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Abstract

A requirement for the implementation of quantum technologies is the

ability to realize N × N unitary operators. It is essential for High

dimensional quantum information processing (HD-QIP) tasks, which

can outperform the two-dimensional ones. Nonetheless, the fabrica-

tion of such devices has been proven to be challenging, with progress

only recently achieved with the advent of integrated photonics. Here,

we report on the production of high-quality Multiport Beam Splitters

(MBS), devices capable of performing N ×N unitary operations, with

N = 4, 7, over qudits, based on a new scheme for manipulating Mul-

ticore Fibers (MCF). We experimentally implemented a characteriza-

tion protocol based on a practical interferometric method that requires

only intensity measurements to directly determine the corresponding

unitary matrices. Since the MBS were designed from multicore fibers,

they present many advantages to overcome the challenges due to their

practical and compact design. An important feature is that they can

be used to build multi-arm interferometers, which when joined with

other components allows one to implement efficient quantum circuits

for HD-QIP. We also explored possible applications of these MBS by

proposing the implementation of a positive operator valued mesure-

ment (POVM), which are broadly relevant in many quantum infor-

mation schemes, since they are able to distinguish probabilistically

between nonorthogonal quantum states.



Resumen

Un requisito para la implementación de tecnoloǵıas cuánticas es la ca-

pacidad de realizar N ×N -operadores unitarios. Esto es esencial para

las tareas de procesamiento de información cuántica en altas dimen-

siones (HD-QIP, por sus siglas en inglés), que pueden superar a las

bidimensionales. No obstante, se ha demostrado que la fabricación de

tales dispositivos es un desaf́ıo, con un progreso logrado sólo reciente-

mente con el advenimiento de la fotónica integrada. Aqúı, informamos

sobre la producción de Divisores de Haz Multipuerto (MBS, por sus

siglas en ingls) de alta calidad, dispositivos capaces de realizar N ×N -

operaciones unitarias (con N = 4, 7), basados en un nuevo esquema

para manipular Fibras Multi-núcleo (MCF, por sus siglas en inglés).

Además, implementamos experimentalmente un protocolo de caracter-

ización basado en un método interferométrico que requiere solo medi-

ciones de intensidad para determinar directamente las matrices uni-

tarias correspondientes. Dado que los MBS fueron diseñados a partir

de MCF, presentan muchas ventajas para superar los desaf́ıos debido a

su diseño compacto. Una caracteŕıstica importante es que pueden us-

arse para construir interferómetros múlti-camino, que cuando se unen

con otros componentes permiten implementar circuitos cuánticos efi-

cientes para HD-QIP. También exploramos posibles aplicaciones de los

MBS al proponer la implementación de una medición POVM (positive

operator valued-measurement), ampliamente relevantes en muchos es-



quemas de información cuántica, ya que son capaces de distinguir prob-

abiĺısticamente entre estados cuánticos no ortogonales.
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Chapter 1

Introduction

In many schemes of quantum computation and quantum information, the experi-

mental implementation of quantum technologies requires the ability to realize any

N × N unitary operators, or quantum gates, to operate over quantum systems.

Although it is known that any N ×N unitary transformation can be produced by

a standard method [1] using an arrangement of optical components, such as beam

splitters, mirrors, and phase shifters, configuring and controlling these types of

optical networks is still nontrivial. This is due to the fact that the schemes require

a large number of standard 2×2-beam splitters when it comes to high dimensions.

This is true even with decomposition methods [2] and more advanced arquitec-

tures, such as photonic chips, where depending on the circuit size, the fidelity of

the operations implemented can be compromised [3], [4].

Another practical challenge is the efficient characterization of these optical

networks once they are built. Methods, such as quantum process tomography

(QPT), using non-classical states or coherent states [5], and compressive sensing [6]

have been large studied. Other approches require non-classical interference [7] or

the use of an external interferometer [8]. However, for high dimensional networks,

these approaches are relatively slow and impractical, in the case of QPT and
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compressive sensing, and challenging, due to inteferometric stability requirements,

in the other cases.

In this work, we introduce a high dimensional beam splitter, which is directly

built within a multicore fiber employing a similar technique of [9], and propose an

experimental method of characterization. The device is an example of a Multi-

port Beam Splitter, a physical device capable of implementing a N × N unitary

operation over high dimensional quantum states, known as qudits. This opera-

tion is represented as a unitary matrix U , which transforms N input modes into

N output modes. They also can be viewed as the generalization of the standard

N × N -beam splitter, a device that has been essential in many experiments of

quantum information, and is described by a 2 × 2 unitary matrix that operates

over two-level states, known as qubits.

The characterization is based on a technically practical interferometric method

that requires only a laser source and intensity measurements to directly determine

the unitary matrix. Based on the protocol of [10] we will be able to characterize a

multiport without the need of an external interferometer or nonclassical interfer-

ence.

Multicore fibers are specially designed optical fibers, in which several single-

mode cores are physically contained within the same common cladding, with each

core capable of transmitting data independently. They are employed by Space-

division multiplexing (SMD) technology, that is considered to overcome the actual

capacity limitation of optical telecommunication networks [11]. Since the Multi-

port Beam Splitters were designed from multicore fibers, they present many advan-

tages to overcome the challenges due to their practical and compact design that

allows a better control and high-fidelity propagation of qudits compared to the

methods mentioned above. An important feature is that they can be used to build

multi-arm interferometers, which when joined with other components (that can be

2



1.1 Overview of the Thesis

incorporated into the interferometer) allows one to implement efficient quantum

circuits for HD-QIP on the prepare-measure scenarios [12].

We also, explored possible applications of this Multiport Beam Splitter by

proposing the implementation of a POVM measurement, which are broadly rel-

evant in many quantum information schemes, such us Quantum State Discrim-

ination [13], Quantum Tomography [14], and Quantum Cryptography [15; 16].

Since the number of outcomes is not limited by the Hilbert space dimension of the

measurement, they are able to distinguish probabilistically between nonorthogo-

nal quantum states [17]. Due to the experimental challenges of implementating

higher-dimensional non-projective measurements, realizations have been limited

to qubit systems [18]. In this work, we will focus on the case of a four-dimensional

non-projective measurement with seven outcomes.

1.1 Overview of the Thesis

In the Chapter 2 we present the mathematical framework used in this thesis,

reviewing the foundations of quantum mechanics, showing in more detail the con-

cept of general measurement and the advantages over projective measurements.

In Chapter 3, we show the theory of linear multiports, from the beam splitter to

the concept of multiport, and the different designs to build them. In Chapter 4

we describe the device in study, which is a multiport represented by a multicore

fiber beam splitter of N cores, and the technique of fabrication. In Chapter 5

we explain the protocol of characterization of a multiport beam splitter that will

be applied to characterize the device in study. Next, in Chapter 6, we showed

the experimental setup and the measurement procedure, following the protocol.

In Chapter 7 we present the results and analysis of this experimental work, and

finaly, in the Chapter 8, we propose the implementation of a POVM measurement,

3



1.1 Overview of the Thesis

as a study of posible applications.

4



Chapter 2

Quantum Mechanics

Summary

Quantum Mechanics is a theory which allows us to describe the behavior of mi-

croscopic physical systems, such as atoms and photons. The quantum theory has

deep differences with classical theories. The main one is the measurement process.

Classical physics implicitly assumes the properties of systems to be unchanged by

measurement processes. Thereby, different properties can be measured without

any interference among them. This is not the case in quantum physics, where the

measurements can have random outcomes and they disturb the state of the sys-

tem. Thereby, the measurement of a property typically precludes the knowledge

about other properties. Quantum Mechanics has allowed the development of many

technological applications, such as Quantum Information, Quantum Computation

and Quantum Cryptography.
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2.1 Postulates of Quantum Mechanics

2.1 Postulates of Quantum Mechanics

In this section, we review shortly all the postulates of quantum mechanics. There

are four basic postulates which tell us how to describe all we can know about a

quantum system [19].

2.1.1 State Space

The first postulate refers to the mathematical representation of quantum systems,

using a mathematical object, which allows us to predict the result of all possible

experiments on the system.

Postulate 1: Any isolated physical system is associated with a complex vector

space with inner product (called a Hilbert space H) known as the state space of the

system. The state vector is a unit vector in the systems state space and completely

describes the system.

A state vector |ψ〉 is a normalized vector in the Hilbert space, |〈ψ|ψ〉| = 1,

which can be identified also as an equivalence class, then |ψ〉 is defines the same

physical state as eiϕ|ψ〉. The simplest quantum mechanical system is the qubit

(quantum bit)1, a 2-dimensional quantum system. Which can be written as the

following general form

|ψ〉 = α|0〉+ β|1〉 , (2.1)

where {|0〉, |1〉} is the orthonormal basis of that state space, and α and β are

complex numbers, which satisfy the unitary condition |α|2 + |β|2 = 1. In general,

a d dimensional state is called a qudit (quantum dit).

An alternative formulation is possible using a tool known as the density operator

1Inspired by the bit notion of classical computing.
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2.1 Postulates of Quantum Mechanics

or density matrix.The language of density matrices is convenient for describing

systems that are not fully known. This is a system that can’t be described only with

a state |ψ〉, instead we need a set of n states |ψi〉 with their respective probabilities

pi, called the ensemble of pure states {pi, |ψi〉}i=1,...,n. The density operator of the

system is defined by the equation

ρ =
n∑
i=1

pi|ψi〉〈ψi|. (2.2)

Note that the expansion (2.2) does not necessarily coincide with the spectral

decomposition of ρ and n can be different than dim(H). The density operators

are characterized by the following theorem:

Teorema 1.- An operator ρ is a density operator associated to some ensemble

{pi, |ψi〉}i=1,...,n if and only if it satisfies the conditions:

1. The trace of ρ is equal to 1. That is, Tr(ρ)= 1,

2. ρ ∈ P. That is, ρ is positive semidefinite operator.

Density matrices are classified into two types: if there exists a vector |ψ〉 such

that ρ = |ψ〉〈ψ|, then we say that the state is pure; otherwise we say that the state

is mixed. A state ρ can be determined as pure or mixed by evaluating its purity,

Tr(ρ2), being completely pure when Tr(ρ2) = 1.

2.1.2 Evolution

The second postulate describes how evolve a closed quantum system, which is a

system that does not interact with any other systems.

Postulate 2: The evolution of a closed quantum system is described by a

unitary transformation. That is, if a state in an initial time t0 is |ψ〉, and in a

final time t it is |ψ′〉, then the relationship between these two states is given by an

7



2.1 Postulates of Quantum Mechanics

unitary operator U(t0, t). This relation is written as:

|ψ(t)〉 = U(t, t0)|ψ(t0)〉. (2.3)

We can calculate the evolution of a density operator,

ρ(t) =
n∑
i=1

pi|ψi(t)〉〈ψi(t)| (2.4)

=
n∑
i=1

piU(t, t0)|ψi(t0)〉〈ψi(t0)|U(t, t0)
† (2.5)

= U(t, t0)

(
n∑
i=1

pi|ψi(t0)〉〈ψi(t0)|

)
U(t, t0)

† (2.6)

= U(t, t0)ρ(t0)U(t, t0)
†. (2.7)

Furthermore, the general evolution of a density matrix is a completely positive

map that preserves the trace, which can be represented by a set of n ≤ d2 operators

{Ki}i=1,...,n which satisfies
∑n

i=1K
†
iKi = I, called Kraus Operators [19],

ρ(t) =
n∑
i=1

Kiρ(t0)K
†
i . (2.8)

A system can evolve into another (mixed) system through interactions with a

second system that is not described by ρ. Eq. (2.8) allows one to describe this

type of evolution.

