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esperamos sigan entregando esperanza y alegŕıa a mucha gente.
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Resumen

En la presente tesis estudiamos el problema de la definición adecuada y consistente del
momentum de la luz en medios materiales, lo cual ha sido objeto de debate por más de
100 años y todav́ıa no hay una respuesta definitiva y generalmente aceptada al respecto. Al
realizar un completo estudio de la literatura disponible sobre el tema, nos dimos cuenta de la
gran cantidad de argumentos contradictorios que se han generado durante este largo debate,
que en nuestra opinión, han hecho parecer al problema más confuso y complicado de lo que
en realidad es.
En 1908 y 1909, Minkowski y Abraham propusieron dos expresiones rivales para describir

el tensor enerǵıa-momentum de la luz dentro de un medio material, los cuales en principio
pod́ıan ponerse experimentalmente a prueba. Al pasar los años, se llevaron a cabo varios
experimentos cuyos resultados parećıan validar diferentes formulaciones, dando lugar a la
llamada “controversia de Abraham-Minkowski”. En 1966, Penfield y Haus proponen una
solución formal de la controversia desde el punto de vista de la teoŕıa clásica de campos.
Ellos argumentaron que al considerar la dinámica del medio material, sólo el tensor enerǵıa-
momentum total del sistema cerrado tiene significado f́ısico y que los tensores de Abraham
y Minkowski para el campo electromagnético son simplemente diferentes separaciones del
mismo tensor total. Estas ideas de equivalencia entre las distintas formulaciones pasaron, sin
embargo, muy desapercibidas y en los últimos 10 años la discusión ha revivido con una gran
cantidad de nuevas publicaciones más orientadas a las aplicaciones ópticas. En estos trabajos
actuales, los autores parecen estar completamente desinformados de los previos avances en el
tema, pues continúan buscando nuevos argumentos para encontrar el momentum “correcto”
de la luz en la materia. Muy recientemente, en 2010, Barnett, Loudon e independientemente
Mansuripur afirman que han resuelto la controversia, pero sin ni siquiera mencionar los
trabajos anteriores de Penfield y Haus, generando en nuestra opinión, más confusión que
claridad en el tema.
Es por ésto, que el objetivo general de la presente tesis es contribuir en aclarar los conceptos

fundamentales del problema y en encontrar un acuerdo entre los diferentes enfoques llevados
a cabo por f́ısicos de distintas áreas, que parecen estar desinformados del trabajo de los otros.
Nuestra investigación nos llevó a concluir que la vieja solución de Penfield y Haus es simple,
lógica y completamente consistente tanto con los experimentos como con los conceptos de la
F́ısica Clásica, por lo que adoptamos esta postura frente al tema.
En particular, hacemos uso de la electrodinámica macroscópica en una forma manifies-

tamente covariante para estudiar con detalle y en un contexto completamente relativista,
el sistema formado por campo electromagnético y medio material macroscópico. Primero
consideramos al medio material como un “escenario” fijo (sin dinámica) a través del cual se
propaga la luz, para luego derivar de las ecuaciones de Maxwell macroscópicas, las ecuaciones
de balance para la enerǵıa, el momentum y el momentum angular. Estudiamos la relación
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entre las simetŕıas del medio y las cantidades electromagnéticas conservadas, para concluir
que el tensor de Minkowski de la luz es el que se relaciona directamente con las simetŕıas del
medio.
Con el fin de conectar este tratamiento con los análisis de Barnett, Loudon y otros, usamos

la expresión de Penfield y Haus para el tensor total, derivada de una manera más moderna
por Obukhov, para resolver con todo detalle un problema particular conocido como el experi-
mento pensado de la “caja dieléctrica de Einstein”. Esta situación particular ha suministrado
el argumento más fuerte a favor de la resolución de Barnett, Loudon y Mansuripur, pues
ellos la usan para seleccionar la expresión de Abraham como la única válida de describir el
momentum de la luz en este caso. En nuestro anális completamente relativista, recalcamos la
importancia del tensor enerǵıa-momentum total del sistema cerrado y derivamos en detalle
las expresiones para los momenta de Abraham y Minkowski dentro de este medio isótropo
y homogéneo en movimiento. Realizando un cálculo expĺıcito, mostramos que el tensor de
Minkowski también sirve para describir esta siuación, aunque no es tan útil como el de Abra-
ham. Finalmente, al tomar el ĺımite no-relativista de las expresiones finales, identificamos
algunas suposiciones injustificadas que están escondidas en la descripción usual de la caja
de Einstein dieléctrica y que explican el por qué los otros autores previamente sólo obteńıan
el momentum de Abraham para la luz en este caso.
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Chapter 1.

Introducción

Men wanted for hazardous journey.
Low wages, bitter cold,

long hours of complete darkness.
Safe return doubtful.

Honour and recognition in
event of success.1

Ernest Shackleton,
Irish explorer.

Si salimos a caminar en un d́ıa soleado, nos daremos cuenta tarde o temprano que la luz
del Sol es capaz de calentar la materia. Luego, sea lo que sea la luz, al menos sabemos que
ella transporta enerǵıa consigo.
Después de completar sus famosas ecuaciones en 1865, Maxwell [1] fue el primero en

predecir que la luz es algún tipo de radiación electromagnética que se propaga por el espacio
y que además puede ejercer presión sobre una superficie expuesta a ella. Este efecto, conocido
como presión de radiación, es mucho más dif́ıcil de observar que la transferencia de enerǵıa.
Sin embargo, éste pudo ser experimentalmente medido en 1903, por Nichols and Hull [2], lo
que significa que la luz además de enerǵıa, también transporta momentum consigo.
El momentum de la luz describe el grado en que ella puede poner otros objetos en

movimiento, cuando la absorben o reflejan. En la vida cotidiana no vemos a la luz moviendo
cosas, porque la fuerza causada por ella es usualmente bastante débil, pero como dice Leon-
hardt en [3], evidencia visual se puede encontrar, por ejemplo, en la cola de un cometa
como en la figura 1.1, donde la luz del Sol transfiere momentum a las part́ıculas de la cola,
empujando el polvo fuera del cometa.
En 1905, Einstein desarrolló su Teoŕıa de la Relatividad Especial [4], la cual ayudó a

entender que las ondas electromagnéticas son diferentes a los otros fenómenos conocidos hasta
ese momento, en el sentido que ellas no necesitan de un medio material para propagarse. De
hecho, las ecuaciones de Maxwell en el vaćıo son las únicas microscópicamente bien definidas

1Se buscan hombres para peligroso viaje. Salario reducido. Fŕıo penetrante. Largos meses de completa
oscuridad. Constante peligro. Dudoso regreso sano y salvo. Honor y reconocimiento en caso de éxito.
Ernest Shackleton, explorador irlandés.
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Chapter 1. Introducción

Figure 1.1.: Un padre y su hijo están disfrutando de la asombrosa vista del cometa Hale-
Bopp, un poco después del paso por su perihelio, el 1 de Abril de 1997. Mientras
la cola azul de iones es llevada hacia afuera por el “viento solar” de part́ıculas
cargadas desde la atmósfera solar, la cola de polvo blanquecina es empujada por
la presión de radiación de la luz solar. La transferencia de momentum en el
segundo caso es más débil que en el primer caso, resultando en la separación de
las colas. Foto tomada por Jerry Lodriguss, 1997.

y de acuerdo con ellas, las soluciones de onda plana deben viajar a una velocidad constante
c con respecto a cualquier observador inercial.
La teoŕıa clásica de la radiación electromagnética tuvo mucho éxito cuando fue aplicada

para describir sistemas macroscópicos, dando lugar al desarrollo de innumerables nuevas
tecnoloǵıas, las cuales cambiaron la forma de vivir de las personas en el siglo XX, espe-
cialmente respecto a las comunicaciones. Sin embargo, cuando se intentó aplicar la teoŕıa
electromagnética, tal como fue formulada por Maxwell y Einstein, para describir sistemas de
escala atómica y subatómica, como interacciones dentro de un átomo de hidrógeno o elec-
trones interaccionando con luz, la teoŕıa falló. Es otra bonita y larga historia explicar cómo la
mecánica cuántica se desarrolló para describir correctamente estos sistemas microscópicos,
pero podemos decir que después del trabajo por años de muchos cient́ıficos, Dirac [5] en
1927 aplicó el método de cuantización a la teoŕıa de Maxwell, pudiendo exitosamente de-
scribir la radiación electromagética en términos de fotones, las excitaciones elementales del
campo electromagnético, también interpretadas en ciertas situaciones como “part́ıculas de
luz”. En forma análoga a como las ondas de luz clásicas transportan enerǵıa y momentum,
en electrodinámica cuántica los fotones poseen una enerǵıa y momentum bien definidos, de
tal manera que las interacciones de la luz con la material también se pueden entender en
términos de transferencia de enerǵıa y momentum, sólo que esta vez en cantidades mı́nimas
e indivisibles, llamadas “cuantos”.
Lo que es realmente importante de recalcar para nuestra tesis, es que en la mayoŕıa de

los casos anteriores, sin importar si clásicos o cuánticos, para el cálculo de la radiación y
de las interacciones de la luz con la materia, el campo electromagnético se asume en el
vaćıo, donde las ecuaciones de Maxwell microscópicas están bien definidas. Pero, ¿qué pasa

2



Chapter 1. Introducción

si consideramos un medio material macroscópico para que la luz se propague a través de
él? Los medios materiales, considerados macroscópicamente neutros se caracterizan, sin
embargo, por tener cargas y corrientes ligadas, las cuales se distribuyen internamente bajo
la acción de un campo electromagnético local, por ejemplo una onda de luz. Como un
efecto macroscópico, los medios materiales se polarizan y magnetizan, creando un campo
electromagnético inducido (a pesar de ser neutros), el cual se superpone con el campo elec-
tromagnético de luz propagándose a través de él. Esta respuesta macroscópica de los medios
continuos se puede describir fenomenológicamente asignando suficientes magnitudes f́ısicas
al medio, para aśı dar cuenta de todas las propiedades electromagnéticas que les podemos
detectar en los experimentos. De esta forma, podemos encontrar medios cuya respuesta sea
lineal o no-lineal en el campo electromagnético aplicado, isótropa o anisótropa, dependiendo
si polarización/magnetización es paralela o no al campo aplicado, dispersiva o no-dispersiva,
cuando la respuesta del medio depende de la frecuencia de la luz o no, etc.
Hay muchos tipos de medios que podremos estudiar con detalle en la tesis, pero no hemos

respondido algunas preguntas importantes. Supongamos que un rayo de luz incide sobre un
bloque de cristal dielétrico, como en la figura 1.2. De las ecuaciones de Maxwell en el vaćıo
ciertamente conocemos las expresiones para la enerǵıa y el momentum de la luz en el vaćıo,
es decir, antes y después de pasar a través del cristal, pero ¿cuál es el momentum del rayo de
luz dentro del medio? y ¿cuánto momentum transfiere la luz a las cargas y corrientes ligadas
del medio mientras ella se propaga?. ¿Podemos f́ısicamente diferenciar entre el momentum
del campo y del medio cuando los dos están interactuando?. ¿Tiene sentido esta pregunta?.

Figure 1.2.: Un rayo de luz pasando a través de un bloque de cristal dieléctrico. ¿Cuánto
momentum transporta la luz dentro de él?

A primera vista uno esperaŕıa que todas estas preguntas estuviesen contestadas en cualquier
libro estándar de electrodinámica, pero sorprendentemente ese no es el caso, de hecho hasta
en el conocido libro de Jackson [6] sólo se habla de la ecuación de balance de momentum
para el campo en el vaćıo, haciéndole “el quite” a las preguntas que recién acabamos de
plantear. En realidad no hay ningún libro que contenga respuestas definitivas y univer-
salmente aceptadas a estas preguntas, pues constituye un problema abierto de la F́ısica
Clásica fundamental, cuyo debate a durado ya más de un siglo y a pesar de ello, todav́ıa hay
confución o al menos desacuerdo entre los autores.
En esta tesis proponemos contribuir en este estudio de la definición adecuada del momen-

tum de la luz dentro de un medio material, desde el punto de vista de la electrodinámica
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clásica y la teoŕıa clásica de campos. En nuestra opinión, la ráız del entendimiento del prob-
lema radica primero en la teoŕıa clásica y por ello ah́ı hemos puesto todo nuestro esfuerzo.
Una vez que el problema se entienda mejor desde un punto de vista clásico, puede llegar otro
“Dirac” y cuantizar la teoŕıa para encontrar el correspondiente momentum del fotón dentro
de un medio macroscópico, si es que es posible, pues en la actualidad no es conocido.
En los últimos diez años, el problema de la determinación del momentum electromagnético

dentro de la materia ha revivido dentro de la comunidad cient́ıfica y en la literatura es
conocido como la “controversia de Abraham-Minkowski”, en honor a los dos pioneros en el
tema. En su paper original de 1908, Minkowski [7], además de desarrollar una formulación
completamente covariante y cuadri-dimensional de la electrodinámica macroscópica, fue el
primero en proponer un tensor enerǵıa-momentum para describir el contenido de enerǵıa y
momentum del campo electromagnético en la materia. El tensor definido por Minkowski
se caracterizaba por no ser simétrico, puede derivarse directamente de las ecuaciones de
Maxwell macroscópicas y se reduce al tensor conocido tensor electromagnético simétrico en
el vaćıo como un caso particular.
El hecho de que el tensor de Minkowski no fuera simétrico causó desconcierto en la comu-

nidad cient́ıfica, debido a la (falsa) creencia que todos los tensores enerǵıa-momentum deben
ser simétricos para ser compatibles con la conservación del momentum angular del sistema.
En el caṕıtulo 4 se explica cuidadosamente que el argumento anterior es sólo verdadero en
el caso de sistemas cerrados, pero para un sistema abierto, como el caso del campo electro-
magnético en la materia, la teoŕıa de campos de hecho requiere que el tensor canónico no
sea simétrico.
De todos modos, en 1909, un año después de la publicación de Minkowski, Abraham

[8, 9] logró proponer un tensor simétrico alternativo para el campo electromagnético, pero
bajo el costo de que éste no pod́ıa ser derivado a partir de primeros principios, como está
detalladamente explicado en la revisión de Obukhov [10]. Abraham propuso que el tensor
macroscópico debeŕıa poder obtenerse a partir de promedios sobre regiones apropiadas del
espaciotiempo del tensor microscópico, que es simétrico. Como la simetŕıa del tensor se
mantiene después de calcular promedios, entonces el tensor macroscópico también debeŕıa
ser simétrico. Sin embargo, Abraham no pudo dar una prueba rigurosa de su idea y definió
el tensor macroscópico simétrico de una manera más o menos artificial. Hasta ahora no se
tiene una derivación rigurosa de las ecuaciones de Maxwell macroscópicas como promedios
de las ecuaciones microscópicas en el vaćıo. Además es muy probable que esto no sea
posible, pues en el caso macroscópico se tienen ecuaciones fenomenológicas que incorporan
las propiedades electromagneticas macroscópicas de los medios de una manera efectiva a
través de las relaciones constitutivas. y no son directamente promedios espaciales de otras
cantidades.
Cuando la luz se propaga dentro de un medio fijo y en reposo, por ejemplo un cristal

sujeto a una mesa óptica, las correspondientes expresiones de Minkowski y Abraham para la
densidad de momentum del campo dentro de la materia son definidas, en unidades SI, por

πM := D ×B, (1.1)

πA :=
1

c2
E ×H , (1.2)

4



Chapter 1. Introducción

donde E es el campo eléctrico, B el campo magnético, D la excitación eléctrica y H la
excitación magnética. En el caso más simple de un pulso de onda plana propagándose
dentro de un medio lineal, isótropo y homogéneo en reposo, las relaciones constitutivas son
dadas por D = εε0E y H = B/µµ0, por lo que las dos expresiones rivales (1.1)-(1.2) se
reducen a:

πM = n
U
c
k̂, (1.3)

πA =
1

n

U
c
k̂, (1.4)

donde n :=
√
εµ es el ı́ndice de refracción del medio, U es la densidad de enerǵıa de la onda

de luz plana dentro de la materia y k̂ es el vector unitario de propagación.
Notemos que ambas expresiones coinciden para n = 1, es decir, cuando el medio es el vaćıo,

pero cuando n 6= 1, ellas difieren en un factor n2. Esta clara diferencia entre las predicciones
idealizadas (1.3) y (1.4) motivó el debate de determinar cuál de las dos definiciones para la
densidad de momentum de la luz dentro de un medio era la correcta, y hasta el d́ıa de hoy
continua, siendo una área activa de investigación.
Luego de realizar una investigación exhaustiva de la literatura, nos dimos cuenta de la

cantidad de argumentos contradictorios que se han ido desarrollando en el tiempo, los cuales
han generado una gran confusión en la comunidad cient́ıfica y en nuestra opinión, han hecho
parecer el problema más complicado de lo que en realidad es. Esto puede ser debido a que
la esencia del problema es bastante transversal, por lo que ha sido estudiado por grupos
de cient́ıficos de distintas áreas, los cuales por diferencias de enfonque, interés, notación o
simplemente incomunicación entras las áreas, no han podido llegar a un consenso razonable
o peor aún, ni siquiera se han enterado de los avances ya realizados por otros cient́ıficos.
Por este motivo, el primer objetivo en la presente tesis fue traer orden al tema, identifi-
cando los argumentos confusos y contradictorios que se han ido generando durante este largo
debate y quedándonos con los que a nuestro parecer describen el problema de una manera
más limpia, autoconsistente y sin necesitad de recurrir a argumentos ad-hoc para describir
situaciones particulares. En el caṕıtulo 2 presentamos una revisión del desorrollo histórico
de la controversia Abraham-Minkowski.
Dentro de los muchos trabajos que encontramos en la literatura, el que más nos influ-

enció desde el comienzo de la investigación fue una revisión escrita por Obukhov [10] en
2008, donde se aborda el problema desde la teoŕıa de clásica de campos. Obukhov escribe la
electrodinámica en forma expĺıcitamente covariante y usa el formalismo Lagrangeano para
derivar las ecuaciones de balance y los tensores enerǵıa-momentum del sistema formado
por campo electromagnético y medio material. Aśı, elsegundo objetivo de esta tesis fue re-
hacer detalladamente muchos de estos cálculos y luego extenderlos, siendo lo expuesto en
los caṕitulos 3, 4 y en el apéndice C, los resultados de este trabajo. Primero asumimos al
medio material como un “background” sin dinámica a través del cual se propaga el campo
electromagnético dinámico. Aqúı resaltamos la relación entre las simetŕıas del medio y la
obtención de cantidades electromagnéticas conservadas como enerǵıa, momentum y momen-
tum angular, concluyendo que el tensor de Minkowski es el que está relacionado con las
simetŕıas del medio y que la asimetŕıa de sus componentes es completamente necesaria para
describir este sistema abierto.
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Estos simples y claros resultados nos condujeron a aceptar como válida una solución
formal para la controversia postulada originalmente por Penfield y Haus [11, 12, 13] en
1966. Estos autores modelaron al medio material como un fluido dieléctrico isótropo y al
considerar su dinámica derivaron mediante el formalismo Lagrangeano la forma expĺıcita
del tensor enerǵıa-momentum total para el sistema cerrado campo y medio material, ambos
interactuando dinámicamente. Como resultado, encontraron un tensor enerǵıa-momentum
total únicamente definido para el caso de medio isótropo y concluyeron que tanto el tensor de
Minkowski como el de Abraham pueden describir correctamente al campo electromagnético
dentro de un medio, siempre que cada uno se complemente con un tensor adecuado para
el medio y aśı las ecuaciones de balance y el tensor del sistema total sea el mismo. En
otras palabras, bajo este enfoque sólo el tensor total es el que tiene significado f́ısico, siendo
los tensores de Abraham y Minkowski distintas separaciones que no afectan las predicciones
f́ısicas del sistema. En nuestra opinión, esta forma de entender el problema es completamente
satisfactoria, simple y consistente con toda la F́ısica Clásica, pues lo único que se asume son
las ecuaciones de Maxwell macroscópicas, las relaciones constitutivas para el tipo espećıfico
de material y las ecuaciones hidrodinámicas para el flúıdo.
Sin embargo, estos argumentos pasaron bastante desapercibidos y todav́ıa se sigue dis-

cutiendo cuál de los dos tensores es el correcto para describir a la luz en un medio, ori-
ginándose muchos argumentos teóricos y experimentos que le dan la razón a uno, a los dos
a ninguno de las alternativas de momentum aqúı planteadas, pero sin llegar a una respuesta
definitiva. Para contribuir a la aceptación de las ideas Penfield y Haus por la comunidad
cient́ıfica como el correcto camino para una solución completamente y definitiva de la contro-
versia, el tercer y principal objetivo de esta tesis fue usar estos postulados para resolver con
todo detalle un ejemplo de interacción entre la luz y un medio, donde se vea claramente que
ambos tensores son igualmente correctos, mientras se apliquen bien las ecuaciones de balance
totales. Un problema particular muy simple, que ha sido estudiado por muchos autores desde
que fue propuesto por primera vez en el año 1953 por Balazs [14], es el llamado “experimento
pensado de la caja de Einstein dieléctrica”. Éste consiste en una modificación del experi-
mento pensado de la caja de Einstein [15] de 1906, donde un pulso de luz cruza las paredes
de una caja vaćıa inicialmente en reposo y la pone en movimiento. Einstein recurrió a este
ejemplo para discutir sobre la conservación de la velocidad del centro de enerǵıa del sistema,
que es una generalización relativista del centro de masa. Posteriormente Balazs toma esta
idea, pero supone que la caja vaćıa ahora es un bloque dieléctrico con ı́ndice de refracción n
y estudia el momentum que debe llevar la luz dentro de este medio. Debido a ciertas suposi-
ciones, no justificadas a nuestro parecer, Balazs concluye que el momentum de la luz para
esa situación particular al menos, debe ser dado únicamente por el momentum de Abraham.
Posteriormente y hasta la actualidad, muchos autores han obtenido conclusiones erróneas,
en nuestra opinión, al ser influenciados por este resultado, pues como nosotros mostramos
en el caṕıtulo 6, ésta situación no imposibilita el uso del momentum de Minkowski para el
campo en el medio. Obukhov en [10], sigue la idea original de Penfield y Haus, y deriva en
una notación más moderna la expresión para el tensor enerǵıa-momentum total del sistema
campo más medio. Por completitud, inclúımos este desarrollo en el caṕıtulo 5, para poste-
riormente en el caṕıtulo 6 poder aplicar estos resultados al problema particular de la caja
dieléctrica de Einstein, donde realizamos un análisis completamente relativista detallado de
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la situación, calculamos expĺıcitamente los momenta de Abraham y Minkowski para este caso
y mostramos expĺıcitamente que con ambos es posible describir la situación, pues el tensor
total es el f́ısicamente importante. Finalmente, damos razones de por qué Balazs y otros
autores suelen encontrar sólamente el momentum de Abraham para describir correctamente
este caso, identificando ciertas suposiciones no estrictamente justificadas y muy comunes en
la literatura. Los resultados de este análisis serán publicados en [16].
Esta introducción, el resúmen y las conclusiones de la tesis están escritos en castellano,

pero todos los demás caṕıtulos del cuerpo principal están escritos en inglés. No hay que
asustare por la cantidad de apéndices que incorporamos aqúı, pues ellos son sólo material
complementario u otros trabajos preliminares no directamente relacionados con la publi-
cación [16]. Lo que śı es fundamental para entender el contenido del caṕıtulo 6, son los cinco
caṕıtulos anteriores. Animo!
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Chapter 2.

Motivation and historical review of the
Abraham-Minkowski controversy

“La vida, para los optimistas, no es el problema, sino el remedio.”

Marcel Pagnol,
poeta francés.

In order to better illustrate why the two different definitions for the momentum of light
inside matter have led to so much confusion among authors, we will first shortly expose
three simple theoretical arguments commonly found in the literature, which apparently do
not have any contradictions, but support different momentum definitions.
After the three simple examples, we will present an historical review of the most important

experiments and theoretical arguments that different authors have proposed during this
hundred years of debate, from the early years until the present day. We think that this
description of the most important advances in the area, will give us a global understanding
of the problem and an idea of how the solution of Penfield and Haus, which we support,
have gone very unnoticed in this debate. For other reviews about the subject, please see the
introduction of [17], which is very good and concise and for a more detailed and historical
reviews, not always free of confusion and contradictions, see [10, 13, 18, 19, 20, 21, 22].

2.1. Atom recoil and Doppler effect

Let us first consider a semi-classical example, even though we do not like it very much
since it mixes concepts of classical and quantum physics, however, it is very popular in the
literature. Consider that an atom of mass m with an internal transition of frequency ω0,
given by

ω0 := ωf − ωi, (2.1)

is situated inside a linear, isotropic and homogeneous medium at rest, with refraction index
n. Assume that the atom is initially moving with velocity v away from a monochromatic light
source of frequency ω and then it absorbs a “photon”, recoiling and changing its internal
energy and its velocity to v′, as it is shown in figure 2.1. It is important to clarify here
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that the photon is thought in a semi-classical sense, i.e. like a finite, localize and small
electromagnetic wave packet.

w0

wi

wf

m

hw

before after

w0

wi

wf

m

n n

Figure 2.1.: An atom within a medium with refraction index n, absorbs a semi-classical
photon and reacts by changing its internal energy and its velocity (recoil).

An atom will only successfully absorb a photon from the light source, if its velocity v is
such that the (non-relativistic) Doppler shift makes the light be in resonance with the atom’s
transition, i.e.

ω0 =
(
1− vn

c

)
ω. (2.2)

Additionally, we consider the conservation of energy during the process,

~ω +

(
1

2
mv2 + ~ωi

)
=

1

2
mv′2 + ~ωf , (2.3)

and the conservation of momentum,

mv + p = mv′, (2.4)

where p is the unknown momentum of the photon inside the medium.
If we insert (2.1) and (2.2) in (2.3), we obtain that the velocity difference of the atom,

before and after the absorption, reads

v′ − v =
n~ω
mc

2v

v + v′
, (2.5)

and if we replace (2.5) into (2.4), we find that p must be given by

p =
n~ω
c

2v

v′ + v
, (2.6)

if the motion of the atom is non-relativistic, v � c, as it usually is.
Finally, if we consider that the energy of the photon E = ~ω is much smaller that the rest

energy of the atom, we can assume that the velocity of the atom is eventually not affected
by the recoil, i.e. v′ ≈ v and therefore (2.6) reduces to

p ≈ n
E

c
= pM , (2.7)

which indeed coincides with the Minkowski total momentum of light, integrating the result
(1.3). Notice that in order to obtain the Minkowski momentum for light in this semi-classical
situation, we assumed two approximations, E = ~ω � mc2 and v � c, in addition to the
conservation of energy and momentum of the closed system.
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2.2. De Broglie relation for a “photon”

Another semi-classical argument which is very popular in the literature is the following,
related to the de Broglie relation of a semi-classical “photon”. Consider a light beam of
frequency ν and wavelength λ0 striking a fixed isotropic and homogeneous crystal. From
basic optics we know that when the light beam encounters the interface, it will be refracted
and as a result it will change its velocity of propagation and wavelength, but not its frequency.
Since the phase velocity of light inside the new medium at rest is given by v(0) = c/n, the
wavelength inside the medium λ should be related to the one in vacuum, by

λ =
λ0

n
. (2.8)

According to quantum theory, the momentum of a photon should be related to its wavelength,
by the de Broglie relation,

p =
h

λ
, (2.9)

where h is the Planck’s constant. If we apply (2.9) for a photon inside a medium and we
insert (2.8) in it, we obtain

p = n
h

λ0

= n
E0

c
, (2.10)

where we used the well-know relation for a photon in vacuum p0 = E0/c. As it can be
clearly noticed (2.10) corresponds again to the total Minkowski momentum of light, i.e. the
integrated expression (1.3) and therefore we find another situation in which the Minkowski
expression appears.

2.3. Dielectric Einstein box thought experiment

As a third example, we consider a modification of the famous thought experiment dis-
cussed by Einstein in 1906 [15], which we call the “dielectric Einstein box” thought experi-
ment. Here we present the argument as it is usually found in the literature, but in chapter
6 we present our proper analysis of it.
Consider a dielectric slab of mass M with homogeneous and isotropic electromagnetic

properties, floating in space. Its refraction index is n, its length is L and it occupies a finite
volume V . The slab is initially at rest, but a semi-classical “photon” of total energy E0 = ~ω
strikes it from vacuum at normal incidence putting it in motion with a final constant velocity
v. The slab is equipped with anti-reflection coatings so that the pulse can enter the slab
at normal incidence without reflection and energy losses. The situation is sketched in figure
1.4. Since the photon and the slab form an isolated system, according to the first Newton
law, the center of energy of the system should keep an uniform motion. Once the photon is
completely inside the slab it reduces its velocity to c/n and therefore the slab will have to
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before after

n nn

/n

Figure 2.2.: A “photon” enters a dielectric slab initially at rest and puts it in motion.

move in the same direction of the photon in order to conserve the velocity of the center of
energy of the whole system. The total energy when the photon is in vacuum is given by

Etot = ~ω +Mc2, (2.11)

which should be conserved during the whole process. Since in Special Relativity the mass
is just a measure of the rest energy of an object, it is more convenient to talk about the
center of energy of the system that about its center of mass. In this case, the velocity of the
center of energy of the system is calculated just as if the photon and the slab were massive
particles and therefore its values before and after the entrance of the photon read

vce1 =
c~ω

~ω +Mc2
, (2.12)

vce2 =
(c/n)E + vEs

E + Es

, (2.13)

where E is the energy of the photon inside the slab and Es is the total slab energy (rest
energy plus kinetic energy) when it is moving. Using the fact that energy is a conserved
quantity, we have

Etot = E + Es = ~ω +Mc2, (2.14)

and neglecting the kinetic energy of the slab Ek with respect to its rest energy Mc2, we
obtain

Es = Mc2 + Ek ≈ Mc2. (2.15)

Thus, replacing (2.15) into (2.13) and (2.14), the final velocity of the center of energy takes
a simpler form,

vce2 ≈
vMc2 + (c/n)~ω

~ω +Mc2
. (2.16)

Comparing (2.12) and (2.16) we can find the final velocity v of the block, in terms of the
energy of the incident photon E0 = ~ω:

v ≈ E0
Mcn

(n− 1) > 0. (2.17)
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As we see from (2.17), the slab will effectively move in the same direction as the photon,
provided the same approximations as in subsection 2.1 are valid, i.e. E0 = ~ω � Mc2 and
v � c.
Since we assume that the photon is moving at constant velocity c/n inside the medium,

it will require a total time

∆t =
n

c
L, (2.18)

in order to completely cross the slab of thickness L and therefore, the slab’s net displacement
∆x can be calculated as

∆x = v∆t (2.19)

≈ (n− 1)L
E0
Mc2

. (2.20)

Finally, imposing the conservation of linear momentum of the closed system,

E0
c

= Mv + p, (2.21)

where p is the momentum of the photon inside the slab, we can insert (2.17) in it and obtain
the value of p for this case:

p ≈ 1

n

~ω
c

= pA. (2.22)

Therefore, under this analysis of the Einstein dielectric box, assuming the conservation of
energy, momentum and of the center of energy velocity of the closed system, in addition to
the usual approximations E0 = ~ω � Mc2 and v � c, we see that the momentum of the
photon inside the slab has to be Abraham’s, i.e. the integral of expression (1.4).

