

Universidad de Concepción Dirección de Postgrado Facultad de Ingeniería - Programa de Magister en Ciencias de la Ingeniería con mención en Ingeniería Civil

Modelos de Radiac<mark>ión Solar Global B</mark>asados en la Duración de Asoleamiento: Evaluación Estadística

Tesis para optar al grado de Magíster en Ciencias de la Ingeniería con mención en Ingeniería Civil

KARINA ANDREA MYRIK ANABALÓN CONCEPCIÓN – CHILE 2018

Profesor Guía: Dr. Luis Merino Quilodrán Departamento de Ingeniería Civil, Facultad de Ingeniería Universidad de Concepción

RESUMEN

Los datos de radiación solar son escasos debido al costo y dificultad de su medición, por lo que algunos autores plantearon modelos estadísticos, con diferentes formas funcionales, que utilizan variables meteorológicas para predecirla. Entre éstas, la duración de asoleamiento es la que ha ganado mayor aprobación a nivel mundial como variable explicativa. En general, las bases de datos utilizadas en la estimación de los modelos son de un área geográfica acotada. En la evaluación de los modelos no se verifica el cumplimiento de los supuestos de la Regresión Lineal Múltiple (RLM) y tampoco se estudia la significancia estadística de los coeficientes, pues se evalúa sólo el desempeño global de los modelos, lo que conlleva a predicciones de radiación solar imprecisas.

El objetivo principal de este estudio fue evaluar el desempeño estadístico de modelos de radiación solar global incidente sobre una superficie horizontal, que utilicen la duración de asoleamiento como variable explicativa. Para esto, se seleccionaron las formas funcionales de modelos más frecuentes encontradas en la literatura. Se consolidó una base de datos mundial con las mediciones del *World Radiation Data Center*, la cual fue depurada bajo criterios de control de calidad. Con ésta se verificó el cumplimiento de los supuestos de la RLM y se evaluaron los modelos. La base de datos mundial consolidada está formada por 131 460 pares de asoleamiento relativo ($\overline{S}/\overline{S}_0$) e índice de claridad ($\overline{H}/\overline{H}_0$) de 875 estaciones meteorológicas, la cual cumple con los supuestos exigidos por la RLM.

La evaluación estadística entregó que los modelos con estructuras polinómicas tienen problemas de significancia estadística en sus coeficientes y que el Logarítmico entrega valores de radiación solar físicamente imposibles. El Modelo Ångström-Prescott es el que obtuvo el mejor desempeño estadístico entre los evaluados. Al desagregar los datos según latitud geográfica y estación del año, y estimar un modelo lineal para cada segmento, se reducen considerablemente los errores cuando la base de datos es de un emplazamiento ubicado fuera de los trópicos. A nivel mundial, un modelo lineal segmentado por intervalos de asoleamiento relativo ($\overline{S}/\overline{S}_0$), posee un mayor poder predictivo que el Modelo Ångström-Prescott cuando $\overline{S}/\overline{S}_0 \leq 0.15$. En un futuro, sería interesante combinar los criterios de desagregación geográfica y estacional con el modelo segmentado por intervalos de $\overline{S}/\overline{S}_0$. Además, se podrían complementar los resultados de éste u otro modelo con las predicciones de radiación solar obtenidas de imágenes satelitales.

AGRADECIMIENTOS

Al Proyecto FONDEF ID14i10208 por el financiamiento parcial para el desarrollo de esta tesis.

Al Dr. Anatoly Tsvetkov del *World Radiation Data Center* por darme la autorización para utilizar las mediciones disponibles en la base de datos *online*, necesarias para la elaboración de la investigación.

A Luis Merino, mi profesor patrocinante, por sus conocimientos, paciencia y motivación para guiarme a lograr el objetivo y por facilitarme un lugar de trabajo en el Laboratorio de Construcción del Departamento de Ingeniería Civil de la Universidad de Concepción.

Al profesor Alejandro Tudela, mi comisión evaluadora, por sus conocimientos, tiempo, paciencia y disposición de reunirnos a lo largo de la realización de esta tesis.

Al profesor Cristian Cuevas, mi comisión evaluadora externa, por su disposición a revisar este trabajo y sus comentarios realizados.

Agradecer también a mis padres, hermanas, sobrino y amigos por todos los años de apoyo incondicional, comprensión y porque nunca dejaron de creer en mí. Gracias a todos los profesores y personas que directa o indirectamente contribuyeron a mi aprendizaje y en la culminación de mi paso por esta reconocida institución.

ÍNDICE DE CONTENIDOS

CAPÍ	TULO 1 INTRODUCCIÓN	1
1.1	Motivación	1
1.2	Hipótesis de trabajo	2
1.3	Objetivos	2
1.4	Metodología de trabajo	3
1.5	Principales resultados y conclusiones	4
1.6	Organización de la tesis	6
CAPÍ	TULO 2 MODELOS ESTADÍSTICOS DE RADIACIÓN SOLAR BASADOS EN	LA
DURA	ACIÓN DE ASOLEAMIENTO	7
2.1	Introducción	7
2.2	Conceptos previos	7
2.2.1	Índice de claridad d <mark>iario</mark>	7
2.2.2	Asoleamiento relativo diario	9
2.3	Modelos de radiación so <mark>lar basados en la dura</mark> ción d <mark>e</mark> asoleamiento	. 10
2.4	Supuestos de la regresión lineal múltiple	. 21
2.5	Conclusiones	. 23
CAPÍ	TULO 3 BASE DE DATOS DE RADIACIÓN SOLAR Y HORAS	DE
ASOI	LEAMIENTO	. 24
3.1	Introducción	. 24
3.2	Generación de la base de datos mundial	. 24
3.3	Control de calidad aplicado a la base de datos mundial	. 27
3.4	Bases de datos locales	. 35
3.5	Conclusiones	. 36
CAPÍ	TULO 4 EVALUACIÓN ESTADÍSTICA DE LOS MODELOS DE RADIACIO	ÓN
SOLA	AR GLOBAL	. 38
4.1	Introducción	. 38
4.2	Comprobación de los supuestos de la RLM	. 38

4.2.1	Homocedasticidad de los residuos
4.2.2	Normalidad de los residuos
4.3	Indicadores de desempeño estadístico 50
4.4	Evaluación estadística de los modelos usando las bases de datos locales
4.5	Evaluación estadística de los modelos usando la base de datos mundial
4.6	Evaluación estadística de modelos de radiación solar global desagregados espacial y
	estacionalmente
4.6.1	Modelos de radiación solar global segmentados por latitud
4.6.2	Modelos de radiación solar global segmentados por estaciones del año
4.6.3	Modelo de radiación solar global segmentado por latitud y estaciones del año 69
4.7	Evaluación estadística de modelos radiación solar global segmentados por intervalos de
	asoleamiento relativo
4.7.1	Modelos de radiación solar global segmentados por intervalos de asoleamiento relativo
	estimados a nivel lo <mark>c</mark> al76
4.7.2	Modelo de radiación solar global segmentado según rangos de asoleamiento relativo
	estimado a nivel mundial
4.8	Conclusiones
CAPÍ	TULO 5 CONCLUSIONES Y COMENTARIOS
DFFF	DENCIAS 94
NETE	74
ANE	XOS
Anexo	0 3.1 Modelo <i>Clear Sky</i> del ESRA
Anexo	5 3.1.1 Factores de Turbiedad de Linke
Anexo	0.4.1 Varianzas obtenidas de los residuos de las bases de datos
Anexo	0 4.2 Tabla estadística del test de Kolmogorov-Smirnov
Anexo	0 4.3 Distribución de frecuencia de los residuos de las bases de datos 112
Anexo	04.4 Modelos de radiación solar global con inserción de variables dummy según latitud y
	estaciones del año estimados a nivel local137
Anexo	04.5 Modelos de radiación solar global con inserción de variables dummy según latitud y
	estaciones del año estimado a nivel mundial142

ÍNDICE DE TABLAS

Tabla 2.1	Resumen de modelos de radiación solar global basados en la duración de
	asoleannento
Tabla 3.1	Días recomendados como promedios de cada mes
Tabla 3.2	Estaciones y cantidad de años de datos con meses outliers
Tabla 3.3	Descripción de las bases de datos locales
Tabla 4.1	Descripción de los segmentos de la base de datos mundial
Tabla 4.2	Cantidad de datos y promedios de cada segmento de las bases de datos locales 40
Tabla 4.3	Muestras obtenidas con Bootstrap con los residuos la base de datos de Aberporth
Tabla 4.4	Resultados de la homocedasticidad de los residuos las bases de datos locales 43
Tabla 4.5	Estadística descriptiva de los residuos de la base de datos de $\overline{S}/\overline{S}_0 ext{ y H}/\overline{H}_0$ de Vancouver
Tabla 4.6	Distribución de frecuencia de los residuos de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Vancouver
Tabla 4.7	Resultados del test de normalidad aplicado los residuos de las bases de datos 49
Tabla 4.8	Coeficientes estimados e indicadores estadísticos de las formas funcionales según las bases de datos locales
Tabla 4.9	Coeficientes de estimación e indicadores estadísticos de los modelos estudiados, usando la base de datos mundial
Tabla 4.10	Meses a los que corresponde la desagregación de los datos de \overline{S} y \overline{H} de Aberporth
Tabla 4.11	Promedio de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ cuando las bases de datos locales son aglomeradas en dos grupos: Zonta Tropical y No Tropical
Tabla 4.12	Promedio de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de los datos contenidos en las tres zonas geográficas 61
Tabla 4.13	Evaluación estadística de los modelos estimados para las tres zonas geográficas 62
Tabla 4.14	Meses que componen las estaciones del año equivalentes para la Zona Tropical. 63

Tabla 4.15	Meses que componen las estaciones del año equivalentes para la Zona de Latitudes Medias y Altas
Tabla 4.16	Promedios de las estaciones del año equivalentes obtenidas de la segmentación de la base de datos mundial
Tabla 4.17	Evaluación estadística de los modelos lineales estimados para cada estación del año de las bases de datos locales
Tabla 4.18	Comparación de los errores de modelos estimados con las bases de datos locales segmentadas y del estimado con las bases completas con la Prueba F de Fisher 66
Tabla 4.19	Evaluación estadística de los modelos lineales estimados para cada estación del año de la base de datos mundial
Tabla 4.21	Promedio de los datos de los segmentos de la base de datos mundial según criterios de latitud y estaciones del año
Tabla 4.20	Criterios de segmentación de las bases de datos por latitud y estaciones del año. 71
Tabla 4.22	Modelos lineales estimados para los diez segmentos de la base de datos mundial 72
Tabla 4.23	Modelos segmentados continuos según intervalos de $\overline{S}/\overline{S}_0$ estimados en Maputo 77
Tabla 4.24	Análisis de los errores de los modelos segmentados en cada segmento de datos 78
Tabla 4.25	Evaluación estadística de modelos segmentados según intervalos de $\overline{S}/\overline{S}_0$ de las bases de datos locales restantes
Tabla 4.26	Análisis comparativo de los errores de los modelos segmentados y del Modelo Ångström-Prescott obtenidos para las bases de datos locales
Tabla 4.27	Modelos de tres segmentos según intervalos de $\overline{S}/\overline{S}_0$ estimado con la base de datos mundial
Tabla 4.28	Análisis comparativo del modelo con tres segmentos con el Modelo Ångström- Prescott
Tabla 4.29	Modelos con cinco y diez segmentos según intervalos de $\overline{S}/\overline{S}_0$, estimados con la base de datos mundial
Tabla 4.30	Análisis comparativo de los modelos con cinco y diez segmentos con el Modelo Ångström-Prescott

Tabla 4.31	Análisis de sensibilidad de los puntos de quiebre del modelo con tres segmentos 85
Tabla 4.32	Errores de predicción de cada segmento de los modelos segmentados del análisis de sensibilidad
Tabla A.4.1	Tabla de varianzas de los residuos de la base de datos de Vancouver, Canadá 107
Tabla A.4.2	Tabla de varianzas de los residuos de la base de datos de Punta Arenas, Chile 107
Tabla A.4.3	Tabla de varianzas de los residuos de la base de datos de Taipa Grande, China. 108
Tabla A.4.4	Tabla de varianzas de los residuos de la base de datos de Maputo, Mozambique108
Tabla A.4.5	Tabla de varianzas de los residuos de la base de datos de Maputo, Mozambique109
Tabla A.4.6	Tabla de varianzas de los residuos de la base de datos mundial 109
Tabla A.4.7	Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Vancouver 112
Tabla A.4.8	Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Vancouver
Tabla A.4.9	Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Punta Arenas
Tabla A.4.10	Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Punta Arenas 113
Tabla A.4.11	Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Punta Arenas 113
Tabla A.4.12	Distribución de frecuencia de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Punta Arenas 113
Tabla A.4.13	Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Aberporth
Tabla A.4.14	Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Aberporth 114
Tabla A.4.15	Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Aberporth 115
Tabla A.4.16	Distribución de frecuencia de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Aberporth 115
Tabla A.4.17	Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Taipa Grande 115
Tabla A.4.18	Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Taipa Grande 116
Tabla A.4.19	Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Taipa Grande 116
Tabla A.4.20	Distribución de frecuencia de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Taipa Grande 116
Tabla A.4.21	Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Maputo 117
Tabla A.4.22	Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Maputo 117
Tabla A.4.23	Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Maputo 118

Tabla A.4.24	Distribución de frecuencia de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Maputo 118
Tabla A.4.25	Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Darwin 119
Tabla A.4.26	Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Darwin 119
Tabla A.4.27	Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Darwin 119
Tabla A.4.28	Distribución de frecuencia de la base de datos $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Darwin 120
Tabla A.4.29	Estadística descriptiva de la base de datos mundial de \overline{S} y \overline{H} 120
Tabla A.4.30	Distribución de frecuencia de la base de datos mundial de \overline{S} y \overline{H} 120
Tabla A.4.31	Estadística descriptiva de la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ 128
Tabla A.4.32	Distribución de frecuencia de la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ 128
Tabla A.4.33	Evaluación estadística de los modelos con dummy según estaciones del año,
	estimados con las bases de datos locales
Tabla A.4.34	Comparación del SSR del Modelo Ångström-Prescott con los modelos que incluyen
	variables <i>dummy</i>
Tabla A.4.35	Comparación estadística del modelo lineal con y sin variables <i>dummy</i>

ÍNDICE DE FIGURAS

Figura 2.1	Componentes de la radiación solar global
Figura 2.2	Dependencia de los coeficientes <i>a</i> y <i>b</i> y el promedio anual de $\overline{S}/\overline{S}_0$
Figura 2.3	Variabilidad de los datos y la aplicación los modelos Ångström-Prescott y Suehrcke
	a la base de datos
Figura 2.4	Distribución de los coeficientes a y b del Modelo Ångström-Prescott de la Tabla 2.1
Figura 3.1	Distribución en el mundo de las estaciones con mediciones en el WRDC 25
Figura 3.2	Metodología utilizada en la generación de la base de datos
Figura 3.3	Base de datos conformada por 190 088 pares de (a) \overline{S} y \overline{H} (b) $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ 27
Figura 3.4	Control de calidad aplicado a los datos de H de Maputo
Figura 3.5	Años de datos a los cuales pertenecen las 415 pares de datos identificados 30
Figura 3.6	Base de datos de (a) \overline{S} y \overline{H} y (b) $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ obtenida después de la aplicación de
	los criterios del c <mark>ontrol de calidad</mark>
Figura 3.7	Cantidad de estaciones meteorológicas según la cantidad de años de datos
Figura 3.8	(a) Identificación de años de datos outliers (b) Base de datos mundial sin outliers
Figura 3.9	a) Rangos de aceptación de \overline{H} por tramos cada ΔS =0.75 horas (b) Años de datos con
	mediciones fuera de $\pm 3\sigma$ (c) Base de datos mundial definitiva de \overline{S} y \overline{H}
Figura 3.10	a) Rangos de aceptación de $\overline{H}/\overline{H}_0$ por tramos cada $\Delta\overline{S}/\overline{S}_0{=}0.05$ (b) Años de datos
	con mediciones fuera de $\pm 3\sigma$ (c) Base de datos mundial definitiva de \bar{S}/\bar{S}_0 y \bar{H}/\bar{H}_0
Figura 3.11	Cantidad de datos cada $\Delta \overline{S}/\overline{S}_0=0.1$
Figura 3.12	Mediciones de \overline{S} y \overline{H} y convertidas a $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de las bases de datos locales 36
Figura 4.1	Segmentación de la bases de dato mundial de (a) $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ (b) \overline{S} y \overline{H}
Figura 4.2	Segmentación de la base de datos de Vancouver y los promedios de $\overline{H}/\overline{H}_0$
Figura 4.3	Segmentación de la base de datos de Aberporth (a) Datos \overline{S} y \overline{H} (b) $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ 41

Figura 4.4	(a-b.1) Segmentación de la base de datos mundial (a-b.2) sus respectivas varianzas 		
Figura 4.5	(a) Distribución de FOR de los residuos de los datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Vancouver versus FER (b) Distribución FORA versus FERA		
Figura 4.6	Comparación de distribuciones de frecuencias de los residuos de la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ y la distribución normal esperada, (a) relativa y (b) acumulada		
Figura 4.7	Variación del estadístico K-S según el tamaño de la base de datos		
Figura 4.8	Comparación de distribuciones de frecuencias de los residuos de la base de datos mundial de \overline{S} y \overline{H} y la distribución normal esperada, (a) relativa y (b) acumulada49		
Figura 4.9	Aplicación de los modelos estimados a las bases de datos locales		
Figura 4.10	Modelos estimados a partir de la base de datos mundial		
Figura 4.11	Base de datos de \overline{S} y \overline{H} y de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de (a) Taipa Grande, latitud 22° 10' N y (b) Aberporth, latitud 52° 8' N		
Figura 4.12	Modelos estimados para las tres zonas geográficas		
Figura 4.13	Modelos lineales estimados para las estaciones del año de Aberporth		
Figura 4.14	Modelos lineales de cada estación del año de la base de datos de Aberporth 67		
Figura 4.15	Modelos estimados para los segmentos formados por las estaciones del año de la base de datos mundial		
Figura 4.16	Segmentación de la base de datos mundial por latitud y estación del año		
Figura 4.17	Modelos lineales de cada segmento comparados con la base de datos mundial sin segmentar		
Figura 4.18	Modelos lineales estimados para cada segmento de la base de datos mundial 74		
Figura 4.19	Comparación del Modelo Ångström-Prescott con la base de datos mundial desagregada con un modelo de tres segmentos según intervalos de $\overline{S}/\overline{S}_0$		
Figura 4.20	(a) Modelo Ångström-Prescott y modelos de (b) dos y (c) tres segmentos estimados a partir de la base de datos de Maputo		

Figura 4.21	Modelos con (a) tres, (b) cinco y (c) diez segmentos estimados para de la base de
	datos mundial
Figura 4.22	Modelo segmentado con punto de quiebre igual a $\overline{S}/\overline{S}_0=0.15$ comparado con el Modelo Ångström-Prescott
Figura A.4.1	Ejemplo del uso de variables dummy en un modelo lineal
Figura A.4.2	Comparación Modelo Ångström-Prescott con (a) Modelo lineal con dummy por estación del año en constante y (b) en pendiente, estimados para Aberporth 141
Figura A.4.3	(a) Modelo lineal con variables dummy modificando su constante y (b) modificando su pendiente
Figura A.4.4	Coeficientes estimados del modelo lineal por tramos, dummy en constante y

ACRÓNIMOS

ESRA	:	European Solar Radiation Atlas
FERA	:	Frecuencia esperada relativa acumulada
FORA	:	Frecuencia observada relativa acumulada
RLM	:	Regresión Lineal Múltiple
MCO	:	Mínimos Cuadrados Ordinarios
RMSE	:	Error cuadrático medio (kWh/m ²)
SSR	:	Suma de cuadrados de los residuos
WMO	:	World Meteorological Organization
WRDC	:	World Radiation Data Center

NOMENCLATURA

а	: Primera constante de los modelos
b	: Segunda constante de los modelos
С	: Tercera constante de los modelos
d	: Cuarta constante de los modelos
G _{SC}	: Constante solar (1367 W/m ²)
Ħ	: Radiación solar global diaria promedio mensual incidente en una superficie horizontal a nivel del suelo (kWh/m ²)
$\overline{\mathrm{H}}_{\mathrm{C}}$: Radiación solar global diaria promedio mensual que incidente en una superficie horizontal a nivel del suelo en un día completamente despejado (kWh/m ²)
H ₀	: Radiación solar global diaria incidente en una superficie horizontal en el límite exterior de la atmósfera (kWh/m ²)

NOMENCLATURA

$\overline{\mathrm{H}}_{0}$:	Radiación solar global diaria promedio mensual incidente en una superficie horizontal en el límite exterior de la atmósfera (kWh/m ²)			
$\overline{\mathrm{H}}/\overline{\mathrm{H}}_{0}$:	Índice de claridad diario promedio mensual			
k	:	Constante del modelo de Ångström			
\overline{K}_{clear}	:	Constante semi-empírica del modelo de Suehrcke (\overline{K}_{clear} =0.65-0.75)			
n	:	Número del día del año correspondiente a una determinada fecha			
R ²	:	Coeficiente de determinación			
\overline{S}	:	Duración de asoleamiento diaria promedio mensual (h)			
S_0	:	Duración de asoleamiento máxima diaria (h)			
\overline{S}_0	:	Duración de asoleamiento máxima diaria promedio mensual (h)			
$\overline{S}/\overline{S}_0$:	Asoleamiento relativo diario promedio mensual			
t	:	Valor del Test-t			

ALFABETO GRIEGO

δ	: Declinación solar en grados sexagesimales
$\sigma_i{}^2$: Varianza del grupo i
φ	: Latitud en grados sexagesimales
ω_{s}	: Ángulo horario de puesta de sol en grados sexagesimales
ω	: Ángulo horario en grados sexagesimales

CAPÍTULO 1 INTRODUCCIÓN

1.1 Motivación

En el área de la eficiencia energética y la construcción sustentable hay dos tipos de aplicaciones de energía solar, las que se clasifican en sistemas pasivos o activos según como capturan, convierten y distribuyen la energía. Los sistemas pasivos usan la energía solar como un aporte al balance energético de las edificaciones y los sistemas activos son tecnologías, tales como los paneles fotovoltaicos y los colectores solares térmicos, los cuales transforman la energía solar en eléctrica y térmica respectivamente. La rápida evolución tecnológica de los sistemas activos, sumado al aumento de eficiencia de los equipos y a una reducción de sus costos de fabricación (Swanson, 2009), ha vuelto imprescindible conocer la cantidad de radiación solar incidente en la superficie terrestre para realizar un correcto diseño de la infraestructura solar (Yorukoglu y Celik, 2006; Das *et al.*, 2015), pero debido a la dificultad en la medición y al alto costo de los equipos, la disponibilidad de datos a nivel mundial es baja (Yorukoglu y Celik, 2006; Besharat *et al.*, 2013; Despotovic *et al.*, 2015).

La radiación solar puede ser estimada a través de procesamiento de imágenes satelitales y modelos estadísticos, entre otros métodos. El procesamiento de imágenes satelitales no es muy precisa cuando se comprara con mediciones a nivel del suelo, ya que se requieren modelos atmosféricos para predecir la radiación solar. Sin embargo, estos modelos tienen la ventaja de tener una cobertura espacio temporal amplia, por lo que son la mejor opción para construir mapas de radiación solar sobre áreas geográficas extensas.

Por otro lado, en los últimos 100 años se desarrollaron varios modelos estadísticos que predicen la radiación solar global incidente sobre una superficie horizontal a nivel del suelo a partir de variables meteorológicas, geográficas o climatológicas (Bakirci, 2009a). Los autores han propuesto estos modelos con el fin de encontrar alguna ecuación que pudiera adquirir aplicabilidad mundial, hasta ahora sin éxito (Gueymard *et al.*, 1995). La variable que ha ganado más popularidad es la duración de asoleamiento (S) (Sen, 2001; Driesse y Thevenard, 2002; Bakirci, 2009a; Despotovic *et al.*, 2015), ya que su medición es fácil y precisa, y su disponibilidad de datos a nivel mundial es alta

(Martínez-Lozano *et al.*, 1984; Sen, 2001; Driesse y Thevenard, 2002; Al-Mostafa *et al.*, 2014). La duración de asoleamiento es la cantidad de tiempo de un día en que la señal de un pirheliómetro supera los 120 W/m² (WMO, 1982, 2008) y la forma de incorporarla en los modelos es dividiéndola (normalizándola) por su máximo teórico (S₀). Besharat *et al.* (2013) concluyeron que los modelos de radiación solar global que usan esta variable tienen mejor ajuste que otros que se basan en la temperatura o en la nubosidad.

La mayoría de estos modelos han sido estimados usando datos de un lugar o área geográfica determinada (Despotovic *et al.*, 2015), por lo que su selección para aplicarlo en otro emplazamiento es difícil, ya que los modelos son sitio dependientes (Suehrcke *et al.*, 2013; Despotovic *et al.*, 2015). Por otro lado, no se ha realizado un análisis estadístico adecuado a los modelos, ya que los autores evalúan el desempeño global de estos, pero no la significancia estadística de sus coeficientes, lo que puede inclinar la elección hacia un modelo más complejo y estadísticamente menos eficiente (Merino, 2013).

1.2 Hipótesis de trabajo

Aumentar la complejidad de los modelos de radiación solar basados en la duración de asoleamiento no mejora su calidad estadística, es decir, su poder predictivo.

1.3 Objetivos

Considerando la hipótesis planteada, el objetivo general del trabajo fue analizar estadísticamente modelos de radiación solar global incidente sobre una superficie horizontal a nivel del suelo, basados en la duración de asoleamiento.

Los objetivos específicos asociados al desarrollo del objetivo general son:

1. Estudiar los modelos más usados de radiación solar global incidente sobre una superficie horizontal basados en la duración de asoleamiento a partir de un análisis del estado del arte.

- Generar una base de datos mundial con los promedios mensuales de las mediciones diarias de radiación solar recibida sobre una superficie horizontal y duración de asoleamiento de las estaciones radiométricas disponibles en el *World Radiation Data Center* (WRDC), que cumpla con criterios de control de calidad.
- Determinar el cumplimiento de los supuestos de la Regresión Lineal Múltiple usando la base de datos mundial y seis subconjuntos representativos de la variabilidad climática y geográfica del mundo.
- 4. Estimar modelos de radiación solar global basados en la duración de asoleamiento usando las diferentes bases de datos.
- 5. Comparar las predicciones entregadas por los modelos de radiación solar basados en la duración de asoleamiento con las bases de datos.

1.4 Metodología de trabajo

En primer lugar, se realizó una síntesis del estado del arte de los modelos estadísticos de radiación solar global basados en la duración de asoleamiento, clasificándolos según sus formas funcionales. Se consideró como punto de partida al modelo propuesto por Ångström en 1924. Además, se identificaron los indicadores de desempeño estadístico usados y las bases de datos con los que fueron estimados los coeficientes de los modelos.

Luego, se generó una base de datos mundial de promedios mensuales de radiación solar global recibida sobre una superficie horizontal y duración de asoleamiento obtenidos del *World Radiation Data Center* (WRDC). Esta base de datos se sometió a un estricto control de calidad, donde se identificaron y eliminaron los años de datos con mediciones físicamente imposibles, *outliers* y los años de datos que no cumplen con un 99.73 % de nivel de confianza ($\pm 3 \sigma$). Cabe destacar que en conjunto a estos criterios, se excluyeron los años de datos que tuvieran menos de 12 mediciones, para evitar un posible sesgo estacional. De la base de datos mundial, se seleccionaron seis bases de

datos locales, donde cada una estaba formada por las mediciones de una estación radiométrica con características geográficas y climáticas diferentes. Estas bases de datos fueron utilizadas para analizar estadísticamente el desempeño de los modelos a nivel local. Usando las siete bases de datos (seis locales y mundial), se verificó el cumplimiento de los supuestos *a priori* de la técnica de Regresión Lineal Múltiple, usada en la estimación de los modelos.

Posteriormente, se estimaron los modelos de radiación solar con las diferentes bases de datos y se evaluaron sus desempeños estadísticos usando los indicadores R^2 , test-t, SSR y RMSE. Finalmente, al modelo con el mejor desempeño estadístico, se le agregaron variables de desagregación geográfica y estacional, para saber si era posible aumentar su poder predictivo. Además, se estimó un modelo lineal segmentado según intervalos de asoleamiento relativo y se compararon sus predicciones de radiación solar con las del mejor modelo evaluado.

1.5 Principales resultados y conclusiones

Se clasificaron los modelos de radiación solar global incidente sobre una superficie horizontal a nivel del suelo basados en la duración de asoleamiento en seis grupos correspondientes a las formas matemáticas más frecuentes encontradas en la literatura. Se consolidó una base de datos mundial con las mediciones disponibles en el *World Radiation Data Center*, la cual fue depurada bajo criterios de control de calidad, obteniéndose un conjunto de 131 460 pares de duración de asoleamiento promedio mensual y radiación solar global promedio mensual, provenientes de 875 estaciones meteorológicas emplazadas en distintos puntos del planeta.

Al verificar los supuestos que deben cumplir los residuos de los datos para aplicar la Regresión Lineal Múltiple en la estimación de los coeficientes de los modelos, se obtuvo que las mediciones de radiación solar global y duración de asoleamiento promedios mensuales de algunas estaciones radiométricas incumplen algunos de los supuestos, tales como la homocedastidad y la normalidad de los residuos. Este problema se resuelve al dividir estos datos por sus máximos teóricos, es decir, convirtiendo las mediciones a asoleamiento relativo e índice de claridad. Al analizar la base de datos mundial, se encontró el mismo comportamiento. La evaluación estadística de modelos entregó que los que poseían estructuras polinómicas, como cuadrática o cúbica, tienen problemas de significancia estadística en sus coeficientes. El modelo de Ångström tuvo un bajo ajuste debido a la restricción impuesta por su forma funcional, lo que confirma los resultados mostrados en otros estudios. El modelo Logarítmico entrega predicciones físicamente imposibles de radiación solar cuando el asoleamiento relativo tiende a cero. Por otro lado, el Modelo Ångström-Prescott fue el que obtuvo el mejor desempeño estadístico. Los coeficientes obtenidos para el modelo son a = 0.223 y b = 0.529, el cual es capaz de predecir hasta en un 85 % la variabilidad presente en la base de datos mundial.

Al analizar gráficamente las mediciones de radiación solar y horas de asoleamiento promedio mensual de algunas de las estaciones que conforman la base de datos mundial, se encontró una dependencia geográfica que produce diferentes distribuciones en los datos según la estación del año a la que pertenecen. Por lo tanto, se segmentó la base de datos mundial por rangos de latitud geográfica. Posteriormente, los segmentos obtenidos fueron divididos por estaciones del año, generando un total de diez grupos de datos y con cada uno de ellos, se estimó un modelo lineal (Ångström-Prescott). Los diez modelos estimados lograron disminuir en un 8.5 % los errores de predicción respecto al Modelo Ångström-Prescott, estimado con la base de datos sin segmentar, siendo en la estación de invierno donde se produjeron las mayores reducciones de los errores.

En cuanto a las bases de datos locales, la estimación de un modelo lineal para cada una de sus estaciones del año produce reducciones importantes del error de predicción cuando la estación radiométrica está emplazada fuera del área tropical. Las estaciones radiométricas ubicadas en la zona tropical no presentaron una reducción considerable del error. Lo anterior se debe a que la diferencia entre las estaciones del año no es evidente en esta zona geográfica.

Por otro lado, visualmente se notó que el Modelo Ångström-Prescott no representa de la mejor forma a los datos que poseen un asoleamiento relativo cercano a cero y a uno, por lo que se decidió estimar modelos lineales segmentados y continuos según intervalos de asoleamiento relativo. Los resultados de este análisis mostraron que un modelo lineal segmentado según intervalos de asoleamiento relativo entrega predicciones de radiación solar más precisas que el Modelo Ångström-Prescott cuando $\overline{S}/\overline{S}_0 \leq 0.15$. Por lo tanto, agregar más complejidad al Modelo Ångström-Prescott, como términos polinómicos, conversión de variables a exponenciales o logarítmicas y agregar variables de desagregación geográfica y estacional, no mejora su capacidad predictiva a nivel mundial. Sin embargo, un modelo lineal segmentado según rangos de asoleamiento relativo, posee una mayor capacidad predictiva que el Modelo Ångström-Prescott cuando $\overline{S}/\overline{S}_0 \leq 0.15$.

En un futuro, sería interesante combinar los criterios de desagregación geográfica y estacional con el modelo lineal segmentado según intervalos de asoleamiento relativo. Además, se podrían complementar las predicciones de modelos basados en la duración de asoleamiento con aquellos que utilizan imágenes satelitales para predecir la radiación solar.

1.6 Organización de la tesis

La tesis está compuesta por cinco capítulos. En el Capítulo 2, se analizan distintos tipos de modelos de radiación solar que usan la duración de asoleamiento como variable explicativa y se presentan las condiciones requeridas para poder estimarlos. En el Capítulo 3, se presenta el proceso con el que se generó la base de datos mundial con la que se evaluaron los modelos de radiación solar y el control de calidad al que fue sometida, mientras que en el cuarto, se verifica el cumplimiento de los supuestos necesarios para estimar los modelos con la técnica de Regresión Lineal Múltiple y se muestran los resultados de la evaluación estadística de los modelos de radiación solar, empleando las diferentes bases de datos. En el Capítulo 5 se presentan las conclusiones y comentarios finales.

CAPÍTULO 2 MODELOS ESTADÍSTICOS DE RADIACIÓN SOLAR BASADOS EN LA DURACIÓN DE ASOLEAMIENTO

2.1 Introducción

En el ámbito de la eficiencia energética es imprescindible conocer la cantidad de radiación solar incidente en la superficie terrestre, pero debido a la baja disponibilidad de mediciones, se han propuesto diversos modelos estadísticos para predecirla.

En este capítulo, se muestran las variables explicativas y los modelos de radiación solar global basados en la duración de asoleamiento que se estudiaron en esta tesis. Se presenta un análisis crítico de ellos, donde se exponen sus fortalezas y debilidades. Además, se presentan los supuestos estadísticos que deben cumplir los modelos para usar la técnica de Regresión Lineal Múltiple en la estimación de sus coeficientes.

2.2 Conceptos previos

En este trabajo se estudiaron modelos de radiación solar global incídete sobre una superficie horizontal en la superficie terrestre basados en la duración de asoleamiento, los cuales utilizan el asoleamiento relativo y el índice de claridad diario promedio mensual como variables explicativas. Las dos variables son explicadas a continuación.

2.2.1 Índice de claridad diario

Al atravesar la atmósfera, la radiación solar es transmitida, absorbida e incluso reflejada por el efecto del vapor de agua, las nubes, el ozono y los aerosoles que existen en sus distintas capas, tal fenómeno que se conoce como dispersión de la radiación solar. De estas interacciones resultan las componentes de la radiación solar mostradas en la Figura 2.1. La radiación solar directa viaja desde el sol a la superficie terrestre sin sufrir ninguna dispersión atmosférica, mientras que la radiación solar difusa proviene de todo el cielo visible, de todas las direcciones, pues fue atenuada y redireccionada por la dispersión atmosférica. La radiación solar global es la suma de ambas. Cabe

Figura 2.1 Componentes de la radiación solar global

destacar que existe una tercera componente llamada radiación solar reflejada, y, como su nombre indica, es aquella reflejada por la superficie terrestre. Como en este caso sólo interesan las mediciones sobre superficies horizontales, no se considera ésta componente.

La radiación solar global es medida con un instrumento llamado Piranómetro, el cual mide la radiación solar que se recibe del espectro solar total y de todo el hemisferio (visión de campo de 180 grados), usualmente sobre una superficie horizontal. Si al piranómetro se le coloca un rastreador de sol o un anillo de sombra que siga la trayectoria del sol durante el día y que no permita que la radiación solar directa llegue a la superficie de medición, entonces el instrumento medirá radiación difusa. La radiación solar directa es medida por pirheliómetros, los que miden la radiación del sol y de porción de cielo alrededor de él, en una superficie normal a la dirección de propagación.

Por otro lado, la radiación solar global diaria incidente en una superficie horizontal en el límite exterior de la atmósfera (H_0) es un parámetro completamente teórico y se calcula a través de la Ecuación 2.1 (Duffie y Beckman, 2013):

$$H_0 = \frac{24^{*3600 \,G_{sc}}}{\pi} \left(1 + 0,033 \cos\left(\frac{360 \,n}{365}\right) \right) (\cos\phi\,\cos\delta\,\sin\omega_s + \frac{\pi\,\omega_s}{180} \sin\phi\,\sin\delta), \tag{2.1}$$

donde:

G_{sc} es una constante igual a 1367 W/m², conocida como Constante Solar (Duffie y Beckman, 2013; WRDC, 2017). Físicamente, es la energía por unidad de tiempo recibida por una

superficie perpendicular a la dirección de propagación de la radiación justo en el límite exterior de la atmósfera,

- *n* es el número correspondiente al día del año para el cual se quiere calcular H₀. Siendo n=1 el primero de enero.
- φ es la latitud del lugar en estudio, medido desde el ecuador hacia el norte y hacia el sur. El norte es positivo, -90° ≤ φ ≤ 90°,
- δ es la declinación de un día determinado. Se define como el ángulo entre la posición del sol en el medio día solar y el plano del ecuador. El norte es positivo, -23.5° $\leq \delta \leq$ 23.5° y se calcula mediante la Ecuación 2.2 (Cooper, 1969):

$$\delta = 23.45 \sin\left(360\frac{284+n}{365}\right) \qquad \text{y} \tag{2.2}$$

- ω_{s} es el ángulo horario de puesta de sol dado por la Ecuación 2.3: $\cos \omega_{s} = -\tan \phi \tan \delta$. (2.3)

Otra definición de H_0 es la radiación solar global que incidiría en una superficie horizontal a nivel del suelo en ausencia de atmósfera, también es conocida como radiación extraterrestre.

El índice de claridad diario promedio mensual $(\overline{H}/\overline{H}_0)$ es la variable dependiente de los modelos estudiados y se obtiene mediante la división entre la radiación solar global diaria promedio mensual recibida sobre una superficie horizontal a nivel del suelo terrestre (\overline{H}) y la que teóricamente incidiría en una superficie de las mismas características y periodo de tiempo, en el límite exterior de la atmósfera (\overline{H}_0) .

2.2.2 Asoleamiento relativo diario

La duración de asoleamiento diaria (S) es la cantidad de horas de un día en que la irradiancia (intensidad de la radiación) solar directa excede los 120 W/m² (WMO, 1982, 2008). El término fue definido por la *World Metereological Organization* en el 2003.

Los instrumentos utilizados para medir la duración de asoleamiento diaria (S) son los registradores Campbell-Stokes. Estos utilizan un lente de cristal esférico para enfocar los rayos del sol sobre una cinta diseñada para que se queme cuando la intensidad sea mayor al umbral. La longitud total de la quemadura define la cantidad de horas luminosas.

En 1962 la WMO definió un diseño estandarizado de los registradores Campbell-Stokes, llamado *Interim Reference Sunshine Recorder* (IRSR), el cual tiene una incertidumbre de ±0.1 h (WMO, 2008). Actualmente, pueden utilizarse instrumentos más modernos para medirla, como el pirheliómetro (Badescu, 2008).

Por otro lado, la duración de asoleamiento máxima diaria (S_0) es un parámetro teórico y es obtenido mediante la Ecuación 2.4 (Duffie y Beckman, 2013):

$$S_0 = \frac{2}{15} \cos^{-1} (-\tan \phi \, \tan \delta) \,. \tag{2.4}$$

La variable independiente de los modelos es el asoleamiento relativo diario promedio mensual $(\overline{S}/\overline{S}_0)$, el cual se obtiene mediante la división de la duración de asoleamiento diaria promedio mensual (\overline{S}) con su máximo teórico diario promedio mensual (\overline{S}_0) . Cabe destacar que el asoleamiento relativo es un indicador climatológico indirecto del estado del cielo (Paulescu *et al.*, 2016), que está asociado a la luminosidad que llega a un lugar de la superficie terrestre.

2.3 Modelos de radiación solar basados en la duración de asoleamiento

En el último siglo, se han propuesto variadas formas funcionales de modelos de radiación solar global basados en la duración de asoleamiento. En 1919, Kimball (1919) fue el primero en sugerir que la radiación solar global diaria estaba relacionada con la duración de asoleamiento. Cinco años después, Ångström (1924) propuso un modelo lineal para Estocolmo, Suecia, utilizando promedios mensuales (Angström, 1956), el cual es mostrado en la Ecuación 2.5:

$$\frac{\overline{\mathrm{H}}}{\overline{\mathrm{H}}_{\mathrm{C}}} = k + (1 - k) \frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_{\mathrm{0}}} \,. \tag{2.5}$$

Una década y media después, el modelo de Ångström fue modificado por Prescott (1940), resultando la Ecuación 2.6. Este modelo es conocido como Modelo Ångström-Prescott, nombrado así por Martínez-Lozano *et al.* (1984). Actualmente, es el más usado a nivel mundial para predecir radiación solar global incidente en una superficie horizontal (Yorukoglu y Celik, 2006; Despotovic *et al.*, 2015).

$$\frac{\overline{\mathrm{H}}}{\overline{\mathrm{H}}_0} = a + b \frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_0} \,. \tag{2.6}$$

Se observa que ambos son modelos lineales y las variables usadas son tasas ($\overline{H}/\overline{H}_0$, $\overline{H}/\overline{H}_C$ y $\overline{S}/\overline{S}_0$). La ventaja de utilizar al asoleamiento relativo diario promedio mensual ($\overline{S}/\overline{S}_0$) en la estructura del modelo, es que elimina el efecto de la latitud y la declinación solar, dejando la nubosidad como único factor a considerar (Martínez-Lozano *et al.*, 1984), implicando necesariamente el uso de radiación solar relativa ($\overline{H}/\overline{H}_0$, $\overline{H}/\overline{H}_C$) (Martínez-Lozano *et al.*, 1984). Además, es importante comentar que el tipo de datos recomendado para este tipo de modelos son promedios mensuales, pues se reduce el sesgo en los datos, al contrario de las mediciones diarias u horarias (Sen, 2001).

En la estructura del modelo de Ångström se observa al coeficiente empírico k, el cual se interpreta como la transmisividad promedio de las nubes (Stefu *et al.*, 2016). El Modelo Ångström-Prescott tiene dos constantes empíricas ($a \ y \ b$) en su forma funcional, cuya suma se interpreta como la transmisividad promedio de la atmósfera (Paulescu *et al.*, 2016). Además, existe la relación k = a / (a + b) (Angström, 1956) entre el coeficiente k del modelo de Ångström y los coeficientes $a \ y \ b$ del Modelo Ångström-Prescott.

La ventaja más importante del Modelo Ångström-Prescott es que utiliza a \overline{H}_0 en su forma funcional (Martínez-Lozano *et al.*, 1984; Rietveld, 1978), el cual es un parámetro completamente teórico. En cambio, en el Modelo de Ångström es necesario usar la radiación solar global promedio mensual incidente en una superficie horizontal en día completamente despejado (\overline{H}_C). En otras palabras, el modelo requiere de datos filtrados según esta condición para ser usado, pero como se mencionó antes, la disponibilidad de mediciones es baja, por lo que generalmente \overline{H}_C se calcula con modelos de cielo despejado, donde el más conocido es el modelo del ESRA (Rigollier *et al.*, 2000). Otra desventaja del modelo propuesto por Ångström es que su forma funcional hace disminuir su ajuste

(Stefu *et al.*, 2016), pues impone que la suma del intercepto más la pendiente debe ser igual a uno, restricción que es eliminada en el Modelo Ångström-Prescott.

Cabe destacar que el modelo de Ångström predice una radiación solar global (\overline{H}) cercana a cero cuando la duración de asoleamiento también lo es, pero un $\overline{S} \approx 0$ sólo dice que en ese día las nubes fueron lo suficientemente opacas para reducir la irradiancia solar directa a menos del umbral requerido la mayor parte del día (Fritz y MacDonald, 1949). Además, el Modelo Ångström-Prescott tiene la desventaja de que sus coeficientes son espacio dependientes (Martínez-Lozano *et al.*, 1984; Suehrcke *et al.*, 2013) y varían según el periodo de agregación de los datos (horario, diario o mensual) (Gueymard *et al.*, 1995). Por otro lado, no hay una clara tendencia respecto a la variación estacional de los coeficientes del Modelo Ångström-Prescott (Martínez-Lozano *et al.*, 1984).

Rietveld (1978) recolectó diferentes estimaciones de coeficientes *a* y *b* del Modelo Ångström-Prescott y propuso un nuevo método para estimarlos a partir del promedio anual de $\overline{S}/\overline{S}_0$, tal como se muestra en la Figura 2.2. Rietveld (1978) mencionó que la dependencia de los coeficientes *a* y *b* con el asoleamiento relativo medio ($\overline{S}/\overline{S}_0$) era esperable, considerando la naturaleza de los coeficientes.

Figura 2.2 Dependencia de los coeficientes *a* y *b* y el promedio anual de $\overline{S}/\overline{S}_0$

En la Figura 2.2 se observan las curvas que fueron ajustadas a los coeficientes. Sin embargo, Rietveld (1978) concluyó que no habían suficientes datos para respaldar que la aplicación de su modelo fuera mundial y que era recomendable que otros investigadores analizaran sus datos de manera similar.

Posteriormente, varios autores han propuesto modificaciones no lineales del Modelo Ångström-Prescott, tales como el modelo Cuadrático (Ögelman *et al.*, 1984) mostrado en la Ecuación 2.7, el Cúbico (Bahel *et al.*, 1987) presentado en la Ecuación 2.8, el Logarítmico (Ampratwum y Dorvlo, 1999) expuesto en la Ecuación 2.9 y el modelo Exponencial (Almorox y Hontoria, 2004) de la Ecuación 2.10, pero la mayoría de ellos no tienen una interpretación física y no se le ha aplicado un análisis estadístico apropiado a sus coeficientes (Despotovic *et al.*, 2015).

$$\frac{\overline{H}}{\overline{H}_{0}} = a + b \frac{\overline{S}}{\overline{S}_{0}} + c \left(\frac{\overline{S}}{\overline{S}_{0}}\right)^{2}, \qquad (2.7)$$

$$\frac{\overline{H}}{\overline{H}_{0}} = a + b \frac{\overline{S}}{\overline{S}_{0}} + c \left(\frac{\overline{S}}{\overline{S}_{0}}\right)^{2} + d \left(\frac{\overline{S}}{\overline{S}_{0}}\right)^{3}, \qquad (2.8)$$

$$\frac{\overline{H}}{\overline{H}_{0}} = a + b \log \left(\frac{\overline{S}}{\overline{S}_{0}}\right) \qquad y \qquad (2.9)$$

$$\frac{\overline{H}}{\overline{H}_{0}} = a + b e^{\frac{\overline{S}}{\overline{S}_{0}}}. \qquad (2.10)$$

Investigadores como Almorox y Hontoria (2004), Li *et al.* (2011) y Bakirci (2017) proponen que un polinomio cúbico entregaría un mayor ajuste (\mathbb{R}^2) a los datos. Sin embargo, Despotovic *et al.* (2015) mostró que un modelo lineal (Ångström-Prescott), estimado por Khogali *et al.* (1983) para seis estaciones radiométricas en Yemen, obtuvo el mejor desempeño estadístico entre 101 diferentes modelos de radiación solar global basados en la duración de asoleamiento, estimados para lugares o áreas específicas. Además, Tarhan y Sari (2005) y Merino (2013) mostraron que los modelos de tercer grado pueden tener problemas de significancia en sus coeficientes, al igual que los cuadráticos (Bakirci, 2009b). Debido a lo anterior, el Modelo Ångström-Prescott sigue siendo preferido ante otros más complejos (Ben Jemaa *et al.*, 2013), ya sea por su simpleza, buen ajuste o amplia aplicabilidad (Almorox y Hontoria, 2004). Suehrcke (2000) propuso un modelo no lineal físicamente basado, derivado las propiedades de la radiación solar, aplicable a nivel universal (Driesse y Thevenard, 2002), que a diferencia del Modelo Ångström-Prescott tiene una constante semi-empírica (\overline{K}_{clear}) que depende de las condiciones atmosféricas locales (Suehrcke, 2000). \overline{K}_{clear} se interpreta como la razón entre la radiación solar global que incide en un día completamente despejado (H_C) y la radiación extraterrestre diaria (H₀), ambas promedios mensuales. \overline{K}_{clear} normalmente varía entre 0.65 – 0.75 (Suehrcke, 2000; Driesse y Thevenard, 2002). El modelo propuesto por Suehrcke es el mostrado en la Ecuación 2.11:

$$\frac{\overline{\mathrm{H}}}{\overline{\mathrm{H}}_{0}} = \overline{\mathrm{K}}_{\mathrm{clear}} \sqrt{\frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_{0}}} \,. \tag{2.11}$$

Driesse y Thevenard (2002) pusieron a prueba a este modelo y al Ångström-Prescott ante una base de datos mundial conformada por aproximadamente 73 mil pares de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de 677 estaciones meteorológicas obtenidas del *World Radiation Data Center* (WRDC). Los autores concluyeron que si bien el modelo de Suehrcke tiene una precisión similar al Ångström-Prescott, no logra superarlo, pues obtuvieron un RMSE igual 1.69 y 1.60 MJ/m²/día respectivamente.

Una de las desventajas del modelo de Suehrcke es que predice un índice de claridad ($\overline{H}/\overline{H}_0$) igual a cero cuando el asoleamiento relativo ($\overline{S}/\overline{S}_0$) igual a cero, pero en un día completamente nublado igualmente hay radiación solar (Driesse y Thevenard, 2002). Además, es imposible que $\overline{H}/\overline{H}_0$ sea igual a cero, pues al ser valores promedios mensuales, implicaría que el modelo predice que no amaneció en todo un mes.

Por otro lado, Driesse y Thevenard (2002) mostraron que ambos modelos son incapaces de explicar la variabilidad de las mediciones respecto al promedio, tal como se muestra en la Figura 2.3. En la figura se observa que ambos modelos tienen una buena predicción del promedio de las mediciones, pero el rango en el que se distribuyen es bastante amplio. Algunos investigadores han propuesto que la variabilidad nombrada se debe a la dependencia espacial y estacional de las condiciones atmosféricas locales, pero medir o estimar la transmisividad atmosférica de un cierto emplazamiento requiere de un proceso complejo (Driesse y Thevenard, 2002; Suehrcke *et al.*, 2013).

Figura 2.3 Variabilidad de los datos y la aplicación los modelos Ångström-Prescott y Suehrcke a la base de datos (Driesse y Thevenard, 2002)

En la Tabla 2.1 se muestra un consolidado de las formas funcionales más frecuentes de modelos de radiación solar global indecente sobre una superficie horizontal, basadas en la duración de asoleamiento. Además, se presentan las fuentes que las han estudiado, los coeficientes de estimación obtenidos según las bases de datos utilizadas y algunos indicadores del desempeño estadístico de los modelos. En la octava columna de la tabla, entre paréntesis, se muestra los periodos de integración de las mediciones que componen cada base de datos.

Es importante notar que la forma funcional propuesta por Prescott (1940) (Modelo Ångström-Prescott) es la que posee la mayor cantidad de estudios relacionados, seguido por sus modificaciones polinómicas de grado dos y tres. Cabe mencionar que en la Tabla 2.1 se reafirma que la mayoría de los modelos fueron estimados para una o varias estaciones meteorológicas de áreas geográficas específicas, sin la aplicación de una evaluación estadística adecuada al modelo y a sus coeficientes. Además, es importante notar que los estudios más actuales utilizan mediciones diarias, no mensuales como recomendó Ångström (1956).

