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Resumen

El desarrollo de métodos tomográ�cos precisos es de gran importancia para las

tecnologías cuánticas, como lo son la información cuántica, la computación cuántica y

la metrología cuántica. La tomografía cuántica ha mostrado ser especialmente difícil

en el caso de sistemas de alta dimensión, donde el número de parámetros a determinar

crece cuadráticamente con la dimensión. En esta tesis mostramos que una tomografía

estándar adaptativa en dos pasos mejora la precisión de la tomografía de un qudit,

reduciendo la in�delidad media desde O(1/
√
N) a O(1/N) para toda clase de estado.

Comparamos este método adaptativo de dos pasos con tomografía estándar y límites

relevantes. En particular, mostramos mediante simulaciones numéricas que hasta

la dimensión 16 este esquema tomográ�co proporciona un mejor rendimiento que la

tomografía estándar a igual recurso N para cualquier tipo de estado, lo que lleva a

resultados cercanos al límite de Gill-Massar de la in�delidad para estados puros.
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Abstract

The development of accurate tomographic methods is of great importance for

quantum technologies such as quantum information, quantum computing and quan-

tum metrology. Quantum tomography as shown to be especially di�cult in the

case of high-dimension systems where the number of parameters to be determined

grows quadratically with the dimension. In this thesis, we show that a two-step

adaptive standard tomography improves the accuracy of a single qudit tomography

by reducing the mean in�delity from O(1/
√
N) to O(1/N) for all classes of state.

We compare this two-step adaptive method with standard tomography and relevant

bounds. In particular, we show by numerical simulations that up to dimension 16

this tomographic scheme provides a better performance than standard tomography

at equal resource N for any type of state, leading to results close to the Gill-Massar

bound for the in�delity of pure states.
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Chapter 1

Introduction

The study of quantum systems of high dimension is one of the great challenges of

the quantum theory. These provide several advantages over two-dimensional quan-

tum systems (qubits). For instance, it has been shown that with high dimensional

quantum systems (qudits), quantum communication protocols can be implemented

more e�ciently, secure and resistant to noise [1�3]. Similarly, there are quantum com-

puting algorithms which can be implemented more e�ciently through qudits [4�6].

They also allow us to build Bell inequalities that are more resistant to noise and with

larger violations of non-locality [7,8]. The reconstruction of unknown quantum states

of high dimension becomes a problem of special interest for these applications [9].

The techniques that allow us to reconstruct an unknown state through measure-

ments are known as quantum tomography. These techniques are fundamental in

the growing �eld of quantum technologies. The concept of quantum tomography

emerged for the reconstruction of functions of Wigner through quadratures [10, 11].

Nowadays, quantum tomography allows us to characterize photonic systems [12],

trapped ions [13,14], continuous variable states [15], cavity �elds [16], atomic ensem-

bles [17] and optical detectors [18,19]. These systems are widely used in areas such as

Quantum Computing [20, 21], Quantum Information [22], Quantum Metrology [23]

and Quantum Simulation [24].

1



2

The common tomography schemes consist in to determine the d2−1 independent

real parameters which characterize a quantum state ρ by measuring a set of at least

d2− 1 operators in an ensemble of many identically prepared copies of the unknown

state. We denote the number of copies available as N . The state that minimizes

the likelihood function of this data is chosen as the estimated state ρ̂. Since the

number of parameters to be determined grows quadratically with the dimension, the

tomography of states becomes more complicated in high dimensions [14, 25].

Since we can only measure on �nite ensembles, the estimated parameters by

quantum tomography have uncertainty. This uncertainty, which also might depends

on the experimental setup, is limited by a fundamental bound of quantum mechan-

ics: the quantum Cramer-Rao bound [26, 27]. The lowest possible uncertainty is

given by the set of measurements which achieve this bound. Finding these mea-

surements in the multiparameter case is di�cult and has only been found in some

particular cases [27, 28]. Besides, there exist the Gill-Massar inequality [29], which

impose another quantum limit for estimates got through individual (non-collective)

measurements on each copy of the system. Generally, performing the quantum to-

mography of an unknown state on an arbitrary basis does not reach the optimum

imposed by these limits, so it is not optimal accuracy tomography. The accuracy

of the tomography is quanti�ed through a notion of distance between the unknown

state and its estimate [30], being the most used the in�delity, because this is in-

versely proportional to the resource N available for the tomography [31]. However,

the in�delity presents a di�erent behavior depending on the unknown state: scale

as O(1/
√
N) for states with small rank and as O(1/N) for full rank states [32, 33].

Therefore, the accuracy of the tomography also depends on the state to be recon-

structed. Being able to improve the accuracy is vital for quantum tomography ap-

plications, especially for high-dimensional systems where the number of parameters

to estimate grows quadratically with the dimension [14, 25]. It has been proposed

to overcome this problem by means of adaptive quantum tomography [34]. This

consists of performing a sequence of reconstructions, where we use the information
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obtained in previous measurements to then perform a better tomography. In the

case of quantum systems of dimension 2, it has been shown that a two-step adaptive

tomography reduces in�delity between the unknown state and its estimate at order

O(1/N) [32]: �rst perform a preliminary low-precision standard tomography; later

adapt the measurement bases with the information of the preliminary estimate and

perform a second standard tomography. Subsequently, the protocol was extended

to reduce the weighted quadratic error for a family of metrics, in order to reach the

Gill-Massar bound [35]. Other adaptive methods are the self-learning tomographies.

In these, the post measurements are chosen as the positive operator value measure-

ment (POVM) that minimizes a utility function [36�39].

In this thesis, we generalize this adaptive tomographic technique to the case of

a single qudit and compare the precision it delivery us with respect to standard

tomography , the Cramer-Rao bound and Gill-Massar bound. We show by simula-

tions that until dimension 16 this tomography presents a better performance than

the standard tomography at equal resource for any type of state, scaling as O(1/N),

leading to results close to the Gill-Massar bound for the in�delity of pure states.

In chapter 2, we introduce the mathematical framework used in this thesis. In

chapter 3, we introduce the foundation of quantum theory. In chapter 4, we brie�y

review some common tomography schemes. In chapter 5, we study the two-stage

adaptive standard tomography in high dimensions and we perform computational

simulations to contrast its mean in�delity with the standard tomography error, the

Cramer-Rao bound and the Gill-Massar bound. In chapter 6, we present the con-

clusions of this work.



Chapter 2

Mathematical Framework

Quantum mechanics, like all physical theories, is built using mathematics as a

foundation [30]. In this chapter, we review the mathematical framework that will

allow us to formulate the quantum theory, and later, understand the main results of

this thesis.

First, we review the basic concepts of Hilbert space and linear operator, empha-

sizing properties of �nite dimensional spaces. These topics allow us to construct

the notions of state, evolution and measurement of a quantum system. Then, we

review probability theory and statistics. This is necessary because measurements in

quantum mechanics are processes with random outcomes.

For vectors of a Hilbert space, which represents states quantum physical systems,

we use the Dirac notation |ψ〉. For other kinds of vectors, like probabilities or

coordinate vectors, we use vector notation p, to distinguish them from quantum

states.

4
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2.1 Linear Algebra

In this section we de�ne Hilbert space1 and linear operator. We introduce proper-

ties like the Gram-Schmidt procedure, the spectral decomposition theorem and the

Fréchet derivative. We �nish reviewing direct sum and tensor product between

Hilbert spaces.

2.1.1 Hilbert space

A set H of vectors is called Hilbert space if satis�es the following axioms:

1. The space H is a linear vector space on the body of the complex numbers C.
That is, there exists two operations called sum (+) and scalar product (·)

+ :H×H −→ H, (2.1)

· :C×H −→ H. (2.2)

For |a〉 , |b〉 , |c〉 ∈ H and z, w ∈ C. These operations satisfy

Commutativity of sum |a〉+ |b〉 = |b〉+ |a〉 . (2.3)

Associativity of sum (|a〉+ |b〉) + |c〉 = |a〉+ (|b〉+ |c〉).
(2.4)

A zero vector exists |a〉+ |0〉 = |a〉 . (2.5)

Each vector has an additive inverse |a〉+ |−a〉 = |0〉 . (2.6)

Distributivity of vector sum z · (|a〉+ |b〉) = z · |a〉+ z · |b〉 . (2.7)

Distributivity of scalar sum (z + w) · |a〉 = z · |a〉+ w · |a〉 . (2.8)

Associativity of scalar product (zw) · |a〉 = z · (w · |a〉). (2.9)

An identity number exists 1 · |a〉 = |a〉 . (2.10)

For simplicity, we omit the dot of scalar product z · |a〉 = z |a〉 and write the

zero vector as |0〉 = 0.

1Named after David Hilbert, German mathematician (1862-1943).
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2. An inner scalar product is de�ned in H.

(·, ·) : H×H −→ C. (2.11)

We denote the scalar product between |a〉 and |b〉 by (|a〉 , |b〉). However, we

usually employ the Dirac notation, that is, 〈a|b〉. The scalar product ful�lls

the following properties

Linearity (|a〉 , z |b〉+ w |c〉) = z 〈a|b〉+ w 〈a|c〉 . (2.12)

Hermiticity 〈a|b〉 = 〈b|a〉∗ . (2.13)

Positivity

{
〈a|a〉 ≥ 0, ∀ |a〉 .

〈a|a〉 = 0⇔ |a〉 = |0〉 .
(2.14)

Using (2.12) and (2.13), we can show that

(z |a〉 , |b〉) = (|b〉 , z |a〉)∗ = (z 〈b|a〉)∗ = z∗ 〈a|b〉 . (2.15)

The norm of the vector |a〉 is de�ned by

|| |a〉 || =
√
〈a|a〉, (2.16)

which satis�es the Schwartz's inequality

| 〈a|b〉 | ≤ || |a〉 || || |b〉 ||. (2.17)

Two vectors |a〉 and |b〉 are said orthogonal if

〈a|b〉 = 0. (2.18)

3. The space H is complete. That is, every Cauchy sequence {|an〉}n∈N in H
converges in H.

A sequence {|an〉}n∈N of H is convergent if

∀ε > 0, ∃N > 0, || |an〉 − |a〉 || < ε, ∀n > N, (2.19)
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where |a〉 = limn→∞ |an〉 is called the limit of the sequence. A sequence

{|an〉}n∈N of H is called Cauchy sequence if

∀ε > 0, ∃N > 0, || |an〉 − |am〉 || < ε, ∀n,m > N. (2.20)

Let us note that every convergent sequence in H is a Cauchy sequence but not

every sequence of Cauchy is convergent.

Vectors of a Hilbert space can be represented using a basis {|en〉}n∈N , which is a

linearly independent2 subset of H that spans H, that is

|a〉 =
∑
n∈N

αn |en〉 ∀ |a〉 ∈ H. (2.21)

The dimension dim(H) is the number of elements of a basis of H. We say H is �nite

dimensional if dim(H) < ∞ and in�nite dimensional if dim(H) = ∞. For Hilbert

spaces with �nite dimension, axiom 3 can be obtained from axioms 1 and 2. That

is, all vector spaces with inner product of �nite dimension are a Hilbert spaces. For

simplicity, we call these spaces as �nite Hilbert spaces.

A basis is orthonormal if

〈en|em〉 = δnm, (2.22)

where δnm is the Kronecker delta de�ned by

δnm =

{
1 n = m.

0 n 6= m.
(2.23)

Let us consider a non-orthogonal basis {|wn〉}n=1,...,d of a d-dimensional Hilbert space.

There is a useful method, called Gram-Schmidt procedure, that allows us to produce

an orthonormal basis {|vn〉}n=1,...,d from {|wn〉}n=1,...,d. These vectors are computed

iteratively by
|v1〉 =

|w1〉
|| |w1〉 ||

|vk+1〉 =
|wk+1〉 −

∑k
i=1 〈vi|wk+1〉 |vi〉

|| |wk+1〉 −
∑k

i=1 〈vi|wk+1〉 |vi〉 ||
, k = 1, ..., d− 1.

(2.24)

It is not di�cult to verify that {|vn〉}n=1,...,d is an orthonormal basis by induction,
2A set of vectors is linearly independt if one of the vectors can not be written as a linear

combination of the others.
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� For n = 1,

〈v1|v2〉 =
〈v1|w2〉 − 〈v1|w2〉 〈v1|v1〉
|| |w2〉 − 〈v1|w1〉 |v1〉 ||

= 0. (2.25)

� Let us suppose that the vectors {|vn〉}n=1,...,d are orthogonal until n = m.

Testing for n = m+ 1,

〈vm|vm+1〉 =
〈vm|wm+1〉 −

∑m
i=1 〈vi|wm+1〉 〈vm|vi〉

|| |wm+1〉 −
∑m

i=1 〈vi|wm+1〉 |vi〉 ||
(2.26)

=
〈vm|wm+1〉 −

∑m
i=1 〈vi|wm+1〉 δmi

|| |wm+1〉 −
∑m

i=1 〈vi|wm+1〉 |vi〉 ||
(2.27)

=
〈vm|wm+1〉 − 〈vm|wm+1〉

|| |wm+1〉 −
∑m

i=1 〈vi|wm+1〉 |vi〉 ||
(2.28)

=0. (2.29)

Thus, any �nite Hilbert space has an orthonormal basis. Therefore, the equation

(2.21) becomes,

|a〉 =
d∑

n=1

αn |vn〉 , (2.30)

where αn = 〈vn|a〉. Besides, it can be written in matrix representation, that is,

|a〉 =


α1

α2
...
αd

 =


〈v1|a〉
〈v2|a〉

...
〈vd|a〉

 ∈ Cd. (2.31)

Moreover, the inner product on a �nite Hilbert space in matrix representation is

〈a|b〉 =

(
d∑

n=1

αn |vn〉 ,
d∑

m=1

βm |vm〉

)
(2.32)

=
d∑

n=1

d∑
m=1

α∗nβm 〈vn|vm〉 (2.33)

=
d∑

n=1

d∑
m=1

α∗nβmδnm (2.34)

=
d∑

n=1

α∗nβn (2.35)
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=
(
α∗1 · · · α∗d

)β1
...
βd

. (2.36)

Then, on �nite Hilbert spaces, we can identity 〈a| with the transposed conjugate of

|a〉,

〈a| =
(
α∗1 · · · α∗d

)
. (2.37)

The set of all vectors 〈a| is called the dual space H∗.

2.1.2 Linear Operators

A linear operator A is a map from H to H′, which satis�es linearity

A(z |a〉+ w |b〉) = zA |a〉+ wA |b〉 . (2.38)

We denote by L(H) the space of all linear operators from H to itself. A linear

operator A ∈ L(H) is bounded if

||A |f〉 || ≤ C|| |f〉 ||, ∀ |f〉 ∈ H, C ∈ R. (2.39)

Because in general the product between operators is not commutative, we de�ne

the commutator of A and B by

[A,B] = AB −BA. (2.40)

If A commutes with B, we have [A,B] = Θ, where Θ is the null matrix.

We can represent an operator using the outer product. The outer product between

|a〉 and |b〉 is an operator |a〉〈b|, whose action is de�ned by(
|a〉〈b|

)
|c〉 = 〈b|c〉 |a〉 . (2.41)

Let us consider an orthonormal basis {|i〉}i=1,...,d of a d-dimensional Hilbert space H,
then (

d∑
i=1

|i〉〈i|

)
|v〉 =

d∑
i=1

〈i|v〉 |i〉 = |v〉 (2.42)
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Since the last equation is true for all |v〉 ∈ H, we obtain that

d∑
i=1

|i〉〈i| = IH, (2.43)

with IH the identity operator on H. This is called the completeness relation. Thus,

we can represent an operator A ∈ L(H) on a �nite Hilbert space H as

A =IHAIH (2.44)

=

(
d∑
i=1

|i〉〈i|

)
A

(
d∑
j=1

|j〉〈j|

)
(2.45)

=
d∑

i,j=1

〈i|A|j〉 |i〉〈j| (2.46)

=


A11 A12 · · · A1d

A21 A22 · · · A2d
...

... . . . ...
Ad1 Ad2 · · · Add

 ∈Md×d(C). (2.47)

where Aij = 〈i|A|j〉 andMd×d(C) is the space of matrices of d×d over the complex

numbers.

An eigenvector of an operator A is a non-zero vector |a〉 such that it is propor-

tional to A |a〉,

A |a〉 = a |a〉 . (2.48)

The proportionality constant a ∈ C is known as the eigenvalue of A corresponding

to |a〉. They can be obtained by solving the characteristic equation,

det(A− aI) = 0, (2.49)

where det is the determinant function for matrices. Two operators that commute

(2.40) have the same set of eigenvectors but di�erent sets of eigenvalues.

An important function of the matrix is the trace. The trace of A is de�ned be

the sum of its diagonal elements,

Tr(A) =
d∑
i=1

〈i|A|i〉 =
d∑
i=1

Aii. (2.50)
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This function is characterized by being cyclic Tr(AB) = Tr(BA) and linear Tr(αA+ βB) =

αTr(A) +β Tr(B). Besides, this is equal to the sum of the eigenvalues of the matrix

Tr(A) =
∑d

i=1 ai.

The adjoint operator A† ∈ L(H) of a operator A ∈ L(H) satis�es the following

equation

(A† |a〉 , |b〉) = (|a〉 , A |b〉). (2.51)

On �nite Hilbert spaces, the adjoint operator A† is the transposed conjugate of A,

A† =


A∗11 A∗21 · · · A∗d1

A∗12 A∗22 · · · A∗d2
...

... . . . ...
A∗1d A∗2d · · · A∗dd

. (2.52)

In particular, an operator A ∈ B(H) is called hermitian if

A = A†. (2.53)

An eigenvalue a with eigenvector |a〉 of an hermitian operator A is real,

a = 〈a|A|a〉 = 〈a|A†|a〉∗ = 〈a|A|a〉∗ ∈ R. (2.54)

An important class of hermitian operators are the positive semide�nite operators.

An operator A is called positive semide�nite if

〈v|A|v〉 ≥ 0, ∀ |v〉 6= 0. (2.55)

Then, these operators have non-negative eigenvalues. We denote by P(H) the set of

all positive operators that maps H on itself.

A operator U ∈ L(H) is called unitary if it is invertible and UU † = U †U = I.
These matrices form the special unitary group SU(d). Let |u〉 be an eigenvector of

U with eigenvalue u, then

〈u|U †U |u〉 = 〈u|I|u〉 =⇒ |u| = 1. (2.56)

The trace of A is invariant under unitary transformations Tr
(
U †AU

)
= Tr(A).

An operator A ∈ L(H) is called normal if AA† = A†A. These operators satisfy

the following useful theorem,
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Theorem 1. (Spectral decomposition3) Any normal operator A on a d-dimensional

Hilbert space H is diagonal with respect to the eigenvector basis of A. That is, A can

be written as

A =
d∑
i=1

ai |ai〉〈ai| , (2.57)

where {|ai〉}i=1,...,d are eigenvectors of A with eigenvalues {ai}i=1,...,d.

The equation (2.57) can be rewritten using projective operators. An operator P

is projective if it satis�es

P 2 = P. (2.58)

The operator Pi = |ai〉〈ai| is the projector onto the subspace with eigenvalue ai.

Then,

A =
d∑
i=1

aiPi. (2.59)

Clearly, hermitian operators and unitary operators are normal. Therefore, these

operators have a spectral decomposition. Furthermore, these also play an important

role in the formulation of Quantum Mechanics.

The function f of a normal operator A is de�ned by the following operator

f(A) =
d∑
i=1

f(ai) |ai〉〈ai| , (2.60)

that is, a function of operators is de�ned by the values of the function on the set

of eigenvalues of the operators. One of the most commonly used functions is the

exponential eA. An unitary operator can be written as U = e−iH , where H is

a hermitian operator. The exponential of an operator ful�ll the Baker-Campbell-

Hausdor� formula,

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · . (2.61)

3See proof in [30].
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As a last observation, let us note that the set of linear operators L(H), endowed

with the Hilbert-Schmidt product,

〈A,B〉 = Tr
(
A†B

)
, (2.62)

as an inner product, is a Hilbert space. This product induces a norm on operators,

||A|| =
√
〈A,A〉 =

√
Tr(A†A). (2.63)

2.1.3 Fréchet Derivative

In general, we can de�ne notions of derivation on Hilbert spaces, like in H = Cd.

Therefore, we can derivate functions of operators. Let us suppose a �nite Hilbert

space H. A continuous function f from U ⊆ L(H) to L(H) is said to be di�erentiable

at a point U ∈ U if there exists T ∈ L(H) such that

lim
V→Θ

||f(U + V )− f(U)− TV ||
||V ||

= 0. (2.64)

The operator T = Df(U) above is called the Fréchet derivative4 of f at U [40].

Then, if f is di�erentiable at U , for all V ∈ L(H),

Df(U)(V ) = lim
t0→0

f(U + t0V )− f(U)

t0V
(2.65)

= lim
t0→0

f
(
U + (t+ t0)V

)
− f(U + tV )

t0V

∣∣∣∣∣
t=0

(2.66)

=
d

dt
f(U + tV )

∣∣∣∣∣
t=0

. (2.67)

This is called the directional derivative of f at U in the direction V . From (2.67),

we can see that the Fréchet derivative inherits the usual rules of derivation:

Linearity D(f + g)(U) = Df(U) +Dg(U). (2.68)

Chain rule D(g(f))(U) = Dg(f(U)) ·Df(U). (2.69)

Product rule D[f(U) · g(U)](V ) = Df(U)(V ) · g(U) + f(U) ·Dg(U)(V ). (2.70)

4Named after Maurice René Fréchet, French mathematician (1878-1973).
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Derivatives of higher order can be de�ned by repeating derivatives. Thus, the pth

derivative of f is calculated as

Dpf(U)(V1, ..., Vp) =
∂p

∂t1 · · · ∂tp
f(U + t1V1 + · · ·+ tpVp)

∣∣∣∣∣
t1=...=tp=0

. (2.71)

Using the Fréchet derivative, we can show the following useful theorem:

Theorem 2. (Taylor's Theorem) Let f be a (p + 1) times di�erentiable function

from L(H) to itself. Then, for all X ∈ L(H) and for small H ∈ L(H),∣∣∣∣∣
∣∣∣∣∣f(X +H)− f(X)−

p∑
m=1

1

m!
Dmf(X)([H]m)

∣∣∣∣∣
∣∣∣∣∣ = O

(
||H||p+1

)
. (2.72)

where [H]m is the m-tuple (H,H, ..., H).

