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maǵıster nacional 2017, CONICYT-PFCHA/MagisterNacional/2017-22171385 que recib́ı
durante todo el programa de maǵıster.
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Resumen

En este trabajo mostramos cómo se pueden haber formado semillas de agujeros negros
de masa intermedia en el Universo temprano a través de colisiones estelares entre las
primeras estrellas del Universo que formaron cúmulos estelares densos. Nuestro trabajo
se centra en estudiar los primeros cúmulos estelares, formados por estrellas de población
III que según estudios recientes deben haber sido mucho más masivas y con radios más
grandes, por un factor de 100, que las estrellas formadas en el universo de hoy en d́ıa.
Consideramos además los cúmulos más densos formados con un half-mass radius de
0.1 pársec y libres de gas, y seguimos su evolución con simulaciones N -body usando el
código NBODY6 hasta un tiempo de aproximadamente 2 Millones de años. Las colisión
entre dos estrellas fue tratada con la aproximación hit and stick asumiendo que toda
la masa se conserva y que el producto de la colisión tiene la misma densidad que las
estrellas que colisionan. No incluimos evolución estelar ni una función de masa inicial en
nuestras simulaciones. Nuestra investigación muestra que en dichos sistemas se produce
una contracción de la parte central del cúmulo por interacciones entre las estrellas, las que
comienzan a fusionarse con una sola estrella en el centro del cúmulo, formando un objeto
que puede llegar a contener más del 10% de la masa total del sistema. Realizamos un total
de 280 simulaciones para entender cómo el número de estrellas y su tamaño influye en la
formación y la masa final del objeto más masivo del cúmulo. Finalmente encontramos
relaciones matemáticas que nos permiten estimar la masa del objeto a cualquier tiempo y
para diferentes combinaciones del número de estrellas y su tamaño, en un cúmulo estelar
del Universo temprano, mostrando que es posible formar agujeros negros con masas
en el orden de 103 M� dentro del tiempo de vida t́ıpico de las estrellas de población
III. También exploramos los efectos del gas en los cúmulos y en el proceso de runaway
growth usando un potencial de Plummer anaĺıtico y estático centrado en el cúmulo,
sin acreción de masa ni expulsión de gas. Nuestros resultados muestran un incremento
en el número de colisiones y en la masa del objecto final, sin embargo, encontramos
un delay en el crecimiento del objeto más masivo relacionado a las dificultades para
formar sistemas estelares binarios debido a las altas velocidades de las estrellas en esos
sistemas producto de la fuerza gravitacional extra ejercida por el potencial. Finalmente
realizamos las primeras simulaciones de prueba con la interfaz AMUSE, con el objetivo
de acoplar en el futuro un código de hidrodinámica para tratar el gas de forma realista
en futuras investigaciones. Comparamos los resultados con las simulaciones realizadas
con NBODY6 encontrando un excelente acuerdo tanto en la evolución de los cúmulos
como en la formación de objetos masivos en su centro.
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Abstract

In this work we show how could have been formed intermediate mass black holes in
the early Universe through stellar collisions between the first stars of the Universe that
formed part of dense stellar clusters. Our work focuses on studying the first star clusters,
formed by population III stars which according to recent studies they must have been
much more massive and with larger radii, by a factor of 100, than the stars formed
in the present day Universe. We also consider the most dense clusters formed with a
half-mass radius of 0.1 parsec and gas free, and we follow their evolution with N -body
simulations using the code NBODY6 until a time of approximately 2 Million years. The
collision between two stars was treated with the hit and stick approximation assuming
that all the mass is conserved and that the collision product has the same density that
the colliding stars. We did not include stellar evolution nor an initial mass function
in our simulations. Our research shows that in such systems there is a contraction of
the central part of the cluster by interactions between the stars, which start to merge
with a single star in the center of the cluster, forming an object that could contain more
than 10% of the total mass of the system. We performed a total of 280 simulations to
understand how the number of stars and their size influences the formation and the final
mass of the most massive object. Finally we find mathematical relations that allow us
to estimate the mass of the object at any time for different combinations of the number
of stars and their size in a star cluster of the early Universe, showing that it is possible
to form black holes with masses in the order of 103 M� within the typical lifetime of
population III stars. We also explored the effects of the gas in the clusters and in the
process of runaway growth using an analytic and static Plummer potential centered in
the cluster, without mass accretion nor gas expulsion. Our results show an increase in the
number of collisions and in the mass of the final object, however, we found a delay in the
growth of the most massive object related to the difficulties for forming binary systems
due to the high velocities of the stars in these systems owing to the extra gravitational
force exerted by the potential. Finally we performed the first test simulations with the
AMUSE interface, with the objective of coupling in the future a hydrodynamics code to
treat the gas in a realistic form in future investigations. We compared the results with
the simulations performed with NBODY6 finding an excellent agreement as well as in
the clusters evolution as in the formation of massive objects at their center.
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Chapter 1
Introduction

The early evolution of the Universe, in particular the epoch of reionization and the
formation of the first black holes is still not very well understood. On the theoretical side
some progress has been made, however this is not very useful without the observations
that could confirm or falsify these models, nevertheless these observations will become
possible in the next decade thanks to the James Webb Space Telescope [1].

One of the most intriguing subjects is about the formation of Super Massive Black
Holes (SMBHs) at high redshift. These astrophysical objects contain about 106-109 M�
and are found in the early and in the local Universe. For example, in the center of the
Milky Way there is a SMBH with a mass of 4.5×106 M� at a distance of R0 = 8.4 kpc
[2, 3].

Finding these SMBHs in the local Universe is not that surprising given that they had
more than 12 Gyr to grow, the intriguing issue is the presence of SMBHs at high redshift
(z ≥ 6) because these objects had less than one million years to grow.
For about a decade, the most distant Quasar known was ULASJ1120+0641 at redshift
z = 7.085. This Quasar hosts a SMBH with a mass of M = 2.9× 109 M� [4]. However,
in a recent work, Bañados et al.[5] found the most distant Quasar known to date, ULAS
1342+0928 at redshift z = 7.54 which hosts a SMBH with M = 8×108 M�. The presence
of those supermassive black holes when the Universe was only 690 Myr old (z = 7.54)
suggests that either the first black hole seeds were as massive as 5×105 M� or that they
were grown incredibly fast, either by accreting the surrounding gas at super-Eddington
rates or by merging thousands of smaller black holes, or probably, a combination of both
processes.

1.1 Formation of Black Holes at high redshift

The most promising mechanism to explain SMBHs at high redshift is the so-called Direct
Collapse (DC) [6, 7, 8], and consists in the formation of a very massive black hole seed
with a mass Mseed ∼ 105 M�. This scenario is only possible if the main cooling mechanism
during the collapse of a massive gas cloud (Mcloud ∼ 106 − 108 M�) is suppressed.

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Conditions for the direct collapse scenario. Radiation flux required to destroy
and suppress the formation of H2 molecules in a 107 M� gas cloud. One zone and 3D
models are presented, along with a red cross showing the results of including an X-Ray
background which makes little difference. Source: Latif et al. 2015[9].

In the early Universe, massive gas clouds collapse due to H2 rovibrational cooling,
however if H2 is dissociated, the only cooling mechanism is through Lyα emission of
atomic hydrogen, but the cooling is less efficient and the cloud reaches temperatures of
the order of 104 K collapsing isothermally without fragmentation, and leading to the
formation of a 0.01 M� protostar which grows with an accretion rate of Ṁ = 0.1 −
1 M� yr−1. The main problem with this process is that it requires a very high UV flux
in order to dissociate H2 and to prevent further formation. The required flux is often
expressed in units of J21 = 10−21 erg cm−2 s−1 Hz−1 sr−1 and recent studies have found
that this scenario is possible if J21 ∼ 104 [9](see Fig. 1.1).

Such a high UV flux is conceivable only in the close vicinity (∼ 10 kpc) of a star-
forming galaxy and most of the closest stars must be Population II stars, given that they
emit more photons than Population III (Pop. III) stars with approximately the same
energy required to dissociate H2 and to detach electrons from H− which is the main
formation channel of H2. These special conditions make this scenario a very rare and
special one, and it is thus very unlikely that all the observed SMBHs at z. 6 were formed
this way.

An alternative path to form very massive black hole seeds is the collapse of massive
Pop. III stars which are more massive than present day stars because they were formed
in a low metallicity environment where the gas cooling was much less efficient. This leads
to a larger Jean’s Mass of the order of 100 M� which in turn produces stars with masses
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Figure 1.2: Possible detection of the first stars. Absorption profile of the 21 cm line
plotted against the redshift and the age of the Universe. The absorption is due to the
spin flip of the electron in the H atoms of the gas that is in the surroundings of the first
stars. The original absorption profile is a single line but looks like a wide absorption
signal due to absorption at slightly different epochs. The redshift is due to the expansion
of the Universe and the profile is detected by different hardware configurations. The
black solid line is the best fit for the hardware and software configurations which yields
the best signal-to-noise ratio. Source: Bowman et al. 2018[10].

in this range. For this reason the expected black hole masses of collapsed Pop. III stars
are around 20-50 M�. Dedicated radio observations seem to have detected the footprint
that these stars leave on the cosmic gas, and the detection agrees with existing models
for their formation and characteristics, however the amplitude of the signal was higher
than expected (see Fig. 1.2). A diagram showing the different paths for the formation of
massive black holes in the early Universe is presented in Fig. 1.3.

1.2 Formation of the first stars

The first stars of the Universe were much more massive than present day stars, however
the formation of such massive stars is not completely understood yet, moreover the
existence of the most massive stars discovered to date cannot fully be explained. Some
examples are the VFTS 682 Star with 150 M� [12] and R136a1 with 315 M� [13].

In the early Universe, the gas from which the first stars were formed was composed
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Figure 1.3: Three different paths for forming massive black hole seeds in the early Uni-
verse. The path in the left represents the collapse of the first generation of stars which
emerged from gas with the abundances expected after recombination (Z=0). On the
right, the other possible path requires the presence of few metals (Z<Zcrit) in a gas
cloud that will form a disc as it cools and then a star cluster may be formed which
will experience a runaway collision process producing a massive star or black hole, or,
alternatively, if the star formation is suppressed, a strong inflow of gas is expected at
the center of the cloud originating a super massive star or an IMBH. Source: Volonteri
2010[11].
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mainly of hydrogen and helium and the main cooling mechanism was molecular hydrogen
cooling. This means that the cooling was less efficient than in the present day Universe
where metals and dust are present. The temperature of the gas in the star forming regions
of the early Universe was about 300 K, whereas the molecular clouds of the present day
Universe have a temperature of about 10 K. Due to these high temperatures, the thermal
pressure in the gas, and, therefore the Jeans mass of the fragments were enhanced by a
factor of about 100. Today the typical stellar mass is 1 M�, therefore we could expect
that in the early universe the typical stellar mass was 100 M�.

Another important process occurring in protostars is the mass accretion, which is
expected to be very high in the early Universe [14] [15], and this parameter may deter-
mine if a protostar becomes a high mass star. According to Hosokawa et al.[16], the
formation of massive stars by accretion requires an accretion rate of Ṁ∗ > 10−4 M� yr−1

to overcome the radiation pressure from the forming star in order to keep accreting mass
once the star has ignited hydrogen in the core.

The first stars formed in the Universe, the Pop. III stars, were assembled in dark
matter minihalos with masses around 105 − 106 M� at redshift z ∼ 20-25 [17]. In a
recent study using interferometry to detect the absorption profile of the redshifted 21 cm
line of the atomic hydrogen, Bowman et al.[10] found evidence that the first stars existed
between redshift z ∼ 15-20, even though the amplitude of the signal was higher than
expected, the observation is consistent with actual models for the formation of the first
stars in primordial gas clouds which are formed mainly of atomic hydrogen, and had
virial temperatures around 1000 K. Trace amounts of H2 in these clouds triggers the
cooling and therefore the collapse of the cloud [18]. H2 is formed in the cloud via two
reactions:

H + e− = H− + γ

H + H− = H2 + e−

The first reaction is the capture of one electron by atomic hydrogen. In the early
Universe these free electrons are the ones remaining in the gas after recombination. The
cooling of the gas is due to rovibrational emission of H2, and the gas can be cooled
down to temperatures around 300 K and densities of n ∼ 104 cm−3. At this density
and temperature, the gas fragments and forms clumps of gas with masses of the order
of the Jeans mass MJ ∼ 1000 M�. These fragments will undergo further collapse until
densities of the order of n ∼ 1014 − 1016 cm−3 (Yoshida et al.[19]). At this stage, three-
body reactions form H2, and cause the cloud to become fully molecular, moreover, the gas
becomes optically thick to molecular hydrogen cooling and the energy remains trapped
in the cloud, which in turn, rises the temperature of the gas until the formation of a
protostar [20].
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Numerical simulations using Adaptive Mesh Refinement (AMR) or Smoothed Parti-
cle Hydrodynamics (SPH) following the collapse of such clouds have found no evidence
for fragmentation until these densities (Abel et al.[21]; Yoshida et al.[15, 19]). Therefore
we expect the formation of a protostar with a mass Mprotostar ∼ 0.01 M� but the accre-
tion rates at this stage can be very high Ṁ ∼ c3

s ∼ 10−3−10−2 M� yr−1 (Abel et al.[21],
Yoshida et al.[15]).

In a study by Hosokawa & Omukai[16] about stellar evolution of accreting protostars
with accretion rates Ṁ ∼ 10−6 − 6× 10−3 M� yr−1, they solve the equations governing
the stellar structure and the accreting envelope simultaneously. They found that the
evolution of a protostar accreting at Ṁ = 10−3 M� yr−1 is divided in four characteristics
phases (see also Fig. 1.4):

• Adiabatic Accretion (M. 6 M�): In this phase the material is being accreted into
the protostar and the entropy generated at the shock front is embedded into the
interior of the protostar without losing it due to the high opacity of the gas.

• Swelling (6 M� . M . 10 M�): During this phase the opacity of the gas de-
creases, and the entropy stored in the center of the protostar is released causing
an expansion of the outer layers. At this point the protostar can reach a radius of
100 R�.