Modelo		(Coeficiente	s		N° estaciones	Dośc	Evente	Test estadísticos		
	k	a	b	С	d	(D/M)	r ais	ruente	R ²	RMSE	MPE
Ångström	0.250					1 (M)	Suecia (Estocolmo)	Angström (1924)			
7 ingstrom	0.368					13 (M)	Europa	Stefu et al. (2016)	0.791		
		0.220	0.540			- (M)		Prescott (1940)			
		0,350	0.610			11 (-)	USA	Fritz y MacDonald (1949)			
		0.230	0.480			32 (M)	13 países	Black <i>et al.</i> (1954)			
		0.230	0.480			- (M)	Estaciones entre 40°N y 4 <mark>0</mark> °S	Page (1961)			
		0.191	0.571								
		0.297	0.432			6 (M)	Yemen	Khogali et al. (1983)			
		0.262	0.454								
		0.177	0.869			31 (-)	Italia	Jain (1986)			
		0.175	0.552			1 (M)	Arabia Saudita (Dhahran)	Bahel et al. (1986)			4
		0.174	0.615			1 (M)	Jordan (Amman)	Alsaad (1990)			-0.27
Ångström-		0.180	0.620			42 (M)	Nivel mundial	Rietveld (1978)			
Prescott		0.192	0.590			1 (M)	China (Macau)	Newland (1989)			
		0.241	0.488			1 (M)	Botswana (Sebele)	Luhanga y Andringa (1990)			
		0.206	0.546			1 (M)	Francia (Corsica)	Louche et al.(1991)		0.029	
		0.140	0.570			2 (M)	USA (Tennesse)	Lewis (1992)		0.973	0.99
		0.154	0.787			10 (M)	Estaciones entre 60°N y 70°N	Gopinathan y Soler (1992)			3.8
		0.360	0.340			1 (M)	Nigeria (Lagos)	Maduekwe y Chendo (1995)		0.042	
		0.215	0.527			1 (M)	Lybia (Tripoli)	Said et al. (1998)		0.015	1.3
		0.234	0.499			677 (M)	Nivel mundial	Driesse y Thevenard (2002)		0.44	11.5
		0.217	0.545			16 (M)	España	Almorox y Hontoria (2004)	0.864		

Tabla 2.1Resumen de modelos de radiación solar global basados en la duración de asoleamiento

Madala		(Coeficiente	es		N° estaciones	Doía do octimonión	Evente	Test estadísticos				
Wiodelo	k	а	b	С	d	(D/M)	Pais de estimación	ruchic	\mathbb{R}^2	RMSE	MPE		
							Omán:						
		-0.422	1.275				- Marmul		0.719	0.994	3.516		
		0.215	0.375			5 (M)	- Masirah	Ampratwum y Dorvlo	0.905	0.411	1.630		
		0.242	0.356			5 (11)	- Sallalah	(1999)	0.978	0.622	2.774		
		0.333	0.311				- Seeb		0.710	0.437	1.736		
		0.197	0.328				- Sur		0.835	0.388	1.805		
		0.267	0.475			3 (M)	Turquía	Ulgen y Hepbasli (2004)	0.968	0.126	1.323		
		0.133	0.647			69 (M)	China	Jin et al. (2005)		1.64	1.20		
		0.324	0.405			1 (M)	Pakistán (Karachi)	Ahmad y Ulfat (2004)		0.396			
		0.318	0.449			6 (M)	Turquía	Türk Toğrul y Toğrul (2002)		1.543	4.8		
		0.176	0.563			86 (D)	China	Rensheng et al. (2006)]	NSE=0.85	0		
		0.308	0.417			12 (M)	Turquía (Central Anatolia)	Aras et al. (2006)	0.986				
0		0.279	0.416			18 (M)	Turquía	Bakirci (2009b)	0.646				
Ångström- Prescott		0.228	0.509			4 (M)	India	Katiyar y Pandey (2010)			5		
							China (Tibet)						
		0.243	0.578				-Changdu			1.012	5.799		
		0.167	0.711			4 (M)	-Geer	Li <i>et al.</i> (2011)		0.719	2.133		
		0.301	0.533				-Lasa			0.792	2.736		
		0.174	0.784				-Naqu			1.262	6.616		
							Turquía		Err	or estimac	ión:		
		0.248	0.496			3 (D)	-Adana	Güclü et al. (2014)		3.12			
		0.193	0.329			- (-)	-Antakya			1.77			
		0.228	0.503				-Silifke			2.11			
		0.491	0.263			1 (D)	Francia (Troyes- Barberey)	Ben Jemaa et al. (2013)		4.90	-1.60		
		0.080	0.709			1 (D)	Algeria (Bejaia)	Ouali y Alkama (2014)	0.811	4.60	96		
		0.180	0.560			80 (D)	China	Liu et al. (2014)					
		0.552	0.217			59 (M)	Europa	Paulescu <i>et al.</i> (2016)	0.769				
		0.344	0.322			10 (D)	Turquía	Bakirci (2017)					

Madala		(Coeficient	es		N° estaciones	Doía do octimoción	Evente	Test estadísticos		
	k	а	b	С	d	(D/M)	Pais de estimación	ruente	R ²	RMSE	MPE
		0.195	0.676	-0.142		2 (D)	Turquía (Adana y Ankara)	Ögelman et al. (1984)			0.6
		0.145	0.845	-0.280		67 (M)	Turquía	Akinoğlu y Ecevit (1990)			8
		0.255	0.014	0.001		6 (M)	Turquía	Taşdemiroğlu y Sever (1991)			
		0.180	1.160	-0.910		1(M)	Nigeria (Lagos)	Maduekwe y Chendo (1995)		0.04	
		0.100	0.874	-0.255		1 (M)	Lybia (Tripoli)	Said et al. (1998)		0.014	1.2
		-5.367	13.27	-7.255		5 (M)	Omán: - Marmul		0.761	0.999	3.315
Cuadvática		-0.270	1.674	-0.858			- Masirah	sirah Ampratwum y Dorvlo lalah (1999) eb	0.940	0.336	1.336
		0.197	0.630	-0.264			- Sallalah		0.995	0.281	1.250
		0.943	-1.203	0.954			- Sur		0.710	0.458	1./35
		0.192	0.679	-0.123		16 (M)	16 (M) España	Almorox y Hontoria (2004)	0.865	0.409	1.005
		0.148	0.668	-0.079		5 (M)	Turquía	Aksoy (1997)			3.8
Cuauratico		0.154	1.171	-0.705		6 (M)	Turquía	Türk Toğrul y Toğrul (2002)		1.303	4.5
		0.140	0.613	0.035		69 (M)	China	Jin et al. (2005)		1.64	3.2
		0.348	0.320	0.007		1 (M)	Pakistán (Karachi)	Ahmad y Ulfat (2004)		0.387	1.17
		0.187 0.859 -0	-0.476		5 (M)	Turquía	Tarhan y Sari (2005)	0.834	0.029	-0.45	
		0.340	0.287	0.119		12 (M)	Turquía (Central Anatolia)	Aras et al. (2006)	0.988		
		0.255	0.512	-0.086		18 (M)	Turquía	Bakirci. 2009b	0.647		
		0.434	0.233	0.166		1 (D)	Francia (Troyes- Barberey)	Ben Jemaa et al. (2013)		4.43	-2.07
		0 583	-0 698	1 170			China (Tibet)			0.934	5 558
		0.142	0.773	-0.038		4 (M)	- Cnangau - Geer	Li et al (2011)		0.720	2.140
		0.493	-0.059	0.443		• (••••)	- Lasa	Li ci ui. (2011)		0.699	2.525
		0.189	0.733	0.042			- Naqu			1.262	6.638
		0.282	0.572	-0.224		10 (D)	Turquía	Bakirci (2017)			

Modelo —		(Coeficient	es		N° estaciones	Doía do octimoción	Evente	Test estadísticos		
	k	а	b	С	d	(D/M)	Pais de estimación	ruente	\mathbf{R}^2	RMSE	MPE
		0.160	0.870	-0.610	0.340	48 (M)	Nivel mundial	Bahel et al. (1987)		0.1-0.4	
		0.241	0.363	0.460	-0.371	1 (M)	Turquía (Izmir)	Ulgen y Hepbasli (2002)	0.920		
		0.230	0.381	0.469	-0.366	16 (M)	España	Almorox y Hontoria (2004)	0.865		
		0.128	0.725	-0.230	0.184	69 (M)	China	Jin et al. (2005)		1.63	1.20
		-2.428	11.95	-16.75	7.958	1 (M)	Turquía (Antalya)	Ertekin y Yaldiz (2000)		0.27	1.5
		0.180	0.981	-0.296	-0.266	6 (M)	Turquía	Türk Toğrul y Toğrul (2002)		1.308	4.8
		0.150	1.145	-1.474	0.963	86 (D)	China	Rensheng et al. (2006)]	NSE=0.867	7
		0.810	-3.340	7.380	-4.510	2 (M)	USA (Tennesse)	Lewis (1992)	0.981		0.81
		0.152	1.133	-1.113	0.452	5 (M)	Turquía	Tarhan y Sari (2005)	0.835		
Cúbico		0.483	-0.616	1.893	-1.098	12 (M)	Turquía (Central Anatolia)	Aras et al. (2006)	0.99		
		0.631	-0.725	1.209	-0.463	1 (-)	Turquía (Erzurum)	Bakirci (2007)			
		0.285	0.259	0.617	-0.483	3 (M)	Turquía	Ulgen y Hepbasli (2004)	0.972	0.108	1.348
		0.400	0.215	0.153	1196	1 (D)	Francia (Troyes- Barberey) China (Tibet)	Ben Jemaa et al. (2013)		4.55	-2.49
		1.09	-3.52	6.38	-3.17		- Changdu			0.910	5.40
		-5.42	21.51	-25.72	10.57	4 (M)	- Geer	Li et al. (2011)		0.737	2.22
		0.266	1.015	-1.216	0.841		- Lasa			0.699	2.52
		2.51	-10.99	19.54	-10.66		- Naqu			1.33	6.91
		-0.063	0.481	-0.764	0.412	4 (M)	Turquía	Teke y Yıldırım (2014)	0.596		
		0.143	1.498	-2.07	1.13	10 (D)	Turquía	Bakirci (2017)			

Modelo		(Coeficiente	S		N° estaciones	País de estimación	Fuente	Test estadísticos		
widuelo –	k	а	b	с	d	(D / M)		ruente	\mathbb{R}^2	RMSE	MPE
							Omán:				
		0.834	1.057				- Marmul	Ampratwum y Dorvlo (1999)	0.759	0.982	3.42
		0.580	0.283			5 (M)	- Masirah		0.922	0.367	1.44
		0.561	0.141			5 (WI)	- Sallalah		0.988	0.425	2.10
		0.638	0.249				- Seeb		0.699	0.442	1.78
Logarítmico		0.514	0.256				- Sur		0.833	0.389	1.83
		0.690	0.614			16 (M)	España	Almorox y Hontoria (2004)	0.842		
		0.645	0.484			18 (M)	Turquía	Bakirci (2009b)	0.638		
							China (Tibet)				
		0.747	0.707				- Changdu			1.07	5.93
		0.865	1.326			4 (M)	- Geer	Li <i>et al</i> . (2011)		0.71	2.06
		0.802	0.798				- Lasa			0.89	2.90
		0.888	1.075				- Naqu			1.29	6.28
		-0.027	0.310			16 (M)	España	Almorox y Hontoria (2004)	0.851		
		0.096	0.234			18 (M)	Turquía	Bakirci (2009b)	0.638		
Exponencial							China (Tibet)				
-		-0.023	0.336				- Changdu			0.99	5.76
		0.035	0.315			4 (M)	- Geer	Li et al. (2011)		0.74	2.23
		0.127	0.273				- Lasa			0.74	0.63
		-0.134	0.425				- Naqu			1.27	6.81

Entre los coeficientes estimados para el Modelo Ångström-Prescott, hay a uno que es menor a cero, pero esto es físicamente imposible, ya que los coeficientes del modelo representan fracciones de la radiación solar incidente en la superficie terrestre, por lo que no pueden ser negativos. Sin considerar ese modelo, en la Figura 2.4 se observa la distribución de los valores de los coeficientes *a* y *b* de los modelos lineales Ångström-Prescott mostrados de la Tabla 2.1. En círculos se observan los coeficientes estimados a partir de datos diarios (S/S₀ y H/H₀) y en puntos se ven los estimados con mediciones promedios mensuales ($\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$).

Figura 2.4 Distribución de los coeficientes a y b del Modelo Ångström-Prescott de la Tabla 2.1

De la Figura 2.4 se observa que la constante a, obtenida con datos mensuales, varía entre 0.13 y 0.36 y el coeficiente b entre 0.31 y 0.79. Además, se ve una clara proporcionalidad inversa entre ambos, mientras mayor a, menor b. También, es importante notar que el rango de distribución de los coeficientes obtenidos con mediciones diarias es mayor, lo que muestra que estimar un modelo mundial con datos diarios no es apropiado, ya que la variabilidad de las mediciones es muy alta, demostrando una sitio dependencia más grande.

2.4 Supuestos de la regresión lineal múltiple

Los modelos de radiación solar global basados en la duración de asoleamiento se estiman como regresiones lineales múltiples. Esta técnica usa el método de Mínimos Cuadrados Ordinarios (MCO) (Sen, 2001) para estimar los coeficientes, pero antes de aplicarla se deben considerar una
serie de restricciones (Johnston, 1980). Desafortunadamente, la estimación de los coeficientes de los modelos generalmente se realiza con *softwares* computacionales, sin verificar el cumplimiento de estas limitaciones, corriendo el riesgo de que los coeficientes y los indicadores estadísticos obtenidos resulten sesgados o ineficientes (Maddala, 1988; Sen, 2001), repercutiendo negativamente en el diseño eficiente de las edificaciones. Los supuestos de la Regresión Lineal Múltiple son los siguientes:

- Linealidad de las variables independientes. En este caso, hay sólo una variable independiente, el asoleamiento relativo $(\overline{S}/\overline{S}_0)$. Ésta es utilizada con diferentes potencias o transformándola a través logaritmos y exponenciales, por lo tanto, este supuesto se cumple.
- Independencia de los residuos. Debido a la naturaleza física de los datos, se puede decir que son independientes, pues la radiación incidente en un lugar del mundo, no influye a la que incide en otra zona, pues la radiación en un punto de la superficie terrestre depende de agentes como el Sol, latitud, etc. Además, la radiación solar que llega sobre un emplazamiento en un día cualquiera no afecta a la que incidirá al día siguiente, ya que eso depende del sol, las condiciones atmosféricas locales y la nubosidad diaria. Adicionalmente, la existencia de una posible dependencia de la radiación solar, junto a su variabilidad diaria, es atenuada por debido a que los datos utilizados son promedios mensuales.
- Homocedasticidad o igualdad de varianzas de los residuos. En caso contrario se dice que son heterocedásticos (Maddala, 1988). Estimar los modelos con base de datos heterocedásticas, invalida las pruebas de significancia (Maddala, 1988), como el test-t, y provoca una sobreestimación de sus bondades de ajuste, lo que es perjudicial cuando las predicciones de los modelos repercuten en el mundo real, tal como es el caso de la radiación solar.
- Normalidad de los residuos, es decir, que los residuos sigan una distribución normal. La falta
 de normalidad influye en la eficiencia de los estimadores del modelo y en los intervalos de
 confianza de los parámetros de los modelos. La falta de normalidad se puede deber a
 observaciones heterogéneas (error en medición de datos), entre otros factores.

Los últimos dos supuestos no se cumplen automáticamente, por lo que serán estudiados posteriormente.

2.5 Conclusiones

A lo largo de los años, debido a la falta de mediciones de radiación solar, una amplia gama de autores han propuesto modelos de radiación solar global basados en la duración de asoleamiento. Estos modelos poseen diferentes formas funcionales, siendo las más comunes la lineal, la cuadrática, la cúbica, la logarítmica y la exponencial. Una de las características de los modelos es que la mayoría han sido planteados y estimados para lugares o áreas geográficas específicas, por lo que se dificulta su elección cuando quieren ser utilizados en otro emplazamiento. Además, se ha estudiado el ajuste de los modelos a la base de datos y en algunos casos, la significancia estadística global del modelo. Sin embargo, usualmente no se estudia la significancia estadística de los coeficientes de los términos que componen los modelos. Algunos autores han mostrado indicios de problemas estadísticos en los coeficientes de los modelos es que no se ha verificado el cumplimiento de los supuestos *a priori* de la técnica Regresión Lineal Múltiple, la cual es usada para estimar los coeficientes de los modelos.

Considerando lo anterior, surge la necesidad de generar una base de datos mundial de promedios mensuales de radiación solar global incidente en una superficie horizontal y horas de duración de asoleamiento. Posteriormente, con esta base de datos se verificaron los supuestos requeridos, se evaluaron y analizaron estadísticamente las formas funcionales más comunes de modelos de radiación solar encontrados en la literatura.

CAPÍTULO 3 BASE DE DATOS DE RADIACIÓN SOLAR Y HORAS DE ASOLEAMIENTO

3.1 Introducción

La mayoría de los modelos de radiación solar global basados en la duración de asoleamiento han sido estimados para áreas geográficas específicas, lo que dificulta su extrapolación a otros emplazamientos. Además, estos modelos no han sido sometidos a un análisis estadístico completo que permita identificar sus debilidades y fortalezas. Por otro lado, los coeficientes de los modelos estimados pueden resultar sesgados, si no se verifica el cumplimiento de los supuestos *a priori* de la técnica Regresión Lineal Múltiple.

Es por esto que en este capítulo se presenta la consolidación y depuración de una base de datos mundial de promedios mensuales de radiación solar global incidente sobre una superficie horizontal y horas de duración de asoleamiento. La base de datos mundial fue generada con el propósito de ser utilizada en la verificación del cumplimiento de los supuestos de la RLM y en el análisis estadístico aplicado a los modelos de radiación solar.

3.2 Generación de la base de datos mundial

Los datos utilizados en este estudio fueron obtenidos de la base de datos *online* del *World Radiation Data Center* (WRDC) (WRDC, 2017) actualizada hasta diciembre del año 2016. Este centro está ubicado en San Petersburgo, Rusia y se encarga de recolectar datos de radiación solar global y horas de duración de asoleamiento de los países miembros de la *World Meteorological Organization* (WMO) (WRDC, 2017) desde 1955. La ubicación de las más mil de estaciones meteorológicas que poseen datos en el WRDC se pueden observar en la Figura 3.1.

Además, en la Figura 3.1 se observa que en Europa es donde se encuentra la mayor cantidad de estaciones. A nivel mundial, el hemisferio norte posee la mayor cantidad de estaciones radiométricas con disponibilidad de datos en el WRDC.

Figura 3.1 Distribución en el mundo de las estaciones con mediciones en el WRDC (2017)

Del WRDC se pueden obtener mediciones de radiación solar global diaria incidente en una superficie horizontal a nivel del suelo (H) y promedios mensuales de ésta (\overline{H}). A su vez, hay mediciones disponibles de duración de asoleamiento diario promedio mensual (\overline{S}). Debido a lo anterior y porque se sugiere que los modelos sean estimados con promedios mensuales, la base de datos mundial está formada por este tipo de datos. Cabe mencionar que los datos utilizados en la estimación de los modelos son $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$, los cuales son obtenidos dividiendo (normalizando) a \overline{S} y a \overline{H} por sus máximos teóricos. La base de datos mundial se generó con la metodología utilizada en Myrik (2017), la cual es presentada en la Figura 3.2:

Figura 3.2 Metodología utilizada en la generación de la base de datos

En la Figura 3.2 se observa que el proceso consta de cuatro etapas. Las Etapas 1 y 2 se fusionan, ya que primero se debieron seleccionar las mediciones de \overline{S} y \overline{H} de las estaciones radiométricas desde el WRDC y consolidarlas en un archivo Excel. Las estaciones radiométricas consideradas debían ubicarse entre Círculo Polar Ártico y Antártico ($|\phi| \le 66^{\circ} 33' 46''$), dado que superando este límite hay días con 24 horas de luz u oscuridad, según la época del año. El archivo Excel contiene en cada una de sus hojas, todos los años disponibles de mediciones de \overline{S} y \overline{H} de una estación radiométrica, junto con sus coordenadas geográficas (latitud, longitud y altitud).

La tercera etapa consta de programar un código en MATLAB capaz de leer las mediciones de \overline{S} , \overline{H} y la latitud de todas las estaciones consolidadas en el Excel. Con el valor de la latitud de cada estación y los días recomendados como promedios del mes según Klein (1977), los cuales son mostrados en la Tabla 3.1, se calculó el valor de los máximos teóricos \overline{S}_0 (Ecuación 2.4) y \overline{H}_0 (Ecuación 2.1) para todos los meses del año y todas las estaciones. Cabe destacar que los días promedios del mes son válidos sólo para las latitudes antes mencionadas.

Mes	Fecha	n
E <mark>n</mark> ero	17	17
Febrero	16	47
Marzo	16	75
Abril	15	105
Mayo	15	135
Junio	11	162
Julio	17	198
Agosto	16	228
Septiembre	15	258
Octubre	15	288
Noviembre	14	318
Diciembre	10	344

Tabla 3.1Días recomendados como promedios de cada mes (Klein, 1977)

Luego, se dividieron (normalizaron) las mediciones de \overline{S} y \overline{H} por sus respectivos \overline{S}_0 y \overline{H}_0 , convirtiéndose en asoleamiento relativo promedio mensual ($\overline{S}/\overline{S}_0$) y en índice de claridad diario promedio mensual ($\overline{H}/\overline{H}_0$). Finalmente, la última etapa consiste en la representación gráfica de la base de datos mundial usando los dos tipos de datos, los pares de \overline{S} y \overline{H} , y los de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$.

Como resultado de esta metodología, se obtuvo una base de datos mundial conformada por 190 088 pares datos de 1009 estaciones meteorológicas. La cual se observa en la Figura 3.3, donde (a) está

formada por datos de \overline{S} y \overline{H} y (b) por los mismos convertidos a $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$. Cabe destacar que esta base de datos es la misma que se presenta en Myrik (2017).

Figura 3.3 Base de datos conformada por 190 088 pares de (a) \overline{S} y \overline{H} (b) $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$

Cabe destacar que en la Figura 3.3 (b), a simple vista se observan pares de datos con coordenadas mayores a uno, lo que es físicamente imposible, por lo que fue necesario aplicar un control de calidad a la base de datos mundial.

3.3 Control de calidad aplicado a la base de datos mundial

Un punto importante a considerar en la generación de bases de datos es la calidad de las mediciones, ya que en muchos casos aún no se garantiza su confiabilidad (Younes *et al.*, 2005). Esto podría generar predicciones erróneas de la radiación solar y un sobre o sub diseño de la infraestructura de los sistemas solares que se instalarán. La radiación solar es mucho más difícil de medir que otras variables meteorológicas (Moradi, 2009), por lo que es probable que sus mediciones presenten una mayor cantidad de errores. Además, se deben considerar los errores e incertidumbres presentes en cualquier medición (Younes *et al.*, 2005). Cabe mencionar que el error más importante es aleatorio y se debe a la operación, el mantenimiento y la lectura de los equipos (Moradi, 2009).

El primer control de calidad consistió en excluir los años de datos con menos de 12 meses de mediciones, ya que usar años incompletos podría generar algún tipo de sesgo estacional en los

coeficientes de estimación de los modelos (Despotovic *et al.*, 2015). Además, se aplicaron tres criterios de control de calidad la base de datos:

- Eliminación de los datos con radiación solar global físicamente imposible: $\overline{H} > \overline{H}_0$ (3.1)
- Eliminación de los datos con duración de asoleamiento físicamente imposible: $\overline{S} > \overline{S}_0$ (3.2)
- Eliminación de los datos con una radiación solar superior a la de un día completamente despejado:

$$\overline{H} > \overline{H}_{C} \tag{3.3}$$

Para calcular la radiación solar global incidente en una superficie horizontal en un día completamente despejado (\overline{H}_C) se utilizó el modelo *clear sky* del *European Solar Radiation Atlas* (ESRA) (Rigollier *et al.*, 2000), el cual es presentado en el Anexo 3.1. Este modelo es el mejor de su tipo, en cuanto a robustez y precisión (Rigollier *et al.*, 2000). Los buenos resultados obtenidos con el modelo se deben a que toma en cuenta el factor de turbiedad de Linke y la elevación del sitio, dos factores que influencian la radiación solar incidente sobre el suelo (Rigollier *et al.*, 2000). Mientras mayor es el factor de turbiedad de Linke, mayor es la atenuación de la radiación por la atmósfera en días despejados (Rigollier *et al.*, 2000). Los factores de Turbiedad de Linke para todas las estaciones y los 12 meses del año se encuentran en el Anexo 3.1.1.

El modelo del ESRA estima la irradiancia solar directa y difusa por separado, por lo que fue necesario integrar y sumar ambas componentes para obtener \overline{H}_{C} . Se realizó un análisis de sensibilidad para escoger el paso de tiempo con el que se realizaría la integración. El análisis arrojó que un paso de tiempo igual a un tercio de hora, es decir, cada 5° del ángulo horario (ω), es la mejor opción, pues es marginal la diferencia en los resultados al usar un paso mayor o menor a éste.

Para ejemplificar la utilización de los criterios, en la Figura 3.4 se muestra gráficamente la aplicación de las Ecuaciones 3.1 y 3.3 a los 33 años de mediciones de \overline{H} de la estación radiométrica ubicada un Maputo, Mozambique (25° 58' S, 32° 36' E). Cabe destacar que los datos de esta estación radiométrica están incluidos en la base de datos mundial.

Figura 3.4 Control de calidad aplicado a los datos de \overline{H} de Maputo

En la Figura 3.4 se observa que no hay mediciones que superen el límite impuesto por \overline{H}_0 . Sin embargo, hay 21 mediciones que superaron a \overline{H}_C (Ecuación 3.3), las cuales pertenecen a 12 años de datos, por lo que estos años deberían ser eliminados, quedando la estación de Maputo con 21 años de datos. Lo mismos se debe realizar con el criterio de la Ecuación 3.2 en cada estación radiométrica de la base de datos mundial.

Después de aplicar el criterio de control de calidad que elimina los años de datos incompletos de la base de datos mundial, se obtuvieron en total 144 124 pares de datos pertenecientes a 920 estaciones meteorológicas. Con la aplicación de la Ecuación 3.1 se identificaron 52 mediciones. Luego, se identificaron 18 pares de datos con $\overline{S} > \overline{S}_0$ y con la Ecuación 3.3 se identificaron 334 puntos. En total, 404 observaciones presentaron problemas de calidad. De éstas, 181 pertenecen a la estación ubicada en el Emirato de Sharjah (25° 20' N, 55° 31'E). Esta estación poseía 192 pares de datos, es decir, el 95% de sus datos no superó el control de calidad, por lo que se decidió eliminar la totalidad de las mediciones de la estación.

Resumiendo, se identificaron 415 pares de datos pertenecientes a 53 estaciones meteorológicas distribuidas alrededor del mundo con problemas de calidad. De éstas, 44 (83 %) poseen entre uno y seis datos con problemas de calidad. En la Figura 3.5 se muestran los años de datos a los que pertenecían las 415 mediciones que no superaron el control. Posteriormente, estos años de datos fueron eliminados.

Figura 3.5 Años de datos a los cuales pertenecen las 415 pares de datos identificados

Como resultado de la aplicación de los cuatro criterios de control de calidad mencionados, se obtiene una base de datos mundial compuesta por 142 464 pares pertenecientes a 912 estaciones meteorológicas, la cual es mostrada en la Figura 3.6.

Figura 3.6 Base de datos de (a) \overline{S} vs \overline{H} y (b) $\overline{S}/\overline{S}_0$ vs $\overline{H}/\overline{H}_0$ obtenida después de la aplicación de los criterios del control de calidad

En la Figura 3.6 (b) se observa que ya no hay los pares de datos con coordenadas mayores a uno. Además, hay un gran número de pares de datos que eran cercanos uno y que fueron excluidos gracias al criterio de la Ecuación 3.3.

En Figura 3.6 (a) se puede ver la base de datos de \overline{S} y \overline{H} luego de haber eliminado las mismas mediciones que en la Figura 3.6 (b). Adicionalmente, en la Figura 3.7 se muestra la distribución de la cantidad de estaciones según la cantidad de años de datos que superaron el control de calidad.

Figura 3.7 Cantidad de estaciones meteorológicas según la cantidad de años de datos

De la figura, se desprende que alrededor del 54% de las estaciones posee entre uno y nueve años de datos. Además, se puede notar que a medida que aumentan los años de datos, la cantidad de estaciones comienza a decaer. Tartu (58° 15' N, 26° 28' E), Estonia, es la estación que mayor cantidad de datos proporcionó (53 años de datos, es decir, 636 pares de mediciones).

Es importante mencionar que en la Figura 3.6 (b), a simple vista, se observa que aún existen datos apartados del resto, los que podrían ser *outliers* no reconocidos por el control de calidad. Por lo tanto, se identificaron cuáles eran las estaciones y los años de datos que parecen tener problemas de calidad. En la Tabla 3.2 se muestran cuáles son las estaciones y la cantidad de años que fueron eliminados.

Estación	País	Latitud	Longitud	Altitud	Total de años	Años eliminados
Christchurch	Nueva Zelanda	43° 29' S	172° 32' E	34	20	2
Luleå	Suecia	65° 33' N	22° 07' E	32	23	23
Santa Tecla	El Salvador	13° 41' N	89° 17' O	965	5	5
Santa Cruz Michapa	El Salvador	13° 26' N	88° 49' O	30	5	5
San Salvador	El Salvador	13° 43' N	89° 12' O	700	5	1
As Sulayyil	Arabia Saudita	20° 28' N	45° 34' E	600	7	7
Atenas	Grecia	38° 03' N	23° 40' E	136	4	2
Ulaangom	Mongolia	49° 48' N	92° 05' E	934	37	1
Graz	Austria	47° 05' N	15° 27' E	366	35	1
Ekaterimburgo	Rusia	56° 48' N	60° 38' E	237	40	1
Oimiakón	Rusia	63° 16' N	143° 09' E	726	22	22
Arcángel	Rusia	64° 35' N	40° 30' E	13	4	3
Norman Wells	Canadá	65° 17' N	126° 45' O	94	4	3
Yakutsk	Rusia	62° 05' N	129° 45' E	103	22	9

 Tabla 3.2
 Estaciones y cantidad de años de datos con meses outliers (Continúa)

Estación	País	Latitud	Longitud	Altitud	Total de años	Años eliminados
Umeå	Suecia	64° 08' N	21° 54' E	64	25	2
Vanavara	Rusia	60° 20' N	102° 16' E	260	22	1
Sjenica	Serbia	43° 16'N	20° 01' E	1015	3	1
Iqaluit	Canadá	63° 45' N	68° 33' O	22	8	2
Baker Lake	Canadá	64° 16' N	96° 00' O	51	2	1

 Tabla 3.2
 Estaciones y cantidad de años de datos con meses outliers (Continuación)

En la Figura 3.8 (a.1) y (b.1), en color rojo, se muestran los 92 años de datos que poseían meses identificados como *outliers*. En la Figura 3.8 (a.2) y (b.2) se encuentran las bases de \overline{S} vs \overline{H} y $\overline{S}/\overline{S}_0$ vs $\overline{H}/\overline{H}_0$ obtenidas luego de eliminar estos años. El tamaño de base de datos mundial resultante es de 141 360. Cabe observar que en la tabla hay una gran presencia de estaciones que se encuentran ubicadas cerca del Círculo Polar Ártico (altas latitudes), que tienen un alto $\overline{H}/\overline{H}_0$ y un muy bajo $\overline{S}/\overline{S}_0$. Este comportamiento puede deberse a que el instrumento mida una gran cantidad de radiación solar difusa que ha sido reflejada por las superficies blancas (nieve), aumentando la radiación solar global.

Figura 3.8 (a) Identificación de años de datos *outliers* (b) Base de datos mundial sin *outliers*

Adicionalmente, se le aplicó a la base de datos un procedimiento similar a la denominada *ridge of maximum density* usada por Suehrcke *et al.* (2013). La diferencia respecto a ese método es que, en lugar de ocupar el punto de máxima densidad de los datos, se utilizó el promedio de \overline{H} o $\overline{H}/\overline{H}_0$ de un determinado segmento de \overline{S} o $\overline{S}/\overline{S}_0$, respectivamente. Para la base de datos mundial sin normalizar, compuesta por mediciones de \overline{S} y \overline{H} , se definió un tamaño de segmento igual a $\Delta \overline{S}$ =0.75 horas y el rango aceptable de \overline{H} es de ±3 desviaciones estándar respecto al promedio del segmento, tal como se muestra en la Figura 3.9 (a).

Figura 3.9 a) Rangos de aceptación de \overline{H} por tramos cada $\Delta \overline{S}$ =0.75 horas (b) Años de datos con mediciones fuera de ±3 σ (c) Base de datos mundial definitiva de \overline{S} y \overline{H}

En cuanto a la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$, el tamaño de los segmentos es igual a $\Delta \overline{S}/\overline{S}_0=0.05$ y el rango aceptable de $\overline{H}/\overline{H}_0$ por segmento es de ±3 desviaciones estándar respecto al promedio, tal como se observa en la Figura 3.10 (a). Es importante mencionar que los datos conservados después de la aplicación de este proceso cumplen con un 99.73% de nivel de confianza (±3 σ).

Figura 3.10 a) Rangos de aceptación de $\overline{H}/\overline{H}_0$ por tramos cada $\Delta \overline{S}/\overline{S}_0=0.05$ (b) Años de datos con mediciones fuera de $\pm 3\sigma$ (c) Base de datos mundial definitiva de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$

En la Figura 3.9 (b) y Figura 3.10 (b) se muestran en rojo los años de datos que poseían meses que no superaron el nivel de confianza exigido, por lo que fueron eliminados. Tal como se mencionó antes, es necesario eliminar los 12 meses del año, ya que en caso contrario se generaría sesgo estacional en los coeficientes de estimación de los modelos. La base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ obtenida como resultado de este procedimiento es presentada en la Figura 3.10 (c). Esta base de datos está conformada por 131 460 pares de mediciones de 875 estaciones meteorológicas.

En la Figura 3.11 se muestra la cantidad de datos que posee la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ cada $\Delta \overline{S}/\overline{S}_0=0.1$ y los porcentajes correspondientes de cada segmento según el tamaño total de la base de datos.

Figura 3.11 Cantidad de datos cada $\Delta \overline{S}/\overline{S}_0=0.1$

Es posible notar que los datos de la primera y última barra, que corresponden al 20 % del eje de $\overline{S}/\overline{S}_0$, representan a sólo al 2 % de los datos, y la segunda y penúltima barra representan sólo a un 10 %. Por lo tanto, un 40 % del eje $\overline{S}/\overline{S}_0$ contiene sólo el 12 % de los datos, lo que da a entender que los datos con $\overline{S}/\overline{S}_0$ bajos o altos son menos frecuentes, lo que es lógico, ya que pensar que un mes del año estuvo en su mayoría nublado o despejado es poco probable. Lo anterior podría implicar que estos datos presenten un comportamiento diferente al del resto de la base de datos. Esto debe tenerse en cuenta al momento de estimar los modelos de radiación solar.

La base de datos de \overline{S} y \overline{H} resultante del procedimiento es la mostrada en la Figura 3.9 (c), la cual está formada por 134 616 pares de datos provenientes de 897 estaciones radiométricas. Éstas serán

las bases de datos mundiales utilizadas en los análisis posteriores. Es importante mencionar que la bases de datos de \overline{S} y \overline{H} obtenida es de un tamaño mayor a la de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$, ya que posee desviaciones estándar mayores (datos más distribuidos), por lo que el rango de aceptabilidad por segmento es más holgado, lo que explica la eliminación de una menor cantidad de datos.

3.4 Bases de datos locales

Adicional a la evaluación estadística de los modelos de radiación solar con la base de datos mundial, es interesante conocer el desempeño de los modelos a una menor escala. Debido a lo anterior, de la base de datos mundial se escogieron seis bases de datos locales, las cuales están compuestas por las mediciones de una estación radiométrica cada una. Las estaciones fueron seleccionadas en base a sus diferentes características climáticas, latitud geográfica y continente. Las características principales de éstas se muestran en la Tabla 3.3.

Continente	Estación	País	Latitud	Longitud	Altitud (m)	N° años	Clima según Köppen
Norte América	Vancouver	Canadá	49° 15' N	123° 15' O	87	12	Oceánico (Cfb)
Sudamérica	Punta Arenas	Chile	53° 00' S	70° 51' O	12	16	Subpolar Oceánico(Cfc)
Europa	Aberporth	Gales	52° 8' N	4° 34' O	134	34	Oceánico (Cfb)
Asia	Taipa Grande	China	22° 10' N	113° 34' E	100	28	Semiárido cálido (Bsh)
África	Maputo	Mozambique	25° 58' S	32° 36' E	70	21	Tropical sabana (Aw)
Oceanía	Darwin	Australia	12° 25' S	130° 54' E	35	18	Tropical sabana (Aw)

Tabla 3.3Descripción de las basesde datos locales

En la Figura 3.12 muestran las seis bases de datos locales. Es importante comentar que los datos de las estaciones mostradas en la Tabla 3.3 no se sustrajeron de la base de datos mundial, sino que sólo se seleccionaron los datos.

Figura 3.12 Mediciones de \overline{S} vs \overline{H} y convertidas a $\overline{S}/\overline{S}_0$ vs $\overline{H}/\overline{H}_0$ de las bases de datos locales

Cabe mencionar, que en la Figura 3.12 (a-f.2) se observa que los datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ (datos normalizados) presentan una distribución mucho más compacta que los datos de \overline{S} y \overline{H} (datos no normalizados) mostrados en la Figura 3.12 (a-f.1).

3.5 Conclusiones

En este Capítulo se presentó la metodología con la que se obtuvo la base de datos mundial utilizada en este estudio. Además, se presentó el control de calidad al que fueron sometidos los datos. Como

resultado de la depuración, se obtuvo una base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ compuesta por 131 460 pares de mediciones de 875 estaciones meteorológicas distribuidas alrededor del mundo. La base de datos mundial de \overline{S} y \overline{H} , resultante del mismo procedimiento, está conformada por 134 616 pares de datos provenientes de 897 estaciones. La diferencia de tamaños de ambas bases de datos, se debe a que la segunda presenta una mayor distribución en los datos, consiguiendo que una mayor cantidad de datos supere el nivel de confianza exigido.

Con el estricto control de calidad aplicado a la base de datos mundial, se redujo su tamaño en un 30 %, lo que demuestra la importancia de aplicar un correcto control de calidad. En caso de no aplicar uno, se estimarían los coeficientes de los modelos con datos aberrantes y físicamente imposibles, dando resultados sesgados y erróneos. Por otro lado, aplicar un control de calidad que sólo elimine los meses del año con problemas, podría generar un sesgo estacional en los coeficientes de los modelos. Por este motivo, se eliminó el año de datos completo cuando uno o más meses presentó problemas de calidad.

Además, resulta interesante evaluar el desempeño estadístico de los modelos de radiación solar global basados en la duración de asoleamiento a una menor escala. Debido a lo anterior, se seleccionaron y mostraron las seis estaciones radiométricas que conforman las bases de datos locales usadas en el análisis estadístico de los modelos de radiación solar a nivel local.

CAPÍTULO 4 EVALUACIÓN ESTADÍSTICA DE LOS MODELOS DE RADIACIÓN SOLAR GLOBAL

4.1 Introducción

En este Capítulo, se comprueban los supuestos exigidos por la técnica Regresión Lineal Múltiple (RLM) para estimar modelos. Además, se presentan los indicadores estadísticos usados en la evaluación del desempeño de los modelos. Luego, se exponen los resultados de la estimación y los indicadores estadísticos obtenidos de cada modelo de radiación solar, ante las bases de datos locales y la base de datos mundial. Posteriormente, se segmentó la base de datos según latitud geográfica y estaciones del año, se estimó un Modelo Ångström-Prescott para cada grupo de datos y se compararon los errores de éstos con los del modelo estimado para la base de datos sin segmentar. Finalmente, se estimó un modelo lineal segmentado y continuo según intervalos de asoleamiento relativo y se decidió si éste posee un mayor poder predictivo que el mejor modelo de la literatura.

4.2 Comprobación de los supuestos de la RLM

Para calcular los residuos utilizados en la comprobación de los supuestos de la RLM, la base de datos de \overline{S} y \overline{H} se subdividió en segmentos de longitud igual a $\Delta \overline{S}$ =0.75 horas, tal como se observa en la Figura 4.1 (a) y la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ se subdividió cada $\Delta \overline{S}/\overline{S}_0$ =0.05, tal como se muestra en la Figura 4.1 (b). Los residuos se obtuvieron como la diferencia entre el dato (\overline{H} ó $\overline{H}/\overline{H}_0$) y el promedio del segmento al cual corresponde el dato.

Los promedios y la cantidad de datos de cada segmento de las bases de datos mostradas en la Figura 4.1 (a) y (b), son los presentados en la Tabla 4.1. Se observa que a medida que se avanza por el eje de las abscisas de la Figura 4.1 (b), el promedio de los datos de los segmentos va aumentando a tasas similares (también se muestra en la Tabla 4.1), lo que a grandes rasgos sugiere la existencia de linealidad entre las variables.

Figura 4.1 Segmentación de la bases de dato mundial de (a) $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ (b) \overline{S} y \overline{H}

Nº	Intervalo	Tamaño	Promedio H	Intervalo	Tamaño	Promedio H / H ₀
IN	de Ŝ	segmento (<i>n</i> _i)	segmento	 de <mark>\$</mark> /\$ ₀	segmento (n _i)	segmento
1	0.00-0.75	1270	0.36	0.00 <mark>-</mark> 0.05	216	0.203
2	0.75-1.50	4486	0.62	0.05 <mark>-</mark> 0.10	1182	0.234
3	1.50-2.25	7993	0 <mark>.96</mark>	0.10- <mark>0</mark> .15	2916	0.268
4	2.25-3.00	7537	1.47	0.15 <mark>-</mark> 0.20	4993	0.302
5	3.00-3.75	9804	2 <mark>.09</mark>	0.20 <mark>-</mark> 0.25	6868	0.337
6	3.75-4.50	9684	2 <mark>.64</mark>	0.25- <mark>0.30</mark>	8455	0.369
7	4.50-5.25	12 806	3.20	0.30 <mark>-</mark> 0.35	9573	0.401
8	5.25-6.00	12 545	3.73	0.3 <mark>5-</mark> 0.40	11 261	0.430
9	6.00-6.75	14 780	4.25	0. <mark>4</mark> 0-0.45	12 489	0.456
10	6.75-7.50	12 297	4.69	0.45-0.50	13 297	0.481
11	7.50-8.25	12 810	5.12	0.50-0.55	12 584	0.507
12	8.25-9.00	9198	5.51	0.55-0.60	11 558	0.531
13	9.00-9.75	8192	5.90	0.60-0.65	9989	0.555
14	9.75-10.50	5077	6.26	0.65-0.70	8258	0.578
15	10.50-11.25	3503	6.72	0.70-0.75	6519	0.600
16	11.25-12.00	1625	7.21	0.75-0.80	4666	0.622
17	12.00-12.75	810	7.54	0.80-0.85	3365	0.646
18	12.75-13.50	162	7.76	0.85-0.90	2159	0.672
19	13.50-14.25	35	7.80	0.90-0.95	980	0.693
20	14.25-15.00	2	7.79	0.95-1.00	132	0.718

 Tabla 4.1
 Descripción de los segmentos de la base de datos mundial

En cuanto a las bases de datos locales, se dividieron en diez segmentos iguales, tal como se muestra en la Figura 4.2 con la segmentación de la base de datos de Vancouver. En la Tabla 4.2 se muestra la cantidad de datos y promedios de cada segmento de las bases de datos locales.

Figura 4.2 Segmentación de la base de datos de Vancouver y los promedios de $\overline{H}/\overline{H}_0$

 Tabla 4.2
 Cantidad de datos y promedios de cada segmento de las bases de datos locales

	Vancouver			ver		Punta	n Are	enas		Abe	erpoi	rth
Tipo de dato	Ī S y H		$\overline{S}/\overline{S}_0 \ y \ \overline{H}/\overline{H}_0$			S y H		$\overline{S}_0 \ y \ \overline{H} \overline{H}_0$	S y H		$\overline{S}/\overline{S}_0 \to \overline{H}/\overline{H}_0$	
N° segmento	ni	H prom	ni	H ∕ H ₀ prom	<i>n</i> i	H prom	ni	H ∕ H ₀ prom	<i>n</i> i H prom		ni	$\overline{H}/\overline{H}_0$ prom
1	2	-	8	0.244	5	0.55	6	0.330	7	0.49	17	0.269
2	21	0.79	12	0.292	23	0.65	13	0.362	57	0.70	41	0.308
3	26	1.19	19	0.322	22	0.93	15	0.360	79	1.18	59	0.345
4	16	2.63	17	0.401	31	1.59	42	0.402	47	2.00	85	0.396
5	15	3.31	15	0.417	21	2.64	53	0.431	60	3.26	83	0.433
6	17	3.93	19	0.474	28	3.82	39	0.464	63	4.22	73	0.474
7	12	5.21	16	0.512	39	4.87	21	0.498	51	4.68	28	0.510
8	19	5.62	19	0.543	16	5.48	2	-	27	5.44	18	0.541
9	10	6.12	9	0.573	7	5.75	-1	-	11	5.92	2	-
10	6	6.69	10	0.605	0		0	_	6	6.02	2	-

		Taipa Grande				Μ	aputo		Darwin			
Tipo de dato	S y H		$\overline{\mathbf{S}} \mathbf{y} \overline{\mathbf{H}} \qquad \overline{\mathbf{S}} / \overline{\mathbf{S}}_0 \mathbf{y} \overline{\mathbf{H}} / \overline{\mathbf{H}}_0$			$\overline{\mathbf{S}} \mathbf{y} \overline{\mathbf{H}} \qquad \overline{\mathbf{S}} / \overline{\mathbf{S}}_{0} \mathbf{y}$		5 ₀ y H / H ₀	S y H		$\overline{S}/\overline{S}_0 \ y \ \overline{H}/\overline{H}_0$	
N° segmento	<i>n</i> i	$\overline{\mathbf{H}}_{\mathbf{prom}}$	ni	${\overline{\rm H}}/{\overline{\rm H}}_0$ prom	<i>n</i> i	$\overline{\mathbf{H}}$ prom	ni	${\overline{H}}/{\overline{H}}_0$ prom	ni	$\overline{\mathbf{H}}$ prom	ni	${\overline{H}}/{\overline{H}}_0$ prom
1	11	1.72	19	0.194	4	-	6	0.451	3	-	3	-
2	24	2.28	29	0.281	10	5.07	19	0.485	8	4.56	5	0.392
3	49	2.95	47	0.338	27	5.23	21	0.523	12	4.97	17	0.458
4	41	3.51	44	0.391	32	5.08	34	0.543	9	5.33	9	0.499
5	65	3.94	60	0.436	59	5.34	41	0.557	12	5.71	18	0.544
6	72	4.32	60	0.482	61	4.96	34	0.582	16	5.91	27	0.567
7	46	4.87	56	0.519	45	5.19	31	0.605	21	6.33	26	0.613
8	23	5.37	15	0.561	12	5.34	35	0.624	36	6.10	49	0.647
9	2	-	5	0.611	2	-	24	0.637	71	6.01	55	0.687
10	3	-	1	-	0	-	7	0.647	28	6.11	7	0.716

Es importante mencionar que calcular los residuos de esta manera, deja a la distribución de los datos como único agente con influencia en la verificación de los supuestos.

4.2.1 Homocedasticidad de los residuos

Bases de datos locales

En la Figura 3.12 se observó que cuando los datos de \overline{S} y \overline{H} son divididos por sus máximos teóricos, convirtiéndose en asoleamiento relativo ($\overline{S}/\overline{S}_0$) e índice de claridad ($\overline{H}/\overline{H}_0$), presentan una distribución más uniforme y compacta. Sin embargo, esto no es suficiente para concluir que, a nivel de estación, los datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ presentan varianzas constantes, es decir, son homocedásticos. Por lo tanto, se aplicará la metodología descrita a continuación, para decidir si los residuos de las bases de datos son homocedásticos.

Usando la segmentación y promedios mostrados antes, se calculó la varianza de los segmento de cada base de datos. Cabe mencionar que los segmentos compuestos por menos de cinco datos no se consideraron en el análisis, ya que no es representativo usar tan pocos datos. Para ejemplificar, en la Figura 4.3 (a.1) y (b.1) se muestra la segmentación de la base de datos de Aberporth y en la Figura 4.3 (a.2) y (b.2) sus respectivas varianzas, presentando su mínimo y máximo en color gris.

Figura 4.3 Segmentación de la base de datos de Aberporth (a) Datos \overline{S} y \overline{H} (b) $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$

De la Figura 4.3 (a.2) es posible comentar que la varianza máxima de los segmentos es 126 veces mayor a la mínima, lo que da un indicio de que la base de datos de \overline{S} y \overline{H} de Aberporth podría ser heterocedástica. En cambio, la razón entre la varianza máxima y mínima de la base de datos $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de la misma estación (Figura 4.3 a.2) es 2.65. Por lo tanto, no es tan claro si los residuos de la base de datos son homocedásticos. Por este motivo, es necesario tener un procedimiento numérico que decida la existencia de homocedasticidad.

Debido a lo anterior, en cada base de datos se analizó la igualdad de las varianzas de cada segmento con los otros nueve, mediante pruebas de hipótesis. Por ejemplo, la hipótesis nula de la igualdad de varianza de los segmentos 1 y 5 de la base de datos de \overline{S} y \overline{H} de Aberporth (Figura 4.3 (a)) es H₀: $\sigma_1^2 - \sigma_5^2 = 0$. El nivel de confianza exigido para aceptar la hipótesis nula es un 95 %, es decir, el valor del test – t, obtenido de cada comparación de varianza de cada segmento, debe ser menor a 1.96 (suponiendo que los residuos se distribuyen normal) para aceptar la hipótesis nula. En otras palabras, si se cumple lo expuesto en la frase anterior, se puede decidir que las varianzas de los segmentos son iguales y por consiguiente, se decide que los residuos de la base de datos estudiada son homocedásticos. La fórmula del test - t usada en la prueba de hipótesis es la mostrada en la Ecuación 4.1:

$$t = \frac{\sigma_i^2 - \sigma_{j \neq i}^2 - \delta_0}{\sigma_p^2} , \qquad (4.1)$$

siendo $\sigma_i^2 y \sigma_{i\neq j}^2$ las varianzas de dos segmentos diferentes de una base de datos, $\delta_0=0$ debido a la hipótesis nula y σ_p^2 es la varianza ponderada, obtenida mediante la Ecuación 4.2:

$$\sigma_p^2 = \frac{(n_i - 1) \sigma_i^{2'} - (n_{j \neq i} - 1) \sigma_{j \neq i}^{2'}}{(n_i - 1) + (n_{j \neq i} - 1)},$$
(4.2)

donde $\sigma_i^{2'}y \sigma_{i\neq j}^{2'}$ son las varianzas de dos muestras obtenidas con la técnica Bootstrap (Efron, 1979), la cual consiste en un remuestreo con reemplazo de los segmentos originales. La técnica se usa en esta situación, dado que se quiere probar que las varianzas de los segmentos son iguales, usando estas mismas varianzas, por lo que Bootstrap proporciona nuevos segmentos representativos de los originales, con sus respectivas varianzas. Con esto, Bootstrap entrega una mayor variabilidad al análisis. Las muestras obtenidas con Bootstrap son del 40 % del tamaño del

segmento original. Las varianzas de las muestras finales de cada segmento fueron obtenidas mediante el promedio de diez muestras Bootstrap obtenidas para el segmento (diez repeticiones por segmento). Finalmente, n_i y $n_{i\neq j}$ son el tamaño de las muestras obtenidas con Bootstrap. Para ejemplificar el procedimiento, en la Tabla 4.3 se muestran los tamaños de los segmentos originales, el tamaño de las muestras obtenidas con Bootstrap de éstos, y sus respectivas varianzas, obtenidas con la base de datos de Aberporth.

