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Resumen

En esta tesis estudiamos escenarios alternativos al modelo Lambda Cold Dark Matter para la
evolución del Universo tardío. Usando la métrica de Friedmann-Lemaître-Robertson-Walker en
el marco de la teoría de Relatividad General de Einstein, investigamos interacciones cosmológicas
lineales y no lineales donde la materia oscura y la energía oscura interactúan, transfiriendo en-
ergía de una a otra. En particular, nos centramos en modelos de interacción que poseen solución
analítica en función del factor de escala cosmológico. Con el fin de analizar cómo estos modelos
ajustan los datos observacionales , usamos criterios desarrollados en teoría de información. En
particular nos centramos en dos criterios: el critero de infomación de Akaike y el criterio de
información Bayesiano. Estos criterios penalizan a los modelos según el número de parámetros
libres que poseen y por cómo ajustan ajustan los datos, permitiéndonos compararlos entre ellos.
Para este propósito usamos datos observacionales de: Diferentes compilaciones de Supernovas
tipo Ia (Constitution, Union 2, Union 2.1 y JLA agrupado), la función de Hubble H(z), oscila-
ciones acústicas de bariones. Comparamos los modelos de interacción entre ellos analizando si
modelos más complejos (modelos con más parámetros) son preferidos por estos criterios. En
nuestros análisis encontramos algunas interacciones viables que alivian el problema de la co-
incidencia. Además, en algunos de estos modelos la dirección de la transferencia de energía
entre materia oscura y energía oscura cambia durante la evolución del Universo. Finalmente,
concluimos que de acuerdo a los criterios de información, modelos de interacción con el mismo
número de parámetros libres ajustan los datos usados de forma similar, independientemente de
la naturaleza de la interacción.

vii



viii



Abstract

In this thesis we study alternative scenarios to the Lambda Cold Dark Matter model for the
evolution of the late Universe. Using the Friedmann-Lemaître-Robertson-Walker metric within
the frame of Einstein’s General Relativity theory, we investigate linear and non-linear cosmo-
logical interactions where dark matter and dark energy interact, transferring energy from one
fluid to another. In particular, we focus on interacting models which have analytical solutions
in terms of the scale factor. In order to analyze how these models fit the data we use criteria
developed in information theory, in particular we focus in two criteria: the Akaike information
criterion and the Bayesian information criterion. These criteria rank models according to the
number of free parameters that they have and how well they fit the observational data, allowing
us to compare among competing models. For this purpose we use observational data from:
type Ia Supernovae (Constitution, Union 2, Union 2.1 and binned JLA compilations), Hubble
function H(z) and baryonic acoustic oscillations. We compare the interacting models to each
other analysing whether more complex interacting models (models with more parameters) are
favored by these criteria. In our analysis we find some viable interactions that alleviate the
coincidence problem. Furthermore, in some of these models the direction of the energy transfer
between dark matter and dark energy changes during the evolution of the Universe. Finally,
we conclude that according to information criteria, interacting models with the same number of
free parameters adjust the available data equally well, independent of the nature of interaction.
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Chapter 1

Introduction

The Universe contains everything that exists, including space and time. Observing the Universe
we can see that it has all types of structures on a vast range of scales; atomic nuclei, atoms,
molecules, and so on to form more complex structures such as planets orbiting stars, stars col-
lected into galaxies, galaxies gravitationally bounded into clusters, and even clusters of galaxies
within larger superclusters.

Cosmology, from ancient Greek κóσµο (kósmos, “world”) + λογíα (logía, “science”), is the
scientific study of the large scale properties of the Universe as a whole. It uses the scientific
method to understand the origin, evolution and ultimate fate of the entire Universe. Like any
field of science, cosmology involves the formulation of theories or hypotheses about the Universe
which make specific predictions for phenomena that can be tested with observations. Depending
on the outcome of the observations, the theories will need to be abandoned, revised or extended
to be consistent with the data.

Since at cosmological scale the gravitational interaction is the predominant, to describe the
Universe we need to use a gravitational theory. At present, the prevailing theory of gravitation
is the Einstein’s theory of General Relativity, which explains the gravitational attraction as
the effect of the curvature of spacetime in the presence of matter and/or energy. The Einstein
field equations are nonlinear and very difficult to solve. Einstein used approximation meth-
ods in working out initial predictions of the theory. But as early as 1916, the astrophysicist
Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the
Schwarzschild metric. This solution laid the groundwork for the description of the final stages
of gravitational collapse, and the objects known today as black holes. In 1917, Einstein applied
his theory to the Universe as a whole, initiating the field of relativistic cosmology. In line with
contemporary thinking, he assumed a static Universe, adding a new parameter to his original
field equations, the cosmological constant. However, in 1929, the work of Edwin Hubble among
others had shown that the Universe is expanding. This is readily described by the expanding
cosmological solutions found by Alexander Friedmann in 1922. Later in 1931, George Lemaître
formulate the earliest version of the Big Bang scenario, in which our Universe has evolved from
an extremely hot and dense earlier state.

In the last 100 years cosmology has advanced significantly, especially in the observational
area, there have been many methods to study the evolution of the Universe, such as studying
the radiation from type Ia supernovae, the Cosmic Microwave Background radiation (CMB, a
remanent radiation from an early epoch of the Universe), baryonic acoustic oscillations (BAO)
and so on. Furthermore, databases have grown exponentially over the years. Observatories
and satellites (such as Hubble space telescope, WMAP, Planck, among others) dedicated to
collect data have increased in number and accuracy of the data. Currently the prevailing theory
about the origin and evolution of our Universe is the so-called Big Bang theory. Under Big
Bang theory the simplest model, so called Lambda Cold Dark Matter (ΛCDM), is the current
“standard model” of cosmology, this model gives account of the evolution of the Universe. ΛCDM
model establishes that the energy density of the Universe is dominated now by a non-relativistic

1



fluid (dark matter) and a cosmological constant Λ (dark energy).
Despite of the observational success of the ΛCDM scenario, this model has theoretical prob-

lems such as the fine-tuning problem and the coincidence problem and there are some obser-
vational tensions recently reported with this model, present when we use independently high
redshift and low redshift data to constrain parameters. Therefore it is necessary to study new
models to alleviate these problems, in particular, given that the nature of dark energy and dark
matter is unknown and they dominate the energy content of the Universe today, it is reasonable
to consider more general scenarios where dark matter and dark energy are phenomenologically
coupled. In this manner, models based on the interaction between dark matter and dark energy
have been studied to describe the accelerated expansion. One of the first interacting models was
proposed to alleviate the coincidence problem in an interacting-quintessence scenario, focusing
in an asymptotic attractor behavior for the ratio of the energy densities for the dark components.
Since then, many interacting models with numerical and analytical solutions have emerged, also
interactions with change of sign. In this sense, the interacting models help us to understand the
nature of the Universe.

To compare different models of a certain physical phenomenon in light of the data there are
criteria, based on the Occam’s razor (“among competing hypotheses, the one with the fewest
assumptions should be selected”). These criteria measure the goodness of fitted models compared
to a base model. Two widely used criteria are the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC).

In this work we analyze eight general types of interacting models with analytical solution
using supernovae type Ia (Constitution, Union, Union 2.1 and JLA), H(z) and BAO data under
the Akaike information criterion and the Bayesian information criterion. The main goal of
our work is to investigate if complex interacting models are competitive in fitting the data
and whether we could distinguish among them via a model comparison approach based on
information criteria.

In Chapter 2 we present elements of General Relativity and we describe cosmology in the
theoretical framework of General Relativity. In Chapter 3 we study how to contrast models
with observational data and how to compare models through information criteria. In Chapter
4 we analyze different interacting models in light of the aforementioned data through observa-
tional contrast and information criteria. In Chapter 5 we discuss the results and present the
conclusions.

2



Chapter 2

Elements of Cosmology

Cosmology is based in two hypothesis the Cosmological principle, which says that the distri-
bution of matter in the Universe is homogeneous and isotropic when viewed at large enough
scales (larger than 107pc1) and the Weyl’s postulate, which stipulates that the world lines of
cosmological particles should be everywhere orthogonal to a family of spatial hypersurfaces [1].
The Weyl’s postulate allows us define a “general time” for the Universe called cosmological time.

2.1 Relativistic Cosmology
In General Relativity (G.R.) it is assumed that the metric gµν of the spacetime is lorentzian.
This means that the line element

ds2 = gµν(x) dxµdxν , µ, ν = 0, 1, 2, 3, (2.1.1)

is not positive-defined, i.e., it can be, for the same event P , positive, negative or zero, depending
on the value of dxµ. From here on, the convention for the signature of the metric will be
(+,−,−,−).

As natural extension of Special Relativity, in General Relativity it is assumed that massive
bodies, under a gravitational field, describe world lines that can be parameterized through the
proper time τ , defined as ds = c dτ . Considering that xµ(λ) is the world line of a massive body,
then

dτ =
1

c

√
gµν(x) dxµdxν (2.1.2)

is interpreted as the time that records a comoving clock between xµ and xµ+dxµ. Since, in gen-
eral, the components of the metric depends on the coordinates, we see that in a curved spacetime
the proper times recorded by clocks depend on velocities and positions in the spacetime.

On the other hand, based on the metric, it is possible to define the Christoffel connection
defined as:

Γαβγ :=
1

2
gαµ [∂γgµβ + ∂βgµγ − ∂µgβγ ] . (2.1.3)

Using the metric and the Christoffel connection we can define a geodesic, a generalization of
the notion of a "straight line" to curved spaces. A geodesic satisfies the equation:

d2xi

dλ2
+ Γijk

dxj

dλ

dxk

dλ
= f(λ)

dxi

dλ
, (2.1.4)

where λ is an arbitrary parameter. It is possible to choose a λ such that f(λ) = 0.
Additionally, the Riemann Curvature tensor is defined as

Rρµνλ := ∂νΓρµλ − ∂λΓρµν + ΓρσνΓσµλ − ΓρσλΓσµν . (2.1.5)

11pc ≈ 3.26ly ≈ 3.1× 1016m.
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With those definitions Einstein formulated the fundamental equations of General Relativity as

Gµν := Rµν −
1

2
gµνR− gµνΛ =

8πG

c4
Tµν , (2.1.6)

where R := Rµνg
µν is the Ricci scalar, Λ is the cosmological constant, Tµν is the energy-

momentum tensor of the system, c is the speed of light in vacuum and G is the Newtonian
gravitational constant. From the definition of the Einstein tensor Gµν and the Bianchi identities
we see that the following equations are satisfied

∇µTµν = 0, (2.1.7)

where ∇µ is the covariant derivative defined as

∇µTαβ···γδ··· := ∂µT
αβ···

γδ··· + ΓαεµT
εβ···

γδ··· + ΓβεµT
αε···

γδ··· + · · ·
− ΓεγµT

αβ···
εδ··· − ΓεδµT

αβ···
γε··· − · · · , (2.1.8)

where Tαβ···γδ··· is a general tensor.

2.1.1 Dynamics of Friedmann-Lemaître-Robertson-Walker spacetime
Modern cosmology is the task of finding models from Einstein’s field equations that are con-
sistent with the large scale structures in the Universe. Modern observational cosmology has
demonstrated that the Universe is highly symmetric in its large scale properties, but the evi-
dence for this was not measured precisely at the time when Friedmann and Lemaître [1] began
their pioneering investigations of the dynamics of a Universe with the simplest possible mass dis-
tribution, homogeneous and isotropic, using the Einstein’s field equations. Subsequently these
two assumptions (homogeneity and isotropy) would be called the Cosmological Principle. Fur-
thermore, the current cosmology paradigm is based also in other assumption, in 1923 Hermann
Weyl postulated that in cosmic spacetime there exists a set of privileged fundamental observers
whose world lines are geodesic that do not intersect each other. This postulate implies that the
proper time measured by each fundamental observer can be correlated with that of every other
fundamental observer, allowing to associate a cosmic time with each event. At cosmological
scales the Universe (seen by observers comoving with the cosmological fluid) is homogeneous
and isotropic. The most general 4-dimensional metric that satisfy the cosmological principle is
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric. In spherical coordinates it is given
by [1]

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
, (2.1.9)

where a(t) is the cosmological scale factor and (t, r, θ, ϕ) are the coordinates of a comoving
observer. The constant k can take the values −1, 0 or 1, corresponding to negative, null or
positive curvature (of the spatial sections at constant t) respectively. More specifically, the 3D
Ricci scalar curvature has value R = 6k/a2.

To calculate the geodesic curves, first we must calculate the Christoffel connections. The
non-null components for FLRW metric are:

Γ0
11 =

1

c

aȧ

1− kr2
, Γ0

22 =
1

c
aȧr2, Γ0

33 =
1

c
aȧr2 sin2 θ, (2.1.10)

Γ1
01 =

1

c

ȧ

a
, Γ1

11 =
kr

1− kr2
, Γ1

22 = −r(1− kr2), (2.1.11)

Γ1
33 = −r(1− kr2) sin2 θ, Γ2

02 =
1

c

ȧ

a
, Γ2

12 =
1

r
, (2.1.12)

Γ2
33 = − sin θ cos θ, Γ3

03 =
1

c

ȧ

a
, Γ3

13 =
1

r
, Γ3

23 = cot θ. (2.1.13)
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Figure 2.1: Examples of constant curvature 2D surfaces. At left there is a surface of negative
curvature (hyperbolic paraboloid), in the central position there is a null curvature surface (plane)
and at the right there is a positive curvature surface (sphere). Source: Own elaboration.

Now, since Γµ00 = 0, the world line xµ(τ) = (c(τ−τ0), r0, θ0, ϕ0) with τ0, r0, θ0 and ϕ0 constants,
is a geodesic. Indeed,

dxµ

dτ
= (c, 0, 0, 0),

d2xµ

dτ2
= 0, (2.1.14)

satisfying the equation of the geodesic,

d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 + Γµ00c

2 = 0. (2.1.15)

The cosmological fluid moves through geodesics of spacetime, corresponding to constant spacial
coordinates. Thus, (2.1.9) implies that the temporal coordinate t coincides with the proper
time. For this reason t is called cosmological time.

On the other hand, the energy-momentum tensor of the cosmological fluid needs to have these
same properties of homogeneity and isotropy. Assuming that the cosmological fluid is a perfect
fluid with isotropic pressure p and energy density ρ, the components of its energy-momentun
tensor are

T 00 = ρ(t), T 0i = 0, T ij = −gijp(t), i, j = 1, 2, 3, (2.1.16)

where the total preasure p and the total energy density ρ have only time dependence, due to
homogeneity and the energy-momentum tensor is diagonal due to isotropy. From (2.1.7) we get

0 = ∇µT 0µ = ∂µT
0µ + Γ0

µνT
νµ + ΓµµνT

0ν , (2.1.17)

= ∂0T
00 + Γ0

ijT
ij + Γii0T

00, (2.1.18)

which corresponds to the balance equation

ρ̇+ 3H(p+ ρ) = 0, (2.1.19)

where ρ̇ = dρ/dt and H = ȧ/a is the Hubble expansion rate that describes the evolution of the
Universe. Using the Einstein equations we can obtain more information about the dynamics of
the expansion of the Universe. From the 00 component of the Einstein field equations (2.1.6),
considering c = 1, we get

3ä

a
= −4πG(ρ+ 3p) + Λ, (2.1.20)

and from the ij components we obtain

2k

a2
+

2ȧ2

a2
+
ä

a
= 4πG(ρ− p). (2.1.21)

Replacing (2.1.20) into (2.1.21) the second derivative of the scale factor can be removed, ob-
taining

ȧ2 + k =
8πGρa2

3
+

Λa2

3
. (2.1.22)
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This is the principal Friedmann equation, that describes the expansion of the Universe in terms
of the total energy density ρ. It is important to note that without cosmological constant,
the equation (2.1.20) implies that the Universe can only be decelerating (assuming ρ > 0 and
ρ+ 3p > 0, as it is for baryonic matter or radiation [2]).

