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Abstract

In this work a distributed parameter bi-zone dynamic model with moving interface of

an extrusion process is presented. The interconnection of the moving interface is per-

formed under the assumption of variable viscosity along the extruder. A finite volume

method is proposed for discretizing the dynamic model. The steady state values of the

variables were calculated by using an efficient optimization algorithm without the need

of performing back calculations. Experimental tests performed with an industrial type

twin screw extruder are compared against simulations for the case of variable screw

speed and constant feed rate. The comparison shows good qualitative agreement be-

tween experimental and simulation results. An energy based controller for the validated

extrusion process model is derived using internal energy as a storage function and con-

trolled variable with the screw speed as control input. The stability of the controller

is proved through the use of a Lyapunov-like candidate function. Finally, the practical

usefulness of the method is illustrated by closed-loop simulations of the experimentally

verified model of the extrusion process. This model can be used to design observers for

estimating non-measurable variables as well as advanced control strategies.
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Chapter 1

Introduction

1.1 Introduction

The extrusion processes are mainly used in food and chemical industry for mixing, pro-

cessing and molding of either polymers or raw materials for products such as cereals,

potato chips and cookie dough. Basically, an extruder is made of a barrel and a screw

who rotates inside and forces the product according to the Archimedes principle. At

the end of the barrel, there is a die where the material comes out of the process. There

exist two type of extruders, the single screw and the twin-screw extruders. Single screw

extruders have poor mixing capability and are limited in their ability to transport high

viscous materials. On the other side, twin-screw extruders, are divided in two additional

types: counter-rotating and co-rotating screws. In the counter-rotating type, the screws

are moving in opposite directions, while in the co-rotating type, screws are moving in

the same direction. The co-rotating extruders are by far, the most used type thanks

to its high mixing capabilities and self-cleaning capabilities. The counter-rotating and

co-rotating screws can be inter-meshing or non-inter-meshing. In the first one, one

screw penetrates the channel of the other screw producing a positive pumping action,

better mixing capabilities and self-cleaning characteristics. Meanwhile, in the non-inter-

meshing configuration the screws do not interfere between each other and their behaviour

is very similar to the single screw extruders.

The extrusion process implies different interacting factors that increase the complexity

and difficult the task of modelling and control. These interacting factors are related

to material properties (i.e. rheology, thermal conductivity,etc.), operating conditions

(screw speed, feed rate, barrel temperature, etc.) and the geometry of the machine

(screws, barrel, die, etc.). In addition, being an energy intensive production method,

process energy efficiency is one of the major concerns and the selection of the most

1



Chapter 1. Introduction 2

energy efficient processing conditions is a key to reducing operating costs [1]. Fig. 1.1

shows an open loop diagram of a typical twin-screw extrusion process with manipulated

variables, disturbance variables, process output variables, and product quality variables

[2].

Figure 1.1: Open Loop Diagram of the extrusion process [2].

Thanks to its complexity, the task of control and modelling the extrusion process is

challenging and has been of constant interest through years. Modelling challenges include

complex screw geometry, moving interfaces and flow boundaries. Problems such as the

identification of an equivalent geometry of the screws and the modelling of systems of

PDE’s with a moving interface are analyzed through this work in detail. On the other

hand, although several empirical and phenomenological approaches for modelling the

extrusion process have been proposed in literature, the majority of control strategies

presented are related only to predictive control and linearized multivariable control.

However, so far in most cases the authors present some experimental validation and

different simulation methods but no steady state computations are discussed. Additional

control challenges are related with the problem of modelling and simulation of systems

of PDE’s with a moving interface, the control of nonlinear PDE’s, nonlinear systems

with delays and passivity based control.

1.2 Objectives

The main objective of this project is to design and implement an energy-based control

methodology that provide consistent operation of a twin-screw extruder process bi-zone

model with non-constant viscosity. The objective was accomplished by performing the

following steps:
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• An infinite dimensional model for the extrusion process was obtained based on

previous works in order to obtain a model that provides a reasonable description

of a twin-screw extrusion process.

• A finite volume method approach adapted to deal with a moving interface with

variable viscosity was presented in order to perform dynamical simulations on the

extrusion process model.

• Dynamical simulations were developed using the discretized extrusion process

model with variable viscosity.

• The bi-zone model with variable viscosity was validated trough experimental tests

performed with an industrial type twin-screw extruder.

• An energy-based control strategy was designed for the bi-zone extrusion process

model. Stability of the closed loop was proved using Lyapunov-like arguments and

the controller was validated through closed-loop simulations.

This work was supported in part by the ANR sponsored project HAMECMOPSYS

under Reference Code ANR-11-BS03-0002 and by the French-Chilean ECOS/CONICYT

project C12E08.

1.3 Organization and contribution of the thesis

This thesis is divided into four chapters:

• In Chapter 2 general aspects regarding to the modelling of the twin-screw extrusion

process are presented. The proposed bi-zone model based on mass and energy

balances with the assumption of variable viscosity is explained in detail. This

model comprises a moving interface which separates a region where the material

is accumulated behind the die and fills completely the available volume which

is called the Fully Filled Zone (FFZ ) from another spatial domain that is not

completely filled by the material which is called Partially Filled Zone (PFZ). A

discretization scheme for the proposed model based on the finite volume method

is used in order to deal with the moving interface. In addition interface relations

and boundary conditions are considered.

• In Chapter 3 dynamic simulations of the bi-zone model with variable screw-speed

and variable input flow are presented in order to perform a physical validation of

the model. It is worth to point out that two different conditions for viscosity are

taken into account: constant and variable viscosity.
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• In Chapter 4 the bi-zone model is adapted experimentally to an industrial twin-

screw extruder. In this study the extrusion of Polypropylene has been chosen.

The material properties and equipment are described in details in this Chapter.

In addition, the steady state of the extrusion process model is studied through

the implementation of an optimization problem using a golden search algorithm.

The conservativeness of the finite volume method is explained. Simulation and

experimental tests for the extrusion of Polypropylene are presented.

• Chapter ?? is related to the control of the extrusion process. First the entropy

balance for the extrusion process is developed which could be useful for control

purposes in future works. Later, the energy-based control for the validated extru-

sion process using the internal energy as a storage function and controlled variable

is explained with detail. A section dedicated to the stability analysis of the closed-

loop system is included in this chapter. Finally, a simulation example showing the

behaviour of the model-based controller is presented. The thesis concludes with

final remarks and perspectives on future work in Chapter 6.
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Chapter 2

Extrusion process modelling

2.1 Introduction

The earliest developments of the extruder technology are not new. In 1797, Joseph

Bramah developed the earliest industrial extruder in 1797 through a patent in which he

described a press for the production of pipes of a specific diameter and length without

joints in lead and other soft metals [3]. Later, in 1869 the first known twin-screw extruder

was developed by Follows and Bates for the sausage manufacture [4]. The first screw

extruder designed especially for processing thermoplastic materials was developed in

1935 by Paul Troester [5], and further developments are based on improving product

quality, adapting the process to new type of materials, reduce energy consumption,

minimize manufacturing costs, etc. Although there exist several developments since the

invention of the first screw extruder, the main idea of the process remains, that is, as

an Archimedes screw that rotates into a barrel.

Although screw extruders have been used commercially for many years, the task of

modelling and control is complex due to strong interactions that exist between a large

number of factors such as material properties (rheology, thermal conductivity, etc.),

geometrical factors (screw design, screw wear, etc.) and operating conditions (screw

speed, barrel temperature, flow rate, etc.). Modelling challenges include complex screw

geometry, moving interfaces and flow boundaries. This complexity has lead in recent

years to an increase in the interest to provide suitable models for analysis and control [6].

This chapter is organized as follows: Section 2.2 deals with some fundamentals on screw-

extruders such as classification, geometrical properties and process description. A brief

bibliographic synthesis regarding to the modelling of the extrusion process together with

the presentation of the bi-zone model and interface relations is presented on Section 2.3.

5
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Finally, Section 2.4 presents the discretization of this moving interface model using a

finite volume method.

2.2 Extrusion process overview

2.2.1 Extruders description and classification

It is possible to describe two types of extruders, the single screw extruders and the twin-

screw extruders. A single screw extruder consists of one screw rotating into a barrel. The

material is transported due to the friction with the channel walls. The main disadvantage

yields in the fact that if the material slip at the barrel wall, it will rotate with the screw

without being pushed forward [2]. Therefore, the effect of the extrusion is null if the

material adheres to the screw. The above statement can be used to say that the single

screw extruders have poor mixing capability and are limited in their ability to transport

high viscous materials. In order to address these problems, the twin-screw extruder

technology was implemented. The presence of a second screw allows to move forward the

material in the extruder, making the propulsion of materials less dependent on friction,

temperature and pressure. However, the twin-screw extruders heavily depends on the

geometry of the machine (screw inter-meshing, direction of rotation, etc). Table 2.1

shows some of the advantages and limitations of industrial twin-screw extruders.

2.2.2 Process description of a twin-screw extruder

The extrusion process can be basically described in terms of four main zones. The

feeding zone, the conveying zone, the melting or transition zone and the pumping zone.

Fig. 2.1 shows a schematic of the extrusion process.

• Initially, at the feeding zone, the raw material is charged into the machine trough

a hopper at room temperature. There could be several hoppers in the process in

order to obtain different compositions of the final product.

• The rotation of the screws is made using an electric motor attached to a reducer.

The material is transported from the hopper to the end of the barrel due to the

friction between the screw and the material. In addition, the use of a twin screw

helps to achieve a positive displacement of the material.

• In the conveying zone the material is compacted and transported to the transition

zone. The barrel is connected to electrical heating and water-cooling systems which

helps to melt the material. In the transition zone the material is mixed and melted
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Twin-Screw Extrusion Process

Advantages Limitations

-Better mixing and homogenization ca-
pacity

-Parasite secondary reactions if the
temperature is too high

-A large heat transfer surface area that
allows good control of the stock tem-
perature

-Air-entrapment

-There is a good control over residence
times and stock temperatures for the
profile extrusion of thermally sensitive
materials

-Capital costs are higher due to more
frequent and costly maintenance re-
quirements and more complicated op-
erations

-Residence time distribution is short
and narrow
-Interchangeable screw and barrel sec-
tions can be arranged to serve distinct
and precise processing requirements
-High pressure and temperature sup-
port: 0 to 500 bar and 400-500 ◦C
-The possibility of injection of reagents
along the extruder

Table 2.1: Advantages and limitations of a twin-screw extruder. (Source: Personal
collection).

Hopper

Barrel

Screw

Heating 
System

Die

Electric 
Motor

Cooling System

Conveying 
Zone

Transition 
Zone

Pumping 
Zone

Figure 2.1: Schematic view of a twin-screw extrusion process. (Source: Personal
collection).
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thanks to a chemical reaction that occurs due to the heat of the barrel, viscous

dissipation and friction.

• In the pumping zone the material gets completely melted and the pressure increases

because of the screw rotation and the change of diameter at the die. The melt is

finally extruded trough the die in the desired form. It is worth to point out that

the geometry of the screws is different in each zone in order to improve the melting

properties of the product.

2.2.3 Twin-screw extruders classification

According to its name, a twin screw extruder contains two parallel screws located into a

barrel. Due to this main characteristic, a twin-screw extruder can be classified according

to the direction of rotation and the engagement of the screw as follows:

• Direction of rotation: If the screws are rotating in the same direction, the extruder

is called co-rotating. On the other hand, if the screws are rotating in opposite

directions, the extruder is called counter-rotating. Fig. 2.2 shows a schematic view

of this screw classification.

Figure 2.2: Co-rotating and counter-rotating twin-screws [7].

• Inter-penetration: This classification is related to the degree of inter-penetration

of the two screws into each other. A twin screw extruder could be classified as

an inter-meshing extruder if the separation between the screw axes is less than

the outer screw diameter [4]. On the other hand if the separation between the

screw axes is at least equal to the screw outer diameter the extruder is called

non-inter-meshing. The inter-meshing configuration provides a positive pumping

action, better mixing capabilities and self-cleaning characteristics. Meanwhile in

the non-inter-meshing configuration the behaviour is very similar to single screw

extruders.

The selection of each type of twin-screw extruders basically depends on the type of

application. For example, high speed co-rotating twin screw extruders are used for

compounding resin with additives (colorants, fillers, flame retardants, reinforcements,
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stabilizers), devolatization to remove solvents, and reactive extrusion. Low-speed co-

rotating and counter-rotating extruders are used to produce profiles and pipe. Counter-

rotating twin screws are used for compounding PVC and other resin systems. Non-inter-

meshing counter-rotating extruders are principally used for devolatilization and chemical

reactions [7]. In food industry applications, the co-rotating twin screw extruders are

commonly used due to its self-cleaning capacity, the excellent mixing quality and a very

high degassing rate.

2.2.4 Principal elements of a twin-screw extruder

2.2.4.1 Barrel

The barrel represents the fixed external cover in which the screws rotate. In modern

equipments, the barrel and the screw are constructed in a modular way. That charac-

teristic allows more flexibility on applications because every section of the barrel can

be used according to their function, i.e. feeding, degassing, etc. In addition, due to

the importance of the temperature control in the extrusion process, the barrel plays

an important role because it contains the heating and cooling systems of the machine.

Fig. 2.3 shows a schematic view of a barrel, note that there could be barrel sections with

cylindrical shape.

Figure 2.3: Example of a barrel section of a twin-screw extruder. (Source: Personal
collection).
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2.2.4.2 The screw

As stated above, the screws are constructed in a modular way. This property allows

composing different geometrical configurations in order to localize the feeding, melting,

conveying, mixing, pumping and venting at specific locations along the extruder barrel

[7], and also allows to easily change the screw designs in order to adapt the system

to different material processing and requirements. It is possible to have three different

types of screws: Conveying, or right handed, elements drag material forward due to their

positive helix angle; the higher the angle, the higher the conveying capacity. Left handed

elements have a negative helix, thus impose a restriction to the flow that can induce local

fully-filled flow conditions, heat transfer becoming more efficient and the flow pattern

much more complex [8]. The kneading blocks are a combination of different kneading

disks, which can have negative, neutral and positive angles. Positive and negative angles

are very efficient in terms of mixing and induce conveying capacity. Neutral angles have

no drag capacity; therefore, the local flow residence time increases and both distributive

and dispersive mixing take place. Fig. 2.4 shows a screw profile in which different types

of screw elements can be observed. In addition, Fig. 2.5 shows a detail of an interface

Figure 2.4: Example of different screw elements.(Source: Online. Avalaible from:
www.binovapm.it).

generated by the presence of the melt behavior when inverse screw profiles are used in

the extruder. Note that a fully filled region is generated because of the geometry of the

screw sections.

www.binovapm.it
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Figure 2.5: Example of different screw sections. (Source: Personal collection).

2.2.4.3 Screw geometry

The screw geometry of twin-screw extruders have been studied by different authors

trough last years [9][10]. It is possible to describe the geometry of a twin-screw extruder

with the following parameters which can be seen in Fig. 2.6 and 2.7:

• External ratio of the screw: Rext

• The distance between axes: Cl

• The number of screw flights: n

• The screw pitch: ξ

With those parameters it is possible to define the following variables:

• Channel width: Is the channel extension, in terms of the number of screw flights

and the screw pitch

W =
ξ cosφ

n
− e. (2.1)

• Helix angle: Is the angle of the screw flight

φ = arctan
ξ

2πRext
. (2.2)

• Tip width: Is the width of the flight tip

e = αwRext sinφ. (2.3)
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• Inter-meshing angle: Is the angle of the zone of interpenetration

ψ = arccos
Cl

2Rext
. (2.4)

Figure 2.6: Screw geometry and characteristic dimensions: Side view. (Source: Per-
sonal collection).

Figure 2.7: Screw geometry and characteristic dimensions: Front view. (Source:
Personal collection).
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2.3 Bi-zone model of the extrusion process

2.3.1 Extrusion process modelling overview

As stated at the beginning of this chapter, modelling and control of the extrusion process

is challenging because of its complexity and the strong interactions that exist between

a large number of factors such as material properties, geometrical factors and operating

conditions. This complexity has lead in recent years to an increase in the interest to

provide suitable models for analysis and control.

Several empirical and phenomenological approaches for modelling the extrusion process

have been proposed. For instance, Wang [11] proposed a continuous time empirical model

based on Laguerre functions described by transfer functions identified from experimen-

tal data. Garge [12] presented a systematic procedure for identifying a control-relevant

model for reactive extrusion processes. Iqbal [13] proposed a gray box model, which es-

sentially incorporates both phenomenological and empirical approaches, to predict the

behavior of output variables due to changes in the co-rotating twin screw extruders.

In this work a steady-state study was carried out in order to analyze the rheological

behavior of the melt. On the other hand, several phenomenological models have been

described in literature. Tayeb et al. [14] developed a phenomenological model based on

solving the thermal balance and Stokes equation for a co-rotating twin-screw extruder

with deep screw channels. In this work, the model was based on a division of the twin-

screw extruder into four functional sections. The steady state values of the variables

were computed by assuming a constant viscosity with numerical values chosen accord-

ingly to the local shear rate and temperature. Zuilichem [15] presented a detailed heat

transfer model for twin-screw extruders. However, neither experimental nor simulated

results were presented.

On the other hand, Kulshreshtha [16] presented dynamic model for twin screw extrud-

ers based on mass and energy balances with experimental validation. An alternative

numerical method was developed to solve the governing equations by using a simplified

steady state profile. First, the solution on the solid conveying zone is found and later this

information provides the boundary conditions for the solution at the melt zone. How-

ever, this numerical method was not efficient, because it requires repeated iterations to

calculate the position of the moving boundary between each solid conveying zones and

melt zone.

On the other hand, a non-linear infinite dimensional model obtained by using transport

equations through a moving interface was presented in [17]. In this case, the authors

proposed a model based on the works by Kulshreshtha, with constant viscosity. The

dynamical model is solved using a finite volume method scheme. However, no experi-

mental results are presented and the assumption of constant viscosity is not quite useful
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since the rheology of the melt influences the dynamic behaviour of the extrusion process.

More complex models using quasi-3D spatial profiles of the degree of fill are described

in [18][19]. Several models representing the extrusion process as a series of Continuous

Stirred Tank Reactors (CSTR) [20], [21], [22] were also presented. The advantage of

this modelling approach is that it gives rise to a precise model since each piece of screw

can be taken into account. Moreover, any stage ( such start-up) of the extrusion process

can be simulated. The authors, presented an experimental validation of this model with

good quantitative results. However, the main disadvantage of this modelling approach

lies on the fact, that dividing the extrusion process in several CSTR is tedious and com-

plicated.

In those works, the authors present some experimental validation and different simu-

lation methods. However, steady state computations are not discussed. In fact, as far

as modelling issues are concerned, one can find many papers devoted to steady-state

modelling for design purpose, but works devoted to the dynamic modelling of extruders

are less common [17].

2.3.2 Bi-zone model of the extrusion process

This work extends those previous works developed by [16], [23], [24], [25] and [26] in

which the extrusion process is simplified into a bi-zone model. In this case, the phe-

nomenological modelling of the extrusion process is performed with the assumption of

variable viscosity with moving interface, which adds more complexity to the analysis be-

cause of the temperature and shear rate dependency of the viscosity. In this particular

case, the resulting bi-zone model has a non-linear infinite dimensional structure and can

be described as follows:

A region where the material is accumulated behind the die and fills completely the

available volume which is called the fully filled zone (FFZ ). At the FFZ the flow de-

pends both on the pumping capacity of the screw and the pressure flow. This region

can be related to the transition and pumping zone on the extruder. The extruder may

also comprise a spatial domain that is not completely filled by the material. This re-

gion corresponds to the feeding and conveying region and is called partially filled zone

(PFZ). In this domain, the pressure gradient is zero and the pressure inside the barrel

is approximately equal to the atmospheric pressure. These two zones are coupled with

a very thin moving interface which characterizes the spatial domains where the pressure

gradient is null or not. Assuming the interval of the spatial domain of the extruder as

[0, L] where L > 0 is the length of the extruder, and calling l(t) ∈ [0, L] as the position

of the thin interface, the domain of the PFZ is [0, l(t)[ and the FFZ is defined in the

interval ]l(t), L]. Fig. 2.8 shows a schematic view of the bi-zone model.
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On the other hand, the extrusion of Polypropylene (PP) has been chosen in this work

since it is a shear sensitive material [27]. When the shear stress is increased, the viscosity

of the melt decreases. This is very important in the case of variable screw speed since

at higher values the shear heating provided by the screw rotation becomes the main

heating source [28].

Figure 2.8: Bi-zone model of the extrusion process. (Source: Personal collection).

2.3.3 Assumptions

The following assumptions are considered:

i. The considered melt is formed of PP and another constituent. The latter can be

an additive chosen in order to obtain the right quality of the final product or a

tracer that can be introduced in order to characterize the flow in the extruder.

ii. The heat capacity Cp and the density ρ0 of the PP are assumed to be constant and

identical for PP and the additive. This statement is related to the fact that, on

the extrusion processes, the percentages of additive used are very small compared

to the concentration of PP.

iii. The equivalent screw pitch ξ is assumed to be uniform along the extruder.

iv. The PFZ is submitted to atmospheric pressure P0.

v. The heat exchange with the barrel is modeled with the following constitutive re-

lation α(Tb(x, t)− Tp(x, t)) where α is the thermal exchange coefficient.

Remark 2.1. Regarding to assumption (iii), it worth to point out that real screw profiles

are formed by an arrangement of screw sections which have different properties in order

to adapt the system to a given material or processing conditions. In this study we have

considered the mean value of ξ in order to use the simplest model for control purposes.
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A variable pitch could be included for future works. However, some screw sections such

as the kneading blocks should be analyzed in detail since its geometry is different ar

more complex than the direct screw.

2.3.4 Definition of variables

The extrusion process can be used for the production of different products that may

vary in their physical properties. Depending on the desired product, the extrusion

process can combine different functions such as transport, mixing, compression, chemical

reactions, cooking, drying, etc. Depending of each of these functions, different modelling

parameters can be used; in this case, for a non-reactive polymer extrusion, the following

variables are considered:

• Filling ratio fp(x, t): Is defined as the ratio between the occupied volume by the

material in the extruder (V0) and the effective volume (Veff ) between the barrel

and the screws. The effective volume (Veff ) is the total volume that can be

occupied by the material.

fp(x, t) =
V0(x, t)

Veff
. (2.5)

It is worth to point out that, in the PFZ the filling ratio is less than the total

available volume, i.e. 0 < fp(x, t) < 1. Meanwhile, at the FFZ the filling ratio is

ff (x, t) = 1.

• Concentration c(x, t): Represents the volume fraction of tracer in the transported

homogeneous mixture.

• Temperature T (x, t): It depends both on the heat exchange between the bar-

rel and the extruded material and the viscous dissipation phenomena due to the

transformation of mechanical energy into heat.

• Pressure P (x, t): In the PFZ the pressure is supposed to be equal to the atmo-

spheric pressure P0. On the other hand, in the FFZ, the pressure depends on the

die flow Fd and the geometry of the die.

• Viscosity η(Tp(x, t)): Several models can be found in literature regarding the vis-

cosity, which basically depends on temperature, shear rate and material physical

properties. In this work, the viscosity of the material on both PFZ and FFZ was

simulated using the Cross-WLF model. This model provides a representation of

viscosity over a wide range of processing conditions [29]. Further details regarding

to the Cross-WLF model can be found in Section 4.2.
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2.3.5 Model of the partially filled zone

In the PFZ, the mass balance equation belongs to the domain [0, l(t)[ and it is written in

terms of the filling ratio fp(x, t) with l(t) the position of the interface. fp(x, t) is defined

as the ratio between the volume filled by the material in the extruder (V0) and the free

volume or effective volume between the barrel and the screw (Veff ). In other words,

Veff is the total volume that can be occupied by the material.

The position of the interface will change due to the difference between the incoming

and the outgoing flow rates. With these assumptions, the variation of the amount of

material in time is derived as the change of the inflows and outflows through the effective

section between the screw and the barrel (Seff ) defining an elementary volume in this

area. Fig. 2.9 shows a Cartesian representation of the variation of the elementary volume

between x2 and x1 with 0 < x1 < x2 < l(t) which can be written as:

d

dt

∫ x2

x1

∫ zmaxfp(x,t)

0
ρ0ymaxdzdx = Fm(x1, t)− Fm(x2, t), (2.6)

with Fm(x1, t) an Fm(x2, t) as the inflow and outflow at x1 and x2 respectively. The in-

tegral form of the right term of the equation is Fm(x1, t)−Fm(x2, t) =
∫ x2
x1
∂xFm(x, t)dx.