2.1.4 Direct Sum and Tensor Product

We can combine two Hilbert spaces to form larger spaces taking their direct sum

or their tensor product. Let us consider a n-dimensional Hilbert space H and a m-

dimensional Hilbert space H′, with {|vi〉}i=1,...,n and {|wi〉}i=1,...,m their orthonormal

bases, respectively.

First, the sum direct space H⊕H′ is a n+m dimensional Hilbert space. These

spaces must only intersect at the zero vector, H ∩H′ = {0}. An orthonormal basis

of H ⊕H′ is {|vi〉 , |wj〉}, with i = 1, ..., n and j = 1, ...,m. Vectors of H ⊕H′ have
the matrix form

|v〉 ⊕ |w〉 =

(
|v〉
|w〉

)
, (2.73)

On the other hand, the tensor product space H⊗H′ is a nm dimensional Hilbert

space. If |v〉 ∈ H and |w〉 ∈ H′, the tensor product vector |v〉 ⊗ |w〉 is on H ⊗H′.
These vectors ful�ll bilinearity

|v〉 ⊗ (z1 |w1〉+ z2 |w2〉) =z1 |v〉 ⊗ |w1〉+ z2 |v〉 ⊗ |w2〉 , (2.74)

(z1 |v1〉+ z2 |v2〉)⊗ |w〉 =z1 |v1〉 ⊗ |w〉+ z2 |v2〉 ⊗ |w〉 . (2.75)
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An orthonormal basis of H ⊗H′ is {|vi〉 ⊗ |wj〉}, with i = 1, ..., n and j = 1, ...,m,

and its vectors are

|a〉H⊗H′ =
n∑
i=1

m∑
j=1

αij |vi〉H ⊗ |wj〉H′ . (2.76)

The tensor product can be computed using the Kronecker product,

|a〉 ⊗ |b〉 =


α1

α2
...
αd

⊗ |b〉 =


α1 |b〉
α2 |b〉
...

αd |b〉

. (2.77)

These operations are also valid for linear operators, because these are also Hilbert

spaces. For �nite dimensional operators,

A⊕B =

(
A Θn,m

Θm,n B

)
, (2.78)

A⊗B =

A11 · · · A1n
... . . . ...

An1 · · · Ann

⊗B =

A11B · · · A1nB
... . . . ...

An1B · · · AnnB

, (2.79)

where Θn,m is the null matrix of n×m.

2.2 Probability and Statistics

In this section, we introduce basic concepts of probability theory and classical

statistics, such as Fisher Information. These are necessary due to the statistical

nature of Quantum Mechanics.

2.2.1 Sample Space, Events and Probabilities

A random experiment is characterized by the impossibility of predicting with

certainty the result of it. The set of all possible outcomes ω of a random experiment

is called the sample space Ω. If this set is countable, we call it discrete, otherwise

we call it continuous.
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An event E is a subset of Ω. The set {Ei}i=1,...,n of events is called mutually

exclusive if Ei ∩ Ej = ∅ for all i and j, with i 6= j. That is, if an outcome of event

Ei occurs, this event occurs and none of the other events can happen.

The probability p is a measure which acts on a sample space Ω and assigns a num-

ber between 0 and 1 to each event. Probability must satisfy the following conditions

1. p(E) ≥ 0 for all events E.

2. If E = Ω, then p(E) = 1.

3. If the events {Ei}i=1,...,n are mutually exclusive,

p (∪ni=1Ei) =
n∑
i=1

p(Ei). (2.80)

In many experiments, the probability of an event E1 depends on another event

E2 having already occurred. This probability is called conditional probability and it

is de�ned by

p(E1|E2) =
P (E1, E2)

p(E2)
. (2.81)

where p(E2) 6= 0.

Theorem 3. (Bayes' Theorem) The conditional probability p(E1|E2) satis�es

p(E1|E2) =
p(E2|E1)p(E1)

p(E2)
. (2.82)

where p(E2) 6= 0.

Proof: From (2.81),

p(E1|E2) =
P (E1, E2)

p(E2)
, p(E2|E1) =

P (E2, E1)

p(E1)
. (2.83)

Because p(E1, E2) = p(E2, E1), we get

p(E1|E2)p(E2) = p(E2|E1)p(E1). (2.84)

Finally, if p(E2) 6= 0,

p(E1|E2) =
p(E2|E1)p(E1)

p(E2)
. (2.85)
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2.2.2 Random Variables

A random variable X is a function that, to each result ω ∈ Ω assigns it a real

number. When we perform an experiment on a discrete random variable X, it may

take the value x with probability

p(X = x) = p({ω : X(ω) = x}). (2.86)

For simplicity, we de�ne p(x) = p(X = x). On the other hand, when the random

variable X is continuous, it may take a value between x1 and x2 with probability

p(x1 < X ≤ x2) = p({ω : x1 < X(ω) ≤ x2}). (2.87)

A better form to express this probability is using the probability density f

p(x1 < X ≤ x2) =

∫ x2

x1

f(x)dx. (2.88)

This function must satisfy

f(x) ≥ 0, ∀x ∈ R, (2.89)∫
R
f(x)dx = 1. (2.90)

We can use the Dirac Delta to write the probability density of a discrete random

variable,

f(x) =
∑
x0∈I

p(x0)δ(x− x0). (2.91)

where I is the set of all possible values for X. We say that two random variables X

and Y are independent if

p(x, y) =p(x)p(y), if X is discrete. (2.92)

f(x, y) =fX(x)fY (y), if X is continuous. (2.93)

The expected value of a random variable X is the weighted average of its values,

using the probabilities as weights. The expected value of a random variable X is
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de�ned by

E(X) =


∑
x∈I

xp(x), if X is discrete.∫
R
xf(x)dx, if X is continuous.

(2.94)

Then, the expected value of the product between two independent random variables

X and Y is

E(XY ) =

∫
R

∫
R
xyf(x, y)dxdy (2.95)

=

∫
R

∫
R
xyfX(x)fY (y)dxdy (2.96)

=

∫
R
xfX(x)dx

∫
R
yfY (y)dy (2.97)

= E(X)E(Y ). (2.98)

The expected value of a function g(X) is

E(g(X)) =


∑
x∈I

g(x)p(x), if X is discrete.∫
R
g(x)f(x)dx, if X is continuous.

(2.99)

Using (2.81), we can de�ne the conditional probability of discrete random variables

and the conditional density probability of continuous random variables,

p(x|y) =
p(x, y)

p(y)
, p(y) 6= 0. (2.100)

fX(x|y) =
f(x, y)

fY (y)
, fY (y) 6= 0. (2.101)

Then, the conditional expected value of X given Y is de�ned as

E(X|Y ) =


∑
x∈I

xp(x|y), if X is discrete.∫
R
xfX(x|y)dx, if X is continuous.

(2.102)

In general, we can work with a set of n random variables

X =

X1
...
Xn

 ∈ Rn, (2.103)
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and its corresponding expected value

E(X) =

E(X1)
...

E(Xn)

. (2.104)

Let us note that the expected value between sets of random variables X and Y is

an inner product. Then, this satis�es the Cauchy-Schwarz inequality,

|E(XY )|2 ≤ E(X2)E(Y 2). (2.105)

The variance of a random variable X is the expected value of the squared devi-

ation of a random variable X from its expected value E(X), that is,

Var(X) = E[(X − E(X))2]. (2.106)

It can be rewritten as

Var(X) =E[(X − E(X))2] (2.107)

=E[X2 − 2XE(X) + E(X)2] (2.108)

=E(X2)− 2(X)E(X) + E(X)2 (2.109)

=E(X2)− E(X)2. (2.110)

The square root of the variance is called the standard deviation σ(X) =
√

Var(X).

This represents the dispersion of data around the expected value. The con�dence

interval is de�ned by

|X − E(X)| ≤ εσ(X) (2.111)

with ε > 1. The probability that X assumes a value in this interval is

p
(
|X − E(X)| ≤ εσ(X)

)
≥ 1− 1

ε2
. (2.112)

For instance, the random variable has a probability p = 1− 1/9 = 8/9 of assuming

a value in the interval |X − E(X)| ≤ 3σ(X). This leads that the error in a random

experiment is on the magnitude order of the standard deviation,

x− E(X) ∼ O
(
σ(X)

)
. (2.113)
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where we have supposed that the random variable X assumes the value x.

The covariance between two random variables X and Y is de�ned by

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]. (2.114)

It is a measurement of the correlation among the random variables X and Y . In

particular Cov(X,X) = Var(X). Analogous to the variance,

Cov(X, Y ) =E[(X − E(X))(Y − E(Y ))] (2.115)

=E[XY − E(X)Y −XE(Y ) + E(X)E(Y )] (2.116)

=E(XY )− 2E(X)E(Y ) + E(X)E(Y ) (2.117)

=E(XY )− E(X)E(Y ). (2.118)

The variance of a linear combination of two random variables X and Y

Var(aX + bY ) =E([aX + bY ]2)− E(aX + bY )2 (2.119)

=a2E(X2) + 2abE(XY ) + b2E(Y 2)− a2E(X)2

− 2abE(X)E(Y )− b2E(Y )2 (2.120)

=a2[E(X2)− E(X)2] + b2[E(Y 2)− E(Y )2]

+ 2ab[E(XY )− E(X)E(Y )] (2.121)

=a2VarX + b2Var(Y ) + 2abCov(X, Y ). (2.122)

If we are working with a set of random variables X, we have the covariance

matrix C(X), with elements

Cij(X) = Cov(Xi, Xj). (2.123)

Let us suppose a vectorial function f(X) = AX, where A ∈ Cn×n. The elements of

this function are

fi(X) =
n∑
l=1

AilXl. (2.124)

Its covariance matrix is

Cij(f) =Cov[fi(X), fj(X)] (2.125)
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=E[fi(X)fj(X)]− E[fi(X)]E[fj(X)] (2.126)

=E

[
n∑
l=1

AilXl

n∑
k=1

AjkXk

]
− E

[
n∑
l=1

AilXl

]
E

[
n∑
k=1

AikXk

]
(2.127)

=
n∑
l=1

n∑
k=1

AilAjk [E(XlXk)− E(Xl)E(Xk)] (2.128)

=
n∑
l=1

n∑
k=1

AilAjkCov(Xl, Xk) (2.129)

=
n∑
l=1

n∑
k=1

AilCov(Xl, Xk)Ajk (2.130)

=(ACAT)ij. (2.131)

For a non-linear function, we can linearize employing the Taylor series up to the �rst

order.

2.2.3 Fisher Information

Let us consider a random experiment where we want to estimate a set of n

parameters s =
(
s1 · · · sn

)T. Let us consider that the probability distributions of

this experiment is {p(x|s)}x∈I , with I the set of all outcomes x. From the de�nition

of probability, ∑
x∈I

p(x|s) = 1 ∀s. (2.132)

Deriving the last equation

∂

∂si

[∑
x∈I

p(x|s)

]
=
∑
x∈I

p(x|s)
∂

∂si
ln p(x|s) = E

(
∂

∂si
ln p(x|s)

)
= 0. (2.133)

From the experiment we obtain estimations ŝ(x) =
(
ŝ1(x) · · · ŝn(x)

)T, which are

functions of the experimental outcomes. Besides,

∂ŝj(x)

∂si
= 0. (2.134)

Using the last equation we can de�ne the following matrix

Gij =
∂

∂si
E
(
ŝj(x)

)
(2.135)
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=
∂

∂si

[∑
x∈I

p(x|s)ŝj(x)

]
(2.136)

=E
(
∂

∂si
ln p(x|s)ŝj(x)

)
, (2.137)

Subtracting the equation (2.133),

Gij =E
(
∂

∂si
ln p(x|s)ŝj(x)

)
− E

(
∂

∂si
ln p(x|s)

)
sj (2.138)

=E
(
∂

∂si
ln p(x|s)

[
ŝj(x)− sj

])
. (2.139)

For any vectors u and w in Rn, we get

(uTGw)2 =

(
n∑

i,j=1

uiGijwj

)2

(2.140)

=

[
n∑

i,j=1

uiE
(
∂

∂si
ln p(x|s)[ŝj(x)− sj]

)
wj

]2

(2.141)

=

[
E

(
n∑

i,j=1

ui
∂

∂si
ln p(x|s)[ŝj(x)− sj]wj

)]2

. (2.142)

Using the Schwartz's inequality (2.105), we obtain

(uTGw)2 ≤E

[ n∑
i=1

ui
∂

∂si
ln p(x|s)

]2
E

[ n∑
j=1

[ŝj(x)− sj]wj

]2
 (2.143)

=
(
uTIu

) (
wTCw

)
, (2.144)

where C is the covariance matrix and I is the Fisher information matrix5 de�ned by

Iij = E
(
∂

∂si
ln p(x|s)

∂

∂sj
ln p(x|s)

)
. (2.145)

Therefore, for all u and w, we have

wTCw ≥ u
TGwwTGu

uTIu
(2.146)

The right-hand side of this inequality is maximized when u = I−1Gw,

wTCw ≥u
TGwwTGI−1Gw

uTII−1Gw
(2.147)

5Named after Sir Ronald Fisher, British statistician and geneticist (1890-1962).
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wTCw ≥u
TGwwTGI−1Gw

uTGw
(2.148)

wTCw ≥wTGI−1Gw. (2.149)

Thus, we obtain the following inequality

C ≥ GI−1G, (2.150)

which is called the Cramer-Rao inequality [41, 42]. This inequality means that the

matrix C−GI−1G is positive semide�nite. It expresses a lower bound for the covari-

ance. A particular case of this inequality occurs when the estimator ŝ is unbiased,

E[ŝ(x)] = s. (2.151)

Here the matrix G is the identity matrix because

Gij =
∂

∂si
E[ŝj(x)] =

∂sj
∂si

= δij. (2.152)

The Cramer-Rao inequality for unbiased estimators is then

C ≥ I−1. (2.153)

This establishes that the covariance matrix is bounded by below by the Fisher infor-

mation matrix. An unbiased estimation method is optimal if it reaches the Cramer-

Rao bound (2.153). It should be noted that there are not always unbiased techniques

that achieve this lowe bound.

From (2.153), we can also �nd a bound for the weighted mean square error

Tr(WC), where W is a positive matrix. For example, if W = I, this is the mean

square error,

Tr(C) =
n∑
i=1

E
(
[ŝi(x)− si]2

)
. (2.154)

The Cramer-Rao bound for the weighted mean square error is

Tr(WC) ≥ Tr
(
WI−1

)
. (2.155)



Chapter 3

Quantum Mechanics

Quantum Mechanics is a theory which allows us to describe the behavior of mi-

croscopic physical systems, such as atoms and photons. The quantum theory has

deep di�erences with classical theories. The main one is the measurement process.

Classical physics implicitly assumes the properties of systems to be unchanged by

measurement processes. Thereby, di�erent properties can be measured without any

interference among them. This is not the case in quantum physics, where the mea-

surements have random outcomes and they disturb the state of the system. Thereby,

the measurement of a property typically precludes the knowledge about other prop-

erties. Quantum Mechanics has allowed the development of many technological

applications, such as Quantum Information, Quantum Computation and Quantum

Cryptography.

In this chapter, we brie�y enunciate the postulates of Quantum Mechanics. Then,

we present notions of distance between quantum states. We �nish studying the

quantum theory of estimation.

24
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3.1 Postulates of Quantum Mechanics

In this section, we review shortly all the postulates of quantum mechanics. There

are four basic postulates which tell us how to describe all we need to know about a

quantum system [30,43].

3.1.1 State Space

The �rst postulate teaches us how to mathematically represent quantum systems.

Postulate 1. Every physical system is associated with a complex vector space with

inner product H (called a Hilbert space). The state vector of the system is a ray in

said Hilbert space. This vector completely describes the system.

A ray is a one-dimensional subspace of H. Then, the states |ψ〉 can be identi�ed

with an equivalence class1 represented by a unitary vector | 〈ψ|ψ〉 | = 1. Also, the

state |ψ〉 is equal to eiϕ |ψ〉 up the global phase eiϕ. We call a 2-dimensional quantum

system a qubit (quantum bit)2,

|ψ〉 = α |0〉+ β |1〉 (3.1)

where {|0〉 , |1〉} is the basis of the space and || |ψ〉 || = |α|2 + |β|2 = 1. In general, a

d dimensional state is called a qudit (quantum dit).

An alternative formulation is possible using a tool known as the density operator

or density matrix. The language of the density matrices is convenient to describe

systems that are not known in their entirety. This is a system that can't be described

only with a state |ψ〉, instead we need a set of n states |ψi〉 with their respective

probabilities pi, called the ensemble of pure states {pi, |ψi〉}i=1,...,n. The density

operator of the system is de�ned by the equation

ρ =
n∑
i=1

pi |ψi〉〈ψi| . (3.2)

1An equivalence class is a set which satis�es an equivalence relation. A relation is of equivalence
if it ful�lls: re�exivity, symmetry and transitivity.

2Inspired by the bit notion of classical computing.
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Note that the expansion (3.2) does not necessarily coincide with the spectral

decomposition of ρ and n can be di�erent than dim(H). The class of operators that

are density operators are characterized by the following useful theorem:

Theorem 4. An operator ρ is a density operator associated to some ensemble {pi, |ψi〉}i=1,...,n

if and only if it satis�es the conditions:

1. The trace of ρ is equal to 1. That is, Tr(ρ) = 1,

2. ρ ∈ P. That is, ρ is positive semide�nite operator.

Proof: Suppose ρ =
∑n

i=1 pi |ψi〉〈ψi| is a density operator. Then

Tr(ρ) =
n∑
i=1

pi Tr(|ψi〉〈ψi|) =
n∑
i=1

pi = 1, (3.3)

so the trace condition 1 is satis�ed. Suppose |ϕ〉 is an arbitrary vector in the state

space. Then

〈ϕ|ρ|ϕ〉 =
n∑
i=1

pi 〈ϕ|ψi〉 〈ψi|ϕ〉 =
n∑
i=1

pi| 〈ϕ|ψi〉 |2 ≥ 0, (3.4)

so the condition 2 is satis�ed.

Density matrices are classi�ed into two types: if there exists a vector |ψ〉 such
that ρ = |ψ〉〈ψ|, then we say that the state is pure; otherwise we say that the state

is mixed. A state ρ can be determined as pure or mixed by evaluating the purity

Tr(ρ2). Let us expand ρ in its spectral descomposition,

ρ =
n∑
i=1

λi |λi〉〈λi| . (3.5)

Thus, calculating the purity,

ρ2 =
n∑
i=1

λ2
i |λi〉〈λi| , Tr

(
ρ2
)

=
n∑
i=1

λ2
i . (3.6)

Because p2
i ≤ pi, equality will be achieved if and only if one of the λi equals 1 and

the rest are 0. So a state ρ is pure if and only if Tr(ρ2) = 1.
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There are many representations of a density matrix. For example, a qubit can

be expressed by

ρ =
1

2
(I + xσx + yσy + zσz) =

1

2

(
I + rTσ

)
, (3.7)

where r =
(
x y z

)T is a 3-dimensional real vector and σ =
(
σx σy σz

)T are the

Pauli Matrices3,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.8)

If we calculate the eigenvalues of ρ we can known the domain of r such that ρ is

positive semide�nite.

det[ρ− λI] = 0 (3.9)

det

[
1

2

(
1 + z − 2λ x− iy
x+ iy 1− z − 2λ

)]
= 0 (3.10)(

1

2

)2

[(1 + z − 2λ)(1− z − 2λ)− (x+ iy)(x+ iy)] = 0 (3.11)

(1− 2λ)2 − z2 − x2 − y2 = 0 (3.12)

(1− 2λ)2 − |r|2 = 0. (3.13)

Using that |r| =
√
x2 + y2 + z2, we have λ± = 1

2
(1± |r|). Now, because λ± ≥ 0, we

have |r| ≤ 1. That is a 3-dimensional unitary sphere, where each point represents

a di�erent density matrix. This sphere is called the Bloch Sphere, and gives us a

graphical representation of the qubits. From the purity we can identify two cases

depending on the value of |r|,

Tr
(
ρ2
)

= λ2
+ + λ2

− =
1

2

(
1 + |r|2

)
. (3.14)

Then, pure states are on the surface the sphere |r| = 1 and mixed states are inside

the sphere |r| < 1.

3Named after Wolfang Pauli, Austrian physicist (1900-1958).
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Figure 3.1: Graph of Bloch Sphere. Source: Made by the author

3.1.2 Evolution

The second postulate describes how the state changes with time.

Postulate 2. The evolution of a closed quantum system is described by a unitary

transformation. For an initial time t0, at a any later time t the relationship between

the initial and �nal states is given by:

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (3.15)

A closed quantum system is a system that does not interact with any other system.

We can calculate the evolution of a density operator,

ρ(t) =
n∑
i=1

pi |ψi(t)〉〈ψi(t)| (3.16)

=
n∑
i=1

piU(t, t0) |ψi(t0)〉〈ψi(t0)|U(t, t0)† (3.17)

= U(t, t0)

(
n∑
i=1

pi |ψi(t0)〉〈ψi(t0)|

)
U(t, t0)† (3.18)
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= U(t, t0)ρ(t0)U(t, t0)†. (3.19)

Furthermore, the general evolution of a density matrix is a completely positive

map that preserves the trace, which can be represented by a set of n ≤ d2 operators

{Ki}i=1,...,n which satis�es
∑n

i=1K
†
iKi = I, called Kraus Operators [30],

ρ(t) =
n∑
i=1

Kiρ(t0)K†i . (3.20)

3.1.3 Measurements

The third postulate describes how to obtain information from a quantum system.

The processes that allow us this are called measurements. This postulate is the main

di�erence between classical physics and quantum physics. Classical physics implic-

itly assumes the properties of systems to be unchanged by measurement processes.

Otherwise, in Quantum Physics the measurements have random outcomes and they

modify the state of the system.

