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Resumen

Se utilizan simulaciones directas del sistema de Vlasov-Poisson en 2 dimensiones

espaciales para estudiar la formación e inestabilidad transversal de modos tipo BGK

originados por interacción auto-consistente en plasmas con distribuciones bump-on-

tail.

La configuración de bump-on-tail excita modos paralelos y oblicuos al beam de

manera consistente con predicciones de teoŕıa lineal. Al ser formado un modo tipo

BGK, las tasas de crecimiento de los modos oblicuos son modificadas, y siguen rela-

ciones sencillas con respecto a la inestabilidad original de bump-on-tail.

Cuando los modos oblicuos alcanzan enerǵıas comparables a la enerǵıa del modo

tipo BGK, este último colapsa, y un amplio espectro de harmónicos transversales es

saturado.
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Abstract

Direct simulations of the Vlasov-Poisson system of equations in 2 physical dimen-

sions are used to study the formation and transverse instability of BGK-like modes

originated from self-consistent interaction in bump-on-tail distributed plasmas.

The bump-on-tail configuration excites modes parallel and oblique to the beam,

consistent with predictions from linear theory. Once a BGK-like mode is formed, the

growth rates of oblique modes are modified, and follow simple relations with respect

to the original bump-on-tail instability.

When oblique modes achieve energies comparable to the energy of the BGK-like

mode, the latter collapses, and a wide spectrum of transverse harmonics saturate.
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Planteamiento del problema

Un plasma no-colisional puede ser modelado en la aproximación electrostática por

medio del sistema de ecuaciones de Vlasov-Poisson, el cual admite un tipo de solu-

ciones exactas, no lineales, llamadas modos Bernstein-Greene-Kruskal (BGK) [1].

Modos tipo BGK son recurrentemente observados en plasmas espaciales [2] y de

laboratorio [3], y aún cuando múltiples simulaciones 1−dimensionales han mostrado

que estos se asocian a estructuras estables, y que representan estados asintóticos de

plasmas con distribuciones de velocidad inestables [4] o distribuciones estables suje-

tas a perturbaciones no-lineales [5], simulaciones PIC no-magnetizadas en múltiples

dimensiones han mostrado por un largo tiempo que un tipo de modo BGK local-

izado llamado electron hole [6] se rompe cuando el sistema puede evolucionar a lo

largo de una dimensión transversal al trapping del modo [7]. Este fenómeno ha sido

denominado inestabilidad transversal, y es sabido que afecta también a otros modos

de tipo BGK. Por ejemplo, se ha desarrollado teoŕıas para explicar la filamentación

de ondas de Langmuir de amplitud finita [8, 9], y aunque simulaciones PIC coinciden

cualitativamente con ellas [10], simulaciones de Vlasov con menor ruido han revelado

la necesidad de refinar las teoŕıas actuales [11]. De la misma manera, simulaciones

de Vlasov han verificado la inestabilidad transversal de ondas Ion Acústicas, pero

las tasas de crecimiento asociadas a esta no han podido ser explicadas [12].

A la luz de la evidencia presentada, es claro que las simulaciones de Vlasov

mantienen un rol clave en cuanto a proveer evidencia de la inestabilidad transversal

de modos BGK, contribuyendo al perfeccionamiento de las teoŕıas actuales, y a la

1
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comprensión de los mecanismos f́ısicos de la inestabilidad.

Dado que los estudios modernos de la inestabilidad transversal de modos BGK

se basan en simulaciones numéricas de modos tipo BGK formados por bombeo me-

diante un potencial externo [9], o simulaciones configuradas a partir de modelos

anaĺıticos [11], este trabajo busca proveer evidencia adicional en torno al fenómeno

al utilizar simulaciones de Vlasov para estudiar la inestabilidad transversal de modos

tipo BGK formados auto-consistentemente a partir de distribuciones inestables de

bump-on-tail, las cuales corresponden a uno de los oŕıgenes más comunes y sencillos

de los modos de tipo BGK.
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Chapter 1

Introduction

1.1 Problem statement

A collisionless plasma may be modelled in the electrostatic approximation by means

of the Vlasov-Poisson system of equations, which admits a kind of exact, nonlinear

solutions called Bernstein-Greene-Kruskal (BGK) modes [1].

BGK-like modes are continuously observed in space [2] and laboratory plas-

mas [3], and while multiple 1−dimensional simulations have portrayed them as stable

structures arising as the asymptotic state from unstable velocity distributions [4] or

nonlinear perturbations to stable distributions [5], unmagnetized PIC simulations in

multiple dimensions have long shown that electron holes, a localized kind of BGK

mode [6], break up when the system is allowed to evolve transverse to their trap-

ping direction [7]. This phenomenon has been called transverse instability, and it is

known to affect other kinds of BGK-like modes. For example, a theory for the fila-

mentation of Large Amplitude Langmuir Waves has been developed [8, 9] and PIC

simulations show qualitative agreement [10], but cleaner Vlasov simulations show

the need to improve current theories [11]. Similarly, Vlasov simulations attest for

the transverse instability of Ion Acoustic Waves, but the growth rates measured are

yet to be explained [12].
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CHAPTER 1. INTRODUCTION

In the light of the aforementioned evidence, Vlasov simulations still have a key

role in providing further evidence on the transverse instability of BGK modes, thus

allowing the improvement of current theories and leading to a better understanding

on its physical mechanisms.

Since modern studies on the transverse instability of BGK modes are based on nu-

merical simulations of BGK-like modes formed by pumping of an external driver [9],

or simulations initialized from analytical models [11], this work aims to provide

further evidence by using Vlasov simulations to study the transverse instability of

BGK-like modes self-consistently formed from unstable bump-on-tail distributions,

which is one of the simplest and most common kind of origin for a BGK-like mode.

1.2 Hypothesis

BGK-like modes formed from self-consistent interactions in electrostatic bump-on-

tail distributed plasmas are unstable to perturbations transverse to its trapping

direction, and the instability can be closely related to the unstable phase-space dis-

tribution which generated the BGK-like mode.

1.3 Objectives

1.3.1 General objective

To study the transverse stability of BGK-like modes formed from unstable bump-on-

tail distributions in electrostatic plasmas, relating the development of the instability

to the initial phase-space distribution.
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CHAPTER 1. INTRODUCTION

1.3.2 Specific objectives

• To implement a Vlasov-Poisson code allowing to simulate the evolution of un-

magnetized electrostatic plasmas in 1 and 2 physical dimensions.

• To form BGK-like states from the self-consistent evolution of linearly unstable

velocity distributions in 1− and 2−dimensional simulations.

• To characterize the evolution of the unstable distributions in 1 and 2 physical

dimensions.

• To measure the transverse growth rates and to identify thresholds for the trans-

verse instability of the BGK-like modes in 2 physical dimensions.

• To relate the instability of the BGK-like modes in 2 physical dimensions with

the bump-on-tail distributions which originated the BGK-like modes.

1.4 Methodology and organization

A computational library will be written to directly solve the Vlasov-Poisson system

of equations in 1 and 2 physical dimensions, using periodic boundary conditions,

splitting of the Vlasov equation, spectral interpolation and symplectic integration in

a backwards semi-Lagrangian scheme.

This library will be written in the Julia programming language [13], which is reg-

istered under the open source MIT licence. Julia is a high-level, high-performance,

interactive language, and its ecosystem is wide enough to facilitate the implementa-

tion of the simulations required, as much as the analysis of the results with relative

ease.

The aforementioned library will run on a server with 512 Gb of RAM and two

processors Intel Xeon E5-2699V4 of 44 threads each, running at 2.2 GHz. The

5



CHAPTER 1. INTRODUCTION

operative system of the server is Debian GNU/Linux 10 (buster) with kernel 4.19.0-

6-amd64, and the official binaries of the Julia language, version 1.4.1, will be used.

The formation of BGK-like modes will be induced in a self-consistent manner

by means of linearly unstable bump-on-tail velocity configurations in 2−dimensional

simulations, and the instability of the mode towards the excitation of transverse

harmonics will be analyzed.

By use of the Vlasov-Poisson model, the validity of the results are restricted to

collisionless plasmas where the electrostatic approximation is valid. Also, background

magnetic fields are neglected. While this study points towards the understanding of

basic plasma-wave processes, there exist real-life scenarios close to this regime. Some

examples are the ionosphere of celestial bodies with weak magnetic fields, such as

Venus or Titan, or plasmas induced by laser ablation, with numerous applications

in industry and medicine, like spectroscopy.