-		Tipo de dato: S̄ y H̄					Tipo de dato $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$:					
	Original		Original Boostrap			0	Driginal	Boostrap				
N°	ni	Var (σ^2)	ni	Var (σ^2)	\mathbf{N}°	ni	Var (σ^2)	ni	Var (σ^2)			
1	7	0.0047	3	0.0038	1	17	0.00046	7	0.00034			
2	57	0.0652	23	0.0590	2	41	0.00058	17	0.00070			
3	79	0.2018	32	0.1889	3	<mark>5</mark> 9	0.00059	24	0.00061			
4	47	0.4756	19	0.4683	4	85	0.00084	34	0.00076			
5	60	0.6311	24	0. <mark>6414</mark>	5	83	0.00074	34	0.00075			
6	63	0.3897	26	0.3455	6	73	0.00044	30	0.00045			
7	51	0.3534	21	0.3278	7	28	0.00046	12	0.00044			
8	27	0.2130	11	0.2017	8	18	0.00032	8	0.00028			
9	11	0.0909	5	0.0732	9	2		-	-			
10	6	0.1953	3	0.1898	10	2		-	-			
$\overline{\mathbf{X}}$		0.2621		0.2499	Ā		0.0005551		0.0005428			

Tabla 4.3Muestras obtenidas con Bootstrap con los residuos la base de datos de Aberporth

Notar de la Tabla 4.3, que no se calculó la varianza los segmentos con *n* menor a cinco, ni se aplicó Bootstrap, tal como había sido mencionado. Las tablas de varianzas del resto de las bases de datos se encuentran en el Anexo 4.1. Los resultados obtenidos al aplicar esta metodología a los residuos de las seis bases de datos locales de \overline{S} y \overline{H} y las convertidas a $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$, se presentan en la Tabla 4.4.

Tabla 4.4 Resultados de la homocedasticidad de los residuos las bases de datos loc
--

	Dens de later	Homo	Homocedasticidad					
	Base de datos	Tipo de dato: \overline{S} y \overline{H}	Tipo de dato: $\overline{S}/\overline{S}_{o}$ y $\overline{H}/\overline{H}_{o}$					
1.	Vancouver, Canadá	×	\checkmark					
1.	Punta Arenas, Chile	×	\checkmark					
2.	Aberporth, Gales	×	\checkmark					
3.	Taipa Grande, China	\checkmark	\checkmark					
4.	Maputo, Mozambique	×	\checkmark					
5.	Darwin, Australia	\checkmark	\checkmark					

En la tabla anterior se observa que el 67 % de las bases de datos locales de \overline{S} y \overline{H} poseen residuos heterocedásticos. Al analizar los residuos de las seis bases de datos convertidas a asoleamiento relativo ($\overline{S}/\overline{S}_0$) e índice de claridad ($\overline{H}/\overline{H}_0$), estos resultaron homocedásticos. Lo anterior demuestra que dividir las mediciones por sus máximos teóricos, efectivamente provoca un cambio positivo en la homocedasticidad de los residuos de las bases de datos locales.

• Base de datos mundial

En el análisis de la homocedasticidad de los residuos de la base de datos mundial de \overline{S} vs \overline{H} y $\overline{S}/\overline{S}_0$ vs $\overline{H}/\overline{H}_0$, éstas se dividieron en 20 segmentos equiespaciados. El tamaño del segmento con menor cantidad de mediciones de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ supera las 100 mediciones, así que no se descartó ningún segmento en el análisis. En cambio, el segmento de menor tamaño de la base de datos mundial de \overline{S} y \overline{H} posee dos mediciones, por lo que se descartó, ya que no es representativo de la base de datos. Las muestras obtenidas con Bootstrap fueron del 25 % del tamaño de los segmentos originales. Las varianzas fueron conseguidas luego de diez repeticiones, igual que en las bases de datos locales.

Figura 4.4 (a-b.1) Segmentación de la base de datos mundial (a-b.2) sus respectivas varianzas

Las pruebas de hipótesis aplicadas a las varianzas de cada segmento de la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ (Figura 4.4.b.1) revelaron que ésta es homocedástica. Cabe destacar que la razón entre la varianza máxima y mínima de los segmentos es 1,86 (Figura 4.4.b.2), es decir, ambas varianzas no son lo suficientemente diferentes para lograr rechazar la homocedasticidad.

Por otro lado, el análisis entregó que la base de datos mundial formada por \overline{S} y \overline{H} es heterocedástica, ya que las varianzas de sus segmentos varían considerablemente a lo largo del eje \overline{S} , tal como muestra la Figura 4.4.a.2. La varianza máxima es 25 veces mayor que la varianza mínima de los segmentos de la base de datos, lo que entrega una prueba del porqué es heterocedástica.

4.2.2 Normalidad de los residuos

Se verificó la normalidad de los residuos utilizando la prueba de Kolmororff-Smirnov (K-S), la cual es una prueba no paramétrica usada para comparar la distribución de probabilidad de los residuos de una base de datos, con una distribución de probabilidad de referencia, este caso la Distribución Normal. El test utiliza una prueba de hipótesis para decidir si la máxima diferencia entre las distribuciones de probabilidad acumuladas (real y teórica) es suficiente para enunciar que ambas no son estadísticamente iguales. En el Anexo 4.2 muestra los valores críticos de la prueba según sus diferentes niveles de confianza.

Para aplicar el test, primero se calculó la distribución de frecuencia de los residuos de la base de datos mundial y las locales, los mismos que habían sido calculados anteriormente para verificar la homocedasticidad. Posteriormente, se compararon las distribuciones de los residuos de las diferentes bases de datos con la Distribución Normal teórica ajustada a la media y a la desviación estándar de los residuos de cada base de datos. Para ejemplificar el procedimiento, se muestra el análisis aplicado a los residuos de la base de datos de Vancouver. Primero, se procedió a calcular la estadística descriptiva de la base de datos mencionada, la cual mostrada en la Tabla 4.5.

valicouvei								
Indicador estadístico	Magnitud							
Media	$1.455 \text{ x} 10^{-17} \approx 0.0$							
Desviación estándar	0.0305							
Mínimo	-0.0938							
Máximo	0.0994							
Rango	0.1932							
N° datos (n)	144							

Tabla 4.5Estadística descriptiva de los residuos de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de

Además, fue necesario calcular la cantidad de intervalos con los que se realizó la distribución de frecuencia. Uno de los criterios más conocidos para el cálculo de la cantidad de intervalos (c) es la Regla de la Raíz de n, donde $c=\sqrt{n}$. En este caso, $c=\sqrt{144}=12$, resultando una amplitud de intervalo igual a $A=(residuo_{máx} - residuo_{min})/c = 0.0161$. Con estos datos, se realizó la distribución de frecuencia de los residuos de la base de datos de Vancouver que es mostrada en la Tabla 4.6.

Tabla 4.6Distribución de frecuencia de los residuos de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de
Vancouver

NIO	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Fre <mark>c. Obs</mark>	Frec. Esperada	
IN	Inferior	Superior	Observada <mark></mark>	Acum <mark>ulada</mark>	Relativa	Rela <mark>t</mark> . Acum	Relat. Acum	FUKA-FEKA
1	-0.0938	-0.0777	2	2	0.0139	0 <mark>.</mark> 0139	0.0055	0.0084
2	-0.0777	-0.0616	2	4	0.0139	0.0278	0.0218	0.0059
3	-0.0616	-0.0455	10	14	0.0694	0.0972	0.0681	0.0291
4	-0.0455	-0.0294	9	23	0.0625	0.1597	0.1678	0.0081
5	-0.0294	-0.0133	23	46	0.1597	0.3194	0.3315	0.0120
6	-0.0133	0.0028	23	69	0.1597	0.4792	0.5364	0.0572
7	0.0028	0.0189	40	109	0.2778	0.7569	0.7318	0.0251
8	0.0189	0.0350	22	131	0.1528	0.9097	0.8740	0.0357
9	0.0350	0.0511	9	140	0.0625	0.9722	0.9528	0.0194
10	0.0511	0.0672	2	142	0.0139	0.9861	0.9861	0.0000
11	0.0672	0.0833	1	143	0.0069	0.9931	0.9968	0.0037
12	0.0833	0.0994	1	144	0.0069	1.0000	0.9994	0.0006

La Frecuencia Esperada Relativa Acumulada (FERA), mostrada en la Tabla 4.6, es la frecuencia acumulada correspondiente a la distribución normal (teórica) ajustada según la media y desviación estándar de la base de datos. La mayor diferencia absoluta entre la Frecuencia Observada Relativa Acumulada (FORA), obtenida de la distribución de frecuencia de los residuos, y la FERA, se

compara con el estadístico obtenido de la distribución Kolmororff-Smirnov (Anexo 4.2), según un nivel de confianza del 95 %. Si el estadístico de la prueba K-S es mayor al |FORA-FERA| máximo, se concluye que los residuos se distribuyen normal.

Por ejemplo, en la Figura 4.5 (a) se muestra la distribución de frecuencia observada relativa (FOR) y la esperada si los residuos de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Vancouver fueran perfectamente normales (FER). En la Figura 4.5 (b) se muestra la frecuencia observada acumulada (FORA) y esperada acumulada (FERA) de estos mismos residuos. Cabe mencionar que ambas distribuciones, a simple vista son bastante similares, pero no es suficiente para concluir que son iguales. Por esta razón es necesario compararlas numéricamente. Las tablas de distribución de frecuencia de todas las bases de datos de \overline{S} y \overline{H} y $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ (excepto la tabla mostrada), incluyendo la distribución de frecuencia de la base de datos mundial, se encuentran en el Anexo 4.3.

Figura 4.5 (a) Distribución de FOR de los residuos de los datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Vancouver versus FER (b) Distribución FORA versus FERA

Para la base de datos mundial no se utilizó el estadístico K-S obtenido de la distribución, ya que a medida que el tamaño de la base aumenta, el test se vuelve más sensible y ante la mínima desviación respecto a la normalidad perfecta, da como resultado que los residuos de la base de datos no son normales, siendo que gráficamente ambas distribuciones (relativas y acumuladas) son muy similares, tal como se muestra en la Figura 4.6 con la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$.

Figura 4.6 Comparación de distribuciones de frecuencias de los residuos de la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ y la distribución normal esperada, (a) relativa y (b) acumulada

Debido a lo anterior y para comprender cómo varía el estadístico K-S según el tamaño de la base de datos, se realizó un análisis de sensibilidad. En la Figura 4.7, se observa que el estadístico K-S a partir de n = 2000 datos, se estabiliza. El estadístico K-S con n = 2000 varía en un 2.5 % respecto al obtenido con n = 1900, por lo que se estableció que para tamaños superiores a dos mil datos se utiliza un estadístico K-S = 1.36 / 2000 = 0.0304, con un 95 % de nivel de confianza.

Figura 4.7 Variación del estadístico K-S según el tamaño de la base de datos

Utilizando lo anterior, resulta que los residuos de la base de datos mundial $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ se distribuyen normales, al igual que todas las bases locales convertidas a $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$, tal como se muestra en la Tabla 4.7.

En cuanto a la base de datos mundial formada por mediciones de \overline{S} y \overline{H} , se puede concluir que sus residuos también son normales, ya que su |FORA-FERA| máximo es 0.0133 y el exigido para

rechazar la normalidad es 0.0304. En la Figura 4.8 se puede observar la similitud de la distribución de frecuencia observada y la normal teórica ajustada a esta base de datos.

Base de datos	Tipo de dato	Cantidad de datos	FORA-FERA máx	Estadístico K-S	Normal
Mundial	Σ̄ y Π̄	134 616	0.0133	0.0304	\checkmark
Iviunulai	$\overline{S}/\overline{S}_0 \ y \ \overline{H}/\overline{H}_0$	131 460	0.0211	0.0304	\checkmark
Vancouver	Σ̄ y Η	144	0.0745	0.1141	\checkmark
Vancouver	$\overline{S}/\overline{S}_0 \ y \ \overline{H}/\overline{H}_0$	144	0.0572	0.1133	\checkmark
Dunto Aronos	$\overline{\mathrm{S}}$ y $\overline{\mathrm{H}}$	192	0.0648	0.0981	\checkmark
Punta Arenas	$\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$	192	0.0260	0.0989	\checkmark
Abarporth	$\overline{\mathrm{S}}$ y $\overline{\mathrm{H}}$	408	0.0555	0.0673	\checkmark
Aberportii	$\overline{S}/\overline{S}_0 \ y \ \overline{H}/\overline{H}_0$	408	0.0133	0.0677	\checkmark
Taina Cranda	Σ̄ y Η	336	0.0774	0.0748	×
Taipa Grande	$\overline{S}/\overline{S}_0 \ y \ \overline{H}/\overline{H}_0$	336	0.0227	0.0749	\checkmark
Monuto	ĪуĦ	252	0.06 <mark>3</mark> 8	0.0867	\checkmark
Maputo	$\overline{S}/\overline{S}_0 \ y \ \overline{H}/\overline{H}_0$	252	0.03 <mark>3</mark> 4	0.0857	\checkmark
Domin	ĪΣyΗ	216	0.0315	0.0932	\checkmark
Darwin	$\overline{S}/\overline{S}_0 \ y \ \overline{H}/\overline{H}_0$	216	0.06 <mark>2</mark> 2	0.0932	\checkmark

 Tabla 4.7
 Resultados del test de normalidad aplicado a los residuos de las bases de datos

Figura 4.8 Comparación de distribuciones de frecuencias de los residuos de la base de datos mundial de \overline{S} y \overline{H} y la distribución normal esperada, (a) relativa y (b) acumulada

Es importante destacar que los residuos de las bases de datos de \overline{S} y \overline{H} no siempre cumplen con el supuesto de normalidad (Tabla 4.7). Sin embargo, las bases de datos convertidas a asoleamiento relativo ($\overline{S}/\overline{S}_0$) e índice de claridad ($\overline{H}/\overline{H}_0$) sí lo hacen. Por lo tanto, este tipo de datos cumple con todos los supuestos exigidos por la Regresión Lineal Múltiple para estimar los modelos de radiación solar global.

Desde siempre se han utilizado las mediciones de \overline{S} y \overline{H} convertidos a $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ para estimar modelos de radiación solar, pero no se había comprobado el cumplimiento de los supuestos. Afortunadamente, se afirma que la metodología utilizada es correcta, si los resultados no hubieran sido favorables, la mayoría de los indicadores estadísticos calculados por otros investigadores, desde hace casi un siglo, estarían sesgados y serían ineficientes.

4.3 Indicadores de desempeño estadístico

Aplicar un análisis estadístico apropiado a los modelos de radiación solar global basados en la duración de asoleamiento es útil para decidir cuáles tienen los mejores ajustes, menores errores y para detectar deficiencias en su forma funcional. Si no se detectan estas falencias, los resultados obtenidos por los modelos, repercuten directamente en las decisiones tomadas en la realidad.

Los modelos mostrados en la Tabla 2.1 son los estudiados en este trabajo y todos ellos pueden ser expresados por la Ecuación 4.3:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n + \varepsilon$$
(4.3)

siendo Y la variable dependiente $(\overline{H}/\overline{H}_0 \circ \overline{H}/\overline{H}_C)$, β_i los coeficientes de los modelos, X_i las variables independientes $(\overline{S}/\overline{S}_0, (\overline{S}/\overline{S}_0)^2, (\overline{S}/\overline{S}_0)^3, \log(\overline{S}/\overline{S}_0)$ y $e^{\overline{S}/\overline{S}_0}$ según el caso) y ε son los residuos de la predicción. Además, el desempeño estadístico de los modelos fue evaluado mediante los siguientes indicadores:

• Test – t: utiliza la prueba de hipótesis mostrada en la Ecuación 4.4 para decidir si el coeficiente β_i del modelo es estadísticamente igual a 0, es decir, decide si el término asociado al coeficiente β_i del modelo aporta a la predicción de la radiación solar. Si se rechaza la hipótesis nula, el coeficiente es estadísticamente significativo. El nivel de confianza escogido para realizar la prueba de hipótesis es un 95 %, es decir, se requiere un test-t mayor o igual a t_c = 1.96 para rechazar la hipótesis nula.

$$H_0: \beta_i = 0$$

$$H_1: \beta_i \neq 0, \ i = 1, 2, ..., n$$
(4.4)

 Coeficiente de determinación (R²): es la medida que dice que tan bien se ajusta el modelo a los datos. Es el porcentaje de la variabilidad de los datos explicada por el modelo. R² está dado por la Ecuación 4.5:

$$R^{2}=1 - \sum_{i=1}^{n} \frac{(Y_{i \text{ medido}} - Y_{i \text{ estimado}})^{2}}{(Y_{i \text{ medido}} - \overline{Y}_{\text{medido}})^{2}},$$
(4.5)

Y es $\overline{H}/\overline{H}_0$ o $\overline{H}/\overline{H}_C$, según el modelo, *i* es el número del dato y *n* es el tamaño de la base.

• Suma de cuadrados de los residuos (SSR, *Sum of Squared Residuals*): Es una medida de discrepancia entre los datos y un modelo de estimación. Un SSR pequeño indica un buen ajuste del modelo a los datos. Está dado por la Ecuación 4.6:

$$SSR = \sum_{i=1}^{n} (Y_{i \text{ medido}} - Y_{i \text{ estimado}})^2, \qquad (4.6)$$

Y es $\overline{H}/\overline{H}_0$ o $\overline{H}/\overline{H}_C$, según el modelo, *i* es el número del dato y *n* es el tamaño de la base.

Raíz cuadrática de la media del error (RMSE, *Root Mean Square Error*): Representa la desviación estándar promedio entre predicciones de un modelo y los valores observados. El RMSE puede utilizarse como una medida de precisión que comparar los errores previsión de diferentes modelos estimados para un conjunto particular de datos. Está dado por la Ecuación 4.7:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y_{i \text{ medido}} - Y_{i \text{ estimado}})^2} , \qquad (4.6)$$

donde Y es la radiación solar global promedio mensual recibida en una superficie horizontal (\overline{H}) . Es interesante calcular el RMSE utilizando la radiación solar (\overline{H}) y no el índice de claridad $(\overline{H}/\overline{H}_0)$, ya que da un vistazo de que tan bien se ajusta el modelo a las mediciones reales.

Cabe destacar que no se calculó el R² ajustado de los modelos, ya que debido al tamaño de las bases de datos, el efecto de los grados de libertad (número de variables) es marginal. Por otro lado, el Análisis de Varianza (ANOVA) mostró que todos los modelos son estadísticamente significativos. Sin embargo, es posible que existan variables explicativas importantes que no hayan sido incluidas en la forma funcional de los modelos, pues el ANOVA no fue capaz de manifestarlo, debido al tamaño de las bases de datos.

4.4 Evaluación estadística de los modelos usando las bases de datos locales

La evaluación estadística de los modelos de radiación solar global basados en la duración de asoleamiento, estimados mediante Regresión Lineal Múltiple (RLM) usando las seis bases de datos locales de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ y las de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_C$, son los mostrados en la Tabla 4.8.

Vancouver, Canadá									
Modelo	а	b	C C	d	R ²	SSR	RMSE	ΔSSR^1	∆RMSE ²
Å	0.00	1.00			0.751	0.5(1	0.570	207.4.0/	127 1 0/
Angstrom	(-)	(29)			0.751	0.561	0.578	-297.4 %	-137.1%
	0.166	0.685			0.010	0 1 4 1	0.044		
Angstrom-Prescott	(23)	(40)			0.919	0.141	0.244	-	-
	0.101	1.063	-0.469		0.020	0.124	0.010	10 1 0/	1270
Cuadratico	(6.2)	(12)	(-4.4)		0.929	0.124	0.210	12.1 %	13.7 %
Cábias	0.11	<mark>0</mark> .98	-0.244	-0.183	0.020	0.124	0.211	12.2.0/	12 4 0/
Cubico	(3.1)	(3.2)	(-0.3)	(-0.3)	0.929	0.124	0.211	12.2 %	15.4 %
Logarítmico	0.68	0 <mark>.551</mark>			0.012	0.152	0.202	7504	170%
Logaritmico	(100)	<mark>(</mark> 39)			0.915	0.152	0.202	-7.5 %	17.0 %
F	-0.235	0 <mark>.</mark> 448			0.000	0 175	0.070	24.2.0/	14.0.0/
Exponencial	(-12)	(36)			0.899 0.175	0.175	0.278	-24.2 %	-14.2 %

Tabla 4.8Coeficientes estimados e indicadores estadísticos de las formas funcionales según
las bases de datos locales (Continúa)

¹ ΔSSR es la diferencia porcentual entre el SSR de un modelo particular respecto al SSR del Ångström-Prescott ² ΔRMSE es la diferencia porcentual entre el RMSE de un modelo particular respecto al RMSE del Ångström-Prescott

Punta Arenas, Chile										
Modelo	а	b	c	d	R ²	SSR	RMSE	ΔSSR	ΔRMSE	
Å	0.121	0.879			0.558	1 206	0.452	248 2 04	74 8 04	
Angsuom	(-)	(12)			0.558	1.200	0.432	-346.2 %	-/4.0 %	
Ångström Drasaatt	0.19	0.574			0.585	0.260	260 0.259			
Angstrom-Prescott	(13)	(16)			0.385	0.209	0.238	-	-	
Crea duática	0.247	0.275	0.374		0 500	0.267	0.262	070	1.0.0/	
Cuadranco	(4.7)	(1.0)	(1.1)		0.588	0.207	0.203	0.7 %	-1.9 %	
Cithian	0.641	-2.927	8.673	-6.91	0 600	0.250	0.256	3.6 %	0.9 %	
Cubico	(3.7)	(-2.1)	(2.5)	(-2.4)	0.000	0.239				
Logerítmico	0.619	0.49			0.559	0.286	0.257	6504	0.4.0/	
Logaritmico	(49)	(15)			0.558	0.280	0.237	-0.3 %	0.4 %	
F	-0.0155	0.384			0 507	0.000	0.262		1 4 0/	
Exponencial	(-4.4)	(16)			0.587	0.268	0.262	0.6 %	-1.4 %	

							/			
Aberporth, Gales										
Modelo	а	b	с	d	R ²	SSR	RMSE	ΔSSR	∆RMSE	
Ångström	0.258	0.742			0.662	2.04	0.424	1246 5 %	162 5 %	
Aligsuolli	(-)	(19)			0.002	2.94	0.434	-1240.3 %	-105.5 %	
Ångström Drassott	0.188	0.668			0.005	0.210	0 165			
Angstrom-Prescou	(50)	(62)			0.905	0.219	0.105	-	-	
	0.161	0.839	-0.251		0.908	0.213	0.157	2.5 %	1 8 0/	
Cuadratico	(18)	(16)	(-3.3)						4.8 %	
Cúbico	0.196	0.482	0.849	-1.038	0.000	0.211	0 157	250	1 1 94	
Cubico	(10)	(2.6)	(1.5)	(-2.0)	0.909	0.211	0.137	5.5 %	4.4 %	
Logarítmico	0.639	0.454			0 875	0.280	0 166	32 1 %	$0 \in 0$	
Logaritmico	(143)	(53)			0.875	0.289	0.100	-32.1 70	-0.0 %	
F an en er ei el	-0.247	0.468			0.904	0.244	0.181	-11.6 %	0.0.0/	
Exponencial	(-22)	(59)			0.894	0.244			-9.9 %	

Tabla 4.8	Coeficientes estimados e indicadores estadísticos de las formas funcionales segú	n
	las bases de datos locales (Continuación)	

Taipa Grande, China									
Modelo	а	b	С	d	R ²	SSR	RMSE	ΔSSR	ΔRMSE
Ångström	0.196	<mark>0</mark> .804			0.020	0.206	0.256	122 1 0/	20.8.04
Angstrom	(-)	(72)			0.920	0.390	0.230	-155.1 %	-20.8 %
Ångström Drasaatt	0.179	<mark>0</mark> .586			0.050	0.170	0.212		
Angstrom-Prescou	(55)	(80)			0.930	0.170	0.212	-	-
Cuadrático	0.136	<mark>0</mark> .848	-0.328		0.061	0.121	0 1 9 7	22.0.04	11.0.0/
Cuauratico	(26)	(31)	(-10)		0.901	0.151	0.107	22.9 %	11.9 %
Cúbico	0.109	1.13	-1.104	0.619	0.064	0.124	0 182	27.2.04	14 2 04
Cubico	(14)	(16)	(-6.2)	(4.4)	0.904	0.124	0.162	21.2 %	14.2 %
Logarítmico	0.600	0 <mark>.</mark> 413			0.022	0.266	0.263	56 5 %	2/1 0/
Logaritmico	(184)	(<mark>6</mark> 3)			0.922	0.200	0.205	-30.3 %	-24.1 %
F	-0.162	0.3 <mark>81</mark>			0.021	0.200	0.265	50 5 M	24.0.0/
Exponencial	(-17)	(62)			0.921	0.269	0.265	-38.3 %	-24.8 %

Maputo, Mozambique										
Modelo	a	b	С	d	R ²	SSR	RMSE	ΔSSR	∆RMSE	
Ångström	0.472	0.528			0 757	0.480	0.262	105 7 %	770/	
Angsuom	(-)	(21)			0.757	0.469	0.202	-195.7 %	-7.7 %0	
Ånaström Dressett	0.291	0.428			0 791	0 166	0.242			
Angstronn-Prescou	(30)	(30)			0.781	0.100	0.245	-	-	
	0.106	1.009	-0.443		0 702	0 156	0.224	560/	270/	
Cuadratico	(2.2)	(6.6)	(-3.8)		0.795	0.130	0.234	3.0 %	5.7 %	
Cúbico	0.079	1.139	-0.647	0.104	0 703	0 156	0.234	56%	370%	
Cubico	(0.3)	(1.0)	(-0.4)	(0.1)	0.795	0.150	0.234	5.0 70	5.7 %	
Logarítmico	0.692	0.634			0 702	0 157	0.235	53%	35%	
Logantinico	(166)	(31)			0.792	0.157	0.235	5.5 /0	5.5 /0	
Europoneial	0.148	0.219			0766	0 176	0.252	660/	260/	
Exponencial	(10)	(29)			0.766	0.176	0.252	-0.0 %	-3.0 %	

Darwin, Australia										
Modelo	a	b	с	d	R ²	SSR	RMSE	ΔSSR	∆RMSE	
Ångström	0.124	0.876			0 828	0 720	0.480	1/13 6 %	32 1 %	
Angsuom	(-)	(39)			0.828	0.720	0.409	-145.0 %	-32.1 70	
Ångström Drasaatt	0.264	0.480			0.826	0.206	0 270			
Angstrom-Prescott	(25)	(33)			0.850	0.290	0.570	-	-	
Crea datá a a	0.215	0.647	-0.130		0 0 2 0	0.202	0 267	1 2 0/	0.0.0/	
Cuauratico	(6.5)	(6)	(-1.6)		0.858	0.292	0.307	1.2 %	0.9 %	
Cúbico	0.067	1.462	-1.521	0.756	0.840	0.288	0 365	2504	1 5 %	
Cubico	(0.7)	(2.9)	(-1.8)	(1.7)	0.840	0.200	0.505	2.3 70	1.5 70	
Logarítmico	0.713	0.654			0.820	0 308	0 376	11%	16%	
Logantinico	(170)	(32)			0.829	0.508	0.370	-4.4 70	-1.0 %	
Europonaial	0.095	0.247			0.024	0.210	0 207	760/	4 2 0/	
Exponencial	(5.8)	(32)			0.824	0.318	0.387	-/.0 %	-4.3 %	

Tabla 4.8Coeficientes estimados e indicadores estadísticos de las formas funcionales según
las bases de datos locales (Continuación)

En la Tabla 4.8, bajo cada coeficiente se encuentran los respectivos test-t de los coeficientes. Cabe recordar que el valor exigido para cada uno, por un 95 % del nivel de confianza, es un test-t mayor o igual a $t_c = 1.96$. De la tabla, se observa que la forma funcional cúbica tiene problemas de significancia estadística en cuatro de las seis bases de datos locales y que la cuadrática tiene inconvenientes en dos de las seis, es decir, estas formas funcionales proponen relaciones estadísticamente incorrectas cuando predicen de la radiación solar. Además, se puede notar que los coeficientes no significativos de los modelos son sitio dependiente, pues varían considerablemente de estación a estación.

Por otro lado, los modelos Logarítmico y Exponencial no presentaron este tipo de dificultades y tuvieron un buen desempeño estadístico, pero poseen errores de predicción (SSR y RMSE) mayores a los obtenidos por el Modelo Ångström-Prescott. El Modelo Logarítmico, posee inconsistencias cuando el asoleamiento relativo ($\overline{S}/\overline{S}_0$) es cercano a cero, pues predice un $\overline{H}/\overline{H}_0$ negativo, lo que es físicamente imposible. El modelo de Ångström, a pesar de que cumple con los requisitos estadísticos mínimos, obtuvo la peor bondad de ajuste (\mathbb{R}^2) y errores considerablemente mayores (SSR y RMSE) en todas las estaciones, reafirmando que su mal desempeño se debe a la restricción funcional de sus coeficientes.

Además, se observa que el ajuste (R²) de los modelos Ångström-Prescott, Cuadrático y Cúbico son muy similares. Si bien los modelos de tercer y segundo grado son los que obtuvieron los mayores

 R^2 (esto se debe a que poseen mayor cantidad de términos en sus estructuras), no lograron reducir considerablemente los errores de predicción (SSR y RMSE) respecto al modelo lineal en la mayoría de las estaciones. Por lo tanto, el Modelo Ångström-Prescott es el que posee el mejor desempeño estadístico a nivel de estación radiométrica. Gráficamente, los modelos estimados usando las seis bases de datos locales se presentan en la Figura 4.9.

Figura 4.9 Aplicación de los modelos estimados a las bases de datos locales (Continúa)

Figura 4.9 Aplicación de los modelos estimados a las bases de datos locales (Continuación)

En la Figura 4.9 (a-f.2) se ve que la dispersión de los datos del tipo $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_C$, usados en la estimación del Modelo de Ångström, es mayor que la dispersión de las bases de datos de asoleamiento relativo ($\overline{S}/\overline{S}_0$) e índice de claridad ($\overline{H}/\overline{H}_0$) (Figura 4.9 (a-f.1)), lo que también contribuye al mal desempeño del modelo. Además, a simple vista el modelo Cúbico presenta un comportamiento físicamente imposible en ausencia de mediciones ($\overline{S}/\overline{S}_0 \approx 0$ y $\overline{S}/\overline{S}_0 \approx 1$), tal como observa en Punta Arenas y en Aberporth. Es importante comentar que en el rango medio de $\overline{S}/\overline{S}_0$, todos los modelos (excepto Ångström) predicen un índice de claridad ($\overline{H}/\overline{H}_0$) similar.

4.5 Evaluación estadística de los modelos usando la base de datos mundial

La evaluación estadística de los modelos Ångström, Ångström-Prescott (lineal), Cuadrático, Cúbico, Logarítmico y Exponencial, utilizando la base de datos mundial conformada por los 131 460 pares de asoleamiento relativo ($\overline{S}/\overline{S}_0$) e índice de claridad ($\overline{H}/\overline{H}_0$) se muestra en la Tabla 4.9. A nivel local, el Modelo Ångström mostró un desempeño considerablemente menor que el resto de los modelos, por lo que ahora se comprobó si el comportamiento se mantiene a nivel mundial. Por otro lado, es interesante conocer si a nivel mundial el aporte de los términos de segundo y tercer grado de los modelos con formas funcionales polinómicas entregan un mayor poder predictivo, ya que a nivel local esto no ocurre.

En la Tabla 4.9 se muestran los coeficientes estimados para cada modelo, cuyos t-test se encuentran bajo ellos entre paréntesis. Además, se presenta el ajuste (\mathbb{R}^2), el SSR y RMSE correspondientes a cada modelo estimado. A nivel mundial, los coeficientes de las seis formas funcionales estimadas son estadísticamente significativos. El Modelo Cuadrático y Cúbico presentan un ajuste (\mathbb{R}^2) muy similar al Ångström-Prescott y la reducción del error de predicción de la radiación solar (RMSE) de estos modelos es marginal (aproximadamente un 1 %) respecto al Modelo Ångström-Prescott. Esto demuestra que cuando la base de datos es de gran envergadura, el test - t se vuelve insensible y no es capaz de mostrar qué términos de los modelos no aportan a su poder predictivo, como es el caso de los términos de grado dos y tres del Modelo Cuadrático y Cúbico.

Abrovioturo	Modele	Coefi	cientes	de estim	ación	D 2	SCD	DMSE	ASSD1	ADMSE ²			
Abreviatura	Widdelo	a	b	c	d	N -	33K	NNISE	255N	ARMSE			
Ang	Ångström	0.185	0.815 (27)			0.771	793.2	0.511	-241.7 %	-47.38 %			
AP	Ångström- Prescott	0.223 (702)	0.529 (859)			0.849	232.1	0.347	-	-			
Cuad	Cuadrático	0.184 (282)	0.718 (265)	-0.193 (-71)		0.854	223.5	0.343	3.7 %	1.0 %			
Cub	Cúbico	0.163 (147)	0.889 (111)	-0.585 (-33)	0.265 (23)	0.855	222.6	0.343	4.1 %	1.3 %			
Log	Logarítmico	0.646 (2470)	0.467 (741)			0.807	296.3	0.378	-27.7 %	-9.0 %			
Exp	Exponencial	-0.038 (-57)	0.313 (783)			0.823	271.3	0.367	-16.9 %	-5.7 %			

Tabla 4.9Coeficientes de estimación e indicadores estadísticos de los modelos estudiados,
usando la base de datos mundial

⁻¹ ΔSSR es la diferencia porcentual entre el SSR de un modelo particular respecto al SSR del Ångström-Prescott ² ΔRMSE es la diferencia porcentual entre el RMSE de un modelo particular respecto al RMSE del Ångström-Prescott
Además, el Modelo Ångström, el Logarítmico y el Exponencial presentan una precisión considerablemente menor (SSR y RMSE altos) que el Ångström-Prescott. Dado lo anterior, sigue siendo atractivo utilizar el Modelo Ångström-Prescott para predecir la radiación solar global. A pesar de que este modelo fue planteado hace casi 80 años, entrega mejores resultados que otros modelos más complejos. Es importante destacar que los coeficientes estimados para el Modelo Ångström-Prescott son semejantes a los obtenidos por Driesse y Thevenard (2002). En la Figura 4.10 se presentan los modelos estimados utilizando la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$.

Figura 4.10 Modelos estimados a partir de la base de datos mundial

Confirmando lo expuesto en los párrafos anteriores, en la Figura 4.10 se observa que el Modelo Ångström-Prescott, Cuadrático y Cúbico entregan predicciones de $\overline{H}/\overline{H}_0$ bastante parecidas a lo largo del eje de $\overline{S}/\overline{S}_0$, lo que se traduce en una reducción marginal del error de predicción de los modelos más complejos. Además, es importante notar que el Modelo Logarítmico mantiene el comportamiento observado en las bases de datos locales, ya que entrega valores sin interpretación física cuando el asoleamiento relatico ($\overline{S}/\overline{S}_0$) es cercano a cero.

Por otro lado, se analizó el peso relativo de los términos del Modelo Ångström-Prescott, es decir, el porcentaje que explican los términos del modelo cuando el dato de entrada es el promedio de los asoleamientos relativos ($\overline{S}/\overline{S}_0$) de la base de datos mundial. Para calcular $\overline{H}/\overline{H}_0$, se utilizó el promedio de $\overline{S}/\overline{S}_0$, el cual es igual a 0.481 y se obtuvo un $\overline{H}/\overline{H}_0$ igual a 0.478. Por lo tanto, el término *a* del modelo tiene un peso relativo igual a 46.7 % y el término *b* · $\overline{S}/\overline{S}_0$ posee un peso igual a 53.3 %. Con estos resultados, es posible comentar que hay un 46.7 % del fenómeno que no es explicado por la variable independiente. Por lo tanto, falta una mayor especificación del modelo, es decir, existen variables explicativas que aún no han sido descubiertas o configuraciones diferentes de la variable independiente, que no han sido incorporadas a la forma funcional del modelo y que podrían aumentar su poder predictivo.

4.6 Evaluación estadística de modelos de radiación solar global desagregados espacial y estacionalmente

En la Figura 3.12 se mostró que la distribución de los datos de \overline{S} y \overline{H} de las bases de datos locales varía de una estación radiométrica a otra, tal como se observa en la Figura 4.11 (a.1) y Figura 4.11 (b.1) con los datos de \overline{S} y \overline{H} de Taipa Grande y Aberporth, respectivamente. La diferencia en las distribuciones de los datos de estas estaciones se debe a sus ubicaciones geográficas. Taipa Grande, se ubica en una latitud menor (en valor absoluto) que la de los Trópicos de Cáncer y Capricornio y presenta una desegregación de sus datos de \overline{S} y \overline{H} en dos grupos. En la Figura 4.11 (a.1), el grupo de datos en color rojo está compuesto por los meses de mayo a octubre y el azul por el resto de los meses del año, lo que es representativo de la zona tropical, pues no presenta las cuatro estaciones del año marcadas. El mismo comportamiento se presenta en Darwin, Australia.

Figura 4.11 Base de datos de \overline{S} y \overline{H} y de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de (a) Taipa Grande, latitud 22° 10' N y (b) Aberporth, latitud 52° 8' N

Por otro lado, cuando la estación se emplaza en latitudes mayores (en valor absoluto) que la de los Trópicos de Cáncer y Capricornio, los datos de \overline{S} y \overline{H} se desagregan en cuatro grupos (estaciones del año), tal como se muestra en la Figura 4.11 (b.1) con los datos de Aberporth. Al identificar los datos que pertenecen a cada subgrupo, se encontró que cada uno está compuestos por los meses mostrados en la Tabla 4.10. El mismo comportamiento se obtuvo en Vancouver, Punta Arenas y Maputo, las cuales son estaciones radiométricas ubicadas fuera del área tropical.

Color	Meses	Estación del año equivalente		
Azul	NoviembreDiciembreEnero	Invierno		
Verde	FebreroOctubre	Otoño		
Mag <mark>e</mark> nta	MarzoSeptiembre	Primavera		
Rojo	- Abril - Mayo - Junio - Julio - Agosto	Verano		

Tabla 4.10 Meses a los que corresponde la desagregación de los datos de \overline{S} y \overline{H} de Aberporth

Por lo tanto, para las bases de datos locales es interesante establecer criterios de desagregación por latitud geográfica y estaciones del año, según lo mostrado en los párrafos anteriores. Para cada segmento resultante de las bases de datos, se estimó un Modelo Ångström-Prescott y se verificó si con criterios de segmentación efectivamente se mejora la precisión de las predicciones del índice de claridad ($\overline{H}/\overline{H}_0$) y de la radiación solar. Se hizo el supuesto de que la base de datos mundial tiene el mismo comportamiento que las bases locales, por lo que se le aplicaron los mismos criterios de desagregación.

4.6.1 Modelos de radiación solar global segmentados por latitud

En la Tabla 4.11 se muestra el promedio de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ cuando las bases de datos locales son consolidadas en dos grupos: la Zona Tropical está compuesta por las dos estaciones que se ubican en latitudes tropicales y la Zona No Tropical por las cuatro estaciones cuya ubicación esta fuera de los trópicos.

0 1	-	1 2	1	
Zona	Estaciones	₹/\$ ₀ promedio	日/日 ₀ promedio	
Tropical	Taipa Grande Darwin	0.529	0.493	
No tropical	Vancouver Punta Arenas Aberporth Maputo	0.442	0.460	

Tabla 4.11Promedio de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ cuando las bases de datos locales son aglomeradas en
dos grupos: Zonta Tropical y No Tropical

En la tabla se observa que la Zona Tropical presenta un mayor promedio de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ que la Zona No Tropical, lo que concuerda con que la radiación solar incidente en la superficie terrestre es mayor a medida que el emplazamiento se encuentre más cerca de la Línea del Ecuador. Por lo tanto, segmentar la base de datos mundial de acuerdo a rangos de latitud parece ser conveniente.

Se decidió dividir la Zona No Tropical, comprendida entre los trópicos (23° 26' 14" N y S) y los círculos polares (66° 33' 46" N y S), en dos zonas de igual tamaño, ya que en este rango de latitudes es donde se concentra la mayor cantidad de datos (aproximadamente un 85%). Las zonas resultantes son la Zona de Latitudes Medias (latitud 23° 26' 14" hasta 45° en ambos hemisferios) y la Zona de Latitudes Altas (latitud 45° hasta 66° 33' 46" en ambos hemisferios).

En la Tabla 4.12 se puede observar que el promedio de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ aumenta a medida que la zona es más cercana la Línea del Ecuador, al igual que el comportamiento de las bases de datos locales. Lo que da un indicio de que esta desagregación de la base de datos mundial podría ser conveniente para lograr predicciones de $\overline{H}/\overline{H}_0$ con menos error.

Tabla 4.12	Promedio de S/S	$_0$ y H/H $_0$ de los	datos contenidos en las	tres zonas geográficas

Zona	N° datos	∑/∑₀ promedio	∏/Ħ₀ promedio
Latitudes Tropicales	19 956	0.610	0.534
Latitudes Medias	49 656	0.552	0.519
Latitudes Altas	61 848	0.372	0.420

En la Tabla 4.13 y Figura 4.12 se muestran los modelos lineales estimados para las tres zonas geográficas descritas y su comparación con el modelo estimado con la base de datos completa.

Coeficientes								
Zona	N° datos	а	b	R ²	SSR	RMSE	∆SSR	∆RMSE
Latitudas Tropiaslas	10.056	0.239	0.483	0 703	55.0	0.514	7 2 04	2 2 0/
Latitudes Hopicales	19 950	(170)	(217)	0.703	55.0	0.314	1.2 %	5.5 %
	10 656	0.230	0.523	0.000	84.0	0.250	0.6 %	0.0.0/
Latitudes Medias	49 000	(364)	(479)	0.822	04.9	0.330		0.9 %
Latitudas Altas	61 848	0.208	0.573	0.952	015	34.5 0.256	3.4 %	0.9.0/
Latitudes Altas		(526)	(598)	0.832	84.3			-0.8 %
Total	131 460				224.4	0.342	3.4 %	1.3 %
Modelo lineal sin segmentar	131 460	0.223	0.529	0.840	222.1	0.347	-	-
		(702)	(859)	0.849	232.1			

 Tabla 4.13
 Evaluación estadística de los modelos estimados para las tres zonas geográficas

En la Tabla 4.13 se observa que los tres modelos estimados no tienen problemas de significancia estadística en sus coeficientes. Además, en la Zona Tropical el error de predicción del modelo se redujo en un 7.2 % y las predicciones de \overline{H} se acercan en un 3.3 % más a su valor real, respecto a las predicciones del Modelo Ångström-Prescott. En las Zonas de Latitudes Medias y Altas la reducción fue menor. La Zona Tropical presenta la mayor reducción del error, ya que al tener una cantidad de datos mucho menor que las otras dos zonas, cuando se estima un modelo con la base de datos sin segmentar, el comportamiento de los datos de esta zona no es reflejada.

4.6.2 Modelos de radiación solar global segmentados por estaciones del año

En la sección 4.6 se mostró que a nivel local las mediciones de \overline{S} y \overline{H} presentan una clara dependencia estacional (Figura 4.11), pues mientras más cerca se encuentren los datos al verano,

tendrán mayores \overline{S} y \overline{H} . Al convertir los datos a asoleamiento relativo ($\overline{S}/\overline{S}_0$) e índice de claridad ($\overline{H}/\overline{H}_0$), el orden ascendente de los grupos de datos según la estación del año se mantiene, pero en un menor grado (Figura 4.11 (a.2) y (b.2)). Por lo tanto, en esta sección se analizan los resultados de segmentar las bases de datos según sus respectivas estaciones del año. Los datos de las estaciones radiométricas ubicadas en la Zona Tropical se desagregaron en dos estaciones del año, las cuales están descritas en la Tabla 4.14 y los datos de las estaciones radiométricas de las Zonas de Latitudes Medias y Altas se desagregaron en cuatro estaciones del año, las cuales están compuestas por los meses mostrados en la

Tabla 4.15.

	Estación del año equivalente					
	Invierno Verano					
Hemi <mark>s</mark> ferio	Noviembre	Mayo				
No <mark>r</mark> te	Diciembre	Junio				
	Enero	Julio				
	Febrero	Agosto				
	Marzo	Septiembre				
	Abril	Octubre				
Hemi <mark>s</mark> ferio	Mayo	Noviembre				
Sur	Junio	Diciembre				
	Julio	Enero				
	Agosto	Febrero				
	Septiembre	Marzo				
	Octubre	Abril				

 Tabla 4.14
 Meses que componen las estaciones del año equivalentes para la Zona Tropical

Tabla 4.15Meses que componen las estaciones del año equivalentes para la Zona de LatitudesMedias y Altas

	Wedlub y Titub							
-	Estación del año equivalente							
_	Invierno	Otoño	Primavera	Verano				
Hemisferio	Noviembre	Febrero	Marzo	Abril				
Norte	Diciembre	Octubre	Septiembre	Mayo				
	Enero			Junio				
				Julio				
				Agosto				
Hemisferio	Mayo	Abril	Marzo	Octubre				
Sur	Junio	Agosto	Septiembre	Noviembre				
	Julio			Diciembre				
				Enero				
				Febrero				

Al aplicar esta segmentación a la base de datos mundial, se obtuvieron las cantidades de datos y los promedios mostrados en la Tabla 4.16. En la tabla se observa que a medida que la estación del

año se acerca al verano, efectivamente el promedio de los datos aumenta. Por lo tanto, la segmentación por estaciones del año propuesta puede ser conveniente.

Estación del año equivalente	N° datos	∑/S₀ promedio	₽/₽0 Fromedio
Invierno	37 854	0.433	0.438
Otoño	18 584	0.430	0.452
Primavera	18 584	0.482	0.489
Verano	56 438	0.530	0.511

Tabla 4.16Promedios de las estaciones del año equivalentes obtenidas de la segmentación de
la base de datos mundial

Al aplicar esta segmentación a las bases de datos locales y estimar un Modelo Ångström-Prescott para cada uno de los segmentos, se obtuvieron los coeficientes de estimación y los indicadores estadísticos mostrados en la Tabla 4.17. También, en la tabla se muestra una comparación de los errores de los modelos estimados para cada estación del año y estación radiométrica, con los errores obtenidos con el Modelo Ångström-Prescott estimado para cada base de datos local completa, es decir, sin segmentar por estaciones del año.

Coeficientes									
Base de datos	Estación del año	N° <mark>d</mark> atos	a	<i>b</i>	R ²	SSR	RMSE	ΔSSR^1	$\Delta RMSE^2$
	Verano	60	0.282	0.476	0.866	0.027	0 223	583%	352%
	verano	00	(21.8)	(19.3)	0.000	0.027	0.225	50.5 /0	33.2 70
	Primavera	24	0.219	0.606	0.912	0.010	0.088	51.7 %	28.3 %
	1 11114 / 014		(12.4)	(15.1)	0.712	01010	01000	0111 /0	2010 /0
	Otoño	24	0.190	0.600	0 897	0.010	0.059	187%	109%
Vancouver	Otono	21	(12.3)	(13.8)	0.077	0.010	0.007	10.7 /0	10.9 /0
	Invierno	36	0.159	0.616	0 767	0.024	0.053	45.1 %	239%
	шиство	50	(11.3)	(10.6)	0.707	0.021			23.9 70
	Total	144	-	-	-	0.071	0.423	49.7 %	29.8 %
	Sin segmentar	144	0.166	0.685	0.919	0.141	0.603	-	-
			(22.8)	(40.1)					
	Verano	80	0.270	0.430	0.377	0.074	0.315	23.8 %	14.1 %
	verano		(9.3)	(6.9)					
	Primavera	32	0.158	0.653	0 551	0.020	0.121	23%	05%
	Timavera	52	(3.4)	(6.1)	0.551	0.02)	0.121	2.5 70	0.5 /0
	Otoño	32	0.190	0.535	0 524	0.027	0.067	223%	14 5 %
Punta Arenas	Otolio	52	(5.0)	(5.7)	0.524	0.027	0.007	22.5 70	14.5 /0
	Invierno	18	0.312	0.157	0 080	0.056	0.050	48.0 %	28.0 %
	Invienio	40	(12.5)	(2.1)	0.007	0.050	0.050	40.0 /0	20.9 %
	Total	192	-	-	-	0.186	0.553	30.9 %	13.2 %
	Sin segmentar	102	0.190	0.574	0 585	0 269	0.637	_	_
	Sin segmentai	192	(12.9)	(16.4)	0.565	0.209	0.037	-	-

Tabla 4.17Evaluación estadística de los modelos lineales estimados para cada estación del
año de las bases de datos locales (Continúa)

 $^{1}\Delta$ SSR es la diferencia porcentual entre el SSR del modelo de un segmento particular y el SSR obtenido por un modelo estimado con la base de datos sin segmentar para un segmento particular / $^{2}\Delta$ RMSE igual que Δ SSR, pero con RMSE.

Coeficientes									
Base de datos	Estación del año	N° datos	а	b	R ²	SSR	RMSE	ΔSSR^1	$\Delta RMSE^2$
	Verano	170	0.250 (36.2)	0.539 (32.6)	0.863	0.053	0.180	39.0 %	22.3 %
	Primavera	68	0.247 (27.6)	0.524 (21.6)	0.876	0.017	0.063	42.3 %	22.7 %
Aberporth	Otoño	68	0.223 (24.7)	0.536 (17.7)	0.826	0.021	0.046	23.9 %	12.2 %
-	Invierno	102	0.202 (35.9)	0.524 (22.4)	0.834	0.029	0.028	60.9 %	37.2 %
	Total	408	-	-	-	0.120	0.317	45.0 %	22.7 %
	Sin segmentar	408	0.188 (49.7)	0.668 (62.3)	0.905	0.219	0.410	-	-
	Verano	168	0.211 (37.1)	0.521 (44.7)	0.923	0.059	0.197	16.0 %	8.2 %
Taipa	Invierno	168	0.169 (42.1)	0.611 (59.8)	0.956	0.096	0.201	3.9 %	3.9 %
Grande	Total	336	-	-	-	0.155	0.398	8.9 %	6.1 %
	Sin segmentar	336	0.179 (55.0)	0.586 (79.7)	0.950	0.170	0.424	-	-
	Verano	105	0.228 (13.3)	0.548 (18.3)	0. <mark>7</mark> 66	0.056	0.266	17.2 %	9.4 %
	Primavera	42	0.211 (6.5)	0.553 (10.9)	0. <mark>7</mark> 49	0.027	0.235	13.3 %	7.0 %
Maputo	Otoño	42	0.231 (5.5)	0.501 (8.6)	0. <mark>6</mark> 48	0.027	0.192	11.4 %	5.3 %
ľ	Invierno	63	0.376 (10.0)	0.314 (6.6)	0. <mark>4</mark> 14	0.033	0.144	10.4 %	4.6 %
	Total	<mark>2</mark> 52	-	- 7		0.143	0.837	13.9 %	7.0 %
	Sin segmentar	252	0.291 (30.4)	0.428 (29.8)	0.781	0.166	0.900	-	-
	Verano	108	0.264 (17.5)	0.481 (19.2)	0.777	0.162	0.423	0.01 %	0.008 %
Darwin	Invierno	108	0.250 (5.8)	0.496 (9.8)	0.474	0.133	0.308	0.10 %	0.103 %
	Total	216	-	-	-	0.295	0.732	0.05 %	0.048 %
	Sin segmentar	216	0.264 (24.8)	0.480 (33.0)	0.836	0.296	0.732	-	-

Tabla 4.17	Evaluación estadística de los modelos lineales estimados para cada estación del
	año de las bases de datos locales (Continuación)

 $^{1}\Delta$ SSR es la diferencia porcentual entre el SSR del modelo de un segmento particular y el SSR obtenido por un modelo estimado con la base de datos sin segmentar para un segmento particular. / $^{2}\Delta$ RMSE igual que Δ SSR, pero con RMSE.

En la Tabla 4.17, bajo cada coeficiente se encuentra su respectivo test-t y es posible notar que todos son estadísticamente significativos. Además, es posible observar que segmentar por estaciones del año efectivamente reduce el error de predicción del índice de claridad (hasta un 50 % menos de SSR) y las predicciones de radiación solar (\overline{H}) pueden ser hasta un 30% más precisas.

A través de la Prueba F de Fisher, fue posible notar que en las estaciones radiométricas ubicadas fuera de los trópicos (Vancouver, Punta Arenas, Aberporth y Maputo) efectivamente hay una

reducción del error estadísticamente significativa, tal como se muestra en la Tabla 4.18. Sin embargo, la estación radiométrica de Darwin, ubicada en la Zona Tropical, no presentó una mejora significativa del error, ya que su F calculado no es mayor al exigido por un 95 % de nivel de confianza. Por lo tanto, la segmentación por estaciones del año en bases de datos locales ubicadas en latitudes tropicales no siempre es conveniente.

