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Preface

I think it only makes sense to seek out and identify structures of authority, hierarchy, and
domination in every aspect of life, and to challenge them; unless a justification for them can be
given, they are illegitimate, and should be dismantled, to increase the scope of human freedom.
– Noam Chomsky

I started doctoral studies because I realized after having worked for multiple government institutions through
Chile, that what I really like the most and I am passionate about it, is to research and in fact was the job
I was really doing. I have found some people that seems to be more worried about the Doctoral diploma,
which would like to think that to get one is like to get a noble title and they want his throne and crown and
that the people call them Doctor, rather than just a research degree made to improve some research field.
By the way, you do not need to be a genius to get a Doctoral diploma, just a myth. Nevertheless, the truth
be told, you can have a doctorate and not to be a good researcher or not have one and be a tremendous
researcher. Regrettably, I have found several cases from the first and huge egos during my life as researcher.
Thankfully, some of the best researchers and Doctors I have found in Chile and abroad, are the most humble
people. For me, the passion for doing what I like the most has been the engine that has kept me running
forward, no matter what.

The doctorate has been a long journey with a litlle of bitter and a lot of sweet taste. I have saved for me the
sweet and I have learned from the bitter. In some stage of the path, I felt like a humble soccer team, which
has to play against a powerful team (in terms of have power but not regard quality). The adversary team
has doping his players, paid to the referee, play a foul game, and even in the middle of the game has turned
off the stadium lights and makes a goal. Then, like in a movie, the humble team have to stand up, shake
off the dirt and play masterfully to finally win the match. In this sense, I share a part of a speech from the
movie Rocky when Rocky is talking to his son about life, that reflect this feeling :

Let me tell you something you already know. The world ain’t all sunshine and rainbows. It’s a
very mean and nasty place and I don’t care how tough you are it will beat you to your knees and
keep you there permanently if you let it. You, me, or nobody is gonna hit as hard as life. But
it ain’t about how hard ya hit. It’s about how hard you can get hit and keep moving forward.
How much you can take and keep moving forward. That’s how winning is done!

Besides, I wanted to become Doctor because I thought that was a career in which meritocracy can work, and
mostly it does despite a few outliers. In that regard, as a Doctor I compromise to always judge a research
work for its merit, be always learning and hold a high ethical standard as researcher, no matter what.
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Abstract

Climate change is occurring and there is a scientific consensus that human being is playing a key role by
pouring greenhouses gases to the atmosphere. Temperature has been increasing globally and the precipitation
patterns are changing. Regionally, since the year 2010 Chile has been experiencing which has been called a
mega drought, however, it has been seen mostly in meteorological terms by analyzing precipitation deficits.
Further, the future projection for Chile indicates that the precipitation will decrease in Central-South Chile,
this addded to the increase on temperature likely could increase drought frequency and intensity. Also, in
this regard crop yield of corn and wheat decreases are forecasted by 2050 for Chile.

The study on how climate variability and human activity impact agriculture has been known as agricultural
drought. One of the main factors that trigger this drought conditions is precipitation deficit, thus is crucial
to understand how this depletion relates to agriculture development. Although, since 2010 Chile has been
facing water shortage mostly as results of the analysis of annual precipitation, but still there is a lack of
knowledge about how this mega drought is affecting agriculture over Chile. Moreover, during the growing
season 2007-2008 a large part of the country experienced decreases in crop yield for which these areas were
declared under drought emergency by the government. However, by analyzing the total amount of annual
precipitation these years are not seen as relevant drought years. This happens in part because for vegetation
is more important the timing of the rainfall deficit rather than the cumulative over a year. Thus, the study
and understanding of agricultural drought and methods that could help to anticipate it are challenging.

The study of agricultural drought at regional and global scale brings the problem of having enough data
that allow to analyze it spatially and temporally. Nonetheless, since the 70’s the use of remote sensing data
obtained from satellite to monitor the environment at global and regional scale has been highly improved,
and nowadays are a key data source to support climatic and environmental studies. In that regard, there is an
important amount of satellite-derived data publicly available. One of this dataset that provided useful data
for the monitoring of vegetation is provided for the National Aeronautics and Space Administration (NASA)
and its sensor the Moderate-Resolution Imaging Spectroradiometer (MODIS) which is coupled to the TERRA
and AQUA satellites. Further, multiple microwave and infrared satellites have allowed the development of
precipitation estimates products at different temporal and spatial resolutions Between them, highlight the
Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) having data
since 1998, and also has been derived long-term precipitation products such as the Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIANN-
CDR) with data since 1983, and the Climate Hazards Group InfraRed Precipitation with Station data
version 2 (CHIRPS v2) providing estimates since 1981. These vegetation and precipitation satellite products
are valuable data sources for agricultural drought studies, allowing to evaluate the interaction vegetation-
precipitation at regional and global scale.

Accordingly, in this thesis was studied the usefulness of satellite data for the assessment and prediction of
agricultural drought over Chile. The main research question is: How well the satellite data of vegetation
and precipitation together with climatic oscillation indices can be used to predict agricultural drought before
the end of the growing season? To achieve this, the work was developed in three stages: 1) assessment of
vegetation response to water shortage in the BioBío Region of Chile, 2) the evaluation of long-term satellite
precipitation data over Chile for use in drought studies, and 3) prediction of agricultural drought in Chile
from one to four month before the end of the growing season for 2000-2016. For the first stage, was used
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the Vegetation Condition Index (VCI) which was derived from the Normalized Difference Vegetation Index
(NDVI) provided by the MODIS Vegetation Indices (VI) product MCD12Q1.005. The land cover product
MCD12Q2.051 from MODIS was used to derive a cropland mask for the BioBio region. Besides, twenty six
weather stations were used to derive the Standardized Precipitation Index (SPI) at time-scales from one to six
months. To understand how the vegetation response to water shortage, the VCI over the growing season was
correlated against the SPIs. For this the data was aggregated for the whole region and per administrative
unit, and also was analyzed the point-to-point correlation. For the second stage, were used 758 weather
station over Chile having monthly precipitation data since 1981 to 2015. Then, were selected the long-term
satellite data products, CHIRPS v2 for 1981-2015, and the PERSIANN-CDR for 1983-2015. The accuracy
when measuring monthly precipitation was evaluated for these two long-term precipitation products together
with the TMPA product. These three products were compared with the point precipitation data obtained at
weather stations. Also, the long-term products were evaluated for drought monitoring using the SPI for one,
three, and six months. Finally, for the third stage, the study area was defined for 29-41°S through Chile. Over
this region, the product MCD12Q2.051 from MODIS was used to derive a single cropland mask over Chile.
From the 2221 census unit used for the Ministry of Agriculture of Chile for the 10-year agricultural census
over the study area, 758 were selected by filtering using the cropland mask. Per census unit was extracted
the growing season start (SOS) and end (EOS) from the product MCD12Q2.005 from MODIS. Over each
census unit was calculated a proxy of biomass production, the anomaly of cumulative NDVI (zcNDVI) for
2000-2016. As predictors per census unit were calculated from one to four months before EOS the zcNDVI
and SPI at one, three, six, twelve, and twenty-four months. Also, were used as a predictor for one to four
months before EOS the three-month average Pacifical Decadal Oscillation (PDO) and Multivariate ENSO
index (MEI), which were also lagged at 0, 3, and 6 months; from the corresponding prediction timing months
before EOS. Two methods were assessed for the prediction, an Optimal Linear Regression (OLR) per census
unit which selects the predictor that produce less error with a cross-validated linear regression. The second
method corresponds to a Multi Layer Feed-Forward Neural Network also called Deep Learning (DL), for
which were created cross-validated models considering all units and using as additionals predictor latitude
and longitude.

Results from the first stage showed that the 3-month SPI (SPI-3), calculated for the modified growing season
(Nov-Apr) instead of the regular growing season (Sept-Apr), has the best Pearson correlation with VCI values
with an overall correlation of 0.63 and between 0.40 and 0.78 for the administrative units. These results show
a very short-term vegetation response to rainfall deficit in September, which is reflected in the vegetation
in November, and also explains to a large degree the variation in vegetation stress. It is shown that for the
last 16 years in the BioBío Region we could identify the 2007-2008, 2008-2009, and 2014-2015 seasons as the
three most important drought events; this is reflected in both the overall regional and administrative unit
analyses. These results concur with drought emergencies declared by the regional government. Next, from
the second stage, results showed that the monthly analysis for all satellite products highly overestimated
rainfall in the arid North zone. However, there were no major differences between all three products from
North to South-Central zones. Further, in the South zone, PERSIANN-CDR shows the lowest fit with high
underestimation, while CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in-situ measurements.
The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best
results found during winter seasons and in zones (Central to South) with higher amounts of precipitation.
PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scales of 1, 3 and 6 months, both satellite
products presented similar results when were compared in-situ against satellite SPIs. Because of its higher
spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS
2.0 was used to mapping the SPI-3 over Chile. Finally, from the third stage, results from the two prediction
models evaluated (OLR and DL) showed similar and good prediction accuracy, with mean R2cv values for
OLR of 0.94, 0.79, 0.63 and 0.51, and for DL of 0.93, 0.79, 0.63 and 0.51, for one, two, three and four
months before EOS respectively. Also, was discussed potential model improvements and how the method
could contribute to an early warning system for agricultural drought in Chile.



Chapter 1

Introduction

According to the last report of the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2013),
indicate that there is no doubt about that climate change was occurring. Besides, is extremely likely that
human influence has been the dominant cause of the observed warming since the mid-20th century which
was caused by the anthropogenic increase in greenhouse gas concentrations and other anthropogenic forcings
(IPCC, 2013). Moreover, has been quantified the scientific consensus, studies indicate that ninety-seven
percent of climate scientists agree that climate-warming trends over the past century are due to human
activities (Cook et al., 2013, 2016) (Fig. 1.1a). Worldwide, climate change cause variations in climatic
patterns (Van der Wiel et al., 2017; Dore, 2005), which makes vary the normal precipitation and temperature
conditions. There is evidence that global temperature has been increasing since 1880 (Fig. 1.1b) (Hansen
et al., 2010; Mann et al., 2007) and the last years has been the warmest. Regarding precipitation, it will
increase and decrease both in intensity and frequency for different zone all around the globe, which has
begun to appreciate in different parts of the world (Van der Wiel et al., 2017) including Chile (Garreaud
et al., 2017). These changes in precipitation and temperature will impact the occurrence of natural hazards
such as drought (Dai, 2012).

Figure 1.1: (a) Scientific agreement vs expertise in climate based in the research of Cook et al. (2013), (b)
Global mean surface temperature since 1880 (Hansen et al., 2010)

One of the most complex natural hazards is drought, due that there is not a recognized start neither an
end, these timings are hard to identify because drought has a slow onset, for which has often been called
a creeping phenomenon (Gillette, 1950). Also, its complexity it is due to the different hydrometeorological
parameters with which it is related. For this, there is no universal definition of drought (Mishra and Singh,
2010). However, an accepted simple definition is an exceptional lack of water respect to normal condition.
Climate variability has been seen as the main factor that triggers drought conditions and the lack of water at
regional and global scale has been referred mainly to rainfall. Thus, depending on the time-scale at which the
shortage of rainfall occur drought has been classified mainly in three groups (Wilhite and Glantz, 1985). At
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short-term scale (< 3 months) is considered a meteorological drought, when the rainfall deficit remains and
start to affect soil moisture and consequently vegetation development (< 9 months) has been denominated
agricultural drought, finally the persistence of the deficit (> 12 months) will affect river, reservoirs and
groundwater levels, and this has been called hydrological drought. Nonetheless, the mentioned classification
of drought has been seen as a natural phenomenon only, recently some authors (Loon et al., 2016) suggest
that research about drought need to recognize that human activities modify the hydrological processes
underlying drought propagation (Fig. 1.2), and this can be recognized explicitly in the definition of drought
by distinguishing between climate-induced drought, human-induced drought and human-modified drought
(Fig. 1.3).

Figure 1.2: Drought propagation in the Anthropocene. The propagation from meteorological drought to soil
moisture and hydrological drought (black arrows) is initiated by climatic (left; yellow) and human (right;
red-brown) drivers. Drought is modified by hydrological catchment processes (dotted lines) that are altered
by human activities (white arrows). The resulting ecological and socioeconomic impacts initiate responses,
which in turn result in changes to the human influence on drought and the climate variability (grey arrows).
Source: Loon et al. (2016)

Regionally, for the Center-South zone of Chile is forecasted a decreasing of precipitation (IPCC, 2013).
Furthermore, since the year 2010 an unprecedented precipitation deficit has taken place in Central Chile (30-
38°S) (Garreaud et al., 2017) which has been called a mega drought. Findings from the study of Boisier et al.
(2016) estimate that a quarter of this rainfall deficit is from an anthropogenic origin. Also, Garreaud et al.
(2017) indicate that the mega drought has reached even farther south (>38°S). This is even more relevant
if is considered that the Center and South of Chile has a humid climate and concentrated an important
extension of crops. Then, the drought impact in this zone potentially would be more difficult to overcome
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Figure 1.3: Hypothetical schematic of the distinction between climate-induced drought, human-induced
drought and human-modified drought. Observed water levels (solid black line) that are influenced by both
natural and anthropogenic factors are compared to simulated water levels from virtual model experiments
(dashed line) that consider only natural drivers. Note that human-modified drought can be aggravated or
alleviated with respect to the natural situation. Source: Loon et al. (2016)

than in other zones with higher preparedness to cope drought. Moreover, studies forecast a decreasing in
wheat and corn yield for Chile for 2050 from about 15 to 20% (Meza and Silva, 2009). Even though, others
studies (Cohn et al., 2016) consider that impacts on agricultural production could be larger when taking the
effects on cropping frequency and area into account. The study of agricultural drought seeks to understand
the relationship for multiple environmental, climatic and human-induced factor and its effect on agriculture
conditions.

Precipitation deficit is the main driver that trigger agricultural drought at regional and global scale. Nowa-
days, several indices exist which allows understanding how different time-scales of rainfall deficit are related
to agriculture. One of the most used indices which have been recommended for the WMO (World Meteo-
rological Organization) as an index to characterize droughts (Hayes et al., 2011) is the SPI (Standardized
Precipitation Index; McKee et al. (1993)). This index uses historical rainfall data (> 30 years) which is then
transformed to a normal distribution providing values in term of standard deviations from an average value
equal to zero. The main feature of this index is its multi-scale calculation capability, for which could be
used considering different ranges of accumulated precipitation. This characteristic allows it to be related to
different classes of drought. Short-term SPI (< 9 months) are showed to have more strong relation with soil
moisture and vegetation response. In the last decade, a new index the SPEI (Standardized Precipitation
Evapotranspiration Index; Vicente-Serrano et al. (2010)) was developed to improves SPI. This index adds
the effect of temperature to the SPI, as a simplified water balance (precipitation less evapotranspiration).
As well as the SPI, SPEI is a multi-scale drought index. Perhaps, one of the main restriction to use these
indices it is the availability of enough spatial data for its calculation. For Chile, there is a lack in the amount
of weather station as well as historical records of precipitation and temperature. However, recently has been
developed satellite-derived products with a long-term record of precipitation (Funk et al., 2015; Ashouri
et al., 2015) and spatially distributed at differents spatial resolution which could be used to overcome this
issue. Then, to understand how much of the vegetation response could be explained by the SPI/SPEI we
need a measure or proxy of vegetation biomass to support the analysis.

Data about crops such as type, yield, and phenology is very difficult to collect and spatialize to be used
at regional scale. Nonetheless, since the space age, the increase on research findings has been large for a
broad number of matters, including those regarding climate and how it affects vegetation. In the early 70’s
with the launch of the Landsat-1 mission, results in the derivation and first uses of the NDVI (Normalized
Difference Vegetation Index; Rouse et al. (1974)), which by using the absorbed and reflected radiation from
vegetation gives a measure of vegetation development and quality. This index has been widely used as a
proxy for biomass productivity of vegetation, (Jung et al., 2008; Rigge et al., 2013), thus allowing to fill
the gap for the spatial analysis of vegetation. Further, for agricultural drought monitoring and analysis

https://landsat.usgs.gov/landsat-1-history


CHAPTER 1. INTRODUCTION 4

using NDVI has been derived other indices. For example, the z-score NDVI (zNDVI; Peters et al. (2002))
and the VCI (Vegetation Condition Index; Kogan (1995a)). Nevertheless, the satellite products of NDVI
give a spatial measure of a broad extension mixing vegetated and non-vegetated areas. But, for agricultural
drought analysis, the results will be better as we are capable of considering the surface which is effectively
used for crops and during the time in which there are growing. Thus, there are satellite products about land
cover type, which allow identifying at regional scale the extension of croplands (Friedl et al., 2010). Also the
growing season for crops can be obtained whether from the analysis of time-series of NDVI (Vrieling et al.,
2017; Meroni et al., 2014b; Vrieling et al., 2011) or from satellite-derived product for phenology dynamics
(Ganguly et al., 2010).

Climate change arises big challenges worldwide under the actual forecasted climate, and particularly for
Chile, which is facing mega drought condition since 2010 (Garreaud et al., 2017) which has been unprece-
dented to the South. Satellite-derived agricultural drought indices have been helping to monitor drought
condition allowing to stakeholder the taking of decision regarding the spatial extension, intensity, severity,
and duration of drought. The undergoing research about drought has allowed advances in the understanding
of the relation between the different components involved: precipitation, vegetation, soil moisture, climatic
oscillation indices; and thus identify the more relevant parameters that allow explaining the variability re-
garding the vegetation development and condition. However, there is a scope in this research field, for the
study of using satellite data to anticipate agricultural drought conditions.

1.1 Hypothesis

Regarding the current and forecasted climate condition, the hypothesis of the thesis state that vegetation
satellite data can be used to derive a interannual proxy for biomass production spatially and timely relevant
as an indicator of agricultural drought over Chile, and this proxy could be predicted before the end of the
growing season using precipitation long-term and vegetation satellite-derived data together with climatic
oscillation indices.

1.2 Research objectives

1.2.1 General objective

The aim of this research work is to assess multiple time-series of satellite data publicly-available for vegetation
and precipitation retrievals together with climatic oscillation indices toward analyzing its predictive power
for agricultural drought in Chile.

1.2.2 Specific objectives

1. To assess VCI derived from MODIS data at 250m spatial resolution as an effective indicator for mon-
itoring agricultural drought and evaluate its observed impact in the BioBío Region over the period
2000-2015.

2. To evaluate the performance and fit of monthly, long-term satellite-based precipitation products over
Chile for mapping and quantifying historical rainfall and drought patterns.

3. Derive a proxy of biomass production during the growing season as indicator of agricultural drought
and assess its prediction using multiple spatiotemporal satellite data and climatic oscillation indices.



CHAPTER 1. INTRODUCTION 5

1.3 Thesis outline

This thesis consists of five chapters. The three core chapters (2-4) focus on the aforementioned three research
objectives respectively. Chapters 2 and 3 have been published, and chapter 4 is nearly to be submitted for
publication, all of them as peer-reviewed papers in one of the Web of Science journals.

Chapter 1 first describes the rational behind the selection of the research topic. The concepts used, hypothesis
and objectives are then presented.

Chapter 2 describe the assessment of agricultural drought for 2000-2015 over the cropland area of the BioBío
región in Chile using the VCI and analyzing its relation with different time-scales of SPI derived from weather
stations.

Chapter 3 present the evaluation of two long-term satellite-derived products from which monthly rainfall
was compared against data extracted from weather stations, and also was assess its application for drought
monitoring.

Chapter 4 was derived a proxy of biomass production during the growing season, the cumulative anomaly
of NDVI (zcNDVI), to be used as an index for agricultural drought in Chile. Further, were analyzed
two methods for the prediction of agricultural drought from satellite-derived precipitation indices, climatic
oscillation indices together with the zcNDVI at different prediction timing before the end of the season.

Chapter 5 present the overall and specific conclusion of the thesis. Finally, in the Appendix A was included
a brief review of other useful satellite data to be considered for future works.



Chapter 2

Agricultural drought in the BioBío
Region of Chile

Zambrano, F.; Lillo-Saavedra, M.; Verbist, K. & Lagos, O. Sixteen years of Agricultural Drought
Assessment of the BioBío Region in Chile using a 250m resolution Vegetation Condition Index
(VCI) Remote Sensing, 2016, 8, 530.