2.1.3 Quantum Measurements

According to Postulate 2 of quantum mechanics, it is well known that closed, iso-

lated, quantum systems, where there is no interaction between the system and

8



2.1 Postulates of Quantum Mechanics

the environment, evolve according to unitary evolution. However, real quantum

systems are not closed, this interaction always occurs, either because of the exis-

tence of noise or environmental disturbances or because of the interaction with the

measuring device. For example, when the experimentalists and their experimental

equipment, an external physical system, observe the system to discover what is

going on inside the system, an interaction that makes the system no longer closed,

and thus not necessarily subject to unitary evolution.

Postulate 3: The quantum measurement is described by a collection {Mm}

of measurement operators, which act on the Hilbert space of the system being mea-

sured. The index m refers to the measurement outcomes that may occur in the

experiment. These measurement operators satisfy the completness equation,

∑
m

M †
mMm = I (2.9)

This equation expresses the fact that probabilities sum to one. If the system is in a

state |ψ〉, immediately before the measurement then the probability of the outcome

m, asociated with Mm, is given by:

p(m) = 〈ψ|M †
mMm|ψ〉 (2.10)

and the state of the system after the meaurement is

M |ψ〉√
〈ψ|M †

mMm|ψ〉
. (2.11)

For a density matrix and a measurement {Mm}m=1,...,n on the ensemble {pi, |ψi〉}i=1,...,n′

we have that the probability of obtaining outcome m is

9



2.1 Postulates of Quantum Mechanics

p(m) =
n′∑
i=1

p(m|i)pi (2.12)

=
n′∑
i=1

〈ψi|M †
mMm|ψi〉pi (2.13)

=
n′∑
i=1

Tr(M †
mMm|ψi〉〈ψi|)pi (2.14)

=Tr(M †
mMm

n′∑
i=1

pi|ψi〉〈ψi|) (2.15)

=Tr(M †
mMmρ), (2.16)

where p(m|i) is the conditional probability of m if the initial state was |ψi〉. The

states of the ensemble after the measurement are

|ψmi 〉 =
Mm|ψi〉√

〈ψi|M †
mMm|ψi〉

. (2.17)

with respective probabilities p(i|m). Then, the density matrix after the measure-

ment is

ρm =
MmρM

†
m

Tr(M †
mMmρ)

. (2.18)

2.1.4 The problem of distinguishing quantum states

An important measurement scenario is the ability to distinguish quantum states.

In principle, it is possible to distinguish the states of an object in the classical

world, as easy as identifying the face of a landed die that was rolled. However,

things aren’t straightforward in the quantum world, the difficulty of distinguisha-

bility depends on the orthogonality of the set of quantum states. In section 2.2.4

of the book [20], it is shown that non-orthogonal quantum states cannot be dis-
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2.1 Postulates of Quantum Mechanics

tinguished, unlike orthogonal states. To understand and analyze this problem,

it is useful to consider two cases of measurements, projective measurements and

POVMs.

2.1.5 Projective measurement

When operators satisfy the conditions that they are orthogonal projectors, that

is, the Mm are hermitian and MmMm′ = δm,m′Mm, the measurement is said to

be projective measurement. This special case of measurement is described by

an observable, M , a Hermitian operator on the state space of the system being

observed. The observable has a spectral decomposition,

M =
∑
m

mPm , (2.19)

where Pm = Mm is the projector onto the eigenspace of M with eigenvalue m.

Then the completness relation can be written as follows∑
m

Pm = I . (2.20)

If the initial state is |ψ〉, then the probability of getting the result m is

p(m) = 〈ψ|Pm|ψ〉 (2.21)

and the state after measurement,

Pm|ψ〉√
p(m)

(2.22)
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2.1 Postulates of Quantum Mechanics

2.1.6 POVM measurements

As a consequence of the general description of measurements, the POVM formal-

ism, which acronym stands for ’Positive Operator-Valued Measure’, is suitable for

instances where the system can be measured only once, at the end of the experi-

ment, for example photon measurement.

In this case is usually to define Em = M †
mMm as positive operators such that,∑

mEm = I and p(m) = 〈ψ|Em|ψ〉. The operators Em are known as the POVM

elements associated with the measurement. The complete set of {Em} is known

as a POVM, and is sufficient to determine the probabilities of the different mea-

surement outcomes.

2.1.7 Composite Systems

Composite quantum systems are formed by two or more subsystems. The following

postulate describes how the state space of a composite system is built up from the

state spaces of the component systems.

Postulado 4:The state space of a composite physical system is the tensor prod-

uct of the state spaces of the component physical systems. If the subsystems are

numbered from 1 to n, the state space is

H = H1 ⊗H2 ⊗ ...⊗Hn. (2.23)

In particular, if the subsystems are prepared in the states {|ψi〉}i=1,...,n, the

state of the system is

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉. (2.24)

12



2.1 Postulates of Quantum Mechanics

It is important to remark that not all states in the composite space are of this form.

If a state can be written in the form (2.24) we call it separable. Otherwise, we

say it is entangled. Let us consider the two qubit space, which is a 4-dimensional

Hilbert space. A separable basis of this space is

|00〉 = |0〉 ⊗ |0〉 |01〉 = |0〉 ⊗ |1〉 |10〉 = |1〉 ⊗ |0〉 |11〉 = |1〉 ⊗ |1〉. (2.25)

On the other hand, an entangled basis is the Bell Basis,

|ψ±〉 =
1√
2

(|01〉 ± |10〉) |φ±〉 =
1√
2

(|00〉 ± |11〉) . (2.26)

The entangled states are used in Quantum Teleportation [21], Quantum Cryptog-

raphy [22] and fundamental tests of Quantum Mechanics [23].
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Chapter 3

Theory of N ×N Beam Splitters

Summary

In this chapter we explain the theory needed to comprehence the concept of Mul-

tiport Beam Splitters, and the most well-known designs to construct them. We

started from the concept of the very known standard beam splitter (the 2×2 Beam

Splitter), to continue with its generalization, a Multiport Beam Splitter (which is

a N ×N Beam Splitter, when N > 2).

3.1 The 2× 2 Beam Splitter

A 2× 2 Beam splitter is a physical device used in experiments of quantum optics

to operates over two-level quantum systems, qubits. Formally, for a given state

|ψ0〉 in a 2-dimensional Hilbert space the transformation into another vector |ψ1〉

is represented by a unitary matrix U . This transformation can be realized with

a beam splitter whose matrix transforms the input state with modes (k1, k2) into

the output state with modes (k′1, k
′
2). We will use the following representation of

the beam splitter matrix:
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3.2 The Multiport Beam Splitter

 k′1

k′2

 =

 sinω eiφ cosω

cosω −eiφ sinω

 k1

k2

 ,

where ω describes the reflectivity and transmittance of the beam splitter, and φ

describes the relative phase between the input modes. It can be modified utilizing

an external phase shifter before the beam splitter.

Figure 3.1: Beam Splitter scheme. The BS transform de input modes (k1, k2) into
the output modes (k′1, k

′
2).

The use of external phase shifters after the BS output ports allows the beam

splitter matrix to perform any transformation in U(2) [24; 25]. On the other hand,

a beam splitter with variable reflectivity can be substituted by a Mach-Zhender

interferometer using two symmetric 50:50 beam splitters.

3.2 The Multiport Beam Splitter

A Multiport Beam Splitter is a physical device that can be used in experiments

of quantum information to operates over N-level quantum systems, qudits, with

N > 2. They can be viewed as the generalization the standar beam splitter, that

15



3.2 The Multiport Beam Splitter

we mentioned previously. For a given state |ψ0〉 in a N-dimensional Hilbert space

the transformation into another vector |ψ1〉 is represented by a unitary matrix U .

Experimentally, this transformation can be realized with a multiport beam splitter

whose matrix transforms N input modes into N output modes. We will use the

following representation:

Figure 3.2: Multiport Beam Splitter scheme represented by the unitary matrix U .
It transforms de input modes (k1, k2, ..., kN) into the output modes (k′1, k

′
2..., k

′
2).

A usual method to construct an MBS is the one proposed by M. Reck et al in

1994 [1], in which an specific triangular mesh of interconnected standard 2 × 2-

beam splitters and phase shifters were enough to produce experimentally a unitary

transformation N ×N in the laboratory. They established that in any optical ex-

periment representing a unitary matrix, it can be decomposed into a product of

blocks Tm,n containing only beam splitter matrices with appropriate phase shifts.

More recently, in 2017, Clements et al [2] proposed a designed based on the Reck’s,

using the same number of beam splitters, but with a square geometry, and giving

shorter optical depth 1, and therefore, providing a design that is more symmetric

1The longest path through the interferometer, enumerated by counting the number of beam
splitters traversed by that path.
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3.2 The Multiport Beam Splitter

and robust than Reck configuration. The minimal number of 2× 2 beam splitters

needed to implement an N-dimensional unitary matrix is N(N − 1)/2, the same

for both cases. For example, we will need thirty-six beam splitters for the N = 9

dimension, both designs are shown in Fig. 3.3. Other designs have been obtained,

which even require fewer beamsplitters compared to the Reck and Clements de-

signs [26; 27; 28]. However, all those configurations are not able to implement an

arbitrary unitary operator, unlike Reck’s method.

Figure 3.3: Designs to contruct a Unitary Operator with dimension N = 9. In the
left, the Multiport Beam Splitter. In the right, a) Reck design and b) Clements
design. Both, a) and b), use the same number of beam splitters, N(N−1)/2 = 36.

The multiport beam splitter is an important unitary transformation. Being

a high dimensional beam splitter (a type of ”super beam splitter”), it allows to

implement reconfigurable multi-path interferometers and, consequently, a variety

of N ×N unitary operations.
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Chapter 4

Multicore Fiber Multiport Beam

Splitters

Summary

In this chapter we introduce and describe the device studied in this thesis, from

its fabrication to the potential use it has in quantum information experiments.

4.1 Multicore fibers

Space-division multiplexing (SDM) is currently the main technology considered

to overcome the actual capacity limitation of optical telecommunication networks

[11]. Basically, it consists of specially designed fibers that can support distinct

spatial optical modes in order to increase the multiplexing capabilities. The optical

fibers employed by SDM can be devided into two main groups: multicore fibers

(MCF) [29] and few-mode fibers (FMF)[30; 31]. In the former, several single-mode

cores are physically contained within the same common cladding, with each core

being used independently. A few-mode fiber on the other hand consists of a single
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4.1 Multicore fibers

core that supports several optical modes, each of them capable of transmitting

data independently. Arguably, the development of a major part of experimental

quantum information (QI) relies on the fact that it is heavily based on the same

hardware eployed by classical optical communication [32; 33]. Therefore, it is

natural to expect that future development will take place using SDM hardware

[34]. Indeed, in the past couple of years the first quantum communication (QC)

experiments based on MCF have appeared. The first one used a MCF as a direct

multiplexing device: with one core acting as the quantum channel, while other

cores contained classical data [35]. See also refs [36; 37]. Later, the fact that

all cores are placed in a common cladding translates to a long multipath conduit

with intrinsic phase stability, was explored for demonstrating the feasibility of

high-dimensional quantum key distribution (HD-QKD) over MCFs [38; 39].