The document is organized in the following manner: In Chapter 2, the Vlasov-

Poisson model will be introduced along with basic concepts from linear kinetic the-

ory, like Landau damping and the bump-on-tail instability. A brief description is

provided on the nonlinear effect of particle trapping, on how it gives rise to the ex-

istence of BGK modes, and the fact that they are unstable in multiple dimensions.

Additionally, the foundations for the construction of numerical methods to solve

the Vlasov-Poisson system of equations will be presented. In Chapter 3 the results

from the numerical simulations will be presented. The transverse instability will

be characterized and simple relations will be shown to exist between the transverse

growth rates around a BGK-like mode, and the initial distribution which originated

the mode. Finally, Chapter 4 summarizes the results of the numerical simulations,

and how they respond to the hypothesis of work.
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Chapter 2

Theoretical Framework

2.1 Vlasov-Poisson system of equations

Born from the kinetic theory, the Vlasov equation is a conservation equation which

gives a statistical description to a collection of particles with no direct interaction.

Each particle may only interact with fields induced collectively by the whole system.

Proposed by Anatoli Vlasov in a pioneering study of the vibrational properties of

an electron gas in 1937 [14], this equation is sometimes referred to as the collisionless

Boltzmann equation, and poses the evolution for each particle species as

∂fj
∂t

+ v · ∂fj
∂x

+ Fj ·
∂fj
∂v

= 0, (2.1)

where fj = fj(x,v, t) is the phase-space distribution function for the species j,

subject to the conservative force Fj.

To model the electrostatic evolution of unmagnetized plasmas, this document will

make use of the Vlasov-Poisson system of equations without background magnetic

field, meaning that the forcing term, Fj, will be given by the Lorentz force,

Fj =
qj
mj

E, (2.2)

where qj and mj are the charge and mass of the species j, respectively, and E =

E(x, t) is the electric field, self-consistently fixed according to the Faraday’s law (2.3)

7



CHAPTER 2. THEORETICAL FRAMEWORK

without magnetic induction and the Gauss’s law (2.4), respectively,

∇× E = 0, (2.3)

∇ · E = 4πρ, (2.4)

with the total charge density, ρ = ρ(x, t), given by

ρ =
∑
j

qj

∫
R3

fjd
3v. (2.5)

2.2 Waves in an unmagnetized plasma

2.2.1 Linear theory

If we assume the plasma state to be separable into an homogeneus equilibrium, and

small deviations,

fj(x,v, t) = njf
0
j (v) + δfj(x,v, t), (2.6)

E(x, t) = δE(x, t), (2.7)

where nj is the density of the species j, and the equilibrium distribution functions,

f 0
j , fulfill the quasineutrality condition,

ρ0 =
∑
j

qj

∫
R3

f 0
j d

3v = 0, (2.8)

the Vlasov-Poisson system of equations (2.1)-(2.5), can be linearized to obtain the

linear dispersion relation [15],

1 +
∑
j

ω2
pj

|k|2

∫
R3

k

ω − k · v
·
∂f 0

j

∂v
d3v = 0, (2.9)

where ωpj =
√

4πnjq2
j/mj is the plasma frequency of the species j, and ω and k

are the frequency and wavevector of the perturbations propagating in the plasma,

respectively.
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CHAPTER 2. THEORETICAL FRAMEWORK

At this point it is interesting to recall that the last integral is singular for ω = k·v,

and it is therefore ill-defined if both the frequency, ω, and the wavevector, k, are

demanded to be real-valued. This apparent dead-end brought problems to Vlasov

[14], who first made this calculations and interpreted the integral in the sense of the

principal value, but the situation was successfully tackled 8 years later by Landau

[16], considering the resolution of the Vlasov equation as an initial value problem.

In practice, one usually considers a real-valued wavevector, k, and the frequency

ω to be a complex scalar,

ω = ωr + iγ,

where ωr is the oscillation frequency, and γ is the exponential growth rate of the

wave.

It is very common to consider the equilibrium distribution function to be com-

posed of Maxwellian contributions,

f 0
j =

1

(2π)3/2v3
tj

exp

[
−(v −Vj)

2

2v2
tj

]
,

allowing to rewrite the dispersion relation (2.9) as1

1−
∑
j

ω2
pj

2v2
tj|k|2

Z ′
(
ω − k ·Vj√

2vtj|k|

)
= 0, (2.10)

where Vj, vtj =
√
kBTj/mj, and Tj are the drift velocity, thermal speed, and tem-

perature of the species j, respectively, and kB ≈ 6.381[erg ·K−1] is the Boltzmann’s

constant. ξj = (ω − k ·Vj) /
√

2vtj|k| is called the resonance factor of the species j,

Z (ξ) is the plasma dispersion function from Fried and Conte [17],

Z (ξ) =
1√
π

∫
R

e−t
2

t− ξ
dt,

and Z ′(ξ) denotes its first derivative.
1Proof: B.1 on page 48
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Maxwellian equilibrium

For an electron-proton plasma it is possible to use the approximation of massive ions,

that is, to neglect the dynamics of the protons on the time scale of the electrons due

to the high mass ratio between this two species, and consider protons merely as a

static, neutralizing background. Under this approximation, and taking the electrons

to follow a Maxwellian distribution function,

fe(v) =
1

(2π)3/2v3
te

exp

(
v2

2v2
te

)
,

the linear dispersion relation yields

ω2
pe

2v2
tek

2
Z ′
(

ω√
2vtek

)
= 1, (2.11)

where vte and ωpe are the thermal speed of the electrons and the frequency of the

electronic plasma, respectively.

Taking k as the real, independent variable, then equation (2.11) presents a num-

ber of complex solutions ω = ω(k). Some of this solutions are shown on Fig. 2.1.

From Fig. 2.1a, the existence of two kinds of solutions can be distinguished:

(i) Branches passing through the origin, with approximately constant phase veloc-

ity, vφ = ωr/k. This family of solutions are called pseudo-acoustic waves, due

to the similarity of their shapes with the solutions of the dispersion relation of

acoustic waves. From Fig. 2.1b it is observed that pseudo-acoustic modes are

highly damped for all wavenumbers.

(ii) Branches passing though the frequency axis at ±ωpe, corresponding to Lang-

muir waves. This modes are approximately undamped for k � 1.

In no case a positive growth rate, γ > 0, can be found when the system is under a

Maxwellian equilibrium without additional currents.

The damping of the perturbations allowed to propagate through the plasma is

called Landau damping, as it was analytically found by Lev Landau in 1946 [16].

10
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(a) Oscillation frequency, ωr = <{ω}. (b) Growth rate, γ = ={ω}.

Figure 2.1: Real (a) and imaginary (b) parts of the complex frequency, ω, as a

function of the wavenumber, k, allowed on Maxwellian electron plasma according

to the linear dispersion relation (2.10). Black lines are Langmuir branches and gray

lines are pseudo-acoustic branches. ωpe and vte are the plasma frequency and the

thermal speed of electronic plasma, respectively.

Besides the obvious importance of the Landau damping in the study of plasmas, it

has a very significant role in physics, posing that purely conservative interactions

may result in wave damping and give rise to stability regions in the parameter space.

Bump-on-tail equilibrium

It is possible to incorporate an electron beam to the previous Maxwellian equilibrium

to obtain a bump-on-tail configuration,

fe =
1− ε

(2π)3/2v3
te

exp

(
− v2

2v2
te

)
+

ε

(2π)3/2v3
tb

exp

(
−(v − Vb)2

2v2
tb

)
,

where ε controls the intensity of the beam, vtb is its thermal speed and Vb is its

drift velocity. Introducing the bump-on-tail distribution function into the dispersion

relation (2.10) yields

(1− ε)
ω2
pe

2v2
tek
Z ′
(

ω√
2vtek

)
+ ε

ω2
pe

2v2
tbk

2
Z ′
(
ω − kVb√

2vtbk

)
= 1 (2.12)
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Just like the former case, there exists complex solutions ω = ω(k) to the equa-

tion (2.12), which are shown in Fig. 2.2 considering vtb = vte and Vb = 5vte.

(a) Oscillation frequency, ωr = <{ω}. (b) Growth rate, γ = ={ω}.