	SSR Mo	delo lineal			
Estaciones	Base Base completa segmentada		F	F crítico	
Vancouver	0.141	0.071	33.55	2.17	
Punta Arenas	0.269	0.186	20.60	2.10	
Aberporth	0.219	0.120	81.72	2.10	
Taipa Grand <mark>e</mark>	0.170	0.155	16.21	3.00	
Maputo	0.166	0.143	9.840	2.10	
Darwin	0 <mark>.295</mark>	0.296	0.020	3.00	

Tabla 4.18Comparación de los errores de modelos estimados con las bases de datos locales
segmentadas y del estimado con las bases completas con la Prueba F de Fisher

Para ejemplificar el uso de los modelos, en la Figura 4.13 y Figura 4.14 se muestran los modelos estimados usando la desagregación según las estaciones del año de la base de datos de Aberporth.

Figura 4.13 Modelos lineales estimados para las estaciones del año de Aberporth

Figura 4.14 Modelos lineales de cada estación del año de la base de datos de Aberporth

De la Figura 4.13 y Figura 4.14 es importante destacar que la pendiente de los modelos para todas las estaciones del año es bastante similar y a medida que la estación del año se acerca al verano, la constante es mayor. Este comportamiento se repite en cinco de las seis estaciones radiométricas, por lo que no se puede generalizar. Sin embargo, resulta interesante evaluar el desempeño estadístico de un modelo lineal único con adición de variables *dummy*, las cuales modifican las predicciones de $\overline{H}/\overline{H}_0$ según las estaciones del año. Este análisis se encuentra en el Anexo 4.4, en el cual se observa que los resultados son consistentes y similares a los entregados en esta sección, en cuanto a reducción de errores de predicción. Además, los modelos con *dummy* presentaron problemas de significancia estadística en sus coeficientes, por lo que no son convenientes.

Al replicar esta metodología en la base de datos mundial, se obtuvieron los coeficientes de estimación e indicadores estadísticos mostrados en la Tabla 4.19. Además, en la tabla se presenta una comparación de los errores obtenidos por el Modelo Ångström-Prescott, estimado usando la

base de datos mundial sin segmentar, con los errores de los modelos estimados para cada segmento de base de datos desagregada por estaciones del año.

		Coefi						
Estación del año	N° datos	а	b	R ²	SSR	RMSE	ΔSSR	∆RMSE
Inviorno	27 851	0,209	0.529	0 875	79 6	0.204	0.8.0/	5 1 0/
IIIvienio	37 034	(415)	(515)	0.875	78.0	0.294	9.8 %	5.1 %
Otoño	10 501	0.224	0.530	0.853	27.2	0.206	0.0.0/	0.1.0/
Otolio	10 304	(299)	(328)		21.2	0.200	0.0 %	-0.1 %
Delenance	18 584	0.237	0.522	0.827	26.0	0.282	710/	2 4 0/
Primavera		(267)	(298)	0.827	20.9	0.285	7.1 %	2.4 %
Varana	56 120	0.245	0.500	0.901	05 2	0.400	2.0.0/	2.0.0/
verano	50 458	(423)	(477)	0.801	85.5	0.409	3.9 %	2.0 %
Total	131 460	-	-	-	218.0	0.338	6.1 %	2.6 %
Modelo	121 460	0. <mark>2</mark> 23	0.529	0.840	222.1	0.247		
sin segmentar	131 460	(7 <mark>0</mark> 2)	(859)	0.649	232.1	0.347	-	-

Tabla 4.19Evaluación estadística de los modelos lineales estimados para cada estación del
año de la base de datos mundial

El modelo estimado para la estación de invierno obtuvo un buen desempeño estadístico ($R^2 = 0.875$ y Δ SSR=9.8 % Δ RMSE=5.1 %), lo que probablemente se deba a que estos datos no tienen una gran dispersión respecto al promedio, ya que los meses de invierno tienden a ser similares entre sí. Por lo tanto, este comportamiento no es explicado cuando se estima un modelo para la totalidad de los datos. Lo contrario ocurre en otoño, pues al estar compuesto por meses de transición entre las estaciones más marcadas del año (invierno y verano), hay más variabilidad en los datos, lo que explica que no hay una mejora importante en la predicción. El mismo comportamiento se ve manifestado en primavera.

Es importante mencionar que no es posible evaluar estadísticamente la reducción de los errores con la Prueba F, pues ésta se vuelve insensible ante grandes cantidades de datos y arroja que ante cualquier reducción del error, hay una mejora estadísticamente significativa en la predicción. Esto ocurre porque la fórmula del F tiene al tamaño de la base de datos en el numerador, por lo que mientras mayor sea el tamaño de la base de datos, mayor será el valor del F. En la Figura 4.15 se muestran los modelos estimados utilizando los cuatro segmentos de la base de datos mundial obtenidos al desagregarla por estaciones del año.

Figura 4.15 Modelos estimados para los segmentos formados por las estaciones del año de la base de datos mundial

Adicionalmente, es interesante evaluar el desempeño estadístico de modelos lineales estimados cuando la base de datos mundial es desagregada combinando los criterios de latitud geográfica y estaciones del año mencionados en esta sección y en la 4.6.1. Estos resultados se muestran en la sección siguiente.

4.6.3 Modelo de radiación solar global segmentado por latitud y estaciones del año

En la sección 4.6.1 se mostró que segmentar la base de datos por rangos de latitud produce reducciones del error de predicción, sobre todo en la zona tropical. En la sección 4.6.2, se mostró que segmentar la base de datos mundial por estaciones del año produce reducciones del error de predicción en invierno, primavera y verano. Por lo tanto, es interesante combinar estos criterios de segmentación, de tal manera que la base de datos mundial se segmente en diez grupos. Dos de ellos formados por los datos de la Zona Tropical: uno segmento para invierno y otro para verano. La

Zona de Latitudes Medias se segmentó en cuatro grupos de datos: cada uno formado por una estación del año. La Zona de Latitudes Altas se segmentó de la misma forma que la Zona de Latitudes Medias. La combinación de los criterios de latitud y de estaciones del año es descrita con más detalle en la Tabla 4.21. En la Figura 4.16 se puede observar la aplicación de los criterios de segmentación en la base de datos mundial.

Figura 4.16 Segmentación de la base de datos mundial por latitud y estación del año

En la Figura 4.16 se observa que las tres zonas geográficas no tienen una subdivisión clara de las estaciones del año, pues éstas se superponen. Sin embargo, visualmente es posible observar que las coordenadas de los datos aumentan levemente cuando la estación del año es más cercana al verano. Lo mismo ocurre mientras la zona geográfica se encuentre más cercana al ecuador. Al analizar el promedio de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de los diez segmentos (Tabla 4.20) se comprueban las observaciones anteriores, por lo que la segmentación propuesta es apropiada y podría ser beneficiosa para reducir los errores de predicción de los modelos.

		Datos				
Segmento	N° datos	Ī∕Ī₀ promedio	日/日 ₀ promedio			
Trópico-Invierno	9978	0.655	0.551			
Trópico-Verano	9978	0.564	0.517			
Latitudes medias- Invierno	12 414	0.484	0.470			
Latitudes medias- Otoño	8276	0.534	0.507			
Latitudes medias- Primavera	8276	0.565	0.531			
Latitudes medias- Verano	20 690	0.595	0.548			
Latitudes altas- Invierno	15 462	0.249	0.339			
Latitudes altas- Otoño	10 308	0.346	0.407			
Latitudes altas- Primavera	10 308	0.415	0.454			
Latitudes altas- Verano	25 770	0.466	0.478			

Tabla 4.20Promedio de los datos de los segmentos de la base de datos mundial según
criterios de latitud y estaciones del año

. . .

			Zona de latitudes	
		Tropicales	Medias	Altas
		(φ ≤ 23° 26' 14")	23° 26' 14" < $ \phi \le 45^{\circ}$	$45^{\circ} < \phi \le 66^{\circ} 33' 46''$
		Hemisferio Norte:	Hemisferio Norte:	Hemisferio Norte:
		- Noviembre	- Noviembre	- Noviembre
		- Diciembre	- Diciembre	- Diciembre
		- Enero	- Enero	- Enero
		- Febrero		
		- Marzo		
		- Abril		
	Invierno			
		Hemisferio Sur:	Hemisferio Sur:	Hemisferio Sur:
		- Mayo	- Mayo	- Mayo
		- Junio	- Junio	- Junio
		- Julio	- Julio	- Julio
		- Agosto		
		- Septiembre		
		- Octubre		
		$-\mathbf{x}\mathbf{x}$	Hemisferio Norte:	Hemisferio Norte:
			- Febrero	- Febrero
nte		1	- Octubre	- Octubre
ıler	Otoño			
iiv		-	Hemisferio Sur:	Hemisferio Sur:
equ			- Abril	- Abril
ño			- Agosto	- Agosto
el a			Hemisferio Norte:	Hemisferio Norte:
n d			- Marzo	- Marzo
ció			- Septiembre	- Septiembre
sta	Primavera		Hemisferio Sur:	Hamisfario Sur
E		-	Marzo	Marzo
			- Marzo Sontiombro	- Marzo Sontiombro
		Hamisfaria Norta	- Septemble	- Septiemble
		Merre	Abril	Abril
		- Mayo	- Abin Mayo	- Addin Mayo
		- Julio	- Mayo	- Mayo
		- Juno		- Junio
		- Agosto	- Julio	- Julio
		- Septiembre	- Agosto	- Agosto
	Vorono	- Octubre		
	verano	Hemisferio Sur	Hemisferio Sur	Hemisferio Sur
		- Noviembre	- Octubre	- Octubre
		- Diciembre	- Noviembre	- Noviembre
		- Enero	- Diciembre	- Diciembre
		- Febrero	- Enero	- Enero
		- Marzo	- Febrero	- Febrero
		- Abril		

 Tabla 4.21
 Criterios de segmentación de las bases de datos por latitud y estaciones del año

Luego de segmentar la base de datos mundial por latitud y estaciones del año se estimó un Modelo Ångström-Prescott para cada uno de los diez segmentos. Estos son mostrados en la Tabla 4.22.

			Coefic	cientes					
Abreviatura	Segmento	N° datos	а	b	R ²	SSR	RMSE	Δ SSR	∆RMSE
T-I	Trópico-Invierno	9978	0.217 (100.0)	0.509 (158.7)	0.716	29.7	0.509	11.6 %	5.9 %
T-V	Trópico-Verano	9978	0.252 (131.3)	0.468 (142.4)	0.670	24.6	0.512	4.3 %	2.1 %
M-I	Latitudes medias- Invierno	12 414	0.230 (212.1)	0.495 (235.6)	0.817	21.2	0.199	7.0 %	4.5 %
M-O	Latitudes medias- Otoño	8276	0.240 (161.4)	0.499 (187.3)	0.809	12.5	0.251	1.6 %	0.7 %
M-P	Latitudes medias- Primavera	8276	0.244 (139.9)	0.510 (170.9)	0.779	13.6	0.335	4.9 %	1.7 %
M-V	Latitudes medias- Verano	20 690	0.236 (221.9)	0.524 (304.3)	0.817	33.7	0.437	5.1 %	2.6 %
A-I	Latitudes altas- Invierno	15 462	0.187 (261.1)	0.610 (237.9)	0.785	25.0	0.096	18.8 %	9.4 %
A-O	Latitudes altas- Otoño	10 308	0.211 (208.0)	0.568 (208.2)	0.808	14.2	0.157	2.1 %	0.6 %
A-P	Latitudes altas- Primavera	10 308	0.231 (200.8)	0.539 (204.2)	0.802	13.2	0.233	9.6 %	3.6 %
A-V	Latitudes altas- Verano	25 770	0.256 (339.4)	0.479 (306. <mark>4</mark>)	0.785	24.7	0.319	10.5 %	5.5 %
	Total	131 460	- 1	04-1	-	212.4	0.334	8.5 %	3.7 %
	Modelo Ångström-Prescott sin segmentar	131 460	0.223 (701.6)	0.529 (859.1)	0.849	232.1	0.347	-	-

 Tabla 4.22
 Modelos lineales estimados para los diez segmentos de la base de datos mundial

En la Tabla 4.22 se muestra que los coeficientes de los modelos de los diez segmentos de la base de datos mundial son estadísticamente significativos. Cabe destacar los valores del test-t son altos debido a que los modelos estimados poseen sólo dos coeficientes y el tamaño de los segmentos de la base de datos es grande, por lo que es poco probable que haya problemas de significancia estadística.

Los errores de predicción (SSR) de los modelos estimados con cada segmento de la base de datos mundial son un 8.5 % menor que los errores obtenidos con el Modelo Ångström-Prescott sin segmentar la base de datos. Además, los diez modelos predicen una radiación solar global (\overline{H}) con un 3.7 % menos de error. A nivel de segmento, se aprecia que en todos los segmentos hubo reducciones del error (SSR), los cuales fluctúan entre un 2 % y un 19 %. Además, la radiación solar

 (\overline{H}) se predice hasta con un 9.4 % más de precisión ($\Delta RMSE$) que el Modelo Ångström-Prescott estimado para la base de datos sin segmentar. Las mayores reducciones del error ocurren en invierno, tal como se había comentado en la Sección 4.6.2. Esto ocurre pues los meses de invierno presentan menos variabilidad que las otras estaciones del año (los meses de invierno tienden a ser muy similares entre sí). Por lo tanto, al agrupar las estaciones del año en una sola base de datos, produce que el modelo no sea capaz de explicar de la mejor manera el comportamiento de los datos de invierno.

Por otro lado, en la Figura 4.17 es posible observar que los coeficientes de los modelos estimados para los diez segmentos son bastante similares, por lo que entregan predicciones similares de $\overline{H}/\overline{H}_0$, lo que explica que la reducción global del error (SSR) de los modelos sea baja (8.5 %). En la Figira 4.18 se muestran todos los modelos presentados en la Tabla 4.22 y los respectivos segmentos de la base de datos con los que fueron estimados.

Por lo tanto, considerando que la reducción de los errores son baja y que la base de datos mundial se tuvo que segmentar en diez grupos para obtener estos resultados, es mucho más sencillo predecir $\overline{H}/\overline{H}_0$ y \overline{H} con el Modelo Ångström-Prescott estimado con la base de datos sin segmentar y que se obtengan predicciones con errores ligeramente más grandes.

Figura 4.17 Modelos lineales de cada segmento comparados con la base de datos mundial sin segmentar

Figura 4.18 Modelos lineales estimados para cada segmento de la base de datos mundial

En resumen, los modelos lineales (Ångström-Prescott) estimados para los diez segmentos de la base de datos mundial, la cual fue desagregada por latitud y estaciones del año, predicen índices de claridad y radiación solar global con menos errores que el Modelo Ångström-Prescott estimado utilizando la base de datos mundial sin segmentar. Sin embargo, esta diferencia es marginal, considerando que se tuvo que estimar diez modelos diferentes. En el Anexo 4.5, se muestra el desempeño estadístico un modelo lineal único con adición de variables *dummy* que integran las condiciones de desagregación mostradas en esta sección. En este análisis se obtuvieron errores de predicción similares a los mostrados en esta sección. No obstante, la complejidad del modelo aumenta considerablemente, por lo que no es conveniente utilizar este tipo de variables.

4.7 Evaluación estadística de modelos radiación solar global segmentados por intervalos de asoleamiento relativo

Considerando que al utilizar variables de desagregación geográfica y estacional no se obtuvo una mejora considerable en la precisión de las predicciones de la radiación solar a nivel mundial, se planteó desagregar la base de datos mundial de acuerdo a intervalos de asoleamiento relativo (\bar{S}/\bar{S}_0) . Este criterio surgió debido a que al observar al Modelo Ångström-Prescott fue posible notar que para \bar{S}/\bar{S}_0 pequeños y \bar{S}/\bar{S}_0 cercanos a uno, el modelo no entrega la mejor predicción posible de \bar{H}/\bar{H}_0 , esto se observa en la Figura 4.19.

Figura 4.19 Comparación del Modelo Ångström-Prescott con la base de datos mundial desagregada con un modelo de tres segmentos según intervalos de $\overline{S}/\overline{S}_0$

En la figura es posible observar que para $\overline{S}/\overline{S}_0$ pequeños se necesita un modelo con mayor pendiente que la proporcionada por el modelo y para $\overline{S}/\overline{S}_0$ cercanos a unos, pareciera que necesita de un modelo con menor pendiente que la entregada por el Modelo Ångström-Prescott estimado con la base de datos mundial, es decir, el modelo sobreestima a $\overline{H}/\overline{H}_0$ cuando $\overline{S}/\overline{S}_0$ es cercano a su mínimo y a su máximo. Por lo tanto, se decidió estimar un modelo lineal segmentado según intervalos de asoleamiento relativo para cada una de las bases de datos y se verificó si estos modelos efectivamente poseen un desempeño estadístico superior al del Modelo Ångström-Prescott.

4.7.1 Modelos de radiación solar global segmentados por intervalos de asoleamiento relativo estimados a nivel local

Para el análisis a nivel local, se decidió que los intervalos de asoleamiento relativo $(\overline{S}/\overline{S}_0)$ tuvieran tamaños iguales, es decir, los puntos quiebres de los modelos están equiespaciados. Para ejemplificar procedimiento, se muestran los resultados obtenidos con la base de datos de Maputo, Mozambique (25° 58' S, 32° 36' E). Inicialmente, para esta base datos se utilizó sólo un punto de quiebre ubicado a igual distancia entre el $\overline{S}/\overline{S}_0$ máximo (0.894) y mínimo (0.412), es decir, los intervalos de asoleamiento relativo son: $0.412 \leq \overline{S}/\overline{S}_0 < 0.653$ y $0.653 \leq \overline{S}/\overline{S}_0 \leq 0.894$. Luego, se estimó un modelo lineal segmentado y continuo según la estructura mostrada en la Ecuación 4.7:

$$\frac{\overline{\mathrm{H}}}{\overline{\mathrm{H}}_{0}} = a + b \, \frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_{0}} + \sum_{i=1}^{n} \gamma_{i} \, \mathrm{D}_{i} \left(\, \frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_{0}} - \mathrm{x}_{i} \right) \tag{4.7}$$

donde:

- $a, b \neq \gamma_i$ son coeficientes de estimación,

- *n* es la cantidad total de puntos de quiebre. Se entiende por punto de quiebre al $\overline{S}/\overline{S}_0$ donde termina un intervalo y comienza el siguiente,
- *i* es número del punto de quiebre y x_i es el valor de $\overline{S}/\overline{S}_0$ del punto de quiebre *i* y
- D_i es una variable *dummy* que toma un valor igual a uno cuando $\overline{S}/\overline{S}_0 > x_i$ y es cero en otro caso.

En este caso, como se definió sólo un punto de quiebre x_1 =0.653, existe sólo una variable *dummy* (D₁), por lo que el modelo resultante posee dos segmentos. Cabe mencionar que estimar un modelo lineal con dos segmentos es un criterio preliminar, ya que para obtener la cantidad óptima de intervalos equiespaciados, se replicó el mismo procedimiento con dos y tres puntos de quiebre. Luego, según de los resultados obtenidos se decide cuál es estadísticamente mejor.

Los coeficientes e indicadores obtenidos de la evaluación de los modelos segmentados según intervalos de $\overline{S}/\overline{S}_0$, estimados con la base de datos de Maputo, son mostrados en la Tabla 4.23. Bajo cada coeficiente se encuentra su respectivo test-t, de los cuales es posible observar que a medida que aumenta la cantidad de segmentos, la magnitud de los test-t comienza a decaer. Cuando el modelo tiene tres segmentos (dos puntos de quiebre), existen problemas de significancia estadística en sus coeficientes, por lo que no es recomendable aumentar la cantidad de segmentos.

14014 1.25	moue		montua		maob	jeguii i	inter vare		S0 counta		mapato
Madala		Coefi	cie <mark>ntes</mark>		- D2 SSD	DMSE	ACCD	ADMSE -	Prueba F		
Modelo	а	b	γ 1	γ2	K ²	55 K	RIVISE	255K	ARMSE -	F	Fcrítico
Sin segmentos	0.291	0.428			0 7 9 1	0.166	0. <mark>2</mark> 43	-		-	
	(30.4)	(29.8)			0.781				-		-
Dos segmentos	0.244	0.512	-0 <mark>.</mark> 162		0 780	0.150	0 237	3804	25.0%	0.83	2 00
	(13.8)	(16.9)	(- <mark>3</mark> .1)		0.789	<u>89</u> 0.159	0.257	5.0 %	2.3 %	9.05	2.99
Tres segmentos	0.209	0.581	-0.154	-0.134	0 704	0.156	0 222	500/	4.0.0/	2.04	2.61
	(6.9)	(10.3)	(-1.9)	(-1.7)	0.794	0.156	0.233	5.9 %	4.0 %	5.84	2.01

Tabla 4.23Modelos segmentados continuos según intervalos de $\overline{S}/\overline{S}_0$ estimados en Maputo

En la Tabla 4.23, se observa que utilizar modelos segmentados efectivamente se traduce en una disminución de los errores de predicción de $\overline{H}/\overline{H}_0$ (Δ SSR 3.8 % y 5.9 %) respecto al Modelo Ångström-Prescott estimado con la base de datos de Maputo. Algo similar ocurre al comparar los errores de predicción de la radiación solar global (\overline{H}) con el indicador RMSE. Por lo tanto, para decidir si los modelos segmentados son estadísticamente mejores que modelo lineal sin segmentos (Modelo Ångström-Prescott) se utilizó la Prueba F. Ésta entregó que el modelo con dos segmentos (un punto de quiebre) reduce significativamente los errores, por lo que éste es mejor que el modelo sin segmentos. En la Figura 4.20 se muestran los modelos segmentados estimados para la base de datos de Maputo de acuerdo a los diferentes intervalos de $\overline{S}/\overline{S}_0$.

Figura 4.20 (a) Modelo Ångström-Prescott y modelos de (b) dos y (c) tres segmentos estimados a partir de la base de datos de Maputo

Por otro lado, al analizar los errores de predicción de los modelos segmentados respecto a los obtenidos por el Modelo Ångström-Prescott en cada segmento, se encontró que el modelo con tres tramos reduce considerablemente los errores de predicción en el primer y último segmento (Δ SSR igual a 15.1 % y 10.1 % respectivamente) y también, en menor medida se reducen los errores de predicción de la radiación solar (\overline{H}), tal como se muestra en la Tabla 4.24.

Madala	Sogmonto	Límit	$e(\bar{S}/\bar{S}_0)$	Nº Jatan	CCD	DMCE	ACCD	ADMCE	
wiodelo	Segmento	Inferior	Superior	Nº datos	55K	KMSE	ASSK	AKMSE	
Sin segmentar	-	0.412	0.894	252	0.166	0.243	-	-	
Dos segmentos	Seg. 1	0.412	0.653	121	0.078	0.267	3.2 %	2.6 %	
	Seg. 2	0.653	0.894	131	0.081	0.206	4.3 %	2.5 %	
	Seg. 1	0.412	0.572	63	0.028	0.234	15.1 %	7.8 %	
Tres segmentos	Seg. 2	0.572	0.733	111	0.087	0.264	0.2 %	2.1 %	
	Seg. 3	0.733	0.894	78	0.040	0.179	10.1 %	4.1 %	

 Tabla 4.24
 Análisis de los errores de los modelos segmentados en cada segmento de datos

Al aplicar el mismo procedimiento a las cinco estaciones radiométricas restantes (bases de datos locales), se obtuvo que en las estaciones de Punta Arenas y Darwin no fue posible encontrar una cantidad óptima de intervalos de equiespaciados, ya que cuando se estimó un modelo segmentado con un punto de quiebre (dos segmentos) no se logró reducir significativamente los errores de predicción y cuando el modelo tuvo dos puntos de quiebre (tres segmentos), hubieron problemas de significancia estadística en los coeficientes. Los modelos segmentados estimados para las bases de datos locales en las que sí fue posible encontrar una configuración óptima de intervalos equiespaciados se muestran en la Tabla 4.25.

		С	oeficien	tes	_					Prue	eba F
Estación	Modelo	a	b	γ1	R ²	SSR	RMSE	ΔSSR	ARMSE	F	Fcrítico
	Sagmontado	0.130	0.819	-0.265	0.028	0.126	0.213	10.8.04	126%	17.03	3.07
Voncouvor	Segmentado	(11.7)	(22.6)	(-4.1)	0.928	0.120	0.215	10.8 70	12.0 70	17.05	5.07
Vancouver	Sin	0.166	0.685	-	0.010	0.141	0.244				
	segmentos	(22.8)	(40.1)	-	0.919		0.244	-	-	-	-
	Segmentado	0.176	0.713	-0.121	0.908	0.213	0.158	2.5%	4 204	10.47	2.00
Abarporth		(33.7)	(40.8)	(-3.2)				2.3%	4.2%	10.47	2.99
Aberportii	Sin comontor	0.188	0.668	-	0.005	0.210	0 165			-	-
	Sin segmentar	(49.7)	(62.3)	-	0.903	0.219	0.105	-	-		
	Companyado	0.159	0.657	-0.205	0.059	0 1 4 2	0 104	16 60/	0 20/	66.20	2.00
Taipa Grande	Segmentado	(41.3)	(59.5)	(-8.1)	0.938	0.142	0.194	10.0%	8.3%	00.50	2.99
	C '	0.179	0.586		0.050	0 170	0.010				
	Sin segmentar ((55.0)	(79.7)		0.950	0.170	/0 0.212	-	-	-	-

Tabla 4.25Evaluación estadística de modelos segmentados según intervalos de $\overline{S}/\overline{S}_0$ de las
bases de datos locales restantes

De la tabla es posible notar que los modelos segmentados de las tres estaciones radiométricas poseen sólo un punto de quiebre, pues cuando se aumentó la cantidad de segmentos surgieron problemas de significancia estadística en los coeficientes. Cabe destacar que el coeficiente del término con *dummy* (γ_1) siempre es negativo, es decir, el primero tramo del modelo siempre posee una pendiente superior que el segundo tramo. Por otro lado, mediante la Prueba F fue posible comprobar que los modelos segmentados estimados para las estaciones de Vancouver, Aberporth, Taipa Grande y Maputo son estadísticamente mejores que el Modelo Ångström-Prescott estimado para cada una de ellas. En la Tabla 4.26 se muestra la comparación de los errores de predicción de los modelos segmentados según intervalos de asoleamiento relativo respecto a los obtenidos con el modelo lineal sin segmentos (Ångström-Prescott).

Tabla 4.26Análisis comparativo de los errores de los modelos segmentados y del Modelo
 $Angström-Prescott obtenidos para las bases de datos localesLímite (<math>\bar{S}/\bar{S}_0$)

			· (~,~))					
Estación	Segmento	Inferior	Superior	N° datos	SSR	RMSE	ΔSSR	ARMSE
	Seg. 1	0.106	0.400	71	0.087	0.231	7.2 %	8.2 %
Vancouver	Seg. 2	0.400	0.694	73	0.039	0.194	18.0 %	17.7 %
	Total	0.106	0.694	144	0.126	0.213	10.8 %	12.6 %
	Seg. 1	0.092	0.373	258	0.157	0.153	0.8 %	3.6 %
Aberporth	Seg. 2	0.373	0.653	150	0.057	0.165	6.9 %	5.0 %
	Total	0.092	0.653	408	0.213	0.158	2.5 %	4.2 %
т :	Seg. 1	0.042	0.461	195	0.097	0.211	17.8 %	9.1 %
I aipa Granda	Seg. 2	0.461	0.880	141	0.045	0.169	13.8 %	6.4 %
Grande	Total	0.042	0.880	336	0.142	0.194	16.6 %	8.3 %

Es importante mencionar, que si bien hay importantes reducciones de los errores, tal como Vancouver, donde se reducen los errores de predicción en hasta un 18 %, los valores no alcanzan a los obtenidos cuando las bases de datos fueron segmentadas por estaciones del año.

En conclusión, para realizar este análisis es necesario hacer una evaluación individual a cada base de datos y encontrar la cantidad de intervalos equiespaciados de asoleamiento relativo que maximicen la reducción de los errores del modelo segmentado. Adicionalmente, en un futuro sería interesante evaluar la posibilidad de encontrar cantidades y tamaños de intervalos óptimos que maximicen el ajuste de los modelos de radiación solar, los cuales no necesariamente serán equiespaciados. Además, es necesario estudiar caso a caso si el modelo segmentado posee una mayor precisión que un modelo lineal estimado para cada estación de año.

4.7.2 Modelo de radiación solar global segmentado según rangos de asoleamiento relativo estimado a nivel mundial

En la Sección 4.7.1 se mostró que en algunas de las bases de datos locales, un modelo segmentado de acuerdo a intervalos de $\overline{S}/\overline{S}_0$ entrega predicciones de $\overline{H}/\overline{H}_0$ y \overline{H} con menos error que el Modelo Ångström-Prescott. Por lo tanto, es interesante saber si este comportamiento se repite al estimar un modelo de este tipo utilizando la base de datos mundial.

Es importante recordar que en la Sección 4.7 se mencionó que un modelo lineal estimado a partir de la base de datos mundial completa no es capaz de representar de la mejor manera a los datos con bajo y alto asoleamiento relativo $(\overline{S}/\overline{S}_0)$. Por lo tanto, preliminarmente se planteó un modelo con tres segmentos (dos puntos de quiebre) según intervalos de asoleamiento relativo $(\overline{S}/\overline{S}_0)$, se evaluó su desempeño estadístico y se decidió si era conveniente estimar este tipo de modelos con la base de datos mundial.

El tamaño de los intervalos equiespaciados de $\overline{S}/\overline{S}_0$ se obtuvo dividiendo uno (1) entre la cantidad de segmentos que tendrá el modelo. Si bien el valor mínimo de $\overline{S}/\overline{S}_0$ de la base de datos es 0.011 y el máximo es 0.998, al definir el dominio de los modelos entre $0 \le \overline{S}/\overline{S}_0 \le 1$, éstos pueden ser

aplicados a otras bases de datos que podrían contener mediciones fuera del rango de base de datos mundial. Cabe mencionar que no hay problema en extender el dominio de los modelos, ya que los límites impuestos son muy similares al rango de los datos.

La evaluación estadística del modelo segmentado continuo con tres segmentos (dos puntos de quiebre) y su comparación con el Modelo Ångström-Prescott estimado para la base de datos completa es mostrada en la Tabla 4.27 y la Tabla 4.28.

Tabla 4.27 Modelos de tres segmentos según intervalos de $\overline{S}/\overline{S}_0$ estimado con la base de datos mundial

				mai	Iuiui						
Modelo	Puntos de quiebre		Coeficientes				D 2	SCD	DMSE	VEED	ADMSE
	X 1	X2	а	b	γ1	γ2	- K-	35K	RNISE	265 N	ARMSE
Modelo tres	0.33	0.67	0.180	0.686	-0.184	-0.054	0 855		0 3 4 3	1004	1 2 04
segmentos	0.55	0.07	(254.9)	(274.6)	(-55.9)	(-1 <mark>5</mark> .2)	0.855	222.1	0.343	4.0 %	1.2 70
Modelo Ångström-			0.223	0.529			0.840	222.1	0 3 4 7		
Prescott	-	-	(701. <mark>6)</mark>	(859.1)			0.849	232.1	0.347	-	-

 Tabla 4.28
 Análisis comparativo del modelo con tres segmentos con el Modelo Ångström-Prescott

Sogmonto	Limite	$e(\bar{S}/\bar{S}_0)$	Nº datas	SCD	DMSE	ASSD	ADMSF					
Segmento	Inferior	Su <mark>p</mark> erior	It uatos	BBK	KNIGE	255 K	ANVISE					
Seg. 1	0.00	0. <mark>33</mark>	30 911	45.5	0.224	9.2 %	0.4 %					
Seg. 2	0.33	0.67	77 488	123.7	0.345	2.0 %	1.4 %					
Seg. 3	0.67	1.00	23 061	53.6	0.451	3.9 %	1.2 %					
Total	0.00	1.00	131 460	222.7	0.343	4.0 %	1.2 %					

En la Tabla 4.27 se observa que los coeficientes estimados no tienen problemas de significancia estadística. Además, se comprueba lo expuesto en la Sección 4.7, donde se expuso que los datos del primer segmento de $\overline{S}/\overline{S}_0$ necesitan una pendiente mayor (0.686) que la entregada por el Modelo Ångström-Prescott (0.529). Con el modelo segmentado, se logró reducir el SSR en un 9.2 % en el primer segmento respecto al Modelo Ångström-Prescott y se logró reducir los errores totales de predicción de $\overline{H}/\overline{H}_0$ en un 4 %. Al observar la disminución del RMSE de la radiación solar (\overline{H}), solamente se logró reducir en un 1.2 %.

Debido a que no se pueden comparar los modelos con la Prueba F de Fisher, ya que cualquier reducción de los errores entrega que el modelo segmentado es mejor que el Modelo Ångström-

Prescott, debido al tamaño de la base de datos, se decidió aumentar el grado de segmentación de los modelos a cinco ($\Delta \overline{S}/\overline{S}_0=0.2$) y diez segmentos equiespaciados ($\Delta \overline{S}/\overline{S}_0=0.1$) y verificar nuevamente la reducción del error de predicción de los modelos. Es necesario recordar que la segmentación mencionada es incluida a los modelos mediante la Ecuación 4.7. Cabe comentar que es probable que el SSR y RMSE de los modelos segmentados no disminuya considerablemente, pero a nivel de segmento debería haber cambios importantes.

Cabe mencionar que la ventaja de los modelos segmentados es que entregan predicciones más precisas en los segmentos que poseen menor cantidad de datos, pues al ser menos frecuentes, su comportamiento no es reflejado por un modelo sin segmentos. Los resultados de la evaluación estadística de los modelos con cinco y diez segmentos equiespaciados, y la comparación de éstos con el Modelo Ångström-Prescott se muestran en la Tabla 4.29 y la Tabla 4.30.

Tabla 4.29 Modelos con cinco y diez segmentos según intervalos de $\overline{S}/\overline{S}_0$, estimados con la base de datos mundial

Madala	_	Coeficientes										
Widdelo	а	b	γ 1	γ <mark>2</mark>	γ3	γ4	γ ₅	γ6	γ7	γ8	γ9	_
Modelo cinco	0.175	0.731	-0.1 <mark>1</mark> 2	-0.1 <mark>23</mark>	-0.043	0.042	1					0.955
segmentos	(129.1)	(95.4)	(-12. <mark>2</mark>)	(-29. <mark>2)</mark>	(-9.5)	(3.9)						0.855
Modelo diez	0.176	0.731	-0.035	-0.021	-0.099	-0.063	<mark>-0</mark> .021	-0.028	-0.029	0.085	-0.105	0.955
segmentos	(52.0)	(19.4)	(-0.8)	(-1.3)	(-8.2)	(-6.1)	(-2.1)	(-2.5)	(-2.1)	(4.3)	(-2.0)	0.855
Modelo sin	0.223	0.529										0.940
segmentar	(701.6)	(859.1)										0.849

En la Tabla 4.29 se observa que dos de los coeficientes del modelo con diez segmentos presentan problemas de significancia estadística, por lo que no es conveniente esta segmentación. En la Tabla 4.30 es posible observar que el segundo y tercer segmento, respectivos a los coeficientes con problemas de significancia estadística del modelo con diez segmentos (γ_1 y γ_2), si bien presentan una disminución del SSR respecto al Modelo Ångström-Prescott, hay un aumento de los errores de predicción de (\overline{H}), lo que es muy perjudicial, ya que la radiación solar (\overline{H}) es el resultado final del proceso.

		Limit	$e(\bar{S}/\bar{S}_0)$					ADMSE	
Modelo	Segmento	Inferior	Superior	N° datos	SSR	RMSE	ΔSSR	ARMSE	
	Seg. 1	0.0	0.2	9307	13.9	0.172	23.2%	3.3%	
	Seg. 2	0.2	0.4	36 157	51.6	0.260	2.1%	1.2%	
Modelo cinco segmentos	Seg. 3	0.4	0.6	49 928	76.7	0.339	2.4%	1.6%	
	Seg. 4	0.6	0.8	29 432	65.2	0.438	1.4%	0.3%	
	Seg. 5	0.8	1.0	6636	15.2	0.450	8.2%	2.8%	
	Total	0.0	1.0	131 460	222.6	0.343	4.1%	1.2%	
	Seg. 1	0.0	0.1	1398	2.3	0.122	38.9%	25.2%	
	Seg. 2	0.1	0.2	7909	11.6	0.181	19.2%	-0.3%	
	Seg. 3	0.2	0.3	15 323	22.7	0.233	1.5%	-1.4%	
	Seg. 4	0.3	0.4	20 834	28.8	0.276	2.9%	2.9%	
Modelo	Seg. 5	0.4	0.5	25 786	35.9	0.310	3.4%	2.5%	
diez	Seg. 6	0.5	0.6	24 142	40.8	0.367	1.5%	0.9%	
segmentos	Seg. 7	0.6	0.7	18 247	38.3	0.425	0.2%	0.1%	
	Seg. 8	0.7	0.8	11 185	26.9	0.459	3.0%	0.7%	
	Seg. 9	0.8	0.9	5524	12.8	0.455	7.4%	2.5%	
	Seg. 10	0.9	1.0	1112	2.5	0.429	12.2%	4.9%	
_	Total	0.0	1.0	131 460	222.5	0.343	4.1%	1.3%	

Tabla 4.30Análisis comparativo de los modelos con cinco y diez segmentos con el Modelo
Ångström-Prescott

En cuanto al modelo con cinco segmentos equiespaciados, éste no presentó problemas de significancia estadística en sus coeficientes. El error de predicción (SRR) no se redujo respecto al modelo con tres segmentos. No obstante, a nivel de segmento hubo reducciones considerables del error (SSR) en el primer y último segmento de la base de datos mundial.

En la Figura 4.21 se muestra la base de datos mundial desagregada en tres, cinco y diez segmentos, los modelos segmentados estimados para los diferentes puntos de quiebre (líneas negras continuas) y el Modelo Ångström-Prescott (línea negra segmentada) estimado con la base de datos mundial. La Figura 4.21, en conjunto con la Tabla 4.30, muestran que no hay una gran diferencia notoria de los modelos en los segmentos en el rango medio de $\overline{S}/\overline{S}_0$. Sin embargo, hay una diferencia importante entre lo estimado por los modelos segmentados y el Modelo Ångström-Prescott en los segmentos con $\overline{S}/\overline{S}_0$ menores a 0.2 y mayores a 0.8. Por lo tanto, se propuso un modelo lineal segmentado con puntos de quiebre en $\overline{S}/\overline{S}_0=0.2$ y $\overline{S}/\overline{S}_0=0.8$, obteniendo como resultado un modelo de tres segmentos continuos, más simple que el de cinco segmentos y aplicable a toda la base de datos mundial.

Figura 4.21 Modelos con (a) tres, (b) cinco y (c) diez segmentos estimados para de la base de datos mundial

Posteriormente, se realizó un análisis de sensibilidad a los puntos de quiebre $\overline{S}/\overline{S}_0=0.2 \text{ y } \overline{S}/\overline{S}_0=0.8$, ya que podrían no ser óptimos para el modelo, pues fueron escogidos visualmente. En la Tabla 4.31 se muestran los modelos segmentados estimados con diferentes puntos de quiebre y su comparación con el Modelo Ångström-Prescott (A-P), estimado para la base de datos mundial. En la Tabla 4.31, se observa que ninguno de los modelos segmentados tiene problemas de significancia estadística. Además, cabe mencionar que globalmente estos modelos segmentados presentan una reducción marginal de los errores de predicción respecto al Modelo Ångström-Prescott. Sin embargo, la ventaja de estos modelos es que incorporan el comportamiento menos frecuente de los datos con $\overline{S}/\overline{S}_0$ cercanos a cero y a uno. Además, son más simples que otros con desempeños estadísticos ligeramente superiores, pero que poseen más segmentos.

Modelo	Puntos de quiebre			Coeficientes					D 2	SSD	DMSE	VEED	ADMSE
	X 1	X 2	X 3	a	b	γ1	γ2	үз	K²	35K	KNISE	255K	AKNISE
Modelo 1	0.20	0.80	-	0.158	0.879	-0.359	-0.156		0.852	226.6	0.344	2.4 %	0.8 %
				(120.4)	(126.4)	(-49.5)	(-19.0)						
Modelo 2	0.10	0.90	-	0.139	1.387	-0.859	-0.457		0.850	230.7	0.346	0.6 %	0.2 %
				(42.5)	(42.0)	(-26.0)	(-11.5)						
Modelo 3	0.30	0.80	-	0.174	0.726	-0.227	-0.082		0.854	223.6	0.343	3.7 %	1.2 %
				(219.8)	(243.6)	(-65.3)	(-9.8)						
Modelo 4	0.15	0.80	-	0.150	1.032	-0.504	-0.185		0.851	228.4	0.345	1.6 %	0.5 %
				(78.2)	(78.4)	(-37.7)	(-22.6)						
Modelo 5	0.10	0.20	0.80	0.186	0.541	0.393	-0.415	-0.152	0.852	226.5	0.344	2.4 %	0.9 %
				(54.9)	(14.4)	(9.2)	(-43.8)	(-18.6)					
Modelo 6	0.20	-	-	0.156	0.895	-0.380			0.852	227.3	0.344	2.1 %	0.8 %
				(119.1)	(129.3)	(-53.0)							
Modelo 7	0.10	0.20	-	0.187	0.525	0.429	-0.441		0.852	227.1	0.344	2.2 %	0.8 %
				(55.1)	(13.9)	(10.0)	(-47.0)						
Modelo 8	0.15	-	-	0.147	1.059	-0.537			0.851	229.3	0.345	1.2 %	0.5 %
				(77.0)	(80.5)	(-40.3)							
Modelo 9	0.10	-	-	0.138	1.39 <mark>6</mark>	-0.870			0.850	230.9	0 346	05%	02%
				(42.3)	(42.3 <mark>)</mark>	(-26.3)			0.050	230.7	0.510	0.5 70	0.2 /0
Modelo A-P	-	-	-	0.223	0.529			0.849	232.1	0 347	_	_	
				(701.6 <mark>)</mark>	(859.1)				0.077	232.1	0.577		

 Tabla 4.31
 Análisis de sensibilidad de los puntos de quiebre del modelo con tres segmentos

Para decidir cuál es el mejor modelo segmentado, fue necesario realizar un análisis comparativo de los errores de predicción (SSR y RMSE) segmento a segmento. En la Tabla 4.32, se muestra una comparación a nivel de segmento de los errores de predicción obtenidos por los diferentes modelos segmentados y los obtenidos por el Modelo Ångström-Prescott estimado con la base de datos mundial.

En la tabla se observa que a nivel de segmento hay reducciones considerables de los errores (SSR y RMSE), sobre todo en el segmento con $\overline{S}/\overline{S}_0$ cercanos a cero. Es importante mencionar que cuando se establece un punto de quiebre igual en $\overline{S}/\overline{S}_0=0.8$ o $\overline{S}/\overline{S}_0=0.9$ (Modelo 1 al 5), no hay una disminución trascendente de los errores en el segmento siguiente, pues se logran predicciones de radiación solar (\overline{H}) de un 2 % a un 3 % más precisas, por lo que no es conveniente colocar un punto de quiebre de las características mencionadas. Al observar los modelos segmentados con puntos de

quiebre entre 0.1 y 0.2 (Modelos 6 a 9) se manifiesta que efectivamente no hay un cambio significativo en los errores al eliminar el segundo punto de quiebre.

		Limite	e Intervalo	Cantidad	GGD	DMCE	ACCD			
Modelo	Segmento	Inferior	Superior	datos	SSR	RMSE	ΔSSR	ARMSE		
	Seg. 1	0.00	0.20	9307	14.7	0.178	18.8 %	5.1 %		
X 11 1	Seg. 2	0.20	0.80	115 517	196.4	0.349	0.5 %	0.6 %		
Modelo 1	Seg. 3	0.80	1.00	6636	15.5	0.464	6.5 %	2.4 %		
		r	Fotal	131 460	226.6	0.347	2.4 %	0.8 %		
	Seg. 1	0.00	0.10	1398	2.7	0.133	28.3 %	18.5 %		
Madala 2	Seg. 2	0.10	0.90	128 950	225.4	0.347	0.0 %	0.1 %		
Modelo 2	Seg. 3	0.90	1.00	1112	2.6	0.435	9.1 %	3.7 %		
	Total			131 460	230.7	0.346	0.6 %	0.2 %		
	Seg. 1	0.00	0.30	24 630	36.8	0.211	10.5 %	0.6 %		
Madala 2	Seg. 2	0.30	0.80	100 194	171.4	0.360	1.7 %	1.1 %		
Modelo 5	Seg. 3	0.80	1.00	6636	15.3	0.451	7.6 %	2.8 %		
		r	Fotal	131 460	223.6	0.343	3.7 %	1.2 %		
	Seg. 1	0.00	0.15	4314	7.4	0.144	24.6 %	12.3 %		
Modele 4	Seg. 2	0.15	0.80	120 510	<mark>205.4</mark>	0.343	0.2 %	0.3 %		
Middel0 4	Seg. 3	0.80	1.00	6636	15.6	0.454	5.9 %	2.1 %		
		r	Fotal	131 460	228.4	0.345	1.6 %	0.5 %		
	Seg. 1	0.00	<mark>0.10</mark>	1398	2.4	0.123	37.6 %	24.7 %		
	Seg. 2	0.10	0.20	7909	12.2	0.177	14.5 %	2.1 %		
Modelo 5	Seg. 3	0.20	<mark>0.80</mark>	115 517	<mark>196.4</mark>	0.347	0.5 %	0.6 %		
	Seg. 4	0.80	<u>1.00</u>	<u>663</u> 6	15.5	0.452	6.6 %	2.4 %		
		r	Fotal	131 460	226.5	0.344	2.4 %	0.9 %		
	Seg. 1	0.00	0.20	9307	14.9	0.169	18.0 %	5.1 %		
Modelo 6	Seg. 2	0.20	1.00	122 153	212.4	0.354	0.7 %	0.7 %		
			Fo <mark>tal</mark>	131 460	227.3	0.344	2.1 %	0.8 %		
	Seg. 1	0.00	0.10	1398	2.4	0.123	37.4 %	24.6 %		
Modelo 7	Seg. 2	0.10	0.20	7909	12.3	0.177	13.8 %	2.1 %		
Widdeld /	Seg. 3	0.20	1.00	122 153	212.3	0.354	0.8 %	0.7 %		
		r	Fotal	131 460	227.1	0.344	2.2 %	0.8 %		
	Seg. 1	0.00	0.15	4314	7.5	0.145	23.4 %	11.8 %		
Modelo 8	Seg. 2	0.15	1.00	127 146	221.8	0.350	0.2 %	0.4 %		
		r	Fotal	131 460	229.3	0.345	1.2 %	0.5 %		
	Seg. 1	0.00	0.10	1398	2.7	0.133	29.3 %	18.3 %		
Modelo 9	Seg. 2	0.10	1.00	130 062	228.2	0.348	0.04 %	0.2 %		
		r	Fotal	131 460	230.9	0.346	0.5 %	0.2 %		
ASSR v ARMSE son la diferencia porcentual entre el SSR v RMSE del modelo y el Modelo Ångström Prescott										

 Tabla 4.32
 Errores de predicción de cada segmento de los modelos segmentados del análisis de sensibilidad

Por otro lado, se observa que el Modelo 7 es el que posee las mayores reducciones de SSR y RMSE respecto al Modelo Ångström-Prescott. En el segmento de $0 \le \overline{S}/\overline{S}_0 \le 0.1$ se logró precisar en un 25 % más la predicción de la radiación solar (\overline{H}) y en un 37 % al índice de claridad ($\overline{H}/\overline{H}_0$), similar a lo obtenido por el Modelo 9 en el mismo intervalo de datos. Sin embargo, en el segmento que contiene los datos con $\overline{S}/\overline{S}_0$ entre 0.1 y 0.2 del Modelo 7, no hubo una reducción considerable de

87

los errores, lo que indica que el punto de quiebre igual a 0.2 es innecesario. Sin embargo, elegir al Modelo 9 como el mejor es apresurado, ya que el segmento que contiene datos con $\overline{S}/\overline{S}_0$ entre 0 y 0.1 representa sólo al 1 % del total de los datos, por lo que se podría pensar que el primer tramo de este modelo es poco representativo de la base de datos mundial. No obstante, utilizar un punto de quiebre en $\overline{S}/\overline{S}_0=0.2$ (Modelo 6) provoca que la reducción de los errores se mermen a un $\Delta SSR=18.0$ % y $\Delta RMSE=5.1$ %, por lo que el aumento de la precisión de las predicciones de radiación solar (\overline{H}) se vuelve marginal.

La situación intermedia a lo descrito en el párrafo anterior es el Modelo 8, el cual posee un punto de quiebre en $\overline{S}/\overline{S}_0=0.15$ y su primer tramo abarca a un 3.2 % del total de los datos. En el primer segmento del modelo se reducen en los errores de predicción del índice de claridad ($\overline{H}/\overline{H}_0$) en un 23.4 % y se generan predicciones de radiación solar (\overline{H}) un 11.8 % más precisas, comparado con las predicciones del Modelo Ångström-Prescott en el mismo segmento de datos. En el segundo tramo del modelo ($\overline{S}/\overline{S}_0>0.15$), tal como se esperaba, no hay una mejora considerable de la predicción de la radiación solar.

En la Ecuación 4.8 se muestra la forma funcional del Modelo 8 junto a sus coeficientes. Cabe mencionar que el peso relativo del término *a* del modelo (Ecuación 4.7) es un 30.8 % y el del término constante *a* del Modelo Ångström-Prescott es un 46.7 %. Por lo tanto, el Modelo 8, cuyas características son que es lineal, segmentado y continuo, reduce considerablemente el problema de especificación del modelo original.

$$\frac{\bar{\mathrm{H}}}{\bar{\mathrm{H}}_{0}} = 0.147 + 1.059 \frac{\bar{\mathrm{S}}}{\bar{\mathrm{S}}_{0}} - 0.537 \,\mathrm{D}_{1} \left(\frac{\bar{\mathrm{S}}}{\bar{\mathrm{S}}_{0}} - 0.15\right), \text{ donde } \mathrm{D}_{1} = 1 \text{ cuando } \bar{\mathrm{S}}/\bar{\mathrm{S}}_{0} > 0.15$$

$$(4.8)$$

En la Figura 4.22 se observa la diferencia de las predicciones del mejor modelo segmentado (Modelo 8) y el Modelo Ångström-Prescott cuando $\overline{S}/\overline{S}_0 \leq 0.15$. Es importante destacar que esta diferencia fue identificada cuando se analizó el desempeño de los modelos a nivel de segmento y no globalmente.

Figura 4.22 Modelo segmentado con punto de quiebre igual a $\overline{S}/\overline{S}_0=0.15$ comparado con el Modelo Ångström-Prescott

En resumen, se puede afirmar que un modelo segmentado con un punto de quiebre en $\overline{S}/\overline{S}_0=0.15$, posee un mayor poder predictivo que el Modelo Ångström-Prescott cuando $\overline{S}/\overline{S}_0 \le 0.15$, pues es capaz de predecir la radiación solar (\overline{H}) casi un 12 % más precisa.

4.8 Conclusiones

Convertir las mediciones de duración de asoleamiento (\overline{S}) y radiación solar (\overline{H}) en asoleamiento relativo $(\overline{S}/\overline{S}_0)$ e índice de claridad $(\overline{H}/\overline{H}_0)$ es la forma correcta de utilizar las mediciones, ya que con este tipo de datos se cumplen todos los supuestos exigidos por la técnica de Regresión Lineal Múltiple, permitiendo estimar los modelos de radiación solar de forma correcta y definir correctamente la significancia estadística de los coeficientes de las variables explicativas.

Además, agregar más complejidad al Modelo Ångström-Prescott, como términos polinómicos, conversión de variables a exponenciales o logaritmos, y estimarlos con diferentes bases de datos, no cambia considerablemente el poder predictivo del modelo clásico de radiación solar.

A nivel de estación radiométrica, desagregar las bases de datos según criterios de latitud geográfica y estaciones del año, y estimar modelos para cada uno de los segmentos, genera reducciones

considerables del error de predicción de la radiación (hasta un 30 %), comparado con los errores obtenidos por el Modelo Ångström-Prescott estimado con la base de datos completa. A nivel mundial, esta desagregación produce menos error de predicción que el Modelo Ångström-Prescott estimado con la base de datos mundial sin segmentar. Sin embargo, esta reducción es marginal, pues la máxima reducción de los errores de predicción fue de un 9.4 %, obtenido en la Zona de Latitudes Altas en la estación de invierno.