The benefit of MCFs for QI has been further reinforced by showing that they

can support propagation of entangled photons [40; 41]. Similar research has begun

for few-mode fibers (FMFs) [42; 43; 44; 45; 46]. Additionally, SDM technology

has been exploited for building optical fiber sensors based on MCFs, whose remote

interrogation makes them attractive for industrial applications [9; 47; 48; 49]. MCF

optical sensors have been used for high-temperature sensing up to 1000 C with a

typical temperature sensitivity as high as 170 pm/C [49]. The advantage of using

MCFs is that they allow for the fabrication of multi-arm Mach-Zehnder (MZ)

interferometers, that have higher sensitivity for phase changes since the slopes of

the resulting interference peaks are steeper. There has been a large variety of MCF

optical sensors but most of them rely on inefficient techniques to launch light into a

multi-arm interferometer, resulting in prohibitive losses for quantum information

processing. Of particular interest is the work of L. Gan et. al. [9], where the

authors develop new tapering techniques to build the multi-arm interferometer

directly into a specially designed MCF.
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4.2 Fabrication of a Multiport Beam Splitter using a Multicore Fiber

4.2 Fabrication of a Multiport Beam Splitter us-

ing a Multicore Fiber

As mentioned before, multicore fibers can be exploited for the propagation of path

qudit states defined as the coherent superposition [38],

|ψ〉 =
1√
k

k∑
0

eiφk |k〉 , (4.1)

where |k〉 denotes the state of the photon transmitted by the kth core mode,

and φk is the relative phase acquired during propagation over the kth core (see

Fig. 4.1 a). However, to produce such a state and to measure it requires efficient

coupling of light into all of the k + 1 cores of the MCF. This is the important

role of the MCF-based MBS. Following a recent tapering technique introduced in

[9] we could be able to construct high-quality 4 × 4 and 7 × 7 multiport beam

splitters. In that work, the authors were interested in building multi-arm Mach

Zehnder interferometers for multiparameter estimation. Their idea was to use an

heterogeneous multicore fiber that is used to minimise inter-core coupling, as it

has lower refractive-index ”trenches” around the cores. In such fibers, there are

two orthogonal modes propagating over one core of the fiber, which normally never

interfere. Nonetheless, by tapering this fiber, they created an overlap between such

modes due to strong evanescence effects in the tapered zone. From the interference

observed, parameter estimation was possible. The author then used each core

interference for estimating different parameters of a sample. The fiber worked as

an instrument composed of several 2-path MZ interferometers. In their tapered

region, the inter-coupling between different cores was severely reduced by such

trenches.

Here, we show that by employing the same technique but with homogeneous
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4.2 Fabrication of a Multiport Beam Splitter using a Multicore Fiber

Figure 4.1: Schematics of a MCF and of the fabricated MBSs of 4 cores. a) MCF
before tapering and the qudit encoding strategy. b) The fiber is then heated along
a length L and pulled symmetrically from both ends, streching and thinning the
fiber. The final device is the MBS and has a length LW with dimameter DW .

MCFs, i.e., fibers where the N cores are not bounded by refractive index trenches,

one can build high-quality Multiport Beam Splitters (N ×N beam splitters). The

tapering is performed by locally heating a small transverse region of the fiber with

length L, while applying a controlled longitudinal stretching tension. Since the

fiber is mechanically in a partial soft state, it will become thinner with a final

diameter Dw at the center of the region where the heat is applied. The cores will

consequently be brought together, and due to evanescent coupling, light will leak

from one core to the others, similar to what is obtained in a standard fiber-optical

bi-directional coupler (See Fig. 4.1 b). Due to the symmetry of the 4-core MCF

structure, the splitting ratio can be balanced for all core-to-core combinations.

Finally, since the Multiport Beam Splitter is directly constructed on a MCF, it is

compatible for connection with other MCFs by direct contact (i.e. FC/PC fiber
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4.2 Fabrication of a Multiport Beam Splitter using a Multicore Fiber

connectors).
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Chapter 5

Characterization of a Multiport

Beam Splitter

Summary

In this section we review the procedure used to characterize a unitary Multiport

Beam Splitter (MBS). We start from the most general form of a unitary matrix

representing a MBS, which is used for obtaining the amplitudes and relative phases,

to end with an optimization method to solve the problem of the non-unitary matrix

that appears due to experimental errors.

5.1 Unitary matrices

A unitary matrix U is a complex square matrix whose inverse is equal to its con-

jugate transpose, that is UU † = U †U = I. They have significant importance in

quantum mechanics because they preserve norms, and thus, probability ampli-

tudes. The following properties hold for a finite size unitary matrix:

• U preserves the inner product.
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5.1 Unitary matrices

• U is normal.

• U is diagonalizable

• |det(U)| = 1

• Its eigenvectors corresponding to different eigenvalues are orthogonal.

• U can be written as U = eiH , with H a Hermitian matrix.

As a consequence of unitarity it is easy to see that columns (and similarly rows)

of U form a complex orthonormal basis. The unitary matrices of size d× d form a

group called unitary group U(d), with the group operation of matrix multiplication.

Each element of this group is characterized by d2 real parameters. A general

exppression for U is:

U =


u11e

iφ11 u12e
iφ12 · · · u1de

iφ1d

u21e
iφ21 u22e

iφ22 · · · u2de
iφ2d

...
...

. . .
...

ud1e
iφd1 ud2e

iφd2 · · · udde
iφdd

 (5.1)

where uij and φij are real numbers. An important subgroup of U(d) is the special

unitary group SU(d), whose elements have determinat 1. Thus, they are charac-

terized only by d2 − 1 real parameters.

Let us define a real-border unitary matrix as a unitary one, such that, its first

row and column are real and positive,

V =


v11 v12 · · · v1d

v21 v22e
iϕ22 · · · v2de

iϕ2d

...
...

. . .
...

vd1 vd2e
iϕd2 · · · vdde

iϕdd

 (5.2)
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5.1 Unitary matrices

where vjk ≥ 0. Clearly, one can transform an arbitrary unitary matrix U to a real-

border unitary matrix V , by multiplying it by diagonal matrices with 2d−1 phases

of the first columns and rows. Thus, one could think that the real-border unitary

matrices are characterized only by d(d−2) parameters. However, it has been shown

that this is not true for dimensions greater than 3 [50]. Usually, multiport beam

splitters are characterized by unitary transformations with real border, since the

phases of the border often can not be experimentally determined. Therefore, the

family of unitary transformations that can be implemented by a fixed real-border

multiport beam splitter V and phase shifters are:

U =


eiφ11

eiφ21

. . .

eiφd1

V


1

ei(φ12−φ11)

. . .

ei(φ1d−φ11)

 (5.3)

A multiport beam splitter is called symmeric if the norm of all its matrix

elements are equal,

vnm =
1√
d
. (5.4)

Thereby, a symmetric real-border multiport beam splitter reads

W =
1√
d


1 1 · · · 1

1 eiϕ22 · · · eiϕ2d

...
...

. . .
...

1 eiϕd2 · · · eiϕdd

 . (5.5)

The most known symmetric multiport beam splitters are the canonical one, whose
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5.1 Unitary matrices

matrix elements are given by

F (d)
nm =

1√
d
e2πi(n−1)(m−1)/d . (5.6)

For example, for d = 2 we have the Hadamard matrix,

F (2) =
1√
2

1 1

1 −1

 . (5.7)

For d = 4 we have

F (4) =
1

2


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

 , (5.8)

and for d = 7 the canonical multiport beam splitter is

F (7) =
1√
7



1 1 1 1 1 1 1

1 e
2π
7
i e

4π
7
i e

6π
7
i e

8π
7
i e

10π
7
i e

12π
7
i

1 e
4π
7
i e

8π
7
i e

12π
7
i e

2π
7
i e

6π
7
i e

10π
7
i

1 e
6π
7
i e

12π
7
i e

4π
7
i e

10π
7
i e

2π
7
i e

8π
7
i

1 e
8π
7
i e

2π
7
i e

10π
7
i e

4π
7
i e

12π
7
i e

6π
7
i

1 e
10π
7
i e

6π
7
i e

2π
7
i e

12π
7
i e

8π
7
i e

4π
7
i

1 e
12π
7
i e

10π
7
i e

8π
7
i e

6π
7
i e

4π
7
i e

2π
7
i


. (5.9)

For factorizable dimensions, symmetric multiport beam splitters can be constructed

by the tensor product of symmetric multiport beam splitters of size equal to its

prime factors. In general, the number of parameters that characterize a symmet-

ric multiport beam splitter is not known. Neverthless, the parametric family of
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5.2 Characterization Method

this type of multiports are known for factorizable dimensions. For example, the

parametric family of symmetric multiport beam splitters on dimension 4 are:

V =
1

2


1 1 1 1

1 eiφ −1 −eiφ

1 −1 1 −1

1 −eiφ −1 eiφ

 . (5.10)

For φ = 0 we have the Hadamard matrix:

H =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 , (5.11)

and for φ = π/2 we have the Fourier form:

F =
1

2


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

 . (5.12)

5.2 Characterization Method

A multiport beam splitter is represented by a unitary matrix:

U =
∑
kj

ukje
iφkj |k〉〈j| , (5.13)

for all j, k with 1 < j, k < N . Where {ukj} represent the amplitudes and φkj

denotes the relative phases between the cores, which satisfy the conditions 0 <
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5.2 Characterization Method

ukj < 1 and 0 < φkj < 2π.

In matrix form, U is expressed as in Eq. (5.1):

U =



u11e
iφ11 · · · u1je

iφ1j · · · u1Ne
iφ1N

...
. . .

...
...

uk1e
iφk1 · · · ukje

iφkj · · · ukNe
iφkN

...
...

. . .
...

uN1e
iφN1 · · · uNje

iφNj · · · uNNe
iφNN


.

The characterization method work as follows [10]:

1. The parameters ukj are the square roots of the split ratios skj, which can

be determined by measuring the probabilities Ikj of detecting the photons at

the output represented by |k〉 when the core-mode state |j〉 was sent through

the MBS. It is written as

ukj =
√
skj =

√
Ikj∑
k Ikj

, (5.14)

Where Ikj is related with the beam power Pkj as follows, Pkj = IkjAkj. With

Akj the mode area, which is consider to be the same in all output ports. In

this way,

skj =
Pkj∑
k Pkj

. (5.15)

As shown in Figure 5.1, it is possible to measure Pkj in the output port k,

by sending light from the input port j of the multiport, while other input

modes are in the vacuum state.

Therefore, we can construct the amplitude matrix:

28



5.2 Characterization Method

Figure 5.1: Scheme to determine split ratio, part 1 of the protocol. U is the
multiport beam splitter with N input ports and N output ports. The power
meter is represented by a burgundy rectangle.

Uu =



u11 · · · u1j · · · u1N
...

. . .
...

...

uk1 · · · ukj · · · ukN
...

...
. . .

...

uN1 · · · uNj · · · uNN


.

2.1 To measure the relative phases, we prepare and send the input state

|ψj〉 =
1√
2

(
|1〉+ eiϕ|j〉

)
, (5.16)

through the MBS, see Fig. 5.2, where the mode |1〉 goes to input port 1 and

eiϕ|j〉 goes to input port j.

The resulting state is given by:

U |ψj〉 =
1√
2

∑
k

(
uk1e

iφk1 + ukje
i(φkj+ϕ)

)
|k〉 . (5.17)

The probability distribution to detect photons in the output mode k of the
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5.2 Characterization Method

Figure 5.2: Scheme to determine de relative phases. U corresponds to the MBS
matrix, BS is a 2×2 beam splitter, ϕ the phase shifter and half-circles are detectors.

MBS for the inputs j and 1, while ϕ of the input state is varied, is:

p(k|j) =
1

2
|uk1eiφk1 + ukje

i(ϕ+φkj)|2

=
1

2

[
u2k1 + u2kj + 2uk1ukj cos(ϕ+ φkj − φk1)

]
. (5.18)

Hence, by recording the probabilities p(k|j) with respect to j, one can obtain

the relative phases φkj−φk1, by fitting this function with a sinusoidal model.

However, note that only N2−2N + 1 of the phases φkj are physically signifi-

cant since 2N − 1 phases can be included into the basis vectors or externally

controlled by phase modulators (PM) [10; 17; 51]. Therefore, without loss

of generality, we can consider that φk1 = φ1j = 0, in order to get the real

border estimate (see section 2. eq. (5.2)). Then,

p(k|j) =
1

2

[
u2k1 + u2kj + 2uk1ukj cos(ϕ+ φkj)

]
. (5.19)

is the probability of having light in the output mode k for the inputs mode

j and 1 of the MBS. In orden to obtain all relative phases φkj, we take first

j = 2 and measure the outcomes, and then repeat this procedure for all

j = 3, ..., N . The phase matrix after applying the conditions will be:
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5.2 Characterization Method

Uφ =



0 · · · 0

φ22 · · · φ2j · · · φ2N

...
...