Postulate 3. Quantum measurements are described by a set {Mm}m=1,...,n called

measurement operators. The index m refers to the measurement's outcomes that

may occur in the experiment. The measurement operators satisfy the completeness

relation

n∑
m=1

M †
mMm = I. (3.21)

If the state of the quantum system is |ψ〉 immediately before the measurement, then

the probability that result m occurs is

p(m) = 〈ψ|M †
mMm|ψ〉 , (3.22)

and the state of the system immediately after the measurement is

|ψm〉 =
Mm |ψ〉√
〈ψ|M †

mMm|ψ〉
. (3.23)

For a density matrix and a measurement {Mm}m=1,...,n on the ensemble {pi, |ψi〉}i=1,...,n′

we have that the probability of obtaining outcome m is
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p(m) =
n′∑
i=1

p(m|i)pi (3.24)

=
n′∑
i=1

〈ψi|M †
mMm |ψi〉 pi (3.25)

=
n′∑
i=1

Tr
(
M †

mMm |ψi〉〈ψi|
)
pi (3.26)

= Tr

(
M †

mMm

n′∑
i=1

pi |ψi〉〈ψi|

)
(3.27)

= Tr
(
M †

mMmρ
)
, (3.28)

where p(m|i) is the conditional probability of m if the initial state was |ψi〉. The

states of the ensemble after the measurement are

|ψmi 〉 =
Mm |ψi〉√

〈ψi|M †
mMm |ψi〉

. (3.29)

with respective probabilities p(i|m). Then, the density matrix after the measurement

is

ρm =
n′∑
i=1

p(i|m) |ψmi 〉〈ψmi | (3.30)

=
n′∑
i=1

p(i|m)

 Mm |ψi〉√
〈ψi|M †

mMm |ψi〉

 〈ψi|M †
m√

〈ψi|M †
mMm |ψi〉

 (3.31)

=
n′∑
i=1

p(m|i)pi
p(m)

Mm |ψi〉〈ψi|M †
m

〈ψi|M †
mMm |ψi〉

(3.32)

=
n′∑
i=1

〈ψi|M †
mMm |ψi〉 pi

Tr
(
M †

mMmρ
) Mm |ψi〉〈ψi|M †

m

〈ψi|M †
mMm |ψi〉

(3.33)

=
Mm

∑n′

i=1 pi |ψi〉〈ψi|M †
m

Tr
(
M †

mMmρ
) (3.34)

=
MmρM

†
m

Tr
(
M †

mMmρ
) . (3.35)
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where we used Bayes' theorem (3).

The simplest type of measurement is the projective measurement. A set of d

projective measurements is associated to a hermitian operator called an observable.

An observable O has a spectral decomposition

O =
d∑

m=1

λm |φm〉〈φm| , (3.36)

where λm and |φm〉 are its respective eigenvalues and eigenvectors. Then, because the
projectors πm = |φm〉〈φm| are hermitian and idempotent, the probability to obtain

outcome λm (or m for short) upon measuring the state |ψ〉 is, according to (3.28),

p(m) = Tr
(
π†mπmρ

)
= Tr(πmρ) = 〈φm|ρ|φm〉 , (3.37)

and the state after the measurement is, according to Eq. (3.35), given by

ρm =
πmρπ

†
m

Tr
(
π†mπmρ

) =
〈φm|ρ|φm〉 |φm〉〈φm|
〈φm|ρ|φm〉

= |φm〉〈φm| . (3.38)

The expected value of O in the state ρ is

E(O|ρ) =
d∑

m=1

mp(m) =
d∑

m=1

mTr(πmρ) = Tr

[(
d∑

m=1

mπm

)
ρ

]
= Tr(Oρ). (3.39)

The expected values of two observables O1 and O2 can be obtained simultaneously

if they share their base of eigenstates. This occur if the two observables commute

[O1, O2] = Θ. Thereby, the expected values of two observables that do not commute

[O1, O2] 6= Θ can not be obtained simultaneously.

The most general measurement on a density matrix is the Positive Operators-

Values Measure or POVM. The POVMs are used when the post-measurement state

is unimportant and the probabilities are the main interest. A POVM is a set

{Em}m=1,...,n such that the operators Em are all positive and satisfy the relation∑n
m=1Em = I. We can consider Mm =

√
Em such that Em = M †

mMm. Then we see

that the POVM satis�es the equation (3.21)
∑n

m=1 M
†
mMm =

∑n
m=1 Em = I, and

therefore the set {Mm}m=1,...,n describes a measurement with POVM {Em}m=1,...,n.

The probability of outcome m is given by

p(m) = Tr(Emρ). (3.40)
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3.1.4 Composite Systems

The last postulate allows to describe quantum systems that are formed by two

or more subsystems.

Postulate 4. The state space of a composite physical system is the tensor product of

the state spaces of the component physical systems. If the subsystems are numbered

from 1 to n, the state space is

H = H1 ⊗H2 ⊗ ...⊗Hn. (3.41)

In particular, if the subsystems are prepared in the states {|ψi〉}i=1,...,n, the state

of the system is

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉 . (3.42)

It is important to remark that not all states in the composite space are of this form.

If a state can be written in the form (3.42) we call it separable. Otherwise, we say it

is entangled.

Let us consider the two qubit space, which is a 4-dimensional Hilbert space. A

separable basis of this space is

|00〉 = |0〉 ⊗ |0〉 |01〉 = |0〉 ⊗ |1〉 |10〉 = |1〉 ⊗ |0〉 |11〉 = |1〉 ⊗ |1〉 . (3.43)

On the other hand, an entangled basis is the Bell Basis,∣∣ψ±〉 =
1√
2

(|01〉 ± |10〉)
∣∣φ±〉 =

1√
2

(|00〉 ± |11〉) . (3.44)

The entangled states are used in Quantum Teleportation [44], Quantum Cryptogra-

phy [45] and fundamental tests of Quantum Mechanics [46].

To de�ne entanglement of density matrices is a bit more complicated. Suppose

we have two systems H1 and H2, whose state is ρ(12). We say that it is separable if

it is a convex combination4 of products of density matrices,

ρ(12) =
n∑
i=1

piρ
(1)
i ⊗ ρ

(2)
i . (3.45)

4A convex combination of vectors {xi} is
∑

i αixi, where αi ≥ 0 and
∑

i αi = 1.
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Otherwise, the state is entangled. The entanglement measures of density matrices

are current research topics [47,48].

At last, we de�ne the reduced density matrix as the state that allows us to describe

a subsystem of a larger system. We eliminate the subspaces in which we are not

interested tracing over them. Therefore, the reduced density matrix of H1 for ρ(12) ∈
H1 ⊗H2 is

ρ(1) = Tr2

(
ρ(12)

)
, (3.46)

where Tr2(ρ) is the partial trace of ρ over H2,

Tr2(ρ(12)) = Tr2

(
d∑

i,j=1

pijρ
(1)
i ⊗ ρ

(2)
j

)
(3.47)

=
d∑

i,j=1

pijρ
(1)
i Tr

(
ρ

(2)
j

)
(3.48)

=
d∑

i,j=1

pijρ
(1)
i . (3.49)

3.2 Distance between Quantum States

In many protocols in quantum information it is important to quantify how close

two quantum states are. Some examples of this are state discrimination, state to-

mography and processes tomography.

A distance measure is a function from density operators to the real numbers. It must

satisfy the metric axioms

Positivity

{
0 ≤ d(ρ, σ), ∀ρ, σ.

d(ρ, σ) = 0⇐⇒ ρ = σ.
(3.50)

Symmetry d(ρ, σ) = d(σ, ρ). (3.51)

Triangle inequality d(ρ, σ) ≤ d(ρ, τ) + d(τ, σ). (3.52)

We discuss two distance measures, the trace distance and the �delity, which are

especially useful in quantum information.
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3.2.1 Trace Distance

The most natural distance measure is the trace distance. The trace distance

between ρ and σ is de�ned by

D(ρ, σ) =
1

2
Tr |ρ− σ|, (3.53)

with |A| =
√
A†A. It consists of the sum of the absolute values of the eigenvalues of

ρ− σ. Let A+ and A− two positive operators such as A = A+ − A−. We call them

positive and negative parts of A, respectively. Therefore |A| = A+ + A−. Because

Tr(ρ− σ) = 0, we obtain Tr(ρ− σ)+ = Tr(ρ− σ)−. Therefore

D(ρ, σ) =
1

2
Tr
[
(ρ− σ)+ + (ρ− σ)−

]
= Tr

[
(ρ− σ)+

]
. (3.54)

Clearly, the trace distance satis�es positivity and symmetry. Moreover, it ful�lls the

triangle inequality. Let P be a projective operator to (ρ− σ)+,

D(ρ, σ) = Tr[P (ρ− σ)] (3.55)

= Tr[P (ρ− τ + τ − σ)] (3.56)

= Tr[P (ρ− τ)] + Tr[P (τ − σ)] (3.57)

≤Tr[(ρ− τ)+] + Tr[(τ − σ)−] (3.58)

=D(ρ, τ) +D(τ, σ). (3.59)

Thereby, the trace distance is a metric. This is important in state discrimination [49],

because the probability of distinguishing two states with equal a priori probability

is

Pd =
1

2

[
1 +D(ρ, σ)

]
. (3.60)

3.2.2 Quantum Fidelity

The second distance between quantum states is the �delity. This is de�ned as

F (ρ, σ) = Tr
(√√

ρσ
√
ρ
)2

. (3.61)
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If σ = |ψ〉〈ψ| is pure, it reduces to the transition probability from ρ to |ψ〉,

F (ρ, σ) = 〈ψ|ρ|ψ〉 . (3.62)

Inspired by this, we de�ne the in�delity as

Inf(ρ, σ) = 1− F (ρ, σ). (3.63)

The �delity (or in�delity) is not actually a metric on the space of density matrices.

However, we can construct a metric from it using the following theorem,

Theorem 5. (Uhlmann's) Let us suppose ρ and σ are states of a quantum system

H1. Introduce a second quantum system H2, equal to H1. Then

F (ρ, σ) = max
|ψ〉,|ϕ〉∈H1⊗H2

| 〈ψ|φ〉 |2, (3.64)

where the maximization is over all puri�cations |ψ〉 of ρ and |ϕ〉 of σ, that is

Tr2

(
|ψ〉〈ψ|

)
= ρ, Tr2

(
|ϕ〉〈ϕ|

)
= σ. (3.65)

The states |ψ〉 and |ϕ〉 belong to Cd, so we can calculate their distance using the

distance of Cd. Since quantum states are invariant up to global phases, we must

include a minimization on all possible global phases,

dCd = min
|ε|=1
|| |ψ〉 − ε |ϕ〉 || (3.66)

= min
|ε|=1

√(
〈ψ| − ε∗ 〈ϕ|

)(
|ψ〉 − ε |ϕ〉

)
(3.67)

= min
|ε|=1

√
2− 2 Re[ε 〈ψ|ϕ〉] (3.68)

=
√

2− 2| 〈ψ|ϕ〉 |. (3.69)

This is called the Fubini-Study distance between pure states. Then, using (3.64) and

the last equation, we can de�ne the Bures distance,

B(ρ, σ) =

√
2− 2

√
F (ρ, σ). (3.70)

It inherits the metric properties of dCd , so it is a metric too.
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For a 2-dimensional system, the �delity can be calculated as,

F (ρ, σ) = Tr(ρσ) +
√

1− Tr(ρ2)
√

1− Tr(σ2). (3.71)

Let us suppose ρ and σ are two in�nitesimally close states, that is

F (ρ, σ) = 1− dF +O(dF 2). (3.72)

We have that the in�delity and the Bures distance coincide up to �rst order,

Inf(ρ, σ) =1− F (ρ, σ) (3.73)

=1− 1 + dF +O(dF 2) (3.74)

=dF +O(dF 2), (3.75)

B(ρ, σ)2 =2
(

1−
√
F (ρ, σ)

)
(3.76)

=2
(

1− 1 +
dF

2
+O(dF 2)

)
(3.77)

=dF +O(dF 2). (3.78)

For this reason, we will use in�delity and Bures distance interchangeably. Besides,

�delity and trace distance are related through the following inequality [30],

1−
√
F (ρ, σ) ≤ D(ρ, σ) ≤

√
1− F (ρ, σ). (3.79)

Therefore, in�delity and trace distance are equivalent for in�nitesimally close states,

1

2
Inf(ρ, σ) ≤D(ρ, σ) ≤

√
Inf(ρ, σ). (3.80)

3.3 Quantum Fisher Information

In this section we generalize the Fisher information matrix and the Cramer Rao

bound to the quantum case.

Let us consider a d-dimensional quantum system in a state ρ(s) characterized by

the parameters s =
(
s1 · · · sn

)T, which we want to obtain. This is known as the
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quantum estimation problem. Given a measurement set {Ei}i=1,...,m, the probability

of obtaining outcome i is

p(i|s) = Tr
(
Eiρ(s)

)
. (3.81)

The classical Fisher information (2.145) is

Iij =
m∑
k=1

p(k|s)

(
∂

∂si
ln p(k|s)

∂

∂sj
ln p(k|s)

)
(3.82)

=
m∑
k=1

1

p(k|s)

∂p(k|s)

∂si

∂p(k|s)

∂sj
(3.83)

=
m∑
k=1

1

p(k|s)
Tr

(
Ek
∂ρ(s)

∂si

)
Tr

(
Ek
∂ρ(s)

∂sj

)
. (3.84)

Let w ∈ Rn,

wTIw =
n∑

i,j=1

wiIijwj (3.85)

=
m∑
k=1

1

p(k|s)
Tr

(
Ek

n∑
i=1

wi
∂ρ(s)

∂si

)
Tr

(
Ek

n∑
j=1

∂ρ(s)

∂sj
wj

)
(3.86)

=
m∑
k=1

1

p(k|s)
Tr

(
Ek

n∑
i=1

wi
∂ρ(s)

∂si

)2

. (3.87)

We de�ne operators Li(s) such that they satisfy the equation

∂ρ(s)

∂si
=

1

2

(
ρ(s)Li(s) + Li(s)ρ(s)

)
. (3.88)

These operators are called symmetric logarithmic derivative of ρ(s) with respect to

si. Then

n∑
i=1

wi
∂ρ(s)

∂si
=

1

2

n∑
i=1

wi

(
ρ(s)Li(s) + Li(s)ρ(s)

)
(3.89)

=
1

2

(
ρ(s)

n∑
i=1

wiLi(s) +
n∑
i=1

wiLi(s)ρ(s)

)
. (3.90)

(3.91)
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Writing L =
n∑
i=1

wiLi and replacing in (3.87),

wTIw =
1

2

m∑
k=1

1

p(k|s)
Tr
(
Ekρ(s)L(s) + EkL(s)ρ(s)

)2

(3.92)

=
m∑
k=1

1

p(k|s)
Re
[

Tr
(
EkL(s)ρ(s)

)]2

(3.93)

≤
m∑
k=1

1

p(k|s)

∣∣∣Tr
(
EkL(s)ρ(s)

)∣∣∣2 (3.94)

=
m∑
k=1

1

p(k|s)

∣∣∣∣∣Tr

([√
Ek
√
ρ(s)

]†[√
EkL(s)

√
ρ(s)

])∣∣∣∣∣
2

(3.95)

=
m∑
k=1

1

p(k|s)

∣∣∣∣∣ 〈√Ek
√
ρ(s),

√
EkL(s)

√
ρ(s)

〉 ∣∣∣∣∣
2

, (3.96)

where Re(z) is the real part of z and 〈·, ·〉 is the Hilbert-Schmidt product. Using

Schwartz's inequality (2.17),

wTIw ≤
m∑
k=1

1

p(k|s)

∣∣∣∣∣∣√Ek
√
ρ(s)

∣∣∣∣∣∣2 ∣∣∣∣∣∣√EkL(s)
√
ρ(s)

∣∣∣∣∣∣2 (3.97)

=
m∑
k=1

1

p(k|s)
Tr
(
Ekρ(s)

)
Tr
(
EkL(s)ρ(s)L(s)

)
(3.98)

=
m∑
k=1

Tr
(
EkL(s)ρ(s)L(s)

)
(3.99)

= Tr
(
ρ(s)L(s)2

)
(3.100)

= Tr

(
ρ(s)

n∑
i=1

wiLi(s)
n∑
j=1

wjLj(s)

)
(3.101)

=
n∑
i=1

n∑
j=1

wi
1

2
Tr

(
ρ(s)

[
Li(s)Lj(s) + Lj(s)Li(s)

])
wj (3.102)

=
n∑
i=1

n∑
j=1

wi
[
J(s)

]
ij
wj (3.103)

=wTJ(s)w. (3.104)

Thus, we obtain an upper bound of I,

I ≤ J, (3.105)
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where J is the Quantum Fisher Information matrix,

Jij(s) =
1

2
Tr

(
ρ(s)

[
Li(s)Lj(s) + Lj(s)Li(s)

])
. (3.106)

This matrix establishes the Quantum Cramer-Rao Bound for the covariance matrix

[26,27],

C ≥ I−1 ≥ J−1. (3.107)

Let us note that the Quantum Fisher Information matrix does not depend explicitly

on the set of measurement operators {Ei}i=1,...,m but on the state ρ(s) and on the

parameters to be estimated. Besides, this inequality is only valid for an unbiased

estimate.

From Eq. (3.107) we can see that the reciprocal of the Quantum Fisher Infor-

mation matrix provides a smaller lower bound for the Covariance matrix than the

reciprocal of the Classical Fisher Information matrix. Thereby, the laws of Quan-

tum Mechanics allow for an improvement in the accuracy of estimations. In this

regard, the use of quantum systems for estimation purposes might surpass the accu-

racy achieved by solely classical means. This important result led to the new �eld of

Quantum Metrology [23], which aims at improving the accuracy in the measurements

by exploiting quantum systems.

To estimate the set s of parameters we have at our disposal N quantum systems

equally prepared in the state ρ(s), that is,

ρ⊗N(s) = ρ(s)⊗ ρ(s)⊗ · · · ⊗ ρ(s). (3.108)

This sample of sizeN is our primary resource. The symmetric logarithmic derivatives

L
(N)
i (s) of ρ⊗N(s) are de�ned by

∂ρ⊗N(s)

∂si
=

1

2

(
ρ(s)L

(N)
i (s) + L

(N)
i (s)ρ(s)

)
. (3.109)

Using the chain rule,

∂ρ

∂si
⊗ ρ⊗ · · · ⊗ ρ+ · · ·+ ρ⊗ · · · ⊗ ∂ρ

∂si
⊗ ρ =

1

2

(
ρL

(N)
i + L

(N)
i ρ

)
. (3.110)
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This corresponds to the equation of Li per subsystem,

L
(N)
i = Li ⊗ I⊗ · · · ⊗ I + · · ·+ I⊗ · · · ⊗ Li ⊗ I. (3.111)

Then, the quantum Fisher information matrix becomes

J
(N)
ij =

1

2
Tr

(
ρ⊗N

[
L

(N)
i L

(N)
j + L

(N)
j L

(N)
i

])
(3.112)

=
N

2
Tr

(
ρ
[
LiLj + LjLi

])
(3.113)

=NJij. (3.114)

From this ensemble of N copies we can obtain information about the set s of pa-

rameters by performing two di�erent types of processes:

� Measuring each copy separately, or

� Measuring globally the collective system formed by all copies.

Let C(N)(s) the covariance matrix and I(N)(s) the classical Fisher information ma-

trix, for an estimate with sample size N . The Quantum Cramer-Rao Bound becomes

C(N) ≥
[
I(N)

]−1 ≥ 1

N
J−1, (3.115)

where J corresponds to the quantum Fisher information of a single copy.

Here arises the question whether the Quantum Cramer Rao bound can be sat-

urated or not. One would like to know what quantum strategy allows us to attain

the Quantum Cramer-Rao bound. Such a strategy represents the optimal estimation

technique providing the highest possible accuracy allowed by the laws of Quantum

Mechanics. It has been shown that in order to approach the Cramer-Rao bound, col-

lective measurements must be used [28,50]. Nevertheless, these measures are di�cult

to implement experimentally. This leads to another important constraint [29].

Theorem 6. (Gill-Massar) When we measure a state ρ with separable measure-

ments, the Fisher information matrices I and J must satisfy the Gill-Massar in-

equality

Tr
(
I(N)J−1

)
≤ N(d− 1). (3.116)
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This theorem implies that it is generally impossible to construct a measurement

that is optimal for all parameters by separable measurements only. But, we can try

to �nd the best possible measurement by the following optimization problem

min
s

Tr
(
WC(N)(s)

)
,

Tr
(
I(N)(s)J(s)−1

)
≤ N(d− 1). (3.117)

where W is a positive de�ned matrix. The function Tr
(
WC(N)

)
is called weight

mean square error. The solution to this problem is [51]

Tr
(
WC(N)

)
=

1

N(d− 1)

(
Tr

[√√
WJ−1

√
W

])2

, (3.118)

I(N) = N(d− 1)
√
J

√
J−1/2WJ−1/2

Tr
(√

J−1/2WJ−1/2
)√J. (3.119)

It reaches the classical Cramer-Rao bound C = I−1 and the Gill-Massar Inequal-

ity Tr
(
I(N)J−1

)
= N(d − 1), but generally not the quantum Cramer-Rao bound.

Thereby, there could be a di�erence between the optimal separate measurements

and the quantum Cramer-Rao bound.



Chapter 4

Quantum State Tomography

In the previous section. we saw that a quantum system is described by a state.

Many quantum systems in Nature are in states that are unknown to us, so it becomes

necessary to formulate processes to estimate these states. Due to the probabilistic

character of the outcomes of a quantum measurement, the experimental determina-

tion of all properties that specify a quantum state becomes a di�cult enterprise. In

order to achieve this goal several schemes have been proposed, the so called quantum

tomographic methods [25].

The tomographic methods are based on measuring a set of at least d2 − 1 oper-

ators in an ensemble of many copies of the unknown state, to then determine the

d2 − 1 independent real parameters which characterize ρ by inverting a linear sys-

tem. Finally, we perform a post-processing by maximum likelihood to get a positive

estimation. In this chapter, we brie�y enunciate and review some techniques for

quantum state tomography.

42
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4.1 Preliminaries Aspects

In the �rst place, it is important to emphasize some preliminaries aspects about

the resources of the Quantum Tomography:

� Since a density matrix has d2 − 1 independent coe�cients, at least we can

perform an experiment with d2 − 1 outcomes. Due to the number of parame-

ters to be estimated grows quadratically with the dimension, the quantum to-

mographic problem inevitably becomes more complicated in high dimensions.