Figure 2.2: Real (a) and imaginary (b) parts of the complex frequency, ω, as a

function of the wavenumber, k, on a bump-on-tail electron plasma according to the

linear dispersion relation (2.10). Black lines are Langmuir branches and gray lines

are pseudo-acoustic branches. ωpe and vte are the plasma frequency and the thermal

speed of electronic plasma, respectively.

On Fig.2.2a the same kinds of solutions are observed compared to Fig.2.1a, but

with a clear loss of symmetry around ωr = 0 due to the presence of the beam.

Fig. 2.2b shows a pseudo-acoustic branch with positive growth rate for a certain

range of wavenumbers. This means that the presence of the beam provides free

energy that may render some solutions unstable. This phenomenon is called the

bump-on-tail instability, and predicts an exponential growth of the wave amplitude.

From linear theory it is known that the factors defining the stability of an electro-

static perturbation are its phase velocity, vφ = ωr/k, and the slope of the distribution

function at that velocity, ∂f
∂v

∣∣
v=ωr/k

. In fact, making use of the slow instability con-

dition, |γ/ωr| � 1, it is possible to show for an electron plasma that [18]

γ =
π

2
ω2
pe

(ωr
k

) ∂f
∂v

∣∣∣∣
v=ωr/k

.

12
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The physical explanation for the former relation follows from the fact that the

interaction between a particle in the distribution and a wave propagating through

the plasma will be fluctuating due to their relative velocities, and the net energy

transfer will be negligible unless they have similar speeds. Then, the wave will only

interact significantly with particles close to its phase velocity, accelerating those

slightly slower, and slowing down those slightly faster. Therefore, if the slope of

the distribution function at the phase velocity is positive (i. e. if there are more

particles faster than slower at the vicinity of the wave speed), the wave will grow in

amplitude taking kinetic energy from the distribution function, and if the slope of

the distribution function is negative at the same speed, then the energy of the wave

will decrease accelerating the particles, thus diminishing its amplitude.

2.2.2 Trapping and BGK modes

Consider a single finite-amplitude monochromatic wave with electrostatic potential

Φ(x, t) = Φ0 cos (kx− ωrt) . (2.13)

In the frame of reference of the wave,

x′ = x− ωr
k
t,

v′ = v − ωr
k
,

the wave potential will be stationary,

Φ′(x′) = Φ0 cos (kx′) ,

and the total energy of a single particle in this frame of reference will be

W ′(x′, v′) =
1

2
mv′2 + qΦ0 cos (kx′) , (2.14)

where q and m are the charge and mass of the particle, respectively. Note that

W ′(x′, v′) is constant, and defines the trajectory of the particle in the phase space.
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Fig. 2.3, shows trajectories with constant energy in the (x′, v′) phase space. It

is possible to distinguish free-streaming regions, W ′ > 0, where the particles are

passing with respect to the wave, and a region of trapping, W ′ < 0, where particles

are condemned to bounce back-and-forth, traveling with the wave, trapped on its

potential.

Figure 2.3: Constant contours of the single-particle energy, W ′, in the frame of refer-

ence of the wave. The red contour marks the separatrix between the free-streaming

(W ′ > 0, white background) and trapping (W ′ < 0, gray shade) regions.

Since the wave has finite amplitude, the wave-particle interactions are now ex-

pected to break the linear approximation taken before in this chapter, inducing

finite modifications to the equilibrium distribution function. Similar to the linear

case, the wave will interact with particles close to its phase velocity, accelerating

the slower ones, and decelerating the faster ones. However, a big difference with the

linear regime is that the wave-particle interactions that used to be restricted to an

infinitesimal vicinity of the phase velocity, now are extended to what is shown in

Fig. 2.3 as the trapping region, and the particles inside this region will be bouncing

14
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with slightly different velocities each, until the density becomes mostly homogeneous

(i. e. a plateau with ∂f
∂v
∼ 0 is formed) and the wave amplitude reaches a constant

value. This is illustrated on Fig. 2.4, where the evolution in time would be seen like

the trapping region (gray shade) is spinning around the phase velocity of the wave

(red line) until the plateau is formed.

Figure 2.4: Ilustration of a Maxwellian equilibrium distribution function (black solid

line) and the formation of a plateau (black dashed line) due to nonlinear interaction

with a wave (ωr, k). The red vertical line marks the phase velocity of the wave and

the gray shade marks the trapping region.

The asymptotic formation of the plateau in the velocity distribution function

suggests the existence of nonlinear stationary solutions to the Vlasov-Poisson system

of equations. This solutions were studied by Bernstein, Greene, and Kruskal [1], and

hence they are called BGK modes. They considered the Vlasov-Poisson system of
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equations in the frame of reference of the wave,

v′
∂fj
∂x′
− qj
mj

∂Φ′

∂x′
∂fj
∂v′

= 0, (2.15)

∂2Φ′

∂x′2
= −4π

∑
j

qj

∫
R
fj(x

′, v′)dv′, (2.16)

and started constructing its exact solutions by posing the phase space distribu-

tions to depend only on the energy, W ′, which trivially fulfills equation (2.15) since

W ′ is a constant of motion. They found two ways to find the particular solutions

from the Poisson equation, (2.16): (a) the integral equation method, also called

the BGK method, consisting on prescribing the background equilibrium distribu-

tion and potential shape with little restrictions, and solving the integral equation

returned from the Poisson equation to find the shape of the phase space distribution

on the trapped region, and (b) the differential equation method, also called Classical

Potential, Sagdeev or Schamel method, consisting on specifying the whole distribu-

tion function, integrating it to obtain the charge density, and solving the differential

equation returned from the Poisson equation to find the potential. However, this

method includes more subtleties.

In this manner, they found that an infinite family of solutions could be con-

structed to exactly fulfill the system of equations, without amplitude restriction,

and with freedom to specify the shape of the potential (which does not even requires

periodicity) or the shape of the trapped distribution function. For a more detailed

review on the construction methods, refer to the excellent review on electron holes

(a kind of solitary BGK-like mode) by Hutchinson [6].

It is important to mention that BGK modes are not a simple mathematical cu-

riosity. They hold a very important role in plasma physics since they represent an

ubiquitous family of waves, observed not only in countless simulations as the asymp-

totic result of linear instabilities [4] or perturbations leading to nonlinear Landau

damping [5], but also in laboratory experiments [3], and satellite measurements [2].

Strictly speaking, the term BGK mode refers to a nonlinear, analytical solution
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found to the Vlasov-Poisson system of equations. For this reason, the term BGK-like

mode will be used to denote the nonlinear structures of the same nature arising from

the plasma self-consistent dynamics, thus having a richer constitution.

2.2.3 Transverse instability of BGK modes

Although many kinds of BGKmodes have been observed to be stable in 1−dimensional

simulations, they often develop transverse sidebands leading to kinking and poste-

rior break up of the mode when the particles are allowed to move transverse to the

trapping direction.

Consider the ever-present soliton-like, traveling structures in space plasmas called

electron holes (EH). They consist on regions of low electron density, causing a lo-

calized electric potential able to propagate self-consistently sustained by trapping of

electrons. A more thorough introduction to EH is provided in the already mentioned

review [6].

While EH are stable and able to propagate indefinitely on 1−dimensional simu-

lations, unmagnetized PIC simulations have long shown that they break up on 2−

or 3−dimensional simulations [7]. This effect has been called transverse instability

of electron holes. It is controlled by the presence of a parallel magnetic field and

high transverse velocity spread [19], and a theory for the mechanism of instability

has just been proposed based on considerations of momentum conservation [20].

On the other hand, the kinetic transverse instability of periodic BGK modes

is also under study. In the context of laser-plasma interaction, a theory for the

transverse collapse of Large Amplitude Langmuir Waves has been developed under

the name of filamentation instability [8], with qualitative agreement of PIC sim-

ulations [10], but cleaner Vlasov simulations suggest that the theory still requires

improvements [11]. Similarly, numerical simulations in the same context have ac-

counted for the transverse instability of Ion Acoustic Waves, but the transverse

growth rates measured remain unexplained [12].
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2.3 Vlasov-Poisson Simulations

The Vlasov-Poisson system of equations presents a number of attributes that render

its solution a non-trivial problem. Some of these attributes are

• The system is stiff, meaning that explicit integration schemes will be unstable

and fail to converge to the exact solution unless the integration step-size fulfills

the Courant-Friedrichs-Levy (CFL) condition [21].