On the other hand, distributing equation (2.6) and using Leibniz formula we have:

x2∫
x1

[
ρ0ymaxzmax

∂fp(x, t)

∂t
+

∫ zmaxfp(x,t)

0

d

dt
(ρ0ymaxzmax)

]
dx = −

x2∫
x1

∂Fm(x, t)

∂x
dx. (2.7)

In equation (2.7) ρ0 and Seff = ymaxzmax are constant, then:

ρ0Seff
∂fp(x, t)

∂t
= −∂Fm(x, t)

∂x
. (2.8)

Extending to a global formulation of the mass balance in the PFZ and considering

Figure 2.9: Cartesian representation of the effective volume Veff . (Source: Personal
collection).

the transport phenomena for screw elements of pitch ξ, we have the material flow as a
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function of fp(x, t) and the screw speed N(t) with Veff = ξSeff :

Fm(x, t) = N(t)ρ0Vefffp(x, t). (2.9)

Finally, replacing equation (2.9) we have the following mass balance equation:

∂fp(x, t)

∂t
= −ξN(t)

∂fp(x, t)

∂x
. (2.10)

In addition, the concentration (c) represents the volume fraction of tracer in the trans-

ported homogeneous mixture. Since this variable has the same behavior as the homo-

geneous mixture because the mass density is supposed to be constant, its evolution can

also be described by a transport equation in the PFZ as it follows:

∂cp(x, t)

∂t
= −ξN(t)

∂cp(x, t)

∂x
. (2.11)

Defining u(x, t) as the internal energy per unit of volume, h(x, t) the enthalpy and P (x, t)

as the pressure (assumed to be uniform), we have:

u(x, t) = h(x, t)− P (x, t). (2.12)

According to the first law of thermodynamics, the variation of energy per unit depends

on the enthalpy inflow and outflow Fh(x, t), the thermal power generated by viscous

dissipation Qc(x, t) and the convective heat form the barrel to the melt φe(x, t). Then,

the expression for the energy balance at the PFZ with transport velocity ξN(t) is as

follows:

ρ0Veff
∂

∂t

(
(h(x, t)− P (x, t))fp(x, t)

)
= −ρ0ξN(t)

∂

∂x
(h(x, t)fp(x, t))− ρ0P0

∂fp(x, t)

∂t

+Qc(x, t) + φe(x, t),

(2.13)

with,

Qc(x, t) = µη(Tp(x, t))N
2(t),

φe(x, t) = Sechα(Tb(x, t)− Tp(x, t)),
(2.14)

where µ is the viscous dissipation coefficient, η is the viscosity of the material, Sech =

πD2L is the total exchange surface (the real exchange surface is proportional to the

percentage of melt fp(x, t)). Recalling that the pressure at the PFZ is equal to the

atmospheric pressure P0 and using equation (2.10) we have:

ρ0Seff
∂h(x, t)

∂t
= −ρ0ξN(t)

∂h(x, t)

∂x
+ (Qc(x, t) + φe(x, t)), (2.15)



Chapter 2. Extrusion process overview 19

Finally, recalling the relationship betweeen h(x, t) and the Tp of the homogeneous mix-

ture with constant density ρ0 as ∂h(x, t) = Cp∂Tp(x, t) we have the following:

∂Tp(x, t)

∂t
= −ξN(t)

∂Tp(x, t)

∂x
+ Ω(fp, N, Tb, Tp) , (2.16)

with

Ω(fp, N, Tb, Tp) =
Qc(x, t)

ρ0VeffCpfp(x, t)
+

φe(x, t)

ρ0VeffCp
. (2.17)

2.3.6 Model of the fully filled zone

In this section, the available volume is completely filled, so the filling ratio have no

dynamics, i.e. ff = 1. Since in this zone a pressure drop is assumed, the momentum

balance equation in the FFZ is expressed in terms of the pressure gradient as:

∂P (x, t)

∂x
= η(Tf (x, t))

VeffN(t)ρ0 − Fd(t)
Bρ0

(t, x) ∈ (R,+ , [l(t), L]) , (2.18)

where B is the pressure flow coefficient and Fd(t) is the net forward flow [24], [30]:

Fd(t) =
Kd

ηd(t)
∆P (t), (2.19)

with ∆P (t) = (P (L, t)−P0) and ηd(t) as the melt viscosity at the die; ηd(t) = η(Tf (L, t)).

The mass and energy balances provides the equations for the concentration cf (x, t) and

the temperature Tf (x, t) on the FFZ since the transport and thermal phenomena are

similar to those which occur in the PFZ :

∂cf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂cf (x, t)

∂x
, (2.20)

∂Tf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂Tf (x, t)

∂x
+ Ω(1, N, Tf , Tb). (2.21)

2.3.7 Moving Interface

The interface that separates the FFZ from the PPZ is located at l(t) where a pressure

gradient from atmospheric pressure to a greater value occurs and the filling ratio changes

from less than one to one. The position of the interface will change due to the difference

between the incoming and the outgoing flow rates. Taking into account the assumption

of a material composed by a homogeneous mixture and no chemical reactions in the

process. In other words, no species are produced or destroyed and the variation of the

amount of material in time is derived as the change of the inflows and outflows through
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the cross section Seff defining an elementary volume in this area. This cross section is

the effective section between the screws and the barrel. Then considering a fixed domain

[l−, l+], which contains strictly the position of the interface, i.e. l− < l(t) < l+. The

variation of the elementary volume between l− and l+ in Cartesian coordinates (x, y, z)

can be seen in Fig. 2.9. Then, the dynamics of the moving boundary is obtained from

the global mass balance on the FFZ:

d

dt

∫ l+

l−

∫ zmaxfp(x,t)

0
ρ0ymaxdzdx = F (l−)− F (l+) = ∆F. (2.22)

Recalling, fp(x, t) with x ∈ [l−, l(t)] as the filling ratio at the PFZ and ff (x, t) = 1 with

x ∈ [l(t), l+] as the filling ratio at the FFZ, it is possible to rewrite equation (2.22) as:

∫ zmaxfp(x,t)

0

[
d

dt

∫ l(t)

l−
ρ0ymaxdx+

d

dt

∫ l+

l(t)
ρ0ymaxdx

]
dz = ∆F. (2.23)

Distributing and using the Leibniz Rule:

∫ l+

l−

[
d

dt

∫ zmaxfp(x,t)

0
ρ0ymaxdz + ρ0ymaxzmax

∂fp(x, t)

∂t

]
dx = ∆F, (2.24)

then,

∫ l+

l−

d

dt

∫ zmaxfp(x,t)

0
ρ0ymaxdzdx+

∫ l+

l−
ρ0ymaxzmax

∂fp(x, t)

∂t
dx = ∆F. (2.25)

Solving the integrals using the relationship Seff = ymaxzmax:

ρ0Seff (fp(l
−, t)− (fp(l

+, t))
dl(t)

dt
+

∫ l+

l−

d

dt

∫ zmaxfp(x,t)

0
ρ0ymaxdzdx = ∆F, (2.26)

dl(t)

dt
ρ0Seff (fp(l

−, t)− 1) +

∫ l+

l−

∂fp(x, t)

∂t
ρ0ymaxdx = ∆F, (2.27)

redistributing terms,

dl(t)

dt
ρ0Seff (fp(l

−, t)− 1) +

∫ l(t)

l−

∂fp(x, t)

∂t
ρ0ymaxdx+

∫ l+

l(t)

∂ff (x, t)

∂t
ρ0Seffdx = ∆F.

(2.28)

Recalling that at the FFZ the filling ratio is equal to one,

dl(t)

dt
ρ0Seff (fp(l

−, t)− 1) +

∫ l(t)

l−

∂fp(x, t)

∂t
ρ0Seffdx = ∆F, (2.29)
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using the relationship
∂fp(x, t)

∂t
= −ξN(t)

∂fp(x, t)

∂x

dl(t)

dt
ρ0Seff ((fp(l

−, t)− 1)−
∫ l(t)

l−
ξN(t)ρ0Seff

∂fp(x, t)

∂x
dx = ∆F, (2.30)

rewriting,

dl(t)

dt
ρ0Seff (fp(l

−, t)− 1) + ξN(t)ρ0Seff (fp(l
+, t)− fp(l−, t)) = ∆F, (2.31)

using the first order approximation of the filling ratio fp(l
−, t) and the flow rate F (l−, t):

fp(l
−, t)− fp(l(t), t)
l(t)− l−

=
∂fp(l(t), t)

∂t
, (2.32)

F (l−, t)− F (l(t), t)

l(t)− l−
=
∂F (l(t), t)

∂t
, (2.33)

then, it is possible to obtain:

dl(t)

dt

(
fp(l(t, t) + (l(t)− l−)

∂fp(l(t), t)

∂x
− 1

)
+ ξN(t)

(
(l(t)− l−)

∂fp(l(t), t)

∂x

)
=

1

ρ0Seff

[
F (l(t), t)− (l(t)− l−)

∂F (l(t), t)

∂x
− F (l+, t)

]
.

(2.34)

In the case that l− → l(t)

dl(t)

dt
=

F (l+)− F (l(t), t)

ρ0Seff (1− fp(l(t), t))
. (2.35)

Taking into account that at the FFZ the net flow rate is uniform and equal to the net

flow at the die, i.e. Fd(t), see equation (2.19). In addition, the flow rate F (l(t), t) is

defined by the maximum pumping capacity of the screw,

F (l(t), t) = ρ0N(t)Vefffp(l(t), t). (2.36)

Furthermore, the ordinary differential equation of the moving interface is:

dl(t)

dt
=
Fd(t)− ρ0N(t)Vefffp(l(t), t)

ρ0Seff (1− fp(l(t), t))
. (2.37)

2.3.8 Interface relations

To describe the coupling that exists between the two zones of the extrusion process

model it is necessary to consider physical coupling relations. In this work, the coupling

relationship for the homogeneous mixture mass balance is established taking into account
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the continuity of pressure at the interface. In addition, it is possible to assume the

viscosity of the matter, η, as variable or constant. In the case of constant viscosity it is

simple to establish an analytical solution for the pressure at the interface. However, it

is well known that the polymer rheology is directly related to temperature and pressure

[7]. Within the extruder, increasing the temperature of the melt at a constant pressure

results in a lower viscosity of the melt which in turn impedes the flow of the melt within

the barrel [31]. Therefore, using time-varying viscosity should be useful for modelling

purposes, since the dynamical behaviour of the extrusion process could be predicted

properly. However, finding an analytical solution for the pressure at the interface is more

difficult when time-varying viscosity is used because of that temperature dependency.

The coupling relationship taking into account the continuity of pressure at the interface

is shown as follows:

2.3.8.1 Continuity of the pressure at the interface

Recalling the expression for the pressure gradient from equation (2.18) with variable

viscosity as:

P (L, t)− P (l(t), t) =

∫ L

l(t)
η(Tf (x, t))

ρ0VeffN(t)− Fd(t)
Bρ0

dx. (2.38)

It worth to point out that, the assumption of continuity of pressure at the interface is a

state coupling relation. Therefore, taking into account that the pressure at the PFZ is

equal to the atmospheric pressure P0 we have: P (l(t), t) = P0.

P (L, t) = P0 +
ρ0VeffN(t)− Fd(t)

Bρ0

∫ L

l(t)
η(Tf (x, t))dx. (2.39)

The term
∫ L
l(t) η(Tf (x, t))dx can be interpreted as the ( time-varying) total viscosity of

the fully filled part. On the other hand, the flow at the die is given by:

Fd(t) =
Kd∆P

ηd(t)
=

Kd

ηd(t)

(
ρ0VeffN(t)− Fd(t)

Bρ0

∫ L

l(t)
η(Tf (x, t))dx

)
, (2.40)

rearranging terms,

Fd(t) + Fd(t)
Kd

Bρ0ηd(t)

∫ L

l(t)
η(Tf (x, t))dx =

KdVeffN(t)

Bηd(t)

∫ L

l(t)
η(Tf (x, t))dx, (2.41)

and finally,

Fd(t) =
Kdρ0VeffN(t)

∫ L
l(t) η(Tf (x, t))dx

Bρ0ηd(t) +Kd

∫ L
l(t) η(Tf (x, t))dx

. (2.42)
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Remark 2.2. Assuming constant viscosity, the pressure gradient from equation (2.18)

can be written as:
∂P (x, t)

∂x
= η

ρ0VeffN(t)− Fd(t)
Bρ0

. (2.43)

Using the first order approximation of the pressure, and knowing that in the PFZ the

pressure is equal to P0,
P (L, t)− P0

L− l(t)
=
∂P (x, t)

∂x
, (2.44)

then replacing (2.43) in equation (2.44),

P (L, t)− P0

L− l(t)
= η

ρ0VeffN(t)−Kd(P (L, t)− P0)/η

Bρ0
. (2.45)

By rearranging items, is it possible to obtain the die pressure P (L, t) or the die flow

Fd(t) as a function of screw speed N(t) and the position of the interface l(t),
P (L, t) = P0 +

ηρ0VeffN(t)(L− l(t))
(Bρ0 +Kd(L− l(t)))

Fd(t) =
Kdρ0VeffN(t)(L− l(t))

(Bρ0 +Kd(L− l(t)))

(2.46)

2.3.8.2 Continuity of the temperature and the concentration at the interface

The temperature and the concentration are supposed to be continuous at the interface.{
Tp(l

−, t) = Tf (l+, t)

cp(l
−, t) = cf (l+, t).

(2.47)

Then, recalling the interface relation concerning the energy balance, the following equa-

tion for the temperature at the interface can be written:

d

dt

∫ l+

l−
T (x, t)dx =

d

dt

∫ l(t)

l−
Tp(x, t)dx+

d

dt

∫ l+

l(t)
Tf (x, t)dx. (2.48)

Applying the Leibniz Rule:

d

dt

∫ l+

l−
T (x, t)dx =

∫ l(t)

l−

∂

∂t
Tp(x, t)dx+

∫ l+

l(t)

∂

∂t
Tf (x, t)dx

+[Tp(l(t), t)− Tf (l(t), t)]
dl(t)

dt
.

(2.49)

Finally, with the assumption of continuity of the temperature at the interface:

d

dt

∫ l+

l−
T (x, t)dx =

∫ l(t)

l−

∂

∂t
Tp(x, t)dx+

∫ l+

l(t)

∂

∂t
Tf (x, t)dx. (2.50)
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2.3.9 Boundary conditions

The boundary conditions associated to equations (2.10), (2.11) and (2.16) are derived

from continuity assumptions as follows:

fp(0, t) = Fin(t)
ρ0N(t)Veff

Tp(0, t) = Tin(t)

cp(0, t) = cin(t),

(2.51)

where Fin, Tin and cin are the feed rate, the inlet temperature and concentration of the

matter respectively.

2.4 Finite volume method discretization

2.4.1 Summary of the extrusion process model

Recalling the extrusion process model at the PFZ and the FFZ as it follows:

A. For the PFZ, from equations (2.10), (2.11), (2.16):
∂fp(x, t)

∂t
= −ξN(t)

∂fp(x, t)

∂x
∂cp(x, t)

∂t
= −ξN(t)

∂cp(x, t)

∂x
∂Tp(x, t)

∂t
= −ξN(t)

∂Tp(x, t)

∂x
+ Ω(fp, N, Tb, Tp),

(2.52)

where,

Ω(fp, N, Tb, Tp) =
µη(Tp(x, t))N

2(t)

fp(x, t)ρ0VeffCp
+

Sexcα

ρ0VeffCp
(Tb(x, t)− Tp(x, t)), (2.53)

B. For the FFZ, from equations (2.20) and (2.21):
∂cf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂cf (x, t)

∂x
∂Tf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂Tf (x, t)

∂x
+ Ω(1, N, Tf , Tb),

(2.54)

where,

Ωf (1, N, Tb, Tf ) =
µη(Tf (x, t))N2(t)

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(Tb(x, t)− Tf (x, t)). (2.55)
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C. Moving Interface
dl(t)

dt
=
Fd(t)− ρ0N(t)Vefffp(l(t), t)

ρ0Seff (1− fp(l(t), t)
. (2.56)

D. For the interface relations, recalling the continuity of the pressure and the tem-

perature at the interface with variable viscosity:
P (L, t) = P0 +

ρ0VeffN(t)− Fd(t)
Bρ0

∫ L
l(t) η(x, t)dx

Fd(t) =
Kdρ0VeffN(t)

∫ L
l(t) η(x, t)dx

Bρ0ηd(t) +Kd

∫ L
l(t) η(x, t)dx

.
(2.57)

D. Boundary conditions 
fp(0, t) = Fin(t)

ρ0N(t)Veff

Tp(0, t) = Tin(t)

cp(0, t) = cin(t).

(2.58)

2.4.2 Discretization of the extrusion process model

A finite volume method approach is adapted to deal with a moving interface with variable

viscosity. Although, using a finite volume scheme is quite standard, since it has been

widely used in science and engineering [32], dealing with a moving interface is challenging

due to the difficulties of having a very non-linear coupled system with a moving interface.

The dynamics of l(t) depends on the coupling between the filling ratio fp(l(t), t) and the

pressure P (L, t). The main difference between fixed and moving interface appears in the

analysis of inter-facial topological changes which are introduced by the interface motion.

In addition difficulties arises during numerical simulation as the interface position must

be computed as part of the process solution and discontinuities in material properties

across the interface should be preserved. Most recent works in literature have been

focused on the use of marker-cells, volume of fluids [33], height functions or level set

methods [34]. In this study in order to deal with the moving interface we use a fixed

mesh on which a color function whose values are 1 or 0 according to the PFZ and the

FFZ. This method is similar to the height functions method. Therefore, all the states

and flux variables which describe the extruder model on both the PFZ and the FFZ

are extended over the whole domain [0, L] through the use of the color function.The

approach used in this work is similar to the one presented on [35], but with the use of a

non-constant viscosity term.

Recalling the interval [0, L] as the length of the extruder and dividing it into Nd elements

of size ∆ as it is shown on Fig. 2.10. It is worth to point out that close to the boundaries,

i.e. 0 and L, the size of those elements must be ∆b = ∆/2. The moving interface is

located at x = l(t) , that means, there are two interconnected sub-domains, the PFZ
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x ∈ [0, l−]and the FFZ x ∈ [l+, L]. For instance, if the screw length is L = 1 m and

Nd = 100, then ∆ = L/Nd = 0.01 and ∆b = 0.005 as it is shown on Fig. 2.11. Using this

discretization it is possible to derive the discrete dynamics of the energy and the mass

balance equations using the finite volume method in each sub-domain, as it is described

in the next sections.

Figure 2.10: Division of the domain [0, L]. (Source: Personal collection).

2.4.2.1 Discretization of the model of the PFZ

2.4.2.1.1 Discretization of the energy balance:

Considering the energy balance from equation (2.52) defined in a fixed interval [a, b] ∈
[0, l(t)]:

∂Tp(x, t)

∂t
= −ξN(t)

∂Tp(x, t)

∂x
+ Ωp(fp, N, Tb, Tp). (2.59)

Writing the equation on integral form:

d

dt

∫ b

a
Tp(x, t)dx = −

∫ b

a
ξN(t)

∂Tp(x, t)

∂x
dx+

∫ b

a
Ωp(fp, N, Tb, Tp)dx, (2.60)

Figure 2.11: Division of the domain [0, L] for Nd = 100 elements. (Source: Personal
collection).
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using the relationship F (Tp(x, t)) = ξN(t)Tp(x, t) in order to obtain:

d

dt

∫ b

a
Tp(x, t)dx = −

∫ b

a

∂F (Tp(x, t))

∂x
dx+

∫ b

a
Ωp(fp, N, Tb, Tp)dx. (2.61)

The discretization of the energy balance can be carried out as it follows:

i. Dividing the domain [a, b] into Nd elements with center xi and size hi = xi+1/2 −
xi−1/2 as it is shown on Fig. 2.12.

Figure 2.12: Division of the domain [a, b] . (Source: Personal collection).

ii. Suppose that Tp(x, t) is constant in each mesh and equal to an approximate value

of the mean temperature written as T ip for the ith mesh.

hiT
i
p =

∫ xi+1/2

xi−1/2

Tp(x, t)dx. (2.62)

The approximated value of the mean is equal to the value of the function Tp at

the center xi of the mesh.

iii. Discretizing for the ith mesh we have from equation (2.61):

d

dt

∫ xi+1/2

xi−1/2

Tp(x, t)dx+

∫ xi+1/2

xi−1/2

∂F (Tp(x, t))

∂x
dx−

∫ xi+1/2

xi−1/2

Ωp(fp, N, Tb, Tp)dx = 0.

(2.63)

This can be written as:

hi
dT ip
dt

+ Fi+1/2 − Fi−1/2 − hiΩi = 0, (2.64)

with Ωi = Ω(f ip, N, T
i
p, T

i
b ) =

µη(T ip)N
2(t)

f ipρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ib − T ip).

iv. Now, Fi+1/2 is an approximation of the flow FTp as a function of the mean values

of Tp in the interval [xi−1/2, xi+1/2], that means:

Fi+1/2 = ξN(t)T i+1/2
p , (2.65)



Chapter 2. Extrusion process overview 28

and using the following approximation for T
i+1/2
p

T i+1/2
p = (λT ip + (1− λ)T i+1

p ). (2.66)

then,

Fi+1/2 = ξN(t)(λT ip + (1− λ)T i+1
p ), (2.67)

and similarly:

Fi−1/2 = ξN(t)(λT i−1
p + (1− λ)T ip). (2.68)

Now, assuming λ = 1 {
Fi+1/2 = ξN(t)T ip

Fi−1/2 = ξN(t)T i−1
p .

(2.69)

v. Replacing on equation (2.64) in order to obtain:

hi
dT ip
dt

+ ξN(t)T ip − ξN(t)T i−1
p − hiΩi = 0, (2.70)

that is,

hi
dT ip
dt

+ ξN(t)(T ip − T i−1
p )− hiΩi = 0, (2.71)

then,
dT ip
dt

= −ξN(t)

hi
(T ip − T i−1

p ) + Ωi, (2.72)

with,

Ωi =
µη(T ip)N

2(t)

f ipρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ib − T ip). (2.73)

Replacing,

dT ip
dt

= −ξN(t)

hi
T ip +

ξN(t)

hi
T i−1
p +

µηN2(t)

f ipρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ib − T ip). (2.74)

Rearranging items and using the relationship θexc =
Sexcα

ρ0VeffCp
:

dT ip
dt

=
ξN(t)

hi
T i−1
p − (

ξN(t)

hi
+ θexc)T

i
p +

µη(T ip)N
2(t)

f ipρ0VeffCp
+ θexcT

i
b . (2.75)

vi. Rewriting using the following state vectors into K + 1 elements, where K is the

element associated to the interval where the interface lies; i.e. xk − hk/2 ≤ l− ≤
xk + hk/2:  Tp =

(
T 0
p T 1

p T 2
p ...T

K
p

)T
fp =

(
f0p f1p f2p ...f

K
p

)T
,

(2.76)
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and the barrel temperature:

Tb =
(
T 0
b T 1

b T 2
b ...T

K
b

)T
. (2.77)

The energy balance can be written as

∂Tp
∂t

= ApTp +BpTb + PpT
ext
p + Sp. (2.78)

where,

Ap =



−Dp
0 0 0 · · · 0 0 0

ξN(t)/h1 −Dp
1 0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 0 0 · · · ξN(t)/hK−1 −Dp
K−1 0

0 0 0 · · · 0 ξN(t)/hK −Dp
K


, (2.79)

with, Dp
i = ξN(t)h−1

i + θexc, Bp = θexcI[K+1], with I[K+1] is an identity matrix

of dimension K ×K, and Pp a matrix with dimension [K + 1]× 2 which its only

non-zero element is Pp(1, 1) = ξN(t)/h0. Also T extp = [T inp , T
(l(t))
p ] and elements of

Sp are defined as:

Sp =
µη(T ip)N(t)2

f ipρ0VeffCp
. (2.80)

2.4.2.1.2 Discretization of the local mass balance: Considering the dynamics

of the filling ratio from equation (2.52) defined in a fixed interval [a, b] ∈ [0, l(t)]:

∂fp(x, t)

∂t
= −ξN(t)

∂fp(x, t)

∂x
. (2.81)

Writing the equation in integral form:

d

dt

∫ b

a
fp(x, t)dx = −

∫ b

a
ξN(t)

∂fp(x, t)

∂x
dx, (2.82)

then the discretization process can be written in the same way as for the temperature

at the PFZ :

i. Using the relationship F (fp(x, t)) = ξN(t)fp(x, t) in order to obtain:

d

dt

∫ b

a
fp(x, t)dx = −

∫ b

a

∂F (fp(x, t))

∂x
dx, (2.83)
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ii. Using the same division of the domain [a, b] and assuming fp(x, t) = f ip:

d

dt

∫ xi+1/2

xi−1/2

fp(x, t)dx = −
∫ xi+1/2

xi−1/2

∂F (fp(x, t))

∂x
dx, (2.84)

then,

hi
df ip
dt

= −Fi+1/2 + Fi−1/2. (2.85)

iii. Taking into account the same procedure as before on Section 2.4.2.1.1,{
Fi+1/2 = ξN(t)f ip

Fi−1/2 = ξN(t)f i−1
p .

(2.86)

iv. Then the mass balance can be written as:

∂fp
∂t

= Afpp fp +Bfp
p f

in
p , (2.87)

where,

Afpp =



−Dfp
0 0 0 · · · 0 0 0

ξN(t)/h1 −Dfp
1 0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 0 0 · · · ξN(t)/hK−1 −Dfp
K−1 0

0 0 0 · · · 0 ξN(t)/hK −Dfp
K


, (2.88)

with, D
fp
i =

ξN(t)

hi
and B

fp
p is a matrix of dimensions [K+ 1]×1 in which its only

non-zero element is B
fp
p (1, 1) = ξN(t)h−1

0 .

2.4.2.1.3 Discretization of the concentration: Considering the dynamics of

the concentration from equation (2.11) defined in a fixed interval [a, b] ∈ [0, l(t)]:

∂cp(x, t)

∂t
= −ξN(t)

∂cp(x, t)

∂x
. (2.89)

Writing the equation on integral form:

d

dt

∫ b

a
cp(x, t)dx = −

∫ b

a
ξN(t)

∂cp(x, t)

∂x
dx. (2.90)

Then the discretization process can be made as it follows:
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i. Using the relationship F (cp(x, t)) = ξN(t)cp(x, t) in order to obtain:

d

dt

∫ b

a
cp(x, t)dx = −

∫ b

a

∂F (cp(x, t))

∂x
dx. (2.91)

ii. Using the same division of the domain [a, b] and making cp(x, t) = cip it is possible

to obtain:
d

dt

∫ xi+1/2

xi−1/2

cp(x, t)dx = −
∫ xi+1/2

xi−1/2

∂F (cp)

∂x
dx, (2.92)

then,

hi
dcip
dt

= −Fi+1/2 + Fi−1/2. (2.93)

iii. Taking into account the same procedure as before on Section 2.4.2.1.1,{
Fi+1/2 = ξN(t)cip

Fi−1/2 = ξN(t)ci−1
p .

