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RESUMEN

Minimizing makespan on identical parallel machines with one
preemption and batch completion constraints.

Ignacio A. Sepúlveda Medina

Concepción, Enero de 2021

PROFESOR GUIA: Dr. Carlos Herrera L.
PROGRAMA: Maǵıster en Ingenieŕıa Industrial

En la siguiente investigación se presenta un problema de asignación de máquinas
paralelas sin interrupción de procesamiento de los trabajos y considerando restric-
ciones para el completamiento de los lotes que obligan a procesar cierta porción
de cada uno de ellos (h%) durante un peŕıodo de tiempo determinado. El ob-
jetivo es minimizar una función de costo total que está compuesta por el costo
del makespan y por costos de setup dependientes de la secuencia. Este problema
tiene su origen en el área de la salud, espećıficamente, en un programa de salud
móvil.

Se propone un modelo de programación lineal entera mixta (MILP) para re-
solver el problema de manera exacta. Como el problema es NP-Hard, se propone
un algoritmo genético cuya estructura se basa en el algoritmo propuesto en Prins
(2004), donde las caracteŕısticas que más destacan son una heuŕıstica para la di-
visión de trabajos entre las máquinas y el proceso de mutación aplicado basado
en búsqueda local. A partir de ello, se obtienen dos variantes del algoritmo. El
desempeño del algoritmo se compara con el modelo propuesto y, además, con otro
algoritmo genético propuesto en la literatura. La eficiencia de los algoritmos de-
sarrollados es validada con la calidad de los resultados basados, principalmente,
en los valores de GAP obtenidos.

Palabras Claves: Máquinas paralelas, Función de costo total, Costos de
setup, Programación lineal entera mixta, Algoritmo genético, Lotes.
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ABSTRACT

Minimizing makespan on identical parallel machines with one
preemption and batch completion constraints.

Ignacio A. Sepúlveda Medina

Concepción, January 2021

THESIS SUPERVISOR: Dr. Carlos Herrera L.
PROGRAM: Master in Industrial Engineering

We consider the parallel machine scheduling problem without preemption
adding a batch completion constraint that forces to process a certain percent-
age h% of each batch during a period of time. The objective is to minimize the
total cost that is compounded by a makespan cost and by the sequence dependent
setup cost of the schedule. This problem comes from a real logistics situation that
involves the application of a mobile health program.

A MILP model to solve the problem exactly is proposed. As the problem is
NP-Hard, a genetic algorithm structure based on the algorithm proposed in Prins
(2004) is developed, where the main features are a Splitting job heuristic and
the mutation process. From it, we obtain two variants of the algorithm. The
algorithm performance is compared with the MILP model and with an adapted
version of another algorithm from the literature. The efficiency of the proposed
algorithms is validated by the quality of the results, based on the GAP of them
mainly.

Keywords: Scheduling, Total cost, setup cost, Mixed integer linear program-
ming, Genetic algorithm, Batch constraints.
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Maǵıster en Ingenieŕıa Industrial, Dirección de Postgrado – Universidad de Concepción iii



List of Figures

1 Scheduled obtained considering batch due date. . . . . . . . . . . . . . . . 3

2 Scheduled obtained without considering batch due date. . . . . . . . . . . . 3

3 Chromosome sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Splitting procedure sample. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Example of OX crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 M5 move sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 M8 move sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Number of successful insertions vs. Number of iterations in instance 6 of GAδ 30

9 Number of successful insertions vs. Number of iterations in instance 10 of

GAδ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Number of successful insertions vs. Number of iterations in instance 21 of

GA∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Number of successful insertions vs. Number of iterations in instance 21 of

GAδ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

12 Number of successful insertions vs. Number of iterations in instance 24 of

GA∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

13 Number of successful insertions vs. Number of iterations in instance 24 of

GAδ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

14 Box plot of the GAP obtained in instances 1-5 . . . . . . . . . . . . . . . . 32

15 Box plot of the GAP obtained in instances 1-10 . . . . . . . . . . . . . . . 32

16 Optimum solution for instance 17 with the original T ′ value . . . . . . . . 33

17 Optimum solution for instance 17 with a 25% of T ′ increase . . . . . . . . 33

18 Optimum solution for instance 17 with a 50% of T ′ increase . . . . . . . . 34
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1. Introduction

1.1. Problem description

The non-preemptive parallel machine scheduling problem is an NP-Hard combinato-

rial optimization problem where a set of jobs is to be scheduled in a set of homogeneous

machines without interrupting (preemption). This problem has been intensively stud-

ied in the literature and have broad applicability in industry. In this work, we study

an extension of the problem mentioned above, including batch due dates to minimize

sequence-dependent setup and makespan-related costs, arising in a real-life application in

healthcare management.

The problem addressed in this study can be stated as follows. A set of n jobs should

be scheduled on a set of m identical parallel machines without preemption. Each job is

available at time 0 and has a processing time Pj (integer number), j = 1, 2, . . . , n. Each

job belongs to a batch k ∈ B, B = 1, 2, . . . , b, each having a common due date T ′ at

which h% of the total processing time of the batch k must be processed. Additionally,

there is a sequence-dependent a setup cost, cij, i, j = 1, 2, . . . , n, incurred when job j is

scheduled after job i, and a fixed machine setup-time s after processing each job. The

aim of the problem is to find a schedule that minimizes the sequence-dependent and

makespan related cost. Using the three field notation proposed by Graham et al. (1979),

we denote the problem by Pm|dbatch, h%batch| TC. Pm indicates parallel machine, dbatch

denotes common batch due date, h%batch indicates that h% of the total processing time

of batch b must be processed before the due date, and TC is equal to
∑

i cij + GCmaxm,

where G represent a cost per unit of time of the schedule.

Pm|dbatch, h%batch| TC arises when planning a health care mobile dental care program.

A set of identical dental clinics (machines) must treat low-income students needing dental

care in urban and rural schools (jobs). Schools belong to districts (batches) each having

a common due date T ′. Before the due date, h% of the total number of patients of each

district must be attended, ensuring fairness between the students needing dental care at

different districts.
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To help the reader to understand the problem, we present an example below with six

jobs, two machines, and three batches. Batches 1, 2, and 3 contains jobs {1, 3}, {2, 4}, and

{5, 6} with a total processing time of 168, 172, and 198, respectively. Table 1 contains,

for each job, Pi and its assigned batch. We insert two dummy jobs, 0 and 7, to represent

the starting and ending of the schedule, respectively. Table 2 presents the setup costs

between the processing of the jobs. For this example, we use T ′ = 180 (batch due date)

and h% = 50%. Figure 1 shows an optimal solution for Pm|dbatch, h%batch| TC, where 81%,

63% and 54% of the total processing time of batches 1, 2 and 3 are processed before the

batch due date, respectively. The makespan of the schedule is equal to 271, and the total

sequence-dependent setup cost is equal to 24.

Solution approaches for the classical non-preemptive parallel machines problem cannot

be used to solve Pm|dbatch, h%batch| TC. The optimal solution for the classical parallel

machine scheduling problem is shown in Figure 2, with the same makespan value as before

but lesser setup cost, 21. However, this solution is infeasible to our problem since batch

2 is only processed 47% of the total time before T ′. Therefore, efficient heuristics to solve

Pm|dbatch, h%batch| TC must be derived.

Table 1: Jobs data

Job id Pi Batch
0 0 -
1 99 1
2 109 2
3 69 1
4 63 2
5 111 3
6 87 3
7 0 -

Table 2: Setup costs

cij 0 1 2 3 4 5 6 7
0 0 2 3 2 5 4 5 0
1 2 0 2 1 1 2 5 2
2 3 2 0 4 3 3 2 3
3 2 2 1 0 2 4 3 2
4 5 3 2 3 0 1 4 5
5 4 3 3 3 5 0 5 4
6 5 3 2 4 5 4 0 5
7 0 2 3 2 5 4 5 0

1.2. Contributions

The contributions of this research are three-fold. First, a new optimization prob-

lem is introduced. It arises when managing a health care mobile dental programs and
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Figure 1: Scheduled obtained considering batch due date.