Abstract

Drought is one of the most complex natural hazards because of its slow onset and long-term impact; it has
the potential to negatively affect many people. There are several advantages to using remote sensing to
monitor drought, especially in developing countries with limited historical meteorological records and a low
weather station density. In the present chapter, we assessed agricultural drought in the croplands of the
BioBío Region in Chile. The vegetation condition index (VCI) allows identifying the temporal and spatial
variations of vegetation conditions associated with stress because of rainfall deficit. The VCI was derived at
a 250m spatial resolution for the 2000-2015 period with the Moderate Resolution Imaging Spectroradiometer
(MODIS) MOD13Q1 product. We evaluated VCI for cropland areas using the land cover MCD12Q1 version
5.1 product and compared it to the in situ Standardized Precipitation Index (SPI) for six-time scales (1-6
months) from 26 weather stations. Results showed that the 3-month SPI (SPI-3), calculated for the modified
growing season (Nov-Apr) instead of the regular growing season (Sept-Apr), has the best Pearson correlation
with VCI values with an overall correlation of 0.63 and between 0.40 and 0.78 for the administrative units.
These results show a very short-term vegetation response to rainfall deficit in September, which is reflected
in the vegetation in November, and also explains to a large degree the variation in vegetation stress. It is
shown that for the period 2000-2015 in the BioBío Region we could identify the 2007/2008, 2008/2009, and
2014/2015 seasons as the three most important drought events; this is reflected in both the overall regional
and administrative unit analyses. These results concur with drought emergencies declared by the regional
government. Future studies are needed to associate the remote sensing values observed at high resolution
(250m) with the measured crop yield to identify more detailed individual crop responses.

2.1 Introduction

Drought is considered one of the most complex natural hazards because of its slow onset and long-term
impact; it has the potential to negatively affect many people. Drought is caused by various environmental
factors that mainly changes the pattern and amount of rainfall. This situation is expected to intensify
over time because of climate change (Dore, 2005). The fifth report from the Intergovernmental Panel on
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Climate Change (IPCC) (IPCC, 2013) projects an increase in global temperature and indicates that rainfall
in south-central Chile will decrease. This will likely increase both drought frequency and intensity.

According to Wilhite and Glantz (1985), drought can be classified into four categories: (1) Meteorological
drought, (2) Hydrological drought, (3) Agricultural drought, and (4) Socio-economic drought. To monitor
drought, many different indices were developed and applied to research areas, such as meteorology, hydrology,
agriculture, and water resource management. Currently, there are more than 100 drought indices (Niemeyer,
2008; Amin et al., 2011). Among the most popular drought indices is the multiscalar Standardized Precip-
itation Index (SPI) (McKee et al., 1993), which is used to characterize meteorological drought. The SPI is
estimated by frequency analysis of rainfall records; this requires a long-term record of precipitation data,
preferably more than 30 years, to select an appropriate probability distribution (Mishra and Singh, 2010).
The Standardized Precipitation Evapotranspiration Index (SPEI) is a more recent drought index developed
by Vicente-Serrano et al. (2010), which not only includes precipitation but also the effect of temperature.
Another important meteorological drought index was developed by Palmer (1965) with temperature and
precipitation data to estimate moisture supply and demand in a two-layer soil model known as the Palmer
Drought Severity Index (PDSI). However, as noted by Alley (1984), this index has some limitations, such
as the use of arbitrary rules to quantify it and limited methodology to standardize it. Using temperature
and evapotranspiration (ET) data, Palmer (1968) developed a crop moisture index (CMI), which was one of
the first agricultural drought index. There are also hydrological drought indices, such as the surface water
supply index (SWSI) (Shafer and Dezman, 1982) and standardized streamflow index (SSI) (Vicente-Serrano
et al., 2012b). However, most of the aforementioned indices depend on the availability of temporal and spa-
tial field data, thus complicating their implementation in data-scarce developing countries where historical
record availability is limited and meteorological station density is insufficient. This situation does not allow
adequate spatial mapping of the index that needs to be generated (Caccamo et al., 2011). Furthermore,
using discrete, point-based meteorological measurements collected at weather station locations has resulted
in a restricted level of spatial precision for monitoring drought patterns (Wu et al., 2013). Remote sensing,
therefore, offers significant advantages for monitoring agricultural drought at the regional and local levels
by allowing both spatial and temporal evaluations.

Remote sensing vegetation indices (VI) have been widely used to assess vegetation and drought conditions
(Rojas et al., 2011; Rhee et al., 2010; Logan et al., 2010; Kogan, 1995a; Tonini et al., 2012; Skakun et al.,
2016; Rembold et al., 2013, 2015). The vegetation health index (VHI) (Kogan, 1995a, 1997), temperature
condition index (TCI) (Kogan, 1995a), and vegetation condition index (VCI) (Kogan, 1995b) are among
the main drought indices based on remote sensing; they have been successfully applied in numerous case
studies under many different environmental conditions around the globe (Zhang and Jia, 2013; Rojas et al.,
2011; Gebrehiwot et al., 2011; Singh et al., 2003; Seiler et al., 1998; Unganai and Kogan, 1998). There are
drought indices based on the spatial feature of land surface temperature (Ts) and the normalized difference
vegetation index (NDVI), as well as the vegetation temperature dryness index (TVDI) suggested by Sandholt
et al. (2002) and the vegetation temperature condition index (VTCI) developed by Wang et al. (2001), which
are time-dependent and usually region specific. All of these indices use NDVI as input, which is the most
widely used index to monitor vegetation quantity, quality, and development. The indices based on NDVI
are more useful during the plant growing seasons (Wan et al., 2004; Vicente-Serrano, 2007). Given the
physical complexity of drought, there is an ongoing development and improvement of remote sensing drought
indices. Zhang et al. (2013) used VCI to construct the time-integrated vegetation condition index (TIVCI),
which considers the time lag effect on NDVI from climate factors; however, the time-lag effect of NDVI on
meteorological data when monitoring drought requires more attention (Zhang et al., 2013). Du et al. (2013)
integrated multi-source remote sensing data with a moderate resolution imaging spectroradiometer (MODIS),
and the tropical rainfall measuring mission (TRMM) explained the synthesized drought index (SDI), which
is defined as a principal component of VCI, TCI and precipitation condition index (PCI). One limitation of
this index occurs at a temporal scale that is shorter than 1 month (Du et al., 2013). Meanwhile, Mu et al.
(2013) introduced the drought severity index (DSI) to monitor and detect drought on a global scale with
a 1km spatial resolution and 8-day, monthly, and yearly frequencies; this new index integrates satellite ET
and NDVI. Recently, Enenkel et al. (2016) develop the Enhanced Combined Drought Index (ECDI) which
link rainfall, soil moisture, land surface temperature and vegetation status.
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The VCI (Kogan, 1990) was one of the first remote sensing drought indices widely used to monitor agricultural
drought (Du et al., 2013; Rojas et al., 2011; Rhee et al., 2010; Logan et al., 2010); it is derived from
NDVI, is easily calculated, and accessible for different spatial and temporal resolutions. The VCI concept
was originally designed to extract the weather component from NDVI values (Kogan, 1990), considering
vegetative variations by climate factors rather than seasonality. Kogan (1997) developed the TCI and then
combined both VCI and TCI in the VHI drought index (Kogan, 1995a, 1997) to increase the accuracy of
drought monitoring and explain the contribution of temperature in drought analysis, which also provided
useful information for monitoring vegetation stress caused by soil saturation. In the present chapter, VCI was
selected for its multiple advantages and mainly because it not only reflects spatial and temporal vegetation
variability but also allows identifying the impact of weather on vegetation (Kogan, 1995b; Unganai and Kogan,
1998). However, care is needed with unusual extreme events. For example, if most of the NDVI values in
a particular location are close to the minimum and there is an unusual event with high NDVI values, most
of the calculated VCI will be very low. Also, NDVI are hindered by noise arising from varying atmospheric
conditions and sun-sensor-surface viewing geometries (Hird and McDermid, 2009; Klisch and Atzberger,
2016; Julien and Sobrino, 2010; Atkinson et al., 2012), to minimize the possible impacts of undetected clouds
and poor atmospheric conditions (Klisch and Atzberger, 2016) a smoothing technique should be applied
(Hird and McDermid, 2009; Klisch and Atzberger, 2016; Julien and Sobrino, 2010; Atkinson et al., 2012).
To overcome this issue, Klisch and Atzberger (2016) estimates uncertain for NDVI values, which is used
to downweight uncertain observation while calculating VCI. Moreover, the VCI in the present chapter was
calculated at a 250m spatial resolution to monitor and evaluate agricultural drought, which would be useful
because of the geographic and agricultural conditions of the BioBío in Chile (Fig. 2.1).

The SPI is a multiscale drought index that could be used to measure short-term rainfall deficit related to
agricultural drought; this is not always true because agricultural drought is mainly affected by soil moisture
stress (Mishra et al., 2015) which depends on rainfall as well as many other factors. The VCI is a more direct
measurement of agricultural drought because it reflects vegetation health scaled according to long-term NDVI
variability for the period under study. Some authors (Zhang et al., 2013; Zhang and Jia, 2013; Wu et al.,
2010; Quiring and Ganesh, 2010) compared vegetation indices and SPI to evaluate the correlation between
agricultural and meteorological drought. For example, Quiring and Ganesh (2010) evaluated the usefulness
of VCI to monitor meteorological drought in Texas, analyzed the relationship between VCI and SPI and its
result shows that VCI is most strongly correlated with the 6-month and 9-month SPI, and showed that VCI
is strongly influenced by spatially varying environmental factors. Gebrehiwot et al. (2011) also used VCI and
SPI to evaluate the spatial and temporal characteristics of vegetative and meteorological drought; they found
a time lag between the peak VCI period and precipitation values obtained from the meteorological stations.
Ji and Peters (2003) analyzed the relationship between NDVI (derived from AVHRR) and SPI in croplands
in the northern Great Plains, which have similar weather and agricultural conditions as those found in the
BioBío Region, and showed that the relationship between NDVI and SPI is significant in grasslands and
croplands if the seasonal effect is taken into account.

In collaboration with the Ministry of Agriculture of Chile, the Food and Agriculture Organization of the
United Nations (FAO), the International Research Institute for Climate and Society (IRI), and some other
government institutions and research centers, the United Nations Educational, Scientific and Cultural Orga-
nization (UNESCO) implemented the Chilean Agroclimatic Observatory, which collects different meteoro-
logical, hydrological, and agricultural information as well as various indices to monitor drought and support
decision makers when Chile faces drought conditions.

The present chapter evaluated the VCI drought index proposed by Kogan (1990), calculated it from a time
series of MODIS data, and applied it in the BioBío Region. The VCI is compared to SPI at different time
scales to identify how long would be the monthly rainfall deficit that has the major impact on agricultural
drought in the region. Additionally, the usefulness of monitoring agricultural drought is assessed by com-
paring VCI with the agricultural drought emergency declared by the Chilean government in the study area.
The aim of this chapter was to assess VCI derived from MODIS data at 250m spatial resolution as an effec-
tive indicator for monitoring agricultural drought and evaluate its observed impact in the region over the
period 2000-2015. Based on this analysis, recommendations are made to include the index in the Chilean
Agroclimatic Observatory to support climate-informed decision making.

www.climatedatalibrary.cl
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Figure 2.1: (a) BioBio Region administrative units in a digital terrain model with 26 weather stations. (b)
Location of the BioBio Region, Chile.

2.2 Study Area

The BioBío Region in Chile is located between 36° 00’ and 38° 30’ south latitude and between 71° 00’ and 74°
00’ west longitude along the South Pacific Ocean (Fig. 2.1b) with a total area of 37.068,7 km2. This area
is characterized by the transition from a warm Mediterranean climate to a humid and temperate climate.
In terms of agricultural, this region produces a significant amount of annual crops, including wheat, oats,
barley, sugar beet and corn, which have a growing season between September and April. The region has 54
administrative units (Fig. 2.1a).

The bioclimatic variables estimated by Hijmans et al. (2005) were used to describe the spatial climatic
characteristics of the study area. These variables were derived from monthly temperature and rainfall values
to generate more biologically meaningful variables. Precipitation in the driest month is generally < 35mm
and a significant portion of the region has < 20mm rainfall in that month (Fig. 2.2). The wettest month has
precipitation between 150mm and 350mm while total annual precipitation is between 750mm and 2000mm.
The temperature in the warmest month is over 25°C mainly in the central part of the region, as shown in Fig
2.3. The temperature in the coldest month is between 0°C and 7°C from the center to the west and below
0°C to the east and the annual mean temperature is usually above 10°C.

Based on land cover (MCD12Q1.51), changes in the cropland area for the main administrative units are
shown in Table 2.1. In general, the cropland area decreased from 2001 to 2013, and the administrative units
of San Nicolas and Chillán Viejo showed the largest changes. The land cover map (2013) for the region,
illustrated in Fig. 2.4, indicates that most of the region is covered by forest and this is followed by cropland
and grassland.
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Table 2.1: Percentage of cropland area (%) of 15 administrative units of the BioBío Region, Chile, with
cropland area ≥ 10% from 2001 to 2013 and the 13-year mean.

Comuna 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
San Ignacio 79 79 80 78 76 73 73 72 75 75 73 72 76
Bulnes 82 82 81 79 78 76 77 77 77 76 74 73 73
San Carlos 79 74 71 66 66 66 68 66 76 74 71 62 68
Chillán 75 74 74 70 69 67 67 65 69 68 66 62 63
Ñiquén 76 67 63 54 54 55 57 59 72 72 64 54 59
Negrete 58 59 50 47 41 48 42 49 53 44 36 34 47
El Carmen 52 54 52 51 50 49 48 45 46 45 43 44 46
Chillán Viejo 65 61 60 54 51 46 48 44 57 54 52 39 42
San Nicolás 76 62 56 45 44 45 49 45 63 58 54 36 40
Los Angeles 31 35 32 33 27 28 26 28 31 25 22 26 32
Pemuco 36 37 36 32 30 24 25 24 27 25 23 18 21
Coihueco 25 26 25 23 22 20 19 19 21 21 20 19 20
Yungay 24 26 24 22 20 20 20 18 20 17 16 14 17
Quillón 32 24 21 14 16 16 15 16 21 18 17 13 15
Pinto 18 16 14 12 13 12 12 11 12 13 11 10 11

Figure 2.2: Bioclimatic precipitation variables of the BioBío Region, Chile

Figure 2.3: Bioclimatic temperature variables of the BioBío Region, Chile
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Figure 2.4: Land cover classes in the BioBío Region, Chile, based on the IGBP land cover scheme for the
MODIS MCD12Q1 version 5.1 product.

2.3 Data

The MODIS has been a key environment remote sensing tool for more than 16 years; it has been used
in countless studies of different disciplines all over the world. The MODIS instrument was developed to
improve heritage sensors in terms of its spectral, spatial, and temporal resolutions, as well as more stringent
calibration requirements. This instrument takes observations in 36 spectral bands covering wavelengths from
0.41 to 14.4 µm and at three nadir spatial resolutions: 250m, 500m, and 1km (Xiong et al., 2009).

The usefulness of NDVI for evaluating vegetation response is well known (Huete et al., 2002). In the
present case, the vegetation indices (VI) were obtained from the MODIS Vegetation Indices 16-Day L3
Global 250m short name MOD13Q1 product (Didan, 2015). Huete et al. (2002) present the NDVI analysis
and the Enhanced Vegetation Index (EVI); their results demonstrate the scientific usefulness of MODIS VI.
Moreover, Miura et al. (2008) compared MODIS VI with the high-resolution Advanced Thermal Emission
and Reflection Radiometer (ASTER) (15 m) and showed that they coincided well on a global scale.
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Several land cover products are available; the most frequently used are GLC-2000 (Fritz et al., 2003), Glob-
cover (Bontemps et al., 2011), and MODIS Collection 5 land cover (Friedl et al., 2010). Comparative studies
have shown large spatial discrepancies among these three products. Two of the main advantages of the
MODIS Collection 5 are its 500m spatial resolution and, according to Friedl et al. (2010), the product over-
all accuracy is approximately 75%. Therefore, the MODIS cropland cover Land Cover Type Yearly L3 Global
500 m SIN Grid short name MCD12Q1 version 5.1 was used. Data for the present chapter were obtained
through the online Data Pool at the NASA Land Processes Distributed Active Archive Center (LP DAAC)
and USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.

Meteorological data were collected from 53 meteorological stations in the BioBío Region from the General
Water Authority (DGA) and the Chilean Meteorological Directorate (DMC). A total of 26 stations were
selected from this dataset; stations had more than 30 years of records and few missing data (Fig. 2.1).

2.4 Methods

2.4.1 Procedure for calculating VCI in cropland areas.

A time series of vegetation index products (MOD13Q1 version 5) was used to derive the VCI index, and the
land cover product (MCD12Q1 version 5.1) (Friedl et al., 2010) was used to determine the spatial extension
of croplands; both products are from the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor.
Meteorological stations with a long record (more than 30 years) were used to calculate the SPI index.

All processing and calculations with the raster data were performed with the R software (R Core Team, 2016)
and the raster package (Hijmans, 2015). Once the MOD13Q1 and MCD12Q1 satellite data were obtained,
they were reprojected to the WGS84 datum and geographic projections with the Modis Reprojection Tool
(MRT) (Dwyer and Schmidt, 2006) using nearest neighbor resampling. A smoothing process was required
to reduce noise in the NDVI time series. Multiple techniques are available in the literature to do this (Hird
and McDermid, 2009; Klisch and Atzberger, 2016; Julien and Sobrino, 2010; Atkinson et al., 2012). In the
present case, a locally-weighted polynomial regression (Lowess) (Cleveland, 1981) was used. Fig. 2.5, shows
time-series of NDVI compared with those smoothed by Lowess. In future studies the smoothing could be
improved using for example an adapted lowess (Moreno et al., 2014) or also with a modified Whittaker
smoother as proposed by (Klisch and Atzberger, 2016).

Then, with the smoothed NDVI,NDVImax, and NDVImin from 2000-2015, the VCI values were calculated
using Eq. (2.1) for each pixel in the BioBío Region every 16-day. Finally, the VCI time series (2000-2015)
were masking out, using the cropland mask.

2.4.2 Cropland mask

The cropland type in the present study is the IGBP classification scheme of the MCD12Q1 collection 5.1,
and it was used because cropland class reliability is > 92% according to Friedl et al. (2010). In addition,
the cropland mask derived from IGBP scheme concurs well with the cropland data from the 2007 national
agriculture and livestock census (INE, 2007). From the MCD12Q1 product, the land cover class that cor-
responds to croplands (class 12 and 14 of the IGBP scheme) was used to create an agricultural mask with
a 500m spatial resolution for the 2001-2013 period. These data had to be resampled from a 500m to 250m
spatial resolution using the raster package (Hijmans, 2015) to coincide with the VCI resolution. Thirteen
yearly cropland masks were created; the mask for 2001 was used with VCI data for 2000 and 2001, and the
mask for 2013 was used for 2013, 2014, and 2015. A sub-selection of 15 units with > 10% cropland was
established from the total of 54 administrative units.

https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool
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Figure 2.5: Time-series comparison between raw NDVI (points) and smoothed NDVI by Lowess (lines) for
five points on five administrative units in cropland areas of the BioBío Region.

2.4.3 Vegetation condition index (VCI)

The VCI (Kogan, 1990, 1995b) is used to monitor agricultural drought and is derived from NDVI. It scales
NDVI between its maximum and minimum values for a given period and can be expressed as:

V CI(i,p,j) =
NDV I(i,p,j) − NDV Imin(i,p)

NDV Imax(i,p) − NDV Imin(i,p)

(2.1)

where NDV I(i,p,j) is the smoothed NDVI for pixel i, period p and year j; in the present chapter, the period
is 16-day (from 1 to 23 for each year) from 2000-2015. NDV Imax(i,p) and NDV Imin(i,p) are the multi-annual
maximum and minimum, respectively, calculated for each pixel i and 16-day period p from 2000-2015. To
compare VCI values extracted in the 26 weather stations with SPI monthly data, a weighted mean was
applied to convert VCI to monthly values.

According to Kogan et al. (2003), NDVI represents two environmental signals, the ecosystem, which explains
long-term changes in vegetation (driven by climate, soils, vegetation type, topography, etc.), and the weather
(short-term), which explains intra- and inter-annual variations in each ecosystem in response to weather fluc-
tuations. Given that the weather component is much smaller than the ecosystem component, the algorithm
was developed to enhance the weather component.
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2.4.4 Standardized Precipitation Index (SPI)

Since VCI incorporates both climatic and ecological components (Kogan, 1990), an analysis was required
to understand the effect of the precipitation variability on VCI for croplands in the study area. The SPI
drought index was therefore used to analyze the correlation of VCI with rainfall departure. The SPEI
(Vicente-Serrano et al., 2010) is a more significant measure because it incorporates the temperature effect.
However, in the present chapter, SPEI could not be used because of a scarcity of temperature measurements;
this situation did not allow calculating reference ET in each one of the weather stations.

