitude. A vanishing value for ∆ implies a singular system of equations
and a non regular solution. Unlike minimally coupled mini-boson star solution, we
found that mini-boson stars in this setup exist for a range of central amplitudes
of the scalar field which is bounded from above when the non-minimal coupling
parameter is positive. This is because in this situation ∆ decreases drastically. In
other words, ∆ goes to zero after that value for the central amplitude. When the
non-minimal coupling factor is negative the situation is different, since ∆ decreases
monotonically but not reaches zero while the central amplitude of the scalar field
increases. Therefore, in principle the central amplitude is unbounded as long as ∆ do
not take values within the range of tolerance imposed by the numerical integrator.
However, for large values of this quantity, ∆ becomes very sensitive to the non-
minimal coupling factor decreasing the range where solutions exist. We analyzed
the stability of the solutions by computing their binding energy, finding that the
presence of the non-minimal kinetic coupling tends to enhance the stability of the
solutions compared with minimally coupled boson stars. Qualitatively, the same
analysis is valid for the self-interacting case but the space of parameters in which
solutions exist is reduced.

In the second part of this work we considered a minimally coupled scalar field
to gravitation in four dimensions with cosmological constant. The equations of
motion were exhaustively solved, finding two classes of solutions in which one of
them fails in having a static limit, and then focusing our analysis in the class with
static limit. We found the most general stationary cylindrically symmetric solution
and gave an interpretation to the integration constants. Two integration constants
give account of the gravitational field strength encoding information of the local
properties, while the other two contain topological information as they parametrize
an improper transformation that allows to get the stationary solution from the static
one. These constants are related with the mass and the angular momentum of the
solution when a negative cosmological constant is considered. By performing the
Petrov classification we clearly observe that one of the effects of the scalar field is to
enlarge the family of solutions since type D solutions are parametrized by the scalar
amplitude and, unlike the vacuum case, nontrivial type O conformally flat solutions
are found. In the case of vanishing cosmological constant the presence of a phantom
scalar field allows the existence of CSI spacetimes which are locally homogeneous.
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Chapter 10

Conclusiones

El trabajo presentado en esta tesis ha explorado soluciones gravitacionales para
estudiar la influencia del campo escalar y su acoplamiento en dos aspectos de interés
relevantes: como un grado de libertad en la teoŕıa de Horndeski y como un campo
de materia minimalmente acoplado.

Primero, construimos y estudiamos soluciones de agujeros negros y estrellas
bosónicas en el escenario de Horndeski cuando el acoplamiento cinético no-minimal
es considerado. La inclusión de un campo de Maxwell confiere caracteŕısticas desta-
cables a la solución. Las soluciones de agujero negro que fueron encontradas para
dimensión arbitraria n > 4, contienen un campo escalar real fuera del horizonte de
eventos y satisfacen la condición de enerǵıa débil. Las configuraciones asintóticamente
localmente AdS exhiben una constante cosmológica efectiva determinada por las con-
stantes de acoplamiento y un campo eléctrico de Coulomb. Aunque las soluciones
no están suavemente conectadas a los espaciotiempo maximalmente simétricos, el-
las contienen un espaciotiempo solitónico asintóticamente localmente AdS el cual
puede ser usado para obtener las propiedades termodinámicas de los agujeros negros
en el enfoque de Hawking-Page. Cuando el acoplamiento minimal es anulado, i.e.
cuando solamente el acoplamiento cinético no-minimal está presente, obtenemos una
solución asintóticamente AdS para Λ < 0 siempre cuando existan algunas restric-
ciones sobre la carga eléctrica y la constante de acoplamiento no-minimal. El campo
eléctrico es constante y es sustentado por la constante cosmológica en infinito. Para
constante cosmológica nula el agujero negro presenta un comportamiento asintótico
plano y el campo eléctrico es nulo en infinito. Al mismo tiempo, anulando la carga
eléctrica, el campo escalar es constante y la solución recupera el agujero negro de
Schwarzschild.