Figure 2: Scheduled obtained without considering batch due date.

differs from the existing scheduling literature by considering batch due date with fair-

ness/equitability considerations. The problem has an implementation-specific feature that

forces the decision-maker to visit at least 50% of the total students in each district before

the end of the first semester. Second, a mixed-integer linear programming (MILP) formu-

lation for the problem is proposed. Third, and due to the complexity of the problem, an

efficient algorithm based on genetic algorithms is proposed and it is compared with the

MILP formulation and with an additional algorithm reported in the literature. The results

indicates the heuristics is able to obtain near-optimal solutions to problems involving up

to 150 jobs.

The remaining of this thesis is organized as follows. In Section 2, we present a brief liter-

ature review of realted scheduling problems. In Section 3, a MILP formulation is proposed

to capture the scheduling problem, and a methodology based on genetic algorithm is pre-

sented from which two variants are obtained for solving large-sized Pm|dbatch, h%batch| TC

instances involving up to 150 jobs. Section 4 describes the computational implementation,

where the 31 instances and the parameter setting are presented. This section also reports

Maǵıster en Ingenieŕıa Industrial, Dirección de Postgrado – Universidad de Concepción 3



the results obtained from the algorithm testing along with a discussion of each one of the

tested methods. Section 5 closes this research with some concluding remarks and future

works proposals.
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2. Literature review

The parallel machine scheduling addressed in this paper considers batch due dates and

sequence-dependent setup costs. To the author’s knowledge, the problem as defined here

has not been studied before. However, it is related to some existing problems reported in

the literature.

Non-preemptive parallel machines scheduling problem

For the case of the problem addressed in this paper, it is an extension of the identical

parallel machines schedule problem where the objective function is the minimization of

the total cost, which is compounded by a Cmax cost and a sequence-dependent setup

cost. It has been proved that P ||Cmax is NP-Hard (Garey & Johnson, 1979). Chiaselotti

et al. (2010) studied this problem proposes a nlog(n) algorithm that combines partial

solutions that are obtained by partitioning the set of jobs into suitable families of subsets.

Chang et al. (2004) addressed the same problem but, in this case, machines can process

jobs in batches, therefore this involves two decision problems: job batching and batch

scheduling. They proposed a simulated annealing approach for it. Biskup et al. (2008)

studied a non-preemptive identical parallel machines problem using total tardiness as

performance measure. They proposed a new heuristic motivated by the parallel nature of

the problem trying to consider the interdependencies of the scheduling and assignment of

tasks and compared it with other heuristics and algorithms previously proposed showing

computational results. Baptiste et al. (2015) presented a two identical parallel machines,

considering, besides, a single operator in order to minimize the makespan. A pseudo-

polynomial time algorithm is exhibited to generate an optimal solution within the free

changing mode. Chung et al. (2019) addressed the same problem but instead a single

operator, they considered molds as resource constraints, it means that two or more jobs

with the same mold requirement cannot be processed on the same or different machines at

the same time. They proposed three heuristics with a worst-case performance ratio of 3/2.

Page & Solis-Oba (2020) studied an unrelated machine problem in order to minimize the

makespan. They considered that the set of jobs is partitioned in bags, this implies that no
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two jobs belonging to the same bag can be scheduled on the same machine. They presented

a simple b-approximation algorithm and a polynomial-time approximation scheme for the

case with machine types where both the number of machine types and bags are constant.

Scheduling problems with job batch and batch due dates

Two additional features are encountered in the problem addressed on this paper, job

batches and due dates. One investigation that included both characteristics on it is Brucker

et al. (1994), where a parallel machine batch scheduling problem with group deadlines (in

this case, the batches are compounded by groups of jobs) and sequence-independent setup

times was studied, a problem that is NP-hard even considering identical jobs for each batch.

In this case, the problem was solved using dynamic programming. Cheng & Kovalyov

(2000) is another example that studied these topics, here a batch scheduling problem

with due dates on unrelated parallel machines was treated, and it implies three decision

problems: scheduling, batching, and due dates assignment. Both previous examples study

batching as a decision problem, this paper, instead, includes batch belonging as a job

feature that is part of the problem inputs and a common due date just for a fraction of

each one of the batches.

Surprisingly, there are only a few articles that consider batch due dates in the schedul-

ing literature. Daganzo (1989) and Peterkofsky & Daganzo (1990) both considered a crane

scheduling problem where ships are divided into holds, only one crane can work on a hold

at a time and cranes can be moved freely from hold to hold. Thus, both articles considered

an open shop problem with identical machines, where ships can be considered as a batch

(with a common due date), each hold as a job, and where preemption is allowed. The

objective function is to minimize the sum of weighted batch tardiness. In Daganzo (1989)

a heuristic procedure was developed and some optimal solutions are founded for special

cases, while Peterkofsky & Daganzo (1990) presented a branch and bound method which,

for this model, minimizes delay costs. On the other hand, in Yin et al. (2013) a batch

delivery single-machine scheduling problem was studied, in which jobs have an assignable

common due window. The objective is to find the optimal size and location of the window,
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the optimal dispatch date for each job, as well as an optimal job sequence to minimize a

cost function based on earliness, tardiness, holding time, window location, window size,

and batch delivery. Here, a dynamic programming algorithm was proposed, and it solved

the problem, optimally, in O(n8) time. Su et al. (2013) presented the customer order

problem where jobs are scheduled on a set of identical parallel machines and dispatched in

batches that have due dates. Minimization of maximum lateness was used as performance

measure. Three heuristics, based on Earliest Due Date rule (EDD) were proposed and

their tight worst-case bounds are found. Finally, Chung et al. (2014) addressed a canned

food scheduling problem, which was treated as an identical parallel machine problem with

batch due date to minimize the total tardiness. Two heuristics were proposed, based on

the Largest processing time (LPT) rule, to find the near-optimal solution. Unlike previous

research, the problem that we present in this paper does not consider normal batch due

date, instead it considers a due date just for a fraction of each batch. Both due date and

the fraction are common for all batches.

Scheduling problems with sequence dependent setup costs

Another feature that is related to the problem addressed in this thesis is the sequence-

dependent setup costs. Many applications consider this feature, Pinedo (2008), for ex-

ample, described a paper bag factory where setup is needed when the machine switches

between types of paper bag and its value depends on the degree of similarity between con-

secutive batches. Other practical situations arise in the chemical, pharmaceutical, food

processing, metal, and paper industries (Srikar & Ghosh, 1986; Bianco et al., 1988; Bitran

& Gilbert, 1990; Kim & Bobrowski, 1994).

Even though we are dealing with sequence-dependent setup costs, the two performance

measures of setup time and setup cost can be considered as equivalent if setup time and

setup cost are proportional, Allahverdi & Soroush (2008).

For the case of parallel machines, Heady & Zhu (1998) addressed an identical par-

allel machine problem with sequence-dependent setup times, where some machines may

not be able to process some jobs. A heuristic was proposed for the sum of earliness and
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tardiness costs minimization. Mendes et al. (2002) and Gendreau et al. (2001) addressed

the same problem but in this case, the performance measure was makespan minimization.

Mendes et al. (2002) proposed two heuristics, one based in tabu search and the other a

memetic approach that is a combination of a population-based method with local search

procedures. Tahar et al. (2006) studied the same problem including job splitting. They

proposed a heuristic based on linear programming modeling and compared their results

with a lower bound to test the performance of the method. On the other hand, Montoya-

Torres et al. (2009) included release dates instead of job splitting, and they proposed

a heuristic algorithm, which uses a strategy of random generation of various execution

sequences. Pereira & de Carvalho (2007) proposed a branch and price algorithm for an

unrelated parallel machines problem with sequence-dependent setup times and availability

dates for the machines and release dates for the jobs to minimize a regular additive cost

function. They developed a new column generation accelerating method, termed “pri-

mal box”, and a specific branching variable selection rule that significantly reduces the

number of explored nodes. Anderson et al. (2013) proposed a network-based MIP for-

mulation model for the sequence-dependent setup time problem with the sum of earliness

and tardiness as performance measure. They showed that their MIP model is more effi-

cient than the earlier existing models in terms of computational time for large problems.