. . .
...

...

φk2 · · · φkj · · · φkN
...

...
. . .

...

0 φN2 · · · φNj · · · φNN


.

2.2. We define the fitting function as follows:

p̄(k|j) ∼ cos(ϕ+ φ̄kj) . (5.20)

In the experiment, it is always possible to measure φ̄1j 6= 0. Then, to apply

the condition above, we subtract the value φ̄1j from all the phases φ̄kj ob-

tained when an initial state was sent to the MBS (that is when j has a fix

value), and then redefine the variables. That is,

φ̃1j = φ̄1j − φ̄1j, (5.21)

φ̃2j = φ̄2j − φ̄1j, (5.22)

... (5.23)

φ̃Nj = φ̄Nj − φ̄1j , (5.24)

then, the phase matrix will be:
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5.2 Characterization Method



0 φ̄12 · · · φ̄1j · · · φ̄1N

φ̄22 · · · φ̄2j · · · φ̄2N

...
...

. . .
...

...

φ̄k2 · · · φ̄kj · · · φ̄kN
...

...
. . .

...

0 φ̄N2 · · · φ̄Nj · · · φ̄NN


−→



0 · · · 0

φ̃22 · · · φ̃2j · · · φ̃2N

...
...

. . .
...

...

φ̃k2 · · · φ̃kj · · · φ̃kN
...

...
. . .

...

0 φ̃N2 · · · φ̃Nj · · · φ̃NN


.

Let {ũjk} and {φ̃jk} be the experimental amplitudes and phases, respectively.

Then, construct the experimental estimate:

Ũ =
∑
jk

ũkje
iφ̃kj |k〉〈j| , (5.25)

which in matrix form is expressed as:

Ũ =



ũ11 · · · ũ1j · · · ũ1N

ũ22e
iφ̃22 · · · ũ2je

iφ̃2j · · · ũ2Ne
iφ̃2N

...
...

. . .
...

...

ũk1 ũk2e
iφ̃k2 · · · ũkje

iφ̃kj · · · ũkNe
iφ̃kN

...
...

. . .
...

ũN1 ũN2e
iφ̃N2 · · · ũNje

iφ̃Nj · · · ũNNe
iφ̃NN


.

Due to inherent experimental errors, this estimate is not a unitary matrix.

Thereby, the next step is to search for the nearest unitary matrix to Ũ by imple-

menting an optimization method.
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5.3 Optimization Method

5.3 Optimization Method

Let Û be the nearest unitary matrix to the experimental one, Ũ , for the multiport

beam splitter. In order to obtain Û we optimize a cost function of the experimental

data. A figure of merit is the Fidelity between two unitary matrices [52] [53]:

F (A,B) =
1

d
|Tr(A†B)|2 . (5.26)

This is equivalent to the fidelity between the quantum states associated to A

and B by the Choi-Jamiolkowski map. This Fidelity can be easily extended to the

case of unitary processes with noise as,

F (A,B) =
|Tr(A†B)|2√

Tr(A†A)Tr(B†B)
, (5.27)

a expression that is very useful in our case, since the experimental matrix is not

unitary. We employed equation (5.27) to minimize the infidelity between the ex-

perimental matrix Ũ and a real border unitary matrix V . Then, the optimized

matrix is given by the following minimization:

Û = arg min [1− F (Ũ , V )] , (5.28)

that can be solved numerically.
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Chapter 6

Experimental Arrangement

Summary

In this chapter, we explain the experimental procedure used to characterize the

Multiport Beam Splitter, based on the method detailed in the previous chapter.

We described the two main measurement schemes for the determination of the

relative phases and the split ratio, and the measurement procedures realized.

6.1 Measurements to determine relative phases

The setup used to determine the relative phases of the matrix is ilustrated in Fig.

6.1. According to the theoretical method, we first had to prepare and send the

initial state |ψ2〉 = 1√
2
(|1〉 + eiϕ|2〉) to the Multiport Beam Splitter (MBS). To

accomplish this, a 1546 nm beam is generated by a continuous wave laser source

and sent to a Mach Zehnder interferometer device (MZ), which generates few

photon pulses, which in turn are sent through a fiber standard 2× 2 beam splitter

(BS). The relative phase ϕ was controlled with an electronic phase modulator

(PM) in the path eϕ|j〉. The path-modes |1〉 and eϕ|j〉 of the BS are conected to
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6.1 Measurements to determine relative phases

paths |1〉 and |j〉, respectively, of the MBS, by means of a demultiplexer (demux1),

which allow us to access every core of the MBS. Once the beams passed through

the MBS, and the unit transformation is applied over the initial state, we measured

the number of photons in each output port of the MBS. Simple count events were

recorded with avalanche photodiode detectors (APD’s), numbered as shown in Fig.

6.1, while the phase modulator varied the phase ϕ, in a controlled way, for at least

three minutes. In order to measure in the MBS output ports we used a second

demultiplexer (demux2). Detector numbering labels correspond to the numbering

of the MBS output ports. Pulses in the MZ and detecttion gates synchronization

are controled by a field-programmable gate array (FPGA).

Figure 6.1: Experimental Setup. MZ: electronic mach zehnder interferometer; BS:
2×2 beam splitter; PM: phase modulator, PC: polarization controler; FG: funtion
generation, demux1(2): MCF spatial demultiplexers; MBS: Multiport Beam Split-
ter; APD’s: Avalanche Photodiode detectors; FPGA: field-programmable gate
array. Detector numbering labels correspond to the numbering of the MBS output
ports.

By repeating this procedure with another input state, such as |ψ3〉, and then

with others until j = N , we could be able to collect all the relative phases φ. The

data recorded by each detector were utilized to plot variations of simple counts

I(s.c.) as a function of the modulated phase ϕ(t), resulting in N curves (graphs)
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6.1 Measurements to determine relative phases

when a configuration of an initial state was sent.

6.1.1 Case of 4× 4 MBS

We first prepared and sent the initial state |ψ2〉 = 1√
2
(|1〉 + eiϕ|2〉) to the 4 × 4

MBS, and, at the same time, we measured the number of photons detected with

the APD’s in the output ports 1, 2, 3 and 4 of this MBS, while the phase modulator

varied the phase ϕ, in a controlled way. Then, we repeat this process by sending

the other input states (|ψ3〉 and |ψ4〉), obtaining four curves per input state sent.

We note that for each input state that was sent to the 4 × 4 MBS, the period of

the resulting four curves was the same. However, this period was not constant

in each of the curves due to phase noise of the fibers caused by mechanical and

thermal variations on them. One way to solve this problem was to select a data

set with a constant period T from graph-1, whose data range goes from ϕ0 to ϕ1

(or equivalently in time from t0 to t1). And we used this same interval of time to

select the data from the other curves. In this way, four curves with exactly the

same period T were obtained for an input state sent.

6.1.2 Case of 7× 7 MBS

A diagram of the geometry of the 7× 7 MBS is shown in Fig. 6.2.

To follow the protocol, we need to use seven APD’s detectors, however, we had

avaliable only four. Then, we first prepared and sent the initial state |ψ2〉 to the

7 × 7 MBS, and at the same time, we measured the number of photons detected

in the output ports 1, 2, 3 and 4 of this multiport. Subsequently, to measure

the remaining output ports 5, 6 and 7, for this input state, we used the same set

of detectors. We left the connection of detector 1 fixed to output port 1 of the

7× 7 MBS, and the other detectors were connected the outputs 5, 6 and 7 of the

multiport, and continued with the measurement. Then, we repeat this process by
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6.2 Measurements to determine the split ratio

Figure 6.2: Diagram showing geometry (Cross-section) and labelling of paths in
the 7× 7 MBS.

sending the other input states (|ψ3〉, |ψ4〉, |ψ5〉, |ψ6〉 and |ψ7〉). We obtained a total

of eight curves: graph-1, graph-2, graph-3, graph-4, graph-1’, graph-5, graph-6 and

graph-7, per input state sent. Therefore, we seleted a range of the data of graph-1

and graph-1’, with the same constant period T, and utilized this same interval to

select the data in other curves. Finally, we repeat this data processing with the

other configuration of input states sent.

6.2 Measurements to determine the split ratio

According to the characterization method, to obtain all the amplitudes of the

characteristic matrix we need to determine the transmission probabilities (split

ratio) of each core of the MBS. To do that, we use the element set demux1 -

MBS - demux2 of the Fig.6.1 in order to access all MBS cores. The scheme of

measurement is shown in Fig.6.3, for the case of 7 × 7 MBS, but it is the same

idea for the case of 4× 4 MBS.

The determination of the split ratio consisted in sending a 1550 nm beam of

17.69 mW from path 1 of the demux1 and measure the maximum power in path 1 of

the demux2, from left to right. Then, we measured the power in other paths of the

demux2, keeping the same path of the demux1 illuminated. Finally, we repeated
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6.2 Measurements to determine the split ratio

this procedure by sending light from the other demux 1 paths, separately, until we

complete them all.

All the fibers are connected to each other through connectors, C1 and C2,

which introduce an attenuation of the propagating beam, it is called connection

loss. To minimize this loss, it was necessary to maximize the intensity between

two connected fibers and to achieve this, the connector that connects them should

be moved until reaching the maximum power of the beam. Keeping that in mind,

we followed the next procedure to maximize the first path of the system.

Figure 6.3: Scheme to determine the split ratio of a MBS. The case of the 7 × 7
MBS is shown in this figure. demux1(2): MCF spatial demultiplexers; MBS:
Multiport Beam Splitter; C1,2: connectors; Pj: system input power, Pjk: system
output power.

First, we sent the beam from the path 1 of the demux1 (from left to right),

and by moving the connector C1, we maximized the light power at the end of the

MBS using a power meter. Afterward, we connected the free end of the MBS to

the demux2, using a second connector, C2, and maximize the intensity at the end

of the path 1 of the demux2, by moving the conector C2. Then, we continued with

the procedure described above.

All 7 × 7 MBS measured powers are shown in the Table 6.1 following the

notation Pjk. It represents the power measured in the core k of the demux2, when

a beam is sent from the core j of the demux1. The power
∑

k Pjk that results from

adding all the powers of the cores k for the same j is also shown. Power error
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6.3 Measurement to determine connection loss

was assumed to be the instrumental error of the Power Meter. Other errors were

calculated using error propagation.

Pjk ± 0.01 mW P1k P2k P3k P4k P5k P6k P7k

Pj1 1.52 0.31 0.74 1.51 2.00 0.09 1.50
Pj2 0.23 0.29 3.64 1.61 1.60 1.61 0.37
Pj3 0.62 3.61 0.20 1.22 0.13 0.65 1.40
Pj4 0.74 0.84 0.83 1.29 0.99 1.22 2.31
Pj5 0.66 1.05 0.28 0.85 0.05 5.22 1.26
Pj6 0.11 1.21 1.00 1.87 2.93 0.60 0.17
Pj7 0.82 0.25 1.41 2.14 0.76 0.18 2.07∑

k Pjk ± 0.03 mW 4.69 7.56 8.10 10.51 8.45 9.56 9.08

Table 6.1: Data measured for the split ratio determination of the 7× 7 MBS. Pjk:
power measured in the output core k of the demux2, when a beam of 17.69 mW
is sent from the input core j of the demux1 (See Fig. 6.3).