This is called the curse of dimensionality [14, 25].

� The reconstruction of an unknown state be achieved through a single POVM

or through the concatenation of several projective measurements [9, 52,53].

� Since the outcomes of quantum measurements are random, we must repeat

the measurements for estimating the parameters of the state. This means that

the estimated density matrix will always have a statistical error, which causes

problems on its positivity [27,54].

� Since the initial state cannot be cloned [55] and it changes after the measure-

ment, we must have access to more than one state preparation of the initial

state to be able to estimate it [30].

Thereby, the ensemble of copies available to perform the tomography must be

distributed in each of the di�erent set of measurements. As example, let us suppose

we have access to N state preparations to perform its tomography by m sets of

measurements. The amount of sample per set of measurement is

Nm =
N

m
. (4.1)

4.2 Linear Inversion Tomography

Let us consider a d-dimensional Hilbert space. Any density matrix ρ of a qudit

can be uniquely represented by d2 independent coe�cients, so we need a set of d2
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linearly independent hermitian matrices to expand the density matrix, that is

ρ =
d2−1∑
i=0

siΛi (4.2)

where {si}i=0,...,d2−1 are real parameters. These parameters are such that the matrix

ρ is positive. Note that because Tr(ρ) = 1, actually only d2 − 1 measurements will

be necessary to reconstruct the state. In general, we can perform m measurements

{Mi}i=1,...,m (these can be projectors, observables or POVM elements) on the density

matrix ρ, obtaining results with probabilities {pi}i=1,...,m,

pj = Tr(Mjρ) = Tr

(
Mj

d2−1∑
i=0

siΛi

)
=

d2−1∑
i=0

Tr(MjΛi)si. (4.3)

De�ning p =
(
p1 · · · pm

)T, s =
(
s1 · · · sd2

)T and Bij = Tr(MiΛj), the previous

equation becomes a linear system

p = Bs. (4.4)

If m = d2 − 1 we get the solution by inverting B, that is,

s = B−1p. (4.5)

If m ≥ d2 − 1 the equation system is overcomplete. In this case, we search for the

least square solution,

s = arg min
s′
||Bs′ − p||2. (4.6)

This minimization can be easily solved

∂

∂si
||Bs− p||2 =

∂

∂si

m∑
j=1

[
d2∑
k=1

Bjksk − pj

]2

= 2
m∑
j=1

[
d2∑
k=1

Bjksk − pj

]
Bji. (4.7)

m∑
j=1

Bji

d2∑
k=1

Bjksk =
m∑
j=1

Bjipj (4.8)

BTBs =BTp (4.9)
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Finally, the least square solution is

s =
(
BTB

)−1
BTp, (4.10)

where B+ =
(
BTB

)−1
BT is called the pseudoinverse of B. Then, by estimating p

experimentally, it is possible to reconstruct the density matrix ρ. In the next sections

we present some common tomography schemes that use the linear inversion.

4.2.1 Standard Qudit Tomography

Standard Tomography of a qudit consists in using generalized Gell-Mann1 ma-

trices [9, 56] to reconstruct the state (4.2). This are given by

σxij = |i〉〈j|+ |j〉〈i| , (4.11)

σyij =− i
(
|i〉〈j| − |j〉〈i|

)
, (4.12)

σzk =

√
2

k(k + 1)

(
k∑
j=1

|j〉〈j| − k |k + 1〉〈k + 1|

)
, (4.13)

with 1 ≤ i < j ≤ d | and 1 ≤ k ≤ d − 1. In total there are d2 − 1 matrices. All of

them are hermitian and traceless. We can label these matrices employing a single

letter by

σ(j−1)2+2(i−1) = σxij, (4.14)

σ(j−1)2+2i−1 = σyij, (4.15)

σj2−1 = σzj−1. (4.16)

These matrices satisfy the following products (A),

Tr(σiσj) = 2δij. (4.17)

The identity operator together with the matrices {σi}i=1,...,d2−1 form a basis to d-

dimensional Hilbert space. Then, we can write any density matrix as

ρ = s0I +
d2−1∑
i=1

siσi. (4.18)

1Named after Murray Gell-Mann, American physicist (1929-).
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From the normalization,

Tr(ρ) = s0 Tr(I) +
d2−1∑
i=1

si Tr(σi) = s0d. (4.19)

Then s0 = 1/d. Performing d2 − 1 measurements on the observables {σi}i=1,...,d2−1

we can determinate the parameters {si}i=1,...,d2−1,

E(σi) = Tr(σiρ) =
1

d
Tr

(
σi +

d2−1∑
j=1

sjσiσj

)
=

d2−1∑
j=1

sj Tr(σiσj). (4.20)

Experimentally there are d(d2 − 1) di�erent outcomes of the eigenvectors of these

matrices. The matrices (4.11) and (4.12) have non-null eigenvalues {1,−1} with

eigenvectors

σxij =⇒


+1,

∣∣+x
ij

〉
=

1√
2

(
|i〉+ |j〉

)
,

−1,
∣∣−xij〉 =

1√
2

(
|i〉 − |j〉

)
.

(4.21)

σyij =⇒


+1,

∣∣+y
ij

〉
=

1√
2

(
|i〉+ i |j〉

)
,

−1,
∣∣−yij〉 =

1√
2

(
|i〉 − i |j〉

)
.

(4.22)

respectively. The matrices (4.13) are diagonal and its eigenvectors are the canonical

basis {|k〉}k=1,...,d with eigenvalues

σzk =⇒



√
2

k(k + 1)
, for |1〉 , ..., |k〉 .

−k

√
2

k(k + 1)
, for |k + 1〉 .

0, for |k + 2〉 , ..., |d〉 .

(4.23)

The parameters can be obtained inverting Bij = Tr(σiσj) (4.5). From (4.17), we

have Bij = 2δij and B−1
ij = (1/2)δij. Then,

si =
d2−1∑
j=1

B−1
ij pj =

1

2
E(σi). (4.24)
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Thus, substituting in (4.18) and de�ning Si = E(σi), we get

ρ =
1

d
I +

1

2

d2−1∑
i=1

Siσi (4.25)

=
1

d
I +

1

2

∑
1≤i<j≤d

Sxijσ
x
ij +

1

2

∑
1≤i<j≤d

Syijσ
y
ij +

1

2

d−1∑
k=1

Szkσ
z
k. (4.26)

Therefore, we can do the tomography of an unknown state by obtaining the coe�-

cients {Si}i=1,...,d2−1 by d2 − 1 independent experiments.

4.2.2 Local Multiqudit Tomography

Let us consider a composite system of m qudits [9, 30, 56]. The Hilbert space

H of this system has dimension dim(H) = dm, because it is a tensor product space

H = H1 ⊗ ...⊗Hm, where dim(Hi) = d for i = 1, ...,m. The measurements that we

choose to perform on this system are only local measurements M = M1 ⊗ ...⊗Mm,

because it is di�cult to perform entangled measurements experimentally. Then,

since some observables have entangled eigenvectors, we can not perform Standard

Qudit Tomography to estimate the density matrix of this system. However, we can

represent the density matrix in terms of the local observables {σ0, σi}i=1,...,d2−1, with

σ0 = I,

ρ =
d2−1∑
i1=0

· · ·
d2−1∑
im=0

si1···imσi1 ⊗ · · · ⊗ σim . (4.27)

Performing local measurements {σj1 ⊗ · · · ⊗ σjm}j1,··· ,jm=1,...,d2−1 on the system,

E
(
σj1 ⊗ · · · ⊗ σjm

)
= Tr

(
ρσj1 ⊗ · · · ⊗ σjm

)
(4.28)

=
d2−1∑
i1=0

· · ·
d2−1∑
im=0

si1···im Tr
(
σi1σj1 ⊗ · · · ⊗ σimσjm

)
. (4.29)

Using Tr(σiσj) = ciδij, where c0 = d and cj = 2, with j = 1, 2, ..., d,

E
(
σj1 ⊗ · · · ⊗ σjm

)
=

d2−1∑
i1=1

· · ·
d2−1∑
im=1

ci1 · · · cimδi1j1 · · · δimjmsi1···im = cj1 · · · cjmsj1···jm .

(4.30)
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It is a linear system (4.4), where its solution is

sj1···jm =
1

cj1 · · · cjm
E
(
σj1 ⊗ · · · ⊗ σjm

)
. (4.31)

Because Tr(ρ) = 1 we have S01···0m = 1/dm. Thus, we can express a multiqubit state

with local measurements as

ρ =
d2−1∑
i1=0

· · ·
d2−1∑
im=0

1

ci1 · · · cim
Si1···imσi1 ⊗ · · · ⊗ σim . (4.32)

where Si1···im = E
(
σj1 ⊗ · · · ⊗ σjm

)
. In particular for two qudits, the density matrix

is

ρ =
1

d2
I⊗ I +

1

2d

d2−1∑
i=1

(
S0iI⊗ σi + Si0σi ⊗ I

)
+

1

22

d2−1∑
i=1

d2−1∑
j=1

Sijσi ⊗ σj. (4.33)

Therefore, measuring on the local observables {σj1⊗· · ·⊗σjm}j1,··· ,jm=1,...,d2−1 we can

perform the quantum tomography of an unknown state locally.

4.2.3 Mutually Unbiased Bases Tomography

Let us consider a Hilbert space with dimension d andD orthonormal bases {|aα〉},
where a = 1, ..., D labels each basis and α = 1, ..., d labels each element of a given

basis. We call those bases a set of mutually unbiased bases (MUBs) if and only if

they satisfy the condition [53]

| 〈aα|bβ〉 |2 =
1

d
(1− δab) + δabδαβ. (4.34)

From this equation for di�erent basis a 6= b, we obtain | 〈aα|bβ〉 | = 1/d. For the

case where the dimension d is a integer power of a prime number, the system has

D = d+1 MUBs [53,57,58]. Otherwise, it is not known how many MUBs the system

allows.

We can use MUBs to perform the tomography of a state ρ on a prime power

dimensional space. We denote the projector onto the state |aα〉 as Πaα = |aα〉〈aα|
and their respective probabilities paα = Tr(ρΠaα). From orthogonality,

Tr (ΠaαΠbβ) =
1

d
(1− δab) + δabδαβ. (4.35)
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d+1∑
a=1

d−1∑
α=1

Πaα = (d+ 1)I. (4.36)

Thus, the operators Eaα = (d + 1)−1Πaα form a POVM. Since the MUBs elements

are linearly independent, the identity operator together with d2− 1 operators {Πaα}
with a = 1, ..., d + 1 and α = 1, ..., d − 1 form a basis in the d-dimensional Hilbert

space. Then, any density operator can be resolved through these bases,

ρ = cII +
d+1∑
a=1

d−1∑
α=1

caαΠaα, (4.37)

where cI and caα are real parameters. Using the trace condition Tr(ρ) = 1,

Tr(ρ) = Tr

(
cII +

d+1∑
a=1

d−1∑
α=1

caαΠaα

)
= cId+

d+1∑
a=1

d−1∑
α=1

caα, (4.38)

cI =
1

d

(
1−

d+1∑
a=1

d−1∑
α=1

caα

)
. (4.39)

Thus, it is possible to write the density matrix as

ρ =
1

d
I +

d+1∑
a=1

d−1∑
α=1

caα

(
Πaα −

1

d
I
)
. (4.40)

Performing measurements in the Πaα operators,

paα = Tr(Πaαρ) =
1

d
+

d+1∑
b=1

d−1∑
β=1

cbβ Tr

[
Πaα

(
Πbβ −

1

d
I
)]

. (4.41)

It is a linear system (4.4), then we can obtain the parameters cbβ inverting

Baα,bβ = Tr

[
Πaα

(
Πbβ −

1

d
I
)]

(4.42)

= Tr (ΠaαΠbβ)− 1

d
Tr(Πaα) (4.43)

=
1

d
(1− δab) + δabδαβ −

1

d
(4.44)

=δab

(
δαβ −

1

d

)
. (4.45)
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This is a block matrix with blocks (Bblock)αβ = (δαβ − 1/d),

B =


Bblock 0 . . . 0

0 Bblock · · · 0
...

... . . . ...
0 0 · · · Bblock


d+1×d+1

, (4.46)

Bblock =


1− 1

d
−1
d

. . . −1
d

−1
d

1− 1
d
· · · −1

d
...

... . . . ...
−1
d

−1
d
· · · 1− 1

d


d−1×d−1

. (4.47)

It can be easily checked than its inverse matrix is B−1
bβ,aα = δba (δβα + 1). This is also

a block matrix,

B−1 =


B−1
block 0 . . . 0
0 B−1

block · · · 0
...

... . . . ...
0 0 · · · B−1

block


d−1×d−1

, (4.48)

B−1
block =


2 1 . . . 1
1 2 · · · 1
...

... . . . ...
1 1 · · · 2


d+1×d+1

. (4.49)

(BB−1)aα,cγ =
d+1∑
b=1

d−1∑
β=1

Baα,bβB
−1
bβ,cγ (4.50)

=
d+1∑
b=1

d−1∑
β=1

δab

(
δαβ −

1

d

)
δbc (δβγ + 1) (4.51)

=
d+1∑
β=1

δabδbc

d−1∑
β=1

(
δαβ −

1

d

)
(δβγ + 1) (4.52)

=δab

(
δαγ −

1

d
+ 1− d− 1

d

)
(4.53)

=δacδαγ (4.54)

=Iaα,cγ. (4.55)

Then, the coe�cients are

cbβ =
d+1∑
a=1

d−1∑
α=1

B−1
bβ,aα

(
paα −

1

d

)
(4.56)
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=
d+1∑
a=1

d−1∑
α=1

δba (δβα + 1)

(
paα −

1

d

)
(4.57)

=
d+1∑
a=1

d−1∑
α=1

δba

(
δβαpaα −

1

d
δβα + paα −

1

d

)
(4.58)

=pbβ −
1

d
+

d−1∑
α=1

pbα −
d− 1

d
(4.59)

=pbβ − pbd. (4.60)

Substituting in (4.40), we have

ρ =
1

d
I +

d+1∑
a=1

d−1∑
α=1

(paα − pad)
(

Πaα −
1

d
I
)

(4.61)

=
1

d(d+ 1)

d+1∑
a=1

d∑
α=1

paαI +
d+1∑
a=1

d−1∑
α=1

(paα − pad)
(

Πaα −
1

d
I
)

(4.62)

=
1

d(d+ 1)

d+1∑
a=1

padI +
d∑
a=1

d−1∑
α=1

paα

(
Πaα −

1

d
I +

1

d(d+ 1)
I
)

−
d+1∑
a=1

pad

d−1∑
α=1

(
Πaα −

1

d
I
)

(4.63)

=
d+1∑
a=1

d−1∑
α=1

paα

(
Πaα −

1

d+ 1
I
)

−
d+1∑
a=1

pad

(
I− Πad −

(d− 1)

d
I− 1

d(d+ 1)
I
)

(4.64)

=
d+1∑
a=1

d−1∑
α=1

paα

(
Πaα −

1

d+ 1
I
)
−

d+1∑
a=1

pad

(
1

d+ 1
I− Πad

)
(4.65)

=
d+1∑
a=1

d∑
α=1

paα

(
Πaα −

1

d+ 1
I
)
. (4.66)

Therefore, we can perform the tomography of an unknown state by measuring D =

d+ 1 independent basis on a prime power dimensional Hilbert space.

4.2.4 SIC-POVM Tomography

For a Hilbert space of dimension d, a symmetrically informatically complete

POVM or SIC-POVM is a set of d2 operators Em = πm/d, where {πm}m=1,...,d2
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are projectors that satisfy

Tr(πiπj) =
1

d+ 1
, for all i 6= j. (4.67)

It is not known if SIC-POVMs exist in all dimensions, but it has been conjectured

so [52,59�61].

Let us consider a Hilbert space endowed with a SIC-POVM. We can use the

SIC-POVM to reconstruct the density matrix ρ because it contains d2 elements,

ρ =
d2∑
i=1

ciπi, (4.68)

where the {ci}i=1,...,d2 are real coe�cients. From the trace condition, we have

Tr(ρ) =
d2∑
i=1

ci Tr(πi) (4.69)

1 =
d2∑
i=1

ci. (4.70)

Now, if we measure the SIC-POVM {Ej} on the state ρ, we obtain

pj = Tr(ρEj) (4.71)

=
1

d

d2∑
i=1

ci Tr(πiπj) (4.72)

=
1

d

 d2∑
i=1
i 6=j

ci Tr(πiπj) + cj Tr
(
π2
i

) (4.73)

=
1

d

 d2∑
i=1
i 6=j

ci
d+ 1

+ cj

 (4.74)

=
1

d

[
1− cj
d+ 1

+ cj

]
(4.75)

=
1

1 + d

[
1

d
+ cj

]
. (4.76)

This is a linear system (4.4) that can be easily solved isolating the coe�cients

{cj}j=1,...,d2 ,

cj = (d+ 1)pj −
1

d
. (4.77)
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Thus, the expression (4.67) becomes

ρ =
d2∑
i=1

[
(d+ 1)pj −

1

d

]
πi, (4.78)

and the unknown density matrix can be estimated with an experiment in the SIC-

POVM {Ej}j=1,...,d2 .

4.3 Maximum Likelihood Estimation

The reconstruction of ρ via linear inversion has a problem; although it preserves

hermiticity and the trace of the states, these might not be positive semide�nite.

This is because we can only obtain estimates of the probabilities experimentally. Let

us consider an experiment where we have N identically prepared copies of a state

ρ and we perform measurements {Ei}i=1,...,m. In the experiment we estimate the

probabilities pi = Tr(ρEi) using the numbers of detections n̂i of Ei as

p̂i =
n̂i
N
. (4.79)

Since experimental measurements are random variables, they necessarily �uctuate

for every �nite sample size N [54]. This experiment is analog to the roll of one d

sided die. Then, the number of detection ni = Npi has multinomial noise,

Var(n̂i) = Npi(1− pi). (4.80)

Because of the above, when we employ linear tomography the estimated density

matrix ρ̂ has error ∆. This error a�ects the positivity of the density matrix,

〈ϕ|ρ̂|ϕ〉 = 〈ϕ|(ρ+ ∆)|ϕ〉 = 〈ϕ|ρ|ϕ〉+ 〈ϕ|∆|ϕ〉 . (4.81)

Thereby, when 〈ϕ|ρ|ϕ〉 is smaller than −〈ϕ|∆|ϕ〉, the mean value might be negative

〈ϕ|ρ̂|ϕ〉 < 0. Thus, the solution ρ̂ might not be a positive semide�nite operator. To

solve this problem we use the well-known concept of maximum likelihood estimation

(MLE) [56,62,63]. If we have observed a set of detections n̂ =
(
n̂1 · · · n̂m

)T from

m measurements {Ei}i=1,...,m, the likelihood function is

L(ρ|n̂) =
m∏
i=1

Tr(ρEi)
n̂i (4.82)
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For computational simplicity, we work with the log-likelihood function,

F(ρ|n̂) = log
(
L(ρ|n̂)

)
=
∑
i

n̂i log
(

Tr(ρEi)
)
. (4.83)

It can be approximated by a Gaussian distribution [63] for large sample size,

F(ρ|n̂) = −1

2

m∑
i=1

[ni(ρ)− n̂i]2

Nipi(1− pi)
= −1

2

m∑
i=1

Ni [Tr(Eiρ)− p̂i]2

Tr(Eiρ)[1− Tr(Eiρ)]
, (4.84)

where Ni is the sample on which Ei was measured. Then, the estimated density

matrix is

ρ̂(n̂) = arg max
ρ∈P
F(ρ|n̂). (4.85)

This optimization is usually done by a gradient descent algorithm by parameterizing

ρ by Cholesky Decomposition

ρ(t) =
T †(t)T (t)

Tr
(
T †(t)T (t)

) , (4.86)

with t =
(
t1 · · · td2

)T a vector of reals parameters and T (t) a lower triangular

matrix,

T (t) =


t1 0 · · · 0

td+1 + itd+2 t2 · · · 0
...

... . . . ...
td2−1 + itd2 td2−3 + itd2−2 · · · td

 . (4.87)

As our initial guess, we consider our tomographic density matrix by linear tomogra-

phy,

ρ(tguess) =
|ρ̂lin|

Tr |ρ̂lin|
=

√
ρ̂†linρ̂lin

Tr

(√
ρ̂†linρ̂lin

) . (4.88)

Thereby, the tomography by linear inversion together with post-processing by MLE

provide a complete solution for the problem of Quantum Tomography.
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Figure 4.1: Diagram of the quantum state tomography. Source: Made by the author.

The disadvantage of this method is that it quickly becomes intractable in high

dimensions. For example, a post-processing time of two weeks has been reported for

the reconstruction of a state in dimension d = 28 [14, 64].

4.4 Research in Quantum Tomography

Quantum tomography is a current topic of research. Due to the high number of

experimental results of the standard tomography d(d2 − 1), initially the research fo-

cused on the formulation of tomographic methods with the least possible number of

measurement outcomes [37,52,53,65]. Examples of this are MUBs tomography with

d(d+ 1) outcomes and tomography by SIC-POVM with d2 outcomes. Nowadays, it

is also investigated tomographic methods that increase the accuracy of the estimate

for a given ensemble size [32, 35, 66] and tomographic methods with a priori infor-

mation [66�68]. Besides, experimental realizations of all these quantum tomography

protocols are investigated [14, 69�72]. In particular, methods that involve POVMs

and collective measurements are especially di�cult to implement. From the compu-

tational point of view, it seeks to formulate new post-processing methods and faster

algorithms to reduce computing times [63,64,73].



Chapter 5

Adaptive Standard Quantum

Tomography

The quantum tomographic protocols described in the previous chapter are based

on a �xed set of measurements. These methods have di�erent accuracy depending

on the state. This unwanted feature can be overcome by performing a sequence of

tomographic reconstructions, where we use the information about the state obtained

in previous measurements to then perform a better tomography in the next round.

This is called adaptive quantum tomography [34, 36�39]. The simplest protocol con-

sists in performing a two-stage standard tomography [32,33,35]. In the �rst stage, a

low accuracy estimate is obtained. The basis of eigenvectors of this estimate is then

used to adapt the measurement base of the Pauli matrices for a second, higher accu-

racy tomography. Other more elaborated methods are the self-learning tomographic

methods [36�39], which optimizes a utility function between each step. These meth-

ods are characterized by a high computational expense.