Yuzukirmizi (2017) studied a parallel machine problem with sequence-dependent setup

times and a single server in order to minimize makespan. He proposed a decomposition

procedure as a solution approach. This procedure is based on dividing the problem into

two decision steps where the outcomes are optimal for their counterpart problems. Silva

et al. (2018) addressed an unrelated parallel machines problem with sequence-dependent

setup times. The objective considered here is makespan minimization and they proposed

several algorithms for it, but a ”Fix and Optimize” heuristic with a variable neighbor-

hood search presented the best results. Báez et al. (2019) tackled the same problem,

instead, Yepes-Borrero et al. (2020) also considered sequence-dependent resources. Báez

et al. (2019) presented a two phases algorithm (construction and improvement) that is
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performed employing a general variable neighborhood search, while Yepes-Borrero et al.

(2020) proposed three metaheuristics following two approaches: a first approach that ig-

nores the information about additional resources in the constructive phase, and a second

approach that takes into account this information about the resources. Bastos & Resendo

(2020) addressed an unrelated parallel machines problem with sequence-dependent setup

times with resource constraints with total completion time as performance measure. A

two-step approach is presented to solve real-size instances. This method uses a relax-

ation of the model proposed. Afterward, a heuristic algorithm is presented to adjust these

solutions.

As previous researches reveal, problems with objective functions that depend on sequence-

dependent setup costs have been already studied. However, the problem addressed in this

paper considers also a Cmax cost in its objective function, in addition to the features named

in the previous paragraphs. Hence, we can summarize the main differences between the

problem addressed in this paper and the ones reported in the literature:

• It considers a partial batch completion deadline, which is common to all batches.

• It works with an objective function based in the total cost of the schedule, which is

compounded by a Cmax cost and a sequence-dependent setup cost of the schedule.

• It consider a planning horizon divided in two periods.

• It assumes that jobs are distributed in batches with fairness/equitability considera-

tions ensuring a proportion of jobs in each batch must be processed during the first

period.

Table 3 summarizes the problems of the articles presented in the literature review to

understand better the main differences between them and the problem addressed in this

paper.
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Table 3: Summary of literature review.

Authors Machines configuration Due dates(h%) Setup times or costs Performance measure

Chiaselotti et al. (2010) Identical parallel machines No No Cmax

Chang et al. (2004) Identical parallel machines No No Cmax

Biskup et al. (2008) Identical parallel machines No No Total tardiness

Baptiste et al. (2015) Two Identical parallel machines No No Cmax

Chung et al. (2019) Two Identical parallel machines No No Cmax

Page & Solis-Oba (2020) Unrelated parallel machines No No Cmax

Brucker et al. (1994) Unrelated parallel machines Group deadlines (100%) S.i. setup times Feasible schedule

Cheng & Kovalyov (2000) Unrelated parallel machines Job deadlines (100%) Constant setup time Feasible schedule

Yin et al. (2013) Single machine Job due window (100%) No Total cost function

Su et al. (2013) Identical parallel machines Batch due dates (100%) No Maximum lateness

Chung et al. (2014) Identical parallel machines Batch due dates (100%) No Total tardiness

Heady & Zhu (1998) Identical parallel machines No S.d. setup times Sum of earliness and tardiness cost

Mendes et al. (2002) Identical parallel machines No S.d. setup times Cmax

Tahar et al. (2006) Identical parallel machines No S.d. setup times Cmax

Montoya-Torres et al. (2009) Identical parallel machines No S.d. setup times Cmax

Pereira & de Carvalho (2007) Unrelated parallel machines Job due dates (100%) S.d. setup times Total weighted tardiness

Anderson et al. (2013) Identical parallel machines Job due dates (100%) S.d. setup times Sum of earliness and tardiness

Yuzukirmizi (2017) Identical parallel machines No S.d. setup times Cmax

Silva et al. (2018) Unrelated parallel machines No S.d. setup times Cmax

Báez et al. (2019) Unrelated parallel machines No S.d. setup times Cmax

Yepes-Borrero et al. (2020) Unrelated parallel machines No S.d. setup times Cmax

Bastos & Resendo (2020) Unrelated parallel machines No S.d. setup times Total completion time

Our work Identical parallel machines Common batch due date (50%) S.d. setup costs Sum of setup and Cmax costs

S.d.: Sequence dependent
S.i.: Sequence independent
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3. Methodology

The method to solve a scheduling problem will depend of its feature, like machine

configuration, performance measure or job preemption, for example. A problem like

Pm| dbatch, h%batch|TC can be solved in many ways, but due to it is a new problem as it

was exposed in the above sections, many methods from the literature are not able to solve

it or they must to be adapted. Thus, an iterative approach based in genetic algorithms

is proposed to solve the problem addressed in this research. This approach is an adapted

version of the algorithm proposed in Prins (2004).

This section is structured as follows: First, the complexity of the problem is determined

through a comparison with other problems from the literature. Then, a mixed-integer

linear programming model is proposed to solve the problem based in the scheduling theory.

Finally, the genetic algorithm framework is presented, explaining how it operates and each

one of its stages.

3.1. Problem complexity

As we set above, scheduling problems and VRP are related, in this sense if we consider a

simpler version of the problem, for example, G = 1, the problem is similar to a makespan

minimization problem, where Guinet (1993) suggests it is equivalent to the VRP with

service times. Even more, if we focus on the single machine version of the problem,

considering G = 1 again, it is equivalent to the Traveling salesman problem with a cluster

completion constraint. In conclusion, the problem is NP-hard even for the single machine

case.

3.2. Mathematical formulation

In this subsection, we propose a mixed-integer linear programming (MILP) formulation

to capture the Pm| dbatch, h%batch|TC.

Parameters

Pi : Processing time of job i.
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T ′ : Common batch due date.

h : Portion of each batch that must be processed before T’.

G: Cost incurred by each machine while the processing is running (including setup time)

cij: Cost of processing job j just after job i.

wik :

 1 If job i belongs to batch k

0 otherwise

s: Sequence independent setup time (service time)

Sets

N : Set of jobs, N = {0, 1, 2, 3, ..., n + 1}. n indicates the number of jobs, while 0 and

n+ 1 represent fictitious starting and ending jobs, respectively.

M : Set of machines, M = {1, 2, 3, ...,m}. m denotes the number of machines.

T : set of time periods, T = {1, 2}. 1 represents the period before T ′, while 2 denotes the

period after T ′.

B : Set of batches, B = {1, 2, 3, ..., b}. b denotes the total number of batches.

Decision variables

xtil : Time units of job i that are processed in machine l during the period t.

Cmax : makespan.

zijl :

 1 If job i is processed just before job j in machine l

0 otherwise

qtil :

 1 If job i is processed in machine l during the period t

0 otherwise

ui : Latent variable of node i to avoid generating subtours.
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Formulation

Minimize
n+1∑
i=0

n+1∑
j=0,i 6=j

m∑
l=1

cijzijl +mGCmax (1)

|T |∑
t=1

m∑
l=1

xtil = Pi, ∀i = 1, ..., n (2)

n∑
i=1

x1il + s
n+1∑
i=0

q1il ≤ T ′, ∀l ∈M (3)

n∑
i=1

wik

m∑
l=1

x1il ≥
n∑
i=1

wikPih, ∀k ∈ B (4)

xtil ≤ Piqtil, ∀l ∈M, t ∈ T, ∀i = 1, ..., n (5)

q10,l = 1, ∀l ∈M (6)

q2n+1,l = 1, ∀l ∈M (7)

n∑
i=1

m∑
l=1

|T |∑
t=1

qtil ≤ n+m (8)

qt1il + qt2ir ≤ 1, ∀i ∈ N, t1 ∈ T, t2 ∈ T, l ∈M, r ∈M, r 6= l (9)

zijl + q2il + q1jl ≤ 2, ∀l ∈M, i ∈ N, j ∈ N, i 6= j (10)

n+1∑
i=1

z0il = 1, ∀l ∈M (11)

n∑
i=0

zin+1l = 1, ∀l ∈M (12)

n+1∑
i=0

m∑
l=1

zijl = 1, ∀j = 1, ..., n (13)

n+1∑
i=0

zijl =

n+1∑
i=0

zjil, ∀l ∈M,∀j = 1, ..., n (14)

ui − uj + nzijl + (n− 2)zjil ≤ n− 1 ∀l ∈M,∀i = 0, ..., n, ∀j = 1, ..., n+ 1, i 6= j (15)

u0 = 0 (16)

zijl ≤
∑|T |

t=1 x
t
il

2Pi
+

∑|T |
t=1 x

t
jl

2Pj
, ∀l ∈M, i ∈ N, j ∈ N, i 6= j (17)

Cmax ≥ s+

n+1∑
j=0

n∑
i=1

zijl(Pi + s), ∀l ∈M (18)

xtil ∈ Z+ ∀i ∈ N, l ∈M, t ∈ T (19)

qtil ∈ {0, 1} ∀i ∈ N, l ∈M, t ∈ T (20)
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zijl ∈ {0, 1} ∀i ∈ N, j ∈ N, l ∈M (21)

Cmax ∈ Z+ (22)

ui ∈ Z+ ∀i ∈ N (23)

The objective function (1) minimizes the sequence-dependent and makespan related costs.