2.4. The early years

During the first 40 years after the formulation of the problem by Minkowski and Abraham,
nobody was able to set an experiment in order to experimentally test which of the two
formulations for the momentum of light in matter was the correct one. Only in 1919,
Dällenbach [23] claimed to theoretically demonstrate the derivation of the Minkowski tensor
from microscopic considerations, using the “electron theory”, i.e. the Maxwell equations in
vacuum. However, Pauli in his famous Special Relativity book of 1921 [24], argued that the
argument of Dällenbach was not very cogent. Currently we know that the argument fails to
justify the generalization of the fields from the electrostatic to the dynamic case, which is
of course, crucial. In fact, Pauli believed in the Abraham formulation since he insisted that
the energy-momentum tensor had to be symmetric.
In 1923, W. Gordon [25] wrote a very original paper, where he uses General Relativity to

develop an argument in favor of the Abraham tensor. In simple terms, he considered the
electromagnetic field inside a linear, isotropic and homogeneous medium as the source of
gravitational field and found that the symmetric energy-momentum tensor that has to be in
the right hand side of Einstein’s equations is Abraham’s one.
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In 1939, Tamm [26] took up the discussion again concluding that the Minkowski’s expres-
sion for the energy-momentum tensor is the correct one. He realized that there is no a priori
reason for the tensor to be symmetric, as it was believed, since the electromagnetic field in
matter is a non-closed system and also remarked that a macroscopic energy-momentum is
not simply the average of the corresponding microscopic one. The macroscopic tensor must
also satisfy the correct energy-momentum balance equation, as derived from macroscopic
Maxwell equations. So, if the microscopic energy-momentum is symmetric, its average will
be symmetric, but not necessarily the corresponding one in the macroscopic theory. Addi-
tionally, Tamm could show that in some special cases the Abraham tensor leads to wrong
results, while the Minkowski’s expression is in accordance with Maxwell’s equations in vac-
uum.
Later, von Laue [27] in 1950 and similarly Møller [28] in 1952, recovered the arguments

of Tamm and they found another argument in favor of the Minkowski formulation. In
the simplest material medium, i.e. a linear, isotropic and homogeneous medium, we know
from geometrical optics that the ray velocity defined from Huygens’s principle should be
identical to the velocity with which energy is propagated. Using some components of the
energy-momentum tensor, the velocity of propagation of energy can be calculated, from
where the authors concluded that only the Minkowski tensor satisfies this condition and not
Abraham’s. This argument was so influential that Pauli in the revised edition from 1958 of
his book [29], inserted a supplementary note reversing his position and tending to suggest
the the Minkowski tensor in “more likely to be right”, but without a definite answer though.
On the other hand, Balazs in his paper of 1953 [14], was the first to propose the study

of the dielectric Einstein box thought experiment, in a similar way as it was presented in
2.3, but with more general incidence directions of the light upon the slab. By assigning
the momentum of a particle to the slab, he was able to show that the conservation of
momentum and the conservation of the center of energy velocity of the total system can be
only satisfied, if we assign the Abraham tensor to the electromagnetic field in matter, i.e. a
result in agreement with the one of subsection 2.3. In chapter 6 we will present our analysis
of this problem, which will be published in [16].

2.5. First experiments

In 1954, Jones and Richards [30] were the first braves to set up an experiment in order to
discriminate between both definitions of the momenta of light inside matter. They basically
suspended a mirror in a torsion fiber submerged in a dielectric liquid. By illuminating the
mirror with light and measuring the torsion angle of the fiber, they were able to determine
the torque exerted by light on the mirror and therefore its radiation pressure inside the
dielectric. As a result, Jones and Richards observed that the radiation pressure was directly
proportional, within about 1% to the refraction index of the liquid and therefore finding
experimental evidence in favor of the Minkowski momentum. For more details about the
experiment setup, see the original paper of the authors or also the review [18]. In spite of
the good results in favor of the Minkowski momentum for light, the experiment of Jones and
Richards went initially very unnoticed. The classical book “electrodynamics of continuous
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media” from Landau and Lifshitz [31] of 1960 did not even mention this experiment and
uses the Abraham momentum as the correct expression.
One of the consequences of considering the Abraham momentum as the momentum of the

field in matter, is that we have to assume an extra term in the momentum balance equation,
which is called the Abraham force density. This term is also presented in the derivation of
Landau and Lifshitz, giving for sure its existence though at that time nobody had measured
it. In 1968, James in his doctoral thesis [32] performed an experiment to directly measure the
Abraham force in order to determine if it was real or not. Two ferrite toroids, axially aligned
with one another, were connected to a piezoelectric transducer. James applied time-varying
electric and magnetic fields on the toroids and he measured the torque exerted on them by
the electromagnetic field. According to James both, Minkowski’s and Abraham’s energy-
momentum tensors, predicted a net torque on the toroids, but with differing magnitudes due
to the existence of the Abraham force density. The results were consistent with the existence
of the Abraham force, giving experimental evidence in favor of the Abraham momentum.
Despite the good results of James, his work went unnoticed until 1975, when G.B. Walker,

Lahoz and G. Walker [33] performed a similar experiment. This team measured the torque
exerted on a disc of barium titanate which was suspended on a torsion fiber in a constant
axial magnetic field, and subjected to a time-varying radial electric field. A diagram of the
experimental apparatus is shown in figure 2.3.

Figure 2.3.: Diagram of the experimental apparatus of Walker et al., taken from [33].

The disc behaved as a torsion pendulum and its period of oscillation was measured by
reflecting a laser beam off a mirror attached to the disc. By experimentally determining
the rotation period of the disc, the authors reported the existence of the Abraham force,
within a 10% of error and for low rotation frequencies. In 1977, the experiment was repeated
by G.B. Walker and G. Walker [34], but this time applying a time-varying magnetic field.
The authors reported positive results again, supporting the momentum of Abraham for light
in matter. The interpretation of the results were object of critics by Brevik [19] in 1979,
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who noticed various limitations in the experiment, but stressed its importance as a direct
verification of the existence of the Abraham force.
On the other hand, in 1973, two years before the experiment of Walker et al. [33], Burt

and Peierls [35] wrote a paper proposing a simple way to experimentally differentiate be-
tween the Minkowski and Abraham momenta. They assumed that a light pulse passes from
vacuum into a medium of refractive index n, normal to the interface. By applying the rival
expressions (1.3) and (1.4) to this particular simple case, together with the corresponding
boundary conditions, Burt and Peierls concluded that according to Minkowski’s momentum,
there should be an outward force on the interface, whereas the Abraham’s momentum implies
an inward force or pressure on the surface. Thus, the consequences of the different momenta
should be in principle observable. Besides proposing the latter test, Burt and Peierls sup-
ported the Abraham momentum and they give another argument in favor of it. However,
we now know that its argument is wrong since they assume that a light pulse propagating
inside a fixed medium is an isolated system, which is false. We will return to this in section
4.3.
In the same year and as a response to the paper [35], Ashkin and Dziedzic [36] performed

an experiment to test the theoretical prediction of Burt and Peierls. They used a water
surface as the interface between media and directed a laser beam from air into it, as shown
in figure 2.4.

Figure 2.4.: Experimental setup of Ashkin and Dziedzic experiment. Image taken from [36].

Ashkin and Dziedzic expected that the momentum transfer from light to the fluid would
cause the surface to either bulge outwards, if the Minkowski tensor was correct, or be de-
pressed, if the Abraham tensor was correct. By studying the beam profile as it emerged from
the cell, they were able to determine that the surface of the liquid was caused to bulge out-
wards and thus giving support to the Minkowski momentum, according to Burt and Peierls’
prediction. Also in their paper, Ashkin and Dziedzic commented that they were aware of
recent work by J.P. Gordon [37], at that time still unpublished, which showed that the re-
sult of their experiment did not invalidate the possibility of the Abraham tensor. Gordon
modeled the material medium as a rarified gas of atoms and associated to it a mechanichal
momentum in addition to the Abraham momentum for light, and therefore being able to
describe the Ashkin and Dziedzic observed results also with the Abraham tensor for light.
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2.6. Abraham and Minkowski equivalence ideas

In 1966, two years before the experiment of James, Penfield and Haus [11, 12, 13] made
a big contribution in the understanding of the Abraham-Minkowski controversy which went
very unnoticed until the mid-seventies. These authors modeled the material medium as
an isotropic fluid and used the Lagrangian formalism and Hamilton’s principle in order
to derive an expression for the total energy-momentum of the closed system composed
by electromagnetic field and material medium. In this manner, they showed that both,
Minkowski and Abraham tensors, give incomplete descriptions of the total system if we use
them alone, but if we complement each one with the appropriate tensor for the material
medium, both give identical results. In other words, Penfield and Haus argued that only
the total energy-momentum tensor of the closed system has absolute physical meaning and
that the Minkowski, Abraham and other expressions for the electromagnetic field simply
correspond to different separations of the same total tensor into different subsystems. The
formalism of these authors also allowed to derive the correct energy-momentum balance
equations, from where the electromagnetic forces exerted by the field on the medium could
be obtained.
One year later, in 1967, de Groot and Suttorp [38]-[46] also recognized the important

role of the material energy-momentum tensor in the description of the electromagnetic field
in matter and that the conservation laws should only be applied to closed systems. These
authors determined the total energy-momentum tensor of the system from microscopical
considerations making statistical averages of the electromagnetic field in vacuum and its
interaction with electrons and nuclei which constitute the medium. As a result, de Groot
and Suttorp’s total tensor disagreed with the one of Penfield and Haus. This difference
does not bear directly upon the Abraham-Minkowski controversy, but does reflect different
overall assumptions about the behaviour of matter in the presence of an electromagnetic
wave, which have to be tested by experiment.
In 1975, Robinson [47] took the results of Penfield and Haus together with the ones of

de Groot and Suttorp, J.P. Gordon and others, and wrote a complete review of the most
important advances towards solving the controversy and stressed the importance of the
arguments of Penfield and Haus, which were not generally known until that time. Robinson
argued that in the past years the attention has been distracted from the significance of this
work by the numerous papers in which authors tried to describe particular situations with
ad-hoc arguments instead of engaging in the tedium of attempting an explicitly derived
solution. Additionally, Penfield and Haus did not present they results in a concise and
direct manner, but they wrote a book [13], where the conclusions relevant to this problem
only emerge gradually, and somewhat indistinctly, in the course of some 250 pages of closely
argued text, besides of using conventions and notations very unfamiliar to the general reader.
After Robinson’s paper, the ideas of Penfield and Haus were much more spread in the

scientific community and shortly appeared a large amount of publications which extended
their arguments to more general cases, for instance [48, 49, 50, 51, 52, 53, 54, 55, 56]. Partic-
ularly remarkable is the work of Mikura [48], who in 1976 also using a Lagrangian method,
calculated an explicit and completely covariant expression for the total energy-momentum
tensor assuming the electromagnetic field interacting with a non-viscous, compressible, non-
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dispersive, polarizable and magnetizable fluid. Israel [49] in 1977, analysed the experiments
[33, 34] of Walker et al. and proved that its results can be equally well described with
either Minkowski or Abraham tensors. Therefore, it is not necessary to assume the exis-
tence of the Abraham force and the experiment of Walker et al. (as well as the one from
Ashkin and Dziedzic), does not give any information to differentiate which of the tensor
alternatives is the “correct” one. In fact, if the original ideas of Penfield and Haus are right,
no experiment can show us the correct energy-momentum tensor for the field since we can
only measure the total energy-momentum, which enters in the balance equations. At the
end of his paper, Israel also emphasized that his success in casting Abraham’s formulation
into an unambiguous and simple form depended crucially on the simplifying assumptions he
made (existence of a well-defined rest frame, absence of internal spin, simple constitutive
relations), but the Minkowski formulation is independent of such details and its range of
validity correspondingly much wider. In chapter 6 we will return to this observation.
Meanwhile this theoretical discussion was taken place, the experimentalists did not waste

their time either. In 1978, Jones and Leslie [57] repeated the experiment of Jones and
Richards [30] of 1954, but this time they confirmed with a precision of 0.05%, that the
momentum associated with the radiation pressure of light inside a liquid increases directly
with the refraction index of the medium into which it passes. The great improvement of
precision also allowed them to discriminate substantially in favor of the phase velocity ratio
and against the group velocity ratio, even though we know that energy propagates with the
group one.
Later, in 1980, Gibson et al. [58] performed a new type of experiment in order to determine

the radiation pressure of light inside a material medium by measuring the photon drag effect.
This effect is characterized by the generation in a semiconductor of an electric field due to
the transfer of momentum from radiation to the electrons of the valence or conduction
bands of the material. By making photon drag effect measurements at sufficient long infra-
red wavelengths with samples of germanium and silicon, Gibson et al. concluded that the
Minkowski expression for the momentum of light correctly described their experimental
results. However, Brevik [59] in 1986, reanalysed the interpretation of this experiment
and as it is usual by now, he stated that the experimental results do not invalidate the
Abraham momentum for light. If one assigns to the light beam the Abraham momentum as
the “electromagnetic momentum” and additionally a “mechanical momentum” so that their
sum gives the Minkowski momentum, then the experimental results can also be interpreted
with the Abraham momentum. Of course, the Abraham momentum alone does not correctly
reproduce the results as Gibson et al. in [58] concluded.
Brevik, in his review of 1979 [19], predicted that the mechanical effect of light’s angular

momentum on a macroscopic body would be the same in a dielectric medium as in vacuum,
i.e. that the total angular momentum of a light beam inside a dielectric would be inde-
pendent on the refraction ondex of the medium n. No matter if we assign the Abraham
or the Minkowski momentum to the light beam, its total angular momentum would be the
same, contrary to the case of linear momentum, where both momenta definitions differ in
a factor n2. It was in 1994, when Kristensen and Woerdman [60] designed and experiment
to test Brevik’s prediction. It is surprising that in the whole literature about the Abraham-
Minkowski controversy, this experiment is the only performed experiment which measures
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light’s angular momentum inside a medium. Basically, they placed a dipole antenna within
two circular waveguides, one filled with a dielectric liquid and the other empty. By emitting
microwaves in the TE11 mode, their antenna was able to measure the total angular momen-
tum of the electromagnetic radiation, obtaining the same results with and without the liquid
and thus confirming Brevik’s prediction within four standard deviations.

2.7. Revival of the discussion

As we have seen, the Abraham-Minkowski controversy has been advancing historically,
but not free of confusion and contradictory arguments. Despite some authors believed that
the fundamentals of Abraham-Minkowski controversy was already solved since the 1980s,
in the past 10 years, the discussion of the momentum of light inside media has become
relevant again. However, the revival of the controversy was not oriented to obtain important
experimental confirmations or theoretical extensions of the formal solution already discussed,
but there have been a large number of more practical and “optical oriented” works of Loudon,
Barnett and collaborators [61, 62, 63, 64, 65, 66, 67, 68], Mansuripur [69, 70, 71, 72] and
others [73, 74, 75] who seem to be completely unaware of the previous resolution of the
controversy and continue trying to demonstrate which of the two tensors is the correct one.
In fact, have not found any work in the literature where the ideas of Penfield and Haus
are criticized. If we look at the references of all the latter papers, they do not cite any
theoretical work of Penfield and Haus, de Groot and Suttorp, Israel, Mikura, etc. At most
they cite the paper review of Brevik from 1979 [19] or the one of J.P. Gordon [37], so they
are trying to find a completely disconnected solution of the controversy in a manner much
more restrictive, in our opinion, than the one of Penfield and Haus.
This new approach is based on the assumption of the force density exerted by the field on

the bound charges and currents of the medium, avoiding the use of any a priori expression
for light’s momenta. For instance, in [61, 63, 65, 66], Loudon and Barnett directly calculate
the radiation pressure exerted by light, finding that the Abraham and Minkowski momenta
correctly describe different situations. The ambiguity here lies in the choice of the expression
for the force density. Loudon and Barnett use the usual Lorentz force density, but one could
in principle choose different models to describe the medium, for instance, a medium formed
by little dipoles or by individual charges, etc. Loudon and Barnett analyse the different force
choices concluding that in most cases they give identical results, but not always. Additionally,
Mansuripur in [69, 70, 71, 72] also applies a similar approach, but he uses a modified definition
of the force density, sometimes obtaining different results as Loudon and Barnett.
In 2003, Padgett, Loudon and Barnett [62], considered a “rotational” version of the dielec-

tric Einstein box thought experiment, i.e. a short pulse of light carrying angular momentum
propagating through a transparent disc. According to their calculations, the authors claimed
that the disc will or not rotate, depending if the momentum of light is given by the Abraham
or Minkowski momentum. By suggesting that the disc will rotate, they gave support to the
Abraham momentum.
In 2005, Loudon, Baxter and Barnett in [64], applied their Lorentz force approach to

analyse the radiation pressure in the photon drag effect experiment and they agreed with
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experimental results of Gibson et al. in [58] in that the momentum transfer to the charge
carriers alone is given by the Minkowski value. However, when the pulse is much shorter than
the sample thickness, they reported that there must be a clear separation in time between
surface and bulk contributions to the forces, being the total bulk momentum transfer (charges
plus host) given by the Abraham expression.
Also starting from the Lorentz force, Hinds and Barnett [68] in 2009, studied the inter-

action between a plane wave and a unique atom with dielectric dipole moment. For this
particular example, the authors found a relation between the Abraham and Minkowski ex-
pressions for the momentum of light, which allowed them to interpret the Abraham momen-
tum as the “kinetic momentum” of the field and the Minkowski momentum as the “canonical
momentum” of the field.
Particularly interesting and different from the works of Loudon, Barnett and collaborators

is the work of Garrison and Chiao [76] of 2004, who assumed an isotropic, homogeneous and
weakly dispersive medium at rest, and quantized the electromagnetic field inside it. They
calculated three different linear momentum operators inside the medium. First, the canonical
momentum density which is the generator of translations within the medium and corresponds
to the total momentum operator of the system, including field and medium. Then they
computed the Abraham and Minkowski momentum operators for the electromagnetic field
which, as we know, are only one part of the total momentum of the system. Additionally,
Garrison and Chiao took the experimental data of the experiment of Jones and Leslie [57]
and compared them with the three operators expressions already derived. The authors
concluded that the canonical momentum (total momentum inside matter) was the one which
best fitted the experimental data, even better than Minkowski’s tensor as claimed by Jones
and Leslie in their experiment. The authors final conclusion was that the results obtained
are consistent with assigning to each dressed photon inside the medium (photon coupled with
matter), a unity ~k of canonical momentum, but they argued that Abraham momentum is
still necessary to describe cases when the center of mass of the medium is accelerating (they
could not quantize the field for an accelerating medium).
In the recent literature one can also find some new performed experiments. For instance,

in 2005 Campbell et al. [77], illuminated a Bose-Einstein condensate in order to infer the
momentum of light inside this dispersive medium. The method was based on using interfero-
metric techniques to measure the systematic shift of the recoil frequency of the atoms within
the dilute gas, after they had absorbed a photon. The results showed that the recoil momen-
tum of atoms caused by the absorption of a photon is n~k, where n is the index of refraction
of the gas and k the vacuum wave vector of the photon. Therefore, this experiment gave
evidence in favor of the Minkowski tensor, in accordance with the first thought experiment
presented in this chapter 2.1. Maybe the canonical expression of Garrison and Chiao can
also better describe this results than the Minkowski momentum, but this is not reported in
the literature. One year later, as a response to this experimental paper, Leonhardt [74] in
2006 studied in more detail the balance equations for energy and momentum within what
he called a “quantum dielectric”, such as the Bose-Einstein condensate considered in [77].
Leonhardt realized that the total momentum of the system can be expressed either using the
Abraham or the Minkowski momentum for the field, but with different interpretations and
he claimed that the variations of the Minkowski momentum are imprinted onto the phase of
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the condensate, whereas the Abraham tensor drives the flow of the dielectric medium.
In contrast to all the current works already discussed so far in this section, there are also

current authors who believe in the original ideas of Penfield and Haus, and try to bring
them again into the discussion. The review paper of Pfeifer et al. [18] of 2007 is particularly
strong in this, where the authors, besides reviewing in detail the historical evolution of the
controversy, stress the fact that the problem was solved in a formal manner in the mid-
seventies. Pfeifer et al. could not understand why this new authors seem to be unaware of
the resolution and continue giving arguments in favor of one or another momentum version.
In another publication of the same authors [78] of 2009, they analyse the limitations of
describing a system only with the Minkowski momentum, neglecting its material part. By
comparing this tensor with the total tensor and the Abraham tensor alone, the authors
gave an intuitive idea to explain why experiments with the medium fixed are usually well
described only by Minkowski’s momentum and experiments where the motion of the medium
is important are better described with Abraham’s one.
Other current authors who support ideas along these lines are Obukhov and Hehl. In

their paper of 2003 [79], these two authors proposed a different way to calculate the energy
and momentum transfer between the medium and the electromagnetic field. Since it is
unimportant which tensor is assigned to each subsystem, while keeping the total balance
equations unchanged, Obukhov and Hehl proposed to describe the electromagnetic field
with the same form of the symmetric tensor in vacuum, but this time inside matter. If one
explicitly calculate the energy-momentum balance equation for that tensor, one will see that
the interactions between field and matter can be described by the Lorentz force exerted on
the polarization and magnetization induced charges and currents of the medium. Finally,
by calculating the corresponding forces and torques, Obukhov and Hehl could reproduce
the results measured in the James experiment [32] of 1968 and also in the Walker et al.
experiment [33, 34] of 1975 and thus giving positive evidence for the ideas of Penfield and
Haus.
In 2007, Obukhov and Hehl [80] used a Lagrangian variational approach similar to Penfield

and Haus, but in a more modern form and notation, in order to derive an explicit expression
for the total energy-momentum tensor of an isotropic dielectric and magnetoelectric fluid
interacting with the electromagnetic field. The authors applied their results to the particular
case of the Jones et al. experiment [30, 57] and they successfully obtained the already
confirmed experimental results, i.e. that the radiation pressure of light inside the medium is
directly proportional to the index of refraction of the medium.
In 2008, Obukhov [10] published a very detailed review of the Abraham-Minkowski con-

troversy, making very detailed calculations, which we found very comprehensive and un-
derstandable. The author reproduce in a modern form the original variational Lagrangian
approach of Penfield and Haus and using this method, he was able to explicitly calculate the
Minkowski, Abraham and total tensors for an isotropic dielectric and diamagnetic medium,
but this time with much more details and including electro- and magnetostriction effects.
Finally, Obukhov found a relation between the Abraham and the Minkowski tensors valid in
isotropic media, which suggest that the Abraham tensor could be only useful in this partic-
ular case of media. In more complex media it will continue to be valid if we assign to it the
correct material part, but it could lose its practical applicability. This observation inspired
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us to study the conditions under which the Abraham tensor may be not so useful and finally
led to our publication and also to other preliminary work not presented in this thesis. We
will return to this issue in chapters 5 and 6.
At the end of 2008, She et al. [81] reported the most recent experiment performed about

the Abraham-Minkowski controversy. Basically, the experiment consisted in a sophistication
of the Ashkin and Dziedzic [36] experiment from 1973, replacing the water surface by a
nanometer silica filament (SF), fixed in one of its ends. She et al. let light travel in the SF
and then emerge into air or vacuum from its free end. They thought that the free end of the
SF will be pushed to move backward if Abraham momentum applies or be pulled forward
if Minkowski momentum applies, when light emerges from the free end in an analogous
way as the possibilities the Ashkin and Dziedzic experiment [36]. An image sequence with
the visual results of SF experiment is shown in figure 2.5. The authors reported a direct
observation of a push force on the end face of the SF exerted by the outgoing light and
thus finding evidence in favor of the Abraham momentum, according to their very idealized
considerations and calculations. As a response to this paper, Mansuripur and Zakharian [82,

Figure 2.5.: Image sequence obtained in the experiment of She et al., taken from their paper
in [81].

83] wrote a quick comment and then a detailed paper, strongly criticizing the interpretation
of the results in the experiment of She et al.. The authors stressed the weak points of the
analysis of She et al. and reanalysed the situation integrating the Lorentz force density
exerted by the light pulse in its entire path through the nanofilament. With their numerical
results, Mansuripur and Zakharian concluded that the net effect of a short pulse exiting
the nanofilament should be a pull force on the end face of the filament, instead as the
observed push of She et al. They explained the clear qualitative difference between their
theoretical predictions and the experiment results by stating that they did not consider the
possibility of mechanical momentum diffusion out of the filament, for instance in form of
acoustic waves, which need a much more complicated analysis. The authors concluded by
remarking that the idea of monitoring the mechanical response of a SF under the action
of a light pulse can provide very important information about light momentum transfer in
media, but more detailed theoretical analysis is needed and also more precise measurements
to conclude something with certainty. The discussion did not finish here, because Brevik
also criticized the experiment [84] and She et al. replied [85].
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Very recently, in 2010, Barnett and Loudon in [86, 87] claimed that they have solved the
Abraham-Minkowski controversy. This sounds strange, because according to Penfield, Haus
and others, the controversy was already solved a long time ago. They used their previous
results from the Lorentz force and the new observation in [68] to argue that the Abraham
and the Minkowski momenta are both correct. They identify the Abraham momentum
as the “kinetic” momentum of the electromagnetic field and use the Balazs idea as their
strongest argument to discard the Minkowski momentum in that situation. In other types
of experiments, where the medium is fixed and at rest, it is claimed that the Minkowski
momentum correctly describes the situation and therefore the authors identify it as the
“canonical” momentum of the field. So far the argument is very similar to the one of Penfield
and Haus, but the difference is that Loudon and Barnett affirmed that using the Abraham
or the Minkowski momenta is not a matter of choice, but that both can be measured in
mutually exclusive situations in a kind of “complementarity postulate”.
A couple of months later, in 2010, Mansuripur [88, 89] also claimed that he had solved the

controversy, but in a different manner as Loudon and Barnett. One difference is that the
author recognizes that the Einstein box argument does not uniquely determine the momen-
tum of the field, but despite that he insists that this is the strongest available argument for
the identification of light’s momentum inside media and therefore considers the definition
of the Abraham momentum for the field as an additional postulate of his theory. In [72]
Mansuripur explains his theory, where he also defines a modified version of the Lorentz force
and applies his postulates to solve different particular situations.
On the other hand, Saldanha in [17] also proposes his own resolution to the controversy.

This time the author recognizes that the controversy is already solved for a long time and that
all momenta definitions for the field are valid if we use the correct total balance equations,
but despite that he proposes a particular separation, different from Abraham and Minkowski,
which he argues to be more natural and convenient.
As we have seen, the Abraham-Minkowski controversy has been characterized by a large

degree of disagreement among the different authors. In fact, we are not overstating if we
say that each author has his own resolution. We hope that this thesis could contribute
to bring clarity to this confusing debate, since we think that the answer is simple: The
macroscopic Maxwell equations, the constitutive relations and the dynamical equations for
the medium is all what is needed to derive the total energy-momentum balance equations
of this coupled system and all the other choices are merely arbitrary and give equivalent
physical predictions. Therefore the main objective of our publication [16] is to present this
ideas in a more familiar manner and put the into the current discussion, so that authors
like Barnett, Loudon, Mansuripur, etc. can understand and consider them in their analysis.
Maybe this time we could find agreement between the different areas studying this problem.
Meanwhile the debate continues, see Brevik [90, 91].
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Chapter 3.

Covariant formulation of macroscopic
electrodynamics

“Antes las distancias eran mayores, porque el espacio se mide por el tiempo.”

Jorge Luis Borges,
escritor argentino.

In order to study in more depth the properties of the different energy-momentum tensors
postulated for the electromagnetic field inside matter, it will be useful to express the whole
theory of macroscopic electrodynamics in a manifestly covariant form, using the language
of Lorentz tensors in Minkowski spacetime. This formalism automatically guarantees rela-
tivistic covariance of the theory, which will supply us an adequate framework to describe the
electrodynamics of moving media in any inertial reference frame.
Additionally, the covariant formulation of electrodynamics will facilitate the application of

the Lagrangian-Noether formalism in chapters 4 and 5. Another advantage of the explicitly
covariant electrodynamics is that it allows a direct generalization to include gravitational
effects, described by a curved spacetime in the tensorial framework of General Relativity. We
will assume, however, that the gravitational effects are negligible throughout all the thesis
and hence only Special Relativity will be needed.
In section 3.4 of this chapter we derive the explicit expression for the constitutive relations

of an isotropic medium in motion. The expressions obtained will describe the electromag-
netic properties of the medium in any inertial reference frame and they will be of great
importance in order to consider the explicit expressions for the Abraham and Minkowski
energy-momentum tensors in chapters 5 and 6.