The SPI (McKee et al., 1993) is a meteorological drought index that is estimated from long-term precipitation
records. These long-term records are fitted to a probability distribution (usually Gamma or Pearson III)
which is then transformed into a normal distribution so that mean SPI for the location and desired period is
zero. Positive SPI values indicate that precipitation is higher than the median while negative values indicate
precipitation is lower than the median. The SPI can be computed for different time scales where shorter
scales (1-6 months) are related to short-term deficit, such as soil water content (vegetation response) and
longer scales (12-36 months) with a long-term deficit that is generally associated with groundwater and
reservoirs. The spi function from the SPEI R package (Beguería and Vicente-Serrano, 2013) was used to
calculate SPI for time scales between 1 and 6 months for the 26 meteorological stations. To fit a Gamma
distribution on the data, the spi function was set by the method of unbiased probability weighted moments.

The classification scheme used for VCI and SPI was similar to the classification scheme used by Bhuiyan
et al. (2006) and proposed by Du et al. (2013), as shown in Table 2.2.

Table 2.2: Drought classification scheme for SPI and VCI (Bhuiyan
et al., 2006; Du et al., 2013)

Drought classes SPI VCI
Extreme SPI < -2.0 0 ≤ VCI < 10
Severe -2.0 ≤ SPI < -1.5 10 ≤ VCI < 20
Moderate -1.5 ≤ SPI < -1.0 20 ≤ VCI ≤ 30
Mild -1.0 ≤ SPI < 0.0 30 ≤ VCI ≤ 40
No drought 0.0 < SPI 40 < VCI ≤ 100

2.4.5 Correlation between VCI and SPI

The standardized VCI anomalies were used for the Pearson correlation test:

STDijk = Xijk − Xij

σij
(2.2)

where Xijk is the VCI value in pixel i, period j and year k, Xij is the mean value of VCI in pixel i and
period j; and σij is the standardized deviation of pixel i and period j.

To identify the lag-time period that is more sensitive to rainfall deficit, the correlation between standardized
VCI and SPI for the cropland area of the BioBío Region for three different seasons was tested: 1) January to
December, 2) September to April (growing season), and 3) November to April (modified growing season). A
modified growing season was tested because when is considered the normal growing season (Sept-Apr), and
SPI-3 is calculated in September (start of growing season), it refers to the accumulated effect of rainfall deficit
from July to September. Instead, if is considered the start of the period in November (start of modified
growing season), then the SPI-3 reflect the rainfall deficit from September to November. In this way, is
possible evaluate the impact of rainfall deficit which occurs during the months of the growing season.
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Figure 2.6: Variation of the (a) global VCI percentage (%) of cropland surface with different VCI classes
and (b) boxplot of global VCI intensity (%) for the growing seasons between 2000/2001 and 2014/2015 in
the Biobio Region, Chile.

2.5 Results and discussion

2.5.1 Spatio-temporal variation of VCI and comparison with drought declara-
tion

At the regional level, the variation of drought intensity percentages in the study area for the cropland area
between the 2000/2001 and 2014/2015 growing seasons is illustrated in Fig. 2.6a. The BioBío Region reached
the lowest percentage of the cropland area under drought in 2006/2007 (17%) and the highest in 2008/2009
(55%). The 2007/2008 and 2008/2009 periods exhibited almost the same percentage of cropland surface
under drought; however, a difference was observed in the extreme intensity class covering more cropland
surface in 2008/2009 (14%), compared to the 2007/2008 period (11%). Fig. 2.6b depicts the box-plot of
mean VCI values in the BioBío Region considering the cropland growing season. The box-plot shows the
upper and lower quartiles (Q3 and Q1) and the median value. The 2007/2008 and 2008/2009 periods showed
the lowest VCI values, followed by 2014/2015 (Fig. 2.6a). Moreover, 2008/2009 had 75% of its values with
VCI < 32% and 50% of the data had VCI values between 21% and 32%, causing it to be the most severe
period, which was noted by a considerable increase of the surface under extreme drought.

On the administrative unit level, Fig. 2.7 illustrates a heatmap of the time series VCI intensity values
on the cropland surface Fig. 2.7a and Fig. 2.7c and the percentage of cropland surface under drought
conditions (V CI ≤ 40) (Fig. 2.7b and Fig. 2.7d) for 15 administrative units between 2007-2009 and 2014-
2015. The dashed white line corresponds to the times in the past 16 years when the Chilean government has
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Figure 2.7: Heatmap of VCI conditions (a and c) and percentage of cropland area < VCI = 40 (b and
d) for the principal drought periods in the main cropland administrative units in the study area for the
2007-2009 (c and d) and 2014-2015 (a and b) seasons. The dashed white line corresponds to the date when
the agricultural drought emergency was declared by decision makers.

declared an agricultural drought emergency in the region. According to the VCI values, the administrative
unit was under moderate and mild drought conditions between 2007 and 2008 while in the late growing
season from January to May, VCI intensity was mostly moderate drought, and the surface percentage of
drought was > 60% for each administrative unit. At the beginning of February 2008 (2007/2008 season)
the government declared an agricultural drought emergency. However, during the next season, 2008/2009,
drought conditions were similar but with a longer duration (Sept-May) and more severe intensity, but the
government did not declare drought emergency. The last drought emergency was declared in March 2015 and
it seems that is was declared late according to VCI intensity and cropland surface affected. As displayed in
Fig. 2.7b, the emergency was declared in the middle of the drought period (Jan-May) when the percentage
of surface affected by drought was between 60% and 90%. The drought emergency declared by the Ministry
of Agriculture of Chile do not consider the intensity levels but rather only the conditions with or without
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drought.

Figure 2.8: (a) Mean VCI conditions and (b) percentage of cropland surface with VCI ≤ 40% in the adminis-
trative units of the Biobio Region, Chile, for the 2000/2001, 2007/2008, 2008/2009, and 2014/2015 growing
seasons (Sept-Apr).

The periods with the lowest VCI means for each unit during the growing seasons in the last 16 years are
mapped in Fig. 2.8. Fig 2.8a shows that the 2000/2001 season had partial drought conditions, which mostly
affected the western part of the region, with three, eight, and nine units with severe, moderate, and mild
drought conditions, respectively. It is possible to note that the 2007/2008 and 2008/2009 seasons had drought
conditions in almost every unit in the region with mild and moderate drought intensity as the main condition.
These periods also had a unit surface percentage under drought > 45% (Fig. 2.8b). The 2014/2015 season
had mostly a surface percentage between 30% and 45% under drought conditions in each unit, also had two
and nine units with moderate and mild drought, respectively.

Table 2.3: Pearson correlation value (r) between time scale 1 to
6 and standardized VCI for 15 administrative units in the BioBío
Region, Chile, with cropland area > 10% and considering the mean
values between November and April.

No. Adm. unit Station name SPI-1 SPI-2 SPI-3 SPI-4 SPI-5 SPI-6
1 Los Angeles DGA Las Achiras 0.46 0.69 0.78 0.73 0.67 0.64
2 Chillán DMC Chillán 0.38 0.56 0.70 0.66 0.59 0.53
3 Bulnes DGA Chillancito 0.37 0.59 0.66 0.59 0.47 0.34
4 Negrete DGA Los Angeles 0.47 0.69 0.74 0.69 0.62 0.55
5 Chillán Viejo DGA Chillán Viejo 0.41 0.59 0.67 0.64 0.55 0.45



CHAPTER 2. AGRICULTURAL DROUGHT IN THE BIOBÍO REGION OF CHILE 18

No. Adm. unit Station name SPI-1 SPI-2 SPI-3 SPI-4 SPI-5 SPI-6
6 El Carmen DGA Diguillin 0.29 0.48 0.58 0.55 0.46 0.36
7 San Ignacio DGA Pemuco 0.31 0.48 0.56 0.51 0.43 0.36
8 San Nicolas DMC Chillán 0.31 0.47 0.56 0.53 0.47 0.39
9 San Carlos DMC Chillán 0.34 0.49 0.59 0.56 0.50 0.45
10 Pinto DGA Las Trancas 0.24 0.40 0.49 0.45 0.35 0.29
11 Coihueco DGA Coihueco 0.33 0.49 0.58 0.52 0.43 0.38
12 Yungay DGA Cholguan 0.19 0.37 0.43 0.44 0.40 0.33
13 Pemuco DGA Pemuco 0.21 0.34 0.40 0.37 0.29 0.18
14 Quillon DGA Chillancito 0.38 0.55 0.62 0.59 0.51 0.37
15 Ñiquen DGA San Fabián 0.38 0.55 0.57 0.48 0.38 0.28

The VCI temporal mean at pixel level for the 2007/2008, 2008/2009, and 2014/2015 growing seasons (Sept-
Apr) in the cropland area of the BioBío Region is shown in Fig. 2.9.

2.5.2 Correlation VCI vs SPI

Globally, in the BioBío Region we compared three averaged periods (Sept-Apr, Nov-Apr, and Jan-Dec) and
the correlation between SPI and VCI at different time scales. We found the highest regional correlation
between SPI-3 and VCI during the growing season (Sept-Apr); with a Pearson correlation value of 0.54. The
period between November and April shows a higher Pearson correlation value of 0.63. This is comparable to
the results presented by Vicente-Serrano (2007), who indicated that the vegetative drought index is useful
for monitoring drought during the growing season.

The administrative units with a cropland area > 10% were correlated with the nearest meteorological station.
Pearson correlation values for SPI-1 to SPI-6 are listed in Table 2.3. As previously shown, the higher
correlation values were at SPI-3 (0.40 to 0.78) (Table 2.3). Vegetation had a short-term response to rainfall,
and 3-month departures explained between 16% and 61% of the variance in cropland health. Mean VCI
anomaly and SPI-3 values were compared in Fig. 2.10 for the period between November and April (modified
growing season). The SPI-3 and VCI values were negative and similar for all 15 administrative units in the
2007/2008, 2008/2009, and 2014/2015 seasons, which corresponded to the three periods in the last 16 years
in which the BioBío Region was under the most severe drought conditions (Fig. 2.6). However, there was
an opposite correlation with negative VCI and positive SPI-3 in the 2000/2001 season. Rainfall is the main
variable among others affecting vegetation response. Management, irrigation, and plant disease also affect
agricultural drought, and they must be analyzed in greater detail.

Monthly correlation values calculated at 26 weather stations during the growing season are displayed in Fig.
2.11a; September and October (beginning of the season) showed the lowest correlation between SPI-3 and
VCI whereas from November to April (middle and end of season) the Pearson correlation value was always >
0.6; the lowest value during this period was in February. The correlation of VCI with SPI-1 was the highest
in October, November, and February; and with SPI-3 the correlation was around ≈ 0.6 from November to
March. This indicated that rainfall deficit in September and October had a higher impact on vegetation
with an accumulated effect beginning in November during the growing season. On the other hand, rainfall
during July, August, and September had a lower impact on the agricultural drought conditions in September
and October. The period from November to April was therefore identified as being more sensitive to water
scarcity because of the accumulated effect of three months of rainfall on the cropland growing season. This
result concurs with observations by Ji and Peters (2003), who found that the correlation between vegetation
and SPI-3 was stronger in the middle of the season and weaker at the beginning and end of the growing season.
Cropland vegetation in this region mainly had a short-term response (3 months) to rainfall deficit. In terms
of the monthly rainfall deficit (SPI-1), October, November, December, and February were more significant
with Pearson correlation values of 0.49, 0.49, 0.43, and 0.48, respectively. The 6-month accumulated effect
of rainfall deficit on vegetation (SPI-6), which began increasing in December and peaked in April, confirms
the accumulated effect from November to April (r=0.68). In addition, if we want to monitor the croplands
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Figure 2.9: VCI mean values for croplands during growing season (Sept-Apr) in the Biobío Region, Chile,
for 2007/2008, 2008/2009, and 2014/2015 seasons.

Figure 2.10: Comparison of SPI-3 and VCI anomaly for 15 administrative units with percentage cropland >
10% from 2000/2001 to 2014/2015 modified growing seasons (Nov-Apr).

in more detail, we could consider SPI-1 in October, SPI-3 from November to February, and SPI-6 in March
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Figure 2.11: (a) Correlation between mean VCI (croplands) and mean SPI at time scales between 1 to 6
for meteorological station Number 4 in the Biobío Region, Chile, for three different periods; (b) Monthly
correlation between SPI-1, SPI-3 and SPI-6 with VCI in the growing season. Letter (a) in the plot means
significance at p > 0.01.

and April.

Comparative results of correlations between VCI and SPI time scales of 1 to 6 months for three periods
and four meteorological stations are shown in Fig. 2.11b. The pattern is similar for all the periods and
November to April had the highest Pearson correlation between SPI and VCI. This correlation peaked at the
3- or 4-month time scales and then decreased. However, for the station with lower correlations (San Carlos
de Puren), the SPI-4 showed clearly the highest correlation. The SPI-3 in the Quilaco station was prominent
with r = 0.77.

Several studies have compared the vegetation drought index with meteorological conditions (Gebrehiwot
et al., 2011; Bajgiran et al., 2008; Ji and Peters, 2003; Quiring and Ganesh, 2010; Wu et al., 2010). Our
observations are consistent with those of Gebrehiwot et al. (2011), who found a strong correlation between
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VCI and precipitation deficit of the last 3 months at the station and regional levels. Similarly, Bajgiran
et al. (2008) established the highest correlation with 3-month precipitation in stations where land use is
predominantly cropland (r=0.8) and grassland (0.81). Ji and Peters (2003) indicated a Pearson correlation
value of 0.47 between VCI and SPI-3 for the croplands of the northern Great Plains, and Wu et al. (2010)
found a very good correlation between VCI and SPI-3 for grassland. Quiring and Ganesh (2010) identified the
correlation between SPI and VCI in Texas as having high spatial variability; however, they found that VCI is
most strongly correlated with the 6-month and 9-month SPI. They also established permeability, irrigation,
landcover type and water table depth as the most important independent variables besides rainfall, which
explain the variation in vegetation health (Quiring and Ganesh, 2010).

It will be important to consider the effect of temperature on agricultural drought in future studies by using, for
example, SPEI (Vicente-Serrano et al., 2010); this is a multiscalar drought index which takes into account
potential ET as a measurement of water demand. This was not possible in the present chapter because
historical temperature data were scarce. One option to overcome the lack of temperature data could be the
use of remote sensing data, such as the MOD16 ET product proposed by Mu et al. (2007).

2.6 Conclusions

In a country where the impact of agricultural drought is increasing, detailed monitoring and early warning
tools are required to trigger responses that allow mitigating the drought effect. Therefore, a thorough
understanding of the drivers of agricultural drought are needed even when detailed field observations are
lacking and meteorological stations are scarce, as is the case in Chile. This result makes remote sensing
datasets for vegetation monitoring a particularly powerful tool under these circumstances.

The present chapter assessed the agricultural drought dynamics using the vegetation condition index (VCI)
at 250m spatial resolution and evaluated the cropland area of the BioBío Region in Chile from 2000 to 2015.

A VCI analysis for croplands could identify the spatial distribution of stressed vegetation associated with
drought conditions. Comparing cropland VCI for all the administrative units during the growing stage
indicated that, according to the selected drought intensity classification, three drought episodes have occurred
in the last 16 years that coincide with the years in which agricultural emergency funding was provided to
the farmers in the region. The VCI indicator shows the potential to further tailor the drought emergency
response and identifies more objectively the stakeholders who are the most affected even when detailed local
observations are lacking.

The correlation between rainfall deficit (SPI) on short- and long-term scales and VCI values shows that
SPI-3 exhibited the highest correlation values for the BioBío Region between November and April, defined
as a modified growing season, instead of between September and April, which is the normal growing season.
This result indicates that vegetation responds rapidly to rainfall deficit beginning in September and this is
evidenced in vegetation in November.

Based on these findings, we can conclude that VCI is useful for monitoring agricultural drought in the
BioBío Region and is closely correlated with SPI-3 during the modified growing season (Nov. to Apr.),
which indicate that rainfall deficit beginning on September it is when has a larger impact on vegetation
health, this would be related with crops types in the region, what it should be evaluated in future studies.
This makes it a relevant indicator for agricultural drought monitoring and response plans. Further research
is needed to associate the remote sensing values observed at high resolution (250m) with the measured crop
yield (Seiler et al., 2007) and individually identify more detailed crop responses. This identification will
gradually construct an effective drought management tool for the agricultural sector in Chile.
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Abstract

Precipitation is a key parameter for the study of climate change and variability and the detection and mon-
itoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and
spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applica-
tions. This is challenging in many parts of the world, which often have a limited number of weather stations
and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several
remotely sensed precipitation datasets now available with long historical data records (+30 years), which
include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estima-
tion from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-
CDR) datasets. This chapter presents a comparative analysis of three historical satellite-based precipitation
datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile
to assess their performance across the country and for the case of the two long-term products the appli-
cability for agricultural drought were evaluated when used in the calculation of commonly used drought
indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in-situ
rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was
divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine
if there were a regional difference among these satellite products, and nine statistics were used to evaluate
their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hier-
archical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to
better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly
analysis showed that all satellite products highly overestimated rainfall in the arid North zone. However,
there were no major difference between all three products from North to South-Central zones. Though, in
the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, while CHIRPS 2.0 and
TMPA 3B43 v7 had better agreement with in-situ measurements. The accuracy of satellite products were
highly dependent on the amount of monthly rainfall with the best results found during winter seasons and
in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were
used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when
it was compared in-situ against satellite SPI’s. Because of its higher spatial resolution that allows better
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characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3
over Chile. The results of this chapter show that in order to use the CHIRPS 2.0 and PERSIANN-CDR
data sets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products
should be calibrated to adjust for the overestimation/underestimation of rainfall geographically specially in
the North zone and seasonally during the summer and spring months in the other zones.

3.1 Introduction

Precipitation is one of the key parameters for climate monitoring, particularly to detect climatically-extreme
events such as drought, which impacts most regions of the world. A simple definition of drought is an
extended period of abnormal dryness that has negative impacts on agricultural and water resources (WMO,
1986). Conceptually, there are several different sectoral definitions of drought that are defined by the
duration of the precipitation deficit including short-term meteorological drought (spanning days to weeks),
agricultural drought (month to several months), and hydrological drought (months to years) (Wilhite and
Glantz, 1985). According to IPCC (2013), changes in the patterns of precipitation is expected globally over
the next few decades. The change in precipitation patterns coupled with the sustained increase in global
temperature since 1880 and the anthropogenic factors due to human activities (e.g. increased emission of the
Green House Gasses and land use change such as cutting down forests to create farmland) is likely to increase
the frequency and intensity of natural disasters like drought throughout the world (IPCC, 2013; Loon et al.,
2016). Knowledge of the amount and spatial variability of precipitation historically is important to map and
monitor drought condition globally. In situ-based rainfall measurements at weather station locations have
traditionally been used for this application, but the number, geographic distribution, and length of record
of these measurements are often lacking in many countries including Chile. The creation of such data sets is
challenging because it is costly to maintain a dense network of weather stations over a long period of time
as a result, there are often spatial gaps and a lack of local resolution in the rainfall data and the drought
patterns mapped from these point-based weather station data using spatial interpolation techniques. Many
weather stations have a relatively short or incomplete historical record of observations, which is problematic
for determining the magnitude of specific precipitation deficit period and the severity of the corresponding
drought.

Accurate historical precipitation data and effective drought monitoring tools are of considerable interest for
Chile. The IPCC (2013) indicate that precipitation is expected to decrease in the near-future in the central
part of Chile, which is a primarily agricultural area within the country. Studies made during the last years
from North to Central Chile found important results about drought frequency. A trend in the increase of
drought frequency in the Coquimbo region of northern Chile, particularly in Limarí Valley was identified
(Meza, 2013). Also, was found that a rainfall deficit of 40% had a return interval of approximately once every
4 years in the northern, semi-arid Coquimbo region of Chile and a 22-year return interval in the more humid
O’Higgins regions of central Chile (Núñez et al., 2011). Lately, Zambrano et al. (2016) evaluated agricultural
drought using satellite-based vegetation index data and found that in the Bío-Bío region (South-Central
Chile) over the last sixteen years had experienced three drought event during the 2007-2008, 2008-2009 and
2014-2015 growing seasons. All these studies were carried out using precipitation data obtained from a
limited number of weather stations across Chile. These results could be extended both on the spatial and
temporal scale to improve the findings using accurate satellite long-term precipitation datasets.