(2.94)

iv. Then it results in the following equation:

dcip
dt

= −ξN(t)

hi
(cip − ci−1

p ). (2.95)

v. The concentration of solvent can be written as,

∂cp
∂t

= Acpp cp +Bcp
p c

in
p , (2.96)

where,

Acpp =



−Dcp
0 0 0 · · · 0 0 0

ξN(t)/h1 −Dcp
1 0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 0 0 · · · ξN(t)/hK−1 −Dcp
K−1 0

0 0 0 · · · 0 ξN(t)/hK −Dcp
K


(2.97)

with, D
cp
i =

ξN(t)

hi
and B

cp
p is a matrix of dimensions [K+ 1]× 1 in which its only

non-zero element is B
cp
p (1, 1) = ξN(t)h−1

0 .
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2.4.2.2 Discretization of the model of the FFZ

2.4.2.2.1 Discretization of the energy balance: Considering the energy balance

of the FFZ from equation (2.54) defined in a fixed interval [a, b] ∈ [l(t), L]:

∂Tf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂Tf (x, t)

∂x
+ Ωf (1, N, Tb, Tf ). (2.98)

The integral form of the energy balance is:

d

dt

∫ b

a
Tf (x, t)dx = −

∫ b

a

Fd(t)ξ

ρ0Veff

∂Tf (x, t)

∂x
dx+

∫ b

a
Ωf (1, N, Tb, Tf )dx, (2.99)

using the relationship F (Tf (x, t)) =
Fd(t)ξ

ρ0Veff
Tf (x, t) in order to obtain:

d

dt

∫ b

a
Tf (x, t)dx = −

∫ b

a

∂F (Tf (x, t))

∂x
dx+

∫ b

a
Ωf (1, N, Tb, Tf )dx. (2.100)

Then, the discretization process can be made as it follows:

i. Suppose that Tf is constant in each mesh and equal to an approximate value of

the mean temperature written as T if for the ith mesh.

hiT
i
f =

∫ xi+1/2

xi−1/2

Tf (x, t)dx. (2.101)

ii. Discretizing for the ith mesh we have from equation (2.100):

d

dt

∫ xi+1/2

xi−1/2

Tf (x, t)dx+

∫ xi+1/2

xi−1/2

∂F (Tf (x, t))

∂x
dx−

∫ xi+1/2

xi−1/2

Ωf (1, N, Tb, Tf )dx = 0,

(2.102)

this can be written as:

hi
dT if
dt

+ Fi+1/2 − Fi−1/2 − hiΩi = 0, (2.103)

with Ωi = Ω(1, N, T bi, T if ) =
µη(T if )N2(t)

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ib − T if ).

iii. Using the following relation:

Fi+1/2 =
Fdξ

ρoVeff
T
i+1/2
f , (2.104)

and,

T
i+1/2
f = (λT if + (1− λ)T i+1

f ), (2.105)
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then,

Fi+1/2 =
Fd(t)ξ

ρoVeff
(λT if + (1− λ)T i+1

f ), (2.106)

And similarly:

Fi−1/2 =
Fd(t)ξ

ρoVeff
(λT i−1

f + (1− λ)T if ). (2.107)

Now, assuming λ = 1, then:
Fi+1/2 =

Fd(t)ξ

ρoVeff
T if

Fi−1/2 =
Fd(t)ξ

ρoVeff
T i−1
f .

(2.108)

iv. Replacing those results on eq. 2.103:

hi
dT if
dt

+
Fd(t)ξ

ρoVeff
T if −

Fd(t)ξ

ρoVeff
T i−1
f − hiΩi = 0, (2.109)

then,

hi
dT if
dt

+
Fd(t)ξ

ρoVeff
(T if − T i−1

f )− hiΩi = 0. (2.110)

Rearranging items:

dT if
dt

= − Fd(t)ξ

ρoVeffhi
(T if − T i−1

f ) + Ωi. (2.111)

That gives,

dT if
dt

= − Fd(t)ξ

ρoVeffhi
(T if − T i−1

f ) +
µη(T if )N2(t)

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ib − T if ). (2.112)

Rearranging:

dT if
dt

=
Fd(t)ξ

ρoVeffhi
T i−1
f − (

Fd(t)ξ

ρoVeffhi
+ θexc)(T

i
f ) +

µη(T if )N2(t)

ρ0VeffCp
+ θexcT

i
b . (2.113)

v. Thus, the discretized equation for the energy balance at the FFZ is defined in the

interval defined by the elements K + 1 and Nd, where the element K is so that

xk − hk/2 ≤ l+ ≤ xk + hk/2

∂T if
∂t

= AfTf +BfTb + PfT
ext
f + Sf , (2.114)
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where,

Af =



−Df
l+ 0 0 · · · 0 0 0

EfK+2 −Df
K+2 0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 0 0 · · · EfL−1 −Df
L−1 0

0 0 0 · · · 0 EfL −Df
L


(2.115)

with, Df
i =

Fd(t)ξ

ρoVeffhi
+ θexc and Efi =

Fd(t)ξ

ρoVeffhi
and Bf = θexcI[K+1], and Pf is a

matrix of dimension [K + 1] × 2 in which its only non-zero element is Pf (1, 1) =

(Fd(t)ξ)(ρoVeffhl+)−1. Finally, T extf = [T inf , T
L
f ] and the elements of Sf are defined

as:

Sf =
µη(T if )N(t)2

ρ0VeffCp
. (2.116)

2.4.2.2.2 Discretization of the concentration: Considering the concentration

dynamics at the FFZ from equation 2.20 defined in a fixed interval [a, b] ∈ [l(t), L]:

∂cf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂cf (x, t)

∂x
, (2.117)

the integral form is:

d

dt

∫ b

a
cf (x, t)dx = −

∫ b

a

Fd(t)ξ

ρ0Veff

∂cf (x, t)

∂x
dx. (2.118)

Using the relationship F (cf (x, t)) =
Fd(t)ξ

ρ0Veff
cf (x, t) in order to obtain:

d

dt

∫ b

a
cf (x, t)dx = −

∫ b

a

∂F (cf (x, t))

∂x
dx, (2.119)

then, the discretization process can be made as it follows:

i. Suppose that cf is constant in each mesh and equal to an approximate value of

the mean concentration written as cif for the ith mesh.

hic
i
f =

∫ xi+1/2

xi−1/2

cf (x, t)dx. (2.120)
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ii. Discretizing for the ith mesh:

d

dt

∫ xi+1/2

xi−1/2

cf (x, t)dx+

∫ xi+1/2

xi−1/2

∂F (cf (x, t))

∂x
dx = 0, (2.121)

this can be written as:

hi
dcif
dt

+ Fi+1/2 − Fi−1/2 = 0. (2.122)

iii. Writing the following relation:

Fi+1/2 =
Fd(t)ξ

ρoVeff
c
i+1/2
f , (2.123)

and,

c
i+1/2
f = (λcif + (1− λ)ci+1

f ), (2.124)

then,

Fi+1/2 =
Fd(t)ξ

ρoVeff
(λcif + (1− λ)ci+1

f ). (2.125)

And similarly:

Fi−1/2 =
Fd(t)ξ

ρoVeff
(λci−1

f + (1− λ)cif ). (2.126)

Now, assuming λ = 1, then:
Fi+1/2 =

Fd(t)ξ

ρoVeff
cif

Fi−1/2 =
Fd(t)ξ

ρoVeff
ci−1
f .

(2.127)

iv. Replacing those results on equation (2.122):

hi
dcif
dt

+
Fd(t)ξ

ρoVeff
cif −

Fd(t)ξ

ρoVeff
M i−1
f = 0. (2.128)

Then,

hi
dcif
dt

= −Fd(t)ξ
ρoVeff

(cif − ci−1
f ). (2.129)

v. The concentration of solvent can be written as:

∂cif
∂t

= Acff cf + P cff cextf , (2.130)
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where,

Acff =



−Dcf
l+ 0 0 · · · 0 0 0

EcfK+2 −Dcf
K+2 0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 0 0 · · · EcfL−1 −Dcf
L−1 0

0 0 0 · · · 0 EcfL −Dcf
L


(2.131)

with, Dcf
i = Ecfi =

Fd(t)ξ

ρoVeffhi
and

P cff =



Fd(t)ξ

ρoVeffhl+
0

0 0
...

...

0 0

 (2.132)

where cextf = [cinf , c
K
f ].

2.4.2.3 Interconnection of the Moving Interface

In Section 2.4.1 the interface relation assuming the continuity of the pressure at the

interface was made as it follows:
P (L, t) = P0 +

ρ0VeffN(t)− Fd(t)
Bρ0

∫ L
l(t) η(x, t)dx

Fd(t) =
Kdρ0VeffN(t)

∫ L
l(t) η(x, t)dx

Bρ0ηd(t) +Kd

∫ L
l(t) η(x, t)dx

.
(2.133)

The treatment of interfaces between materials of different properties remains a formidable

challenge to the computation of fluid dynamics. Generally, color functions are used to

distinguish the regions where different materials fall in. To accurately reproduce the

physical processes across the interface transition region, keeping the compact thickness

of the interface is of great importance [36]. Therefore, in order to simplify the analysis

of the dynamics of the temperature at the moving interface the following color function

that represents both the PFZ and FFZ can be proposed as it follows:

k(x, l(t)) =

1 if x ∈ [0, l(t)[

0 if x ∈ [l(t), L]
and k(x, l(t)) =

0 if x ∈ [0, l(t)[

1 if x ∈ [l(t), L].
(2.134)
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This color function is used to extend over the whole domain [0, L] all the states and flux

variables which describe the extruder model in PFZ and FFZ as it follows:

N (x, t) = k(x, t)Np(x, t) + k(x, l(t))Nf (x, t), (2.135)

where, N denotes the flux or state. Omitting x in k and k for simplicity, in the case of

the temperature along the extruder, the following definition should be considered:

T (x, t) = k(l(t))Tp(x, t) + k(l(t))Tf (x, t). (2.136)

Recalling the assumption of continuity of the temperature as stated on Section 2.3.8.2

and the interface position on l(t) ∈]l−, l+] with l− = K and l+ = K + 1 the following

equation for the temperature in the domain [K − 1/2,K + 3/2] can be written:

∂

∂t

∫ xK+3/2

xK−1/2

T (x, t)dx =
∂

∂t

∫ l(t)

xK−1/2

k(l(t))Tp(x, t)dx+
∂

∂t

∫ xK+3/2

l(t)
k(l(t))Tf (x, t)dx,

(2.137)

distributing terms:

∂

∂t

∫ xK+3/2

xK−1/2

T (x, t)dx =
∂

∂t

∫ l−

xK−1/2

k(l(t))Tp(x, t)dx+
∂

∂t

∫ l(t)

l−
k(l(t))Tp(x, t)dx

+
∂

∂t

∫ l+

l(t)
k(l(t))Tf (x, t)dx+

∂

∂t

∫ xK+3/2

l+
k(l(t))Tf (x, t)dx.

(2.138)

Approximating l(t) ' l+ then,

∂

∂t

∫ xK+3/2

xK−1/2

T (x, t)dx =
∂

∂t

∫ l−

xK−1/2

k(l(t))Tp(x, t)dx+
∂

∂t

∫ l(t)

l−
k(l(t))Tp(x, t)dx

+
∂

∂t

∫ xK+3/2

l(t)
k(l(t))Tf (x, t)dx.

(2.139)

Recalling that l− = K and l+ ' l(t) = K + 1:

∂

∂t

∫ xK+3/2

xK−1/2

T (x, t)dx =
∂

∂t

∫ xK

xK−1/2

k(l(t))Tp(x, t)dx+
∂

∂t

∫ xK+1

xK

k(l(t))Tp(x, t)dx

+
∂

∂t

∫ xK+3/2

xK.+1

k(l(t))Tf (x, t)dx

(2.140)
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Then, the integrals on the fluxes become∫ xK

xK−1/2

∂

∂x
Fp(x, t)dx+

∫ xK+1

xK

∂

∂x
Fp(x, t)dx+

∫ xK+3/2

xK+1

∂

∂x
Ff (x, t)dx

= FKp − FK−1/2
p + FK+1

p − FKp + F
K+3/2
f − FK+1

f ,

(2.141)

simplifying:

∂

∂t

∫ xK

xK−1/2

∂

∂x
Fp(x, t)dx+

∫ xK+1

xK

∂

∂x
Fp(x, t)dx+

∫ xK+3/2

xK+1

∂

∂x
Ff (x, t)dx

= −FK−1/2
p + FK+1

p + F
K+3/2
f − FK+1

f .

(2.142)

Recalling the continuity of heat flux at the the interface, i.e at K + 1:

FK+1
p − FK+1

f = 0, (2.143)

then, ∫ xK

xK−1/2

∂

∂x
Fp(x, t)dx+

∫ xK+1

xK

∂

∂x
Fp(x, t)dx+

∫ xK+3/2

xK+1

∂

∂x
Ff (x, t)dx

= −FK−1/2
p + F

K+3/2
f ,

(2.144)

that is,

∂

∂t

∫ xK+3/2

xK−1/2

T (x, t)dx = −FK−1/2
p + F

K+3/2
f , (2.145)

Using the approximation for the fluxes F
K−1/2
p and F

K+3/2
p in the same way as in

equations (2.68) and (2.106):

∂

∂t

∫ xK+3/2

xK−1/2

T (x, t)dx = −ξN(t)TK−1
p +

Fd(t)ξ

ρ0Veff
TKf . (2.146)

Using the initial approximation for temperature as in equation (2.62), the definition of

2h = xK+3/2 − xK−1/2 and taking into account the interface relationship defined on

Section 2.3.8.2:

2h
d

dt
TK+1
f = −ξN(t)TK−1

p +
Fd(t)ξ

ρ0Veff
TKf , (2.147)

Then,

d

dt
TK+1
f = − 1

2h
ξN(t)TK−1

p +
1

2h

Fd(t)ξ

ρ0Veff
TKf . (2.148)

By replacing the definition of temperature from equation (2.136), assuming that k and k
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are constant in each mesh and equal to an approximate value of each color function writ-

ten as ki and ki for the ith mesh respectively and taking into account the approximation

l+ ' l(t) = K + 1 we have:

d

dt
Tl(t) = −kK−1

2h
ξN(t)TK−1 +

kK
2h

Fd(t)ξ

ρ0Veff
TK . (2.149)

2.4.3 Summary of the total discrete model

Summarizing and taking into account the use of the color functions k and k, the dis-

cretized system equations for the extrusion process model are the following:

• Recalling equations (2.78), (2.87) and (2.96) at the PFZ with i ∈ [0,K + 1[:

d

dt
kiTi = kiApTi +BpTb,i + PpT

ext
i + Sp, (2.150)

d

dt
fp,i = Afpp fp,i +Bfp

p f
in
p , (2.151)

∂

∂t
kic

i
p = kiA

cp
p c

i
p +Bcp

p c
in
p . (2.152)

• For the FFZ with i ∈]K + 1, L]:

d

dt
kiTi = kiAfTi +BfTb,i + PfT

ext
i + Sf , (2.153)

∂

∂t
kic

i
f = kiA

cf
f c

i
f + P cff cextf . (2.154)

• The temperature at the interface:

d

dt
TK+1 = −kK−1

2h
ξN(t)TK−1 +

kK
2h

Fd(t)ξ

ρ0Veff
TK . (2.155)

• The position of the interface is defined by:

dl(t)

dt
=
Fd(t)− ρ0N(t)Vefffp(K + 1, t)

ρ0Seff (1− fp(K + 1, t))
. (2.156)

• The interface relations assuming the continuity of pressure:
P (L, t) = P0 +

ρ0VeffN(t)− Fd(t)
Bρ0

∫ L
l(t) η(x, t)dx

Fd(t) =
Kdρ0VeffN(t)

∫ L
l(t) η(x, t)dx

Bρ0ηd(t) +Kd

∫ L
l(t) η(x, t)dx

.
(2.157)
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2.5 Summary

In this chapter some fundamental on screw-extruders were presented, among a brief

description of the extrusion process, its classification and geometrical properties. A brief

bibliographic synthesis regarding the modelling of the extrusion process together with

the presentation of the bi-zone model and interface relations was presented. This model

is derived from balance laws expressing conservation of mass, concentration of solvent

and energy with non-constant viscosity. This last condition implies a new approach

on the discretization process, that has not been addressed before, since the viscosity is

temperature and shear rate dependable. A finite volume method approach is adapted

to the bi-zone model in order to deal with a moving interface. A discretization method

for the system was presented taking into account the difficulties of having a non-linear

coupled system with a moving interface. The dynamics of the moving interface depends

on the coupling between the filling ratio fp(l(t), t) and the pressure P (L, t). In the next

chapter, some simulations of the proposed bi-zone extrusion process model are performed

in order to analyze its behavior for different initial conditions.



Chapter 3

Analysis and dynamic simulations

3.1 Introduction

In this chapter, dynamical and steady state simulations of the extrusion process are

presented in order to analyze the behaviour of the discretized model. Two different

approaches where used: A first approach, similar than the one adopted by [25] in which

the viscosity is supposed as a constant where the steady state of the model is analyzed

in order to compute the equilibrium points upon a given set of initial conditions. Then

different open-loop simulations are presented with variable screw speed and variable

input flow in order to test different operational conditions. A second, more complex

approach is presented in which the viscosity is assumed as variable. A power-law model

for viscosity is used, with dependency on the temperature of the melt. In this case

the equilibrium points of the extrusion process are also computed, and some open-loop

simulations for variable screw speed and variable input flow are presented.

3.2 Extrusion process model with constant viscosity

3.2.1 Description of the simulated model

In this section, some simulation tests for the mass and energy balance equations of the

extrusion process model with constant viscosity are presented. The simulations were

made using Matlabr and the Solver Function used was Ode113. The latter was chosen

because is more efficient at problems with stringent error tolerances and ODE functions

that are expensive to evaluate [37]. In order to test the behaviour of the discretized

model two different simulations were made:

41
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• Test No.1: variable feed rate Fin(t) with constant screw speed N(t) = N0

• Test No.2: variable screw speed N(t) with constant feed rate Fin

Table 3.1 shows some input variables used on the simulation process, most of the data

are obtained from Diagne [17].

Initial screw speed N0 = 250[rpm]

Barrel temperature Tb(x) = 330[K]

Input temperature Tin = 293[K]

Extruder length L = 2[m]

Initial feed rate Fin = 270/3600[kg/s]

Initial filling ratio f inp =
Fin

ρ0VeffN0
= 0.6139

Table 3.1: Input values used on the simulation process for constant viscosity.
(Amended from [17]).

In addition, some screw and thermodynamical parameters were used on the simulation

process which are detailed in Table 3.2 and 3.3 respectively.

External diameter D = L/15 = 0.133[m]

Internal diameter Ds = 0.001[m]

Screw pitch ξ = 30× 10−4[m]

Effective surface Seff = π
4 (D2 −D2

s) = 0.01396[m2]

Effective volume Veff = Seffξ = 4.188× 10−5[m3]

Table 3.2: Screw parameters used on the simulation process for constant viscosity.
(Source: Personal collection).

Thermal exchange coefficient α = 10.41× 101[J/(m2Ks)]

Material density ρ0 = 1400/2[kg/m3]

Exchange surface Sexc = πD2L[m2]

Initial viscosity η = 500/4[Pa/s]

Heat capacity Cp = 3.6× 103[J/(kgK)]

Table 3.3: Thermodynamical Parameters used on the simulation process.(Source:
Personal collection).

The simulations where performed based on the equations shown in Section 2.4.1 and the

discretization process presented in Section 2.4.2 with constant viscosity.
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3.2.2 Equilibrium Points Computation

Recalling the extrusion process model and the boundary conditions shown in Sec-

tion 2.4.1, it is possible to find the equilibrium points, i.e. ∂/∂t = 0, for the filling

ratio, the temperature and the moving interface:

3.2.2.1 Filling Ratio

For the filling ratio we have the following expression at the steady state:

− ξN∗∂f
∗
p (x)

∂x
= 0, (3.1)

then,
∂f∗p (x)

∂x
= 0, (3.2)

that is,

f∗p = κ, (3.3)

with κ as a constant.

3.2.2.2 Moving Interface

Assuming dl(t)/dt = 0 we have the following expression at steady state:

F ∗
d (l∗)− ρ0N∗Vefff

∗
p (l∗)

ρ0Seff (1− f∗p (l∗))
= 0. (3.4)

Then, solving for the filling ratio we can have an equilibrium value for the given param-

eters as it follows:

f inp = f∗p (l∗) =
Fin

ρ0N∗Veff
= κ = 0.6139. (3.5)

Then, the equilibrium of the interface position is,

l∗ = L−
Bρ0f

∗
p (l∗)

Kd(1− f∗p (l∗))
= 1.1095 m. (3.6)

Using the equation (3.6) it is possible to compute the filling ratio at the equilibrium f∗p

as function of the position of the interface l∗ ∈ [0, L] trough the following expression:

f∗p (l∗) =
(l∗ − L)Kd

−Bρ0 +Kd(l∗ − L)
. (3.7)
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Fig. 3.1 shows the equilibrium of the filling ratio as a function of the moving interface.

Note that in the case when the extruder is empty, i.e. the moving interface is at l(t) =

L = 2 m, the filling ratio on steady state is f∗p (L) = 0. Also note that when the extruder

gets filled the filling ratio at equilibrium reaches its maximum, i.e. approximately at

f∗p (0) = 0.78. This is basically due to the configuration of the screw and the parameters

of the extruder. Therefore, based upon the geometrical properties of the screws the

equilibrium of the filling ratio can be changed in order to optimize the process. In

addition, the circular dot on the figure represents the computed filling ratio on steady

state of the moving interface as stated on equations (3.5) and (3.6) with the initial values

shown on Table 3.1. Also, the steady state of the input flow can be computed using

Figure 3.1: Filling ratio as a function of the moving interface.(Source: Personal
collection).

equation 2.18 as it follows:

∆P = VeffηN
∗ρ0

[
L− l∗

Bρ0 +Kd(L− l∗)

]
= 31250 Pa, (3.8)

F ∗
d =

Kd

η
∆P = 270/3600 kg/s. (3.9)
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3.2.2.3 Temperature of the melt

3.2.2.3.1 Temperature at the PFZ :

On steady state, i.e. ∂Tp(x, t)/∂t = 0, the temperature at the PFZ is given by:

− ξN∗∂T
∗
p (x)

∂x
+ Ωp(f

∗
p , N

∗, T ∗
b , T

∗
p ) = 0, (3.10)

where,

Ωp(f
∗
p , N

∗, T ∗
b , T

∗
p ) =

µηN∗2

f∗pρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ∗
b − T ∗

p (x)), (3.11)

then,

− ξN∗∂T
∗
p (x)

∂x
+

µηN∗2

f∗pρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ∗
b − T ∗

p (x)) = 0, (3.12)

redistributing terms,

∂T ∗
p (x)

∂x
=

µηN∗

ξf∗pρ0VeffCp
+

Sexcα

ξN∗ρ0VeffCp
(T ∗
b − T ∗

p (x)). (3.13)

This equation can be written as:

∂T ∗
p (x)

∂x
+

Sexcα

ξN∗ρ0VeffCp
T ∗
p (x) =

µηN∗

ξf∗pρ0VeffCp
+

Sexcα

ξN∗ρ0VeffCp
T ∗
b . (3.14)

Which is a linear differential equation. Then, the solution for the temperature on steady

state on the domain of the PFZ, i.e [0, x], is the following:

T ∗
p (x) = ζ1

(
1− exp

(
−Sexcαx

ρ0VeffCpξN∗

))
+ Tin exp

(
−Sexcαx

ρ0VeffCpξN∗

)
, (3.15)

with,

ζ1 =

(
µηN∗

f∗p
+
SexcT

∗
b

N∗

)
N∗

Sexcα
. (3.16)

3.2.2.3.2 Temperature at the FFZ : Using ∂Tf (x, t)/∂t = 0, in order to find the

temperature on steady state for the FFZ :

−
F ∗
d ξ

ρ0Veff

∂Tf (x)

∂x
+ Ωf (1, N∗, T ∗

b , T
∗
f ) = 0, (3.17)

where,

Ωf (1, N∗, T ∗
b , T

∗
f ) =

µηN∗2

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ∗
b − T ∗

f (x)), (3.18)

then,

−
F ∗
d ξ

ρ0Veff

∂T ∗
f (x)

∂x
+

µηN∗2

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ∗
b − T ∗

f (x)) = 0 (3.19)
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redistributing terms,

∂T ∗
f (x)

∂x
+

Sexcα

F ∗
d ξCp

T ∗
f (x) =

µηN∗2 + SexcαT
∗
b

F ∗
d ξCp

. (3.20)

The equation (3.20) is a linear differential equation for which the solution for the tem-

perature at steady state on the domain of the FFZ, i.e. [l∗, x], is the following:

T ∗
f (x) = ζ2 +

(
T ∗
p − ζ2

)
exp

(
−Sexcα(x− l∗)

F ∗
d ξCp

)
, (3.21)

with

ζ2 =
µηN∗2 + SexcαT

∗
b

Sexcα
(3.22)

With equations (3.15) and (3.21) it is possible to compute the temperature at steady

state in the extruder for a given set of parameters. Fig. 3.2 shows the temperature at

the interface for different values of the equilibrium point of the moving interface. Note

that, when the moving interface gets closer to the die output, i.e. close to x = 2 m,

the temperature grows asymptotically towards the die. This is related to the chosen

parameters of the extrusion process and imposes a restriction from the modelling point

of view since the moving interface cannot be closer to the die. The black circular point in

the figure, represents the temperature at the interface T (l∗) = 345.73 K with l∗ = 1.1095

m.