3.1. Macroscopic Maxwell equations

In this thesis we consider the propagation of light inside macroscopic material media. From
a classical point of view, light is an electromagnetic wave with wavelengths of the order ∼
10−7m and therefore it can macroscopically interact with continuum media without detecting
the atomistic nature of matter, which is important in scales of the order ∼ 10−10m. Material
media are characterized for having bound charges and currents, which internally redistribute
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under the action of a local electromagnetic field, for instance a light wave inside matter. As a
macroscopic effect, the material medium gets polarized and magnetized, creating an induced
electromagnetic field, which superposes with the electromagnetic field of light propagating
inside it.
The dynamics of the electromagnetic field inside such a continuous material medium is

described by the well-known macroscopic Maxwell equations, which in SI units, they are
given by

∇ ·D = ρext, (3.1)

∇ ·B = 0, (3.2)

∇×E = − ∂B

∂t
, (3.3)

∇×H = jext +
∂D

∂t
, (3.4)

where E is the electric field strength, B the magnetic field strength, D the electric excita-
tion and H the magnetic excitation. In the case that the medium is not macroscopically
neutral or if there are additional sources of free charges and currents moving in the material
medium, they are described by the external charge and current densities ρext and jext. If
the electromagnetic properties of the material medium are assumed to be fixed, without
dynamics, then the electromagnetic field inside matter described by (3.1)-(3.4) constitute an
open system, which interacts with the material medium and external charges and currents.
Maxwell equations (3.1)-(3.4) are 8 equations for 12 unknown fields, so more information is
needed to solve for the electromagnetic fields, given the sources. This extra information is
supplied by the so-called constitutive relations, which describe all the electromagnetic prop-
erties of a given medium and are represented in general as 2 functional vector equations of
D and H in terms of E and B:

D = D [E,B] , (3.5)

H = H [E,B] . (3.6)

Depending on the nature of the relations (3.5)-(3.6), the material medium can be (non)linear,
(non)dispersive, (non)dissipative, (an)isotropic, (in)homogeneous, dielectric, diamagnetic,
ferroelectric, ferromagnetic, magneto-electric, etc. All these cases can be phenomenologically
described by the constitutive relations.
The macroscopic Maxwell equations (given the sources ρext and jext), together with the

constitutive relations (given the medium properties) form a set of 14 equations for 12 un-
known fields and therefore the electromagnetic field inside matter can be solved: D, E, B
and H .
The conservation of electric charge is a fundamental fact of nature and therefore James

Clerk Maxwell himself modified the electromagnetic equations known at his time, so that
the electromagnetic theory (i.e. Maxwell equations) implies the local conservation of charge
in the form of a continuity equation,

∂ρext
∂t

+∇ · jext = 0. (3.7)
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The macroscopic response of the medium to the applied electromagnetic field is quantified
by its polarization P and its magnetizationM and, after solving for the electromagnetic field
inside the macroscopic medium, we can determine P and M , using the following relations:

P = D − ε0E, (3.8)

M =
1

µ0

B −H . (3.9)

The universal constants µ0 and ε0 in (3.8)-(3.9) are the vacuum permeability and per-
mittivity, respectively. In SI units, we have µ0 = 4π · 10−7(N/A2) and ε0 = 8, 854188 ·
10−12(A2s2/Nm2). The velocity of light in vacuum is related to these fundamental constants
by c := 1/

√
µ0ε0 and currently it is defined to be c := 2, 99792458·108(m/s). The rules to ex-

press all the electromagnetic quantities also in the gaussian system of units are summarized
in table D.1.
On the other hand, the connection of the theory of macroscopic electrodynamics to the

mechanics of charged bodies is established through the Lorentz force Fext. The total force
which the electromagnetic field inside matter exerts on any given external distribution of
charge and current inside a volume V is given by

Fext =

∫
V

fext d
3x, (3.10)

where fext is the Lorentz force density, defined as

fext := ρextE + jext ×B. (3.11)

We can also compute the total power of work which the electromagnetic field transfers to
the external currents via the Lorentz force (3.10). The magnetic field B does no work
since the magnetic contribution of the Lorentz force is perpendicular to the current density
jext := ρextv at each point and hence to the velocity field v. Using the standard definition
of power of work density Pext, which is valid inside any volume element of the distribution,
we have

Pext := fext · v (3.12)

= jext ·E. (3.13)

Then, if we sum over all the volume occupied by the distribution of charge and current, we
obtain the total power of work done by the electromagnetic field on the external currents∫
V
jext ·E d3x.
If we inspect Maxwell’s equations (3.2) and (3.3), we see that they are homogeneous

and do not depend on any given sources, so that they relate different components of the
macroscopic electromagnetic field. In fact, these 2 equations can always be solved identically
if we introduce the electromagnetic scalar and vector potentials φ and A as

E =: −∇φ− ∂A

∂t
, (3.14)

B =: ∇×A. (3.15)
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Therefore, instead of using E and B we can solve for the potentials φ and A, which reduces
in two the components of independent fields. However, the fields which appear directly in
the Lorentz force density (3.11) and hence which can be directly measured are E and B.
Because of the definitions (3.14)-(3.15), there exists a freedom for determining the potentials,
given E and B, which is called a gauge transformation:

φ′ = φ− ∂ξ

∂t
, (3.16)

A′ = A+∇ξ, (3.17)

where ξ = ξ(x, t) is any well-behaved function of position and time. From (3.16)-(3.17)
we can arbitrarily choose any set of fields φ and A satisfying (3.14)-(3.15), in order to do
a specific calculation and the results will be independent of that choice, i.e. the gauge
invariance is a symmetry intrinsically present in the theory of electrodynamics.

3.2. Four-dimensional representation of electrodynamics

Now we will exploit another symmetry intrinsically present in the theory of macroscopic
electrodynamics, which is the Lorentz covariance. The Lorentz transformations are all linear
transformations which keep invariant the interval ds2, defined by

ds2 := c2dt2 − dx2. (3.18)

Even though ds2 is not always positive, we can imagine that it represent a special kind of
“line element” in a four-dimensional spacetime. Let us denote the coordinates of any event
in this 4-D spacetime by

xµ := (ct,x), (3.19)

where t and x are the usual time and space coordinates in the euclidean 3-D space. Greek
indices label the spacetime components of Lorentz tensors by µ, ν, ρ, ... = 0, 1, 2, 3 and carte-
sian 3-D components of objects are denoted by latin indices i, j, k, ... = 1, 2, 3, so that the
spatial components of the 4-vector xµ are xi and its temporal component is x0 = ct.
Using the definition (3.19), we can express ds2 in (3.18) as

ds2 = ηµνdx
µdxν , (3.20)

where ηµν is a second rank Lorentz tensor known as the Minkowski metric of the spacetime,
whose components are given by

ηµν := diag(1,−1,−1,−1). (3.21)

The metric tensor ηµν describes the local geometry of the four-dimensional spacetime, which
is therefore known to have “Minkowskian geometry”.
Explicitly, a Lorentz transformation can be expressed as,

x′µ = Λµ
νx

ν , (3.22)
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where the coefficients Λµ
ν must satisfy the condition,

ηµν = Λρ
µΛ

σ
νηρσ. (3.23)

The transformation (3.22), together with the condition (3.23), can be geometrically inter-
preted as a kind of “rotation” of a coordinate system in the four-dimensional Minkowski
spacetime, which can be decomposed in boosts (the relativistic transformation between in-
ertial frames), 3-D spatial rotations of the coordinate axes, temporal and space inversions.
Returning to the macroscopic electromagnetic theory, we can use the 3D indicial notation

to write the Maxwell equations (3.1)-(3.4), the definitions of the potentials (3.14)-(3.15),
the gauge transformation (3.16)-(3.17), the continuity equation (3.7), the Lorentz force den-
sity (3.11) and the power density of electromagnetic work (3.13), in terms of the cartesian
components of the fields, by

∂iD
i = ρext, (3.24)

∂iB
i = 0, (3.25)

εijk∂jEk = − ∂Bi

∂t
, (3.26)

εijk∂jHk = jiext +
∂Di

∂t
, (3.27)

Ei = − ∂iφ− ∂Ai

∂t
, (3.28)

Bi = εijk∂jAk, (3.29)

φ′ = φ− ∂ξ

∂t
, (3.30)

A′
i = Ai + ∂iξ, (3.31)

∂ρext
∂t

+ ∂ij
i
ext = 0, (3.32)

wext = jiextEi, (3.33)

f ext
i = ρextEi + ε̂ijkj

j
extB

k, (3.34)

where the 3-D Levi-Civita pseudo-tensor is defined such that

ε123 := ε̂123 := 1. (3.35)

Notice that the cartesian components of D, B and jext are denoted by contravariant vector
components Di, Bi and jiext, whereas the cartesian components of E, H , A, fext and ∇ are
denoted by covariant vector components Ei, Hi, Ai, f

ext
i and ∂i. Lorentz scalars are formed

by contractions of contravariant with covariant objects and therefore these definitions are
useful in order to better find the manifestly covariant form of Maxwell’s equations.
It is an experimental fact that electric charge is locally conserved in all inertial reference

frames. This is incorporated in the theory by assuming that the external charge and current
densities are components of a 4-vector called the 4-current density Jµ

ext in the form,

Jµ
ext := (cρext, j

i
ext), (3.36)
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so that the continuity equation (3.32) can be cast in the Lorentz-covariant form,

∂µJ
µ
ext = 0. (3.37)

The electric and magnetic excitations Di and Hi form a second rank antisymmetric tensor,
called the excitation tensor Hµν , whose components are identified as

H i0 := cDi, H ij := −εijkHk, (3.38)

or in matrix form by,

Hµν =


0 −cD1 −cD2 −cD3

cD1 0 −H3 H2

cD2 H3 0 −H1

cD3 −H2 H1 0

 = −Hνµ. (3.39)

Then, the inhomogeneous Maxwell equations (3.1) and (3.4) can be very simply written
in a fully relativistically covariant form as,

∂µH
µν = Jν

ext, (3.40)

where ∂µ := (c−1∂/∂t, ∂i) is the 4-D gradient operator. By taking the 4-divergence of (3.40),
one can directly check that the Maxwell equations imply (3.37).
In the same spirit, we can assume that the scalar and vector potentials are the components

of the electromagnetic 4-potential Aµ defined by,

Aµ :=

(
1

c
φ,−Ai

)
, (3.41)

then, to express the relations between Ei, B
i and φ,Ai in (3.28)-(3.29), we define another

second rank antisymmetric tensor Fµν , called the electromagnetic strength tensor, as

Fµν := ∂µAν − ∂νAµ, (3.42)

whose components explicitly read,

Fi0 := −1

c
Ei, Fij := −ε̂ijkB

k, (3.43)

Fµν =


0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

 = −Fνµ. (3.44)

With the definition of Fµν , the homogeneous Maxwell equations can be cast in the following
covariant form,

∂µFνλ + ∂νFλµ + ∂λFµν = 0, (3.45)
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which is identically satisfied by replacing the definition (3.42) into it. Furthermore, the gauge
transformation (3.30)-(3.31) can be covariantly expressed as

A′
µ = Aµ − ∂µξ. (3.46)

The Lorentz force density fi and the power density of work wext are components of a more
general object called the Lorentz 4-force density F ext

µ , written in terms of Fµν and Jµ
ext as,

F ext
µ := FµνJ

ν
ext. (3.47)

Explicitly, we have the identification F ext
µ := (Pext/c,−f ext

i ), where Pext is the power density
of the work done by the electromagnetic field on the external currents (3.33) and f ext

i , is
the Lorentz force density exerted by the electromagnetic field on the charges and currents
(3.34).

3.3. Covariant constitutive relations for linear and
non-dispersive media

In the covariant expressions of section 3.2, we have not used the spacetime metric ηµν
explicitly, but now since we have to deal with the covariant formulation of the constitutive
relations of the medium, i.e. equations which relate, for example, Di with Ei or Hi with Bi,
for a given type of medium, the metric will play a fundamental role.
Using the metric we can write the definitions (3.8)-(3.9) in indicial notation as,

Di = ε0(−ηijEj) + P i, (3.48)

Hi =
1

µ0

(−ηijB
j)−Mi, (3.49)

and recalling the definitions of Hµν and Fµν in (3.39) and (3.44), we can express (3.48) and
(3.49) in covariant form:

Hµν =
1

µ0

ηµρηνσFρσ +Mµν . (3.50)

Here, Mµν is the “magnetopolarization” tensor, which covariantly describes the polarization
P i and magnetization Mi of any medium and whose components are,

M i0 = cP i, M ij = εijkMk, (3.51)

Mµν =


0 −cP 1 −cP 2 −cP 3

cP 1 0 M3 −M2

cP 2 −M3 0 M1

cP 3 M2 −M1 0

 = −M νµ. (3.52)
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With the help of Mµν , we can express in a covariant form the induced bound charges and
currents due to the polarization and magnetization Jν

ind := (cρind, j
i
ind), by

Jν
ind := −∂µM

µν , (3.53)

where the induced charge and current densities are given as usual,

ρind := − ∂iP
i, (3.54)

jiind :=
∂P i

∂t
+ εijk∂jMk. (3.55)

In the particular case of vacuum, we obviously have Mµν = 0 in (3.50) and the covariant
constitutive relations for this case turn out to be,

Hµν =
1

µ0

ηµρηνσFρσ (3.56)

=
1

2
χµνρσ
(vac)Fρσ, (3.57)

where χµνρσ
(vac) is a fourth rank tensor known as the constitutive tensor of vacuum and is

explicitly defined as,

χµνρσ
(vac) :=

1

µ0

(ηµρηνσ − ηµσηνρ). (3.58)

The relation (3.50) can be cast in a more compact form, if to define a contravariant
electromagnetic strength tensor F µν by “raising” the indices of Fµν with the metric:

F µν := ηµρηνσFρσ, (3.59)

and therefore we have,

Hµν =
1

µ0

F µν +Mµν . (3.60)

The constitutive relations as expressed in (3.5)-(3.6) can phenomenologically describe the
electrodynamics within any kind of material medium, if we add enough material functions
and constants. However, to have an explicit and close form to deal with the constitutive
relations in covariant formulation, we will restrict our analysis only to linear and non-
dispersive media. Linear in the sense that the response of the medium, through P i and
Mi, depends only linearly on the electromagnetic field Ei and Bi, and non-dispersive in the
sense that the electromagnetic properties of the medium do not depend on the frequency of
the incident light which propagates through the medium. For instance, we will not be able
to describe the dispersion of white light that passes through a prism or the optics of some
non-linear crystals, but most of the usual cases will be included in the theory.
The most general form of the constitutive relations for this kind of medium can be covari-

antly written as,

Hµν =
1

2
χµνρσFρσ, (3.61)

30



Chapter 3. Covariant formulation of macroscopic electrodynamics

where χµνρσ is a fourth rank tensor known as the constitutive tensor, which describes the
electromagnetic properties of a particular medium. Comparing the expressions (3.57) and
(3.61), we see that χµνρσ

(vac) in (3.58) is a particular case, for vacuum, of the general relation

(3.61). Since Hµν and Fµν in (3.61) are both antisymmetric, χµνρσ must be, by definition,
also antisymmetric in the two first and the two last indices, i.e.

χµνρσ = − χνµρσ, (3.62)

χµνρσ = − χµνσρ. (3.63)

Taking into account these symmetries of χµνρσ, we conclude that it has 36 independent
components in general. Additionally, if the medium is non-dissipative, i.e. if the total energy
and momentum of the electromagnetic field, the material medium, the external charges and
currents is not transformed in other types of energy and momentum (for instance, heat),
then the constitutive tensor χµνρσ must satisfy an extra symmetry:

χµνρσ = χρσµν , (3.64)

which reduces its independent components to 21.
If we decompose equation (3.61) in temporal and spatial components, we can identify the

components of χµνρσ in a more familiar way by the following cartesian components:

Di = ε0ε
ijEj + βi

jB
j, (3.65)

Hi = αi
jEj + µ−1

0 (µ−1)ijB
j, (3.66)

where,

εij := µ0χ
0ij0, (3.67)

(µ−1)ij :=
1

4
µ0εilkεjmqχ

lkmq, (3.68)

αi
j :=

1

2c
εilkχ

lk0j, (3.69)

βi
j := − 1

2c
εjlkχ

0ilk, (3.70)

and inversely,

χ0ij0 =
1

µ0

εij, (3.71)

χklmq =
1

µ0

εkliεmqj(µ−1)ij, (3.72)

χjk0i = − c εljkαl
i, (3.73)

χ0ijk = c εljkβi
l. (3.74)

The tensor εij is known as the relative permittivity or the dielectric tensor of the medium,
(µ−1)ij is the inverse relative permeability tensor and αi

j, βi
j are the linear magneto-electric

coupling coefficients. The quantities εij and (µ−1)ij are dimensionless, whereas αi
j and βi

j
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have dimensions of [ε
1/2
0 µ

−1/2
0 ]. Since the relations (3.67)-(3.70) and (3.71)-(3.74) are one-

on-one, it is clear that each of these 4 tensors have 9 independent components in general.
In the special case of a non-dissipative medium, the extra symmetry (3.64) implies that

εij and (µ−1)ij must be symmetric,

εij = εji, (3.75)

(µ−1)ij = (µ−1)ji, (3.76)

and that αi
j is the negative transpose of βi

j:

αi
j = −βj

i. (3.77)

3.4. Isotropic medium

Since we already presented all the basic tools to work with constitutive tensors, we will
now apply the formalism to find an explicit expression for the special case of an isotropic
medium, whose optical properties are just described by the refraction index n.
We know that for the usual linear, non-dispersive, non-dissipative, non-magneto-electric

and isotropic medium at rest, the constitutive relations are given by,

D = ε0εE, (3.78)

H =
1

µ0µ
B, (3.79)

where ε = ε(x, t) is relative permittivity function and µ = µ(x, t) is the relative permeability
function of the medium. The refraction index is a dimensionless quantity defined as

n :=
√
µε. (3.80)

Writing (3.78)-(3.79) in indicial notation, we have

Di = −ε0εη
ijEj, Hi = − 1

µ0µ
ηijB

j, (3.81)

and comparing them with (3.65)-(3.66), we see that the tensors εij(0) and (µ−1)
(0)
ij , in the

frame where the medium is at rest, read

εij(0) = −εηij, (µ−1)
(0)
ij = − 1

µ
ηij, αi

j
(0) = −βj(0)

i = 0. (3.82)

Finally, if we replace (3.82) in the inverse identifications (3.71)-(3.74), we find that the
components of constitutive tensor of this isotropic medium in its comoving frame, are given
by

χ0ij0
iso(0) = − ε

µ0

ηij = − 1

µ0µ
n2ηij, (3.83)

χ0ijk
iso(0) = 0, (3.84)

χijkl
iso(0) =

1

µ0µ
(ηikηjl − ηilηjk). (3.85)
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As it is expected, if we evaluate the expressions (3.83)-(3.85) for ε = µ = n = 1, we obtain
the same components of the constitutive tensor for vacuum given in (3.58) in terms of the
spacetime metric ηµν . Therefore, if we define a new diagonal second-rank tensor γµν

(0) as a
generalization of ηµν for n 6= 1 in the form:

γµν
(0) := diag(n2,−1,−1,−1), (3.86)

then we can express all the components of χµνρσ
iso(0) analogously as in (3.58) by

χµνρσ
iso(0) :=

1

µ0µ
(γµρ

(0)γ
νσ
(0) − γµσ

(0)γ
νρ
(0)). (3.87)

Since χµνρσ
iso(0) is a fourth rank tensor, we can apply a general boost Λµ

ν to it in order to

obtain an expression for χµνρσ
iso valid in a general inertial reference frame where a given volume

element of the isotropic medium is moving with an arbitrary velocity field v(x, t). In this
manner, we explicitly obtain

χµνρσ
iso = Λµ

αΛ
ν
βΛ

ρ
γΛ

σ
δχ

αβγδ
iso(0), (3.88)

which is the same as,

χµνρσ
iso =

1

µ0µ
(γµργνσ − γµσγνρ), (3.89)

where γµν = Λµ
αΛ

ν
βγ

αβ
(0) and the coefficients of the boost are given by,

Λµ
ν =

(
γ −γβi

γβi δij − (γ−1)
β2 βiβj

)
, (3.90)

with γ := (1− β2)−1/2, β2 := −βiβi and βi := vi/c. Finally, computing explicitly the boost,
we obtain the covariant expression for γµν :

γµν = ηµν +
(n2 − 1)

c2
uµuν , (3.91)

where uµ := (γc, γv) is the 4-velocity field of the moving isotropic medium. The result (3.91)
is known in the literature as the Gordon optical metric and it was first found by W. Gordon
in 1923 [25].
If we replace (3.91) in (3.89), we can also obtain an explicit expression for the constitutive

tensor χµνρσ
iso just in terms of the material variables of the isotropic medium: uµ, µ and

n2 = εµ,

χµνρσ
iso =

1

µ0µ
(ηµρηνσ − ηµσηνρ) +

(n2 − 1)

µ0µc2
(ηµρuνuσ − ηµσuνuρ + ηνσuµuρ − ηνρuµuσ) .

(3.92)
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3.5. Dispersion relation and polarization condition for light
in isotropic media

By studying the propagation of electromagnetic waves inside the isotropic medium, we
will understand why γµν in (3.91) is interpreted as an “optical metric”. In appendix A we
derive the polarization condition (A.6) for electromagnetic waves inside linear, non-dispersive
and homogeneous media, which reads

χµνρσkνkρÃσ = 0. (3.93)

Given any constitutive tensor χµνρσ, the wave vector kµ and the wave amplitude Ãµ should
always satisfy the condition (3.93) in order that the macroscopic Maxwell equations inside
this type of media admit plane-wave solutions of the form

Aσ = Ãσe
ikλx

λ

. (3.94)

If we replace the explicit expression for the constitutive tensor of an isotropic medium (3.89)
in (3.93), we obtain,

γµνkµkσÃν − (γµνkµkν)Ãσ = 0. (3.95)

To solve (3.95), we need in principle to impose that the determinant of γµσkµkλ−γµνkµkνδ
σ
λ

be equal to zero, which is simpler to compute if we choose an appropriate gauge. Alterna-
tively, without imposing a gauge explicitly, we notice that if the scalar γµνkµkν 6= 0, then
from (3.95) we can solve for Ãλ and obtain that for this case the solution must be proportional
to kλ:

Ãλ =

[
γρσkρÃσ

γµνkµkν

]
kλ. (3.96)

Then, if we replace (3.94) and (3.96) into the definition (3.42), we clearly see that Fµν

vanishes, for all values of Ãσ:

Fµν = i
(
kµÃν − kνÃµ

)
ekλx

λ

(3.97)

= i

[
γρσkρÃσ

γαβkαkβ

]
(kµkν − kνkµ) e

kλx
λ

(3.98)

= 0, (3.99)

Therefore, if γµνkµkν 6= 0, we obtain a “pure gauge” solution. In order to have non-zero
solutions for the electromagnetic field Fµν , we conclude it is necessary that

γµνkµkν = 0, (3.100)

and considering this in (3.95), we get a simplified condition for the plane wave,

γµνkµÃν = 0, (3.101)

34



Chapter 3. Covariant formulation of macroscopic electrodynamics

which is gauge-independent given any allowed kµ satisfying (3.100). The equation (3.100)
defines a dispersion relation for the electromagnetic waves within this isotropic medium
described by γµν in any reference frame. For an explicit calculation of the dispersion relation
(3.100), see appendix A.2.1. In the particular case of vacuum, we know that the dispersion
relation is obviously,

ω2 = c2k2, (3.102)

which, using the definition kµ := (ω/c,−ki) and the metric ηµν , can be rewritten by,

ηµνkµkν = 0. (3.103)

Since (3.103) is a scalar equation, we conclude that the dispersion relation (3.102) is valid
in all inertial reference frames and therefore the electromagnetic waves in vacuum travel at
speed c, independent of the observer, which is, of course, consistent with the principles of
Special Relativity. If we compare (3.103) with (3.100), we see that the Gordon “optical
metric” γµν plays the role of the spacetime metric ηµν for isotropic media with n 6= 1 in any
state of motion.
Equation (3.101) defines a polarization condition for the plane wave in the medium, which

restricts the possible values of Ãµ, given kµ and γµν . Let us also recall that using the gauge
transformation (3.46) we can change Ãµ to

Ã′
µ = Ãµ − ikµh, (3.104)

where h is an arbitrary constant, which together with (3.101), reduce the number of non-
trivial independent components of Aµ and Ãµ from four to two. As a result, the electromag-
netic wave in the medium has two independent polarization states.
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Chapter 4.

Balance equations, electromagnetic
conserved quantities and medium
symmetries

“Happiness is not a matter of intensity,
but of balance, order, rhythm and harmony.”

Thomas Merton,
Anglo-American Trappist monk.

Other important quantities for the description of the electromagnetic field interacting
with matter are the energy, momentum and angular momentum, as well as their respective
balance or conservation equations. These equations describe how the energy, momentum
and angular momentum of the electromagnetic field is transferred to the material medium
and the external charges and currents, information which is very useful in order to gain
more physical insight about the dynamics of the system and to describe different stages in
its temporal evolution, without necessarily calculating the details of the interactions (i.e.
computing the fields, the forces, the boundary conditions, etc.).
In this chapter we will consider the system composed by the electromagnetic field in mat-

ter as an open system, because only the electromagnetic field is assumed to have dynamics
via the macroscopic Maxwell equations. The material medium is considered as a fixed back-
ground without dynamics, whose properties are specified by the non-dynamical constitutive
relations, i.e. they are given functions of position and time. Physically this can be done by
having an external agent that keeps the medium in its state of motion, for instance, a crystal
fixed to an optical table by mechanical supports.
We will see that there are certain conditions, related to the symmetries of the fixed

medium, in which the balance equations lead to electromagnetic conserved quantities, which
will help us to better interpret the balance equations and the dynamics of light in matter,
as well as to understand and solve various problems in a much easier way.
In section 4.3 we apply the Lagrange-Noether formalism to this open system, using the

general results of appendix C. In fact, we will rederive the balance equations obtained directly
from Maxwell’s equations, but this formalism will provide us further ideas regarding the con-
troversial asymmetry of the Minkowski tensor and the relationship between the symmetries
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of the medium, the Minkowski electromagnetic conserved quantities, and the interactions
between field and matter.

4.1. Energy-momentum balance equation

In the covariant language of Special Relativity, the energy and momentum densities of the
electromagnetic field, as well as their fluxes, are components of a more general object called
the energy-momentum tensor, which we will study in detail in subsection 4.1.3. Therefore we
will not derive separate balance equations for energy and momentum, but they will appear
as different components of a general energy-momentum balance equation. It is important to
remark that this balance equation is a direct consequence of the Maxwell equations for the
electromagnetic field (3.40) and (3.45), together with the definition of the Lorentz 4-force
density (3.47) and not an additional assumption of the electromagnetic theory.