Satellite datasets are becoming increasingly important to fill in the spatial and temporal data gaps for
climate-based applications such as drought monitoring. Several global remotely sensed datasets now have
historical records spanning 18 years or more, and lately the long-term products having more than 30 years
which are appropriate for climate studies and represent a viable information source in many parts of the
world. One widely used remotely sensed precipitation dataset has been acquired by the Tropical Rainfall
Measuring Mission (TRMM), which is jointly supported by National Aeronautics and Space Administration
(NASA) and Japan Aerospace Exploration Agency (JAXA). The TRMM precipitation datasets (Huffman
et al., 2007) spans since November 1997 until present, although the mission comes to its end on April 2015, but
thanks to its successor the Global Precipitation Measurement (GPM) which is the continuity of TRMM the
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dataset have continued. The Global Precipitation Measurement (GPM) is an international satellite mission
to provide next-generation observations of rain and snow worldwide starting from temporal resolution of
three hours and at spatial resolution as high as 0.1°-30 minute. Other precipitation datasets have been
produced using a combination of infrared (IR) and passive microwave (PMW) observations from multiple
satellite sensors using different precipitation estimation methods. These include Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) (Hsu et al., 1997) and
Climate Prediction Center Morphing (CMORPH) technique (Joyce et al., 2004). Most products have short-
term data and have been evaluated in different part of the world such as: South America (Salio et al., 2015),
Colombia (Dinku et al., 2009), Saudi Arabia (Almazroui, 2011), Greece (Nastos et al., 2016), Ethiopia (Duan
and Bastiaanssen, 2013), China (Guo et al., 2016b), India (Shah and Mishra, 2015), Iran (Moazami et al.,
2016) and Himalayas (Bharti and Singh, 2015) and many other more (Pipunic et al., 2015; Kenawy et al.,
2015; Dinku et al., 2007; Tan et al., 2015).

The study of climate change and climate variability requires a long-record data to permit the evaluation of
climate and associated natural disasters like drought. The National Research Council (NRC) defined the
Climate Data Records (CDR) as time-series measurements of sufficient length, consistency, and continuity to
determine variability and climate change (National Research Council, 2004). Thus, two new satellite products
for long-record precipitation studies were considered in this chapter They are the Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-
CDR) (Ashouri et al., 2015) and CHIRPS 2.0 (Funk et al., 2014) datasets which both have more than
30-year records of data. Both products represent potentially valuable data sources for monitoring drought in
data-limited countries such as Chile because they have an adequate length of record to detect and quantify
drought conditions within a longer historical context. These products are relatively new and still there
are only a limited number of studies evaluating their performance of estimating the amount and spatial
distribution of precipitation. Miao et al. (2015) evaluated PERSIANN-CDR over China and found that the
agreement between the dataset with in-situ measurements in dry regions is not strong. Ashouri et al. (2015)
tested PERSIANN-CDR during the Hurricane Katrina (2005) and the flooding on Sydney, Australia (1986);
and found in both that PERSIANN-CDR is performing reasonably well when compared to radar and ground-
based observations. However, Ashouri et al. (2015) also examined the frequency distribution of precipitation
from PERSIANN-CDR as compared to those of CPC gauge observations and TMPA v7 concluding that
generally PERSIANN-CDR tends to underestimate the frequency distribution. Lately, Guo et al. (2016a)
analyzed PERSIANN-CDR for the assessment of meteorological drought over China using ground-based
gridded China monthly Precipitation Analysis Product (CPAP) from 1983 to 2014, their results shows that
6-month SPI has the best agreement with CPAP in identifying drought months; however, large differences
between PERSIANN-CDR and CPAP in depicting drought patterns and identifying specific drought events
were found over northwestern China. Katsanos et al. (2016) evaluated CHIRPS over Cyprus for a 30-year
period and their results showed good correlation with in situ measurement with an overestimation noted
during the decade 2001-2010 possibly due to the incorporation in the latter of TRMM estimates, which tend
to overestimate rainfall (Katsanos et al., 2016).

The aim of this chapter is to evaluate the performance and fit of monthly, long-term satellite-based precipita-
tion products over Chile for mapping and quantifying historical rainfall and drought patterns. In this chapter,
the CHIRPS 2.0 and PERSIANN-CDR datasets are compared with a well-studied satellite-based product,
the TMPA 3B43 v7 and with in-situ measurements obtained from weather stations across Chile. The Chilean
territory was divided in five zones primarily based on climate characteristics to evaluate the performance
of these datasets regionally across the country. The goal was to evaluate the accuracy and applicability of
these products to characterize rainfall patterns across Chile and transform the data into a precipitation-based
drought index, the Standardized Precipitation Index (SPI, McKee et al. (1993)) technique, for agricultural
drought monitoring in Chile.
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3.2 Study area

According to the Köppen climate classification system (Kottek et al., 2006), Chile has five primary climate
regimes that include the cold desert climate (Bwk) in the North, temperate Mediterranean climate (Csb)
in the Central part, temperate oceanic climate (Cfb) in the South-Central, cool oceanic climate (Cfc) in
the South and tundra climate in the austral part of the extreme South. To regionally evaluate the satellite-
derived precipitation data with in-situ measurements, the Chilean territory (for areas north of 50° South
Latitude) were divided into five zones that capture geographic variations in climatic conditions. The five
zones were geographically defined as: (1) North (17.6° S to 28° S latitude), (2) North-Central (28° S to 32°
of S latitude), (3) Central (32° S to 36° S latitude), (4) South-Central (36° S to 40° S latitude) and (5) South
(40° S to 50° S latitude). Fig 3.1a shows the five zones with the 278 weather stations locations used in this
chapter. Annual rainfall is mostly below 80 mm in the North zone, below 100 mm in the North-Central zone,
around 800 mm in the Central zone, from 1000 mm to 1500 mm in the South-Central zone and reaching up
to 2000 mm in the South zone. To describe vegetative features of Chile, the land cover MCD12Q1 product
with the scheme IGBP was used (Friedl et al., 2010). The land cover of the study area is shown in Fig. 3.1b.
The North zone is mostly barren and in the North-Central region is dominated by shrubland with some
isolated cropland along the river valleys. Agriculture in Chile is primarily concentrated from the 32° S to
40° S in the Central and Central-South zones where forest, cropland and grassland are the dominant land
cover types. Between 40° S and 45° S there are mainly forest and some areas covered with cropland which
are close to the 40° S. Finally, to the South of 45° S there are a mixed vegetation of forest and grassland
as the principal land cover type. Fig. 3.1c shows the altitude difference through Chile, highest altitudes
are in the North and North-Central zones, range mainly from 700m to more than 3500m. In the Central
and South-Central zones is possible to note the valleys in the middle part with altitudes between 100m and
700m. South zone close to 40° S latitude has topography around 10m to 200m. Also, toward eastern from
40° S to the North the highest altitudes corresponds to the Andes Mountains.

3.3 Methods

3.3.1 Data

Monthly time-series of precipitation (mm month−1) from the three satellite products and the weather station-
based in-situ rainfall measurements were compared and analyzed. The first satellite product evaluated was
the 0.25-degree, spatial resolution TMPA products with near-global (between 50°S - 50°N) coverage. The
standard monthly TMPA product 3B43 version 7 was already temporally aggregated to a monthly time-
step and the data required no additional temporal modifications prior to analysis. The TMPA data record
spanned a period from January 1998 to present (Huffman et al., 2007, 2010). The second satellite product
was the PERSIANN Precipitation Climate Data Record (PERSIANN-CDR), which is a daily quasi-global
precipitation product covering the period starting from January 1983. The PERSIANN-CDR data covers
from 60°S to 60°N latitude and 0° to 360° longitude at 0.25° spatial resolution (Ashouri et al., 2015). The third
satellite products evaluated was the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)
dataset, which has a 30+ year, quasi-global rainfall dataset, available at the monthly, dekad, pentad and
daily time steps. CHIRPS spatial data coverage spans from 50° S to 50° N (over all longitudes) with the
data record extending from 1981 to present. CHIRPS data have a 0.05° spatial resolution with the satelitte
data calibrated with in-situ station data to create gridded rainfall time-series appropriate for trend analysis
and seasonal drought monitoring (Funk et al., 2014).

The General Water Directorate of Chile (DGA) has the densest weather stations network through Chile and
with the longest historical records too. The network consists of stations with observers, which, recorded on
a daily basis each data. Also, it has datalogger equipment to store data and transmit to a central database.
About the quality control, the first verification is performed regionally for experienced staff which checks
coarse errors and data gaps. Then, the quality control is made by spatial consistency comparing rainfall
measurement with weather stations of neighboring sub-basin of the same time interval. Distance and altitude
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Figure 3.1: Study area map with (a) 278 weather stations, (b) landcover type and (c) terrain elevations.

considerations are included in the selection of neighboring stations. The effect of an air mass over the area
and the impact on the weather stations values are analyzed. For measurements validation, the analyst
experience allows discovering the errors of direct readings from an a observer or datalogger malfunction.

For the evaluation of satellite precipitation products, ground observation of rainfall data were obtained from
the database of the Center for Climate and Resilience Research (CR2) at the University of Chile. The data-
base consisted of 780 stations with monthly rainfall data collected from 1940 to 2015. They are comprised
of data records consolidated from the DGA and the Meteorological Directorate of Chile (DMC) for use in
research. From the total of 780 available meteorological stations with in-situ data, only 278 stations were
selected for analysis in this chapter based on the criteria that a station must have at least a 25 year rainfall
data record (1981 to 2015), less than 10% missing data, and be geographically located between 17° S and 50°
S in continental Chile. The dramatic reduction in the number of stations that could be used in this analysis
illustrates the relative lack of long-term, temporally-complete rainfall records from in-situ gauges that are
available in Chile.

http://www.cr2.cl
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3.3.2 Preparation and data analysis

With the daily precipitation data from the product PERSIANN-CDR from January 1983 to June 2015,
monthly cumulative precipitation was calculated obtaining a total of 402 precipitation grids. In the case of
CHIRPS 2.0 and TMPA 3B43 v7, these datasets are in monthly accumulated precipitation. For TMPA 3B43
v7, the data spanned from 1998 to 2015 and 210 data grid were used between January 1998 and June 2015.
For CHIRPS 2.0, a total of 414 data grids were used from January 1981 to June 2015. Monthly precipitation
values across the historical record were extracted from the grid cell locations that corresponded to the 278
weather stations locations from the TMPA 3B43 v7, CHIRPS 2.0 and the PERSIANN-CDR precipitation
datasets, respectively. The extracted precipitation data from each remote sensing and in-situ data set were
then spatially averaged with the five regional zones defined for the regional analysis part of this chapter. The
aggregation was done by averaging the values of precipitation (in-situ and satellite) for each monthly period
for all weather station locations within each zone. The aggregated data were then statistically analyzed
using box-plot and heatmap graphs, as well as summary statistics that included mean, median, first quartile
(Q25%), third quartile (Q75%), maximum value and number of observations (n).

The monthly precipitation time-series data were compared for each zone and between the satellite products
and in-situ measurements. Using the spatially-aggregated data, the monthly difference between satellite
products and in-situ data for each year was calculated to measure the level of underestimation and overesti-
mation among datasets. To complement this analysis, the data were also temporally aggregated calculating
the mean cumulative season for winter, summer, spring and autumn time periods to determine if there were
differences in the inter-relationships among the datasets at different times of the year.

To further evaluate and compare the time-series precipitation datasets nine statistics were calculated for
each of the 278 weather station locations that included: lineal coefficient of correlation (CC), the magnitude
of underestimation (ME) (Eq. (3.1)), mean absolute error (MAE) (Eq. (3.2)), multiplicative bias (bias) (Eq.
(3.3)), efficiency (Eff ) (Eq. (3.4)), the Root Mean Square Error (RMSE) (Eq. (3.5)), frequency bias (FBS)
(Eq. (3.6)), the probability of detection (POD) (Eq. (3.7)) and false-alarm ratio (FAR) (Eq. (3.8)). These
station-based statistics were then aggregated for each zone generating 135 statistics in total among the five
zones. These statistics were analyzed using hierarchical cluster analysis, singular value decomposition (SVD)
and k-mean to better understand their similarities and differences in characterizing spatial and temporal
rainfall patterns. To evaluate the behavior during the year, the statistics were monthly calculated, obtaining
1620 statistics (i.e., 12 months × 9 statistics × 3 products × 5 zones), which were also analyzed using
hierarchical cluster, k-means and singular value decomposition. Also, we used the Root Mean Squared Error
(RMSE) statistic to have a measure of the error between the in situ time-series of rainfall and SPI values
against those derived from satellite products.

Finally, to analyze the application of these satellite products and evaluate the spatial variability of agricul-
tural drought patterns, the CHIRPS 2.0 precipitation data were used to calculate the SPI a time-scales (i.e.,
one, three and six months SPI) for the period of 1981 to 2015. For SPI calculation, a Gamma distribu-
tion was adjusted using a method for parameter fitting based on unbiased Probability Weighted Moments
(Vicente-Serrano et al., 2010). To compute the SPI the SPEI (Beguería and Vicente-Serrano, 2013) package
within the R environment (R Core Team, 2016) was used.

3.4 Results

3.4.1 Satellite and rain gauge precipitation

The summary of monthly rainfall and distribution comparison for 278 selected weather stations with extracted
data from the grids of satellite precipitation products estimates are presented in Table 3.1, Fig. 3.2a and
Fig. 3.2b. In the North, the monthly precipitation is mainly under 200 mm and to the South is possible to
observe the winter pattern where the amount of rainfall increase to more than 200 mm in most locations
and as high as more than 400 mm in the South. There are some extreme precipitation values (i.e., more
than 1200 mm) from the Central zone and southward. This extreme was 1232 mm on May 1981, 1241 mm
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Table 3.1: Summary statistics for precipitation data from weather stations (in-situ) and PERSIANN-CDR,
TMPA 3B43 v7, CHIRPS 2.0 satellite products, in five zones of Chile. Total number of observations (n),
weather stations by zone (Stations), missing observations, mean (X̄), first quartile (X25%), median (X50%),
third quartile (X75%) and maximum (Xmax). The time-period used was 1981-2015, 1983-2015 and 1998-2015
for in-situ, CHIRPS 2.0, PERSIANN-CDR and TMPA 3B43 v7, respectively.

Summary statistics

Zone Product n Stations Missing X̄ X25% X50% X75% Xmax

[mm mo−1] [mm mo−1] [mm mo−1] [mm mo−1] [mm mo−1]

North

in-situ 19872 48 473 6.95 0.00 0.00 0.50 413.40
PERSIANN-CDR 18720 48 0 11.90 1.24 4.50 12.44 213.64
TMPA 3B43 v7 10080 48 0 10.19 0.84 3.31 10.23 284.99
CHIRPS 2.0 19872 48 0 10.47 1.43 3.90 10.93 221.72

North-Central

in-situ 20286 49 226 12.40 0.00 0.00 7.50 597.50
PERSIANN-CDR 19110 49 0 18.85 2.02 8.25 24.10 390.18
TMPA 3B43 v7 10290 49 0 16.26 0.52 3.23 16.03 568.67
CHIRPS 2.0 20286 49 0 10.72 1.23 3.41 11.55 220.66

Central

in-situ 45126 109 853 46.06 0.00 9.20 54.20 1394.10
PERSIANN-CDR 42510 109 0 45.99 5.62 22.12 64.29 504.89
TMPA 3B43 v7 22890 109 0 45.33 1.80 14.91 61.71 517.03
CHIRPS 2.0 45126 109 0 44.34 5.22 14.74 52.53 787.23

South-Central

in-situ 25254 61 500 124.93 29.00 81.00 177.60 1258.60
PERSIANN-CDR 23790 61 0 85.49 19.13 55.87 127.58 554.02
TMPA 3B43 v7 12810 61 0 105.30 28.26 77.21 159.97 688.65
CHIRPS 2.0 25254 61 0 121.81 34.80 82.31 170.37 1238.03

South

in-situ 4554 11 130 145.56 57.18 114.90 201.12 1139.00
PERSIANN-CDR 4290 11 0 107.73 50.44 86.80 147.28 441.86
TMPA 3B43 v7 2310 11 0 142.40 69.64 125.33 197.01 594.76
CHIRPS 2.0 4554 11 0 128.34 56.29 102.70 170.85 827.94

on July 1987, 1236 mm on July 1987, 1373 mm on June 2000, 1394 mm on June 2000 and 1258 on July
2001 for the weather stations of Rio Malleco y Vergara, Rio Maule Medio, Rio Loncomilla, Rio Maule Medio,
Rio Loncomilla and Rio Bío-Bío Alto, respectively. The seasonal variations are also evident for the weather
station located in the central and northern zones as shown by the alternating seasonally higher (red color)
and lower (green color) for each year in the multi-year historical record presented. Annual drier periods also
were more pronounced across the stations moving northward from central to northern parts of Chile.

The boxplots of Fig. 3.2b compare the statistical distribution of rainfall data between in-situ and satellite
products for the five zones. In the North zone, all three products overestimate the distribution of precipi-
tation as shown by Fig. 3.2b where the box of three satellite products are higher than the box for in-situ
measurements. In-situ rainfall totals for 75% of the stations in the North were below 0.5 mm, whereas for the
three satellite rainfall products the totals ranged between 0.84 mm and 12.44 mm as shown in Table 3.1 and
Fig. 3.2b. In the North-Central zone, the satellite products overestimate the lower precipitation values with
X25% equal to 0.52 mm in the case of TMPA 3B43 v7 compared to the in-situ data that equaled 0 mm, but
the three satellite products capture most of the remaining rainfall distribution across the intermediate and
higher values. In the Central zone, the three satellite products had a X75% between 53 mm (CHIRPS 2.0) to
64 mm (PERSIANN-CDR) close to in-situ values which has 54 mm. However, like in the North-Central zone,
the lower rainfall values (X25%) for the PERSIANN-CDR and CHIRPS 2.0 datasets were approximately 5
mm and TMPA 3B43 v7 was 1.8 mm compared to 0 mm for in-situ data (see Fig. 3.2a and Table 3.1). The
South and South-Central zone shows rainfall distributions very similar between satellite products and in-situ
measures, in the range for interquartile range (IQR) of 29 mm to 178 mm for South-Central and between 50
mm to 200 mm in the South zone (see Fig. 3.2b and Table 3.1).
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Figure 3.2: (a) Monthly rainfall data from 1981 to 2015 for 278 weather stations, and (b) Comparison
of distribution for precipitation data with logarithmic transformation, from in-situ and satellite products
TMPA 3B43 v7, PERSIANN-CDR and CHIRPS 2.0; for North, North-Central, Central, South-Central and
South zones in Chile. The y-axis presents the 278 weather stations from North (top) to South (bottom), and
the x-axis presents the period from 1981 to 2015. The white spaces represent missing data.

3.4.2 Time series, annual difference and seasonal variation of rainfall

Fig. 3.3 shows the time series of the spatially-averaged precipitation datasets for the five zones. Like the
previous results, the values of in-situ with satellite products had the close agreement in the Central zone
as compared to the North zone, where the largest differences were found, particularly when there is low
precipitation near 0 mm. The South-Central and South zones exhibited good correspondence between in-
situ and satellite data across the range of precipitation totals. Values of RMSE for the North zone was
around 7 mm for all three products, in the North-Central TMPA 3B43v7 shows the lowest values with 12.2
mm and CHIRPS 2.0 the highest with 20.8 mm. Similar values had PERSIANN-CDR and CHIRPS 2.0 in
the Central zones reaching around 20 mm. In the South-Central and South zones, TMPA 3B43 v7 has the
lowest RMSE value with 37.6 mm and 24.2 mm, respectively; and PERSIANN-CDR reaches the highest
values with 54.8 mm and 48 mm, respectively (Fig. 3.3).

Fig. 3.4a shows the yearly averaged values of monthly precipitation difference between the three satellite
products (S) and the in-situ rain gauge (G) data for the five regional zones. In the North zone, the rainfall
totals were consistently overestimated by as much as 10 mm in all years except 2000 and 2001. This pattern
was also observed for all satellite products over the North zone. The North-Central and Central zones had
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Figure 3.3: Spatial-averaged monthly time-series of in-situ rainfall data and extracted from satellite products
TMPA 3B43 v7, PERSIANN-CDR, CHIRPS 2.0 in five zones of Chile: North, North-Central, Central, South-
Central and South.

a similar rainfall pattern, in most of the years with satellite products overestimating rainfall. The CHIRPS
2.0 data had the lowest difference values and the best fit among the remotely sensed products, but there
were still some anomaly years (1987 and 1997) in which CHIRPS 2.0 data had differences by as much as
20 mm in North-Central and Central zones where the mean annual precipitation are around 80 mm (~5%)
and 500 mm (~4%), respectively. In the South-Central and South zones, the satellite products consistently
underestimated monthly precipitation with differences as high as 69 mm and 83 mm, respectively; in the
case of PERSIANN-CDR which correspond as much as 5% for both. In contrast, CHIRPS 2.0 has the best
correspondence in these zones with in-situ measurements difference in South-Central and South zones of 20
mm (1%) and 47 mm (2%), respectively (Fig. 3.4a).
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Figure 3.4: (a) Annual averaged difference of monthly precipitation for in-situ data and from satellite
products TMPA 3B43 v7, PERSIANN-CDR and CHIRPS 2.0. (b) Seasonal comparison of precipitation
for five zones of Chile and between in-situ, CHIRPS 2.0, PERSIANN-CDR and TMPA 3B43 v7. The
seasonal periods were: March, April and May (MAM) for Autumn; June, July and August (JJA) for Winter;
September, October and November (SON) for Spring; and December, January and February (DJF) for
Summer.