• Kelvin-Helmholtz contraction (10 M� . M . 30 M�) with the decrease in opacity
comes an expansion of the envelope of the protostar, the thermal pressure decreases
and therefore a contraction will occur.

• Main-sequence accretion (M & 30 M�) along with the contraction, the tempera-
ture of the protostar increases until reaching the temperature needed for hydrogen
burning at the center, and the protostar becomes a star in the main sequence phase.
Then the accretion may continue on to the protostar.
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Figure 1.4: Mass and Radius evolution of a protostar accreting mass at Ṁ =
10−3 M� yr−1. The evolution is divided in four characteristics phases. Note the en-
hancement in radius when the protostar reaches about 10 M�. The central temperature
(dashed line) is shown in the bottom panel in units of 108 K along with the deuterium
fraction. Source: Hosokawa et al.[16]

An even higher accretion rate is possible if the main cooling mechanism is suppressed
in the early stages of the cloud collapse. As shown by Latif et al.[9], a realistic model for
UV and X-ray radiation from a nearby star-forming region, could dissociate and prevent
the formation of H2 molecules in primordial gas clouds, however, the required conditions
are quite rare and the expected occurrence of this is relatively low. Nevertheless, if the
H2 cooling is suppressed in a cloud, we expect the only cooling mechanism to be Lyman-
α transitions of atomic hydrogen, which is much less efficient in cooling the gas, and the
expected temperatures are around 1000 K. A protostar formed in the center of those
clouds can reach accretion rates in the order of 0.1-1 M� yr−1. Those rapidly accreting
protostars can reach radius in the order of Rprotostar ∼ 1000 R� as shown by Hosokawa
et al.[22].
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1.3 Core Collapse and Stellar Collisions

Stellar collisions have been investigated before in the present day Universe as the runaway
collisions scenario. Many authors find that runaway collisions occur in dense massive star
clusters once these clusters undergo a process termed core collapse [23, 24, 25, 26] which
is a consequence of the redistribution of kinetic energy due to close stellar encounters
inside the cluster. Close to the cluster center stars are moving faster due to the deeper
gravitational potential, this causes frequent close encounters between stars and some of
them are thrown away from the cluster center, taking with them some kinetic energy
from the stars in the core. As the stars are left with less kinetic energy in the cluster
center, they will fall deeper in the potential well and this effect can be seen at large scales
as a collapse of the cluster core.
The core collapse time scale is related to the cluster relaxation time or dynamical time
scale. This is the time required for a star with a typical velocity to cross the system. In
practice, the typical velocity is taken to be the root-mean square of the velocity of the
stars. The dynamical time scale for a system in virial equilibrium is defined as:

tdyn =

√
R3

vir

GM
, (1.1)

where Rvir is the virial radius of the cluster, M is the total mass of the cluster and G is
the gravitational constant. This is the time scale on which virial equilibrium and stable
stellar orbits are established. Another important time scale for gravitating systems is the
relaxation time scale trelax, related to changes in global parameters of the cluster like or-
bital parameters of the stars. Relaxation is driven by two body encounters which causes
a redistribution of energy in the system. For a system containing identical particles, the
relaxation time scale is defined as [25]:

trelax =
0.065〈v2〉3/2

nm2G2 ln Λ
, (1.2)

where n is the number density of stars, m is the mass of one star and Λ is the ratio
between the size of the system and the distance at which an encounter would result in
a 90 degree deflection of the two stars. For N identical particles, Λ = γN with γ = 0.4
[25], while for more realistic systems Giersz and Heggie [27] found γ = 0.11. A common
measure for the relaxation time of a cluster is the half-mass relaxation time scale, which
is obtained replacing all quantities in Eq. (1.2) by their global averages and assuming
virial equilibrium:

trh = 0.138
N

ln γN
tdyn. (1.3)

Numerical experiments find that core collapse is expected to occur at about 20 trh[28]
but this also depends on the fraction of primordial binaries in the cluster.
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Binary systems plays an important role during the collapse phase and re-expansion
of the core in the post collapse phase. It has been shown that binary stars may fall to the
cluster center through the effects of dynamical friction, as these systems are more massive
than single stars; moreover, the interaction between binary and single stars causes the
binary system to become more tightly bound, and this effect, instead of releasing kinetic
energy from the core, creates hard binaries. For that reason, this mechanism delays core
collapse [29, 30].
On the other hand, dynamical friction of single massive stars usually occurs faster than
the core collapse time. A clear signature of core collapse is the presence of a power-law
cusp in the surface brightness of a star cluster, an example of a core collapsed cluster is
Messier 15 which also shows x-ray sources close to its center [31].

1.4 Previous Work

1.4.1 Stellar collisions in previous studies

Star clusters that undergo core-collapse are expected to produce the so-called “runaway
collisions scenario”, this is, a single star which experiences most of the collisions and
grows exponentially in mass during the core collapse process [32, 33, 34]. Stellar collisions
have been suggested as the origin of the brightest supernova SN2006gy [35] given that
its exceptional luminosity must have been due to the explosion of a massive star with
M > 100 M� [36]. If this is correct, after the fade of the supernova, a dense star cluster
should be visible. Stellar collisions are also invoked to explain the lack of massive stars
in the IMF of the Orion Nebula Cluster (ONC) given that massive stars have a larger
probability to merge in the center of dense star clusters due to dynamical friction and
the larger radius of these stars. If the cluster was denser in the past and stellar collisions
created a big black hole with M > 100 M�, this could be the reason for the large velocity
dispersion of the four Trapezium stars [37].

Further studies of stellar collisions during the early stages of a star cluster evolution
have shown that the fraction of collisions (i.e total number of collisions divided by the
initial number of stars) is around 1% even for very dense star clusters with a half mass
radius Rh ≤ 0.1 pc. Baumgardt and Klessen [38] performed N -body simulations of em-
bedded star clusters with a Kroupa IMF with limits of 0.1 M� and 15 M� in order to
asses the role of stellar collisions in the formation of massive stars, however, as can be
seen in Fig. 1.5 the fraction of collisions is around 1% even for dense clusters with initial
binaries.
On the other hand, Moeckel and Clarke [39] also performed N -body simulations of em-
bedded star clusters, modeling the gas as an analytic potential with a Plummer density
profile. The initial mass function is a simple power law η(m) ∝ m−2−35 and the limits
are 0.03-30 M�, the gas is instantaneously expelled once the stars have enhanced their
mass by a factor of 10 due to accretion. By including gas accretion onto the stars, the
core collapse phase is not only a consequence of dynamical evolution of the cluster but
instead is also caused by the mass growth of the stars, and the gas is expelled when the
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cluster has passed the core collapse phase or shortly before. The deeper core collapse
due to the gas potential and the accretion of the stars nevertheless produces a total of
2.5 × 10−3 % of colliding stars, using 32 000 particles in a very compact cluster with a
half-mass radius Rh = 0.14 pc (see [39], their Table 1.).

Figure 1.5: Total number of collisions in a star cluster for different initial half mass radius
and different initial number of stars. Simulations with an initial binary population are
shown also, and clearly they produce more collision. Source: Baumgardt and Klessen
2011 [38].

1.4.2 Stellar collisions in the early Universe

In a more recent study Sakurai et al.[40] performed cosmological simulations to repro-
duce the initial conditions of a collapsing gas cloud. They then replaced a fraction of the
gas particles depending on the Star Formation Efficiency (SFE) to produce star clusters
with Mcluster = 105 M�. They assumed a metallicity Z ∼ 10−4Z� which is expected for
the formation of second generation stars, when the environment has already been pol-
luted by stellar winds and supernova explosions from Pop. III stars. At this metallicity,
fragmentation is expected to occur at densities nH ∼ 107 cm−3 which is the central gas
density of the cloud at the moment when they replace the gas particles by a star cluster
(see their Fig. 1). The dynamical evolution of the cluster is performed with the hybrid
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N-body code BRIDGE (Fujii et al.[41]). They produce star clusters with Rh ∼ 1 pc,
with N = 5000 - 20000 particles and adopt a power law Initial Mass Function (IMF)
given by η(m) ∝ m−2.35 with masses in the range 3-100 M�. They show that massive
black holes with masses several times 104 M� can be formed.

Our study is focused on the star clusters made up of stars formed out of a gas cloud
with metallicity Z < 10−5. At this low metallicities fragmentation is suppressed until
densities nh ≥ 109 cm−3 and we expect a smaller number of objects but with higher
masses (Clark, Glover & Klessen[42]) consistent with a flat IMF. Moreover if a sub-
turbulent motion is present during the formation of the stars, fragmentation is expected
to occur at densities nh ∼ 1011 cm−3 in the disk formed around the first protostar,
and an enhancement in the number of objects is expected for turbulence in the order of
δvc ∼ 0.4 (Clark et al.[43]).
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Chapter 2
NBODY6

2.1 General overview

To integrate the motion of the particles in our star clusters, we use the code NBODY6
[44].

NBODY6 uses a Hermite integrator method, which is a fourth-order predictor cor-
rector method and allows the use of a longer time-step than the individual time-step
scheme to get the same accuracy [45]. We briefly describe here some of the features of
NOBDY6 based on the user manual of the code, written by Sverre Aarseth[46].

2.2 The Hermite integrator method

Each particle is described by its position r0, velocity v0 and mass m at time t0. The
acceleration and its time derivative for each particle due to all other particles are given
by:

a0,i = −
∑
i 6=j

Gmj
R

R3
, (2.1)

˙a0,i = −
∑
i 6=j

Gmj

[
V

R3
+

3R(V ·R)

R5

]
, (2.2)

where G is the gravitational constant; R = r0,i − r0,j and R = |r0,i − r0,j|.
This method first predicts a new position and velocity for the next time-step with a

Taylor series for ri and vi

rp,i = r0 + v0(t− t0) + a0,i
(t− t0)2

2
+ ˙a0,i

(t− t0)3

6
, (2.3)

15
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vp,i = v0 + a0,i(t− t0) + ˙a0,i
(t− t0)2

2
. (2.4)

The improvement of the Hermite interpolation is to approximate the higher acceler-
ation terms by another Taylor series:

ai = a0,i + ˙a0,i(t− t0) +
1

2
a

(2)
0,i · (t− t0)2 +

1

6
a

(3)
0,i · (t− t0)3, (2.5)

ȧi = ˙a0,i + a
(2)
0,i · (t− t0) +

1

2
a

(3)
0,i · (t− t0)2. (2.6)

We don’t know the derivatives a
(2)
0,i nor a

(3)
0,i , however, we can calculate ap,i and ˙ap,i

by using Eq. (2.1) and Eq. (2.2) with the predicted values of rp,i and vp,i calculated from
the initial values using Eq. (2.3) and Eq. (2.4). Once we have ap,i and ˙ap,i we replace
them in the right-hand side of Eq. (2.5) and is easy to show that:

a
(3)
0,i = 12

a0,i − ap,i
(t− t0)3

+ 6
˙a0,i + ˙ap,i

(t− t0)2
, (2.7)

a
(2)
0,i = −6

a0,i − ap,i
(t− t0)2

− 2
2 ˙a0,i + ˙ap,i
t− t0

. (2.8)

Now if we extend Eqs. (2.3) and (2.4) by two more orders we find:

r1,i(t) = rp,i(t) + a
(2)
0,i

(t− t0)4

24
+ a

(3)
0,i

(t− t0)5

120
, (2.9)

v1,t = vp,i(t) + a
(2)
0,i

(t− t0)3

6
+ a

(3)
0,i

(t− t0)4

24
. (2.10)

The high-order accelerations are found using the low terms for r0 and rp but deriving
only for the first derivative. The local error in r and v within the two time-steps ∆t =
t1−t0 is expected to be of order ϑ(∆t5), and the global error for a fixed physical integrator
time, scales with ϑ(∆t4).

2.3 Speeding up routines

2.3.1 Block and individual time-steps

It is widely known that in stellar systems there is a big range of time scales, while in
systems like binary stars the orbital periods are of the order of some days, the relaxation
time of a star cluster can be in the order of hundred of millions or even billions of years.
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In this sense one may ask: What is the optimal time-step for evolving such systems? The
answer is that different time-steps must be used to evolve different particles depending
on the fluctuations of the force acting on them. If one uses a very small time-step
then two-body interactions can be integrated accurately, however, the evolution of the
entire system will be very time-consuming and even an impossible task for most of the
computers available today. On the other hand, choosing a larger time-step could lead
to an inadequate treatment of close encounters. To overcome this problem, NBODY6
makes use of the “individual time-step scheme” [47]. The idea of this solution is that
particles in regions where the changes of the forces are relatively large, are integrated
with small time-steps, while particles in regions of slowly changing relative forces, are
allowed to move a larger distance before recomputing becomes necessary.

Figure 2.1: Block time-step scheme of NBODY6. Source: NBODY6 User Manual[46]

NBODY6 assigns each particle its own time-step 4ti as shown in Figure 2.1 where
particle k has a time-step which is twice the time-step for the particle i, also particle l
has a time-step which is 4tl = 44ti. A full force calculation is done at the dotted lines,
whereas at odd time-steps an extrapolation is made for particles with longer time-steps.
The step-width can be altered after a full-force calculation as shown in Fig. 2.1 where
we see that the time-step for particle k is doubled after 8 time-steps of the particle i.
The time-step has to stay commensurable with each other’s particle’s time-step and the
total time to guarantee a hierarchy. This is the block step scheme.

A first estimate for the time-step of a particle comes from the rate of change of
acceleration 4ti ∝

√
ai/ȧi, however, after some experimentation the next formula was

adopted:

4ti =

√√√√η
|a1,i||a(2)

1,i |+ | ˙a1,i|2

| ˙a1,i||a1,i|(3) + |a(2)
1,i |2

(2.11)
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Where η is a dimensionless accuracy parameter which controls the error. In most
applications it’s taken to be η ≈ 0.01 to 0.02.