4.1.1. Derivation from Maxwell’s equations

In order to derive the energy-momentum balance equation, we start from the Lorentz
4-force density:

F ext
µ := FµνJ

ν
ext (4.1)

=

(
1

c
Pext,−f ext

i

)
(4.2)

=

(
1

c
jiextEi,−ρextEi − ε̂ijkj

j
extB

k

)
, (4.3)

which describes, in a covariant way, the rate of energy and momentum transfer from the
electromagnetic field to the external charges and currents inside an infinitesimal volume
element dV . According to Maxwell’s equations, this conversion of energy and momentum
from electromagnetic into mechanical must be balanced by a corresponding rate of decrease
of energy and momentum in the electromagnetic field within the volume element dV . To
exhibit this conservation law explicitly (in differential form), we take (4.1) and insert (3.40)
into it in order to eliminate the external current density:

F ext
µ = Fµν(∂λH

λν). (4.4)

Then, if we complete the total derivative in (4.4) and use the fact that Hµν and Fµν are
anti-symmetric, we obtain

F ext
µ = ∂λ(FµνH

λν)− 1

2
Hλν(∂λFµν)−

1

2
Hνλ(∂λFνµ). (4.5)

Now we can relabel the indices ν ↔ λ in the last term of (4.5), use the homogeneous Maxwell
equations (3.45), and write

F ext
µ = ∂λ(FµνH

λν)− 1

4
Hνλ(∂µFνλ)−

1

4
Hνλ(∂µFνλ). (4.6)
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If we complete the total derivative in the second term of the right hand side of (4.6), we
obtain

F ext
µ = ∂λ(H

λνFµν)−
1

4
∂µ(FνλH

νλ) +
1

4
Fνλ(∂µH

νλ)− 1

4
(∂µFνλ)H

νλ, (4.7)

and rearranging terms, the energy-momentum balance equation can be finally written as

∂λ

[
FµνH

νλ +
1

4
δλµFνρH

νρ

]
+

1

4

[
(∂µFνλ)H

νλ − Fνλ(∂µH
νλ)
]
+ F ext

µ = 0, (4.8)

or, in a more compact form,

∂νΘµ
ν + F eff

µ + F ext
µ = 0, (4.9)

where

F eff
µ :=

1

4

[
(∂µFνλ)H

νλ − Fνλ(∂µH
νλ)
]
, (4.10)

and

Θµ
ν := FµρH

ρν +
1

4
δνµFρσH

ρσ. (4.11)

4.1.2. Effective material 4-force density

Since F ext
µ = (Pext/c,−f ext

i ) is the 4-force density exerted by the electromagnetic field
on the external charges and currents, then F eff

µ can consistently be interpreted as another
4-force density,

F eff
µ :=

(
1

c
Peff ,−f eff

i

)
, (4.12)

which the electromagnetic field exerts on the bound charges and currents of the material
medium. We will call F eff

µ the effective material 4-force density and, as we go along the text,
we will discuss its properties and its interpretation will become clearer. Notice, however,
that F eff

µ defined in (4.10) is not the same as the Lorentz 4-force density exerted by the
electromagnetic field on the induced charges and currents of the medium Jµ

ind, defined in
(3.53). In fact, both 4-force densities differ in a 4-divergence term:

F eff
µ = FµνJ

ν
ind − ∂ν

(
FµρM

ρν +
1

4
δνµFρσM

ρσ

)
. (4.13)

We can use (3.60) in (4.10) to express F eff
µ in terms of Mµν and Fµν as

F eff
µ =

1

4

[
(∂µFνλ)M

νλ − Fνλ(∂µM
νλ)
]
. (4.14)

When light is propagating in vacuum, there is no medium that can be polarized or magnetized
by the electromagnetic wave and therefore we obviously have Mµν = 0. As a consequence,
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F eff
µ in (4.14) will be identically zero for all values of Fµν . This is consistent with our physical

interpretation of F eff
µ as a “material” 4-force density, because it can only be different from

zero when there is a material medium to interact with the electromagnetic field Fµν .
There are also cases, however, in which F eff

µ can vanish, in spite of the interaction between
light and matter and this is the reason why we interpret F eff

µ as an “effective” material 4-force
density. To see this explicitly, we replace (3.61) into (4.10) and we find another expression
for F eff

µ which has the advantage that the whole material medium contribution is described
by the constitutive tensor χµνρσ, whereas the electromagnetic field contribution is described
Fµν :

F eff
µ = −1

8

[
(∂µχ

αβγδ)FαβFγδ + (χαβγδ − χγδαβ)Fαβ(∂µFγδ)
]
. (4.15)

Since the first term in (4.15) is proportional to the derivative of the constitutive tensor it is
related to the inhomogeneities of the material medium, whereas the second term is related
with the dissipation properties of the medium. For any given Fµν field, the first term in
(4.15) can only be different from zero when the electromagnetic properties of the medium
are inhomogeneous in space (∂iχ

αβγδ 6= 0) and/or in time (∂χαβγδ/∂t 6= 0). We interpret
this term as an “effective” interaction between field and matter, since light propagating
through an homogeneous region of the medium will not exert any “effective” force on it even
though both are interacting (the medium is changing its polarization and magnetization,
while light changes its electric and magnetic fields). For instance, when light encounters
itself with an interface between two different homogeneous media, only in that boundary
the electromagnetic wave will exert an effective force on the medium (f eff

i 6= 0), resulting
in a decrease of the electromagnetic momentum of light. As a result, light changes its
velocity of propagation (refraction), amplitude, polarization, etc. The second term in (4.15)
contributes to the effective interaction between field and matter when the constitutive tensor
does not present the extra symmetry χµνρσ = χρσµν , as in (3.64). Since this contribution will
be present throughout all the propagation of light, no matter the spatial inhomogeneities or
changes in time of the medium, this term is interpreted as a dissipative energy and momentum
transfer between light and matter. The corresponding decrease of energy and momentum
within the electromagnetic field will be absorbed by the medium and then converted into
heat or other dissipation mechanisms. Therefore, we define a non-dissipative medium as the
one described by a constitutive tensor which satisfies the extra symmetry (3.64). Notice
that this condition is more familiar than it seems, since it is just the covariant generalization
of the condition εij = εji, derived in various electrodynamics books in the case of non-
dissipative media, for instance see Landau and Lifshitz [31]. The condition also implies the
other components to satisfy the relations (3.76)-(3.77).

4.1.3. Minkowski energy-momentum tensor

So far we have only discussed the energy and momentum transfer from the electromagnetic
field to the external charges and currents through F ext

µ , and to the bound charges and
currents of the medium through the effective material 4-force density F eff

µ , but nothing has
been said about how to quantify the change of the electromagnetic energy and momentum
contained in the field. For this purpose, let us assume that the medium is non-dissipative

39



Chapter 4. Balance equations, electromagnetic conserved quantities and medium symmetries

and homogeneous in space and time, so that F eff
µ = 0, and additionally, that there are no

external charges and currents, i.e. Jµ
ext = 0 and hence F ext

µ = 0. In this special case, the
electromagnetic field exerts no force nor does any work on the charges and currents within
any volume element and therefore, the energy and momentum of the electromagnetic field
should be locally conserved. Indeed, the energy-momentum balance equation (4.9) reduces
to a continuity equation in this case:

∂νΘµ
ν = 0, (4.16)

and therefore, we can interpret Θµ
ν , defined in (4.11), as the energy-momentum tensor of

the electromagnetic field inside matter. In the literature the tensor Θµ
ν is usually known as

the Minkowski tensor of the electromagnetic field, since it was first derived by H. Minkowski
in 1908 [7]. The components of any energy-momentum tensor are always identified as

Θµ
ν =

(
U Si/c

−cπi −pi
j

)
, (4.17)

so that a conservation equation of the form (4.16), can be interpreted as two continuity
equations, one for energy (µ = 0) and another for the (three) components of momentum
(µ = i):

∂U
∂t

+ ∂iS
i = 0, (4.18)

∂πi

∂t
+ ∂jpi

j = 0. (4.19)

Accordingly, U is the energy density of the field, Si the energy flux density or Poynting
vector, πi the momentum density of the field and finally pi

j the momentum flux density or
stress tensor. As usual, the meaning of the continuity equations (4.18)-(4.19) is that the
time rate of change of energy (or momentum) of the field within the infinitesimal volume
dV is balanced by the net energy (or momentum) flowing out through the boundary of the
volume element per unit time, and therefore no energy (or momentum) is created or lost.
In our particular case of the electromagnetic field inside matter, we can use the identifica-

tions (3.39) and (3.44) in the definition (4.11) to explicitly compute the components of the
Minkowski tensor, which read

Θµ
ν =

(
(EiD

i +HiB
i) /2 εijkEjHk/c

−cε̂ijkD
jBk EiD

j +HiB
j − 1

2
δji
(
EkD

k +HkB
k
) ) . (4.20)

Comparing (4.20) with the identifications (4.17) we obtain that the Minkowski energy den-
sity, energy flux density, momentum density and momentum flux density for the electromag-
netic field in matter are respectively given by

U :=
1

2
(E ·D +H ·B) , (4.21)

S := E ×H , (4.22)

π := D ×B, (4.23)

pi
j := − EiD

j −HiB
j +

1

2
δji
(
EkD

k +HkB
k
)
. (4.24)
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In the literature, the Maxwell stress tensor Ti
j is sometimes also defined as the negative of

the momentum flux density in (4.24), i.e.

Ti
j := − pi

j (4.25)

= EiD
j +HiB

j − 1

2
δji
(
EkD

k +HkB
k
)
. (4.26)

In summary, when the external 4-force densities (F eff
µ and F ext

µ ) vanish, the Maxwell equa-
tions, via the general energy-momentum balance equation (4.9), imply that the Minkowski
energy-momentum tensor of the electromagnetic field Θµ

ν , defined as in (4.11) and with
components explicitly given in (4.20) or in (4.21)-(4.24), is conserved. Notice however, that
this tensor is not uniquely defined. To any given energy-momentum tensor Θµ

ν , one can
always add a “total derivative” ∂λξµ

νλ, with ξµ
νλ = −ξµ

λν an arbitrary antisymmetric func-
tion of the coordinates, so that new tensor Θ′

µ
ν has the same 4-divergence as the old tensor

∂νΘ
′
µ
ν = ∂νΘµ

ν and therefore the same balance equation. In section 4.3.2 it is argued, using
the Lagrangian formalism, why the Minkowski tensor (4.11) is the simplest choice among the
family of tensors Θ′

µ
ν = Θµ

ν + ∂λξµ
νλ for the case of the electromagnetic field inside matter.

The Abraham tensor Ωµ
ν which we will study in depth in chapter 5 is also postulated as

another choice to describe the energy-momentum content of the electromagnetic field, but
it does not belong to the same family of tensors as the Minkowski’s one.

4.1.4. Integral representation of the balance equations for energy and
momentum

Since we already know how to interpret each quantity appearing in the general energy-
momentum balance equation (4.9), expressed in differential form, it is time to write them
explicitly and integrate them over a finite volume V , in order to obtain the integral versions
of the balance equations for energy and momentum. It will be useful for our discussion to
define the total 4-momentum of the electromagnetic field inside matter Pµ, by

Pµ :=
1

c

∫
V

Tµ
0 dV, (4.27)

whose components are identified like any 4-momentum as

Pµ :=

(
E

c
,−pi

)
, (4.28)

where

pi :=

∫
V

πi dV, (4.29)

is the total linear momentum of the field inside the volume V and E is the total energy of
the electromagnetic field contained in the volume V , given by

E :=

∫
V

U dV. (4.30)
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After these definitions, we can integrate the explicitly covariant energy-momentum balance
equation (4.9) over a finite volume V and if we additionally use the new definition (4.27) of
Pµ and apply the Gauss theorem to transform the volume integral into a surface integral,
the integral version of the energy-momentum balance equation, reads

dPµ

dt
+

∫
V

F ext
µ dV +

∫
V

F eff
µ dV = −

∮
∂V

Θµ
jn̂j da, (4.31)

where n̂ is the outward unitary normal to the closed surface ∂V .
Then, if we evaluate for µ = 0 in (4.31), we obtain the integral version of the balance

equation for energy:

d

dt

M

E +

∫
V

Peff dV +

∫
V

jext ·E dV = −
∮
∂V

(E ×H) · n̂ da, (4.32)

where the Minkowski total energy of the electromagnetic field in matter
M

E within the volume
V , reads

M

E =
1

2

∫
V

(E ·D +H ·B) dV, (4.33)

and the effective material power of work density Peff is in detail given by,

Peff =
1

2

[
Ei

∂Di

∂t
−Di∂Ei

∂t
+Hi

∂Bi

∂t
−Bi∂Hi

∂t

]
(4.34)

=
1

2
ε0EiEj

∂

∂t
εij − 1

2
µ−1
0 BiBj ∂

∂t
(µ−1)ij +

1

2
EiB

j ∂

∂t
βi

j −
1

2
BiEj

∂

∂t
αi

j

+
1

2
ε0
[
εij − εji

]
Ei

∂Ej

∂t
− 1

2
µ−1
0

[
(µ−1)ij − (µ−1)ji

]
Bi∂B

j

∂t

+
1

2

[
βi

j + αj
i
]
Ei

∂Bj

∂t
− 1

2

[
βj

i + αi
j
]
Bi∂Ej

∂t
. (4.35)

Paraphrasing (4.32) we can say that the time rate of change of electromagnetic energy in

matter
M

E within the finite volume V , plus the effective work per unit time (power) which
the electromagnetic field does on the bound charges and currents of the medium within
the volume V (

∫
V
Peff dV ) plus the power transferred from the electromagnetic field to the

external currents inside the volume V (
∫
V
jext · E dV ), is equal to the negative of the net

energy per unit time which flows through the boundary surface ∂V of the closed volume
(
∮
∂V

(E×H) · n̂ da). We emphasize the word “net” in order to stress that S = E×H does
not only represent the flow of electromagnetic energy, but all forms of energy flowing out
the closed volume and passing through its boundaries, including also mechanical or thermal
energy of the medium. This is reasonable since the fields D and H do not only depend
on the electromagnetic fields E and B, but also on properties of the medium, through
the constitutive relations, which just shows the couple nature of the system under study.
Also the electromagnetic energy we have defined as

∫
V
(E ·D +H ·B) /2 dV is not only
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“electromagnetic” in nature, but it is a coupled quantity which correctly describes the light
propagating inside matter, since it is conserved in the absence of effective work transfer from
the field in matter to the medium and to external currents. In particular, if the material
medium has finite extent, we can choose a volume V big enough so that it encloses the
material medium as a whole. The electromagnetic field evaluated at the borders of the
volume will be in vacuum and therefore in that case only the “pure” electromagnetic energy
will have the possibility of flowing out of the volume and we can talk of S as representing
only electromagnetic energy flux.
Suppose now that we choose a volume V , where the electromagnetic properties of the

medium are time independent and non-dissipative, so that Peff = 0 in (4.35) and additionally
there are no external currents so that Pext = 0. Then, if there is no energy flux through

the boundaries of the volume, the time derivative d
M

E/dt will vanish, and therefore the total
electromagnetic energy in matter within V the will be a conserved quantity, in the sense
that it will be time independent:

M

E =
1

2

∫
V

(E ·D +H ·B) dV = constant. (4.36)

On the other hand, if we evaluate (4.31) for µ = i, the momentum balance equation in
integral form, becomes

d

dt

M
p i +

∫
V

f eff
i dV +

∫
V

[ρextE + jext ×B]i dV

= −
∮
∂V

[
−EiD

j −HiB
j +

1

2
δji
(
EkD

k +HkB
k
)]

n̂j da,

(4.37)

where the material effective force density is explicitly written as

f eff
i =

1

2

[
Dj(∂iEj)− Ej(∂iD

j) +Bj(∂iHj)−Hj(∂iB
j)
]

(4.38)

= − 1

2
ε0EjEk(∂iε

jk) +
1

2
µ−1
0 BjBk(∂i(µ

−1)jk)−
1

2
EjB

k(∂iβ
j
k) +

1

2
BjEk(∂iαj

k)

− 1

2
ε0
[
εjk − εkj

]
Ej(∂iEk) +

1

2
µ−1
0

[
(µ−1)jk − (µ−1)kj

]
Bj(∂iB

k)

− 1

2

[
βj

k + αk
j
]
Ej(∂iB

k) +
1

2

[
βk

j + αj
k
]
Bj(∂iEk), (4.39)

and the total electromagnetic momentum in matter inside the volume V is given by

M
p :=

∫
V

(D ×B) dV, (4.40)

i.e. the Minkowski momentum
M
p of light inside matter. Notice that (4.40) is the integration

of the expression (1.1) which we presented in the introduction. In section 5.3, we will
compare this expression, derived from Maxwell’s equations, with the corresponding Abraham
expression.
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In simple terms, the balance equation (4.37) states that the time rate of change of electro-

magnetic (Minkowski) momentum in matter contained within the finite volume V
M
p i, plus

the total effective force exerted by the field on the bound charges and currents of medium
inside V (

∫
V
f eff
i dV ), plus the total Lorentz force exerted by the field on the external

charges and currents inside V (F ext =
∫
V
(ρextE + jext ×B) dV ), is equal to the negative

of the net momentum (electromagnetic, mechanical, thermal, etc.) which flows per unit
time through the boundaries ∂V of the closed volume V and is given by the surface integral∮
∂V

[
−EiD

j −HiB
j + 1

2
δji
(
EkD

k +HkB
k
)]

n̂j da.
Consequently, if we choose a finite region V of space, where there are no external charges

and currents, so that f ext
i = 0, the medium is homogeneous and non-dissipative, so that

f eff
i = 0 and the volume is finite and big enough, so that there is no momentum flux escaping
through the borders of the volume, then the Minkowski momentum of the electromagnetic

field in matter
M
p i will be a time independent conserved quantity,

M
p i =

∫
V

ε̂ijkD
jBk dV = constant. (4.41)

Notice that in this case the momentum conserved quantity does not only depend on the
electromagnetic field Ei and Bi, but it also depends on the medium properties through
Di = ε0ε

ijEj + βi
jB

j. This shows the coupled nature of the system and also the fact
that the conserved Minkowski momentum for light in matter is an effective quantity which
depends on both the electromagnetic field and the medium properties.
Moreover, is there is the case where the conditions for the conservation on energy and

momentum are simultaneously satisfied, we can say that the whole Minkowski 4-momentum
of the electromagnetic field, defined in (4.28), is a time independent quantity, i.e.

M

Pµ = constant. (4.42)

4.2. Angular momentum balance equation

In order to introduce the angular momentum balance equation for the open system elec-
tromagnetic field interacting with matter, we first notice that the electromagnetic field, via
the Lorentz force density fext, can also exert a torque density τext on a distribution of external
charges and currents. This torque density is defined as usual by

τext := x× fext, (4.43)

and the total torque on the distribution can be computed as the volume integral of it, i.e.∫
V
(x× fext) dV .
If we want to write the torque density (4.43) in indicial notation, it is necessary to explicitly

use the spacetime metric as for the case of the constitutive tensor in section 3.3. Therefore,
if we denote by τ exti the cartesian components of the torque density τext, x

i the cartesian
components of the space coordinates x and f ext

i the cartesian components of the external
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Lorentz force density (3.34), we have

τ exti = ε̂ijkx
j(−ηklf ext

l ) (4.44)

= ε̂ijkx
j(−fk

ext) (4.45)

= εijkx
jfk

ext, (4.46)

where we have defined f i
ext := ηijf ext

j as the contravariant components of the external Lorentz
force density fext. We will use the momentum balance equation (4.37) to derive the angular
momentum one. If we take (4.37), rise the free index i, relabel it as k and write it in
differential form, we obtain

∂πk

∂t
+ ∂jp

kj + fk
eff + fk

ext = 0. (4.47)

Then, if we multiply (4.47) by εijkx
l and complete the total derivative ∂j, the angular mo-

mentum balance equation in differential form reads

∂

∂t
(εijkx

jπk) + ∂j(εilkx
lpkj) + εijkx

jfk
ext + εijkx

jfk
eff + εijkp

jk = 0 (4.48)

or, in compact form,

∂li
∂t

+ ∂jKi
j + τ exti + τ effi = 0, (4.49)

where

li := εijkx
jπk (4.50)

= (xjBj)Di − (xjDj)Bi, (4.51)

are the cartesian components of the orbital angular momentum density of the electromagnetic
field:

l = x× π, (4.52)

defined in an analogous way as (4.43), where π is the Minkowski momentum density of the
electromagnetic field (4.23). The net orbital angular momentum flux density Ki

j is defined
as

Ki
j := εilkx

lpkj (4.53)

= (ε̂ilkx
lEk)Dj + (ε̂ilkx

lHk)Bj − 1

2
ε̂ilkη

kjxl(EmD
m +HmB

m). (4.54)

Since f eff
i is the material effective force density, it is reasonable to expect that εijkx

jfk
eff

would be the torque density which the electromagnetic field exerts on matter, in analogy to
(4.43). However, the angular momentum balance equations (4.48)-(4.49) states that this is
not the case. The cartesian components of the material effective torque density τ effi , which

45



Chapter 4. Balance equations, electromagnetic conserved quantities and medium symmetries

the electromagnetic field exerts on the bound charges and currents of the medium, must be
defined as

τ effi := εijkx
jfk

eff + εijkp
[jk], (4.55)

where additionally to the expected first term, there is a second term proportional to the
antisymmetric part of the momentum flux density pi

j.
In an homogeneous medium, without external charges and currents, f eff

i always vanishes
and if εijkx

jfk
eff were the only contribution to τ effi , the conservation of linear momentum would

automatically imply the conservation of the angular one and it would be no sense to define
the angular momentum of the field as another quantity. Therefore, it is reasonable that τ effi
in (4.55) should have another contribution besides εijkx

jfeff , in spite of the fact that it cannot
be obtained in the usual way as in (4.43). The material effective force density f eff

i , as well as
the material effective torque density τ effi are not obtained as a direct sum of microscopic forces
or torques between the atoms of the medium and the electromagnetic field, but they are just
effective interaction terms, obtained from the balance equations, with which we can say in an
effective way whether the energy, momentum or angular momentum of the electromagnetic
field coupled with matter, is conserved or not. For instance, when the momentum of the field
inside matter is conserved, light will continue propagating without change and therefore we
infer that there should be no effective force between the material medium and the field, even
though we know that they are actually microscopically interacting. It was in this sense that
f eff
i and Peff were previously defined in (4.34) and (4.38), and exactly in the same sense τ effi
is now defined in (4.55).
If we write εijkp

[jk] explicitly, we have

εijkp
[jk] = ε̂ijkE

jDk + ε̂ijkH
jBk, (4.56)

and therefore we see that only in the particular case when the vector fields E and D, as well
as H and B are parallel to each other at each point, the contribution (4.56) will be zero. For
instance, this is the case of an isotropic and non-magnetoelectric medium in its rest frame,
whose constitutive relations are given in (3.78)-(3.79). By inserting (4.38) in (4.55), we can
express the material effective torque density τ effi in terms of the electromagnetic fields in
matter Ei, B

i, Di and Hi, by

τ effi =
1

2
εijkx

jηkl [Dm(∂lEm)− Em(∂lD
m) +Bm(∂lHm)−Hm(∂lB

m)] (4.57)

− εijkη
jl(ElD

k +HlB
k), (4.58)

which of course can also be written in terms of the medium properties εij, (µ−1)ij, αi
j and

βi
j and the electromagnetic field Ei and Bi, if we use the constitutive relations.

4.2.1. Four-dimensional angular momentum balance equation

In subsection 4.1.3 we saw that when Jµ
ext = 0 and the medium is homogeneous, the

Minkowski tensor (4.11) satisfies a continuity equation and therefore the energy and mo-
mentum of the electromagnetic field are conserved quantities. Under these conditions, the
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angular momentum balance equation (4.49) reduces to

∂li
∂t

+ ∂jKi
j = −εijkp

[jk] 6= 0, (4.59)

and we explicitly see that the homogeneity of the medium is not a condition for the angular
momentum of the field to satisfy a continuity equation. It would be beautiful that the
necessary and sufficient condition for the conservation of the orbital angular momentum of
the field would be the isotropy of the electromagnetic properties of the medium. In order
to answer this question and study in a simpler way the relationship between the symmetries
of the medium (rotational invariance and Lorentz invariance) with the conservation of the
electromagnetic angular momentum, we will first define an “angular 4-momentum tensor”
analogous to the Minkowski energy-momentum tensor Θµ

ν in (4.11).
For this task, we first notice that the orbital angular momentum density of the field li in

(4.50) can also be expressed in terms of the Minkowski energy momentum components by

li = −1

c
εijkxjΘk

0, (4.60)

and multiplying (4.60) by εlmi, we obtain the relation

xlΘm
0 − xmΘl

0 = ε̂lmi(−cli). (4.61)

Therefore, we will define the covariant angular 4-momentum tensor lρσ
µ as

lρσ
µ := xρΘσ

µ − xσΘρ
µ, (4.62)

so that the components llm
0 of this antisymmetric tensor contain the electromagnetic orbital

angular momentum density li as in (4.61). Using lρσ
µ we can obtain the angular momen-

tum balance equation (4.49) as components of a more general angular 4-momentum balance
equation. If we take the 4-divergence on both sides of equation (4.62) and then insert the
energy-momentum balance equation which satisfies the Minkowski tensor (4.9), we finally
can write

∂µlρσ
µ + T ext

ρσ + T eff
ρσ = 0, (4.63)

where T ext
ρσ is the external 4-torque density tensor defined as

T ext
ρσ := xρF ext

σ − xσF ext
ρ , (4.64)

and the material effective 4-torque tensor density T eff
ρσ is defined analogously to (4.55), as

T eff
ρσ := xρF eff

σ − xσF eff
ρ + 2Θ[ρσ], (4.65)

where

2Θ[ρσ] = ηρλFσκH
λκ − ησλFρκH

λκ, (4.66)
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is the antisymmetric part of the Minkowski energy-momentum tensor.
If we evaluate the angular 4-momentum balance equation (4.62) for the spatial components

j, k = 1, 2, 3, and multiply it by −εijk/2, we indeed obtain the balance equation for angular
momentum (4.49), provided we do the following identifications of components:

li = − 1

2c
εijkljk

0, (4.67)

Kim = − 1

2
εijkljk

m, (4.68)

τ iext = − 1

2
εijkT ext

jk , (4.69)

τ ieff = − 1

2
εijkT eff

jk . (4.70)

4.2.2. 4-torque densities and conservation of angular 4-momentum

From (4.67)-(4.68) we see that the spatial components lij
0 are related to the orbital angular

momentum density li of the electromagnetic field and lij
k are related to the orbital angular

momentum flux density Ki
j. By inverting (4.67), we can explicitly write the antisymmetric

angular 4-momentum density in terms of their components as

lij
0 = cεijkl

k, (4.71)

or in matrix form by

lρσ
0 =


0 l01

0 l02
0 l03

0

−l01
0 0 cl3 −cl2

−l02
0 −cl3 0 cl1

−l03
0 cl2 −cl1 0

 = −lσρ
0. (4.72)

Using the definition (4.64), we see that the 3 independent “time-space” components l0i
0 are

explicitly given by

l0i
0 = x0Θi

0 − xiΘ0
0 (4.73)

= − c2
(
tπi + xi

U
c2

)
, (4.74)

but they do not have a direct interpretation in terms of clearly identifiable properties of
the system. In the next subsection 4.2.3 we will discuss the integral form of the angular
4-momentum balance equation and we will see that the volume integral of these components
l0i

0 are related to the motion of the center of energy of the system, a relativistic generalization
of the center of mass.
Analogously to (4.71), we can also invert (4.69), and obtain

T ext
ij = εijkτ

k
ext, (4.75)
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which allow us to express the external 4-torque density T ext
ρσ in matrix form as

T ext
ρσ =


0 T ext

01 T ext
02 T ext

03

−T ext
01 0 τ ext3 −τ ext2

−T ext
02 −τ ext3 0 τ ext1

−T ext
03 τ ext2 −τ ext1 0

 = −T ext
σρ , (4.76)

where, again, the “time-space” components T ext
0i are not direct to interpret in terms of

mechanical clearly identifiable quantities like power, force or torque densities. In fact, T ext
0i

has contributions of both the external Lorentz force density f ext
i and the external power

density Pext, as follows:

T ext
0i = x0F ext

i − xiF ext
0 (4.77)

= − c

(
tf ext

i + xi
Pext

c2

)
. (4.78)

With regards to the material effective 4-torque density T eff
ρσ , if we invert (4.70), use the

definition in (4.65)-(4.66), as well as the explicit expressions for f eff
i and Peff in (4.34) and

(4.38), we see that its components can be expressed in matrix form, in the same way as T ext
ρσ ,

by

T eff
ρσ =


0 T eff

01 T eff
02 T eff

03

−T eff
01 0 τ eff3 −τ eff2

−T eff
02 −τ eff3 0 τ eff1

−T eff
03 τ eff2 −τ eff1 0

 = −T eff
σρ . (4.79)

where the spatial components are related to the effective torque vector field τ effi , by

T eff
ij = εijkτ

k
eff (4.80)

=
(
xif

eff
j − xjf

eff
i

)
− (pij − pji) (4.81)

=
1

2
x[i

{
Dk(∂j]Ek)− Ek(∂j]D

k) +Bk(∂j]Hk)−Hk(∂j]B
k)
}
+D[iEj] +H[iBj], (4.82)

and the time-space components T eff
0i can be explicitly written as

T eff
0i = x0F eff

i − xiF eff
0 + 2Θ[0i] (4.83)

= − c

(
tf eff

i + xi
Peff

c2

)
+ c

(
πi +

Si

c2

)
(4.84)

= − 1

2
ct
[
Dj(∂iEj)− Ej(∂iD

j) +Bj(∂iHj)−Hj(∂iB
j)
]

− 1

2

xi

c

[
Ej

∂Dj

∂t
−Dj ∂Ej

∂t
+Hj

∂Bj

∂t
−Bj ∂Hj

∂t

]
+ cε̂ijk

[
DjBk − 1

c2
EjHk

]
. (4.85)

In order to interpret T eff
ρσ in terms of the symmetries presented by the material medium,

let us insert the covariant constitutive relations (3.61) into the definition of material effective
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4-torque (4.65), so that we can write a covariant expression for T eff
ρσ in terms of the material

properties χµνρσ and the electromagnetic field Fµν :

T eff
ρσ = − 1

8
FαβFγδ

[
xρ(∂σχ

αβγδ)− xσ(∂ρχ
αβγδ) + ηαρχ

σβγδ − ηασχ
ρβγδ

+ηβρχ
ασγδ − ηβσχ

αργδ + ηγρχ
αβσδ − ηγσχ

αβρδ + ηδρχ
αβγσ − ηδσχ

αβγρ
]

− 1

8

(
χαβγδ − χγδαβ

)
Fαβ [xρ(∂σFγδ)− xσ(∂ρFγδ)] .

(4.86)

This expression (4.86) can be understood as the angular analogous of the expression (4.15)
for the material effective 4-force density F eff

µ . By inspecting (4.86), we see that its last term
is a dissipative contribution to the effective torque density between field and matter, since it
is only different from zero when the constitutive tensor does not satisfy the extra symmetry
(3.64) and it describes a persistent interaction throughout the propagation of light in matter,
independent of the other properties of the medium, in the same way as the last term in (4.15).
On the other hand, the first term in the first two lines of (4.86) has direct relation with the
symmetry presented by the material medium, since if we compare it with the invariance
condition (C.97) of appendix C, we see that this term is identically zero if the constitutive
tensor χµνρσ is invariant under Lorentz transformations. If we restrict ourselves to the case
of non-dissipative media, we see that there will be an effective torque interaction between
the electromagnetic field and the bound charges and currents of the medium, only when the
medium is anisotropic, so that the spatial components T eff

ij = εijkτ
k
eff can be different from

zero. This is analogous to the spatial components of the first term in (4.15), which imply a
force interaction between field and matter only then the medium is inhomogeneous.
Therefore, suppose there is a non-dissipative and isotropic medium, without external

charges and currents Jµ
ext = 0. In this case, all the components of the external 4-torque

density will be zero T ext
ρσ = 0, as well as the spatial components of the material effective

4-torque density T eff
ij = 0. As a consequence, the spatial components ij of the angular

4-momentum balance equation (4.63) will reduce to

∂µlij
µ = 0, (4.87)

which, using the identifications (4.67)-(4.68), implies the continuity equation for the orbital
angular momentum of the electromagnetic field:

∂li
∂t

+ ∂jKi
j = 0. (4.88)

Therefore, the absence of dissipation and the isotropy of a medium ensures the conservation of
the orbital angular momentum of the electromagnetic field. However, they are not sufficient
to imply a continuity equation for the components 0i of the angular 4-momentum:

∂µl0i
µ =

∂

∂t

(
1

c
l0i

0

)
+ ∂jl0i

j = −T eff
0i 6= 0, (4.89)

since the T eff
0i components of the effective 4-torque density does not vanish under these

conditions. In order to obtain conserved 0i components of the angular 4-momentum, the
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constitutive tensor χµνρσ must independently be invariant under boosts. If this were the case,
we will obtain T eff

0i = 0, and (4.89) will reduce to a continuity equation.
For instance, if we insert the constitutive tensor for the isotropic medium χµνρσ

iso , given
in (3.92), in the invariance condition (C.97), we can prove that in the only case when this
equation is satisfied for the 0i components, is when n = 1, i.e. when there is no medium and
we have vacuum! The only constitutive tensor invariant under boosts is the corresponding
to the vacuum χµνρσ

vac in (3.58), which is not so surprising since when we assumed a fixed
material medium in the system, there must be external forces keeping the medium in its
state of motion. As a result, the different inertial frames will be not longer equivalent,
since an observer could physically differentiate if he is at rest or in motion with respect
to the background material medium and therefore the symmetry under boosts is lost. In
vacuum, there is no material medium fixed and all inertial observers will agree that the
electromagnetic field is propagating at constant speed c. In chapter 5 the material medium
will be no longer fixed and therefore the invariance under boosts of the total system will be
recover.