In addition, a comparison of the seasonal variation of precipitation between products for each zone is pre-
sented in Fig. 3.4b. The greatest difference with in-situ data was during the Spring season in the North zone,
where each product had accumulated seasonal precipitation values higher than the in-situ measurements.
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Also, PERSIANN-CDR and CHIRPS 2.0 overestimates, while TMPA 3B43 v7 underestimates seasonal rain-
fall. Over the North zone, the precipitation amount is higher during the Summer season, which corresponds
to the commonly known as Bolivian winter (Romero et al., 2013). In the North-Central zone, there was
a significant difference with in-situ measurements, CHIRPS 2.0 underestimates by 30mm and PERSIANN-
CDR overestimates by 10mm during the Winter season and in the other zones, the behavior is similar with
those found in the North zone. However, in the other three seasons (i.e., Spring to Autumn), CHIRPS 2.0
had the best agreement with in-situ data while PERSIANN-CDR highly overestimates seasonal rainfall. For
the Central, South-Central and South zones, CHIRPS 2.0 had the best agreement for all seasons with the
lowest precipitation in Summer and the highest in Winter (see Fig. 3.4b), followed by PERSIANN-CDR
and ending TMPA 3B43 v7 with the lowest seasonal agreement.

3.4.3 Statistics of comparison between satellite-derived and in-situ measure-
ments

The statistics used to compare the different precipitation datasets were calculated for each 278 meteorological
stations and the average values of the satellite products over the five zones are presented in Table 3.2.
Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets
to better understand their similarities and differences in characterizing rainfall patterns across Chile. As an
important source of variation monthly precipitation in rain gauges (G) was included to the 9 statistics for the
analysis. The results revealed no significant difference between the products from North to South-Central
zones and differences exists between them in the South zone. The singular value decomposition indicated
that the CC, Eff , POD, G and RMSE are the major contributors to the variation among these datasets.
The statistics showed that differences were greater in areas that receive lower precipitation than areas with
high rates of precipitation. For example, the South and South-Central zones, which normally receive between
1500 mm and 1700 mm of precipitation annually instead of 80 mm and 150 mm in the North and North-
Central zones. The South and South-Central zones had the best results reflected by the FAR and high POD
values among the zones, as well as the highest CC and good Eff values. PERSIANN-CDR in the South
and South-Central zones presents higher underestimations reaches -36 mm of ME in both zones. Cluster
analysis identifies two big groups, one corresponding to North zone, and the second from North-Central to
South zones. This reflects that North zone (group 1) presents the lower agreement with in-situ measurements
and this was similar for the three satellite products. The second group has two main sub-groups, one for
North-Central and Central, showing better results than in North zone, and the second sub-group with the
higher performance for the three satellite products showed in South-Central and South zones.

In order to further analyze the goodness of fit of the satellite products during the year, several monthly
statistics were also studied. Fig 3.5 presents the heatmap diagrams for the hierarchical cluster analysis
performed by month for five zones and 9 statistics along with in-situ precipitation (G) that was added as an
additional measure of accuracy variation. For Fig. 3.5, the top horizontal axis represents the dendrogram
cluster by statistics and the left vertical axis corresponds to dendrogram cluster by specific month. Also the
vertical color palette between the left vertical dendrogram and the first column of the heatmap shows the
specific remote sensing precipitation product that corresponds to each row. The colors are grey, brown and
green, corresponding to CHIRPS 2.0, PERSIANN-CDR, and TMPA 3B43 v7, respectively. As example, in
Fig. 3.5a, in first row, the left dendrogram indicates that was included in one of the main clusters, next the
green color in the vertical palette indicate that correspond to TMPA 3B43 v7 product, then the nine cells
shows the nine scaled statistics values, beside that on the right the month is showed, in the case of the first
row was ‘November’.

The major contributors statistics in the North zone were ME, MAE, bias, FBS and FAR as showed in the
horizontal dendrogram in Fig. 3.5a. TMPA 3B43 v7 has the highest values among these statistics from
September to November, and CHIRPS 2.0 in September; which collectively formed the first group with the
lowest fit. In vertical dendrogram in Fig. 3.5a, the second and third group are also defined. The second
group had the best seasonal results from December to March, which corresponds to the ‘Bolivian winter’,
when higher precipitation are received during this Summer period over the North zone. The third group
that corresponded to the April to November time period had the poorest fit among all products.
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Figure 3.5: Heatmap for hierarchical cluster analysis of monthly statistics of RMSE, G, CC, Eff , POD,
FAR, MAE, FBS, bias, and ME; for North, North-Central, Central, South-Central and South zones. In the
left vertical axis, the dendrogram shows groups made by month. The top axis present the dendrogram by
statistics. On the left of the column showing POD, there is a palette legend showing the satellite product at
which each row correspond.
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Table 3.2: Summary of statistics aggregate for zones North, North-Central, Central, South-Central and
South; for products TMPA 3B43 v7, PERSIANN-CDR and CHIRPS 2.0. CC, ME, MAE, bias, Eff , FBS,
POD, FAR and HSS

Statistics of comparison

Zone Product CC ME MAE bias Eff RMSE FBS POD FAR
[mm mo−1] [mm mo−1] [%] [%]

North

CHIRPS 2.0 0.48 3.34 10.69 10.89 -44.44 15.32 7.31 0.87 0.73
PERSIANN-CDR 0.59 4.64 8.86 9.33 -30.90 13.95 6.66 0.95 0.72
TMPA 3B43 v7 0.51 2.97 9.20 9.43 -36.57 14.78 7.86 0.91 0.72

North-Central

CHIRPS 2.0 0.72 -1.71 0.86 0.82 0.43 24.20 2.14 0.95 0.54
PERSIANN-CDR 0.80 6.45 1.07 1.63 0.57 20.99 2.38 0.99 0.56
TMPA 3B43 v7 0.75 5.59 1.04 1.55 0.05 21.29 1.94 0.97 0.48

Central

CHIRPS 2.0 0.88 -1.50 0.51 1.01 0.72 38.25 1.57 0.99 0.35
PERSIANN-CDR 0.91 1.16 0.55 1.19 0.73 37.53 1.48 0.98 0.32
TMPA 3B43 v7 0.93 3.47 0.46 1.19 0.76 31.23 1.32 0.99 0.24

South-Central

CHIRPS 2.0 0.90 -3.00 0.31 1.01 0.76 58.49 1.05 1.00 0.05
PERSIANN-CDR 0.91 -36.94 0.39 0.78 0.60 77.47 1.02 0.97 0.04
TMPA 3B43 v7 0.91 -15.08 0.32 0.93 0.74 63.20 1.02 0.99 0.03

South

CHIRPS 2.0 0.81 -17.52 0.30 0.93 0.56 64.76 1.00 0.99 0.00
PERSIANN-CDR 0.79 -35.45 0.42 0.89 0.23 82.60 0.98 0.97 0.00
TMPA 3B43 v7 0.88 2.56 0.28 1.08 0.69 50.86 1.00 1.00 0.00

In the North-Central and Central zones, the statistics that made major contribution to the variation were
CC, Eff , RMSE, G and POD as showed in Fig. 3.5b and Fig. 3.5c, respectively. For the North-Central zone
(Fig. 3.5b), the TMPA 3B43 v7 and PERSIANN-CDR had the poorest fit and with the PERSIANN-CDR
having the lowest fit in February. Collectively for these months, the precipitation datasets poor fit is shown
by the high values of MAE, bias, FBS and FAR. The best fit was found during the period from May to
August (mainly Winter season) for the second group across all the precipitation products. The third group
had lower results particularly from September to April (Spring and Summer seasons). The Central zone
(Fig. 3.5c) exhibited similar results than North-Central zone, with a lower fit in December and February
for CHIRPS 2.0 and PERSIANN-CDR, and during January for all three products. Also the Central zone,
shows that from June to September had the best fit mainly for PERSIANN-CDR and CHIRPS 2.0; and the
highest values of ME, bias, FBS, MAE and FAR showing lower agreement from October to May, similar for
the three products.

The indicators that were most relevant for the South-Central zone were RMSE, G and POD; and for the
South zone were MAE, RMSE, G and FAR as presented in Fig. 3.5d and Fig. 3.5e. PERSIANN-CDR
was grouped from November to January with high values of MAE, FBS and FAR; and low values of bias
(indicating underestimation), CC, and Eff showing the lowest agreement with in-situ measurements in South-
Central zone (Fig. 3.5d). CHIRPS 2.0 and TMPA 3B43 v7 had better results from September to March
with high values of CC, Eff , bias and ME. The best results for all three precipitation data products ocurred
from May to September. Finally, in the South zone (Fig. 3.5e) the major contributors were MAE, RMSE,
G and FAR, and the cluster shows that PERSIANN-CDR had the lowest fit during all the year, similar was
CHIRPS 2.0 in April, October and November. In this zone better result were found for CHIRPS 2.0 and
TMPA 3B43 v7 with high values of CC, Eff , bias (showing overestimation), POD and FBS, during the year.

Fig. 3.6 shows the analysis of the variation of the main statistics with respect to the amount of monthly
rainfall. In the North and North-Central zones, low monthly precipitation below 5 mm had a clear impact
on the linear correlation coefficient (CC), bias, FAR and FBS, compared to the other zones. In the zones
where the days with rain are very limited, the ability of the satellite products to detect rain is reduced and
often detected precipitation when there was no rain, which is reflected in high values of FAR that produce
high values of bias and FBS too. Precipitation estimates were improved as shown in the statistical results as
the rainfall increased, which was consistent across all zones. The South-Central and South statistics shows
good agreement when compared to observed precipitation primarily because of the higher monthly rainfall
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amount received over these areas. Further, there are considerably more days with rain than in the other
zones, that has direct impact on the detection of rain, showing very high POD value of close to 1 and a FAR
value close 0.

Figure 3.6: Variation of statistics linear coefficient of correlation (CC), bias, false-alarm ratio (FAR) and
frequency bias (FBS), with the amount of monthly rainfall, for North, North-Central, Central, South-Central
and South zones of Chile and products TMPA 3B43 v7, PERSIANN-CDR and CHIRPS 2.0

3.4.4 Spatial variation and comparison of products with long data-record

Spatial variations of the CC and Eff for the 278 stations and the three satellite precipitation products across
Chile are shown in Fig. 3.7 and compared with the spatial variation of in-situ rainfall (G). The values of
CC are very high in central Chile, mainly over 0.78 (Fig. 3.7. The TMPA 3B43 v7 data had the highest
correlation with values around 0.92 over this area with correlations decreasing in a northward direction for
all products as seen in Fig. 3.7a. The Eff was below 0.45 from 30° latitude and northward with values
increasing from this latitude northward reaching peak value of 0.7 in central Chile (Fig. 3.7b) with similar
values for all three satellite products. When these statistical results (CC and Eff ) are compared with the
monthly average of precipitation (G) in weather stations, the spatial variation patterns in monthly rainfall
are very similar, indicating that the fit of the precipitation products was strongly related to the amount of
rainfall mainly for CHIRPS 2.0, followed by PERSIANN-CDR and TMPA 3B43 v7 with the greatest spatial
pattern differences.

The climatology of monthly averaged precipitation maps from 1983 to 2015 were compared between the
high spatial resolution, CHIRPS 2.0 and the coarse spatial resolution, PERSIANN-CDR in Fig. 3.8. Both
products were compared to evaluate the difference on how well these products measure the spatial patterns
variation of precipitation. TMPA 3B43 v7 was not included because its shorter historical data, which has
limited utility for climatological analysis. As would be expected, the high resolution CHIRPS 2.0 data
captured more spatial variability in precipitation patterns than the PERSIANN-CDR. Months with the
greatest spatial pattern differences between these datasets occurred in February, March, September, October,
November and December; particularly in the southern part of Chile. Most of the spatial differences in the
precipitation patterns captured in these two products occurred mainly in the Central to South part of Chile.
One of the notable discrepancies occurred in eastern Chile, where the Andes Mountains is located and few,
meteorological stations are located at the higher altitudes. During May to August in eastern Chile near
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Figure 3.7: Spatial variation of statistics of (a) linear correlation coefficent (CC), (b) efficiency (Eff) for
products CHIRPS 2.0, PERSIANN-CDR and TMPA 3B43 v7 and (c) In-situ precipitation in 278 rain gauge
(G) over Chile

the 40° S latitude, precipitation can exceed 400 mm as estimated for CHIRPS 2.0, compared to 200 mm
estimated by PERSIANN-CDR. In the South between 45° S and 50° S in far eastern Chile, CHIRPS 2.0 had
lower precipitation values of less than 50 mm and PERSIANN-CDR estimated approximately 100 mm. It is
well known that precipitation raises as altitude increases, further, Garreaud (2009) indicates that orographic
air uplift produces 2-3 times more annual precipitation up in the Andes Mountains relative to the coastal
values at the same latitudes. CHIRPS 2.0, captures the increasing of monthly precipitation climatology as
showed in Fig. 3.8b during Winter months from May to July and toward the Andes Mountains between 35°
and 45° South latitude. Fig. 3.8b shows that monthly rainfall raises up to 340 mm toward Andes Mountains
and picking more than 550 mm during Winter. Those patterns were not captured by PERSIANN-CDR
product as showed in Fig. 3.8a.

When the spatial variation of annual precipitation is considered for the maps presented in Fig. 3.9, together
with the wettest month and driest month during the 30+ year historical period estimated from the satellite-
based CHIRPS 2.0 and PERSIANN-CDR products, they were similar to the monthly averaged results in
Fig. 3.8. The majority of differences occurred mainly south of 35° S and over the Andes Mountain range in
far eastern Chile. The annual precipitation pattern showed in Fig. 3.9a is similar with those of Fig. 3.9b
that shows the maximum monthly rainfall. This pattern reflects mainly the monthly rainfall from May to
August, also shows that from 35° S and northern there is the driest pattern and in the other direction from
35° S to the South, there is a wettest pattern. Moreover, CHIRPS 2.0 capture precipitation increasing with
elevation toward the east, which is not reflected by PERSIANN-CDR. Fig. 3.9c, minimum monthly rainfall
reflects the driest pattern of Spring and Summer seasons as shown in Fig. 3.8 (September to December and
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Figure 3.8: Monthly satellite-derived precipitation in Chile during 1983 to 2015 for products (a) PERSIANN-
CDR and (b) CHIRPS 2.0.

January to March, respectively), and in this case, the driest pattern moves it to the 40° S latitude. The
areas southern to 35° S had higher precipitation variability and the amount of monthly rain is also high as
depict maps of annual precipitation (Fig. 3.9a), wettest month (Fig. 3.9b) and driest month (Fig. 3.9c).
CHIRPS 2.0 was found to capture the spatial variation of rainfall better than PERSIANN-CDR, as reflected
in Fig. 3.9a, Fig. 3.8b and 3.9c, where the spatial pattern of rainfall are highly variable specially in the
East part of Chile as showed by CHIRPS 2.0. In Central to South zones in Chile, the PERSIANN-CDR
showed more homogeneous spatial variability compared to CHIRPS 2.0, where the gradient of precipitation
are more coarse due to the low spatial resolution of PERSIANN-CDR, this is readily apparent in Fig. 3.9a
and Fig. 3.9b.

3.4.5 Application for agricultural drought analysis

In this section, historical time-series of SPI data (McKee et al., 1993) derived from both the PERSIANN-CDR
and CHIRPS 2.0 precipitation datasets were evaluated. This index was selected because is recommended for
the World Meteorological Organization (WMO) as an index to characterize droughts (Hayes et al., 2011).
TMPA 3B43 v7 was not included because of its short historical record. The SPI at 3 time-scales (i.e., 1-,
3-, 6-month SPI) commonly associated to agricultural drought were produced and the correlation with SPI
derived from weather station observations was evaluated. However, the analysis was mainly focused on the
time-scales of three months or less because agricultural drought has generally short-term response. Further,
in the South-Central zone of Chile, Zambrano et al. (2016) found the 3-month SPI (SPI-3) had the best
correlation over cropland areas.
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Figure 3.9: Rainfall climatology for period 1983 to 2015 of (a) Annual precipitation, (b) Wettest month and
(c) Driest month, for satellite products CHIRPS 2.0 and PERSIANN-CDR

The SPI-3 times-series data is presented for the in-situ, PERSIANN-CDR and CHIRPS 2.0 precipitation
data in Fig. 3.10. The time-series line graphs represent the geographically aggregated SPI values over each
of the five zones. Also, the RMSE indicator was calculated to evaluate the error for derived SPI between
satellite and in-situ values as showed in Fig. 3.11. From the results in the previous section, found the
precipitation products had a better fit in the Central to South zones. Results in Fig. 3.11 supports these
findings, showing that the lowest error was found in South-Central and Central zones for SPI-1, SPI-3, and
SPI-6; and they were very similar for both satellite products. However, the lowest value of RMSE is 0.6
which is also high and could induce to find a place under drought when it is not.

The variation of SPI-3 during the growing season (September-April) from 1983 to 2015 were compared in
Fig. 3.12, for the index data derived from the in-situ, PERSIANN-CDR and CHIRPS 2.0 data. In the
North and North-Central zones, major difference are apparent between the satellite and in-situ derived
SPI-3 data. Between 1988-1989 and 1996-1997 seasons, PERSIANN-CDR present 8 seasons with greatest
differences, showing lower values than those from in-situ SPI-3. On the other hand, from 2001-2002 to
2010-2011 CHIRPS 2.0 has highest differences with in-situ SPI-3 values in 11 seasons in the North and
North-Central zones. The SPI-3 bar plot calculated from the PERSIANN-CDR and CHIRPS 2.0 data for
Central and southern zone had better fits with the in-situ SPI-3, which is consistent with the previous results
presented. However, large discrepancies with in-situ SPI-3 were found for the PERSIANN-CDR-based SPI-3
data during 1989-1990 growing season. In 1989 the PERSIANN-CDR was found to largely underestimate
precipitation as shown earlier (see Fig. 3.4), which resulted in the larger discrepancies of SPI-3 that year.
In the Central, South-Central and South zones, the 1998-1999, 2007-2008, 2008-2009 and 2014-2015 growing
seasons exhibited the lowest SPI-3 values that were calculated in each of the three SPI-derived from the
in-situ, PERSIANN-CDR and CHIRPS 2.0, respectively. The SPI-3 results for these years are consistent
with Zambrano et al. (2016), who found in the South-Central zone of Chile, severe drought occurrence during
the 2007-2008, 2008-2009 and 2014-2015, note that the Zambrano et al. (2016) study did not evaluate the
period 1981-1999 that low SPI values were calculated from the various precipitation datasets; however, the
three later events were well represented in the SPI-3 time series over this area.

Because agricultural drought is associated with abnormal dryness over shorter-term time scales (< 6 months),
and considering the previous results that found high monthly variability of adjustment between satellite
products and in-situ data. Fig. 3.13 presents the monthly CC that compared the two satellite-based sets of
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Figure 3.10: Time-series of SPI-3 for in-situ precipitation data and satellite products PERSIANN-CDR and
CHIRPS 2.0 data with spatial aggregation for five zones of Chile: North, North-Central, Central, South-
Central and South.

SPI datasets with the in-situ SPI data at time-scales of one, three and six months. For SPI-1, the results
were very similar between the in-situ and satellite-based index results. Higher correlations among these
datasets might be expected for the SPI-1 because calculation is a standardization of monthly precipitation,
which was the time set of all three input datasets. In the North-Central and Central zones, the correlation
improved as the time-scales of SPI lengthened from one month (SPI-1) to six months (SPI-6), with the
greatest improvement in the last months in the year. That could be explained because as seen in section
3.4.3, the higher correlation of rainfall with CHIRPS 2.0 and PERSIANN-CDR were in winter months on
the middle of the year (May to August), and this has an accumulated effect in the following months, which
allow to improve the correlation on SPI as the time-scales increase until six months. This did not occur in
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Figure 3.11: Comparison of RMSE of in-situ SPI with satellite derived SPI, for time-scales of 1, 3 and 6
months and zones North, North-Central, Central, South-Central and South

Figure 3.12: Averaged SPI-3 during growing season (September to April) spatially aggregated for zones North,
North-Central, Central, Central-South and South; compared for in-situ, PERSIANN-CDR and CHIRPS 2.0
data for period 1983 to 2015.
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the South and South-Central zones where the correlation does not have as high variability between the years,
this may have been because in these zones the seasonality difference of rainfall between Winter and Summer
is lower than in Central and North-Central zones.

Figure 3.13: Monthly correlation of SPI-1, SPI-3 and SPI-6 between satellite products PERSIANN-CDR
and CHIRPS 2.0 with SPI from in-situ data.