In addition, Fig. 3.3 shows the melt temperature in the extruder in steady state for

different equilibrium points, i.e. l∗1 = 0.4331,l∗2 = 1.1095 and l∗3 = 1.4595 where it is

possible to note that the melt temperature changes accordingly with the equilibrium of

the moving interface on the PFZ and the FFZ. If the moving interface is closer to the die,

the melt temperature will be higher. That means, the melt temperature is intrinsically

related to the moving interface which can be used for control purposes as it was shown

by [17].

3.2.3 Dynamic simulation with constant viscosity and variable input

flow

In this case a variable input flow was used in order to test three important operational

conditions:

• Initial operation starting from a theoretical equilibrium of the interface position

and the filling ratio using an input flow of Fin = 324/3600 kg/s.

• After 50 s of operation up to 600 s, the input flow decreases to Fin = 216/3600 kg/s

in order to empty the extruder.
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Figure 3.2: Temperature vs. equilibrium of the moving interface. (Source: Personal
collection).

Figure 3.3: Temperature at steady state for different equilibrium points. (Source:
Personal collection).
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• After 600 s of operation up to 1200 s, the input flow changes to its initial value

Fin = 270/3600 kg/s in order to fill up the extruder.

A spatial discretization Nd of 200 elements and a simulation time of 1200 s were used.

Summarizing, the initial conditions defined for the filing ratio, the interface position and

the input flow along the extruder are f0p , l0, Fin and they are shown on Table 3.4:

Initial Filling Ratio f0p = 1.2f∗p = 0.7367

Initial interface Position l0 = 0.4331 m

Initial input Flow Fin = 324/3600 kg/s

Table 3.4: Initial conditions for the extrusion process simulation with constant vis-
cosity and variable input flow.(Source: Personal collection).

Taking into account that the extruder length is L = 2 m, in this case initially, the

positions x1 = 0.5 m, x2 = 1 m and x3 = 1.5 m belongs to the FFZ. Fig. 3.4 shows the

evolution of the filling ratio for the simulation period of 1200 s. Recall that in this case

the initial position of the interface is l0 = 0.4331 m.

Note that the filling ratio changes accordingly to the variation of the input flow. For

example, regarding to the filling ratio evolution at x2 = 1 m the following behaviour can

be described :

• At the beginning, this position belongs to the FFZ. Then, the filling ratio decreases

at approximately t1 = 190 s to an equilibrium position of fp(x2, t1) = 0.49112

which corresponds to the equilibrium for an input flow of Fin = 216/3600 kg/s.

• At around t2 = 600 s the filling ratio increases accordingly to the change of

the input flow, i.e. Fin = 270/3600 kg/s, and reaches an equilibrium point of

fp(x2, t2) = 0.6139.

Also comparing the filling ratio evolution to the interface position on Fig. 3.5 it is possi-

ble to validate the coupling between these two variables. For instance, in the case of the

filling ratio fp at x1 = 0.5 m the value changes from its initial condition (fp(x1, t0) = 1 at

t0 = 0 s) and decreases to its second state at t1 = 50 s to a value of fp(x1, t1) = 0.49112.

The same behaviour can be found on the interface position evolution where it is shown

that it becomes higher than 0.5 m after approximately 50 s.

In addition, note that the interface position does not change on the first 50 s of simu-

lation because it corresponds to the equilibrium point of l(t) = 0.4331 m. After 50 s,

when the input flow changes, the interface position increases to reach its steady state of

l(t) = 1.46 m. Finally at 600 s when the input flow changes again, the interface position
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decreases in order to reach its final state at l(t) = 1.1095 m

On the other hand Fig. 3.6 shows the melt temperature evolution. Note that the tem-

perature reaches its steady state value depending on the changes on the input flow,

although the behaviour is not so noticeable as in the case of the filling ratio or the in-

terface position.This is particularly due to the fact that the influence of the input flow

on the temperature of the melt due to the heat produced by the friction of the material

with the barrel and the screw can be considered to be as small if it is compared to the

heat exchange between the barrel and the melt.

Figure 3.4: Filling ratio dynamics for constant viscosity and variable input flow.
(Source: Personal collection).
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Figure 3.5: Interface position dynamics for constant viscosity and variable input flow.
(Source: Personal collection).

Figure 3.6: Temperature dynamics for constant viscosity and variable input flow.
(Source: Personal collection).



Chapter 3. Analysis and dynamic simulations 51

3.2.4 Dynamic simulation with constant viscosity and variable screw

speed

In this case a variable screw speed N(t) and a constant input flow of Fin = 324/3600 kg/s

were used in order to test the behaviour of the process within the following operational

conditions:

• Initial operation starting from a theoretical equilibrium of the interface and the

filling ratio using a screw speed of N(t) = 250 rpm.

• After 50 s of operation up to 600 s, the screw speed increases to N(t) = 300 rpm.

• After 600 s of operation up to 1200 s, the screw speed increases again up to

N(t) = 350 rpm in order to empty the extruder.

• After 1200 s up to 2000 s, the screw speed changes to its original value N(t) =

250 rpm in order to fill up the extruder.

A spatial discretization Nd of 200 elements and a simulation time of 2000 s were used.

Summarizing, the initial conditions defined for the filing ratio, the interface position and

the input flow along the extruder are f0p , l0, Fin and they are shown on Table 3.5:

Initial Filling Ratio f0p = 1.2f∗p = 0.7367

Initial interface Position l0 = 0.4331 m

Initial input Flow Fin = 324/3600 kg/s

Table 3.5: Initial conditions for the extrusion process simulation with constant vis-
cosity and variable screw speed. (Source: Personal collection).

In this case the positions of the extruder x1 = 0.5 m, x2 = 1 m and x3 = 1.5 m are

analyzed. At the beginning, those positions belongs to the FFZ. Fig. 3.7 shows the

evolution of the filling ratio during the simulation period of 2000 s. In this case the

filling ratio changes accordingly to every variation of the screw speed in a similar way

than the changes generated by the variation of the input flow. That means, the dynamics

of the filling ratio depends on the screw speed and the input flow. Recalling the filling

ratio evolution at x2 = 1 m the following behaviour can be described:

• At the beginning this position belongs to the FFZ. Then, the filling ratio decreases

at approximately t1 = 253 s to an equilibrium position of fp(x2, t1) = 0.6139 which

corresponds to the equilibrium at a screw speed of N(t1) = 300 rpm.
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• At around t2 = 600 s the filling ratio decreases accordingly to an increment of

the screw speed, i.e., N(t2) = 350/60rpm, and reaches an equilibrium point of

fp(x2, t2) = 0.5262.

• At approximately t3 = 1200 s the filling ratio returns to its initial position, i.e. to

the FFZ because of a decrease of the screw speed to an initial value of N(t3) =

250 rpm.

In this case, the evolution of the filling ratio relates to the evolution of the interface

position as it is shown on Fig. 3.8 and 3.9 . For instance, at approximately 50 s, the

interface position moves from its initial position l0 = 0.433 m to another equilibrium

point at l(t) = 1.1095 m due to the changes on the screw speed from N(t0) = 250 rpm

to N(t1) = 300 rpm.

After 600 s, the interface position changes again due to the variation of the screw speed

and reaches an equilibrium point of l(t) = 1.3780 m with N(t2) = 350 rpm. Finally,

the interface position decreases to its initial value after 1200 s of simulation due to a

decrease on the screw speed of N(t3) = 250 rpm.

Figure 3.7: Filling ratio evolution for constant viscosity and variable screw speed.
(Source: Personal collection).
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Figure 3.8: Filling ratio and moving interface evolution for constant viscosity and
variable screw speed. (Source: Personal collection).

Figure 3.9: Dynamic simulations with constant viscosity: (A)Interface position evo-
lution and (B) Screw speed. (Source: Personal collection).
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The evolution of the melt temperature is shown in Fig. 3.10. Note that in this case,

the changes on the screw speed are reflected on the melt temperature behaviour. The

melt temperature increases and decreases accordingly to the screw speed changes. For

instance, for a position of x2 = 1 m at approximately t2 = 600 s the melt temperature

increases from T (x2, t1) = 352.6 K to T (x2, t2) = 361.4 K due to an increase of the screw

speed from N(t1) = 300 rpm to N(t2) = 350 rpm. After t3 = 1200 s of simulation, the

melt temperature decreases to a final value of T (x2, t3) = 345.1 K due to a decrease of

the screw speed N(t3) = 250 rpm.

This is particularly due to the fact that the influence of the screw speed on the melt

temperature is higher than the influence of the input flow. In fact, if the screw speed is

slow, the energy transferred to the melt is mainly form the barrel heating. If the screw

speed is high, shear heating provided by the screw rotation becomes the main heating

source [28]. Then it is possible to conclude that, the melt temperature highly depends

on the barrel temperature, the input temperature and the screw speed.

Figure 3.10: Temperature evolution for constant viscosity and variable screw speed.
(Source: Personal collection).
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3.3 Extrusion process model with variable viscosity

3.3.1 Description of the simulated model

In this section, simulation tests for the mass and energy balance equations of the extru-

sion process model with variable viscosity are presented. In order to test the behaviour

of the discretized model, the following simulations were made:

• Test No.1: variable feed rate Fin with constant screw speed N(t) = N0

• Test No.2: variable screw speed N(t) with constant feed rate Fin

The simulations used are based on the equations shown in Section (2.4.1) and the dis-

cretization process explained in Section (2.4.2)with variable viscosity. In both cases a

power-law model for viscosity is used [24]. In this model, the viscosity is highly depen-

dent on the temperature of the melt as it is shown by the following equations:

ηp(Tp(x, t)) = η0pe
−βT (Tp(x,t)−T0) (t,x) ∈ (R+, [0, l(t)[, (3.23)

ηf (Tf (x, t)) = η0fe
−βT (Tf (x,t)−T0) (t,x) ∈ (R+, [l(t), L]. (3.24)

where, η(T (x, t)) is the viscosity as a function of the melt temperature, βT is a temper-

ature shift factor in the expression that relates viscosity to temperature and η0 is the

viscosity at a reference temperature T0. The values of βT for polymers are usually in

the range of 0.01− 0.04/◦C, but occasionally they may reach 0.1/◦C or more for some

materials [38]. Table 3.6 shows the input variables used in the simulation process, most

of the data are obtained from Diagne [17].

Initial screw speed N0 = 250[rpm]

Barrel temperature Tb = 330[K]

Input temperature Tin = 320[K]

Extruder length L = 2[m]

Initial feed rate Fin = 270/3600[kg/s]

Initial filling ratio f inp =
Fin

ρ0VeffN0
= 0.6139

Table 3.6: Input values used on the simulation process for variable viscosity.
(Amended from [17]). (Source: Personal collection).

In addition, the following screw and thermodynamical parameters were used on the

simulation process which are detailed on Table 3.7 and 3.8 respectively.
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External diameter D = L/15 = 0.133[m]

Internal diameter Ds = 0.001[m]

Screw pitch ξ = 30× 10−4[m]

Effective surface Seff = π
4 (D2 −D2

s) = 0.01396[m2]

Effective volume Veff = Seffξ = 4.188× 10−5[m3]

Table 3.7: Screw parameters used on the simulation process for variable viscosity.
(Source: Personal collection).

Thermal exchange coefficient α = 10.41× 101[J/(m2Ks)]

Material density ρ0 = 1400/2[kg/m3]

Exchange surface Sexc = πD2L[m2]

Initial viscosity η0 = 173.4[Pa.s]

Heat capacity Cp = 3.6× 103[J/(kgK)]

Table 3.8: Thermodynamical parameters used on the simulation process for variable
viscosity. (Source: Personal collection).

3.3.2 Equilibrium Points Computation

Recalling the extrusion process model and the boundary conditions shown in Sec-

tion 2.4.1, we shall compute the equilibrium points using ∂/∂t = 0 for the filling ratio,

the temperature and the moving interface:

3.3.2.1 Filling Ratio

By using the mass balance equation from (2.10) the following expression in steady state

can be proposed:

− ξN0
∂fp(x)

∂x
= 0, (3.25)

then,
∂fp(x)

∂x
= 0, (3.26)

that is,

f∗p = κ, (3.27)

with κ as a constant,
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3.3.2.2 Moving Interface

Assuming dl(t)/dt = 0 we have the following expression in steady state:

F ∗
d − ρ0N0Vefff

∗
p

ρ0Seff (1− f∗p )
= 0, (3.28)

then, solving for the filling ratio we can have an equilibrium value for the given param-

eters as it follows:

f inp = f∗p =
Fin

ρ0N0Veff
= κ = 0.6139, (3.29)

That means, the steady state of the filling ratio is the same that in the case of constant

viscosity. However, if we recall the position of the interface from equation (2.37), finding

an analytical solution for the steady state equation is not possible because of the total

viscosity term,
∫ L
l(t) η(Tf (x, t))dx, included in equation (2.42).

3.3.2.3 Temperature of the Melt

3.3.2.3.1 Temperature at the PFZ :

By assuming ∂Tp(x, t)/∂t = 0 on the energy balance of the PFZ from equation (2.16),

then we have on steady state:

− ξN0

∂T ∗
p (x)

∂x
+ Ωp(f

∗
p , N

∗, T ∗
b , T

∗
p , η(T ∗

p (x))) = 0, (3.30)

where,

Ωp(f
∗
p , N

∗, T ∗
b , T

∗
p , η(T ∗

p (x))) =
µη(Tp(x))N∗2

f∗pρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ∗
b − T ∗

p (x)), (3.31)

with T ∗
p as temperature at the equilibrium is given by. Then,

− ξN∗∂T
∗
p (x)

∂x
+
µη(T ∗

p (x))N∗2

f∗pρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ∗
b − T ∗

p (x)) = 0, (3.32)

redistributing terms,

∂T ∗
p (x)

∂x
=
µη(T ∗

p (x))N∗

ξf∗pρ0VeffCp
+

Sexcα

ξN∗ρ0VeffCp
(T ∗
b − T ∗

p (x)), (3.33)

Therefore, T ∗
p is the solution of the first-order nonlinear equation (3.33).
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3.3.2.3.2 Temperature at the FFZ By assuming ∂Tf (x, t)/∂t = 0 on the energy

balance of the FFZ from equation (2.21), then we have on steady state:

−
F ∗
d ξ

ρ0Veff

∂T ∗
f (x)

∂x
+ Ωf (N∗, T ∗

b , T
∗
f , η(T ∗

f (x))) = 0, (3.34)

where,

Ωf (N∗, T ∗
b , T

∗
f , η(T ∗

f (x))) =
µη(T ∗

f (x))N∗2

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ∗
b − T ∗

f (x)), (3.35)

then,

−
F ∗
d ξ

ρ0Veff

∂T ∗
f (x)

∂x
+
µη(T ∗

f (x))N∗2

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(T ∗
b − T ∗

f (x)) = 0, (3.36)

redistributing terms,

∂T ∗
f (x)

∂x
= − Sexcα

F ∗
d ξCp

T ∗
f (x) +

µη(T ∗
f (x))N∗2 + SexcαT

∗
b

F ∗
d ξCp

, (3.37)

where F ∗
d = F ∗

in.Therefore, T ∗
f is the solution of the first-order nonlinear equation (3.37).

On the other hand, the equilibrium for the flow at the die should also satisfy the equation

of pressure continuity at the interface; i.e. equation (2.46),

F ∗
in =

Kdρ0VeffN
∗ ∫ L

l∗ η(T ∗
f (x))dx

Bρ0η∗d +Kd

∫ L
l∗ η(T ∗

f (x)))dx
. (3.38)

Finding an analytical solution to the first-order nonlinear equation (3.37) since the term

Fin depends on the total viscosity term
∫ L
l(t) η(Tf (x, t))dx. However, with a given N∗

and F ∗
in, it is possible to find a l∗ so that equations (3.33), (3.37) and (3.38) are satisfied.

In order to compute the steady state values of the interface position an optimization

problem can be proposed. This matter is analyzed in detail in Section 4.3 for the

application of the proposed model to an industrial type twin screw extruder.

3.3.3 Dynamic simulation with non-constant viscosity and variable in-

put flow

In this case a variable input flow was used in order to test three important operational

conditions:

• Initial operation starting from a theoretical equilibrium of the filling ratio using

an input flow of Fin = 324/3600 kg/s.
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• After 50 s of operation up to 600 s, the input flow decreases to Fin = 216/3600 kg/s

in order to empty the extruder.

• After 600 s of operation up to 1200 s, the input flow changes to its original value

Fin = 270/3600 kg/s in order to fill up the extruder.

A spatial discretization Nd of 200 meshes and a simulation time of 1200 s were used.

Summarizing, the initial conditions defined for the filing ratio, the interface position and

the input flow along the extruder are f0p , l0, Fin and they are shown on Table 3.9:

Initial Filling ratio f0p = 1.2f∗p = 0.7367

Initial interface position l0 = 0.4331 m

Initial input flow Fin = 324/3600 kg/s

Table 3.9: Initial conditions for the extrusion process simulation with non-constant
viscosity and variable input flow. (Source: Personal collection).

Taking into account that the extruder length is L = 2 m, in this case initially, the

positions x1 = 0.5 m, x2 = 1 m and x3 = 1.5 m belongs to the FFZ. Fig. 3.11 shows the

evolution of the filling ratio for the simulation period of 1200 s. Recall that in this case

the initial position of the interface is l0 = 0.4331 m. Note that the filling ratio changes

accordingly to every variation of the input flow.

Figure 3.11: Filling ratio dynamics for non-constant viscosity and variable input flow.
(Source: Personal collection).
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For instance, recalling the filling ratio evolution at x2 = 1 m the following behaviour

can be described:

• At the beginning this position belongs to the FFZ. Then, the filling ratio decreases

at approximately t1 = 190 s to an equilibrium position of fp(x2, t1) = 0.49112

which corresponds to the steady state for an input flow of Fin = 216/3600 kg/s.

• At around t2 = 600 s the filling ratio increases accordingly to the change of

the input flow, i.e. Fin = 270/3600 kg/s, and reaches an equilibrium point of

fp(x2, t2) = 0.6139.

The behaviour of the filling ratio in this case is the same as in the case of constant

viscosity. In addition, comparing the filling ratio evolution with the interface position

on Fig. 3.12 it is possible to validate the coupling between those two variables. For

instance, in the case of fp at x1 = 0.5 m the value changes from its initial condition

(fp = 1) and decreases to its second state at approximately t1 = 50 s to a value of

fp(x1, t1) = 0.49112. The same behaviour can be found at the interface position where

it is shown that it becomes bigger than 0.5 m after approximately 50 s.

Figure 3.12: Interface position dynamicsfor non-constant viscosity and variable input
flow. (Source: Personal collection).

In this case the plotted equilibrium points are obtained only for constant viscosity. How-

ever, it is possible to note that the equilibrium points of the moving interface are slightly
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different from those obtained for the case of constant viscosity. This is particularly due

to the influence of the viscosity on the model.

Regarding to the melt temperature, its evolution can be found on Fig. 3.13 A. Note that

the temperature reaches steady state value depending on the changes of the input flow,

although the behaviour is similar to the case of constant viscosity. This is particularly

due to the fact, that with constant screw speed the viscosity influence on the tempera-

ture is not very noticeable. This can be shown with the behaviour of the viscosity on the

Fig. 3.13 B. Note that the viscosity reaches the steady state very fast (approximately

20 s) and it is highly dependable of the temperature dynamics.

Figure 3.13: Dynamic simulations for non-constant viscosity: (A) Melt temperature
and (B) Viscosity. (Source: Personal collection).

3.3.4 Dynamic simulation with non-constant viscosity and variable

screw speed

In this case a variable screw speed N(t) and a constant input flow of Fin = 324/3600 kg/s

were used in order to test the behaviour of the process within the following operational

conditions:

• Initial operation starting from a theoretical equilibrium of the filling ratio using a

screw speed of N(t) = 250 rpm
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• After 50 s of operation up to 600 s, the screw speed increases to N(t) = 300 rpm

in order to empty the extruder

• After 600 s of operation up to 1200 s, the screw speed increases again up to

N(t) = 350 rpm in order to empty the extruder

• After 1200 s up to 2000 s, the screw speed changes to its original value N(t) =

250 rpm in order to fill up the extruder

A spatial discretization Nd of 200 elements and a simulation time of 2000 s were used.

Summarizing, the initial conditions defined for the filing ratio, the interface position and

the input flow along the extruder are f0p , l0, Fin and are shown on Table 3.10:

Initial Filling ratio f0p = 1.2f∗p = 0.7367

Initial interface position l0 = 0.4331 m

Initial input flow Fin = 324/3600 kg/s

Table 3.10: Initial conditions for the extrusion process simulation with non-constant
viscosity and variable screw speed. (Source: Personal collection).

In this case the positions of the extruder x1 = 0.5 m, x2 = 1 m and x3 = 1.5 m are

analyzed. At the beginning, those positions belongs to the FFZ. Fig. 3.14 shows the

evolution of the filling ratio during the simulation period of 2000 s. In this case the

filling ratio changes accordingly to every variation of the screw speed in a similar way

than the case of constant viscosity. Recalling the filling ratio evolution at x2 = 1 m the

following behaviour can be described:

• At the beginning this position belongs to the FFZ. Then, the filling ratio decreases

at approximately t1 = 253 s to an equilibrium position of fp(x2, t1) = 0.6139 which

corresponds to the equilibrium for an screw speed of N(t1) = 300 rpm.

• At around t2 = 600 s the filling ratio decreases accordingly to an increment of

the screw speed, i.e, N(t2) = 350/60 kg/s, and reaches an equilibrium point of

fp(x2, t2) = 0.5262.

• At approximately t3 = 1200 s the filling ratio returns to its initial position, i.e, to

the FFZ because of a decrease of the screw speed to an initial value of N(t3) =

250 rpm.

In this case, the evolution of the filling ratio relates to the interface position dynamics

as it is shown on Fig. 3.15. However, as in the case of constant screw speed, it is possible
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Figure 3.14: Filling ratio dynamics for non-constant viscosity and variable screw
speed. (Source: Personal collection).

to note that the equilibrium points of the interface position are slightly different from

those obtained for constant viscosity.

Figure 3.15: Interface position dynamics for non-constant viscosity and variable screw
speed. (Source: Personal collection).

The evolution of the melt temperature is shown in Figure 3.16 A. Note that the changes
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Figure 3.16: Dynamic simulations for non-constant viscosity: (A) Melt temperature
and (B) Viscosity. (Source: Personal collection).

on the screw speed are reflected on the melt temperature behaviour. This is due to the

fact that the influence of the screw speed on the melt temperature is higher than the

influence of the input flow [25]. In fact, if the screw speed is slow, the energy transferred

to the melt is mainly from the barrel heating. If the screw speed is high, shear heating

provided by the screw rotation becomes the main heating source [28]. The behaviour of

the viscosity is shown in the Fig. 3.16 B. Note that the viscosity changes accordingly to

the variations on the temperature and the screw speed. Finally, the evolution of the die

pressure on the extruder is presented in Fig. 3.17. Note that according to the changes

on the screw speed there exist some transient phenomena on the pressure. Those peaks

where observed by Poulesquen [39] and are related to a transient rise on the pressure at

the die due to the variation on the screw speed.

3.4 Summary

In this chapter, the analysis of the bi-zone model of the extrusion process with variable

screw-speed and variable input flow was presented. Two different conditions for viscosity
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Figure 3.17: Dynamic simulations: (A)Die pressure dynamics for non-constant vis-
cosity and (B) variable screw speed. (Source: Personal collection).

were tested: constant and variable viscosity. The equilibrium points were computed for

both cases. The main difficulty in such system arises from the definition of the coupling

condition between the PFZ and the FFZ. Open loop simulations where carried out in

order to illustrate the behaviour of the model. The results show the dynamics of the

moving interface, filling ratio and temperature along the process with physical coherence.

Also, trough the simulations it was possible to conclude that the temperature dynamics

depends entirely on the viscosity model. Therefore, for the experimental validation of

the model and subsequent applications for control purposes this should be considered

in detail. A proper viscosity model should be used depending on the properties of the

material. However, the interface position and the filling ratio dynamics are very similar

in both cases proving that the constant viscosity model could be adapted for control

problems because of its simplicity. In the next chapter, the bi-zone model is adapted

to an industrial twin screw extruder. The extrusion of Polypropylene (PP) has been

taken into account with the Cross-WLF model of viscosity. The data obtained from

simulations will be compared with experimental tests.



Chapter 4

Validation and experimental

results

4.1 Introduction

Modern extruders are constructed in a modular way, allowing to compose different geo-

metrical configurations in order to process different type of material upon several opera-

tional conditions. However, the bi-zone model presented in Chapter 2 is highly simplified

in terms of the geometry of the extruder. This is an advantage from the modelling point

of view, since fewer parameters should be identified in a validation stage. However, this

simplicity needs to be addressed carefully since some parameters that may be most sen-

sitive should be accurately identified in order to adapt the model to an industrial process

with given operational conditions. Therefore, it is necessary to collect all the information

regarding the geometrical properties and thermal parameters of the extruder in which

the experimental data will be gathered. In this chapter, the twin-screw extruder used

in this study is explained with detail, together with the description of the material used

for experimental tests. The by-zone model is adapted with the available data of the

equipment and a proper viscosity model for the material. In addition, the steady state

of the extrusion process is analyzed in order to validate the model with the description

of an optimization problem presented in the case of the melt temperature equilibrium.