In this chapter, brie�y review two-stage adaptive quantum tomography for a

single qubit. Afterward, we generalize the two-stage adaptive standard tomography

to the case of a single qudit, that is, higher dimensional quantum systems. Finally, we

study the accuracy provided by adaptive quantum tomography in higher dimensions

and compare it with the relevant bounds.

56
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5.1 Motivation: Qubit Adaptive Tomography

In this section we describe the adaptive tomography of a qubit in the state ρ

[32, 33]. The standard tomography of a qubit consists in measuring the observables

{σx, σy, σz}, since we have that

ρ =
1

2

(
I + Sxσx + Syσy + Szσz

)
. (5.1)

Each observable has two outcomes {−,+}. Let p̂ji the estimate of the probability of

outcome j = ± when we measure observable σi with i = x, y, z. The experimentally

obtained probabilities have, in the case of a perfect detection procedure, multinomial

noise (4.79,4.80)

p̂ji =
nji
Ni

=
3nji
N
, Cov

(
p̂ji , p̂

j′

i

)
=

1

Ni

pji (δj,j′ − p
j′

i ) =
3

N
pji (δj,j′ − p

j′

i ), (5.2)

where N is the total number of detections and Nj is the fraction of N employed in

the measurement of the observable σj. The estimate Ŝi of Si = E(σi) = Tr(ρσi) is

given by

Ŝi = p̂+
i − p̂−i . (5.3)

Then, the variance of Ŝi is (2.122) given by

Var
(
Ŝi

)
=Var

(
p̂+
i

)
− Var

(
p̂−i

)
+ 2Cov

(
p̂+
i , p̂

−
i

)
(5.4)

=
3

N

[
p+
i (1− p+

i ) + p−i (1− p−i ) + 2p+
i p
−
i

]
(5.5)

=
3

N

[
1− p2

+ − p2
− + 2p+p−

]
(5.6)

=
3

N

[
1− (p+

i − p−i )2
]

(5.7)

=
3

N

[
1− S2

i

]
. (5.8)

Clearly, the variance depends on the state ρ.

On the other hand, the �delity between states of a single qubit can be calculated

as (3.71)

F (ρ, σ) = Tr(ρσ) +
√

1− Tr(ρ2)
√

1− Tr(σ2). (5.9)
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Let us suppose that σ = ρ+ ∆ is an estimate of ρ with error ∆, which is hermitian

and traceless.

∆ = σ − ρ =
1

2

3∑
i=1

(Ŝi − Si)σi. (5.10)

In general, the error matrix scale as the uncertainty (2.113),

||∆|| =
√

Tr(∆2) (5.11)

= Tr

([
1

2

3∑
i=1

(Ŝi − Si)σi

][
1

2

3∑
j=1

(Ŝj − Sj)σj

])1/2

(5.12)

=

[
1

4

3∑
i,j=1

(Ŝi − Si)(Ŝj − Sj) Tr (σiσj)

]1/2

(5.13)

=

[
1

2

3∑
i=1

(Ŝi − Sj)2

]1/2

(5.14)

∼O
(

1/
√
N
)
. (5.15)

Then

F (ρ, ρ+ ∆) = Tr(ρ[ρ+ ∆]) +
√

1− Tr(ρ2)
√

1− Tr([ρ+ ∆]2) (5.16)

= Tr
(
ρ2
)

+ Tr(ρ∆) +
√

1− Tr(ρ2)
√

1− Tr(ρ2 + ρ∆ + ∆ρ+ ∆2).
(5.17)

If ρ has a high purity, that is, 1−Tr(ρ2) ≈ 0, the the �delity approximately becomes

F (ρ, ρ+ ∆) = 1 + Tr(ρ∆) +O
(
||∆||2

)
. (5.18)

Otherwise,

F (ρ, ρ+ ∆) = Tr
(
ρ2
)

+ Tr(ρ∆) +
(

1− Tr
(
ρ2
))√

1− Tr(2ρ∆ + ∆2)

1− Tr(ρ2)
(5.19)

= Tr
(
ρ2
)

+ Tr(ρ∆) +
(

1− Tr
(
ρ2
))(

1− Tr(2ρ∆ + ∆2)

2[1− Tr(ρ2)]

)
+O

(
||∆||2

)
(5.20)

= Tr
(
ρ2
)

+ Tr(ρ∆) + 1− Tr
(
ρ2
)
− Tr(ρ∆)− Tr(∆2)

2
+O

(
||∆||2

)
(5.21)
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=1− Tr(∆2)

2
+O

(
||∆||2

)
. (5.22)

Therefore, the �delity for high purity states scale as ||∆|| ∼ O
(

1/
√
N
)
and for

mixed states scale as ||∆||2 ∼ O(1/N). This occurs because the �delity is sensitive

to the zero-eigenvalue. To minimize the in�delity, we must accurately estimate this

eigenvalue,

λ± =
1

2

(
1±

√
S2
x + S2

y + S2
z

)
. (5.23)

On the basis of eigenvectors of ρ the eigenvalues only depend on
∣∣∣S(diag)

z

∣∣∣,
λ± =

1

2

(
1±

∣∣S(diag)
z

∣∣). (5.24)

If the state has hight purity
∣∣∣S(diag)

z

∣∣∣ ≈ 1, the uncertainty of S(diag)
z is

Var
(
Ŝ(diag)
z

)
≈ 3

N

[
1−

∣∣S(diag)
z

∣∣2] ≈ 0. (5.25)

Thereby, the uncertainty of S(diag)
z and the eigenvalues vanish in this basis. That is,

the in�delity is minimized measuring the observables on the basis of eigenvectors of

ρ.

This tomography is not feasible since it requires knowing the base of eigenstates of

an unknown state. However, we can perform standard tomography on a sample of size

N0 < N to generate a �rst estimate ρ̂0 of ρ. Thereafter, we perform a second standard

tomography on the remaining sample of size N − N0, writing the observables σi in

the basis of eigenvector of ρ̂0. This new tomographic scheme provides an in�delity

that scale as ||∆||2 ∼ O(1/N) for all states, at the expense of increasing the total

number of measurement outcomes. The choice of the fraction of the sample N0 is

not trivial. However, it had been suggested that N0 = N2/3 would be su�cient [28],

but numerical simulations have shown that the choice N0 = N/2 provides the best

results [32, 33].

This adaptive quantum tomographic scheme can be easily generalized to minimize

the weighted mean square error Tr(WC) of the parameters {Sx, Sy, Sz} [35]. This

is equivalent to the optimization problem with J the Fisher information matrix of
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(5.1). The solution to his problem is (3.118), which attain the upper bound of Gill-

Massar inequality. Supposing W diagonal and rotating the observables to the basis

of eigenvectors of ρ,

W =

wx 0 0
0 wy 0
0 0 wz

, J−1 =

1 0 0
0 1 0
0 0 1− S2

. (5.26)

The classical Fisher information matrix becomes

I =
N

√
wx +

√
wy +

√
wz(1− S2)

√wx 0 0
0

√
wy 0

0 0
√

wz

1−S2

, (5.27)

and

IJ−1 =
N

√
wx +

√
wy +

√
wz(1− S2)

√wx 0 0
0

√
wy 0

0 0
√
wz(1− S2)

. (5.28)

Clearly, the maximum of the Gill-Massar inequality is reached Tr(IJ−1) = N (3.116).

The optimal measurement protocol has weighted mean square error

Tr(WC) =
1

N

[√
wx +

√
wy +

√
wz(1− S2)

]2

, (5.29)

and it is attained measuring the observables with probabilities

px =

√
wx

√
wx +

√
wy +

√
wz(1− S2)

, (5.30)

py =

√
wy

√
wx +

√
wy +

√
wz(1− S2)

, (5.31)

pz =

√
wz(1− S2)

√
wx +

√
wy +

√
wz(1− S2)

. (5.32)

Therefore, the second tomography must be performed with di�erent samples per

observable,

Ni = Npi, i = x, y, z. (5.33)

In particular, in the case W = I we have that

Tr(C) =
1

N

(
2 +
√

1− S2
)2
, (5.34)
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px = py =
1

2 +
√

1− S2
, pz =

√
1− S2

2 +
√

1− S2
. (5.35)

If W = J , we obtain the adaptive quantum tomography scheme for optimizing the

in�delity,

Tr(JC) =
9

N
, (5.36)

and thus

px = py = pz =
1

3
. (5.37)

Figures (5.1) and (5.3) compare the mean in�delity over 103 randomly chosen

qubits with respect to the resource N (E). The mean in�delities had been obtained

by standard tomography, diagonal tomography, adaptive tomography withN0 = N/2

and N0 = N2/3, and weighted adaptive tomography W = I with N0 = N/2. The

dot-dashed lines are the best �t Inf(N,α, β) = β/Nα by least squares. Tables (5.1)

and (5.3) show the �t coe�cients.

From the simulations, it can be seen that with the same resource, adaptive tomog-

raphy and weighted adaptive tomography delivers better in�delities than standard

tomography. Moreover, adaptive tomography and weighted adaptive tomography

scale better with the sample size N than standard quantum tomography because

they have higher �t coe�cient α. Besides, it can be seen that the initial sample that

delivers the best in�delities for pure states is N0 = N/2. On the other hand, the ini-

tial sample that delivers better in�delities for mixed states is N0 = N2/3. Weighted

adaptive tomography delivers in�delities close to adaptive tomography except for

quasi-pure states, despite the Weighted adaptive tomography minimizes another er-

ror function.
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Figure 5.1: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 1000 2-dimensional pure states.
Source: Made by the author.

α β
Gill-Massar 1 2.25
Cramer-Rao 1 0.75
Standard 0.522668908263 0.274554132708
Diagonal 1.00730675152 1.02387919204

Adaptive N/2 0.988535035084 2.77264762811
Adaptive N2/3 0.845224681067 1.23603792696
WAdaptive N/2 0.977353943227 3.10776158269

Table 5.1: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 2-dimensional
pure states. Source: Made by the author.
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Figure 5.2: Comparison of mean in�delity obtained from the simulation of the stan-
dard tomography and adaptive tomography of 1000 2-dimensional pure states with
noise. Source: Made by the author.

α β

Gill-Massar 1 2.25
Cramer-Rao 1 0.75
Standard 0.546279818001 0.25649091079
Diagonal 0.916058230105 0.90762871724

Adaptive N/2 0.931322971963 2.22114366554
Adaptive N2/3 0.966225512222 2.52922075262
WAdaptive N/2 0.670216628787 0.487350341131

Table 5.2: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 2-dimensional
pure states with noise. Source: Made by the author.
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Figure 5.3: Comparison of mean in�delity obtained from the simulation of the stan-
dard tomography and adaptive tomography of 1000 2-dimensional full rank states.
Source: Made by the author.

α β

Gill-Massar 1 2.25
Cramer-Rao 1 0.75
Standard 0.939440415495 2.24594502968
Diagonal 1.01955462218 2.82365939907

Adaptive N/2 1.02533901125 6.04325441363
Adaptive N2/3 1.05096054007 4.2472844212
WAdaptive N/2 1.01263809377 6.46776209741

Table 5.3: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 2-dimensional
states with rank 2. Source: Made by the author.
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5.2 Foundations

The formulation of the qubit adaptive tomography require the use of quantities

such as variance, �delity and the quantum Fisher information matrix. In this sec-

tion, we generalized these concepts to the case of a single qudit. Thereafter, these

generalizations will be employed to extend adaptive tomography to the case of higher

dimensional quantum systems.

5.2.1 Variance of Standard Tomography

Let us consider the standard tomography (4.25) of an unknown qudit. If we aim at

the estimation of ρ with N preparations of the state, we employ N/(d2− 1) di�erent

samples to obtain each parameter Si = E(σi). This is equivalent to measuring

each observable with probability p(σj) = 1/(d2 − 1), with j = 1, ..., d2 − 1. The

variance of measuring N times the parameters can be calculated using the fact that

the conditional probabilities {p(i|σk)}i=1,...,d have, for a perfect detection process,

multinomial noise, that is,

Cov
(
p̂(i|σk), p̂(j|σk)

)
=
d2 − 1

N
p(i|σk)

[
δij − p(j|σk)

]
. (5.38)

Then, for Sxij and S
y
ij,

Var(N)
(
Ŝxyij
)

=Var
(
p̂(+|σxyij )

)
+ Var

(
p̂(−|σxyij )

)
+ 2Cov

(
p̂(+|σxyij ), p̂(−|σxyij )

)
(5.39)

=
d2 − 1

N

[
p(+|σxyij )

[
1− p(+|σxyij )

]
+ p(−|σxyij )

[
1− p(−|σxyij )

]
+ 2p(+|σxyij )p(−|σxyij )

]
(5.40)

=
d2 − 1

N

[
p(+|σxyij )− p(+|σxyij )2 + p(−|σxyij )− p(−|σxyij )2

+ 2p(+|σxyij )p(−|σxyij )
]

(5.41)

=
d2 − 1

N

[
p(+|σxyij ) + p(−|σxyij )−

[
p(+|σxyij )− p(−|σxyij )

]2] (5.42)

=
d2 − 1

N

[
p(+|σxyij ) + p(−|σxyij )− (Sxyij )2

]
(5.43)

=
d2 − 1

N

[
pi + pj − (Sxyij )2

]
. (5.44)
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The parameters Szk are a linear combination of {pl}l=1,...,d,

Szk =
∑
l

Γklpl Γkl =

√
2

k(k + 1)

[
hk≥l − kδk+1,l

]
, (5.45)

where hk≥l is the step function de�ned by

hk≥l =

{
1, k ≥ l.

0, k < l.
(5.46)

Then, we can calculate their variances as

Var(N)
(
Ŝzk
)

=
d∑

m,n=1

ΓkmΓknCov(p̂n, p̂m) (5.47)

=
d∑

n,m=1

2

k(k + 1)

(
hk≥m − kδk+1,m

)(
hk≥n − kδk+1,n

)
Cov(p̂n, p̂m) (5.48)

=
2

k(k + 1)

d∑
n,m=1

Cov(p̂n, p̂m)
(
hk≥nhk≥m − kδk+1,nhk≥m

− khk≥nδk+1,m + k2δk+1,nδk+1,m

)
(5.49)

=
2

k(k + 1)

[
k∑

n,m=1

Cov(p̂n, p̂m)− k
k∑

m=1

Cov(p̂k+1, p̂m)

− k
k∑

n=1

Cov(p̂n, p̂k+1) + k2Cov(p̂k+1, p̂k+1)

]
(5.50)

=
2

k(k + 1)

[
k∑

n,m=1

Cov(p̂n, p̂m)− 2k
k∑

m=1

Cov(p̂k+1, p̂m)

+ k2Var(p̂k+1)

]
(5.51)

=
d2 − 1

N

2

k(k + 1)

[
k∑

n=1

pn −
k∑

n,m=1

pnpm − 2k

(
−pk+1

k∑
m=1

pm

)

+ k2
(
pk+1 − (pk+1)2

)]
(5.52)

=
d2 − 1

N

2

k(k + 1)

 k∑
n=1

pn + k2pk+1 −

(
k∑

n=1

pn − kpk+1

)2
 (5.53)
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=
d2 − 1

N

(
2

k(k + 1)

[
k∑

n=1

pn + k2pk+1

]
−
(
Szk
)2

)
. (5.54)

In standard tomography, each coe�cient is estimated independently. Therefore, the

covariance matrix is diagonal with elements

Var(N)
(
Ŝxij
)

=
d2 − 1

N

[
pi + pj −

(
Sxij
)2
]
, (5.55)

Var(N)
(
Ŝyij
)

=
d2 − 1

N

[
pi + pj −

(
Syij
)2
]
, (5.56)

Var(N)
(
Ŝzk
)

=
d2 − 1

N

[
2

k(k + 1)

(
k∑

n=1

pn + k2pk+1

)
−
(
Szk
)2

]
. (5.57)

We see that the uncertainty in the estimation of the coe�cients {Si}i=1,...,d2−1, de-

scribed by the elements of the covariance matrix, also depends on these parameters,

that is, the uncertainty in the estimation of the parameters de�ning ρ depends on ρ

itself.

Since these parameters depend on the basis on which ρ is expressed, the uncer-

tainty of the tomographic reconstruction depends on the basis on which it is per-

formed [32,33]. In particular, if the state ρ has rank r, its parameters {Si}i=1,...,d2−1

on its basis of eigenvectors are

Sxij =0, (5.58)

Syij =0, (5.59)

Szk =



√
2

k(k + 1)

[
k∑
l=1

λl − kλk+1

]
, k < r,√

2

k(k + 1)
, k ≥ r,

(5.60)

(5.61)

where {λk}k=1,...,r are the eigenvalues of ρ. The variance of Sxij and S
y
ij becomes

Var(N)(Ŝxij) = Var(N)(Ŝyij) =
d2 − 1

N
[λi + λj] . (5.62)

For k < r, the variance of Szk is

Var(N)(Ŝzk) =
d2 − 1

N

[
2

k(k + 1)

(
k∑

n=1

λn + k2λk+1

)
−
(
Szk
)2

]
, (5.63)
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and for k ≥ r the variance becomes

Var(N)(Ŝzk) =
d2 − 1

N

[
2

k(k + 1)

(
k∑

n=1

λn + k2λk+1

)
−
(
Szk
)2

]
(5.64)

=
1

N

[
2

k(k + 1)
− 2

k(k + 1)

]
(5.65)

=0. (5.66)

Then, the variance in the estimates of {Szk}k=r,...,d−1 vanishes.

5.2.2 Approximation of the Fidelity

In this section, we calculate the second order approximation of the �delity by

resorting to the Fréchet derivative. The �delity between two quantum states ρ and

σ is de�ned as

F (ρ, σ) = Tr

(√√
ρσ
√
ρ

)2

. (5.67)

The main advantage of resorting to the Fréchet derivative is that it does not require

a particular parametrization of the space of density matrices, so this calculation is

valid for any class of tomography.

Let us consider that the density matrix ρ has rank r ≤ d and that the state σ is

an in�nitesimal perturbation of ρ, that is,

σ = ρ+ ∆, (5.68)

where ∆ is a hermitian and traceless matrix such that ||∆|| =
√

Tr(∆2)� 1. For a

tomographic process, ∆ is the error matrix. In the case of a standard tomography

we have

∆ =σ − ρ (5.69)

=
1

d
I +

1

2

d2−1∑
i=1

Ŝiσi −

(
1

d
I +

1

2

d2−1∑
i=1

Siσi

)
(5.70)

=
1

2

d2−1∑
i=1

(
Ŝi − Si

)
σi. (5.71)
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The norm of this matrix is similar to the uncertainty (2.113)

||∆|| =
√

Tr(∆2) (5.72)

= Tr

([
1

2

d2−1∑
i=1

(Ŝi − Si)σi

][
1

2

d2−1∑
j=1

(Ŝj − Sj)σj

])1/2

(5.73)

=

[
1

4

d2−1∑
i,j=1

(Ŝi − Si)(Ŝj − Sj) Tr (σiσj)

]1/2

(5.74)

=

[
1

2

d2−1∑
i=1

(Ŝi − Sj)2

]1/2

(5.75)

∼O
(

1/
√
N
)
. (5.76)

Without loss of generality, we can write ρ as a direct sum between the subspace with

rank r and a d− r null matrix Θd−r,

ρ = ρr ⊕Θd−r =

(
ρr Θr,d−r

Θd−r,r Θd−r

)
. (5.77)

Writing

∆ =

(
∆r ∆r,d−r

∆d−r,r ∆d−r

)
, (5.78)

where ∆d−r ∈ P(H) and Tr(∆r) = −Tr(∆d−r). Thus,

√
ρ∆
√
ρ =

( √
ρr Θr,d−r

Θd−r,r Θd−r

)(
∆r ∆r,d−r

∆d−r,r ∆d−r

)( √
ρr Θr,d−r

Θd−r,r Θd−r

)
(5.79)

=

(√
ρr∆r

√
ρr∆r,d−r

Θd−r,r Θd−r

)( √
ρr Θr,d−r

Θd−r,r Θd−r

)
(5.80)

=

(√
ρr∆r

√
ρr Θr,d−r

Θd−r,r Θd−r

)
(5.81)

=
√
ρr∆r

√
ρr ⊕Θd−r. (5.82)

Thereby, the �delity becomes

F (ρ, ρ+ ∆) = Tr

(√
ρ2 +

√
ρ∆
√
ρ

)2

(5.83)

= Tr

(√
ρ2
r ⊕Θd−r +

√
ρr∆r

√
ρr ⊕Θd−r

)2

(5.84)
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= Tr

(√
ρ2
r +
√
ρr∆r

√
ρr

)2

(5.85)

= Tr

(√√
ρr (ρr + ∆r)

√
ρr

)2

. (5.86)

Therefore, the �delity between ρ and ρ+ ∆ only depends on the range of ρ. Let us

note that ρr + ∆r is not a quantum state, but this will not in�uence our arguments.