En el mismo contexto de la teoŕıa de Horndeski, construimos una configuración
de estrella bosónica para el sector cinético no-minimal en su extensión bi-escalar. De
esta manera, el campo escalar complejo provee una solución de estrella bosónica y
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representa dos grados de libertad de la teoŕıa. Nosotros investigamos mini-estrellas
bosónicas aśı como también estrellas bosónicas con potencial auto-interactuante de
sexto orden cuando este posee dos vaćıos locales degenerados. El determinante del
sistema de ecuaciones es el parámetro que determina la existencia de este tipo de
soluciones. El análisis es llevado a cabo mediante su valor en el origen ∆, donde
esta cantidad alcanza un mı́nimo y el campo escalar su amplitud central. Un valor
nulo para ∆ implica un sistema de ecuaciones singular y una solución no regular.
A diferencia de la mini-estrella bosónica minimalmente acoplada, en nuestro caso
encontramos que las mini-estrellas bosónicas existen para un rango de valores de la
amplitud central del campo escalar, esto es, el módulo del campo escalar evaluado
en el origen, el cual es acotado por arriba cuando el parámetro de acoplamiento no-
minimal es positivo. Esto es porque en esta situación ∆ disminuye drásticamente.
En otra palabras, ∆ va a cero después de aquel valor para la amplitud central.
Cuando el factor de acoplamiento no-minimal es negativo la situación es diferente,
puesto que ∆ decrece monótonamente pero no alcanza el valor cero mientras la am-
plitud central del campo escalar aumenta. Por tanto, en principio la amplitud central
no es acotada siempre cuando ∆ no alcance valores dentro del rango de tolerancia
impuesto por el integrador numérico. Sin embargo, para valores grandes de esta can-
tidad, ∆ se torna muy sensible al factor de acoplamiento no-minimal, disminuyendo
el rango donde las soluciones existen. Analizamos la estabilidad de las soluciones cal-
culando la enerǵıa de enlace encontrando que la presencia del acoplamiento cinético
no-minimal tiende a mejorar la estabilidad de las soluciones comparada con las es-
trellas bosónica minimalmente acopladas. Cualitativamente, el mismo análisis es
válido para el caso auto-interactuante pero el espacio de parámetros en los cuales
las soluciones existen es reducido.

En la segunda parte de este trabajo consideramos un campo escalar minimal-
mente acoplado a gravitación en cuatro dimensiones con constante cosmológica.
Las ecuaciones de movimiento fueron resueltas exhaustivamente, encontrando dos
clases de soluciones, una de las cuales no tiene un limite estático, concentrando nue-
stro análisis en la clase con ĺımite estático. Encontramos la solución más general
estacionaria con simetŕıa ciĺındrica y dimos una interpretación a las constantes de
integración. Dos constantes de integración dan cuenta de la intensidad del campo
gravitacional conteniendo información de la propiedades locales, mientras las otras
dos tienen información topológica ya que parametrizan una transformación impropia
que permite obtener la solución estacionaria a partir de la estática. Estas constantes
fueron relacionadas con la masa y el momento angular de la solución cuando unja
constante cosmológica es negativa es considerada. Realizando la clasificación de
Petrov claramente observamos que uno de los efectos del campo escalar es aumentar
la familia de soluciones puesto que ahora las soluciones tipo D son parametrizadas
por la amplitud del campo escalar y, a diferencia del caso en vaćıo, soluciones con-
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formalmente planas notriviales tipo O son encontradas. En el caso de constante
cosmológica nula la presencia de un campo escalar fantasma permite la existencia
de espaciotiempo CSI, los cuales son localmente homogéneos.
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Appendix A

Field equations for boson stars in
Horndeski gravity

Our field equations can be cast in the following matrix form

AB = C (A.1)

where, before the rescaling made in Section 6.1.4, we have defined

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (A.2)

B =

F ′′G′′
φ′′

 (A.3)

C =

K1(F, F ′, G,G′, φ, φ′)
K2(F, F ′, G,G′, φ, φ′)
K3(F, F ′, G,G′, φ, φ′)

 (A.4)

with

A11 =
r

4

(
−6ω2φ2ηG3Fr + 4κF 2G3r + 2rG2F 3φ′2η

G5/2F 4

)