6.3 Measurement to determine connection loss

6.3.1 Case 4× 4 MBS

To determine the loss both connectors, tC1 and tc2, the arrangement of the Fig. 6.4

was used. We sent a beam of 1550 nm trough the demux-i’s core 1, and measured

the power P
(i)
b before the connector Ci with the power meter (with i = 1, 2,

depending on the connector loss we want to determine). Then, we connected the

demux-i with the multicore fiber using the connector Ci, and finally, measured the

power P
(i)
c at the end of this MCF. This procedure was performed for each path,

obtaining four values of P
(i)
b and four values of P

(i)
c .
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6.3 Measurement to determine connection loss

Figure 6.4: Scheme to determine the connection loss of a MBS. Ci: conector i
(depending on the connection loss we want to determine, we used i = 1 or i = 2);
MCF: Multicore Fiber; Pa: input power, Pb: power before Ci; Pc: power after
MCF.

With the powers measured above, we determine an average for the loss of

connector 1: 〈
tC1

〉
=

〈
P

(1)
c

P
(1)
b

〉
= 0.944± 0.002 . (6.1)

Similarly, the loss of connector 2 is estimated〈
tC2

〉
=

〈
P

(2)
c

P
(2)
b

〉
= 0.9584± 0.0001 . (6.2)

6.3.2 Case 7× 7 MBS

Similar to the case 4 × 4 MBS we measured the connection loss of 7 × 7 system.

The result was, 〈tC1〉 = 0.78±0.027 and 〈tC2〉 = 0.81±0.08. However, we consider

this result as not satisfactory, due to the great loss of light that implies in the

system and because of the the high error reported. A difference in the dimensions

of the MCF and the demux could have caused this result. For example, the MCF’s

cores were more separated than the demux’s cores, the fibers’ diameters were not

the same, etc.

According to the paper Connector Type Fan-out Device for Multi-core Fiber

of Osamu SHIMAKAWA, et al. [54], it could be estimated that the connection
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6.3 Measurement to determine connection loss

transmission should be in average 〈tC1〉 = 〈tC2〉 = 0.94 ± 0.04 (we will assume

that both connectors are equal), given a certain angle of disalignment less than

one degree. We consider this value later to determine the transmission average of

the 7× 7 MBS.
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Chapter 7

Results and Analysis

Summary

In this seccion we show the values measured in the previous chapter, which were

used to determine the relative phases and the amplitudes of the matrices of 4× 4

MBS and 7 × 7 MBS. Following the protocol, we finally obtained an optimized

unitary matrix for this multiports with their respective errors. We also present an

analysis, interpretation and evaluation of the results.

7.1 Experimental results

Results will be shown in two cases, depending on the MBS used (if the device

was of 4 or 7 cores). In both cases, we used the Origin program to determine

the relative phases, fitting the graphs of the experimental measurements with a

sinusoidal function cos2(ϕ + φ̄kj), where ϕ = ωx. The fitting function gave us

experimental phases φ̄kj and their associated errors for the curves when setting

the known frequency ω in the software, while x represents the time. With this

procedure N phases were determined (with N the number of output ports of the

42



7.1 Experimental results

MBS) when an initial state was sent. According to the characterization protocol,

we need to set φ̄k1 = φ̄1j = 0. Experimentally we can not measure φ̄k1 with our

setup and protocol, so we directly set φ̄k1 = 0, but it is not the same for φ̄1j. To

apply this last condition, we subtract the value φ̄1j from all the phases φ̄kj obtained

when an initial state was sent to the MBS. The experimental phases determined

with this protocol are:

φ̃1j = φ̄1j − φ̄1j, (7.1)

φ̃2j = φ̄2j − φ̄1j, (7.2)

... (7.3)

φ̃Nj = φ̄Nj − φ̄1j (7.4)

7.1.1 Case 7× 7 MBS

The relative phases estimated for the 7 × 7 MBS are presented in the Table 7.1.

We observe that the first column has totally zero values, in total agreement with

the equation (5.18) of the protocol, where it is clear the phase had to be zero when

the input state |ψ1〉 was sent to the MBS.

Now, according to the equation (5.15) of the protocol, we constructed an ap-

proximation of the split ratio of the 7×7 MBS by using the powers Pjk of the Table

6.1. The results of this approximation is shown in Table 7.2. Values and errors

are shown in separate tables for space and clarity only. Here we observe the distri-

bution of the light in the MBS is non-uniform and could follow a second-neighbor

interaction.

Next, with the values of the split ratio approximation of the Table 7.2 we could

determine the amplitudes table by applying the equation 5.14 of the protocol.

These values are shown in the table 7.3.
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7.1 Experimental results

φjk φ1k φ2k φ3k φ4k φ5k φ6k φ7k

φj1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φj2 0.00 1.56 3.69 -0.25 1.88 -0.71 4.09
φj3 0.00 3.63 -0.75 4.02 2.09 -1.29 1.47
φj4 0.00 0.09 4.28 2.03 -1.66 3.78 2.26
φj5 0.00 2.15 2.44 -1.80 -1.13 1.90 3.33
φj6 0.00 0.46 -0.33 4.34 2.59 3.63 0.08
φj7 0.00 4.50 1.59 2.17 3.21 -0.73 -1.35

±∆φjk ±∆φ1k ±∆φ2k ±∆φ3k ±∆φ4k ±∆φ5k ±∆φ6k ±∆φ7k

±∆φj1 0.00 0.04 0.07 0.05 0.05 0.05 0.05
±∆φj2 0.00 0.04 0.06 0.05 0.06 0.04 0.08
±∆φj3 0.00 0.04 0.08 0.04 0.06 0.04 0.06
±∆φj4 0.00 0.04 0.06 0.05 0.04 0.04 0.05
±∆φj5 0.00 0.04 0.06 0.06 0.05 0.04 0.04
±∆φj6 0.00 0.07 0.06 0.05 0.06 0.07 0.06
±∆φj7 0.00 0.05 0.05 0.04 0.05 0.05 0.04

Table 7.1: Estimation of the relative phases φjk ±∆φjk of the 7× 7 MBS matrix.

sjk s1k s2k s3k s4k s5k s6k s7k
sj1 0.324 0.042 0.092 0.144 0.237 0.009 0.165
sj2 0.049 0.039 0.449 0.153 0.189 0.168 0.040
sj3 0.132 0.478 0.024 0.117 0.015 0.068 0.154
sj4 0.157 0.111 0.102 0.123 0.117 0.128 0.254
sj5 0.140 0.139 0.035 0.081 0.005 0.546 0.139
sj6 0.024 0.159 0.123 0.178 0.347 0.062 0.019
sj7 0.174 0.033 0.174 0.204 0.089 0.018 0.229

±∆sjk ±∆s1k ±∆s2k ±∆s3k ±∆s4k ±∆s5k ±∆s6k ±∆s7k
±∆sj1 0.003 0.001 0.001 0.001 0.001 0.001 0.001
±∆sj2 0.002 0.001 0.002 0.001 0.001 0.001 0.001
±∆sj3 0.002 0.002 0.001 0.001 0.001 0.001 0.001
±∆sj4 0.002 0.001 0.001 0.001 0.001 0.001 0.001
±∆sj5 0.002 0.001 0.001 0.001 0.001 0.002 0.001
±∆sj6 0.002 0.001 0.001 0.001 0.002 0.001 0.001
±∆sj7 0.002 0.001 0.001 0.001 0.001 0.001 0.001

Table 7.2: MBS split ratio approximation, where sjk = Pjk/
∑

k Pjk and ±∆sjk
refers to experimental error.

44



7.1 Experimental results

ujk u1k u2k u3k u4k u5k u6k u7k
uj1 0.569 0.204 0.303 0.380 0.487 0.095 0.406
uj2 0.221 0.196 0.670 0.392 0.434 0.410 0.201
uj3 0.363 0.691 0.156 0.341 0.124 0.260 0.393
uj4 0.396 0.332 0.320 0.350 0.343 0.357 0.504
uj5 0.375 0.373 0.186 0.285 0.073 0.739 0.372
uj6 0.154 0.399 0.351 0.422 0.589 0.250 0.138
uj7 0.417 0.181 0.418 0.452 0.299 0.136 0.478

±∆ujk ±∆u1k ±∆u2k ±∆u3k ±∆u4k ±∆u5k ±∆u6k ±∆u7k
±∆uj1 0.002 0.003 0.002 0.001 0.001 0.005 0.001
±∆uj2 0.005 0.003 0.001 0.001 0.002 0.001 0.003
±∆uj3 0.003 0.002 0.004 0.001 0.005 0.002 0.002
±∆uj4 0.003 0.002 0.002 0.001 0.002 0.002 0.001
±∆uj5 0.003 0.002 0.003 0.002 0.008 0.001 0.002
±∆uj6 0.007 0.002 0.002 0.001 0.001 0.002 0.004
±∆uj7 0.003 0.004 0.002 0.001 0.002 0.004 0.001

Table 7.3: Amplitudes ujk ±∆ujk.

Replacing the values of ujk and θjk of the tables 7.3 and 7.1, respectively, in

the equation (5.25), we determined the components of the matrix Ũ7×7 shown in

(7.5). Errors are not presented in the matrix.

Ũ7 =



0.569 0.204 0.302 0.380 0.487 0.095 0.406

0.221 0.196i −0.566− 0.359i 0.379− 0.097i −0.121 + 0.417i 0.316− 0.261i −0.118− 0.163i

0.364 −0.616− 0.314i 0.114− 0.107i −0.218− 0.263i 0.060 + 0.109i 0.073− 0.250i 0.037 + 0.391i

0.396 0.331 + 0.031i −0.136− 0.290i −0.159 + 0.312i −0.032− 0.341i −0.283− 0.219i −0.321 + 0.388i

0.375 −0.200 + 0.315i −0.144 + 0.119i −0.062− 0.278i 0.031− 0.066i −0.250 + 0.696i −0.366− 0.070i

0.154 0.356 + 0.181i 0.330− 0.119i −0.156− 0.3393i −0.497 + 0.316i −0.219− 0.120i 0.137 + 0.009i

0.417 −0.040− 0.177i −0.013 + 0.417i −0.254 + 0.373i −0.298− 0.019i 0.102− 0.090i 0.104− 0.467i


(7.5)

In the Fig. 7.1 it is shown the test of unitarity Ũ †7 Ũ7 of the experimental

matrix. There, we can see that due to experimental errors the estimated matrix is

not exactly a unitary matrix, but a near-unitary one. However, for experimental

data they are quite good. The next step is to apply the optimization method

described in the section section 5.3 of chap. 5.
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7.1 Experimental results

Figure 7.1: Unitarity Test of Ũ7. Real and imaginary part at left and right,
respectively

In this way, the corresponding unitary matrix Û that results from implementing
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7.1 Experimental results

the optimization method is:

Û7 =



0.564 0.201 0.302 0.375 0.492 0.091 0.400

0.222 −0.007 + 0.187i −0.570− 0.306i 0.356− 0.087i −0.145 + 0.363i 0.299− 0.288i −0.103− 0.164i

0.349 −0.627− 0.310i 0.118− 0.099i −0.225− 0.269i 0.047 + 0.108i 0.063− 0.245i 0.012 + 0.406i

0.393 0.332 + 0.016i −0.162− 0.295i −0.127 + 0.335i −0.049− 0.341i −0.332− 0.145i −0.345 + 0.353i

0.371 −0.184 + 0.289i −0.120 + 0.107i −0.022− 0.270i 0.021− 0.053i −0.014 + 0.722i −0.342− 0.070i

0.147 0.371 + 0.203i 0.357− 0.096i −0.094− 0.432i −0.526 + 0.304i −0.279− 0.055i 0.135 + 0.011i

0.444 −0.022− 0.170i −0.065 + 0.433i −0.316 + 0.325i −0.316− 0.020i 0.084− 0.121i 0.099− 0.494i


(7.6)

Note that this matrix is not symmetric, that is, its coefficients have absolute

value different than 1
√

7. Though we do not yet have a complete theoretical model,

this is what one intuitively expects based on simple considerations concerning the

geometry of the cores in the fiber. For this reason this approximation matrix will

not be compared with a theoretical model, but wih the experimental one. The

fidelity between the experimental matrix and the unitary one is

F (Ũ7, Û7) = 0.992± 0.008 . (7.7)

Which is a satisfactory result, as expected. We note that recent results [55] have

shown that even non-symmetric N-port beam splitter devices can serve as primi-

tives for construction of a universal device that implements any N ×N unitary.