On the other hand, the current data [3] indicates that the Universe has a null spatial curva-
ture, i.e. k = 0, hence most of cosmological models do not consider the contribution of curvature
in the dynamics of the cosmological expansion. Thus, Eq. (2.1.22) remains

H2 =
8πGρ̄

3
, (2.1.23)

where ρ̄ contains the cosmological constant term. Usually the change of variable ρ̄ = (3H2/8πG)Ω
is used, such that (2.1.23) is rewritten simply as

1 = Ω. (2.1.24)

The total energy density of the Universe is composed by different fluids such as baryonic matter,
radiation, among others. Using (2.1.24) we can easily determine what percentage each energy
density contributes to the total energy density in the Universe.

In order to describe the evolution of the acceleration of the Universe it is useful to define the
“deceleration parameter”

q := − äa
ȧ2
, (2.1.25)

which can be conveniently rewritten in terms of the Hubble expansion rate as

q =
Ḣ

H2
− 1. (2.1.26)

The expansion of the Universe will be accelerated if ä is positive, and in this case the deceleration
parameter will be negative. The minus sign and the name deceleration parameter are historical,
when the parameter q was defined it was believed that the expansion of the Universe was
decelerated.

2.2 Lambda Cold Dark Matter model
In 1917, Einstein included the cosmological constant in his field equations for G.R. because his
equations do not allow a static Universe without the cosmological constant and he, as most
scientist of his time, believed that the Universe must remain static. From Eq. (2.1.20) we see
that in order to have a static Universe (ä = 0) we need to include a positive cosmological constant
(assuming ρ+ 3p ≥ 0). However, shortly after Einstein developed his static theory, observations
by Edwin Hubble indicated that the Universe appears to be expanding, tearing down his model.
Today data indicate that this expansion is accelerated and the cosmological constant is again
considerate to obtain acceleration of the scale factor ä > 0. The Lambda Cold Dark Matter
model (ΛCDM) is a cosmological model in which the Universe contains a cosmological constant,
denoted by Λ, which can be modeled as a perfect fluid with energy density ρΛ = Λ/8πG, and
pressure pΛ = −Λ/8πG. This is the simplest model that gives account of the accelerating
expansion of the Universe. In this model it is assumed that the total energy density of the
Universe is the result of the contributions of relativistic matter, dust and dark energy, where
dark energy is modeled with the cosmological constant.

Current observations indicate that dust (Ωm) corresponds to 4, 9% of baryonic matter (Ωb)
and an unknown type of matter, that do not emit radiation and remains undetected directly, it
is called dark matter (ΩDM) which contributes with a 26, 8% to the total energy density today.
The remaining content of the Universe corresponds to dark energy modeled as cosmological
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constant (ΩΛ) with 68, 3%. The contribution of radiation (Ωr) is negligible today, but it was
significant in the past [3], see Figure 2.2.

Although this model consistently explains the evolution of the Universe, it presents some
problems that motivate us to explore new models generalizing some of its features.

• The Cosmological Constant Problem.

The cosmological constant have an unknown nature, and have surged different explanations
of its origin, but none has succeeded. In particular if we assume that dark energy comes
from quantum vacuum energy density, it is obtained that it energy density is approximately
1074GeV4, but according to the current data, the approximate value of the energy density
associated to the cosmological constant is ρΛ ∼ 10−47GeV4 [1]. This discrepancy has
been called "the worst theoretical prediction in the history of physics!" [1]. On the other
hand, another problem of cosmological constant is that this model does not explain the
initial value of the energy densities associated to matter and cosmological constant. If
acceleration of the Universe’s expansion had began earlier, structures such as galaxies
would never have had time to form and life, at least as we know it, would never have had
a chance to exist. Modeling the dark energy as the cosmological constant it is not possible
to satisfactorily answer this question.
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Figure 2.2: Graphics of the evolution of the normalized energy densities, matter (Ωm), radiation
(Ωr) and cosmological constant (ΩΛ). a0 is the current value of the scale factor. At right, a
loglog graphic it shown in order to note the contribution of the radiation component in the past.
The value of the parameters today were taken from the Plank Collaboration [3]. Source: Own
elaboration.

• The Coincidence Problem.

Cosmological data indicate that we live in a period in the evolution of the Universe, when
Ωm and ΩΛ are of the same order of magnitude. This raises a question: Why the energy
density of cold dark matter and the constant energy density associated to Λ are of the
same order today?. Thus, despite evolution of a over many orders of magnitude, we appear
to live in an era during which the two energy densities values are roughly the same. In
other words, at the beginning the dark energy density was negligible in comparison to
dark matter and radiation energy densities, later in the Universe’s evolution matter and
radiation energy densities become negligible, there is only a brief epoch of the Universe’s
evolution during which it would occurs the transition from domination of dark matter to
dark energy and it seems remarkable that we live during the transitional period between
these two eras [1].

Besides the aforementioned theoretical problems, by contrasting ΛCDMmodel with the available
data it is found some observational tensions recently reported, present when we use indepen-
dently high redshift and low redshift data to constrain parameters [4].
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2.3 Alternative models
To alleviate the cosmological constant problem and the coincidence problem different cosmolog-
ical models have been proposed, within and outside the framework of General Relativity. Here
we introduce some models within the framework of General Relativity. Since, these models
do not consider dark energy as a constant necessarily, it is commonly used the subscript x, to
denote dark energy components instead of the subscript Λ.

2.3.1 Omega Cold Dark Matter model
The ωCDM model is slightly more general than the ΛCDM model. In this model the dark
energy is modeled as a barotropic perfect fluid with a constant parameter of state ω, whose
value is determined using observational data.

In the description of the evolution of a cosmological scenario, we have two independent
equations (2.1.20) and (2.1.22) and three unknown variables (a, ρ and p). Therefore, to solve
these equations it is necessary to introduce an ansatz. The simplest and non-trivial assumption
is to consider a barotropic equation of state with a constant parameter of state ω, i.e.

p = ωρ, (2.3.1)

and solving (2.1.19) for ρ in terms of a, we get

ρ = ρ0

(
a

a0

)−3(1+ω)

, (2.3.2)

where a0 is the current value of the scale factor. In the case that the cosmological fluid is mostly
composed by dust (p� ρ), then ω � 1 and therefore

ρm = ρm0

(
a

a0

)−3

. (2.3.3)

On the other hand, if relativistic matter is predominant (p = ρ/3 , i.e. ω = 1/3), we have

ρr = ρr0

(
a

a0

)−4

. (2.3.4)

Thus, for ωCDM model the total energy density is written as

ρ = ρr + ρm + ρx (2.3.5)
= ρr0a

−4 + ρm0a
−3 + ρx0a

−3(1+ω), (2.3.6)

where we have considered a0 = 1 and ρx0 corresponds to the current value of the dark energy
density, we note that in the case ω = −1 the ΛCDM model is recovered and ρx0 → ρΛ.

It is worth to mention that from Eq. (2.1.20), when Λ = 0 and assuming a barotropic fluid
as matter content, we can obtain an accelerated expansion when the effective parameter of state
satisfies ω < −1/3.

2.3.2 Dark Energy Parametrizations
Another possible scenario for dark energy is to consider a time-dependent equation of state, in
other words, p = ω(t)ρ. Future measurements could allow us study the behavior of ω(t) and for
this reason, there are different parametrization of ω. In this section we present some aspects of
these models.

Let us consider that the total cosmological fluid of the Universe is composed by radiation,
dark matter and dark energy evolving independently. Then Eq. (2.1.19) can be separated in
three equations, one for each fluid. In particular, for dark energy we have

ρ̇x + 3H(1 + ω)ρx = 0, (2.3.7)
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then, the Hubble expansion rate is given by

H2 = H2
0 [Ωr0a

−4 + Ωm0a
−3 + Ωx0f(a)], (2.3.8)

where the subscript 0 means current values and

f(a) =
ρx(a)

ρx0
= exp

[
3

∫ 1

1−a
a

1 + ω(a′)

a′
da′

]
. (2.3.9)

In Table 2.1 we show some parameterizations for the state parameter [5]:

Parametrization ω(z) f(z)

Chevalier-Polarski-Linder (CPL) ω0 + ω1
z

1+z exp
(
−3ω1z
1+z

)
(1 + z)3(1+ω0+ω1)

Jassal-Bagla-Padmanabhan ω0 + ω1
z

(1+z)2 (1 + z)3(1+ω0) exp
(

3ω1z
2

2(1+z)2

)
Barbosa-Alcaniz ω0 + ω1

z(1+z)
(1+z)2 (1 + z)3(1+ω0)(1 + z2)3ω1/2

Feng-Shen-Li-Li ω0 + ω1
z

1+z2
(1+z)3(1+ω0) exp

[
3ω1

2 arctan(z)
]

×(1 + z2)3ω1/4(1 + z)−3ω1/2

Table 2.1: Parameterizations, where ω0 and ω1 are constants and z + 1 = a0/a. Source: Own
elaboration.

Due to the fact that there is a large number of dark energy models, it is complicated to
describe in detail each one of them. The parameterizations give us a simple idea of what the
behavior of dark energy is and this allows us to extract the maximal information of the present
value of the state parameter ω0 and, where possible, its eventual time evolution.

2.3.3 Quintessence model
In this scenario dark energy is modeled by a scalar field. The first example of this scenario was
proposed by Ratra and Peebles in 1988 [6]. Quintessence differs from the cosmological constant
explanation because quintessence dark energy is dynamic, unlike the cosmological constant,
which always remains constant. It is suggested that quintessence can behave as dark matter or
dark energy depending on the ratio of it is kinetic and potential energy. Quintessence is a scalar
field with an equation of state where ωx, the ratio of pressure px and energy density ρx, is given
in terms of the potential energy V (ϕ) and a kinetic term ϕ̇2:

ωx =
px

ρx
=

1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (2.3.10)

The evolution of ωx can be known analytically in terms of a few model parameters. Using
the analytical expression of ωx, we can constrain quintessence models from the observational
data. Furthermore, we note that the range of equation of state ωx is in the region −1 ≤ ωx ≤ 1.
When ϕ̇2 � V (ϕ) we have ωx = −1 giving a ρ = const. and for V (ϕ) � ϕ̇2 we have ωx = −1,
in this case ρ ∝ a−6. Nevertheless, for an accelerated expansion of the Universe the parameter
of state ωx must satisfy −1 ≤ ωx ≤ −1/3.

2.4 Cosmological Interaction
Given that the nature of dark energy and dark matter is unknown and they dominate the en-
ergy content of the Universe today, it is reasonable to consider more general scenarios where
dark matter and dark energy are phenomenologically coupled. Models based on the interaction
between dark matter and dark energy have been studied to describe the accelerated expansion.
One of the first interacting models was proposed in Ref. [7] mainly motivated to alleviate the
coincidence problem in an interacting-quintessence scenario, focusing in an asymptotic attractor
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behavior for the ratio of the energy densities for the dark components. Since then, many inter-
acting models with numerical and analytical solutions have emerged [8], [9], [10] and [11], also
interactions with change of sign have been studied in Refs. [12], [13], [14], [15] and [16]. A recent
detailed review can be found in Ref. [17]. In particular Refs. [18] present analytical solutions for
a wide class of more elaborated interactions where the dark components are barotropic fluids
with constant state parameters. Also, the question of how to discriminate among dark energy
models (degeneracy problem [19]) has arise in the context of interacting scenarios. In particular,
there has been a debate on whether interacting models can be distinguished from modified dark
energy equations of state, Chaplygin gas or modified gravity [20], which remains an open issue.

By separating Eq. (2.1.19) for dark matter and dark energy we get

ρ̇m + 3H(ρm + pm) = −Q, (2.4.1)
ρ̇x + 3H(ρx + px) = Q, (2.4.2)

where the subscripts x and m denote the dark energy and the dark matter respectively. The
function Q represents the interaction between these fluids. In the absence of a microscopic
model for the interaction of dark matter and dark energy (i.e., an explicit form of Q), most
proposed schemes are phenomenological. For Q < 0 the energy transfer is from dark energy to
dark matter and for Q > 0 the energy transfer is from dark matter to dark energy today. It is
common to choose Q as a function of ρ or combinations of ρx and ρm and its derivatives.

In order to find analytical solutions the set of Eqs. (2.4.1) and (2.4.2), we use the variable
change η := ln a3 and Γ := Q/3H, obtaining

ρ′m + γmρm = −Γ, (2.4.3)
ρ′x + γxρx = Γ, (2.4.4)

with γm := 1 + ωm, γx := 1 + ωx and ( )′ = d( )/dη.
From (2.4.3) and (2.4.4), and using that ρ = ρx + ρm we can write ρx and ρm as a function

of ρ and ρ′ [21],

ρx =
γmρ+ ρ′

∆
, ρm = −γxρ+ ρ′

∆
, (2.4.5)

with ∆ := γm − γx. Using these equations we can obtain the “source equation” defined in [21],

ρ′′ + (γx + γm)ρ′ + γxγmρ = ∆Γ. (2.4.6)

It is important to emphasize that due to (2.4.5) and (2.4.6) every Γ proportional to ρx and/or
ρm and/or its derivatives is in fact a differential equation for ρ.

It is interesting to note that by rewriting Eq. (2.4.6) as

ρ [ρ′′ + b1ρ
′ + b3ρ] + b2ρ

′2 = 0, (2.4.7)

we include the eight types of interaction shown in Table 2.2 in a single differential equation,
where the constants b1, b2, b3 are different combinations of the relevant parameters depending
on the particular interaction, see Table 2.2. The general solution of Eq. (2.4.7) takes the form

ρ(a) =
[
C1a

3
2λ1 + C2a

3
2λ2

] 1
1+b2

, (2.4.8)

by using Ωm0 + Ωx0 = 1 and ρ0 = ρx0 + ρm0 we get that:

C1 = −(3H2
0 )1+b2

[
λ2 + γ0(1 + b2)

λ1 − λ2

]
, (2.4.9)

C2 = (3H2
0 )1+b2

[
λ1 + γ0(1 + b2)

λ1 − λ2

]
, (2.4.10)
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and

λ1 = −b1 −
√
b21 − 4b3(1 + b2), (2.4.11)

λ2 = −b1 +
√
b21 − 4b3(1 + b2), (2.4.12)

γ0 = γm − Ωx0∆. (2.4.13)

Interaction b1 b2 b3

Γ1 = αρm + βρx γm + γx + α− β 0 γmγx + αγx − βγm

Γ2 = αρ′m + βρ′x
γ

m
+ γ

x
+ αγ

x
− βγ

m

1 + α− β
0

γmγx

1 + α− β
Γ3 = αρmρx/(ρm + ρx) γm + γx + α

γm + γx

∆

α

∆
γmγx + α

γmγx

∆

Γ4 = αρ2
m/(ρm + ρx) γm + γx −

2αγx

∆
− α

∆
γmγx −

αγ2
x

∆

Γ5 = αρ2
x/(ρm + ρx) γm + γx −

2αγm

∆
− α

∆
γmγx −

αγ2
m

∆
Γ6 = αρ γm + γx 0 γmγx − α∆

Γ7 = αρ′ γ
m

+ γ
x
− α∆ 0 γmγx

Γ8 = αqρ = −α(ρ+ 3
2ρ
′) γ

m
+ γ

x
+

3

2
α∆ 0 γmγx + α∆

Table 2.2: Expressions for the constants b1, b2 and b3 for the considered interaction. Source:
Own elaboration.