2.3.2 The Ahmad-Cohen scheme

Even if the code can reach high precision in the calculation of the positions and velocities
of each particle, the full calculation of a0,i and ˙a0,i Eq. (2.1) and Eq. (2.2) for each particle
due to the contribution of all the other particles is very time-consuming, especially if the
simulation requires large N . Therefore is desirable to implement a method to speed
up this calculation while maintaining the collisional approach. In this way the method
suggested by [48] is used in NBODY6.

The idea of this scheme is to split the force polynomial in Eq. (2.5) on a given particle
i into two parts, a regular and an irregular component:

ai = ai,irr + ai,reg. (2.12)

The irregular acceleration results from particles that are close to the actual particle,
this is, in a certain neighborhood of i. As this particles are close, they give rise to a
stronger fluctuating gravitational force, therefore, this calculation must be done more
frequently than the acceleration coming from particles that are more distant to i since
they do not change too much their relative position with respect to i so quickly. The full
summation in Eq. (2.1) can be replaced by a summation over the Nnb nearest particles
and add a distant contribution from all the other particles, this contribution is updated
using another Taylor series after calculating the force from the regular component FR
and its time derivative FRDOT at the last regular force computation. To determine from
which particles the irregular force FIRR must be calculated, NBODY6 uses a distance
criterion, all the particles inside a sphere (“Neighbour Sphere” with radius rs) are held
in a list, which is modified at the end of each “regular time-step” when a total force
summation is carried out.

We can summarize the procedure as follows: First, at the beginning of the force
calculation, a list of neighbour objects is created around a particle i and the irregular
component ai,irr is calculated from the list, then the summation is continued to the
distant objects to obtain ai,reg. The time derivatives of both forces is also calculated
and from equation (2.5) the position and velocity of the particle are predicted. Then
at time t1,irr the corrector is applied only for ai,irr from the neighbours and the regular
component ai,reg is obtained by extrapolation, next, at the next irregular time-step t2,irr
again the predictor-corrector method proceeds for the neighbour particles whereas the
regular force term correction is still neglected. Finally, when t1 is reached, the total force
is calculated using the Hermite predictor-corrector method and a new list of neighbour
objects is constructed. NBODY6 calculates at certain times only the forces of neighbours
(irregular time-step, tirr), while at other times both forces from neighbor and distant
particles are computed, this leads to a significant gain in efficiency.
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Figure 2.2: Illustration of the Ahmad-Cohen scheme. Here is shown with a cross a
particle and its neighbour sphere with a radius rs. Black dots are particles inside the
neighbour radius. Source: NBODY6 User Manual [46]

2.3.3 KS Regularization

One of the most expensive calculations, especially in star clusters, is the treatment of
close encounters and binary systems due to the small time-steps and small distances
involved in such calculations. An accurate treatment of the dynamics of very close
systems requires distances in the order of AU which is in the order of 10−6 pc, much
smaller than typical sizes of star cluster. On the other hand the time-step may be reduced
to months or days, which is about 10−7 yr, and usually the evolution of star cluster is
followed up to several Myr. If these systems are long-lived then a simulation containing
a large number of binaries becomes extremely expensive.

A solution for this issue is the use of KS regularization, first developed by Kustaan-
heimo & Stiefel (1965), and implemented in N -body codes by Mikkola & Aarseth [49].
The main idea is a switch to a different coordinate system when a close encounter is
found. The two close bodies are replaced by a center of mass particle and integrated
separately in the new coordinate system, with the advantage that such unperturbed two-
body system is accurately described by a harmonic oscillator in the new system, avoiding
truncation errors due to small separations or time-steps.

Regularization is controlled by 2 input parameters, RMIN and DTMIN which
refers to the distance between the two particles and their time-step, and if they are
smaller than RMIN and DTMIN those particles are candidates for regularization but
not regularized until they fulfill 2 more criteria:

If the particles are approaching each other (R · V > 0.1
√

(G(m1 +m2)R) ) and
their mutual force is less than 4 times the force exerted on them by the other particles
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(γ < 0.25), then the particles are regularized.

γ =
|apert| ·R2

G(m1 +m2)

The parameter deciding if a pair of particles is unperturbed is GMIN which is by
default set to GMIN = 10−6, and once γ falls below GMIN the pair is considered
unperturbed.

2.4 Stellar Evolution and Collisions

2.4.1 The stellar evolution routines

The Stellar Evolution package included in NBODY6 is based on the work by Hurley,
Pols and Tout [50], they used previous models to compute the evolution of stars with
different masses and found fitting formulae which can return the values of luminos-
ity, radius, Teff and mass at different stages of the life of a star depending on the
metallicity. The models on which these formulae are based are valid for a range of
masses between 0.5 - 50 M� and were computed for seven values of total metallicity
Z = 0.0001, 0.0003, 0.001, 0.004, 0.01, 0.02 and 0.3. These models are very complete and
follow the evolution of the stars up to the late stages of their life, including Core Helium
Burning stars, Neutron stars and Black Holes.

In NBODY6, stellar collisions can only occur if the stars are first regularized (rou-
tine ksint.f , see Sec. 2.3.3). In that routine, the collision criteria is based on the paper
by Kochanek 1992[51] who studied the tidal capture process and tidal circularization of
binary systems. The criteria for collisions is as follows:

Rcoll = 1.7

(
m1 +m2

2m1

)1/3

R1. (2.13)

If the distance of the binary at pericentre Rp is smaller than Rcoll then the routine
cmbody.f is called. Within that routine there is a call to the stellar evolution routines
because the new merged star must be initialized by computing a new radius and lumi-
nosity. Additionally, each star has its own evolution time that is used to accurately track
the different stages of the evolution.

Due to the call to these routines, the standard treatment of collisions in NBODY6
is not appropriate for our purposes for several reasons, the most important is that these
stellar evolution routines are valid for present day stars given that the range of masses
and metallicity does not cover the parameter range of the first stars when the metallicity
was around Z . 10−6 and the mass was between 10 and 1000 M�. For that reasons we
switched off the stellar evolution routines in NBODY6 and instead specify explicitly the
stellar mass and the stellar radius for each star.
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2.4.2 Stellar collisions

A collision is detected in Nbody6 once the distance between two stars at pericenter
becomes smaller than Rcoll defined in Eq. (2.13). Then the routine to handle the colli-
sion cmbody.f is called and the two stars are removed from the array of particles and
replaced by a new particle whose mass is the sum of the masses of the two colliding stars:

Mnew = M1 +M2.

The new star is placed in the center of mass of the previous configuration and its new
velocity is calculated as:

Vnew =
M1V1 +M2V2

M1 +M2
. (2.14)

As we have switched off the stellar evolution routines, we have to set by hand the
new radius of the star, and to do that, we impose the condition that the density of the
stars remains constant, so the radius of the new star is:

Rnew = R1

(
M1 +M2

M1

)1/3

. (2.15)

2.5 Adaptation of the code

In this section we describe in detail the modifications made to the code NBODY6 in order
to adapt the code to our requirements, i.e, including stellar collisions without the need
to activate the stellar evolution package, which does not include a correct mass-radius
relation for Pop. III stars [16, 52]. The second change is the activation of the currently
suppressed routine intide.f which initializes equal mass and equal radii stars. We use
the standard NBODY61 code without GPU acceleration.

2.5.1 The stellar collisions routine

Here we describe the changes we did to the routine cmbody.f located in the directory
Ncode. This routine replaces two colliding stars by a new star placed in the center of
mass of the previous configuration, this is written in the line 308 of the file cmbody.f :

* Define global c.m. coordinates & velocities from body #I1 & I2.

ZM = BODY(I1) + BODY(I2)

DO 12 K = 1,3

CM(K) = (BODY(I1)*X(K,I1) + BODY(I2)*X(K,I2))/ZM

CM(K+3) = (BODY(I1)*XDOT(K,I1) + BODY(I2)*XDOT(K,I2))/ZM

12 CONTINUE

1Webpage NBODY6: https://www.ast.cam.ac.uk/ sverre/web/pages/nbody.htm
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The trick in this routine is what we write in the line 365:

RADIUS(I1)=(ZM/BODY(I1))**0.3333*RADIUS(I1)

This is very important, because without stellar evolution activated, the radius of the
stars is not updated after the collision. Effectively, this assumes that the collision prod-
uct quickly settles into a new equilibrium configuration in which the density corresponds
to that of an unperturbed star of the same mass, different parameterizations are also
possible to include by modifying this line.

This routine (cmbody.f ) is called once a collision is identified in the code by any of
the next routines:

• brake4.f

• brake.f

• chrect.f

• circ.f

• ksint.f

• kstide.f

• quad.f

• roche.f

• spiral.f

• triple.f

• unpert.f

2.5.2 Stellar collisions and regularization

We are interested in the routine ksint.f responsible for the integration of regularized
particles [49]. This is the main routine capturing collisions since the particles are often
regularized before getting closer than R1+ R2. To ensure that this occurs, the user must
choose the parameter RMIN > R1+R2 to regularize the stars before they get too close
and the collision is missed. We modified this routine as follows:

• line 439: replace "IF(KZ(19).GE.3...." ---> "IF(KZ(19).GE.0"

• line 568: replace "IF(KZ(19).GE.3...." ---> "IF(KZ(19).GE.0"

With these changes, the routine cmbody.f can be called even if the stellar evolution
package is not activated (KZ(19) = 0).
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2.5.3 The stellar radii

As we want to avoid using the stellar evolution routines included in NBODY6 we need
to explicitly define the radius of each particle. A currently suppressed routine was doing
this previously in NBODY6, the routine intide.f. To activate this routine again we have
to erase a few comments in the routine start.f. In this file lines 60 - 62 were commented,
so we just erased the comments:

IF (KZ(27).GT.0) THEN

CALL INTIDE

END IF

Once intide is activated we modified the routine as follows:

* Assign individual radii for main-sequence and evolved stars.

DO 30 I = 1,N

* Adopt a primitive scheme in case of no stellar evolution.

IF (I.LE.IMS) THEN

RADIUS(I) = RMS*RSTAR

TEV(I)=10D+10

SPIN(I)=0

KSTAR(I)=1

ELSE

TEV(I)=10D+10

SPIN(I)=0

KSTAR(I)=1

RADIUS(I) = REV*RSTAR

END IF

30 CONTINUE

We have included the parameters TEV(I)=10D+10, SPIN(I)=0 and KSTAR(I)=1 for
both stellar populations in this routine, however its important to note that for our simula-
tions we use only 1 population of stars. These new parameters describe the evolutionary
epoch of the stars, the rotation and the stellar type chosen to be 1 (main-sequence stars).

2.5.4 Deactivating Stellar evolution

In order to prevent the stellar evolution routines from changing any parameter of the
stars, we modified the routines by writing a return at line 60 of the file star.f and at
line 82 in the file hrdiag.f. These routines initialize the stars according to its metallicity,
mass and evolutionary epoch.

2.5.5 Input File for stellar collisions with NBODY6

Here we present a template of the input file used to perform the simulations with
NBODY6. This template was used for all the simulations, the only changes were the
number of objects N, the maximum neighbour number NNMAX, the random number NRAND,
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the initial radius of the neighbour sphere RS0, the mean mass ZMBAR, the maximum and
minimum particle mass BODY1 and BODYN and the parameters defining the radii of the
stars IMS, IEV, RMS and REV. A detailed description of the input file is out of the scope
of this thesis and we refer the reader to the NBODY6 manual for further details.

1 10000.0

1000 1 10 196 75 1

0.02 0.01 0.3 0.5 1.0 412.0 2.0E-01 0.14 10.0

1 1 1 0 1 0 2 0 0 0

0 0 0 0 1 0 0 0 0 0

1 0 2 0 1 2 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0

1.0E-04 0.0001 0.2 1.0 1.0E-06 0.001

1.0 10.0 10.0 0 0 0.0001 0.0 0.0

0.5 0.0 0.0 0.0 0.125

1.0 1000 0 100.0 1.0

The last line of the input file correspond to the input parameters required by intide.f.
These parameters specify the radius of a typical star in solar units RSTAR, the number of
idealized main-sequence stars IMS, the number of idealized evolved stars IEV, the scale
factor for main-sequence stars RMS and the scale factor for evolved stars REV. The input
file shown here is for evolving a star cluster of 1000 equal mass (10 M�) stars with equal
radius (100 R�) in virial equilibrium. The virial radius of the cluster is 0.14 pc, this
yields a half mass radius of 0.1 pc.

The total mass is 104 M�, and the cluster is evolved up to 412 crossing times. We
choose a relatively large RMIN in order to ensure that stars are regularized before they
can become closer than R1 + R2.



Chapter 3
Setup

To explore the effect of stellar collisions, we model a compact, gas free star cluster in
virial equilibrium. We assume a star formation efficiency of 100% and the total mass
of the cluster to be 104 M�. We also assume that the total metallicity at the time of
formation of the cluster is Z ≤ 10−6 as this value is necessary for the formation of massive
Pop. III stars (Clark, Glover & Klessen[42]). If the cooling is due to H2 rovibrational
emission or Hydrogen Lyα emission, then fragmentation occurs at densities of the order
of n∼ 109 cm−3 or even higher. This allows the formation of very dense star clusters
with a half mass radius Rh ∼ 0.1 pc. Thus we set the half mass radius of the cluster to
be Rh = 0.1 pc.
Another important aspect of the formation of a star cluster is the fragmentation process,
this is crucial in determining the number of stars formed and the Initial Mass Function
(IMF) of the stars. There are some studies about fragmentation in primordial gas clouds,
however these studies are still somewhat incomplete, but point towards a flat IMF for
a metallicity Z ≤ 10−6 (Clark, Glover & Klessen[42], Clark et al.[43]) with the total
number of stars being low. However the simulations were terminated before all the gas
was accreted into the stars, and for a low mass gas cloud ∼ 1000 M�, the total number
of stars, even considering sub-sonic turbulent motions seems to be around 20.
Here we don’t use an IMF and instead assume that all the stars are equal, with the same
mass and radius and explore different combinations of the number of stars and the stellar
radii. No stellar evolution is included in our simulations.