• The system exhibits nonlinear behavior inherited from the interaction between

the distribution function with the electric field of the system, which is a function

of the distribution function itself.

• The dynamics of the system depend not only on the configuration space, but

also on the velocity space, implying that a d−dimensional plasma must be

resolved considering a 2d−dimensional phase space.

• While the system is conservative, it has the tendency to develop small-scale

structures, resulting on artificial diffusion and loss of information if these scales

are not resolved accordingly.

The last two properties imply that the Vlasov-Poisson equations are specially hard

to solve in high-dimensional problems, since the number of points in phase space

required to map the distribution function over a dense grid grows exponentially on

the number of nodes considered per dimension, and also the computational resources

required.

With the aforementioned difficulties in mind, several strategies have been de-

signed to numerically solve the VP system, and they can be classified into either

particle or grid methods.

Particle methods are the most classical approach to integrate the Vlasov-Poisson

system of equations, and rely on the Lagrangian integration of the individual tra-

jectories of a large number of particles along the characteristic curves of the Vlasov
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equation. This methods yield reasonable results using relatively low numerical re-

sources, but they suffer from statistical noise decreasing as n−1/2, where n is the

number of particles. On the other side, grid-based methods avoid the sampling noise

inherent to particle methods through direct discretization of the phase space to an

Eulerian grid. However, the stiffness and velocity-dependence of the system makes

the discretization to simultaneously need a large number of points on each dimen-

sion, and a 2d−dimensional phase space, which can render this kind of methods

prohibitive with respect to the computational resources required, specially for d > 1.

To bypass the restrictions imposed by the stiffness of the system, an interme-

diate scheme denominated backwards semi-Lagrangian, was originally introduced in

the context of weather prediction [22], and later incorporated to Vlasov simulations

by Cheng and Knorr [23]. It consists on an Eulerian grid, where the distribution

function at each grid point is computed by following the characteristic curves of

the Vlasov equation starting from that point backwards in time, and mapping the

distribution function on the resulting phase point to the grid. In this way, the inte-

gration of the distribution function resembles the integration of individual particles,

thus avoiding the stability restrictions due to the stiffness of the system, but with-

out incurring in the sampling errors which originate the statistical noise on particle

methods. While this methods still require higher computational resources in com-

parison with particle methods, the increasing power of modern computing machines

has turned them into a viable trade-off between performance and precision.

Another problem introduced by the regular discretization of the phase space

is the appearance of recurrence. This complication consists in the fact that there

is a minimum velocity length, ∆v, that can be accesed by the simulation. This

sets a cutoff in the Fourier conjugate for the velocity variable, νmax = 2π/∆v, and

therefore also sets a maximum period of time trec = νmax/k = 2π/k∆v for which the

information of a given wavenumber, k, can be resolved. After the so called recurrence

time, the results will be repeated over and over just like a truncated Fourier series,
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thus breaking the validity of the simulation. Nonetheless, multiple methods are used

to supress the effect of recurrence, such as adding a collisional or diffusive term on

the right-hand-side of the Vlasov equation, although collisions are discouraged as a

control for recurrence [24]. Other methods consist on adding a wavenumber cutoff at

each time step [25], smoothing the velocity dependence of the distribution function

by convolution against a continuous anisotropic filter at each time-step [23], or even

solving an already filtered version of the Vlasov-Poisson system of equations [26].

Using the backwards semi-Lagrangian approach, spectral interpolation, and con-

trolling recurrence by means of a continuous anisotropic filter, the author of the

present work developed an open source library using the Julia programming lan-

guage [13] which aims to provide an easy-to-use environment to numerically solve

the Vlasov-Poisson system of equations on either 1 or 2 physical dimensions, to-

gether with tools to analyze the results in a generic way. The name of the library

is “Vlasova.jl”. It has been tested against numerous test cases, including the two-

dimensional and multi-species tests proposed by Barsamian et al. [27], and to the

date of writing of this document it has a webpage2 holding its documentation.

This section will explain in general terms how “Vlasova.jl” solves the Vlasov-

Poisson system of equations. To this end the system will be nondimensionalized,

and its solution will be shown to approximate to the solution of successive advection

equations, each with analytical solution. Finally, a brief note will be presented on

the existence of conserved quantities, and how they can be used to track the validity

of the simulations performed.
2https://jgidi.gitlab.io/Vlasova.jl (under development)
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2.3.1 Dimensionless system of equations

The Vlasov equation for the species j, (2.1), together with equations (2.2)-(2.5) can

be nondimensionalized using the dimensionless variables

t′ = tωpe, (2.17a)

x ′ = x/λDe, (2.17b)

E ′ =
|qe|

mevteωpe
E, (2.17c)

v ′j = v/vtj, (2.17d)

f ′j = fj/njv
3
tj, (2.17e)

where me and qe are the electron’s mass and charge, respectively, ωpe is the electron

plasma frequency, λDe is the electronic Debye length. vtj and nj are the thermal

speed the density of the species j. Proceeding in this manner, the dimensionless

Vlasov-Poisson system of equations is obtained,

∂f ′j
∂t′

+ νjv
′
j ·
∂f ′j
∂x ′

+
κj
µjνj

E ′ ·
∂f ′j
∂v ′j

= 0, (2.18)

∂

∂x ′
· E ′ =

∑
j

κj

∫
R3

f ′jd
3v′j, (2.19)

where

νj = vtj/vte, (2.20a)

κj = qj/|qe|, (2.20b)

µj = mj/me. (2.20c)

Until this point, primed quantities were used to refer to nondimensionalized vari-

ables, but since all quantities will be nondimensional from here on this chapter, all

prime symbols will be dropped for convenience.
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2.3.2 Symplectic interators

Symplectic integrators are numerical integration schemes designed to solve Hamilto-

nian systems, meaning that the conservation of the energy is implied in their con-

struction. It is known that symplectic integrators keep the energy errors bounded in

time [28], making them specially suitable for the long-time integration of conservative

systems.

A class of the symplectic integrators is formed by the splitting methods [29],

which will be reviewed now in the specific context of the Vlasov equation.

The dimensionless Vlasov equation, (2.18), can be rewritten

∂f

∂t
= (Lj +Nj) fj, (2.21)

where Lj and Nj are differential operators given by

Lj = −νjvj ·
∂

∂x
,

Nj = − κj
µjνj

E · ∂

∂vj
.

On the one hand, Lj just depends upon x and v, and it is therefore a constant in

time. On the other hand, Nj depends on the distribution function, but since the

Vlasov equation defines the characteristic curves that make the distribution function

constant, df/dt = 0, then Nj will also be constant along the same curves. That is,

d (Lj +Nj)

dt
=
dNj

dt

=
∂Nj

∂f

df

dt

= 0.

Since (Lj +Nj) is a constant in time, then equation (2.21) can be directly integrated

from time t to t+ ∆t to yield

fj(x,vj, t+ ∆t) = e∆t(Lj+Nj)fj(x,vj, t). (2.22)
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Moreover, it is possible to use the Baker-Campbell-Hausdorff formula to factor

out and approximate the propagator e∆t(Lj+Nj) as a product of simpler operators,

where the application of each one of them counts with analytical solution. Then,

depending on the factorization chosen, different symplectic integration schemes will

be generated.

Second order integrator

Taking the second order approximation,

e∆t(Lj+Nj) +O
(
∆t3
)

= e
∆t
2
Nje∆tLje

∆t
2
Nj ,

one can express equation (2.22) as

fj (x,vj, t+ ∆t) ≈ e
∆t
2
Nje∆tLje

∆t
2
Njfj (x,vj, t) , (2.23)

where the application of the propagator eaLj over the distribution function fj, with

a a constant scalar, is the trivial solution to the advection equation,

∂fj
∂t
− Ljfj = 0,

when integrated over a time interval a, and the same reasoning holds for the prop-

agator eaNj . In this manner, equation (2.23) provides an algorithm to approximate

fj (x,v, t+ ∆t) through the integration during the half of a time step, ∆t/2, of a

velocity advection equation,

∂fj
∂t

+
κj
µjνj

E · ∂fj
∂vj

= 0, (2.24)

then integrating for a whole time step, ∆t, a position advection equation,

∂fj
∂t

+ νjvj ·
∂fj
∂x

= 0, (2.25)

and finally integrating the velocity advection equation, (2.24), for another half of

a time step, ∆t/2. Note that this corresponds to the well known velocity-Verlet

integration scheme [30].
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This integration scheme is notable not only because of its simplicity, but also

because it was the first splitting method proposed to solve the Vlasov-Poisson system

of equations in the outstanding article by Cheng and Knorr [23], and today continues

to be the most widely used scheme to integrate conservative systems, including the

Vlasov equation.