In Fig. 3.14, the mapping of SPI-3 derived from CHIRPS 2.0 is presented. CHIRPS 2.0 map results are
presented and discussed in more detail here because this remote sensing dataset has a higher spatial resolution
applicable for regional applications and had a better fit in the precipitation estimates with in-situ observations
than PERSIANN-CDR. From the results presented in Fig. 3.12, the 1998-1999, 2007-2008, 2008-2009 and
2014-2015 growing season were selected as the four most severe drought events because of significant rainfall
deficit over a three-month period (or longer) during the last thirty years in Chile. In Fig. 3.14, the large
spatial extent of drought conditions is clearly identified during the 2007-2008 growing season compared to
the other drought years. However, Fig. 3.12 shows that the CHIRPS 2.0 derived SPI products overestimated
the severity of drought during the 2007-2008 and 2008-2009 growing seasons in North-Central and Central
zones which is supported in Fig. 3.4 with the monthly precipitation difference with in-situ measurements.
North-Central zone in 2007-2008 season has a in-situ SPI-3 of 0.2 against CHIRPS 2.0-derived SPI-3 of -0.68
and in 2008-2009 the in-situ SPI-3 has 0.49 against CHIRPS 2.0-derived SPI-3 of -0.6. Then, Central zone in
2007-2008 season has -0.33 and -0.95 for in-situ and CHIRPS 2.0 derived, SPI’s, respectively; and 2008-2009
season has -0.35 and -0.84 for in-situ and CHIRPS 2.0-derived SPI’s, respectively. The drought condition
during the 2014-2015 growing season over the South-Central and South zones of Chile, are evident with
SPI-3 values corresponding to mild dry to moderate dry conditions. The result for North and North-Central
zone are unreliable due the higher discrepancies found in the precipitation estimated from CHIRPS 2.0 as
reported earlier. For example, in Fig. 3.12, the North zone in 2007-2008 and 2008-2009 growing season had
a high underestimation of SPI-3, similar results has the North-Central zone.

3.5 Conclusions

In this chapter, three satellite-based precipitation products with varying spatial resolutions (i.e., 0.05° and
0.25°), and extended historical data records (ranging from 18 to 30+ years) were evaluated for their accu-
racy of estimating the amount and spatial patterns of precipitation across Chile and their applicability for
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Figure 3.14: Maps of SPI-3 for the growing seasons (September-April) with the most severe values from 1983
to 2015, using CHIRPS 2.0 dataset

calculating the SPI to monitor agricultural drought. The precipitation and SPI estimates were compared
to in-situ precipitation measurements and nine statistics indices were calculated for 278 selected weather
station locations across Chile. In order to assess potential regional variations of precipitation values across
Chile, the country was divided into five latitudinal regional zones based on climate.

Satellite precipitation products with long, 30+ year historical records such as PERSIANN-CDR and CHIRPS
2.0 when compared to the TMPA 3B43 v7 data with a shorter 17-year historical data record and station-
based precipitation, for the five latitudinal zones with nine statistics, were found to have similar results
from North to South-Central zones. However, differences exist in the South zone of Chile in the case of
PERSIANN-CDR which highly underestimate rainfall.

The monthly statistics analysis, showed that for the North zone, the precipitation estimates were more ac-
curate from December to March during the so called period of the ‘Bolivian winter’, when higher rainfall
amounts occur. For the North-Central the precipitation results from satellite were more reliable specially
during the Winter months (May to August) than in either the Summer (December to March) or Spring
(September to December). The Central zone exhibited similar results than North zone, with the best agree-
ment with in-situ measurement from June to September in the case of PERSIANN-CDR and CHIRPS 2.0;
and in May, July, August for TMPA 3B43 v7 . The South-Central zone had the best results from May to
September for the three products. In the South zone PERSIANN-CDR had the lowest fit and the highest was
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achived by CHIRPS 2.0 and TMPA 3B43 v7, during the year. This was reflected in the results of hierarchical
clustering, singular value decomposition and k-means, carry over the 9 elements of statistical comparison
(i.e., CC, MAE, ME, bias, Eff , FBD, POD, FAR and RMSE) for the three satellite products over the five
zones and for each month of the year. Also, results showed that the clusters were made according with
seasonality, where the months with higher monthly precipitation (Winter/Autumn) were grouped together
and the satellite products had better fit with in-situ measurement.

The spatial variation pattern for CC and Eff showed that the fit of the precipitation satellite products with
ground measures was strongly related to the amount of monthly rainfall for the three satellite products and
CHIRPS 2.0 showing the highest agreement. Also, results showed that in the North zone where the average
monthly rainfall is less than 1 mm, the results were highly inaccurate. Further, during the so called ‘Bolivian
Winter’ which is when the amount of rainfall is higher (wet season) the accuracy of satellite products improves.
For the North-Central to southern zones, the accuracy of satellite products were more accurate from May to
August (Autumn-Winter) when higher amounts of rainfall is received and the estimates were less accurate
from September to April (Spring-Summer), which is a seasonally drier period. More detailed spatial rainfall
patterns were captured by the higher spatial resolution CHIRPS 2.0 data than the PERSIANN-CDR data
for most areas of Chile. Results in the higher altitudes locations of the Andes Mountains were difficult to
evaluate because of the lack of in-situ measurements to validate the satelitte data.

The averaged time-series analysis by zone of the satellite-derived SPI-1, SPI-3 and SPI-6, showed that
PERSIANN-CDR and CHIRPS 2.0 have similar results for each zone, and the lowest error was for the South-
Central zone for SPI-1 and both products; South-Central for CHIRPS 2.0 and Central for PERSIANN-CDR,
with SPI-3; and Central zone for SPI-6. Then, the averaged SPI-3 for zones and growing season, shows high
discrepancies in the North and North-Central zones and better results in South-Central zone. Also, identified
three most severe drought events between 1983-1984 and 2014-2015 growing seasons, these were 1998-1999,
2007-2008, 2008-2009 and 2014-2015.

Overall, the CHIRPS 2.0 precipitation dataset with its high spatial resolution (0.05° × 0.05°) and long
(+30 years) historical record was found to be a very useful dataset for characterizing precipitation patterns
across Chile. It also provided a valuable data source to calculate a precipitation-based drought index like
the SPI, which is commonly used to monitor drought. In this chapter, two satellite-derived datasets were
tested for monitoring agricultural drought by transforming the precipitation data into the SPI over multiple
time intervals (1, 3, and 6 months). The results of SPI analysis, particularly derived from the CHIRPS
2.0 data, were promising as the SPI-3 results identified drought events during the growing season that have
occurred in Chile over the past thirty years. Most of the lowest SPI-3 values, which represent severe to
extreme drought conditions, were in close agreement with the SPI-3 values calculated from ground-based
rainfall measurements at most weather station locations across the country. The best performance of the
SPI-3 calculations from CHIRPS 2.0 geographically occurred in the Central and South zones of Chile. SPI-3
results for North-Central and North zones were highly inaccurate, showing years in which the condition
measure in rain gauges were wet and satellite-derived SPI-3 shows dry condition. The SPI-3 results derived
from the CHIRPS 2.0 identified the key drought years of 1998-1999, 2007-2008, 2008-2009 and 2014-2015,
particularly in the Central and South zones.

The long-record (more than 30 years) precipitation satellite datasets evaluated in this chapter, the
PERSIANN-CDR and the CHIRPS 2.0, were found to be viable options for precipitation information for
countries such as Chile, which have limited in-situ precipitation measurements both in number and historical
length. These datasets provide alternative data options for the scientific community to improve and extend
the hydro-meteorological models and analysis in data poor countries and regions of the world. For drought
object, future research must be done to evaluate the use of these datasets to derive drought indices spatially
distributed with a higher resolution than traditional based drought maps that are produced from the spatial
interpolation of in situ measurements. Like the SPI used here, these satellite-based precipitation data sets
could also be used to derive the Precipitation Condition Index (Du et al., 2013) and the Standardized
Precipitation Evapotranspiration Index (Vicente-Serrano et al., 2010). Collectively, the increased use of
these remotely sensed precipitation data sets has the potential to improve the drought monitoring and early
warning tools in Chile and other parts of the world.
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However, in order to use the PERSIANN-CDR and CHIRPS 2.0 data for monitoring drought in Chile, these
product should be calibrated specifically for all months in the North zone and for the summer and spring
months in the North-Central, Central, South-Central and South zones of Chile. To calibrate, and considering
the higher correlations found between in-situ and satellite products different techniques could be used such
as, regression models, bias correction or spatial interpolations like regression-kriging Hengl (2009). In order
to use long-term precipitation satellite products CHIRPS 2.0 and PERSIANN-CDR in other countries and
regions of the world similar studies need to be done to firstly assess its accuracy.

Appendix

3.5.1 Data processing and data analysis

Table 3.3: Packages from R environment used for the processing
of the remote sensing data and the data analysis.

Procedure Package
Remote sensing processing raster (Hijmans, 2015)
Data analysis data.table, dplyr (Dowle et al., 2015; Wickham and Francois, 2015)
Data visualization ggplot2 (Wickham, 2007)
Data transformation reshape2 (Wickham, 2007)

3.5.2 Statistics

To compare between in-situ data from measured in situ using the rain gauge (G) and the estimates from the
satellite products (S), nine statistics were used, following Eq. (3.1) for magnitude of underestimation (ME),
Eq. (3.2) for mean absolute error (MAE), Eq. (3.3) for multiplicative bias (bias), Eq. (3.4) for efficiency
(Eff ), and Eq. (3.5) for the Root Mean Square Error (RMSE). These statistics evaluate the performance of
the satellite products in estimating the amount of the rainfall (Dinku et al., 2009).

ME = 1
N

∑
(S − G) (3.1)

MAE =
1
N

∑
(|S − G|)
Ḡ

(3.2)
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∑

S∑
G

(3.3)

Eff = 1 −
∑

(S − G)2∑
(G − Ḡ)2

(3.4)

RMSE =
√

1
N

∑
(S − G)2 (3.5)

To evaluate the rainfall detection capabilities of the satellite products, several statistics were calculated
including the frequency bias (FBS; Eq. (3.6)), probability of detection (POD; Eq. (3.7)) and false-alarm
ratio (FAR; Eq. (3.8)). Table 3.4 shows a contingency table, where A, B, C and D represent hits, false
alarms, misses, and correct negatives, respectively (Dinku et al., 2009).
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Table 3.4: Contingency table for comparing rain gauge measure-
ments and satellite rainfall estimates. The threshold correspond to
the value above which rainfall is considered detected. In this case
a value of 1mm was used.

Gauge ≥ threshold Gauge < threshold
Satellite ≥ threshold A B
Satellite < threshold C D

FBS = A + B

A + C
(3.6)

POD = A

A + C
(3.7)

FAR = B

A + B
(3.8)
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Abstract

Agricultural production in Chile is affected by drought. Climate projections predict that drought frequency
and intensity may increase in many parts of the country. Early season forecasts about drought occurrence
and severity could help to better mitigate its negative consequences. The objective of this chapter was
to assess if agricultural drought in Chile can be accurately predicted from freely-available near real-time
data sources. As the response variable, was used the z-score of cumulative NDVI (zcNDVI) based on 2000-
2016 data from MODIS as a proxy for net primary productivity over the growing season. For each of
the 758 census units considered, the response and predictor variables were averaged for agricultural areas
resulting in a 16-year time series per unit for each variable. The prediction timing used was one, two,
three, and four months before the unit-specific end of season (EOS). Predictor variables included zcNDVI
(before EOS); standardized precipitation indices derived from satellite rainfall estimates for time-scales of
one, three, six, twelve and twenty-four months; two climate indices being the Pacific Decadal Oscillation
(PDO) and the Multivariate ENSO index (MEI); and latitude and longitude. Two prediction approaches
were used: optimal linear regression (OLR) whereby for each census unit the single predictor was selected
that provided the best relationship with the interannual zcNDVI variability, and a multi-layer feedforward
neural network architecture often called deep learning (DL) where all predictors were combined for all units
in a single spatio-temporal model. Both approaches were evaluated with a leave-one-year-out cross-validation
procedure. Results for both methods showed similar and good prediction accuracy, with mean R2cv values
for OLR of 0.94, 0.79, 0.63 and 0.51, and for DL of 0.93, 0.79, 0.63 and 0.51, for one, two, three and four
months before EOS respectively. Was discussed potential model improvements and how the method could
contribute to an early warning system for agricultural drought in Chile and elsewhere

4.1 Introduction

Droughts result in major agricultural production losses worldwide (Campbell et al., 2016). The amplification
of the hydrological cycle due to global warming is expected to lead to longer drought periods, even in regions
for which overall precipitation increases are expected (IPCC, 2013). For Chile, a precipitation decrease is
predicted for the Central-South part (IPCC, 2013) where agriculture activities are concentrated. Between
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2010 and 2015, an unprecedentedly long period of relatively dry conditions persisted over Central Chile (30-
38°) and has been termed a mega drought (Garreaud et al., 2017). Reports on economic impacts of drought
are scarce in Chile, but Aldunce and González (2009) indicated that during the 1998 drought 30,000ha of
wheat was completely lost, resulting in economic losses of about 31 million USD. Future climate scenarios
project that wheat and maize yields will decrease by 5% to 20% by 2050 (IPCC, 2014; Meza and Silva,
2009), but impacts on agricultural production could be larger when taking the effects on cropping frequency
and area into account (Cohn et al., 2016). Planning for effective adaptation strategies is crucial to mitigate
future impacts (Roco et al., 2014). In addition, the ability to anticipate the impact of drought early in the
season and take in-season mitigation measures could help to diminish crop losses (Pulwarty and Sivakumar,
2014; Wilhite et al., 2014, 2000).

Satellite image time series have been widely used for monitoring agricultural drought (AghaKouchak et al.,
2015). Commonly-derived parameters from such time series include vegetation indices and rainfall estimates
(RFEs), which can be translated into anomalies by comparing the parameters from the current year with the
historic distribution (Ashouri et al., 2015; Funk et al., 2015; Huffman et al., 2007). The most commonly-used
vegetation index for this purpose is the NDVI (Normalized Difference Vegetation Index; Rouse et al. (1974))
from which multiple anomaly measures have been derived (Kogan, 1990; Peters et al., 2002; Sandholt et al.,
2002) and applied for monitoring agricultural drought (Cunha et al., 2015; Rojas et al., 2011; Zambrano et al.,
2016; Zhang and Jia, 2013). An often-used approach to translate rainfall information into a drought measure
is through the calculation of the multi-scale Standardized Precipitation Index (SPI; McKee et al. (1993)),
an anomaly measure that when applied for short time scales (<9 months) is closely related to soil moisture
availability (Quiring and Ganesh, 2010). While the SPI can be calculated from weather station data, in
countries with a low station density and short historical records (like Chile), RFEs can be a good alternative
source for SPI calculation (Tapiador et al., 2012; Zambrano et al., 2017). Other satellite-derived products
that have relevance for drought monitoring include those that estimate soil moisture and evapotranspiration
(Hao and AghaKouchak, 2013; Sheffield et al., 2004; Mu et al., 2013; Tsakiris et al., 2007). Drought indices
are also constructed by combining multiple parameters. For example, the SPEI (Standardized Precipitation
Evapotranspiration Index) considers both precipitation and evapotranspiration to account for the effects of
temperature variability on drought assessment (Vicente-Serrano et al., 2010) and has been used in various
studies for monitoring agricultural drought (Vicente-Serrano et al., 2012a; Moorhead et al., 2015; Potopová
et al., 2015). While can be accurately assess and monitor agricultural drought as it occurs with a variety of
indices, early prediction of drought is more complex.

The prediction of vegetation conditions in the near future is challenging for three reasons: 1) the underlying
uncertainties in weather and climate prediction (Morssm et al., 2008); 2) changes in precipitation patterns
(Dore, 2005), and; 3) the effect of both of these on vegetation growth (Sykes, 2001; Knapp et al., 2008) and
land management decisions. Several studies have used a single predictor to explain interannual variability
in seasonal vegetation productivity. Early prediction is thus achieved by using lagged relationships whereby
the predictor is available before the end of the season. Meroni et al. (2014a) evaluated the probability of
experiencing a seasonal biomass production deficit by examining the similarity between the current-year
and historical fAPAR temporal profiles. Similarly, for East Africa, Vrieling et al. (2016) evaluated if the
interannual variability of seasonal productivity, based on cumulative NDVI over the season as a proxy, can be
accurately predicted before the end of season by cumulating NDVI over shorter periods. Alternatively, rainfall
has been used as a predictor of seasonal vegetation productivity. For example, Meroni et al. (2017) analyzed
when and to what extent the SPI derived from gridded RFE could explain anomalies of seasonal vegetation
productivity in the Sahel, and found that on average about 40% of the variability in productivity could be
explained by selecting, per-pixel, the optimal time-scale and timing of SPI. In addition, climatic oscillation
indices, (e.g., Pacific Decadal Oscillation (PDO) and Multivariate ENSO Index (MEI)), have been shown
to affect weather across the globe and as such can explain variability in agricultural productivity (Hansen
et al., 1998; Reilly et al., 2003; Marj and Meijerink, 2011; Montecinos and Aceituno, 2003; Garreaud and
Battisti, 1999; Boisier et al., 2016). Brown et al. (2010) demonstrated that the growing season and cumulative
NDVI depended significantly on the PDO and the MEI across multiple locations in Africa. Van Leeuwen
et al. (2013) showed how the MEI and Antarctic Oscillation (AAO) index explained interannual variability
in annual productivity and phenology for South America, including Chile. While these studies assess the
explanatory power of climatic oscillation indices on vegetation variability, they do not specifically address
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the prediction of vegetation productivity shortfalls before they occur. Although studies focusing on single
parameters offer interesting directions for prediction of vegetation productivity, combining multiple predictors
could increase the predictive power.

The use of multiple predictors to estimate vegetation response has been evaluated by applying different
techniques such as multiple linear regression models and regression trees. Using historical NDVI data, root-
zone soil moisture and the ENSO index, Asoka and Mishra (2015) developed multiple linear regression models
that could explain about 60% of the weekly NDVI anomalies one month before their occurrence, but the
models were less accurate for two and three-month lags. They found NDVI to be the main predictor in their
models, explaining most of the variability, but significant prediction power was added when incorporating
satellite-derived soil moisture data and the Niño 3.4 climatic index. Tadesse et al. (2014),Tadesse et al. (2010)
used a regression tree approach to predict standardized monthly NDVI anomalies from lagged NDVI data,
several biophysical and climatic indices, as well as the SPI at the 3-month time scale. Their model explained
between 50% (three months before) and 90% (one month before) of the NDVI variability in Ethiopia (Tadesse
et al., 2014). More recently, machine learning methods have been widely used for predicting monthly and
daily rainfall (Deo and Şahin, 2015; Abbot and Marohasy, 2014; Nastos et al., 2014; Abbot and Marohasy,
2012), mostly because they can accommodate a large number of input variables and non-linear relationships.
Despite these apparent advantages for vegetation related studies, they have been most frequently applied
for crop classification and estimation of crop biomass (Ali et al., 2015) and yield (Jia et al., 2013; Johnson
et al., 2016; Kouadio et al., 2014; Panda et al., 2010). Given the mentioned advantages of machine-learning
methods and the lack of current drought prediction tools in Chile, there is scope to evaluate if machine
learning methods could provide more accurate and early prediction of drought than linear regression models.

The goal of this chapter is to assess if interannual variability in crop biomass productivity in Chile can
be accurately predicted using freely-available near real-time data sources as input. These sources included
NDVI time series, anomalies of cumulative rainfall at different monthly time-step derived from satellite
RFEs, and climatic indices. As a proxy for seasonal crop biomass productivity (the explanatory variable)
was took the cumulative NDVI over the season, aggregated for agricultural census units. First, predictions
were made by an optimal linear regression (OLR) model which selected the best predictor for each unit.
Second, was trained a feed-forward multi-layer neural network so called deep learning (DL) that combined
all predictors to create a single model for all units. The two model predications were then compared using
a cross-validation approach to assess the optimal approach for early prediction of agricultural drought in
Chile.

4.2 Study area

Was focused on the main agricultural area of Chile which comprises about 90% of the cultivated land in
the country (INE, 2007) between 29° and 41°S. The dominant climate is temperate Mediterranean (Csb)
according to the Köppen climate classification system (Kottek et al., 2006; Peel et al., 2007). Despite of
some crops in the coast, the main proportion of agriculture in Chile is located in the Central Valley, which
corresponds to the depression between the Chilean Coastal Range and the Andes Mountains, with altitude
ranging from 200m to 400m (Fig. 4.1a). Mean annual precipitation varies from less than 300mm in the
North to 1800mm in the South (Fig. 4.1b). Cultivated land north from 32°40’S is used for fruit production
(e.g, grapes, avocado, clementine), vineyards (e.g., mainly for ‘pisco’ production and a little for wine), and
horticulture (e.g., lettuce, green bean, artichoke, corn, carrot) in the ‘transversal’ valleys that run east-west
from the Andes to the Pacific. Fruits (e.g., walnut, grapes, avocado, plum, cherry, apple, hazelnut, blueberry,
raspberry), vineyards, industrial crops (e.g., corn, rice, wheat, oats), and horticulture (e.g., corn, lettuce,
onion, pumpkin, melon, carrot, watermelon, asparagus) dominate between 32°40’ and 37°42’S. Further South,
the land is mainly used for raising cattle for beef and dairy production, and includes croplands with cereals
(e.g., wheat, oats, barley), and to a lesser extent fruits (e.g., hazelnut, apples, blueberry, cherry) (ODEPA,
2015).