4.2.3. Integral representation of the angular 4-momentum balance
equations

In order to introduce the integral version of the angular momentum balance equations,
it will be very useful to define the total orbital angular 4-momentum of the electromagnetic
field inside matter Lµν , in analogy to the total 4-momentum Pµ in (4.27), by

Lρσ :=

∫
V

(xρPσ − xσPρ) dV (4.90)

=
1

c

∫
V

lρσ
0 dV, (4.91)

which in matrix form can be expressed as,

Lµν =


0 L01 L02 L03

−L01 0 L3 −L2

−L02 −L3 0 L1

−L03 L2 −L1 0

 = −Lνµ, (4.92)

where the spatial components Lij can be expressed in terms of the Minkowski orbital angular

momentum vector
M

Li as usual by

Lij = εijk
M

L
k, (4.93)

where

M

Li :=

∫
V

li dV (4.94)

=

∫
V

(x× π)i dV. (4.95)
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Additionally, if we insert (4.74) in the definition (4.91), the components L0i of the total
orbital 4-momentum are explicitly given by

L0i :=
1

c

∫
V

l0i
0 dV (4.96)

= − c

(
t

∫
V

πi dV +
1

c2

∫
V

Uxi dV

)
. (4.97)

Meanwhile, we can define the position of the center of energy of the system xi
ce(t), as a

relativistic generalization of the center of mass:

xi
ce(t) :=

1

E

∫
V

Uxi dV, (4.98)

where E is the total energy of the system, as defined in (4.30). Then, using (4.98) in (4.97),
the components L0i can be cast in a much simpler form, as

L0i = −c

(
t
M
p i +

1

c2
M

Exce
i

)
, (4.99)

where we also used the definition of the total momentum of the field pi in (4.29), which in
this case coincides with Minkowski’s one.
Now we are in position to integrate the covariant angular 4-momentum balance equation

(4.63) over a finite volume V and use the definition (4.91) to write the balance equations for
the total quantities:

d

dt
Lρσ +

∫
V

T ext
ρσ dV +

∫
V

T eff
ρσ dV = −

∮
∂V

lρσ
jn̂j da. (4.100)

In the same way as we obtained (4.49) from the spatial components of (4.63), here we can
evaluate (4.100) for the spatial components k,m = 1, 2, 3, multiply it by −εikm/2 and use
the corresponding identifications to obtain the integral version of the balance equation for
angular momentum:

d

dt

M

Li +

∫
V

τ exti dV +

∫
V

τ effi dV = −
∮
∂V

Ki
jn̂jda. (4.101)

Analogous to the other balance equations (4.32) and (4.37), in (4.101) the time rate of

change of total Minkowski orbital angular momentum
M

Li contained in the electromagnetic
field within the volume V , plus the torque exerted by the field on the external charges and
currents (

∫
V
τ exti dV ), plus the effective torque exerted by the field on the bound charges and

currents of the medium (
∫
V
τ effi dV ), is equal to the negative of the net angular momentum

which flows per unit time through the boundaries ∂V of the closed volume V (
∮
∂V

Ki
jn̂j da).

For the specific case that we consider a volume V of the medium, where there are no
external charges and currents, so that τ exti = 0, the medium is isotropic and non-dissipative,
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so that τ effi = 0, and if the volume is big enough so that there is no net angular momentum
flux escaping through its boundaries, then the Minkowski total angular momentum vector
inside the volume will be a conserved, i.e. a time independent quantity:

M

Li =

∫
V

[(xjBj)Di − (xjDj)Bi] dV = constant. (4.102)

Finally, in order to obtain the balance equation for the time-space components of the
angular 4-momentum of the field L0i, we just need to evaluate (4.100) for the 0i components:

d

dt
L0i +

∫
V

T ext
0i dV +

∫
V

T eff
0i dV = −

∮
∂V

l0i
jn̂jda. (4.103)

The integral balance equation (4.103) is interpreted in exactly the same way as the other
ones for energy, momentum and angular momentum, which we already discussed, but here
the problem is that the quantities involved are not directly recognizable. As we commented
at the end of subsection 4.2.2, T ext

0i is only different from zero in the case of vacuum and
therefore (4.103) will not lead to any conserved quantities when there is a fixed medium
present.
Even though the following treatment will only lead to conserved quantities for the case

of the electromagnetic field in vacuum, we will make the corresponding general derivation
anyway, since we will apply the result in chapter 5 when we will deal with a closed system.
Thus, let us choose a volume V , where there are no external charges and currents, so that
T ext
0i = 0, the constitutive tensor assigned to the medium is invariant under boosts and

non-dissipative, so that T eff
0i = 0, and the volume is big enough so that there is no flux es-

caping through its boundaries, then the time-space components L0i will be time independent
conserved quantities:

L0i = −c

(
t
M
p i +

1

c2
M

Exce
i

)
= constant. (4.104)

As a result, when the medium is invariant under boosts, a certain combination of the
Minkowski momentum, the Minkowski energy and the position of the center of energy, given
in (4.104), will be time independent. In fact, (4.104) can be interpreted as a constraint for
the motion of the center of energy of the electromagnetic field, when the medium in which
it propagates is invariant under boosts. In particular, let us define the velocity of the center
of energy vice as

vice :=
dxi

ce

dt
, (4.105)

and then, if we take the time derivative of equation (4.104), we obtain an explicit equation
for vice, which reads

vcei +
c2

EM

M
p i +

c2t

EM

d
M
p i

dt
+

xce
i

EM

d
M

E

dt
= 0. (4.106)
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The equation (4.106) still looks difficult to physically interpret, but if we additionally assume
the the medium is homogeneous and time independent, the Minkowski momentum and
energy of the electromagnetic field will be also time independent quantities, implying a
constant velocity for the center of energy of the field, simply given by

vice = − c2

EM

M
p i = constant. (4.107)

So we conclude that the components L0i of the angular 4-momentum are in some way
related to the motion of the center of energy of the system. Actually, for the case of the
electromagnetic field in fixed matter, the result is only valid when the medium is vacuum,
in which the constant center of energy velocity of the system in (4.107), reduces to the
velocity of light in vacuum c. In chapter 5, we will consider the total system formed by
electromagnetic field and dynamical medium and in our analysis we will use the expression
(4.107) to determine the constant center of energy velocity of the combine total system.

4.3. Lagrangian for the open system of electromagnetic
field inside matter

So far we have discussed the balance equations and the conditions under which they
lead to conserved quantities of the electromagnetic field, starting directly from Maxwell’s
equations and the constitutive relations for the non-dynamical medium. Complementary
to the latter analysis, in this section we will apply the Lagrangian-Noether formalism to
study in more depth this open system. The results obtained here should be the same ones
derived in sections 4.1 and 4.2, but this different treatment will give us further insight
into the structure of the theory, specially regarding the relation between the symmetries
of the medium and the conserved quantities of the field. In chapter 5, we will also apply
the Lagrangian-Noether formalism to describe the dynamics of the medium as as fluid and
therefore using the results of this section, we will describe the dynamics of the total closed
system, composed by electromagnetic field and material medium. The general results of
Lagrangian-Noether formalism for any open or closed system are shortly summarized in
appendix C.

4.3.1. Macroscopic Maxwell equations as Euler-Lagrange equations

In order to apply this general formalism to the case of the electromagnetic field in matter,
we postulate the electromagnetic Lagrangian density in matter Lem to be:

Lem := −1

4
FµνH

µν , (4.108)

since, in absence of external charges and currents, it reproduces the macroscopic Maxwell’s
equations as Euler-Lagrange equations (C.1) of the electromagnetic 4-potential Aµ, defined
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in (3.41)-(3.42). In fact, if we insert (3.61) in (4.108), the electromagnetic Lagrangian density
Lem can be explicitly written as

Lem(∂µAν , χ
µνρσ) = −1

8
χµνρσFµνFρσ, (4.109)

where Aµ is the dynamical field of the system, which appears in Lem through Fµν = ∂µAν −
∂νAµ and χµνρσ is an external field, describing the given electromagnetic properties of the
fixed medium, in which light propagates. Here it is important to remark that only non-
dissipative media can be analyzed in the Lagrangian formalism, because from the early
beginning in definition (4.109) we have to assume that the constitutive tensor of the medium
must satisfy the condition χµνρσ = χρσµν . In order to explicitly calculate the Euler-Lagrange
equations for the dynamical field Aµ, the following derivatives will be useful:

∂Lem

∂(∂µAν)
= −Hµν , (4.110)

∂Lem

∂Aν

= 0, (4.111)

and then, inserting (4.110)-(4.111) in the general definition (C.1)-(C.3), we see that these
Euler-Lagrange equations actually coincide with the sourceless macroscopic Maxwell equa-
tions:

δLem

δAν

= ∂µH
µν !
= 0, (4.112)

as given in (3.40). The homogeneous Maxwell equations (3.45) are automatically satisfied
by expressing the electromagnetic field strength Fµν in terms of the 4-potential Aµ.
If we also want to consider the interaction of electromagnetic field with external charges

and currents, described in the external 4-vector field Jµ
ext := (cρext, j

i
ext), we just have to add

another term Lext to the Lagrangian density (4.109), which must be given by,

Lext(Aµ, J
µ
ext) := −Jµ

extAµ. (4.113)

The corresponding variational derivative of Lext is easily calculated as

δLext

δAν

=
∂Lext

∂Aν

= −Jν
ext, (4.114)

and therefore the Euler-Lagrange equations corresponding to the composed Lagrangian den-
sity Lem + Lext, coincide with the inhomogeneous macroscopic Maxwell equations in (3.40):

δ

δAν

(Lem + Lext) =
δLem

δAν

+
δLext

δAν

= ∂µH
µν − Jν

ext
!
= 0 ⇔ ∂µH

µν = Jν
ext. (4.115)

55



Chapter 4. Balance equations, electromagnetic conserved quantities and medium symmetries

4.3.2. Canonical energy-momentum tensor and energy-momentum
balance equation

The next step in the Lagrange-Noether formalism is to calculate the canonical energy-
momentum tensor of the system, which will allow us to write the canonical energy-momentum
balance equation, as discussed in the appendix C.1. Therefore, using the definition (C.6)
and the results (4.110) and (4.114), the canonical energy-momentum tensor for the electro-
magnetic field in matter is explicitly given by

em

T µ
ν =

∂Lem

∂(∂νAρ)
∂µAρ − δνµ

(
−1

4
FρσH

ρσ − AρJ
ρ
ext

)
(4.116)

=

(
FµρH

ρν +
1

4
δνµFρσH

ρσ

)
+Hρν(∂ρAµ) + δνµJ

ρ
extAρ (4.117)

= Θµ
ν +Hρν(∂ρAµ) + δνµJ

ρ
extAρ, (4.118)

where we see that the electromagnetic canonical tensor
em

T µ
ν differs by two non-gauge invari-

ant terms from the Minkowski energy-momentum tensor Θµ
ν , previously defined in (4.11).

The “on-shell” energy-momentum balance equation, which the canonical tensor satisfies, is
in general given in (C.7), and in the particular case of the electromagnetic field in matter
reads

∂ν
em

T µ
ν .
= − 1

8

∂Lem

∂χαβγδ
∂µχ

αβγδ − ∂Lext

∂Jν
ext

∂µJ
ν
ext (4.119)

.
=

1

8
FαβFγδ(∂µχ

αβγδ) + Aρ(∂µJ
ρ
ext). (4.120)

Notice that we put an 1/8 factor in (4.119), in order to count the terms of the sum only once,
considering all the symmetries of χµνρσ. We may now take the 4-divergence of the canonical

energy-momentum tensor
em

T µ
ν in (4.118) and using the equations of motion (4.115), we

obtain the following expression on-shell:

∂ν
em

T µ
ν .
= ∂νΘµ

ν + FµνJ
ν
ext + Aρ(∂µJ

ρ
ext). (4.121)

Finally, if we replace (4.121) in the left hand side of (4.120), the non-gauge invariant terms
Aρ(∂µJ

ρ
ext) cancel out on both sides and we obtain the same energy-momentum balance

equation, which we already derived from Maxwell equations in (4.9),

∂νΘµ
ν + FµνJ

ν
ext −

1

8
FαβFγδ(∂µχ

αβγδ)
.
= 0, (4.122)

with the difference that now the material effective 4-force density

F eff
µ = −1

8
FαβFγδ(∂µχ

αβγδ), (4.123)

does not have the dissipation term, since in the Lagrange formalism we can only consider
non-dissipative media with χµνρσ = χρσµν .
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4.3.3. Belinfante tensor of the electromagnetic field in matter

In order to compute the Belinfante tensor of the electromagnetic field in matter
em

Θµ
ν and

the angular 4-momentum balance equation, as defined in the appendix C.2, we first need to

calculate the electromagnetic spin current density
em

S ρσ
µ. Evaluating the general definition

(C.12) for our particular case, we have

em

S ρσ
µ =

∂Lem

∂(∂µAν)
(sρσ)ν

λAλ (4.124)

= ησνH
µνAρ − ηρνH

µνAσ, (4.125)

where we used (4.110) and the corresponding Lorentz generator derived in (C.87).
Then, if we insert (4.125) in the general definition of the Belinfante energy-momentum

tensor (C.2), we obtain

em

Θµ
ν =

em

T µ
ν − ∂ρ(H

ρνAµ) (4.126)

.
=

em

T µ
ν −Hρν(∂ρAµ)− Jν

extAµ, (4.127)

and if we additionally use the explicit expression for the canonical tensor (4.118) in (4.127),
we can finally see that the Belinfante energy-momentum tensor of the electromagnetic field
em

Θµ
ν and the Minkowski tensor Θµ

ν are related by

em

Θµ
ν = Θµ

ν + δνµJ
ρ
extAρ − AµJ

ν
ext, (4.128)

We know that the Belinfante tensor, by construction, have the same 4-divergence as the
canonical one, since they just differ by a total derivative, but its advantage is that the non-
gauge invariant term Hρν(∂ρAµ) in (4.118) is now absorbed. In fact, the gauge invariant
Minkowski tensor Θµ

ν actually is the Belinfante energy-momentum tensor of the electro-
magnetic field in matter, for the important case when there are no external charges and
currents Jµ

ext = 0 and this is the reason why we denote both with very similar symbols.

4.3.4. Symmetry of the energy-momentum tensors

Let us continue with the Lagrangian-Noether analysis and use (4.128) to explicitly compute
the antisymmetric part of the Belinfante tensor in terms of the external fields χµνρσ and Jµ

ext:

em

Θ [µν] = Θ[µν] − A[µJ
ext
ν] . (4.129)

The antisymmetric part of the Minkowski tensor can be directly calculated from its definition
in (4.11). If we also use the covariant constitutive relations (3.61) and show explicitly the

57



Chapter 4. Balance equations, electromagnetic conserved quantities and medium symmetries

symmetries of χµνρσ, we have

2Θ[µν] = Θµν −Θνµ (4.130)

= ηνλH
λρFρµ − ηµλH

λρFρν (4.131)

=
1

2
(δσµηνλ − δσνηµλ)FαβFρσχ

λραβ (4.132)

= − 1

8
FαβFρσ

(
ηαµχ

νβρσ − ηανχ
µβρσ + ηβµχ

ανρσ − ηβνχ
αµρσ

+ηρµχ
αβνσ − ηρνχ

αβµσ + ησµχ
αβρν − ησνχ

µβρµ
)
. (4.133)

By comparing (4.133) with the condition (C.97), we see that if we exclude the two first terms
which have to do with the orbital angular momentum operator (lρσ)

A
B defined in (C.19),

the antisymmetric part of the Minkowski tensor can be written as

2Θ[µν] = −1

8
FαβFρσ(sµν)

αβρσ
γδλκχ

γδλκ, (4.134)

where (sµν)
αβρσ

γδλκ is the Lorentz generator of a fourth rank tensor and is explicitly explicitly
given in (C.96). Notice also that

∂Lem

∂χαβρσ
= −FαβFρσ, (4.135)

and therefore we can write

2Θ[µν] =
1

8

∂Lem

∂χαβρσ
(sµν)

αβρσ
γδλκχ

γδλκ. (4.136)

As a result, the antisymmetric part of the Minkowski tensor must be in general different from
zero, unless the constitutive tensor of the medium χµνρσ is such that all the components of
the Lorentz generator applied on it vanish. Therefore, for simultaneously homogeneous and
isotropic media, the spatial components Θij will be symmetric, but the components T0i

can only be symmetric in the trivial case of vacuum. However, it is important to remark
that this asymmetry of the Minkowski tensor is completely consistent with the Lagrange-
Noether formalism and even more, it is a requirement of the theory so that we can correctly
describe the external forces and torques between the field and the charges and currents of
this open system. In fact, (4.136) corresponds to the angular momentum identity (C.27) for
the Belinfante energy-momentum tensor, when Jµ

ext = 0. We can obtain the more general

identity for Jµ
ext 6= 0, if we consider the complete Belinfante tensor

em

Θµ
ν and replace (4.136)

in (4.129). Then,

2
em

Θ [µν] =
1

8

∂Lem

∂χαβρσ
(sµν)

αβρσ
γδλκχ

γδλκ + (−Aρ)(ησνδ
ρ
µ − ησνδ

ρ
µ)J

σ
ext (4.137)

=
1

8

∂Lem

∂χαβρσ
(sµν)

αβρσ
γδλκχ

γδλκ +
∂Lext

∂Jρ
ext

(sµν)
ρ
σJ

σ
ext, (4.138)
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where in the right hand side of (4.138) appears the sum of all the external fields with act on
the system and coincides exactly with (C.27).

The canonical energy-momentum tensor
em

T µ
ν in (4.118) has even worst symmetry prop-

erties than the Belinfante and the Minkowski ones. The general Lagrange-Noether analysis
in C.3 shows that it is not in general symmetric even when the system is closed. It is only
directly symmetric in closed systems with trivial spin current density Sρσ

µ = 0, i.e. when
all dynamical fields are scalars.

4.3.5. Belinfante angular momentum and angular 4-momentum
balance equation

To finish this section, we will rederive the angular 4-momentum balance equation of
the system, obtained in (4.63), but now using the Lagrange-Noether formalism. Inserting
(4.128) in the general definition (C.24), the Belinfante orbital angular 4-momentum of the
electromangnetic field in matter, reads

em

l ρσ
µ = lρσ

µ + (δµσxρ − δµxρxσ)J
λ
extAλ − (xρAσ − xσAρ)J

µ
ext, (4.139)

where lρσ
µ is the Minkowski orbital angular 4-momentum, previously defined in (4.62). No-

tice that if Jµ
ext = 0, both the Minkowski orbital angular 4-momentum and the Belinfante

one indeed coincides. The balance equation which
em

l ρσ
µ satisfies is given in (C.26) and in

our particular open system, we have

∂µ
em

l ρσ
µ .
= −1

8

∂Lem

∂χαβγδ
(jρσ)

αβγδ
µνλκχ

µνλκ − ∂Lext

∂Jµ
ext

(jρσ)
µ
νJ

ν
ext, (4.140)

where (jρσ)
αβγδ

µνλκ and (jρσ)
µ
ν are the total angular momentum operators, for a fourth rank

tensor and a 4-vector, respectively, as defined in (C.18). If we take the 4-divergence on
both sides of (4.139) and also consider the continuity equation for the external 4-current
∂µJ

µ
ext = 0, which is a consequence of the equations of motion (4.115), we obtain an on-shell

expression for the 4-divergence of the Belinfante angular 4-momentum:

∂µ
em

l ρσ
µ .
= ∂µlρσ

µ + T ext
ρσ + Aµ [(xρ∂σ − xσ∂ρ)δ

µ
ν + (δµρησν − δµσηρν)] J

ν
ext (4.141)

.
= ∂µlρσ

µ + T ext
ρσ − ∂Lext

∂Jµ
ext

(jρσ)
µ
νJ

ν
ext, (4.142)

where in the last term of (4.141) we recognized the expression for ∂Lext/∂Jµ
ext and (jρσ)

µ
ν =

(lρσ)
µ
ν + (sρσ)

µ
ν for the external field Jµ

ext. The tensor T ext
ρσ is the external 4-torque density

already defined in (4.64).
Notice that if we insert (4.142) in the left hand side of the Belinfante angular 4-momentum

balance equation (4.140), the terms with the total angular momentum operator acting on
Jµ
ext cancel out on both sides and the balance equation reduces simply to

∂µlρσ
µ + T ext

ρσ +
1

8

∂Lem

∂χαβγδ
(jρσ)

αβγδ
µνλκχ

µνλκ .
= 0. (4.143)
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In order to explicitly evaluate the action of (jρσ)
αβγδ

µνλκ on the constitutive tensor, let us
recall the condition for a fourth rank tensor to be invariant under Lorentz transformations
of appendix C.5. If we take the left hand side of (C.97) and use the result (4.135), we obtain

1

8

∂Lem

∂χαβγδ
(jρσ)

αβγδ
µνλκχ

µνλκ = − 1

8
FαβFγδ(xρ∂σχ

αβγδ − xσ∂ρχ
αβγδ + ηαρχ

σβγδ

− ηασχ
ρβγδ + ηβρχ

ασγδ − ηβσχ
αργδ + ηγρχ

αβσδ

− ηγσχ
αβρδ + ηδρχ

αβγσ − ηδσχ
αβγρ), (4.144)

which is exactly the same expression for the material effective 4-torque density T eff
ρσ in (4.86),

but in the same way as (4.123), without the dissipative term since in all our Lagrange-Noether
analysis we assume χµνρσ = χρσµν . With this result we understand clearer why the effective
torque exerted by the electromagnetic field on the bound charges and currents of the medium
T eff
ρσ vanishes when the medium is isotropic or invariant under boosts: for non-dissipative

media it indeed is the total angular operator acting on the constitutive tensor χµνλκ:

T eff
ρσ =

1

8

∂Lem

∂χαβγδ
(jρσ)

αβγδ
µνλκχ

µνλκ. (4.145)

As a result, the angular 4-momentum balance equation (4.143) coincides with (4.63), derived
from Maxwell equations, as it must be.
Just to see the beauty of the present theory, we can recall the definition of the 4-momentum

operator (pµ)
A
B in (C.70), in order to write an expression analogous to (4.145), but for F ext

µ .
Therefore, if we rewrite (4.123) using the definition (C.70) and the derivative (4.135), we
have

F eff
µ =

1

8

∂Lem

∂χαβγδ
(pµ)

αβγδ
µνλκχ

µνλκ, (4.146)

for the material effective 4-force density, in the case of non-dissipative media. Again, there
is no surprise why F eff

µ = 0 when the constitutive tensor of the medium is homogeneous in
space or time independent.
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4.4. Summary table of Minkowski conserved quantities

As we have seen, the Minkowski tensor is the Belinfante tensor of the electromagnetic
field in the case when there are no external charges and currents Jµ

ext = 0 and therefore its
conserved quantities are closely related to the symmetries of the non-dynamical medium. In
qualitative terms, the conditions under which we can find Minkowski conserved quantities
for the electromagnetic field inside matter are summarized in the following table:

Medium Minkowski Minkowski Minkowski Minkowski
symmetries energy momentum angular momentum tensor symmetry

No symmetry
Time independent Conserved
Homogeneous Conserved

Isotropic Conserved
Time independent, Spatial
homogeneous & Conserved Conserved Conserved components
isotropic at rest symmetric

All components
Vacuum Conserved Conserved Conserved symmetric.

Constant center of
energy velocity: c

Table 4.1.: Minkowski conserved quantities and their relationship to the symmetries of the
non-dynamical material medium, when Jµ

ext = 0.
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Chapter 5.

Dynamics for the medium and the
Abraham tensor

Time is too slow for those who wait,
too swift for those who fear,

too long for those who grieve,
too short for those who rejoice,

but for those who love, time is eternity.

Henry Van Dyke,
American writer and cleric.

So far we have only considered the material medium as a given non-dynamical background
through which the dynamical electromagnetic field propagates and therefore can be consid-
ered as an open system. This assumption is useful when the medium is not very affected by
its interaction with light so that it can be approximated to be non-dynamical or when the
medium is actually fixed in the laboratory by (not specified) external forces.
In this chapter we will take a step further and we will also consider the dynamics of the

medium by modelling it as a relativistic ideal fluid with isotropic electromagnetic properties.
Therefore, the medium will evolve in a coupled manner together with the electromagnetic
field, both constituting a closed system, where the total energy, momentum and angular mo-
mentum will be always conserved quantities. For more details about the difference between
open and closed systems, see appendix C.
Following the review [10] of Obukhov, we will apply a Lagrangian variational approach,

a modernization of the original one of Penfield and Haus in [11, 12], in order to derive an
explicit expression for the total energy-momentum tensor of the closed system. We will
see how the Abraham tensor emerges naturally in the calculation and identify Minkowski’s
and Abrahams’s material tensor parts to describe the dynamics of this isotropic medium
interacting with light.

5.1. Lagrangian variational model for the material medium

Let us model the material medium as a relativistic ideal fluid, the elements of which are
structureless particles. In the Eulerian approach this continuous medium is characterized by
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Chapter 5. Dynamics for the medium and the Abraham tensor

a 4-velocity field uµ := (cγ, γvi), a particle number density ν, an entropy of each fluid element
s and the identity (Lin) coordinate X, whose physical meaning will be explained later. The
macroscopic electromagnetic properties of the continuous medium are intrinsically isotropic
and therefore we just need two quantities in order to describe them: the permittivity ε and
the permeability µ of the medium, both assumed to be given functions of the particle number
density ν, i.e.