Higher-order integrators

It is possible to construct higher-order approximations [31], but negative time-steps

may appear. This is undesirable since moving back-and-forth in time introduces

higher numerical errors and artificially increments entropy.

However, it is possible to avoid the integration of negative time-steps by retaining

the commutator

[Nj, [Lj, Nj]] = −
κ2
j

µ2
jνj

∂|E|2

∂x
· ∂

∂vj

in the expansion of the exponential propagator from equation (2.22).

Furthermore, since the differential operator just shown commutes with Nj,

[Nj,, [Nj, [Lj, Nj]]] = 0,

then it can be incorporated as a simple correction to the forcing term while integrat-

ing a neighboring velocity advection equation.

Integrators built with this method are usually said to have force gradient correc-

tions, and a good example of one of them is the fourth-order integrator A from Chin

[32], consisting on the resolution of 5 advection equations: First, a velocity advec-

tion for a sixth of a time-step ∆t/6. Then, a position advection for half a time-step,

∆t/2. Later, a velocity advection with a gradient correction to the forcing term,

E′ = E + (∆t)2

48

κj
µj

∂|E|2
∂x

, for two thirds of a time-step, 2∆t/3. Then a position advec-

tion for half a time-step, ∆t/2 and finally a velocity advection for another sixth of a

time-step, ∆t/6.
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2.3.3 Solution of the advection equations

As shown in the previous section, there are splitting methods allowing to approximate

the solution to the Vlasov equation as the solution of a combined sequence of the

two advection equations

∂fj
∂t

+ νjvj ·
∂fj
∂x

= 0, (2.26a)

∂fj
∂t

+
κj
µjνj

E · ∂fj
∂vj

= 0, (2.26b)

which can be readily solved by means of Fourier transforms.

Defining the Fourier transform,

ĝ (k) = F {g} (k) ,

=

∫
R
e−ikxg (x) dx,

and its inverse,

g (x) = F−1 {ĝ} (x) ,

=
1

2π

∫
R
eikxĝ (k) dk,

one can transform equation (2.26a) in the space variable, x→ k, to yield

∂f̂j (k,vj, t)

∂t
− iνjk · vj f̂j (k,vj, t) = 0,

which integrated from time t to t+ ∆t returns

f̂j (k,vj, t+ ∆t) = exp (i∆tνjk · vj) f̂j (k,vj, t) .

Note that in the Fourier space, the exponential term acts as a change of phase. In

fact, taking the inverse Fourier transform on the last equation reads

fj (x,vj, t+ ∆t) = fj (x + ∆tνjvj,vj, t) , (2.27)

providing the analytical solution to the position advection equation (2.26a), when

integrated for a time step ∆t.
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Similarly, equation (2.26b) can be integrated from time t to t+∆t on the Fourier

space for the velocity variable, vj → p, to yield

f̂j (x,p, t+ ∆t) = exp

(
i∆t

κj
µjνj

E · p
)
f̂j (x,p, t) ,

which back in the real space reads

fj (x,vj, t+ ∆t) = fj

(
x,vj + ∆t

κj
µjνj

E, t

)
. (2.28)

Consequently, the advection equations may be solved using the interpolation

method of preference, be it spectral, Galerkin, polynomial, or whichever results

adequate to a particular situation. It must be noted that, in order for the expansion

of the operator in (2.22) to make sense, each velocity advection on a sequence must

be performed having recalculated the forcing term, E, from the updated distribution

function.

2.3.4 Electrostatic force calculation

From the dimensionless Gauss equation (2.19), and using the definition of Fourier

transform (A.4a) and its inverse (A.4b), it is straightforward to show that the forcing

term in the Vlasov equation can be obtained as

E (x, t) = F−1

{
i
k

|k|2
F {ρ}

}
, (2.29)

where

ρ (x, t) =
∑
j

κj

∫
R
fjd

3vj

is the charge density collected from all the species in the plasma, F is the Fourier

transform on the space variable, and F−1 its inverse.

Since the electric field depends on space but not on velocity, it is conserved across

velocity advections, but must be recalculated after position advections.
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2.3.5 Validity of the simulations

The Vlasov equation can be implicitly written as

df

dt
= 0,

implying that any well behaved function depending only on the distribution function,

C(f), must be conserved in time as well. Therefore, the ability of a Vlasov simulation

to resolve the system properly can be verified through the conservation of quantities

of this kind.

Many important conserved quantities may be constructed, but the ones most

widely verified are the total energy,

Etot =
1

2

∫
R3

∫
R3

|v|2fd3x d3v +
1

2

∫
R3

|E|2d3x, (2.30)

the number of particles,

N =

∫
R3

∫
R3

fd3x d3v, (2.31)

and the entropy,

S =

∫
R3

∫
R3

f log fd3x d3v. (2.32)
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Results and Discussion

3.1 Numerical setup

To analyze the transverse instability of self-consistently formed BGK-like modes, di-

rect simulations of the Vlasov-Poisson system of equations, (2.1)-(2.5), are performed

for 2−dimensional plasmas using the methods presented in section 2.3: Vlasov-

Poisson Simulations.

The equilibrium distribution functions considered are uniform in space given by

f(x, y, vx, vy) = nef‖(vx)f⊥(vy), (3.1)

where ne is the electron density.

On the direction of y, the velocity distributions are Maxwellian,

f⊥(v) =
1√

2πvte
exp

[
− v2

2v2
te

]
, (3.2)

where vte =
√
kBTe/me, Te and me are the thermal speed, temperature and mass of

the electrons, respectively, and kB is the Boltzmann’s constant.

Linearly unstable bump-on-tail distributions are used along the direction of x,

f‖(v) = (1− ε) fc (v − Vc) + εfb (v − Vb) , (3.3)
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where

fj(v) =
1√

2πvtj
exp

[
− v2

2v2
tj

]
, (3.4)

taking the index j may refer to the core (j = c) or the beam (j = b). The thermal

speed of the core and the beam are vtc = vte and vtb = 0.5vte, respectively, and ε

controls the density of the beam. Cases with ε = 0.05, ε = 0.1 and ε = 0.2 are

studied.

For each value of the beam density, ε, the minimum drift velocity for the distri-

bution to be unstable, Vth, is calculated from equation 2.10. The threshold values

are V ε=0.05
th = 2.82vte, V ε=0.1

th = 1.97vte, and V ε=0.2
th = 2.42vte. Then, a group of

simulations are run with different relative velocities between the beam and the core,

Vd = Vb−Vc, within the range Vth ≤ Vd ≤ 5.5vte. To avoid breaking the electrostatic

approximation, the individual velocities of the core and the beam are fixed such that

the frame of reference of the simulation is on the center of mass, (1− ε)Vc + εVb = 0.

For the configurations mentioned, the dispersion relation (2.10) was scanned to

find the complex frequencies, ω = ω(k), allowed according to the linear theory for

each wavevector, k, fitting in the simulational box, and the most unstable configura-

tion always lied parallel to the beams. Fig. 3.1 shows contour lines of the maximum

growth rate found for each wavevector, k = (kx, ky), considering a beam density of

10% (ε = 0.1) and a drift velocity Vd/vte = 3.

To emulate thermal noise, all distributions are initialized with a very low-amplitude

(∼ 10−15) uniform distribution of random density perturbations in space, allowing

the excitation of all the modes fitting in the phase space box. Additionally, to

precipitate the formation of a BGK-like mode from the most excited mode of the

simulation, a greater density perturbation is added,

δn(x) = 10−8 cos (k0 · x) , (3.5)

where k0 = k0x̂ is the most unstable mode predicted by the linear dispersion relation.

This is performed in order to ensure that oblique modes still have small amplitude
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Figure 3.1: Maximum growth rates scanned from the linear dispersion relation (2.10),

as a function of the wavevector, k = (kx, ky), for a beam with density of 10% (ε = 0.1)

and a drift Vd/vte = 3. The white diamond marks the most unstable configuration

and the gray dashed line follows the highest growth rate for each value of ky. Only

growth rates, γ/ωpe > 10−3 are shown.

when the nonlinear structure parallel to the beam has formed, consequently allowing

the study of the transverse instability around the BGK-like state.