De�ning f(A) :=
√
A, we can write the �delity as

F (ρ, ρ+ ∆) = Tr
[
f(ρ2

r +
√
ρr∆r

√
ρr)
]2
. (5.87)

Now, we can approximate F (ρ, ρ + ∆) by performing the Taylor expansion of f(A)

around B,

f(A+B) = f(A) +
∞∑
m=1

1

m!
DmF (A)([B]m), (5.88)

where Df(A)(B) is the Directional Fréchet Derivative (2.67). In our case A = ρ2
r

and B =
√
ρr∆r

√
ρr. It should be noted that this expansion does not depend on any

parameterization of density matrices. The �rst and second derivatives of f are (C)[
Df(A)(B)

]
ik

=
Bik√

ai +
√
ak
, (5.89)

[
D2f(A)(B)(C)

]
ik

=− 1
√
ai +

√
ak

r∑
j=1

(
Bij√

ai +
√
aj

Cjk√
aj +

√
ak

+
Cij√

ai +
√
aj

Bjk√
aj +

√
ak

)
. (5.90)

Thus, the approximation of the square root function up to second order is[√
A+B

]
ij

=
√
aiδij +

Bij√
ai +

√
aj

− 1
√
ai +

√
aj

r∑
k=1

(
Bik√

ai +
√
ak

B∗kj√
ak +

√
aj

)
+O

(
||B||3

)
. (5.91)

Taking the trace,

Tr
(√

A+B
)

=
r∑
i=1

[√
A+B

]
ii

(5.92)
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=
r∑
i=1

[
√
ai +

Bii

2
√
ai
− 1

2
√
ai

r∑
k=1

|Bik|2

(
√
ai +

√
ak)2

]
+O

(
||B||3

)
. (5.93)

From A = ρ2
r and B =

√
ρr∆r

√
ρr, we get

ai = λ2
i , Bij =

√
λiλj

〈
λri
∣∣∆r

∣∣λrj〉 , (5.94)

where {λi}i=1,...,r are eigenvalues of ρr with eigenvectors
{∣∣λrj〉}j=1,...,r

. The matrix

B can be rewritten in terms of the eigenvectors {|λj〉}j=1,...,d of ρ, where the �rst r

vectors correspond to the non-null subspace of ρ,

Bij =
√
λiλj 〈λi|∆|λj〉 , i, j = 1, ..., r. (5.95)

Then,

√
F (ρ, ρ+ ∆) =

r∑
i=1

[
λi +

λi 〈λi|∆|λi〉
2λi

− 1

2λi

r∑
k=1

λiλk
(λi + λk)2

| 〈λi|∆|λk〉 |2
]

+O
(
||∆||3

)
(5.96)

=
r∑
i=1

[
λi +

1

2
〈λi|∆r|λi〉 −

1

2

r∑
k=1

λk
(λi + λk)2

| 〈λi|∆|λk〉 |2
]

+O
(
||∆||3

)
(5.97)

=1 +
1

2

r∑
i=1

〈λi|∆|λi〉 −
1

2

r∑
i,k=1

λk
(λi + λk)2

| 〈λi|∆|λk〉 |2 +O
(
||∆||3

)
.

(5.98)

The �rst order term can be rewritten using Tr(∆) = 0,

r∑
i=1

〈λi|∆|λi〉 = Tr(∆)−
d∑

i=r+1

〈λi|∆|λi〉 = −
d∑

i=r+1

〈λi|∆|λi〉 . (5.99)

The second order term can be rewritten because ∆ is hermitian,
r∑

i,k=1

λk
(λi + λk)2

| 〈λi|∆|λk〉 |2 (5.100)

=
1

2

r∑
i,k=1

[
λk

(λi + λk)2
| 〈λi|∆|λk〉 |2 +

λk
(λi + λk)2

| 〈λi|∆|λk〉 |2
]

(5.101)

=
1

2

r∑
i,k=1

[
λk

(λi + λk)2
| 〈λi|∆|λk〉 |2 +

λi
(λk + λi)2

| 〈λk|∆†|λi〉 |2
]

(5.102)
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=
1

2

r∑
i,k=1

[
λk

(λi + λk)2
| 〈λi|∆|λk〉 |2 +

λi
(λk + λi)2

| 〈λi|∆|λk〉 |2
]

(5.103)

=
1

2

r∑
i,k=1

λk + λi
(λi + λk)2

| 〈λi|∆|λk〉 |2 (5.104)

=
1

2

r∑
i,k=1

| 〈λi|∆|λk〉 |2

λi + λk
. (5.105)

Thus, the �delity up to second order becomes

√
F (ρ, ρ+ ∆) = 1− 1

2

d∑
i=r+1

〈λi|∆|λi〉 −
1

4

r∑
i,k=1

| 〈λi|∆|λk〉 |2

λi + λk
+O

(
||∆||3

)
, (5.106)

and the in�delity between ρ and ρ+ ∆ is

Inf(ρ, ρ+ ∆) =1− F (ρ, ρ+ ∆) (5.107)

=1−

[
1− 1

2

d∑
i=r+1

〈λi|∆|λi〉 −
1

4

r∑
i,k=1

| 〈λi|∆|λk〉 |2

λi + λk
+O

(
||∆||3

)]2

(5.108)

=
d∑

i=r+1

〈λi|∆|λi〉+
1

2

r∑
i,k=1

| 〈λi|∆|λk〉 |2

λi + λk
+O

(
||∆||2

)
. (5.109)

For a low rank state, the linear term in the expansion of the in�delity dominates,

Inf(ρ, ρ+ ∆) =
d∑

i=r+1

〈λi|∆|λi〉+O
(
||∆||2

)
. (5.110)

Otherwise, for a full rank density matrix, the �rst order term vanishes because ρ

does not have a null subspace. In this case, the approximation becomes up to second

order [31]

Inf(ρ, ρ+ ∆) =
1

2

d∑
i,k=1

| 〈λi|∆|λk〉 |2

λi + λk
+O

(
||∆||3

)
. (5.111)

In summary, the in�delity is linear in ||∆|| for low rank states and quadratic in ||∆||
for full rank mixed states. This has as consequence that the tomography (5.76) of a

low-rank state scales as ||∆|| ∼ O(1/
√
N), while the tomography of a full-rank state

scales ||∆||2 ∼ O(1/N).
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5.2.3 Bounds of Quantum Tomography

We now calculate the quantum Fisher Information matrix of a single qudit

spanned by means of the Gell-Mann matrices (4.25), that is,

ρ =
1

d
I +

1

2

d2−1∑
i=1

Siσi. (5.112)

First, we must obtain the symmetric logarithmic derivatives (3.88)

∂ρ

∂Si
=

1

2

(
ρLi + Liρ

)
(5.113)

1

2
σi =

1

2

(
ρLi + Liρ

)
(5.114)

σi =ρLi + Liρ. (5.115)

Projecting in the basis of eigenvectors {|λi〉}i=1,...,d of ρ,

〈λj|σi|λk〉 = 〈λj|ρLi|λk〉+ 〈λj|Liρ|λk〉 (5.116)

〈λj|σi|λk〉 =
(
λj + λk

)
〈λj|Li|λk〉 . (5.117)

Supposing λi 6= 0 for all i = 1, ..., d,

〈λj|Li|λk〉 =
1

λj + λk
〈λj|σi|λk〉 . (5.118)

Then, the quantum Fisher information matrix (3.106) is

Jij =
1

2
Tr

(
ρ
[
LiLj + LjLi

])
(5.119)

=
1

2

d∑
k=1

〈λk|

(
ρ
[
LiLj + LjLi

])
|λk〉 (5.120)

=
1

2

d∑
k=1

λk 〈λk|
[
LiLj + LjLi

]
|λk〉 (5.121)

=
1

2

d∑
k,l=1

λk

[
〈λk|Li|λl〉 〈λl|Lj|λk〉+ 〈λk|Lj|λl〉 〈λl|Li|λk〉

]
(5.122)

=
1

2

d∑
k,l=1

λk
(λk + λl)2

[
〈λk|σi|λl〉 〈λl|σj|λk〉+ 〈λk|σj|λl〉 〈λl|σi|λk〉

]
(5.123)
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=
1

2

d∑
k,l=1

[
λk

(λk + λl)2
〈λk|σi|λl〉 〈λl|σj|λk〉+

λl
(λl + λk)2

〈λl|σj|λk〉 〈λk|σi|λl〉

]
(5.124)

=
1

2

d∑
k,l=1

λk + λl
(λk + λl)2

〈λk|σi|λl〉 〈λl|σj|λk〉 (5.125)

=
1

2

d∑
k,l=1

1

λk + λl
〈λk|σi|λl〉 〈λl|σj|λk〉 . (5.126)

Let us note that this is only true for full rank density matrices. Let us consider the

in�delity for full rank density matrices (5.109),

Inf(ρ, ρ+ ∆) =
1

2

d∑
i,k=1

| 〈λi|∆|λk〉 |2

λi + λk
+O

(
||∆||3

)
. (5.127)

For standard tomography, the error matrix is given by (5.71)

∆ =
1

2

d2−1∑
i=1

(
Ŝi − Si

)
σi. (5.128)

Then,

Inf(ρ, ρ+ ∆) =
1

2

d∑
i,k=1

〈λi|∆|λk〉 〈λk|∆|λi〉
λi + λk

(5.129)

=
1

8

d∑
i,k=1

d2−1∑
l,m=1

(
Ŝl − Sl

)(
Ŝm − Sm

) 〈λi|σl|λk〉 〈λk|σm|λi〉
λi + λk

(5.130)

=
1

4

d2−1∑
l,m=1

(
Ŝl − Sl

)(
Ŝm − Sm

)1

2

d∑
i,k=1

〈λi|σl|λk〉 〈λk|σm|λi〉
λi + λk

. (5.131)

Taking the expected value,

E
[
Inf(ρ, ρ+ ∆)

]
=

1

4

d2−1∑
l,m=1

E
[(
Ŝl − Sl

)(
Ŝm − Sm

)]1

2

d∑
i,k=1

〈λi|σl|λk〉 〈λk|σm|λi〉
λi + λk

(5.132)

=
1

4
Tr
(
CJ
)
. (5.133)
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where C is the covariance matrix. The last expression relates in�delity to the covari-

ance matrix, which allows us to �nd the quantum Cramer-Rao bound for in�delity.

Then employing C ≥ J−1/N , where N is size of sample, we get

E
[
Inf(ρ, ρ+ ∆)

]
≥ 1

4N
Tr
(
J−1J

)
=

1

4N
Tr(I) =

d2 − 1

4N
. (5.134)

The lower bound CR = (d2−1)/4N is the Cramer-Rao bound of the in�delity, which

describes the optimal measurement among all measurement strategies (separable or

collective). Therefore, with a sample N we can distinguish ρ from ρ̂ = ρ + ∆ with

an accuracy of O(1/N) for the in�delity.

Besides, replacing W = J in (3.118) we obtain

E
[
Inf(ρ, ρ+ ∆)

]
≥ 1

4N

1

d− 1

(
Tr

[√√
JJ−1

√
J

])2

(5.135)

=
1

4N

1

d− 1

(
Tr I
)2

(5.136)

=
1

4N

1

d− 1

(
d2 − 1

)2 (5.137)

=
1

4N

(
d2 − 1

)(
d+ 1

)
, (5.138)

where GM = (d2 − 1)(d + 1)/4N is the Gill-Massar lower bound of the in�delity,

which is the optimal bound for separable measurements. Clearly,

E
[
Inf(ρ, ρ+ ∆)

]
≥ GM > CR. (5.139)

5.3 Qudit Adaptive Tomography

As we saw, the accuracy of quantum tomography depends on the state itself and

the basis on which we perform the tomography. To minimize the in�delity

Inf(ρ, ρ+ ∆) =
d∑

i=r+1

〈λi|∆|λi〉+
1

2

r∑
i,k=1

| 〈λi|∆|λk〉 |2

λi + λk
+O

(
||∆||2

)
, (5.140)

we must accurately estimate the eigenvectors of small eigenvalues of ρ to cancel

the �rst term. We will prove that this can be achieved by performing a standard
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tomography on the basis of eigenvectors of ρ, that is, by measuring the following

observables

σxij = |λi〉〈λj|+ |λj〉〈λi| , (5.141)

σyij =− i
(
|λi〉〈λj| − |λj〉〈λi|

)
, (5.142)

σzk =

√
2

k(k + 1)

(
k∑
j=1

|λj〉〈λj| − k |λk+1〉〈λk+1|

)
. (5.143)

The �rst term of the in�delity only depends on diagonal Gell-Mann matrices,

d∑
i=r+1

〈λi|∆|λi〉 =
d2−1∑
j=1

d∑
i=r+1

(
Si − Ŝi

)
〈λi|σj|λi〉 (5.144)

=
d−1∑
j=1

d∑
i=r+1

(
Szi − Ŝzi

)
〈λi|σzj |λi〉 (5.145)

=
r−1∑
j=1

d∑
i=r+1

(
Szi − Ŝzi

)
〈λi|σzj |λi〉

+
d−1∑
j=r

d∑
i=r+1

(
Szi − Ŝzi

)
〈λi|σzj |λi〉 . (5.146)

The �rst term at the right hand side vanishes. The diagonal matrices entering in

this term are lineal combinations of projectors onto the eigenstates of ρ, that is the

set {|λi〉i=1,...,r},

〈λi|σzj |λi〉 =

√
2

j(j + 1)
〈λi|

(
j∑

k=1

|λk〉〈λk| − j |λj+1〉〈λj+1|

)
|λi〉 (5.147)

=

√
2

j(j + 1)

(
j∑

k=1

δik − jδi,j+1

)
(5.148)

=0. (5.149)

The second term is also canceled because this contains the di�erence Szi − Ŝzi , which
is of the order of magnitude of the standard deviation (2.113,5.76),

(
Szi − Ŝzi

)2 ∼


1

N

[
2

i(i+ 1)

(
i∑

n=1

λn + i2λi+1

)
− (Szi )2

]
, i < r.

0, i ≥ r.

(5.150)
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Thus, the �rst order term of in�delity is completely canceled by measuring in the

base of eigenvectors,

d∑
i=r+1

〈λi|∆|λi〉 ∼ 0. (5.151)

Therefore, this tomography improves the quality of the in�delity, reducing the dis-

tance between ρ and its estimation from O(||∆||) to O(||∆||2) for all states,

Inf(ρ, ρ+ ∆) =
1

2

r∑
i,k=1

| 〈λi|∆|λk〉 |2

λi + λk
+O

(
||∆||3

)
. (5.152)

Similarly to (5.133),

E
[
Inf(ρ, ρ+ ∆)

]
=

1

4

d2−1∑
l,m=1

E
[(
Sl − Ŝl

)(
Sm − Ŝm

)]1

2

r∑
i,k=1

〈λi|σl|λk〉 〈λk|σm|λi〉
λi + λk

.

(5.153)

De�ning

Jij =
1

2

r∑
k,l=1

1

λk + λl
〈λk|σi|λl〉 〈λl|σj|λk〉 , (5.154)

we can write the mean in�delity as

E
[
Inf(ρ, ρ+ ∆)

]
=

1

4
Tr
(
CJ

)
. (5.155)

where J is the contribution of the non-null range of ρ to the quantum Fisher infor-

mation matrix.

This tomography can not be done because the state ρ is unknown. Despite this,

we can perform the following algorithm:

1. We �rst obtain an estimate of the basis of eigenvectors of ρ. This can be gener-

ated by means of a preliminary estimate ρ̂0 obtained by standard tomography

using a fraction N0 of the sample. It is not necessary that this estimation be

with MLE, but rather the linear estimation (4.88) is enough, however the es-

timation with MLE should present better performance. In the worst case, the

accuracy of this estimate is O(1/
√
N0). Let

{
λ̂0
i

}
i=1,...,d

and
{
|λ̂0
i 〉
}
i=1,...,d

the



78

eigenvalues and eigenvectors of the estimate ρ̂0. We can write the estimated

eigenvalues as λ̂0
i = λi + δi, where {δi} are the errors, and the estimated eigen-

vectors as a rotation of {|λ〉i}i=1,...,d with the unitary matrix U = e−iΩ0 , where

Ω0 is hermitian and traceless,

|λ̂0
i 〉 = U |λi〉 . (5.156)

Then, the estimated density matrix up to �rst order is

ρ̂0 =
d∑
i=1

λ̂i

∣∣∣λ̂i〉〈λ̂i∣∣∣ (5.157)

=
d∑
i=1

λ̂iU
† |λi〉〈λi|U (5.158)

=
d∑
i=1

(λi + δi)
(
|λi〉〈λi|+ i

[
Ω0, |λi〉〈λi|

]
+O(||Ω0||2)

)
(5.159)

=ρ+
∑
i

(
δi |λi〉〈λi|+ iλi

[
Ω0, |λi〉〈λi|

])
+
∑
i

iδi
[
Ω0, |λi〉〈λi|

]
+O(||Ω0||2). (5.160)

Given that the error ∆0 = ρ− ρ̂0 in the estimated density matrix in the worst

case scales as O(1/
√
N0) (5.76), we have that δi ∼ O(1/

√
N) or ||Ω0|| ∼

O(1/
√
N0). Since only the eigenvectors will intervene in the protocol, we sup-

pose that

||Ω0|| ∼ O
(

1√
N0

)
. (5.161)

Thereby, using the Baker-Campbell-Hausdor� formula (2.61)∣∣∣〈λi∣∣∣λ̂0
j

〉∣∣∣2 =| 〈λi|U |λj〉|2 (5.162)

= 〈λj|U † |λi〉〈λi|U |λj〉 (5.163)

= 〈λj|
(
|λi〉〈λi|+

[
iΩ0, |λi〉〈λi|

]
+

1

2

[
iΩ0,

[
iΩ0, |λi〉〈λi|

]])
|λj〉

+O(||Ω0||3) (5.164)

=Ωij + i 〈λj|
[
Ω0, |λi〉〈λi|

]
|λj〉 −

1

2
〈λj|

[
Ω0,
[
Ω0, |λi〉〈λi|

]]
|λj〉
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+O(||Ω0||3) (5.165)

=Ωij −
1

2
〈λj|

[
Ω0,
[
Ω0, |λi〉〈λi|

]]
|λj〉+O(||Ω0||3) (5.166)

=Ωij

(
1− 〈λi|Ω2

0|λi〉
)

+ | 〈λj|Ω0|λi〉 |2 +O(||Ω0||3) (5.167)

=Ωij −O
(
||Ω0||2

)
. (5.168)

Analogously, the probability of projecting the unknown state ρ onto the eigen-

states of ρ0 is given by

p0
i =

〈
λ̂0
i

∣∣∣ρ∣∣∣λ̂0
i

〉
(5.169)

= 〈λi|U †ρU |λi〉 (5.170)

= 〈λi|
(
ρ+

[
iΩ0, ρ

]
+

1

2

[
iΩ0,

[
iΩ0, ρ

]])
|λi〉+O(||Ω0||3) (5.171)

=λi + i 〈λi|
[
Ω0, ρ

]
|λi〉 −

1

2
〈λi|
[
Ω0,
[
Ω0, ρ

]]
|λi〉+O(||Ω0||3) (5.172)

=λi −
1

2
〈λi|
[
Ω0,
[
Ω0, ρ

]]
|λi〉+O(||Ω0||3) (5.173)

=λi −O
(
||Ω0||2

)
. (5.174)

2. Thereafter, we perform a second standard tomography with the remaining

sample N −N0, writing the Gell-Mann operators on the basis of eigenvectors

of ρ̂0. The basis of eigenvectors must be ordered decreasingly according to

their respective eigenvalues. In this case, the linear term of the in�delity is not

canceled (5.146).

For the �rst sum of (5.146), we have

〈
λ̂0
i

∣∣∣σzj ∣∣∣λ̂0
i

〉
=

√
2

j(j + 1)

〈
λ̂i

∣∣∣( j∑
k=1

∣∣λ0
k

〉〈
λ0
k

∣∣− j |λj+1〉〈λj+1|

)∣∣∣λ̂i〉 (5.175)

=

√
2

j(j + 1)

(
j∑

k=1

∣∣∣〈λ̂0
i

∣∣∣λk〉∣∣∣2 − j∣∣∣〈λ̂0
i

∣∣∣λj+1

〉∣∣∣2) (5.176)

∼O
(
||Ω0||2

)
(5.177)

∼O
(

1

N0

)
. (5.178)
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For the second sum of (5.146), for k ≥ r, we have

(Szk)2 =
2

k(k + 1)

(
k∑
j=1

p0
j − kp0

k+1

)2

=
2

k(k + 1)
+O(||Ω0||2). (5.179)

Thereby

(Szk − Ŝzk)2 ∼ 1

N −N0

[
2

k(k + 1)

(
k∑

n=1

λn + k2λk+1

)
− (Szk)2

]
(5.180)

∼ 1

N −N0

O
(
||Ω0||2

)
(5.181)

∼O
(

1

(N −N0)N0

)
. (5.182)

Therefore, the worst accuracy of the second estimate is
d∑

i=r+1

〈λi|∆|λi〉 ∼O
(

1√
N −N0N0

)
+O

(
1√

(N −N0)N0

)
(5.183)

∼O

(
1√

(N −N0)N0

)
, (5.184)

which is similar to the scaling of the second order term in the Taylor series.

The choice of N0 plays a key role in the performance of the two-stage adaptive

quantum tomography. In case of qubit has been proposed to choose the pre-

liminary ensemble as a fraction or a power of the total sample size N , that is

N0 = N/a or N0 = N b with b ≥ 2/3. The �rst choice leads to an in�delity that

scales as O(
√
a(1− a)/N), while with the second choice the in�delity scales as

O(1/N (1+b)/2). For example, if we use N0 = N/2 and N0 = N2/3 as the initial

sample

N0 = N/2 =⇒
d∑

i=r+1

〈λi|∆|λi〉 ∼O
(

2

N

)
, (5.185)

N0 = N2/3 =⇒
d∑

i=r+1

〈λi|∆|λi〉 ∼O
(

1

N5/6

)
. (5.186)

Finally, we must obtain the estimate by MLE. This optimization can be done

with the measurements of both steps. However, for a large resource it is su�-

cient to use the measurements of the second step.
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Figure 5.4: Diagram of the two-stages adaptive standard tomography. Source: Made
by the author.

Moreover, we can de�ne an adaptive quantum tomography which reduces another

�gure of merit, as the mean squared error Tr(WC). Let J0 the quantum Fisher

information matrix of ρ0 on its basis of eigenvectors (D). Then, the classical Fisher

information matrix becomes,

I0 = (d− 1)
√
J0

√
J
−1/2
0 WJ

−1/2
0

Tr

(√
J
−1/2
0 WJ

−1/2
0

)√J0. (5.187)

Let suppose that I0 has eigenvalues {ai}i=1,..,d2−1 with eigenvectors {ri}i=1,..,d2−1.