ε = ε(ν), (5.1)

µ = µ(ν), (5.2)

in order to take into account possible electro- and magnetostriction effects. The refraction
index of the medium is as usual defined by n2(ν) := εµ.
In section 4.3 of the previous chapter we postulated the Lagrangian density for the elec-

tromagnetic field in matter and applied the full Lagrangian-Noether formalism to this open
system. Here we will also use some of that results. Recalling equations (4.109) and (4.113),
the Lagrangian density for the electromagnetic field in matter Lem and the Lagrangian den-
sity of the external charges and currents Lext, are given by

Lem(∂µAν , χ
µνρσ) = − 1

8
χµνρσFµνFρσ, (5.3)

Lext(Aµ, J
µ
ext) = − Jλ

extAλ. (5.4)

Notice that Lem in (5.3) is valid for any linear material medium with a general χµνρσ, but this
time we know that the medium is isotropic and therefore we can use the explicit expression
(3.89) derived in section 3.4 of chapter 3, which reads

χµνρσ
iso (uµ, ν) =

1

µ0µ(ν)
(γµργνσ − γµσγνρ) , (5.5)

where the Gordon metric γµν(uµ, ν) is a given function of ν and uµ of the form

γµν(uµ, ν) = ηµν +
(n2(ν)− 1)

c2
uµuν . (5.6)

Finally, inserting (5.5) and (5.6) in (5.3), we can express the electromagnetic Lagrangian
density Lem for the special case of an isotropic medium, just in terms of the electromagnetic
field Fµν and the material variables uµ and ν, as

Lem(∂µAν , u
µ, ν) = − 1

4µ0µ(ν)
F µνFµν −

(n2(ν)− 1)

2µ0µc2
uνu

σF µνFµσ. (5.7)

On the other hand, the fundamental equations which govern the dynamics of the medium
are the equations of the relativistic hydrodynamics for an ideal fluid, which read

∂µ(νu
µ) = 0, (5.8)

uµ∂µs = 0, (5.9)

uµ∂µX = 0, (5.10)

uµuµ = c2. (5.11)
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The first equation (5.8) is the particle number continuity equation, which is analogous to
the non-relativistic mass continuity equation and it describes the local conservation of the
number of particles of the fluid. The second equation (5.9) takes into account the entropy
conservation along the streamlines of the ideal fluid and therefore only reversible processes are
allowed for this adiabatic or isentropic fluid. The entropy along each streamline is conserved,
but the entropy in different streamlines do not have to be necessarily the same. In order
to solve this point, Penfield and Haus in [11, 12] explain that they used the Lin coordinate
X to identify the particles from different streamlines, along which the identity coordinate
has also to be conserved as in (5.10). The last equation (5.11) is the usual normalization
that a 4-velocity must satisfy in Special Relativity, since it actually has only 3 independent
components, the velocity field v(x, t).
In order to find the Lagrangian density Lm = Lm(uµ, ν, s,X), which originates the required

equations (5.8)-(5.11) as Euler-Lagrange equations of it, we will use a variational approach
introducing enough Lagrange multipliers Λ:

Lm(uµ, ν, s,X,Λ(I)) = −ρ(ν, s) + Λ0(uµuµ − c2)− νuµ∂µΛ
1 + Λ2uµ∂µs+ Λ3uµ∂µX,

(5.12)

where ρ(ν, s) is the thermodynamic internal energy density of the ideal fluid of non-electromagnetic
nature and Λ0,Λ1,Λ2,Λ3 are all the Lagrange multipliers.
Since we already know the Lagrangian densities of all parts of the system, we can write

the total Lagrangian density L as the sum of the parts by

L = Lm + Lem + Lext, (5.13)

where the only external field considered is the external 4-current density Jµ
ext and, of course,

the spacetime metric. The corresponding equations of motion obtained by calculating the
variational derivatives (C.2)-(C.3) of the total Lagrangian density L with respect to each
dynamical field: Aµ, s, X, Λ0, Λ1, Λ2,Λ3, uµ and ν, are respectively given by

∂µH
µν = Jν

ext, (5.14)

∂µ(Λ
2uµ) +

∂ρ

∂s
= 0, (5.15)

∂µ(Λ
3uµ) = 0, (5.16)

uµuµ = c2, (5.17)

∂µ(νu
µ) = 0, (5.18)

uµ∂µs = 0, (5.19)

uµ∂µX = 0, (5.20)

δLem

δuµ
+ 2Λ0uµ − ν∂µΛ

1 + Λ2∂µs+ Λ3∂µX = 0, (5.21)

δLem

δν
− ∂ρ

∂ν
− uµ∂µΛ

1 = 0. (5.22)

Notice that (5.14) and (5.17)-(5.20) are the field equations required by theory, whereas
(5.15), (5.16), (5.21) and (5.22) are 4 equations that allow us to determine the 4 Lagrange
multipliers and thus write the total Lagrangian density just in terms of Aµ, u

µ, ν, s and X.
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Additionally, if we apply the first and second law of thermodynamics for reversible pro-
cesses at each element fluid, we have

Tds = d
(ρ
ν

)
+ pd

(
1

ν

)
, (5.23)

where T is the temperature and p the pressure of the medium at each fluid element. From
(5.23) we obtain the the following derivatives,

∂ρ

∂s
= νT, (5.24)

∂ρ

∂ν
=

ρ+ p

ν
. (5.25)

which can be considered as the definitions of temperature T and pressure p for this medium.
Then, inserting (5.24) and (5.25) into the equations of motion (5.15) and (5.22), we can
express them better as

∂µ(Λ
2uµ) + νT = 0, (5.26)

δLem

δν
− ρ+ p

ν
− uµ∂µΛ

1 = 0. (5.27)

In order to find an explicit expression without Lagrange multipliers for the material La-
grangian density Lm in (5.12), let us multiply (5.21) by uµ and then replace (5.25) into it,
in order to obtain

Λ0 =
1

2c2

[
ν
δLem

δν
− δLem

δuµ
− ρ− p

]
. (5.28)

If we now insert (5.28) back into (5.21), we obtain an important result

−ν∂µΛ
1 + Λ2∂µs+ Λ3∂µX =

uµ

c2

(
ρ+ p− ν

δLem

δν

)
−
(
δνµ −

1

c2
uµu

ν

)
δLem

δuν
. (5.29)

Finally, if we multiply (5.29) by uµ and then replace it into the original expression (5.12),
we can write Lm “on-shell”1, by

Lm(∂µAν , u
µ, ν, s)

.
= p(ν, s)− ν

δLem

δν
(∂µAν , u

µ, ν). (5.30)

5.2. Total energy-momentum tensor and balance equation
for the total closed system

Now we are in conditions to derive the explicit expression for the total canonical energy-
momentum of the system and the balance equation that it satisfies. Evaluating the definition

1See (C.7) to understand what means “on-shell”
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(C.6) for the material Lagrangian density (5.12), we obtain

m

T µ
ν :=

∂Lm

∂(∂νΛ1)
∂µΛ

1 +
∂Lm

∂(∂νs)
∂µs+

∂Lm

∂(∂νXλ)
∂µX

λ − δνµLm (5.31)

= uν
(
−ν∂µΛ

1 + Λ2∂µs+ Λ3∂µX
)
− δνµp+ νδνµ

δLem

δν
(5.32)

=
ρ

c2
uµu

ν +

[
1

c2
uµu

µ − δνµ

](
p− ν

δLem

δν

)
+

(
1

c2
uµu

λ − δλµ

)
uν δLem

δuλ
, (5.33)

where we have used the relation (5.29). Since we already know the explicit expression for
Lem in (5.7), we can straightforwardly calculate the following derivatives:

δLem

δuλ
= − (n2 − 1)

µ0µc2
uνF

µνFµλ, (5.34)

δLem

δν
= − 1

2

[
F ρλFρσu

σuλ ε0
∂ε

∂ν
+

(
1

c2
F ρλFρσu

σuλ −
1

2
F ρσFρσ

)
1

µ0µ2

∂µ

∂ν

]
, (5.35)

and replacing (5.34) and (5.35) in (5.33), we see that the explicit expression for the canonical

energy-momentum tensor
m

T µ
ν of the isotropic material medium, reads

m

T µ
ν =

ρ

c2
uµu

ν +

(
1

c2
uµu

ν − δνµ

)
peff +

(n2 − 1)

µ0µc2

[
FµλF

ρλuρu
ν − 1

c2
FρλF

ρσuσu
λuµu

ν

]
,

(5.36)

where the effective pressure takes into account the possible electro- and magnetostriction
effects in the medium and is defined as

peff := p+
ν

2

[
FρσF

ρλuσuλ ε0
∂ε

∂ν
+

(
1

c2
FρσF

ρλuσuλ −
1

2
FρσF

ρσ

)
1

µ0µ2

∂µ

∂ν

]
. (5.37)

The energy-momentum balance equation for the total system composed by electromagnetic
field and dynamic material medium, eventually interacting with external charges and currents
Jµ
ext, can be obtained from the general expression (C.5). Noting that Jµ

ext is the only external
field acting on the system, the “on-shell” total energy-momentum balance equation must be
formally given by

∂ν
m

T µ
ν + ∂ν

em

T µ
ν .
= − ∂Lext

∂Jν
ext

∂µJ
ν
ext, (5.38)

.
= Aν(∂µJ

ν
ext), (5.39)

where
em

T µ
ν is the electromagnetic energy-momentum tensor already calculated in equation

(4.118) from section 4.3. The 4-divergence of
em

T µ
ν is given in (4.121) and if we insert it in

(5.39), the non-gauge invariant terms cancel out, and we obtain

∂ν
m

T µ
ν + ∂νΘµ

ν + FµνJ
ν
ext

.
= 0. (5.40)
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Notice that the only non-scalar dynamical field of Lm is the 4-velocity uµ, but its derivatives
do not appear in the Lagrangian. Therefore we conclude that the material spin current

density
m

Sρσ
µ as defined in (C.12) vanishes for this ideal medium and therefore the canonical

energy-momentum tensor of matter
m

T µ
ν coincides with the Belinfante’s one

m

Θµ
ν , as defined

in (C.20), i.e.

m

Θµ
ν =

m

T µ
ν . (5.41)

If we define the total energy-momentum tensor Tµ
ν of the system formed by electromag-

netic field and dynamic material, as the sum of the Belinfante tensors of each part:

Tµ
ν :=

m

Θµ
ν +Θµ

ν , (5.42)

then from (5.40) we see that the total energy-momentum balance equation will be just given
by

∂νTµ
ν + F ext

µ
.
= 0, (5.43)

where F ext
µ = FµνJ

ν
ext is the external Lorentz 4-force density. As a direct consequence of

(5.43), when there are no external charges and currents Jµ
ext = 0, there can still be transfer of

energy and momentum between the subsystems (electromagnetic field and material medium),
but the total energy and momentum of the whole system will always be conserved,

∂νTµ
ν .
= 0. (5.44)

From now on, we will call the Belinfante energy-momentum tensor of matter
m

Θµ
ν as the

Minkowski material tensor of the system, since
m

Θµ
ν is the tensor that we have to add to the

Minkowski one of chapter 4 in order to obtain the correct total tensor of the complete system.
From the explicit expression (5.36), we can straightforwardly calculate the antisymmetric
part of the Minkowski material tensor, which is non-zero

m

Θ[µν] =
(n2 − 1)

µ0µc2
F[µ|λF

ρλuρu|ν] 6= 0. (5.45)

According to the Lagrange-Noether formalism of chapter C, the Belinfante total tensor of
any closed system is always symmetric, but not their parts. We know that the Minkowski
material and electromagnetic tensors are not symmetric, but if the derivation is correct, the
sum of both tensors should produce a total symmetric tensor. In order to check if this is
true, we will compute the explicit expression for the Minkowski tensor Θµ

ν , for which we
first need to know Hµν in this isotropic medium. Thus,

Hµν =
1

2
χµνρσ
iso Fρσ (5.46)

=
1

µ0µ
γµργνσFρσ (5.47)

=
1

µ0µ

[
F µν +

(n2 − 1)

c2
(
F µλuλu

ν − F νλuλu
µ
)]

. (5.48)
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Then, inserting (5.48) in the definition of the Minkowski tensor given in (4.11), its explicit
expression reads

Θµ
ν =

1

µ0µ

(
FµλF

λν +
1

4
δνµFρσF

ρσ

)
+
(n2 − 1)

µ0µc2

(
FµσF

σλuλu
ν + FµσF

λνuσuλ +
1

2
δνµFσρF

σλuρuλ

)
.

(5.49)

As expected, by directly calculating the antisymmetric part of Θµ
ν , we see that it is the

negative of
m

Θ[µν]:

Θ[µν] = −(n2 − 1)

µ0µc2
F[µ|σF

λσuλu|ν], (5.50)

and therefore the total energy-momentum tensor of the whole system is indeed symmetric

T[µν] =
m

Θ[µν] +Θ[µν] = 0. (5.51)

The total angular 4-momentum tensor of the total system is defined as the sum of the
electromagnetic and material angular 4-momenta and according to (C.24), it reads

Jρσ
µ := xρTσ

µ − xσTρ
µ (5.52)

=
m

l ρσ
µ + lρσ

µ. (5.53)

Additionally, since the total energy-momentum tensor Tµ
ν of the system is symmetric, taking

the 4-divergence of the total energy-momentum balance equation (5.43), we can obtain the
corresponding total angular 4-momentum balance equation of the whole system, which reads

∂µJρσ
µ + T ext

ρσ
.
= 0, (5.54)

where T ext
ρσ is the external 4-torque density, defined in (4.64). Therefore, in the same way as

in (5.43), when Jµ
ext = 0, all the components of Jρσ

µ will be conserved

∂µJρσ
µ .
= 0, (5.55)

even though there can be still angular momentum transfer between the subsystems. This is
a fundamental proof that the asymmetry of the Minkowski tensor is completely necessary
for the consistency of the theory, while the total tensor is required to be symmetric.
In order to finish this section, let us add the Minkowski electromagnetic and material parts,

given in (5.36) and (5.49), and find the explicit expression for the total energy-momentum
of the closed system in the case of an isotropic material medium:

Tµ
ν =

ρ

c2
uµu

ν +

(
1

c2
uµu

ν − δνµ

)
peff +

1

µµ0

(
FµσF

σν +
1

4
δνµF

σλFσλ

)
+
(n2 − 1)

µµ0c2

(
FµσF

λνuσuλ +
1

2
δνµFσρF

σλuρuλ −
1

c2
F ρσFρλuσu

λuµu
ν

)
.

(5.56)
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5.3. The Abraham tensor

In last section we saw that the total energy-momentum of the system can be interpreted as
the sum of the Minkowski momentum for the electromagnetic field in matter and the canon-
ical energy momentum for the fluid in interaction with the field. Both energy-momentum
tensors are non-symmetric, since they describe open subsystems, but their sum is symmetric.
If we inspect the explicit expression of the total energy-momentum tensor Tµ

ν in (5.56),
maybe we can find a more practical way to split it into different subsystems. It would be ideal
if we could find a separation of Tµ

ν , for which the electromagnetic energy-momentum tensor
would have all the terms containing the electromagnetic field Fµν , whereas the material
tensor part would have all the material quantities, i.e. uµ, ν, ρ, p, n, µ and ε. By inspecting
(5.56), in fact see that the latter is impossible due to the inherently coupled nature of the
combine system. Notice, however, that if we assign the third and fourth terms of (5.56) to
some energy-momentum tensor Ωµ

ν for the electromagnetic field in matter, it will indeed
contain all the explicit terms with Fµν , expect the ones implicit in the effective pressure peff :

Ωµ
ν :=

1

µµ0

(
FµσF

σν +
1

4
δνµF

σλFσλ

)
+
(n2 − 1)

µµ0c2

(
FµσF

λνuσuλ +
1

2
δνµFσρF

σλuρuλ −
1

c2
F ρσFρλuσu

λuµu
ν

)
.

(5.57)

Actually, the tensor just defined in (5.57) is the famous Abraham energy-momentum tensor
of the electromagnetic field in matter, first proposed by Abraham [8, 9] in 1909. It has the

advantage of being symmetric and even more important that its material counterpart
m

Ωµ
ν

has the same form as the tensor of an ideal fluid in isolation, but with effective pressure peff :

m

Ωµ
ν :=

ρ

c2
uµu

ν +

(
1

c2
uµu

ν − δνµ

)
peff . (5.58)

In contrast to the Minkowski tensor, which can be directly derived from Maxwell’s equa-
tions or from the Lagrangian formalism, as the Belinfante energy-momentum tensor of light
in matter, the Abraham tensor does not arise from first principles and it is not related to
the symmetries of the medium when it is non-dynamical. However, due to the simple inter-

pretation of its material part
m

Ωµ
ν , many authors have described the momentum of light in

vacuum with Abraham’s expression. Thus, the total energy-momentum of the system either
in the Abraham or in the Minkowski separation, reads

Tµ
ν =

m

Ωµ
ν + Ωµ

ν =
m

Θµ
ν +Θµ

ν . (5.59)

There is still an open question to determine whether this appearance of the Abraham
tensor within the total tensor of the system is just a coincidence or a deeper and more
general feature of the theory. At the moment we have some preliminary results that in
anisotropic uniaxial media the Abraham tensor will no longer be useful.
In order to obtain a more familiar explicit expression for the Abraham tensor Ωµ

ν , we
can evaluate the definition (5.57) in the rest frame of the medium, i.e. in the limiting
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case when uµ = (c, 0). Taking into account the previous consideration and also using the
constitutive relations of an isotropic and homogeneous medium at rest, given in (3.78)-(3.79),
the Abraham tensor Ωµ

ν
(0) in matrix form, reads

Ωµ
ν
(0) =

(
1
2
(DiEi +BiHi)

1
c
εijkEjHk

−1
c
ε̂ijkE

jHk 1
2

[
EiD

j + EjDi +HiB
j +HjBi − δji

(
DkEk +BkHk

)] ) ,

(5.60)
from where we see that in the rest frame of the medium the Abraham energy density UA(0) and
the Abraham energy flux density SA(0) indeed coincide with the corresponding Minkowski
expressions in (4.21) and (4.22),

UA(0) :=
1

2
(D ·E +B ·H) (5.61)

SA(0) := E ×H . (5.62)

Since now the Abraham tensor is symmetric, the Abraham momentum density satisfies

πA(0) =
1

c2
SA(0), (5.63)

and therefore in has the famous form as given in (1.2):

πA(0) =
1

c2
E ×H . (5.64)
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Chapter 6.

Relativistic analysis of the dielectric
“Einstein box” thought experiment

“Vosotros, los que veis, ¿qué habéis hecho de la luz?”

Paul Claudel,
poeta francés.

In chapter 5, we followed Obukhov [10] and derived an explicit expression for the total
energy-momentum tensor Tµ

ν of the closed system composed by electromagnetic field and a
dynamical isotropic material medium. We also noticed that we can express Tµ

ν either in the
Minkowski or in the Abraham decomposition and both should give equivalent results, since
both add to the same total tensor. In this chapter, we apply those general results to analyse
with great detail and in a fully relativistic manner, the particular problem of the “Einstein
box” thought experiment, which we already presented as motivation in subsection 2.3.
In the past 10 years, there have been many authors, for instance [76, 86, 87, 88], who have

used the Einstein box argument, first proposed by Balazs [14] in 1953, as their strongest
argument to uniquely select the Abraham momentum as the momentum of the field in
matter for certain cases, specially when there is uniform motion of the center of energy of
the total system. Their main arguments are that the Minkowski momentum would predict
a motion of the slab in the opposite direction to the incident pulse and that the Abraham
momentum is the only one which simultaneously conserves the velocity of the center of
energy, the total energy and the total momentum of the system.
In this chapter we make use of the general result (5.56) for the total energy-momentum

tensor of the closed system and calculate in detail the relativistic expressions for the Abra-
ham and Minkowski momenta, together with the corresponding balance equations for this
isotropic and homogeneous medium. We explicitly show that using the Minkowski mo-
mentum with its adequate balance equations, one arrives at the same results as with the
Abraham momentum and therefore we demonstrate that the Abraham momentum is not
uniquely selected as the only “correct” momentum for light in matter for this particular
case. If we take the non-relativistic approximation of the final expressions for the velocity
of the slab, the velocity of the light pulse, the Minkowski and the Abraham momenta, we
obtain the same solution of Barnett, Loudon, Mansuripur and others, using either tensor
alternative. Additionally, we use the non-relativistic expressions to identify some unjustified
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assumptions tacitly made by previous authors which explain why they only obtained the
Abraham momentum for this case. The results presented in this chapter are not discussed
in the literature and will be publish in [16].

6.1. Relativistic model and the total energy-momentum
tensor

Suppose there is a dielectric slab of mass M with homogeneous and isotropic electromag-
netic properties, floating in space. In its rest frame, its index of refraction is n, its length is
L and it occupies a finite volume V . The slab is initially at rest, but a light pulse of total en-
ergy E0 and finite volume Vp � V strikes the slab from vacuum at normal incidence putting
it in motion with a final constant velocity v. The slab is equipped with anti-reflection coat-
ings so that the pulse can enter the slab at normal incidence without reflection and energy
losses. A sketch of the situation is show in figure 6.1. Notice that contrary to the same
problem presented in 2.3, here we never speak in terms of “photons” and we assume from
the beginning the light is propagating as a classical and compact wave packet.

before after

n nn

Figure 6.1.: A light pulse enters a dielectric slab initially at rest and puts it in motion.

A fully relativistic model for the total energy-momentum tensor Tµ
ν for a general linear,

non-dissipative, non-dispersive and isotropic dielectric fluid with proper energy density ρ,
pressure p, 4-velocity field uµ, relative permittivity ε, relative permeability µ and particle
number density ν, interacting with the electromagnetic field Fµν is given in equation (5.56)
from section 5.2. Neglecting gravitational as well as possible electro- and magnetostriction
effects, and assuming negligible pressure p ≈ 0, the total tensor reduces to

Tµ
ν =

ρ

c2
uµu

ν +
1

µµ0

(
FµσF

σν +
1

4
δνµF

σλFσλ

)
+
(n2 − 1)

µµ0c2

(
FµσF

λνuσuλ +
1

2
δνµFσρF

σλuρuλ −
1

c2
F ρσFρλuσu

λuµu
ν

)
. (6.1)

Due to the balance equation (5.43), when Jν
ext = 0, the energy-momentum tensor of the

complete system is conserved and we have a closed system. If we choose a volume V ′ big
enough so that it encloses the pulse and the slab until the pulse leaves the slab from the other
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side, then we can integrate the conservation equation and obtain that the total 4-momentum
Pµ := (E/c,−p) of the whole system, defined as

Pµ :=
1

c

∫
V

Tµ
0 dV, (6.2)

is a conserved, i.e. time independent, quantity. We will use this conservation of energy and
momentum of the closed system to study the motion of the slab, when the pulse is propa-
gating inside it (once the slab achieved a final constant velocity after a short deformation
transient).
Because of the anti-reflection coatings, the light pulse can pass completely in the same

incident direction (without reflection components), so that the problem can be treated just
as a one-dimensional problem. Therefore the 4-velocity uµ := (cγ, γv) of the dielectric slab
can be chosen to be

uµ = (cγ, γv, 0, 0), (6.3)

where γ := (1− β2)−1/2 and β := v/c as usual. Finally, we assume that the energy density
distribution in the comoving frame is homogeneous:

ρ =
Mc2

V
= const. (6.4)

6.2. Energy-momentum tensors of the electromagnetic
field

As we showed in the chapter 5, the total energy-momentum tensor (6.1) can be split in
different ways. For example, we can assign for the slab the energy-momentum tensor of a
fluid without pressure (dust):

m

Ωµ
ν :=

ρ

c2
uµu

ν , (6.5)

and then light will be described by the Abraham energy-momentum tensor

Ωµ
ν := Tµ

ν −
m

Ωµ
ν (6.6)

=
1

µµ0

(
FµσF

σν +
1

4
δνµF

σλFσλ

)
+
(n2 − 1)

µµ0c2

(
FµσF

λνuσuλ +
1

2
δνµFσρF

σλuρuλ −
1

c2
F ρσFρλuσu

λuµu
ν

)
. (6.7)

With this interpretation the total conserved 4-momentum of the system in (6.2) turns out

to be Pµ =
m,A

P µ +
A

Pµ, where

m,A

P µ :=
1

c

∫
V ′

m

Ωµ
0dV,

A

Pµ :=
1

c

∫
V ′

Ωµ
0dV. (6.8)
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On the other hand, we can consider that the electromagnetic energy and momentum
content is described by the Minkowski energy-momentum tensor Θµ

ν , which is explicitly
given in (5.49) by

Θµ
ν =

1

µµ0

(
FµσF

σν +
1

4
δνµFσλF

σλ

)
+
(n2 − 1)

µµ0c2

(
FµλF

λρuρu
ν + FµσF

λνuσuλ +
1

2
δνµFσρF

σλuρuλ

)
. (6.9)

This tensor can be obtained by adding the term

Qµ
ν :=

(n2 − 1)

µµ0c2

[
FµλF

λρuρu
ν +

1

c2
F ρσFρλuσu

λuµu
ν

]
(6.10)

to the Abraham tensor, so that

Θµ
ν = Ωµ

ν +Qµ
ν . (6.11)

Consequently, the total energy-momentum tensor can be written as Tµ
ν =

m

Θµ
ν +Θµ

ν , where

m

Θµ
ν :=

m

Ωµ
ν −Qµ

ν (6.12)

=
ρ

c2
uµu

ν − (n2 − 1)

µµ0c2

[
FµλF

λρuρu
ν +

1

c2
F ρσFρλuσu

λuµu
ν

]
, (6.13)

is the Minkowski energy-momentum tensor for matter. Finally, with this interpretation, the

total conserved 4-momentum Pµ can be also expressed as Pµ =
m,M

P µ +
M

Pµ, where

m,M

P µ :=
1

c

∫
V ′

m

Θµ
0dV,

M

Pµ :=
1

c

∫
V ′

Θµ
0dV, (6.14)

are the Minkowski 4-momenta for matter and electromagnetic field, respectively.

6.3. Explicit calculation with the Abraham tensor

6.3.1. Abraham energy and momentum for the slab

We derive first the Abraham tensor, which is more compact in this case. If we substitute

(6.3) into (6.8a) and use the identification
m,A

P µ = (
m,A

E /c,−
m,A
p ), then the Abraham energy

and momentum for the slab read

m,A

E =

∫
V ′

ρ
u0u

0

c2
dV, (6.15)

m,A
p i = − 1

c

∫
V ′

ρ
uiu

0

c2
dV. (6.16)
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Therefore, by explicitly calculating the integrals, we obtain

m,A

E = ργ2Vv,
m,A
p i = − 1

c2
viργ

2Vv, (6.17)

where Vv is the volume of the slab in the reference frame where it moves with velocity
v = v x̂. Using the relation Vv = V/γ and expression (6.4), we have

m,A

E = γMc2,
m,A
p = γMv x̂. (6.18)

These results (6.18) are the usual expressions for the (relativistic) energy and momentum of
a body of mass M moving with velocity vx̂, which is not surprising because of our choice
(6.5) for the energy and momentum of the medium. The relation between momentum and
energy is also the usual one for a relativistic massive particle:

m,A
p = v

m,A

E

c2
x̂. (6.19)

6.3.2. Abraham energy and momentum for the light pulse

Using (6.3), (6.7), (6.8b) and the identifications of the components of Fµν in (3.44), we
can explicitly compute the energy and momentum associated to the Abraham tensor for the
electromagnetic field in terms of E, B and v:

A

E =
1

2µµ0

∫
V ′
(E2/c2 +B2)dV − (n2 − 1)

2µµ0c2

∫
V ′

{
γ2(2γ2 − 1)

[
(E · v)2/c2 + (B · v)2 −E2

− v2B2 − 2E · (v ×B)
]
− 2γ2(E · v)2/c2

}
dV, (6.20)

A
p =

1

µµ0c2

∫
V ′

E ×B dV − (n2 − 1)

µµ0c4

∫
V ′

{
γ2(E · v)(E + v ×B)

+γ4v
[
(E · v)2/c2 + (B · v)2 −E2 − v2B2 − 2E · (v ×B)

]}
dV. (6.21)

From (6.20) and (6.21) we see that to zeroth order in v they reduce to the well known
expressions for a linear, isotropic and homogeneous medium at rest,

A

E(0) =
1

2

∫
V ′
(E ·D +B ·H) dV,

A
p(0) =

1

c2

∫
V ′

E ×H dV, (6.22)

where we used the constitutive relations in the medium at rest D = εε0E and H = B/µµ0.
We consider the special simple case in which the electromagnetic pulse can be approxi-

mated by a “cut” plane wave of finite volume Vp � V , i.e. much less than the volume of the
slab, but big enough so that the continuum approximation for the slab is valid, propagating
in the direction x̂ of the slab’s motion. Solving the macroscopic Maxwell equations inside
the medium for light with any polarization (see A.2.1 and A.2.2 for more details), we can
write,

B(x, t) =
1

vβ
x̂×E, (6.23)
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where vβ is the phase velocity of light inside the moving medium, given by

vβ := c
(1 + nβ)

(n+ β)
. (6.24)

Since in our one-dimensional case v ⊥ E and v ⊥ B, the expressions (6.20) and (6.21)
reduce to:

A

E =
1

2µµ0c2

∫
V ′
(E2 + c2B2)dV +

(n2 − 1)

2µµ0c2

∫
V ′

γ2(2γ2 − 1)|E + v ×B|2 dV, (6.25)

A
p =

1

µµ0c2

∫
V ′

E ×B dV +
(n2 − 1)

µµ0c4

∫
V ′

γ4v|E + v ×B|2dV. (6.26)

If we insert (6.23) and (6.24) into (6.25) and (6.26), we obtain more compact expressions for
A

E and
A
p, just in terms of E2:

A

E =
1

µµ0c2

∫
V ′

n(n+ 2β + nβ2)

(1 + nβ)2
E2 dV, (6.27)

A
p =

1

µµ0c3
x̂

∫
V ′

n(1 + 2nβ + β2)

(1 + nβ)2
E2 dV. (6.28)

When the pulse is fully inside the slab, we can integrate over the volume Vp of the pulse
and the factors with n and β will go out the integral. Therefore, we can relate the Abraham
momentum and Abraham energy of the pulse inside the medium by

A
p =

(1 + 2nβ + β2)

(n+ 2β + nβ2)

A

E

c
x̂, (6.29)

which is an important result that we will use in the next subsection. It is worthwhile to
notice that (6.29) is valid for any polarization of the “cut” plane-wave pulse, but not for

a general pulse form since, if we compare (6.25) with (6.26), we see that
A
p and

A

E are not
proportional in general. As a consistency test, it can be checked that the same result (6.29)
can be obtained if we apply a boost to the well-known Abraham expression (1.4b) valid in
the rest frame of the medium.

6.3.3. Conservation of the center of energy velocity

In [86], Barnett revitalized the argument of Balazs [14] which states that the conservation
of the center of energy velocity, in addition to the conservation of momentum, uniquely
selects the momentum of light inside the slab to be the one of Abraham. We will now
examine these arguments in more detail. We can check from (6.29) that when the medium

is at rest, we get the typical value of the Abraham momentum, see (1.4b),
A
p = (

A

E /nc)x̂,
which we can write in terms of the phase velocity of light in that reference frame v0 := c/n
as

A
p = v0

A

E

c2
x̂, (6.30)
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i.e. as if it was a particle of “moving mass”
A

M :=
A

E/c2 and velocity v0 = (c/n)x̂, in a way
similar to (6.19). In [86, 87] the explicit definition of the conserved center of energy velocity
of the system vCM is not shown, however, if we apply the result (4.107) to a closed system,
vCM will be given as

vCE =
c2

E
p, (6.31)

where E is the total energy and p is the total momentum of the system.
Now, in order to reproduce Barnett’s argument in detail, we add the momentum of light

in the form (6.30) to the momentum of the slab in (6.19) and use the total energy and
momentum conservation to get

v′CE =

A

E (c/n) +
m,A

E v
A

E +
m,A

E

, (6.32)

which is the same expression obtained in (2.13).
Strictly speaking this argument is incorrect, because v′CE is not a conserved quantity. The

expression (6.30) for the electromagnetic field is only valid when the slab is at rest, but the
final velocity of the medium is not zero and the choice of the velocity v0 = c/n for the light
pulse is inappropriate. If we want to write the expression of the momentum of the pulse as

if it were a particle with energy
A

E, then as can be seen from (6.29), the proper “particle”
velocity vp should be defined as

vp := c
(1 + 2nβ + β2)

(n+ 2β + nβ2)
, (6.33)

and hence the correct total momentum of the system would have the form p = (
A

E /c2)vpx̂+

(
m,A

E /c2)vx̂. Together with the total energy of the system E =
m,A

E +
A

E, which is also
conserved, the velocity of the center of energy vCE given by

vCE =

A

E vp +
m,A

E v
A

E +
m,A

E

x̂, (6.34)

turns out to be a conserved quantity indeed. As we said in subsection 5.2, all the components
of the total angular 4-momentum tensor Jρσ defined in (5.52) are conserved in a closed
system, including the components 0i associated to the conservation of the velocity of the
center of energy. Additionally, this conservation of (6.34) holds independently of the choice
of the Abraham or the Minkowski momentum to describe the electromagnetic field, because
it depends on the total quantities p and E.
Although formally incorrect, in practice the naive expression v0 = c/n yields a very good

approximation for the particle velocity of the pulse. As we will see in section 6.3.4, β ∼ 10−15
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in a standard case and β ∼ 10−9 in an extreme case, so if we expand (6.33),

vp =
c

n
+ 2

c(n2 − 1)

n2
β +O(β2). (6.35)

we see that vp ≈ v0 = c/n is an extremely accurate approximation indeed. It is also
remarkable, that the correct velocity that should enter (6.34) is also different from the
relativistic phase velocity vβ in (6.24), as one could naively expect as a generalization of v0.
The non-relativistic expansion of vβ reads,

vβ =
c

n
+

c(n2 − 1)

n2
β +O(β2), (6.36)

differing from (6.35) by a factor 2 in the term of first order in β. This term in (6.36) has
been measured with great accuracy in the Fizeau experiment. See, for instance [19], page
187.