The phase space lengths were chosen Lx = 2π/k0 along x, to rule out the sideband

instability [33, 34], and Ly = 400πλDe along y, to allow the development of long

wavelengths (small wavenumbers) that are characteristic of the transverse instability

of BGK-like modes [11]. The velocity dimensions are resolved within the intervals

vx/vte ∈ [−6, 12] and vy/vte ∈ [−6, 6], respectively.

The discretization resolutions consisted of a time-step of dtωpe = 0.1, Nx = 128

nodes in the space dimension x, Ny = 64 nodes along in the space dimension y,

Nvx = 1024 nodes in the velocity dimension vx, and Nvy = 64 nodes along the

velocity dimension vy, where x and vx are parallel to the beam, and y and vy are

perpendicular to the beam.
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To supress the effect of recurrence, every velocity advection incorporates an-

tialiasing of the distribution function by convolution against a filter function with

shape

Ĝ(ν) = exp

[
−36

(
ν

νmax

)36
]

on the Fourier space, where ν is the conjugate variable of the velocity component to

filter, and νmax is the maximum value of ν.

The symplectic velocity-Verlet integrator was used in time. There was no need

to use a higher-order integrator since the biggest error source lies on space rather

than time dicretization, whereas energy conservation was always accomplished up to

a relative order of 10−5, and convergence tests showed no change on behavior when

scaling up the number of phase space nodes.

3.2 Results

3.2.1 Description of the instability

To introduce the general behavior of the 2−dimensional simulations in contrast to

the better known 1−dimensional bump-on-tail evolution, Fig. 3.2 displays the elec-

trostatic evolution of a linearly unstable bump-on-tail configuration with ε = 0.1

and Vd/vte = 3.0 when: (a) the dynamics of the plasma are restricted along a single

dimension parallel to the beam, or (b) allowed to develop in the dimension perpen-

dicular to the beam aswell. In 1 dimension, the plasma passes mainly through two

well-known stages: Stage I, characterized by the exponential growth of the initial

perturbation, but before it gets large enough for nonlinear effects come into play,

and stage II, after the energy of the excited mode saturates and reaches a stable and

quasi-steady BGK-like state.

When the plasma has a dimension transverse to the bump-on-tail configuration,

the evolution of the system is different from the 1−dimensional case and 4 stages are
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Figure 3.2: Spectral decomposition of the electrostatic energy. On the bottom panel,

(b), the energy of the perturbed mode, (k0, 0) (in red), and its first 15 transverse

harmonics, (k0, ky) (from purple to black, as ky gets larger), on a 2−dimensional

simulation with ε = 0.1 and Vd/vte = 3. Gray dotted lines stand for the growth rates

predicted from the linear dispersion relation (2.10). On top, (a), the energy of the

perturbed mode, k = k0 on an equivalent simulation restricted to 1−dimensional evo-

lution. White arrows mark the instants shown on the phase-space panels of Fig. 3.3.

On both panels a logarithmic scale is used for the vertical axis, and gray/white

backgrounds mark different stages during the evolution of the systems.

recognized. During stage I, additional to the exponential growth of the mode parallel

to the beam, there is also exponential growth of waves oblique to the beam, which

origin from the noise level and present growth rates coincident with the predictions

from linear theory. The growth rates expected according to the linear dispersion

relation, (2.10), are shown in Figure 3.1.

When the amplitude of the parallel mode is large enough for nonlinear effects to
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come into play, it saturates transitioning to stage II, and the growth of oblique modes

is temporarily arrested. After this short transition, oblique modes start growing

again, although with growth rates smaller than in stage I and the most excited modes

during stage I do not necessarily match the most excited modes in stage II. Moreover,

the amplitudes of the oblique modes inherit oscillations from the amplitude of the

already-saturated mode.

Oblique wavevectors continue to grow in time until their amplitude is comparable

to the amplitude of the wave parallel to the beam. When this happens, at stage III,

the previously saturated mode collapses, losing a few orders of magnitude in energy

due to this purely multi-dimensional effect.

After the collapse of the wave parallel to the beam, at stage IV, the state of the

plasma is characterized by the nonlinear superposition of a multitude of transverse

harmonics of the wave originally excited. Long runs have been performed, and this

state seems to last indefinitely.

Figure 3.3 displays the formation and evolution of a very similar phace-space

vortex on both simulations, with either 1 physical dimension (a), (b), (c) and (d), or

2 physical dimensions, (e), (f), (g) and (h). The same instants are shown for both

simulations, and correspond to the white arrows in Fig. 3.2(a). In 1 dimension, the

structure formed remains stable and homogenizes as time goes on. However, in 2

dimensions, the vortex eventually starts to lose coherence (g) and finally collapses.

Notice from panels (b) and (f) that the evolution of the averaged phase space in

2 dimensions looks identical to the evolution in 1 dimension before the transverse

harmonics are large enough to disturb the vortex.

Figure 3.4 shows the velocity profile of the electron distribution function at three

instants: (a) and (d) at the start of the simulation tωpe = 0, (b) and (e) after

the BGK-like structure parallel to the beam is formed but before it starts losing

coherence tωpe = 700, and (c) and (f) after the transverse collapse, deep into the

stage IV tωpe = 1500.
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Figure 3.3: Phase-space vortex formed in 1− and 2−dimensional simulations with

ε = 0.1 and Vd/vte = 3. The four panels on top, (a) to (f), correspond to the

electron distribution function on a 1−dimensional simulation, and the four panels

on the bottom, (e) to (h), to the transverse-averaged electron distribution function,

〈fe〉(x, vx), on a 2−dimensional simulation. Times t1 to t4 correspond to the white

arrows on Fig. 3.2. Yellow/black color stands for a higher/lower density of electrons.

The colorscale is logarithmic, and its limits have been restricted to show only levels

relevant to the vortex.

After the parallel BGK-like mode saturates, (b) and (e), the height of the beam

is decreased and the well known plateau is formed between the core and the beam

at the phase velocity of the BGK-like mode, vφ/vte ≈ 2.1, reducing the steepness of

the beam. The three velocity cuts (b) show a distribution similar to the BGK-like

steady equilibrium classical from 1−dimensional bump-on-tail simulations. For times

posterior to the collapse, (c) and (f), the cut for vy = 0 (blue) shows the pleateau to

be further flattened around vx = vφ while cuts with vte 6= 0 (red and green) show the
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Figure 3.4: Velocity profile of the averaged electron distribution function, 〈fe〉(vx, vy)

on a simulation with ε = 0.1 and Vd/vte = 3. The bottom panels (d), (e) and (f)

show contour lines of the distribution, and the top panels (a), (b) and (c), cuts of

for vy/vte = 0 (blue), vy/vte = 0.5 (red) and vy/vte = 1 (green). Three instants are

shown: (a) and (d) at the start of the simulation tωpe = 0 on stage I; (b) and (e)

when the BGK-like mode parallel to the beam dominates on stage II tωpe = 700; and

(c) and (f) after the transverse collapse on stage IV tωpe = 1500. The dashed colored

lines in the bottom panels mark the velocity cuts shown with the same colors in the

panels above.

formation of local maxima for vx ∼ vφ, evolving towards flattening and formation of

a plateau also in the direction transverse to the beam. The similarity of this picture

with the formation of the parallel BGK-like mode from the bump-on-tail equilibrium

suggests the possibility of explaining the transverse instability as the consequence of

a linearly unstable equilibrium velocity distribution, which could be studied through

linearization of the Vlasov-Poisson system of equations around a model of the BGK

equilibrium. However, such a model would not only depend on velocity, but also on

space, as a density depletion is required for trapping to take place.