A12 =

(
r2ω2φ2η√
GF 2

)

A13 =
r

4

(
4rG2F 3φ′ηF ′ + 8rG3F 2ω2φη

G5/2F 4

)
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A21 =

(
r2ω2φ2η√
GF 2

)
= A12

A22 = −1

8

(
8r2G2κF 3 + 4r2G2ω2φ2ηF 2 + 4r2Gφ′2ηF 4

G7/2F 3

)
A23 = −1

8

(
16rG2φ′ηF 4 + 16r2G3ω2φηF 2 + 8r2Gφ′ηF 4G′

G7/2F 3

)
A31 =

r

4

(
4rG2F 3φ′ηF ′ + 8rG3F 2ω2φη

G5/2F 4

)
= A13

A32 = −1

8

(
16rG2φ′ηF 4 + 16r2G3ω2φηF 2 + 8r2Gφ′ηF 4G′

G7/2F 3

)
= A23

A33 =− 1

4

(
−8r2F 3G4α + 2r2F 4GηG′2 − 2r2F 2G3ηF ′2 + 8rF 4G2ηG′

G7/2F 3

)

K1 =− r

4G5/2F 4
(−4λ2φ

4F 2G4r + 4λ3φ
6F 2G4r

+ 2κF 2G2G′rF ′ − 8ω2φ2αFG4r + 9ω2φ2ηG3F ′2r

− 12ω2φ2ηG3F ′F + 8ω2φ2ηG2G′F 2 − φ′2ηF 2G2F ′2r

+ φ′2ηF 4G′2r − 4κFG3F ′2r + 16G3F 2ω2φηφ′

+ 4λ1φ
2F 2G4r − 3ω2φ2ηG2G′FrF ′ + 4G2F 3φ′2ηF ′

+ 4φ′2ηF 4G′G+ 8κF 2G3F ′ + 8rG3F 2ω2φ′2η

+ 4rG2F 2ω2φηG′φ′ − rGF 3φ′2ηF ′G′

− 12rG3Fω2φηF ′φ′ − 3ω2φ2ηGG′2F 2r)

K2 =
1

8G7/2F 3
(8rGφ′2ηF 4G′ − 5r2φ′2ηF 4G′2 − 12r2G4ω2φ2αF

+ 13r2G3ω2φ2ηF ′2 − r2G2φ′2ηF 2F ′2 + 4r2Gφ′2ηF 3G′F ′

+ 8rG2φ′2ηF 3F ′ + 16r2G3ω2φ′2ηF 2 − 6r2F 3GG′2κ

+ 16rG2κF 3G′ + 12r2G4λ1φ
2F 2 − 12r2G4λ2φ

4F 2

+ 4r2G3φ′2αF 3 + 8F 4G2φ′2η − 3r2F 2GG′2ω2φ2η

+ 32rG3ω2φηF 2φ′ − 16rG3ω2φ2ηF ′F + 8rG2ω2φ2ηG′F 2

+ 8r2G2ω2φηG′F 2φ′ − 4r2G2ω2φ2ηG′FF ′

− 24r2G3ω2φηFF ′φ′ + 2r2G3κFF ′2 + 12r2G4λ3φ
6F 2)
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K3 =
1

4G7/2F 3
(r2φ′F 2G′ηG2F ′2 + 2r2F 3Gφ′ηG′2F ′

− 4r2F 3G3φ′αG′ − 8φ′F 4GηG′2r − 8r2φG5ω2αF

+ 10r2φG4ω2ηF ′2 − 4φ′F 2G3ηF ′2r + 16rφG3ω2ηG′F 2

+ 2r2FG3φ′ηF ′3 + 8r2φG5λ1F
2 − 6r2φG2ω2ηG′2F 2

+ 24r2φ5G5λ3F
2 − 5r2φ′F 4G′3η + 8φ′F 4G2ηG′

− 4r2φG3ω2ηG′FF ′ − 16rφG4ω2ηF ′F − 16φ′F 3G4αr

+ 8rF 3G2φ′ηG′F ′ − 16r2φ3G5λ2F
2)
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