Additional tests regarding to the conservativeness of the finite volume method are also

presented in this chapter. Experimental data is obtained directly through the extruder

monitoring system and a data acquisition interface for additional sensing devices. Fi-

nally, dynamic simulations for variable screw speed are presented at the end of this

chapter together with a quantitative analysis of the results.

66
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4.2 Materials and methods

4.2.1 Material

A polypropylene homo-polymer (PP, PPH7060, Total Petrochemicals, France) with a

specific density of 900 kg/m3 was chosen. The viscosity of the matter on both PFZ and

FFZ was simulated using the Cross-WLF model. This model provides a representation

of viscosity over a wide range of processing conditions [29]:

η(T ) =
η0(T )

1 +

(
η0(T )γ

τ

)1−n . (4.1)

The zero shear viscosity η0 is modeled with the WLF (Williams-Landel-Ferry) equation

η0(T ) = D1 exp

[
− A1(T −D2)

A2 + T −D2

]
. (4.2)

In addition the shear rate γ is defined as:

γ =
πDN(t)

H
. (4.3)

Some parameters of the Cross-WLF model for viscosity are shown in Table 4.1 and are

obtained from [40], [41] and [42]:

Material density ρ0 = 900[kg/m3]
Heat capacity Cp = 1860[J/(kgK)]
Exchange surface Sexc = πD2L[m2]
Viscosity WLF parameter D1 = 564[Pa/s]
Temperature WLF parameter D2 = 493[K]
Power law index n = 0.251
Temperature dependency 1 A1 = 2803.3
Temperature dependency 2 A2 = 165097.1

Critical shear stress τ =

(
4n

3n+ 1

) n
(1−n)

Table 4.1: Some thermal properties used for Polypropylene. (Amended from [40], [41]
and [42]).

4.2.2 Twin screw extruder

A ZSE 18-Leistritz twin screw extruder was used for experimental tests. The screw

profile used in this work is described in Fig. 4.3. In this case the screws are composed of
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33 different sections which include direct flow and kneading block elements. No reverse

flow elements were used in this work. The barrel diameter is 18 mm, the centerline is

15 mm, and the L/D ratio is 60 [43]. This extruder is capable of handling different

screw speeds up to 1200 rpm. The throughput can be also varied from 1.5 to 22 kg.h−1.

This extruder is equipped with melt temperature and pressure sensors at the die, and

two additional thermo-couples at positions 50D and 40D as it is shown on Fig. 4.1

and Fig. 4.2. The pellets were introduced through the main hopper and the barrel

temperature Tb was set at 200◦C along the screw profile. Some geometrical parameters

are summarized in Table 4.2. Although some of the geometrical information of the

screw sections can be obtained from the manufacturer’s data sheet, there exist different

data that is not usually available ( i.e geometrical details of the mixing blocks, flight

angles of the screws,etc). Therefore, the computed screw pitch has been simplified to

an equivalent value equal to the mean value of the different type of screw sections used

on the experiments as it follows:

ξ =

∑m
i=1 xiξi∑m
i=1 xi

(4.4)

with, m the number of screw elements, xi and ξi the length and the pitch of the element

i respectively.

Figure 4.1: Twin-screw extruder used in this study. (Courtesy of Ingénierie des
Matériaux Polymères/IMP Lyon).

In addition Table 4.3 provides some input values used in both the experimental tests as

in the open-loop simulations.
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Figure 4.2: Melt temperature and pressure sensing at the die. Courtesy of Ingénierie
des Matériaux Polymères/IMP Lyon.

Figure 4.3: Screw profiles used in the study. (Courtesy of Ingénierie des Matériaux
Polymères/IMP Lyon).

4.3 Steady state of the twin-screw extrusion model

As it was discussed in Section 3.3.2 the solution of the steady state model of the twin-

screw extrusion process requires an iterative method because of the nonlinearity of the

bi-zone model. A steady state expression of the filling ratio can be obtained from

equation (2.10) and the boundary conditions (2.51) :

f∗p =
F ∗
in

ρ0N∗Veff
, (4.5)



Chapter 4. Validation and experimental results 70

Thermal conductivity α = 800[J/m2sK]
Screw diameter Ds = L/60 = 0.0175[m]
External diameter D = 0.0118[m]
Screw pitch ξ = 0.023× 10−4[m]

Effective surface Seff =
π

4
(D2 −D2

s) = 7.6246× 10−6[m2]

Effective volume Veff = Seffξ = 1.7537× 10−7[m3]
Die radius Rd = 0.001[m]
Die length Ld = 0.03[m]
Die conductance Kd = 3.9843× 10−11[m3]
Pressure flow coefficient B = 3.76938× 10−10[m4]

Table 4.2: Some screw parameters used on the simulation process. (Source: Personal
collection).

Initial screw speed N0 = 500[rpm]
Barrel temperature Tb = 473[K]
Input temperature Tin = 293[K]
Extruder length L = 1.05[m]
Feed rate Fin = 5/3600[kg/s]
Channel depth H = D/2−Ds/2 = 2.5× 10−4[m]

Table 4.3: Some input values used on the simulation process. (Source: Personal
collection).

In addition, expressions for temperature can be written from equations (2.16) for PFZ

and from (2.21) for FFZ as follows:

dT ∗
p (x)

dx
=
µη(T ∗

p (x))N∗

f∗pρ0VeffCpξ
+

Sexcα

ρ0VeffCpξN∗ (T ∗
b − T ∗

p (x)) x ∈ [0, l∗[ , (4.6)

dT ∗
f (x)

dx
=
µη(T ∗

f (x))N∗2

ξF ∗
dCp

+
Sexcα

ξF ∗
dCp

(T ∗
b − T ∗

f (x)) x ∈]l∗, L] (4.7)

where F ∗
d = F ∗

in. On the other hand, the equilibrium for the flow at the die should also

satisfy the equation of pressure continuity at the interface; i.e. equation (2.46),

F ∗
in =

Kdρ0VeffN
∗ ∫ L

l∗ η(T ∗
f (x))dx

Bρ0η∗d +Kd

∫ L
l∗ η(T ∗

f (x)))dx
. (4.8)

It is important to note that first-order ordinary differential equations (4.6) and (4.7) are

coupled through Fin and η with l∗ as the equilibrium of the interface position. Therefore

finding an analytical solution is not possible. Moreover, for a given N∗ and F ∗
in, it is

possible to find an l∗ so that equations (4.6), (4.7) and (4.8) are satisfied. In order

to compute the steady state values of the interface position the following optimization
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problem can be formulated :

min
l
I(l)

subject to

(4.6), (4.7) and (4.8).

(4.9)

where I(l) =
(
F ∗
d−F

∗
in

F ∗
in

)2
is defined as the quadratic error function. The cost function

has been chosen taking into account that, on steady state the following equality is given:

F ∗
d = F ∗

in.

The quadratic error I(l) is plotted for different screw speeds in Fig. 4.4. Note that, this

function is unimodal, hence the optimization problem has only one optimal solution.

Efficient unidimensional search algorithms can be applied to obtain the solution with a

desired tolerance. This approach for computing the steady state does not require the use

of back iterations as proposed by [23]. The equilibrium points were computed using a

Figure 4.4: Quadratic error versus interface position for different screw speed.
(Source: Personal collection).

golden search algorithm for different screw speed values, from 500 rpm to 1150 rpm and

a constant input flow of 5 kgh. The results are summarized in Fig. 4.5. For instance, at

500 rpm the equilibrium of the interface is about l∗ = 0.751 m. Meanwhile at a higher
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screw speed, i.e. 1150 rpm, the interface moves to l∗ = 0.859 m.

On the other hand, Fig. 4.6 shows the steady state melt temperature distribution on

Figure 4.5: Interface position as a function of the screw speed. (Source: Personal
collection).

the extruder for different screw speed values. For each curve, the equilibrium interface

is located at the inflexion point marked into a circle dot. For example, at 500 rpm

the position of the interface is l∗ = 0.751 m with a temperature of T (l∗) = 468 K. In

addition, it is worth to point out that closer to the die, i.e. x = 1.05 m, the steady

state temperature is higher when the screw speed increases. This behavior is explained

in detail together with the experimental results in Section 4.5.

4.4 Conservativeness and the finite volume method

Finite volume methods are well know for being locally conservative because they are

based on a ”balance” approach: a local balance is written on each discretization cell

or control volume; hence, an integral formulation of the fluxes over the boundary of

the control volume is then obtained by the divergence formula [44]. In order to show

the conservativeness of the discretized model a small simulation test for constant screw

speed of 500 rpm and variable input flow was made using the parameters for the extrusion
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Figure 4.6: Melt temperature distribution for different screw speed values. (Source:
Personal collection).

model that are shown in Section 4.2 using the following operational conditions:

Fin(t) =


5/3600 kg/s 0 < t ≤ 50 s

8/3600 kg/s 50 < t ≤ 100 s

5/3600 kg/s 100 < t ≤ 150 s

(4.10)

The total input mass M0 =
t∑
t=0

Fin(t) = 0.2486 is calculated and compared against the

total output mass Md =
t=∑
t=0

Fd(t) = 0.2490. The results obtained, are almost identical

and the difference (3.6249 × 10−4) lies on the fact that the computed output mass

depends on the estimated parameters of the model. Therefore, it is possible to say that

the discretized model for the extrusion process is conservative.

4.5 Dynamic simulation and experimental Results

In order to illustrate the behavior of the proposed model, experimental data was obtained

and compared against simulation tests with variable screw speed N(t) and constant feed
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rate Fin within the following operational conditions:

N(t) =


500 rpm 0 < t ≤ 300 s

1150 rpm 300 < t ≤ 600 s

800 rpm 600 < t ≤ 900 s

(4.11)

Time integration is performed with Ode113 routine of Matlabr. A spatial discretization

Nd of 100 elements and a simulation time of 900 s were used with a sampling time of 1

s. However, the sampling time of the experimental data was 6 s due to some hardware

limitations of the extruder monitoring system. Unfortunately, this monitoring system

only provides filtered values of the measured temperatures. Summarizing the initial

conditions defined for the filling ratio, the interface position and the input flow along

the extruder are f0p = 0.28877, l0 = 0.751 m and Fin = 5/3600 kg/s.

Fig. 4.7 shows the evolution of the interface position compared to the screw speed. It is

worth to point out that the interface position changes with every change on the screw

speed. For instance, at 300 s, the interface moves from its initial position l0 = 0.751 m

to another equilibrium point at l = 0.859 m. On the other hand, increasing the screw

speed with constant feed rate means that the amount of matter accumulated into the

extruder is lower because the polymer is transported through the machine in less time.

Moreover, it is clear from the simulated data, that the dynamic of the interface position

is directly proportional to the screw speed.

Fig. 4.8 shows the superposition of the experimental data (dotted line) and simulated

data (continuous line) of the pressure and temperature at the die. Note that, according

to the changes on the screw speed, there exists some transient phenomena on the pres-

sure (Fig. 4.8b). Those peaks observed are related to a transient rise on the pressure

at the die due to the variation on the screw speed [20]. However, during the initial

300 s of operation the measured pressure is higher than the predicted values from the

simulations. This, could be related to the simplifications made on the geometry of the

screw sections. From equation (2.18) it is clear that the pressure highly depends on the

interface position and this variable is strictly related to the geometry of the extruder.

The die melt temperature dynamics is also shown in Fig 4.8c. Note that the simulated

model gives a reasonable estimate of the temperature. If the screw speed is high the

melt temperature increases, otherwise it decreases. This influence of the screw speed on

the melt temperature is due to the fact that the shear heating provided by the screw

rotation becomes the main heating source when the screw speed is high[45]. On the

other hand, if the screw speed is slow, most of the energy transferred to the melt comes

from the heating system in the barrel. In the experiments the melt temperature was

measured using a fixed thermocouple directly at the die. Although this method is simple

to adapt to most industrial extruders, in some cases, for instance at high screw speed,
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Figure 4.7: Simulated interface position dynamics with screw speed as control input.
(Source: Personal collection).

measurements are not entirely precise because the melt cannot be in contact with the

thermocouple at all times [46]. This behaviour could be the main reason of the sudden

increase or decrease of the measured temperature from 300 to 900 s. Therefore, further

research on the adaptation of a different sensing technique for the temperature at the

die could be done.

Moreover, there is a qualitative agreement between the simulated data and the experi-

mental results. The main difference lies on the fact that some geometrical parameters

of the screws should be accurately identified. The geometry of the screws and the die

in twin screw extruders is highly complex. For instance, the screw pitch ξ is not uni-

form along the extruder which means that further research on the identification of the

equivalent geometry of the extrusion process should be implemented.In addition, it is

important to consider as a future work the use of identification techniques to estimate

some of the parameters based on experimental data in order to have a good quantitative

agreement between the simulated and real behavior.
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Figure 4.8: Experimental test results:(a) Screw speed (b) Die pressure (c) Die melt
temperature. The dotted line and continuous line represents experimental values and

simulated values respectively. (Source: Personal collection).

4.6 Summary

In this chapter, the bi-zone model adapted to an industrial twin-screw extruder is pre-

sented. Simulation and experimental tests performed for the extrusion of Polypropylene

(PP) are analyzed. The results shows that there is a right qualitative agreement be-

tween the experimental and simulation results. Future work considers the development

of a systematic approach for the identification of the equivalent geometry and a viscosity

model of the extrusion process. Improving the instrumentation of the extruder in order

to obtain raw temperature measurements will be considered. Also, the addition of more

pressure sensors in the extruder will be taken into account in order to give a rough

estimation of the moving interface position. Experiments using different operational

conditions, such as the addition of a tracer on the process for resident time distribu-

tion tests could be considered. The next chapter will be devoted to the development of

control strategies for the extrusion process. In this case an energy based controller is

proposed with screw speed as the control input and temperature as control objective.
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Energy-based approach to

modelling and control

5.1 Introduction

The task of controlling the extrusion process is complex due to strong interactions that

exist between a large number of factors such as material properties (rheology, thermal

conductivity, etc), geometrical factors (screw design, screw wear, etc) and operating

conditions (screw speed, barrel temperature, flow rate, etc). There also exists several

modelling challenges such as moving interfaces and complex screw geometries.

It is because of these reasons that the design of efficient controllers still remains a hard

task at the industrial level [30]. Most of the proposed control oriented models of ex-

truders available in literature are related with some black box linear model identification

around some operating conditions in which different classical methods were applied such

as Predictive Control [17], [2], [18],[47], [48] and Linearized Multivariable Control [20],

[49], [31]. Also, modern control methodologies such as fuzzy logic can also be found in

literature. For instance, Abeykoon [50] proposed a novel model-based control approach

to control the polymer extrusion process incorporating a melt temperature profile pre-

diction soft sensor and fuzzy logic. On the other hand, it is worth to point out the

works by Diagne [30], who presented a feedback stabilization of a food extrusion process

described by 1D PDE’s defined on coupled time-varying spatial domains. The extrusion

process model used in [30] is similar to the one presented in this work, despite the as-

sumptions of constant viscosity and the use of a controller for the barrel temperature

in order to limit the action of some source terms in the energy balance during the sta-

bilization of the melt temperature. However, this last assumption cannot be used for

industrial applications since the barrel temperature is usually kept as fixed depending

77
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on the processing conditions in order to avoid problems related to the product quality.

Although these control methodologies are very useful, they do not take into account

entirely the behaviour of the real system due to the limitations on linearization and

stability issues in the case of predictive control [51]. It is because of these reasons that

this topic has been under constant interest in the last years [6], [52], [45].

In this chapter we address the problem of the stabilization of the moving interface, the

filling ratio and the melt temperature to desired set-points in the extrusion process bi-

zone model. An energy-based controller is derived using internal energy as a storage

function and controlled variable with the screw speed as control input.

The stabilization problems for hyperbolic systems, similar to the bi-zone model presented

in this work, have been widely studied in literature. A first approach,related to the anal-

ysis of the classical solutions along the characteristics was presented by Greenberg and

Li [53] who worked in the case of second-order systems of conservations laws. In addi-

tion, Li [54] also presented a similar approach, but in the case more general situations

on nth order systems. Another approach based on Lyapunov techniques was introduced

by Coron et al. [55], [56] were a strict Lyapunov function in terms of Riemann invariants

was constructed and its time derivative can be made negative by choosing properly the

boundary conditions. In addition, it is worth to point out the developments presented

by Johansen and Storaa [57] in which a energy-based control of the outlet temperature

of a distributed solar collector field is studied. In this work, an energy-based controller

is derived using internal energy as a storage function and controlled variable were a

quadratic Lyapunov function is formulated or the distributed parameter model.

This chapter is organized as follows: In section 5.2 the entropy balance of the extrusion

process is presented by using the Gibb’s equation and assuming a local thermodynamic

equilibrium in the extruder. This entropy balance can be used in future works as the

basis of control design based on the balance equation of an availability function which

is derived from the entropy balance equation. For instance, [58], [59] studied the use of

the entropy balance as a candidate function for a passivity based approach formulation

of the process. Further applications on process systems have been proposed showing the

utility of those methodologies [60], [61], [62].

On the other hand, in Section 5.3 we address the problem of the stabilization of the

moving interface, the filling ratio and the melt temperature to desired set-points in the

extrusion process bi-zone model. First, the total energy balance of the extrusion process

is presented in order to suggest a model-base control of the melt temperature for the

bi-zone model. An energy-based controller is derived using internal energy as a storage

function and controlled variable with the screw speed as control input. The stability

of the controller is proved through the use of Lyapunov stability theorem. Finally, the

practical usefulness of the method is illustrated by some closed-loop simulations of the

experimentally verified model of the extrusion process.
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5.2 Entropy Balance of the extrusion process

5.2.1 Partially Filled Zone

5.2.1.1 Internal Energy Balance of the PFZ

The first law of thermodynamics states that the variation of the energy per unit of time

for a closed system is equal to the power of the external forces plus the external heat

exchanged between the system and its environment. Defining u(x, t) as the internal

energy per unit of volume and h(x, t) as the enthalpy, we obtain the following relation:

u(x, t) = h(x, t)− P (x, t), (5.1)

where, P (x, t) is the extruder pressure. The variation of internal energy u(x, t) per unit

of volume depends on the enthalpy inflow and outflow F (x, t) and the viscous dissipation

Qc(x, t) and convective heat from the barrel to the mass φe as source terms. Then, an

expression of the energy balance at the PFZ with transport velocity ξN(t) is given by

the following relation:

ρ0Seff
∂up(x, t)fp(x, t)

∂t
= −ρ0SeffξN(t)

∂up(x, t)fp(x, t)

∂x

+(Qpc(x, t) + φpe(x, t))Sefffp(x, t),

(5.2)

with,

Qpc(x, t) =
µη(Tp(x, t))N

2(t)

fp(x, t)Veff
,

φpe(x, t) =
Sexcα(Tb(x, t)− Tp(x, t))

Veff
,

(5.3)

then,

ρ0Sefffp(x, t)
∂up(x, t)

∂t
+ ρ0Seffup(x, t)

∂fp(x, t)

∂t
= −ρ0SeffξN(t)fp(x, t)

∂up(x, t)

∂x

−ρ0SeffξN(t)up(x, t)
∂fp(x, t)

∂x
+ (Qpc(x, t) + φpe(x, t))Sefffp(x, t).

(5.4)

Recalling the mass balance at the partially filled zone:

∂fp(x, t)

∂t
= −ξN(t)

∂fp(x, t)

∂x
, (5.5)
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then, replacing in equation (5.4):

ρ0Sefffp(x, t)
∂up(x, t)

∂t
= −ρ0SeffξN(t)fp(x, t)

∂up(x, t)

∂x

+(Qpc(x, t) + φpe(x, t))Sefffp(x, t),

(5.6)

simplifying,
∂up(x, t)

∂t
= −ξN(t)

∂up(x, t)

∂x
+
Qpc(x, t)

ρ0
+
φpe(x, t)

ρ0
(5.7)

5.2.1.2 Entropy Balance at the PFZ

Assuming a local thermodynamic equilibrium it is possible to write Gibbs’ Relation as

it follows:

dU = TdS − PdV +

n∑
i=1

µidMmi (5.8)

where Mmi is the molar mass of each material on the extruder and µi is the chemical

potential of each material.

Then, assuming the following quantities per volume unit at the PFZ :

up(x, t) =
Up(x, t)

Veff
, sp(x, t) =

Sp(x, t)

Veff
, cip(x, t) =

Mmip(x, t)

Veff
,

vp(x, t) =
V0(x, t)

Veff
= fp(x, t),

(5.9)

then,

dup(x, t)Veff = Tp(x, t)dsp(x, t)Veff − P (x, t)dvp(x, t)Veff +
n∑
i=1

µi(x, t)dcip(x, t)Veff ,

(5.10)

distributing terms,

Veffdup(x, t) + up(x, t)dVeff = Tp(x, t)Veffdsp(x, t) + Tp(x, t)sp(x, t)dVeff

−P (x, t)Veffdvp(x, t)− P (x, t)vp(x, t)dVeff +
n∑
i=1

µi(x, t)cip(x, t)dVeff

+
n∑
i=1

µi(x, t)Veffdcip(x, t),

(5.11)



Chapter 5. Energy-based approach to modelling and control 81

then,

Veffdup(x, t) = Veff

(
Tp(x, t)dsp(x, t)− P (x, t)dvp +

n∑
i=1

µi(x, t)dcip(x, t)

)

+dVeff

(
Tp(x, t)sp(x, t)− P (x, t)vp(x, t) +

n∑
i=1

µicip(x, t)− up(x, t)

)
,

(5.12)

simplifying in order to obtain,

dup(x, t) = Tp(x, t)dsp(x, t)− P (x, t)dvp(x, t) +

n∑
i=1

µi(x, t)dcip(x, t). (5.13)

Remark 5.1. The derivative that represents the variation of a scalar Eulerian field, such

as a velocity component, chemical concentration or temperature following a fluid particle

is called the substantial or material derivative [63]. That means, is a derivative taken

along a path moving with a given velocity and it is made from a temporal term and a

convective term as it follows:

D•
Dt

=
∂•
∂t

+ ξN(t)
∂•
∂x
. (5.14)

The last term represents the transport of a property in the fluid due to its macroscopic

motion.

Now, the equation (5.13) can be written in the form of the material derivatives as follows,

Dup(x, t)

Dt
= Tp(x, t)

Dsp(x, t)

Dt
− P (x, t)

Dvp(x, t)

Dt
+

n∑
i=1

µi(x, t)
Dcip(x, t)

Dt
, (5.15)

then,

∂up(x, t)

∂t
+ ξN(t)

∂up(x, t)

∂x
= Tp(x, t)

∂sp(x, t)

∂t
+ ξN(t)Tp(x, t)

∂sp(x, t)

∂x

−P (x, t)
∂vp(x, t)

∂t
− P (x, t)ξN(t)

∂vp(x, t)

∂x
+

n∑
i=1

µi(x, t)
∂cip(x, t)

∂t

+

n∑
i=1

ξN(t)µi(x, t)
∂cip(x, t)

∂x
,

(5.16)
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taking into account that vp(x, t) = fp(x, t):

∂up(x, t)

∂t
+ ξN(t)

∂up(x, t)

∂x
= Tp(x, t)

∂sp(x, t)

∂t
+ ξN(t)Tp(x, t)

∂sp(x, t)

∂x

−P (x, t)
∂fp(x, t)

∂t
− P (x, t)ξN(t)

∂fp(x, t)

∂x
+

n∑
i=1

µi(x, t)
∂cip(x, t)

∂t

+
n∑
i=1

ξN(t)µi(x, t)
∂cip(x, t)

∂x
,

(5.17)

simplifying in order to have,

∂up(x, t)

∂t
+ ξN(t)

∂up(x, t)

∂x
= Tp(x, t)

∂sp(x, t)

∂t
+ ξN(t)Tp(x, t)

∂sp(x, t)

∂x

+
n∑
i=1

[
µi(x, t)

∂cip(x, t)

∂t
+ ξN(t)µi(x, t)

∂cip(x, t)

∂x

]
.

(5.18)

Taking into account the concentration balance at the PFZ :

∂cip(x, t)

∂t
= −ξN(t)

∂cip(x, t)

∂x
. (5.19)

Rearranging terms in order to obtain the entropy balance,

Tp(x, t)
∂sp(x, t)

∂t
= −ξN(t)Tp(x, t)

∂sp(x, t)

∂x
+
∂up(x, t)

∂t
+ ξN(t)

∂up(x, t)

∂x
, (5.20)

taking into account the local energy balance from equation (5.7) and replacing it into

equation (5.20),

Tp(x, t)
∂sp(x, t)

∂t
= −ξN(t)Tp(x, t)

∂sp(x, t)

∂x
− ξN(t)

∂up(x, t)

∂x
+
Qpc(x, t)

ρ0

+
φpe(x, t)

ρ0
+ ξN(t)

∂up(x, t)

∂x
,

(5.21)

simplifying,

∂sp(x, t)

∂t
= −ξN(t)

∂sp(x, t)

∂x
+

1

Tp(x, t)ρ0
(Qpc(x, t) + φpe(x, t)). (5.22)

Now, adding and subtracting a new source term related to the entropy flux outside of

the melt, i.e φpe(x, t)/Tb(x, t)ρ0, in order to obtain the entropy balance at the PFZ,

∂sp(x, t)

∂t
= −ξN(t)

∂sp(x, t)

∂x
+

φpe(x, t)

Tb(x, t)ρ0
+ σp(x, t), (5.23)

where,

σp(x, t) =
1

Tp(x, t)ρ0
(Qpc(x, t) + φpe(x, t))−

φpe(x, t)

Tb(x, t)ρ0
, (5.24)
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Recalling the definition of Qpc(x, t) and φpe(x, t) from equation (5.3) it is possible to note

that Qpc(x, t) > 0. In addition, the terms φpe(x,t)
Tp(x,t)ρ0

and − φpe(x,t)
Tb(x,t)ρ0

are always positive or

zero. Then, analyzing equation (5.24) it is possible to conclude that the source term

σp(x, t) is always positive or zero. It worth to point out that, σp(x, t) is usually referred to

as entropy-production rate of the process. From the second law of the thermodynamics,

we know that in irreversible processes entropy is not conserved, so we actually expect

that σp(x, t) ≥ 0 [64].