3.1 Simulation time

The goal of this investigation is to understand the collision process in very dense star
clusters populated by very massive and big Pop. III stars. We wish to know how many
collisions we can expect and how much is growing the runaway object before the cluster
gets dissolved due to its natural evolution [53] or destroyed by a supernova explosion.
Our simulations stops at 250 tcros which is roughly 2 Myr. We have chosen this end-time
based on the first test simulations that we ran. Essentially, stellar collisions occur very
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early in the cluster, and eventually the 10 % of the total mass is gathered in a single
object between 10-80 crossing times and the runaway object is formed at this time in
most of the simulations. An exception is the case for N= 5000 stars with Rstar = 20 R�,
in this case the time at which the central object has grown until the 10% of the total
mass of the cluster is at ∼ 200 tcros. The runaway growth can be seen in the bottom
panel of Fig. 3.1 and the moment at which the central object has gathered 10 % of the
toal mass can be seen in the middle panel as a shrink in the 10% Lagrangian radius,
we decided to stop at 250 tcros because the mass enhancement and the collision rate is
slowing down shortly this occurs.

3.2 Parameter space

We present the main parameters of the cluster and the stars that we used in our simula-
tions in Tab. 3.1. The first column is an identifier for the simulation, the second column
shows the number of stars used to model the cluster, the third column is the total mass
of the cluster, the fourth column is the half-mass radius of the cluster and the fifth and
sixth columns are the mass and radius of each star. Each simulation was repeated 9
more times varying the initial random seed. This allows a better statistical analysis and
error estimation. We keep the mass and the half mass radius of the cluster constant and
explore the effect of using a different number N of stars with N = 100, 500, 1000, & 5000
and we also vary Rstar = 20, 50, 100, 200, 500, 1000, & 5000 R�. We performed a total of
280 simulations.
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Figure 3.1: Evolution of a star cluster with 1000 stars, each one of them with an initial
radius of 500 R�. The top panel shows the collision rate Ncoll/N calculated in bins of 5
crossing times. Clearly this rate is maximum at the moment when the object grows up
to 10% of the total mass of the cluster which is around 30-50 crossing times. The middle
panel shows the evolution of the 10%, 50% and 90% Lagrangian radius and the moment
when the runaway object reaches a mass of 10% of the total mass is clearly visible
between 30 - 50 crossing times as a shrink in the 10% Lagrangian radius, while the half
mass radius remains nearly constant but the outer part of the cluster is expanding. The
bottom panel shows the evolution of the runaway object in units of the initial mass,
which is 10 M� for this case. The moment of exponential growth is clear around 30-50
crossing times when the central part of the cluster contracts and the collision rate is
highest. Most of the collisions involve this central object which at the end dominates the
cluster center. Source: Own elaboration
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ID N Mc,i Rh Mstar Rstar

M� pc M� R�
1 100 104 0.1 100 20

2 100 104 0.1 100 50

3 100 104 0.1 100 100

4 100 104 0.1 100 200

5 100 104 0.1 100 500

6 100 104 0.1 100 1000

7 100 104 0.1 100 5000

8 500 104 0.1 20 20

9 500 104 0.1 20 50

10 500 104 0.1 20 100

11 500 104 0.1 20 200

12 500 104 0.1 20 500

13 500 104 0.1 20 1000

14 500 104 0.1 20 5000

15 1000 104 0.1 10 20

16 1000 104 0.1 10 50

17 1000 104 0.1 10 100

18 1000 104 0.1 10 200

19 1000 104 0.1 10 500

20 1000 104 0.1 10 1000

21 1000 104 0.1 10 5000

22 5000 104 0.1 2 20

23 5000 104 0.1 2 50

24 5000 104 0.1 2 100

25 5000 104 0.1 2 200

26 5000 104 0.1 2 500

27 5000 104 0.1 2 1000

28 5000 104 0.1 2 5000

Table 3.1: Initial conditions for the first set of simulations. The first column is the
number of the simulation, the second columns is the total mass corresponding only to
the stellar mass as these are simulations of the gas-free cluster models presented in Sec. 3.
The third column is the half-mass radius of the cluster and the fourth and fifth columns
are the stellar mass and the number of stars respectively. Source: Own elaboration.



Chapter 4
Results

4.1 Evolution of the clusters

We run a few simulations first to understand the cluster evolution and the main results.
We decided to stop the simulations at t = 400 tcros independent of the number of stars or
stellar radius and look at the general evolution of some clusters to better decide a final
time for stopping all the simulations.

The evolution of the clusters is very similar, and in all cases the runaway object
eventually encompasses the 10% of the total mass of the cluster, we suspect that this is
related to the process of core collapse (see Sec. 1.3) when the central part of the cluster
contracts. This marks the moment at which the central object grows exponentially in
mass due to the large number of collisions occurring at this stage, most of them with the
same central object which becomes then the runaway object and gathers up to 10% of
the total mass of the cluster or even more.

In order to understand how the cluster evolution influences the amount of collisions
we calculate a collision rate that we define as the total number of collisions Ncoll divided
by the initial number of stars N in a given interval of time, chosen to be 5 crossing times
for all the simulations. A brief discussion of how this time interval affects the results is
presented in Section 4.2. In general, shortly before, during, and shortly after the 10% La-
grangian radius reaches its first minimum value, i.e., when the central object has grown
up to 10% of the total mass of the cluster, probably due to the processes that leads to
core collapse, the collision rate reaches its maximum value, typically, in an interval of 5
crossing times, around 0.01-0.02% of the stars of the cluster merge, and the time during
which this rate is maintained depends mainly on the number of stars. Before and after
this episode of frequent collisions the collision rate oscillates between 0-0.003 (see top
panel of Fig. 3.1).

While for a cluster containing 1000 stars, the collision rate is of the order of 0.01-0.02
(in an interval of 5 crossing times) close to the moment at which the 10% of the total mass
is contained in a single object, this value changes to 0.004-0.006 for a cluster containing
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Figure 4.1: Evolution of a star cluster with 5000 stars, each one of them with an initial
radius of 500 R�. The top panel shows the collision rate Ncoll/N calculated in bins
of 5 crossing times. The collision rate reaches the maximum value of 0.4% at around
80 crossing times, however a relatively high rate is maintained from the beginning up
to 150 crossing times, shortly after 10% of the mass has been gathered in the central
object. The middle panel shows the evolution of the 10%, 50% and 90% Lagrangian radii
and the moment at which the runaway object encompasses the 10% of the total mass
is clearly visible between 70-150 crossing times. During this period, the runaway object
has grown by a factor of ∼ 200. Meanwhile the half mass radius remains nearly constant
and the outer part of the cluster is expanding. The bottom panel shows the evolution
of the runaway object in units of the initial mass, which is 2 M� for this case. The
moment of exponential growth is around 80 - 150 crossing times when the central part
of the cluster contracts and the collision rate is highest. Most of the collisions involve
this central object which at the end dominates the center. The period of maintained
relatively high collision rate produces slightly more massive stars, which can then collide
with the central object. Source: Own elaboration.
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5000 stars. This difference can be explaining by the factor 5 in the denominator when
calculating Ncol/N and therefore this is an indication that the number of collisions in this
interval of time (5 crossing times) is very similar and not depending on the number of
stars. The difference is the amount of time during which the collision rate is maintained,
being longer for a larger number of stars.

4.2 Time-step for computing the collision rate

In this section we present a brief discussion on the choice of the time interval for com-
puting the collision rate. We define the collision rate as the number of collisions divided
by the initial number of stars in a given time interval ∆t. We analyze a simulation of
5000 stars, each with 500 R�, the same that is presented in Fig. 4.1. First we use a time
interval of 3 crossing times, ∆t = 3 tcros and calculate the total number of collisions in
this interval. For such a ∆t we are close to detect 1 or 0 collisions in the time interval
and obtain a more detailed description of the collision rate variation. The main features
are still clearly visible, an enhancement in the collision rate at 50 - 100 tcros and then a
slow decrease towards the end of the simulation (see Fig. 4.2). We also show the colli-
sion rate calculated in bins of 5 crossing times in Fig. 4.3. The use of a larger bin-size
for computing the collision rate gives a more general description of the collision rate
variation, showing more clearly the enhancement at the moment whe the cluster center
shrinks (50 - 100 tcros). Finally we also compare the previously calculated collision rates
in intervals of 3 or 5 crossing times with the collision rates calculated in intervals of 10
crossing times, the results are presented in Fig. 4.4. We found again the same behavior,
an increase between 50 - 100 crossing times a then a slow decrease towards the end.
The description is now even more general, the fraction of collisions actually increases
because we are including more collisions by considering a longer time interval, however
the fraction of collisions per crossing time is the same. We decided to use a bin-size of 5
crossing times to describe the collision rate variations in a general way and at the same
time a more detailed description than using a bin-size of 10 crossing times.

This analysis shows that our choice of the time interval does not affect our results.

4.3 Total number of collisions

We are also interested in understanding how the total number of collisions is affected
by changing the total number of stars and the stellar radii. For a better comparison we
plot the total fraction of collisions Ncol/N as function of the radius of the stars Rstar in
Fig. 4.5.
We obtained the total number of collisions from the general output of NBODY6, which
we called out.txt. As we have deactivated the stellar evolution routines now the informa-
tion about collisions must be obtained from this file by doing:
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Figure 4.2: Collision rate Ncol
N calculated in bins of 3 crossing times for the same simula-

tion presented in Fig. 4.1. By using a smaller bin-size we can compute more accurately
the collision rate during the simulation time, however we still see the main features in
which we are interested, an increase between 50 - 100 tcros and a slow decrease towards
the end of the simulation. Source: Own elaboration.

Figure 4.3: Collision rate Ncol
N calculated in bins of 5 crossing times for the same sim-

ulation presented in Fig. 4.1. We see now similar collision rates as by using a bin-size
of 3 crossing times, but now a more general description of the collision rate is obtained.
Source: Own elaboration.
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Figure 4.4: Collision rate Ncol
N calculated in bins of 10 crossing times for the same sim-

ulation presented in Fig. 4.1. We see now similar collision rates as by using a bin-size
of 3 crossing times, but now a more general description of the collision rate is obtained.
Source: Own elaboration.

grep -i -r ‘‘COLLISION’’ out.txt >COL.dat

This command generates the file COL.dat containing important information about
each collisions, the total mass of the final product, the mass of the colliding stars, the
ID of the colliding stars, the time of the collisions, etc. Alternatively, one can find the
number of collisions at different times in the file fort.56 in the last column.

We simply calculate now the total number of collisions for each simulation Ncol di-
vided by the initial number of stars N. As we performed 10 simulations for the same
combination of Rstar and N (varying only the initial random seed) we calculated then
the mean value for Ncol/N from the 10 different results and the standard deviation as:

σ =

√√√√√∑10
i=1

((
Ncol

N

)
i
−
(

Ncol
N

))2

N − 1
.

We found that the fraction of collisions does not depend on the number of stars used
to model the star cluster but depends strongly on the radii of the stars. This is probably
due to the fact that stellar collisions occur only close to the center of the cluster, therefore
only the fraction of stars which is closest to the center will experience collisions. On the
other hand, the probability of collisions depends also on the cross-section and increasing
the stellar radius we are increasing the cross-section.
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N A B C D

100 0.45 ±0.02 -2.25 ±0.06 0.40±0.04 -0.16±0.09
500 0.49 ±0.02 -2.27 ±0.06 0.53±0.04 0.22±0.09
1000 0.51±0.04 -2.29 ±0.09 0.57±0.06 0.44±0.14
5000 0.50±0.03 -2.16 ±0.07 0.52±0.05 1.28±0.12

Table 4.1: Parameters from the fit to the data presented in Fig. 4.5. Parameters from the
fit to Eqs. (4.1) (Cols. 2 and 3) and (4.2) (Cols. 4 and 5) to estimate the total fraction
of collisions in a cluster depending on the initial radii of the stars Rstar and the initial
number N of stars (Eq. (4.1)). Parameters D and E are used to estimate the mass of the
most massive object divided by its initial mass (Mmax/Mini) at the end of the runaway
growth, depending on the initial radii Rstar of the stars and the initial number N of stars
(Eq. (4.2)). Source: Own Elaboration.

4.3.1 Linear fit

Here we show the fraction of collisions and the enhancement of the mass of the central
object as a function of the stellar radius in Fig. 4.5. The different lines are the fits to
the data which we obtained with the help of gnuplot, using the command fit which uses
the non-linear least-squares Marquardt-Levenberg algorithm. Once we have found, for
a given number of stars N the logarithm of the mean value for the fraction of collisions

log(
(

Ncol
N

)
) as function of the logarithm of the stellar radii we fit the linear function:

f(x) = A log(Rstar) + B.

Now we have a function that we can use to calculate the fraction of collisions or
the total number of collisions expected for a star cluster whose crossing time is tcros =
0.0078 Myr, assuming that all the stars have the same mass and same radius Rstar:

Ncol

N
= 10A log(Rstar)+B. (4.1)

The parameters A and B depend weakly on the number of stars and are presented
in Tab. 4.1.

4.4 Maximum mass

We have obtained the mean maximum mass divided by the initial mass Mmax
Mini

for each
combination of Rstar and N , and also the associated error in an analog way as we did
for the total fraction of collisions (see Sec. 4.3).

We can find the most massive object in each simulation by searching in the file
COL.dat. This file was obtained as described in Sec. 4.3 and contains information about
the final mass of the collision products. Once the most massive object was found, we
simply divided its final mass by its initial mass. The results are presented in the bottom
panel of Fig. 4.5.
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Figure 4.5: Fraction of collisions and final mass of the runaway object as function of
N and Rstar. Top panel: Mean total fraction of collisions Ncol/N as function of the
stellar radius Rstar for star clusters with different number of stars. The different lines
are the best fits to the data points. Interestingly we found that the relation between
the collision fraction and the stellar radii is a power law with roughly the same slope
independently of the number of stars but strongly dependent on the stellar radii. Source:
Own elaboration.
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Unlike for the total fraction of collisions, the maximum mass of the runaway object
depends on both the initial number of stars N and the radii of the stars Rstar. This
result is more intuitive to understand, as on one hand, the number of collisions increases
with increasing number of stars, and even when not all the collisions involve the runaway
object, we may think that the number of collisions experienced by the runaway object
to be a fraction of the total number of collisions, and naturally, increasing the number
of stars also increases the maximum mass of the runaway object. On the other hand we
know that an enhancement in the radii of the stars increases the number of collisions
and therefore the maximum mass of the runaway object.