6.3.4. Conservation equations and solution of the slab motion

Since we already know the explicit forms of the energy and momentum of the complete
system in the Abraham separation, we can use the two conservation equations to solve the
problem of the motion of the slab in terms of the system’s parameters. We will consider two
states of the system, first when the pulse is travelling with total energy E0 in vacuum and
the slab of mass M and refraction index n is at rest, and finally when the electromagnetic
pulse is completely inside the slab after it already reached a final constant velocity v = cβx̂.
Therefore, the energy conservation equation reads

m,A

E
(out) +

A

E
(out) =

m,A

E
(in) +

A

E
(in), (6.37)

Mc2 + E0 = γMc2 +
A

E, (6.38)

and the total momentum conservation in the propagation direction x̂ is given by

m,A
p (out) +

A
p(out) =

m,A
p (in) +

A
p(in), (6.39)

0 +
E0
c

= γMcβ +
(1 + 2nβ + β2)

(n+ 2β + nβ2)

A

E

c
. (6.40)

Equations (6.38) and (6.40) constitute a system of two equations for two unknowns β and
A

E, which we can solve in terms of the system parameters E0, M and n. From (6.38) we can

find an expression for
A

E in terms of β, which reads

A

E = E0 +Mc2(1− γ). (6.41)

This last equation already determines that the motion of the slab will be non-relativistic in
most practical situations. Let us consider the extreme case when all the energy of the light
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pulse in vacuum is transformed in kinetic energy of the slab. Then in (6.41),
A

E = 0, and we
can determine γmax as,

γmax = 1 + q, (6.42)

where we have defined the dimensionless parameter q by

q :=
E0
Mc2

. (6.43)

The parameter q (together with n) determines the motion of the slab. In practice q is
extremely small, as we shall see at the end of the section, of the order q ∼ 10−9 or less,
so from (6.42) we see that γmax will be very close to unity and therefore βmax will be at
most of the order βmax ∼

√
2q ∼ 10−4 � 1, resulting in a non-relativistic motion of the

slab. Even though we know that the motion will be non-relativistic, we will first present the
full equation for β, without any further approximation. Inserting (6.41) in (6.40), we get a
fourth order polynomial equation for β in terms of the parameters q and n:

[(1 + q − nq)2 + n2]β4 + [4(1 + q − nq)(n− q + nq) + 2n]β3

+ [2(1 + q − nq)2 + 4(n− q + nq)2 + 1− n2]β2

+ [4(1 + q − nq)(n− q + nq)− 2n]β + [(1 + q − nq)2 − 1] = 0. (6.44)

This equation can be solved analytically, but the expression of the solution is large and not
instructive. Since we already know that in practice q � 1 and β � 1, it is interesting to
search for a more tractable approximated solution for β. Therefore, if we keep only the first
order terms in (6.44), we get the well known solution of Balazs, Barnett, Mansuripur and
many others, for the non-relativistic velocity of the dielectric slab

β ≈ 1

n
(n− 1)q, (6.45)

or, in more familiar terms,

v ≈ (n− 1)

n

E0
Mc

> 0, (6.46)

which is the same expression obtained in (2.17) and it means that the slab will move in the
same direction of the electromagnetic pulse, while the pulse is propagating inside it. If we
continue in the non-relativistic limit, the light pulse will spend a time interval ∆t ≈ nL/c
inside the slab and therefore its net displacement ∆x will be as usual given by ∆x ≈
(n − 1)LE0/Mc2 > 0. Additionally, one can also find a solution of (6.44) which is exact
to second order in q:

β(n, q) =
(n− 1)

n
q − (4n3 − 5n2 − 2n+ 3)

2n3
q2 +O(q3), (6.47)

where the second term can be considered as the first “relativistic correction” for β. From
(6.47) we can estimate the error that we make by using just the first order non-relativistic
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approximation (6.45). Suppose that the slab is made of glass with n = 1.5. If it has a mass
of the order M ∼ 100g and if the light source is a good pulsed laser with energy E0 ∼ 1J ,
then the parameter q will be typically of the order q ∼ 10−15 and therefore from (6.46) we see
that v ∼ 0.1 µm/s. In this case, the difference between the second order solution of (6.47)
and the non-relativistic solution (6.45) is of the order ∆β ∼ 10−31 and the relative error of
using (6.45) is ∼ 100q ∼ 10−13%. In the extreme case of the most powerful lasers available
E0 ∼ 1kJ and a very small dielectric slab with mass M ∼ 10g, we would in theory be able to
achieve a q parameter of the order q ∼ 10−9 and a final slab velocity of order v ∼ 10 cm/s.
In this case, ∆β ∼ 10−19 and the relative error is ∼ 100q ∼ 10−7% and hence we see that the
well-known non-relativistic solution (6.46) is extremely accurate for all practical purposes.

6.4. Using the Minkowski tensor

6.4.1. Minkowski energy and momentum expressions

In [14, 19, 21, 62, 67, 75, 86] and other papers, it is argued that the Minkowski momentum
fails to describe this slab experiment by predicting the motion of the slab in the opposite
direction of the incident electromagnetic pulse. However, the mistake is to consider the same
balance equations that are valid for the Abraham momentum, while using the Minkowski
momentum for the electromagnetic pulse, thereby tacitly assigning an incorrect energy and
momentum to matter in the Minkowski picture. Jones [92] noticed this deficiency and
suggested that the correct momentum of matter should include the “forward bodily impulse”
the nature of which he was unable to describe. The explanation is simple, though: one needs
to use the canonical momentum of matter which, combined with the canonical momentum
of the electromagnetic field, is conserved in the Minkowski picture.
As we mentioned in section 6.2, we can formally compute the correct Minkowski quan-

tities from the Abraham expressions for the energy and momentum by adding the proper
components of Qµ

ν . Evaluating the expression for Qµ
0 in (6.10), we get

Qµ
0 =

(n2 − 1)

µµ0c2
n

(1 + nβ)2
E2 (β,−1, 0, 0) . (6.48)

Then, the Minkowski energy of the pulse is of the form

M

E =
A

E +

∫
V ′

Q0
0dV, (6.49)

=
n

µµ0c2
c

vβ

∫
Vp

E2 dV. (6.50)

Using (6.25) integrated over Vp, we can relate
M

E to the Abraham energy of the light pulse
by

A

E =
(n+ 2β + nβ2)

(1 + nβ)(n+ β)

M

E. (6.51)

These energies coincide, for a given n 6= 1, only in the case β = 0, i.e. in the rest frame of
the medium. In the same way, starting from the definitions (6.11) and (6.12), and using the
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expressions (6.48) and (6.50), we can determine all the other Minkowski quantities in terms

of
M

E:

M
p =

M

E

vβ
x̂, (6.52)

m,M

E = γMc2 − (n2 − 1)β

(1 + nβ)(n+ β)

M

E, (6.53)

m,M
p =

γMcβ − (n2 − 1)

(1 + nβ)(n+ β)

M

E

c

 x̂. (6.54)

The last term in the canonical momentum of the matter (6.54) accounts for the “forward
bodily impulse” of Jones [92].

6.4.2. Defining a Minkowski velocity

With the results (6.50), (6.52), (6.53) and (6.54) we can express the center of energy
velocity in the Minkowski picture as

vCE =
c2

E

γMcβ − (n2 − 1)

(1 + nβ)(n+ β)

M

E

c
+

M

E

vβ

 (6.55)

=
c2

E

v γMc2

c2
+

c(1 + 2nβ + β2)

(1 + nβ)(n+ β)

M

E

c2

 (6.56)

=
v (γMc2) + vM

M

E

E
, (6.57)

where we defined the Minkowski velocity vM of the field as

vM := c
(1 + 2nβ + β2)

(1 + nβ)(n+ β)
. (6.58)

To get the velocity (6.58), we shifted terms from
m,M
p to

M
p and therefore it does not satisfy

the prescription of a “particle velocity”,

vem = c2
pem

Eem

, vmat = c2
pmat

Emat

, (6.59)

as for the case of Abraham light and matter velocities (6.19) and (6.33). In fact, vM in (6.58)
is a very artificial velocity that one would have to associate to the field with the Minkowski
energy, in order to keep the velocity v for the block, and still obtain the correct (relativistic)
center of energy velocity (6.34). If we expand (6.58) in powers of β we see that vM is also
similar to all the other previously defined velocities,

vp,M =
c

n
+

c(n2 − 1)

n2
β +O(β2), (6.60)
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and hence equals c/n in the non-relativistic limit to zeroth order in β, as well as the Abra-
ham particle velocity. We could also define a Minkowski “particle” velocity following the
prescription (6.59). Therefore, using (6.52), (6.53) and (6.54), we have

vp,M :=
c2

M
p

M

E

=
c2

vβ
= c

(n+ β)

(1 + nβ)
, (6.61)

vmat,M :=
c2

m,M
p

m,M

E

= c

[
γMc2(1 + nβ)(n+ β)β − (n2 − 1)

M

E

]
[
γMc2(1 + nβ)(n+ β)− (n2 − 1)β

M

E

] . (6.62)

With (6.61) and (6.62) the expression for the velocity of “center of energy” naturally assumes
the form vCE = (

∑
i vi · Ei) / (

∑
i Ei), because it depends only on the total quantities, but

neither (6.61) nor (6.62) coincide with a velocity of the system which one can easily identify
and interpret (like the velocity of the block v or the phase velocity of the field vβ, for example).
Indeed, vmat,M in (6.62) depends on the energy of the pulse, which is very counter-intuitive.

When there is no light pulse, i.e.
M

E = 0 and vmat,M reduces to the velocity of the block v.

6.4.3. Minkowski balance equations

Since we already know all the explicit expressions for the Minkowski momentum and
energy of the field and slab, we can use them to write the balance equations and correctly
solve for the slab velocity also with the Minkowski formulation. From (6.52), (6.53) and
(6.54), we have

Mc2 + E0 =
[
γMc2 − (n2 − 1)β

(1 + nβ)(n+ β)

M

E

]
+

M

E, (6.63)

E0
c

=

γMcβ − (n2 − 1)

(1 + nβ)(n+ β)

M

E

c

+
(n+ β)

(1 + nβ)

M

E

c
. (6.64)

Taking (6.63) and dividing it by Mc2, we get

qM =
(1 + nβ)(n+ β)

(n+ 2β + nβ2)
(q + 1− γ), (6.65)

where qM :=
M

E/Mc2, following the definition (6.43). Then, if we divide (6.64) by Mc and
use (6.65), we obtain after some algebra the same fourth order equation for β in (6.44),
which we obtained with the Abraham formulation. Therefore in the the Minkowski picture,
we obtain the same solution β = β(n, q) for the motion of the slab. The authors who claim
that the Minkowski momentum is unable to describe the slab plus light pulse system use the
equations (6.63) and (6.64), but without the second terms inside the bracket on the r.h.s.
and hence they use incorrect balance equations.
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6.5. Discussion

When we use the total energy-momentum tensor, the conservation of momentum and
of the velocity of center of energy is always satisfied for any specific separation, because
it involves only the total quantities. However, when we use the “Abraham separation”,
we assign the energy-momentum tensor of a perfect fluid to the material subsystem, as if
it were in isolation. As a result, the definition (6.59) of the Abraham velocity of matter
coincides with the velocity of the block and it is the only separation in which this happens.
This fact explains why the Abraham tensor is relevant for the case of an homogeneous and
isotropic medium, and for the Einstein box theories in particular. Since in this picture
we can consistently interpret the block as a particle, the remaining term can be naturally
interpreted as the momentum of a “light particle” with velocity vp given in (6.33), which in
the non-relativistic approximation (very accurate for these cases, as we have demonstrated)
coincides with the phase velocity of light when the medium is at rest v0 = c/n. In other
words, with the “Abraham separation” the property of inertia of energy is not only satisfied
in the total system, as special relativity requires, but also in each subsystem separately. This
was already noticed by Brevik in 1979, see [19], page 192.
In our opinion, these are the best arguments which support the usefulness of the inter-

pretation of the Abraham momentum as the “kinetic momentum” of the field when the
momentum of light is introduced in the usual non-relativistic “mv” form,

A
p :=

A

Mv0 =

A

E

c2
c

n
=

1

n

A

E

c
. (6.66)

At the same time, in spite of the fact that the Abraham choice is simpler than Minkowski’s
one for the case of the block, our analysis in section 6.4 clearly demonstrates that the
Minkowski definition is also perfectly consistent for the Einstein box experiment, contrary
to what is sometimes claimed [14, 19, 21, 62, 67, 75, 86], provided one considers the correct
Minkowski expressions for the energy and momentum of matter. For a complementary
discussion considering other explicit field configurations, see [91]. Again, only the total
quantities are relevant for the description of the system.
In the nonrelativistic discussion of the balance equations for the slab, see for instance [14,

71, 86, 87], the Abraham momentum is selected as a consequence of treating the contribution
of the light pulse to the velocity of the center of energy as if it were a particle moving with
the phase velocity of the wave. We want to stress that this choice is not justified from the
point of view of field theory. Additionally, our fully relativistic analysis shows that this
assumption would only be consistent with the global conservation laws of the total system
if one introduces suitable (ad hoc) “particle velocities” for the pulse, both in the Minkowski
and Abraham pictures. However, these velocities do not correspond in general to any well
defined velocity in the system. In particular, they do not coincide with the phase velocity of
the wave in the moving medium, which is only true to zeroth order in the final slab velocity.
In any case, our explicit analysis, along with those in [10, 12, 18, 48], shows that the

Abraham choice of the “correct” momentum of a light pulse is only one possibility, simple
and useful for the description of isotropic media, but not at all an unique one.

83



Chapter 7.

Conclusiones

“A fin de cuentas, todo es un chiste.”

Charles Chaplin,
cómico inglés.

Esperamos que esta tesis pueda contribuir en la clarificación de esta larga controversia
sobre la definición del tensor enerǵıa-momentum de la luz dentro de un medio material. Aqúı
presentamos un enfoque completamente covariante y autoconsistente para estudiar este sis-
tema, cuyos ingredientes básicos, al menos desde un punto de vista clásico, son sólamente
tres: las ecuaciones de Maxwell macroscópicas para el campo electromagético, junto con
las ecuaciones hidrodinámicas y las relaciones constitutivas para el tipo espećıfico de mate-
rial. Estas son las ecuaciones fundamentales que gobiernan las interacciones y el movimiento
dentro del sistema total formado por campo electromagnético y medio material dinámico.
Además, a partir de ellas podemos derivar directamente las ecuaciones de balance para la en-
erǵıa, momentum y momentum angular del sistema total. De acuerdo a este enfoque, sólo el
tensor enerǵıa-momentum total tiene un significado f́ısico claro y determina la dinámica del
sistema, como mostramos expĺıcitamente en el caṕıtulo 6 mediante un importante ejemplo
particular. De esta forma, los tensores de Abraham y Minkowski puede ser entendidos sim-
plemente como diferentes separaciones del mismo tensor total, una elección que no modifica
las predicciones f́ısicas acerca del sistema.
En la literatura no hemos encontrado ningún trabajo criticando este enfoque, originalmente

planteado por Penfield y Haus [11, 12, 13], lo que puede deberse a que en realidad estas ideas
son bastante lógicas y completamente consistentes con los conceptos usuales de la F́ısica
Clásica, sin necesidad de tener que incluir suposiciones extras ad-hoc para describir casos
particulares. En otros enfoques, como por ejemplo en muchas de las publicaciones actuales
orientadas más a la óptica [17, 62, 75, 76, 83, 86, 87, 88], son usados conceptos extraños como
la densidad de fuerza de Abraham, el momentum escondido, la masa de un pulso de luz en
la materia, modificaciones de la definición de fuerza de Lorentz, etc., muchos elementos que
no son necesarios de incluir en nuestro enfoque.
En el caso particular en que el medio es considerado como un escenario no dinámico

donde la luz se propaga, es posible encontrar una respuesta definitiva para el tensor de la
luz en un medio, siendo el tensor de Minkowski la respuesta. Debido a que en este caso el
medio no modifica su dinámica de una manera similar al vaćıo, podemos consistentemente
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elegir no asignarle ningún tensor al medio y definir que toda la enerǵıa y el momentum
del sistema está contenida en el campo electrománetico acomplado con la materia, de la
misma forma que un “fotón vestido” en la teoŕıa cuántica de campos. A partir de las
ecuaciones de balance con el medio fijo, en el caṕıtulo 4 conclúımos que cuando el medio
es no-disipativo y no depende del tiempo, entonces la enerǵıa de Minkowski se conserva
y cuando el medio es no-disipativo y homogeńeo, entonces el momentum de Minkowski se
conserva. Para el caso en que el medio es simultáneamente independiente del tiempo, no-
disipativo y homogéneo, entonces el rayo de luz en la materia, incluyendo una onda de
polarización y magnetización, se propagará sin cambios efectivos a una velocidad constante
menor que c. Por otra parte, si el medio material es isótropo, entonces el momentum angular
orbital de Minkowski es la correspondiente cantidad conservada. En el caso muy particular
de un medio isótropo, homogéneo y en reposo, la enerǵıa, momentum y momentum angular
de Minkowski son conservados, además de que las componentes espaciales del tensor de
Minkowski son simétricas, es decir, el tensor de tensiones es simétrico en ese caso. Sin
embargo, las componentes 0i del tensor de Minkowski no son simétricas. De hecho, en el
caṕıtulo 4 mostramos que el tensor de Minkowski puede ser completamente simétrico sólo
en el caso del vaćıo, puesto que al fijar al medio material por fuerzas externas a un sistema
de referencia en particular, la invariancia del sistema bajo boosts necesariamente se pierde.
A pesar de su acusada falta de simetŕıa, el tensor de Minkowski describe consistentemente
la enerǵıa y el momentum efectivo del campo electromagnético en la materia y más aún
su asimetŕıa es un requerimiento fundamental de la teoŕıa para describir correctamente las
fuerzas efectivas ejercidas por el campo sobre el medio en estos casos.
Por otra parte, como nota Obukhov en [10], a pesar de que la definición del tensor de

Abraham parezca bastante artificial a primera vista, éste aparece muy naturalmente en la
expresión expĺıcita para el tensor enerǵıa-momentum total del sistema formado por campo
electromagnético y medio material con propiedas electromagnéticas isótropas, como vimos
expĺıcitamente en la sección 5.2. La descomposición de Abraham del tensor total es par-
ticularmente útil para este tipo de medio, puesto que en este caso todos los términos del
tensor total en que aparece el campo electromagnético Fµν están contenidos en el tensor
de Abraham, a excepción de la presión efectiva, por lo que podemos pensar que el sistema
está casi desacomplado. Sin embargo, estrictamente hablando, el tensor de Abraham sigue
dependiendo de las propiedades del medio, como por ejemplo del ı́ndice de refracción n y de
4-velocidad uµ del medio, por lo que en realidad el campo electromagnético siempre va a es-
tar acoplado al medio en estos sistemas, sin importar como descompongamos el tensor total.
Como resaltamos en la discusión del caṕıtulo 6, la gran importancia de asignar al campo el
tensor de Abraham, es que en el caso de un medio isótropo, el tensor enerǵıa-momentum
que le corresponde al medio material es el mismo que el de un flúıdo ideal aislado. Como
consecuencia, en el caso particular del experimento pensado de la caja de Einstein, analizado
detalladamente en nuestra publicación [16], el medio se trata como una part́ıcula de masa
M y velocidad v, por lo que el pulso de luz se puede consistentemente interpretar como

una part́ıcula de luz con “masa”
A

E/c2 y velocidad vp = c(1 + 2nβ + β2)/(n + 2β + nβ2),
la cual cualitativamente es diferente a la expresión relativista para la velocidad de fase vβ y
también a su ĺımite no-relativista v0 = c/n. En el tratamiento usual de este problema por
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Balazs, Barnett, Loudon y muchos otros, como por ejemplo en [14, 75, 86, 88], se asume a
priori que el pulso de luz se debe propagar con una velocidad c/n dentro del bloque y debido
a que vp coincide con v0 en el ĺımite no-relativista, no es una sorpresa que estos autores
hayan encontrado que sólo el momentum de Abraham es capaz de describir este sistema,
pues tácitamente ya lo estaban asumiendo según nuestro análisis.
No hay ninguna duda de que la separación de Abraham es mucho más conveniente que la de

Minkowski para sistemas como la caja dieléctrica, donde el medio es isótropo y tiene libertad
de moverse, pero cualitativamente es importante de remarcar que esta situación puede ser
igualmente descrita usando el tensor de Minkowski, como expĺıcitamente mostramos en el
caṕıtulo 6 y en [16], al contrario de lo que muchos autores afirmaban, como por ejemplo
en [14, 19, 21, 62, 67, 75, 86]. Desde el punto de vista de la teoŕıa clásica de campos, sólo
el tensor total es importante y hay ninguna razón fundamental para considerar que cierta
separación es mejor que otra.
Obukhov en [10] comenta que el tensor de Abraham podŕıa ser sólo una curiosa coinciden-

cia de los medio isótropos, pero no una caracteŕıstica general de la teoŕıa, válida en todos
los tipos de medio. Luego, seŕıa interesante generalizar el procedimiento del caṕıtulo 5 con
el fin de poder describir un medio con propiedades electromagnéticas anisótropas, donde el
carácter acoplado del tensor total se vea más claramente. Uno podŕıa también resolver un
experimento pensado muy análogo al de la caja de Einstein para poder recalcar más aún
que en todos los casos el tensor total es la cantidad f́ısica importante. El tensor constitutivo
para un medio anisótropo uniaxial derivado en el apéndice B, es parte de los resultados pre-
liminares que tenemos para llevar a cabo esta idea. También tenemos avances en determinar
la densidad Lagrangeana relativista para un cristal ĺıquido nemático, que es un modelo para
estudiar un medio anisótropo uniaxial dinámico. Es muy probable que el tensor de Abra-
ham, como fue definido en la sección 5.3 no sea útil en medios más complejos, pero quizás
podramos encontrar otra tensor que cumpla su misma función en un medio anistropo y aśı
definir un tensor de Abraham generalizado.
Otro posible trabajo futuro que es, en nuestra opinión, importante con el fin de clarificar la

controversia es aplicar este formalismo para resolver expĺıcitamente todos los experimentos
que se han realizado durante el debate. Obukhov y Hehl ya han avanzado en esta ĺınea, pues
analizaron los experimentos de James y Walker et al. en [79] y el experimento de Jones et
al. en [80]. Sin embargo, todav́ıa quedan algunos experimentos pendientes, especialmente
los más recientes como [77, 81].
Adicionalmente, se plantea estudiar las condiciones bajo las cuales podemos hacer la cor-

respondencia entre el caso del medio con diámica, donde el tensor total es importante, con el
caso del medio fijo, donde el tensor de Minkowski es importante. Al parecer esta correspon-
dencia es análoga a la que se presenta, por ejemplo, en un sistema binario con una part́ıcula
mucho más masiva que la otra. En este caso, para todos los propósitos prácticos se puede
asumir que una part́ıcula está fija en el centro y la otra gira al rededor de ella, pero bajo el
costo de perder la invariancia translacional del sistema. Por consiguiente el momentum total
del sistema no es más conservado, pero el momentum angular y la enerǵıa total del sistema
binario permanecen como cantidades conservadas.
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Appendix A.

Propagation of electromagnetic waves
within linear material media

“Una persona sin sentido del humor
es como un auto sin amortiguadores,

será sacudido por la más mı́nima
piedra en el camino.”

Henry Ward Beecher,
clérigo congregacionalista estadounidense.

Now we will study the propagation of electromagnetic waves within linear and non-
dispersive media. For this purpose, we will seek for plane-wave solutions of the macroscopic
Maxwell equations, but in regions where no external sources are present, i.e. Jµ

ext = 0. We
will see that Maxwell’s equations constrain the propagation of electromagnetic waves via a
dispersion relation and a polarization condition, which will depend on the constitutive tensor
χµνρσ of the specific medium. In particular, we will consider light propagation in isotropic
media, using the previously derived constitutive tensors of chapter 3.

A.1. General polarization condition and extended Fresnel
equation

In order to find which conditions the Maxwell equations impose to light propagation
within matter in any state of motion, let us first insert (3.61) and (3.42) in (3.40) with
Jµ
ext = 0 and we obtain a second order equation for the 4-potential Aσ:

χµνρσ(∂µ∂ρAσ) + (∂µχ
µνρσ)(∂ρAσ) = 0. (A.1)

Additionally, we will restrict our derivation to the particular case of homogeneous media, so
that it can be assumed that

∂µχ
µνρσ = 0, (A.2)
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and therefore the Maxwell equations in matter for the 4-potential (A.1) reduces simply to

χµνρσ(∂µ∂ρAσ) = 0. (A.3)

Let us now look for plane-wave solutions for the electromagnetic field inside the medium,
i.e. suppose a solution of the form,

Aσ = Ãσe
ikλx

λ

, (A.4)

where kλ is the 4-wave vector, defined as

kλ :=
(ω
c
,−k

)
, (A.5)

and Ãσ is the constant complex amplitude of the wave. If we replace (A.4) into (A.3), we get
the polarization condition that kλ and Ãλ have to satisfy in order for the plane-wave (A.4)
to be a solution of the Maxwell equations in the medium:

χµνρσkνkρÃσ = 0. (A.6)

In order to find non-trivial solutions for (A.6), it is necessary that the determinant of
χµνρσkνkρ be equal to zero, a condition which implies, in general, a quartic equation for
kλ, called the extended Fresnel equation. In [93] this general dispersion relation has been
covariantly solved and it is explicitly given by,

Gµνρσkµkνkρkσ = 0, (A.7)

where Gµνρσ is the Tamm-Rubilar tensor defined as

Gµνρσ :=
1

4!
εαβγδεθηκλχ

αβθ(µχν|γη|ρχσ)δκλ, (A.8)

which can be analytically computed given any constitutive tensor χµνρσ of a linear, non-
dispersive and quasi-homogeneous medium. Once we know the “allowed” values for the
4-vectors of light in the given medium, we can insert them back into the polarization con-
dition (A.6) and finally solve for the amplitude Ãσ. Since in chapter 3 we derived explicit
expressions for the constitutive tensors of different kinds of media, we can use this general
procedure to study the propagation of light in particular media.

A.2. Isotropic moving medium

In section 3.4 we derived in (3.89) and (3.91), the constitutive tensor for an isotropic
medium as seen by any inertial reference frame, where the medium itself has a 4-velocity
uµ = (cγ, γv). We can also assume that the velocity of the medium is a field which depends
on the coordinates and time, v = v(x, t).
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A.2.1. Dispersion relation for light propagating parallel to medium’s
motion

In subsection 3.5 it is explained that with the Gordon optical metric γµν in (3.91), we can
compute the dispersion relation for light within an isotropic material medium in any state
of motion, by contracting it with kµ, i.e.

γµνkµkν = 0. (A.9)

Therefore, in this subsection we will explicitly evaluate (A.9) for the simplest case, when
light is propagating in the same direction in which the medium is moving. The results here
obtained are oriented to be applied in the analysis of chapter 6, for the relativistic dielectric
slab problem.
Since the problem is one-dimensional, let us assume that the direction of propagation of

light and the medium is the x axis, and hence we can assume that kµ and uµ are of the form

kµ = (ω,−k, 0, 0) , (A.10)

uµ = (γ, γv, 0, 0), (A.11)

where v is the constant velocity of the medium and k the wave number of the wave. Using
(A.10) and (A.11) in (3.91), the explicit expression for γµν reads,

γµν =


1 + (n2 − 1)γ2 (n2 − 1)γ2β 0 0
(n2 − 1)γ2β −1 + (n2 − 1)γ2β2 0 0

0 0 −1 0
0 0 0 −1

 . (A.12)

Then, using (A.10) and (A.12) in (3.100), we obtain

γ00ω2 − 2γ01ωk + γ11k2 = 0, (A.13)

and finally solving for ω in terms of β, n and k, we obtain the dispersion relation to be:

ω(k) = vβk, (A.14)

where vβ is the phase velocity of the light waves inside the moving medium, defined as

vβ :=
c(1 + nβ)

(n+ β)
. (A.15)

It is remarkable that one can obtain the same result (A.15) by applying the relativistic
velocity transformation to the well-known expression v0 = c/n, valid in the comoving frame.
The relativistic transformation of the phase velocity is in general different from the usual
particle velocity transformation, but they do coincide if the phase velocity is parallel to the
relative velocity. See, for instance, [94] and [95].
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Appendix A. Propagation of electromagnetic waves within linear material media

A.2.2. Plane-wave solution of Maxwell’s equations in an isotropic
moving medium

Since we already calculated the dispersion relation and therefore the phase velocity of
light waves inside the moving medium, we will now evaluate the polarization condition of
subsection 3.5, given by

γµνkµÃν = 0, (A.16)

in order to find the solutions for the potential A and the electromagnetic field E and B.
Inserting (A.10) and (A.12) into (A.16), we obtain

(γ00ω − γ01k)Ã0 + (γ01ω − γ11k)Ã1 = 0, (A.17)

and recalling the gauge transformation (3.104), we can choose h so that Ã0 = 0 and hence
we obtain a condition only for Ã1, which reads

(γ01ω − γ11k)Ã1 = 0. (A.18)

Since (A.18) must be satisfied for all k, Ã1 must also vanish and therefore using (A.4) and
(A.14), the solution for the electromagnetic potential inside the moving medium can be
written, in vector form, as

A(x, t) = <
{
−(Ã2ŷ + Ã3ẑ)e

i(kvβt−kx)
}
, (A.19)

where Ã2 and Ã3 are complex constants. Replacing (A.19) and φ := cA0 = 0 in the definitions
(3.14)-(3.15), the electric and magnetic fields of the plane-wave turn out to be

E = <
{
ikvβ(Ã2ŷ + Ã3ẑ)e

i(kvβt−kx)
}
, (A.20)

B = <
{
ik(−Ã3ŷ + Ã2ẑ)e

i(kvβt−kx)
}
. (A.21)

This solution can be conveniently recast into

E(x, t) = E0<
{
ei(kvβt−kx+ϕ)ê

}
, (A.22)

B(x, t) =
E0

vβ
<
{
ei(kvβt−kx+ϕ)(x̂× ê)

}
(A.23)

=
1

vβ
x̂×E, (A.24)

where E0 := |E| is the amplitude of the electric field plane wave, ϕ is an extra phase of the
field and ê is the polarization vector, a complex unitary vector that indicates the direction
of the electric field E and lies in the plane perpendicular to the propagation direction k̂, i.e.