Then, the Gill-Massar bound can be attain measuring the observables
{
rT
i σ
}
i=1,...,d2−1

with probabilities

pi =
1

d− 1
rT
i

[
I0J

−1
0

]
ri =

ai
d− 1

[
rT
i J
−1
0 ri

]
, (5.188)

where σ =
(
σ1 · · · σd2−1

)T. If [J0,W ] = 0, we obtain

I0 =(d− 1)

√
WJ0

Tr
(√

WJ−1
0

) . (5.189)

Let us suppose {bi}i=1,...,d2−1 and {wi}i=1,...,d2−1 are the eigenvalues of J0 and W ,

respectively. We get

pi =
rT
i

√
WJ−1

0 ri

Tr
[√

WJ−1
0

] =

√
wib
−1
i∑d2−1

i=1

√
wib
−1
i

. (5.190)



82

We can write these probabilities more explicitly considering that,

J0 =

Jx0 Θ Θ
Θ Jy0 Θ
Θ Θ Jz0

, W =

W x Θ Θ
Θ W y Θ
Θ Θ W z

, (5.191)

where (D)

[Jx0 ]ij,i′j′ =
1

λi + λj
δii′δjj′ , (5.192)

[Jy0 ]ij,i′j′ =
1

λi + λj
δii′δjj′ , (5.193)

[Jz0 ]k,k′ =
1

2
√
kk′(k + 1)(k′ + 1)

(
k∑
l=1

1

λl
− k

λk+1

hk′≥k+1 +
kk′

λk+1

δkk′

)
. (5.194)

Since Jx0 and Jy0 are diagonals, their elements are eigenvalues of J0,

bxij = byij =
1

λi + λj
. (5.195)

On the other hand, Jz0 is not diagonal and it cannot be explicitly diagonalized. Let us

suppose {rzk}k=1,...,d are the eigenvectors of Jz0 with eigenvalues {bzk}k=1,...,d−1. Then,

the optimal measurements are
{
σxij, σ

y
ij, r

zT
k σ

z
}
with probabilities

pxij =

√
wxij(λi + λj)∑

1≤i<j≤d
√
λi + λj

[√
wxij +

√
wyij

]
+
∑d−1

k=1 w
z
k[b

z
k]
−1
, (5.196)

pyij =

√
wyij(λi + λj)∑

1≤i<j≤d
√
λi + λj

[√
wxij +

√
wyij

]
+
∑d−1

k=1 w
z
k[b

z
k]
−1
, (5.197)

pzk =

√
wzij[b

z
k]
−1∑

1≤i<j≤d
√
λi + λj

[√
wxij +

√
wyij

]
+
∑d−1

k=1 w
z
k[b

z
k]
−1
, (5.198)

where 1 ≤ i < j ≤ d and k = 1, ..., d− 1.

We will study some particular choices of W :

� IfW = I, the minimized function is the mean square error (2.154). The optimal

observables are
{
σxij, σ

y
ij, r

zT
k σ

z
}
with probabilities

pxij = pyij =

√
λi + λj

2
∑

1≤i<j≤d
√
λi + λj +

∑d−1
k=1[bzk]

−1
, (5.199)
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pzk =

√
[bzk]
−1

2
∑

1≤i<j≤d
√
λi + λj +

∑d−1
k=1[bzk]

−1
. (5.200)

Despite this technique decreases the mean squared error and does not decrease

the in�delity, we will study its e�ects on in�delity.

� If W = J , the minimized function is the second order in�delity (5.133),

Tr(JC) = 4Inf(ρ, ρ̂). (5.201)

The optimal observables are
{
σxij, σ

y
ij, σ

z
k

}
with probabilities

pi =
1

d2 − 1
. (5.202)

5.4 Simulations

We perform computational simulations of adaptive quantum tomography in order

to study its accuracy. We compute and compare the mean in�delity between a state

and its estimate by standard tomography, diagonal tomography, adaptive tomogra-

phy with N0 = N/2 and N0 = N2/3, and weighted adaptive tomography W = I
with N0 = N/2. The measurement outcomes have been simulated by multinomial

distribution (4.79), obtaining estimated probabilities
{
p̂ji
}
i=1,...,d

when the matrix σk

has been measurement. Thereby, the estimated expected value of the Gell-Mann

matrix σk is

Ŝk =
d∑
i=1

λki p̂
k
i , (5.203)

where {λki }i=1,...,d are the eigenvalues of σk (4.21,4.22,4.23). The estimation by max-

imum likelihood was only performed in the second step of the tomographies. The

mean in�delity on the state space is obtained by (E)∫
H

Inf(ρ, ρ̂)dµ(ρ) ≈ 1

M

M∑
i=1

Inf(ρi, ρ̂i), (5.204)

where {ρi}i=1,...,M areM uniformly distributed random states. We analyze the mean

in�delity of states in di�erent dimensions and with di�erent ranks. Besides, we �t

the function Inf(N,α, β) = β/Nα to the data by least squares.
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5.4.1 Pure states

Figures (5.5) to (5.10) compare the mean in�delity with respect to the sample size

N for pure states in di�erent dimensions. The dots are the simulated tomographies

and the dot-dashed lines are the best �t by least squares. Tables (5.4) to (5.9) show

the �t coe�cients. It can be seen that with the same amount of resources adap-

tive tomography and weighted adaptive tomography achieve better mean in�delity

than standard quantum tomography. Moreover, adaptive tomography and weighted

adaptive tomography scale better with the sample size N than standard quantum

tomography because they have a higher �t coe�cient α. Adaptive tomography with

N0 = N/2 achieves the best in�delity for pure states in all dimensions. Diagonal

tomography delivers mean in�delity equal to or less than the Cramer-Rao bound,

because the Gill-Massar bound for the estimation of a pure state (which only has

2[d− 1] independent real parameters) is

GMpure =
d− 1

N
≤ CR ≤ GM. (5.205)
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Figure 5.5: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 1000 3-dimensional pure states.
Source: Made by the author.
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α β

Gill-Massar 1 8.0
Cramer-Rao 1 2.0
Standard 0.486840610328 0.648924437556
Diagonal 0.997295586425 2.33049882612

Adaptive N/2 0.955865495569 8.2410556636
Adaptive N2/3 0.749563017847 2.58419396358
WAdaptive N/2 0.907667688012 6.76682644859

Table 5.4: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 3-dimensional
pure states. Source: Made by the author.
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Figure 5.6: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 1000 4-dimensional pure states.
Source: Made by the author.
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α β

Gill-Massar 1 18.75
Cramer-Rao 1 3.75
Standard 0.448386208637 0.8606839038
Diagonal 0.996933431113 3.46605333551

Adaptive N/2 0.974034326237 23.6266047634
Adaptive N2/3 0.736461721101 5.84541370537
WAdaptive N/2 0.904034355563 14.4229945003

Table 5.5: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 4-dimensional
pure states. Source: Made by the author.
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Figure 5.7: Comparison of mean in�delity obtained from the simulation of the stan-
dard tomography and adaptive tomography of 100 6-dimensional pure states. Source:
Made by the author.
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α β

Gill-Massar 1 61.25
Cramer-Rao 1 8.75
Standard 0.445524616668 1.77256685365
Diagonal 1.02862952388 7.93763170438

Adaptive N/2 0.970478935162 72.667504549
Adaptive N2/3 0.704983162844 13.4376970486
WAdaptive N/2 0.88929748672 34.6595173618

Table 5.6: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 6-dimensional
pure states. Source: Made by the author.
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Figure 5.8: Comparison of mean in�delity obtained from the simulation of the stan-
dard tomography and adaptive tomography of 100 8-dimensional pure states. Source:
Made by the author.
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α β

Gill-Massar 1 141.75
Cramer-Rao 1 15.75
Standard 0.487009852719 4.5493865281
Diagonal 1.0263897093 12.3663703431

Adaptive N/2 0.947713881087 123.795827206
Adaptive N2/3 0.673339697624 20.819804269
WAdaptive N/2 0.918303133516 92.8045975921

Table 5.7: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 8-dimensional
pure states. Source: Made by the author.
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Figure 5.9: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 10-dimensional pure states.
Source: Made by the author.
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α β

Gill-Massar 1 272.25
Cramer-Rao 1 24.75
Standard 0.498608354403 7.29716124083
Diagonal 1.03492218404 18.5328804977

Adaptive N/2 0.93630391787 193.445155351
Adaptive N2/3 0.642792892212 25.2454127239
WAdaptive N/2 0.918908650875 158.452446585

Table 5.8: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 10-dimensional
pure states. Source: Made by the author.
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Figure 5.10: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 16-dimensional pure states.
Source: Made by the author.



90

α β

Gill-Massar 1 1083.75
Cramer-Rao 1 63.75
Standard 0.521728796368 19.2589060538
Diagonal 1.02687772882 33.6100975019

Adaptive N/2 0.979562162464 1050.388139
Adaptive N2/3 0.6115039318 52.6933278002
WAdaptive N/2 0.960106416413 823.5077895

Table 5.9: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 16-dimensional
pure states. Source: Made by the author.

5.4.2 Low rank states

Figures (5.11) to (5.15) compare the mean in�delity with respect to the sample

size N for low rank states in di�erent dimensions. The dots are the simulated to-

mographies and the dot-dashed lines are the best �t by least squares. Tables (5.10)

to (5.14) show the �t coe�cients. It can be seen that with the same amount of re-

sources adaptive tomography and weighted adaptive tomography achieve lower mean

in�delity than standard quantum tomography. Moreover, adaptive tomography and

weighted adaptive tomography scale better with the sample size N than standard

quantum tomography because they have higher �t coe�cient α. Nevertheless, this

�t coe�cient is lower than the �t coe�cient for pure states, that is the protocol

reduces its performance by increasing the rank of the state. Adaptive tomography

with N0 = N/2 achieves the best mean in�delity for low rank states in all dimensions.

Adaptive tomography does not reach the Gill-Masar bound for low rank states.
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Figure 5.11: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 1000 3-dimensional states with
rank 2. Source: Made by the author.

α β

Gill-Massar 1 8.0
Cramer-Rao 1 2.0
Standard 0.5735058611 1.1044278579
Diagonal 0.965589328922 6.3288165699

Adaptive N/2 0.904625777431 10.2298582157
Adaptive N2/3 0.76693327354 3.3590855469
WAdaptive N/2 0.867208473038 8.23804336571

Table 5.10: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 3-dimensional
states with rank 2. Source: Made by the author.
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Figure 5.12: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 1000 4-dimensional states with
rank 2. Source: Made by the author.

α β

Gill-Massar 1 18.75
Cramer-Rao 1 3.75
Standard 0.490159011952 1.34052701646
Diagonal 0.984495791835 13.2059544052

Adaptive N/2 0.893368706158 25.1088552827
Adaptive N2/3 0.693821250691 5.07688005339
WAdaptive N/2 0.831483384519 16.2403694326

Table 5.11: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 4-dimensional
states with rank 2. Source: Made by the author.
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Figure 5.13: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 6-dimensional states with
rank 3. Source: Made by the author.

α β

Gill-Massar 1 61.25
Cramer-Rao 1 8.75
Standard 0.494166775132 3.98878822666
Diagonal 0.962419872982 43.9666089538

Adaptive N/2 0.828636047109 56.7238428081
Adaptive N2/3 0.645557303655 12.0368688206
WAdaptive N/2 0.764583373286 33.7432853016

Table 5.12: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 6-dimensional
states with rank 3. Source: Made by the author.
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Figure 5.14: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 8-dimensional states with
rank 4. Source: Made by the author.

α β

Gill-Massar 1 141.75
Cramer-Rao 1 15.75
Standard 0.500377450872 8.03219811731
Diagonal 0.923805528625 82.3712503188

Adaptive N/2 0.763999993169 75.8414101667
Adaptive N2/3 0.600350756358 18.0493252385
WAdaptive N/2 0.721262563098 52.1603730077

Table 5.13: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 8-dimensional
states with rank 4. Source: Made by the author.
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Figure 5.15: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 10-dimensional states with
rank 5. Source: Made by the author.

α β

Gill-Massar 1 272.25
Cramer-Rao 1 24.75
Standard 0.495213050342 12.3665995864
Diagonal 0.857016622493 91.4237327082

Adaptive N/2 0.708378540134 82.0456789328
Adaptive N2/3 0.560884394015 21.3959430662
WAdaptive N/2 0.676096905836 61.2521742538

Table 5.14: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 10-dimensional
states with rank 5. Source: Made by the author.
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Figure 5.16: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 16-dimensional states with
rank 8. Source: Made by the author.

α β

Gill-Massar 1 1083.75
Cramer-Rao 1 63.75
Standard 0.48469739021 30.6180207697
Diagonal 0.813359936615 296.013394515

Adaptive N/2 0.660504196059 201.326947904
Adaptive N2/3 0.504061815008 37.2065879176
WAdaptive N/2 0.640672964757 160.711830893

Table 5.15: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 16-dimensional
states with rank 8. Source: Made by the author.

5.4.3 Full rank states

Figures (5.17) to (5.21) compare the mean in�delity with respect to the sample

size N for full rank states in di�erent dimensions. The dots are the simulated to-

mographies and the dot-dashed lines are the best �t by least squares. Tables (5.16)

to (5.20) show the �t coe�cients. It can be seen that with the same amount of re-
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sources adaptive tomography N0 = N/2 and weighted adaptive tomography achieve

similar mean in�delity than standard quantum tomography. Adaptive tomogra-

phy N0 = N2/3 achieve lower mean in�delities than standard quantum tomography.

Adaptive tomography does not reach the Gill-Massar bound for full rank states.
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Figure 5.17: Comparison of mean in�delity obtained from the simulation of the stan-
dard tomography and adaptive tomography of 1000 3-dimensional full rank states.
Source: Made by the author.

α β

Gill-Massar 1 8.0
Cramer-Rao 1 2.0
Standard 0.895737828827 9.30606562924
Diagonal 0.99844569546 13.3146866104

Adaptive N/2 0.990872733639 24.9249150176
Adaptive N2/3 1.02255040469 19.8135798498
WAdaptive N/2 0.983177160201 23.5067587495

Table 5.16: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 3-dimensional
full rank states. Source: Made by the author.
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Figure 5.18: Comparison of mean in�delity obtained from the simulation of the stan-
dard tomography and adaptive tomography of 1000 4-dimensional full rank states.
Source: Made by the author.

α β

Gill-Massar 1 18.75
Cramer-Rao 1 3.75
Standard 0.874049329003 27.681258897
Diagonal 0.999840098803 49.352890542

Adaptive N/2 1.00269203039 103.489236591
Adaptive N2/3 1.02730740327 83.3834150242
WAdaptive N/2 0.979969804744 87.6667655073

Table 5.17: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 4-dimensional
full rank states. Source: Made by the author.
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Figure 5.19: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 6-dimensional full rank states.
Source: Made by the author.

α β

Gill-Massar 1 61.25
Cramer-Rao 1 8.75
Standard 0.815134790472 64.3366062038
Diagonal 0.93617018919 127.409248003

Adaptive N/2 0.932765720494 245.03533196
Adaptive N2/3 0.922941749331 155.81935465
WAdaptive N/2 0.880612280843 154.608851485

Table 5.18: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 6-dimensional
full rank states. Source: Made by the author.
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Figure 5.20: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 8-dimensional full rank states.
Source: Made by the author.

α β

Gill-Massar 1 141.75
Cramer-Rao 1 15.75
Standard 0.731163938682 68.3112146739
Diagonal 0.834762307376 121.71674307

Adaptive N/2 0.804268517365 172.798273961
Adaptive N2/3 0.803363580332 131.237330839
WAdaptive N/2 0.768960257541 125.288470459

Table 5.19: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 8-dimensional
full rank states. Source: Made by the author.
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Figure 5.21: Comparison of mean in�delity obtained from the simulation of the stan-
dard tomography and adaptive tomography of 100 10-dimensional full rank states.
Source: Made by the author.

α β

Gill-Massar 1 272.25
Cramer-Rao 1 24.75
Standard 0.662719194324 62.9094012451
Diagonal 0.747587012886 95.4349333021

Adaptive N/2 0.702127721825 116.099265098
Adaptive N2/3 0.706770996405 93.9709275126
WAdaptive N/2 0.684711846901 98.0978592067

Table 5.20: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 10-dimensional
full rank states. Source: Made by the author.
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Figure 5.22: Comparison of mean in�delity obtained from the simulation of the stan-
dard tomography and adaptive tomography of 100 16-dimensional full rank states.
Source: Made by the author.

α β

Gill-Massar 1 1083.75
Cramer-Rao 1 63.75
Standard 0.59238121467 100.176478771
Diagonal 0.666535189765 162.087937747

Adaptive N/2 0.586882311134 123.700912096
Adaptive N2/3 0.603959490009 113.761293979
WAdaptive N/2 0.588604619127 123.391942412

Table 5.21: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 16-dimensional
full rank states. Source: Made by the author.

5.4.4 Pure States with Noise

Figures (5.23) to (5.34) compare the mean in�delity with respect to the sample

size N for pure states with noise in di�erent dimensions. That is

ρi = λ |ψi〉〈ψi|+
1− λ
d

I, i = 1, ...,M. (5.206)
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where we have chosen λ = 0.999 and λ = 0.99. The purity of these states is,

Tr
(
ρ2
i

)
= Tr

[(
λ |ψi〉〈ψi|+

1− λ
d

I
)(

λ |ψi〉〈ψi|+
1− λ
d

I
)]

(5.207)

=λ2 + 2λ
1− λ
d

+

(
1− λ
d

)2

d (5.208)

=λ2 +
2λ− 2λ2

d
+

1− 2λ+ λ2

d
(5.209)

=

(
1− 1

d

)
λ2 +

1

d
. (5.210)

For λ = 0.999 and λ = 0.99, the purities of those states is near to 99.8% and 98%, re-

spectively. This class of states is important due to the fact that it is usually employed

to model errors in certain experiments. The dots are the simulated tomographies

and the dot-dashed lines are the best �t by least squares. Tables (5.22) to (5.33)

show the �t coe�cients. It can be seen that with the same amount of resources

adaptive tomography and weighted adaptive tomography achieve lower mean in�-

delity than standard quantum tomography. Moreover, adaptive tomography and

weighted adaptive tomography scale better with the sample size N than standard

quantum tomography because they have higher �t coe�cient α. Adaptive tomogra-

phy with N0 = N2/3 delivers the best in�delity for low dimensions but reduces its

performance in high dimensions, where N0 = N/2 lends to better mean in�delity.

This is because, despite the purity decrease with de dimension, the unknown state

has several eigenvalues near to zero. Adaptive tomography N0 = N/2 and weighted

adaptive tomography N0 = N/2 achieve similar mean in�delity. The unusual behav-

ior of diagonal tomography is due to that for low resource small eigenvalues are not

distinguished, so the achieved mean in�delity is similar to a pure state. For a large

enough sample, the mean in�delity achieved by diagonal tomography is similar to a

full rank state.
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Figure 5.23: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 1000 3-dimensional pure states
with noise λ = 0.999. Source: Made by the author.

α β

Gill-Massar 1 8.0
Cramer-Rao 1 2.0
Standard 0.540221028399 0.784448215824
Diagonal 0.752108320951 0.649085586915

Adaptive N/2 0.844502901297 3.73755966892
Adaptive N2/3 0.854791892538 4.34028742453
WAdaptive N/2 0.735244597942 1.84333061196

Table 5.22: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 3-dimensional
pure states with noise λ = 0.999. Source: Made by the author.
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Figure 5.24: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 1000 4-dimensional pure states
with noise λ = 0.999. Source: Made by the author.

α β

Gill-Massar 1 18.75
Cramer-Rao 1 3.75
Standard 0.506600622327 1.15465550647
Diagonal 0.594617125513 0.272645581637

Adaptive N/2 0.749321456463 3.31198111333
Adaptive N2/3 0.809036870001 8.24295347788
WAdaptive N/2 0.693853919176 2.19293300341

Table 5.23: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 1000 4-dimensional
pure states with noise λ = 0.999. Source: Made by the author.
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Figure 5.25: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 6-dimensional pure states
with noise λ = 0.999. Source: Made by the author.

α β

Gill-Massar 1 61.25
Cramer-Rao 1 8.75
Standard 0.516797507705 2.94261402836
Diagonal 0.467189789879 0.158564714912

Adaptive N/2 0.782064781967 13.3079856921
Adaptive N2/3 0.766570859865 19.6234857519
WAdaptive N/2 0.762897162451 10.7414705412

Table 5.24: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 6-dimensional
pure states with noise λ = 0.999. Source: Made by the author.
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Figure 5.26: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 8-dimensional pure states
with noise λ = 0.999. Source: Made by the author.

α β

Gill-Massar 1 141.75
Cramer-Rao 1 15.75
Standard 0.530843722277 5.7824827963
Diagonal 0.464155852402 0.232010687621

Adaptive N/2 0.816341671561 36.1950617003
Adaptive N2/3 0.72138055061 28.2573262078
WAdaptive N/2 0.807348785568 32.5844828634

Table 5.25: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 8-dimensional
pure states with noise λ = 0.999. Source: Made by the author.
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Figure 5.27: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 10-dimensional pure states
with noise λ = 0.999. Source: Made by the author.

α β

Gill-Massar 1 272.25
Cramer-Rao 1 24.75
Standard 0.553350380036 10.8172157727
Diagonal 0.465216319499 0.319513599256

Adaptive N/2 0.844056495002 82.6329174255
Adaptive N2/3 0.67051003048 28.9403148461
WAdaptive N/2 0.828021608827 66.16230481

Table 5.26: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 10-dimensional
pure states with noise λ = 0.999. Source: Made by the author.
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Figure 5.28: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 16-dimensional pure states
with noise λ = 0.999. Source: Made by the author.

α β

Gill-Massar 1 1083.75
Cramer-Rao 1 63.75
Standard 0.563494051051 27.2124622128
Diagonal 0.345544918203 0.133907026198

Adaptive N/2 0.889996968123 405.194498184
Adaptive N2/3 0.634482960243 62.4984663451
WAdaptive N/2 0.866205686123 284.400555289

Table 5.27: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 16-dimensional
pure states with noise λ = 0.999. Source: Made by the author.
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Figure 5.29: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 3-dimensional pure states
with noise λ = 0.99. Source: Made by the author.

α β

Gill-Massar 1 8.0
Cramer-Rao 1 2.0
Standard 0.528425655925 0.70829593936
Diagonal 0.846353175779 2.3592544272

Adaptive N/2 0.864305458869 5.69665745524
Adaptive N2/3 0.91322822953 6.75067544367
WAdaptive N/2 0.717420015388 2.2376740063

Table 5.28: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 3-dimensional
pure states with noise λ = 0.99. Source: Made by the author.
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Figure 5.30: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 4-dimensional pure states
with noise λ = 0.99. Source: Made by the author.