We did the same fit as described in Sec. 4.3.1 using the next equation:

Mmax

Mini
= 10(C log(Rstar)+D), (4.2)

with C and D the free parameters which vary slightly with N as can be seen in
Tab. 4.1.

4.5 Number of collisions as a function of time

The previous functions we found are a useful tool to obtain a first approximation of the
total number of collisions in a star cluster, depending on the number of stars and their
radii (Eq. (4.1)) or additionally for calculating to a first approximation the expected
mass enhancement of the runaway object (Eq. (4.2)). However we are interested in the
amount of collisions or mass growth due to collisions that experiences the runaway object
before it could explode as a core-collapse supernova or pair-instability supernova. An
estimation of the gravitational binding energy of the clusters that we are considering is
obtained following the approach for a spherical distribution:

U = −3GM2

5R
,

with M= 104 M� and R= Rvir = 0.14 pc this yields U= −3.8 × 1049 erg and according
to Kasen, Woosley and Heger 2011 [54], a pair-instability supernova can produce up to
1053 erg, sufficient to disrupt the star cluster and halt stellar collisions.

Due to this constraint we decided to derive a function that relates the number of col-
lisions and the time in order to be able to estimate the number of collisions experienced
by the runaway object before a supernova explosion occurs inside the star cluster. In
this section we describe the steps to derive this function.

4.5.1 Modeling the runaway collision process

In the top panels of Figs. 3.1 and 4.1 the clusters slowly experience the process of two-
body relaxation which leads to a shrink of the central parts that can be seen as an
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enhancement in the collision rate and this marks the time at which the runaway object
grows rapidly in mass, then it is natural to expect also an enhancement in the number
of collisions experienced by the runaway object in this time interval.
We aim now to model the expected number of collisions with the runaway object as a
function of time and for this we have chosen the Gaussian function since the number
of collisions at different time intervals may follow approximately a Gaussian function,
especially during the moments at which the object has grown up to 10% of the total
mass of the cluster as can be seen in Fig. 4.6.

Now, assuming that we can model the number of collisions depending on time as
a Gaussian distribution, the total number of collisions up to a certain time t can be
calculated as:

Ncol = A

∫ t

0
exp

(
−(t− tdelay)2

2 t2duration

)
. (4.3)

We have defined 3 parameters for the Gaussian fit: tdelay which is the center of the
Gaussian and marks the moment at which the function reach the maximum value. This
parameter can be thought as the delay time at which the runaway process occurs, or
alternatively, as the time at which half of the expected number of collisions occur. The
next parameter is the duration time tduration analogous to the standard deviation of the
Gaussian function and is related to the duration time of the runaway growth. Finally
we introduced the parameter A which is a normalization parameter that we calculate in
such a way that the function can reproduce accurately the total number of collisions.

4.5.2 Collisions with the runaway object

In order to apply our fitting function to the data we first have to separate the collisions
which involve the runaway object. This can be determined with the help of the star’s
ID which is an integer number assigned to each star by NBODY6 and that is preserved
during the collisions by keeping the ID of the most massive star once a collision is
detected, and subsequently, the new star will conserve this ID. The ID of each star can
be found, in one way, by extracting the information of collisions from the output file
generated by NBODY6. In the following we will show the command that we used to
extract this information. Our output file is named out.txt and we use grep and awk to
extract the information and present it in an ordered manner to be processed afterwards.
We use the next command:

grep -i -r ‘‘COLLISION’’ out.txt | awk ‘{ print $3,$11,$12,$14,$15 }’
>TIMECOL.dat

This command generates the file TIMECOL.dat which contains 5 columns, the time of
the collision in Myr, the ID of the first and second colliding stars and the final mass of the
product (the 5th column is included for safety given that in some cases the length of the
number for the mass is so large that is not separated from the “=” which is in the column
14 usually, and therefore if we just print the 15th column, we could miss this information).
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Figure 4.6: Modeling the runaway growth. Top panel: Mass growth of the runaway
object in units of the initial mass Mini. This simulation consist of N = 5000 stars, each
with a mass of Mini = 2 M� and a radius of R = 200 R�. Bottom panel: Number
of collisions with the runaway object (in bins of 5 crossing times) as a function of the
crossing time of the cluster. The red line shows the best fit for a Gaussian function with
the parameters A, tdelay and tduration. Note that the peak in the number of collisions
coincides with the rapid mass growth. Source: Own elaboration.
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Now from this file it is easy to distinguish collisions involving the most massive object,
one only needs to know the ID of the most massive object and this can be done with this
same file.

4.5.3 Number of collisions per time interval

The next step is to choose a time interval for counting the number of collisions in such a
period. We have chosen a time interval or bin-size of 0.1 Myr (because the information
of collisions is presented in Myr) which is roughly 5 half-mass crossing times, this choice
we made taking into account that a very small bin-size will show the contribution from
individual collisions rather than a general description, and, on the other side, with a
larger bin-size we have less points for fitting the function. Nevertheless in the following
we also present a comparison of some results using different bin-sizes and show that they
do not vary significantly.

We show the analysis of changing the bin-size for 1 simulation with N= 5000 stars,
each with a radius of R= 200 R� and use 3 different bin-sizes, 2 tcros, 5 tcros and 10 tcros.
For the case of 2 tcros we start to see the contribution from individual collisions and the
Gaussian shape is not seen (see Fig. 4.7), however the function still reproduces the delay
and duration time of the runaway collision process and the total number of collisions can
be calculated if the parameter A is adjusted to reproduce that result.

For the case of 10 tcros we obtain a more general description and the Gaussian shape
is more evident now in Fig. 4.8, with a higher peak because we count more collisions and
the mass growth rate could also be approximated by a Gaussian function, however we
have less points to fit now and the errors for the fit are larger so we decided to use a
bin-size of 5 tcros at the end. Note that the function still can reproduce the delay time
and duration of the collision process if the parameter A is tuned for this purpose, and
we have included, after determining A through the linear fits, a correction which is 1/4
for A in all the cases.

4.5.4 Simulations with few collisions

In general, the 3 parameters can be obtained after fitting the Gaussian function to the
data, however, there are simulations with very few collisions. For example, for N= 100
and R= 20 R� we expect 1 or up to 3 collisions and this is not enough for fitting an
accurate Gaussian function, an example of this is presented in Fig. 4.9. In this example,
only 3 points are used for the fitting and the errors are too big. For the height of the
Gaussian the function fit of gnuplot gives A = 2.00± 9.148, tdelay = 13.55± 133.5 and
tduration = 1.07± 31.24. We present in the following section the way in which we solved
this problem.

4.5.5 Combination of the data

In this section we describe the steps we followed in order to solve the problem of having
few collisions which causes a poor fit and unreliable parameter estimations. The trick
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Figure 4.7: Computing the collision rate with a time interval of 2 crossing times. Top
panel: Mass growth of the runaway object during the simulation in units of the initial
mass Mini. This simulation consists of N = 5000 stars, each with a mass of Mini = 2 M�
and a radius of Rstar = 200 R�. Middle panel: Number of collisions with the runaway
object (in bins of 2 crossing times) as a function of the crossing time of the cluster. The
red line shows the best fit for the data binned in 5 tcros for comparison (see Fig. 4.6).
Note that the Gaussian fit is still a good description for the time delay and duration
of the runaway collision process, the parameter A may be adjusted later for a better
agreement with the total number of collisions. Bottom panel: Mass growth in intervals
of 2 tcros. At this time interval this plot shows the contribution from individual collisions
and the highest peak is caused by the collision with another high mass object created in
the cluster. Source: Own elaboration.
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Figure 4.8: Computing the collision rate with a time interval of 10 crossing times. Top
panel: Mass growth of the runaway object during the simulation in units of the initial
mass Mini. This simulation consists of N = 5000 stars, each with a mass of Mini = 2 M�
and a radius of Rstar = 200 R�. Middle panel: Number of collisions with the runaway
object (in bins of 10 crossing times) as a function of the crossing time of the cluster. The
red line shows the best fit for the data binned in 5 tcros for comparison (see Fig. 4.6).
Note that the Gaussian fit is still a good description for the time delay and duration
of the runaway collision process, the parameter A may be adjusted later for a better
agreement with the total number of collisions. Bottom panel: Mass growth in intervals
of 10 tcros. At this time interval this plot shows the contribution from several collisions
and the Gaussian shape is now evident. Source: Own elaboration.
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Figure 4.9: Example of a simulation with few collisions. Number of collisions as a
function of the crossing time of the cluster calculated in bins of 5 tcr for a simulation
with N= 100 stars with 20 R� each. Due to the lack of collisions the Gaussian function
represented by the red line is not well fitted. The solution is to combine the data from
the 10 random simulations as described in Sec. 4.5.5. An example of the improvement of
the fit after the combination of the data is shown in Fig. 4.10. Source: Own elaboration.

we used consist in the combination of the data from the 10 random simulations by first
binning the data of each simulation using the same time interval (5 tcros in our case).
Once this is done we just sum the number of collisions in each file for each time interval.
The Gaussian shape is best reproduced now given that most of the collisions occur at
approximately the same time in all the random simulations.

4.6 Parameter estimation

Once we combined and fitted Gaussian functions to the data the next step is to find
relations between the Gaussian parameters and our parameter space defined by combi-
nations of N and Rstar. The parameters tdelay and tduration are not seriously affected by
the combination of the 10 simulations, in fact there is a very good agreement for the
parameters derived using 1 or 10 simulations but an improvement in the error estima-
tion. Therefore we use these values to determine the last parameter A by imposing the
condition that the function reproduces the average total number of collisions.

The derivation of these parameters comes from the command “fit” in gnuplot. We
first write the function that we want to fit:

f(x) = A ∗ exp(−(b− x)2/2c2), (4.4)

with b being the center of the Gaussian and c the standard deviation. Then we use
the software gnuplot to do the fit as:
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Figure 4.10: Combination of the data. Number of collisions as function of the crossing
time of the cluster calculated in bins of 5 tcros. This is the combination of 10 random
simulations for N= 100 stars with R= 20 R�. The red line is the best Gaussian fit.
Source: Own elaboration.

fit f(x) ’params.dat’ u 1:2 via A,b,c

’params.dat’ is a file that contains two columns, the time in units of the crossing
time tcros and the number of collisions per time interval in the second column. The
results of the fits are presented in Figure 4.11.

After fitting the Gaussian function to the data, we checked if this function can repro-
duce the expected number of collisions accurately. Therefore we integrated the Gaussian
function with the parameters derived for each simulation and compared the prediction
with the total number of collisions for every simulation. The result is that we need to
correct the values of A by a factor of 1/4. This factor is probably related to the choice of
the time-step for calculating the number of collisions in a given time interval as discussed
in Sec. 4.5.3. We have derived the correction factor as follows:

Acorr =
N col,RO

A
∫ t

0 exp

(
−(t−tdelay)2

2 t2duration

) , (4.5)

where N col,RO is the mean total number of collisions experienced by the runaway

object (calculated from the 10 simulations) and A
∫ t

0 exp

(
−(t−tdelay)2

2 t2duration

)
is the integration

of the Gaussian function which provides the uncorrected expected number of collisions
experienced by the runaway object. By applying this correction factor we ensured that
the function will reproduce correctly the expected number of collisions. The corrected
values for A range from 0.1−1 for Rstar = 20 R� up to 0.6−10 for Rstar = 5000 R� (see
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Fig. 4.11). We present our derivation for A, tduration, and tdelay, and their dependence
on N and Rstar in the following sections.

4.6.1 The normalization factor A

The relation between A and the radii of the stars is clear and can be described as a power
law of the form:

log(A) = α log(Rstar) + β, (4.6)

where α and β are both functions of the number of stars N . The increase of A with
Rstar is expected as the cross-section for collisions increases quadratically with Rstar. The
values of α and β are presented in Tab. 4.2 and a small increase with the number of stars
N is found for these parameters. We then apply a simple linear fit to the data presented
in Tab. 4.2 and find the expressions for α and β that depend on N as:

α = 0.16± 0.09 logN + 0.06± 0.27, (4.7)

β = −0.05± 0.31 logN − 1.43± 0.90. (4.8)

Then combining Eqs. (4.6), (4.7) and (4.8) we get the expression for A depending on N
and Rstar:

log(A) =
[
0.16 log(Rstar)− 0.05

]
log(N) + 0.06 log(Rstar)− 1.43. (4.9)

4.6.2 The delay time and duration time of the runaway growth

As we described in Sec. 4.5.1 we can estimate the expected number of collisions experi-
enced by the runaway object through Eq. (4.3) if we know the delay time for the start of
the collision process tdelay and the duration of this process tduration. This task is not that
easy but we have a good understanding on how the delay time depends on the number
of stars and their radii. As shown in the middle panel of Fig. 4.11 the delay time tdelay

decreases as a power-law with the number of stars, and in fact we used the next equation
for fitting this data:

log(tdelay) = γ log(Rstar) + δ. (4.10)

The values of γ and δ depends on the number of stars as shown in Tab. 4.2. Our data
suggest a clear linear relation between γ and the number of stars N with γ decreasing
from −0.15 ± 0.04 at N = 100 up to −0.51 ± 0.05 at N = 5000. On the other hand, δ
increases from 1.39 ± 0.09 at N = 100 up to 3.24 ± 0.12 at N = 5000. We applied the
linear fit to the data shown in Tab. 4.2 and obtained the next expressions:

γ = −0.21± 0.05 logN + 0.30± 0.13, (4.11)

δ = 1.09± 0.01 logN − 0.79± 0.04. (4.12)
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Figure 4.11: Parameters of the Gaussian fit A, tdelay, and tduration as functions of the
initial stellar radii Rstar and initial number of stars N . The trends in the first two
panels are clear and the behavior is as we expected, the number of collisions increases
with increasing the stellar radii or the number of stars since the normalization factor
A is an indicator of the total number of collisions. The time at which the runaway
growth is triggered, namely tdelay decreases with increasing the stellar radii and this is
consistent with an acceleration of the contraction phase of the lcuster center driven by
the rapid formation of massive stars due to their enhanced radii. On the other hand,
the core collapse occurs after several relaxation times (see Sec. 1.3) which increases with
increasing number of stars and therefore we expect that tdelay increases with the number
of stars (see Eq. (1.3)). Finally, there is no clear relation between the duration time
tduration and the stellar radii. Source: Own elaboration.
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N α β γ δ

100 0.31±0.12 -1.51±0.29 -0.15±0.04 1.39±0.09
500 0.59±0.06 -1.91±0.16 -0.24±0.03 2.15±0.07
1000 0.63±0.07 -1.19±0.19 -0.27±0.05 2.45±0.11
5000 0.59±0.03 -1.73±0.07 -0.51±0.05 3.24±0.12

Table 4.2: Parameters of Equations (4.6) and (4.10). The parameters in the second
column were obtained from the fit to the total number of collisions as function of the
stellar radii presented in the top panel of Fig. 4.11, using as fitting model the Eq. (4.6).
The parameters presented in the third column were obtained from the fit of the data
presented in the middle panel of Fig. 4.11, using as fitting model the Eq. (4.10) to
estimate the parameter tdelay, which is related to the time when the rate of collisions
with the central runaway star is maximum; this also depends on the initial radii Rstar of
the stars (Eq. (4.10)). Source: Own elaboration.