Figure 3.5 displays the power spectrum of the averaged charge density in a simu-
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Figure 3.5: Power spectrum of the averaged electron charge density for a

2−dimensional simulation with ε = 0.1 and Vd/vte = 3. Upper panels (a), (b),

and (c), show the power spectrum parallel to the beam, (ω, kx). Bottom panels,

(d), (e), and (f), the power spectrum transverse to the beam, (ω, ky). Three time

ranges are shown: (a) and (d) during stage I, (b) and (e) during stage II, and (c)

and (f) during stage IV. The solid vertical lines mark ωr = 0 and the dashed vertical

lines mark ω0/ωpe = 0.695, the frequency predicted from linear theory for the mode

initially excited (kx, ky) = (k0, 0). The colorscale is logarithmic and it has been nor-

malized against the maximum power for each case, which is: (a) 8 · 107, (b) 3 · 1010,

(c) 3 · 108, (d) 5 · 10−18, (e) 2 · 10−7, and (f) 2 · 102.

lation with ε = 0.1 and Vd/vte = 3. Panels on top (a), (b) and (c) display the power

distribution on the frequency and parallel wavenumber, (ω, kx), while the bottom

panels (d), (e) and (f) display the power distribution on the frequency and trans-

verse wavenumber, (ω, ky). Three temporal ranges are shown: (a) and (d) on stage

I for 0 < tωpe < 200, (b) and (e) on stage II for 400 < tωpe < 600, and (c) and (f)

on stage IV for 1000 < tωpe < 1200. Notice that the big step-size in kx is due to
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the fact that the space length along x was chosen Lx = 2π/k0 to rule out sideband

instabilities, yielding a spectral resolution along this direction of ∆kx = k0.

From panel (a), the stage I of the simulation is dominated by the initially excited

mode parallel to the beam, with frequency correctly predicted from equation (2.10),

corresponding to a pseudo-acoustic branch. For the same time range, on the direction

transverse to the beam (d) one can observe the presence of Langmuir waves excited

from the initial noise distribution, which are mostly undamped.

On stage II, panel (b) shows that the mode initially excited still dominates,

consistent with Fig.3.2(b), and panel (e) shows the appearance of transverse waves

with ky 6= 0 and ω = 0, accounting for the presence of particles resonating with

vy = 0.

After the collapse on stage IV, the maximum power on panel (c) is considerably

smaller in comparison to panel (b) (details on the caption of the figure), and the

dominating mode has suffered a negative frequency shift. In the transverse direction

(f) almost the entirety of transverse wavenumbers, ky, are excited around ωr = 0.

That is, a nonlinear superposition of non-propagating modes of all lengths in the

transverse direction fill the phase-space. The appearance of symmetric Langmuir

waves with kyvte/ωpe > 0.15 is also observed.

3.2.2 Analysis of the transverse growth rates

Figure 3.6 shows the growth rate of the oblique modes (k0, ky) during the first part

of stage II as a function of the transverse wavenumber, ky, measured from a group of

simulations with beam density ε = 0.1 and a range of relative drift velocities. Lines

with different color represent simulations with different drift velocity. White dia-

monds mark the most unstable transverse wavenumber measured at each simulation

and the red line is a quadratic fit of the maximum growth rate, γm, as a function of

the transverse wavenumber, γm(ky) = 0.392ky + 4.938k2
y. The fit is adjusted for drift

velocities Vd/vte ≤ 4.5.
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Figure 3.6: Transverse growth rates as a function of the transverse wavenumber, ky.

Beam density ε = 0.1. Lines of different colors are simulations with different initial

drift velocity, Vd. White diamonds mark the maximum transverse growth rate, γm,

and the red line is a quadratic fit for Vd/vte ≤ 4.5, γm(ky) = 0.392ky + 4.938k2
y.

The growth rates of the transverse wavenumbers has the shape of a symmetric

bell. The range of excited wavenumbers (the bell width) and the maximum growth

rate (the bell height) are growing functions of the initial drift velocity in the range

vε=0.1
th < Vd < 4.5vte, and saturate for Vd/vte > 4.5. In all of the simulations shown,

the bell starts growing approximately with γm = 0 for ky = 0, with deviations for

Vd/vte > 4.5, which are harder to measure since the amplitude of the parallel BGK-

like mode formed oscillates violently, and its modulation is inherited to the oblique

modes.

During stage I, the growth rates are higher for wavevectors aligned with the
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beam, ky = 0. In stage II, however, the maximum growth rate, γm, is achieved for

transverse wavenumbers ky 6= 0, which implies the existence of a minimum angle

with respect to the beam for which the oblique modes are excited by the transverse

instability with its greater effect.

Figure 3.7: Maximum transverse growth rate, γm, as a function of the transverse

wavenumber, ky. Each diamond is an individual simulation. Colors red, blue and

green stand for ε = 0.05, ε = 0.1 and ε = 0.2, respectively. Solid lines are quadratic

fits for Vd/vte ≤ 4.5 for each group of simulations: in red γε=0.05
m (ky) = 0.254ky +

4.439k2
y, in blue γε=0.1

m (ky) = 0.392ky + 4.93842
y, and in green γε=0.2

m (ky) = 0.605ky +

3.564k2
y.

Figure 3.7 displays the maximum growth rate as a function of the transverse

wavenumber for three groups of simulations: in red with beam density ε = 0.05, in

blue with ε = 0.1, and in green ε = 0.2. The solid lines are quadratic fits for each
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group, adjusted to the data with Vd/vte < 4.5.

The maximum transverse growth rates from the groups of simulations with ε =

0.05 and ε = 0.2 also follow an approximately quadratic dependence on the transverse

wavenumber, until a saturation value for the maximum wavenumber is reached, which

happened in the three groups approximately at Vd/vte = 4.5. However, for ε = 0.05

(red) and ε = 0.1 (blue), the maximum growth rates saturated approximately at the

same drift velocity as the transverse wavenumbers, forming clumps on Fig. 3.7, while

only the transverse wavenumbers saturated for ε = 0.2 (green), and the maximum

growth rates continued incrementing for higher drift velocities.

Figure 3.8 shows the maximum transverse growth rates measured on the first

part of stage II (diamonds), and the growth rates of the same modes during stage I

calculated from equation (2.10) (circles), for the groups of simulations with ε = 0.05

(red), ε = 0.1 (blue) and ε = 0.2 (green). Solid lines are quadratic fits of the

measured maximum growth rates and the dashed lines are quadratic fits for the

linear growth rates. White stars mark the drift velocity threshold for the bump-on-

tail with each beam density to be unstable.

One can observe from Fig. 3.8 that the maximum transverse growth rates on

stage II approach to zero at the same instability thresholds as the growth rates

from the initial bump-on-tail distribution on stage I, suggesting that the transverse

instability around the BGK-like mode and the initial bump-on-tail instability have a

common nature. Furthermore, whenever the bump-on-tail instability is present, the

transverse instability will also appear and they will be strongly correlated.

Figure 3.9 relates the maximum transverse growth rate, γm, with the growth rate

of the most unstable beam-mode during stage I, γL, obtained from linear theory. For

the three groups of simulations, the growth rates of the transverse instability around

the BGK-like mode, and the growth rate during stage I of the wave which evolved into

the BGK-like mode follow an approximately linear relation. Moreover, the growth

rates of both instabilities are related through a simple multiplicative factor, which
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Figure 3.8: Transverse growth rates as a function of the relative drift velocity, Vd, for

simulations with ε = 0.05 (red), ε = 0.1 (blue), and ε = 0.2 (green). Diamonds mark

the maximum transverse growth rate, γm, measured for oblique modes with parallel

wavenumber k0, after the nonlinear saturation of the perturbed mode (k0, 0). Solid

lines are quadratic fits: in red γ(Vd) = 0.046(Vd − V ε=0.05
th ) − 0.01(Vd − V ε=0.05

th )2,

in blue γ(Vd) = 0.067(Vd − V ε=0.1
th ) − 0.014(Vd − V ε=0.1

th )2, and in green γ(Vd) =

0.073(Vd − V ε=0.2
th )− 0.011(Vd − V ε=0.2

th )2. Circles mark the growth rate of the same

modes during the linear stage, obtained from linear theory, and the dashed lines are

quadratic fits. Stars on the horizontal axis mark the linear instability thresholds,

V ε=0.05
th /vte = 2.82, V ε=0.1

th /vte = 1.97, and V ε=0.2
th /vte = 2.42 for the initial bump-on-

tail configuration.

is dependant on the beam density. However, a clear change of behavior occurs in

simulations with ε = 0.1 (blue diamonds) for γL/ωpe ≥ 0.2 (or Vd/vte ≥ 4.5). While
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Figure 3.9: Maximum transverse growth rates, γm, as a function of the linear growth

rate of the mode initially excited, γL, obtained from the linear dispersion rela-

tion. Each diamond is a different simulation. Red, blue and green colors mark

configurations with ε = 0.05, ε = 0.1, and ε = 0.2, respectively. Solid lines

are: in red γε=0.05
m (γL) = 0.309γL, in blue γε=0.1

m (γL) = 0.404γL, and in green

γε=0.2
m (γL) = 0.456γL.

its explanation is not a part of the current work, the author is currently investigating

the phenomenon.