α β

Gill-Massar 1 18.75
Cramer-Rao 1 3.75
Standard 0.432147979285 0.599381533441
Diagonal 0.801343622837 4.50162895128

Adaptive N/2 0.78524726407 7.25601432931
Adaptive N2/3 0.877138930205 15.9366968172
WAdaptive N/2 0.578957257659 1.27717646592

Table 5.29: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 4-dimensional
pure states with noise λ = 0.99. Source: Made by the author.
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Figure 5.31: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 6-dimensional pure states
with noise λ = 0.99. Source: Made by the author.

α β

Gill-Massar 1 61.25
Cramer-Rao 1 8.75
Standard 0.468978203196 1.8454848187
Diagonal 0.566441530146 1.22291751384

Adaptive N/2 0.639690378102 5.29884666942
Adaptive N2/3 0.719327852801 12.9680522034
WAdaptive N/2 0.518698314956 1.76457614137

Table 5.30: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 6-dimensional
pure states with noise λ = 0.99. Source: Made by the author.
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Figure 5.32: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 8-dimensional pure states
with noise λ = 0.99. Source: Made by the author.

α β

Gill-Massar 1 141.75
Cramer-Rao 1 15.75
Standard 0.504690504702 4.26365382741
Diagonal 0.434589318888 0.580526235074

Adaptive N/2 0.589682460744 6.24512411671
Adaptive N2/3 0.650609782925 13.8815159729
WAdaptive N/2 0.56740939244 4.95852960559

Table 5.31: Comparison of �t coe�cients of mean in�delity obtained from the sim-
ulation of the standard tomography and adaptive tomography of 100 8-dimensional
pure states with noise λ = 0.99. Source: Made by the author.
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Figure 5.33: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 10-dimensional pure states
with noise λ = 0.99. Source: Made by the author.

α β

Gill-Massar 1 272.25
Cramer-Rao 1 24.75
Standard 0.543474571266 9.20315039447
Diagonal 0.386584133611 0.511949191381

Adaptive N/2 0.627594623655 14.6317704245
Adaptive N2/3 0.635005219492 20.1848087699
WAdaptive N/2 0.610657397526 11.6999022371

Table 5.32: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 10-dimensional
pure states with noise λ = 0.99. Source: Made by the author.
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Figure 5.34: Comparison of mean in�delity obtained from the simulation of the
standard tomography and adaptive tomography of 100 16-dimensional pure states
with noise λ = 0.99. Source: Made by the author.

α β

Gill-Massar 1 1083.75
Cramer-Rao 1 63.75
Standard 0.567622294413 25.2422062666
Diagonal 0.358187207654 0.692795186052

Adaptive N/2 0.625732423436 31.4910865197
Adaptive N2/3 0.610296783383 45.90060537
WAdaptive N/2 0.603786790486 22.8357306162

Table 5.33: Comparison of �t coe�cients of mean in�delity obtained from the simu-
lation of the standard tomography and adaptive tomography of 100 16-dimensional
pure states with noise λ = 0.99. Source: Made by the author.
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5.4.5 Summary of the Simulations

From the simulations, it can be seen that with the same amount of resources, at

least one adaptive tomographic method leads to better mean in�delity than standard

tomography. For low rank states, adaptive tomography with N0 = N/2 delivers the

best mean in�delity. On the other hand, for mixed states, adaptive tomography with

N0 = N2/3 leads to the best mean in�delity. In the case of pure states, this method

provides mean in�delities close to the Gill-Massar bound. In the case of states with

higher rank, this does not hold. For pure states with noise, the best technique is

the adaptive tomography with N0 = N2/3, but from a su�ciently high dimension

the best technique is the adaptive tomography with N0 = N/2. Weighted adaptive

tomography with N0 = N/2 delivers mean in�delity close to adaptive tomography

with N0 = N/2, despite it does not minimize the in�delity. Therefore, the optimal

value of the preliminary ensemble N0 to optimize the two-stage adaptive standard

tomography depends on the rank, dimension and the small eigenvalues of the state

to be reconstructed, so in general, this is unknown. We recommend using adaptive

tomography with the choice N0 = N/2 for the reconstruction of an unknown state,

because this method delivers in the best case (low rank states) a much better mean

in�delity than standard tomography and a similar mean in�delity in the worst case

(full rank states).



Chapter 6

Conclusion

We have generalized the two-stage adaptive tomographic method for a two-

dimensional system (qubit) to the case of a d-dimensional system (qudit), with d

arbitrary. In the �rst stage, a low precision estimate ρ0 is obtained by standard

tomography on a fraction N0 of the total number N of identically prepared copies of

the unknown state to be reconstructed. Later, we adapt the measurement base of the

Generalized Gell-Mann matrices to the basis of eigenvectors of ρ0 and perform a sec-

ond higher accuracy standard tomography on the remaining ensemble of size N−N0.

The two-stage adaptive tomographic protocol is based on the Taylor series of the

in�delity and on the uncertainty of measurements in Gell-Mann matrices. We have

obtained the series expansion of the in�delity by means of the Fréchet derivative,

which has the advantage that it does not require a parameterization of the states.

Thereby, this expansion is valid for any type of tomography. The variance in the

measurements of the Gell-Mann matrices has been obtained by propagating the un-

certainty of the measurement outcomes, which are in a multinomial distribution. The

uncertainty in the estimation of the parameters de�ning the unknown state depends

on these parameters.

The two-stage adaptive tomographic method improves the average in�delity be-

tween an unknown state of any rank and its estimate from O(1/
√
N) to O(1/N).

Thereby, this protocol delivers a much better in�delity than standard tomography
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for equal resource N , with N large enough. In the case of pure unknown states,

this method provides mean in�delities close to the Gill-Massar bound. Thereby, this

protocol is near to the optimal estimation strategy for pure states by separable mea-

surements. In the case of states with a higher rank, this does not hold.

We have also formulated a two-step adaptive tomography that reduces the weighted

mean square error in order to attain the Gill-Massar bound. We have studied its

e�ect on in�delity, although it minimizes another �gure of merit. The weighted adap-

tive tomographic method delivers mean in�delities marginally worse than adaptive

tomography for all types of states. It is necessary to study in more detail the e�ect

of this algorithm on the weighted mean square error by numerical simulations.

We have seen that the performance of the two-stage adaptive tomographic method

depends on the particular distribution of the ensemble among the two stages of the

tomography. In general, the optimal value of N0 is unknown. However, detailed sim-

ulations point out that the sample size of the preliminary estimation that leads to

better mean in�delity for low rank states is N0 = N/2. Instead, the sample size that

delivers the best mean in�delity for full rank states is N0 = N2/3. We recommend

using adaptive tomography with the choice N0 = N/2 for the reconstruction of an

unknown state because this method delivers in the best case a much better mean

in�delity than standard tomography and a similar mean in�delity in the worst case.

Adaptive tomography requires measurements in the standard tomographic bases,

which exist in any dimension. Therefore, this protocol can be applied to any dimen-

sion, which is an advantage over mutually unbiased bases based tomography. This

is because the latter exists in dimensions that correspond to integer powers of prime

numbers, otherwise its existence is uncertain. Besides, two-stage adaptive tomog-

raphy has an experimental advantage over tomography by SIC-POVM, because the

bases to be measured are easier to implement than a POVM on high dimensions.

Moreover, computational expense of this two stages adaptive tomography method
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is lesser than a self-learning adaptive tomography. However, this method also has

several disadvantages. In the �rst place, this method is di�cult to implement in

multipartite systems, because it requires measurements on entangled bases. Another

disadvantage of this method is that it requires twice the number of measurements

as standard tomography, that is 2d(d2 − 1) measurement outcomes. Besides, the

computational expense is higher than that of standard tomography, because it needs

to diagonalize the preliminary density matrix and the post-processing is with twice

the data.

Adaptive two-step tomography improves the accuracy of the mean in�delity. So

far, our analysis considers a source of error of �nite character of the ensemble to be

measurement. The realization of simulations of this algorithm considering experi-

mental noises is pending. For example, it is observed that the detection of photons

has Poisson distribution instead multinomial distribution. These simulations would

allow us to �nd ranges where the improvement in accuracy of the in�delity pro-

vided by this method is not overshadowed by experimental noise. Besides, these

simulations would be useful for experimental realization of the two-stage adaptive

tomographic method.

The two-stage adaptive tomographic method improves the precision of the re-

construction of an unknown state, which has positive implications in applications

of Quantum Mechanics, such as Quantum Information, Quantum Computation and

Quantum Metrology. This method can contribute to the formulation of new adaptive

tomographic methods in high dimensions. The natural extension of this method is to

replace the standard tomographies by mutually unbiased bases based tomographies,

which has already been studied in the context of qubits. This protocol reduces the

number of outcomes from 2d(d2−1) to 2d(d+1) on prime power dimensional spaces.



Appendix A

Products between Gell-Mann

matrices

In this appendix we proof the product between the Gell-Mann matrices,

Tr(σiσj) = 2δij. (A.1)

� If j = l it is impossible that i = m,

Tr
(
σxijσ

x
lm

)
= Tr

[(
|i〉〈j|+ |j〉〈i|

)(
|l〉〈m|+ |m〉〈l|

)]
, (A.2)

= Tr
[
δjl |i〉〈m|+ δjm |i〉〈l|+ δil |j〉〈m|+ δim |j〉〈l|

]
, (A.3)

= δjlδim + δjmδil + δilδjm + δimδjl, (A.4)

= 2δilδjm. (A.5)

Tr
(
σyijσ

y
lm

)
= i2 Tr

[(
|i〉〈j| − |j〉〈i|

)(
|l〉〈m| − |m〉〈l|

)]
(A.6)

= −Tr
[
δjl |i〉〈m| − δjm |i〉〈l| − δil |j〉〈m|+ δim |j〉〈l|

]
(A.7)

= −δjlδim + δjmδil + δilδjm − δimδjl (A.8)

= 2δilδjm. (A.9)

Tr
(
σxijσ

y
ml

)
= −i Tr

[(
|i〉〈j|+ |j〉〈i|

)(
|l〉〈m| − |m〉〈l|

)]
(A.10)

= −i Tr
[
δjl |i〉〈m| − δjm |i〉〈l|+ δil |j〉〈m| − δim |j〉〈l|

]
(A.11)

= −i
(
δjlδim − δjmδil + δilδjm − δimδjl

)
(A.12)

= 0. (A.13)
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� Let us suppose k ≤ m,

Tr(σzkσ
z
m) =

√
4

k(k + 1)m(m+ 1)
Tr

[(
k∑
l=1

|l〉〈l| − k |k + 1〉〈k + 1|

)

×

(
m∑
n=1

|n〉〈n| −m |m+ 1〉〈m+ 1|

)]
(A.14)

=
2√

k(k + 1)m(m+ 1)
Tr

[
k,m∑
l,n=1

δln |l〉〈n|

− k

(
m+1∑
n=1

δk+1,n |k + 1〉〈n| − δk+1,m+1 |k + 1〉〈m+ 1|

)

+mkδk+1,m+1 |k + 1〉〈m+ 1|

]
(A.15)

=
2√

k(k + 1)m(m+ 1)

[
k − k(1− δkm) + k2δmk

]
(A.16)

=
2k(k + 1)δmk√
k(k + 1)m(m+ 1)

(A.17)

= 2δkm (A.18)

� Because i 6= j,

Tr
(
σzkσ

x
ij

)
=

√
2

k(k + 1)
Tr

([
k∑
l=1

|l〉〈l| − k |k + 1〉〈k + 1|

] [
|i〉〈j|+ |j〉〈i|

])
(A.19)

=

√
2

k(k + 1)
Tr

(
k∑
l=1

δli |l〉〈j|+
k∑
l=1

δlj |l〉〈i|

− kδk+1,i |k + 1〉〈j| − kδk+1,j |k + 1〉〈i|

)
(A.20)

=

√
2

k(k + 1)

[
δij + δji − kδk+1,iδk+1,j − kδk+1,jδk+1,i

]
(A.21)

= 0 (A.22)

Tr
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σzkσ

y
ij

)
= −i

√
2

k(k + 1)
Tr

([
k∑
l=1

|l〉〈l| − k |k + 1〉〈k + 1|

] [
|i〉〈j| − |j〉〈i|

])
(A.23)
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= −i

√
2

k(k + 1)
Tr

(
k∑
l=1

δli |l〉〈j| −
k∑
l=1

δlj |l〉〈i| − kδk+1,i |k + 1〉〈j|

+ kδk+1,j |k + 1〉〈i|

)
(A.24)

= −i

√
2

k(k + 1)

[
δij − δji − kδk+1,iδk+1,j + kδk+1,jδk+1,i

]
(A.25)

= 0. (A.26)



Appendix B

Generalized Bloch Representation

Let us consider the representation of qudits by Gell-Mann matrices,

ρ =
1

d
I +

1

2

d2−1∑
i=1

Siσi. (B.1)

The purity of ρ is

Tr
(
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=
1

d
+

1

4
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SiSj Tr(σiσj) (B.2)
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4
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x
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=
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(Sxij)
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(Syij)
2 +

1

2

d−1∑
i=1
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=
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Then, using 1/d ≤ Tr(ρ2) ≤ 1, we get

0 ≤
d2−1∑
i=1

S2
i ≤ 2

d− 1

d
, (B.7)

where the upper bound represents the pure states and the lower bound represents the

maximally mixed state. The last inequality told us that the states are on the inside

of a d2 − 1 dimensional sphere with radius rd =
√

2(d− 1)/d, which is analogous to

the Bloch sphere, but in higher dimensions. But since −1 ≤ Sxij ≤ 1, −1 ≤ Syij ≤ 1

and −k
√

2/k(k + 1) ≤ Szk ≤
√

2/k(k + 1), actually the states are only a section of

this sphere.



Appendix C

Derivatives of Square Root Function

Here we calculate the �rst and second derivatives of square root function f(A) =
√
A by Freshet derivative. They can be obtained from the product rule

Df 2(A)(B) = D[f · f ](A)(B) = Df(A)(B) · f(A) + f(A) ·Df(A)(B). (C.1)

Since Df 2(A)(B) = B, we obtain that

Df(A)(B) ·
√
A+
√
A ·Df(A)(B) = B. (C.2)

Let us now consider {|ai〉}i=1,...,r the basis of eigenvectors of A and {ai}i=1,...,r the

corresponding eigenvalues of A, where r is the dimension of A, which in this case is

equal to rank of ρ. Expanding on this basis, we have
r∑
j=1

([
Df(A)(B)

]
ij

√
ajδjk +

√
aiδij

[
Df(A)(B)

]
jk

)
= Bik (C.3)

√
ak
[
Df(A)(B)

]
ik

+
√
ai
[
Df(A)(B)

]
ik

= Bik (C.4)

(
√
ai +

√
ak)
[
Df(A)(B)

]
ik

= Bik. (C.5)

Then, [
Df(A)(B)

]
ik

=
Bik√

ai +
√
ak
. (C.6)

Since A = ρ2
r is full rank, there is no indetermination in the derivative. For the

second derivative we use the product rule again,

D2f 2(A)(B)(C) = D
[
Df 2(A)(B)

]
(C) (C.7)
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=D
[
Df(A)(B) · f(A) + f(A) ·Df(A)(B)

]
(C) (C.8)

=D2f(A)(B)(C) · f(A) +Df(A)(B) ·Df(A)(C) (C.9)

+Df(A)(C) ·Df(A)(B) + f(A) ·D2f(A)(B)(C) (C.10)

=D2f(A)(B)(C) ·
√
A+Df(A)(B) ·Df(A)(C) (C.11)

+Df(A)(C) ·Df(A)(B) +
√
A ·D2f(A)(B)(C). (C.12)

Using D2f 2(A)(B)(C) = 0 and writing per component,
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[
D2f(A)(B)(C)

]
ik

+
r∑
j=1

(
Bij√

ai +
√
aj

Cjk√
aj +

√
ak

+
Cij√

ai +
√
aj

Bjk√
aj +

√
ak

)
. (C.15)

Then, the second derivative is

[
D2f(A)(B)(C)

]
ik

=− 1
√
ai +

√
ak

r∑
j=1

(
Bij√

ai +
√
aj

Cjk√
aj +

√
ak

+
Cij√

ai +
√
aj

Bjk√
aj +

√
ak

)
. (C.16)



Appendix D

Quantum Fisher Information Matrix

of Adaptive Tomography

Let J the quantum Fisher information matrix of ρ. We will obtain this matrix

by getting its blocks,

J =

 Jx Jxy Jxz

Jyx Jy Jyz

Jzx Jzy Jz

. (D.1)

Let us suppose i < j and i′ < j′,

[Jx]ij,i′j′ =
1

2

d∑
k,l=1

1

λk + λl
〈λk|σxij|λl〉 〈λl|σxi′j′|λk〉 (D.2)

=
1

2

d∑
k,l=1

1

λk + λl
(δikδjl + δjkδil)(δi′kδj′l + δj′kδi′l) (D.3)

=
1

λi + λj
(δii′δjj′ + δij′δji′) (D.4)

=
1

λi + λj
δii′δjj′ . (D.5)

[Jy]ij,i′j′ =
1

2

d∑
k,l=1

1

λk + λl
〈λk|σxij|λl〉 〈λl|σxi′j′ |λk〉 (D.6)

=
1

2

d∑
k,l=1

−i2

λk + λl
(δikδjl − δjkδil)(δi′kδj′l − δj′kδi′l) (D.7)

=
1

λi + λj
(δii′δjj′ − δij′δji′) (D.8)
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=
1

λi + λj
δii′δjj′ . (D.9)

[Jxy]ij,i′j′ =
1

2

d∑
k,l=1

1

λk + λl
〈λk|σxij|λl〉 〈λl|σ

y
i′j′|λk〉 (D.10)

=
i

2

d∑
k,l=1

1

λk + λl
(δkiδjl + δkjδil)(δki′δj′l − δkj′δi′l) (D.11)

=
i

2

1

(λi + λj)
(δii′δjj′ − δij′δji′ + δi′jδij′ − δjj′δii′) (D.12)

=0. (D.13)

[Jxz]ij,k =
1

2

d∑
l,m=1

1

λl + λm
〈λl|σxij|λm〉 〈λm|σzk|λl〉 (D.14)

=
1

2

d∑
l,m=1

1

λl + λm
(δliδjm + δljδim) 〈λm|σzk|λl〉 (D.15)

=
1

2

1

λi + λj

(
〈λi|σzk|λj〉+ 〈λj|σzk|λi〉

)
(D.16)

=0. (D.17)

[Jyz]ij,k =
1

2

d∑
l,m=1

1

λl + λm
〈λl|σyij|λm〉 〈λm|σzk|λl〉 (D.18)

=
1

2

d∑
l,m=1

−i

λl + λm
(δliδjm − δljδim) 〈λm|σzk|λl〉 (D.19)

=
1

2

−i

λi + λj

(
〈λi|σzk|λj〉 − 〈λj|σzk|λi〉

)
(D.20)

=0. (D.21)

Let us suppose k ≤ k′,

[Jz]k,k′ =
1

2

d∑
l,m=1

1

λl + λm
〈λl|σzk|λm〉 〈λm|σzk′ |λl〉 (D.22)

=
1

2

d∑
l=1

1

λl

1√
kk′(k + 1)(k′ + 1)

(
hk≥l − kδk+1,l

)(
hk′≥l − k′δk′+1,l

)
(D.23)
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=
1

2
√
kk′(k + 1)(k′ + 1)

(
k∑
l=1

1

λl
− k

λk+1

hk′≥k+1 +
kk′

λk+1

δkk′

)
. (D.24)

Thereby, the quantum Fisher matrix is diagonal except in the block Jz,

J =

Jx Θ Θ
Θ Jy Θ
Θ Θ Jz

. (D.25)



Appendix E

Integration on the State Space

In quantum information, it is common to �nd the need to perform integrals over

quantum states,

Γ =

∫
H
F (ρ)dµ(ρ). (E.1)

An example can be the mean of some function over the space of Hilbert. From the

numerical point of view, these integrals are solved by the method of Monte Carlo.

This consists in estimating this integral using the average of the function evaluated

in N uniformly distributed random states {ρi}i=1,...,N ,

ΓN =
1

N

N∑
i=1

F (ρi). (E.2)

The exact integral is obtained at the in�nite limit of the estimate,

ΓN = lim
N→∞

ΓN . (E.3)

The states are generated by uniformly Haar measure [74], that is a unitary invariant

measure,

dµ(ρ) = dµ(U †ρU). (E.4)

In order to do this, we us a matrix Z, whose zij elements are randomly chosen

according to the complex normal distribution,

p(zij) =
1

π
e−|zij |

2

. (E.5)
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Then, the probability density of Z is

f(Z) =
N∏

i,j=1

p(zij) =
1

πN2 e
−

∑N
i,j=1 |zij |2 =

1

πN2 e
−Tr(Z†Z). (E.6)

This density probability is invariant under Z → UZ, because the trace is cyclic,

f(UZ) =
1

πN2 e
−Tr(U†Z†ZU) =

1

πN2 e
−Tr(Z†Z) = f(Z). (E.7)

We can decompose the matrix Z into a unitary matrix Q and an upper triangular

matrix R,

Z = QR. (E.8)

This is called the QR decomposition of Z. The columns of the matrix Q are the

vectors of the base resulting from applying the Gram-Schmidt procedure (2.24) to

the columns of the matrix Z. The probability density of Q is

f(Q) =
1

πN2 e
−Tr ((QR)†QR) =

1

πN2 e
−Tr (R†Q†QR) =

1

πN2 e
−Tr (R†R). (E.9)

The matrix Q has uniformly probability density and unitary invariant because this

does not depend on Q. Therefore, this method generates a unitary matrix Q uni-

formly distributed by Haar measure.

Thereby, the following density matrix is uniformly distributed by Haar measure,

ρ = QLQ†, (E.10)

where L is a diagonal matrix with the eigenvalues of ρ. The way to select L de�nes

di�erent random density matrices. The probability measure of ρ has a product

form [75]

dµ(ρ) = dµ(L)× dµ(Q). (E.11)

In particular, we have chosen L = RR†/Tr
(
RR†

)
,

ρ = Q
RR†

Tr(RR†)
Q† =

QR(QR)†

Tr (QR(QR)†)
=

ZZ†

Tr(ZZ†)
. (E.12)
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