The combination of Eqs. (4.10), (4.11) and (4.12) allowed us to relate the delay time
tdelay with the number of stars and the stellar radii as:

log(tdelay) =
[
−0.21 log(Rstar) + 1.09

]
log(N) + 0.30 log(Rstar)− 0.79. (4.13)

While we have related the delay time tdelay with the stellar radii, there is no clear
relation for the duration time tduration and the stellar radii (see bottom panel of Fig. 4.11).
For that reason we explored the dependence of this parameter on the number of stars
N . Even when we plot tduration against N , there may be cases in which the duration
time decreases as a power-law with increasing N as in the case for N = 5000 or cases
where the duration time seems to increase and then decrease again as for the case with
N = 100. Despite this, the general trend, considering the error bars (see Fig. 4.12), is
an increase of the duration time with the number of stars and we fitted the data with a
power law of the form:

log(tduration) = 0.34± 0.08 logN + 0.34± 0.24, (4.14)

and we drop, for simplicity, the dependence on Rstar.

4.6.3 Estimation of the number of collisions

One of the main goals of this research is to determine how many collisions with the
runaway object we can expect at a certain time t. We can do this by modeling the
runaway collision process as a Gaussian function which depends on 3 parameters: A,
tdelay, and tduration as we described in Sec. 4.5.1. We have found equations that relate
these parameters to the number of stars N of the cluster and the radii of these stars
Rstar. Now a simple integration of the Eq. (4.3) by using the Eqs. (4.9), (4.13) and
(4.14) can give us a clue about the expected number of collisions and mass enhancement
experienced by the runaway object formed in these clusters. We integrated Eq. (4.3)
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Figure 4.12: Parameter tduration of the Gaussian fit as function of the number of stars
N . Considering the error bars, the trend is an increase of tduration with N . We assumed
that tduration only depends on N and the fit is described in Eq. (4.14). Source: Own
elaboration.

until t = 1 Myr and t = 10 Myr for N between 50 and 10000 and Rstar varies from 10 R�
until 2000 R�. While in principle our results are extrapolated for N > 5000 we expect
that these relations still hold.
Our results show an expected behavior, more collisions occurs in clusters containing more
stars with larger radii, in particular, if we consider a time-limit of 1 Myr, we may expect
a total of 60 collisions with the runaway object for a cluster containing 10000 stars with
1000 R� each, and potentially this number can increase up to 150 collisions if these
stars have a radii of 2000 R�. Interestingly, a considerable amount of collisions (> 30) is
expected only if the radii of the stars is larger or equal to 100 R� but the number of stars
must be between 100 and 1000 approximately, due to the fact that in a cluster containing
more stars, the relaxation time, and hence the core-collapse time is longer and thus a
time-limit of 1 Myr is not enough for producing an important number of collisions.
On the other hand, if we impose a time-limit of 10 Myr then the expected number of
collisions with the runaway object increases by a factor of ∼ 3 and now even for relatively
small stars (Rstar = 100 R�) we can expect up to 150 collisions in a cluster containing
10000 stars, and in the more extreme case for N = 10000 and Rstar = 2000 R� the
number of collisions with the runaway star can be as large as 500. These results are
presented in Figure 4.13.
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Figure 4.13: Estimation of the number of collisions experienced by the runaway star for
different combinations of N and Rstar.Total number of collisions calculated via Eq. (4.3),
represented by the colours in the right colour bar, with the central object after 1 Myr
(top panel) and after 10 Myr (bottom panel) for our cluster model depending on the
number of stars Rstar and their initial radii Rstar. Source: Own elaboration.



Chapter 5
Analytic gas potential

The final goal of this project is to produce realistic models of bloack hole formation in the
first stellar clusters of the Universe, including as many effects as current computational
capabilities allows. However when one includes that many physics into one simulation it
is hard to disentangle the role of the different processes involved in the simulation. For
this reason we want to go step by step, adding one effect after the other in such a way
that at the end we can completely understand our results. We have initially investigated
gas free clusters, which is not very realistic for the early evolution of these systems, as
indeed star clusters are born out of a Giant Molecular Cloud (GMC), therefore in their
initial stages of life they are still embedded in gas. As found in the Milky Way, embedded
clusters can be an order of magnitude more abundant than open clusters [55], at least in
a radius of ∼ 2 kpc around the Sun, and recent studies using data from the Gaia Data
Release 2 (GDR2) have shown that embedded clusters are less likely to be expanding
than gas free clusters [56]. In this chapter we go one step forward in the modeling of the
first star clusters of the Universe and include the effects of an analytic potential in the
results that we found previously in Chapter 4.

5.1 Analytic potential in NBODY6

NBODY6 includes routines to include an external force in the calculations by changing
the option KZ(14) and this external force may correspond to a standard tidal field, a
point-mass galaxy, point-mass + bulge + disk + halo + plummer potential or a plummer
potential. Since we are not interested in a cluster close to a spiral galaxy, the most ade-
quate option for us is to include an external Plummer potential centered in our Plummer
distribution of stars, this is, KZ(14) = 4. When this option is activated, the routine
xtrnl0.f is called to initialize the Plummer potential. The important parameters are:
MP which is the total mass of the Plummer sphere in N -body units, AP2 which is the
Plummer scale-radius in N -body units, MPDOT which is the time scale (in N -body
units) over which the gas is expelled from the cluster, i.e., after this time, the mass of
the Plummer potential has been reduced to Mplummer = MP×e−1, and finally, TDELAY

49
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which is the time, in N -body units, after which the gas expulsion starts. Now we present
a fragment of the routine xtrnl0.f in which the plummer potential is initialized and the
velocities of the stars are scaled to the virial ratio Q defined by the user in the input file.

* Include Plummer potential for 2D and 3D (use MP = 0 if not needed).

IF (KZ(14).EQ.3.OR.KZ(14).EQ.4) THEN

* Check input for Plummer potential.

READ (5,*) MP, AP2, MPDOT, TDELAY

WRITE (6,70) MP, AP2, MPDOT, TDELAY

70 FORMAT (/,12X,’PLUMMER POTENTIAL: MP =’,F7.3,’ AP =’,F6.2,

& ’ MPDOT =’,F8.3,’ TDELAY =’,F5.1)

MP0 = MP

AP2 = AP2**2

IF (KZ(14).EQ.3) RTIDE = RTIDE*(ZMASS + MP0)**0.3333

* Rescale velocities by including the Plummer & galactic virial

energy.

IF (ZKIN.GT.0.0D0) THEN

* Note that QVIR = Q is saved in routine SCALE and VIR < 0 with

GPU.

CALL ENERGY

VIR = POT - VIR

QV = SQRT(QVIR*VIR/ZKIN)

DO 80 I = 1,N

DO 78 K = 1,3

XDOT(K,I) = XDOT(K,I)*QV

78 CONTINUE

80 CONTINUE

END IF
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Note that the routine ENERGY is called to calculate the potential energy POT of
the stars associated to the Plummer potential, then the scale factor for velocities QV is
calculated taking into account this extra force and finally the velocities of the stars are
adjusted with this factor. Here we present the input file that we used to perform the
simulations using an analytic Plummer potential:

1 10000.0

5000 1 10 826 145 1

0.02 0.01 0.2 1.0 1.0 1419.0 2.0E-01 0.14 2.0

1 1 1 0 1 0 2 0 0 0

0 0 0 4 1 1 0 0 0 0

1 1 2 0 0 2 2 0 0 0

1 0 0 0 0 0 2 1 0 1

0 0 0 1 0 0 0 0 0 0

1.0E-03 0.001 0.2 1.0 1.0E-06 0.001

1.0 2.0 2.0 0 0 0.0001 0.0 0.0

0.5 0.0 0.0 0.0 0.125

1.0 0.59 10000 10000

1.0 5000 0 500.0 1.0

5.1.1 Stability of the clusters under the effects of an external potential

We present in Fig. 5.1 an example of a simulation of a cluster containing 5000 stars with
the same setup shown in Sec. 5.1 but without using the option for the external potential
(KZ(14)=0). The cluster remains in virial equilibrium after 50 crossing times and no
stars escape the cluster. A binary is formed between 32 and 38 crossing times but it is
disrupted some time in between 42 and 48 crossing times.
We then performed the same simulation but including now the option for an external
Plummer potential (KZ(14)=4). The situation is shown in Fig. 5.2 and is practically the
same, with no escaping stars during the first 50 crossing times, and the Lagrangian radii
remain constant enough to ensure that the cluster is in virial equilibrium. Compared
to the cluster without the external potential in which at 50 tcros the 90% Lagrangian
radius was 0.8 pc, in this case the 90% Lagrangian radius is 0.7 pc. A small difference is
also seen in the number of binaries, now one binary is formed between 44 and 50 tcros.
The goal of this analysis was to make sure that we model a stable star cluster after the
addition of an external Plummer potential.

5.2 First simulations

After we ensure that we can properly model a star cluster with an external potential
to mimic, at first order, the effects of including gas in our simulations we can start
to explore the effects of this extra force on our previous results. We performed a set of
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Figure 5.1: Stability of a star cluster without an analytic potential. Stability of a star
cluster of 5000 stars evolved until 50 crossing times. The top panel shows the fraction
of escaped stars which in this case is 0. The middle panel shows the number of binaries
formed in the cluster, in bins of 5 crossing times. The bottom panel shows the 1%, 2%
,5%, 10%, 50% and 90 % Lagrangian radii and clearly these radii remains stable during
this early evolution of the cluster. Source: Own elaboration.
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Figure 5.2: Stability of a star cluster with an analytic potential. Stability of a star
cluster of 5000 stars evolved until 50 crossing times and under the influence of an external
potential. The top panel shows the fraction of escaped stars which in this case is 0. The
middle panel shows the number of binaries formed in the cluster, in bins of 5 crossing
times. The bottom panel shows the 1%, 2% ,5%, 10%, 50% and 90 % Lagrangian radii
and clearly these radii remains stable during this early evolution of the cluster. Source:
Own elaboration.
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12×2 simulations, the first 12 are a combination of N = 100, 500, 1000 & 5000 stars, with
Rstar = 50, 100, 500 R�. The remaining 12 simulations are the same initial conditions
but with the addition of the external Plummer potential with a total mass of 104 M�
and a half-mass radius of 0.1 pc. The summary of the initial conditions for this set
of simulations is presented in Tab. 5.1. We ran these simulations until 1000 tcros, a
moment at which the runaway collision process has stopped in the gas-free clusters, this
corresponds to a time of 7.8 Myr for these clusters, whereas for the clusters containing
an analytic potential, 1000 tcros corresponds to 5.5 Myr. From the analysis of the first set
of 12 simulations we find that the runaway collision process has stopped in the gas-free
clusters, and the fraction of colliding stars depends on the stellar radius rather than on
the number of stars (see Fig. 5.3), as we already found in Ch. 4. We also show the final
mass of the runaway object in units of its initial mass and we also confirm our previous
results, that the mass enhancement depends on both N and Rstar (see Fig. 5.4).

For the first set of simulations we employed a modification for the collision criteria.
As discussed in Sec. 2.4.1, the previous criteria for detecting collisions was based on the
paper by Kochanek 1992[51]

Rcoll = 1.7

(
m1 +m2

2m1

)1/3

R1.

We modified this line in the code, in the routine ksint.f from the line 465

IF (KZ(43).GE.2.AND.KSTAR(J2).EQ.14) THEN

RCOLL=RADIUS(J1)+RADIUS(J2)

ELSE IF (KZ(27).LE.2) THEN

* Adopt collision criterion of Kochanek (Ap.J. 385, 604, 1992).

FAC = 0.5*BODY(I)/BODY(J1)

* RCOLL = 1.7*FAC**0.3333*RADIUS(J1)

RCOLL = RADIUS(J1) + RADIUS(J2)

ELSE

RCOLL = 6.0*BODY(I)/CLIGHT**2

END IF

we have just commented the line with the previous collision criteria and wrote the
new one as RCOLL = RADIUS(J1) + RADIUS(J2), therefore now the collision occurs once
the distance d between two stars become smaller than the sum of their radii R1 +R2.

We also had to employ this modification on the same routine ksint.f. From line 581
we have

* Set possible BH index and check disruption condition (& #43) first.