On the other hand, in order to analyze the evolution of the energy densities and the coinci-
dence problem we use the coincidence parameter r defined as

r :=
ρm

ρx
. (2.4.14)

In the case of ΛCDM model, since ρΛ is constant and ρm decreases proportional to a−3, then
r decrease (asymptotically to 0) when a increase. This means that today is a very particular
epoch in the evolution of the Universe, whereas if for example r tends to a constant different
of 0 it means that today is not a very particular epoch, since dark matter and dark energy at
late Universe evolve at the same rate. In [21], the author analyzes some linear and nonlinear
interactions proportional to the energy densities, concluding that interacting functions that
include a linear term proportional to ρx, alleviate the coincidence problem when the parameter
γx > 0.

2.5 Observational Cosmology
One of the first observational data used to study the behavior of the Universe dates from
1929. Edwin Hubble used Cepheids, a type of variable star that pulsates radially, varying in
both temperature and diameter to produce brightness changes with a well defined period and
amplitude, as a mean to determine distances, to study the properties of the Universe. Hubble was
the first to account for the cosmological expansion [22] (see Figure 2.3), but their observations
were not precise enough to determine whether it is an accelerating or a decelerating expansion.

Due to this discovery, new questions about the Universe arise. For example, if the Universe
is expanding, does that means that it had a beginning? Moreover, will the Universe have an
ending as well? To answer this and other questions it is necessary to have more information
about the Universe. In 1965 Arno Penzias and Robert Woodrow Wilson in the Bell Laboratories
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Figure 2.3: Scheme of the Universe’s expansion. Matter and radiation dilute in an expanding
Universe; note the radiation’s redshift to lower and lower energies over time. Source: Extracted
from https://goo.gl/VLZAVo.

detected for the first time the Cosmic Microwave Background (CMB) [23]. This radiation was
predicted by George Gamow, Ralph Alpher and Robert Hermann in 1948. The CMB is the
thermal radiation left over from the time of recombination in Big Bang theory.

The CMB radiation has a blackbody spectrum, i.e., it is a type of electromagnetic radiation
emitted by a body in thermodynamic equilibrium with its environment. The radiation has a
specific spectrum and intensity that depends only on the temperature of the body.
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Figure 2.4: CMB spectrum. The points are observational data from CMB taken by the COBE
satellite and the curve corresponds to an ideal blackbody spectrum at temperature of 2.725K.
Source: Own elaboration.

With the CMB detection, the Big Bang theory became more accepted and in a few years
it became part of the standard cosmological model. In 1978, Arno Penzias and Robert Wilson
won the Physics Nobel Prize for the CMB detection. In 1989, the COBE satellite was launched
to investigate the CMB properties and after that, other satellites were launched with this same
purpose: the WMAP satellite in 2001 and the Planck satellite in 2009, increasing the accuracy
in the measurement of the temperature’s anisotropies of the CMB.
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In 1998, contrary to what was expected (that the expansion of the Universe was slowing
down) the High-z Supernova Search Team led by Adam G. Riess reported the first evidence of
the current accelerated expansion of the Universe through monitoring of type Ia Supernovae [24].
The results of High-z Supernova Search Team were also found nearly simultaneously by the
Supernova Cosmology Project, led by Saul Perlmutter [25]. The corroborating evidence between
the two competing studies led to the acceptance of the accelerating Universe, and initiated new
research to understand the Universe’s expansion and dark energy nature.

A type Ia Supernova is a type of supernova that occurs in binary systems (two stars orbiting
one another) in which one of the stars is a white dwarf. The other star can be anything from
a giant star to an even smaller white dwarf. This type Ia category of supernovae produces a
characteristic luminosity peak because of the uniform mass of white dwarfs that explode via
the accretion mechanism. The light curve of type Ia supernovae allows to these explosions to
be used as standard candles to measure the distance to their host galaxies because the visual
magnitude of the supernovae depends primarily on the distance [1].

The discovery of the accelerating expansion of the Universe awarded Riess the 2011 Nobel
Prize in Physics along with Schmidt and Perlmutter, “For the discovery of the accelerating ex-
pansion of the Universe through observations of distant Supernovae”. It is worth to mention
the contribution of the Calán/Tololo Survey in Chile, a team led by Mario Hamuy, with Mark
Philips, Nick Suntzeff (of the Cerro Tololo Inter-American Observatory in Chile), Robert Schom-
mer, Jose Maza who were conducting the first large-scale program, measuring the light curves
of type Ia supernovae. These data were essential to demonstrate that type Ia SNe were useful
as standard candles. Progress was made using a relation between peak brightness and fading
time, shown by Mark Phillips, to recalibrate the SNe to a standard profile. Currently there are
different supernovae survey dedicated to detecting and monitoring high-redshift supernovae to
investigate dark energy and the accelerated expansion of the Universe [26].

2.5.1 Distance indicators
At a cosmological level, the measurements of distance allow us to learn about the Universe both
in its size and age, through the cosmological expansion [1]. From Special Relativity we know
that distance is not an absolute magnitude; this depends on the observer. In cosmology there
are many differents definitions of distance, each one useful depending on what is to be measured.

Cosmological Redshift

Consider two light rays emanated from a point P at cosmological time t1 and t1 + δt1, and
received by the observer O at t0 and t0 + δt0 respectively as is shown in Figure 2.5. Using
the FLRW metric (2.1.9) we can describe the trajectory of the radial photons traveling in the
spacetime, given that ds2 = 0 and θ and ϕ are constants we obtain that

c

∫ t0+δt0

t1+δt1

dt

a(t)
= −

∫ r0

r1

dr√
1− kr2

. (2.5.1)

Assuming that the radial comoving coordinate r of the light source and the receptor remains
constant, the right side of equation (2.5.1) remains the same even considering other emission
and reception time on the left side. In particular, if we consider the interval from t1 to t0 we get∫ t0

t1

dt

a(t)
=

∫ t0+δt0

t1+δt1

dt

a(t)
, (2.5.2)
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Figure 2.5: Scheme where P point sends light rays to the point O. Source: Own elaboration.

passing the integral on the left side and separating them we get that

0 = −
∫ t0

t1

dt

a(t)
+

∫ t0

t1+δt1

dt

a(t)
+

∫ t0+δt0

t0

dt

a(t)
, (2.5.3)

=

∫ t1

t0

dt

a(t)
+

∫ t0

t1+δt1

dt

a(t)
+

∫ t0+δt0

t0

dt

a(t)
, (2.5.4)

= −
∫ t1+δt1

t1

dt

a(t)
+

∫ t0+δt0

t0

dt

a(t)
. (2.5.5)

Assuming that a(t) changes negligibly between δt1 and δt0 (δt0 � a/ȧ and δt1 � a/ȧ), we can
find a relation at first order in δt1 and δt0 from (2.5.5):

δt0
a(t0)

=
δt1
a(t1)

. (2.5.6)

Further, we can relate δt1 and δt0 with frequencies, considering them as periods of emission,
thus δt1 = 1/ν1 and δt0 = 1/ν0. By using the definition of redshift z = νemitted

νreceived
− 1 can find an

expression for the cosmological redshift z in term of a(t) from (2.5.6):

z =
a(t0)

a(t)
− 1, (2.5.7)

where we have generalized t1 to an arbitrary cosmic time t. From this last equation we see that
z = 0 represents today, z →∞ represents the Big Bang epoch and −1 < z < 0 means a future
epoch.

Comoving distance

Using the FLRW metric (2.1.9) in photons traveling in the spacetime in a radial trajectory we
get

cdt

a(t)
= − dr√

1− kr2
, (2.5.8)

and through (2.5.7) we obtain
cdz

H(z)
=

dr√
1− kr2

, (2.5.9)

considering a(t0) = a0 = 1. The comoving distance dc is defined as

dc(z) :=

∫ r

0

dr′√
1− kr′2

= dH

∫ z

0

dz′

E(z′)
, (2.5.10)
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where dH := c/H0, E(z) := H(z)/H0 so that

E2(z) := Ωx(z) + Ωk0(1 + z)2 + (ΩDM0 + Ωb0)(1 + z)3 + Ωr0(1 + z)4, (2.5.11)

where ΩDM0 corresponds to the normalized dark matter energy density and Ωb0 corresponds to
the baryons energy density. The subscript 0 means current values. The subindex k is related to
the curvature of space, and Ωk0 = −k/H2

0 .

Radial Coordinate

We can obtain the radial coordinate of an object at redshift z from equation (2.5.9), this quantity
is related to the comoving distance dc(z) by

r(z) :=



dH√
Ωk

sinh

(√
Ωkdc(z)

dH

)
, for Ωk > 0

dc(z) , for Ωk = 0

dH√
Ωk

sin

(√
Ωkdc(z)

dH

)
, for Ωk < 0

. (2.5.12)

Angular diameter distance

A common way to determine distances in Astronomy is to measure the angle δθ subtended by
an object of known physical size X at redshift z. The angular diameter distance DA is defined
as the ratio of an object’s physical size to its angular size (in radians), i.e. DA(z) := X/δθ [27].
This is commonly used in the context of Baryon Acoustic Oscillations. To compute the angular
diameter distance in an expanding Universe, we first note that the comoving size of the object
is X/a, where a is the cosmological scale factor. On the other hand, the comoving distance to
the object is given by equation (2.5.12), so the angle subtended is δθ = (X/a)/dc. The angular
diameter distance is related to the radial coordinate (for k = 0) as

DA :=
r(z)

1 + z
, (2.5.13)

where we have used (2.5.7).

2.5.2 Apparent Magnitude
This is the most useful method to determine distances in Cosmology. It is based on the mea-
surement of the apparent luminosity of objects with known absolute luminosity. The absolute
luminosity L is the energy emitted per unit of time. Then, assuming that the energy is emitted
isotropically, the total power per unit area l passing through a sphere of radius d centred at the
object (in an Euclidean space) is

l =
L

4πd2
. (2.5.14)

In practice, it is important to consider the effect of the atmosphere in the luminosity, because
it absorbs a portion of the apparent luminosity. The bolometric magnitude is defined as the
magnitude of an object adjusted to the value it would have in absence of the atmosphere. The
absolute and apparent magnitude M and m are given by [1]

l = 10−2m/5 × 2.52× 10−5
[ erg
cm2s

]
, (2.5.15)

and
L = 10−2M/5 × 3.02× 1035

[erg
s

]
. (2.5.16)
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Using these equations we can rewrite (2.5.14) as

d = 101+(m−M)/5 [pc]. (2.5.17)

It is important to mention that these equations do not include effects associated to the expansion
of the Universe, for this we must consider the metric FLRW in our calculations of distances.

Luminosity distance

Let us imagine a star with coordinates xµ1 = (ct1, r1, 0, 0), and the Earth with coordinates
xµ0 = (ct0, 0, 0, 0). Using (2.1.9), the metric induced on a sphere centred (for a fixed time) in xµ1
and passing through xµ0 is

dl2 = a2
0r

2
1(dθ2 + sin2 θdϕ2), with a0 = a(t0), (2.5.18)

whose area is
A = 4πa2

0r
2
1. (2.5.19)

Furthermore, if the star emits J photons with frequency ν1, in a time interval δt1, the absolute
luminosity is given by

L =
Jhν1

δt1
⇒ J =

Lδt1
hν1

, (2.5.20)

with h the Planck constant. An observer at xµ0 detects n photons (with n < J and frequency ν0)
in an area S, in a time interval δt0. In addition, since space is isotropic, any observer located
on the spherical surface will receive the same number n of photons with frequency ν0 during of
the same time interval δt0. Thus, assuming no loss of these photons, J photons will pass this
surface in the time interval δt0, i.e.∫

A

n

S
dA = 4πa2

0r
2
1

n

S
= J. (2.5.21)

Then, we can rewrite the apparent luminosity as

l =
nhν0

Sδt0
=

Jhν0

4πa2
0r

2
1δt0

. (2.5.22)

Replacing J from (2.5.20) into (2.5.22) we get

l =
L

4πa2
0r

2
1

δt1
δt0

ν0

ν1
. (2.5.23)

Then using (2.5.6) and (2.5.7), we find the relation

l =
L

4πa2
0r

2
1(1 + z)2

. (2.5.24)

Based on this result, we can define the luminosity distance as

dL := a0r1(1 + z), (2.5.25)

such that
l =

L

4πd2
L

. (2.5.26)

On the other hand, using (2.5.25) and (2.5.17) we can write the luminosity distance in terms of
the relative and absolute magnitude as

µ := m−M = 5 log10

(
dL
Mpc

)
+ 25, (2.5.27)

16



where µ is the so-called distance modulus.
The type Ia supernovae (SN Ia) can be observed when white dwarf stars, accreting mass

from a companion star in a binary system approach the Chandrasekhar mass (MCh ≈ 1.38 solar
masses), high temperature causes the ignition of explosive nuclear burning reactions [28]. SN
Ia are formed in the same way irrespective of where they are in the Universe, which means
that they have a common absolute magnitude M independent of the redshift z. Thus, they can
be used as standard candles since we can measure the apparent magnitude m and the redshift
z. Some recent compilations of supernovae are Union 2, Union 2.1 [29], Constitution [30] and
JLA [26]. Since the first type Ia supernovae measurements to the present, the data sets of this
supernovae have significantly grown. In 2008 the Constitution data set was compiled with 397
type Ia supernovae, in 2010 came Union 2 with 557 supernovae, one year later Union 2.1 arrived
with 580 type Ia supernovae and JLA (Joint Light-curve Analyzis) arrived in 2014 with 740
type Ia supernovae.

2.5.3 Hubble function
The ΛCDM model assumes the dark energy density to be constant, but we can consider more
general cases, for example, in which dark energy is modeled as a fluid with an equation of state,
px(z) = (γx(z)−1)ρx, where the state function γx(z)−1 indicates the ratio between the pressure,
px, and the energy density, ρx, of dark energy. Therefore, to determine the evolution of γx(z)−1
as a function of redshift we need to use precise measurements at redshifts when the dark energy
started to dominate the expansion of the Universe [31].

The common approach for determining γx(z)−1 uses its effect on the luminosity distance of
sources. To measure the luminosity distance, it is usual to use type Ia supernovae as standard
candles. However, the sensitivity of the luminosity distance to the redshift history of γx(z) −
1 is compromised by its integral nature, see equation (2.5.10). However, if we measure the
age difference, ∆t, between two passively-evolving galaxies that formed at the same time but
separated by a small redshift interval ∆z, one can infer the value of the derivative, (dz/dt),
from the ratio (∆z/∆t). The statistical significance of the measurement can be improved by
selecting samples of passively-evolving galaxies at the two redshifts and by comparing the upper
cut-off of their age distributions. All selected galaxies need to have similar metallicities and low
star formation rates, so that the average age of their stars would far exceed the age difference
between the two galaxy samples, ∆t [31]. The quantity measured in this case is directly related
to the Hubble parameter by

H(z) = − 1

1 + z

dz

dt
. (2.5.28)

This differential age method is much more reliable than a method based on an absolute age
determination for galaxies, given the integral nature of this last method. The more recent
compilation of H(z) data has 28 data points of H v/s z and it is found in Ref. [31].

2.5.4 Baryonic Acoustic Oscillations
Before the decoupling the Universe consisted of a hot plasma of photons, baryons, electrons and
dark matter. The tight coupling between photons and electrons due to Thompson scattering
leads to oscillations in the hot plasma. As the Universe expands and cools, electrons and nuclei
combine into atoms making the Universe electrically neutral. Initial fluctuations in density and
gravitational potential drive acoustic waves in the fluid (compressions and rarefactions). That
relieved the pressure on the system, leaving behind a shell of baryonic matter at a fixed radius.
This radius is often referred to as the sound horizon [32]. Many anisotropies created ripples in
the density of space that attracted matter and eventually galaxies formed in a similar pattern.
Therefore, one would expect to see a greater number of galaxies separated by the sound horizon.
This effect can be seen in the spectrum of galaxy correlations today. The detection of imprints
of these oscillations in the galaxy correlation function is difficult as the signal is suppressed
by the fractional energy density of baryons which is about 4% of the total cosmic budget, but

17



the detection of these acoustic oscillations confirms several basic assumptions of cosmological
structure formation theory and it also points the way to a new application of large-scale structure
surveys for the study of dark energy.