Por otro lado, incluir variables de desagregación según intervalos de asoleamiento relativo $(\overline{S}/\overline{S}_0)$, generando un modelo lineal, segmentado y único, ayuda a representar correctamente el comportamiento de los datos que son menos frecuentes $(\overline{S}/\overline{S}_0 \le 0.15)$, logrando que este modelo presente un mayor poder predictivo que el Modelo Ångström-Prescott. El modelo segmentado obtuvo predicciones de radiación solar un 12 % más precisas que el Modelo Ångström-Prescott cuando $\overline{S}/\overline{S}_0 \le 0.15$.

CAPÍTULO 5 CONCLUSIONES Y COMENTARIOS

En muchos países, los datos de radiación solar no están fácilmente accesibles debido al costo y a la dificultad de su medición. En estos casos, se pueden utilizar modelos estadísticos que predicen la radiación solar global incidente sobre superficies horizontales mediante variables meteorológicas. Entre éstas, la duración de asoleamiento es la que ha ganado la mayor aprobación a nivel mundial, debido a su alta disponibilidad, precisión y bajo costo de medición.

Los coeficientes de los modelos estadísticos son estimados a partir de bases de datos acotadas de lugares específicos y se utiliza la técnica de Regresión Lineal Múltiple para estimarlos. Sin embargo, no se ha verificado el cumplimiento de los supuestos *a priori* de la técnica de regresión. Por lo tanto, los coeficientes estimados podrían estar sesgados y no ser óptimos, por lo que las predicciones de radiación solar global podrían resultar erradas. Por otro lado, el análisis estadístico aplicado a los modelos no ha sido exhaustivo, ya que sólo se determina el ajuste global del modelo y no la significancia estadística de sus coeficientes. Por lo tanto, el proceso de selección puede ser engañoso, ya que los estudios publicados no presentan información completa y fidedigna de los modelos estimados.

Por estos motivos, el objetivo del trabajo fue evaluar estadísticamente modelos de radiación solar global incidente sobre una superficie horizontal basados en la duración de asoleamiento. Para lograr este objetivo, se escogieron las formas funcionales de modelos de radiación solar más comunes encontradas en la literatura. Además, se consolidó una base de datos mundial con mediciones disponibles en el *World Radiation Data Center* (WRDC) de promedios mensuales de radiación solar global y horas de asoleamiento. Esta base de datos fue sometida a un estricto control de calidad, obteniendo finalmente una base de datos mundial formada por 131 460 pares de datos pertenecientes a 875 estaciones radiométricas. A partir de esta base de datos mundial, se seleccionaron seis ciudades que presentaban diferentes características geográficas y climáticas para evaluar el desempeño estadístico de los modelos en cada una de ellas. Se utilizaron los indicadores estadísticos: test-t, R², SSR y RMSE para determinar el desempeño de los modelos.

Se determinó que las bases de datos de promedios mensuales de radiación solar y duración de asoleamiento de las seis estaciones radiométricas escogidas no cumplían con todos los supuestos de la Regresión Lineal Múltiple. No obstante, estos datos convertidos a asoleamiento relativo e índice de claridad, sí cumplen con los supuestos exigidos. En cuanto al cumplimiento de los supuestos de la técnica usando la base de datos mundial, ésta posee el mismo comportamiento que las seis estaciones radiométricas. Por lo tanto, es apropiado convertir las mediciones de duración de asoleamiento y radiación solar a asoleamiento relativo e índice de claridad, respectivamente. Lo anterior permite estimar los modelos estadísticos usando la técnica de Regresión Lineal Múltiple.

La evaluación de los modelos de radiación solar global basados en la duración de asoleamiento utilizando las seis bases de datos locales y la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ mostró que el Modelo Ångström-Prescott, el Cuadrático y el Cúbico poseen ajustes bastante similares. Esto se explica dado que los dos últimos modelos mencionados muestran problemas de significancia estadística en sus coeficientes cuando son analizados con datos de estaciones radiométricas individuales. A nivel mundial, el test-t no es capaz de identificar los problemas de significancia estadística de los coeficientes de estos modelos, debido al tamaño de la base de datos. Sin embargo, se observa que el aporte de los términos de grado dos y tres de los modelos Cuadrático y Cúbico en la estimación de la radiación solar es marginal. Por otro lado, el Modelo Logarítmico si bien cumple con los requisitos mínimos estadísticos, entrega resultados físicamente imposibles cuando el asoleamiento relativo ($\overline{S}/\overline{S}_0$) es cercano a cero. En cuanto al Modelo Exponencial, si bien no tuvo problemas estadísticos, no logró superar el ajuste del Modelo Ångström-Prescott.

En conclusión, de los modelos más frecuentes encontrados de la literatura, el Modelo Ångström-Prescott es el que presenta el mejor desempeño estadístico. Los coeficientes estimados para este modelo son a = 0.223 y b = 0.529, con los cuales es capaz de predecir hasta en un 85 % la variabilidad (R²) presente en la base de datos mundial. Cabe mencionar que los coeficientes obtenidos con la base de datos mundial consolidada en este estudio, son similares a los obtenidos por Driesse y Thevenard (2002). A nivel local, los datos de radiación solar (\overline{H}) y horas de asoleamiento (\overline{S}) tienden a agruparse por estaciones del año en función de la ubicación geográfica de la estación radiométrica. Entre los trópicos, los datos forman dos grupos: invierno y verano, y en la zona geográfica comprendida entre los trópicos y los círculos polares, los datos se agrupan en cuatro grupos: invierno, otoño, primavera y verano. Por lo tanto, se decidió estimar un modelo lineal (Ångström-Prescott) para cada estación del año de las seis bases de datos locales. En las estaciones radiométricas no tropicales, se disminuyó hasta en un 50 % el error de predicción del índice de claridad y se redujo hasta en un 30 % los errores en las predicciones de radiación solar (\overline{H}), comparadas con las predicciones del modelo lineal estimado con las bases de datos sin segmentar. Al aplicar esta segmentación en las bases de datos tropicales, no se logró reducir significativamente los errores, por lo que sigue siendo atractivo predecir la radiación solar utilizando el Modelo Ångström-Prescott en este rango de latitudes.

Siguiendo la idea del párrafo anterior, la base de datos mundial se segmentó en función de la latitud geográfica en tres grupos: Zona Tropical, Zona de Latitudes Medias y Zona de Latitudes Altas. A su vez, cada una de estas zonas se subdividió en sus estaciones del año, es decir, la Zona Tropical se dividió en dos estaciones del año, y las otras dos zonas se dividieron en sus cuatro estaciones del año, obteniéndose en total diez grupos de datos. Para cada uno de estos grupos se estimó un modelo lineal, obteniendo que el error de predicción del índice de claridad se redujo en un 8.5 % y las predicciones de radiación solar son casi un 4 % más precisas, comparado con los errores obtenidos con el Modelo Ångström-Prescott estimado con la base de datos sin segmentar. A nivel de segmento, se logró reducir los errores asociados al índice de claridad hasta en un 18 % y hasta en un 9.4 % los errores asociados a la predicción de la radiación solar. Ambas reducciones se produjeron en la Zona de Latitudes Altas en invierno.

Se detectó que el modelo lineal (Ångström-Prescott), estimado usando la base de datos mundial, sobreestima los valores de $\overline{H}/\overline{H}_0$ cuando $\overline{S}/\overline{S}_0$ se acerca a sus límites: cero y uno. Para abordar este problema, se usó un modelo lineal, segmentado y continuo. Esta última característica es indispensable, ya que si el modelo presenta discontinuidades en la predicción de $\overline{H}/\overline{H}_0$, se perdería su interpretación física.

Los modelos segmentados estimados para las seis bases de datos locales lograron reducir el error de predicción de la radiación solar hasta en un 18 %, comparado con las predicciones del Modelo Ångström-Prescott. A nivel mundial, los resultados entregan que un modelo lineal segmentado y continuo, con un punto de quiebre en $\overline{S}/\overline{S}_0$ =0.15, posee un mayor poder predictivo que el Modelo Ångström-Prescott, ya que incorpora el comportamiento poco frecuente de los datos con $\overline{S}/\overline{S}_0$ cercanos a cero. El tramo inicial del modelo reduce los errores de predicción del índice de claridad ($\overline{H}/\overline{H}_0$) en un 23.4 % y se aumenta en un 12 % la precisión de la predicción de la radiación solar, comparado con el Modelo Ångström-Prescott en el mismo segmento de datos. En el segundo tramo del modelo ($\overline{S}/\overline{S}_0$ >0.15) no hay una mejora considerable del poder predictivo del modelo.

Por lo tanto, se concluye que agregar más complejidad al Modelo Ångström-Prescott, como términos polinómicos, conversión de variables a exponenciales o logaritmos no mejora la capacidad predictiva del modelo clásico de radiación solar. Sin embargo, cuando las bases de datos formadas por mediciones de estaciones radiométricas individuales ubicadas fuera de los trópicos se desagregan según latitud geográfica y estaciones del año, y se estiman Modelos Ångström-Prescott para cada grupo de datos, se reduce considerablemente del error de predicción de la radiación solar, comparado con los errores obtenidos al utilizar el Modelos Ångström-Prescott con la base de datos local sin segmentar. Por otro lado, estimar un modelo lineal segmentado y continuo según intervalos de asoleamiento relativo $(\overline{S}/\overline{S}_0)$ a nivel mundial, ayuda a representar correctamente el comportamiento de los datos que son menos frecuentes ($\overline{S}/\overline{S}_0 \leq 0.15$), logrando que este modelo presente un mayor poder predictivo que el Modelo Ångström-Prescott.

En un futuro, sería interesante combinar los criterios de desagregación geográfica y estacional con modelos segmentados por intervalos de asoleamiento relativo $(\overline{S}/\overline{S}_0)$. Además, en las bases de datos locales se podría analizar el desempeño de modelos lineales segmentados y continuos según intervalos de asoleamiento relativo $(\overline{S}/\overline{S}_0)$ no equiespaciados, por lo que se deberá encontrar el tamaño y la cantidad de intervalos óptimos, que maximicen la reducción de los errores de predicción de la radiación solar. Por otro lado, se podrían complementar los resultados obtenidos con los modelos de radiación solar basados en la duración de asoleamiento con modelos que utilizan imágenes satelitales para predecir la radiación solar.
REFERENCIAS

Ahmad, F. y I. Ulfat (2004) Empirical models for the correlation of monthly average daily global solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan. **Turkish Journal of Physics, 28**. 301–307.

Akinoğlu, B.G. y A. Ecevit (1990) A further comparison and discussion of sunshine-based models to estimate global solar radiation. **Energy**, **15**(10). 865–872.

Aksoy, B. (1997) Estimated monthly average global radiation for Turkey and its comparison with observations. **Renewable Energy**, **10**. 625–633.

Al-Mostafa, Z.A., A.H. Maghrabi y S.M. Al-Shehri (2014) Sunshine-based global radiation models: A review and case study. **Energy Conversion and Management**, **84**. 209–216.

Almorox, J. y C. Hontoria (2004) Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9-10). 1529–1535.

Alsaad, M.A. (1990) Characteristic distribution of global solar radiation for Amman, Jordan. Solar and Wind Technology, 7(2-3). 261–266.

Ampratwum, D.B. y A.S.S. Dorvlo (1999) Estimation of solar radiation from the number of sunshine hours. Applied Energy, 63(3). 161–167.

Angström, A. (1956) On the computation of global radiation from records of sunshine. Arkiv för Geofysik, 2(22). 471–479.

Angström, A. (1924) Solar and Terrestrial Radiation. Quarterly Journal of the Royal Meteorological Society, 50(210). 121–126.

Aras, H., O. Balli y A. Hepbasli (2006) Global Solar Radiation Potential, Part 1: Model Development. Energy Sources, Part B: Economics, Planning, and Policy, 1. 303–315.

Badescu, V. (2008) **Modeling Solar Radiation at the Earth Surface**. Polytechnic University of Bucharest. Romania.

Bahel, V., H. Bakhsh y R. Srinivasan (1987) A correlation for estimation solar radiation. Energy,

12(2). 131–135.

Bahel, V., R. Srinivasan y H. Bakhsh (1986) Solar radiation for Dhahran, Saudi Arabia. Energy, 11(10). 985–989.

Bakirci, K. (2007) Estimation of global solar radiation on horizontal surface. **Journal of Thermal Science and Technology, 27(1)**. 7–11.

Bakirci, K. (2009a) Models of solar radiation with hours of bright sunshine: A review. **Renewable** and Sustainable Energy Reviews, 13. 2580–2588.

Bakirci, K. (2009b) Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. **Energy**, **34(4)**. 485–501.

Bakirci, K. (2017) Prediction of global solar radiation and comparison with satellite data. Journal of Atmospheric and Solar-Terrestrial Physics, 152, 41–49.

Ben Jemaa, A., S. Rafa, N. Essounbouli, A. Hamzaoui, F. Hnaien y F. Yalaoui (2013) Estimation of global solar radiation using three simple methods. **Energy Procedia**, **42**. 406–415.

Besharat, F., A.A. Dehghan y A.R. Faghih (2013) Empirical models for estimating global solar radiation: A review and case study. **Renewable and Sustainable Energy Reviews, 21**. 798–821.

Black, J.N., C.W. Bonython y J.A. Prescott (1954) Solar radiation and the duration of sunshine. Quarterly Journal of the Royal Meteorological Society, 80(344). 231–235.

Clarke, K. A. (2009) Return of the phantom menace: Omitted variable bias in political research. **Conflict Management and Peace Science, 26(1)**. 46–66.

Cooper, P.I. (1969) The absorption of radiation in solar stills. Solar Energy, 12(3). 333–346.

Das, A., J. Park y J. Park (2015) Estimation of available global solar radiation using sunshine duration over South Korea. Journal of Atmospheric and Solar-Terrestrial Physics, 134. 22–29.

Despotovic, M., V. Nedic, D. Despotovic, y S. Cvetanovic (2015) Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews, 52. 1869–1880.

Diabaté, L., J. Remund y L. Wald (2003) Linke turbidity factors for several sites in Africa. **Solar Energy**, **75**(2). 111–119.

Driesse, A. y D. Thevenard (2002) A test of Suehrcke's sunshine-radiation relationship using a global data set. **Solar Energy**, **72(2)**. 167–175.

Duffie, J.A., y W.A. Beckman (2013) **Solar Engineering of Thermal Processes**. Cuarta Edición. John Wiley & Sons, Inc. New Jersey

Efron, B. (1979) Bootstrap methods: another look at the jackknife. **The Annals of Statistics**, **7**(1). 1-26

Ertekin, C. y O. Yaldiz (2000) Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). **Energy Conversion and Management**, **41**(**4**). 311–330.

Fritz, S. y T.H. MacDonald (1949) Average solar radiation in the U.S.A. **Heating and Ventilating** Engineering, 46(7). 61–64.

Gopinathan, K.K. y A. Soler (1992) A sunshine dependent global insolation model for latitudes between 60°N and 70°N. **Renewable Energy**, 2(4-5). 1–4.

Güçlü, Y.S., M.Ö Yeleğen, I. Dabanli y E. Şişman (2014) Solar irradiation estimations and comparisons by ANFIS, Angstrom-Prescott and dependency models. **Solar Energy**, **109**. 118–124.

Gueymard, C., P. Jindra y V. Estrada-Cajigal (1995) A Critical Look at Recent Interpretations of the Angström Approach and its Future in Global Solar Radiation Prediction. **Solar Energy**, **54**(**5**). 357–363.

Jain, P., 1986. Global irradiation estimation for Italian locations. **Solar & Wind Technology**, **3**(4). 323–6.

Jin, Z., W. Yezheng y Y. Gang (2005) General formula for estimation of monthly average daily global solar radiation in China. **Energy Conversion and Management, 46**. 257–268.

Johnston, R.J. (1980) Multivariate statistical analysis in geography: A primer on the general linear model. Longman Group. London.

Kasten, F. (1996) The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness. **Solar Energy**, **56(3)**. 239–244.

Kasten, F. y A. Young (1989) Revised optical air mass tables and approximation formula. **Applied Optics**, **28**(**22**). 4735–4738.

Katiyar, A.K. y C.K. Pandey (2010) Simple correlation for estimating the global solar radiation on horizontal surfaces in India. **Energy**, **35**(**12**). 5043–5048.

Khogali, A., M.R.I. Ramadan, Z.E.H. Ali, y Y.A. Fattah (1983) Global and diffuse solar irradiance in Yemen (Y.A.R.). **Solar Energy**, **31**(1). 55–62.

Kimball, H. (1919) Variations in the total and luminous solar radiation with geographical position in the United States. **Monthly Weather Review**, **47**(**11**). 769–793.

Klein, S.A. (1977) Calculation of monthly average insolation on tilted surfaces. Solar Energy, 19(4). 325–329.

Lewis, G. (1992) An empirical relation for estimating global irradiation for Tennessee, U.S.A. **Energy Conversion and Management**, **33(12)**. 1097–1099.

Li, H., W. Ma, Y. Lian, X. Wang y L. Zhao, L. (2011) Global solar radiation estimation with sunshine duration in Tibet, China. **Renewable Energy**, **36**(11). 3141–3145.

Liu, X., Y. Li, X. Zhong, C. Zhao, J.R. Jensen y Y. Zhao (2014) Towards increasing availability of the Angstrom-Prescott radiation parameters across China: Spatial trend and modeling. **Energy Conversion and Management, 87**. 975–989.

Louche, A., G. Notton, P. Poggi y G. Simonnot (1991) Correlations for direct normal and global horizontal irradiation on a French Mediterranean site. **Solar Energy**, **46**(**4**). 261–266.

Luhanga, P.V.C. y J. Andringa (1990) Characteristics of solar radiation at Sebele, Gaborone, Botswana. Solar Energy, 44(2). 77–81.

Maddala, G.S. (1988) **Introduction to Econometrics**. Segunda Edición. Macmillan Publishing Company. University of Florida and Ohio State University.

Maduekwe, A.A.L. y M.A.C. Chendo (1995) Predicting the components of the total hemispherical solar radiation from sunshine duration measurements in Lagos, Nigeria. **Renewable Energy**, **6**(7). 807–812.

Martínez-Lozano, J.A., F. Tena, J.E. Onrubia y J. De La Rubia (1984) The historical evolution of the Angström formula and its modifications: **Review and bibliography. Agricultural and Forest Meteorology**, **33**(2-3). 109–128.

Merino, L. (2013) **Modélisation du rayonnment soliare pour la simulation thermique en milieu urbain**. Tesis de doctorado. Université de Technologie de Compiègne. Francia.

Moradi, I. (2009) Quality control of global solar radiation using sunshine duration hours. **Energy**, **34**(1). 1–6.

Myrik, K. (2017) Evaluación de modelos de radiación solar global incidente sobre una superficie horizontal basados en la duración de asoleamiento. Memoria de Título Ingeniero Civil. Departamento de Ingeniería Civil. Universidad de Concepción. Concepción

Newland, F.J. (1989) A study of solar radiation models for the coastal region of South China. Solar Energy, 43(4). 227–235.

Ögelman, H., A. Ecevit y E. Tasdemiroğlu (1984) A new method for estimating solar radiation from bright sunshine data. Solar Energy, 33(6). 619–625.

Ouali, K. y R. Alkama (2014) A new model of global solar radiation based on meteorological data in Bejaia City (Algeria). **Energy Procedia**, **50**. 670–676.

Page, J. (1961) The estimate of monthly mean values of daily total short-wave radiation on vertical and inclined surface from sunshine records for latitude 40°N–40°S. **Proceedings of the United** Nations Conference on New Sources of Energy, 4. 378–390.

Paulescu, M., N. Stefu, D. Calinoiu, E. Paulescu, N. Pop, R. Boata y O. Mares (2016). Angström-Prescott equation: Physical basis, empirical models and sensitivity analysis. **Renewable and Sustainable Energy Reviews, 62**. 495–506.

Prescott, J.A. (1940) Evaporation from a water surface in relation to solar radiation. Transactions

of the Royal Society of South Australia, 64. 114-125.

Remund, J., L.Wald, M. Lefèvre, T. Ranchin y J. Page (2003) Worldwide Linke turbidity information In: Proceedings of ISES Solar World Congress. Solar Energy for a Sustainable Future. Götenborg. Suecia. 14–19.

Rensheng, C., L. Shihua, K. Ersi, Y. Jianping y J. Xibin (2006) Estimating daily global radiation using two types of revised models in China. Energy **Conversion and Management**, **47**(**7**). 865–878.

Rietveld, M.R. (1978) A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agricultural Meteorology, 19(2-3). 243–252.

Rigollier, C., O. Bauer y L. Wald (2000) Radiation Atlas — With Respect To the Heliosat Method. **Solar Energy, 68(1)**. 33–48.

Said, R., M. Mansor y T. Abuain (1998) Estimation of global and diffuse radiation at Tripoli. **Renewable Energy**, 14(1). 221–227.

Sen, Z. (2001) Angström equation parameter estimation by unrestricted method. Solar Energy, 927. 19–30.

SODA (2017) **Solar Energy Services for Professionals** (http://www.soda-pro.com/). Visitado el 15/01/2017.

Stefu, N., M. Paulescu, R. Blaga, D. Calinoiu, N. Pop, R. Boata y E. Paulescu (2016) A theoretical framework for Angstrom equation. Its virtues and liabilities in solar energy estimation. **Energy Conversion and Management, 112**. 236–245.

Suehrcke, H. (2000) On the relationship between duration of sunshine and solar radiation on the earth's surface: Ångström's equation revisited. **Solar Energy, 68(5)**. 417–425.

Suehrcke, H., R.S. Bowden y K.G.T. Hollands (2013) Relationship between sunshine duration and solar radiation. **Solar Energy**, **92**. 160–171.

Swanson, R.M. (2009) Photovoltaics Power Up. Science, 324(5929). 891-892.

Tarhan, S. y A. Sari (2005) Model selection for global and diffuse radiation over the Central Black Sea (CBS) region of Turkey. **Energy Conversion and Management, 46(4)**. 605–613.

Taşdemiroğlu, E. y R. Sever (1991) An improved correlation for estimating solar radiation from bright sunshine data for Turkey. **Energy Conversion and Management**, **31**(6). 599–600.

Teke, A. y H.B. Yıldırım (2014) Estimating the monthly global solar radiation for Eastern Mediterranean Region. **Energy Conversion and Management**, **87**. 628–635.

Toğrul, I. y H. Toğrul (2002) Global solar radiation over Turkey: comparison of predicted and measured data. **Renewable Energy**, **25**(1). 55–67.

Ulgen, K. y A. Hepbasli (2004) Solar radiation models. Part 2: Comparison and developing new models. **Energy Sources**, **26(5)**. 521–530.

Ulgen, K. y A. Hepbasli (2002) Comparison of solar radiation correlations for Izmir, Turkey. International Journal of Energy Research, 26(5). 413–430.

WMO (1982) Commission for Instruments and Methods of observation. World Meteorological Organization. Suiza.

WMO (2008) Guide to Meteorological Instruments and Methods of observation. World Meteorological Organization. Octava edición. Suiza.

WRDC (2017) World Radiation Data Center (http://wrdc.mgo.rssi.ru/). Visitado el 12/01/17

Yorukoglu, M. y A.N. Celik (2006) A critical review on the estimation of daily global solar radiation from sunshine duration. **Energy Conversion and Management**, **47**(**15**). 2441–2450.

Younes, S., R. Claywell y T. Muneer (2005) Quality control of solar radiation data: Present status and proposed new approaches. **Energy**, **30**(**9**). 1533–1549.

Anexo 3.1 Modelo *Clear Sky* del ESRA

El modelo del ESRA ha sido descrito y analizado con el objetivo de ser usado para estimar radiación solar a nivel del suelo en días despejados. El factor de turbiedad de Linke es clave en el modelo. Éste es función de la dispersión solar debido a aerosoles y la absorción de ésta por gases atmosféricos, principalmente por el vapor de agua. Cuando se combina con la dispersión molecular atmosférica, pasa a llamarse turbiedad atmosférica.

En el modelo, la radiación solar global diaria incidente sobre una superficie horizontal en un día completamente despejado (H_C) es la suma de sus componentes directa (B_C) y difusa (D_C), determinadas separadamente.

 $H_C = B_C + D_C.$

(A3.1)

Componente Directa

La irradiación directa incidente en una superficie horizontal, en W/m², está dada por:

$$B_{C} = G_{sc} \varepsilon \sin \alpha_{s} e^{-0.8662 T_{L}(AM2) m} \delta_{R}(m), \qquad (A3.2)$$

donde:

- E es la corrección usada para la variación de la distancia Tierra-Sol:

$$\varepsilon = 1 + 0.033 \cos \frac{360n}{365}$$
, (A3.3)

donde n es el número del día del año, correspondiente a los días y numeración de la Tabla 3.1.

- α_s es la altitud solar. Es el ángulo entre la horizontal y la línea del sol. Es 0° en el amanecer y en el atardecer y 90° en el medio día solar. Es complementario al ángulo cenital (θ_Z).
 α_s=90° - acos(θ_z), (A3.4)

$$\cos\theta_{z} = \cos\phi\cos\delta\cos\omega + \sin\phi\sin\delta, \tag{A3.5}$$

ω es el ángulo horario. Es el desplazamiento angular del sol desde el este al oeste del meridiano local debido a la rotación de la tierra con respecto a su eje en 15° por hora. En la mañana es negativo y en la tarde positivo (Duffie y Beckman, 2013),

- G_{sc} , ϕ y δ descritos en la Sección 2.2.2 y 2.2.1,
- T_L(AM2) es el factor de turbiedad para una masa de aire igual a 2, adimensional. El concepto de masa de aire se refiere a la razón entre la masa de atmósfera por donde atraviesa la radiación directa y la masa por la cual atravesaría si el ángulo cenital del sol fuera igual a 60°.

El factor $T_L(AM2)$ fue recopilado para todas las ubicaciones de las estaciones meteorológicas desde el sitio web *Solar Radiation Data* (SODA, 2017), donde se encuentran los valores de $T_L(AM2)$ para cada mes del año alrededor del mundo. Los valores del factor de turbiedad de Linke fueron publicados por Remund *et al.* (2003) y Diabaté *et al.* (2003), siendo posteriormente incorporados a la plataforma *online* de SODA. Los factores de turbiedad de Linke de las estaciónes meteorológicas que conforman la base de datos se encuentran en el Anexo 3.1.1.

m es la masa óptica relativa del aire. Expresa la razón del largo del camino óptico de la radiación solar directa a través de la atmósfera y el largo del camino a través de una atmósfera estándar a nivel del mar y el sol en el cenit. La masa óptica relativa del aire es adimensional. A mayor altitud, menor m. Está dada por la fórmula propuesta por Kasten y Young (1989):

$$m(\alpha_{s}^{true}) = \frac{\frac{p}{p_{0}}}{\sin \alpha_{s}^{true} + 0.50572 \left(\alpha_{s}^{true} + 6.07995\right)^{-1.6364}},$$
 (A3.6)

donde el ángulo de altura solar α_s^{true} está en grados.

La corrección por la altura (p/p_0) de cada estación meteorológica dada por:

$$\frac{p}{p_0} = e^{-\frac{z}{z_h}},$$
 (A3.7)

donde z es la elevación del sitio y z_h es la escala de altura de Rayleigh. Para la atmósfera cercana a la superficie de la Tierra z_h es igual a 8434.5 metros.

El ángulo de la altitud solar usada en la Ecuación A3.6, α_s^{true} , está corregida por la refracción, es decir:

$$\alpha_{\rm s}^{\rm true} = \alpha_{\rm s} + \Delta \alpha_{\rm refr} , \qquad (A3.8)$$
 donde,

$$\Delta \alpha_{\rm refr} = 0.061359 \left(\frac{180}{\pi}\right) x \frac{0.1594 + 1.1230 \left(\frac{\pi}{180}\right) \alpha_{\rm s} + 0.065656 \left(\frac{\pi}{180}\right)^2 \alpha_{\rm s}^2}{1 + 28.9344 \left(\frac{\pi}{180}\right) \alpha_{\rm s} + 277.3971 \left(\frac{\pi}{180}\right)^2 \alpha_{\rm s}^2} \qquad \text{y}$$
(A3.9)

- δ_R es el espesor óptico integral de Rayleigh. Es el espesor óptico de una atmósfera dispersada de Rayleigh por unidad de masa de aire a lo largo de un camino atmosférico específico. Δ_R depende del camino óptico y la masa óptica relativa del aire (m). La fórmula usada es la siguiente (Kasten, 1996):

si m
$$\leq$$
 20 ($\alpha_s \geq$ 1.9°)

$$\frac{1}{\delta_R(m)} = 6.62960 + 1.75130m - 0.12020m^2 + 0.00650m^3 - 0.00013m^4$$

si m > 20 (
$$\alpha_{\rm s} < 1.9^{\circ}$$
)
 $\frac{1}{\delta_{\rm R}({\rm m})} = 10.4 + 0.718 {\rm m}$. (A3.10)

La variación de la transmitancia directa con la masa de aire se incluye en el producto $m\delta_R$ de la Ecuación A3.2.

El factor de la Ecuación A3.2: $e^{-0.8662 T_L(AM2) m \delta_R(m)}$,

representa la transmitancia de la radiación solar directa bajo cielo despejado.

• Componente Difusa

La irradiación difusa incidente en una superficie horizontal con cielo despejado depende sólo del factor de turbiedad de Linke. En efecto, la proporción de la energía dispersada en la atmósfera aumenta si la turbiedad aumenta, así que la radiación directa disminuye y la difusa normalmente crece. Sin embargo, para altitud pequeña y alta turbiedad, la radiación difusa puede reducirse mientras la turbiedad aumenta, debido a la gran pérdida de energía en la atmósfera asociada al extenso camino recorrido. La irradiación difusa, en W/m², está dada por:

$$D_{C} = G_{sc} \varepsilon T_{rd} (T_{L}(AM2)) F_{d}(\alpha_{s}, T_{L}(AM2)), \qquad (A3.12)$$

(A3.11)

es decir, la radiación difusa está expresada como el producto de la función transmisión difusa en el cenit (T_{rd}) y la función angular difusa (F_d). Siendo:

$$T_{rd}(T_{L}(AM2)) = -1.5843 \times 10^{-2} + 3.0543 \times 10^{-2} T_{L}(AM2) + 3.797 \times 10^{-4} [T_{L}(AM2)]^{2}.$$
(A3.13)

Para un cielo muy despejado, la función de transmisión difusa es baja. Típicamente, para cielos despejados T_{rd} está en el rango de 0.05 y para días con atmósfera muy turbia T_{rd} es cercano a 0.22. La función angular difusa, F_d , depende del ángulo de elevación solar y es ajustado con la ayuda del siguiente polinomio cuadrático:

$$F_{d}(\alpha_{s}, T_{L}(AM2)) = A_{0} + A_{1} \sin(\alpha_{s}) + A_{2} [\sin(\alpha_{s})]^{2}, \qquad (A3.14)$$

donde los coeficientes A₀, A₁, A₂ sólo dependen del factor de turbiedad de Linke. Estos son adimensionales y están dados por:

$$A_{0} = 2.6463 \times 10^{-1} - 6.1581 \times 10^{-2} T_{L}(AM2) + 3.1408 \times 10^{-3} [T_{L}(AM2)]^{2}$$

$$A_{1} = 2.0402 + 1.8945 \times 10^{-2} T_{L}(AM2) - 1.1161 \times 10^{-2} [T_{L}(AM2)]^{2}$$

$$A_{2} = -1.3025 + 3.9231 \times 10^{-2} T_{L}(AM2) + 8.5079 \times 10^{-3} [T_{L}(AM2)]^{2}, \qquad (A3.15)$$

con la siguiente restricción para A_0 , cuando $T_L(AM2) > 6$:

Con la formulación anterior es posible calcular H_C para los días que sea requerido en el desarrollo de la tesis.

Anexo 3.1.1 Factores de Turbiedad de Linke

Los factores de turbiedad de Linke fueron obtenidos de SODA (2017) para cada mes del año de las 1009 estaciones meteorológicas que componen la base de datos mundial inicial, se encuentran en el Anexo Digital y el archivo lleva por nombre "LINKE.xlsx".

Anexo 4.1 Varianzas obtenidas de los residuos de las bases de datos

A continuación, se presentan las tablas de varianzas de los residuos de las bases de datos utilizados en el análisis de homocedasticidad. Cada tabla muestra las varianzas obtenidas con los residuos de las bases de datos originales y las obtenidas con Bootstrap.

		Tipo de o	dato:	уĦ		Tipo de dato $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$:				
	0	riginal]	Boostrap		Original		B	oostrap	
N°	n	Var (σ^2)	n	Var (σ^2)	N°	n	Var (σ^2)	n	Var (σ^2)	
1	2				1	8	0.0013	4	0.001	
2	21	0.0487	9	0.0505	2	12	0.001	5	0.0007	
3	26	0.1435	11	0.1244	3	<u>1</u> 9	0.0008	8	0.0007	
4	16	0.374	7	0.3673	4	17	0.0015	7	0.0013	
5	15	10.229	6	10.443	5	15	0.0008	6	0.0008	
6	17	0.6892	7	0.5 <mark>531</mark>	6	1 <mark>9</mark>	0.0009	8	0.0009	
7	12	0.1554	5	0.1259	7	1 <mark>6</mark>	0.0005	7	0.0005	
8	19	0.2565	8	0.2277	8	1 <mark>9</mark>	0.0004	8	0.0004	
9	10	0.162	4	0.0 <mark>973</mark>	9	9	0.0004	4	0.0003	
10	6	0.0251	3	0.0177	10	10	0.0005	4	0.0003	
X		0.3197		0.3238	X		0.0008		0.0007	

Tabla A.4.1 Tabla de varianzas de los residuos de la base de datos de Vancouver, Canadá

 Tabla A.4.2
 Tabla de varianzas de los residuos de la base de datos de Punta Arenas, Chile

		Tipo de	dato:	$\overline{\mathbf{H}}$		Tipo de dato $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$:				
	0	Original Boostrap			Original		Boostrap			
\mathbf{N}°	n	Var (σ^2)	n	Var (σ^2)	N°	n	Var (σ^2)	n	Var (σ^2)	
1	5	0.0107	3	0.0062	1	6	0.0015	3	0.0013	
2	23	0.0094	10	0.007	2	13	0.0007	6	0.0004	
3	22	0.082	9	0.0615	3	15	0.0018	6	0.0012	
4	31	0.2266	13	0.2305	4	42	0.0015	17	0.0013	
5	21	0.6578	9	0.4898	5	53	0.0014	22	0.0013	
6	28	0.7313	12	0.8612	6	39	0.0014	16	0.0015	
7	39	0.3201	16	0.3125	7	21	0.0012	9	0.0011	
8	16	0.3017	7	0.2971	8	2				
9	7	0.2613	3	0.2575	9	1				
10	0				10	0				
X		0.289		0.2804	X		0.0013		0.0011	

		Tipo de (dato: 🗟 y	y Ħ			Tipo de dat	o Ŝ/Ŝ ₀ y Ī	Ī/Ħ ₀ :
	0	riginal	В	oostrap		C	riginal	В	oostrap
N°	n	Var (σ^2)	n	Var (σ^2)	N°	n	Var (σ^2)	n	Var (σ^2)
1	11	0.0925	5	0.0762	1	19	0.0008	8	0.0007
2	24	0.1404	10	0.1319	2	29	0.0006	12	0.0006
3	49	0.1881	20	0.1872	3	47	0.001	19	0.0009
4	41	0.327	17	0.286	4	44	0.0007	18	0.0007
5	65	0.2864	26	0.2816	5	60	0.0003	24	0.0003
6	72	0.3998	29	0.3795	6	60	0.0005	24	0.0004
7	46	0.3981	19	0.3445	7	56	0.0004	23	0.0004
8	23	0.3933	10	0.3604	8	15	0.0004	6	0.0003
9	2				9	5	0.0005	3	0.0003
10	3				10	1			
X		0.2782		0.2559	X	_	0.0006		0.0005

 Tabla A.4.3
 Tabla de varianzas de los residuos de la base de datos de Taipa Grande, China

Tabla A.4.4Tabla de varianzas de los residuos de la base de datos de Maputo, Mozambique

	Tipo de dato: S̄ y H					Tipo de dato $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$:				
	Original <mark>B</mark> oostrap			Original		В	oostrap			
\mathbf{N}°	n	Var (σ^2)	n	Var (o ²)	N °	n	Var (σ^2)	n	Var (σ^2)	
1	4				1	6	0.0004	3	0.0002	
2	10	0.0771	4	0.0454	2	19	0.0003	8	0.0002	
3	27	0.5991	11	0.4855	3	21	0.0005	9	0.0005	
4	32	0.8995	13	0.7994	4	34	0.0008	14	0.0006	
5	59	1.3014	24	1.2341	5	41	0.0009	17	0.0009	
6	61	1.2908	25	1.2197	6	34	0.0008	14	0.0008	
7	45	1.5382	18	1.5334	7	31	0.0007	13	0.0006	
8	12	1.5098	5	1.4371	8	35	0.0006	14	0.0005	
9	2				9	24	0.0004	10	0.0004	
10	0				10	7	0.0002	3	0.0001	
X		1.0308		0.9650	X		0.0006		0.0005	

		Tipo de	dato: 5	y Ħ			Tipo de dat	to \$/\$ ₀ y Ī	Ī/Ħ ₀ :
	0	riginal	B	Boostrap		C	Original		oostrap
N°	n	Var (σ^2)	n	Var (o ²)	N°	n	Var (σ^2)	n	Var (o ²)
1	3				1	3			
2	8	0.158	4	0.0995	2	5	0.0007	3	0.0004
3	12	0.2225	5	0.1521	3	17	0.0015	7	0.0014
4	9	0.226	4	0.1639	4	9	0.0025	4	0.0014
5	12	0.2463	5	0.1506	5	18	0.0014	8	0.0012
6	16	0.2657	7	0.224	6	27	0.0016	11	0.0017
7	21	0.2358	9	0.1731	7	26	0.0011	11	0.0009
8	36	0.4663	15	0.4267	8	49	0.0013	20	0.0013
9	71	0.3893	29	0.4147	9	55	0.0014	22	0.0014
10	28	0.2533	12	0.2614	10	7	0.0008	3	0.0004
X		0.2763		0.2256	X	_	0.0015		0.0012

Tabla A.4.5Tabla de varianzas de los residuos de la base de datos de Maputo, Mozambique

 Tabla A.4.6
 Tabla de varianzas de los residuos de la base de datos mundial

	Tipo de dato: S <mark>y H</mark>					Tipo de dato $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$:				
	Or	iginal	B oostrap			0	riginal	Bo	ostrap	
N°	n	Var (σ^2)	n	Var (o²)	N°	<mark>n</mark>	Var (σ^2)	n	Var (σ^2)	
1	1270	0.0415	318	0.0401	1	2 <mark>1</mark> 6	0.0021	54	0.0021	
2	4486	0.0755	1.122	0.0765	2	1 <mark>1</mark> 82	0.0018	296	0.0018	
3	7993	0.145	1.999	0.1446	3	<mark>2</mark> 916	0.0016	729	0.0017	
4	7537	0.3777	1.885	0.3747	4	4993	0.0015	1.249	0.0015	
5	9804	0.7238	2.451	0.7342	5	6868	0.0016	1.717	0.0015	
6	9684	0.9257	2.421	0.9205	6	8455	0.0016	2.114	0.0016	
7	12806	1.0407	3.202	1.0393	7	9573	0.0015	2.394	0.0015	
8	12545	1.0070	3.137	1.0006	8	11261	0.0014	2.816	0.0014	
9	14780	0.9429	3.695	0.9296	9	12489	0.0014	3.123	0.0014	
10	12297	0.8305	3.075	0.8301	10	13297	0.0015	3.325	0.0015	
11	12810	0.7557	3.203	0.7589	11	12584	0.0016	3.146	0.0016	
12	9198	0.679	2.300	0.6805	12	11558	0.0019	2.890	0.0018	
13	8192	0.6745	2.048	0.6806	13	9989	0.0020	2.498	0.0020	
14	5077	0.5825	1.270	0.5684	14	8258	0.0022	2.065	0.0023	
15	3503	0.4905	876	0.4767	15	6519	0.0024	1.630	0.0024	
16	1625	0.3898	407	0.3959	16	4666	0.0025	1.167	0.0025	
17	810	0.3148	203	0.303	17	3365	0.0026	842	0.0025	
18	162	0.4801	41	0.4437	18	2159	0.0021	540	0.0021	
19	35	0.6629	9	0.6013	19	980	0.0022	245	0.0022	
20	2				20	132	0.0024	33	0.002	
X		0.5863		0.5789	X		0.0019		0.0019	

Anexo 4.2 Tabla estadística del test de Kolmogorov-Smirnov

A continuación, se muestra la tabla estadística del test de Kolmogorov-Smirnov con la cual se decidió si los residuos de las diferentes bases de datos se distribuían normales. Se utilizó un α =0.05.

			1	Nivel de signi	ficancia α			
n	0.2	0.1	0.05	0.02	0.01	0.005	0.002	0.001
1	0.90000	0.95000	0.97500	0.99000	0.99500	0.9975	0.9990	0.9995
2	0.68337	0.77639	0.84189	0.90000	0.92929	0.95000	0.96838	0.97764
3	0.56481	0.63604	0.70760	0.7 8456	0.82900	0.86428	0.9000	0.92065
4	0.49265	0.56522	0.62394	0.68887	0.73424	0.77639	0.82217	0.85047
5	0.44698	0.50945	0.56328	0.62718	0.66853	0.70543	0.75	0.78137
6	0.41037	0.46799	0.51926	0.5774 1	0.61661	0.65287	0.69571	0.72479
7	0.38148	0.43607	0.48342	0.53844	0.57581	0.60975	0.65071	0.6793
8	0.35831	0.40962	0.45427	0.50654	0.54 <mark>179</mark>	0.57429	0.61368	0.64098
9	0.33910	0.38746	0.43001	0.4796	0.51 <mark>3</mark> 32	0.54443	0.5821	0.60846
10	0.32260	0.36866	0.409 <mark>25</mark>	0.45562	0.4 <mark>8</mark> 893	0.51872	0.555	0.58042
11	0.30829	0.35242	0.391 <mark>22</mark>	0.4367	0.4 <mark>6</mark> 77	0.49539	0.53135	0-55588
12	0.29577	0.33815	0.375 <mark>43</mark>	0.41918	0.4 <mark>4</mark> 905	0.47672	0.51047	0.53422
13	0.2847	0.32549	0.361 <mark>43</mark>	0.40362	0.4 <mark>3</mark> 247	0.45921	0.49189	0.5149
14	0.27481	0.31417	0.348 <mark>9</mark>	0.3897	0.41 <mark>7</mark> 62	0.44352	0.4752	0.49753
15	0.26589	0.30397	0.3375	0.37713	0.4 <mark>0</mark> 42	0.42934	0.45611	0.48182
16	0.25778	0.29472	0.32733	0.36571	0 <mark>.3</mark> 9201	0.41644	0.44637	0.4675
17	0.25039	0.28627	0.31796	0.35528	0.38086	0.40464	0.4338	0.4554
18	0.2436	0.27851	0.30936	0.34569	0.37062	0.3938	0.42224	0.44234
19	0.23735	0.27136	030143	0.33685	0.36117	0.38379	0.41156	0.43119
20	0.23156	0.26473	0.29408	0.32866	0.35241	0.37451	0.40165	0.42085
21	0.22517	0.25858	0.28724	0.32104	0.34426	0.36588	0.39243	0.41122
22	0.22115	0.25283	0.28087	0.31394	0.33666	0.35782	0.38382	0.40223
23	0.21646	0.24746	0.2749tl	0.30728	0.32954	0.35027	0.37575	0.3938
24	0.21205	0.24242	0.26931	0.30104	0.32286	0.34318	0.36787	0.38588
25	0.2079	0.23768	0.26404	0.29518	0.31657	0.33651	0.36104	0.37743
26	0.20399	0.2332	0.25908	0.28962	0.30963	0.33022	0.35431	0.37139
27	0.2003	0.22898	0.25438	0.28438	0.30502	0.32425	0.34794	0.36473
28	0.1968	0.22497	0.24993	0.27942	0.29971	0.31862	0.3419	0.35842
29	0.19348	0.22117	0.24571	0.27471	0.29466	0.31327	0.33617	0.35242
30	0.19032	0.21756	0.2417	0.27023	0.28986	0.30818	0.33072	0.34672
31	0.18732	0.21412	0.23788	0.26596	0.28529	0.30333	0.32553	0.34129
32	0.18445	0.21085	0.23424	0.26189	0.28094	0.2987	0.32058	0.33611
33	0.18171	0.20771	0.23076	0.25801	0.27577	0.29428	0.31584	0.33115

			1	Nivel de signi	ficancia α			
n	0.2	0.1	0.05	0.02	0.01	0.005	0.002	0.001
34	0.17909	0.21472	0.22743	0.25429	0.27271	0.29005	0.31131	0.32641
35	0.17659	0.20185	0.22425	0.25073	0.26897	0.286	0.30597	0.32187
36	0.17418	0.1991	0.22119	0.24732	0.26532	0.28211	0.30281	0.31751
37	0.17188	0.19646	0.21826	0.24404	0.2618	0.27838	0.29882	0.31333
38	0.16966	0.19392	0.21544	0.24089	0.25843	0.27483	0.29498	0.30931
39	0.16753	0.19148	0.21273	0.23785	0.25518	0.27135	0.29125	0.30544
40	0.16547	0.18913	0.21012	0.23494	0.25205	0.26803	0.28772	0.30171
41	0.16349	0.18687	0.2076	0.23213	0.24904	0.26482	0.28429	0.29811
42	0.16158	0.18468	0.20517	0.22941	0.24613	0.26173	0.28097	0.29465
43	0.15974	0.18257	0.20283	0.22679	0.24332	0.25875	0.27778	0.2913
44	0.15795	0.18051	0.20056	0.22426	0.2406	0.25587	0.27468	0.28806
45	0.15623	0.17856	0.19837	0.22181	0.23798	0.25308	0.27169	0.28493
46	0.15457	0.17665	0.19625	0.21944	0.23544	0.25038	0.2688	0.2819
47	0.15295	0.17481	0.1942	0.21715	0.23298	0.24776	0.266	0.27896
48	0.15139	0.17301	0.19221	0.21493	0.23 <mark>059</mark>	0.24523	0.26328	0.27611
49	0.14987	0.17128	0.190 <mark>28</mark>	0.21281	0.22 <mark>8</mark> 32	0.24281	0.26069	0.27339
50	0.1484	0.16959	0.188 <mark>41</mark>	0.21068	0.22 <mark>6</mark> 04	0.24039	0.25809	0.27067
<i>n</i> > 50	1.07/√n	1.22/√n	1.36/ <mark>√n</mark>	1.52/√n	1.6 <mark>3</mark> /√n	1.73/√n	1.85/√n	1.95/√n

Anexo 4.3 Distribución de frecuencia de los residuos de las bases de datos

A continuación, se presentan las tablas de distribución de frecuencia obtenidas de los residuos de cada base de datos.