J2 = 2*IPAIR + 1 - J1

IF (KZ(43).GE.2.AND.KSTAR(J2).EQ.14) THEN

RCOLL = (BODY(J2)/BODY(J1))**0.3333*RADIUS(J1)

ELSE IF (KZ(27).LE.2) THEN
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N Rstar Mstars Rh,stars Mgas Rh,gas tcros

R� M� pc M� pc Myr

100 50 104 0.1 - - 0.0078
100 100 104 0.1 - - 0.0078
100 500 104 0.1 - - 0.0078
500 50 104 0.1 - - 0.0078
500 100 104 0.1 - - 0.0078
500 500 104 0.1 - - 0.0078
1000 50 104 0.1 - - 0.0078
1000 100 104 0.1 - - 0.0078
1000 500 104 0.1 - - 0.0078
5000 50 104 0.1 - - 0.0078
5000 100 104 0.1 - - 0.0078
5000 500 104 0.1 - - 0.0078
100 50 104 0.1 104 0.1 0.0055
100 100 104 0.1 104 0.1 0.0055
100 500 104 0.1 104 0.1 0.0055
500 50 104 0.1 104 0.1 0.0055
500 100 104 0.1 104 0.1 0.0055
500 500 104 0.1 104 0.1 0.0055
1000 50 104 0.1 104 0.1 0.0055
1000 100 104 0.1 104 0.1 0.0055
1000 500 104 0.1 104 0.1 0.0055
5000 50 104 0.1 104 0.1 0.0055
5000 100 104 0.1 104 0.1 0.0055
5000 500 104 0.1 104 0.1 0.0055

Table 5.1: Initial conditions for simulations with an external potential. The simulations
consist of gas-free clusters and clusters with an external analytic potential. The first
column shows the number of stars, the second column is the radius of the stars, the third
column is the total mass in stars, the fourth column is the half-mass radius for the stellar
distribution. Columns 6 and 7 are the total mass and half-mass radius for the external
Plummer potential. The last column is the crossing time of the cluster. Source: Own
elaboration.
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Figure 5.3: Collision fraction for a gas-free star cluster. Fraction of collisions for star
clusters without gas for different combinations of N and Rstar. As discussed in Ch. 4, the
inner parts of the cluster contract due to two-body relaxation effects and the runaway
collision process takes place. The expected fraction of collisions does not depend (or
depends very weakly) on the number of stars, but rather it depends on the stellar radius.
Source: Own elaboration.

* Adopt collision criterion of Kochanek (Ap.J. 385, 604, 1992).

FAC = 0.5*BODY(I)/BODY(J1)

* RCOLL = 1.7*FAC**0.3333*RADIUS(J1)

RCOLL = RADIUS(J1) + RADIUS(J2)

ELSE

RCOLL = 6.0*BODY(I)/CLIGHT**2

END IF

It is also important to note that in our input file now we have used the option
KZ(27) = 2 which reproduced best the results for the number of collisions compared to
the simulations using the code ph4 in AMUSE (See sec. 6.3.1 and Fig. 6.1).

From the analysis of the first set of 12 simulations we find that the runaway collision
process has stopped in the gas-free clusters, and the fraction of colliding stars depends
on the stellar radius rather than on the number of stars (see Fig. 5.3), as we already
found in Ch. 4. We also show the final mass of the runaway object in units of its initial
mass and we also confirm our previous results, that the mass enhancement depends on
both N and Rstar (see Fig. 5.4), but now due to the modification of the collision criteria,
the number of collisions as well as the mass enhancement of the runaway object has
increased by a factor of about 2. The same collision criteria is used for the remaining 12
simulations that include an external potential.
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Figure 5.4: Mass of the runaway object for a gas-free star cluster. Final mass of the
runaway object divided by its initial mass, for star clusters without gas for different
combinations of N and Rstar. We can expect a higher mass enhancement for clusters
containing more stars, and with larger stars. Source: Own elaboration.

After the analysis of the remaining set of 12 simulations including the external force
of an analytic Plummer potential centered in the center of the cluster, our results show
that collisions are not greatly enhanced under the influence of this external force, in fact,
the smallest clusters (N = 100) were evaporated even before reaching 1000 tcros, but also
more collisions occurred and there was an enhancement in the mass of the most massive
object. The fraction of collisions and the mass of the runaway object also increased for
clusters with N = 500 stars, however, for clusters with N = 1000 and N = 5000 there
was a decrease in both the fraction of collisions and the mass of the runaway star (see
Figs. 5.5 and 5.6) compared to gas-free clusters. This is at first a bit misleading given
that we expect a deeper contraction during the core-collapse phase and that the cluster
remains contracted for a longer time due to the additional gravitational force acting on
the stars. The fact that we have less collisions in the same number of crossing times is
related to this additional force and we will explore the reasons in the next section.

5.3 A delay in the runaway growth

In the previous section we found an unexpected result, the number of collisions in a clus-
ter with an external potential was decreased compared to a gas-free cluster and therefore
also the mass enhancement for a time-limit of 1000 tcros. We now present the same set
of simulations but using a longer simulation time because we suspect that the runaway
growth was not yet started in the clusters with N = 1000 and N = 5000 stars. We
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Figure 5.5: Fraction of collisions for different clusters under the influence of an external
Plummer potential. The simulations were run until 1000 tcros, the same as the gas-free
clusters but, despite the cases of N = 100 and N = 500, the number of collisions has
decreased due to the external force. Source: Own elaboration.

Figure 5.6: Mass enhancement of the runaway object for different clusters under the
influence of an external Plummer potential. The simulations were run until 1000 tcros,
the same as the gas-free clusters but, despite the cases of N = 100 and N = 500, the
number of collisions has decreased and therefore so did the mass enhancement. Source:
Own elaboration.
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Figure 5.7: Collision fraction at the end of the runaway growth for clusters with an
external potential. Fraction of collisions (y-axis) for clusters under the influence of an
external Plummer potential as a function of the stellar radius (x-axis) for clusters con-
taining different numbers of stars. Compared to the case when the runaway growth was
not finished (Fig. 5.5) we see now an enhancement in the collision fraction except for
N = 100 because these clusters were evaporated and for N = 5000 because at some
point in the simulation, the runaway object was ejected from the cluster. Source: Own
elaboration.

therefore ran these simulations until 3000 tcros for clusters with N = 1000 stars and 4000
tcross for clusters with N = 5000 stars. The results show that effectively the runaway
growth had not stared yet in larger clusters and that this process was delayed in all the
clusters. Interestingly, this runaway process is now different for the cluster containing
N = 5000 stars, in fact now the total fraction of collisions is enhanced only for the
case when Rstar = 500 R� and it remained the same for stars with 50 and 100 R� (see
Fig. 5.7). The reason is that for these simulations, the runaway star escaped from the
cluster and this halted the collision process during a short period of time and then a new
runaway star started to emerge, but there was little time to compensate for the number
of collisions. We still have not investigated in detail why the most massive star escaped
from the clusters, and we think for now that these may be rare events, but in the future
we are going to look further into this.

For the mass enhancement we find for N = 500 and N = 5000 that the runaway
object is more massive by a factor of 3 if there is an external potential in the cluster,
however for N = 100 the external potential caused the clusters to evaporate and for the
clusters with N = 5000 stars, the runaway star was ejected from the cluster at some
point, and then a new runaway star emerged but there was not enough time to grow
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Figure 5.8: Mass enhancement of the runaway star at the end of the runaway growth for
clusters with an external potential. Mass enhancement in units of the initial mass (y-axis)
of the runaway star in clusters under the influence of an external Plummer potential as
a function of the stellar radius (x-axis) for clusters containing different number of stars.
Compared to the case when the runaway growth was not finished (Fig. 5.6) we see now
an enhancement in the mass, except for N = 100 because these clusters were evaporated.
For N = 5000 we see little enhancement because at some point in the simulation, the
runaway object was ejected from the cluster and then a new runaway star emerged
and the time was not enough for the runaway growth to finish properly. Source: Own
elaboration.

further in mass, so the mass enhancement remained the same as in the gas-free clusters.
This results are shown in Fig. 5.8.

5.3.1 The importance of binaries

We were quite surprised by the fact that the runaway growth is delayed due to the pres-
ence of an external potential that we included to mimic the effects of the gas in the
clusters. We expected an increased number of collisions due to the extra force acting on
the stars, and actually there was an increase but the process was slower. We show an
example of the delay in the runaway growth in Fig. 5.9 and we found that in clusters
with an external potential the binary collisions are occurring at much later times. In all
the clusters with and without an external potential there is a constant rate for hyper-
bolic collisions (collisions in which the binding energy of the stars before the collision
was larger than zero) and this rate is maintained during the entire simulation, then, at
some point we see binary collisions occurring (collisions in which the binding energy of
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the stars before colliding was less than zero) and they can be as important as 40% of
the total number of collisions in the cluster. The onset of the binary collisions is delayed
for clusters under the influence of an external potential as can be seen in the third panel
of Fig. 5.9 but still the fraction of binary collisions is as important as 30% of the total
number of collisions in these clusters. In both cases the runaway growth occurs shortly
after the onset of the binary collisions suggesting that the hyperbolic collisions, at least
before this, only produce several stars quite more massive than the rest.

The natural question now is why there is a delay in the onset of the binary collisions
in clusters under the influence of the external potential, and to address this issue we have
explored the total number of binaries in clusters with and without the external potential.
For this we make use of the option KZ(9) = 2 in the input file of NBODY6. With this
option we obtain two files showing the properties of soft and hard binaries, the soft bi-
naries being binaries with a semi-major axis larger or equal to 0.1 times the virial radius
of the cluster, therefore soft binaries in our simulations are those with a semi-major axis
larger or equal to 0.014 pc and hard binaries are binaries with a separation smaller than
this. With this information printed in the files OUT9 and fort.19 we can now count the
total number of binaries in bins of 5 tcros and understand how the population of binaries
change over time in both clusters. We present the results of this analysis in Fig. 5.10,
where we see in the top panel, the total number of binaries as a function of the crossing
time of the cluster for a gas-free cluster, and in the bottom panel the same information
for a star cluster subject to the effects of the external potential. We have found that
the number of binaries is always larger in gas-free clusters, there are always more than
10 binaries during the first 400 tcros, and binaries are formed and destroyed during all
the simulation. After the first 400 tcros there is a decrease in the number of binaries due
to the onset of the binary collisions. For the clusters under the effect of the external
potential, this picture is different, in general we always see less binaries in these clusters,
and at some times there are no binaries in the system. We also find a small increase in
the number of binaries just before the onset of the binary collisions and naturally the
number decreases after this onset. In the clusters that are subject to the additional force
the stars have to move faster to compensate the extra gravity in order to have a virialized
system. As the stars move faster in that situation, it is harder to form binaries because
the velocity has to be slowed down more than in the clusters without the additional
potential, and, moreover, the kinetic energy may become comparable now to the bind-
ing energy of the binaries, thus is easier to destroy these systems until eventually some
energy has been dispersed from the system and there is a rise in the number of binaries
and subsequently the onset of the binary collisions. So we have found the reason for the
delay in the runaway growth due to the addition of an external potential, but we have
opened a few new questions like why there is an onset of binary collisions shortly after
an enhancement in the number of binaries, or if the destruction of binaries is related to
the evaporation of the clusters containing N = 100 stars. These questions we will not
answer now but they will be addressed in a future investigation.
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Figure 5.9: Delay in the runaway growth due to an external potential. Delay of the
runaway growth for clusters under the influence of an external potential. The top panel
shows the fraction of hyperbolic collisions (blue solid line), i.e. the result of a close
encounter where the binding energy was larger than zero. The red solid line shows the
fraction of binary collisions, i.e. the result of a close encounter where the binding energy
was less than zero. The solid green line shows the fraction of chain collisions, i.e. a
system of 3 or more bound stars. The top panel is the result of a simulation for a gas-
free cluster and we see that hyperbolic collisions occur during all the simulation and at
some point binary collisions become important at around 400 tcros eventually becoming
40% of the total fraction of collisions. The second panel shows the mass growth of the
runaway object whose mass has reached 100 Mini in only 400 tcros. The third panel is
the same as the first panel but for a cluster under the influence of an external Plummer
potential. In this case we see that during all the simulation there is a constant rate
of hyperbolic collisions and that binary collisions starts at around 1100 tcros eventually
reaching 30% of the total number of collisions. The fourth panel is the same as the
second panel showing the mass growth of the most massive object in the cluster with an
external potential and the delay in the runaway growth is clear, now the mass has grown
by a factor of 100 at 1300 tcros. Source: Own elaboration.
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Figure 5.10: The effects of an external potential on the number of binaries in a cluster.
Number of binaries as a function of the crossing time of the cluster for a gas-free star
cluster in the top panel and for a cluster under the influence of an external potential in
the bottom panel. In general, there are always more binaries in the gas-free clusters and
a small increase just before the onset of the binary collisions which starts at 400 tcros (see
Fig. 5.9) and then a decrease due to the collisions between the stars in binary systems.
In the cluster subject to the additional force of the analytic potential, the number of
binaries is about half of the binaries in the cluster without the external potential, and
we also see a small increase in the number of binaries prior to the onset of the binary
collisions which starts at around 1100 tcros. Source: Own elaboration.
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Chapter 6
AMUSE

In chapter 2.1 we described the main features of NBODY6, in particular, the integration
method which is a fourth order predictor corrector scheme. Additionally, we described
in Section 2.3 the routines that make this code particularly fast compared to many N -
body codes. Although NBODY6 and the later versions NBODY6++ or the state of the
art N -body code which includes post-Newtonian terms, namely NBODY7, are superior
when it comes to the speed of the calculations, the disadvantage is the complexity of the
code which is probably completely understood only by a handful of people besides Sverre
Aarseth. We described previously in Section 2.5 a few modifications we did to the code
which are very simple but we could only include them with the help of Sverre.

Due to this limitation, and considering the future work which aims at a more realistic
modeling of the first stars of the Universe, their IMF, accretion rates, stellar evolution
and ultimately an explicit treatment of the gas, we decided to explore the Astrophysical
MUltipurpose Software Environment (AMUSE) which is a python interface that allows
the coupling of different codes such as N -body integrators, Hydro codes, stellar evolution
and radiative transfer codes.

6.1 The AMUSE framework

The first version of AMUSE, called MUSE [57] was developed in Leiden under the super-
vision of Simon Portegies Zwart. AMUSE is free to download1 and to use and provides a
very simple python interface to existing codes, handling unit conversions so the user can
focus more on the coupling strategies for performing multi-physics simulations. There is
currently a version of AMUSE on github2 that is frequently being debugged by the com-
munity and a google group3 where the users can ask for help related to the installation
and the use of the software.