The BAO scale is set by the radius of the sound horizon at the drag epoch zd when photons
and baryons decouple,

rd =

∫ ∞
zd

cs(z)dz

H(z)
, (2.5.29)

where the sound speed in the photon-baryon fluid is [1]

cs(z) =
c√

3(1 +R)
, (2.5.30)

where

R :=
3ρb

4ργ
=

3Ωbh
2

9.88× 10−5

1

1 + z
, (2.5.31)

using that the normalized energy density of the CMB radiation is Ωγ = 2.47× 10−5h−2 [1].
To fit zd we use the formula proposed by Eisenstein [32]

zd =
1291(Ωbh

2)0.251

1 + 0.659(Ωmh2)0.828
[1 + b1(Ωbh

2)b2 ], (2.5.32)

with

b1 = 0.313(Ωmh
2)−0.419[1 + 0.607(Ωmh

2)0.674], (2.5.33)
b2 = 0.238(Ωmh

2)0.223. (2.5.34)

Until now, we do not measure clustering directly in comoving space, but we instead measure
galaxy redshifts, angles and infer distances from these.

In the radial direction, provided that the clustering signal is small compared with the cos-
mological distortions, the measurements are sensitive to the Hubble parameter through 1/H(z).
In the angular direction the distortions depend on the angular diameter distance DA(z). Ad-
justing the cosmological model to ensure that angular and radial clustering match constrains
H(z)DA(z), and was first proposed as a cosmological test (the AP test) by Alcock and Paczyn-
ski [33]. If we instead consider averaging clustering in 3D over all directions, then, to first order,
matching the scale of clustering measurements to the comoving clustering expected is

Dv(z) =
1

H0

[
(1 + z)2D2

A(z)
cz

E(z)

] 1
3

, (2.5.35)

although this projection applies to all of the clustering signal, BAO give the most robust and
strongest source for the comparison between observed and expected clustering, providing a
distinct feature on sufficiently large scales. Where DA(z) is the angular diameter. This quantity
can be measured and compared to different cosmological models.

Other important function is the Acoustic Parameter A(z) introduced by Eisenstein [32],
defined by

A(z) :=
Dv(z)

√
ΩmH2

0

cz
. (2.5.36)

We note that A(z) has no direct dependency on the Hubble constantH0, sinceDv is proportional
to H−1

0 , this combination is well constrained by the data [34].

2.5.5 Cosmic Microwave Background
The Cosmic Microwave Background (CMB) is the radiation left over from the time of recombi-
nation. The CMB is a cosmic radiation that is fundamental to observational cosmology because
it is a snapshot of the oldest radiation in our Universe, when the Universe was approx 380,000
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years old. It shows tiny temperature fluctuations that correspond to regions of slightly different
densities, representing the seeds of all observed structure.

The characteristic acoustic scale θA of the peaks on the angular power spectrum of the CMB
anisotropies is defined as

θA :=
π

lA
=
rs(zdec)

r(zdec)
, (2.5.37)

where rs(zdec) is the comoving size of the sound horizon at decoupling, r(zdec) the comoving
distance at decoupling and lA the multipole associated with the angular scale θA [35]. The
Figure 2.6 is the angular power spectrum of the CMB temperature, where we can see the peaks
of the CMB anisotropies. Then, we can rewrite the equation (2.5.37) as

lA =
πdL(zdec)

(1 + z)rs(zdec)
. (2.5.38)

Moreover, the redshift at decoupling is given by [36]

zdec = 1048[1 + 0.00124(Ωbh
2)−0.738][1 + g1(Ωbh

2)g2 ], (2.5.39)

where

g1 =
0.0783(Ωbh

2)−0.238

1 + 39.5(Ωbh2)0.763
, g2 =

0.560

1 + 21.1(Ωbh2)1.81
. (2.5.40)

Another observable is the “shift parameter” R defined as [37], this parameter together with the
sound horizon determine the location of the first peak at recombination

R =

√
Ωm

c(1 + zdec)
DL(z), (2.5.41)

where DL(z) = H0dL. The data sets for anisotropies in the CMB radiation are publicly available
in Ref. [34]. The data from CMB are given through the covariance matrix C as: χ2

CMB =
XTC−1

CMBX [34] where

C−1
CMB =

 3.182 18.253 −1.429
18.253 11887.879 −193.808
−1.429 −193.808 4.556

 . (2.5.42)

and

X =

 lA − 302.40
R− 1.7246

zdec − 1090.88

 . (2.5.43)

All these definitions are useful to test the cosmological models and determine how well
they describe the Universe both in the present and in their past, allowing us to improve our
understanding of it.
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Figure 2.6: Planck 2015 temperature power spectrum. The blue points are the measured data
and the red curve corresponds to the standard model of cosmology [3]. Source: Extracted
from [3].
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Chapter 3

Data Fitting and Model
Comparison

Physics is based on the scientific method, which has as its cornerstone the observation of nature,
but how can we connect what we perceive with our theories? The answer is not simple. Through
measurements we can contrast the behavior of nature with our models of it. This process is a
fundamental part of Science and specially in Physics allows us to better understand the physical
phenomena and the laws of Nature. In the words of Richard Feynman: “The principle of Science,
the definition, almost, is the following: The test of all knowledge is experiment. Experiment is
the sole judge of scientific truth” [38].

Statistics investigates and develops specific methods for evaluating hypotheses in the light
of empirical facts. A method is called statistical, and thus the subject of study in statistics,
if it relates facts and hypotheses of a particular kind: the empirical facts must be codified
and structured into data sets, and the hypotheses must be formulated in terms of probability
distributions over possible data sets. The philosophy of statistics concerns the foundations and
the proper interpretation of statistical methods, their input, and their results. Since statistics
is relied upon in almost all empirical scientific research, serving to support and communicate
scientific findings, the philosophy of statistics is of key importance to the philosophy of science.

Statistics is a mathematical and conceptual discipline that focuses on the relation between
data and hypotheses. The data are recordings of observations or events in a scientific study,
e.g., a set of measurements of individuals from a population. The data actually obtained are
variously called the sample, the sample data, or simply the data, and all possible samples from
a study are collected in what is called a sample space. The hypotheses, in turn, are general
statements about the target system of the scientific study, e.g., expressing some general fact
about all individuals in the population. A statistical hypothesis is a general statement that can
be expressed by a probability distribution over sample space, i.e., it determines a probability
for each of the possible samples.

Statistical methods provide the mathematical and conceptual means to evaluate statistical
hypotheses in the light of a sample. To this aim they employ probability theory, and incidentally
generalizations thereof. The evaluations may determine how believable a hypothesis is, whether
we may rely on the hypothesis in our decisions, how strong the support is that the sample gives
to the hypothesis.

3.1 Maximum Likelihood
In Statistics, Maximum Likelihood is a method of estimating the parameters of a statistical
model given some data. The method of maximum likelihood corresponds to many well-known
estimation methods in statistics. Maximum Likelihood would do this by taking the mean and
variance as parameters and finding particular parametric values that make the observed results
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the most probable given the model.
Suppose that we have a set of N data points corresponding to measurements of the inde-

pendent variable xi and the dependent variable yi, with i = 1, . . . , N and we want to find the
parameters a = [a1, a2, . . . , aI ] of the model y(xi) ≡ y(xi,a) that will fit to the data.
Then, for each event (xi, yi) we can transform the y(x) function in a normalized probability
density

Pi := P (xi,a). (3.1.1)

Then, the likelihood function L(a) will be the product of the probability densities

L(a) :=

N∏
i=1

Pi, (3.1.2)

and the values of the parameters will be obtained by maximizing L(a).
In many applications, the natural logarithm of the likelihood function, called the log-likelihood,
is more convenient to work with. Since the logarithm is a monotonically increasing function, the
logarithm of a function achieves its maximum value at the same points as the function itself, and
hence the log-likelihood can be used instead of the likelihood in maximum likelihood estimation
and related techniques. Finding the maximum of a function often involves taking the derivative
of the function and by solving for the parameter being maximized, this is often easier when
the function being maximized is a log-likelihood rather than the original likelihood function.
Therefore, we define

M := lnL =

N∑
i=1

lnPi. (3.1.3)

For example the logarithm of a product is a sum of individual logarithms, and the derivative
of a sum of terms is often easier to compute than the derivative of a product. In addition,
several common distributions have likelihood functions that contain products of factors involving
exponentiation. The logarithm of such a function is a sum of products, making it simpler to
differentiate than the original function.

3.2 Method of Least Squares
Another method to fit data is the least squares method. It is a standard approach in regression
analysis to the solution. Its most important application is in data fitting. The best fit in
the least-squares sense minimizes the sum of squared residuals, a residual being the difference
between an observed value and the fitted value provided by a model.

Suppose that we have a data set (xi, yi) with i = 1, 2, . . . , N . We know that y = y(x) and
we have a model

y = f(x,a), (3.2.1)

with a = [a0, a1, . . . , aI−1] the parameters of the model. Then, we want to find the values of the
model parameters a. To do that we can use the χ2 function

χ2(a) =

N−1∑
i=0

[
yi − f(xi,a)

σi

]2

, (3.2.2)

with σi the error of the measurement yi.
The best fit is the one that minimizes the sum of squared residuals, and this quantity is denoted
χ2

min. The gradient of χ2 with respect to the parameters a, which will be zero at the minimum
of χ2, has components

∂χ2

∂ak
= −2

N−1∑
i=0

[yi − f(xi,a)]

σ2
i

∂f(xi,a)

∂ak
, (3.2.3)
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with k = 0, 1, 2, ..., I − 1. Taking an additional partial derivative of equation (3.2.3) gives

∂2χ2

∂ak∂al
= 2

N−1∑
i=0

1

σ2
i

[
∂f(xi,a)

∂ak

∂f(xi,a)

∂al
− [yi − f(xi,a)]

∂2f(xi,a)

∂ak∂al

]
. (3.2.4)

It is conventional to remove the factors of 2 by defining

βk := −1

2

∂χ2

∂ak
(a), αkl :=

1

2

∂2χ2

∂ak∂al
. (b) (3.2.5)

On the other hand, the Covariance Matrix is defined as C = α−1 and

σ2(ai) := Cii, (3.2.6)

where σ2(ai) is the variance of the ai parameter (see chapter 15 of [39]).
It is important to mention that in case of a normal distribution error, the maximum likelihood

method coincide with the least-squared method (see appendix section A.3.1).

3.3 Bayesian Analysis
In Statistics there are two “philosophies” about the interpretation of probability, the frequentist
and the bayesian. In this thesis, we assume the Bayesian frame, where probability is interpreted
as a degree of belief that something will happen, or that a parameter will have a given value.

Bayesian inference is a method of statistical inference in which Bayes’s theorem is used to
update the probability for a hypothesis as more evidence or information becomes available.
Bayesian inference is an important technique in Statistics and it is particularly important in the
dynamic analysis of a sequence of data. To compare different models of a certain physical phe-
nomenon in light of the data there are criteria, based on the Occam’s razor (“among competing
hypotheses, the one with the fewest assumptions should be selected"). Let us quote a simple
example from [40] which illustrates this rule. In Figure 3.1, it is observed the gray box and the
white one behind it. One can postulate two models: first, there is one box behind the gray box,
see Figure 3.2 left, second, there are two boxes of identical height and color behind the gray box,
see Figure 3.2 right. Both models explain the observations equally well. According to Occam’s
principle we should accept the explanation which is simpler so that there is only one white box
behind the gray one. Is it not more probable that there is only one box than two boxes with
the same height and color? If we postulate that there are two boxes we need more parameters
to describe this case than when there is just one box, for example we need to specify the width
of the boxes.

Information criteria measure the goodness of fitted models compared to a base model (see
[41]- [42]). Two widely used criteria are the Akaike Information Criterion (AIC) [43] and the
Bayesian Information Criterion (BIC) [44]. The first is an essentially frequentist criterion based
on information theory and the second one follows from an approximation for the bayesian evi-
dence valid for large sample size [41].

In Cosmology AIC and BIC have been applied to discriminate cosmological models based
on the penalization associated to the number of parameters that they need to explain the data.
Specifically, in Ref. [45] the author perform cosmological model selection by using AIC and BIC
in order to determinate the parameter set that better fit the WMAP3 data. Following this
work in Ref. [13] the author considers more general models to the early Universe description in
light of AIC and BIC, also including the deviance information criterion. Regarding late Universe
description, the authors of Ref. [46] consider different models of dark energy and use information
criteria to compare among them using the Gold sample of SN Ia. Later on, the authors of [47]
study interacting models, with an energy density ratio proportional to a power-law of the scale
factor attempting to alleviate the coincidence problem. By using AIC and BIC, they compare
the models among themselves and with ΛCDM considering data from SN Ia, BAO and CMB.
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More recently, in Ref. [13] the authors find that a particular interacting scenario is disfavored
compared to ΛCDM. They study an interaction proportional to a power-law of the scale factor,
by using AIC and BIC, and considering data from SnIa, H(z), BAO, Alcock-Paczynski test and
CMB.

Figure 3.1: Illustration of a physical phenomenon observed. Source: Extracted from [13].

Figure 3.2: At left Hypothesis of one box and at right Hypotesis of two boxes. Source: Extracted
from [13].

24



3.3.1 Akaike Information Criteria
In information theory there are no correct models, but only approximations to the reality, and
these models depend on different parameters. The question then is to find which model would
best approximate reality given the data we have recorded. In other words, we are trying to min-
imize the loss of information. Kullback and Leibler [48] addressed such issues and developed a
measure, the Kullback-Leibler information, to represent the information lost when approximat-
ing reality (i.e., a good model minimizes the loss of information). A few decades later, Akaike [43]
proposed using Kullback-Leibler information for model selection. He established a relationship
between the maximum likelihood, and the Kullback-Leibler information. He developed an in-
formation criterion to estimate the Kullback-Leibler information, Akaike’s information criterion
(AIC) [43], which he described using a quantity defined as

AIC = χ2
min + 2d, (3.3.1)

where d is the number of parameter of the model. Then, “the best model” according to this
criterion is the one with a smaller value of AIC. We can note that this criterion “penalizes”
models having a higher number of parameters.

For example, to compare the model Hi with the model Hj , we use ∆AICij = AICi − AICj
that can be interpreted as “evidence in favour” of i model. Here AICj is a reference value of a
test model. For 0 ≤ ∆AICij < 2 we say that we have “strong evidence in favour” of model Hi,
for 4 < ∆AICij ≤ 7 there is “little evidence in favour” of the model Hi, and for ∆AICij > 10
basically there is “no evidence in favour” of model Hi [13].

3.3.2 Bayesian Information Criteria
The bayesian approach to hypothesis testing was developed by Jeffreys [49]. Jeffreys was con-
cerned with the comparison of predictions made by two competing scientific theories. In this
approach, statistical models are introduced to represent the probability of the data according
to each of the two theories. For this interpretation of model selection first we need to introduce
the Bayes theorem. Let A and B be events with probabilities pd(A) and pd(B) (pd(B) 6= 0)
respectively. Then the Bayes’s theorem says that

pd(A|B) =
pd(B|A) pd(A)

pd(B)
, (3.3.2)

where pd(A|B), a conditional probability, is the probability of observing event A given that B
is true and pd(B|A) is the probability of observing event B given that A is true.