Constraints (2) ensure that each job i is processed during Pi units of time on a machine during the

first and second periods. Constraints (3) limit, for each machine, the total available processing

time in first period, which is less or equal than T ′ (including jobs processing and setup times).

Constraints (4) guarantee the processing time of each batch during the first period for at least

h% of its total processing time. Constraints (5) relate xtil and qtil, i.e., the former variable can be

greater than zero only when qtil are equal to 1. Constraints (6) and (7) assign fictitious jobs 0 and

n+1 to each machine in period 1 and 2, respectively. Constraint (8) enforces that at most n+m

qtil-variables take value equal one. n results from the total number of jobs to be scheduled, while

m indicates that at most one additional job per machine can be assigned. For each machine,

it is possible that a job i can be processed at the end of the period t = 1 and continue its

processing during period t = 2, in this case, the job i can be allocated on the same machine

in both periods. Constraints (9) indicate that a job i can assigned to at most one machine in

any period, i.e., variable qtil can not take a value equal to one for a given job in two different

machines, independent of the period. Constraints (10) indicate that if a job i is scheduled in the

period t = 2 on machine l, then a job j, that is processed in the period t = 1 (j 6= i) cannot

be allocated right after i. Constraints (11)-(17) capture the job’s position on the machines in

order to compute the set-up costs. Constraints (11) and (12) ensure that 0 and n + 1 are the

staring and ending jobs on each machine, respectively. Constraints (13) ensure that each job is

assigned to a unique position on a machine. Constraints (14) indicate that if a job i is assigned

to a machine l, it has a job scheduled before and after it. Constraints (15) prohibit cycles in

the solution and are known as subtour elimination constraints (SECs). These constraints are

derivated from the Miller-Tucker-Zemlin constraints, and the improvement proposed by ? is

applied. Constraints (16) initialize the position variable as 0 in each machine. Constraints (17)

indicate that job j can be placed right after job i on machine l only if both jobs are processed

in the same machine. Constraints (18) compute Cmax among the machines. Finally, Constraints

(19)-(23) define the domains for all decision variables.
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3.3. A genetic algorithm for the Pm| dbatch, h%batch| TC

According to Whitley (1994), genetic algorithms (GAs) are a family of computational models

inspired by evolution. These algorithms encode a potential solution to a specific problem on a

simple chromosome-like data structure and apply crossover and mutation operators (that usually

are recombination operators) to these structures in such a way as to preserve critical information.

GAs have been applied to different parallel machines scheduling problems. In Dayong Hu

& Zhenqiang Yao (2010) two GAs were proposed for the parallel machine scheduling problem

with sequence-dependent setup times. The first of them uses a scheme of random assignment,

while the second employs a scheme of greedy assignment, being the latter the one that showed

better performance. Adan et al. (2018) studied a real-life problem in a complex manufacturing

environment that is characterized by a large product and batch size variety, numerous parallel

machines with large capacity differences, sequence and machine-dependent setup times, and

machine eligibility constraints. They developed a hybrid GA which is characterized by a local

search enhanced crossover mechanism, two additional fast local search procedures, and a user-

controlled multi-objective fitness function.

Several researchers have developed a GA as a solution method to related optimization prob-

lems. Prins (2004) proposed a hybrid GA for the vehicle routing problem where the number

of vehicles is a decision variable. One of its most remarkable features is the optimal splitting

procedure used for the interpretation of the solution represented by a chromosome. In Cat-

taruzza et al. (2014) a memetic algorithm was developed for the multi-trip VRP using some of

the procedures of Prins (2004), specifically, its splitting procedure and local search (LS) as mu-

tation operator which is speeded up using a granular search. Vidal et al. (2012) addressed three

problems, the multi-depot VRP, the periodic VRP, and the multi-depot periodic VRP with het-

erogeneous capacitated vehicles and constrained route duration. They developed a metaheuristic

that combines the exploration breadth of population-based evolutionary search, the aggressive-

improvement capabilities of neighborhood-based metaheuristics, and an advanced population-

diversity management scheme. Shuai et al. (2019) developed a multi-objective genetic algorithm

to solve the multiple traveling salesman problem. This GA has a scheme of random assignment

and uses a combined HGA crossover operator.

A general outline of the GA that we propose can be seen in Algorithm 1. This GA is an

adapted version of the algorithm proposed in Prins (2004), where the main differences lie in

the heuristic to split the jobs between the machines, in some parameters used to enhance the

algorithm performance, like stopping criteria; and in the way that some procedures are applied.

Maǵıster en Ingenieŕıa Industrial, Dirección de Postgrado – Universidad de Concepción 15



This framework work as follows: initialization (Line 1), and a loop of reproduction and formation

of new generations of chromosomes with probability of mutation (Lines 3-7). This loop continues

while stopping criteria are not met and it contains a population restart procedure (Lines 9-10).

Algorithm 1: GA outline

1 Initialize population
2 while Stopping criteria are not met do
3 Parents selection (P1, P2)
4 Crossover and child selection (C)
5 if random(0, 1) ≤ pm then
6 Mutate C into Cm

7 Insert C (or Cm) in population
8 Update stopping critera variables
9 if restart criterira are met then

10 restart population

3.3.1. Solution representation and evaluation

Chromosomes

A chromosome is a sequence (permutation) S of n jobs, without machine delimeters. It

can be interpreted as the order in which a machine must process all jobs, if just one machine

performs all jobs one by one. In this sense, S has to be transformed in a feasible solution for

Pm| dbatch, h%batch| TC using a splitting technique. The fitness value, F (S), i.e., the total cost

function of S, will depend of the way in that S is splitted. Fig. 3 shows a sample of a chromosome

of an instance of nine jobs numerated from 1 to 9, however it can be a sample chromosome of

different instances with different number of machines or batch distribution. These parameters

(together with others) will determine its cost function and its feasibility. A similar approach

is proposed in Prins (2004) wherein a splitting algorithm for a vehicle routing problem, where

the optimum number of vehicles and the way the jobs are divided are determined generating an

auxiliary graph that represents the splitting options. In this case, we have a fixed number of

machines and we just have to decide the machine delimiters.

Figure 3: Chromosome sample
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Splitting Heuristic

We propose a heuristic to split the chromosomes in order to obtain a solution

for Pm| dbatch, h%batch| TC and its respective cost function. This heuristic assumes an equal

processing time on each machine, denoted by T ∗:

T ∗ =
s(n+m) +

∑
i∈N Pi

m
(24)

Where n, m, and s are the number of jobs, number of machines, and the sequence indepen-

dent setup time. T ∗ is a theoretical makespan computed as the the total scheduling time are

distributed equally among the machines.

The heuristic works as follows. The jobs are assigned in each machine following the sequence

given by the chromosome until the first job does not fit in the machine, then the machine is closed

and the assignment continues in the next machine. The assignment of a job i to a machine k

is given by its completion time and T ∗. If the completion time of job i is less than T ∗, the job

i is assigned to machine k. If the completion time of job i exceed T ∗, but it is processed by at

least 50% (including processing time and setup time s) at time T ∗, then the job i is assigned

to machine k. Otherwise, machine k is closed; then, the next machine is opened and job i is

assigned to it. Thus, the heuristic works as a Next-Fit heuristic, and it has the same complexity,

that is O(n).