As the spatial units for analysis, was chose the current census units that are used for the agricultural census
(INE, 2007) carried out every 10 years by the Chilean government. This choice was motivated by several
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reasons: 1) the units were large enough so that interannual variability in spatially-aggregated vegetation
indices were not greatly affected by crop rotation signals as would be the case when assessing individual
pixels; 2) the units were small enough to capture spatial variability in the main cropping systems; and 3)
these units are smaller than the units currently used by the government for agricultural drought declaration.
The study area contains a total of 2212 census units. The spatial distribution of their cropland percentage
is shown in Fig. 4.1c, which indicates that the most intensively cultivated area is located between 34° and
37°S.

Figure 4.1: Study area with (a) elevation derived from SRTM, (b) annual rainfall derived from CHIRPS
2.0 (2000-2016 average), (c) percentage of cropland in each census unit from product MCD12Q1 scheme
IGBP (2001-2013), (d) multi-annual (2000-2016) c average of NDVI cumulated over the growing season from
product MOD13A1 v6, and (e) location of the study area within Chile.

4.3 Data

Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor were used to delimit the
spatial extent of the main agricultural area of Chile, define the growing season dates, and to derive a proxy-
measure of seasonal vegetation productivity anomalies as the explanatory variable. To derive a cropland mask
over the study area was used the MCD12Q1 Collection 5.1 product (Friedl et al., 2010) that contains annual
maps for 2001 to 2013 at 500m spatial resolution. From the MCD12Q2 product Collection 5 (Ganguly et al.,
2010) was extracted start-, end-, and length-of-season (SOS, EOS, LOS, respectively), which is provided at
annual intervals for 2001 to 2014 at 500m spatial resolution. To assess productivity anomalies, was used
500m resolution 16-day NDVI composites for 2000 to 2016 from the MOD13A1 Collection 6 product. To
reduce remaining atmospheric noise, was smoothed the NDVI time series using a locally-weighted polynomial
regression (lowess) as described by Zambrano et al. (2016). All MODIS data were obtained through the online
Data Pool at the NASA Land Processes Distributed Active Archive Center (LP DAAC) and USGS/Earth
Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.

https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
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Due to gaps in the historical station data and the low density of rain gauges, was used a satellite-derived
RFE product for precipitation. Was selected the 0.05° spatial resolution, dekadal (10-day) RFE dataset of
CHIRPS (Climate Hazards Group InfraRed Precipitation with Station, Funk et al. (2015)) version 2.0 for
2000 to 2016, which has recently been evaluated over Chile and shown to be a good alternative for raingauge
rainfall measurements (Zambrano-Bigiarini et al., 2017; Zambrano et al., 2017).

Was used two climate oscillation indices: 1) the PDO which is often described as a long-lived El Niño-like
pattern of Pacific climate variability (Zhang et al., 1997), and; 2) the MEI, which corresponds to the first
component from a principal component analysis (PCA) based on six observed variables over the tropical
Pacific (30°N–30°S, and 100°E–70°W), including sea-level pressure, zonal and meridional components of the
surface wind, sea surface temperature, surface air temperature, and total cloud fraction of the sky (Wolter
and Timlin, 2011). Both indices were provided by the National and Oceanic Atmospheric Administration
(NOAA) at a monthly scale. (PDO and MEI datasets were obtained here and here)

4.4 Methods

4.4.1 Selection of census units

Because the key interest for our study is agricultural drought, was selected only census units with a predom-
inance of croplands. Was selected the class croplands (class 12) from the IGBP (International Geosphere-
Biosphere Programme) classification scheme contained in the MCD12Q1 data. A cropland mask was created
from 14 years (2001-2014) of MCD12Q1 data (see Fig. 4.2). Per pixel, the percentage of years for which the
IGBP classification scheme of MCD12Q1 indicated cropland was calculated as a measure of cropland inten-
sity. Then was applied a threshold to this percentage to create a single cropland map for this study in order
to consistently monitor the same areas. To choose the most appropriate threshold level that best describes
actual cropland distribution, was selected 585 pixels of 500x500m resolution following a stratified random
sampling over the study area. For each sample pixel, wasvisually interpreted high-resolution (<5m) imagery
from Google Earth to identify agricultural fields and estimate the areal fraction of cropland (between 0%
and 100%). Pixels with more than 50% cropland cover were identified as cropland pixels. The 585 cropland
and no cropland samples were subsequently compared with different threshold levels of cropland intensity
obtained from MODIS data. A threshold of 30% resulted in the highest global accuracy when compared
with the Google Earth cropland samples (i.e., 78%), as well as when compared against a mask derived from
data provided by the Ministry of Agriculture of Chile (INE, 2007) (i.e., 80%,). Given the high accuracy and
the compatibility of its spatial resolution with our other input data, was decided to use the 30% intensity
threshold as the cropland mask for the study.

Then was used the cropland mask to calculate the percentage of cropland area within each census unit (Fig.
4.1c). Was excluded census units from the analysis for which the cropland area did not reach 10% of its
total area and/or was smaller than 750ha (30 grid cells) in order to keep only those units where agriculture
is an important activity based on its spatial extent. This resulted in 785 census units.

4.4.2 Defining the growing season per census unit

To focus the analysis only on the period when crops are expected to be in the field, was estimated the
average start of season (SOSu), end of season (EOSu) and length of season (LOSu), for the cropland areas
within each of the 785 selected units (u), using MCD12Q2 data for 2001 to 2014. To determine SOSu was
used the layer Onset Greenness Increase (GincO) and for EOSu the Onset Greenness Minimum (GminO).
Both layers have two bands, in principle allowing to identify two seasons, although was only extracted SOS
and EOS for the single season that occurs in Chile, which in MCD12Q2 corresponded to the second layer
for GincO and the first layer for GminO. Was then calculated the multi-annual average SOS and EOS for
each cropland pixel that had at least seven years (50%) of valid data for 2001-2014. Across Chile, around
5% of the identified cropland pixels had less than seven years of retrieval, likely due to persistent clouds and

https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.esrl.noaa.gov/psd/enso/mei/table.html
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Figure 4.2: Methodological diagram to generate zcNDVIS
u prediction models from vegetation and rainfall

satellite data with climatic indices.

aerosols and possibly due to limited EVI variability in years of drought (Zhang et al., 2009). Finally, was
calculated the SOSu and EOSu in each unit based on the median values for all crop pixels within each unit.
LOSu was calculated as the difference between the SOSu and EOSu (Fig. 4.3). To match the SOSu with
the 16-day time step of the MOD13A1 composites, the dates were rounded off to the nearest starting date,
and for EOSu to the nearest end date of the 16-day period.

4.4.3 Deriving a proxy for seasonal crop biomass production

The seasonal biomass productivity of vegetation has been shown to have a strong relationship with the
temporal integration of vegetation indices over the season (Jung et al., 2008; Rigge et al., 2013), and as such
can be used to predict crop yields (e.g., Funk and Budde (2009)). To obtain a proxy for the net primary
productivity of croplands was calculated the cumulative NDVI over the growing season (S) per unit and per
year as:

cNDV IS
u =

EOSu∑
t=SOSu

NDV It
u (4.1)

Was chosen to work with NDVI rather than EVI, because: (1) was found temporal patterns to be similar
and as a consequence expected very small differences in the results, and; (2) the NDVI is currently used for
drought monitoring by the Ministry of Agriculture in Chile, which would likely facilitate further improvement
and uptake of the approach presented in this paper.
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Figure 4.3: Growing Season (a) start date (SOS) and (b) end date (EOS) per census unit; (c) legend used
for panels (a) and (b) following Vrieling et al (2016); the outer circle represents the first 10-day period of
each month; d) growing season length per census unit. All were derived from product MCD12Q2.005.

Was transformed the into a standardized anomaly to reflect how much the cropland primary productivity is
above or below normal. This can be written as:

zcNDV IS
u = cNDV IS

u − cNDV IS
u

σ(cNDV IS
u )

(4.2)

where corresponds to the multi-annual average and cNDV IS
u to the standard deviation between the 2000-

2001 and 2015-2016 seasons for cNDVIS
u .

4.4.4 Predictor variables

A number of predictor variables were selected based on previous studies that evaluated the predictability of
drought. These include:

1. Z-scored cumulative NDVI, taking as the temporal integration period SOS until 1, 2, 3, and 4 months
before (mb) EOS (zcNDV Imb

u ). Because the NDVI data are 16-day composites, effectively was ana-
lyzed the integration time periods as SOS until 32, 64, 96, and 128 days before EOS, but refer to this
as months before EOS (mb) in this paper.

2. SPI at time-scales of 1, 3, 6, 12, and 24 months, each of which is calculated one to four month before
EOS. Was refered to these as SPImb

u -T, with T being the time-scale and mb the month lag (1 to 4).
Previous studies have shown that SPI can explain part of the variability in vegetation productivity,
for example in the Sahel (Meroni et al., 2017) and in South-Central Chile (Zambrano et al., 2016).
For this chapter was calculated SPI from dekadal CHIRPS data. Although the temporal aggregation
was done for multiples of one month, the use of dekadal data allowed to more accurately capture the
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timing of 1, 2, 3, and 4 months before EOS by pairing the EOSu to the nearest dekad end date. For
each dekad, was first calculated the cumulative rainfall over a 1, 3, 6, 12 and 24 month period before
dekad end and subsequently transformed this into corresponding SPIs ending at day 10, 20, and last
of each month. While short time scale SPIs (less than 9 months) are reported to relate strongest to
agricultural drought (Quiring and Ganesh, 2010; Rhee et al., 2010), was included the 12- and 24-month
time scales to account for a possible memory effect on vegetation response (Richard et al., 2008).

3. Climate oscillation indices. Following previous studies linking variability of precipitation and vegetation
productivity to climate oscillations indices (see Section 4.1), was considered the MEI and the PDO
oscillation indices. Was averaged these two indices for three non-overlapping time windows of three
months, with a relative time lag (l) between them of 0, 3, and 6 months relative to EOSu. Each of
these resulting predictors were subsequently lagged in time to evaluate the predictive power from one
to four months before EOSu (mb). For example, for MEI can be write this as MEImb

l -3.
4. Latitude and longitude. To account for location-dependent relationships between and the predictors

that would otherwise be missed in the DL model (which considers all units), was incorporated the
latitude and longitude of centroid of each unit as additional predictors.

4.4.5 Prediction by OLR

Linear regression relationships were built for each unit with the purpose of finding the predictor variable
that best explains the 16-year temporal variability of zcNDVIS

u per unit at one to four months before EOSu.
Optimal in OLR refers to the model with the smallest cross-validated root mean square error (RMSECV:
see section 4.4.7) for the evaluated prediction timing (i.e., between one to four months before EOSu). The
12 dependent variables included for each timing of prediction were (as described in section 4.4.4): SPImb

u -1,
SPImb

u -3. SPImb
u -6, SPImb

u -12, SPImb
u -24, PDOmb

0 -3, PDOmb
3 -3, PDOmb

6 -3, MEImb
0 -3, MEImb

3 -3, MEImb
6 -3 and

zcNDVImb
u . Generalizing the notation of each predictor (P) per unit and timing to Pmb

u , the general linear
equation can be expressed as:

̂zcNDV IS
u = a · P mb

u + b (4.3)

4.4.6 Prediction by DL

For each prediction timing mb, a single DL model comprising the same predictors and dependent variables
for all units was trained and evaluated (LeCun et al., 2015). The DL model was implemented using the
H2O platform, a scalable and open source machine learning and deep learning package that uses multi-layer
feedforward (MLF) neural networks (Candel et al., 2016). MLF neural networks consist of neurons that are
ordered into layers. Hidden layers connect input layers with an output layer, allowing for multiple connections
with varying strength (Svozil et al, 1997). The connections are formed during the training of the network
whereby the ultimate aim is to accurately predict the output layer. Having multiple levels of hidden layers
and connections between them permits forming complex relationships between input and output (LeCun
et al., 2015). Due to the complexity of the layer levels and their possible connections, the term deep learning
is often used to describe such networks. Here it is describing how was trained the model, set its parameters,
and how the importance of the predictors was evaluated. The reader is referred to Candel et al. (2016) and
LeCun et al. (2015) for a more complete description of the MLF neural network achitecture.

DL models for each prediction timing were created for the entire study area by considering all units si-
multaneously. To train the model several parameters needed to be set such as “epochs” for training time,
activation for the activation function, hidden for the number of hidden layers and amount of neurons, “rate”
for the training rate, and others that allow to avoid overfiting such as L1,L2 and input dropout ratio. For
each prediction timing mb and validation year, the parameter values for the DL model were adjusted by
the “random grid search” procedure (Candel et al., 2016; Bergstra and Bengio, 2012) to find the optimal
DL model which produce the smaller mean square error. Thus, for each parameter are given a defined list
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of option values (e.g, for rate were used 0.01 and 0.02) from which random grid search selected the optimal
value given the combinated alternatives of values per parameter.

The Gedeon method (Gedeon, 1997) is used in H20 to assess the relative importance of each variable in each
of the final DL models. This method uses the matrix of connection weights between layers of the trained
neural network to determine which inputs are significant and thus account for variable importance. Was
applied the Gedeon method to identify which variables had more significance in the final model at each
prediction timing, allowing for comparison with the variables selected by the OLR method.

4.4.7 Model evaluation

To evaluate the accuracy of the predictions and compare between the OLR and the DL models, was used the
R2, RMSE and the mean absolute error (MAE). Was calculated these statistics using a leave-one-year-out
cross-validation, which leaves out one year at the time allowing to compare the real observation (zcNDVIS

u)
with the corresponding value predicted independently from the remaining observation ( ̂zcNDV IS

u ). For
example, for each census unit the RMSEcv

u is calculated as:

RMSEcv
u =

√∑
(zcNDV IS

u − ̂zcNDV IS
u )2

n
(4.4)

The statistics were computed for both methods (OLR and DL) and each prediction timing (mb). Then was
summarized the distribution of R2

ucv and RMSEcv
u in boxplots.

To further analyze the spatial variability of the predictive power, was evaluated if the explained variability
(R2

ucv) was significantly different for units located in three zones 1) North, i.e. census units north of 32.4°S,
2) Center for units between 32.4°S and 37.42°S, and 3) South for those south of 37.42°S, given their different
agro-climatic conditions (Section 2). In addition, was evaluated if season length affected the prediction
accuracy by plotting R2

ucv against LOSu. Finally, was compared the time-series from 2000-2001 to 2015-
2016 of zcNDVIS

u against the prediction ( ̂zcNDV IS
u ) made by OLR and DL in four individual characteristic

census units. For this was made a four-cluster classification by k-means over the 758 units based on the multi-
annual (2000-2016) average and standard deviation of cNDVIu, the per-unit annual average precipitation,
and LOSu. From each cluster was randomly selected one census unit and plotted the observed zcNDVIu

time series 2000-2001 to 2015-2016 seasons together with their predictions at 1, 2, 3, and 4 months before
EOS for both prediction methods (OLR and DL).

4.5 Results

4.5.1 Census-specific definition of growing season

The analysis of phenology revealed a clear East-West pattern for SOSu (Fig. 4.3a), with season start in
May and June for units in the West, and predominantly July and August in the East. While a somewhat
similar pattern can be observed for EOSu, Fig. 4.3b also shows that in the South EOSu is generally earlier
(February/March) as compared to the North (April/May). As a result, shorter LOS values are found South of
38°S with less than 250 days and from here to the North the LOS have mostly more than 250 days (Fig. 4.3c).
The isolated units in the extreme North part of the study area have a SOSu of around August-September,
an EOSu between April and June and a LOSu around 250-300 days.

4.5.2 OLR predictions

The average R2
ucv calculated using the best predictors (minimum RMSEcv

u ) over the 758 census units was
0.94, 0.79, 0.63, and 0.51 for one, two, three, and four months before EOSu, respectively (Fig. 4.5). As the
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prediction timing approached four months before EOS the dispersion of R2
ucv values becomes larger with

the maximum interquartile range (0.49) and smallest mean (0.51) four months before EOS. The RMSEcv
u

increases going from northern to southern units for mb between 2 and 4, while for mb=1 Center and South
have a similar RMSEcv

u (Fig. 4.7c). Hence, census units located in the North presented higher accuracies for
all prediction timings with average R2

ucv > 0.90 and RMSEcv
u < 0.30.

Figure 4.4: Interannual variance of season zcNDVI explained (R2
ucv) when predicting by OLR considering

per unit and time lag a single optimal predictor variable for: a) one month, b) two months, c) three months,
and d) four months before EOS.

Fig. 4.5 shows that zcNDVImb
u was most effective in predicting zcNDVIS

u across the 758 census units,
explaining most of the variability and being selected for 100% of the units for one, 99.6% for two, 92% for
three, and 84% for four months before EOS. Although, zcNDVImb

u was the predictor selected most frequently
for all prediction timings, for the South the SPI-1 was selected 48 times and SPI-3 11 times for predictions
three months before EOS; for four months before EOS the best predictors after zcNDVImb

u were SPIu-1 (36
times), PDO6-3 (21), SPIu-12 (19), SPIu-3 (16), and SPIu-24 (13). However, for units where other predictors
than zcNDVImb

u were selected, the R2
ucv was generally small and RMSEcv

u and MAEcv
u large as compared to

those where zcNDVImb
u was selected.

4.5.3 DL predictions

Fig. 4.6 shows the spatial distribution of the R2
ucv per unit for the four prediction timings. The average

R2
ucv calculated using the DL method over the 758 census units was 0.93 for one month, 0.79 for two months,

0.63 for three months, and 0.51 for four months before EOS (Fig. 4.7a). Accuracies were generally higher in
the North zone (Fig. 4.6 and Fig. 4.7c). Accuracies decreased from North to South for prediction timings
of two to four months before EOS (Fig. 4.7c).The highest accuracies were found for one month before EOS
in the North zone with a R2

ucv of 0.94 and RMSEcv
u of 0.25. For predictions four months before EOS, the

smaller average R2
ucv of 0.17 and larger RMSEcv

u of 1.02 were found in the South zone.
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Figure 4.5: Best performing predictor based on the smallest RMSEcv
u when predicting the interannual vari-

ability of season zcNDVI by the OLR model considering per unit and time lag a single optimal predictor
variable: a) for one month, b) two months, c) three months, and d) four months before EOS.

Table 4.1 presents the average relative importance of the predictors for the DL models. The most important
variable for all prediction timings was zcNDVImb

u , followed by the climatic indices, PDO and MEI, mainly
lagged at 3 and 6 months, though latitude was the third and second most important predictor for two and
four months before EOS, respectively. The SPIs presented lower relative importance for the DL model for
all prediction timings.

4.5.4 Model evaluation and comparison

On average over the 758 census units, the DL and OLR models had very similar R2
ucv and RMSEcv

u values
for all prediction timings (Fig. 4.7a). The average R2

ucv difference both models was less than 0.014, and
the average RMSEcv

u difference was less than 0.05 (Fig. 4.7a and Fig. 4.7b). For the North zone, OLR
predictions were more accurate than those predicted by DL (Fig. 4.7c). Only for the South zone, for one
month before EOS, OLR’s RMSEcv

u was 12% larger than that of DL. The largest differences for the Center
zone were found for one month (RMSEcv

u of DL 13% larger) and three months before EOS (17%). For the
South zone, the largest difference between OLR and DL was for four months before EOS, with the RMSEcv

u

for DL 14% larger than that of OLR (Fig. 4.7c).

Fig. 4.8 shows the time series of observed and predicted zcNDVIS
u for each growing season from 2000-2001

to 2015-2016, for the four selected units from the cluster analysis. The census unit Pan de Azucar is located
in the most arid part of the study area and has a long season and a small; only irrigated crops are grown
here. The Tubul unit represents units with intermediate levels of annual rainfall and, combined with a fairly
long season (282 days in this case). The Quintrilpe unit has largest annual rainfall, but lower due to the
shorter LOS. The last unit analyzed was Cocule, presenting large amount of annual rainfall and an average
with shorter season (less than 25% of all units). Overall, both models represent reasonably well the temporal
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Figure 4.6: Interannual variance of season cNDVI explained (R2
ucv) with the deep learning model using data:

a) for one month, b) two months, c) three months, and d) four months before EOS.

pattern of zcNDVIS
u , which in general was best predicted with gradual poorer performance towards four

months before EOS. The predictions were most accurate for the unit Pan de Azucar with both models.
The accuracy decreased going southwards via Tubul and Quintrilpe to Cocule. This latitude-dependency
corresponds with the R2

ucv pattern showed in Fig. 4.4 and Fig. 4.6. Predictions made short before EOS
(mb=1) are in all cases better than those made longer before EOS. Out of these four units, OLR outperformed
DL only for Pan de Azucar for all prediction timings, whereas for the other three units DL predictions were
always more accurate for two to four months before EOS.