Thus, we begin with data D, assumed to have arisen under one of the two hypotheses
H1 or H2 according to a probability density pd(D|H1) or pd(D|H2), further we have a priori
probabilities pd(H1) and pd(H2) such that pd(H2) = 1− pd(H1).

From Bayes theorem [49], we obtain

pd(Hk|D) =
pd(D|Hk)pd(Hk)

pd(D|H1)pd(H1) + pd(D|H2)pd(H2)
, (3.3.3)

with k = 1, 2. Then, we can write

pd(H1|D)

pd(H2|D)
=
pd(D|H1)pd(H1)

pd(D|H2)pd(H2)
. (3.3.4)

Thus, in words,
posterior odds = (Bayes factor)× (prior odds), (3.3.5)

where the Bayes factor is defined by

B12 :=
pd(D|H1)

pd(D|H2)
. (3.3.6)
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In other words, the Bayes factor is the ratio of the posterior odds of H1 to its prior odds,
regardless of the value of the prior odds. Thus, we can interpret the Bayes factor as a summary
of the evidence provided by the data in favour of one scientific theory, represented by a statistical
model, as opposed to another [50].

In general, it is very difficult to compute the Bayes factor, but we can write an approximation
for it proposed by Schwarz [44] (conveniently defined in terms of the logarithm of the Bayes
factor) as

logB12 ≈ log pd(D|ȧ1, H1)− log pd(D|ȧ2, H2)− (d1 − d2)
1

2
logN, (3.3.7)

where ȧk are the maximum likelihood parameters of the k model, dk is the dimension of a, and
N is the sample size. Since, log pd(D|ȧn, Hn) corresponds to the logarithm of the probability
density, it coincides with the logarithm of the likelihood function, then defining (for a gaussian
probability)

BIC := χ2
min + d lnN, (3.3.8)

we get that
logB12 = BIC1 − BIC2. (3.3.9)

The Bayesian criterion was developed for the comparison of two models, but practical data
analysis often involves far more than two models, at least implicitly. In this case, carrying out
multiple frequentist tests to guide a search for the best model can give very misleading results.
With regard to Bayesian calibration of frequentist methods, for large samples, the Bayesian
criterion may be used to obtain the required value of an approximate t statistic1 for it, to
represent strong or decisive evidence [50]. Equation (3.3.6) can be rewritten (for large samples)
as

logB12 ≈ t2 − (d1 − d2) log(N). (3.3.10)

Assuming that d1 − d2 = 1, we can assign to the approximate t different degrees of “evidence”.
For “positive” evidence, this is t =

√
logN , for “strong” evidence, it is t =

√
logN + 6, and for

“decisive” evidence, it is t =
√

logN + 10.
Similarly to ∆AICij , we define ∆BICij = BICi−BICj which can be interpreted as “evidence”

against the model i [13]. For 0 ≤ ∆BICij < 2 there is not enough evidence against the model,
for 2 ≤ ∆BICij < 6 there is evidence against the model and for 6 ≤ ∆BICij < 10 there is strong
evidence against model i.

1T statistic is used in order to find evidence of a significant difference between population means (2-sample
t) or between the population mean and a hypothesized value (1-sample t). The t-value measures the size of the
difference relative to the variation in your sample data.
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Chapter 4

Analysis and Results

In this work we analyze eight general types of interacting models with analytical solution using
supernovae type Ia (Constitution, Union, Union 2.1 and JLA), H(z) and BAO data, under the
Akaike information criterion and the Bayesian information criterion. The main goal of our work
is to investigate if complex interacting models are competitive in fitting the data and whether we
could distinguish among them via a model comparison approach based on information criteria.

4.1 Theoretical Interactions
To analyze cosmological interaction using data at high redshift we need to include radiation in
our calculations. When we consider radiation in the total energy density, i.e. ρ = ρm + ρx + ρr,
(2.4.5) is rewritten as

ρx =
γm%+ %′

∆
, ρm = −γx%+ %′

∆
, (4.1.1)

with % := ρ− ρr. The source equation (2.4.6) now is given by

%′′ + (γx + γm)%′ + γxγm% = ∆Γ. (4.1.2)

The solution (2.4.8) is valid for late time evolution, nevertheless if we are interested into
consider data from BAO and/or CMB, which consider high redshifts, we need to take into
account the radiation contribution in the equations. If we consider ρ = ρm + ρx + ρr, with ρr

the energy density of relativistic matter, which we assume it is non-interacting with the other
fluids, the solution (2.4.8) of equation (2.4.7) is still valid but now, for interactions Γ1 − Γ5 we
have

ρ(a) =
[
C1a

3
2λ1 + C2a

3
2λ2

] 1
1+b2

+ 3H2
0 (1− Ωx0 − Ωm0)a−4, (4.1.3)

where Ωm0 is the density parameter of DM and baryons today, Ωm0 = Ωb0 + ΩDM0 and the
constants C1 and C2 are given by

C1 =
[
3H2

0 (Ωx0 + Ωm0)
]1+b2 − C2 (4.1.4)

C2 = −
[
3H2

0 (Ωx0 + Ωm0)
]b2 [

3H2
0 (Ωx0γx + Ωm0γm)

]
(1 + b2)/(λ2 − λ1)

−λ1

[
3H2

0 (Ωx0 + Ωm0)
]1+b2

/(λ2 − λ1) (4.1.5)

The value of the constants b1, b2, b3 is given in Table 2.2.
For interaction Γ6 we can decompose the general solution into a homogeneous solution ρh

and a particular solution ρp, then the general solution is given by ρ = ρh +ρp. The homogeneous
part of the solution ρh corresponds to (4.1.3) and the particular solution is given by:

ρp(a) = −9Ra−4, (4.1.6)
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where R = 3α∆H2
0 (1−Ωm0−Ωx0)/(12b1− 9b3− 16) and the constants C1 and C2 are given by:

C1 = 3H2
0 (Ωx0 + Ωm0) + 9R− C2, (4.1.7)

C2 =
3H2

0 ∆Ωx0 − (9λ1 + 12)R−
[
3H2

0 (Ωx0 + Ωm0)
]

(γm + λ1)

λ2 − λ1
. (4.1.8)

For Γ7 and Γ8 we use the same method to find ρ(a) where the homogeneous part ρh is given
by (4.1.3) and the particular solution is (4.1.6), the constants C1 and C2 take the form of Eqs.
(4.1.7) and (4.1.8) and for Γ7 and Γ8, R = −4α∆H2

0 (1 − Ωm0 − Ωx0)/(12b1 − 9b3 − 16) and
R = −2α∆H2

0 (1− Ωm0 − Ωx0)/(12b1 − 9b3 − 16) respectively.
We can therefore calculate the asymptotic limit of the coincidence parameter r(a) in Eq.

(2.4.14) when a tends to ∞. For all our interactions we get that

r∞ = −

[
1 +

2(γx − 1)(1 + b2)

2(1 + b2)− b1 +
√
b21 − 4b3(1 + b2)

]
, (4.1.9)

a constant that depends on the state parameters and interaction parameters. The author of
Ref. [18] noticed that for a constant and positive γx and for an interacting term proportional
to ρ, ρ′ or ρx, it is obtained a positive r parameter asymptotically constant, alleviating in this
sense the coincidence problem.

4.2 Observational analysis
In our calculations we consider the energy density of radiation for photons and neutrinos, since
the photons are accompanied with neutrinos and antineutrinos, giving a total energy density in
radiation (that is, in massless or nearly massless particles) given by

Ωr0 =

[
1 +Neff

(
7

8

)(
4

11

)4/3
]

Ωγ0, (4.2.1)

where Neff is the effective number of types of neutrinos and Ωγ0 is the energy density of photons
whose value today is known from the CMB temperature Ωγ0 = 2.469 × 10−5h−2 [1]. The
deduction and calculus of (4.2.1) can be found in [1]. In this analysis it is considered the value
of Neff = 3.04 according to [51].

It is also considered in this analysis the energy density of baryons Ωb0 = 0.02222h−2 obtained
from Planck Collaboration [3].

In order to analize the different interacting models, the following data is used: i) Distance
modulus (µ) v/s redshift (z) of type Ia supernovae from the Constitution, Union 2 and Union
2.1 and binned JLA compilations, ii) H(z) from ref. [52], iii) Acoustic parameter (A(z), 3 data
points from the WiggleZ experiment [53]) and the distance ratio, (dz, 2 data points from the
SDSS [54] and 1 data point from the 6dFGS [55] surveys), see below, obtained from the analysis
of the baryonic acoustic oscillations.

In order to fit the cosmological models to the data the Chi-Square Method is used. Each data
set (Constitution, Union 2, Union 2.1, H(z), WiggleZ, SDSS and 6dFGS) has a corresponding
Chi-Square function (χ2

SN, χ
2
H, χ

2
WiggleZ, χ

2
SDSS and χ2

6dFGS respectively). For the Supernovae
data we choose one of the three data sets and compute the corresponding Chi-Squared function
χ2

SN. We did not include CMB data in our analysis because the shift parameter is well defined
only in the case of matter conservation [37], not in the case of interacting scenarios. The
available data presented in Section 2.5.5 is given in terms of a covariance matrix, where the shift
parameter and its error is already taken into account, then we can not use these data in our
analysis.

Theses functions are defined as follows:
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• For the type Ia Supernovae we use

χ2
SN =

N∑
i=1

(µi,th − µi,obs)
2

σ2
i

, (4.2.2)

where µ(z) is the distance modulus, “th” represents the theoretical function, “obs” the
observed value and σi is the error associated to the observed value.

• Similarly, for H(z) we have,

χ2
H =

N∑
i=1

(Hi,th −Hi,obs)
2

σ2
i

. (4.2.3)

• In the case of WiggleZ we use the inverse of the covariance matrix [53],

χ2
WiggleZ = (Ath −Aobs)C

−1
WiggleZ(Ath −Aobs)

T , (4.2.4)

with Aobs = (0.474, 0.442, 0.424) at redshifts z = (0.44, 0.6, 0.73) respectively, and

C−1
WiggleZ =

 1040.3 −807.5 336.8
−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

 . (4.2.5)

• Analogously, for SDSS [54] we have

χ2
SDSS = (dth − dobs)C

−1
SDSS(dth − dobs)

T , (4.2.6)

with dobs = (0.1905, 0.1097) at redshifts z = (0.2, 0.35) and

C−1
SDSS =

(
30124 17227
−17227 86977

)
. (4.2.7)

• Finally, for 6dRFGS, where we only have one data point, we define

χ2
6dFGS =

(
dth − dobs

σ

)2

, (4.2.8)

with dobs = 0.336 and σ = 0.015, at redshift z = 0.106 [55].

Then, each Chi-Squared function depends on the parameters of the models and in order
to find the best fit model parameters we perform a joint analysis by using all the indicated
data by minimizing the χ2 function defined as:

χ2 = χ2
SN + χ2

H(z) + χ2
BAO, (4.2.9)

where χ2
BAO = χ2

WiggleZ + χ2
SDSS + χ2

6dFGS.
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4.3 Model fitting
For model fitting we use the Chi-Squared method through the Levenberg-Marquardt algorithm
(see appendix, section A.5) implemented in the package lmfit of Python. For all the studied
interactions we use a fixed γm. The search ranges of the free parameters in our models are:
Ωm ∈ [0, 1], γx ∈ [−0.5, 0.5], α ∈ [−0.5, 0.5], β ∈ [−0.5, 0.5] and h ∈ [0, 1]. We use the combined
datasets Union 2.1 (Constitution, Union 2 or JLA), H(z) and BAO for the data fitting and we
restrict our analysis to a maximum of 4 free parameters for each model.

We fix parameters such as γm = 1 which corresponds to a cold dark matter scenario or
(γm, γx) = (1, 0) that corresponds to a Λ(t)CDM model [14]. For these scenarios we can addi-
tionally fix the parameters associated with different models of phenomenological interaction, α
and/or β. Furthermore, in our analysis, we do not consider for interacting model Γ2 the cases
“a” (γx fixed to 0) and “f” (γx and α fixed to 0) since, for these 2 cases the uncertainty associated
to the parameter estimation grows significantly.

In Table 4.1 the best fit parameters for all the analyzed models are shown, we used a joint
analysis considering Union 2.1+H(z)+BAO. We have also included, besides interacting models,
ΛCDM and ωCDM models as comparison. In this table all interacting scenarios and ωCDM
model present a negative value of the barotropic index of DE (γx), indicating that there is a
trend in favour of phantom DE models. Nevertheless, γx is compatible with zero considering
the 1σ confidence level.

In Table 4.2 we show the joint analysis considering only Union 2.1 and H(z) data, for the
studied models with three free parameters. We note that all the results are consistent in general
with the results in Table 4.1 but the uncertainty associated to the interaction parameters α
and β are larger when we use only these data. Furthermore, in Table 4.1 the sign of the
interaction parameters can be positive or negative in most of these cases inside the 1σ region for
the parameter. By considering only Union 2.1 and H(z) data we restrict ourselves to three free
parameters because, in order to constrain models with more parameters we would need more
data. For instance, we notice that in models of four free parameters the confidence interval
became significantly large in comparison with models of three free parameters. This degeneracy
decreases when we add BAO data to the joint analysis.

In Tables 4.1 and 4.2 we noticed that even though there is a deviation from the ΛCDM sce-
nario, we obtained similar values for the current deceleration parameter q0, the current effective
state parameter ωeff and the age of our Universe for all the studied interacting scenarios.

In Table 4.3 we extend our analysis by considering binned data of the more recent JLA
compilation of SN Ia [26]. We note that for the joint analysis using Union 2.1 or JLA compilation
the results are consistent, and in light of the Bayesian information criterion, the interacting
models are ordered according to the number of free parameters of each model.

In our analysis ΛCDM is the model with the lowest BIC parameters when we use data
from the joint analysis of Union2.1+H(z)+BAO (Table 4.1), Union2.1+H(z) (Table 4.2) or
JLA+H(z)+BAO (Table 4.3). From Figure 4.1 we see that, when the underlying model is
assumed to be ΛCDM, AIC indicates that all models with 3 free parameters are in the region of
“strong evidence in favor”. Nevertheless under BIC, interacting models with 4 free parameters
are further than having “strong evidence against” and the models of 3 free parameters are in the
upper limit of having “evidence against”. The model ωCDM is also incompatible with ΛCDM
with respect to BIC. From Figures 4.1 and 4.2, we notice a tension between AIC and BIC results,
while AIC indicates there is “evidence in favor” BIC indicates that there is “evidence against” or
“strong evidence against” for the same model. This is due to the fact that BIC strongly penalizes
models when they have a larger number of parameters [45].

Regarding BIC, there are not interacting models compatible with ΛCDM in our work. This is
consistent with the results of Ref. [13], where the authors conclude that the particular interacting
model they study is disfavored compared to ΛCDM, also they notice that BIC is a more stringent
criteria. From here on we restrict ourselves to the more stringent criteria. According to BIC the
models are ordered in agreement with the number of free parameters, as we see in Table 4.3.