Tabla A.4.7	Estadística descriptiva de la base de datos de s	\mathbf{S}	yН	de	Vancouver

Media	$-2.87 \text{ x} 10^{-16} \approx 0$
Desviación estándar	0.6117
Mínimo	-1.3912
Máximo	2.4338
Rango	3.8250
N° datos (n)	142

Tabla A.4.8Distribución de frecuencia de la base de datosde \overline{S} y \overline{H} de Vancouver

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs	Fre <mark>c.</mark> Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-1.391	-1.072	4	4	0.0282	0.0282	0.0398	0.0116
2	-1.072	-0.754	7	11	0.0493	0. <mark>0</mark> 775	0.109	0.0315
3	-0.754	-0.435	18	29	0.1268	0.2042	0.2386	0.0343
4	-0.435	-0.116	34	63	0.2394	0. <mark>4</mark> 437	0.4247	0.019
5	-0.116	0.203	37	100	0.2606	0 <mark>.</mark> 7042	0.6297	0.0745
6	0.203	0.521	19	119	0.1338	0.838	0.803	0.0351
7	0.521	0.84	10	129	0.0704	0.9085	0.9152	0.0067
8	0.84	1.159	5	134	0.0352	0.9437	0.9709	0.0273
9	1.159	1.478	6	140	0.0423	0.9859	0.9921	0.0062
10	1.478	1.796	1	141	0.007	0.993	0.9983	0.0054
11	1.796	2.115	0	141	0	0.993	0.9997	0.0068
12	2.115	2.434	1	142	0.007	1	1	0
							K-S	0.0745
							K-S crítico	0.1141

Tabla A.4.9 Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Punta Arenas

Media	-0.0218
Desviación estándar	0.5788
Mínimo	-1.2962
Máximo	2.2476
Rango	3.5438
N° datos (n)	192

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-1.296	-1.043	8	8	0.0417	0.0417	0.0388	0.0029
2	-1.043	-0.79	13	21	0.0677	0.1094	0.0922	0.0172
3	-0.79	-0.537	13	34	0.0677	0.1771	0.1868	0.0097
4	-0.537	-0.284	20	54	0.1042	0.2813	0.3254	0.0442
5	-0.284	-0.031	39	93	0.2031	0.4844	0.4939	0.0096
6	-0.031	0.223	43	136	0.224	0.7083	0.6636	0.0448
7	0.223	0.476	31	167	0.1615	0.8698	0.805	0.0648
8	0.476	0.729	12	179	0.0625	0.9323	0.9027	0.0296
9	0.729	0.982	4	183	0.0208	0.9531	0.9586	0.0054
10	0.982	1.235	4	187	0.0208	0.974	0.9851	0.0111
11	1.235	1.488	1	188	0.0052	0.9792	0.9955	0.0163
12	1.488	1.741	2	190	0.0104	0.9896	0.9988	0.0093
13	1.741	1.994	0	190	0	0.9896	0.9998	0.0102
14	1.994	2.248	2	192	0.0104	1.0000	1.0000	0.0000
				\mathbf{x}	$\mathbf{x} \mathbf{x}$	X	K-S	0.0648
							K-S crítico	0.0981

Tabla A.4.10 Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Punta Arenas

Tabla A.4.11 Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Punta Arenas

Media	2.36 x10 ⁻¹⁷
Desviación estándar	0.0 <mark>3</mark> 72
Mínimo	-0.0934
Máximo	0.1020
Rango	0.1954
N° datos (n)	189

Tabla A.4.12 Distribución de frecuencia de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Punta Arenas

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-0.093	-0.079	3	3	0.0159	0.0159	0.0163	0.0005
2	-0.079	-0.065	5	8	0.0265	0.0423	0.0392	0.0032
3	-0.065	-0.052	5	13	0.0265	0.0688	0.083	0.0142
4	-0.052	-0.038	16	29	0.0847	0.1534	0.1562	0.0028
5	-0.038	-0.024	23	52	0.1217	0.2751	0.2628	0.0123
6	-0.024	-0.01	23	75	0.1217	0.3968	0.3976	0.0008
7	-0.01	0.004	33	108	0.1746	0.5714	0.5461	0.0253
8	0.004	0.018	27	135	0.1429	0.7143	0.6883	0.0260
9	0.018	0.032	18	153	0.0952	0.8095	0.8068	0.0027
10	0.032	0.046	16	169	0.0847	0.8942	0.8928	0.0014

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
11	0.046	0.060	7	176	0.0370	0.9312	0.947	0.0158
12	0.060	0.074	6	182	0.0317	0.9630	0.9768	0.0139
13	0.074	0.088	4	186	0.0212	0.9841	0.9910	0.0069
14	0.088	0.102	3	189	0.0159	1.0000	0.9970	0.0030
							K-S	0.0260
							K-S crítico	0.0989

Tabla A.4.13 Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Aberporth

Media	1.55 x10 ⁻¹⁷
Desviación estándar	0.5661
Mínimo	-1.6467
Máximo	2.3971
Rango	4.0438
N° datos (n)	408

Tabla A.4.14 Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Aberporth

N°	Límite inferior	Límite superior	Frecuencia observada	Frecu <mark>encia</mark> acum <mark>ulada</mark>	Frec. Obs oelativa	Fre <mark>c. Obs Relat. Acum</mark>	Frec. Esperada Relat. Acum	FORA-FERA
1	-1.647	-1.454	4	4	0.0098	0. <mark>0</mark> 098	0.0051	0.0047
2	-1.454	-1.262	4	8	0.0098	0. <mark>0</mark> 196	0.0129	0.0067
3	-1.262	-1.069	10	18	0.0245	0. <mark>0</mark> 441	0.0295	0.0146
4	-1.069	-0.876	7	25	0.0172	0. <mark>0</mark> 613	0.0608	0.0005
5	-0.876	-0.684	8	-33	0.0196	<mark>0</mark> .0809	0.1135	0.0326
6	-0.684	-0.491	23	56	0.0564	0.1373	0.1927	0.0555
7	-0.491	-0.299	57	113	0.1397	0.277	0.2988	0.0219
8	-0.299	-0.106	71	184	0.1740	0.4510	0.4256	0.0254
9	-0.106	0.086	55	239	0.1348	0.5858	0.5606	0.0251
10	0.086	0.279	51	290	0.125	0.7108	0.6889	0.0219
11	0.279	0.471	41	331	0.1005	0.8113	0.7976	0.0137
12	0.471	0.664	34	365	0.0833	0.8946	0.8796	0.015
13	0.664	0.857	15	380	0.0368	0.9314	0.9349	0.0035
14	0.857	1.049	13	393	0.0319	0.9632	0.9681	0.0049
15	1.049	1.242	2	395	0.0049	0.9681	0.9859	0.0177
16	1.242	1.434	9	404	0.0221	0.9902	0.9944	0.0042
17	1.434	1.627	3	407	0.0074	0.9975	0.998	0.0004
18	1.627	1.819	0	407	0.0000	0.9975	0.9993	0.0018
19	1.819	2.012	0	407	0.0000	0.9975	0.9998	0.0023
20	2.012	2.205	0	407	0.0000	0.9975	1.0000	0.0024
21	2.205	2.397	1	408	0.0025	1.0000	1.0000	0.0000
							K-S	0.055
							K-S crítico	0.067

1	05
Media	-1.09 x10 ⁻¹⁷
Desviación estándar	0.0249
Mínimo	-0.0705
Máximo	0.0644
Rango	0.1349
N° datos (n)	404

Tabla A.4.15 Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Aberporth

Tabla A.4.16	Distribución de	frecuencia de l	a base de datos	de $\overline{S}/\overline{S}_0$	$y \overline{H}/\overline{H}_0$	de Aberporth
--------------	-----------------	-----------------	-----------------	----------------------------------	---------------------------------	--------------

\mathbf{N}°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-0.07	-0.064	1	1	0.0025	0.0025	0.0051	0.0026
2	-0.064	-0.058	3	4	0.0074	0.0099	0.0104	0.0005
3	-0.058	-0.051	4	8	0.0099	0.0198	0.0200	0.0002
4	-0.051	-0.045	5	13	0.0124	0.0322	0.0362	0.0040
5	-0.045	-0.038	17	30	0.0421	0.0743	0.0618	0.0124
6	-0.038	-0.032	12	42	0.0297	0 <mark>.</mark> 104	0.0999	0.0040
7	-0.032	-0.026	25	67	0.0619	0. <mark>1</mark> 658	0.1529	0.0130
8	-0.026	-0.019	27	94	0.0668	0.2327	0.2216	0.0110
9	-0.019	-0.013	29	123	0.0718	0.3045	0.3054	0.0009
10	-0.013	-0.006	41	164	0.1015	0. <mark>4</mark> 059	0.4007	0.0052
11	-0.006	0.000	35	19 <mark>9</mark>	0.0866	0. <mark>4</mark> 926	0.5025	0.0099
12	0.000	0.007	46	24 <mark>5</mark>	0.1139	0. <mark>6</mark> 064	0.6040	0.0024
13	0.007	0.013	32	277	0.0792	0 <mark>.</mark> 6856	0.6990	0.0133
14	0.013	0.019	35	312	0.0866	0.7723	0.7820	0.0097
15	0.019	0.026	30	342	0.0743	0.8465	0.8500	0.0035
16	0.026	0.032	23	365	0.0569	0.9035	0.9022	0.0013
17	0.032	0.039	17	382	0.0421	0.9455	0.9397	0.0059
18	0.039	0.045	6	388	0.0149	0.9604	0.9648	0.0044
19	0.045	0.052	11	399	0.0272	0.9876	0.9806	0.0070
20	0.052	0.058	1	400	0.0025	0.9901	0.9900	0.0001
21	0.058	0.064	4	404	0.0099	1.0000	0.9951	0.0049
							K-S	0.013
							K-S crítico	0.068

Tabla A.4.17 Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Taipa Grande

-	•
Media	0.0227
Desviación estándar	0.5429
Mínimo	-1.3657
Máximo	1.2483
Rango	2.6140
N° datos (n)	331

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-1.366	-1.228	2	2	0.0060	0.0060	0.0106	0.0046
2	-1.228	-1.091	1	3	0.0030	0.0091	0.0201	0.0111
3	-1.091	-0.953	5	8	0.0151	0.0242	0.0361	0.0120
4	-0.953	-0.815	17	25	0.0514	0.0755	0.0613	0.0142
5	-0.815	-0.678	24	49	0.0725	0.148	0.0985	0.0496
6	-0.678	-0.540	13	62	0.0393	0.1873	0.1499	0.0374
7	-0.540	-0.403	21	83	0.0634	0.2508	0.2166	0.0341
8	-0.403	-0.265	28	111	0.0846	0.3353	0.298	0.0373
9	-0.265	-0.127	19	130	0.0574	0.3927	0.3910	0.0017
10	-0.127	0.010	20	150	0.0604	0.4532	0.4907	0.0375
11	0.010	0.148	20	170	0.0604	0.5136	0.5910	0.0774
12	0.148	0.285	33	203	0.0997	0.6133	0.6857	0.0724
13	0.285	0.423	42	245	0.1269	0.7402	0.7695	0.0293
14	0.423	0.560	22	267	0.0665	0. <mark>8</mark> 066	0.8390	0.0324
15	0.560	0.698	35	302	0.1057	0. <mark>9</mark> 124	0.8932	0.0192
16	0.698	0.836	16	31 <mark>8</mark>	0.0483	0. <mark>9</mark> 607	0.9328	0.0279
17	0.836	0.973	7	325	0.0211	0. <mark>9</mark> 819	0.9600	0.0219
18	0.973	1.111	5	330	0.0151	0. <mark>9</mark> 970	0.9775	0.0195
19	1.111	1.248	1	331	0.003	1.0000	0.988	0.0120
							K-S	0.0774
							K-S crítico	0.0748

Tabla A.4.18 Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Taipa Grande

Tabla A.4.19 Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Taipa Grande

Media	-2.03 x10 ⁻¹⁷
Desviación estándar	0.0239
Mínimo	-0.0696
Máximo	0.0537
Rango	0.1233
N° datos (n)	330

Tabla A.4.20 Distribución de frecuencia de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Taipa Grande

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-0.070	-0.063	3	3	0.0091	0.0091	0.0041	0.0050
2	-0.063	-0.057	4	7	0.0121	0.0212	0.0089	0.0123
3	-0.057	-0.050	2	9	0.0061	0.0273	0.0180	0.0093
4	-0.050	-0.044	6	15	0.0182	0.0455	0.0339	0.0116
5	-0.044	-0.037	7	22	0.0212	0.0667	0.0600	0.0067

Nº	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
6	-0.037	-0.031	9	31	0.0273	0.0939	0.0997	0.0058
7	-0.031	-0.024	13	44	0.0394	0.1333	0.1559	0.0226
8	-0.024	-0.018	30	74	0.0909	0.2242	0.2297	0.0055
9	-0.018	-0.011	33	107	0.1000	0.3242	0.3198	0.0044
10	-0.011	-0.005	34	141	0.1030	0.4273	0.4221	0.0052
11	-0.005	0.002	32	173	0.0970	0.5242	0.5299	0.0056
12	0.002	0.008	34	207	0.103	0.6273	0.6355	0.0083
13	0.008	0.015	27	234	0.0818	0.7091	0.7318	0.0227
14	0.015	0.021	28	262	0.0848	0.7939	0.8132	0.0193
15	0.021	0.028	30	292	0.0909	0.8848	0.8773	0.0076
16	0.028	0.034	17	309	0.0515	0.9364	0.9241	0.0123
17	0.034	0.041	10	319	0.0303	0.9667	0.9559	0.0108
18	0.041	0.047	5	324	0.0152	0.9818	0.9759	0.0059
19	0.047	0.054	6	330	0.0182	1.0000	0.9877	0.0123
						_	K-S	0.0227
							K-S crítico	0.0749
13 16 17 18 19	0.021 0.028 0.034 0.041 0.047	0.028 0.034 0.041 0.047 0.054	30 17 10 5 6	292 309 319 324 330	0.0909 0.0515 0.0303 0.0152 0.0182	0.3848 0.9364 0.9667 0.9818 1.0000	0.8775 0.9241 0.9559 0.9759 0.9877 K-S K-S crítico	0.007 0.012 0.010 0.005 0.012 0.022 0.074

Tabla A.4.21 Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Maputo

Media	-6.30 x10 ⁻¹⁶
Desviaci <mark>ón estándar</mark>	1.0 <mark>8</mark> 53
Mínimo	-1.8 <mark>8</mark> 37
Máximo	2. <mark>4</mark> 005
Rango	<mark>4.</mark> 2843
N° datos (n)	246

Tabla A.4.22 Distribución de frecuencia de la base de datos de \bar{S} y \bar{H} de Maputo

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-1.884	-1.616	10	10	0.0407	0.0407	0.0683	0.0276
2	-1.616	-1.348	22	32	0.0894	0.1301	0.1071	0.0230
3	-1.348	-1.08	23	55	0.0935	0.2236	0.1597	0.0638
4	-1.08	-0.813	14	69	0.0569	0.2805	0.2270	0.0535
5	-0.813	-0.545	19	88	0.0772	0.3577	0.3078	0.0499
6	-0.545	-0.277	19	107	0.0772	0.4350	0.3992	0.0357
7	-0.277	-0.009	16	123	0.0650	0.5000	0.4966	0.0034
8	-0.009	0.258	20	143	0.0813	0.5813	0.5941	0.0128
9	0.258	0.526	18	161	0.0732	0.6545	0.6861	0.0316
10	0.526	0.794	19	180	0.0772	0.7317	0.7678	0.0361
11	0.794	1.062	16	196	0.065	0.7967	0.8360	0.0393
12	1.062	1.329	13	209	0.0528	0.8496	0.8897	0.0401

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
13	1.329	1.597	16	225	0.065	0.9146	0.9294	0.0148
14	1.597	1.865	13	238	0.0528	0.9675	0.9571	0.0103
15	1.865	2.133	7	245	0.0285	0.9959	0.9753	0.0206
16	2.133	2.401	1	246	0.0041	1.0000	0.9865	0.0135
							K-S	0.0638
							K-S crítico	0.0867

Tabla A.4.23 Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Maputo

Media	4.96 x10 ⁻¹⁷
Desviación estándar	0.0254
Mínimo	-0.0692
Máximo	0.0675
Rango	0.1367
N° datos (n)	252

Tabla A.4.24 Distribución de frecuencia de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Maputo

N°	Límite inferior	Límite superior	Frecuencia observada	Frecu <mark>encia</mark> acum <mark>ulada</mark>	Frec. Obs oelativa	Fre <mark>c. Obs</mark> Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-0.069	-0.061	2	2	0.0079	0. <mark>0</mark> 079	0.0085	0.0005
2	-0.061	-0.052	3	5	0.0119	0. <mark>0</mark> 198	0.0201	0.0003
3	-0.052	-0.044	5	10	0.0198	0.0397	0.0431	0.0035
4	-0.044	-0.035	7	17	0.0278	0.0675	0.0839	0.0165
5	-0.035	-0.027	20	37	0.0794	0.1468	0.1485	0.0017
6	-0.027	-0.018	22	59	0.0873	0.2341	0.2399	0.0058
7	-0.018	-0.009	33	92	0.131	0.3651	0.3556	0.0095
8	-0.009	-0.001	39	131	0.1548	0.5198	0.4864	0.0334
9	-0.001	0.008	32	163	0.1270	0.6468	0.6188	0.0281
10	0.008	0.016	24	187	0.0952	0.7421	0.7384	0.0036
11	0.016	0.025	22	209	0.0873	0.8294	0.8352	0.0058
12	0.025	0.033	17	226	0.0675	0.8968	0.9051	0.0083
13	0.033	0.042	9	235	0.0357	0.9325	0.9503	0.0177
14	0.042	0.050	8	243	0.0317	0.9643	0.9764	0.0121
15	0.050	0.059	6	249	0.0238	0.9881	0.9898	0.0017
16	0.059	0.068	3	252	0.0119	1.0000	0.9960	0.0040
							K-S	0.0334
							K-S crítico	0.0857

Media	0.0081
Desviación estándar	0.5802
Mínimo	-1.4490
Máximo	1.8331
Rango	3.2821
N° datos (n)	213

Tabla A.4.25 Estadística descriptiva de la base de datos de \overline{S} y \overline{H} de Darwin

Tabla A.4.26 Distribución de frecuencia de la base de datos de \overline{S} y \overline{H} de Darwin

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-0.069	-0.061	2	2	0.0094	0.0094	0.0164	0.0070
2	-0.061	-0.052	3	5	0.0282	0.0376	0.0394	0.0019
3	-0.052	-0.044	5	10	0.0657	0.1033	0.0838	0.0195
4	-0.044	-0.035	7	17	0.0563	0.1596	0.1579	0.0017
5	-0.035	-0.027	20	37	0.1127	0. <mark>2</mark> 723	0.2657	0.0066
6	-0.027	-0.018	22	59	0.1502	0. <mark>4</mark> 225	0.4018	0.0207
7	-0.018	-0.009	33	92	0.1315	0. <mark>5</mark> 540	0.5511	0.0029
8	-0.009	-0.001	39	131	0.1080	0. <mark>6</mark> 620	0.6934	0.0315
9	-0.001	0.008	32	163	0.1408	0. <mark>8</mark> 028	0.8113	0.0085
10	0.008	0.016	24	18 <mark>7</mark>	0.0939	0. <mark>8</mark> 967	0.8961	0.0006
11	0.016	0.025	22	209	0.0563	0. <mark>9</mark> 531	0.9492	0.0039
12	0.025	0.033	17	226	0.0329	0 <mark>.</mark> 9859	0.9780	0.0079
13	0.033	0.042	9	235	0.0094	0.9953	0.9916	0.0037
14	0.042	0.050	8	243	0.0000	0.9953	0.9972	0.0019
15	0.050	0.059	6	249	0.0047	1.0000	0.9992	0.0008
							K-S	0.0315
							K-S crítico	0.0932

Tabla A.4.27 Estadística descriptiva de la base de datos de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Darwin

Media	3.25 x10 ⁻¹⁷
Desviación estándar	0.0374
Mínimo	-0.1037
Máximo	0.0808
Rango	0.1845
N° datos (n)	213

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-0.104	-0.091	1	1	0.0047	0.0047	0.0073	0.0026
2	-0.091	-0.079	1	2	0.0047	0.0094	0.0172	0.0078
3	-0.079	-0.067	7	9	0.0329	0.0423	0.0370	0.0053
4	-0.067	-0.055	14	23	0.0657	0.1080	0.0724	0.0355
5	-0.055	-0.042	13	36	0.0610	0.1690	0.1294	0.0396
6	-0.042	-0.030	18	54	0.0845	0.2535	0.2118	0.0417
7	-0.030	-0.018	10	64	0.0469	0.3005	0.3187	0.0182
8	-0.018	-0.005	22	86	0.1033	0.4038	0.4434	0.0396
9	-0.005	0.007	23	109	0.108	0.5117	0.5739	0.0622
10	0.007	0.019	29	138	0.1362	0.6479	0.6968	0.0489
11	0.019	0.032	28	166	0.1315	0.7793	0.8007	0.0214
12	0.032	0.044	21	187	0.0986	0.8779	0.8796	0.0017
13	0.044	0.056	16	203	0.0751	0.9531	0.9334	0.0196
14	0.056	0.068	7	210	0.0329	0. <mark>9</mark> 859	0.9664	0.0195
15	0.068	0.081	3	213	0.0141	1.0000	0.9846	0.0154
					4.4)		K-S	0.0622
						X	K-S crítico	0.0932

Tabla A.4.28 Distribución de frecuencia de la base de datos $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$ de Darwin

Tabla A.4.29 Estadística descriptiva de la base de datos mundial de \overline{S} y \overline{H}

Media 🛛 🚽	0.0 <mark>1</mark> 20
Desviación estándar	0 <mark>.8</mark> 522
Mínimo	-3.0025
Máximo	3.1515
Rango	6.1540
N° datos (n)	134616

Tabla A.4.30 Distribución de frecuencia de la base de datos mundial de \overline{S} y \overline{H}

N°	Límite inferior	Límite superior	Frecuencia observada	Frecuencia acumulada	Frec. Obs oelativa	Frec. Obs Relat. Acum	Frec. Esperada Relat. Acum	FORA-FERA
1	-3.002	-2.986	1	1	0.0000	0.0000	0.0002	0.0002
2	-2.986	-2.969	0	1	0.0000	0.0000	0.0002	0.0002
3	-2.969	-2.952	0	1	0.0000	0.0000	0.0003	0.0002
4	-2.952	-2.935	0	1	0.0000	0.0000	0.0003	0.0003
5	-2.935	-2.919	1	2	0.0000	0.0000	0.0003	0.0003
6	-2.919	-2.902	0	2	0.0000	0.0000	0.0003	0.0003
7	-2.902	-2.885	0	2	0.0000	0.0000	0.0003	0.0003
8	-2.885	-2.868	0	2	0.0000	0.0000	0.0004	0.0003
9	-2.868	-2.852	0	2	0.0000	0.0000	0.0004	0.0004
10	-2.852	-2.835	2	4	0.0000	0.0000	0.0004	0.0004
11	-2.835	-2.818	1	5	0.0000	0.0000	0.0004	0.0004

Nº	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERA
11	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
12	-2.818	-2.801	0	5	0.0000	0.0000	0.0005	0.0004
13	-2.801	-2.785	2	7	0.0000	0.0001	0.0005	0.0005
14	-2.785	-2.768	3	10	0.0000	0.0001	0.0006	0.0005
15	-2.768	-2.751	1	11	0.0000	0.0001	0.0006	0.0005
16	-2.751	-2.734	3	14	0.0000	0.0001	0.0006	0.0005
17	-2.734	-2.717	2	16	0.0000	0.0001	0.0007	0.0006
18	-2.717	-2.701	5	21	0.0000	0.0002	0.0007	0.0006
19	-2.701	-2.684	5	26	0.0000	0.0002	0.0008	0.0006
20	-2.684	-2.667	2	28	0.0000	0.0002	0.0008	0.0006
21	-2.667	-2.65	7	35	0.0001	0.0003	0.0009	0.0006
22	-2.65	-2.634	2	37	0.0000	0.0003	0.001	0.0007
23	-2.634	-2.617	9	46	0.0001	0.0003	0.001	0.0007
24	-2.617	-2.6	4	50	0.0000	0.0004	0.0011	0.0007
25	-2.6	-2.583	3	53	0.0000	0.0004	0.0012	0.0008
26	-2.583	-2.567	11	64	0.0001	0.0005	0.0012	0.0008
27	-2.567	-2.55	13	77	0.0001	0.0006	0.0013	0.0008
28	-2.55	-2.533	14	91	0.0001	0.0007	0.0014	0.0007
29	-2.533	-2.516	8	99	0.0001	0.0007	0.0015	0.0008
30	-2.516	-2.499	15	114	0.0001	0.0008	0.0016	0.0008
31	-2.499	-2.483	13	127	0.0001	0.0009	0.0017	0.0008
32	-2.483	-2.466	16	143	0.0001	0.0011	0.0018	0.0008
33	-2.466	-2.449	12	155	0.0001	0.0012	0.0019	0.0008
34	-2.449	-2.432	19	174	0.0001	0.0013	0.0021	0.0008
35	-2.432	-2.416	23	197	0.0002	0.0015	0.0022	0.0007
36	-2.416	-2.399	23	220	0.0002	0.0016	0.0023	0.0007
37	-2.399	-2.382	26	246	0.0002	0.0018	0.0025	0.0007
38	-2.382	-2.365	26	272	0.0002	0.002	0.0026	0.0006
39	-2.365	-2.349	26	298	0.0002	0.0022	0.0028	0.0006
40	-2.349	-2.332	29	327	0.0002	0.0024	0.003	0.0005
41	-2.332	-2.315	30	357	0.0002	0.0027	0.0032	0.0005
42	-2.315	-2.298	32	389	0.0002	0.0029	0.0034	0.0005
43	-2.298	-2.281	26	415	0.0002	0.0031	0.0036	0.0005
44	-2.281	-2.265	35	450	0.0003	0.0033	0.0038	0.0004
45	-2.265	-2.248	45	495	0.0003	0.0037	0.004	0.0003
46	-2.248	-2.231	31	526	0.0002	0.0039	0.0042	0.0003
47	-2.231	-2.214	32	558	0.0002	0.0041	0.0045	0.0003
48	-2.214	-2.198	48	606	0.0004	0.0045	0.0048	0.0003
49	-2.198	-2.181	46	652	0.0003	0.0048	0.005	0.0002
50	-2.181	-2.164	36	688	0.0003	0.0051	0.0053	0.0002
51	-2.164	-2.147	36	724	0.0003	0.0054	0.0056	0.0003
52	-2.147	-2.131	51	775	0.0004	0.0058	0.006	0.0002
53	-2.131	-2.114	50	825	0.0004	0.0061	0.0063	0.0002
54	-2.114	-2.097	55	880	0.0004	0.0065	0.0067	0.0001
55	-2.097	-2.08	50	930	0.0004	0.0069	0.007	0.0001
56	-2.08	-2.063	65	995	0.0005	0.0074	0.0074	0.0000
57	-2.063	-2.047	79	1074	0.0006	0.008	0.0078	0.0001
58	-2.047	-2.03	75	1149	0.0006	0.0085	0.0083	0.0003
59	-2.03	-2.013	75	1224	0.0006	0.0091	0.0087	0.0004
60	-2.013	-1.996	81	1305	0.0006	0.0097	0.0092	0.0005

Infertor superior observata acumulada celat. Acum Relat. Acum Rel	Nº	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERA																																																																																																																																																																																																																												
	1	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA																																																																																																																																																																																																																												
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	61	-1.996	-1.98	80	1385	0.0006	0.0103	0.0097	0.0006																																																																																																																																																																																																																												
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	62	-1.98	-1.963	84	1469	0.0006	0.0109	0.0102	0.0007																																																																																																																																																																																																																												
64 -1.946 -1.929 81 1640 0.0006 0.0122 0.0114 0.0009 65 -1.913 -1.896 105 1832 0.0008 0.0136 0.0122 0.0011 67 -1.896 -1.879 103 1935 0.0008 0.0144 0.0139 0.0014 68 -1.879 -1.845 102 2065 0.001 0.0153 0.0139 0.0014 69 -1.862 -1.845 102 2167 0.0008 0.017 0.0154 0.0016 70 -1.843 -1.829 -1.375 140 2532 0.0008 0.0178 0.0162 0.0018 71 -1.787 -1.778 120 2652 0.009 0.0197 0.0178 0.018 0.019 74 -1.778 -1.728 113 2765 0.0025 0.0187 0.018 75 -1.762 -1.741 168 3191 0.0122 0.026 0.0237 0.026	63	-1.963	-1.946	90	1559	0.0007	0.0116	0.0108	0.0008																																																																																																																																																																																																																												
	64	-1.946	-1.929	81	1640	0.0006	0.0122	0.0114	0.0008																																																																																																																																																																																																																												
66 -1.913 -1.896 105 1832 0.0008 0.0136 0.0126 0.001 67 -1.896 -1.879 103 1935 0.0008 0.0144 0.0132 0.0014 68 -1.879 -1.845 102 2167 0.0008 0.0171 0.0154 0.0016 70 -1.845 -1.829 -1.812 102 2392 0.0008 0.0178 0.0162 0.0016 71 -1.829 -1.812 1.795 140 2532 0.0009 0.0178 0.0162 0.0018 73 -1.795 -1.778 120 2652 0.0009 0.0197 0.0178 0.0018 74 -1.778 -1.728 113 2765 0.0020 0.0215 0.0187 0.0018 77 -1.728 -1.711 1.695 141 3332 0.001 0.0225 0.0206 0.0237 0.0023 74 -1.784 -1.678 1.627 3494	65	-1.929	-1.913	87	1727	0.0006	0.0128	0.012	0.0009																																																																																																																																																																																																																												
	66	-1.913	-1.896	105	1832	0.0008	0.0136	0.0126	0.001																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	-1.896	-1.879	103	1935	0.0008	0.0144	0.0132	0.0011																																																																																																																																																																																																																												
69-1.862-1.84510221670.00080.01610.01460.001570-1.845-1.82912322900.00090.0170.01540.001671-1.829-1.81210223920.00080.01780.01620.001873-1.795-1.77812025520.00090.01970.01780.001974-1.778-1.77811327650.00080.02050.01870.001975-1.762-1.74513028950.0010.02150.01960.001976-1.745-1.72812830230.0010.02250.02060.001977-1.728-1.7111.68531910.00120.0260.02370.002380-1.6781.6234940.00120.0260.02370.002381-1.6611.8236760.00140.02870.0260.002782-1.644-1.6611.823580.00140.03110.02720.002983-1.661-1.6441.8238580.00140.03430.03110.032284-1.6111.7742240.00140.03710.03250.003285-1.5771.9046150.00140.03710.03250.003286-1.577-1.561.8748020.00140.03710.03250.003291-1.493-1.4772185896 <td>68</td> <td>-1.879</td> <td>-1.862</td> <td>130</td> <td>2065</td> <td>0.001</td> <td>0.0153</td> <td>0.0139</td> <td>0.0014</td>	68	-1.879	-1.862	130	2065	0.001	0.0153	0.0139	0.0014																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	-1.862	-1.845	102	2167	0.0008	0.0161	0.0146	0.0015																																																																																																																																																																																																																												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	-1.845	-1.829	123	2290	0.0009	0.017	0.0154	0.0016																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	-1.829	-1.812	102	2392	0.0008	0.0178	0.0162	0.0016																																																																																																																																																																																																																												
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	72	-1.812	-1.795	140	2532	0.001	0.0188	0.017	0.0018																																																																																																																																																																																																																												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73	-1.795	-1.778	120	2652	0.0009	0.0197	0.0178	0.0019																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	-1.778	-1.762	113	2765	0.0008	0.0205	0.0187	0.0018																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	-1.762	-1.745	130	2895	0.001	0.0215	0.0196	0.0019																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	-1.745	-1.728	128	3023	0.001	0.0225	0.0206	0.0019																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77	-1.728	-1.711	168	3191	0.0012	0.0237	0.0216	0.0021																																																																																																																																																																																																																												
79-1.695-1.678162 3494 0.0012 0.026 0.0237 0.0023 80 -1.678-1.661182 3676 0.0014 0.0273 0.0248 0.0025 81 -1.661-1.644182 3858 0.0014 0.0287 0.026 0.0027 82 -1.641-1.627189 4047 0.0014 0.0301 0.0272 0.0029 83 -1.627-1.611177 4224 0.0013 0.0314 0.0284 0.0029 84 -1.611-1.594201 4425 0.0015 0.0329 0.0297 0.0031 85 -1.577-1.56187 4802 0.0014 0.0357 0.0325 0.0032 86 -1.577-1.54190 4992 0.0014 0.0371 0.034 0.0031 88 -1.544-1.5272065198 0.0015 0.0386 0.0355 0.0031 89 -1.527-1.512215419 0.0016 0.0403 0.037 0.0032 90 -1.493-1.4772185896 0.0016 0.0438 0.0403 0.0035 91 -1.493-1.4772185896 0.0016 0.0438 0.0403 0.0033 92 -1.477-1.462216117 0.0016 0.0438 0.0421 0.0034 93 -1.46-1.4432306347 0.0017 0.0471 0.0438 0.0033	78	-1.711	-1.695	141	3332	0.001	0.0248	0.0226	0.0021																																																																																																																																																																																																																												
80 -1.678 -1.661 182 3676 0.0014 0.0273 0.0248 0.0025 81 -1.661 -1.644 182 3858 0.0014 0.0287 0.026 0.0027 82 -1.644 -1.627 189 4047 0.0014 0.0301 0.0272 0.0029 83 -1.627 -1.611 177 4224 0.0013 0.0314 0.0284 0.0029 84 -1.611 -1.594 201 4425 0.0015 0.0329 0.0297 0.0031 85 -1.577 -1.56 187 4802 0.0014 0.0377 0.0325 0.0032 86 -1.577 -1.56 187 4802 0.0014 0.0371 0.034 0.0031 88 -1.544 -1.527 206 5198 0.0015 0.0386 0.0355 0.0031 89 -1.51 -1.51 221 5419 0.0016 0.0403 0.037 0.0032 90 -1.51 -1.493 259 5678 0.0019 0.0422 0.0387 0.0035 91 -1.493 -1.477 218 5896 0.0016 0.0438 0.0403 0.0035 92 -1.4477 -1.46 221 6117 0.0016 0.0421 0.0033 93 -1.4477 218 5896 0.0017 0.0471 0.0437 0.0033 94 -1.443 -1.426 258 6605 0.00	79	-1.695	-1.678	162	3494	0.0012	0.026	0.0237	0.0023																																																																																																																																																																																																																												
81-1.661-1.64418238580.00140.02870.0260.0027 82 -1.644-1.62718940470.00140.03010.02720.0029 83 -1.627-1.61117742240.00130.03140.02840.0029 84 -1.611-1.59420144250.00150.03290.02970.0031 85 -1.57719046150.00140.03430.03110.0032 86 -1.577-1.5618748020.00140.03570.03250.0032 87 -1.56-1.54419049920.00140.03710.0340.0031 88 -1.547-1.5122154190.00160.04030.0370.0032 90 -1.51-1.49325956780.00190.04220.03870.0035 91 -1.493-1.47721858960.00160.04380.04030.0033 92 -1.477-1.4622161170.00160.04540.04210.0034 93 -1.464-1.44323063470.00170.04710.04760.0033 94 -1.443-1.42625866050.00190.04910.04570.0033 95 -1.426-1.40926868730.0020.05110.04760.0034 96 -1.409-1.39324871210.00180.05290.04960.0033 <t< td=""><td>80</td><td>-1.678</td><td>-1.661</td><td>182</td><td>3676</td><td>0.0014</td><td>0.0273</td><td>0.0248</td><td>0.0025</td></t<>	80	-1.678	-1.661	182	3676	0.0014	0.0273	0.0248	0.0025																																																																																																																																																																																																																												
82-1.644-1.62718940470.00140.03010.02720.0029 83 -1.627-1.61117742240.00130.03140.02840.0029 84 -1.611-1.59420144250.00150.03290.02970.0031 85 -1.594-1.57719046150.00140.03430.03110.0032 86 -1.577-1.5618748020.00140.03570.03250.0032 87 -1.56-1.54419049920.00140.03710.0340.0031 88 -1.544-1.52720651980.00150.03860.03550.0031 89 -1.527-1.5122154190.00160.04030.0370.0032 90 -1.51-1.49325956780.00190.04220.03870.0035 91 -1.493-1.47721858960.00160.04380.04030.0035 92 -1.477-1.4622161170.00160.04540.04210.0034 93 -1.426-1.44323063470.00170.04710.04390.0033 94 -1.426-1.40926868730.0020.05110.04760.0034 96 -1.3932.4871210.0180.05290.04960.0033 97 -1.393-1.3762.8874090.00210.0550.05170.0034<	81	-1.661	-1.644	182	3858	0.0014	0.0287	0.026	0.0027																																																																																																																																																																																																																												
83-1.627-1.61117742240.00130.03140.02840.0029 84 -1.611-1.59420144250.00150.03290.02970.0031 85 -1.594-1.57719046150.00140.03430.03110.0032 86 -1.577-1.5618748020.00140.03570.03250.0032 87 -1.56-1.54419049920.00140.03710.0340.0031 88 -1.527-1.5122154190.00150.03860.03550.0032 90 -1.51-1.49325956780.00190.04220.03870.0035 91 -1.493-1.47721858960.00160.04380.04030.0035 92 -1.477-1.4622161170.00160.04540.04210.0034 93 -1.46-1.44323063470.00170.04710.04390.0033 94 -1.443-1.42625866050.00190.04910.04570.0033 95 -1.426-1.40926868730.0020.05110.04760.0033 96 -1.409-1.39324871210.0180.05680.05380.003 97 -1.393-1.37628874090.00210.0550.05170.0034 98 -1.376-1.39927385160.00220.06120.05820.003 <td>82</td> <td>-1.644</td> <td>-1.627</td> <td>189</td> <td>4047</td> <td>0.0014</td> <td>0.0301</td> <td>0.0272</td> <td>0.0029</td>	82	-1.644	-1.627	189	4047	0.0014	0.0301	0.0272	0.0029																																																																																																																																																																																																																												
84-1.611-1.594201 4425 0.00150.03290.02970.0031 85 -1.594-1.57719046150.00140.03430.03110.0032 86 -1.577-1.5618748020.00140.03570.03250.0032 87 -1.56-1.54419049920.00140.03710.0340.0031 88 -1.544-1.52720651980.00150.03860.03550.0032 90 -1.51-1.49325956780.00160.04030.0370.0035 91 -1.493-1.47721858960.00160.04380.04030.0035 92 -1.477-1.4622161170.00160.04540.04210.0034 93 -1.46-1.44323063470.00170.04710.04390.0033 94 -1.426-1.40926868730.0020.05110.04660.0034 96 -1.409-1.39324871210.00180.05580.05170.0034 96 -1.309-1.35924176500.00180.05680.05380.003 99 -1.359-1.34229179410.00220.0590.0560.003 100 -1.342-1.25934595270.00260.07830.06660.0027 102 -1.309-1.25934595270.00260.07830.06680.0028	83	-1.627	-1.611	177	4224	0.0013	0 <mark>.0314</mark>	0.0284	0.0029																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	-1.611	-1.594	201	4425	0.0015	0.0329	0.0297	0.0031																																																																																																																																																																																																																												
86-1.577-1.56187 4802 0.00140.03570.03250.0032 87 -1.56-1.54419049920.00140.03710.0340.0031 88 -1.544-1.52720651980.00150.03860.03550.0032 90 -1.51-1.49325956780.00190.04220.03870.0035 91 -1.493-1.47721858960.00160.04380.04030.0035 92 -1.477-1.4622161170.00160.04410.04390.0033 93 -1.46-1.44323063470.00170.04710.04390.0033 94 -1.443-1.42625866050.00190.04910.04570.0033 95 -1.426-1.40926868730.0020.05110.04760.0034 96 -1.409-1.39324871210.00180.05290.04960.0033 97 -1.393-1.37628874090.00210.0550.05170.0034 98 -1.379-1.34229179410.00220.05680.06330.0027 100 -1.342-1.32630282430.00220.06120.05820.003 101 -1.326-1.29234176500.00180.06330.06660.0027 102 -1.30927385160.00220.06580.06330.0028<	85	-1.594	-1.577	190	4615	0.0014	0.0343	0.0311	0.0032																																																																																																																																																																																																																												
87 -1.56 -1.544 190 4992 0.0014 0.0371 0.034 0.0031 88 -1.544 -1.527 206 5198 0.0015 0.0386 0.0355 0.0031 89 -1.527 -1.51 221 5419 0.0016 0.0403 0.037 0.0032 90 -1.51 -1.493 259 5678 0.0019 0.0422 0.0387 0.0035 91 -1.493 -1.477 218 5896 0.0016 0.0438 0.0403 0.0035 92 -1.477 -1.46 221 6117 0.0016 0.04434 0.0421 0.0034 93 -1.46 -1.443 230 6347 0.0017 0.0471 0.0439 0.0033 94 -1.443 -1.426 258 6605 0.0019 0.0491 0.0457 0.0033 95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0558 0.0517 0.0034 96 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309	86	-1.577	-1.56	187	4802	0.0014	0.0357	0.0325	0.0032																																																																																																																																																																																																																												
88-1.544-1.52720651980.00150.03860.03550.0031 89 -1.527-1.5122154190.00160.04030.0370.0032 90 -1.51-1.49325956780.00190.04220.03870.0035 91 -1.493-1.47721858960.00160.04380.04030.0035 92 -1.477-1.4622161170.00160.04540.04210.0034 93 -1.46-1.44323063470.00170.04710.04390.0033 94 -1.443-1.42625866050.00190.04910.04570.0033 95 -1.426-1.40926868730.0020.05110.04760.0034 96 -1.409-1.39324871210.00180.05290.04960.0033 97 -1.393-1.37628874090.00210.0550.05170.0034 98 -1.35924176500.00180.05680.05380.003 100 -1.342-1.32630282430.00220.05120.05820.003 101 -1.326-1.30927385160.0020.06330.06060.0027 102 -1.309-1.29234188570.00250.06580.0630.0028 103 -1.292-1.27532591820.00260.07080.06840.0028 <tr <="" td=""><td>87</td><td>-1.56</td><td>-1.544</td><td>190</td><td>4992</td><td>0.0014</td><td>0.0371</td><td>0.034</td><td>0.0031</td></tr> <tr><td>89$-1.527$$-1.51$$221$$5419$$0.0016$$0.0403$$0.037$$0.0032$90$-1.51$$-1.493$$259$$5678$$0.0019$$0.0422$$0.0387$$0.0035$91$-1.493$$-1.477$$218$$5896$$0.0016$$0.0438$$0.0403$$0.0035$92$-1.477$$-1.46$$221$$6117$$0.0016$$0.0454$$0.0421$$0.0034$93$-1.46$$-1.443$$230$$6347$$0.0017$$0.0471$$0.0439$$0.0033$94$-1.443$$-1.426$$258$$6605$$0.0019$$0.0491$$0.0457$$0.0033$95$-1.426$$-1.409$$268$$6873$$0.002$$0.0511$$0.0476$$0.0034$96$-1.409$$-1.393$$248$$7121$$0.0018$$0.0529$$0.0496$$0.0033$97$-1.393$$-1.376$$288$$7409$$0.0021$$0.055$$0.0517$$0.0034$98$-1.376$$-1.359$$241$$7650$$0.0018$$0.0568$$0.0538$$0.003$100$-1.342$$-1.326$$302$$8243$$0.0022$$0.0612$$0.0582$$0.003$101$-1.326$$-1.309$$273$$8516$$0.0022$$0.0633$$0.0666$$0.0027$102$-1.309$$-1.292$$341$$8857$$0.0025$$0.0658$$0.0634$$0.0028$103$-1.292$$-1.292$$341$$8868$<</td><td>88</td><td>-1.544</td><td>-1.527</td><td>206</td><td>5198</td><td>0.0015</td><td>0.0386</td><td>0.0355</td><td>0.0031</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>89</td><td>-1.527</td><td>-1.51</td><td>221</td><td>5419</td><td>0.0016</td><td>0.0403</td><td>0.037</td><td>0.0032</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>90</td><td>-1.51</td><td>-1.493</td><td>259</td><td>5678</td><td>0.0019</td><td>0.0422</td><td>0.0387</td><td>0.0035</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>91</td><td>-1.493</td><td>-1.477</td><td>218</td><td>5896</td><td>0.0016</td><td>0.0438</td><td>0.0403</td><td>0.0035</td></tr> <tr><td>93$-1.46$$-1.443$$230$$6347$$0.0017$$0.0471$$0.0439$$0.0033$$94$$-1.443$$-1.426$$258$$6605$$0.0019$$0.0491$$0.0457$$0.0033$$95$$-1.426$$-1.409$$268$$6873$$0.002$$0.0511$$0.0476$$0.0034$$96$$-1.409$$-1.393$$248$$7121$$0.0018$$0.0529$$0.0496$$0.0033$$97$$-1.393$$-1.376$$288$$7409$$0.0021$$0.055$$0.0517$$0.0034$$98$$-1.376$$-1.359$$241$$7650$$0.0018$$0.0568$$0.0538$$0.003$$99$$-1.359$$-1.342$$291$$7941$$0.0022$$0.059$$0.056$$0.003$$100$$-1.342$$-1.326$$302$$8243$$0.0022$$0.0612$$0.0582$$0.003$$101$$-1.326$$-1.309$$273$$8516$$0.002$$0.0633$$0.0606$$0.0027$$102$$-1.309$$-1.292$$341$$8857$$0.0025$$0.0658$$0.063$$0.0028$$103$$-1.292$$-1.275$$325$$9182$$0.0024$$0.0682$$0.0654$$0.0028$$104$$-1.275$$-1.259$$345$$9527$$0.0026$$0.0733$$0.0766$$0.0027$$106$$-1.242$$-1.225$$375$$10243$$0.0028$$0.0761$$0.0733$$0.0028$$107$$-1.225$$-1.208$<td>92</td><td>-1.477</td><td>-1.46</td><td>221</td><td>6117</td><td>0.0016</td><td>0.0454</td><td>0.0421</td><td>0.0034</td></td></tr> <tr><td>94$-1.443$$-1.426$$258$$6605$$0.0019$$0.0491$$0.0457$$0.0033$$95$$-1.426$$-1.409$$268$$6873$$0.002$$0.0511$$0.0476$$0.0034$$96$$-1.409$$-1.393$$248$$7121$$0.0018$$0.0529$$0.0496$$0.0033$$97$$-1.393$$-1.376$$288$$7409$$0.0021$$0.055$$0.0517$$0.0034$$98$$-1.376$$-1.359$$241$$7650$$0.0018$$0.0568$$0.0538$$0.003$$99$$-1.359$$-1.342$$291$$7941$$0.0022$$0.059$$0.056$$0.003$$100$$-1.342$$-1.326$$302$$8243$$0.0022$$0.0612$$0.0582$$0.003$$101$$-1.326$$-1.309$$273$$8516$$0.002$$0.0633$$0.0606$$0.0027$$102$$-1.309$$-1.292$$341$$8857$$0.0025$$0.0658$$0.063$$0.0028$$103$$-1.292$$-1.275$$325$$9182$$0.0024$$0.6682$$0.0654$$0.0028$$104$$-1.275$$-1.259$$345$$9527$$0.0026$$0.0708$$0.068$$0.0027$$106$$-1.242$$-1.225$$375$$10243$$0.0028$$0.0761$$0.0733$$0.0028$$107$$-1.225$$-1.208$$349$$10592$$0.0026$$0.0787$$0.0761$$0.0026$$108$$-1.208$$-1.191$<!--</td--><td>93</td><td>-1.46</td><td>-1.443</td><td>230</td><td>6347</td><td>0.0017</td><td>0.0471</td><td>0.0439</td><td>0.0033</td></td></tr> <tr><td>95$-1.426$$-1.409$$268$$6873$$0.002$$0.0511$$0.0476$$0.0034$$96$$-1.409$$-1.393$$248$$7121$$0.0018$$0.0529$$0.0496$$0.0033$$97$$-1.393$$-1.376$$288$$7409$$0.0021$$0.055$$0.0517$$0.0034$$98$$-1.376$$-1.359$$241$$7650$$0.0018$$0.0568$$0.0538$$0.003$$99$$-1.359$$-1.342$$291$$7941$$0.0022$$0.059$$0.056$$0.003$$100$$-1.342$$-1.326$$302$$8243$$0.0022$$0.0612$$0.0582$$0.003$$101$$-1.326$$-1.309$$273$$8516$$0.002$$0.0633$$0.0606$$0.0027$$102$$-1.309$$-1.292$$341$$8857$$0.0025$$0.0658$$0.063$$0.0028$$103$$-1.292$$-1.275$$325$$9182$$0.0024$$0.0682$$0.0654$$0.0028$$104$$-1.275$$-1.259$$345$$9527$$0.0026$$0.0708$$0.068$$0.0028$$104$$-1.275$$-1.225$$375$$10243$$0.0028$$0.0761$$0.0733$$0.0028$$107$$-1.225$$-1.208$$349$$10592$$0.0026$$0.0787$$0.0761$$0.0026$$108$$-1.208$$-1.191$$396$$10988$$0.0029$$0.0816$$0.0789$$0.0027$</td><td>94</td><td>-1.443</td><td>-1.426</td><td>258</td><td>6605</td><td>0.0019</td><td>0.0491</td><td>0.0457</td><td>0.0033</td></tr> <tr><td>96$-1.409$$-1.393$$248$$7121$$0.0018$$0.0529$$0.0496$$0.0033$$97$$-1.393$$-1.376$$288$$7409$$0.0021$$0.055$$0.0517$$0.0034$$98$$-1.376$$-1.359$$241$$7650$$0.0018$$0.0568$$0.0538$$0.003$$99$$-1.359$$-1.342$$291$$7941$$0.0022$$0.059$$0.056$$0.003$$100$$-1.342$$-1.326$$302$$8243$$0.0022$$0.0612$$0.0582$$0.003$$101$$-1.326$$-1.309$$273$$8516$$0.002$$0.0633$$0.0606$$0.0027$$102$$-1.309$$-1.292$$341$$8857$$0.0025$$0.0658$$0.063$$0.0028$$103$$-1.292$$-1.275$$325$$9182$$0.0024$$0.0682$$0.0654$$0.0028$$104$$-1.275$$-1.259$$345$$9527$$0.0026$$0.0708$$0.068$$0.0027$$106$$-1.242$$-1.225$$375$$10243$$0.0028$$0.0761$$0.0733$$0.0028$$107$$-1.225$$-1.208$$349$$10592$$0.0026$$0.0787$$0.0761$$0.0026$$108$$-1.208$$-1.191$$396$$10988$$0.0029$$0.0816$$0.0789$$0.0027$$109$$-1.191$$-1.175$$365$$11353$$0.0027$$0.0843$$0.0819$$0.0025$</td><td>95</td><td>-1.426</td><td>-1.409</td><td>268</td><td>6873</td><td>0.002</td><td>0.0511</td><td>0.0476</td><td>0.0034</td></tr> <tr><td>97$-1.393$$-1.376$$288$$7409$$0.0021$$0.055$$0.0517$$0.0034$$98$$-1.376$$-1.359$$241$$7650$$0.0018$$0.0568$$0.0538$$0.003$$99$$-1.359$$-1.342$$291$$7941$$0.0022$$0.059$$0.056$$0.003$$100$$-1.342$$-1.326$$302$$8243$$0.0022$$0.0612$$0.0582$$0.003$$101$$-1.326$$-1.309$$273$$8516$$0.002$$0.0633$$0.0606$$0.0027$$102$$-1.309$$-1.292$$341$$8857$$0.0025$$0.0658$$0.063$$0.0028$$103$$-1.292$$-1.275$$325$$9182$$0.0024$$0.0682$$0.0654$$0.0028$$104$$-1.275$$-1.259$$345$$9527$$0.0026$$0.0708$$0.068$$0.0028$$105$$-1.242$$-1.225$$375$$10243$$0.0028$$0.0761$$0.0733$$0.0028$$107$$-1.225$$-1.208$$349$$10592$$0.0026$$0.0787$$0.0761$$0.0026$$108$$-1.208$$-1.191$$396$$10988$$0.0029$$0.0816$$0.0789$$0.0027$$109$$-1.191$$-1.175$$365$$11353$$0.0027$$0.0843$$0.0819$$0.0025$</td><td>96</td><td>-1.409</td><td>-1.393</td><td>248</td><td>7121</td><td>0.0018</td><td>0.0529</td><td>0.0496</td><td>0.0033</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>97</td><td>-1.393</td><td>-1.376</td><td>288</td><td>7409</td><td>0.0021</td><td>0.055</td><td>0.0517</td><td>0.0034</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>98</td><td>-1.376</td><td>-1.359</td><td>241</td><td>7650</td><td>0.0018</td><td>0.0568</td><td>0.0538</td><td>0.003</td></tr> <tr><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>99</td><td>-1.359</td><td>-1.342</td><td>291</td><td>7941</td><td>0.0022</td><td>0.059</td><td>0.056</td><td>0.003</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>100</td><td>-1.342</td><td>-1.326</td><td>302</td><td>8243</td><td>0.0022</td><td>0.0612</td><td>0.0582</td><td>0.003</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>101</td><td>-1.326</td><td>-1.309</td><td>273</td><td>8516</td><td>0.002</td><td>0.0633</td><td>0.0606</td><td>0.0027</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>102</td><td>-1.309</td><td>-1.292</td><td>341</td><td>8857</td><td>0.0025</td><td>0.0658</td><td>0.063</td><td>0.0028</td></tr> <tr><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>103</td><td>-1.292</td><td>-1.275</td><td>325</td><td>9182</td><td>0.0024</td><td>0.0682</td><td>0.0654</td><td>0.0028</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>104</td><td>-1.275</td><td>-1.259</td><td>345</td><td>9527</td><td>0.0026</td><td>0.0708</td><td>0.068</td><td>0.0028</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>105</td><td>-1.259</td><td>-1.242</td><td>341</td><td>9868</td><td>0.0025</td><td>0.0733</td><td>0.0706</td><td>0.0027</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>106</td><td>-1.242</td><td>-1.225</td><td>375</td><td>10243</td><td>0.0028</td><td>0.0761</td><td>0.0733</td><td>0.0028</td></tr> <tr><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>107</td><td>-1.225</td><td>-1.208</td><td>349</td><td>10592</td><td>0.0026</td><td>0.0787</td><td>0.0761</td><td>0.0026</td></tr> <tr><td>109 - 1.191 - 1.175 365 11353 0.0027 0.0843 0.0819 0.0027</td><td>108</td><td>-1.208</td><td>-1.191</td><td>396</td><td>10988</td><td>0.0029</td><td>0.0816</td><td>0.0789</td><td>0.0027</td></tr> <tr><td></td><td>109</td><td>-1.191</td><td>-1.175</td><td>365</td><td>11353</td><td>0.0027</td><td>0.0843</td><td>0.0819</td><td>0.0025</td></tr>	87	-1.56	-1.544	190	4992	0.0014	0.0371	0.034	0.0031	89 -1.527 -1.51 221 5419 0.0016 0.0403 0.037 0.0032 90 -1.51 -1.493 259 5678 0.0019 0.0422 0.0387 0.0035 91 -1.493 -1.477 218 5896 0.0016 0.0438 0.0403 0.0035 92 -1.477 -1.46 221 6117 0.0016 0.0454 0.0421 0.0034 93 -1.46 -1.443 230 6347 0.0017 0.0471 0.0439 0.0033 94 -1.443 -1.426 258 6605 0.0019 0.0491 0.0457 0.0033 95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.0022 0.0633 0.0666 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.0634 0.0028 103 -1.292 -1.292 341 8868 <	88	-1.544	-1.527	206	5198	0.0015	0.0386	0.0355	0.0031	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89	-1.527	-1.51	221	5419	0.0016	0.0403	0.037	0.0032	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	-1.51	-1.493	259	5678	0.0019	0.0422	0.0387	0.0035	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	-1.493	-1.477	218	5896	0.0016	0.0438	0.0403	0.0035	93 -1.46 -1.443 230 6347 0.0017 0.0471 0.0439 0.0033 94 -1.443 -1.426 258 6605 0.0019 0.0491 0.0457 0.0033 95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.0682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0733 0.0766 0.0027 106 -1.242 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 <td>92</td> <td>-1.477</td> <td>-1.46</td> <td>221</td> <td>6117</td> <td>0.0016</td> <td>0.0454</td> <td>0.0421</td> <td>0.0034</td>	92	-1.477	-1.46	221	6117	0.0016	0.0454	0.0421	0.0034	94 -1.443 -1.426 258 6605 0.0019 0.0491 0.0457 0.0033 95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.6682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0708 0.068 0.0027 106 -1.242 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 349 10592 0.0026 0.0787 0.0761 0.0026 108 -1.208 -1.191 </td <td>93</td> <td>-1.46</td> <td>-1.443</td> <td>230</td> <td>6347</td> <td>0.0017</td> <td>0.0471</td> <td>0.0439</td> <td>0.0033</td>	93	-1.46	-1.443	230	6347	0.0017	0.0471	0.0439	0.0033	95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.0682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0708 0.068 0.0028 104 -1.275 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 349 10592 0.0026 0.0787 0.0761 0.0026 108 -1.208 -1.191 396 10988 0.0029 0.0816 0.0789 0.0027	94	-1.443	-1.426	258	6605	0.0019	0.0491	0.0457	0.0033	96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.0682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0708 0.068 0.0027 106 -1.242 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 349 10592 0.0026 0.0787 0.0761 0.0026 108 -1.208 -1.191 396 10988 0.0029 0.0816 0.0789 0.0027 109 -1.191 -1.175 365 11353 0.0027 0.0843 0.0819 0.0025	95	-1.426	-1.409	268	6873	0.002	0.0511	0.0476	0.0034	97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.0682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0708 0.068 0.0028 105 -1.242 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 349 10592 0.0026 0.0787 0.0761 0.0026 108 -1.208 -1.191 396 10988 0.0029 0.0816 0.0789 0.0027 109 -1.191 -1.175 365 11353 0.0027 0.0843 0.0819 0.0025	96	-1.409	-1.393	248	7121	0.0018	0.0529	0.0496	0.0033	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	-1.393	-1.376	288	7409	0.0021	0.055	0.0517	0.0034	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	-1.376	-1.359	241	7650	0.0018	0.0568	0.0538	0.003	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99	-1.359	-1.342	291	7941	0.0022	0.059	0.056	0.003	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	-1.342	-1.326	302	8243	0.0022	0.0612	0.0582	0.003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	-1.326	-1.309	273	8516	0.002	0.0633	0.0606	0.0027	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102	-1.309	-1.292	341	8857	0.0025	0.0658	0.063	0.0028	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	103	-1.292	-1.275	325	9182	0.0024	0.0682	0.0654	0.0028	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	-1.275	-1.259	345	9527	0.0026	0.0708	0.068	0.0028	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	-1.259	-1.242	341	9868	0.0025	0.0733	0.0706	0.0027	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106	-1.242	-1.225	375	10243	0.0028	0.0761	0.0733	0.0028	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107	-1.225	-1.208	349	10592	0.0026	0.0787	0.0761	0.0026	109 - 1.191 - 1.175 365 11353 0.0027 0.0843 0.0819 0.0027	108	-1.208	-1.191	396	10988	0.0029	0.0816	0.0789	0.0027		109	-1.191	-1.175	365	11353	0.0027	0.0843	0.0819	0.0025
87	-1.56	-1.544	190	4992	0.0014	0.0371	0.034	0.0031																																																																																																																																																																																																																													
89 -1.527 -1.51 221 5419 0.0016 0.0403 0.037 0.0032 90 -1.51 -1.493 259 5678 0.0019 0.0422 0.0387 0.0035 91 -1.493 -1.477 218 5896 0.0016 0.0438 0.0403 0.0035 92 -1.477 -1.46 221 6117 0.0016 0.0454 0.0421 0.0034 93 -1.46 -1.443 230 6347 0.0017 0.0471 0.0439 0.0033 94 -1.443 -1.426 258 6605 0.0019 0.0491 0.0457 0.0033 95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.0022 0.0633 0.0666 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.0634 0.0028 103 -1.292 -1.292 341 8868 <	88	-1.544	-1.527	206	5198	0.0015	0.0386	0.0355	0.0031																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89	-1.527	-1.51	221	5419	0.0016	0.0403	0.037	0.0032																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	-1.51	-1.493	259	5678	0.0019	0.0422	0.0387	0.0035																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	-1.493	-1.477	218	5896	0.0016	0.0438	0.0403	0.0035																																																																																																																																																																																																																												
93 -1.46 -1.443 230 6347 0.0017 0.0471 0.0439 0.0033 94 -1.443 -1.426 258 6605 0.0019 0.0491 0.0457 0.0033 95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.0682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0733 0.0766 0.0027 106 -1.242 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 <td>92</td> <td>-1.477</td> <td>-1.46</td> <td>221</td> <td>6117</td> <td>0.0016</td> <td>0.0454</td> <td>0.0421</td> <td>0.0034</td>	92	-1.477	-1.46	221	6117	0.0016	0.0454	0.0421	0.0034																																																																																																																																																																																																																												
94 -1.443 -1.426 258 6605 0.0019 0.0491 0.0457 0.0033 95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.6682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0708 0.068 0.0027 106 -1.242 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 349 10592 0.0026 0.0787 0.0761 0.0026 108 -1.208 -1.191 </td <td>93</td> <td>-1.46</td> <td>-1.443</td> <td>230</td> <td>6347</td> <td>0.0017</td> <td>0.0471</td> <td>0.0439</td> <td>0.0033</td>	93	-1.46	-1.443	230	6347	0.0017	0.0471	0.0439	0.0033																																																																																																																																																																																																																												
95 -1.426 -1.409 268 6873 0.002 0.0511 0.0476 0.0034 96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.0682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0708 0.068 0.0028 104 -1.275 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 349 10592 0.0026 0.0787 0.0761 0.0026 108 -1.208 -1.191 396 10988 0.0029 0.0816 0.0789 0.0027	94	-1.443	-1.426	258	6605	0.0019	0.0491	0.0457	0.0033																																																																																																																																																																																																																												
96 -1.409 -1.393 248 7121 0.0018 0.0529 0.0496 0.0033 97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.0682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0708 0.068 0.0027 106 -1.242 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 349 10592 0.0026 0.0787 0.0761 0.0026 108 -1.208 -1.191 396 10988 0.0029 0.0816 0.0789 0.0027 109 -1.191 -1.175 365 11353 0.0027 0.0843 0.0819 0.0025	95	-1.426	-1.409	268	6873	0.002	0.0511	0.0476	0.0034																																																																																																																																																																																																																												
97 -1.393 -1.376 288 7409 0.0021 0.055 0.0517 0.0034 98 -1.376 -1.359 241 7650 0.0018 0.0568 0.0538 0.003 99 -1.359 -1.342 291 7941 0.0022 0.059 0.056 0.003 100 -1.342 -1.326 302 8243 0.0022 0.0612 0.0582 0.003 101 -1.326 -1.309 273 8516 0.002 0.0633 0.0606 0.0027 102 -1.309 -1.292 341 8857 0.0025 0.0658 0.063 0.0028 103 -1.292 -1.275 325 9182 0.0024 0.0682 0.0654 0.0028 104 -1.275 -1.259 345 9527 0.0026 0.0708 0.068 0.0028 105 -1.242 -1.225 375 10243 0.0028 0.0761 0.0733 0.0028 107 -1.225 -1.208 349 10592 0.0026 0.0787 0.0761 0.0026 108 -1.208 -1.191 396 10988 0.0029 0.0816 0.0789 0.0027 109 -1.191 -1.175 365 11353 0.0027 0.0843 0.0819 0.0025	96	-1.409	-1.393	248	7121	0.0018	0.0529	0.0496	0.0033																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	-1.393	-1.376	288	7409	0.0021	0.055	0.0517	0.0034																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	-1.376	-1.359	241	7650	0.0018	0.0568	0.0538	0.003																																																																																																																																																																																																																												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99	-1.359	-1.342	291	7941	0.0022	0.059	0.056	0.003																																																																																																																																																																																																																												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	-1.342	-1.326	302	8243	0.0022	0.0612	0.0582	0.003																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	-1.326	-1.309	273	8516	0.002	0.0633	0.0606	0.0027																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102	-1.309	-1.292	341	8857	0.0025	0.0658	0.063	0.0028																																																																																																																																																																																																																												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	103	-1.292	-1.275	325	9182	0.0024	0.0682	0.0654	0.0028																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	-1.275	-1.259	345	9527	0.0026	0.0708	0.068	0.0028																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	-1.259	-1.242	341	9868	0.0025	0.0733	0.0706	0.0027																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106	-1.242	-1.225	375	10243	0.0028	0.0761	0.0733	0.0028																																																																																																																																																																																																																												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107	-1.225	-1.208	349	10592	0.0026	0.0787	0.0761	0.0026																																																																																																																																																																																																																												
109 - 1.191 - 1.175 365 11353 0.0027 0.0843 0.0819 0.0027	108	-1.208	-1.191	396	10988	0.0029	0.0816	0.0789	0.0027																																																																																																																																																																																																																												
	109	-1.191	-1.175	365	11353	0.0027	0.0843	0.0819	0.0025																																																																																																																																																																																																																												