7.1.2 Case 4× 4 MBS

The relative phases estimated for the multiport Beam Splitter of 4 cores (4 × 4

MBS), which is illustrated in Fig. 4.1.b) of the chapter 4, are presented in the

Table 7.4. We observed that the first column has values equal to zero, in total

agreement with the equation (5.18), where it is clear the phase had to be zero

when the input state |ψ1〉 was sent to the multiport.

For the case of 4 × 4 MBS we use the intensity values previously measured
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7.1 Experimental results

φjk φ1k φ2k φ3k φ4k

φj1 0.00 0.00 0.00 0.00
φj2 0.00 -3.02 0.05 -3.21
φj3 0.00 0.15 3.22 -3.10
φj4 0.00 -3.13 3.01 -0.06

±∆φjk ±∆φ1k ±∆φ2k ±∆φ3k ±∆φ4k

±∆φj1 0.00 0.05 0.08 0.04
±∆φj2 0.00 0.05 0.09 0.05
±∆φj3 0.00 0.04 0.08 0.05
±∆φj4 0.00 0.06 0.08 0.04

Table 7.4: Estimation of the relative phases φjk ±∆φjk of the 4× 4 MBS matrix.

using an imaging system consisted of a 10× objective lens to generate the enlarged

image of the MBS output, with a 100 µm mobile pinhole placed at the image point,

attached to a power meter. A 1550 nm beam was sent to an input core of the MBS

and the power of each of the images of the cores were registered. This procedure

were repeated with all the input core of the MBS. The power at each output core is

stable and the observed average split ratio was 0.25±0.01 as shown in Fig. 7.2.b).

With these values it is possible to construct the Table 7.5 for the amplitudes.

ujk u1k u2k u3k u4k
uj1 0.50 0.50 0.50 0.50
uj2 0.50 0.50 0.50 0.50
uj3 0.50 0.50 0.50 0.50
uj4 0.50 0.50 0.50 0.50

±∆ujk ±∆u1k ±∆u2k ±∆u3k ±∆u4k
±∆uj1 0.01 0.01 0.01 0.01
±∆uj2 0.01 0.01 0.01 0.01
±∆uj3 0.01 0.01 0.01 0.01
±∆uj4 0.01 0.01 0.01 0.01

Table 7.5: Estimation of the amplitudes ujk ±∆ujk of the 4× 4 MBS matrix.
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a)

b)

Figure 7.2: 4 × 4 Multiport beam splitter performance. a) Image of the facet as
seen by an infrared CCD camera. b) Output normalized optical power of each core
as a function of time.

By applying the protocol we obtained the following experimental estimate:

Ũ4 =


0.5 0.5 0.5 0.5

0.5 0.493 + 0.07i 0.497− 0.05i −0.499− 0.01i

0.5 −0.496− 0.06i 0.499 + 0.03i −0.499 + 0.03i

0.5 −0.5 −0.496 + 0.06i 0.499− 0.03i

 ,

In the Fig. 7.3 it is shown the test of unitarity Ũ †4 Ũ4 of the experimental

matrix. There, we can see that the estimated matrix is almost a perfect unit

matrix. However, we will apply the optimization method described in the protocol

to correct the experimental errors.

49



7.2 Matrix error analisys

The corresponding unitary one is:

Û4 =


0.499 0.501 0.499 0.499

0.501 0.491 + 0.08i −0.496− 0.06i −0.498− 0.01i

0.499 −0.495− 0.06i 0.498 + 0.03i −0.499 + 0.03i

0.499 −0.499− 0.01i −0.499 + 0.03i 0.499− 0.01i

 ,

We have that the fidelity between the experimental estimate and the unitary esti-

mate is

F (Ũ4, Û4) = 0.999± 0.001. (7.8)

Note that the unitary estimate is almost a symmetric unitary matrix, or equiva-

lently, the absolute value of each coefficient of the matrix is approximately 1/2.

Comparing the unitary estimate with the symmetric unitary matrix with φ = 0,

eq. (5.11), we have the fidelity

F (Ũ4, H) = 0.995± 0.003. (7.9)

Which allows us to confirm that this method is reliable to characterize a multiport.

7.2 Matrix error analisys

We perform Monte Carlo simulations to quantify the error of the estimated ma-

trices. We employ the Gaussian distribution N(µ, σ) for this task, where µ is

the mean and σ is the standard deviation. Considering the error as 3 times the

standard deviation of the Gaussian distribution, approximately 99.7% of the re-

alizations are inside of the interval µ ± 3σ. Experimentally, we measured the

intensities Ijk ±∆Ijk and the phases φjk ±∆φjk, with ∆Ijk and ∆φjk being their
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7.3 Determination of MBS’s loss

respective experimental errors. Thereby, the simulated split ratios and phases are

given by

ujk ∼ N(ujk,∆ujk/3), φjk ∼ N(φjk,∆φjk/3) (7.10)

respectively. We generate a sample of 105 MBS matrices Ũ and Û independently,

and with them we calculate the average fidelity and their respectively errors, which

were consider as 3 times the standard deviations.

7.3 Determination of MBS’s loss

7.3.1 Case 4× 4 MBS

In the Fig. 7.4. we show the scheme of measurement to determine the 4×4 MBS’s

loss. First, we sent a 1550 nm beam from left to right through the system, and

measured the powers Pa and Pb for each demux-1’s input. With those values, we

determined the average transmission of the 4× 4 MBS, tBS4, and the connector-1

together.

〈
tC1tBS4

〉
=

〈
Pb
Pa

〉
= 0.822± 0.004 . (7.11)

Afterward, we repeat this procedure but in the reverse direction, that is, send-

ing light from right to left through the system, and measured the powers P ′a and P ′b

for each demux-2’s input. With those values, we determined the average transmis-

sion of the 4× 4 MBS, tBS4, and the connector-2 together, obtaining the following

average:

〈
tC2t

′
BS4

〉
=

〈
P ′b
P ′a

〉
= 0.918± 0.001 . (7.12)
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Replacing the calculated values in the ecuations (6.1) and (6.2) into the equa-

tions (7.11) and (7.12), respectively, we estimated two average values of the 4× 4

MBS transmision:

〈
tBS4

〉
=

〈
tC1tBS4

〉〈
tC1

〉 = 0.87± 0.01 . (7.13)

〈
t′BS4

〉
=

〈
tC2t

′
BS4

〉〈
tC2

〉 = 0.957± 0.001 . (7.14)

Finally, we averaged the values (7.13) and (7.14) and obtained the average

value for the 4× 4 MBS:

TBS4 = 0.91± 0.06 . (7.15)

7.3.2 Case 7× 7 MBS

Similarly to the case of 4x4-system we determine the 7 × 7 MBS’s loss, that is

using the same scheme shown in 7.4, but with the demux and MBS of 7 ports

instead. First, we sent a 1550 nm beam from left to right through the system, and

measured the powers Pa and Pb for each demux-1’s input. With those values, we

determined the average transmission of the 7× 7 MBS, tBS7, and the connector-1

together.

〈
tC1tBS7

〉
=

〈
Pb
Pa

〉
= 0.82± 0.12 . (7.16)

Afterward, we repeat this procedure but in the reverse direction, that is, send-

ing light from right to left through the system, and measured the powers P ′a and P ′b

for each demux-2’s input. With those values, we determined the average transmis-

sion of the 7× 7 MBS, tBS7, and the connector-2 together, obtaining the following

52



7.3 Determination of MBS’s loss

average:

〈
tC2t

′
BS7

〉
=

〈
P ′b
P ′a

〉
= 0.86± 0.03 . (7.17)

We supposed that 〈tC1〉 = 〈tC2〉 = 0.94± 0.04, to estimate two average values

of the 7× 7 MBS transmision:

〈
tBS7

〉
=

〈
tC1tBS7

〉〈
tC1

〉 = 0.86± 0.13 . (7.18)

〈
t′BS7

〉
=

〈
tC2t

′
BS7

〉〈
tC2

〉 = 0.91± 0.04 . (7.19)

Finally, we averaged the values (7.18) and (7.19) and obtained the average

value for the 7× 7 MBS:

TBS7 = 0.88± 0.03 . (7.20)

As expected the value of the average transmission of the 7 × 7 MBS is lower

than the 4× 4 MBS. Mainly because its geometry was more complex, due to the

number of cores, of this multiport.

7.3.3 Optical Depth

Another important aspect is the optical depth, which is defined as the longest path

through the interferometer, enumerated by counting the number of beam splitters

traversed by that path. In the case of both Multiport Beam Splitters, proposed

in this thesis, there is a much shorter optical depth, since it is only a large beam

splitter, in which the ”light splitting process” occurs by a tunneling effect. Then,

the propagation losses in the MBS’s are reduced. On the other hand, if we had

53



7.3 Determination of MBS’s loss

to use the standard model of Reck et al to manufacture the multiport devices, we

would need twenty-one 2 × 2-beam splitters for the case of dimension d = 7 and

six 2×2-beam splitters for the case of dimension d = 4, which would clearly imply

a much longer optical depth.

However, the Multiport Beam Splitter is not capable of implementing an arbi-

trary unit transformation, at least for the dimensions d = 4 and d = 7, while the

Reck configuration can perform any transformation on qudits for a given dimension

d, that is, it is a universal configuration.
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7.3 Determination of MBS’s loss

Figure 7.3: Unitarity Test of Ũ4. Real and imaginary part at left and right,
respectively
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7.3 Determination of MBS’s loss

Figure 7.4: Scheme to determine the 4 × 4 MBS loss. demux-1: demultiplexer-1,
demux-2: demultiplexer-2; C1: connector-1; C2: connector-2; 4×4 MBS: Multiport
Beam Splitter of 4x4 ports; Pa: power before connector-1, and Pb: power before
connector-2, when light is sent from left to right. P ′a: power before connector-2,
and P ′b: power before connector-1, when light is sent from right to left.
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Chapter 8

Applications

Summary

In this section we explore possible applications of the multiport beam splitter

by proposing the implementation of a Positive Operator Value Measurements

(POVM), focusing on the case of a four-dimensional non-projective measurement

with seven outcomes.

8.1 POVM implementation

A POVM is a generalized measurement characterized by semi-defined positive

operators Ej, which satisfy the completeness relation
∑

j Ej = I, and it can be

implemented using an ancilla system. Let Hs be the state space of the principal

system and Ha the same for the ancilla system, and consider the extended system

H = Hs ⊕Ha, where ⊕ is the direct sum. The dimension of the extended system

is ds + da, where ds and da are the dimension of Hs and Ha, respectively.
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8.1 POVM implementation

Let Mj be a projective measurement in H,

Mj = |ψ〉〈ψj| , j = 0, ..., d− 1 . (8.1)

where

|ψj〉 =
d−1∑
k=0

〈k|ψj〉|k〉 ∈ H , (8.2)

It satisfies the completness relation
∑

jMj = I, which can be written as

∑
j

〈k|ψj〉〈ψj|l〉 = δkl, j, l = 0, ..., d− 1. (8.3)

Now, let |φ〉 be a state of Hs,

|φ〉 =
ds−1∑
k=0

〈k|φ〉|k〉. (8.4)

Clearly, |φ〉 ∈ H. Then, one can measure |φ〉 with the set {|ψj〉}. The probability

to obtain the j-th output is given by

pj = |〈ψj|φ〉|2 (8.5)

=

∣∣∣∣∣
ds−1∑
k=0

〈ψj|k〉〈k|φ〉

∣∣∣∣∣
2

(8.6)

=

∣∣∣∣∣〈ψj|
[
ds−1∑
k=0

|k〉〈k|

]
|φ〉

∣∣∣∣∣
2

(8.7)

= |〈ψj|Ps|φ〉|2 , (8.8)

where Ps is the projection operator onto H. Let us define the vectors
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8.1 POVM implementation

|χj〉 = Ps|ψj〉 =
ds−1∑
k=0

〈k|ψj〉|k〉 ∈ Hs , (8.9)

which are the projections of {|ψj〉} onto Hs, that is, vectors whose components

are equal to the first ds components of the vectors {|ψj〉}. Then, the probability

(8.8) can be rewritten as

pj = |〈χj|φ〉|2 . (8.10)

Therefore, measuring the state |φ〉 with the vectors {|ψj〉} is equivalent to

measure with the vectors |χj〉. Based on that, we will prove that the set of d

vectors |χj〉 defines a POVM.