1AMUSE website: http://amusecode.org/wiki/WikiStart
2AMUSE github: https://github.com/amusecode/amuse
3AMUSE google group: https://groups.google.com/forum/#!forum/amusecode
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AMUSE contains a variety of codes written in different languages such as C, C++ and
Fortran. These codes are usually free source codes such as ATHENA[58] or MESA4 and are
referred to as community codes.
AMUSE provides a PYTHON interface where the community codes are loaded and initial-
ized giving them the initial conditions with generic functions such as code.add particles(stars)
and then run with functions such as code.evolve model(t end). AMUSE provides a simple
way to run simulations combining different codes hiding the complexity of the numerical
implementations.

6.2 Bridge

The BRIDGE method was first used by Fujii et al. 2007[41] to model star clusters in-
teracting with their parent galaxies through N-body simulations. In such simulations
a galaxy usually consists of 1011 particles and a star cluster consists of something like
104 − 106 particles, therefore modeling these system with N-body simulations for some
Gyr is unfeasible given the different scales such as the relaxation or crossing times. The
solution presented by Fujii, M. et al 2007[41] is the split of the system in two smaller
systems evolved separately, treating the galaxy dynamics with the tree algorithm, the
star cluster with the hermite algorithm and the interaction between the galaxy and the
star cluster with the tree algorithm. If we consider the Hamiltonian of the system (the
galaxy being the system A and the star cluster being the system B) we have

H =
∑

i∈A∪B

p2
i

2mi
+

∑
i 6=j∈A∪B

Gmimj

|ri − rj |
.

Now this Hamiltonian can be separated as

H =
∑
i∈A

p2
i

2mi
+
∑

i 6=j∈A

Gmimj

|ri − rj |
+
∑
i∈B

p2
i

2mi
+
∑
i∈B

Gmimj

|ri − rj |
+

∑
i∈Aj∈B

Gmimj

|ri − rj |

H = HA +HB +Hint,

where HA and HB are the Hamiltonians of the systems A and B, respectively, and
additionally the interaction Hamiltonian Hint only depends on the separation of the
systems. Now the idea behind the bridge method becomes more clear, we can perform
a time evolution of the system A using a fast tree method and a more accurate time
evolution of the system B using a direct method, whereas the interaction is treated as
pure momentum kicks. In AMUSE these momentum kicks are computed with a Leapfrog
scheme and we can use different codes for treating systems A and B.

4MESA webpage: http://mesa.sourceforge.net/



6.3. AMUSE SIMULATIONS 67

6.3 AMUSE simulations

We decided to use the AMUSE framework to do the simulations of stellar collisions in
dense star clusters with the aim to make more realistic simulations which treat not only
the dynamics of the stars in the cluster but also the evolution of the gas and eventually
the accretion onto the stars and their feedback on the gas. We describe in this section
the first steps towards the realization of these objective starting from the simplest case
of pure dynamical evolution using the AMUSE framework, comparing these results to
the outcome of the simulations with NBODY6.

6.3.1 Pure dynamical simulations

We use the same setup described in Sec. 3 and model a star cluster with 104 M� and
a half-mass radius of Rh = 0.14 pc, varying the total number of stars from N = 100 to
N = 5000 and the stellar radius from Rstar = 20 R� to Rstar = 5000 R�. The collision
process is treated as in NOBDY6 replacing the colliding stars by a new star whose mass
is the sum of the masses of the colliding stars and no mass loss is included. The radius
is calculated requiring that the density of the product is the same as the density of the
colliding stars (see Sec. 2.4.2). We merge two stars once their separation d is equal or
smaller than the sum of their radii, this is d ≤ R1 + R2. We use the same criteria for
simulations with ph4 and with NBODY6. The evolution of the clusters is calculated
with the fourth-order Hermite integrator ph4 [59, Sec. 3.2], the same scheme used in
NBODY6. Here we present a comparison of the results produced by these two codes.
First we note that the amount of collisions for the same initial conditions is very similar,
from 0.06% for 50 R� stars, to 32% for 500 R� stars (see Fig. 6.1).

We also expect similar results for the general evolution of the star clusters, in partic-
ular, for the mass growth of the runaway object, we expect not only a similar number of
collisions but that they occur at similar times. We also expect that the runaway growth
starts at approximately the same time. We have tested this by looking at the evolution
of a simulation with N = 5000 stars, with 500 R� each, and up to a time of 1000 crossing
times. The results showing the evolution of these clusters are presented in Figs. 6.2 and
6.3.

While we have developed, debugged, tested and compared the first scripts to perform
simulations with ph4 in AMUSE, this is only the very first step towards more realistic
models of the first star clusters of the Universe and the interaction between the stars
inhabitating them. The final models that we aim to produce will contain realistic initial
mass functions determined by the environment in which the cluster may form. For exam-
ple, it is most likely that nuclear star clusters will be formed under turbulent conditions
by gas accretion on the central part. Given that turbulence implies more fragmentation
we could expect the clusters to consist of a larger number of stars in these environments
and possibly with a broader range of masses. On the other hand in the absence of turbu-
lence the initial mass function should be logarithmically flat. One of the most important
effects that we want to include is an explicit treatment of the gas, either with an SPH,



68 CHAPTER 6. AMUSE

Figure 6.1: Comparison of the results produced by ph4 in AMUSE and NBODY6.
The top panel presents the fraction of collisions for different numbers of stars N =
100, 500, 1000 & 5000 and different radii Rstar = 50, 100 & 500 R�. The bottom panel
shows the final mass of the runaway object in units of its initial mass for the same differ-
ent N and Rstar. In both plots the symbols overlaps and we expect some deviations in
the results due to the differences in the codes such as the implementation of the KS reg-
ularization (see Sec. 2.3.3) and the neighbour scheme (see Sec. 2.3) in NBODY6. There
is excellent agreement between the results. Source: Own elaboration.
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Figure 6.2: General evolution of a star cluster containing 5000 stars with ph4. The stars
have a radius of 100 R�, the total cluster mass is 104 M� and the half-mass radius is
rh = 0.1 pc. The calculations were performed with the code ph4 in AMUSE. The top
panel shows the rate of collisions, this is, the fraction of collisions in bins of 5 crossing
times. This rate is initially 0.001×N ×0.2 = 1 collisions per crossing time, and starts to
increase at around 200 tcros. At this moment several collisions occur but do not involve
the runaway object, instead several stars more massive than the average are formed and
the collision rate is around 3 collisions per crossing time until 700 tcros. The second panel
shows the fraction of escaping stars which slowly starts to increase at around 200 tcros

and then monotonically continues increasing up to 0.1 at the end of the simulation. The
third panel shows the 10, 50 and 90% Lagrangian radius and we can see that the radius
enclosing 10% of the mass is decreasing as the cluster is slowly contracting due to two
body relaxation until eventually a high collision rate causes that the 10% of the mass is
contained in one single object at around 800 tcros, then the 10% Lagrangian radius just
traces the position of the runaway star. In the bottom panel we see the mass growth
of the runaway object which experiences a rapid growth between 300 and 600 tcros and
eventually its mass is enhanced by a factor of 500. Source: Own elaboration.
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Figure 6.3: General evolution of a star cluster containing 5000 stars with NBODY6.
The stars have a radius of 100 R�, the total cluster mass is 104 M� and the half-mass
radius is rh = 0.1 pc. This simulation was performed with the code NBODY6. The top
panel shows the rate of collisions, this is, the fraction of collisions in bins of 5 crossing
times. This rate is initially 0.0008 × N × 0.2 = 0.8 collisions per crossing time, and
starts to increase at around 200 tcros. At this moment several collisions occur but do
not involve the runaway object, instead several stars more massive than the average are
formed. At 400 tcros the collision rate is around 2-3 collisions per crossing time until
600 tcros. The second panel shows the fraction of escaping stars which is not important
and only < 5% of stars escape from the cluster. The third panel shows the 10, 50 and 90%
Lagrangian radius and we can see that the radius enclosing 10% of the mass is decreasing
as the cluster is slowly contracting due to two body relaxation until eventually a high
collision rate causes that the 10% of the mass is contained in one single object at around
550 tcros, then the 10% Lagrangian radius just traces the position of the runaway star.
In the bottom panel we see the mass growth of the runaway object which experiences a
rapid growth between 300 and 600 tcros and eventually its mass is enhanced by a factor
of 500. Source: Own elaboration.
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AMR code or the state of the art code AREPO[60]. The explicit treatment of the gas
becomes extremely important for accretion processes, especially in the central part of the
cluster where massive objects are formed through collisions. A more accurate modeling
for the collision process is also important for determining the mass loss and feedback
effects on the surrounding gas. Finally stellar evolution could be included in AMUSE
with some stellar evolution code, but this would make the simulations much slower, so
probably only an approximation for the mass and stellar radius, along with an estimated
life-time for the first stars is adequate for our purpose.
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Chapter 7
Conclusions

We have pursued a first investigation aimed at understanding how the first star clusters
that were formed in the Universe evolved, in particular, focusing our study to the most
massive and dense stellar systems composed by the very first generation of stars, the so
called Pop. III.1 stars whose peculiar properties such as enhanced mass (M∼ 100 M�)
and enhanced radius (R∼ 100 R�) suggest that the systems containing these stars are
very good candidates for forming very massive objects through the process of runaway
stellar collisions in the early Universe. The formation of massive objects is of particular
interest for explaining the presence of supermassive black holes at redshift z ∼ 6 given
that it is very unlikely that these objects have grown by accretion only, but probably the
first black hole seeds were very massive, and finding one feasible mechanism for producing
large seeds was the aim of this work.
Cosmological simulations suggest that the first gas clouds collapsed around redshift 20
in dark matter halos of 108 M� and these clouds were as massive as 106 M�. Although
there is still ongoing research on the assembly of the first star clusters, we conservatively
assume that only 1% of the total mass of these clouds is converted into stars, thus we
model these clusters with a total mass of 104 M�. Additionally, we focus on the densest
systems and consider that these clusters had an initial half mass radius of only 0.1 pc.
Subsequently, we performed a set of 280 N-body simulations with NBODY6 to explore
how the properties of the final most massive object depends on the number of stars in
the cluster and their radii. We also performed simulations of clusters under the influence
of an external Plummer potential to mimic, at first order, the effects of the gas in these
clusters. Our results show that:

• The total fraction of stars that experience collisions in these clusters depend only
on the radius of the stars, ranging from 0.01-0.02% for stars with 20 R�, 0.08% for
stars with 200 R� and up to 30-40% for stars potentially having 5000 R�.

• The mass of the most massive object formed in the cluster depends on both the
number of stars in the cluster and their radii, with the systems having more stars
and larger radii being the best candidates for the formation of more massive objects.
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Considering a cluster formed by 5000 stars, each of them with a radius of 500 R�,
the most massive object can grow up to 300 times its initial mass.

• The clusters evolve towards core-collapse via close encounter of the stars until the
onset of the runaway growth, which occurs after a few tens of crossing times for
less populated clusters and around 300 crossing times for clusters containing more
stars.

• The time required for the onset of the runaway growth decreases when the stellar
radius is increased.

• The time required for the onset of the runaway growth increases with the number
of stars due to the increase in the relaxation time of the cluster.

• Runaway stellar collisions in the first star clusters are able to produce massive black
hole seeds of 103 M�.

• The addition of an external potential produces a delay in the runaway growth.

• Collisions of stars in binary systems are an important contribution to the total
number of collisions in a cluster, and under the presence of an external potential
binaries are harder to form and easier to destroy.

7.1 Discussion

We have shed some light on the process of runaway growth in the first star clusters
of the Universe with a very simplified model, considering equal mass and equal radii
stars, no stellar evolution, and without the effects of a gaseous potential. Our N -body
models resemble very dense star clusters of 104 M� which is a conservative assumption
for the mass of these clusters given that the first collapsing gas clouds had masses of
106 M�. There is still ongoing research on the fragmentation process of these clouds,
but we know that magnetic fields are not important and that the first stars were very
massive and with large radii. Turbulence can lead to the formation of a larger number of
stars, with a broader mass range, and further research is needed to determine the amount
of turbulence during the formation of the first stars. This should be important for the
formation of nuclear star clusters due to the inflow of high velocity gas streams but then
also the accretion process is different, especially if the gas is heated to temperatures
of 10 000 K. The effects of a gaseous potential were investigated in [61], showing an
enhancement in the collision rate and the mass of the final object by a factor of 10 due
to accretion on protostars and collisions. We performed a few simulations of clusters
subject to an external potential to mimic the effects of the gas, without accretion nor
gas expulsion and surprisingly we found a delay in the runaway growth process but at
the end the number of collisions and the mass of the most massive object was enhanced
due to this extra force. We were able to show that binary collisions are important for
building up a massive object and that due to the external potential, the stars move faster
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and therefore the formation of binaries is harder, and the destruction is easier. The delay
in time was a factor of about 2.5 but we did not see this in the presence of accretion
[61], thus modeling accretion is very important at least for the time required to start the
runaway growth in the presence of gas. It is also important to understand in more detail
the merger process, in particular, how much mass is lost during this event or if there
are stellar winds after the collision, but a lot of research is missing on collisions between
Pop. III stars. From Gaburov, Lombardi and Portegies Zwart 2008[62] we know that
collisions between high mass (up to 80 M�) and low mass stars is less than 10% in all the
cases they have studied. Still there are many uncertainties such as the effect of the initial
mass function of the population of the cluster and the impact on the mass of the final
object. Some characteristics about the first stars are still unknown but there is ongoing
research to determine the evolution and life time, as well as the expected number of stars
due to fragmentation processes. By including an initial mass function we may expect a
mass segregation that would favour the formation of more massive objects but could also
lead to more ejections of small stars. Future studies including these effects are needed
to better understand the early evolution of the first star clusters and the assembly of
massive objects in their center. This is a promising scenario for the formation of very
massive black holes.
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