N°	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERAL
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
110	-1.175	-1.158	395	11748	0.0029	0.0873	0.0849	0.0024
111	-1.158	-1.141	377	12125	0.0028	0.0901	0.088	0.0021
112	-1.141	-1.124	399	12524	0.003	0.093	0.0912	0.0019
113	-1.124	-1.108	393	12917	0.0029	0.096	0.0944	0.0015
114	-1.108	-1.091	401	13318	0.003	0.0989	0.0978	0.0011
115	-1.091	-1.074	432	13750	0.0032	0.1021	0.1012	0.0009
116	-1.074	-1.057	438	14188	0.0033	0.1054	0.1048	0.0006
117	-1.057	-1.041	439	14627	0.0033	0.1087	0.1084	0.0003
118	-1.041	-1.024	445	15072	0.0033	0.112	0.1121	0.0001
119	-1.024	-1.007	472	15544	0.0035	0.1155	0.1159	0.0004
120	-1.007	-0.99	486	16030	0.0036	0.1191	0.1198	0.0007
121	-0.99	-0.974	457	16487	0.0034	0.1225	0.1237	0.0013
122	-0.974	-0.957	491	16978	0.0036	0.1261	0.1278	0.0017
123	-0.957	-0.94	531	17509	0.0039	0.1301	0.132	0.0019
124	-0.94	-0.923	516	18025	0.0038	0.1339	0.1362	0.0023
125	-0.923	-0.906	526	18551	0.0039	0.1378	0.1406	0.0028
126	-0.906	-0.89	585	19136	0.0043	0.1422	0.145	0.0028
127	-0.89	-0.873	509	19645	0.0038	0.1459	0.1495	0.0036
128	-0.873	-0.856	545	20190	0.004	0.15	0.1542	0.0042
129	-0.856	-0.839	603	20793	0.0045	0.1545	0.1589	0.0044
130	-0.839	-0.823	617	21410	0.0046	0 .159	0.1637	0.0046
131	-0.823	-0.806	587	21997	0.0044	0.1634	0.1686	0.0052
132	-0.806	-0.789	628	22625	0.0047	0 <mark>.1681</mark>	0.1736	0.0055
133	-0.789	-0.772	640	23265	0.0048	0 <mark>.1728</mark>	0.1787	0.0059
134	-0.772	-0.756	652	23917	0.0048	0.1777	0.1839	0.0062
135	-0.756	-0.739	661	24578	0.0049	0.1826	0.1892	0.0066
136	-0.739	-0.722	629	25207	0.0047	0.1873	0.1945	0.0073
137	-0.722	-0.705	640	25847	0.0048	0.192	0.2	0.008
138	-0.705	-0.688	697	26544	0.0052	0.1972	0.2055	0.0084
139	-0.688	-0.672	682	27226	0.0051	0.2022	0.2112	0.0089
140	-0.672	-0.655	718	27944	0.0053	0.2076	0.2169	0.0093
141	-0.655	-0.638	740	28684	0.0055	0.2131	0.2227	0.0097
142	-0.638	-0.621	751	29435	0.0056	0.2187	0.2287	0.01
143	-0.621	-0.605	757	30192	0.0056	0.2243	0.2347	0.0104
144	-0.605	-0.588	747	30939	0.0055	0.2298	0.2407	0.0109
145	-0.588	-0.571	736	31675	0.0055	0.2353	0.2469	0.0116
146	-0.571	-0.554	853	32528	0.0063	0.2416	0.2532	0.0115
147	-0.554	-0.538	830	33358	0.0062	0.2478	0.2595	0.0117
148	-0.538	-0.521	888	34246	0.0066	0.2544	0.2659	0.0115
149	-0.521	-0.504	847	35093	0.0063	0.2607	0.2724	0.0117
150	-0.504	-0.487	849	35942	0.0063	0.267	0.279	0.012
151	-0.487	-0.47	832	36774	0.0062	0.2732	0.2856	0.0125
152	-0.47	-0.454	927	37701	0.0069	0.2801	0.2924	0.0123
153	-0.454	-0.437	905	38606	0.0067	0.2868	0.2992	0.0124
154	-0.437	-0.42	988	39594	0.0073	0.2941	0.306	0.0119
155	-0.42	-0.403	893	40487	0.0066	0.3008	0.313	0.0122
156	-0.403	-0.387	1014	41501	0.0075	0.3083	0.32	0.0117
157	-0.387	-0.37	1027	42528	0.0076	0.3159	0.327	0.0111
158	-0.37	-0.353	1019	43547	0.0076	0.3235	0.3342	0.0107

N°	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERAL
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
159	-0.353	-0.336	1001	44548	0.0074	0.3309	0.3414	0.0104
160	-0.336	-0.32	1035	45583	0.0077	0.3386	0.3486	0.01
161	-0.32	-0.303	1070	46653	0.0079	0.3466	0.3559	0.0093
162	-0.303	-0.286	1073	47726	0.008	0.3545	0.3633	0.0087
163	-0.286	-0.269	1114	48840	0.0083	0.3628	0.3707	0.0079
164	-0.269	-0.252	1158	49998	0.0086	0.3714	0.3781	0.0067
165	-0.252	-0.236	1164	51162	0.0086	0.3801	0.3856	0.0056
166	-0.236	-0.219	1245	52407	0.0092	0.3893	0.3932	0.0039
167	-0.219	-0.202	1141	53548	0.0085	0.3978	0.4008	0.003
168	-0.202	-0.185	1174	54722	0.0087	0.4065	0.4084	0.0019
169	-0.185	-0.169	1169	55891	0.0087	0.4152	0.4161	0.0009
170	-0.169	-0.152	1216	57107	0.009	0.4242	0.4237	0.0005
171	-0.152	-0.135	1161	58268	0.0086	0.4328	0.4315	0.0014
172	-0.135	-0.118	1252	59520	0.0093	0.4421	0.4392	0.0029
173	-0.118	-0.102	1199	60719	0.0089	0.4511	0.447	0.0041
174	-0.102	-0.085	1166	61885	0.0087	0.4597	0.4548	0.0049
175	-0.085	-0.068	1148	63033	0.0085	0.4682	0.4626	0.0057
176	-0.068	-0.051	1147	64180	0.0085	0.4768	0.4704	0.0064
177	-0.051	-0.034	1214	65394	0.009	0 <mark>.</mark> 4858	0.4782	0.0075
178	-0.034	-0.018	1222	66616	0.0091	0.4949	0.4861	0.0088
179	-0.018	-0.001	1172	67788	0.0087	0.5036	0.4939	0.0096
180	-0.001	0.016	1145	68933	0.0085	0.5121	0.5018	0.0103
181	0.016	0.033	1100	70033	0.0082	0 <mark>.</mark> 5202	0.5096	0.0106
182	0.033	0.049	1124	71157	0.0083	0 <mark>.</mark> 5286	0.5175	0.0111
183	0.049	0.066	1117	72274	0.0083	0.5369	0.5253	0.0116
184	0.066	0.083	1066	73340	0.0079	0.5448	0.5331	0.0117
185	0.083	0.1	1165	74505	0.0087	0.5535	0.541	0.0125
186	0.1	0.116	1085	75590	0.0081	0.5615	0.5488	0.0128
187	0.116	0.133	1093	76683	0.0081	0.5696	0.5565	0.0131
188	0.133	0.15	1024	77707	0.0076	0.5772	0.5643	0.013
189	0.15	0.167	1047	78754	0.0078	0.585	0.572	0.013
190	0.167	0.184	1003	79757	0.0075	0.5925	0.5797	0.0127
191	0.184	0.2	1067	80824	0.0079	0.6004	0.5874	0.013
192	0.2	0.217	1008	81832	0.0075	0.6079	0.5951	0.0128
193	0.217	0.234	1058	82890	0.0079	0.6158	0.6027	0.0131
194	0.234	0.251	1043	83933	0.0077	0.6235	0.6102	0.0133
195	0.251	0.267	965	84898	0.0072	0.6307	0.6178	0.0129
196	0.267	0.284	954	85852	0.0071	0.6378	0.6252	0.0125
197	0.284	0.301	964	86816	0.0072	0.6449	0.6327	0.0122
198	0.301	0.318	881	87697	0.0065	0.6515	0.6401	0.0114
199	0.318	0.334	938	88635	0.007	0.6584	0.6474	0.011
200	0.334	0.351	892	89527	0.0066	0.6651	0.6547	0.0104
201	0.351	0.368	891	90418	0.0066	0.6717	0.6619	0.0098
202	0.368	0.385	835	91253	0.0062	0.6779	0.6691	0.0088
203	0.385	0.402	906	92159	0.0067	0.6846	0.6762	0.0084
204	0.402	0.418	903	93062	0.0067	0.6913	0.6832	0.0081
205	0.418	0.435	830	93892	0.0062	0.6975	0.6902	0.0073
206	0.435	0.452	857	94749	0.0064	0.7038	0.6971	0.0068
207	0.452	0.469	812	95561	0.006	0.7099	0.7039	0.006

Nº	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERA
	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
208	0.469	0.485	810	96371	0.006	0.7159	0.7107	0.0052
209	0.485	0.502	841	97212	0.0062	0.7221	0.7174	0.0048
210	0.502	0.519	858	98070	0.0064	0.7285	0.724	0.0045
211	0.519	0.536	800	98870	0.0059	0.7345	0.7305	0.0039
212	0.536	0.552	769	99639	0.0057	0.7402	0.737	0.0032
213	0.552	0.569	815	100454	0.0061	0.7462	0.7434	0.0028
214	0.569	0.586	773	101227	0.0057	0.752	0.7497	0.0023
215	0.586	0.603	792	102019	0.0059	0.7579	0.7559	0.002
216	0.603	0.619	842	102861	0.0063	0.7641	0.762	0.0021
217	0.619	0.636	767	103628	0.0057	0.7698	0.7681	0.0017
218	0.636	0.653	746	104374	0.0055	0.7753	0.774	0.0013
219	0.653	0.67	748	105122	0.0056	0.7809	0.7799	0.001
220	0.67	0.687	711	105833	0.0053	0.7862	0.7857	0.0005
221	0.687	0.703	789	106622	0.0059	0.792	0.7914	0.0007
222	0.703	0.72	695	107317	0.0052	0.7972	0.797	0.0002
223	0.72	0.737	705	108022	0.0052	0.8024	0.8025	0
224	0.737	0.754	697	108719	0.0052	0.8076	0.8079	0.0003
225	0.754	0.77	709	109428	0.0053	0.8129	0.8132	0.0004
226	0.77	0.787	674	110102	0.005	0 <mark>.</mark> 8179	0.8185	0.0006
227	0.787	0.804	647	110749	0.0048	0.8227	0.8236	0.0009
228	0.804	0.821	667	11 <mark>1416</mark>	0.005	0 <mark>.</mark> 8277	0.8287	0.001
229	0.821	0.837	680	112096	0.0051	0 <mark>.</mark> 8327	0.8336	0.0009
230	0.837	0.854	638	112734	0.0047	0 <mark>.</mark> 8374	0.8385	0.0011
231	0.854	0.871	640	11 <mark>3374</mark>	0.0048	0 <mark>.</mark> 8422	0.8433	0.0011
232	0.871	0.888	583	11 <mark>3957</mark>	0.0043	0.8465	0.8479	0.0014
233	0.888	0.905	591	114548	0.0044	0.8509	0.8525	0.0016
234	0.905	0.921	580	115128	0.0043	0.8552	0.857	0.0018
235	0.921	0.938	552	115680	0.0041	0.8593	0.8614	0.0021
236	0.938	0.955	570	116250	0.0042	0.8636	0.8657	0.0021
237	0.955	0.972	572	116822	0.0042	0.8678	0.8699	0.0021
238	0.972	0.988	570	117392	0.0042	0.8721	0.874	0.002
239	0.988	1.005	526	117918	0.0039	0.876	0.8781	0.0021
240	1.005	1.022	591	118509	0.0044	0.8803	0.882	0.0017
241	1.022	1.039	521	119030	0.0039	0.8842	0.8859	0.0016
242	1.039	1.055	497	119527	0.0037	0.8879	0.8896	0.0017
243	1.055	1.072	529	120056	0.0039	0.8918	0.8933	0.0014
244	1.072	1.089	462	120518	0.0034	0.8953	0.8968	0.0016
245	1.089	1.106	446	120964	0.0033	0.8986	0.9003	0.0017
246	1.106	1.123	475	121439	0.0035	0.9021	0.9037	0.0016
247	1.123	1.139	456	121895	0.0034	0.9055	0.9071	0.0016
248	1.139	1.156	461	122356	0.0034	0.9089	0.9103	0.0014
249	1.156	1.173	445	122801	0.0033	0.9122	0.9134	0.0012
250	1.173	1.19	398	123199	0.003	0.9152	0.9165	0.0013
251	1.19	1.206	395	123594	0.0029	0.9181	0.9195	0.0013
252	1.206	1.223	376	123970	0.0028	0.9209	0.9224	0.0015
253	1.223	1.24	341	124311	0.0025	0.9234	0.9252	0.0017
254	1.24	1.257	348	124659	0.0026	0.926	0.9279	0.0019
255	1.257	1.273	324	124983	0.0024	0.9284	0.9306	0.0022
256	1.273	1.29	334	125317	0.0025	0.9309	0.9332	0.0023

N°	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERAL
1	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
257	1.29	1.307	346	125663	0.0026	0.9335	0.9357	0.0022
258	1.307	1.324	312	125975	0.0023	0.9358	0.9381	0.0023
259	1.324	1.341	339	126314	0.0025	0.9383	0.9405	0.0022
260	1.341	1.357	263	126577	0.002	0.9403	0.9428	0.0025
261	1.357	1.374	312	126889	0.0023	0.9426	0.945	0.0024
262	1.374	1.391	309	127198	0.0023	0.9449	0.9472	0.0023
263	1.391	1.408	274	127472	0.002	0.9469	0.9493	0.0023
264	1.408	1.424	275	127747	0.002	0.949	0.9513	0.0023
265	1.424	1.441	296	128043	0.0022	0.9512	0.9532	0.0021
266	1.441	1.458	250	128293	0.0019	0.953	0.9551	0.0021
267	1.458	1.475	271	128564	0.002	0.955	0.957	0.0019
268	1.475	1.491	238	128802	0.0018	0.9568	0.9587	0.0019
269	1.491	1.508	215	129017	0.0016	0.9584	0.9604	0.002
270	1.508	1.525	218	129235	0.0016	0.96	0.9621	0.0021
271	1.525	1.542	230	129465	0.0017	0.9617	0.9637	0.0019
272	1.542	1.559	204	129669	0.0015	0.9633	0.9652	0.002
273	1.559	1.575	205	129874	0.0015	0.9648	0.9667	0.0019
274	1.575	1.592	218	130092	0.0016	0.9664	0.9681	0.0017
275	1.592	1.609	178	130270	0.0013	0 <mark>.</mark> 9677	0.9695	0.0018
276	1.609	1.626	202	130472	0.0015	0.9692	0.9709	0.0016
277	1.626	1.642	159	130631	0.0012	0 <mark>.9704</mark>	0.9721	0.0017
278	1.642	1.659	189	130820	0.0014	0 <mark>.</mark> 9718	0.9734	0.0016
279	1.659	1.676	177	130997	0.0013	0 <mark>.</mark> 9731	0.9746	0.0014
280	1.676	1.693	157	131154	0.0012	0 <mark>.</mark> 9743	0.9757	0.0014
281	1.693	1.709	133	131287	0.001	0 <mark>.</mark> 9753	0.9768	0.0015
282	1.709	1.726	126	131413	0.0009	0.9762	0.9779	0.0017
283	1.726	1.743	136	131549	0.001	0.9772	0.9789	0.0017
284	1.743	1.76	123	131672	0.0009	0.9781	0.9799	0.0017
285	1.76	1.777	123	131795	0.0009	0.979	0.9808	0.0018
286	1.777	1.793	129	131924	0.001	0.98	0.9817	0.0017
287	1.793	1.81	127	132051	0.0009	0.9809	0.9826	0.0016
288	1.81	1.827	110	132161	0.0008	0.9818	0.9834	0.0016
289	1.827	1.844	110	132271	0.0008	0.9826	0.9842	0.0016
290	1.844	1.86	96	132367	0.0007	0.9833	0.985	0.0017
291	1.86	1.877	121	132488	0.0009	0.9842	0.9857	0.0015
292	1.877	1.894	107	132595	0.0008	0.985	0.9864	0.0014
293	1.894	1.911	99	132694	0.0007	0.9857	0.9871	0.0013
294	1.911	1.927	102	132796	0.0008	0.9865	0.9877	0.0012
295	1.927	1.944	84	132880	0.0006	0.9871	0.9883	0.0012
296	1.944	1.961	94	132974	0.0007	0.9878	0.9889	0.0011
297	1.961	1.978	98	133072	0.0007	0.9885	0.9895	0.0009
298	1.978	1.995	76	133148	0.0006	0.9891	0.99	0.0009
299	1.995	2.011	70	133218	0.0005	0.9896	0.9905	0.0009
300	2.011	2.028	67	133285	0.0005	0.9901	0.991	0.0009
301	2.028	2.045	68	133353	0.0005	0.9906	0.9915	0.0009
302	2.045	2.062	67	133420	0.0005	0.9911	0.9919	0.0008
303	2.062	2.078	59	133479	0.0004	0.9916	0.9923	0.0008
304	2.078	2.095	57	133536	0.0004	0.992	0.9927	0.0008
305	2.095	2.112	68	133604	0.0005	0.9925	0.9931	0.0006

Infertor superior observata acumulada celat, Yau Relat, Acum Rela	Nº	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERA
306 2.112 2.129 64 133668 0.0005 0.993 0.9935 0.0005 308 2.145 2.162 36 133763 0.0004 0.9941 0.9942 0.0005 308 2.162 2.179 55 133818 0.0004 0.9941 0.9942 0.0005 310 2.179 55 133818 0.0002 0.9943 0.9944 0.0004 311 2.229 2.246 49 133901 0.0004 0.9956 0.0003 313 2.229 2.246 49 133902 0.00040 0.9956 0.0002 314 2.246 2.63 2.6 134064 0.0003 0.9956 0.0002 315 2.63 2.28 4.4 134064 0.0003 0.9968 0.9967 0 318 2.313 2.33 1.3427 0.0001 0.9971 0.9971 0 312 2.33 2.347 2.363 2.38 2.397	1	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
307 2.129 2.145 59 133727 0.0004 0.9934 0.9939 0.0005 309 2.162 2.179 55 133818 0.0002 0.9943 0.9942 0.0005 310 2.179 2.196 33 133851 0.0002 0.9943 0.9948 0.0004 311 2.196 2.213 50 133901 0.0004 0.9947 0.9951 0.0004 313 2.229 2.246 49 133992 0.0004 0.9956 0.9959 0.0003 314 2.246 2.266 2.218 46 134064 0.0003 0.9956 0.9965 0.0001 315 2.238 46 134098 0.0002 0.9976 0.9965 0.0001 318 2.313 2.33 40 134290 0.0002 0.9971 0.9971 0 320 2.347 2.363 22 134231 0.0002 0.9971 0.9974 0.0001	306	2.112	2.129	64	133668	0.0005	0.993	0.9935	0.0005
308 2.145 2.162 36 133763 0.0003 0.9931 0.9945 0.0004 310 2.179 2.196 33 133818 0.0004 0.9943 0.9948 0.0005 311 2.196 2.13 50 133901 0.0004 0.9947 0.9954 0.0004 312 2.213 50 133902 0.0004 0.9954 0.9956 0.0003 314 2.226 2.263 2.6 134064 0.0003 0.9956 0.9959 0.0002 315 2.263 2.28 4.6 134064 0.0003 0.9965 0.9965 0.0001 316 2.313 2.33 4.0 134180 0.0002 0.9971 0.9969 0.0001 322 2.347 2.9 134230 0.0001 0.9973 0.9973 0.0001 322 2.387 2.414 18 134307 0.0001 0.9977 0.9076 0.0001 322 2.437	307	2.129	2.145	59	133727	0.0004	0.9934	0.9939	0.0005
309 2.162 2.179 55 133818 0.0004 0.9943 0.9948 0.0004 310 2.179 2.196 33 133851 0.0002 0.9943 0.9948 0.0004 312 2.216 2.213 50 133901 0.0004 0.9954 0.9954 0.0003 313 2.223 42 133943 0.0002 0.9956 0.9959 0.0003 314 2.246 2.263 2.6 134048 0.0003 0.9956 0.9965 0.0001 315 2.28 46 134098 0.0003 0.9962 0.9965 0.0001 318 2.33 2.347 2.363 2.2 134209 0.0002 0.9971 0.9969 0.0001 320 2.347 2.363 2.2 134230 0.0002 0.9971 0.9971 0 321 2.363 2.387 2.414 1.8 134370 0.0001 0.9978 0.9977 0.0001	308	2.145	2.162	36	133763	0.0003	0.9937	0.9942	0.0005
310 2.179 2.196 33 133851 0.0002 0.9943 0.9948 0.0004 311 2.196 2.213 50 133901 0.0004 0.9947 0.9951 0.0004 312 2.213 2.229 42 133943 0.0003 0.9955 0.9954 0.0004 313 2.226 2.26 134018 0.0002 0.9956 0.9959 0.0003 314 2.263 2.28 46 134064 0.0003 0.9965 0.9965 0.0002 318 2.313 2.33 40 134180 0.0002 0.9971 0.9967 0 312 2.363 2.38 22 134231 0.0002 0.9971 0.9973 0.0001 321 2.363 2.38 26 134257 0.0001 0.9977 0.9976 0.0001 322 2.397 2.2 134397 0.0001 0.9978 0.9977 0.0001 322 2.43 <t< td=""><td>309</td><td>2.162</td><td>2.179</td><td>55</td><td>133818</td><td>0.0004</td><td>0.9941</td><td>0.9945</td><td>0.0004</td></t<>	309	2.162	2.179	55	133818	0.0004	0.9941	0.9945	0.0004
311 2.196 2.213 50 133901 0.0004 0.9947 0.9951 0.0004 312 2.229 42 133943 0.0003 0.9954 0.9956 0.0003 314 2.224 2.246 49 133992 0.0004 0.9954 0.9956 0.0002 315 2.263 2.66 134018 0.0003 0.9962 0.9963 0.0002 317 2.286 2.46 134098 0.0003 0.9962 0.9963 0.0002 318 2.313 42 134140 0.0003 0.9968 0.9967 0 319 2.33 2.347 29 134209 0.0002 0.9971 0.9973 0.9001 321 2.363 2.38 2.397 32 134289 0.0001 0.9974 0.0001 322 2.344 2.44 2.43 12 134319 0.0001 0.9977 0.9979 0.0001 322 2.447 2.1 <td< td=""><td>310</td><td>2.179</td><td>2.196</td><td>33</td><td>133851</td><td>0.0002</td><td>0.9943</td><td>0.9948</td><td>0.0005</td></td<>	310	2.179	2.196	33	133851	0.0002	0.9943	0.9948	0.0005
112 2.213 2.229 42 133943 0.0003 0.9954 0.9956 0.0004 313 2.2246 2.264 49 133992 0.0004 0.9954 0.9956 0.0003 315 2.263 2.28 46 134018 0.0003 0.9959 0.9961 0.0002 316 2.28 2.296 34 134098 0.0003 0.9965 0.0001 317 2.296 2.313 42 134140 0.0003 0.9965 0.0001 318 2.33 2.0 1.3427 0.0002 0.9971 0 320 2.347 2.363 2.23 1.34287 0.0002 0.9973 0.0901 321 2.397 2.414 18 134307 0.0001 0.9977 0.0001 322 2.397 2.414 18 134319 0.0001 0.9978 0.9977 0.0001 322 2.447 2.464 17 134351 0.0001	311	2.196	2.213	50	133901	0.0004	0.9947	0.9951	0.0004
313 2.229 2.246 49 13392 0.0004 0.9954 0.9959 0.0003 314 2.246 2.263 2.6 134018 0.0002 0.9956 0.9959 0.0003 315 2.263 2.28 46 134068 0.0003 0.9962 0.9963 0.0002 317 2.266 2.313 42 134140 0.0003 0.9965 0.99067 0 318 2.313 2.3 40 134180 0.0002 0.9971 0.9969 0.0001 320 2.347 2.363 22 134231 0.0002 0.9971 0.9973 0.0001 321 2.363 2.397 32 134289 0.0001 0.9977 0.9976 0.0001 322 2.38 2.397 32 13439 0.0001 0.9977 0.9977 0.0001 324 2.414 2.43 12 13439 0.0001 0.9981 0.0001 324 2.4	312	2.213	2.229	42	133943	0.0003	0.995	0.9954	0.0004
314 2.246 2.263 26 134018 0.0002 0.9956 0.9961 0.0003 315 2.263 2.28 46 134064 0.0003 0.9959 0.9963 0.0002 317 2.296 2.313 42 134140 0.0003 0.9965 0.9965 0.0001 318 2.33 40 134180 0.0002 0.9971 0.9969 0.0001 320 2.347 2.363 22 134231 0.0002 0.9971 0.9974 0.0001 321 2.363 2.38 26 134257 0.0002 0.9977 0.9976 0.0001 322 2.38 2.397 2.414 18 134307 0.0001 0.9977 0.9976 0.0001 324 2.444 2.43 12 134319 0.0001 0.9978 0.9977 0.0001 325 2.434 2.44 134307 0.0001 0.9984 0.0001 324 2.481	313	2.229	2.246	49	133992	0.0004	0.9954	0.9956	0.0003
315 2.263 2.28 46 134064 0.0003 0.9959 0.9961 0.0002 316 2.286 2.313 42 134180 0.0003 0.9965 0.9965 0.0001 318 2.313 2.33 40 134180 0.0003 0.9968 0.9967 0 319 2.337 2.347 29 134209 0.0002 0.9971 0.9969 0.0001 320 2.347 2.9 134230 0.0002 0.9971 0.9971 0 322 2.38 2.397 32 134280 0.0002 0.9974 0.0001 323 2.397 2.414 18 134309 0.0001 0.9976 0.9974 0.0001 324 2.414 2.43 12 134340 0.0002 0.9979 0.9979 0.0001 326 2.447 2.1 134340 0.0001 0.9981 0.9001 327 2.444 2.441 143437 0.00	314	2.246	2.263	26	134018	0.0002	0.9956	0.9959	0.0003
316 2.28 2.296 34 134098 0.0003 0.9962 0.9963 0.0002 317 2.296 2.313 42 134140 0.0003 0.9965 0.9067 0 318 2.33 2.347 2.9 134209 0.0002 0.9971 0.9969 0.0001 320 2.347 2.363 2.2 134231 0.0002 0.9971 0.9971 0 321 2.363 2.387 2.2 13428 0.0002 0.9973 0.9973 0.0001 322 2.38 2.397 2.414 18 134307 0.0001 0.9977 0.9976 0.0001 324 2.447 2.464 17 134357 0.0001 0.9981 0.998 0.0001 327 2.464 2.481 14 134371 0.0001 0.9982 0.9981 0.0001 328 2.481 2.48 2.498 2.514 15 134410 0.0001 0.9985	315	2.263	2.28	46	134064	0.0003	0.9959	0.9961	0.0002
317 2.296 2.313 42 134140 0.0003 0.9965 0.9965 0.0001 318 2.313 2.33 40 134180 0.0003 0.9968 0.9967 0 319 2.33 2.347 2.363 2.2 134231 0.0002 0.9971 0.9973 0.0001 321 2.363 2.38 2.6 134257 0.0002 0.9976 0.9974 0.0001 322 2.38 2.397 2.414 18 134307 0.0001 0.9977 0.9976 0.0001 324 2.441 2.447 2.464 17 134340 0.0002 0.9978 0.9979 0.0001 325 2.437 2.464 14 134371 0.0001 0.9981 0.0001 328 2.481 14 134370 0.0001 0.9982 0.9981 0.0001 329 2.498 2.514 15 134410 0.0002 0.9984 0.0001 <t< td=""><td>316</td><td>2.28</td><td>2.296</td><td>34</td><td>134098</td><td>0.0003</td><td>0.9962</td><td>0.9963</td><td>0.0002</td></t<>	316	2.28	2.296	34	134098	0.0003	0.9962	0.9963	0.0002
318 2.313 2.33 40 134180 0.0003 0.9968 0.9967 0 319 2.33 2.347 2363 22 134231 0.0002 0.9971 0.9969 0.0001 320 2.347 2.363 2.2 134231 0.0002 0.9973 0.9973 0.0001 322 2.38 2.397 32 134289 0.0001 0.9976 0.9976 0.0001 324 2.414 2.43 12 134319 0.0001 0.9978 0.9977 0.0001 324 2.414 2.43 12 134340 0.0002 0.9979 0.9977 0.0001 326 2.447 2.464 17 134357 0.0001 0.9981 0.0001 327 2.464 2.481 14 134317 0.0001 0.9981 0.9001 328 2.481 2.498 2.4 134395 0.0001 0.9985 0.9984 0.0001 330 2.	317	2.296	2.313	42	134140	0.0003	0.9965	0.9965	0.0001
319 2.33 2.347 29 134209 0.0002 0.9971 0.9969 0.0001 320 2.347 2.363 22 134231 0.0002 0.9971 0.9971 0 321 2.363 2.38 26 134257 0.0002 0.9976 0.9974 0.0001 322 2.38 2.397 32 134289 0.0001 0.9977 0.9976 0.0001 324 2.414 12 134307 0.0001 0.9978 0.9977 0.0001 325 2.43 2.447 21 134307 0.0001 0.9981 0.998 0.0001 326 2.447 2.464 17 134357 0.0001 0.9982 0.9981 0.0001 328 2.498 2.514 15 134410 0.0001 0.9985 0.9983 0.0001 330 2.514 2.531 10 134420 0.001 0.9985 0.9984 0.0001 333 2.	318	2.313	2.33	40	134180	0.0003	0.9968	0.9967	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	319	2.33	2.347	29	134209	0.0002	0.997	0.9969	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	320	2.347	2.363	22	134231	0.0002	0.9971	0.9971	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	321	2.363	2.38	26	134257	0.0002	0.9973	0.9973	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	322	2.38	2.397	32	134289	0.0002	0.9976	0.9974	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323	2.397	2.414	18	134307	0.0001	0.9977	0.9976	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	324	2.414	2.43	12	134319	0.0001	0 <mark>.</mark> 9978	0.9977	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	325	2.43	2.447	21	134340	0.0002	0.9979	0.9979	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	326	2.447	2.464	17	13 <mark>4357</mark>	0.0001	0 <mark>.9981</mark>	0.998	0.0001
328 2.481 2.498 24 134395 0.0002 0.9984 0.9982 0.0001 329 2.498 2.514 15 134410 0.0001 0.9985 0.9983 0.0001 330 2.514 2.531 10 134420 0.0001 0.9985 0.9984 0.0001 331 2.531 2.548 21 134441 0.0002 0.9987 0.9985 0.0002 332 2.548 2.565 7 134448 0.0001 0.9988 0.9986 0.0001 333 2.565 2.581 11 134459 0.0001 0.9988 0.9987 0.0001 334 2.581 2.598 13 134472 0.0001 0.9989 0.9988 0.0001 335 2.598 2.615 9 134481 0.0001 0.9999 0.9989 0.0001 336 2.615 2.632 10 134491 0.0001 0.9991 0.9989 0.0001 338 2.648 2.665 11 134512 0.0001 0.9992 0.9991 0.0002 340 2.682 2.699 10 134528 0.0001 0.9993 0.9992 0.0002 341 2.699 2.716 6 134534 0.0000 0.9994 0.9992 0.0002 344 2.749 2.766 6 134550 0.0001 0.9993 0.9002 344 2.749 2.766 6 13	327	2.464	2.481	14	134371	0.0001	0.9982	0.9981	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	328	2.481	2.498	24	134395	0.0002	0 <mark>.</mark> 9984	0.9982	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	329	2.498	2.514	15	134410	0.0001	0 <mark>.</mark> 9985	0.9983	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	330	2.514	2.531	10	134420	0.0001	0.9985	0.9984	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	331	2.531	2.548	21	134441	0.0002	0.9987	0.9985	0.0002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	332	2.548	2.565	7	134448	0.0001	0.9988	0.9986	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	333	2.565	2.581	11	134459	0.0001	0.9988	0.9987	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	334	2.581	2.598	13	134472	0.0001	0.9989	0.9988	0.0001
3362.6152.632101344910.00010.99910.99890.00013372.6322.648101345010.00010.99910.9990.00013382.6482.665111345120.00010.99920.99910.00023392.6652.68261345180.00000.99930.99910.00013402.6822.699101345280.00010.99930.99920.00023412.6992.71661345340.00000.99940.99920.00013422.7162.73261345400.00000.99940.99930.00023432.7322.749101345500.00010.99950.99930.00023442.7492.76661345560.00000.99960.99940.00023452.7662.78371345630.00010.99970.99950.00023462.7832.79961345770.00010.99970.99950.00023472.7992.81681345770.00010.99970.99950.00023482.8162.83321345790.00000.99970.99950.00023502.852.86661345860.00000.99980.99960.00023512.8662.88311345870.00000.99980.99960.00023522.883	335	2.598	2.615	9	134481	0.0001	0.999	0.9989	0.0001
3372.6322.648101345010.00010.99910.9990.00013382.6482.665111345120.00010.99920.99910.00023392.6652.68261345180.00000.99930.99910.00013402.6822.699101345280.00010.99930.99920.00023412.6992.71661345340.00000.99940.99920.00013422.7162.73261345400.00000.99940.99930.00013432.7322.749101345500.00010.99950.99930.00023442.7492.76661345630.00010.99960.99940.00023452.7662.78371345630.00010.99960.99940.00023462.7832.79961345690.00000.99970.99950.00023472.7992.81681345770.00010.99970.99950.00023482.8162.83321345790.00000.99970.99960.00023502.852.86661345860.00000.99980.99960.00023512.8662.88311345870.00000.99980.99960.00023522.8832.921345890.00000.99980.99960.00023532.9	336	2.615	2.632	10	134491	0.0001	0.9991	0.9989	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	337	2.632	2.648	10	134501	0.0001	0.9991	0.999	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	338	2.648	2.665	11	134512	0.0001	0.9992	0.9991	0.0002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	339	2.665	2.682	6	134518	0.0000	0.9993	0.9991	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	340	2.682	2.699	10	134528	0.0001	0.9993	0.9992	0.0002
3422.7162.73261345400.00000.99940.99930.00013432.7322.749101345500.00010.99950.99930.00023442.7492.76661345560.00000.99960.99940.00023452.7662.78371345630.00010.99960.99940.00023462.7832.79961345690.00000.99970.99950.00023472.7992.81681345770.00010.99970.99950.00023482.8162.83321345790.00000.99970.99950.00023492.8332.8511345800.00000.99970.99960.00023502.852.86661345860.00000.99980.99960.00023512.8662.88311345870.00000.99980.99960.00023522.8832.921345940.00000.99980.99960.00023532.92.91751345940.00000.99980.99970.99970.0002	341	2.699	2.716	6	134534	0.0000	0.9994	0.9992	0.0001
3432.7322.749101345500.00010.99950.99930.00023442.7492.76661345560.00000.99960.99940.00023452.7662.78371345630.00010.99960.99940.00023462.7832.79961345690.00000.99970.99950.00023472.7992.81681345770.00010.99970.99950.00023482.8162.83321345790.00000.99970.99950.00023492.8332.8511345800.00000.99970.99960.00023502.852.86661345860.00000.99980.99960.00023512.8662.88311345870.00000.99980.99960.00023522.8832.921345890.00000.99980.99960.00023532.92.91751345940.00000.99980.99970.0002	342	2.716	2.732	6	134540	0.0000	0.9994	0.9993	0.0001
3442.7492.76661345560.00000.99960.99940.00023452.7662.78371345630.00010.99960.99940.00023462.7832.79961345690.00000.99970.99950.00023472.7992.81681345770.00010.99970.99950.00023482.8162.83321345790.00000.99970.99950.00023492.8332.8511345800.00000.99970.99960.00023502.852.86661345860.00000.99980.99960.00023512.8662.88311345870.00000.99980.99960.00023522.8832.921345940.00000.99980.99960.00023532.92.91751345940.00000.99980.99970.0002	343	2.732	2.749	10	134550	0.0001	0.9995	0.9993	0.0002
3452.7662.78371345630.00010.99960.99940.00023462.7832.79961345690.00000.99970.99950.00023472.7992.81681345770.00010.99970.99950.00023482.8162.83321345790.00000.99970.99950.00023492.8332.8511345800.00000.99970.99960.00023502.852.86661345860.00000.99980.99960.00023512.8662.88311345870.00000.99980.99960.00023522.8832.921345890.00000.99980.99960.00023532.92.91751345940.00000.99980.99970.99970.0002	344	2.749	2.766	6	134556	0.0000	0.9996	0.9994	0.0002
3462.7832.79961345690.00000.99970.99950.00023472.7992.81681345770.00010.99970.99950.00023482.8162.83321345790.00000.99970.99950.00023492.8332.8511345800.00000.99970.99960.00023502.852.86661345860.00000.99980.99960.00023512.8662.88311345870.00000.99980.99960.00023522.8832.921345890.00000.99980.99960.00023532.92.91751345940.00000.99980.99970.0002	345	2.766	2.783	7	134563	0.0001	0.9996	0.9994	0.0002
3472.7992.81681345770.00010.99970.99950.00023482.8162.83321345790.00000.99970.99950.00023492.8332.8511345800.00000.99970.99960.00023502.852.86661345860.00000.99980.99960.00023512.8662.88311345870.00000.99980.99960.00023522.8832.921345890.00000.99980.99960.00023532.92.91751345940.00000.99980.99970.0002	346	2.783	2.799	6	134569	0.0000	0.9997	0.9995	0.0002
348 2.816 2.833 2 134579 0.0000 0.9997 0.9995 0.0002 349 2.833 2.85 1 134580 0.0000 0.9997 0.9996 0.0002 350 2.85 2.866 6 134586 0.0000 0.9998 0.9996 0.0002 351 2.866 2.883 1 134587 0.0000 0.9998 0.9996 0.0002 352 2.883 2.9 2 134589 0.0000 0.9998 0.9996 0.0002 353 2.9 2.917 5 134594 0.0000 0.9998 0.9997 0.0002	347	2.799	2.816	8	134577	0.0001	0.9997	0.9995	0.0002
349 2.833 2.85 1 134580 0.0000 0.9997 0.9996 0.0002 350 2.85 2.866 6 134586 0.0000 0.9998 0.9996 0.0002 351 2.866 2.883 1 134587 0.0000 0.9998 0.9996 0.0002 352 2.883 2.9 2 134589 0.0000 0.9998 0.9996 0.0002 353 2.9 2.917 5 134594 0.0000 0.9998 0.9997 0.0002	348	2.816	2.833	2	134579	0.0000	0.9997	0.9995	0.0002
350 2.85 2.866 6 134586 0.0000 0.9998 0.9996 0.0002 351 2.866 2.883 1 134587 0.0000 0.9998 0.9996 0.0002 352 2.883 2.9 2 134589 0.0000 0.9998 0.9996 0.0002 353 2.9 2.917 5 134594 0.0000 0.9998 0.9997 0.0002	349	2.833	2.85	-	134580	0.0000	0.9997	0.9996	0.0002
351 2.866 2.883 1 134587 0.0000 0.9998 0.9996 0.0002 352 2.883 2.9 2 134589 0.0000 0.9998 0.9996 0.0002 353 2.9 2.917 5 134594 0.0000 0.9998 0.9997 0.0002	350	2.85	2.866	6	134586	0.0000	0.9998	0.9996	0.0002
352 2.883 2.9 2 134589 0.0000 0.9998 0.9996 0.0002 353 2.9 2.917 5 134594 0.0000 0.9998 0.9997 0.0002	351	2.866	2.883	1	134587	0.0000	0.9998	0.9996	0.0002
353 2.9 2.917 5 134594 0.0000 0.9998 0.9997 0.0002	352	2.883	2.9	2	134589	0.0000	0.9998	0.9996	0.0002
	353	2.9	2.917	5	134594	0.0000	0.9998	0.9997	0.0002
354 2.917 2.934 2 134596 0.0000 0.9999 0.9997 0.0002	354	2.917	2.934	2	134596	0.0000	0.9999	0.9997	0.0002

NIO	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	ΓΟΚΑ-ΓΕΚΑ
355	2.934	2.950	2	134598	0.0000	0.9999	0.9997	0.0001
356	2.95	2.967	2	134600	0.0000	0.9999	0.9997	0.0001
357	2.967	2.984	1	134601	0.0000	0.9999	0.9998	0.0001
358	2.984	3.001	1	134602	0.0000	0.9999	0.9998	0.0001
359	3.001	3.017	3	134605	0.0000	0.9999	0.9998	0.0001
360	3.017	3.034	3	134608	0.0000	0.9999	0.9998	0.0001
361	3.034	3.051	1	134609	0.0000	0.9999	0.9998	0.0001
362	3.051	3.068	3	134612	0.0000	1.0000	0.9998	0.0001
363	3.068	3.084	3	134615	0.0000	1.0000	0.9998	0.0001
364	3.084	3.101	0	134615	0.0000	1.0000	0.9999	0.0001
365	3.101	3.118	0	134615	0.0000	1.0000	0.9999	0.0001
366	3.118	3.135	0	134615	0.0000	1.0000	0.9999	0.0001
367	3.135	3.152	1	134616	0.0000	1.0000	0.9999	0.0001
							K-S	0.0133
							K-S crítico	0.0304

Tabla A.4.31 Estadística descriptiva de la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$

Media	-0.0 <mark>0</mark> 11
Desviación estándar	0.0 <mark>4</mark> 19
Mínimo	-0.1 <mark>7</mark> 35
Máximo	0.1 <mark>7</mark> 12
Rango	0.3 <mark>4</mark> 47
N° datos (n)	131 <mark>460</mark>

Tabla A.4.32 Distribución de frecuencia de la base de datos mundial de $\overline{S}/\overline{S}_0$ y $\overline{H}/\overline{H}_0$

NIO	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	
IN	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FUKA-FEKA
1	-0.1735	-0.1726	1	1	0.0000	0.0000	0.0000	0.0000
2	-0.1726	-0.1716	0	1	0.0000	0.0000	0.0000	0.0000
3	-0.1716	-0.1707	0	1	0.0000	0.0000	0.0000	0.0000
4	-0.1707	-0.1697	0	1	0.0000	0.0000	0.0000	0.0000
5	-0.1697	-0.1688	2	3	0.0000	0.0000	0.0000	0.0000
6	-0.1688	-0.1678	0	3	0.0000	0.0000	0.0000	0.0000
7	-0.1678	-0.1669	1	4	0.0000	0.0000	0.0000	0.0000
8	-0.1669	-0.1659	2	6	0.0000	0.0000	0.0000	0.0000
9	-0.1659	-0.165	0	6	0.0000	0.0000	0.0000	0.0000
10	-0.165	-0.164	2	8	0.0000	0.0001	0.0001	0.0000
11	-0.164	-0.1631	0	8	0.0000	0.0001	0.0001	0.0000
12	-0.1631	-0.1621	2	10	0.0000	0.0001	0.0001	0.0000
13	-0.1621	-0.1612	3	13	0.0000	0.0001	0.0001	0.0000
14	-0.1612	-0.1602	5	18	0.0000	0.0001	0.0001	0.0001
15	-0.1602	-0.1593	5	23	0.0000	0.0002	0.0001	0.0001
16	-0.1593	-0.1583	2	25	0.0000	0.0002	0.0001	0.0001
17	-0.1583	-0.1574	8	33	0.0001	0.0003	0.0001	0.0002