If we compare the models without considering ΛCDM, the best model according to AIC and
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Model Ωm γx α β h q0 ωeff Age AIC BIC
Γ1a 0.243± 0.026 Fixed 0.005± 0.009 −0.03± 0.070 0.699± 0.003 −0.567± 0.040 −0.711± 0.026 13.786± 0.684 587.789 605.469
Γ1b 0.247± 1.495 −0.059± 2.211 Fixed 0.005± 2.266 0.701± 0.004 −0.624± 3.339 −0.75± 2.226 13.614± 25.424 587.423 605.103
Γ1c 0.246± 0.044 −0.053± 0.134 0.001± 0.011 Fixed 0.701± 0.004 −0.618± 0.158 −0.746± 0.105 13.637± 0.653 587.398 605.078
Γ1d 0.246± 0.049 −0.053± 0.140 0.001± 0.011 0.001± 0.011 0.701± 0.004 −0.619± 0.167 −0.746± 0.111 13.633± 0.722 587.400 605.080
Γ1e 0.238± 0.022 Fixed Fixed 0.005± 0.052 0.699± 0.003 −0.574± 0.033 −0.716± 0.022 13.652± 0.475 586.500 599.760
Γ1f 0.235± 0.015 Fixed 0.003± 0.008 Fixed 0.699± 0.003 −0.579± 0.022 −0.719± 0.015 13.687± 0.219 586.049 599.309
Γ2b 0.247± 1.712 −0.059± 2.531 Fixed 0.079± 40.317 0.701± 0.004 −0.625± 3.824 −0.750± 2.550 13.613± 29.852 587.423 605.103
Γ2c 0.246± 0.044 −0.052± 0.134 −0.001± 0.011 Fixed 0.701± 0.004 −0.618± 0.158 −0.746± 0.106 13.637± 0.656 587.398 605.078
Γ2d 0.246± 0.044 −0.053± 0.134 −0.001± 0.011 −0.001± 0.011 0.701± 0.004 −0.619± 0.158 −0.746± 0.106 13.636± 0.656 587.398 605.078
Γ2e 0.235± 0.015 Fixed −0.003± 0.008 Fixed 0.699± 0.003 −0.579± 0.022 −0.719± 0.015 13.687± 0.219 586.049 599.309
Γ3 0.246± 0.042 −0.052± 0.132 0.001± 0.006 −−− 0.701± 0.004 −0.618± 0.156 −0.746± 0.104 13.637± 0.638 587.398 605.078
Γ3a 0.235± 0.015 Fixed 0.002± 0.004 −−− 0.699± 0.003 −0.579± 0.022 −0.719± 0.015 13.690± 0.214 586.040 599.300
Γ4 0.246± 0.042 −0.052± 0.132 0.001± 0.011 −−− 0.701± 0.004 −0.618± 0.155 −0.745± 0.103 13.638± 0.627 587.398 605.078
Γ4a 0.235± 0.014 Fixed 0.003± 0.008 −−− 0.699± 0.003 −0.579± 0.022 −0.719± 0.014 13.693± 0.208 586.032 599.292
Γ5 0.248± 0.157 −0.060± 0.206 0.006± 0.455 −−− 0.701± 0.004 −0.624± 0.331 −0.749± 0.221 13.618± 2.685 587.430 605.110
Γ5a 0.241± 0.024 Fixed −0.006± 0.095 −−− 0.699± 0.003 −0.570± 0.035 −0.713± 0.024 13.672± 0.499 586.507 599.767
Γ6 0.246± 0.047 −0.053± 0.138 0.001± 0.010 −−− 0.701± 0.004 −0.619± 0.164 −0.746± 0.110 13.634± 0.713 587.400 605.080
Γ6a 0.235± 0.015 Fixed 0.003± 0.007 −−− 0.699± 0.003 −0.580± 0.023 −0.720± 0.015 13.679± 0.243 586.094 599.354
Γ7 0.246± 0.043 −0.053± 0.133 −0.001± 0.010 −−− 0.701± 0.004 −0.619± 0.156 −0.746± 0.104 13.637± 0.642 587.398 605.078
Γ7a 0.235± 0.015 Fixed −0.003± 0.007 −−− 0.699± 0.003 −0.579± 0.022 −0.719± 0.015 13.690± 0.216 586.046 599.306
Γ8 0.247± 0.034 −0.050± 0.122 0.003± 0.025 −−− 0.701± 0.004 −0.616± 0.140 −0.744± 0.093 13.647± 0.528 587.394 605.074
Γ8a 0.237± 0.013 Fixed 0.010± 0.021 −−− 0.699± 0.003 −0.576± 0.020 −0.718± 0.013 13.717± 0.198 585.915 599.175

ωCDM 0.249± 0.027 −0.059± 0.093 −−− −−− 0.701± 0.004 −0.622± 0.107 −0.748± 0.072 13.625± 0.409 585.435 598.695
ΛCDM 0.240± 0.014 −−− −−− −−− 0.699± 0.003 −0.571± 0.021 −0.714± 0.014 13.665± 0.189 584.513 593.353

Table 4.1: Results of the data fitting using the joint analysis from Union 2.1, H(z) and BAO.
The error informed corresponds to 68% confidence level. Fixed means that the parameter was
set to zero and the dashed lines mean that the model do not have that parameter. q0 is the
current value of the deceleration parameter, weff is the value of the effective state parameter
today and it is reported the calculated age of the Universe in Gy. The AIC and BIC parameters
are indicated in each case. The uncertainties associated to the parameter q0, weff and the age
of the Universe were calculated using propagation of uncertainty (see appendix, section A.4).
Source: Own elaboration.

Model Ωm γx α β h q0 ωeff Age AIC BIC
Γ1d 0.214± 0.055 Fixed Fixed 0.047± 0.129 0.701± 0.004 −0.613± 0.082 −0.742± 0.055 13.65± 1.149 583.985 597.215
Γ1e 0.218± 0.032 Fixed 0.054± 0.109 Fixed 0.701± 0.004 −0.607± 0.049 −0.738± 0.032 13.42± 1.106 583.889 597.119
Γ2d 0.218± 0.032 Fixed −0.052± 0.098 Fixed 0.701± 0.004 −0.607± 0.049 −0.738± 0.032 13.420± 1.106 583.889 597.119
Γ3a 0.220± 0.030 Fixed 0.035± 0.068 −−− 0.701± 0.004 −0.605± 0.045 −0.737± 0.030 13.368± 1.141 583.880 597.110
Γ4a 0.222± 0.026 Fixed 0.095± 0.178 −−− 0.701± 0.004 −0.602± 0.038 −0.734± 0.026 13.280± 1.205 583.867 597.098
Γ5a 0.214± 0.066 Fixed 0.073± 0.248 −−− 0.701± 0.004 −0.613± 0.099 −0.742± 0.066 13.686± 1.280 584.028 597.259
Γ6a 0.215± 0.043 Fixed 0.026± 0.060 −−− 0.701± 0.004 −0.612± 0.065 −0.741± 0.043 13.534± 1.133 583.933 597.164
Γ7a 0.218± 0.032 Fixed −0.054± 0.109 −−− 0.701± 0.004 −0.607± 0.049 −0.738± 0.032 13.420± 1.106 583.889 597.119
Γ8a 0.219± 0.076 Fixed −0.051± 0.273 −−− 0.701± 0.005 −0.606± 0.114 −0.737± 0.076 13.799± 1.167 584.077 597.307

ωCDM 0.247± 0.041 −0.047± 0.129 −−− −−− 0.701± 0.004 −0.613± 0.152 −0.742± 0.101 13.650± 0.607 583.985 597.215
ΛCDM 0.233± 0.016 −−− −−− −−− 0.700± 0.003 −0.585± 0.023 −0.723± 0.016 13.758± 0.222 582.118 590.938

Table 4.2: Results of the data fitting using the joint analysis from Union 2.1 and H(z). Source:
Own elaboration.
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Model BIC f.p.
ΛCDM 58.489 2
ωCDM 62.173 3

Γ8a 62.231 3
Γ4a 62.329 3
Γ3a 62.337 3
Γ7a 62.342 3
Γ1f 62.345 3
Γ6a 62.381 3
Γ5a 62.654 3
Γ1e 62.661 3
Γ2e 62.664 3
Γ8 66.241 4
Γ1a 66.245 4
Γ4 66.266 4
Γ3 66.268 4
Γ7 66.269 4
Γ1c 66.270 4
Γ2c 66.270 4
Γ2d 66.270 4
Γ6 66.278 4
Γ1d 66.279 4
Γ1b 66.342 4
Γ2b 66.342 4
Γ5 66.347 4

Model BIC f.p.
ΛCDM 593.353 2
ωCDM 598.695 3

Γ8a 599.175 3
Γ4a 599.292 3
Γ3a 599.300 3
Γ7a 599.306 3
Γ1f 599.309 3
Γ2e 599.309 3
Γ6a 599.354 3
Γ1e 599.760 3
Γ5a 599.767 3
Γ8 605.074 4
Γ1c 605.078 4
Γ2c 605.078 4
Γ2d 605.078 4
Γ3 605.078 4
Γ4 605.078 4
Γ7 605.078 4
Γ1d 605.080 4
Γ6 605.080 4
Γ1b 605.103 4
Γ2b 605.103 4
Γ5 605.110 4
Γ1a 605.469 4

Table 4.3: Ranking of models according to BIC. In the left panel we show the joint analy-
sis of binned JLA+H(z)+BAO and in the right panel we have the joint analysis of Union
2.1+H(z)+BAO. f.p. means number of free parameters in the model. Source: Own elabora-
tion.
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Figure 4.1: ∆AIC and ∆BIC of models defined in Table 4.1 compared to ΛCDM. Source: Own
elaboration.
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Figure 4.2: Models defined in Table 4.1 compared to the ωCDM model. Source: Own elabora-
tion.

BIC is ωCDM. We note that under BIC all models with three free parameters (f.p.) can not
be rule out when we assume that ωCDM is the underlying model, see Table 4.3. In Figure 4.2
we see that by using BIC there is “strong evidence against” models with 4 f.p. when the base
model is ωCDM. We can rule out models of 4 f.p. but not models of 3 f.p. if the best model is
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Figure 4.3: Coincidence parameter in semilog scale. By using Union 2.1 +H(z)+BAO, these
interactions have an energy transfer from DE to DM today. Source: Own elaboration.
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Figure 4.4: Semilog graphic of the evolution of the density parameters for the interacting model
Γ8a considering Union 2.1 +H(z)+BAO. Note that the interaction has a sign change at redshift
z = 0.7 approximately. Source: Own elaboration.

ωCDM. On the other hand, the best interacting model under BIC (and AIC) is Γ8a, which has
an interaction proportional to the deceleration parameter q.

Among all our models, those shown in Figure 4.3 alleviate the coincidence problem, besides,
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Model Ωm γx α β h q0 ωeff Age AIC BIC
Γ1a 0.248± 0.033 Fixed −0.011± 0.013 0.048± 0.096 0.650± 0.004 −0.548± 0.05 −0.699± 0.033 14.264± 0.73 499.809 516.074
Γ1b 0.251± 0.283 0.039± 0.389 Fixed −0.025± 0.400 0.650± 0.005 −0.503± 0.575 −0.669± 0.383 14.544± 5.127 501.484 517.749
Γ1c 0.260± 0.027 −0.003± 0.085 −0.007± 0.010 Fixed 0.650± 0.005 −0.534± 0.097 −0.689± 0.064 14.400± 0.426 500.290 516.555
Γ1d 0.260± 0.028 0.003± 0.083 −0.006± 0.009 −0.006± 0.009 0.650± 0.005 −0.528± 0.095 −0.686± 0.063 14.424± 0.436 500.425 516.689
Γ1e 0.256± 0.028 Fixed Fixed −0.024± 0.062 0.651± 0.004 −0.537± 0.042 −0.691± 0.028 14.511± 0.614 499.898 512.096
Γ1f 0.259± 0.019 Fixed −0.007± 0.010 Fixed 0.650± 0.004 −0.532± 0.029 −0.688± 0.019 14.403± 0.283 498.292 510.490
Γ2b 0.251± 0.267 0.039± 0.368 Fixed 0.390± 5.620 0.650± 0.005 −0.503± 0.544 −0.669± 0.363 14.544± 6.024 501.484 517.749
Γ2c 0.260± 0.027 −0.003± 0.085 0.007± 0.010 Fixed 0.650± 0.005 −0.534± 0.097 −0.689± 0.064 14.400± 0.425 500.290 516.555
Γ2d 0.260± 0.027 −0.003± 0.085 0.007± 0.010 0.007± 0.010 0.650± 0.005 −0.534± 0.097 −0.69± 0.064 14.400± 0.422 500.290 516.554
Γ2e 0.259± 0.019 Fixed Fixed 0.999± 0.002 0.650± 0.004 −0.532± 0.029 −0.688± 0.019 14.404± 0.286 498.292 510.490
Γ3 0.260± 0.027 −0.004± 0.085 −0.004± 0.006 −−− 0.650± 0.005 −0.535± 0.097 −0.690± 0.065 14.393± 0.415 500.252 516.517
Γ3a 0.259± 0.019 Fixed −0.004± 0.005 −−− 0.650± 0.004 −0.532± 0.029 −0.688± 0.019 14.397± 0.276 498.256 510.454
Γ4 0.260± 0.027 −0.005± 0.086 −0.008± 0.011 −−− 0.650± 0.005 −0.537± 0.097 −0.691± 0.065 14.386± 0.416 500.213 516.478
Γ4a 0.259± 0.019 Fixed −0.007± 0.011 −−− 0.650± 0.004 −0.533± 0.029 −0.688± 0.019 14.390± 0.270 498.219 510.417
Γ5 0.250± 0.088 0.043± 0.120 −0.044± 0.257 −−− 0.650± 0.005 −0.501± 0.179 −0.667± 0.119 14.538± 1.704 501.541 517.806
Γ5a 0.254± 0.032 Fixed −0.031± 0.129 −−− 0.652± 0.004 −0.541± 0.048 −0.694± 0.032 14.488± 0.685 500.020 512.219
Γ6 0.260± 0.028 0.002± 0.083 −0.006± 0.008 −−− 0.650± 0.005 −0.529± 0.095 −0.686± 0.063 14.417± 0.443 500.392 516.656
Γ6a 0.260± 0.020 Fixed −0.006± 0.008 −−− 0.650± 0.004 −0.531± 0.030 −0.687± 0.020 14.415± 0.308 498.392 510.591
Γ7 0.260± 0.027 −0.004± 0.085 0.006± 0.009 −−− 0.650± 0.005 −0.535± 0.097 −0.690± 0.064 14.391± 0.417 500.262 516.526
Γ7a 0.259± 0.019 Fixed 0.006± 0.008 −−− 0.650± 0.004 −0.532± 0.029 −0.688± 0.019 14.395± 0.277 498.265 510.463
Γ8 0.259± 0.026 −0.022± 0.095 −0.024± 0.032 −−− 0.651± 0.005 −0.555± 0.106 −0.703± 0.071 14.327± 0.388 499.922 516.186
Γ8a 0.255± 0.019 Fixed −0.021± 0.030 −−− 0.650± 0.004 −0.538± 0.029 −0.692± 0.019 14.352± 0.257 498.000 510.198

ωCDM 0.243± 0.021 0.036± 0.071 −−− −−− 0.650± 0.005 −0.519± 0.081 −0.679± 0.054 14.469± 0.346 499.777 511.976
ΛCDM 0.248± 0.018 −−− −−− −−− 0.652± 0.004 −0.550± 0.027 −0.700± 0.018 14.445± 0.251 498.130 506.262

Table 4.4: Results of the data fitting using the joint analysis from Constitution, H(z) and BAO.
Source: Own elaboration.