Most of the time, the heuristic returns a solution with m machines. However, sometimes it

returns a solution with m + 1 machines. In this case, the jobs that were assigned to machine

m+ 1 are reassigned to machine m to obtain a viable solution.

The heuristic procedure is explained in detail in Algorithm 2. Lines 1-3 initialize the variable

of time (t), the first machine k = 1 is opened, and the parameter T ∗ is calculated, respectively.

Lines 4-11 contain the loop that assigns the jobs in the order that they are sorted in the chromo-

some. Line 5 updates t and Line 6 checks if the Fit rule is met. If not, in Lines 7-9 machine k is

closed, machine k + 1 is opened, the current job i is assigned to it and t is updated. Otherwise,

job i is scheduled on machine k. Finally, Lines 12-14 check if an additional machine was opened

and an unfeasible solution was created, then it is corrected as it was explained above.

Fig. 4 illustrates the splitting heuristic (it works with the chromosome sample of Fig. 3).

In this sample, we need to split the nine jobs between three machines. The scheduling starts on

machine 1, assigning jobs 5, 2, 1 and 3; however, job 3 does not met the fit rule criteria because

it exceeds T ∗ in more than the 50% of the processing time P3 plus s (assuming that the figure

is representative regarding the processing times). Following the heuristic, machine 1 is closed
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Algorithm 2: Splitting Heuristic

1 t = s
2 k = 1

3 T ∗ =
s(n+m)+

∑
i∈N Pi

m

4 for i in chromosome do
5 t = t+ Pi + s
6 if (t− T ∗) ≥ ((Pi + s)/2) then
7 k = k + 1
8 Assign job i to machine k
9 t = Pi + 2s

10 else
11 Assign job i to machine k

12 if k = M + 1 then
13 Move jobs from machine M+1 to machine M
14 Remove machine M+1

and job 3 is assigned to machine 2 that now is open. The heuristic continues until obtain the

scheduling of the right side of the Fig. 4.

Figure 4: Splitting procedure sample.

3.3.2. Crossover

As the encoding used does not have delimiters, the OX-operator can be used. This operator

is suited for cyclic permutations like TSP. Since one parallel machine scheduling solution can

give different chromosomes depending on the concatenation order of its jobs, there is no special

reason to distinguish a “first” or “last” job. This is why we selected OX.

Fig. 5 shows how OX-operator works. First, two cutting positions i and j are randomly

selected (In the example i = 3 and j = 5). Then, the section of the Parent 1 between i and j

is copied into Child 1 maintaining the same positions. Finally, Parent 2 is swept circularly from

j + 1 onward inserting in Child 1 with the missing jobs. By inverting the roles between Parent

1 and Parent 2, we obtain the second child.
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Figure 5: Example of OX crossover

Parent 1 and Parent 2 are selected with the classic binary tournament method: two chro-

mosomes are randomly drawn from the population and the one with the lower cost function is

selected. The procedure is repeated twice, to obtain both parents. The child that has to be

inserted in the population is randomly selected between children.

3.3.3. Mutation operator

After crossover, the selected child (C) is evaluated using the splitting heuristic and improved

applying a local search procedure (LS) with a probability pm. First, the chromosome is converted

using the Splitting heuristic to identify the machine delimeters.

Each iteration of LS scans all possible pairs of distinct jobs (u, v). These jobs may belong to

the same machine or to different machines. For each pair, the following moves are tested. x and

y are the successors of u and v in their respective machines (that could represent the end-start

of a machine as well). R(u) indicates the machine that process job u.

M1. If u is a job, remove u then insert it after v.

M2. If u and x are jobs, remove them then insert (u, x) after v.

M3. If u and x are jobs, remove them then insert (x, u) after v.

M4. If u and v are jobs, swap u and v.

M5. If u, x and v are jobs, swap (u, x) and v.

M6. If (u, x) and (v, y) are jobs, swap (u, x) and (v, y).

M7. If R(u) = R(v), replace (u, x) and (v, y) by (u, v) and (x, y).

M8. If R(u) 6= R(v), replace (u, x) and (v, y) by (u, v) and (x, y).

M9. If R(u) 6= R(v), replace (u, x) and (v, y) by (u, y) and (x, v).

Moves M1–M3 correspond to insertion moves, moves M4–M6 to swaps, move M7 is the well
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known 2 − opt while M8,M9 extend 2 − opt to different machines. Moves like M1 can empty a

machine but can also assign new jobs to it later. This is why empty machines are removed only

at the end of LS. The final mutated chromosome CM is converted in a MDCSP solution using

the Splitting heuristic obtaining a solution with a cost function value F (CM ) ≤ F (C).

Figure 6 and Figure 7 show a sample of movement M5 and M8, respectively, to better

understand how the movements work. In both cases u = 2 and v = 8. If these movements

generate a improvement in the cost function, they will be applied.

Figure 6: M5 move sample

Figure 7: M8 move sample

At the beginning of the LS each type of movement Mi has the status active. At each

iteration the LS procedure randomly selects a move among the active moves. The selected move

Mi is evaluated and the first improvement is adopted (each time a chromosome is evaluated,

the Split Heuristic is applied). If the move fails, i.e., the current solution is a local optima in

the neighborhood defined by Mi, Mi becomes inactive and cannot be selected anymore until

another move succeeds. The LS terminates when all the moves are inactive, i.e., a local optima

in the neighborhood defined by M1–M9 is reached. As said before, LS scans all possible pairs of

distinct job.

Algorithm 3 describe the mutation operator in detail. Here, mutations represents a vector

with the movement index in random order, and combinations represents a vector with all the
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possible combinations of jobs (u, v) in random order. C and CM represent a child and its mutated

version, respectively. On the other hand, j references the number of inactive movements.

The local search process can be time-consuming if each movement is performed for each

combination of pair of jobs. So, to speed it up, we propose two alternatives. The first is a stopping

condition consisting in a maximum number of local search applied to a each chromosome, which

is denoted by δ. The second strategy is a granular search, that was proposed by Toth & Vigo

(2003) and implemented in Cattaruzza et al. (2014), and it limits the LS only to the nclosest (nr,

where n is the number of jobs of the instance, and r ∈ [0, 1] is a granularity threshold restricting

the search to nearby vertices) jobs of the job u, where these closest jobs are determined by the

sequence-dependent setup costs between them. In this sense, we define two versions of the GA

described in this paper. The first one, named as GAδ, has a limit of δ movements for each

chromosome that enters to the mutation process. The second one, named GA∞, has no limit

for the movements in the mutation process, but the granular search is applied. Except for this

difference, the overall scheme of the algorithm is the same.

Algorithm 3: Mutation procedure

Input: C
Output: C,CM

1 if random(0, 1) ≤ pm then
2 i=0
3 j=0
4 CM = C
5 Create combinations vector
6 Create mutations vector
7 while j 6= 9 do
8 for (u, v) ∈ combinations do
9 Try movement mutations[i] on (u, v) to CM

10 if CM improves then
11 Apply mutation[i] to CM
12 Create mutations/{mutations[i]} vector
13 Create combinations vector
14 i = −1
15 j = 0
16 break for

17 else
18 next (u, v)

19 j = j + 1
20 i = i+ 1
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3.3.4. Population structure and initialization

The population is structured as an array
∏

of σ chromosomes sorted in increasing value of

cost. So, the best chromosome with the best objective value is
∏

0.

Clones are not allowed in the population. Following the recommendation exposed in Prins

(2004), clones are chromosomes with the same fitness value (instead of equal chromosomes or

chromosomes that represent the same solution). This condition works as follows: the cost of

any two solutions must be spaced at least by a constant ∆ > 0. If all the chromosomes in the

population meet this condition, the population is said to be well spaced. Regarding infeasible

solutions, these are allowed in the population but a penalty is applied to their cost function.