5.2.2 Fully Filled Zone

5.2.2.1 Internal Energy Balance of the FFZ

Recall, that in the FFZ, the thermal phenomena are identical to those which occur in

the FFZ. However, the heat transport velocity is given by equation (5.25).

v(t) =
1

Seff

Fd(t)

ρ0
=
ξFd(t)

ρ0Veff
. (5.25)

Viscous dissipation and heat exchange have to be considered as source terms. The

viscous heat generation is much important in this zone due to the mixing effect. The

local energy balance can be made in a similar way than for the PFZ,

ρ0Seff
∂uf (x, t)ff (x, t)

∂t
= −Fd(t)

∂uf (x, t)fp(x, t)

∂x
+ (Qfc (x, t) + φfe (x, t))Seffff (x, t).

(5.26)

with,

Qfc (x, t) =
µη(Tf (x, t))N2(t)

ff (x, t)Veff
,

φfe (x, t) =
Sexcα(Tb(x, t)− Tf (x, t))

Veff
,

(5.27)

Taking into account that, in the FFZ, ff is equal to one and using the internal energy

relation from equation (5.1):

ρ0Seff
∂uf (x, t)

∂t
= −Fd(t)

∂uf (x, t)

∂x
+ (Qfc (x, t) + φfe (x, t)Seff , (5.28)

distributing terms,

∂uf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂uf (x, t)

∂x
+

1

ρ0
(Qfc (x, t) + φfe (x, t)), (5.29)
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5.2.2.2 Entropy Balance at the FFZ

Recalling the Gibbs’ Relation with variable pressure as it follows:

dU = TdS − PdV +

n∑
i=1

µidMmi (5.30)

Then, assuming the following quantities per volume unit:

uf (x, t) =
Uf (x, t)

Veff
, sf (x, t) =

Sf (x, t)

Veff
, cif (x, t) =

Mmi(x, t)

Veff
, vf (x, t) =

V0(x, t)

Veff
= 1,

(5.31)

then,

duf (x, t)Veff = T (x, t)dsf (x, t)Veff − P (x, t)dvf (x, t)Veff +
n∑
i=1

µi(x, t)dcif (x, t)Veff ,

(5.32)

distributing terms,

Veffduf (x, t) + uf (x, t)dVeff = Tf (x, t)Veffdsf (x, t) + Tf (x, t)sf (x, t)dVeff

−P (x, t)Veffdvf (x, t) +
n∑
i=1

[µi(x, t)cif (x, t)dVeff + µi(x, t)Veffdcif (x, t)] ,
(5.33)

then,

Veffduf (x, t) =

(
Tf (x, t)dsf (x, t)− P (x, t)dvf (x, t) +

n∑
i=1

µi(x, t)dcif (x, t)

)
Veff

+

(
Tf (x, t)sf (x, t)− P (x, t)vf (x, t) +

n∑
i=1

µi(x, t)cif (x, t)− uf (x, t)

)
dVeff

(5.34)

simplifying,

duf (x, t) = Tf (x, t)dsf (x, t)− P (x, t)dvf (x, t) +
n∑
i=1

µi(x, t)dcif (x, t), (5.35)

and, finally taking into account that vf (x, t) =
Vf (x,t)
Veff

= 1,

duf (x, t) = Tf (x, t)dsf (x, t) +
n∑
i=1

µi(x, t)dcif (x, t). (5.36)
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Now, equation (5.36) can be written in the form of the material derivatives as it follows,

Duf (x, t)

Dt
= Tf (x, t)

Dsf (x, t)

Dt
+

n∑
i=1

µi(x, t)
Dcif (x, t)

Dt
(5.37)

where, D•
Dt = ∂•

∂t + Fd(t)ξ
ρ0Veff

∂•
∂x , then:

∂uf (x, t)

∂t
+
Fd(t)ξ

ρ0Veff

∂uf (x, t)

∂x
= Tf (x, t)

∂sf (x, t)

∂t
+ Tf (x, t)

Fd(t)ξ

ρ0Veff

∂sf (x, t)

∂x

+

n∑
i=1

µi(x, t)
∂cif (x, t)

∂t
+

n∑
i=1

µi(x, t)
Fd(t)ξ

ρ0Veff

∂cif (x, t)

∂x
.

(5.38)

Recalling the local energy balance from equation (5.29) and replacing it into equa-

tion (5.38):

∂sf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂sf (x, t)

∂x
+

1

Tf (x, t)

(
Qfc (x, t) + φfe (x, t)

ρ0

)

− 1

Tf (x, t)

n∑
i=1

(
µi(x, t)

∂cif (x, t)

∂t
+
µi(x, t)Fd(t)ξ

ρ0Veff

∂cif (x, t)

∂x

)
,

(5.39)

Recalling the concentration balance at the FFZ :

∂cif (x, t)

∂t
= − ξFd(t)

ρ0Veff

∂cif (x, t)

∂x
, (5.40)

then,

∂sf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂sf (x, t)

∂x
+

1

Tf (x, t)

(
Qfc (x, t) + φfe (x, t)

ρ0

)
, (5.41)

Now, adding and subtracting a new source term related to the entropy flux outside of

the melt, i.e φfe (x, t)/(Tb(x, t)ρ0), in order to obtain the entropy balance at the fully

filled zone.
∂sf (x, t)

∂t
= −Fd(t)ξ

ρ0Veff

∂sf (x, t)

∂x
+

φfe (x, t)

Tb(x, t)ρ0
+ σf (x, t) (5.42)

where

σf (x, t) =
1

Tf (x, t)

(
Qfc (x, t) + φfe (x, t)

ρ0

)
− φfe (x, t)

Tb(x, t)ρ0
. (5.43)

Recalling the definition of Qfc (x, t) and φpe(x, t) from equation (5.27) it is possible to note

that Qfc (x, t) > 0. In addition, the terms φfe (x,t)
Tf (x,t)ρ0

and − φfe (x,t)
Tb(x,t)ρ0

are always positive or

zero. Then, analyzing equation (5.43) it is possible to conclude that the source term

σf (x, t) is always positive or zero. Analogously, as in the case of the PFZ, the source

term σf (x, t) referred to as entropy-production rate of the process and according to the
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second law of the thermodynamics, we expect that σf (x, t) ≥ 0.

As stated in the introduction of this chapter, in this work we suggest a control law based

on the balance equation ot the internal energy of the extrusion process. Therefore, the

entropy balance of the extrusion process model found in this section could be the basis of

control design based on the balance equation of an availability function which is derived

from the entropy balance equation and can be applied for future works. Developments

on the design of a control law using the entropy balance equation can be found in the

works by Hoang [65] and Ruszkowski [66].

5.3 Energy-based control of the extrusion process

In this section, we shall suggest a control law based on the balance equation of the

internal energy of the extrusion process. The objective is to control the melt temperature

in the extruder to a specific set-point profile. The screw speed 0 ≤ N(t) < Nmax is

the control input. The upper constraint Nmax is due to the maximum speed of the

extrusion process; this limitation is related to the electric motor capacity, screw design

and maximum pressure of the system. The internal energy of the extrusion process is

simplified for control purposes by assuming a constant melt viscosity, i.e. ηp and ηf are

constants. This assumption is necessary to the control design in order to simplify the

control law. Let us recall that assuming a variable viscosity imposes another term with

temperature dependency to the balance equation of the internal energy. It is worth to

point out that this simplification is made just for designing the controller and the original

model is used to simulate the plant. Also, as N(t) is defined as control input, then the

input flow Fin is assumed as time-invariant. Finally, a simulation test is presented at

the end of this section in order to show the capabilities of the controller to follow the

set-point temperature.

5.3.1 Total energy balance of the extrusion process

Recalling the energy balance equations of the extrusion process by-zone model with con-

stant viscosity and assuming the filling ratio as invariant only at the viscous dissipation

part :

-For the PFZ:

∂Tp(x, t)

∂t
= −ξN(t)

∂Tp(x, t)

∂x
+
µηptN

2(t)

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(Tb − Tp(x, t)). (5.44)
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where ηpt = ηp/f
∗
p and f∗p as the equilibrium of the filling ratio.

-For the FFZ:

∂Tf (x, t)

∂t
= −Fd(t, l(t))ξ

ρ0Veff

∂Tf (x, t)

∂x
+
µηfN

2(t)

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(Tb − Tf (x, t)). (5.45)

Recalling the color function that represents both the PFZ and FFZ as it follows:

k(x, l(t)) =

1 if x ∈ [0, l(t)[

0 if x ∈ [l(t), L]
and k(x, l(t)) =

0 if x ∈ [0, l(t)[

1 if x ∈ [l(t), L].
(5.46)

Omitting x in k and k for simplicity. Then, the temperature and the filling ratio can be

expressed as:

T (x, t) = k(l(t))Tp(x, t) + k(l(t))Tf (x, t). (5.47)

f(x, t) = k(l(t))fp(x, t) + k(l(t))ff (x, t). (5.48)

Defining the internal energy for the extruder as U =
L∫
0

Cpρ0Sefff(x, t)T (x, t)dx:

dU(t)

dt
=

L∫
0

Cpρ0Seff
∂

∂t
[f(x, t)T (x, t)]dx, (5.49)

Then,

dU(t)

dt
=

L∫
0

Cpρ0Seff
∂

∂t
[k(l(t))fp(x, t)Tp(x, t) + k(l(t))Tf (x, t)]dx, (5.50)

distributing,

dU(t)

dt
= Cpρ0Seff

L∫
0

fp(x, t)Tp(x, t)
∂k(l(t))

∂t
+ k(l(t))Tp(x, t)

∂fp(x, t)

∂t

+k(l(t))fp(x, t)
∂Tp(x, t)

∂t
+ k(l(t))

∂Tf (x, t)

∂t
+ Tf (x, t)

∂k(l(t))

∂t
dx,

(5.51)

From (5.44) and (5.45) it is possible to have:

dU(t)

dt
= Cpρ0Seff

L∫
0

fp(x, t)Tp(x, t)
∂k(l(t))

∂t
− ξN(t)k(l(t))Tp(x, t)

∂fp(x, t)

∂x

+k(l(t))fp(x, t)

[
−ξN(t)

∂Tp(x, t)

∂x
+ Ω(fp, Tp, N, Tb)

]
+k(l(t))

[
−Fd(t, l(t))ξ

ρ0Veff

∂Tf (x, t)

∂x
+ Ω(ff , Tf , N, Tb)

]
+ Tf (x, t)

∂k(l(t))

∂t
dx,

(5.52)
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then,

dU(t)

dt
= Cpρ0Seff

L∫
0

fp(x, t)Tp(x, t)
∂k(l(t))

∂t
− ξN(t)k(l(t))Tp(x, t)

∂fp(x, t)

∂x

+k(l(t))fp(x, t)
[
− ξN(t)

∂Tp(x, t)

∂x
+
µηptN

2(t)

ρ0VeffCp
+

Sexcα

ρ0VeffCp
(Tb − Tp(x, t))

]
+k(l(t))

[
− Fd(t, l(t))ξ

ρ0Veff

∂Tf (x, t)

∂x
+
µηfN

2(t)

ρ0VeffCp

+
Sexcα

ρ0VeffCp
(Tb − Tf (x, t))

]
+ Tf (x, t)

∂k(l(t))

∂t
dx.

(5.53)

Distributing terms,

dU(t)

dt
= Cpρ0Seff

L∫
0

µN2(t)

ρ0VeffCp

[
ηptfp(x, t)k(l(t)) + ηfk(l(t))

]
−
[
ξN(t)k(l(t))Tp(x, t)

∂fp(x, t)

∂x
+ ξN(t)k(l(t))fp(x, t)

∂Tp(x, t)

∂x

+k(l(t))
Fd(t, l(t))

ρ0Seff

∂Tf (x, t)

∂x

]
+
[k(l(t))fp(x, t)Sexcα

ρ0VeffCp
(Tb − Tp(x, t))

+
k(l(t))Sexcα

ρ0VeffCp
(Tb − Tf (x, t)) + fp(x, t)Tp(x, t)

∂k(l(t))

∂t
− Tf (x, t)

∂k(l(t))

∂t

]
dx,

(5.54)

then rearranging items,

dU(t)

dt
= N2(t)

L∫
0

µ

ξ

[
ηptfp(x, t)k(l(t)) + ηfk(l(t))

]
dx

−N(t)

L∫
0

Cpρ0Veffk(l(t))
[
Tp(x, t)

∂fp(x, t)

∂x
+ fp(x, t)

∂Tp(x, t)

∂x

]
dx

+

L∫
0

k(l(t))CpFd(t, l(t))
∂Tf (x, t)

∂x
dx+

Sexcα

ξ

L∫
0

[
k(l(t))fp(x, t)(Tb − Tp(x, t))

+k(l(t))(Tb − Tf (x, t)) + Cpρ0Seff

[
fp(x, t)Tp(x, t)

∂k(l(t))

∂t
− Tf (x, t)

∂k(l(t))

∂t

]]
dx,

(5.55)

The last term in the equation above is zero due to assumption of continuity of tempera-

ture at the interface. Recalling the definition of the flow at the die for constant viscosity

as:

Fd(l(t), t) =
Kdρ0VeffN(t)(L− l(t))
Bρ0 +Kd(L− l(t))

(5.56)
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then, it is possible to define Fn(l(t), t) = Fd(l(t), t)/N(t). Therefore, the total energy

balance could be written as:

dU(t)

dt
= N2(t)

L∫
0

µ

ξ

[
ηptfp(x, t)k(l(t)) + ηfk(l(t))

]
dx−N(t)

L∫
0

Cpρ0Veffk(l(t))
[
Tp(x, t)

∂fp(x, t)

∂x

+fp(x, t)
∂Tp(x, t)

∂x
+ k(l(t))CpFn(t, l(t))

∂Tf (x, t)

∂x

]
dx

+
Sexcα

ξ

L∫
0

[
k(l(t))fp(x, t)(Tb − Tp(x, t)) + k(l(t))(Tb − Tf (x, t))

]
dx,

(5.57)

integrating terms when possible,

dU(t)

dt
= N2(t)

L∫
0

µ

ξ

[
ηptfp(x, t)k(l(t)) + ηfk(l(t))

]
dx

−N(t)

[
Cpρ0Veff

[
Tp(l(t), t)fp(l(t), t)− Tp(0, t)fp(0, t)

]
+CpFn(t, l(t))

[
Tf (L, t)− Tf (l(t), t)

]]

+
Sexcα

ξ

L∫
0

[
k(l(t))fp(x, t)(Tb − Tp(x, t)) + k(l(t))(Tb − Tf (x, t))

]
dx,

(5.58)

Equation (5.58) can be written in the form:

dU(t)

dt
= A(t)N2(t) + B(t)N(t) + C(t), (5.59)

where,

A(t) =
µ

ξ

L∫
0

[
ηptfp(x, t)k(l(t)) + ηfk(l(t))

]
dx

B(t) = −Cpρ0Veff
[
Tp(l(t), t)fp(l(t), t)− Tp(0, t)fp(0, t)

]
−CpFn(t, l(t))

[
Tf (L, t)− Tf (l(t), t)

]
C(t) =

Sexcα

ξ

L∫
0

[
k(l(t))fp(x, t)(Tb − Tp(x, t)) + k(l(t))(Tb − Tf (x, t))

]
dx

(5.60)

Analyzing each coefficient from equation (5.60) we have that A(t) is always positive. In

addition, the first term in B(t) is negative if and only if Tp(l(t), t)fp(l(t), t) > Tp(0, t)fp(0, t).

Analogously, the second term in B(t) is negative if and only if Tf (L, t) > Tf (l(t), t).

Finally, regarding to C(t) it is possible to note that it is related to the difference of

temperature between the barrel and the melt in the extruder.
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5.3.2 Model Based Control

A control strategy with guaranteed global stability that explicitly utilizes total energy

balance equation (5.59) is designed. Assuming the internal energy associated with a set

point profile T ∗(x) with constant input flow Fin = Fd(l
∗) = ρ0Vefff

∗
pN

∗:

U∗(t) =

L∫
0

Cpρ0Sefff
∗(x)T ∗(x)dx, (5.61)

where,

T ∗(x) = k(l∗)T ∗
p (x) + k(l∗)T ∗

f (x), (5.62)

f∗(x, t) = k(l∗)f∗p (x) + k(l∗)f∗f (x). (5.63)

The main idea of the controller is to choose N(t) based on (5.59) in order to explicitly

assign a desired linear closed loop dynamic response U(t), with the consequence that

T (x, t) = T ∗(x) as t → ∞. It is worth to point out that the suggested control requires

the computation of the internal energy which in turn requires the knowledge of the

temperature and the filling ratio inside the extruder.

Let N(t) be defined as the control input:

N(t) =
−B(t)±

√
B2(t)− 4A(t)(C(t) + γ(t))

2A(t)
(5.64)

with,

γ = Kp

e(t) + Td
de(t)

dt
+

1

Ti

t∫
0

e(τ)dτ

 , (5.65)

and

e(t) = U(t)− U∗(t) =

L∫
0

Cpρ0Seff (f(x, t)T (x, t)− f∗(x)T ∗(x))dx, (5.66)

where Kp, Ti > 0, Td ≥ 0, and assume T (L, t) > T (0, t) for all t. Then, combining

equations (5.59) and (5.65) we have:

dU(t)

dt
= −γ(t), (5.67)

then,

dU(t)

dt
= −Kp

e(t) + Td
de(t)

dt
+

1

Ti

t∫
0

e(τ)dτ

 , (5.68)
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and

dU(t)

dt
= Kp(U

∗(t)−U(t))+KpTd

(
dU∗(t)

dt
− dU(t)

dt

)
+
Kp

Ti

t∫
0

(U∗(τ)−U(τ))dτ. (5.69)

By applying Laplace transformation of this linear second order ordinary differential

equation we have:

U(s)
(
s2(1 +KpTd) +Kps+Kp/Ti

)
= U∗(s)

(
KpTds

2 +Kps+Kp/Ti

)
. (5.70)

Since U∗(t) is time-invariant, it follows from (5.70) that U(t) → U∗(t) as t → ∞.

Stability of (5.70) follows from the Hurwitz’ criterion since all coefficients fo the left-

hand side polynomial are positive.

On the other hand, there exists a minimum admissible value of the screw speed Nmin

which guarantees the existence of a solution of the quadratic equation (5.64):

Nmin(t) =
−B
2A

. (5.71)

then, using equation (5.60)

Nmin(t) =

Cpρ0Veff [Tp(l(t), t)fp(l(t), t)− Tp(0, t)fp(0, t)] + CpFn(t, l(t))[Tf (L, t)− Tf (l(t), t)]

2µ

ξ

L∫
0

[
ηptfp(x, t)k(l(t)) + ηfk(l(t))

]
dx

.

(5.72)

It is physically coherent to say that the screw speed in the extruder should be always

greater than zero then Nmin should be greater than zero too. Therefore, analyzing

each term individually in equation (5.72) we have that Nmin is positive only when

Tp(l(t), t)fp(l(t), t) > Tp(0, t)fp(0, t) and Tf (L, t) > Tf (l(t), t). This imposes a restriction

on the controller that should be taken into account during the implementation stage.

This means, an exact solution for equation (5.64) exists if and only if N(t) > Nmin(t)

for all t with Tp(l(t), t)fp(l(t), t) > Tp(0, t)fp(0, t) and Tf (L, t) > Tf (l(t), t).

5.3.3 Stability analysis through a Lyapunov candidate function

Let us recall the suggested control law that was presented in the previous section from

equations (5.64), (5.65) and (5.66). It is important to note that the bi-zone model of

the extrusion process is composed of a system of transport equations coupled through

a moving interface. Therefore, the main difficulty in the stability analysis arises from

the moving domains [0, l(t)[ and ]l(t), L]. In this section, the stability analysis of the
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proposed control law is presented through the use of different Lyapunov candidate func-

tions. First, we prove the stability of the closed loop for the filling ratio and the moving

interface. Finally, after stabilizing fp(x, t) and l(t), we turn to stabilize the temperature

for both the PFZ and the PFZ.

5.3.3.1 Stabilization of fp(x, t)

Recalling, the dynamics of the filling ratio as it follows:

∂fp(x, t)

∂t
= −ξN(t)

∂fp(x, t)

∂x
. (5.73)

Defining the following Lyapunov candidate function for filling ratio:

Vfp(t) = 1/2

∫ l(t)

0
(fp(x, t)− f∗(x))2dx. (5.74)

with f∗(x) = k(l∗)f∗p (x) + k(l∗)f∗f (x). Then, the time derivative of Vfp(t) is:

V̇fp(t) =

∫ l(t)

0

[
fp(x, t)− f∗p (x)

]∂fp(x, t)
∂t

dx+
[
fp(l(t), t)− f∗p (l(t))

]2dl(t)
dt

. (5.75)

Let us recall the moving interface and the filling ratio from equations (2.37) and (5.73),

replacing in equation (5.75):

V̇fp(t) = −ξN(t)

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)∂fp(x, t)
∂x

dx

+
(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))

[Fd(l(t), t)
ρ0Seff

− ξN(t)fp(l(t), t)
]
,

(5.76)

adding and subtracting ξN∗∂fp(x, t)

∂x
inside the integral

V̇fp(t) =

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)[
− (ξN(t)− ξN∗)

∂fp(x, t)

∂x
− ξN∗∂fp(x, t)

∂x

]
dx

+
(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))

[Fd(l(t), t)
ρ0Seff

− ξN(t)fp(l(t), t)
]
,

(5.77)
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adding and subtracting ξN∗∂f
∗
p (x)

∂x
inside the integral

V̇fp(t) =

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)[
− (ξN(t)− ξN∗)

∂fp(x, t)

∂x

−ξN∗
[∂fp(x, t)

∂x
−
∂f∗p (x)

∂x

]
− ξN∗∂f

∗
p (x)

∂x

]
dx

+
(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))

[Fd(l(t), t)
ρ0Seff

− ξN(t)fp(l(t), t)
]
,

(5.78)

Distributing and taking into account that
∂f∗p (x)

∂x
= 0,

V̇fp(t) = −[ξN(t)− ξN∗]

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)∂fp(x, t)
∂x

dx

−ξN∗
∫ l(t)

0

(
fp(x, t)− f∗p (x)

)(∂fp(x, t)
∂x

−
∂f∗p (x)

∂x

)
dx

+
(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))

[Fd(l(t), t)
ρ0Seff

− ξN(t)fp(l(t), t)
]
.

(5.79)

Integrating the second term of equation (5.79)

V̇fp(t) = −[ξN(t)− ξN∗]

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)∂fp(x, t)
∂x

dx

−ξN∗[fp(l(t), t)− f∗p (l(t))]2 + ξN∗[fp(0, t)− f∗p (0)]2

+
(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))

[Fd(l(t), t)
ρ0Seff

− ξN(t)fp(l(t), t)
]
,

(5.80)

Taking into account the definition of Fd(l(t), t) with constant viscosity from equation

(5.56), then:

V̇fp(t) = −[ξN(t)− ξN∗]

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)∂fp(x, t)
∂x

dx

−ξN∗[fp(l(t), t)− f∗p (l(t))]2 + ξN∗[fp(0, t)− f∗p (0)]2

+
ξN(t)(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))

[ Kd(L− l(t))
Bρ0 +Kd(L− l(t))

− fp(l(t), t)
]
,

(5.81)

Since l(t) is bounded between 0 and L it is possible to have the following:

V̇fp(t) ≤ −[ξN(t)− ξN∗]

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)∂fp(x, t)
∂x

dx

−ξN∗[fp(l(t), t)− f∗p (l(t))]2 + ξN∗[fp(0, t)− f∗p (0)]2

−
ξN(t)(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))
fp(l(t), t),

(5.82)
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then, recalling the boundary conditions from equation (2.51) and taking into account

the assumption of constant input flow, i.e. Fin = F ∗
in we have:

V̇fp(t) ≤ −[ξN(t)− ξN∗]

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)∂fp(x, t)
∂x

dx

−ξN∗[fp(l(t), t)− f∗p (l(t))]2 + ξN∗[
Fin

ρ0N(t)Veff
− Fin
ρ0N∗Veff

]2

−
ξN(t)(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))
fp(l(t), t).

(5.83)

Distributing,

V̇fp(t) ≤ −[ξN(t)− ξN∗]

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)∂fp(x, t)
∂x

dx

−ξN∗[fp(l(t), t)− f∗p (l(t))]2 − ξN∗F 2
in

(ρ0Veff )2

[N(t)−N∗

N∗N(t)

]2
−
ξN(t)(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))
fp(l(t), t).