Model Ωm γx α β h q0 ωeff Age AIC BIC
Γ1a 0.240± 0.024 Fixed 0.006± 0.009 −0.030± 0.065 0.699± 0.003 −0.572± 0.036 −0.715± 0.024 13.84± 0.648 568.383 585.910
Γ1b 0.245± 1.916 −0.073± 2.861 Fixed 0.008± 2.935 0.702± 0.004 −0.643± 4.336 −0.762± 2.89 13.645± 32.835 567.587 585.114
Γ1c 0.246± 0.043 −0.068± 0.135 0.001± 0.011 Fixed 0.701± 0.004 −0.636± 0.159 −0.757± 0.106 13.674± 0.655 567.590 585.118
Γ1d 0.246± 0.049 −0.068± 0.144 0.001± 0.011 0.001± 0.011 0.702± 0.004 −0.636± 0.173 −0.758± 0.115 13.671± 0.741 567.589 585.116
Γ1e 0.235± 0.022 Fixed Fixed 0.007± 0.051 0.698± 0.003 −0.579± 0.033 −0.719± 0.022 13.692± 0.475 567.189 580.335
Γ1f 0.232± 0.015 Fixed 0.004± 0.008 Fixed 0.699± 0.003 −0.584± 0.023 −0.723± 0.015 13.736± 0.227 566.648 579.793
Γ2b 0.245± 2.091 −0.074± 3.123 Fixed 0.096± 39.266 0.702± 0.004 −0.643± 4.733 −0.762± 3.155 13.645± 37.018 567.587 585.114
Γ2c 0.246± 0.044 −0.068± 0.136 −0.001± 0.011 Fixed 0.701± 0.004 −0.636± 0.160 −0.757± 0.107 13.673± 0.660 567.590 585.118
Γ2d 0.246± 0.043 −0.068± 0.135 −0.001± 0.011 −0.001± 0.011 0.701± 0.004 −0.636± 0.159 −0.757± 0.106 13.674± 0.653 567.590 585.118
Γ2e 0.232± 0.015 Fixed −0.004± 0.008 Fixed 0.699± 0.003 −0.584± 0.023 −0.723± 0.015 13.736± 0.227 566.648 579.793
Γ3 0.246± 0.042 −0.068± 0.132 0.000± 0.006 −−− 0.701± 0.004 −0.636± 0.156 −0.757± 0.104 13.675± 0.633 567.591 585.118
Γ3a 0.232± 0.015 Fixed 0.002± 0.004 −−− 0.699± 0.003 −0.584± 0.022 −0.722± 0.015 13.739± 0.221 566.639 579.785
Γ4 0.246± 0.041 −0.068± 0.132 0.001± 0.011 −−− 0.701± 0.004 −0.636± 0.155 −0.757± 0.103 13.674± 0.622 567.592 585.119
Γ4a 0.232± 0.015 Fixed 0.004± 0.008 −−− 0.699± 0.003 −0.583± 0.022 −0.722± 0.015 13.742± 0.216 566.631 579.776
Γ5 0.246± 0.146 −0.075± 0.195 0.011± 0.428 −−− 0.702± 0.004 −0.643± 0.313 −0.762± 0.209 13.650± 2.518 567.599 585.127
Γ5a 0.239± 0.023 Fixed −0.004± 0.092 −−− 0.698± 0.003 −0.574± 0.035 −0.716± 0.023 13.714± 0.492 567.212 580.358
Γ6 0.246± 0.048 −0.068± 0.143 0.001± 0.010 −−− 0.701± 0.004 −0.636± 0.171 −0.758± 0.114 13.672± 0.736 567.589 585.117
Γ6a 0.232± 0.016 Fixed 0.003± 0.007 −−− 0.699± 0.003 −0.584± 0.024 −0.723± 0.016 13.727± 0.251 566.700 579.845
Γ7 0.246± 0.042 −0.068± 0.134 −0.001± 0.010 −−− 0.701± 0.004 −0.636± 0.158 −0.757± 0.105 13.674± 0.644 567.591 585.118
Γ7a 0.232± 0.015 Fixed −0.003± 0.007 −−− 0.699± 0.003 −0.584± 0.022 −0.722± 0.015 13.739± 0.223 566.646 579.791
Γ8 0.246± 0.032 −0.067± 0.117 0.002± 0.025 −−− 0.701± 0.004 −0.634± 0.134 −0.756± 0.089 13.679± 0.500 567.595 585.123
Γ8a 0.234± 0.014 Fixed 0.011± 0.021 −−− 0.699± 0.003 −0.581± 0.020 −0.721± 0.014 13.771± 0.206 566.496 579.642

ωCDM 0.248± 0.025 −0.073± 0.088 −−− −−− 0.702± 0.004 −0.638± 0.102 −0.759± 0.068 13.664± 0.383 565.616 578.761
ΛCDM 0.238± 0.014 −−− −−− −−− 0.698± 0.003 −0.575± 0.021 −0.717± 0.014 13.708± 0.195 565.215 573.979

Table 4.5: Results of the data fitting using the joint analysis from Union 2, H(z) and BAO.
Source: Own elaboration.

all of them have an energy transfer from DE to DM today. In the case of Γ8a, for z > 0.7 we
have an energy transfer from DM to DE and for z < 0.7 the energy transfer is from DE to DM
as we see in Figure 4.4.

It is noteworthy to mention that interaction Γ8a is marginally better than other interacting
models according to AIC and BIC and this interaction alleviates the coincidence problem and
changes sign during evolution. A similar behavior was reported in Ref. [12] where the authors
separate the data in redshift bins for Q = 3Hδ, where δ is a constant fitted for each bin. The
authors consider different parameterizations of the equation of state for DE and they found an
oscillation of the interaction sign. Sign-changeable interactions were also studied in Refs. [16,56]

As summary, from our analysis we notice that there are consistent interacting models that
explain the data equally well that ωCDM, and an increase of the number of free parameters in
interacting models is strongly penalized according to BIC in the description of the late Universe.

In Table 4.4, we consider data from Constitution, H(z) and BAO, the “best interacting
model” according to BIC is Γ8a . Nevertheless, from these data we obtain that the parameter
of state of DE γx for the different interactions changes sign (on the contrary of Union 2.1, H(z)

34



0.0 0.5 1.0 1.5 2.0 2.5

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

q(
z)

γx=0.0 α=0.005 β=-0.03

γx=-0.059 α=0.0 β=0.005

γx=-0.053 α=0.001 β=0.0

γx=-0.053 α=0.001 β=0.001

γx=0.0 α=0.0 β=0.005

γx=0.0 α=0.003 β=0.0

γx=0.0 α=0.0 β=0.0

0.0 0.5 1.0 1.5 2.0 2.5

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q(
z)

γx=-0.059 α=0.0 β=0.079

γx=-0.052 α=-0.001 β=0.0

γx=-0.053 α=-0.001 β=-0.001

γx=0.0 α=0.0 β=-0.999

γx=0.0 α=0.0 β=0.0

0.0 0.5 1.0 1.5 2.0 2.5

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q(
z)

γx=-0.052 α=0.001

γx=0.0 α=0.002

γx=-0.059 α=0.0

γx=0.0 α=0.0

0.0 0.5 1.0 1.5 2.0 2.5

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q(
z)

γx=-0.052 α=0.001

γx=0.0 α=0.003

γx=-0.059 α=0.0

γx=0.0 α=0.0

0.0 0.5 1.0 1.5 2.0 2.5

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q(
z)

γx=-0.06 α=0.006

γx=0.0 α=-0.006

γx=-0.059 α=0.0

γx=0.0 α=0.0

0.0 0.5 1.0 1.5 2.0 2.5

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q(
z)

γx=-0.053 α=0.001

γx=0.0 α=0.003

γx=-0.059 α=0.0

γx=0.0 α=0.0

0.0 0.5 1.0 1.5 2.0 2.5

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q(
z)

γx=-0.053 α=-0.001

γx=0.0 α=-0.003

γx=-0.059 α=0.0

γx=0.0 α=0.0

0.0 0.5 1.0 1.5 2.0 2.5

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q(
z)

γx=-0.05 α=0.003

γx=0.0 α=0.01

γx=-0.059 α=0.0

γx=0.0 α=0.0

Figure 4.5: Deceleration parameter considering data from Union 2.1, H(z) and BAO. The
graphics are ordered by the number of interaction, from Γ1 to Γ8, from left to right and from
top to bottom. Source: Own elaboration.
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Figure 4.6: Effective parameter of state ωeff considering data from Union 2.1, H(z) and BAO.
The graphics are ordered by the number of interaction, from Γ1 to Γ8, from left to right and
from top to bottom. Source: Own elaboration.
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Model Ωm γx α β h q0 ωeff Age AIC BIC
Γ1d 0.218± 0.073 Fixed Fixed 0.123± 0.185 0.651± 0.005 −0.597± 0.110 −0.731± 0.073 14.065± 1.289 495.674 507.830
Γ1e 0.229± 0.037 Fixed 0.124± 0.115 Fixed 0.652± 0.005 −0.581± 0.056 −0.721± 0.037 13.548± 1.128 495.078 507.235
Γ2d 0.229± 0.037 Fixed −0.11± 0.091 Fixed 0.652± 0.005 −0.581± 0.056 −0.721± 0.037 13.548± 1.128 495.078 507.235
Γ3a 0.232± 0.034 Fixed 0.076± 0.068 −−− 0.651± 0.005 −0.576± 0.051 −0.717± 0.034 13.444± 1.142 495.022 507.179
Γ4a 0.238± 0.029 Fixed 0.194± 0.163 −−− 0.651± 0.005 −0.568± 0.044 −0.712± 0.029 13.285± 1.174 494.954 507.110
Γ5a 0.221± 0.092 Fixed 0.195± 0.387 −−− 0.651± 0.006 −0.593± 0.139 −0.729± 0.092 14.149± 1.476 495.920 508.076
Γ6a 0.221± 0.052 Fixed 0.066± 0.073 −−− 0.652± 0.005 −0.593± 0.078 −0.729± 0.052 13.774± 1.207 495.327 507.483
Γ7a 0.229± 0.037 Fixed −0.124± 0.115 −−− 0.652± 0.005 −0.581± 0.056 −0.721± 0.037 13.548± 1.128 495.078 507.234
Γ8a 0.252± 0.112 Fixed −0.057± 0.484 −−− 0.650± 0.006 −0.546± 0.168 −0.698± 0.112 14.370± 1.470 496.270 508.426

ωCDM 0.298± 0.050 −0.123± 0.185 Fixed −−− 0.651± 0.005 −0.597± 0.199 −0.731± 0.133 14.065± 0.680 495.674 507.830
ΛCDM 0.265± 0.021 Fixed Fixed −−− 0.649± 0.004 −0.526± 0.031 −0.684± 0.021 14.301± 0.276 494.301 502.406

Table 4.6: Results of the data fitting using the joint analysis from Constitution and H(z).
Source: Own elaboration.

Model Ωm γx α β h q0 ωeff Age AIC BIC
Γ1d 0.196± 0.057 Fixed Fixed 0.078± 0.134 0.702± 0.004 −0.640± 0.086 −0.760± 0.057 13.644± 1.157 564.203 577.318
Γ1e 0.205± 0.032 Fixed 0.091± 0.110 Fixed 0.701± 0.004 −0.627± 0.048 −0.752± 0.032 13.271± 1.081 563.949 577.063
Γ2d 0.205± 0.032 Fixed −0.084± 0.092 Fixed 0.701± 0.004 −0.627± 0.048 −0.752± 0.032 13.271± 1.081 563.949 577.063
Γ3a 0.207± 0.029 Fixed 0.058± 0.068 −−− 0.701± 0.004 −0.624± 0.044 −0.749± 0.029 13.19± 1.110 563.931 577.046
Γ4a 0.211± 0.025 Fixed 0.154± 0.174 −−− 0.701± 0.004 −0.618± 0.037 −0.745± 0.025 13.057± 1.168 563.912 577.027
Γ5a 0.197± 0.070 Fixed 0.119± 0.253 −−− 0.701± 0.005 −0.639± 0.105 −0.759± 0.070 13.704± 1.292 564.324 577.439
Γ6a 0.199± 0.044 Fixed 0.044± 0.061 −−− 0.702± 0.004 −0.636± 0.066 −0.758± 0.044 13.453± 1.129 564.064 577.179
Γ7a 0.205± 0.032 Fixed −0.091± 0.110 −−− 0.701± 0.004 −0.627± 0.048 −0.752± 0.032 13.271± 1.081 563.949 577.063
Γ8a 0.205± 0.080 Fixed −0.085± 0.279 −−− 0.701± 0.005 −0.627± 0.120 −0.752± 0.080 13.891± 1.186 564.449 577.564

ωCDM 0.252± 0.040 −0.078± 0.134 −−− −−− 0.702± 0.004 −0.640± 0.156 −0.760± 0.104 13.644± 0.598 564.203 577.318
ΛCDM 0.229± 0.016 −−− −−− −−− 0.700± 0.003 −0.591± 0.024 −0.728± 0.016 13.825± 0.234 562.574 571.317

Table 4.7: Results of the data fitting using the joint analysis from Union 2 and H(z). Source:
Own elaboration.

and BAO and Union 2, H(z) and BAO where γx is negative for all interacting models). Fur-
thermore, as in Figure 4.1 for these data, all models have “evidence against” according to BIC
compared to ΛCDM .

In Table 4.5, considering data from Union 2, H(z) and BAO, we obtain that the parameter
of state of DE γx for all interactions is negative (the same as Union 2.1, H(z) and BAO). Fur-
thermore, according to BIC, ΛCDM is the “best model” and the results are consistent with Table
4.1 where the interacting models with same number of free parameters are in the same region
of “evidence”.

The evolution of the deceleration parameter q (2.1.26) and the effective parameter of state
ωeff (2.3.1), for the interacting models have a similar behavior compared to the ΛCDM model,
see Figure 4.5 and Figure 4.6 (considering Union 2.1, H(z) and BAO). The interacting mod-
els agree that the Universe is in a phase of accelerated expansion. Furthermore, according to
Figure 4.6 the effective fluid in the Universe corresponds to “dark energy” because, the effective
parameter of state ωeff for all cases take values between 0 and −1.

The graphics of q and ωeff for other data sets will not be shown because the results have a
similar behavior to Figure 4.5 and Figure 4.6 respectively.

Comparing results of Tables 4.6, 4.7 and 4.2, where it was considered only SN Ia and H(z)
data sets, we noticed that all signs of the interacting term coincide in the tables. Furthermore,
for these three different data sets the interacting term Γ8a is negative, this means that today
the energy transfer is from DM to DE. On the other hand, considering Union 2 or Union 2.1,
H(z) and BAO, Γ8 and Γ8a have a positive interaction, i.e., the energy transfer is from DE to
DM today.

Finally, it is important to remark that all tables corresponding to different data, are consis-
tent respect to our analysis about BIC in Table 4.1, i.e., interacting models with same number
of f.p. are in the same region of “evidence”. This implies that interacting models with the same
number of f.p. can not be distinguish according to BIC.
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Chapter 5

Conclusion

In this work we analyzed eight general types of interacting models of the dark sector with
analytical solutions and compared how well they fit the joint data from Union 2.1+H(z)+BAO
using the Akaike information criterion and the Bayesian information criterion. The main goal of
our work was to investigate if more complex interacting models (more complex meaning models
with more free parameters) are competitive in fitting the data and whether we could distinguish
them via AIC and BIC. Taking into account the theoretical problems that the ΛCDM scenario
presents and the observational tensions recently reported with this model [15], we assume that
a departure from the simplest model is needed. We compared a plethora of interacting models
among themselves and with the ωCDM scenario. In our analysis we noted a tension between the
results using AIC and BIC: in some cases the AIC says that there is “evidence in favor” of some
model, while BIC says that there is “evidence against” the same model. Therefore, we decided
to follow the more stringent criterion, namely the BIC. According to our results, under the BIC
“there is not enough evidence against” any interacting model with three free parameters when
we assume that the underlying model is the one which has the lowest BIC parameter, which
turns out to be ωCDM. Among the interacting models, Γ8a is the model with the lowest BIC
parameter value, it corresponds to a sign-changeable interaction with γx = 0 and γm = 1 and it
is compatible with ωCDM. Furthermore, Γ8a is one of the models that alleviate the coincidence
problem, since the value of the coincidence parameter in the future tends to a constant (see Fig.
4.3).