This penalty increases the cost function in a value directly proportional to G, m, and the units

of time remaining to be processed to meet the batch completion constraints, t−. We denote this

constant of proportionality as the penalty factor µ. Thus, the fitness value of a chromosome y

(F (y)) is given by the equation (25), where the term in bold is the total penalty for the solution

that chromosome y represents. These rules will ensure a better dispersal of solutions to avoid

local minimums and to diminish the risk of premature convergence. In this sense, it is possible

that the chromosome
∏

0, that has the best objective value, may not be a feasible solution, so

the best solution is given by
∏′

0 ∈
∏′, where

∏′ ⊂ ∏
contains all the chromosomes in

∏
that

represent feasible solutions sorted in increasing value of cost.

F (y) = mGCmax +µGmt−µGmt−µGmt− +
∑
i∈N

∑
j∈N

cijz
t
ij (25)

The initial population is generated randomly, adding chromosomes one at a time, where each

one of the chromosomes must meet the distance condition to obtain a well-spaced population.

Later on, in each GA iteration only attempts to replace one chromosome. Therefore, the spacing

must be checked in each of them.

3.3.5. Iteration description

Parents and child selection

Parents are selected by binary tournament. Two chromosome are randomly selected from

the population and the least-cost one (i.e. the chromosome with better position in the popula-

tion) becomes the first parent P1. The second parent P2 is selected in the same way. With the

crossover two children C1 and C2 are generated. To avoid solution degeneration, one child C is

selected randomly for replacing a mediocre chromosome
∏
k, with k ≥ bσ/2c.
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Child mutation and insertion

Once the child is selected, it could be mutated or not with a probability of occurrence pm.

If the child experiments the LS mutation process, the resulting chromosome Cm is attempted

to be incorporated into the population replacing the mediocre chromosome randomly selected,

as explained above. If {
∏
/{
∏
k} ∪ {Cm} is well spaced, the replacement is accepted and

∏
is

re-sorted moving Cm to its respective position. If Cm can not be added into the population, we

try to insert the original child C, following the same procedure. If the replacement is accepted,

independent of the chromosome, one productive or successful iteration is considered.

An excessive rejection rate or quantity of unproductive iterations appears if ∆ or population

size σ are too large. A high mutation rate pm can worsens this situation generating a very

compact population in terms of cost. As exposed in Prins (2004), for the VRP a reasonable

rejection rate (at most 10% of iterations) is obtained with σ ≤ 50, 0.2 ≤ ∆ ≤ 5 and pm ≤ 0.3.

3.3.6. Main phase and restarts

The global phase of the algorithm has four stopping criteria: maximum number of productive

iterations (αmax), maximum number of productive iterations without improving the best solution

(βmax), when the optimum cost is reached (if it is known) and when the rejection rate reaches

an specific level (which can means a too compact population in terms of cost function).

The main phase is followed by a few restarts based on a partial replacement procedure pro-

posed by Cheung et al. (2001) in a genetic algorithm for a facility location problem. They

proposed a reshuffling if there is no further improvement in the fitness value or no new replace-

ment in the current population after a considerable number of generations. This procedure is

very helpful in obtaining a better solution especially when the population size is small.

This procedure works as follows. Let ρ the number of chromosomes to be replaced (in this

case, ρ = bσ/4c). To replace this portion of chromosomes random chromosomes are created one

by one, if a random chromosome Ω is better than the worst chromosome in
∏

(i.e. F (Ω) ≤

F (
∏
σ)) and

∏
/{
∏
σ}∪ {Ω} is well spaced, Ω is inserted in the population and one replacement

occurs. If not, Ω is crossed with each one of the chromosomes in
∏

and the best child C is chosen.

If C meets the two above conditions, it is inserted instead Ω and one replacement occurs. This

process is repeated until reaching ρ replacements.
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4. Computational results

4.1. Benchmark instances

We tested the two GAs in three sets of instances. The first set is a real instance that represents

a mobile health program in the Ñuble Region in Southern Chile. This instance contains 27 schools

divided into 15 districts that have to be attended by 3 MDCs. The cost for the operation of

a MDC (i.e. the value of G) is 60.000 Chilean pesos per day. The setup cost has a sequence-

dependent cost, that depends of the distance between the schools, plus a fixed cost of 130.000

Chilean pesos, that represents the pickup truck request.

The second set contains fictitious instances created from the real instance, keeping the same

magnitudes in their values. In this case, the parameters T ′ and T are fixed, so other parameters

like the number of machines (or MDCs) and batch number are adapted to ensure the instance

feasibility.

Finally, the third set corresponds to Rm| sij | Cmax instances used in the literature proposed

by Vallada & Ruiz (2011). In this case, the instances are adapted for the problem addressed in

this paper and the jobs are uniformly assigned to a specific number of batches that depends of

the jobs quantity. T ′ and T are large enough to ensure the feasibility of the instance.

Table 4 describes, in a general way the instances set 1 and 2. Row 3 indicates the instance

id, row 4 represents the number of jobs of each instance, while row 5 and row 6 represent the

number of machines and the number of batches, respectively. Table 5 follows the same structure

but with the instances set 3.

Table 4: General description of instances set 1 and 2.

Set
1 2

Instance id 1 2 3 4 5 6 7 8 9 10 11
n 27 10 10 15 15 20 20 25 25 30 30

m 3 2 2 2 2 3 3 3 3 4 4
b 15 4 4 6 6 8 8 10 10 12 12

4.2. Implementation

The GAs are coded in Python 3.7.3, compiled with Windows 10 and run on an Intel Core

i5 1.6 GHz processor. To test the algorithms the instances described in subsection 5.1 are used,
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Table 5: General description of instances set 3

Set
3

Instance id 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
n 10 10 10 10 12 12 12 12 50 50 50 50 100 100 100 100 150 150 150 150
m 2 2 4 4 2 2 4 4 10 10 15 15 10 10 15 15 10 10 15 15
b 2 4 2 4 3 6 3 6 5 10 5 10 5 10 5 10 5 10 5 10

where for each instance, five runs are executed during a maximum time of 3600 seconds if it is

necessary.

In order to compare results, the mathematical model described in section 3 is coded and

solved with Gurobi 9.0. The model has a time limit to find solutions of 3600 seconds.

4.3. An additional comparison

In addition to the algorithms described above, an adapted version of the GA proposed in

Shuai et al. (2019) (referenced as NGSA in this paper) is coded too to compare the performance

of them. To adapt the algorithm to the problem addressed in this paper some modifications are

applied to the algorithm:

• A population restart process is added, where a percentage of the chromosomes with the

worst objective values are replaced.

• Unfeasible chromosomes are allowed (using the same penalization system applied to the

proposed GAs).

• Crossover procedure is adapted to the objective of the problem of this thesis.

• Maximum running time of 3600 seconds.

The main parameters values of the algorithm are specified in table 6, which are set according

to Shuai et al. (2019), except for the penalty factor and the number of chromosomes to be

replaced on the restart procedure.

4.4. Parameters setting

Prins (2004) is used as guide to set the most of the parameters in the GA. To ensure the

completion of the main stage and the activation of some restarts during one hour of algorithm

running, αmax was set in 15000. The rest of the stopping criteria, both those of the main stage

and those of the restarts, were set keeping the same proportion that they have in Prins (2004)

respect to this latter parameter.
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Table 6: Parameters setting for NSGA

Parameter Value
Population size 100
Mutation probability 0.05
Maximum number of iterations in main phase 1800
Maximum number of iterations in restart phases 360
Chromosomes to replace on restart 30%
Penalty factor 1

On the other hand, three additional parameters were used in the algorithm configuration,

two of them, the penalty factor and the movements limit for the mutation process in GAδ, were

set arbitrarily. The first, a value large enough that ensures feasible solutions in the population,

and the second, a low enough value that allows a significant acceleration in the whole process of

the algorithm. Finally, the third parameter, the granularity threshold was set as in Vidal et al.

(2012) where it is used for a genetic algorithm proposed for three variants of the VRP.

Table 7 summarizes the parameters setting in the GA, while Table 8 specifies those parameters

that change their values in restart phases. Table 7 is organized as follows, column 1 represent

the parameter abbreviation, column 2 shows the name of the parameter, column 3 corresponds

to the value for each one of them. Finally, column 4 contains the reference used to set the value.