(5.84)

and finally

V̇fp(t) ≤ −ξN∗[fp(l(t), t)− f∗p (l(t))]2 − ξN∗F 2
in

(ρ0Veff )2

[N(t)−N∗

N∗N(t)

]2
−
ξN(t)(fp(l(t), t)− f∗p (l(t)))2

(1− fp(l(t), t))
fp(l(t), t) + ∆fp,

(5.85)

with,

∆fp = −[ξN(t)− ξN∗]

∫ l(t)

0

(
fp(x, t)− f∗p (x)

)∂fp(x, t)
∂x

dx. (5.86)

Due to the asymptotic convergence of N(t), it is straightforward to see that ∆fp(t) from

equation (5.86) has asymptotic convergence as t → ∞. Analogously, taking into count

the asymptotic convergence of N(t) it is possible to say that the second term of the

equation (5.85) has also asymptotic convergence as t → ∞. In addition, the first term

of equation (5.85) is negative since ξ and N∗ are always positive. A similar analysis can

be made for the third term of (5.85) which is also negative since 0 ≤ fp(l(t), t) < 1 for

all t. Integrating equation (5.85), the limit of the right hand side of

Vfp(t) ≤ Vfp(0) +

∫ t

0
∆fp(t)dt (5.87)

exists and is uniformly bounded and uniformly continuous. Then it follows that fp(l(t), t)

is bounded and V̇fp is uniformly bounded. Then, from Barbalat’s lemma it follows that

V̇fp → 0 as t → ∞. Since ∆fp(t) → 0 as t → ∞, it follows from equation (5.85) that
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fp(l(t), t)→ f∗p (l(t)).

5.3.3.2 Stabilization of l(t)

Recalling, the dynamics of the moving interface as it follows:

dl(t)

dt
=
Fd(l(t), t)− ρ0VeffN(t)fp(l(t), t)

ρ0Seff (1− fp(l(t), t))
. (5.88)

Defining a Lyapunov candidate function for the interface position:

V0(t) = 1/2(l(t)− l∗)2. (5.89)

The time derivative of V0(t) is

V̇0(t) = (l(t)− l∗)dl(t)
dt

. (5.90)

then,

V̇0(t) = (l(t)− l∗)
[
Fd(l(t), t)− ρ0VeffN(t)fp(l(t), t)

ρ0Seff (1− fp(l(t), t))

]
, (5.91)

distributing terms,

V̇0(t) = (l(t)− l∗)
[

Fd(l(t), t)

ρ0Seff (1− fp(l(t), t))
− ξN(t)

fp(l(t), t)

(1− fp(l(t), t))

]
, (5.92)

then

V̇0(t) =
(l(t)− l∗)

(1− fp(l(t), t))

[
Fd(l(t), t)

ρ0Seff
− ξN(t)fp(l(t), t)

]
, (5.93)

adding and subtracting ξN(t)f∗p

[
(l(t)− l∗)

(1− fp(l(t), t))

]
in order to have

V̇0(t) =
(l(t)− l∗)

(1− fp(l(t), t))

[
Fd(l(t), t)

ρ0Seff
− ξN(t)fp(l(t), t) + ξN(t)f∗p − ξN(t)f∗p

]
, (5.94)

then,

V̇0(t) =
(l(t)− l∗)

(1− fp(l(t), t))

[
Fd(l(t), t)

ρ0Seff
− ξN(t)[fp(l(t), t)− f∗p ]− ξN(t)f∗p

]
, (5.95)

taking into account the definition of f∗p =
Fd(l

∗)

ρ0VeffN∗ ,

V̇0(t) =
(l(t)− l∗)

(1− fp(l(t), t))

[
−ξN(t)[fp(l(t), t)− f∗p ] +

Fd(l(t), t)

ρ0Seff
− ξN(t)

Fd(l
∗)

ρ0VeffN∗

]
,

(5.96)
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Taking into account the definition of Fd from equation (5.56):

V̇0(t) =
(l(t)− l∗)

(1− fp(l(t), t))

[
− ξN(t)[fp(l(t), t)− f∗p ] + ξN(t)

Kd(L− l(t))
Bρ0 +Kd(L− l(t))

−ξN(t)
Kd(L− l∗)

Bρ0 +Kd(L− l∗)

]
,

(5.97)

distributing,

V̇0(t) =
(l(t)− l∗)

(1− fp(l(t), t))

[
− ξN(t)[fp(l(t), t)− f∗p ]

[Bρ0 +Kd(L− l∗)][ξKdN(t)(L− l(t))]− [Bρ0 +Kd(L− l(t))][ξKdN(t)(L− l∗)]
[Bρ0 +Kd(L− l(t))][Bρ0 +Kd(L− l∗)]

]
,

(5.98)

then,

V̇0(t) =
(l(t)− l∗)

(1− fp(l(t), t))

[
− ξN(t)[fp(l(t), t)− f∗p ]

− ξBρ0KdN(t)(l(t)− l∗)
[Bρ0 +Kd(L− l(t))][Bρ0 +Kd(L− l∗)]

]
.

(5.99)

Distributing terms,

V̇0(t) = −ξN(t)(l(t)− l∗)2 Bρ0Kd

[1− fp(l(t), t)][Bρ0 +Kd(L− l(t))][Bρ0 +Kd(L− l∗)]

−ξN(t)(fp(l(t), t)− f∗p )
(l(t)− l∗)

(1− fp(l(t), t))
,

(5.100)

finally

V̇0(t) = −ξN(t)κ(t)(l(t)− l∗)2 − ξN(t)ζ(t)(l(t)− l∗), (5.101)

with,

κ(t) =
Bρ0Kd

[1− fp(l(t), t)][Bρ0 +Kd(L− l(t))][Bρ0 +Kd(L− l∗)]

ζ(t) =
fp(l(t), t)− f∗p
(1− fp(l(t), t))

.

(5.102)

Analyzing equation (5.101) it is clear that κ(t) > 0 for all t since 0 ≤ fp(x, t) < 1 and

0 ≤ l ≤ L. Also, note that parameters Kd, B and ρ0 are always positive, therefore the

first term of V̇0(t) is negative for all t. On the other hand, analyzing equation (5.102) it
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follows that, due to the asymptotic convergence of fp(l(t), t), then ζ(t) tends to zero as

t → ∞. Therefore, it is possible to say that V̇0 tend to zero as t → ∞. Then it follows

that l(t)→ l∗ as t→∞.

5.3.3.3 Stabilization of T (x, t)

In this case we define a Lyapunov-like functional for the system defined by equation

(5.57):

V (t) = 1/2

∫ L

0
[T (x, t)− T ∗(x)]2dx. (5.103)

The time derivative of V is

V̇ (t) =

∫ L

0
[T (x, t)− T ∗(x)]

∂T (x, t)

∂t
dx (5.104)

then, with the characteristic functions it is possible to have:

V̇ =

∫ L

0

[
k(l(t))Tp(x, t) + k(l(t))Tf (x, t)− k(l∗)T ∗

p (x)− k(l∗)T ∗
f (x)

]
[
l̇(t)δ(x− l(t))Tp(x, t)− l̇(t)δ(x− l(t))Tf (x, t) + k(l(t))

∂Tp(x, t)

∂t

+k(l(t))
∂Tf (x, t)

∂t

]
dx

(5.105)

where, l̇(t)δ(x− l(t))Tp(x, t)− l̇(t)δ(x− l(t))Tf (x, t) = 0 because of the interface condi-

tions, i.e Tp(l
−, t) = Tf (l+, t),then:

V̇ =

∫ L

0

[
k(l(t))Tp(x, t) + k(l(t))Tf (x, t)− k(l∗)T ∗

p (x)− k(l∗)T ∗
f (x)

]
[

+ k(l(t))
∂Tp(x, t)

∂t
+ k(l(t))

∂Tf (x, t)

∂t

]
dx.

(5.106)

In order to simplify the analysis V̇ can be divided into V̇p, V̇f and V̇i as it follows:

V̇p =
∫ L
0 k(l(t))Tp(x, t)

∂Tp(x,t)
∂t − k(l∗)k(l(t))T ∗

p (x)
∂Tp(x,t)

∂t dx

V̇f =
∫ L
0 k(l(t))Tf (x, t)

∂Tf (x,t)
∂t − k(l∗)k(l(t))T ∗

f (x)
∂Tf (x,t)

∂t dx

V̇i = −
∫ L
0 k(l(t))k(l∗)T ∗

f (x)
∂Tp(x,t)

∂t + k(l∗)k(l(t))T ∗
p (x)

∂Tf (x,t)
∂t dx.

(5.107)

Analyzing equation (5.107), V̇p is related to the temperature at the PFZ, V̇f is related

with the temperature at the FFZ and finally V̇i deals with the relationship between

the temperature at the PFZ and the FFZ. On the other hand, let us recall that:

k(l∗)k(l(t)) = k(min(l(t), l∗)), k(l∗)k(l(t)) = 1− k(lM (t)) with lM (t) = max(l(t), l∗) and

lm(t) = min(l(t), l∗). By analyzing the stability of each term from equation (5.107) it
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is possible prove the stability of V . First, we develop each term from equation (5.107)

and finally, at the end of this section, a stability analysis of V is presented.

5.3.3.3.1 Analysis of V̇p

Analyzing V̇p which belongs to the PFZ :

V̇p =
∫ L
0 [k(l(t))Tp(x, t)− k(lm)T ∗

p (x)]
∂Tp(x,t)

∂t dx. (5.108)

Replacing
∂Tp(x,t)

∂t from equation (5.44):

V̇p =
∫ L
0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)

][
− ξN(t)

∂Tp(x, t)

∂x
+ Ω(fp, Tp, N, Tb)

]
dx.

(5.109)

Adding and subtracting ξN∗ ∂Tp(x,t)
∂x in the right term,

V̇p =

∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)
][
− ξN(t)

∂Tp(x, t)

∂x
+ ξN∗∂Tp(x, t)

∂x

−ξN∗∂Tp(x, t)

∂x
+ Ω(fp, Tp, N, Tb)

]
dx.

(5.110)

Rearranging terms,

V̇p =

∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)
][
− (ξN(t)− ξN∗)

∂Tp(x, t)

∂x

−ξN∗∂Tp(x, t)

∂x
+ Ω(fp, Tp, N, Tb)

]
dx,

(5.111)

adding and subtracting ξN∗ ∂T ∗
p (x)

∂x in the right term

V̇p =

∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)
][
− (ξN(t)− ξN∗)

∂Tp(x, t)

∂x

−ξN∗
[∂Tp(x, t)

∂x
−
∂T ∗

p (x)

∂x

]
− ξN∗∂T

∗
p (x)

∂x
+ Ω(fp, Tp, N, Tb)

]
dx.

(5.112)

From steady state, it is possible to have:

∂T ∗
p (x)

∂x
=

1

ξN∗Ω(f∗p , T
∗
p , N

∗, T ∗
b ), (5.113)
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then,

V̇p =

∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)
][
− (ξN(t)− ξN∗)

∂Tp(x, t)

∂x

−ξN∗
[∂Tp(x, t)

∂x
−
∂T ∗

p (x)

∂x

]
+ Ω(fp, Tp, N, Tb)− Ω(f∗p , T

∗
p , N

∗, T ∗
b )

]
dx.

(5.114)

Taking into account the definition of Ω from equation (2.53) with constant viscosity,

and recalling the assumption of the filling ratio as time-invariant only at the viscous

dissipation part,

V̇p =

∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)

][
− [ξN(t)− ξN∗]

∂Tp(x, t)

∂x

−ξN∗
[∂Tp(x, t)

∂x
−
∂T ∗

p (x)

∂x

]
+ β1[N

2(t)−N∗2]− β2[Tp(x, t)− T ∗
p (x)]

]
dx.

(5.115)

with,

β1 =
µηpt

ρ0VeffCp
. (5.116)

β2 =
Sexcα

ρ0VeffCp
, (5.117)

It is worth to point out that β1 and β2 are both time-invariant and always positive.

Then, distributing equation (5.115) we have:

V̇p = −
[
ξN(t)− ξN∗

] ∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)
]∂Tp(x, t)

∂x
dx

−ξN∗
∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)
][∂Tp(x, t)

∂x
−
∂T ∗

p (x)

∂x

]
dx

+β1

[
N2(t)−N∗2

] ∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)
]
dx

−β2
∫ L

0

[
k(l(t))Tp(x, t)− k(lm)T ∗

p (x)
][
Tp(x, t)− T ∗

p (x)
]
dx.

(5.118)

Then, two different cases could be considered l(t) ≤ l∗ and l(t) > l∗. That means ˙Vp1

and ˙Vp2 respectively:
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i. When l(t) ≤ l∗, it is possible to write ˙Vp1 as it follows:

˙Vp1 = −[ξN(t)− ξN∗]

∫ l(t)

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

−ξN∗
∫ l(t)

0

[
Tp(x, t)− T ∗

p (x)
][∂Tp(x, t)

∂x
−
∂T ∗

p (x)

∂x

]
dx

+β1[N
2(t)−N∗2]

∫ l(t)

0

[
Tp(x, t)− T ∗

p (x)
]
dx− β2

∫ l(t)

0

[
Tp(x, t)− T ∗

p (x)
]2
dx.

(5.119)

And finally, integrating the second term of equation (5.119) and distributing in order

to have:

˙Vp1 = −ξN∗[Tp(l(t), t)− T ∗
p (l(t))]2 + ξN∗[Tp(0, t)− T ∗

p (0)]2

−β2
∫ l(t)

0
[Tp(x, t)− T ∗

p (x)]2dx+ ∆p1(t),
(5.120)

where,

∆p1(t) = −[ξN(t)− ξN∗]

∫ l(t)

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

+β1[N
2(t)−N∗2]

∫ l(t)

0
[Tp(x, t)− T ∗

p (x)]dx
(5.121)

The first and third terms in equation (5.120) are always negative since β1, ξ and N∗

are always positive. Recalling, ∆p1(t) from equation (5.121) it is worth to point out

that it is related to the difference between the input screw speed N(t) and the set-

point screw speed N∗. Further details regarding the stability of T will be discussed

in detail at the end of this section.

ii. When l(t) > l∗, then k(l∗)k(l(t)) = k(min(l(t), l∗)) = l∗. Therefore ˙Vp2 can be

written as follows:

˙Vp2 = −[ξN(t)− ξN∗]

∫ L

0

[
k(l(t))Tp(x, t)− k(l∗)T ∗

p (x)
]∂Tp(x, t)

∂x
dx

−ξN∗
∫ L

0

[
k(l(t))Tp(x, t)− k(l∗)T ∗

p (x)
][∂Tp(x, t)

∂x
−
∂T ∗

p (x)

∂x

]
dx

+β1[N
2(t)−N∗2]

∫ L

0

[
k(l(t))Tp(x, t)− k(l∗)T ∗

p (x)
]
dx

−β2
∫ L

0

[
k(l(t))Tp(x, t)− k(l∗)T ∗

p (x)
][
Tp(x, t)− T ∗

p (x)
]
dx,

(5.122)
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distributing,

˙Vp2 = −ξN∗
∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
][∂Tp(x, t)

∂x
−
∂T ∗

p (x)

∂x

]
dx

−[ξN(t)− ξN∗]

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

−ξN(t)

∫ l(t)

l∗
Tp(x, t)

∂Tp(x, t)

∂x
dx+ ξN∗

∫ l(t)

l∗
Tp(x, t)

∂T ∗
p (x)

∂x
dx

+β1[N
2(t)−N∗2]

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]
dx

+β1[N
2(t)−N∗2]

∫ l(t)

l∗
Tp(x, t)dx− β2

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]2
dx

−β2
∫ l(t)

l∗
Tp(x, t)

[
Tp(x, t)− T ∗

p (x)
]
dx,

(5.123)

Integrating the first term in equation (5.123) we have ,

˙Vp2 = −ξN∗
[
Tp(l

∗, t)− T ∗
p (l∗)

]2
+ ξN∗

[
Tp(0, t)− T ∗

p (0)
]2

−[ξN(t)− ξN∗]

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

−ξN(t)

∫ l(t)

l∗
Tp(x, t)

∂Tp(x, t)

∂x
dx+ ξN∗

∫ l(t)

l∗
Tp(x, t)

∂T ∗
p (x)

∂x
dx

+β1[N
2(t)−N∗2]

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]
dx

+β1[N
2(t)−N∗2]

∫ l(t)

l∗
Tp(x, t)dx− β2

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]2
dx

−β2
∫ l(t)

l∗
Tp(x, t)

[
Tp(x, t)− T ∗

p (x)
]
dx,

(5.124)

adding and subtracting ξN∗Tp(x, t)
∂Tp(x,t)
∂x in the fourth term from equation (5.124)

˙Vp2 = −ξN∗
[
Tp(l

∗, t)− T ∗
p (l∗)

]2
+ ξN∗

[
Tp(0, t)− T ∗

p (0)
]2

−
[
ξN(t)− ξN∗

] ∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

−
[
ξN(t)− ξN∗

] ∫ l(t)

l∗
Tp(x, t)

∂Tp(x, t)

∂x
dx− ξN∗

∫ l(t)

l∗
Tp(x, t)

[∂Tp(x, t)
∂x

−
∂T ∗

p (x)

∂x

]
dx

−β2
∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]2
dx− β2

∫ l(t)

l∗
Tp(x, t)

[
Tp(x, t)− T ∗

p (x)
]
dx

+β1[N
2(t)−N∗2]

∫ l(t)

l∗
Tp(x, t)dx+ β1[N

2(t)−N∗2]

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]
dx

(5.125)
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And, finally:

˙Vp2 = −ξN∗[Tp(l
∗, t)− T ∗

p (l∗)]2 + ξN∗[Tp(0, t)− T ∗
p (0)]2

−ξN∗
∫ l(t)

l∗
Tp(x, t)

[∂Tp(x, t)
∂x

−
∂T ∗

p (x)

∂x

]
dx− β2

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]2
dx

−β2
∫ l(t)

l∗
Tp(x, t)

[
Tp(x, t)− T ∗

p (x)
]
dx+ ∆p2(t),

(5.126)

where,

∆p2(t) = −
[
ξN(t)− ξN∗

] ∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

−
[
ξN(t)− ξN∗

] ∫ l(t)

l∗
Tp(x, t)

∂Tp(x, t)

∂x
dx

+β1[N
2(t)−N∗2]

∫ l(t)

l∗
Tp(x, t)dx+ β1[N

2(t)−N∗2]

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]
dx.

(5.127)

The first and fourth terms in equation (5.126) are always negative since β1, ξ and

N∗ are always positive. Recalling, ∆p2(t) from equation (5.127) it is worth to point

out that it is related to the difference between the input screw speed N(t) and the

set-point screw speed N∗. As stated before, further details regarding the stability

of T will be discussed in detail at the end of this section.

5.3.3.3.2 Analysis of V̇f

Analyzing V̇f which belongs to the FFZ :

V̇f =

∫ L

0
[k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)]
∂Tf (x, t)

∂t
dx

(5.128)

Replacing
∂Tf (x,t)

∂t from equation (5.45):

V̇f =

∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)

][
− Fd(t, l(t))ξ

ρ0Veff

∂Tf (x, t)

∂x

+Ω(ff , Tf , N, Tb)

]
dx,

(5.129)
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adding and subtracting
F ∗
d (l

∗)ξ
ρ0Veff

∂Tf (x,t)
∂x

V̇f =

∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)

]
[
−
[Fd(t, l(t))ξ

ρ0Veff
−
F ∗
d (l∗)ξ

ρ0Veff

]∂Tf (x, t)

∂x
−
F ∗
d (l∗)ξ

ρ0Veff

∂Tf (x, t)

∂x
+ Ω(ff , Tf , N, Tb)

]
dx,

(5.130)

adding and subtracting
F ∗
d (l

∗)ξ
ρ0Veff

∂T ∗
f (x)

∂x in the right term from equation (5.130):

V̇f =

∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)
]

[
− ν1[Fd(t, l(t))− F ∗

d (l∗)]
∂Tf (x, t)

∂x
− ν1F ∗

d (l∗)
[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
−ν1F ∗

d (l∗)
∂T ∗

f (x)

∂x
+ Ω(ff , Tf , N, Tb)

]
dx.

(5.131)

with,

ν1 =
ξ

ρ0Veff
. (5.132)

From the steady state, it is possible to have:

∂T ∗
f (x)

∂x
=

ρ0Veff
F ∗
d (l∗)ξ

Ω(f∗f , T
∗
f , N

∗, T ∗
b ). (5.133)

Then,

V̇f =

∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)
]

[
− ν1[Fd(t, l(t))− F ∗

d (l∗)]
∂Tf (x, t)

∂x
− ν1F ∗

d (l∗)
[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
−Ω(f∗f , T

∗
f , N

∗, T ∗
b ) + Ω(ff , Tf , N, Tb)

]
dx.

(5.134)

Taking into account the definition of Ωf from equation(2.55) with constant viscosity and

Tb(x, t) = T ∗
b (x),

V̇f =

∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)
]

[
− ν1[Fd(t, l(t))F ∗

d (l∗)]
∂Tf (x, t)

∂x
− ν1F ∗

d (l∗)
[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
+β3[N

2(t)−N∗2]− β2(Tf (x, t)− T ∗
f (x))

]
dx,

(5.135)

with,

β3 =
µηf

ρ0VeffCp
. (5.136)
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Then, distributing equation (5.135),

V̇f = −ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)
]∂Tf (x, t)

∂x
dx

−ν1F ∗
d (l∗)

∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)
][∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
dx

+β3[N
2(t)−N∗2]

∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)
]
dx

−β2
∫ L

0

[
k(l(t))Tf (x, t)− k(lM (t))T ∗

f (x)
][
Tf (x, t)− T ∗

f (x)
]
dx.

(5.137)

Then, two different cases should be considered l(t) ≥ l∗ and l(t) < l∗. That means ˙Vf1

and ˙Vf2 respectively:

i. When l(t) ≥ l∗, it is possible to write ˙Vf1 as it follows:

˙Vf1 = −ν1F ∗
d (l∗)

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
dx

−ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

+β3[N
2(t)−N∗2]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]dx− β2
∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]2dx.

(5.138)

Integrating when possible

˙Vf1 = −ν1F ∗
d (l∗)[Tf (L, t)− T ∗

f (L)]2 + ν1F
∗
d (l∗)[Tf (l(t), t)− T ∗

f (l(t))]2

−ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

+β3[N
2(t)−N∗2]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]dx− β2
∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]2dx.

(5.139)

And, finally:

˙Vf1 = −ν1F ∗
d (l∗)[Tf (L, t)− T ∗

f (L)]2 + ν1F
∗
d (l∗)[Tf (l(t), t)− T ∗

f (l(t))]2

−β2
∫ L

l(t)

[
Tf (x, t)− T ∗

f (x)
]2
dx+ ∆f1(t), (5.140)



Chapter 5. Energy-based approach to modelling and control 105

where,

∆f1(t) = −ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

+β3[N
2(t)−N∗2]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]dx.
(5.141)

By analyzing equation (5.140) it is clear that the first term is always negative since

ν1 is always positive. In addition, the third term in equation (5.140) is always

negative since β2 is always positive. Recalling ∆f1(t) from equation (5.141), then it

is possible to note that it is related to the difference between the input screw speed

N(t) and the set-point screw speed N∗. Also note that the term [Fd(t, l(t))−F ∗
d (l∗)]

is related to the difference of the estimated interface position l(t) and the set-point

value of the interface l∗.

ii. On the other hand, when l(t) < l∗, then lM (t) = max(l(t), l∗) = l∗. Therefore ˙Vf2

can be written as follows:

˙Vf2 = −ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

0
[k(l(t))Tf (x, t)− k(l∗)T ∗

f (x)]
∂Tf (x, t)

∂x
dx

−ν1F ∗
d (l∗)

∫ L

0
[k(l(t))Tf (x, t)− k(l∗)T ∗

f (x)]
[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
dx

+β3

∫ L

0
[k(l(t))Tf (x, t)− k(l∗)T ∗

f (x)][N2(t)−N∗2]dx

−β2
∫ L

0
[k(l(t))Tf (x, t)− k(l∗)T ∗

f (x)][Tf (x, t)− T ∗
f (x)]dx,

(5.142)

distributing

˙Vf2 = −ν1F ∗
d (l∗)

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x
∂x
]
dx

−ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

+ν1F
∗
d (l∗)

∫ l∗

l(t)
Tf (x, t)

∂T ∗
f (x)

∂x
dx− ν1Fd(t, l(t))

∫ l∗

l(t)
Tf (x, t)

∂Tf (x, t)

∂x
dx

+β3[N
2(t)−N∗2]

∫ L

l∗
[Tf (x, t)− T ∗

f (x)]dx+ β3[N
2(t)−N∗2]

∫ l∗

l(t)
(Tf (x, t)dx

−β2
∫ L

l∗
[Tf (x, t)− T ∗

f (x)]2dx− β2
∫ L

l∗
[Tf (x, t)− T ∗

f (x)]Tf (x, t)dx.

(5.143)
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By integrating the first term from equation (5.143) we have:

˙Vf2 = −ν1F ∗
d (l∗)[Tf (L, t)− T ∗

f (L)]2 + ν1F
∗
d (l∗)[Tf (l∗, t)− T ∗

f (l∗)]2

−ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

+ν1F
∗
d (l∗)

∫ l∗

l(t)
Tf (x, t)

∂T ∗
f (x)

∂x
dx− ν1Fd(t, l(t))

∫ l∗

l(t)
Tf (x, t)

∂Tf (x, t)

∂x
dx

+β3[N
2(t)−N∗2]

∫ L

l∗
[(Tf (x, t)− T ∗

f (x)]dx+ β3[N
2(t)−N∗2]

∫ l∗

l(t)
(Tf (x, t)dx

−β2
∫ L

l∗
[Tf (x, t)− T ∗

f (x)]2dx− β2
∫ L

l∗
[Tf (x, t)− T ∗

f (x)]Tf (x, t)dx,

(5.144)

adding and subtracting ν1F
∗
d (l∗)Tf (x, t)

∂Tf (x,t)
∂x :

˙Vf2 = −ν1F ∗
d (l∗)[Tf (L, t)− T ∗

f (L)]2 + ν1F
∗
d (l∗)[Tf (l∗, t)− T ∗

f (l∗)]2

−ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

−ν1[Fd(t, l(t)− F ∗
d (l∗)]

∫ L

l(t)
Tf (x, t)

∂Tf (x, t)

∂x
dx

−ν1F ∗
d (l∗)

∫ l∗

l(t)
Tf (x, t)

[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
dx

+β3[N
2(t)−N∗2]

∫ L

l∗
[Tf (x, t)− T ∗

f (x)]dx+ β3[N
2(t)−N∗2]

∫ l∗

l(t)
(Tf (x, t)dx

−β2
∫ L

l∗
[Tf (x, t)− T ∗

f (x)]2dx− β2
∫ L

l∗
[Tf (x, t)− T ∗

f (x)]Tf (x, t)dx.