Since cosmological interaction is a “phenomenological” coupling in the dark sector, i.e., there
is no known physical principle that determines the interacting term, we selected the studied
models under the criterion of “analytical resolution of equations”, which includes many interact-
ing models. For the selected models we concluded that all the considered models with 3 free
parameters are compatible among them, i.e. all they have a BIC parameter in the same range,
thus these models are not distinguishable, generating in this sense a new kind of degeneracy
problem. A similar behavior appears when we inspect models with 4 free parameters as we see
in Table 4.3. Furthermore, it is worth to emphasize that all the interacting models with 3 free
parameters adjust the data as well as the ωCDM model.

When we compare models with 3 free parameters to models with 4 free parameters (us-
ing BIC) we find “evidence against” the 4 free parameters models when we assume that the
underlying model is a 3 free parameters interacting model.

In the development of our work, we had problems to include a larger number of parameters
(5 free parameters or more). When we consider 5 or more free parameters, the Python routine
is not able to determine the value of the parameters in the studied ranges. In particular, when
we considered the parameters of interaction α and β to be free, the confidence intervals of
the parameters increases significantly, i.e., there are many values for the parameters that lead
to in the same value of χ2

min. We think that this issue can be caused by the design of the
routine or because the data is not enough to determine all these parameters. In the same way,
if we consider just H(z) and SN Ia data, we cannot fit more than 3 free parameters, since,
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it is necessary to include data from another epoch of the evolution of the Universe to fit the
interaction parameters.

Finally, we conclude that an increase of the complexity of interacting models, measured
through the number of free parameters, is strongly penalized according to BIC in the description
of the late Universe.

In the near future we expect to be able to improve our analysis by considering different
parameterizations for the DE state parameter. For this purpose first we should analyze the
models through more sophisticated methods to constrain data, such as Markov Chain meth-
ods [57] to avoid problems with the increasing number of free parameters. Furthermore, in
future works we expect to address the dark degeneracy problem between interacting models and
parameterizations of the dark energy state parameter.
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Appendix A

Elements of data fitting

A.1 Chi-Square Distribution
The Chi-Square distribution has importance in statistics and it is used in a variety situations, for
example, in chi-squared tests for goodness of fit or in the confidence interval estimation. In par-
ticular this distribution will arise in the study of the variance when the underlying distribution
is normal and also in goodness of fit tests. It is defined as

X(χ2, ν) =
(χ2)(ν/2−1) exp[−χ2/2]

2ν/2Γ(ν/2)
, (A.1.1)

where Xdχ2 is the probability density of finding a value of χ2 between χ2 and χ2 + dχ2 and
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Figure A.1: Chi-square distribution for different values of ν. Source: Own elaboration.

ν ∈ N is called “degrees of freedom”. It can be shown that χ2 has an expectation value, or mean,
of ν with a standard deviation of σχ2 =

√
2ν [58].

The probability of observing a value of χ2 that is larger than a particular value χ2
0, with ν

degrees of freedom1 is the integral of this probability

P (χ2
0 < χ2, ν) =

1

2ν/2Γ(ν/2)

∫ ∞
χ2
0

(χ2)(ν/2−1)e−χ
2/2d(χ2). (A.1.2)

1When fitting N independent data points with a function with L parameters the number of degrees of freedom
is ν = N − L.
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A.2 Confidence Limits on Estimated Model Parameters
In this section, we will be more explicit regarding the precise meaning of quantitative uncer-
tainties, and to give further information about how quantitative confidence limits on fitted
parameters can be estimated. We assume that there is some underlying true set of parameters
atrue that are hidden from the experimenter. These true parameters are statistically realized,
along with random measurement errors, as a measured data set, which we will symbolize as
D(0). The data set D(0) is known to the experimenter. Who fits the data to a model by χ2

minimization or some other technique and obtains fitted values for the parameters, which we
denote as a(0).

Since measurement errors have a random component, D(0) is not a unique realization of the
true parameters atrue. Moreover, there are infinitely many other possible realizations of the true
parameters as “hypothetical data sets” each of which could have been the one measured. Let
us denote these by D(1),D(2), . . . . Each one, had it been realized, would have given a slightly
different set of fitted parameters, a(1), a(2), . . . , respectively. These parameter sets a(i) therefore
occur with some probability distribution in the L−dimensional space of all possible parameter
sets a(i) (with L the number of parameters of the model). The actual measured set a(0) is one
member drawn from this distribution.

Even more interesting than the probability distribution of a(i) would be the distribution of
the difference a(i)−atrue. This distribution differs from the former one by a translation that puts
Nature’s true value at the origin. If we knew this distribution, we would know everything that
there is to know about the quantitative uncertainties in our experimental measurement a(0).
So, we need to find some way of estimating or approximating the probability distribution of
a(i)−atrue without knowing atrue and without having available to us an infinity of hypothetical
data sets.

First, we need to clarify the difference between the hypothetical data sets and the synthetic
data sets. The hypothetical data sets are different realizations of the experimental data, that
have certain statistic around the “true data". But the synthetic data sets are simulations of
the data (using the same statistic of the hypothetical data) taking as “true data" one of the
hypothetical data sets. We will denote the obtained parameters fitting the synthetic data as
“aS”.

A.3 Probability Distribution in the Normal Case
In this section we will discuss some properties of chi-square function, when the variability of
data is normal distributed.

Theorems for normal distributions
Theorem A. χ2

min is distributed as a chi-square distribution with N − I degrees of freedom,
where N is the number of data points and I is the number of fitted parameters [39].

Theorem A applies both for χ2 with hypothetical data sets or synthetic data sets.
Theorem B. We assume that aS(j) is drawn from the Universe of simulated data sets with

actual parameters a(0), then the probability distribution of δa := aS(j) − a(0) is the multivariate
normal distribution

P (δa)da0 . . . daI−1 = const.× exp

(
−1

2
δa · α · δa

)
da0 . . . daI−1, (A.3.1)

where α is the inverse of the covariance matrix [39].
Theorem C. If aS(j) is drawn from the Universe of simulated data sets with actual parameters

a(0), then the quantity ∆χ2 := χ2(a(j))−χ2(a(0)) is distributed as a chi-square distribution with
I degrees of freedom (here the χ2’s are all evaluated using the fixed (actual) data set D(0)) [39].
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Theorem D. Assume that aS(j) is drawn from the Universe of simulated data sets, that
its first ν components a0, a1, ...aν−1 are held fixed, and that its remaining I − ν components
are varied so as to minimize χ2. We call this minimum value χ2

ν . Then ∆χ2
ν := χ2

ν − χ2
min

is distributed as a chi-square distribution with ν degrees of freedom, where χ2
min is obtained

without fixing any parameter.
Let δa be a change in the parameters whose first component is arbitrary, δa0, but the rest

of whose components are chosen to minimize the ∆χ2. Then Theorem D applies and the value
of ∆χ2 is given in general by

∆χ2 = δa · α · δa. (A.3.2)

Otherwise, it is possible to demonstrate that in general

δai = ±
√

∆χ2
ν

√
Cii, (A.3.3)

with C the covariance matrix.

p ν
1 2 3

68.27% 1.00 2.30 3.53
90% 2.71 4.61 6.25
95.45% 4.00 6.18 8.02
99% 6.63 9.21 11.3

Table A.1: ∆χ2 as a function of confidence level p and number of parameters ν. Source: Own
elaboration.

In the Fig. A.2 we can see two examples of table A.1
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Figure A.2: χ2 distribution for ν = 1 (left) and ν = 2 ( right). Source: Own elaboration.

On the other hand, we can plot contours of χ2 to see the enclosed region for different values
of ∆χ2. A contour line of a function of two variables is a curve along which the function has
a constant value (a function of three variables define a contour surface). It is a cross-section of
the three-dimensional graph of the function f(x, y) parallel to the xy plane.

Example 1: Straight line
Suppose we want to study a physical phenomenon with equation y = 2x and we have a linear
model y = a0 + a1x. Then, the true parameters are a0 = 0 and a1 = 2 (remember that the
parameter values are unknown for us). Since we assume random error, in our measurements,
we will get other values for the parameters a0 and a1 (blue dots in Fig. A.3).

Rather than present all details of the probability distribution of errors in parameter estima-
tion, it is common practice to summarize the distribution in the form of confidence limits. The
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Figure A.3: Straight line example. Blue dots are the measurements (simulated using a gaussian
random variability with standard deviation σi = 0.1xi) and the straight line is the function
y = 2x from which the data points are simulated. Source: Own elaboration.
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Figure A.4: These are the contours of our example. The central point corresponds to the
minimum value of χ2. Source: Own elaboration.

full probability distribution is a function defined on the I-dimensional space of parameters a. A
confidence region (or confidence interval) is just a region of that I-dimensional space (hopefully
a small region) that contains a certain (large) percentage of the total probability distribution.

The only requirement is that the region does include the stated percentage of probability.
Certain percentages are, however, customary in scientific usage: 68.3% (the lowest confidence
worthy of quoting), 90%, 95.4%, 99%, and 99.73%. As for shape, we want a region that is com-
pact and reasonably centred on your measurement a(0), since the whole purpose of a confidence
limit is to inspire confidence in that measured value. In one dimension, the convention is to use
a line segment centred on the measured value; in higher dimensions, ellipses or ellipsoids are
most frequently used.

We can use (A.3.2) to plot certain confidence regions making equal ∆χ2 to the respective
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value in table A.1.
On the other hand, we can compare Fig A.4 with a simulation of the data sets (synthetic

data) and corroborate that the probability regions are the same.
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Figure A.5: Combined histograms of synthetic data. Source: Own elaboration.

Example 2: Theorems A, B, C and D
As already mentioned in the example of the straight line we have a data set with random normal
errors (σi = 0.1xi) and we can verify these theorems using a Monte Carlo method. We simulated
5000 data sets (ten points per set) using

yi = 2xi + Normal error. (A.3.4)

The histogram of Fig. A.6 is composed of the different values of χ2
min in each simulation.

In the case of Theorem B we will consider in the example that the first simulation is a “real
data set” D(0) and with this data set we obtained the parameters a(0) as the best fit, then we can
simulate data sets around y(x,a(0)) (synthetic data sets) with the same probability distribution
as the “original data set” and compare the histogram of δa with the equation (A.3.1).

Theorem C is very important since it makes the connection between particular values of ∆χ2

and the fraction of the probability distribution that they enclose as an I-dimensional region, i.e.,
the confidence level of the I-dimensional confidence region (with I the number of parameters).
In our example I = 2 so that, we need to compare the chi-square distribution (A.1.1) (with
ν = 2) with the histogram of the χ2

min of the synthetic data.
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Figure A.6: Chi-square distribution of the example. We use 10 data points and 2 free parameters
thus, ν = 8. Source: Own elaboration.
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Figure A.7: Histograms of δa0 and δa1. To the left is the histogram of δa0 and to the right
the histogram of δa1. Remember that, in order to see the PDF of one parameter we need to
integrate over all the others parameters. Source: Own elaboration.
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Figure A.8: Histogram of ∆χ2. Source: Own elaboration.
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To test Theorem D we have fixed the parameter a0 and we simulate again data sets, but in
this case we can only fit a1 to the data sets. Since now we have two parameters and we have
fixed one, we will have ν = 1 for the chi-square distribution.
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Figure A.9: Histogram of ∆χ2
ν , where a0 was set and a1 was fitted in each simulation. Source:

Own elaboration.

A.3.1 Example 3: Maximum Likelihood
In our case f(xi) = a1xi + a0 and if the data has random error with normal distribution, then

Pi ∝ e
− (f(xi)−yi)

2

σ2
i , (A.3.5)

with σi the standard deviation of the random error. Then, the likelihood function will be

L ∝
N∏
i=0

e
− (a0+a1xi−yi)

2

σ2
i , (A.3.6)

and finallyM = lnL will be given by

M∝
M∑
i=1

(a1xi + a0 − yi)2

σ2
i

+D, (A.3.7)

where D is a normalization constant that we omit from here on. It can be seen, when data
has a normal variability, the maximum likelihood method reduces to the method of minimum
squares.

A.4 Propagation of uncertainties
Let f(a) a function of the parameters a0, a1, . . . , an, and σl the variance of the l-th parameter.
Then, neglecting correlations or assuming independent variables yields a common formula to
calculate error propagation

Σ =

√(
∂f

∂a0

)2

σ2
0 +

(
∂f

∂a1

)2

σ2
1 + · · ·+

(
∂f

∂an

)2

σ2
n, (A.4.1)

where Σ represents the standard deviation of the function f , σi represents the standard deviation
of the ai parameter.
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A.5 Minimization Algorithm
To minimize the Chi-Squared function we utilize a python software routine. Specifically, we use
the lmfit package that it is designed to provide simple tools to help you build complex fitting
models for non-linear least-squares problems and apply these models to real data. This package
has different minimization algorithms as for example Levenberg-Marquardt, Nelder-Mead, L-
BFGS-B, Powell, Conjugate Gradient, Newton-CG and so on. In particular we use use the
least-squares method based in the Levenberg-Marquardt algorithm, also known as Damped least-
squares (DLS) method. The DLS is used for solving generic curve-fitting problems. However,
as for many fitting algorithms, the DLS finds only a local minimum, which is not necessary the
global minimum. The DLS can finds in many cases a solution even if it starts very far off the
final minimum.

Remembering (3.2.2) we have that

χ2(a) =

N−1∑
i=0

[
yi − f(xi,a)

σi

]2

. (A.5.1)

Like other numeric minimization algorithms, the Levenberg-Marquardt algorithm is an itera-
tive procedure. To start a minimization, the user has to provide an initial guess for the parameter
vector, a. In each iteration step, the parameter vector a, is replaced by a new estimate, a + δ.

For simplicity rewrite (A.5.1) as

χ2(a) =

N−1∑
i=0

|Ki(a)|2 = KT (a)K(a), (A.5.2)

where
Ki(a) =

yi − f(xi,a)

σi
(A.5.3)

To determine δ, the functions K(xi,a + δ) are approximated by their linearizations

K(a + δ) ≈ K(a) + Jδ, (A.5.4)

where
Ji =

∂f(xi,a)

∂a
, (A.5.5)

with this notation the gradient of χ2 is

∇χ2(a) = 2JT (a)K(a). (A.5.6)

We want to minimize the χ2 and this occur when the gradient of χ2(a + δ) goes to zero then,

∇χ2(a + δ) = 2JT (a + δ)K(a + δ) (A.5.7)
= 2JT (a + δ)[K(a) + J(a)δ] (A.5.8)
≈ 2JT (a)[K(a) + J(a)δ] = 0, (A.5.9)

then, we need to solve
δ = −

[
JT (a)J(a)

]−1
JT (a)K(a). (A.5.10)

Of this form to find the minimum of χ2 in each iteration we need to search in the direction
ak+1 = ak + αδ, with α a dimensionless parameter. The iteration stops when

|ak+1 − ak| < atol, (A.5.11)

and
|χ2
k+1 − χ2

k| < χ2
tol, (A.5.12)
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where atol and χ2
tol are the relative tolerances of the error desired in the sum of squares. Deriving

two times (A.5.1) and despising terms with second derivatives (since they may present numerical
problems) is easy to show that the covariance matrix is written as

Cov = [JTJ ]−1. (A.5.13)

This is the algorithm that we use to minimize the χ2 function, and it is implemented in
python in the function leastsq from the scipy package. By default the leastsq function has a
relative tolerance for atol and χ2

tol of 1.49012 × 10−8. The assigned errors to the estimation
parameters are calculated using (A.5.13).
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