Analogously to the equation (8.3), we can write the following:

d−1∑
j=0

〈k|χj〉〈χj|l〉 =
d−1∑
j=0

[(
ds−1∑
k=0

〈k|ψj〉〈k|k〉

)(
ds−1∑
k=0

〈k|ψj〉∗〈l|k〉∗
) ]

(8.11)

=
d−1∑
j=0

〈k|ψj〉〈ψj|l〉 (8.12)

= δkl . (8.13)

and see that the completness relation is satisfied. On the other hand, considering

that we defined {|χj〉} ∈ Hs with dimension ds < d, where d is the dimension

of the extended system H, and noting that the index j = 0, ..., d − 1 gives d

elements, then, we can conclude that the vectors {|χj〉} form a POVM, with up

to d outcomes.
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8.2 Experimental Implementation Proposal of a POVM

8.2 Experimental Implementation Proposal of a

POVM

Using our setup, we can implement experimentally a projective measurement by

adding different local phases to each input core of the 7 × 7 -Multiport Beam

Splitter. To do that, it is defined a set of projective measurements formed by the

states

|ψj〉 = Φ†Û †|j〉 , (8.14)

where j = 1, ..., 7, Û is the unitary matrix of the multiport and

Φ =


1

eiϕ2

. . .

eiϕ7

 ,

is a diagonal matrix whose elements are the phases applied in each input core of

the multiport beam splitter.

We can implement experimentally a finite number of different rank-1 POVM

for dimension ds lower than d = 7. This is achived using a sub-set of ds of the

cores as the principal system and the remaining da cores as ancilla system [56].

Thereby, the total number of different POVMs is given by:(
d

ds

)
=

d!

ds!(d− ds)!
(8.15)

since this is the number of combination of ds elements of a set of d, without

repetition. Now taking into account that we can experimentally modify the phase

on each core of the system, we have that the rank-1 POVM elements that we can
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8.2 Experimental Implementation Proposal of a POVM

implement in our experimental setup are Πj = |χj〉〈χj|, with

|χj〉 = Φ̄†k1···kdsMk1···kdS |j〉 , (8.16)

where k1 · · · kds are the corresponding indices of the cores considered as system,

and Φ̄k1···kds and Mk1···kdS are the matrices Φ and U †, respectively, restricted to the

system space. That is, experimentally we can implement a POVM of the finite

set of options given by the combinatorial of the cores, and are able to modify the

local phase of the cores corresponding to the principal system (see Fig. 8.1). In

this work, we will study the particular cases of dimensions ds = 3 and ds = 4.

Figure 8.1: Scheme showing a POVM implementation using a 7×7 Multiport Beam
Splitter. The horizontal lines represent the fibers, the black circles represent the
phase shifts, the box represents the MBS, and the half-circles are detectors. The
state is encoded only in the first ds cores, and each detector is associated with a
POVM element.

8.2.0.1 POVMs of ds = 3

For dimension ds = 3, we have 35 different POVMs which can be form by the

following matrices Mk1,...kdS
:
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M123 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i


(8.17)

M124 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i


(8.18)

M125 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i


(8.19)

M126 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.20)

M127 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.0107i 0.09887 + 0.4943i


(8.21)

M134 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i


(8.22)

M135 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i


(8.23)
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M136 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.24)

M137 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306 i 0.1178 + 0.09943 i −0.162 + 0.295 i −0.1199− 0.1069 i 0.3572 + 0.09154 i −0.0651− 0.4328 i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.25)

M145 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i


(8.26)

M146 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.27)

M147 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.28)

M156 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.29)

M157 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.30)

M167 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.31)

63



8.2 Experimental Implementation Proposal of a POVM

M267 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.32)

M257 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.33)

M256 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i


(8.34)

M247 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.35)

M246 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i


(8.36)

M245 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i


(8.37)

M237 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.38)

M236 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i


(8.39)
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M235 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i


(8.40)

M234 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i


(8.41)

M367 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.09054 −0.1269− 0.3955i 0.2058 + 0.1463i 0.2864 + 0.2213i 0.4915 + 0.5295i −0.2566 + 0.1229i −0.1318 + 0.06502i

0.3998 0.1683− 0.09526i −0.2707− 0.3029i −0.1435 + 0.4721i 0.2088− 0.2797i 0.1282− 0.04397i −0.5035 + 0.02425i


(8.42)

M357 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.4918 −0.0443 + 0.3884i −0.1052− 0.05189i 0.3228− 0.1215i −0.05141− 0.02556i −0.5852− 0.1638i 0.02711− 0.3152i

0.3998 0.1683− 0.09526i −0.2707− 0.3029i −0.1435 + 0.4721i 0.2088− 0.2797i 0.1282− 0.04397i −0.5035 + 0.02425i


(8.43)

M356 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.4918 −0.0443 + 0.3884i −0.1052− 0.05189i 0.3228− 0.1215i −0.05141− 0.02556i −0.5852− 0.1638i 0.02711− 0.3152i

0.09054 −0.1269− 0.3955i 0.2058 + 0.1463i 0.2864 + 0.2213i 0.4915 + 0.5295i −0.2566 + 0.1229i −0.1318 + 0.06502i


(8.44)

M347 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.3749 −0.2726− 0.2445i 0.001653 + 0.3501i −0.2329 + 0.2725i −0.1629− 0.2164i 0.01653 + 0.4415i 0.3688− 0.264i

0.3998 0.1683− 0.09526i −0.2707− 0.3029i −0.1435 + 0.4721i 0.2088− 0.2797i 0.1282− 0.04397i −0.5035 + 0.02425i


(8.45)

M346 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.3749 −0.2726− 0.2445i 0.001653 + 0.3501i −0.2329 + 0.2725i −0.1629− 0.2164i 0.01653 + 0.4415i 0.3688− 0.264i

0.09054 −0.1269− 0.3955i 0.2058 + 0.1463i 0.2864 + 0.2213i 0.4915 + 0.5295i −0.2566 + 0.1229i −0.1318 + 0.06502i


(8.46)

M345 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.3749 −0.2726− 0.2445i 0.001653 + 0.3501i −0.2329 + 0.2725i −0.1629− 0.2164i 0.01653 + 0.4415i 0.3688− 0.264i

0.4918 −0.0443 + 0.3884i −0.1052− 0.05189i 0.3228− 0.1215i −0.05141− 0.02556i −0.5852− 0.1638i 0.02711− 0.3152i


(8.47)

M456 =


0.3749 0.3662 0.3501 0.3584 0.2709 0.4418 0.4535

0.4918 −0.2263− 0.3188i −0.05239 + 0.1049i −0.3021− 0.1664i 0.05134− 0.02569i −0.1856 + 0.5787i 0.2055− 0.2405i

0.09054 0.3586 + 0.2097i 0.1473− 0.2051i −0.01789− 0.3615i −0.7187 + 0.07419i 0.1132 + 0.261i −0.145− 0.02382i


(8.48)
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M457 =


0.3749 0.3662 0.3501 0.3584 0.2709 0.4418 0.4535

0.4918 −0.2263− 0.3188i −0.05239 + 0.1049i −0.3021− 0.1664i 0.05134− 0.02569i −0.1856 + 0.5787i 0.2055− 0.2405i

0.3998 −0.06171 + 0.1833i −0.3041 + 0.2693i 0.4521− 0.1977i 0.09788 + 0.335i −0.03915− 0.1297i −0.4235− 0.2733i


(8.49)

M467 =


0.3749 0.3662 0.3501 0.3584 0.2709 0.4418 0.4535

0.09054 0.3586 + 0.2097i 0.1473− 0.2051i −0.01789− 0.3615i −0.7187 + 0.07419i 0.1132 + 0.261i −0.145− 0.02382i

0.3998 −0.06171 + 0.1833i −0.3041 + 0.2693i 0.4521− 0.1977i 0.09788 + 0.335i −0.03915− 0.1297i −0.4235− 0.2733i


(8.50)

M567 =


0.4918 0.3909 0.1173 0.3449 0.05741 0.6077 0.3163

0.09054 −0.3786 + 0.171i −0.2493− 0.04015i 0.1901 + 0.308i −0.6759− 0.2553i 0.214− 0.1875i −0.07607− 0.1257i

0.3998 −0.1137− 0.1564i 0.3768 + 0.1518i −0.3006 + 0.3913i −0.06239 + 0.3434i −0.1116 + 0.0769i −0.06731− 0.4996i


(8.51)

8.2.0.2 POVMs of ds = 4

For dimension ds = 4, we also have 35 different POVMs which can be form by the

following matrices Mk1,...kdS
:

M1234 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i


(8.52)

M1235 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i


(8.53)

M1236 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.54)

M1237 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.55)
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M1245 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i


(8.56)

M1246 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.57)

M1247 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.58)

M1256 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.59)

M1257 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.60)

M1267 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.201 −0.006542− 0.1874i −0.6271 + 0.3102i 0.332− 0.01557i −0.1842− 0.2868i 0.3709− 0.2029i −0.02196 + 0.1704i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.61)

M1345 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i


(8.62)
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M1346 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.63)

M1347 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.64)

M1356 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.65)

M1357 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295mathrmi −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.66)

M1367 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3019 −0.57 + 0.306i 0.1178 + 0.09943i −0.162 + 0.295i −0.1199− 0.1069i 0.3572 + 0.09154i −0.0651− 0.4328i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.67)

M1456 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i


(8.68)

M1457 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.69)
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8.2 Experimental Implementation Proposal of a POVM

M1467 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.3749 0.3558 + 0.08647i −0.2245 + 0.2686i −0.1267− 0.3353i −0.02242 + 0.2699i −0.09359 + 0.4318i −0.3159− 0.3254i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.70)

M1567 =


0.5639 0.2222 0.3487 0.3929 0.3709 0.1468 0.4444

0.4918 −0.1447− 0.3632i −0.04691− 0.1075i −0.04889 + 0.3414i 0.02136 + 0.0533i −0.5262− 0.3039i −0.3157 + 0.02007i

0.09054 0.2989 + 0.2884i 0.06289 + 0.2445i −0.3319 + 0.1445i −0.01444− 0.7223i −0.279 + 0.05535i 0.08389 + 0.1206i

0.3998 −0.1033 + 0.1635i −0.01155− 0.4061i −0.3447− 0.353i −0.3419 + 0.06981i 0.1351− 0.01077i 0.09887 + 0.4943i


(8.71)

M2345 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i


(8.72)

M2346 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i


(8.73)

M2347 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.74)

M2356 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i


(8.75)

M2357 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.76)
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8.2 Experimental Implementation Proposal of a POVM

M2367 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3019 −0.2859− 0.5804i −0.0615− 0.1414i −0.1756 + 0.2871i 0.1548− 0.04311i 0.2694 + 0.2517i −0.4209 + 0.1199i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.77)

M2456 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i


(8.78)

M2457 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.79)