(5.145)

And, finally:

˙Vf2 = −ν1F ∗
d (l∗)[Tf (L, t)− T ∗

f (L)]2 + ν1F
∗
d (l∗)[Tf (l∗, t)− T ∗

f (l∗)]2

−β2
∫ L

l∗
[Tf (x, t)− T ∗

f (x)]2dx− ν1F ∗
d (l∗)

∫ l∗

l(t)
Tf (x, t)

[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
dx

−β2
∫ L

l∗
[Tf (x, t)− T ∗

f (x)]Tf (x, t)dx+ ∆f2(t),

(5.146)
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where,

∆f2(t) = −ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

−ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
Tf (x, t)

∂Tf (x, t)

∂x
dx

+β3[N
2(t)−N∗2]

∫ L

l∗
[(Tf (x, t)− T ∗

f (x)]dx+ β3[N
2(t)−N∗2]

∫ l∗

l(t)
Tf (x, t)dx

(5.147)

By analyzing equation (5.146) it is clear that the first and fourth terms are always

negative since ν1 is always positive. In addition, the third and fifth terms in equation

(5.146) are always negative since β2 is always positive. Recalling ∆f2(t) from equa-

tion (5.147), then it is possible to note that it is related to the difference between

the input screw speed N(t) and the set-point screw speed N∗. Also recall that,

the term [Fd(t, l(t)) − F ∗
d (l∗)] is related to the difference of the estimated interface

position l(t) and the set-point value of the interface l∗.

5.3.3.3.3 Analysis of V̇i

Finally, we have for V̇i:

V̇i = −
∫ L
0 k(l(t))k(l∗)T ∗

f (x)
∂Tp(x,t)

∂t + k(l∗)k(l(t))T ∗
p (x)

∂Tf (x,t)
∂t dx. (5.148)

Three different cases should be considered: l(t) = l∗, l(t) < l∗ and l(t) > l∗. That means

˙Vi1, ˙Vi2 and ˙Vi3 respectively:

i. When l(t) = l∗

˙Vi1 = 0 (5.149)

ii. When l(t) < l∗

˙Vi2 = −
∫ L
0 [k(l∗)− k(l(t))]T ∗

p (x)
∂Tf (x,t)

∂t dx. (5.150)

Then,

˙Vi2 = −
∫ l∗
l(t) T

∗
p (x)

∂Tf (x,t)
∂t dx. (5.151)

Replacing
∂Tf (x,t)

∂t from equation (5.45) and taking into account the deffinition of ν1

from equation (5.132):

˙Vi2 = −
∫ l∗
l(t) T

∗
p (x)

[
− ν1Fd(t, l(t))

∂Tf (x, t)

∂x
+ Ω(ff , Tf , N, Tb)

]
dx. (5.152)
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Adding and subtracting ν1F
∗
d (l∗)

∂Tf (x,t)
∂x to the right term of equation (5.152)

˙Vi2 = −
∫ l∗

l(t)
T ∗
p (x)

[
− ν1[Fd(t, l(t))− F ∗

d (l∗)]
∂Tf (x, t)

∂x
− ν1F ∗

d (l∗)
∂Tf (x, t)

∂x

+Ω(ff , Tf , N, Tb)

]
dx,

(5.153)

adding and subtracting ν1F
∗
d (l∗)

∂T ∗
f (x)

∂x to the right term of equation (5.153)

˙Vi2 = −
∫ l∗

l(t)
T ∗
p (x)

[
− ν1

[
Fd(t, l(t))− F ∗

d (l∗)]
∂Tf (x, t)

∂x

−ν1F ∗
d (l∗)

[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
− ν1F ∗

d (l∗)
∂T ∗

f (x)

∂x
+ Ω(ff , Tf , N, Tb)

]
dx,

(5.154)

From the steady state, it is possible to have:

∂T ∗
f (x)

∂x
=

ρ0Veff
F ∗
d (l∗)ξ

Ω(f∗f , T
∗
f , N

∗, T ∗
b ). (5.155)

then,

˙Vi2 = −
∫ l∗

l(t)
T ∗
p (x)

[
− ν1[Fd(t, l(t))− F ∗

d (l∗)]
∂Tf (x, t)

∂x

−ν1F ∗
d (l∗)

[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
− Ω(f∗f , T

∗
f , N

∗, T ∗
b ) + Ω(ff , Tf , N, Tb)

]
dx,

(5.156)

Taking into account the definition of Ωf from equation(2.55) with constant viscosity

and Tb(x, t) = T ∗
b (x),

˙Vi2 =

∫ l∗

l(t)
T ∗
p (x)

[
ν1[Fd(t, l(t))− F ∗

d (l∗)]
∂Tf (x, t)

∂x

+ν1F
∗
d (l∗)

[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
− β3[N2(t)−N∗2] + β2[Tf (x, t)− T ∗

f (x)]

]
dx.

(5.157)

Finally, distributing in order to have:

˙Vi2 = ν1F
∗
d (l∗)

∫ l∗

l(t)
T ∗
p (x)

[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
dx

+β2

∫ l∗

l(t)
T ∗
p (x)[Tf (x, t)− T ∗

f (x)]dx+ ∆i2(t).

(5.158)
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with

∆i2(t) = ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ l∗

l(t)
T ∗
p (x)

∂Tf (x, t)

∂x
dx

−β3[N2(t)−N∗2]

∫ l∗

l(t)
T ∗
p (x)dx

(5.159)

Analyzing equation (5.157)

iii. When l(t) > l∗

˙Vi3 = −
∫ L
0 [k(l(t))− k(l∗)]T ∗

f (x)
∂Tp(x,t)

∂t dx. (5.160)

Then,

˙Vi3 = −
∫ l(t)
l∗ T ∗

f (x)
∂Tp(x,t)

∂t dx. (5.161)

Replacing
∂Tp(x,t)

∂t from equation (5.44):

˙Vi3 = −
∫ l(t)
l∗ T ∗

f (x)
[
− ξN(t)

∂Tp(x, t)

∂x
+ Ω(fp, Tp, N, Tb)

]
dx. (5.162)

Adding and subtracting ξN∗ ∂Tp(x,t)
∂x to the right term of equation (5.162):

˙Vi3 = −
∫ l(t)

l∗
T ∗
f (x)

[
− [ξN(t)− ξN∗]

∂Tp(x, t)

∂t
− ξN∗∂Tp(x, t)

∂x

+Ω(fp, Tp, N, Tb)
]
dx.

(5.163)

Adding and subtracting ξN∗ ∂T ∗
p (x)

∂x to the right term of equation (5.163):

˙Vi3 = −
∫ l(t)

l∗
T ∗
f (x)

[
− [ξN(t)− ξN∗]

∂Tp(x, t)

∂t
− ξN∗

[∂Tp(x, t)
∂x

−
∂T ∗

p (x)

∂x

]
−ξN∗∂T

∗
p (x)

∂x
+ Ω(fp, Tp, N, Tb)

]
dx.

(5.164)

Taking into account the steady state of the temperature at the PFZ and the defi-

nition of Ωp from equation(2.53) with constant viscosity and Tb(x, t) = T ∗
b (x),

˙Vi3 = −
∫ l(t)

l∗
T ∗
f (x)

[
− [ξN(t)− ξN∗]

∂Tp(x, t)

∂t
− ξN∗

[∂Tp(x, t)
∂x

−
∂T ∗

p (x)

∂x

]
−β2[Tp(x, t)− T ∗

p (x)] + β1[N
2(t)−N∗2]

]
dx.

(5.165)
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Finally, distributing in order to have:

˙Vi3 = ξN∗
∫ l(t)

l∗
T ∗
f (x)

[∂Tp(x, t)
∂x

−
∂T ∗

p (x)

∂x

]
dx

+β2

∫ l(t)

l∗
T ∗
f (x)[Tp(x, t)− T ∗

p (x)]dx+ ∆i3,

(5.166)

with,

∆i3(t) = [ξN(t)− ξN∗]

∫ l(t)

l∗
T ∗
f (x)

∂Tp(x, t)

∂t
dx− β1[N2(t)−N∗2]

∫ l(t)

l∗
T ∗
f (x)dx.

(5.167)

5.3.3.3.4 Summary

Summarizing, it is possible to analyze the results presented in this section for three

different cases of the moving interface, i.e. l(t) = l∗, l(t) < l∗ and l(t) > l∗:

• Case 1: Where l(t) = l∗, therefore V̇1 = ˙Vp1 + ˙Vf1 + ˙Vi1:

˙Vp1 = −ξN∗[Tp(l(t), t)− T ∗
p (l(t))]2 + ξN∗[Tp(0, t)− T ∗

p (0)]2

−β2
∫ l(t)
0 [Tp(x, t)− T ∗

p (x)]2dx+ ∆p1(t)

˙Vf1 = −ν1F ∗
d (l∗)[Tf (L, t)− T ∗

f (L)]2 + ν1F
∗
d (l∗)[Tf (l(t), t)− T ∗

f (l(t))]2

−β2
∫ L
l(t)

[
Tf (x, t)− T ∗

f (x)
]2
dx+ ∆f1(t)

˙Vi1 = 0.

(5.168)

Where,

∆p1(t) = −[ξN(t)− ξN∗]

∫ l(t)

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

+β1[N
2(t)−N∗2]

∫ l(t)

0
[Tp(x, t)− T ∗

p (x)]dx

(5.169)

∆f1(t) = −ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

+β3[N
2(t)−N∗2]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]dx.
(5.170)

Due to asymptotic convergence of U(t), fp and l(t) it is straightforward to see that

∆p1(t) → 0 and ∆f1(t) → 0 with asymptotic convergence as t → ∞. Integrating
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(5.168), the limit of the right hand side of

V1(t) ≤ V1(0) +

∫ t

0
∆p1(t) + ∆f1(t)dt (5.171)

exists and is uniformly bounded and uniformly continuous. Then it is possible to

say that Tp(l(t), t) and Tf (L, t) are bounded and V̇1 is uniformly bounded. Then,

from Barbalat’s lemma it follows that V̇1 → 0 as t → ∞.Then it follows from

(5.168) that Tp((l(t), t) → T ∗
p (l(t)), Tp((0, t) → T ∗

p (0),Tf ((l(t), t) → T ∗
f (l(t)) and

Tf (L, t)→ T ∗
f (L) as t→∞.

• Case 2: Where l(t) < l∗, therefore V̇2 = ˙Vp1 + ˙Vf2 + ˙Vi2:

˙Vp1 = −ξN∗[Tp(l(t), t)− T ∗
p (l(t))]2 + ξN∗[Tp(0, t)− T ∗

p (0)]2

−β2
∫ l(t)
0 [Tp(x, t)− T ∗

p (x)]2dx+ ∆p1(t),

˙Vf2 = −ν1F ∗
d (l∗)[Tf (L, t)− T ∗

f (L)]2 + ν1F
∗
d (l∗)[Tf (l∗, t)− T ∗

f (l∗)]2

−β2
∫ L
l∗ [Tf (x, t)− T ∗

f (x)]2dx− ν1F ∗
d (l∗)

∫ l∗
l(t) Tf (x, t)

[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
dx

−β2
∫ L
l∗ [Tf (x, t)− T ∗

f (x)]Tf (x, t)dx+ ∆f2(t),

˙Vi2 = ν1F
∗
d (l∗)

∫ l∗
l(t) T

∗
p (x)

[∂Tf (x, t)

∂x
−
∂T ∗

f (x)

∂x

]
dx

+β2
∫ l∗
l(t) T

∗
p (x)[Tf (x, t)− T ∗

f (x)]dx+ ∆i2(t).

(5.172)

where,

∆p1(t) = −[ξN(t)− ξN∗]

∫ l(t)

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

+β1[N
2(t)−N∗2]

∫ l(t)

0
[Tp(x, t)− T ∗

p (x)]dx,

(5.173)

∆f2(t) = −ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

−ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
Tf (x, t)

∂Tf (x, t)

∂x
dx

+β3

∫ L

l∗
[(Tf (x, t)− T ∗

f (x)][N2(t)−N∗2]dx+ β3[N
2(t)−N∗2]

∫ l∗

l(t)
(Tf (x, t)dx.

(5.174)
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∆i2(t) = ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ l∗

l(t)
T ∗
p (x)

∂Tf (x, t)

∂x
dx

−β3[N2(t)−N∗2]

∫ l∗

l(t)
T ∗
p (x)dx

(5.175)

Due to asymptotic convergence of U(t), fp and l(t) it is straightforward to see that

∆p1(t) → 0, ∆f2(t) → 0 and ∆i2(t) → 0 with asymptotic convergence as t → ∞.

Integrating (5.172), the limit of the right hand side of

V2(t) ≤ V2(0) +

∫ t

0
∆p1(t) + ∆f2(t) + ∆i2(t)dt (5.176)

exists and is uniformly bounded and uniformly continuous. Then it is possible to

say that Tp(l(t), t), Tf (l∗, t) and Tp(0, t) are bounded and V̇2 is uniformly bounded.

Then, from Barbalat’s lemma it follows that V̇2 → 0 as t → ∞. Then it follows

from (5.172) that Tp((l(t), t)→ T ∗
p (l(t)), Tp((0, t)→ T ∗

p (0),Tf ((L, t)→ T ∗
f (L) and

Tf (l∗, t)→ T ∗
f (l∗) as t→∞.

• Case 3: Where l(t) > l∗, therefore V̇3 = ˙Vp2 + ˙Vf1 + ˙Vi3:

˙Vp2 = −ξN∗[Tp(l
∗, t)− T ∗

p (l∗)]2 + ξN∗[Tp(0, t)− T ∗
p (0)]2

−ξN∗ ∫ l(t)
l∗ Tp(x, t)

[∂Tp(x, t)
∂x

− ∂T ∗
p (x)

∂x

]
dx− β2

∫ l∗
0

[
Tp(x, t)− T ∗

p (x)
]2
dx

−β2
∫ l(t)
l∗ Tp(x, t)

[
Tp(x, t)− T ∗

p (x)
]
dx+ ∆p2(t)

˙Vf1 = −ν1F ∗
d (l∗)[Tf (L, t)− T ∗

f (L)]2 + ν1F
∗
d (l∗)[Tf (l(t), t)− T ∗

f (l(t))]2

−β2
∫ L
l(t)

[
Tf (x, t)− T ∗

f (x)
]2
dx+ ∆f1(t)

˙Vi3 = ξN∗ ∫ l(t)
l∗ T ∗

f (x)
[∂Tp(x, t)

∂x
−
∂T ∗

p (x)

∂x

]
dx

+β2
∫ l(t)
l∗ T ∗

f (x)[Tp(x, t)− T ∗
p (x)]dx+ ∆i3.

(5.177)

where,

∆p2(t) = −
[
ξN(t)− ξN∗

] ∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]∂Tp(x, t)

∂x
dx

−
[
ξN(t)− ξN∗

] ∫ l(t)

l∗
Tp(x, t)

∂Tp(x, t)

∂x
dx

+β1[N
2(t)−N∗2]

∫ l(t)

l∗
Tp(x, t)dx+ β1[N

2(t)−N∗2]

∫ l∗

0

[
Tp(x, t)− T ∗

p (x)
]
dx

(5.178)
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∆f1(t) = −ν1[Fd(t, l(t))− F ∗
d (l∗)]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]
∂Tf (x, t)

∂x
dx

+β3[N
2(t)−N∗2]

∫ L

l(t)
[Tf (x, t)− T ∗

f (x)]dx
(5.179)

∆i3(t) = [ξN(t)− ξN∗]

∫ l(t)

l∗
T ∗
f (x)

∂Tp(x, t)

∂t
dx− β1[N2(t)−N∗2]

∫ l(t)

l∗
T ∗
f (x)dx.

(5.180)

Then, because of the asymptotic convergence of U(t), fp and l(t) it is straight-

forward to see that ∆p2(t) → 0, ∆f1(t) → 0 and ∆i3(t) → 0 with asymptotic

convergence as t→∞.Integrating (5.177), the limit of the right hand side of

V3(t) ≤ V3(0) +

∫ t

0
∆p2(t) + ∆f1(t) + ∆i3(t)dt (5.181)

exists and is uniformly bounded and uniformly continuous. Then Tp(l(t), t), Tf (l∗, t)

and Tp(0, t) are bounded and V̇3 is uniformly bounded. Then, from Barbalat’s

lemma it follows that V̇3 → 0 as t → ∞.Then it follows from (5.172) that

Tp((l
∗, t)→ T ∗

p (l∗), Tp((0, t)→ T ∗
p (0),Tf ((L, t)→ T ∗

f (L) and Tf (l(t), t)→ T ∗
f (l(t))

as t→∞.

5.3.4 Controller application to the extrusion process model

The implementation of the controller (5.64) was made using the following PID parameters:Kp =

0.405, Td = 49.380 s and Ti = 8.1 × 103 1/s. These parameters were tunned using the

Ziegler Nichols method [67]. The plant was simulated using the model of the extrusion

process with its geometrical, thermal parameters and viscosity law as shown on Chap-

ter 4. However, as stated before, the extrusion model with constant viscosity is used

internally in the controller. The set-points used in this case are constant (time-invariant)

temperature profiles obtained from open-loop simulations of the extrusion process model

at a screw speed of 800 rpm as it is shown on Fig. 5.1 (red line). The initial temperature

profile is also shown on the figure (black line), which corresponds to the steady state

temperature profile at 500 rpm.
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Figure 5.1: Temperature profiles used in this study for control purposes. (Source:
Personal collection).

Time integration is performed with Ode113 routine of Matlabr and the plant is simu-

lated using the extruder model with variable viscosity. On the other hand, the energy

balance from equations (5.45) and (5.44) with constant viscosity is used internally in the

controller.The simulation was made for a period of time of 200 s. The closed-loop starts

10 s after the beginning of the simulation with sampling interval of the control system

of 2 s with given set-point temperature profile at 800 rpm. After 100 s of simulation

the set-point changes to a new temperature profile at 500 rpm. The following initial

conditions with an initial screw speed of N0 = 500 rpm where used:

Initial Filling Ratio f0p = 0.2888

Initial interface Position l0 = 0.7516 m

Initial input Flow Fin = 5/3600 kg/s

Table 5.1: Initial values for the simulation test with energy based control. (Source:
Personal collection).

Fig. 5.2 shows the evolution of the screw speed according to the changes imposed by the

controller while the energy reaches its set-point (Fig. 5.3). Note that the steady state

is reached with the controller for both of the set-point profiles proving that it is able to

accurately control the temperature and internal energy. In addition, Fig. 5.4 shows the

evolution of the integral and proportional and derivative part of the controller during
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the simulation period.

Figure 5.2: Screw speed evolution. (Source: Personal collection).

Figure 5.3: Internal energy evolution during simulation tests. (Source: Personal
collection).
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Figure 5.4: PID control evolution. (Source: Personal collection).

Fig. 5.5 shows the evolution of the melt temperature at x1 = 0.25 m, x2 = 0.5 m,

x3 = 0.75 m and x4 = 1.05 m. Note that for all different positions, the temperature

reaches its steady state according to the dynamics imposed by the controller. In addition

Fig. 5.6 shows the evolution of the interface position, note that it reaches a steady state

accordingly to the evolution of the controller input. The reached equilibrium of the

interface position corresponds to the steady state at 800 rpm and 500 rpm. Both the

controlled output (temperature along the extruder) and the set-point temperature (at

800 rpm) are shown on. It is clear from those results that the assumption of constant

viscosity within the controller does not affect the closed-loop behaviour. Finally, Fig. 5.7

shows the evolution of the temperature along the extruder during fisrt 50 s of simulation,

at t1 = 10 s, t2 = 20 s and t3 = 40 s. Note that the control input adjust the temperature

of the extruder according to the imposed set-point. In addition, it worth to point out

that, even with the complexity of the process (highly nonlinear with moving interface),

the controller reaches the set-point accurately in a relatively short time. On the other

hand it is clear from the simulation results, that the moving interface, also reaches its

equilibrium point thanks to the controller actions.
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Figure 5.5: Temperature evolution along the extruder. (Source: Personal collection).

Figure 5.6: Interface evolution for the simulation period. (Source: Personal collec-
tion).
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Figure 5.7: Evolution of the temperature on the extruder at different periods of time.
(Source: Personal collection).

5.4 Summary

In this chapter an entropy balance for both sections of the extrusion process model

(PFZ and FFZ ) was presented. This could be the basis of control design based on the

balance equation of an availability function which is derived from the entropy balance

equation and can be applied for future works. In addition, an energy-based control

for the experimentally verified bi-zone model of the extrusion of Polypropylene was

presented together with a stability analysis for the interface position, the filling ratio

and the melt temperature. The practical usefulness of the method is illustrated by a

simulation example showing that it is possible to reach the desired set-point even with the

assumption of constant viscosity internally in the controller. The suggested control law

requires the computation of the internal energy which in turn requires the knowledge of

the temperature and the filling ratio inside the extruder. An estimation of such variables

remains as challenge for the control implementation. Therefore, further research could

be related to the implementation of the proposed controller on an industrial type twin-

screw extruder.



Chapter 6

Conclusions

6.1 General conclusion

This thesis focused on modelling and control of the twin-screw extrusion process. A dis-

tributed parameter bi-zone dynamic model with moving interface was presented. The

interconnection of the moving interface was performed under the assumption of variable

viscosity along the extruder. This assumption is important since, viscosity is well known

for being temperature and shear rate dependent, therefore, the complexity of the model

increases and new control strategies should be considered in order to deal with a highly

nonlinear system. In addition, the moving interface was considered as another challenge

in the modelling point of view because of the difficulties that arises with the discon-

tinuity of the variables in the system. An energy-based control was proposed for this

extrusion process model. This approach is useful since it allows simple and transparent

tunning of the nonlinear controller through some PID parameters, and a stability proof

is provided even though the complexity of the model.

Chapter 2 is devoted to the modelling of the twin-screw extrusion process. The proposed

model is based on mass and energy balances with the assumption of variable viscosity.

The rheological behaviour of the melt strongly depends on several dynamical parameters

such as temperature, shear rate and material properties. In this study a Cross-WLF

model for viscosity was considered for the extrusion of Polypropylene. The developed

bi-zone model was discretized using a finite volume method approach in order to deal

with a moving interface. The discretization method for the system was presented taking

into account the difficulties of having a highly non-linear coupled system. In Chapter 3

dynamic simulations of the bi-zone model with variable screw-speed and variable input

flow was presented. Two different conditions for viscosity have been taken into account:

119
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constant and variable viscosity. The results showed the dynamics of the moving inter-

face, filling ratio and temperature along the process with physical coherence. Also, the

importance of the assumption of variable viscosity was proved since the temperature

dynamics of the model depends entirely on the rheology of the melt.

In Chapter 4 an experimental validation of the extrusion process bi-zone model adapted

to an industrial twin-screw extruder is presented. The extrusion of Polypropylene was

chosen because it is a shear sensitive material which physical properties are well known.

This is important in the case of variable screw speed since at higher values the shear

heating provided by the screw rotation becomes the main heating source. On the other

hand the steady state of the extrusion process model was studied through the imple-

mentation of an optimization problem using a golden search algorithm. It is worth point

out that, on previous works this has not been addressed because of to the complexity of

the model. Future work will consider the development of a systematic approach for the

identification of the equivalent geometry and a viscosity model of the extrusion process.

Improving the instrumentation of the extruder in order to obtain raw temperature mea-

surements will be considered.

Chapter ?? deals with the control of the extrusion process. First an entropy balance for

the extrusion process is presented which could be useful for control purposes in future

works. Then, an energy-based control for the validated extrusion process is studied. The

viscosity is assumed as constant internally in the controller while the plant is simulated

with the Cross-WLF model for viscosity. This simplification was made in order to sim-

plify the stability analysis of the controller. The simulation example showed that the

model-based controller is able to accurately control the melt temperature and internal

energy. However, the suggested control law requires the computation of the internal

energy which in turn requires the knowledge of the temperature and the filling ratio

inside the extruder. An estimation of such variables remains as challenge for the control

implementation.

6.2 Future research

The complexity of the extrusion process and the bi-zone model presented in this study

consisting of highly coupled partial differential equations is a topic of constant interest

in modelling and control theory. Therefore, the results presented in this study stands as

an exploration which suggests many open problems. Regarding to the extrusion process

modelling, the problem related to variable viscosity is of major interest for different

applications since different rheological models could be tested for several materials. It

is worth to point out that a more complex geometry of the screws could be tested, and

then several moving interfaces may be considered. Future works will also consider the
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development of a systematic approach for the identification of the equivalent geometry

and a viscosity model of the extrusion process. Improving the instrumentation of the

extruder in order to obtain raw temperature measurements will be considered. On the

other hand, reactive extrusion which consider the processing of different raw materials

is an interesting challenge because different densities should be taken into account.On

the other hand, the assumption of variable viscosity within the controller remains as an

important challenge to deal with in the future. In addition, the use of an entropy-balance

approach for control purposes is an interesting alternative to be analyzed.
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