Fig. 4.9 plots unit-level R2
ucv as a function of LOSu for OLR and DL methods. It shows that the accuracy

of the predictions decreases for shorter LOSu and this effect becomes stronger as increase the number of
months before EOS used for the prediction. The effect was similar for both models.

4.6 Discussion

This chapter shows that the selected proxy for seasonal productivity (zcNDVIS
u) could be accurately predicted

using a simple OLR approach. The more complex DL approach offered little to no advantage over OLR
in this study. One explanation for this could be that the DL model attempted to fit a single model to a
spatially heterogeneous study area. Further attempts to increase DL accuracies could include the clustering
of the study area in groups of more homogeneous units (e.g. using the k-means applied in this study)
and develop separate DL models for each, or alternatively, incorporating predictors that better reflect this
heterogeneity (e.g., LOSu, or average annual rainfall). For example, Brown et al. (2008) used maps on soil,
land cover, and elevation within neural networks in an attempt to relate multiple sources of NDVI data. As
the addition of such predictors could account for differences in relationships between sub-groups, a similar
approach could benefit the DL application of our study. Despite the good performance of OLR, potentially
a principal component analysis (PCA) on all predictors per census unit could assist in better summarizing
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Figure 4.7: Comparison of accuracy measures between DL and OLR for the 758 census units by boxplots of:
a) R2

ucv, b) RMSEcv
u ; and c) spatial agreggation into North (29° -32.4° S), Center (32.4° -37.4° S) and South

(37.4° -40.7° S) zones; for 1, 2, 3 and 4 months before EOS.

the temporal variability within each unit; the first PCA component could then be used in the OLR, even if
the interpretability of the predictor variable may suffer from this.

Despite the potential for further improving our models, in this chapter, was reached an average prediction
accuracy (R2cv) between 0.51 and 0.94 depending on the timing of the prediction. In other studies about the
prediction of cumulative vegetation indices through the growing season, Meroni et al. (2017) evaluated the
per grid selection of SPI timescale to predict z-score cumulative FAPAR at different timing respect to the
vegetation season’s progress showing that SPI could explain about 40% of the variability. Also, Vrieling et al.
(2016) evaluated prediction of cumulative NDVI over the season for forage insurance purpose by cumulating
NDVI over shorter periods, and their results indicate that the R2cv was above 0.75 for a large part of the
study area. Other authors, study the prediction of monthly NDVI, in this regard Asoka and Mishra (2015)
who used as predictor NDVI, soil moisture and seas surface temperature, obtained R2 values between 0.14
predicting for July three months before, and 0.89 for November, one month before. Also, Tadesse et al.
(2014) who used multiple predictor variables including SPI, landcover, digital elevation models, and four
climatic oscillation indices, found that predicting monthly NDVI for September with 3 month before reached
a R2 of 0.50, and was larger improved by predicting one month before which had a R2 of 0.9.

Despite the potential for further improvement, in this chapter was reached an average prediction accuracy
(R2) between 0.51 and 0.94 depending on the timing of the prediction. In other studies, Asoka and Mishra
(2015) showed specific-month accuracies between 0.14 (in July with mb=3) and 0.89 (in November with
mb=1). Also, Tadesse et al. (2014) found that predicting monthly NDVI for September with mb=3 reach
a R2 of 0.50, which is larger improved by predicting the NDVI values of September one month before EOS
which had a R2 of 0.9.

Was analyzed the drought prediction skill of zcNDVIS
u for the prediction timing of one, two, three, and four

months before EOS at census unit level. However, as LOS varies between the units, the prediction timing
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Table 4.1: Variable relative importance derived from deep learning models, mean (X̄) for 16 models (2000-
2001 and 2015-2016 growing seasons) for 1, 2, 3 and 4 month before EOS (mb).

Predictor mb=1 mb=2 mb=3 mb=4
zcNDVImb

u 1.00 0.98 1.00 0.87
PDOmb

3 -3 0.58 0.51 0.56 0.55
MEImb

3 -3 0.57 0.40 0.64 0.69
MEImb

6 -3 0.57 0.64 0.61 0.63
PDOmb

6 -3 0.57 0.55 0.61 0.62
SPImb

u -1 0.57 0.28 0.47 0.34
SPImb

u -3 0.56 0.32 0.43 0.30
PDOmb

0 -3 0.56 0.54 0.57 0.57
SPImb

u -24 0.56 0.30 0.41 0.34
Latitude 0.56 0.56 0.53 0.71
Longitude 0.56 0.38 0.45 0.45
SPImb

u -12 0.55 0.33 0.41 0.33
SPImb

u -6 0.55 0.39 0.44 0.35
MEImb

0 -3 0.54 0.51 0.59 0.67

could represent a different progress of the season. For example, for an LOSu of eight months, already half of
the season has passed at mb=4, so more information on that season performance is available as compared
to an LOSu of five months. For operational applications, a question is now whether it is more sensible to
have a prediction at a fixed number of months before EOS, or alternatively if the prediction should relate to
a relative measure of season progress. For example, Meroni et al. (2017) predicted zcNDVI from SPI for 0,
25, 50, and 75% of season progress. Was noted that in our current set-up, the DL model could have suffered
from the mixing of areas with different levels of information on season performance (due to varying LOSu)
available. LOS decreases from North to South (Fig. 4.3c), following a similar pattern to the variability
explained (R2

ucv) for each model (Fig. 4.4 and 4.6), resulting in a strong relationship between LOS and
R2

ucv (Fig. 4.9). Although zcNDVImb
u was in general the best predictor of zcNDVIu, the prediction accuracy

strongly depended on the prediction timing for both OLR and DL with poor predictive power early during
the season.

In an attempt to further improve the prediction skill, additional spatio-temporal predictors could be incor-
porated in this study, many of which are being retrieved near real-time using satellite imagery as input.
Examples include estimates of soil moisture, evapotranspiration, existing multi-scalar drought indices. For
example, satellite-derived soil moisture estimates have been used to predict NDVI anomalies (Asoka and
Mishra, 2015, Tadesse et al. (2014)). Asoka and Mishra (2015), showed that using soil moisture in addition
to NDVI improves the prediction accuracy particularly when predicting early in the season. Another key
variable relating to crop development is actual evapotranspiration, which can be estimated from satellite
data. Currently operational evapotranspiration products exist at 1km spatial resolution (Mu et al., 2007)
with a reported relatively good accuracy (R2=0.70) over cropland, when compared to eddy covariance data
of the United States (Velpuri et al., 2013). Another index that combines the effect of temperature and
precipitation is the SPEI (Vicente-Serrano et al., 2010), which is currently spatially derived and available
online (http://spei.csic.es/database.html) but has the potential for calculation at finer spatial resolution
using satellite data (e.g., Mu et al. (2007), Funk et al. (2015), and Ashouri et al. (2015)).

In analogy to various other studies (e.g., Meroni et al. (2017) and Vrieling et al. (2016)), zcNDVIS
u was

selected as a proxy for seasonal biomass productivity of cropland. However, due to a lack of accurate spatio-
temporal data on crop production in Chile, it could not assess the accuracy of this proxy vis-à-vis actual
production. In that regard it is recommended for the Ministry of Agriculture in Chile to put resources in
place to collect such information on the basis of more regular and centrally organized collections of crop
production information and store it in national publicly-accessible databases. This could further benefit the
prediction of agricultural drought and improve Chile’s resilience to future climatic shifts. Possibilities to

http://spei.csic.es/database.html
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Figure 4.8: Comparison of the prediction of zcNDVI for four census units and for 1, 2, 3 and 4 months before
EOS (mbEOS) obtained by a) optimal linear regression model (OLR), and b) deep learning model (DL);
against the observed zcNDVI (tick blue line). In the top righ of (b) per each census unit are presented the
location (Latitude and Longitude), average annual rainfall (Ry

u), average cumulative (cNDV Iu), and the
length of sesons (LOSu).

collect such information include area-frame sampling in combination with crop cutting exercises or farmer-
or food industry-reporting on yield and/or production.

In addition, was noted that the season definitions contained in the MCD12Q2 product may generally not
be tailored to the precise season when crops are in the field. Because many of the retained MODIS pixels
contain some level of non-agricultural vegetation, it is likely that such vegetation has an earlier SOS due to
later emergence of crops, and delayed EOS due to crop harvesting before the other vegetation has come to
complete senescence. The MCD12Q2 product determines SOS/EOS through curvature change of a modelled
logistic EVI series, resulting in a relatively early SOS and late EOS (Zhang et al., 2006). Other agricultural
drought studies have brought the EOS forward to better reflect the end of grain filling (Rojas et al., 2011).
In this regard, spatially explicit crop calendar information for Chile may help to better define seasonality,
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Figure 4.9: Variance of season zcNDVI explained (R2
ucv) for the OLR and DL prediction models as function

of LOSu for: a) one month, b) two months, c) three months, and d) four months before EOS.

possibly allowing for 1) better proxies of agricultural productivity, and 2) more relevant timing of drought
prediction.

The prediction models used in this chapter can assist in establishing an operational early warning system
for Chile to achieve better preparedness for upcoming drought events. An operational system requires all
input data to be available in near-real time. While this is generally true for NDVI (only a four-day delay
after the last date of the compositing period), the CHIRPS data used here is only released during the third
week of the following month. However, CHIRPS has a rapid response product available that is distributed
two days after the end of each five-day period, though this is available for restricted areas (excluding Chile).
The extension of this rapid response product to Chile or globally will improve the dataset’s aptness for the
envisaged warning system. While alternative precipitation datasets exist, their accuracy may vary (Derin
et al., 2016) and would need to be evaluated over Chile before use. Although the climatic indices PDO
an MEI have the same issue of a one-month delay, in this chapter (4.5.3) was showed that climatic indices
with lag times of three and six months are most relevant for our predictions, and so this delay not an issue.
While a few challenges remain, the models presented in this study can constitute a solid basis for improved
operational drought warnings by the Chilean government.

4.7 Conclusions

Anticipating agricultural drought is major research challenge. In this chapter, was showed that publicly-
available satellite data and OLR had high skill in the prediction of agricultural drought in a country where
agricultural drought has been barely studied. The global coverage of the data supports the testing of the
method in other drought prone regions.

Was demonstrated that cumulative NDVI during the growing season, as a proxy for crop productivity, could
be accurately predicted with a similar performance of OLR and DL models. This accuracy decreased from
north to south, particularly during predictions made earlier in the season (i.e., four months before EOS). This
gradient matches the gradient in season length, which could be explained by the fact that more information
on the season performance was available for units with a longer LOS at the timing of prediction (one to four
months before EOS). Although scope exists to further improve the prediction models, the drought prediction
tool developed in this chapter constitutes an important step for Chile for increased drought preparedness.



Chapter 5

Conclusions

Through this thesis has been analyzed the use of multiple time-series of satellite data from last decades,
for the monitoring and prediction of agricultural drought. The country of Chile was selected as study area,
mostly because its heterogeneity in climatic and agricultural condition, and also due to the increased droughts
of last years and the climatic variation forecasted.

The overall achievement of this thesis as response to the hypothesis stated in Section 1.1 has been the
assessment that satellite data is a good source that allows characterizing agricultural drought by defining
the cropland area and growing season, and also for the deriving of a reliable proxy of agricultural drought.
This proxy could be anticipated time before the end of the season using satellite-derived vegetation and
precipitation, together with climatic oscillation indices. Also, was showed that the prediction accuracy
decrease as the prediction timing going farther from EOS, and this accuracy is highly dependent on the
length of the season. Also, in Section 4 was discussed that the models used has the potential to be improved
further.

Based on the findings in chapter 2, was concluded that VCI is useful for monitoring agricultural drought in
the BioBío Region and is closely correlated with SPI-3 during the modified growing season (Nov. to Apr.),
which indicate that rainfall deficit beginning on September it is when has a larger impact on vegetation
health, this would be related with crops types in the region, what it should be evaluated in future studies.
This makes it a relevant indicator for agricultural drought monitoring and response plans. Further research
is needed to associate the remote sensing values observed at high resolution (250m) with the measured crop
yield (Seiler et al., 2007) and individually identify more detailed crop responses. This identification will
gradually construct an effective drought management tool for the agricultural sector in Chile.

From Chapter 3, was concluded that the long-record (more than 30 years) precipitation satellite datasets
evaluated in this chapter, the PERSIANN-CDR and the CHIRPS 2.0, were found to be viable options for
precipitation information for countries such as Chile, which have limited in-situ precipitation measurements
both in number and historical length. These datasets provide alternative data options for the scientific
community to improve and extend the hydro-meteorological models and analysis in data poor countries and
regions of the world. For drought object, future research must be done to evaluate the use of these datasets
to derive drought indices spatially distributed with a higher resolution than traditional based drought maps
that are produced from the spatial interpolation of in situ measurements. Like the SPI used here, these
satellite-based precipitation data sets could also be used to derive the Precipitation Condition Index (Du
et al., 2013) and the Standardized Precipitation Evapotranspiration Index (Vicente-Serrano et al., 2010).
Collectively, the increased use of these remotely sensed precipitation data sets has the potential to improve
the drought monitoring and early warning tools in Chile and other parts of the world.

In Chapter 4, was demonstrated that cumulative NDVI during the growing season, as a proxy for crop
productivity, could be accurately predicted with a similar performance of OLR and DL models. This accuracy
decreased from north to south, particularly during predictions made earlier in the season (i.e., four months
before EOS). This gradient matches the gradient in season length, which could be explained by the fact
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that more information on the season performance was available for units with a longer LOS at the timing of
prediction (one to four months before EOS). Although scope exists to further improve the prediction models,
the drought prediction tool developed in this chapter constitutes an important step for Chile for increased
drought preparedness.

Finally, the development of satellite products are increasing heavily over time, and the quality of them is
also improved. Nowadays, there are a huge amount of satellite data which could be used for the study of
climate impact on vegetation at scale, both in spatial extension as well as temporal. Many variables are being
derived from the satellite such as the ones used here for vegetation and precipitation, but also there other
such as soil moisture, evapotranspiration, snow, groundwater, and a few more. However, for the processing
and analysis of such amount of data new technologies has been developed in the field of Data Science that
highly facilitate the exploration toward new insights, that otherwise would make it hard to achieve.



Appendix A

Other useful satellite data

Abstract

Agricultural drought in Chile has been studied using the Normalized Difference Vegetation Index (NDVI)
and the Vegetation Condition Index (VCI), derived from NDVI. In addition, satellite-derived Standardized
Precipitation Index (SPI) has been used as an indirect measure. However, there are other remote sensing
data, such as Land Surface Temperature (LST), Phenology Dynamics, Evapotranspiration (ET), and Soil
Moisture (SM), which provide useful information to carry out more detailed analyses. Moreover, a main
challenge to improve scientific findings is to collect data about crops such as type, seasonality, and yield, in
order to generate a national database, which along with satellite indices, will be essential to develop spatial
crop models; thereby, broadening knowledge regarding the impact of agricultural drought in Chile.

A.1 Introduction

IPCC (2013) forecasts precipitation decrease in the central-southern region of Chile that would increase
drought frequencies and intensities. Future scenarios predict that by 2050, wheat and corn yields will
decrease by 5% to 20% (IPCC, 2013; Meza and Silva, 2009); however, impacts on agricultural production
could be greater if taking onboard effects on cropping frequency and area (Cohn et al., 2016). Nowadays,
there has been an increment in the number of remote sensing products for climate (Yang et al., 2013)
and agriculture applications (Brown, 2015) that provide great opportunities to carry out drought studies
(AghaKouchak et al., 2015), especially for developing countries like Chile.

A.1.1 Vegetation and precipitation indices

Since the drought of 2008, remote sensing data has been used in Chile as useful information to monitor
agricultural drought. Indices as the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974)
and the Vegetation Condition Index (VCI) (Kogan, 1995b) have been adopted by the Chilean Agroclimatic
Observatory (OAC for its acronym in Spanish) (www.climatedatalibrary.cl), along with the Standardized
Precipitation Index (SPI) at short-time scales, based on rain gauges and satellite, used as indirect measure
of agricultural drought. Zambrano et al. (2016) proved that VCI is a useful tool for monitoring agricultural
drought in the central-southern region of Chile, comparing this index with the well known Standardized
Precipitation Index (SPI) (McKee et al., 1993) obtained from weather stations, and with governmental
declarations regarding the emergency drought between 2000 and 2015.

Zambrano et al. (2016) used remote sensing products from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS), specifically, MOD13Q1 (Didan, 2015) product regarding vegetation indices that provides data
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every 16 days at 250-meter spatial resolution and MCD12Q1 (Friedl et al., 2010)-product that provides data
regarding land cover yearly at 500-meter spatial resolution-used to generate a cropland mask and then isolate
the agricultural area. Satellite-derived SPIs between 1981 and 2015, at time-scale of 1, 3, and 6 months,
were evaluated for its application on Chile during agricultural drought (Zambrano et al., 2017), using 278
weather station to assess the agreement between satellite and in-situ SPIs. Climate Hazards Group Infra
Red Precipitation with Station (CHIRPS) (Funk et al., 2014) product, at 5-kilometer spatial resolution,
showed good results in the central region of Chile, unlike in the southern and northern regions. Therefore,
this product is a viable alternative for data sources spatially distributed rainfall in Chile.

A.1.2 Recent satellite data and drought indices

Besides vegetation and precipitation satellite data for application in agricultural drought, there are new
remote sensing datasets, such as Evapotranspiration (ET) (Mu et al., 2007, 2011), Soil Moisture (SM)
(Dorigo et al., 2015), Land Surface Temperature (LST), and phenology dynamics (Ganguly et al., 2010),
which could be evaluated for its application in Chile. As indicated by Mishra et al. (2015), the agricultural
drought will differ between crops because of two major factors: demand and supply, which could be estimated
using satellite data.

Water demand depends on climate and specific crop characteristics. Perhaps, the most relevant measure
of crop water demand is ET, which has been used in the formulation of drought indices like the Drought
Severity Index (DSI) (Mu et al., 2013) and the Standardized Precipitation Evapotranspiration Index (SPEI)
(Vicente-Serrano et al., 2010). The effect of temperature in agriculture could be analyzed through LST, used
to derive the Temperature Condition Index (TCI) (Kogan, 1995a), which determines stress on vegetation
caused by temperatures. Another main characteristic of crop water demand is the growing season, period
during the agricultural drought indices should be considered. To achieve this analysis of NDVI, time-series
has been generally used to estimate the seasonality (Atkinson et al., 2012; Vrieling et al., 2011) also product
MCD12Q2 for land cover dynamics (Ganguly et al., 2010) from MODIS provide seasonality dates globally
as a useful dataset.

Soil moisture (SM) is a water supply measure which will be used for plant development and to know the
impact on yield well; this should be considered in the root zone depth Mishra et al. (2015). Two of the latest
satellite soil moisture products are:

A. Climate Change Initiative (CCI) (Dorigo et al., 2015), part of the ESA Programme on Global Mon-
itoring of Essential Climate Variables (ECV), which has � 25-kilometer spatial resolution and daily
frequencies and

B. Soil Moisture Active Passive (SMAP) (Colliander et al., 2017), which has 9-kilometer spatial resolution
and frequencies of 7 days and the advantage that considers the soil moisture for the root zone depth.
From soil moisture data, there are several drought indices, such as the Drought Severity Index (DSI)
(Cammalleri et al., 2015) and the Soil Moisture Deficit Index (SMDI) (Narasimhan and Srinivasan,
2005).

A.2 Conclusion

In order to study agricultural drought in Chile, satellite indices that measure vegetation response, such as
NDVI and VCI (Zambrano et al., 2016), have been used. In addition to satellite-derived precipitation indices
like SPI (Zambrano et al., 2017). These indices have allowed generating a baseline in the understanding of
agricultural drought process in Chile.

Future works should consider the use of new satellite data, such as LST, SM, ET, and phenology, in order
to improve agricultural drought analyses. These data, along with new analysis techniques, will be useful to
develop a model that helps to anticipate agricultural drought.
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In addition, there is a gap in the studies presented in Chile regarding to the use of crop data to validate
satellite data, mainly because it implies a lot of work to collect. A considerable challenge is to generate
a national database about crops which will be crucial to advance in the knowledge of agricultural drought
impact at the level of crop type through Chile.
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