M2467 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.3749 −0.09883 + 0.3526i 0.3204− 0.1412i −0.1108− 0.3409i −0.215− 0.1647i −0.2893 + 0.3339i −0.2824 + 0.3549i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.80)

M2567 =


0.201 0.1875 0.6997 0.3324 0.3409 0.4227 0.1718

0.4918 0.368− 0.1319i −0.005624 + 0.1171i −0.06483 + 0.3387i −0.05638− 0.01083i −0.3158− 0.5192i 0.06025 + 0.3105i

0.09054 −0.2987 + 0.2887i 0.05206− 0.2471i −0.3383 + 0.1288i 0.6156 + 0.3782i −0.2714− 0.08536i 0.1089− 0.09863i

0.3998 −0.1598− 0.1089i −0.1697 + 0.3691i −0.3278− 0.3688i 0.1261− 0.3254i 0.1237 + 0.05538i 0.4776− 0.1612i


(8.81)

M3456 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.3749 −0.2726− 0.2445i 0.001653 + 0.3501i −0.2329 + 0.2725i −0.1629− 0.2164i 0.01653 + 0.4415i 0.3688− 0.264i

0.4918 −0.0443 + 0.3884i −0.1052− 0.05189i 0.3228− 0.1215i −0.05141− 0.02556i −0.5852− 0.1638i 0.02711− 0.3152i

0.09054 −0.1269− 0.3955i 0.2058 + 0.1463i 0.2864 + 0.2213i 0.4915 + 0.5295i −0.2566 + 0.1229i −0.1318 + 0.06502i


(8.82)

M3457 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.3749 −0.2726− 0.2445i 0.001653 + 0.3501i −0.2329 + 0.2725i −0.1629− 0.2164i 0.01653 + 0.4415i 0.3688− 0.264i

0.4918 −0.0443 + 0.3884i −0.1052− 0.05189i 0.3228− 0.1215i −0.05141− 0.02556i −0.5852− 0.1638i 0.02711− 0.3152i

0.3998 0.1683− 0.09526i −0.2707− 0.3029i −0.1435 + 0.4721i 0.2088− 0.2797i 0.1282− 0.04397i −0.5035 + 0.02425i


(8.83)
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M3467 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.3749 −0.2726− 0.2445i 0.001653 + 0.3501i −0.2329 + 0.2725i −0.1629− 0.2164i 0.01653 + 0.4415i 0.3688− 0.264i

0.09054 −0.1269− 0.3955i 0.2058 + 0.1463i 0.2864 + 0.2213i 0.4915 + 0.5295i −0.2566 + 0.1229i −0.1318 + 0.06502i

0.3998 0.1683− 0.09526i −0.2707− 0.3029i −0.1435 + 0.4721i 0.2088− 0.2797i 0.1282− 0.04397i −0.5035 + 0.02425i


(8.84)

M3567 =


0.3019 0.647 0.1542 0.3365 0.1607 0.3687 0.4377

0.4918 −0.0443 + 0.3884i −0.1052− 0.05189i 0.3228− 0.1215i −0.05141− 0.02556i −0.5852− 0.1638i 0.02711− 0.3152i

0.09054 −0.1269− 0.3955i 0.2058 + 0.1463i 0.2864 + 0.2213i 0.4915 + 0.5295i −0.2566 + 0.1229i −0.1318 + 0.06502i

0.3998 0.1683− 0.09526i −0.2707− 0.3029i −0.1435 + 0.4721i 0.2088− 0.2797i 0.1282− 0.04397i −0.5035 + 0.02425i


(8.85)

M4567 =


0.3749 0.3662 0.3501 0.3584 0.2709 0.4418 0.4535

0.4918 −0.2263− 0.3188i −0.05239 + 0.1049i −0.3021− 0.1664i 0.05134− 0.02569i −0.1856 + 0.5787i 0.2055− 0.2405i

0.09054 0.3586 + 0.2097i 0.1473− 0.2051i −0.01789− 0.3615i −0.7187 + 0.07419i 0.1132 + 0.261i −0.145− 0.02382i

0.3998 −0.06171 + 0.1833i −0.3041 + 0.2693i 0.4521− 0.1977i 0.09788 + 0.335i −0.03915− 0.1297i −0.4235− 0.2733i


(8.86)

The use of the 7×7 MBS to implement a POVM in dimension 3 or 4 represents

an interesting and convenient use of the MCF technology, which could be very in-

teresting in quantum key distribution, quantum state discrimination, and other

fields. The particular application at hand will determine which POVM measure-

ment is most useful. We leave further investigations in this direction, including

experimental implementation, for future work.
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Chapter 9

Conclusions

We have reported the production and the experimental characterization of a High-

quality Multiport Beam Splitter (N×N Beam Splitter) device directly built within

a Multicore Fiber. We also report the proposal of the experimental implementation

of a PVM and POVM measurement, with up to seven outcomes, utilizing this same

device as principal element.

The characterization protocol consisted in estimating the unitary matrix, of

complex elements, that represents the operation of the Multiport Beam Splitter

over qudits. Each matrix element was formed by two real parameters, the relative

phases φjk and the amplitudes ujk. We implemented an interferometic method to

measure the relative phases, and used a direct measurement method to measure

the amplitudes.

Using a 1550 nm laser and a standard beam splitter we prepared a two-mode

state |ψj〉 1√
2

(|1〉+ eiϕ|j〉) and sent it to the the MBS, using demultiplexers to

access every core of the MBS. Then we measured in each of the output ports,

with detectors, while varing ϕ. We observed interference patterns of intensity as a

function of the modulated phase and applying a fitting function to this curves of

interference we obtained some of the relative phases of the matrix. Repeating this

process with different two-mode states (j = 2, ..., N), we could be able to measure
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all the relative phases of the MBS matrix.

To determine the amplitudes we measured the split ratio, sending light from

one input port of the MBS and measuring the power at the output ports. this

procedure was repeated by sending light from other input ports.

Due to inherent experimental errors, the MBS matrix never was going to be

a unitary one. That is why in the last part of our protocol, we applied an opti-

mization method to obtained the nearest unitary matrix to the experimental MBS

matrix. By minimizing the infidelity between the experimental matrix Ũ and a

real border unitary matrix V .

In the case of the 4×4 MBS, the unitary estimate is almost a symmetric unitary

matrix, then, we compared the unitary estimate with the symmetric unitary matrix

and obtained a high fidelity of 0.995±0.003. In the case of 7×7 MBS we estimated

a unitary matrix, however, it was not symmetric. Though we do not yet have a

complete theoretical model, this is what one intuitively expects based on simple

considerations concerning the geometry of the cores in the fiber. We note that

recent results have shown that even non-symmetric N-port beam splitter devices

can serve as primitives for construction of a universal device that implements

any N × N unitary. We also compared the experimental matrix and the unitary

estimate and obtained a high fidelity 0.992± 0.008.

In the case of both Multiport Beam Splitters, proposed in this thesis, there

is a much shorter optical depth, since it is only a large beam splitter, in which

the ”light splitting process” occurs by a tunneling effect. Then, the propagation

losses in the MBS’s are reduced. On the other hand, if we had to use the standard

model of Reck et al to manufacture the multiport devices, where the number of

beam splitter used in given by N(N − 1)/2, we would need a big number of beam

splitters to simulate ours, which would clearly imply a much longer optical depth.

However, the Multiport Beam Splitter is not capable of implementing an arbitrary
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unit transformation, at least for the dimensions d = 4 and d = 7, while the Reck

configuration can do it, being a universal configuration.

This study is the first step towards future quantum information processing

experiments using multicore fiber technology. That is why we wanted to start

studying the most direct application that this has, POVM measurements.

Using our setup and based on the Naimark’s theorem, we proposed the ex-

perimental implementation of a POVM measurements taking into account that

we can experimentally modify the phase on each input core of the system. We

could achive that by adding different local phases to a ds sub-set of input cores of

the 7 × 7 MBS, considered as the principal system. The remaining da cores was

considered as the ancilla system. Where dS < d = 7, with d is the total number

of input cores of the MBS. Given by the combinatorial of the cores, we obtained

different POVMs that we can implement with our device. This will open the way

to its use in a wide variety of applications including quantum tomography and

quantum Cryptography.
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Appendix A

Measurement to determine
demux loss

To characterice a demux we iluminated the core 1 of the demux, with a 1550

nm beam of power equal to Pa = 17.69 mW, from left to right as indicated in

the Fig.A.1. Then we measured the power Pb, with b = 1, ..., 7, and repeated

this procedure sending light from other input cores. Finally, we determined the

demux’s transmissions, tb, for every core of the demux, which were registered in

the Tabla A.1. This gives the following average transmissions:

〈tdemux1〉 = 0.85± 0.15 , (A.1)

〈tdemux2〉 = 0.90± 0.03 . (A.2)

demux \ Pb P1 P2 P3 P4 P5 P6 P7

demux1 9.14 16.44 17.06 15.49 15.24 15.56 14.52
demux2 15.45 15.45 14.93 14.38 15.85 15.74 14.86

demux \ tb t1 t2 t3 t4 t5 t6 t7
demux1 0.52 0.94 0.98 0.89 0.87 0.89 0.83
demux2 0.91 0.91 0.88 0.85 0.94 0.93 0.88

Table A.1: Measurement values and determination of demux’s transmission. Pb,
with b = 1, ...7: the output power measured on the demux of the Fig.A.1; tb: the
transmission in each core.
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Figure A.1: Scheme to determine the demux’s loss: demux1(2): MCF spatial
demultiplexers; Pa: input power; Pb, with b = 1, ..., 7, the output power measured
on the demux
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L. Pereira, M. Prosser, G. Xavier, A. Delgado, et al., “Multi-port beam-

splitters based on multi-core optical fibers for high-dimensional quantum in-

formation,” arXiv preprint arXiv:2001.11056, 2020. 3

[13] G. A. Steudle, S. Knauer, U. Herzog, E. Stock, V. A. Haisler, D. Bimberg,

and O. Benson, “Experimental optimal maximum-confidence discrimination

and optimal unambiguous discrimination of two mixed single-photon states,”

Physical Review A - Atomic, Molecular, and Optical Physics, 2011. 3

78



REFERENCES

[14] A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, and P. Perinotti, “Op-

timal quantum tomography of states, measurements, and transformations,”

Physical Review Letters, 2009. 3

[15] C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin,

“Device-independent quantum key distribution with local bell test,” Phys-

ical Review X, 2014. 3

[16] A. K. Ekert, B. Huttner, G. M. Palma, and A. Peres, “Eavesdropping on

quantum-cryptographical systems,” Physical Review A, 1994. 3

[17] A. Peres and D. R. Terno, “Optimal distinction between non-orthogonal

quantum states,” Journal of Physics A: Mathematical and General, vol. 31,

pp. 7105–7111, aug 1998. 3, 30

[18] J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden,

and N. Brunner, “Megahertz-Rate Semi-Device-Independent Quantum Ran-

dom Number Generators Based on Unambiguous State Discrimination,”

Physical Review Applied, 2017. 3

[19] M. a. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition. 2011. 6, 8

[20] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition. Cambridge University Press, 2010. 10

[21] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein,

“Advances in quantum teleportation,” 2015. 13

[22] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev.

Lett., vol. 67, pp. 661–663, Aug 1991. 13

79



REFERENCES
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camarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum

key distribution over multicore fiber,” Optics Express, 2016. 19

[36] R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu,

S. Popov, C. Yang, W. Tong, D. Liu, T. F. Da Silva, G. B. Xavier, and

J. Chen, “Telecom Compatibility Validation of Quantum Key Distribution

Co-Existing with 112 Gbps/λ/core Data Transmission in Non-Trench and

Trench-Assistant Multicore Fibers,” in European Conference on Optical Com-

munication, ECOC, 2018. 19

[37] T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Lúıs, M. Takeoka,
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