Table 7: Parameters setting for the GA

Parameter Name Value Reference
σ Population size 30 Prins (2004)
∆ Distance between chromosomes 0.5 Prins (2004)
pm1 Mutation probability in main phase 0.05 Prins (2004)
r Granularity threshold 0.4 Cattaruzza et al. (2014)
µ Penalty factor 1 -
δ Movements limit for GAδ 1000 -

αmax Maximum number of productive iterations 15000 -
βmax Maximum number of productive iterations without improvement 5000 Prins (2004)

Table 8: Parameters setting in restart phases for GA

Parameter Name Value
αmax Maximum number of productive iterations 1000
βmax Maximum number of productive iterations without improvement 1000
pm2 Mutation probability in restart phases 0.1

Maǵıster en Ingenieŕıa Industrial, Dirección de Postgrado – Universidad de Concepción 26



4.5. Experiments on Algorithms

The performance of each algorithm is based on its capacity to find good solutions during

the established time, without considering in which moment they were found, where the quality

of the solution is determined first, by the GAP due to the nature of the real problem however,

if two or more algorithms report the same best GAP, the best solution is determined by its

execution time. Table 9 reports the solution for the three algorithms in 5 of the 31 instances to

do a preliminary comparison between them, where for each one of them the best, the worst, and

the mean result are shown. Both for the MILP model and the algorithms results the GAP (first

row) and the running time in seconds (second row) are reported for each instance, where the

GAP is calculated respective to the best bound given by the MILP model. The best result in

each instance is indicated in bold. Table 10 and Table 11 contains the results in the 31 instances

following the same structure of Table 9. One column is added to both tables that represents the

Relative Standard Deviation between the results of each instance reported by GA∞.

It is easy to see in Table 9 that the GA∞ reports the best results in all the instances, both in

best reported result column and mean results column. On the other hand, GAδ reports a good

performance too, with a similar behavior to that of GA∞ as the complexity of the instances

increases, but reporting bigger GAP values. Regarding NSGA, it reports good results in small

size instances but it gets noticeably worse in larger instances, even in the instance 10 it found

feasible solutions just in one of the five runs.

Table 9: Preliminary testing of algorithms

Instance id MILP model
GAδ GA∞ NSGA Best

Best Worst Mean Best Worst Mean Best Worst Mean

1 1.316% 0.105% 0.149% 0.123% 0.076% 0.087% 0.081% 0.785% 5.242% 2.148% 0.076%
3600 683.3 666 609.2 1465.6 * 2736.5 139.8 137.1 134.2 1465.6

2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
19.22 0.44 2.12 0.92 0.19 1.65 0.90 0.22 1.78 0.72 0.19

4 0% 0% 0% 0% 0% 0% 0% 0.013% 0.099% 0.054% 0%
441.67 40.2 53.0 47.9 17.7 62.2 34.0 41.7 40.2 41.2 17.7

6 0.048% 0.061% 0.090% 0.076% 0.047% 0.049% 0.048% 0.093% 0.643% 0.255% 0.047%
3600 264.8 168.6 233.5 773.6 390.9 808.1 62.7 61.5 62.5 773.6

10 × 0.15% 0.29% 0.218% 0.14% 0.15% 0.148% 2.356% 2.356% 2.356% 0.14%
3600 659.0 417.8 494.1 3600 3600 3481.7 235.3 235.3 235.3 3600

× : No solutions found.
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Table 10: Results on set 1 and 2

GA∞Instance id MILP model
Best Worst Mean

Relative
Std. Dev.

1 1.316% 0.069% 0.09% 0.08% 0.0039%
3600 1014.5 394.3 1168.7

2 0% 0% 0% 0% 0%
19.22 0.55 2.12 0.94

3 0% 0% 0% 0% 0%
5.27 1.03 8.17 5.82

4 0% 0% 0% 0% 0%
441.7 40.2 53.01 47.86

5 0.0122% 0.012% 0.013% 0.013% 0.0004%
3600 253.42 531.2 343.73

6 0.048% 0.061% 0.09% 0.076% 0.0009%
3600 264.78 168.57 233.46

7 0.0114% 0.008% 0.008% 0.008% 0%
3600 405.14 864.45 706.4

8 × 0.13% 0.165% 0.15% 0.0153%
3600 3600 167.36 1185.41

9 0.755% 0.103% 0.124% 0.193% 0.0076%
3600 1909.49 3600 2194.84

10 × 0.146% 0.287% 0.217% 0.0063%
3600 658.98 417.84 494.1

11 7.33% 0.173% 0.234% 0.211% 0.0258%
3600 3368.12 3600 3506.45

× : No solutions found.

4.6. Effect of the movements in the local search

In some instances, like instance 6 and instance 10, GAδ reports significantly lower execution

times than those reported by GA∞. If we observe the plots of Fig. 8 and Fig. 9, where the axis

y represents the number of successful insertions and axis x represents the number of iterations,

it is possible to appreciate that the algorithm stops prematurely because it reaches the rejection

rate limit (that we set in 25%). This may be that, due to the size of these instances is not too

large, the algorithm begins to have a more compact population and probably falls in a local

optimum (that can be interpreted as the break point of the plots of Figure 8 and Figure 9), from

which is hard to get out because of the LS movements limit.

Regarding GA∞, its iterations become too long in terms of time. This can be appreciated in

Fig. 10 that shows a plot of successful insertions vs. number of iterations in instance 21 in 3600

seconds of algorithm running. Here we can see that the algorithm managed to do about 1200

iterations during that time, instead of GAδ that managed to do about 13000 iterations during

the same running time as it is possible to appreciate in Fig. 11. This increase in the average
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Table 11: Results on set 3

GA∞Instance id MILP model
Best Worst Mean

Relative
Std. Dev.

12 0% 0% 0% 0% 0%
2.0 0.11 1.55 0.81

13 0% 0% 0% 0% 0%
10.81 8.77 25.69 16.69

14 0% 0% 0% 0% 0%
259.0 0.93 4.8 2.63

15 0% 0% 0% 0% 0%
511.6 1.80 9.54 4.98

16 0% 0% 0% 0% 0%
7.52 3.22 13.74 7.56

17 8.66% 8.56% 8.56% 8.56% 0%
3600 63.3 727.9 381.6

18 0% 0% 0% 0% 0%
3401.4 1.56 26.4 10.6

19 0% 0% 0% 0% 0%
1153.14 3.99 113.67 47.21

20 × 2.82% 3.08% 2.92% 0.1305%
3600 3600 3600 3600

21 × 3.58% 4.41% 4.05% 0.3147%
3600 3600 815.86 3043.17

22 × 5.88% 6.14% 6.03% 0.0951%
3600 3600 3600 3600

23 × 6.0% 6.95% 6.37% 0.3633%
3600 3600 3600 3600

24 × 1.59% 1.98% 1.75% 0.1328%
3600 3600 3600 3600

25 × 2.01% 2.29% 2.17% 0.0979%
3600 3600 3600 3600

26 × - - - 0.1322%
3600 3600 3600 3600

27 × 3.13% 3.56% 3.30% 0.1626%
3600 3600 3600 3600

28 × - - - 0.0747%
3600 3600 3600 3600

29 × - - - 0.419%
3600 3600 3600 3600

30 × - - - 0.2643%
3600 3600 3600 3600

31 × - - - 0.1214%
3600 3600 3600 3600

× : No solutions found, - : Unknown
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execution times of the iterations is mainly due to the mutation process, specifically because of the

significant increase in the number of combinations of pairs that can be formed when the instance

size grows and since it does not have an additional stopping criterion, takes much longer to find

the local optimum of the neighborhood defined by each mutation movements. This is supported

by the plots exposed in Figure 12 and Figure 13, where is possible to see that when the number

of jobs is doubled, the number of iterations in GA∞ is reduced to a 40%, while in GAδ it is

reduced only to a 60%, approximately. However, with fewer iterations GA∞ is capable to find

better solutions than the other methods.