Although the simulational data presented is not enough to uniquely identify the

relation between the bump-on-tail instability and the transverse instability of the

BGK-like modes formed, both instabilities were shown to be strongly correlated,

sharing the same instability thresholds and having their growth rates connected

through a simple proportionality relation, at least for drift velocities Vd/vte ≤ 4.
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Conclusions

A computational library to numerically solve the Vlasov-Poisson system of equations

in 1 and 2 physical dimensions was successfully written, and it was employed to study

the transverse instability of BGK-like modes self-consistently formed from bump-on-

tail unstable distributions.

The simulations consisted mainly in 4 stages: (I) linear growth of wavevectors

parallel and oblique to the beam, (II) formation of a BGK-like equilibrium from the

most unstable beam-mode, parallel to the beam, with modification on the growth

rate of the oblique modes, (III) saturation of the oblique modes and collapse of the

BGK-like structure, and (IV) a nonlinear superposition of transverse harmonics of

the BGK-like mode.

The linear dispersion relation was found to correctly predict the growth rates on

stage I for 2−dimensional simulations.

The instability of a BGK-like mode towards perturbations transverse to its trap-

ping direction was observed and described in detail. Oblique waves with the parallel

wavenumber of the BGK-like mode are subject to exponential growth, and when they

reach an amplitude comparable to that of the BGK-like mode, the latter collapses,

losing a few orders of magnitude in energy. The thresholds for the transverse instabil-

ity of BGK-like modes were shown to be coincident with the instability thresholds of
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the initial bump-on-tail distributions, and the growth rates of both instabilities were

shown to approximately follow a proportionality relation, at least for Vd/vte < 4.5,

supporting the hypothesis of work.

After the multi-dimensional collapse, transverse non-propagating waves of all

sizes are excited, and the plasma evolves towards a state consisting on the nonlinear

superposition of a continuous spectrum of transverse wavenumbers.

Vlasov-Poisson simulations have demonstrated to be a valuable tool to investigate

the nature of the transverse instability of BGK-like modes. Future research includes

the use of this kind of simulations to compare the transverse instability of self-

consistently formed BGK-like modes, with the instability of similar structures, such

as BGK-like modes formed by pumping of an external driver [12], and mathematical

models currently in existence [11].

44



Appendix A

Conventions

Throughout this document, all mathematical expressions use the centimetre–gram–second

(CGS) system of units, excepting for Sec. 2.3: Vlasov-Poisson Simulations, which uses

normalized, dimensionless units.

A.1 Characteristic quantities

When studying plasma physics, a common quantity to encounter is the plasma fre-

quency of the species j,

ωpj =

√
4πnjq2

j

mj

, (A.1)

which describes the characteristic frequency of a plasma composed of that species,

where nj, qj and mj are the spatial density, charge and mass of the species j, respec-

tively.

Another characteristic parameter is the thermal speed of the species j,

vtj =

√
kBTj
mj

, (A.2)

where Tj is the temperature of the species and kB ≈ 6.381[erg · K−1] is the Boltz-

mann’s constant. Physically, the definition chosen for the thermal speed corresponds

to the root mean square of the velocity of the particles along any single dimension.
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One last quantity to define is the Debye length of the species j,

λDj =

√
kBTj

4πnjq2
j +

∑
i κini/Ti

, (A.3)

where the index i is summed over all species present in the plasma, and κi is the

ratio of the charges of the species i and j, respectively. The Debye length is the

typical radius for an electric field to be screened by the plasma.

For an electron-proton plasma, its usual to neglect the dynamics of the protons

and approximate the Debye length as

λDe =

√
kBTe

4πneq2
e

.

Note that, according to the definitions given,

vte = λDeωpe.

A.2 Gradient with respect to a vector

In general, for a given vector a = axx̂ + ayŷ + azẑ, the expression

∂

∂a
= x̂

∂

∂ax
+ ŷ

∂

∂ay
+ ẑ

∂

∂az

will be used to denote the gradient with respect to that vector. In this manner, if

x and v are the usual position and velocity vectors, then ∂
∂x

and ∂
∂v

are the usual

gradient and the velocity-gradient, respectively.
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A.3 Fourier transform

For a given function, g(x), the definition of its Fourier transform, ĝ(k), will be given

to follow relations

ĝ(k) = F {g} (k)

=

∫
R
e−ikxg(x)dx, (A.4a)

g(x) = F−1 {ĝ} (x)

=
1

2π

∫
R
eikxf̂(k)dk, (A.4b)

where k and x are conjugate variables.
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Appendix B

Analytical Calculations

B.1 Electrostatic dispersion relation for a Maxwellian

equilibrium

Starting from the linear, electrostatic, dispersion relation,

1 +
∑
j

ω2
pj

k2

∫
R3

k

ω − k · v
·
∂f 0

j

∂v
d3v = 0, (B.1)

we can consider a superposition of Maxwellian distributions of the form

f 0
j (v) =

1

(2π)3/2 v3
tj

exp

[
−(v −Vj)

2

2v2
tj

]
, (B.2)

where vtj and Vj are the thermal speed and the drift velocity of the species j,

respectively.

It is always possible to express the velocities, v andVj, in one component parallel

and two components perpendicular to the perturbation wavevector, k, such that

v = v‖k̂ + v⊥,1
(
k̂× v̂

)
+ v⊥,2

(
k̂× k̂× v̂

)
,

Vj = V
‖
j k̂ + V ⊥,1j

(
k̂× v̂

)
+ V ⊥,2j

(
k̂× k̂× v̂

)
,
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where k̂ and v̂ are unitary vectors pointing in the direction of k and v, respectively.

Then, the integral term in eq. (B.1) can be rewritten as∫
R3

k

ω − k · v
·
∂f 0

j

∂v
d3v =

1

(2π)3/2 v3
tj

∫
R

k

ω − kv‖
∂

∂v‖
exp

[
−

(v‖ − V ‖j )2

2v2
tj

]
dv‖

×
∫
R

exp

[
−

(v⊥,1 − V ⊥,1j )2

2v2
tj

]
dv⊥,1

×
∫
R

exp

[
−

(v⊥,2 − V ⊥,2j )2

2v2
tj

]
dv⊥,2,

but since
∫
R exp[−(v − a)2/2b2]dv = |b|

√
2π for b ∈ R, then∫

R3

k

ω − k · v
·
∂f 0

j

∂v
d3v =

1√
2πvtj

∫
R

k

ω − kv‖
∂

∂v‖
exp

[
−

(v‖ − V ‖j )2

2v2
tj

]
dv‖

= − 1√
2πv3

tj

∫
R

k(v‖ − V ‖j )

ω − kv‖
exp

[
−

(v‖ − V ‖j )2

2v2
tj

]
dv‖.

Changing the integration variable to t = (v‖ − V ‖j )/
√

2vtj∫
R3

k

ω − k · v
·
∂f 0

j

∂v
d3v = − 1√

2πv3
tj

∫
R

2ktv2
tj

ω − kV ‖j −
√

2ktvtj
exp(−t2)dt,

= − 1√
πv2

tj

∫
R

t

(ω − kV ‖j )/
√

2kvtj − t
exp(−t2)dt,

and defining the resonance factor, ξ = (ω − k ·Vj) /
√

2kvtj, integrating by parts,

and using ∂(t− ξ)−1/∂ξ = (ξ − t)−2, respectively, it is easy to see that∫
R3

k

ω − k · v
·
∂f 0

j

∂v
d3v = − 1√

πv2
tj

∫
R

t

ξ − t
exp(−t2)dt,

=
1

2
√
πv2

tj

∫
R

exp(−t2)

(ξ − t)2
dt,

=
1

2v2
tj

∂

∂ξ

(
1√
π

∫
R

exp(−t2)

t− ξ
dt

)
,

where the term in parenthesis is the plasma dispersion function, Z(ξ).
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Combining the last expression with eq. (B.1), the linear, electrostatic, dispersion

relation for an equilibrium made up from a superposition of Maxwellian distributions

is found to be

1 +
∑
j

ω2
pj

2v2
tj|k|2

Z ′
(
ω − k ·Vj√

2vtj|k|

)
= 0. (B.3)

(Ref. from 1 on page 9)
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