N٥	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERA
1	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
18	-0.1574	-0.1564	6	39	0	0.0003	0.0001	0.0002
19	-0.1564	-0.1555	6	45	0	0.0003	0.0001	0.0002
20	-0.1555	-0.1545	5	50	0	0.0004	0.0001	0.0003
21	-0.1545	-0.1535	7	57	0.0001	0.0004	0.0001	0.0003
22	-0.1535	-0.1526	2	59	0	0.0004	0.0001	0.0003
23	-0.1526	-0.1516	6	65	0	0.0005	0.0002	0.0003
24	-0.1516	-0.1507	9	74	0.0001	0.0006	0.0002	0.0004
25	-0.1507	-0.1497	6	80	0	0.0006	0.0002	0.0004
26	-0.1497	-0.1488	7	87	0.0001	0.0007	0.0002	0.0005
27	-0.1488	-0.1478	7	94	0.0001	0.0007	0.0002	0.0005
28	-0.1478	-0.1469	5	99	0	0.0008	0.0003	0.0005
29	-0.1469	-0.1459	13	112	0.0001	0.0009	0.0003	0.0006
30	-0.1459	-0.145	10	122	0.0001	0.0009	0.0003	0.0006
31	-0.145	-0.144	13	135	0.0001	0.001	0.0003	0.0007
32	-0.144	-0.1431	11	146	0.0001	0.0011	0.0004	0.0008
33	-0.1431	-0.1421	8	154	0.0001	0.0012	0.0004	0.0008
34	-0.1421	-0.1412	20	174	0.0002	0.0013	0.0004	0.0009
35	-0.1412	-0.1402	12	186	0.0001	0.0014	0.0004	0.001
36	-0.1402	-0.1393	19	205	0.0001	0. <mark>0</mark> 016	0.0005	0.0011
37	-0.1393	-0.1383	16	221	0.0001	0.0017	0.0005	0.0012
38	-0.1383	-0.1374	17	238	0.0001	0.0018	0.0006	0.0012
39	-0.1374	-0.1364	20	258	0.0002	0.002	0.0006	0.0013
40	-0.1364	-0.1355	23	281	0.0002	0. <mark>0</mark> 021	0.0007	0.0015
41	-0.1355	-0.1345	15	296	0.0001	0. <mark>0</mark> 023	0.0007	0.0015
42	-0.1345	-0.1336	20	316	0.0002	0.0024	0.0008	0.0016
43	-0.1336	-0.1326	22	338	0.0002	0.0026	0.0008	0.0017
44	-0.1326	-0.1316	26	364	0.0002	0.0028	0.0009	0.0019
45	-0.1316	-0.1307	18	382	0.0001	0.0029	0.001	0.0019
46	-0.1307	-0.1297	23	405	0.0002	0.0031	0.0011	0.002
47	-0.1297	-0.1288	36	441	0.0003	0.0034	0.0012	0.0022
48	-0.1288	-0.1278	20	461	0.0002	0.0035	0.0012	0.0023
49	-0.1278	-0.1269	19	480	0.0001	0.0037	0.0013	0.0023
50	-0.1269	-0.1259	33	513	0.0003	0.0039	0.0014	0.0025
51	-0.1259	-0.125	23	536	0.0002	0.0041	0.0016	0.0025
52	-0.125	-0.124	35	571	0.0003	0.0043	0.0017	0.0027
53	-0.124	-0.1231	25	596	0.0002	0.0045	0.0018	0.0027
54	-0.1231	-0.1221	42	638	0.0003	0.0049	0.0019	0.0029
55	-0.1221	-0.1212	41	679	0.0003	0.0052	0.0021	0.0031
56	-0.1212	-0.1202	37	716	0.0003	0.0054	0.0022	0.0032
57	-0.1202	-0.1193	36	752	0.0003	0.0057	0.0024	0.0033
58	-0.1193	-0.1183	38	790	0.0003	0.006	0.0026	0.0034
59	-0.1183	-0.1174	35	825	0.0003	0.0063	0.0028	0.0035
60	-0.1174	-0.1164	53	878	0.0004	0.0067	0.003	0.0037
61	-0.1164	-0.1155	38	916	0.0003	0.007	0.0032	0.0038
62	-0.1155	-0.1145	62	978	0.0005	0.0074	0.0034	0.004
63	-0.1145	-0.1136	52	1030	0.0004	0.0078	0.0036	0.0042
64	-0.1136	-0.1126	44	1074	0.0003	0.0082	0.0039	0.0043
65	-0.1126	-0.1116	45	1119	0.0003	0.0085	0.0042	0.0044
66	-0.1116	-0.1107	58	1177	0.0004	0.009	0.0044	0.0045
N٥	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FORAFERA
-----	----------	----------	------------	--------------------	-----------	-----------------------	----------------	-----------
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
67	-0.1107	-0.1097	40	1217	0.0003	0.0093	0.0048	0.0045
68	-0.1097	-0.1088	53	1270	0.0004	0.0097	0.0051	0.0046
69	-0.1088	-0.1078	64	1334	0.0005	0.0101	0.0054	0.0047
70	-0.1078	-0.1069	58	1392	0.0004	0.0106	0.0058	0.0048
71	-0.1069	-0.1059	66	1458	0.0005	0.0111	0.0062	0.0049
72	-0.1059	-0.105	63	1521	0.0005	0.0116	0.0066	0.005
73	-0.105	-0.104	64	1585	0.0005	0.0121	0.007	0.0051
74	-0.104	-0.1031	74	1659	0.0006	0.0126	0.0075	0.0052
75	-0.1031	-0.1021	68	1727	0.0005	0.0131	0.0079	0.0052
76	-0.1021	-0.1012	83	1810	0.0006	0.0138	0.0084	0.0053
77	-0.1012	-0.1002	68	1878	0.0005	0.0143	0.009	0.0053
78	-0.1002	-0.0993	80	1958	0.0006	0.0149	0.0096	0.0053
79	-0.0993	-0.0983	84	2042	0.0006	0.0155	0.0101	0.0054
80	-0.0983	-0.0974	82	2124	0.0006	0.0162	0.0108	0.0054
81	-0.0974	-0.0964	89	2213	0.0007	0.0168	0.0114	0.0054
82	-0.0964	-0.0955	106	2319	0.0008	0.0176	0.0121	0.0055
83	-0.0955	-0.0945	99	2418	0.0008	0.0184	0.0129	0.0055
84	-0.0945	-0.0936	97	2515	0.0007	0.0191	0.0136	0.0055
85	-0.0936	-0.0926	111	2626	0.0008	0.02	0.0145	0.0055
86	-0.0926	-0.0917	117	2743	0.0009	0.0209	0.0153	0.0055
87	-0.0917	-0.0907	107	2850	0.0008	0.0217	0.0162	0.0055
88	-0.0907	-0.0897	101	29 <mark>51</mark>	0.0008	0.0224	0.0172	0.0053
89	-0.0897	-0.0888	116	3067	0.0009	0. <mark>0</mark> 233	0.0181	0.0052
90	-0.0888	-0.0878	116	3183	0.0009	0. <mark>0</mark> 242	0.0192	0.005
91	-0.0878	-0.0869	140	3323	0.0011	0.0253	0.0203	0.005
92	-0.0869	-0.0859	130	34 <mark>53</mark>	0.001	0.0263	0.0214	0.0049
93	-0.0859	-0.085	143	3596	0.0011	0.0274	0.0226	0.0048
94	-0.085	-0.084	130	3726	0.001	0.0283	0.0239	0.0045
95	-0.084	-0.0831	147	3873	0.0011	0.0295	0.0252	0.0043
96	-0.0831	-0.0821	143	4016	0.0011	0.0305	0.0265	0.004
97	-0.0821	-0.0812	184	4200	0.0014	0.0319	0.0279	0.004
98	-0.0812	-0.0802	133	4333	0.001	0.033	0.0294	0.0035
99	-0.0802	-0.0793	140	4473	0.0011	0.034	0.031	0.003
100	-0.0793	-0.0783	216	4689	0.0016	0.0357	0.0326	0.0031
101	-0.0783	-0.0774	213	4902	0.0016	0.0373	0.0343	0.003
102	-0.0774	-0.0764	208	5110	0.0016	0.0389	0.0361	0.0028
103	-0.0764	-0.0755	201	5311	0.0015	0.0404	0.0379	0.0025
104	-0.0755	-0.0745	243	5554	0.0018	0.0422	0.0398	0.0024
105	-0.0745	-0.0736	210	5764	0.0016	0.0438	0.0418	0.002
106	-0.0736	-0.0726	234	5998	0.0018	0.0456	0.0439	0.0017
107	-0.0726	-0.0717	284	6282	0.0022	0.0478	0.046	0.0018
108	-0.0717	-0.0707	224	6506	0.0017	0.0495	0.0483	0.0012
109	-0.0707	-0.0697	261	6767	0.002	0.0515	0.0506	0.0009
110	-0.0697	-0.0688	238	7005	0.0018	0.0533	0.053	0.0003
111	-0.0688	-0.0678	309	7314	0.0024	0.0556	0.0555	0.0001
112	-0.0678	-0.0669	264	7578	0.002	0.0576	0.0581	0.0004
113	-0.0669	-0.0659	306	7884	0.0023	0.06	0.0608	0.0008
114	-0.0659	-0.065	303	8187	0.0023	0.0623	0.0636	0.0013
115	-0.065	-0.064	305	8492	0.0023	0.0646	0.0664	0.0018

Nº	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FODA FEDA
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
116	-0.064	-0.0631	345	8837	0.0026	0.0672	0.0694	0.0022
117	-0.0631	-0.0621	346	9183	0.0026	0.0699	0.0725	0.0026
118	-0.0621	-0.0612	364	9547	0.0028	0.0726	0.0757	0.0031
119	-0.0612	-0.0602	373	9920	0.0028	0.0755	0.079	0.0035
120	-0.0602	-0.0593	390	10310	0.003	0.0784	0.0824	0.004
121	-0.0593	-0.0583	398	10708	0.003	0.0815	0.0859	0.0044
122	-0.0583	-0.0574	433	11141	0.0033	0.0847	0.0895	0.0048
123	-0.0574	-0.0564	435	11576	0.0033	0.0881	0.0932	0.0052
124	-0.0564	-0.0555	399	11975	0.003	0.0911	0.0971	0.006
125	-0.0555	-0.0545	471	12446	0.0036	0.0947	0.101	0.0064
126	-0.0545	-0.0536	485	12931	0.0037	0.0984	0.1051	0.0068
127	-0.0536	-0.0526	477	13408	0.0036	0.102	0.1093	0.0073
128	-0.0526	-0.0517	476	13884	0.0036	0.1056	0.1136	0.008
129	-0.0517	-0.0507	512	14396	0.0039	0.1095	0.1181	0.0086
130	-0.0507	-0.0498	499	14895	0.0038	0.1133	0.1226	0.0093
131	-0.0498	-0.0488	514	15409	0.0039	0.1172	0.1273	0.0101
132	-0.0488	-0.0478	503	15912	0.0038	0.121	0.1321	0.011
133	-0.0478	-0.0469	542	16454	0.0041	0.1252	0.137	0.0118
134	-0.0469	-0.0459	535	16989	0.0041	0.1292	0.1421	0.0128
135	-0.0459	-0.045	610	17599	0.0046	0.1339	0.1472	0.0133
136	-0.045	-0.044	642	18241	0.0049	0.1388	0.1525	0.0138
137	-0.044	-0.0431	638	18879	0.0049	0.1436	0.1579	0.0143
138	-0.0431	-0.0421	644	19523	0.0049	0.1485	0.1635	0.015
139	-0.0421	-0.0412	683	20206	0.0052	0.1537	0.1691	0.0154
140	-0.0412	-0.0402	727	20933	0.0055	0.1592	0.1749	0.0157
141	-0.0402	-0.0393	736	21669	0.0056	0.1648	0.1809	0.016
142	-0.0393	-0.0383	698	22367	0.0053	0 1701	0 1869	0.0168
143	-0.0383	-0.0374	759	23126	0.0058	0.1759	0.1931	0.0172
144	-0.0374	-0.0364	777	23903	0.0059	0.1818	0 1994	0.0175
145	-0.0364	-0.0355	768	24671	0.0058	0.1877	0.2058	0.0181
146	-0.0355	-0.0345	700	25448	0.0059	0.1936	0.2123	0.0187
147	-0.0345	-0.0336	848	26296	0.0065	0.2	0.2129	0.0189
148	-0.0336	-0.0326	873	27169	0.0005	0.2067	0.2257	0.019
140	-0.0326	-0.0317	845	28014	0.0000	0.2131	0.2237	0.0195
150	-0.0317	-0.0307	849	28863	0.0065	0.2191	0.2326	0.02
151	-0.0307	-0.0298	901	20005	0.0005	0.2190	0.2350	0.02
152	-0.0307	-0.0290	912	30676	0.0009	0.2204	0.2539	0.0205
152	-0.0298	-0.0200	955	31631	0.0007	0.2335	0.2537	0.0200
154	-0.0278	-0.0270	958	32589	0.0073	0.2400	0.2687	0.0207
155	-0.0270	-0.0209	1045	33634	0.0075	0.2558	0.2763	0.0208
155	0.0209	0.025	1045	34640	0.0079	0.2538	0.2705	0.0204
150	0.025	-0.023	085	35625	0.0077	0.2035	0.2017	0.0204
159	-0.023	-0.024	1017	35647	0.0075	0.271	0.2917	0.0207
150	-0.024	0.0231	1017	37604	0.0077	0.2707	0.2995	0.0208
159	-0.0231	-0.0221	1052	J/U74 20017	0.008	0.2007	0.3074	0.0207
161	-0.0221	-0.0212	1123	30041	0.0003	0.2733	0.3133	0.0202
101	-0.0212	-0.0202	1124	37741 10000	0.0080	0.3038	0.3230	0.0198
102	-0.0202	-0.0193	1048	40707 17700	0.008	0.3118	0.3318	0.02
103	-0.0193	-0.0183	1211	42200	0.0092	0.321	0.3401	0.0191
104	-0.0103	-0.01/4	1190	43390	0.0091	0.5501	0.5465	0.0104

Nº	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FODA FEDA
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
165	-0.0174	-0.0164	1184	44574	0.009	0.3391	0.3569	0.0178
166	-0.0164	-0.0155	1199	45773	0.0091	0.3482	0.3654	0.0172
167	-0.0155	-0.0145	1170	46943	0.0089	0.3571	0.374	0.0169
168	-0.0145	-0.0136	1195	48138	0.0091	0.3662	0.3826	0.0164
169	-0.0136	-0.0126	1254	49392	0.0095	0.3757	0.3913	0.0156
170	-0.0126	-0.0117	1247	50639	0.0095	0.3852	0.4001	0.0149
171	-0.0117	-0.0107	1280	51919	0.0097	0.3949	0.4089	0.0139
172	-0.0107	-0.0098	1320	53239	0.01	0.405	0.4177	0.0127
173	-0.0098	-0.0088	1273	54512	0.0097	0.4147	0.4266	0.0119
174	-0.0088	-0.0079	1317	55829	0.01	0.4247	0.4355	0.0109
175	-0.0079	-0.0069	1242	57071	0.0094	0.4341	0.4445	0.0104
176	-0.0069	-0.0059	1322	58393	0.0101	0.4442	0.4535	0.0093
177	-0.0059	-0.005	1319	59712	0.01	0.4542	0.4625	0.0083
178	-0.005	-0.004	1406	61118	0.0107	0.4649	0.4715	0.0066
179	-0.004	-0.0031	1292	62410	0.0098	0.4747	0.4806	0.0058
180	-0.0031	-0.0021	1351	63761	0.0103	0.485	0.4896	0.0046
181	-0.0021	-0.0012	1331	65092	0.0101	0.4951	0.4987	0.0036
182	-0.0012	-0.0002	1312	66404	0.01	0.5051	0.5078	0.0026
183	-0.0002	0.0007	1323	67727	0.0101	0.5152	0.5168	0.0016
184	0.0007	0.0017	1422	69149	0.0108	0.526	0.5259	0.0001
185	0.0017	0.0026	1330	70479	0.0101	0.5361	0.5349	0.0012
186	0.0026	0.0036	1301	71780	0.0099	0.546	0.5439	0.0021
187	0.0036	0.0045	1344	73124	0.0102	0. <mark>5</mark> 562	0.5529	0.0033
188	0.0045	0.0055	1266	74390	0.0096	0. <mark>5</mark> 659	0.5619	0.004
189	0.0055	0.0064	1335	75725	0.0102	0.576	0.5708	0.0052
190	0.0064	0.0074	1242	76967	0.0094	0.5855	0.5797	0.0057
191	0.0074	0.0083	1334	78301	0.0101	0.5956	0.5886	0.007
192	0.0083	0.0093	1345	79646	0.0102	0.6059	0.5974	0.0084
193	0.0093	0.0102	1315	80961	0.01	0.6159	0.6062	0.0097
194	0.0102	0.0112	1317	82278	0.01	0.6259	0.6149	0.011
195	0.0112	0.0121	1329	83607	0.0101	0.636	0.6236	0.0124
196	0.0121	0.0131	1230	84837	0.0094	0.6453	0.6322	0.0132
197	0.0131	0.014	1206	86043	0.0092	0.6545	0.6407	0.0138
198	0.014	0.015	1180	87223	0.009	0.6635	0.6491	0.0143
199	0.015	0.016	1224	88447	0.0093	0.6728	0.6575	0.0153
200	0.016	0.0169	1190	89637	0.0091	0.6819	0.6658	0.016
201	0.0169	0.0179	1195	90832	0.0091	0.6909	0.6741	0.0169
202	0.0179	0.0188	1125	91957	0.0086	0.6995	0.6822	0.0173
203	0.0188	0.0198	1131	93088	0.0086	0.7081	0.6903	0.0178
204	0.0198	0.0207	1132	94220	0.0086	0.7167	0.6982	0.0185
205	0.0207	0.0217	1095	95315	0.0083	0.725	0.7061	0.0189
206	0.0217	0.0226	1103	96418	0.0084	0.7334	0.7139	0.0195
207	0.0226	0.0236	1052	97470	0.008	0.7414	0.7216	0.0199
208	0.0236	0.0245	1031	98501	0.0078	0.7493	0.7291	0.0201
209	0.0245	0.0255	1021	99522	0.0078	0.7571	0.7366	0.0204
210	0.0255	0.0264	1046	100568	0.008	0.765	0.744	0.021
211	0.0264	0.0274	941	101509	0.0072	0.7722	0.7512	0.0209
212	0.0274	0.0283	927	102436	0.0071	0.7792	0.7584	0.0208
213	0.0283	0.0293	957	103393	0.0073	0.7865	0.7654	0.0211

NIO	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
214	0.0293	0.0302	843	104236	0.0064	0.7929	0.7723	0.0206
215	0.0302	0.0312	865	105101	0.0066	0.7995	0.7791	0.0204
216	0.0312	0.0321	847	105948	0.0064	0.8059	0.7858	0.0201
217	0.0321	0.0331	829	106777	0.0063	0.8122	0.7924	0.0199
218	0.0331	0.034	849	107626	0.0065	0.8187	0.7988	0.0199
219	0.034	0.035	767	108393	0.0058	0.8245	0.8052	0.0194
220	0.035	0.036	764	109157	0.0058	0.8303	0.8114	0.019
221	0.036	0.0369	794	109951	0.006	0.8364	0.8174	0.019
222	0.0369	0.0379	786	110737	0.006	0.8424	0.8234	0.019
223	0.0379	0.0388	682	111419	0.0052	0.8476	0.8292	0.0183
224	0.0388	0.0398	697	112116	0.0053	0.8529	0.8349	0.0179
225	0.0398	0.0407	614	112730	0.0047	0.8575	0.8405	0.017
226	0.0407	0.0417	608	113338	0.0046	0.8621	0.8459	0.0162
227	0.0417	0.0426	581	113919	0.0044	0.8666	0.8513	0.0153
228	0.0426	0.0436	589	114508	0.0045	0.871	0.8565	0.0146
229	0.0436	0.0445	587	115095	0.0045	0.8755	0.8616	0.0139
230	0.0445	0.0455	591	115686	0.0045	0.88	0.8665	0.0135
231	0.0455	0.0464	598	116284	0.0045	0.8846	0.8714	0.0132
232	0.0464	0.0474	532	116816	0.004	0.8886	0.8761	0.0125
233	0.0474	0.0483	534	117350	0.0041	0.8927	0.8807	0.012
234	0.0483	0.0493	496		0.0038	0.8964	0.8851	0.0113
235	0.0493	0.0502	522	118 <mark>368</mark>	0.004	0.9004	0.8895	0.0109
236	0.0502	0.0512	477	118845	0.0036	0 <mark>.</mark> 904	0.8937	0.0103
237	0.0512	0.0521	414	119259	0.0031	0. <mark>9</mark> 072	0.8978	0.0094
238	0.0521	0.0531	455	119 <mark>714</mark>	0.0035	0.9106	0.9018	0.0089
239	0.0531	0.054	428	120142	0.0033	0.9139	0.9057	0.0082
240	0.054	0.055	434	120576	0.0033	0.9172	0.9094	0.0078
241	0.055	0.0559	371	120947	0.0028	0.92	0.9131	0.0069
242	0.0559	0.0569	389	121336	0.003	0.923	0.9166	0.0064
243	0.0569	0.0579	425	121761	0.0032	0.9262	0.9201	0.0062
244	0.0579	0.0588	357	122118	0.0027	0.9289	0.9234	0.0056
245	0.0588	0.0598	334	122452	0.0025	0.9315	0.9266	0.0049
246	0.0598	0.0607	332	122784	0.0025	0.934	0.9297	0.0043
247	0.0607	0.0617	303	123087	0.0023	0.9363	0.9327	0.0036
248	0.0617	0.0626	298	123385	0.0023	0.9386	0.9356	0.0029
249	0.0626	0.0636	303	123688	0.0023	0.9409	0.9384	0.0024
250	0.0636	0.0645	258	123946	0.002	0.9428	0.9412	0.0017
251	0.0645	0.0655	291	124237	0.0022	0.9451	0.9438	0.0013
252	0.0655	0.0664	280	124517	0.0021	0.9472	0.9463	0.0009
253	0.0664	0.0674	253	124770	0.0019	0.9491	0.9487	0.0004
254	0.0674	0.0683	293	125063	0.0022	0.9513	0.9511	0.0003
255	0.0683	0.0693	262	125325	0.002	0.9533	0.9533	0
256	0.0693	0.0702	242	125567	0.0018	0.9552	0.9555	0.0003
257	0.0702	0.0712	197	125764	0.0015	0.9567	0.9576	0.0009
258	0.0712	0.0721	222	125986	0.0017	0.9584	0.9596	0.0013
259	0.0721	0.0731	223	126209	0.0017	0.9601	0.9616	0.0015
260	0.0731	0.074	204	126413	0.0016	0.9616	0.9634	0.0018
261	0.074	0.075	201	126614	0.0015	0.9631	0.9652	0.0021
262	0.075	0.0759	190	126804	0.0014	0.9646	0.9669	0.0023

NIO	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
263	0.0759	0.0769	169	126973	0.0013	0.9659	0.9686	0.0027
264	0.0769	0.0779	176	127149	0.0013	0.9672	0.9701	0.0029
265	0.0779	0.0788	157	127306	0.0012	0.9684	0.9716	0.0032
266	0.0788	0.0798	157	127463	0.0012	0.9696	0.9731	0.0035
267	0.0798	0.0807	144	127607	0.0011	0.9707	0.9745	0.0038
268	0.0807	0.0817	135	127742	0.001	0.9717	0.9758	0.0041
269	0.0817	0.0826	141	127883	0.0011	0.9728	0.977	0.0043
270	0.0826	0.0836	135	128018	0.001	0.9738	0.9783	0.0044
271	0.0836	0.0845	133	128151	0.001	0.9748	0.9794	0.0046
272	0.0845	0.0855	128	128279	0.001	0.9758	0.9805	0.0047
273	0.0855	0.0864	132	128411	0.001	0.9768	0.9816	0.0048
274	0.0864	0.0874	100	128511	0.0008	0.9776	0.9826	0.005
275	0.0874	0.0883	111	128622	0.0008	0.9784	0.9835	0.0051
276	0.0883	0.0893	99	128721	0.0008	0.9792	0.9844	0.0053
277	0.0893	0.0902	105	128826	0.0008	0.98	0.9853	0.0053
278	0.0902	0.0912	96	128922	0.0007	0.9807	0.9861	0.0054
279	0.0912	0.0921	95	129017	0.0007	0.9814	0.9869	0.0055
280	0.0921	0.0931	113	129130	0.0009	0.9823	0.9877	0.0054
281	0.0931	0.094	96	129226	0.0007	0 <mark>.</mark> 983	0.9884	0.0054
282	0.094	0.095	88	129314	0.0007	0.9837	0.989	0.0054
283	0.095	0.0959	86	129 <mark>400</mark>	0.0007	0.9843	0.9897	0.0053
284	0.0959	0.0969	94	129 <mark>494</mark>	0.0007	0.985	0.9903	0.0052
285	0.0969	0.0978	79	129573	0.0006	0. <mark>9</mark> 856	0.9909	0.0052
286	0.0978	0.0988	65	129638	0.0005	0. <mark>9</mark> 861	0.9914	0.0053
287	0.0988	0.0998	73	129 <mark>711</mark>	0.0006	0.9867	0.9919	0.0052
288	0.0998	0.1007	77	129788	0.0006	0.9873	0.9924	0.0051
289	0.1007	0.1017	77	129865	0.0006	0 <mark>.</mark> 9879	0.9929	0.005
290	0.1017	0.1026	66	129931	0.0005	0.9884	0.9933	0.0049
291	0.1026	0.1036	65	129996	0.0005	0.9889	0.9937	0.0049
292	0.1036	0.1045	52	130048	0.0004	0.9893	0.9941	0.0049
293	0.1045	0.1055	76	130124	0.0006	0.9898	0.9945	0.0046
294	0.1055	0.1064	56	130180	0.0004	0.9903	0.9948	0.0046
295	0.1064	0.1074	50	130230	0.0004	0.9906	0.9952	0.0045
296	0.1074	0.1083	47	130277	0.0004	0.991	0.9955	0.0045
297	0.1083	0.1093	49	130326	0.0004	0.9914	0.9958	0.0044
298	0.1093	0.1102	58	130384	0.0004	0.9918	0.996	0.0042
299	0.1102	0.1112	40	130424	0.0003	0.9921	0.9963	0.0042
300	0.1112	0.1121	55	130479	0.0004	0.9925	0.9965	0.004
301	0.1121	0.1131	59	130538	0.0004	0.993	0.9968	0.0038
302	0.1131	0.114	50	130588	0.0004	0.9934	0.997	0.0036
303	0.114	0.115	49	130637	0.0004	0.9937	0.9972	0.0034
304	0.115	0.1159	30	130667	0.0002	0.994	0.9974	0.0034
305	0.1159	0.1169	43	130710	0.0003	0.9943	0.9976	0.0033
306	0.1169	0.1178	39	130749	0.0003	0.9946	0.9977	0.0031
307	0.1178	0.1188	47	130796	0.0004	0.9949	0.9979	0.0029
308	0.1188	0.1198	45	130841	0.0003	0.9953	0.998	0.0027
309	0.1198	0.1207	37	130878	0.0003	0.9956	0.9982	0.0026
310	0.1207	0.1217	28	130906	0.0002	0.9958	0.9983	0.0025
311	0.1217	0.1226	34	130940	0.0003	0.996	0.9984	0.0024

Nº	Límite	Límite	Frecuencia	Frecuencia	Frec. Obs	Frec. Obs	Frec. Esperada	FODA FEDA
19	inferior	superior	observada	acumulada	oelativa	Relat. Acum	Relat. Acum	FORA-FERA
312	0.1226	0.1236	33	130973	0.0003	0.9963	0.9985	0.0022
313	0.1236	0.1245	29	131002	0.0002	0.9965	0.9986	0.0021
314	0.1245	0.1255	36	131038	0.0003	0.9968	0.9987	0.0019
315	0.1255	0.1264	27	131065	0.0002	0.997	0.9988	0.0018
316	0.1264	0.1274	37	131102	0.0003	0.9973	0.9989	0.0016
317	0.1274	0.1283	27	131129	0.0002	0.9975	0.999	0.0015
318	0.1283	0.1293	28	131157	0.0002	0.9977	0.9991	0.0014
319	0.1293	0.1302	26	131183	0.0002	0.9979	0.9991	0.0012
320	0.1302	0.1312	21	131204	0.0002	0.9981	0.9992	0.0011
321	0.1312	0.1321	26	131230	0.0002	0.9983	0.9993	0.001
322	0.1321	0.1331	24	131254	0.0002	0.9984	0.9993	0.0009
323	0.1331	0.134	18	131272	0.0001	0.9986	0.9994	0.0008
324	0.134	0.135	14	131286	0.0001	0.9987	0.9994	0.0007
325	0.135	0.1359	18	131304	0.0001	0.9988	0.9995	0.0006
326	0.1359	0.1369	20	131324	0.0002	0.999	0.9995	0.0005
327	0.1369	0.1378	15	131339	0.0001	0.9991	0.9995	0.0005
328	0.1378	0.1388	17	131356	0.0001	0.9992	0.9996	0.0004
329	0.1388	0.1397	13	131369	0.0001	0.9993	0.9996	0.0003
330	0.1397	0.1407	13	131382	0.0001	0. <mark>9</mark> 994	0.9996	0.0002
331	0.1407	0.1417	8	131390	0.0001	0. <mark>9</mark> 995	0.9997	0.0002
332	0.1417	0.1426	8	131 <mark>398</mark>	0.0001	0. <mark>9</mark> 995	0.9997	0.0002
333	0.1426	0.1436	9	131407	0.0001	0. <mark>9</mark> 996	0.9997	0.0001
334	0.1436	0.1445	3	131410	0.0000	0. <mark>9</mark> 996	0.9997	0.0001
335	0.1445	0.1455	11	131421	0.0001	0. <mark>9</mark> 997	0.9998	0.0001
336	0.1455	0.1464	1	131422	0.0000	0. <mark>9</mark> 997	0.9998	0.0001
337	0.1464	0.1474	2	131424	0.0000	0.9997	0.9998	0.0001
338	0.1474	0.1483	5	131429	0.0000	0 <mark>.</mark> 9998	0.9998	0.0001
339	0.1483	0.1493	2	131431	0.0000	0.9998	0.9998	0.0001
340	0.1493	0.1502	2	131433	0.0000	0.9998	0.9998	0.0001
341	0.1502	0.1512	1	131434	0.0000	0.9998	0.9999	0.0001
342	0.1512	0.1521	4	131438	0.0000	0.9998	0.9999	0.0000
343	0.1521	0.1531	0	131438	0.0000	0.9998	0.9999	0.0000
344	0.1531	0.154	0	131438	0.0000	0.9998	0.9999	0.0001
345	0.154	0.155	2	131440	0.0000	0.9998	0.9999	0.0001
346	0.155	0.1559	4	131444	0.0000	0.9999	0.9999	0.0000
347	0.1559	0.1569	1	131445	0.0000	0.9999	0.9999	0.0000
348	0.1569	0.1578	0	131445	0.0000	0.9999	0.9999	0.0000
349	0.1578	0.1588	4	131449	0.0000	0.9999	0.9999	0.0000
350	0.1588	0.1597	3	131452	0.0000	0.9999	0.9999	0.0000
351	0.1597	0.1607	0	131452	0.0000	0.9999	0.9999	0.0000
352	0.1607	0.1617	0	131452	0.0000	0.9999	0.9999	0.0000
353	0.1617	0.1626	0	131452	0.0000	0.9999	1.0000	0.0000
354	0.1626	0.1636	0	131452	0.0000	0.9999	1.0000	0.0000
355	0.1636	0.1645	1	131453	0.0000	0.9999	1.0000	0.0000
356	0.1645	0.1655	1	131454	0.0000	1.0000	1.0000	0.0000
357	0.1655	0.1664	0	131454	0.0000	1.0000	1.0000	0.0000
358	0.1664	0.1674	1	131455	0.0000	1.0000	1.0000	0.0000
359	0.1674	0.1683	1	131456	0.0000	1.0000	1.0000	0.0000
360	0.1683	0.1693	2	131458	0.0000	1.0000	1.0000	0.0000

N°	Límite	Límite	Frecuencia	Frecuencia Frec. Obs		Frec. Obs	Frec. Esperada	FORA-FERA
	inferior	superior	observada	acumulada	relativa	Relat. Acum	Relat. Acum	FOKA-FEKA
361	0.1693	0.1702	0	131458	0.0000	1.0000	1.0000	0.0000
362	0.1702	0.1712	2	131460	0.0000	1.0000	1.0000	0.0000
							K-S	0.0211
							K-S critico	0.0304

Anexo 4.4Modelos de radiación solar global con inserción de variables dummy según
latitud y estaciones del año estimados a nivel local

Tal como se mencionó al final de la Sección 4.6.2, en esta sección se muestran los resultados de la evaluación estadística de modelos lineales de radiación solar global con adicción de variables *dummy* estimados con las bases de datos locales.

Las variables *dummy* son variables binarias que toman el valor 0 o 1 indicando si hay ausencia o presencia de alguna condición que modifique el resultado del modelo. Las condiciones que interpretan estas variables son mutuamente excluyentes, por ejemplo fumador o no fumador. Las *dummy* son incluidas al modelo como variables independientes, cuando presentan un valor igual a 0 hacen que el coeficiente del término con la variable *dummy* no tenga influencia en la estimación, mientras que cuando toman un valor 1, su coeficiente puede alterar el intercepto o la pendiente del modelo, dependiendo de la ubicación en que sean agregadas al modelo. En la Figura A.4.1 se observa cómo operan las variables *dummy* en un modelo lineal.

Cuando se modifica el valor de la constante del modelo a través de las *dummy*, las rectas resultantes serán paralelas al modelo original. En cambio, cuando se quiere modificar el valor de la pendiente del modelo, las rectas resultantes poseen en común sólo el punto de inicio.

A nivel local, al Modelo Ångström-Prescott le se agregaron una o tres variables *dummy* según las estaciones del año correspondientes a la estación radiométrica, para que modifiquen el valor de la constante o la pendiente del modelo. La cantidad de *dummy* incorporadas depende de la ubicación de la estación radiométrica a la cual pertenezcan los datos. Si éstos pertenecen a la zona geográfica comprendida entre el Trópico de Capricornio y el de Cáncer, al modelo se le adiciona una *dummy*, ya que según los criterios mostrados, en esta zona hay presencia de dos estaciones del año. Si los datos pertenecen a una ubicación fuera de esta zona, se agregan tres *dummy* (debido a las cuatro estaciones del año) al modelo. Las *dummy* integradas al modelo son las descritas a continuación:

- D₁=1 cuando el dato pertenezca a un mes dentro de la estación de verano. Es cero en cualquier otro caso.
- D₂=1 cuando el dato pertenezca a un mes dentro de la estación de primavera. Es cero en cualquier otro caso.
- D₃=1 cuando el dato pertenezca a un mes dentro de la estación otoño. Es cero en cualquier otro caso.

Los modelos estimados siguen las formas funcionales mostradas en la Ecuación A.4.1 y A.4.2. Cuando la estación se encuentre emplazada en la Zona Tropical los modelos tendrán la forma de la Ecuación A.4.1a y A.4.1b. Para cuando la estación este fuera de la esta zona, los modelos tendrán la forma de la Ecuación A.4.2a y A.4.2b.

$$\frac{\overline{\mathrm{H}}}{\overline{\mathrm{H}}_{\mathrm{o}}} = \left(a + \gamma_{1}\mathrm{D}_{1}\right) + b\frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_{\mathrm{o}}}.$$
(A.4.1a)

$$\frac{\overline{\mathrm{H}}}{\overline{\mathrm{H}}_{\mathrm{o}}} = a + (\gamma_1 \mathrm{D}_1 + b) \frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_{\mathrm{o}}}.$$
(A.4.1b)

$$\frac{\overline{\mathrm{H}}}{\overline{\mathrm{H}}_{\mathrm{o}}} = \left(a + \gamma_1 \mathrm{D}_1 + \gamma_2 \mathrm{D}_2 + \gamma_3 \mathrm{D}_3\right) + b \frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_{\mathrm{o}}}$$
(A.4.2a)

$$\frac{\overline{\mathrm{H}}}{\overline{\mathrm{H}}_{\mathrm{o}}} = a + (\gamma_1 \mathrm{D}_1 + \gamma_2 \mathrm{D}_2 + \gamma_3 \mathrm{D}_3 + b) \frac{\overline{\mathrm{S}}}{\overline{\mathrm{S}}_{\mathrm{o}}}$$
(A.4.2b)

Los coeficientes e indicadores estadísticos obtenidos de los modelos estimados para cada base de datos local son los mostrados en la Tabla A.4.33.

Coeficientes de estimación											
Base de datos	Dummy en	а	b	γ_1	γ_2	γ_3	R ²	SSR	$\Delta SSR^{(1)}$	RMSE	$\Delta RMSE^{(2)}$
	Constanta	0.177	0.540	0.072	0.071	0.034	0.056	0.078	45 1 04	0 173	20.1.%
	Constante	(29.8)	(28.0)	(9.8)	(9.7)	(5.2)	0.950	0.078	43.1 %	0.175	29.1 %
Vancouver	Pandianta	0.209	0.421	0.190	0.207	0.129	0.045	0.006	180%	0 106	10/1%
vancouver	I chuichte	(24.8)	(11.2)	(7.4)	(7.9)	(5.0)	0.945	0.090	10.9 /0	0.190	19.4 /0
	Sin dummy	0.166	0.685				0.919	0 1/1	_	0 244	_
	Sin aaniny	(22.8)	(40.1)				0.717	0.141		0.244	
	Constante	0.237	0.381	0.056	0.037	0.015	0.682	0.206	23.3.%	0 228	117%
Punta Arenas	Constante	(16.4)	(9.3)	(7.0)	(4.3)	(1.8)	0.082	0.200	25.5 /0	0.228	11.7 /0
	Pendiente	0.266	0.290	0.151	0.115	0.061	0 693	0 100	261%	0 227	121%
	I charche	(16.6)	(6.0)	(7.6)	(5.4)	(2.9)	0.075	0.177	20.1 /0	0.227	12.1 /0
	Sin <i>dummy</i>	0.190	0.574				0 585	0 269		0.258	
		(12.9)	(16.4)				0.505	0.207		0.230	
Aberporth	Constanta	0.200	0.533	0.052	0.043	0.024	0.048	0.120	44 0 %	0.128	22304
	Constante	(65.7)	(48.4)	(17.7)	(14.0)	(8.5)	0.940	0.120	44.9 %	0.128	22.3 %
	Pandianta	0.226	0.432	0.164	0.147	0.096	0.043	0 1 2 1	40 3 %	0 132	108%
	1 endiente	(60.1)	(26.0)	(16.2)	(13.8)	(9.0)	0.945	0.131	40.3 70	0.132	17.0 70
	Sin dummy	0.188	0.668				0.005	0.210		0 165	
	Sill aunimy	(49.7)	(62.3)	-	-		0.905	0.219		0.105	
	Constante	0.179	0.582	0.003			0.050	0 160	0.41.04	0.211	0.25.0/
		(55.0)	(73.7)	(1.2)			0.950	0.109	0.41 %	0.211	0.55 %
Toino Crondo	Dandianta	0.179	0 <mark>.5</mark> 89	-0.004			0.050	0 170	0 15 0/	0.212	0.10.0/
Taipa Grande	rendiente	(54.2)	(68.0)	(-0.7)			0.950	0.170	0.13 %	0.212	0.10 %
	Sin dumm	0.179	0.586				0.050	0 170		0.212	
	Sin aummy	(55.0)	(79.7)				0.930	0.170		0.212	
	Constanta	0.232	0.500	0.024	0.013	0.001	0 709	0.152	770/	0.228	610/
	Constante	(13.4)	(22.9)	(3.9)	(2.3)	(0.1)	0.798	0.155	7.7 %	0.228	0.1 %
Monuto	Dandianta	0.243	0.484	0.038	0.020	0.001	0.901	0.150	0.1.0/	0.226	690/
Maputo	Pendiente	(17.7)	(27.1)	(4.5)	(2.4)	(0.1)	0.801	0.150	9.1 %	0.226	0.8 %
	Sin dumm	0.291	0.428				0 791	0 166		0.243	
	Sili auminy	(30.4)	(29.8)				0.781	0.100		0.243	
	Constanta	0.261	0.483	0.001			0.926	0.206	0.021.0/	0.270	0.027.0/
	Constante	(14.0)	(22.2)	(0.2)			0.830	0.290	0.021 %	0.570	0.027 %
Demin	Dendlante	0.262	0.481	0.002			0.020	0.200	0.014.0/	0.270	0.020.0/
Darwin	renulente	(19.2)	(28.9)	(0.2)			0.830	0.290	0.014 %	0.570	0.020 %
	<u> </u>	0.264	0.480				0.020	0.200		0.270	
	SIII aummy	(24.8)	(33.1)				0.830	0.290		0.570	

Evaluación estadística de los modelos con dummy según estaciones del año, Tabla A.4.33 estimados con las bases de datos locales

 $^{-1}\Delta$ SSR es la diferencia porcentual entre el SSR del modelo sin *dummy* y con *dummy*

 $^{2}\Delta$ RMSE es la diferencia porcentual entre el RMSE del modelo sin *dummy* y con *dummy*

En la Tabla A.4.33 se observa que los modelos estimados para Punta Arenas, Taipa Grande, Maputo y Darwin tienen problemas de significancia estadística en las variables *dummy*. El máximo aumento de ajuste se observa en Punta Arenas con un $R^2 = 0.693$ cuando las *dummy* son incluidas en la pendiente del modelo lineal. Los modelos de las otras bases de datos presentaron menores mejoras del ajuste del modelo.

Aberporth y Vancouver fueron las estaciones que más redujeron el error de estimación del índice de claridad (Δ SSR = 45 %). Además, los modelos con variables *dummy* en su constante lograron precisar en un 29.1 % y 22.3 % más las estimaciones de la radiación solar (\overline{H}) de estas estaciones. La reducción del SSR en estaciones que están fuera de los trópicos (Vancouver, Punta Arenas, Aberporth y Maputo) es considerable, ya sea cuando se utilizan las variables *dummy* en la constate o en la pendiente del modelo, siendo la primera configuración la que presenta las mayores reducciones del error (30 % en promedio). En cambio, las estaciones tropicales, no presentaron un cambio importante en sus errores y ajuste.

Al comparar estos modelos con la Prueba F de Fisher, se obtuvieron los resultados mostrados en la Tabla A.4.34. En ella se observa que para las bases de datos Vancouver, Punta Arenas, Aberporth y Maputo efectivamente los modelos lineales con *dummy*, ya sea en la constante o en la pendiente, son estadísticamente mejores que el Modelo Ångström-Prescott sin *dummy*.

	-						
Estaciones	N° datos	Dummy en:	Con dummy	Sin dummy	ΔSSR	F	F crítico
Voncouvon	144	Constante	0.071	0.141	45.08%	38.03	2.18
vancouver	144	Pendiente	0.096	0.141	18.85%	22.13	2.18
Dunta Anones	102	Constante	0.206	0.269	23.30%	18.94	2.18
Punta Arenas	192	Pendiente	0.199	0.269	9.64%	6.65	2.18
A hours out h	109	Constante	0.120	0.219	44.91%	109.53	2.09
Aberportin	408	Pendiente	0.131	0.219	40.30%	90.67	2.09
Taina Cranda	226	Constante	0.169	0.170	0.41%	1.37	2.99
Taipa Grande	330	Pendiente	0.170	0.170	0.15%	0.50	2.99
Marrata	252	Constante	0.153	0.166	6.1%	6.70	2.18
Maputo	252	Pendiente	0.150	0.166	6.9%	6.82	2.18
Damin	216	Constante	0.296	0.296	0.017%	0.04	2.99
Darwin	216	Pendiente	0.296	0.296	0.023%	0.04	2.99

Tabla A.4.34Comparación del SSR del Modelo Ångström-Prescott con los modelos que
incluyen variables *dummy*

Por otro lado, los modelos con *dummy* estimados para las dos estaciones tropicales, no lograron obtener un SSR lo suficientemente pequeño para que estadísticamente el modelo con *dummy* fuera mejor que el sin *dummy*.

Para ejemplificar el uso de los modelos con *dummy*, en la Figura A.4.2 se muestra el modelo lineal con *dummy* (línea azul, verde, magenta y rojo) por estaciones del año y el modelo lineal sin *dummy* (línea negra segmentada) obtenidos con los datos de la estación radiométrica ubicada en Aberporth. En la Figura A.4.2 se observa claramente que a medida que la estación del año se acerca al verano, las estimaciones de $\overline{H}/\overline{H}_0$ de los modelos son mayores, lo que reafirma que las *dummy* por estaciones del año son apropiadas en esta base de datos. También, se observa claramente la diferencia entre las estimaciones de los datos de invierno del modelo don *dummy* y el sin *dummy*, mostrando que esta estación del año no es bien representada por un modelo lineal sin *dummy*.

Figura A.4.2 Comparación Modelo Ångström-Prescott con (a) Modelo lineal con *dummy* por estación del año en constante y (b) en pendiente, estimados para Aberporth

En resumen, a nivel local no es recomendable utilizar un modelo lineal con *dummy* por estaciones del año en ubicaciones tropicales, ya que al no haber una presencia marcada de las estaciones del año, el efecto de las variables *dummy* se vuelve despreciable. Para el caso de las estaciones radiométricas de mayores latitudes, es necesario verificar caso a caso qué tipo de modelo genera mejores estimaciones, si uno con variables *dummy* en la constante del modelo, en la pendiente o simplemente un modelo sin *dummy*.

Anexo 4.5Modelos de radiación solar global con inserción de variables dummy segúnlatitud y estaciones del año estimado a nivel mundial

A nivel mundial es interesante saber qué ocurre si se realiza un análisis similar al aplicado a las bases de datos locales. Por lo tanto, se muestra la evaluación estadística de un modelo lineal de radiación solar global incidente sobre una superficie horizontal (Ecuación 2.6) al cual se le agregaron variables *dummy* que incluyen los criterios de segmentación según rangos de latitud y estaciones del año (Tabla 4.21) en su constante y en su pendiente. Las nueve variables *dummy* mencionadas son las descritas a continuación:

- D₁=1 cuando el dato pertenezca a una estación ubicada en la zona intertropical y que corresponda a cualquiera de los meses de verano. Es cero en cualquier otro caso.
- D₂=1 cuando el dato pertenezca a una estación ubicada en la zona de latitudes medias y que corresponda a cualquiera de los meses de verano. Es cero en cualquier otro caso.
- $D_3=1$ cuando el dato pertenezca a una estación ubicada en la zona de latitudes medias y que corresponda a cualquiera de los meses de primavera. Es cero en cualquier otro caso.
- D₄=1 cuando el dato pertenezca a una estación ubicada en la zona de latitudes medias y que corresponda a cualquiera de los meses de otoño. Es cero en cualquier otro caso.
- D₅=1 cuando el dato pertenezca a una estación ubicada en la zona de latitudes medias y que corresponda a cualquiera de los meses de invierno. Es cero en cualquier otro caso.
- D₆=1 cuando el dato pertenezca a una estación ubicada en la zona de latitudes altas y que corresponda a cualquiera de los meses de verano. Es cero en cualquier otro caso.
- D₇=1 cuando el dato pertenezca a una estación ubicada en la zona de latitudes altas y que corresponda a cualquiera de los meses de primavera. Es cero en cualquier otro caso.
- D₈=1 cuando el dato pertenezca a una estación ubicada en la zona de latitudes altas y que corresponda a cualquiera de los meses de otoño. Es cero en cualquier otro caso.
- D₉=1 cuando el dato pertenezca a una estación ubicada en la zona de latitudes altas y que corresponda a cualquiera de los meses de invierno. Es cero en cualquier otro caso.

Tal como se mencionó, las variables *dummy* fueron incorporadas al modelo lineal Ångström-Prescott (Ecuación 2.6) de tal forma que modifiquen la constante del modelo cuando alguna de ellas sea igual a uno, es decir, cuando se cumpla alguna de las condiciones de latitud y estaciones del año habrá un cambio en la estimación. El modelo lineal planteado es el mostrado en la Ecuación A.4.3:

$$\frac{\overline{H}}{\overline{H}_{0}} = \left(a + \gamma_{1}D_{1} + \gamma_{2}D_{2} + \gamma_{3}D_{3} + \gamma_{4}D_{4} + \gamma_{5}D_{5} + \gamma_{6}D_{6} + \gamma_{7}D_{7} + \gamma_{8}D_{8} + \gamma_{9}D_{9}\right) + b\frac{\overline{S}}{\overline{S}_{0}}.$$
 (A.4.3)

Complementariamente, se agregaron las nueve variables dummy (D₁ a D₉) con sus correspondientes coeficientes al modelo Ångström-Prescott de tal manera que éstas modifiquen su pendiente, tal como se muestra la Ecuación A.4.4:

$$\frac{\bar{\mathrm{H}}}{\bar{\mathrm{H}}_{\mathrm{o}}} = a + (b + \gamma_1 \mathrm{D}_1 + \gamma_2 \mathrm{D}_2 + \gamma_3 \mathrm{D}_3 + \gamma_4 \mathrm{D}_4 + \gamma_5 \mathrm{D}_5 + \gamma_6 \mathrm{D}_6 + \gamma_7 \mathrm{D}_7 + \gamma_8 \mathrm{D}_8 + \gamma_9 \mathrm{D}_9) \frac{\bar{\mathrm{S}}}{\bar{\mathrm{S}}_{\mathrm{o}}}.$$
 (A.4.4)

Los resultados de la estimación de ambos modelos se muestran en la Tabla A.4.35. Bajo cada coeficiente se encuentra su respectivo test-t.

Tabla A.4.35Comparación estadística del modelo lineal con y sin variables dummy

Modelo	а	b	γ_1	γ ₂	γ ₃	γ_4	γ ₅	γ ₆	γ_7	γ_8	γ ₉	R ²	SSR
Ec. A.4.3	0.212	0.516	0.013	0.028	0.027	0.018	0.007	0.026	0.028	0.016	-0.002	0.950	216.4
	(331)	(680)	(22)	(56)	(45)	(30)	(13)	(51)	(46)	(26)	(-4)	0.859	210.4
	0.000	0 501	0.016	0.042	0.042	0.000	0.070	0.042	0.055	0.027	0.007		
Ec A 4 4	0.223	0.501	0.016	0.043	0.043	0.028	0.072	0.043	0.055	0.037	-0.007	0.857	219.9
20.11.111	(611)	(628)	(17)	(57)	(44)	(27)	(8)	(52)	(49)	(28)	(-4)		
	0 222	0.520											
Ec 2.6	0.225	0.329										0.849	232.1
(Original)	(702)	(859)											

En la Tabla A.4.35 es posible observar que los coeficientes de todas las variables son estadísticamente significativos. No obstante, los test-t de las variables *dummy* son mucho menores que los obtenidos para los coeficientes *a* y *b*, por lo que puede que su significancia estadística se deba al tamaño de la base de datos y no a su importancia en el modelo. El ajuste (R^2) de los modelos con variables *dummy* es ligeramente superior (1 %) al del modelo Ångström-Prescott estimado en la Sección **¡Error! No se encuentra el origen de la referencia.**. Por otro lado, el SSR de del modelo con variables *dummy* en la constante (SSR=216.4) es un 6.7 % menor que el SSR del

Modelo Ångström-Prescott (SSR=232.1) y el SSR del modelo con variables *dummy* que modifican su constante es un 5.3 % menor el del modelo Ångström-Prescott. Los modelos de la Tabla A.4.35 son los mostrados en la Figura A.4.3, en la que se observa que ambos modelos entregan estimaciones similares de $\overline{H}/\overline{H}_0$ para todas las condiciones.

Figura A.4.3 (a) Modelo lineal con variables *dummy* modificando su constante y (b) modificando su pendiente

En la Figura A.4.4 se muestran los coeficientes estimados del modelo Ångström-Prescott con la base de datos mundial (circulo negro), los diez modelos Ångström-Prescott estimados para los segmentos de la base de datos (puntos azules) y los coeficientes obtenidos para el modelo Ångström-Prescott con adición de variables *dummy*, tanto para cuando se modifica la constante (puntos verdes) y para cuando se modifica la pendiente del modelo (puntos rojos).

Figura A.4.4 Coeficientes estimados del modelo lineal por tramos, *dummy* en constante y pendiente y del Modelo Ångström-Prescott sin segmentar

En la Figura A.4.4 se puede observar que todos los coeficientes *a* y *b* están concentrados en un rango acotado, por lo que todos ellos estiman índices de claridad ($\overline{H}/\overline{H}_0$) similares para un asoleamiento relativo ($\overline{S}/\overline{S}_0$). Por lo tanto, es lógico que los modelos presenten poderes predictivos similares. En ambos modelos estimados, es obvio que la reducción de los errores y el aumento del ajuste se deben a la adición de más variables explicativas, sin embargo, éstas no poseen un gran efecto en el desempeño estadístico de los modelos.

En conclusión, a nivel mundial el aumento del R^2 y la disminución del SSR de los modelos de radiación es marginal considerando que se agregaron nueve variables *dummy* al Modelo Ångström-Prescott, es decir, no hay un incremento importante de poder predictivo. Por lo tanto, el Modelo Ångström-Prescott sigue siendo preferido a nivel mundial por su simplicidad.