Figure 8: Number of successful inser-
tions vs. Number of iterations in in-
stance 6 of GAδ

Figure 9: Number of successful inser-
tions vs. Number of iterations in in-
stance 10 of GAδ

Figure 10: Number of successful in-
sertions vs. Number of iterations in in-
stance 21 of GA∞

Figure 11: Number of successful in-
sertions vs. Number of iterations in in-
stance 21 of GAδ
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Figure 12: Number of successful in-
sertions vs. Number of iterations in in-
stance 24 of GA∞

Figure 13: Number of successful in-
sertions vs. Number of iterations in in-
stance 24 of GAδ

4.7. Comparison with the mathematical model

Section 2.3 demonstrates that Pm|dbatch, h%batch| TC is a new problem in the literature, due

to it there are no solutions to compare the proposed methods. In this sense, all the experiments

were compared with the exact model that found optimal solutions for 10 instances, feasible

solutions for 17 instances, and lower bounds for 26 of them, which is an indicator of the problem

complexity, that can be seen more explicitly when we compare the execution time in instance

2 and instance 4, where the difference of job quantity represents an increase of 50%, but the

execution time experiences an increase of 2200%, approximately.

If we see the results reported in Table 10, and Table 11 it is possible to appreciate that GA∞

reaches the optimum in all the instances where it is known, and the algorithm does it in less time

than the MILP model. On the other hand, if we focus on the instances where the model can not

find the optimum, but it finds feasible solutions, it is easy to see that GA∞ report better GAP

values. Finally, in those instances where the MILP model does not find any solutions, GA∞

always finds quality and sparsely dispersed solutions.

4.8. Comparing with the literature

Regarding NSGA, it was tested in five instances. For small size instances, it shows good

results, for example, in instance 2 it found the optimal in all the experiments in very low times.

However, its performance noticeably deteriorates as the size of the instances increases, reaching

not being able to find feasible solutions in instances of n = 30 upwards (For instance 10 it found

only one feasible solution). The latter mainly due to two facts: First, its framework has a more

random approach compared with GA∞ and GAδ; second, the crossover process of the NSGA
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modifies the structure of the chromosomes to a lesser extent (compared with the GAs proposed

in this research) so it is easier to obtain an unfeasible chromosome from unfeasible parents. Due

to the latter NSGA was not tested in the rest of the instances.

Figure 14: Box plot of the GAP ob-
tained in instances 1-5

Figure 15: Box plot of the GAP ob-
tained in instances 1-10

Comparing the NSGA performance with GA∞, on average, latter performs better even

though NSGA is very competitive in small-size instances. Regarding the results dispersion,

GA∞ reports clearly less dispersed results, which is supported by Figure 14. In conclusion,

GA∞ shows a more stable behavior, reporting good GAP values in small, mid and large-size

instances, in addition to presenting a low dispersion of them.

4.8.1. Effect of T ′

The value of T ′ is decisive for the effect that the batch due date constraint will have on the

solution obtained from a specific instance. It is logical to think that a value of T ′ large enough

will nullify the effect of the constraint and a very small value will make the instance infeasible.

To better appreciate this effect we take instance 17 as example.

Figure 16 represents the optimum solution of instance 17 with the original value of T ′ which

is reported in Table 11. Figure 17 and Figure 18 represent the optimum solution of instance 17,

but with an increase of 25% and 50% on T ′, respectively. All the results reported in these figures

are obtained from the MILP model.

It is easy to see that modifications in the value of T ′ has effects on the solution that involve

cost function, running times, and problem complexity, where a later due date can have a positive

effect in all of them. For the case of Figure 18, the value of T ′ is so large that the solution is the

same as the one that would be obtained for the Pm|scij |TC. Regarding the running time, it is

possible to see that while the value of T ′ affects the solution, the complexity of the problem is

Maǵıster en Ingenieŕıa Industrial, Dirección de Postgrado – Universidad de Concepción 32



Figure 16: Optimum solution for instance 17 with the original T ′ value

Figure 17: Optimum solution for instance 17 with a 25% of T ′ increase

greater than that of Pm|scij |TC, but when the effect of the due date is null, the complexity is

practically the same which, based on the running times, is noticeably lower.

These behaviors can be verified with the data from Table 12, which reports the results of

the model and the algorithm for the “No due date” case, the original case, and for a 25% of T ′

increase. For each case the GAP and the running time is reported. Regarding running times of

the MILP model, when no due date is considered all the instances report a significant reduction

in the running time, except for those like instance 2 where the due date has no effect in the

optimal cost function for the original T ′ value. In some cases, where the model can not find

solutions, without due date it can. The algorithm reports a similar behavior.

With this data is clear that T ′ has an effect on the problem, both in complexity and in the

objective values. Specifically, for the instances presented in this paper, the due date can generate

an increase in the total cost function of up to 7-8%.
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Figure 18: Optimum solution for instance 17 with a 50% of T ′ increase

a
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Table 12: Model and algorithm sensitivity respect to T ′

MILP model GA∞

Instance id
No due date Original due date

25% due date
postponement

No due date Original due date
25% due date
postponement

GAP Time GAP Time GAP Time GAP Time GAP Time GAP Time

1 0.04% 3600 1.316% 3600 0.09% 3600 0.03% 1490.1 0.081% 2736.5 0.05% 457.7

2 0% 19.8 0% 19.22 0% 14.3 0% 0.58 0% 0.94 0% 0.3

3 0% 4.85 0% 5.27 0% 4.66 0% 0.77 0% 0.622 0% 0.58

4 0% 32.06 0% 441.7 0% 90.73 0% 3.3 0% 47.86 0% 4.2

5 0% 13.97 0.0122% 3600 0% 184.96 0% 0.44 0.013% 343.73 0% 4.9

6 0.03% 3600 0.048% 3600 0.05% 3600 0.037% 101.4 0.076% 233.5 0.047% 1745.4

7 0% 325.22 0.0114% 3600 0% 318.8 0% 18.46 0.008% 706.4 0% 128.8

8 0.064% 3600 × 3600 0.67% 3600 0.055% 258.5 0.15% 1185.4 0.067% 3570

9 0.16% 3600 0.755% 3600 0.76% 3600 0.156% 1598.9 0.193% 2194.8 0.082% 3600

10 0.127% 3600 × 3600 2.21% 3600 0.086% 1904.4 0.217% 494.1 0.098% 3600

11 0.169% 3600 7.33% 3600 0.25% 3600 0.157% 1385.4 0.211% 3506.45 0.163% 268.4

12 0% 1.43 0% 2.0 0% 1.95 0% 0.34 0% 0.812 0% 0.21

13 0% 1.28 0% 10.81 0% 6.8 0% 1.37 0% 16.59 0% 2.76

14 0% 52.66 0% 259.0 0% 149.64 0% 0.44 0% 2.63 0% 1.32

15 0% 176.58 0% 511.65 0% 63.12 0% 0.67 0% 4.98 0% 0.72

8 0% 1.33 0% 7.52 0% 2.96 0% 7.53 0% 7.56 0% 2.91

9 × 3600 × 3600 × 3600 3.58% 3600 4.05% 3043.2 3.64% 3600

×: No solutions found.

a
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5. Conclusions and future works

In this paper we study a new scheduling problem arising in a real situation, named as

Pm|dbatch, h%batch| TC. A MILP formulation is proposed for the problem addressed, but due

to the complexity of the problem (it is NP-Hard), we develop two genetic algorithms (GAδ

and GA∞) based on the one proposed in Prins (2004). We propose an adaptation of its Split

procedure considering the problem’s conditions (fixed number of machines) to evaluate the chro-

mosomes. The algorithms were tested in 12 instances obtained from a real-life application and

instances in the literature. Both proposed GAs find optimum solutions when it is known, and

report lower running times than the exact model. In most of the instances, GA∞ performs better

and report less dispersed results, despite that the algorithm experiences a considerable increase

in the mean execution time of each iteration when the instance size increases.

Besides, to have another point of comparison, we code an adapted version of the GA proposed

in Shuai et al. (2019) (NSGA), focusing it according to the addressed problem’s objective

function. The proposed approach also outperforms NSGA which obtains feasible solutions only

to small and mid-size instances.

For future research, we suggest improving the mutation process by adding better stopping

criteria and the splitting heuristic for chromosome evaluation. Also, it is necessary to realize the

corresponding parameter tuning for the algorithms proposed to boost their performance. On the

other hand, this research can open a new promising research direction related to batch conditions

in the scheduling theory combining it with features already studied. a
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