ê · k̂ = 0, ê∗ · ê = 1. (A.25)
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Appendix A. Propagation of electromagnetic waves within linear material media

A general way to parametrize the polarization vector ê in our case is,

ê =
1√

a2 + b2

(
aŷ + beiθẑ

)
, (A.26)

where a, b and θ are real constants, which describe a specific polarization state of light. If we
insert (A.26) in (A.22)-(A.23), we obtain the final expression for the electromagnetic field of
a plane-wave with any polarization, propagating within matter in the same direction as the
medium:

E(x, t) =
E0√
a2 + b2

[aŷ cos(kvβt− kx+ ϕ) + bẑ cos(kvβt− kx+ ϕ+ θ)] ,

B(x, t) =
1

vβ

E0√
a2 + b2

[−bŷ cos(kvβt− kx+ ϕ+ θ) + aẑ cos(kvβt− kx+ ϕ)]

=
1

vβ
x̂×E.

(A.27)
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Appendix B.

Covariant constitutive relations for more
general media

“No es bastante levantar al débil,
es necesario aún sostenerlo después...”

William Shakespeare,
escritor y dramaturgo inglés.

In section 3.4 we obtained an explicit expression for the constitutive tensor of an isotropic
medium in any inertial reference frame by starting from the properties of the medium in its
rest frame. Using the same method, in this chapter we will obtain explicit expressions for
the constitutive tensors of an anisotropic uniaxial medium whith dielectric and diamagnetic
anisotropy and of a magnetoelectric medium.
The information of this chapter is some preliminary work in order to later extend the

analysis of the Abraham-Minkowski controvery to more complex media.

B.1. Uniaxial anisotropic medium

Now we will analyse a medium with anisotropic electromagnetic properties, i.e. their
macroscopic response to the electromagnetic field will depend on the direction along which
light propagates inside it. It is a difficult task, in general, to find an unique expression to
describe any anisotropic medium and hence we will restrict us to study uniaxial anisotropic
media, which are a bit simpler to describe mathematically due to a symmetry that they
present. In any volume element of a medium of this kind, there is a preferred direction
around which the electromagnetic properties of the medium are the same. This direction
is usually known as the optical axis of the medium and it is described by a unitary vector
field n = n(x, t), i.e. such that |n|2 = 1. For instance, some crystals like calcite (CaCO3),
quartz (SiO2), beta barium borate (β-BaB2O4), barium titanate (BaTiO3) and also fluids
like nematic liquid crystals [96] can present these properties.
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Appendix B. Covariant constitutive relations for more general media

B.1.1. Constitutive relations in the comoving frame

Analogously to the isotropic case, we will start our analysis from the knowledge of the
properties of the medium in its rest frame and at the end we will try to find a covariant
expression which reduces to this known comoving frame expression.
If we assume that the medium is non magneto-electric, non-dissipative and also that it

has the same optical axis for the electric and magnetic anisotropy n, we can decompose εij(0)
and (µ−1)ij(0) in (3.65)-(3.66) in terms of their eigenvectors (chosen as n, n1, n2) with two
eigenvalues equal and one different:

εij(0) = ε‖n
inj + ε⊥(n

i
1n

j
1 + ni

2n
j
2), (B.1)

(µ−1)ij(0) = µ−1
‖ ninj + µ−1

⊥ (ni
1n

j
1 + ni

2n
j
2), (B.2)

where ε⊥ and ε‖ are the relative permittivity perpendicular and parallel to the optical axis
field n and µ⊥, µ‖ are the corresponding perpendicular and parallel relative permeability

functions. Since the tensors εij(0) and (µ−1)ij(0) are symmetric and real for non-dissipative and
non-dispersive media, the eigenvectors satisfy the closure relation,

ninj + ni
1n

j
1 + ni

2n
j
2 = −ηij, (B.3)

and therefore, replacing (B.3) into (B.1)-(B.2), we obtain a simpler expression for the dielec-
tric and diamagnetic tensors in the comoving frame,

εij(0) = − ε⊥η
ij +∆ε ninj, (B.4)

(µ−1)
(0)
ij = − µ−1

⊥ ηij +∆(µ−1) ninj, (B.5)

where,

∆ε := ε‖ − ε⊥, (B.6)

∆(µ−1) := µ−1
‖ − µ−1

⊥ , (B.7)

which are the electric and magnetic anisotropies, respectively.
Replacing expressions (B.4)-(B.5) into (3.71)-(3.72), we find that the linearly independent

components of the rest frame constitutive tensor χµνρσ must be given by,

χ0ijk
ani(0) = 0, (B.8)

χ0ij0
ani(0) = − µ−1

0 ε⊥η
ij + µ−1

0 ∆ε ninj, (B.9)

χklmq
ani(0) = µ−1

0 µ−1
‖
(
ηkmηlq − ηkqηlm

)
+ µ−1

0 ∆(µ−1)
(
ηkmnlnq − ηkqnlnm + ηlqnknm − ηlmnknq

)
. (B.10)

The components of χµνρσ
ani(0) clearly reduce to the ones of the isotropic case χµνρσ

iso(0) in (3.83)-

(3.85), in the limit ε‖ → ε⊥ = ε and µ−1
‖ → µ−1

⊥ = µ−1.
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Appendix B. Covariant constitutive relations for more general media

B.1.2. Two optical metrics and factorization of the Fresnel equation

Using Maple and Grtensor, we explicitly replaced the non-vanishing components of the
constitutive tensor (B.8)-(B.10) into the general dispersion relation (A.7) and its solution
(A.8) of appendix A, and we obtained a factorized form of the quartic Fresnel equation in the
rest frame of the medium. The two factors correspond to two different dispersion relations
and therefore two different optical metrics can be defined in this case:

(γµν
e(0)kµkν)(γ

ρσ
m(0)kρkσ) = 0, (B.11)

with

γµν
e(0)kµkν = n2 ω2

c2
− αek

2 + (αe − 1)(n · k)2, (B.12)

γµν
m(0)kµkν = n2 ω2

c2
− αmk

2 + (αm − 1)(n · k)2, (B.13)

where

n2 := µ⊥ε⊥, (B.14)

and the parameters αe and αm also quantify the degree of dielectric and diamagnetic uniaxial
anisotropy by,

αe :=
ε⊥
ε‖

and αm :=
µ⊥

µ‖
. (B.15)

As a consequence, the reduced quadratic Fresnel equation γµν
e(0)kµkν = 0 implies that if k is

parallel to n then necessarily n2ω2/c2−k2 = 0 which means that in this case light propagates
with the expected effective refraction index for the ordinary ray: n. On the other hand, if k
is orthogonal to n then the Fresnel equation reduces to n2ω2/c2−αek

2 = 0. This means that
light propagates with an effective refraction index ne such that n2

e := n2/αe = ε‖µ⊥. We may
call this the “electric” extraordinary ray. Similarly, the second Fresnel equation γµν

m(0)kµkν = 0
leads to a normal ordinary ray refraction index n for waves with wave vector parallel to the
optical axis n and a refraction index nm for k ⊥ n, with n2

m := n2/αm = ε⊥µ‖, which
correspond to the “magnetic” extraordinary ray. Since light propagates inside this medium
as if there were two “electric” refraction indices and two “magnetic” refraction indices (in fact
they are only three, because n has degeneracy), the medium is said to present birefringence
(electric and magnetic), i.e. light rays will propagate as if the medium had different refraction
indices, depending on their directions of propagation and the polarization.

B.1.3. Covariant description of the constitutive tensor

Since both (B.12) and (B.13) must be covariant quantities, it is not difficult to identity
the general expression of the optical metrics in a reference frame where the medium moves
with 4-velocity uµ = (cγ, γv):

γµν
e :=αe η

µν +
(n2 − αe)

c2
uµuν + (αe − 1)NµNν ,

γµν
m :=αm ηµν +

(n2 − αm)

c2
uµuν + (αm − 1)NµNν .

(B.16)
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Here Nµ is a spacelike unit 4-vector, which is also orthogonal to the timelike 4-vector uµ,
i.e.

Nµuµ = 0, (B.17)

NµNµ = −1, (B.18)

uµuµ = c2, (B.19)

and it is the covariant generalization of the optical axis direction. By definition, in the rest
frame Nµ reduces to Nµ

(0) = (0, ni).

Following the development of Balakin and Zimdahl in [97], where the constitutive tensor of
a medium with only electric anisotropy is expressed in terms of the optical metrics, we found a
natural generalization, which also includes magnetic anisotropy and which is explicitly given
in terms of the two metrics (B.16) by

χµνρσ
ani =

1

αe µ0µ⊥
(γµρ

e γνσ
e − γµσ

e γνρ
e ) +

1

(αm − αe)µ0µ⊥
(∆γµρ∆γνσ −∆γµσ∆γνρ) , (B.20)

where ∆γµν is the difference of the optical metrics,

∆γµν := γµν
e − γµν

m . (B.21)

Replacing (B.16) into (B.20), we obtain the explicit covariant expression for χµνρσ, ade-
quate to describe the electromagnetic properties of the uniaxial anisotropic medium in any
reference frame:

χµνρσ
ani = µ−1

0

[
µ−1
⊥ +∆(µ−1)

]
(ηµρηνσ − ηµσηνρ)

+
1

µ0c2
[(
n2 − 1

)
µ−1
⊥ −∆(µ−1)

]
(ηµρuνuσ − ηµσuνuρ + ηνσuµuρ − ηνρuµuσ)

+µ−1
0 ∆(µ−1) (ηµρNνNσ − ηµσNνNρ + ηνσNµNρ − ηνρNµNσ)

− 1

µ0c2
[
∆ε+∆(µ−1)

]
(uµuρNνNσ − uµuσN νNρ + uνuσNµNρ − uνuρNµNσ) .

(B.22)
It can be easily checked that (B.22) takes into account all the necessary symmetries and
reduces to (B.8), (B.9) and (B.10) in the rest frame of the medium. Additionally, it reduces
to the isotropic expression (3.92), when ε‖ → ε⊥ = ε and µ‖ → µ⊥ = µ.

B.2. Magneto-electric medium

So far we have only discussed material media which, in its rest frame, can become polarized
only by the action of an electric field and magnetized only by a magnetic field. However,
there also exist materials whose electric and magnetic response are coupled. This rare
type of media are known in literature as magneto-electric and they can be found either in
natural state like Cr2O3 crystal (chromium sesquioxide) [98] or produced artificially with an
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applied external electric field as the case of Y3Fe5O12 or with an applied magnetic field as
NiSO4.6H2O. For more details, please see [99, 100].
For the description of a linear, non-dissipative, non-dispersive and magneto-electric medium

we stated in (3.75), (3.76) and (3.77) that we need at most 21 independent components which

are 6 εij(0) and 6 (µ−1)
(0)
ij as usual, plus the magneto-electric coupling tensor βi(0)

j , which is

related to the other coupling constants by αi
j
(0) = −βj(0)

i and has 9 independent compo-
nents. Therefore, in the rest frame of this medium, the constitutive relations in cartesian
components assume the form,

Di = ε0ε
ij
(0)Ej + βi(0)

j Bj, (B.23)

H i = µ−1
0 (µ−1)

(0)
ij B

j − βj(0)
i Ej. (B.24)

In order to write (B.23)-(B.24) in the covariant form (3.61), we notice that the constitutive
tensor χµνρσ can always be decomposed in the usual pure non-magnetoelectric part χµνρσ

nme

plus a pure magneto-electric part χµνρσ
me :

χµνρσ := χµνρσ
nme + χµνρσ

me , (B.25)

whose components in the rest frame are defined by

χ0ijk
nme(0) = 0, χ0ij0

nme(0) = µ−1
0 εij(0), χijkl

nme(0) = µ−1
0 εijmεklq(µ−1)(0)mq, (B.26)

χ0ijk
me(0) = c εljkβi(0)

l , χ0ij0
me(0) = 0, χijkl

me(0) = 0, (B.27)

in order to be consistent with (3.71)-(3.74).
For instance, the constitutive tensors (3.87) and (B.22) which we already derived in

sections 3.4 and B.1 are two examples of pure non-magnetoelectric constitutive tensors,
since they satisfy χ0ijk

iso(0) = χ0ijk
ani(0) = 0. If we want that any of these media also present

magneto-electric properties described by βi(0)
j , we just need to add to the known pure non-

magnetoelectric constitutive tensor χµνρσ
nme a pure magneto-electric part χµνρσ

me as in (B.25).
Therefore, this section is devoted to derive a covariant expression for a pure magneto-electric
constitutive tensor.
In the same spirit as we defined, in section B.1.3, a covariant generalization of the optical

axis vector Nµ of an uniaxial anisotropic medium, which satisfies Nµ
(0) = (0, ni) and Nµuµ =

0, in order to find a covariant expression for χµνρσ
me we will need to define a magneto-electric

coupling 4-tensor βµ
ν , which in the rest frame of the medium should reduce to a completely

spatial tensor:

βµ(0)
ν :=


0 0 0 0
0 β1

1 β1
2 β1

3

0 β2
1 β2

2 β2
3

0 β3
1 β3

2 β3
3

 . (B.28)

Here, the entries βi
j are the magneto-electric coupling coefficients which are measured in the

rest frame of the medium, i.e. βi(0)
j , but we removed the label (0) to simplify the notation.

By construction, we see that βµ
ν is orthogonal to the 4-velocity as well as Nµ, i.e.

βµ
νuµ ≡ βµ

νu
ν ≡ 0. (B.29)

96



Appendix B. Covariant constitutive relations for more general media

If we recall the explicit expression for the components χ0ijk
me(0) in (B.27a), we see that a

covariant generalization χµνρσ
me of it must be constructed using only βµ

ν , the completely
antisymmetric 4-D Levi-Civita pseudo tensor εµνρσ, defined such that ε0123 = −ε0123 = 1,
and the 4-velocity field uµ as usual. The 4-D Levi-Civita is a generalization of the usual 3-D
one and both are related by

εµνρ :=
1

c
εµνρσuσ. (B.30)

As a result, the spatial components of εµνρ in the rest frame of the medium satisfy,

ε123(0) =
1

c
ε1230u

(0)
0 = −ε0123 = 1, (B.31)

in accordance with (3.35).
Using all these objects and taking care of the symmetries (3.62)-(3.64), we find a general

covariant expression for the magneto-electric constitutive tensor χµνρσ
me , valid in any inertial

reference frame,

χµνρσ
me =

1

c

(
ελαρσβµ

αu
νuλ − ελαρσβν

αu
µuλ + ελαµνβρ

αu
σuλ − ελαµνβσ

αu
ρuλ

)
, (B.32)

and whose components reduce to (B.27), as can be easily verified.
Finally, if we add the pure magneto-electric part (B.32) to the pure non magneto-electric

part of the uniaxial anisotropic medium (B.22), we obtain the most general constitutive
tensor χµνρσ

ani−me that we will consider in this thesis, which describes a linear, non-dispersive,
non-dissipative, magneto-electric and anisotropic uniaxial electric and magnetic medium:

χµνρσ
ani−me = µ−1

0

[
µ−1
⊥ +∆(µ−1)

]
(ηµρηνσ − ηµσηνρ)

+
1

µ0c2
[(
n2 − 1

)
µ−1
⊥ −∆(µ−1)

]
(ηµρuνuσ − ηµσuνuρ + ηνσuµuρ − ηνρuµuσ)

+µ−1
0 ∆(µ−1) (ηµρNνNσ − ηµσNνNρ + ηνσNµNρ − ηνρNµNσ)

− 1

µ0c2
[
∆ε+∆(µ−1)

]
(uµuρNνNσ − uµuσNνNρ + uνuσNµNρ − uνuρNµNσ)

+
1

c

(
ελαρσβµ

αu
νuλ − ελαρσβν

αu
µuλ + ελαµνβρ

αu
σuλ − ελαµνβσ

αu
ρuλ

)
. (B.33)

If βµ
ν = 0, we obtain the result (B.22) for the uniaxial anisotropic medium. Additionally,

if ∆ε = 0 and ∆(µ−1) = 0, we get (3.87) for the isotropic medium. Furthermore, if ε = µ =
n = 1, we just obtain the constitutive tensor for vacuum (3.58).
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Appendix C.

General Lagrange-Noether formalism for
open and closed systems

“Mamá teńıa una manera de explicar las cosas que yo siempre entend́ıa...”

Forrest Gump,
personaje de peĺıcula.

A very powerful way to derive the energy-momentum tensors and balance equations of
non-dissipative open or closed systems is the well-known Lagrange-Noether formalism. This
approach allows us to study in chapter 4 the relationship between the conserved electromag-
netic quantities, i.e. energy, momentum and angular momentum of the electromagnetic field,
and the symmetries of the fixed material medium in which the field propagates. In chapter 5
we will also use this approach to derive an explicit expression for the total energy-momentum
tensor of the closed system formed by electromagnetic field interacting with the medium,
modeled as an isotropic dielectric relativistic fluid.
Therefore, this appendix is devoted to shortly state the fundamental results and conven-

tions that will be used in our Lagrange and symmetry analysis.

C.1. Euler-Lagrange equations, canonical energy-
momentum tensor, angular momentum and balance
equations

Assume we have a system of N dynamical fields, denoted collectively by ΦA
(I), where

I = 1, ..., N , and A is a generic way to represent their indices, depending on the tensor
rank of each field. The dynamics of the system is described by field equations of the form

f
(
ΦA

(I), ∂µΦ
A
(I), ∂µ∂νΦ

A
(I)

)
= 0, where f is a functional which relate the time and spatial

derivatives of the dynamical fields ΦA
(I). Examples of these field equations are, for instance,

Maxwell’s equations in the case of the electromagnetic field, Einstein’s equations in the
case of the gravitational field, Newton’s equations in the case of non-relativistic classical
mechanics, Dirac’s equation in the case of relativistic quantum mechanics, etc.
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The condition to incorporate a system in the Lagrangian formalism is that their field
equations or “equations of motion” must be derived as Euler-Lagrange equations of a function
L called the Lagrangian density of the system and which are explicitly given by

∂L
∂ΦA

(I)

− ∂µ

(
∂L

∂(∂µΦA
(I))

)
= 0, I = 1, ..., N. (C.1)

The Lagrangian density L is a function of the dynamical fields, their first derivatives and
eventually of other fields ΨA

(J), in the form

L = L
(
ΦA

(I)(x), ∂µΦ
A
(I)(x),Ψ

A
(J)(x)

)
, (C.2)

where ΨB
(J), J = 1, ...,M , are M given fields, known as external fields, which alter the

dynamics of the system, but do not get affected by it. For instance, an external field ΨA
(J)

can describe an external force acting on a system of particles, an external electric field
accelerating an electron, etc. If the system has one or more external fields, it is said to be
an open system and oppositely, a system without external fields is said to be closed.
The left hand side of (C.1) is usually known as the variational derivative of L with respect

to the field ΦA
(I) and therefore the Euler-Lagrange equations of the system can be written in

more compact form as

δL
δΦA

(I)

= 0, I = 1, ..., N. (C.3)

Without losing generality, we can always assume that the Lagrangian density L does not
explicitly depend on the coordinates xµ as in (C.2), provided we introduce an appropriate
number of non-dynamical external fields ΨA

(J)(x), which additionally can be always defined

so that their derivatives do not explicitly appear in (C.2). As a result, all the Lagrangian
densities considered will be invariant under infinitesimal spacetime translations of the form

xµ → x̄µ = xµ − εµ +O(ε2), (C.4)

where εµ are the 4 infinitesimal parameters of the translation transformation. Assuming this
invariance in L, we can always derive the energy-momentum balance equation as an identity
[101]:

∂νT µ
ν ≡ − δL

δΦA
(I)

∂µΦ
A
(I) −

∂L
∂ΨA

(J)

∂µΨ
A
(J), (C.5)

where the canonical energy-momentum tensor T µ
ν is defined as

T µ
ν :=

∂L
∂(∂νΦA

(I))
∂µΦ

A
(I) − δνµL. (C.6)
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In all practical situations, the equations of motion (C.3) will be indeed satisfied and therefore
the energy-momentum balance equation can be simply written as,

∂νT µ
ν .
= − ∂L

∂ΨA
(J)

∂µΨ
A
(J), (C.7)

where we used the sign “
.
=” instead of just “=” in order to remember that the equality is

valid only “on-shell”, i.e. when the equations of motion (C.3) are satisfied.
Additionally, in a relativistic theory the Lagrangian density L is invariant under infinites-

imal Lorentz transformations, i.e. spatial rotations and boosts of the form

xµ → x̄µ = xµ + λµ
νx

ν +O(λ2), (C.8)

where λµν are the 6 infinitesimal parameters of the Lorentz transformation, which satisfy

λµν = −λνµ, λµν := ηµρλ
ρ
ν . (C.9)

With this assumption we can derive, after some algebra, the angular momentum identity
[101], which reads

∂µSρσ
µ − 2T[ρσ] ≡ − δL

δΦA
(I)

(sρσ)
A
BΦ

B
(I) −

∂L
∂ΨA

(J)

(sρσ)
A
BΨ

B
(J), (C.10)

where (sρσ)
A
B are the Lorentz generators for the fields ΦA

(I), which are defined such that

δΦA
(I) =

1

2
λρσ(sρσ)

A
BΦ

B
(I) +O(λ2), (C.11)

where δΦA
(I) represent the infinitesimal change of the field ΦA

(I) under the Lorentz transfor-

mation. The same definitions are valid for the Lorentz generators (sρσ)
A
B for the external

fields. The spin current density Sρσ
µ, which depend only on the dynamical fields, is defined

as

Sρσ
µ :=

∂L
∂(∂µΦA)

(sρσ)
A
BΦ

B
(I). (C.12)

Notice that the Lorentz generators and therefore the spin current density depend on the
specific tensor rank of each field ΦA

(I) or Ψ
A
(J), because they transform in different ways under

Lorentz transformations. In practice we will use the angular momentum relation (C.10)
“on-shell”, and therefore we have

∂µSρσ
µ − 2T[ρσ]

.
= − ∂L

∂ΨA
(J)

(sρσ)
A
BΨ

B
(J). (C.13)

It is important to stress here that in the case that the theory is non-relativistic, the La-
grangian density L will not be invariant under Lorentz transformations, specifically boosts,
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and hence the identity (C.13) will not hold for all components ρ, σ. However, a non-
relativistic theory still has spatial rotation invariance and in that case the spatial components
ρ, σ = i, j = 1, 2, 3 of the relation (C.13) will still be applicable.
In order to include explicitly the orbital angular momentum density of the system in

(C.13), we notice that

Tρσ ≡ ∂µ(xσTρ
µ)− xσ∂µTρ

µ, (C.14)

and replace this together with (C.7) into (C.13), we get the angular momentum balance
equation “on-shell”:

∂µJρσ
µ .
= − ∂L

∂ΨA
(J)

(jρσ)
A
BΨ

B
(J), (C.15)

where Jρσ
µ is the canonical total angular 4-momentum density of the system, defined as

Jρσ
µ := Sρσ

µ + Lρσ
µ, (C.16)

with Lρσ
µ the canonical orbital angular 4-momentum density of the system

Lρσ
µ := xρTσ

µ − xσTρ
µ. (C.17)

The total angular 4-momentum operators (jρσ)
A
B for the fields ΨA

(j) are defined analogous

to (C.16) as

(jρσ)
A
B := (sρσ)

A
B + (lρσ)

A
B, (C.18)

where (lρσ)
A
B is the usual orbital angular 4-momentum operator, given by

(lρσ)
A
B := δAB(xρ∂σ − xσ∂ρ). (C.19)

C.2. The Belinfante tensor

For a better understanding of the dynamics and symmetries of the system, it is usually
better not to work directly with the canonical energy-momentum tensor Tµ

ν in (C.6), but
with another physically equivalent energy-momentum tensor, whose balance equations do
not show the spin density Sρσ

µ explicitly. Therefore, given the canonical energy-momentum
tensor Tµ

ν of the system, together with the spin current density Sρσ
µ, we can always define

the Belinfante energy-momentum tensor Θµ
ν , as follows

Θµ
ν := Tµ

ν +
1

2
∂λ(S

νλ
µ + Sµ

λν − Sµ
νλ), (C.20)

which, by construction, satisfies

∂νΘµ
ν ≡ ∂νTµ

ν , (C.21)

2Θ[µν] ≡ 2T[µν] − ∂λSµν
λ, (C.22)

∂µlρσ
µ ≡ ∂µ(Lρσ

µ + Sρσ
µ). (C.23)
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We see that Tµ
ν and Θµ

ν have equal 4-divergences and therefore they will be conserved under
the same conditions. Also the total angular momentum density of the system turns out to
be completely contained in the Belinfante orbital angular momentum density lρσ

µ, defined
in the same way as (C.17), by

lρσ
µ := xρΘσ

µ − xσΘρ
µ. (C.24)

Finally, replacing (C.21)-(C.23) in (C.7),(C.13) and (C.15), we obtain the Belinfante balance
equations:

∂νΘµ
ν .
= − ∂L

∂ΨA
(J)

∂µΨ
A
(J), (C.25)

∂µlρσ
µ .
= − ∂L

∂ΨA
(J)

(jρσ)
A
BΨ

B
(J), (C.26)

2Θ[ρσ]
.
= +

∂L
∂ΨA

(J)

(sρσ)
A
BΨ

B
(J), (C.27)

where the spin density is explicitly absorbed.

C.3. Open and closed systems

If the system is closed, there are no external fields present in L and hence the right hand
sides of the canonical balance equations (C.7), (C.13) and (C.15), as well as the r.h.s. of
the Belinfante balance equations (C.25)-(C.27), vanish. As a consequence, the canonical
energy-momentum tensor and the total angular momentum density Jρσ

µ = Sρσ
µ + Lρσ

µ of
any closed system are always conserved:

∂νTµ
ν .
= 0, (C.28)

∂µJρσ
µ .
= 0, (C.29)

but the canonical energy-momentum tensor of the closed system is not symmetric symmetric
in general,

2T[ρσ] = ∂µSρσ
µ 6= 0. (C.30)

There are two particular cases when the cononical tensor of a closes system is symmetric.
If all the dynamical fields are scalars and therefore the spin is trivial or if the canonical
orbital angular momentum density Lρσ

µ also conserved in addition to Jρσ
µ, i.e. separately

conserved:

2T[ρσ] = ∂µSρσ
µ (C.31)

= ∂µJρσ
µ − ∂µLρσ

µ (C.32)

!
= 0. (C.33)
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The Belinfante energy-momentum tensor Θµ
ν and its orbital angular momentum density

lρσ
µ are also conserved,

∂νΘµ
ν .
= 0, (C.34)

∂µlρσ
µ .
= 0, (C.35)

but in opposition to Tµ
ν , Θµ

ν is always symmetric when the system is closed:

Θ[ρσ]
.
= 0, (C.36)

and here lies its greatest advantage.
When the system is open, however, we have to keep the corresponding terms in the right

hand sides of all the balance equations and therefore the energy-momentum tensors Tµ
ν and

Θµ
ν will not be symmetric nor conserved in general. These non-vanishing terms describe

forces and torques which result from the interaction of the system with the external fields
and hence the asymmetry and non-conservation of the energy-momentum tensors in open
systems is completely necessarily for the correct and consistent description of the system
within the Lagrange-Noether formalism.

C.4. Conserved quantities in open systems and symmetries
of the external fields

Even if a system is open, there are certain cases where we can also find conserved quantities
like energy, momentum and angular momentum. These conserved quantities are related
to the symmetries which the specific external fields ΨA

(J)
1 present. It is said that some

field ΨA possesses certain symmetry, if we apply a specific transformation on it and the
resulting field turns out to be geometrically the same, i.e. after the transformation we cannot
physically differentiate between the transformed and the original fields. In particular, we
will study transformations of the coordinate systems assigned to inertial observers, which are
spacetime translations (time evolution and space translations) and Lorentz transformations
(boosts between inertial observers and spatial rotations) and we will see how the invariance
of the external fields under these transformations leads to conserved energy, momentum and
angular momentum of the system.

C.4.1. Spacetime translation transformation

A spacetime translation is a displacement of the center of a coordinate system by a
constant amount aµ. If the coordinates of an arbitrary geometrical point P of spacetime are
given by xµ(P ) in the original system, then the coordinates x̄µ(P ) of the same geometrical
point, but in the translated system, will be given by

xµ(P ) → x̄µ(P ) = xµ(P )− aµ, (C.37)

1In order to simplify the notation, when there is no possibility of confusion, we will avoid to include the
subindex (J) in the external fields, tacitly assuming that ΨA represent any of the M different external
fields.
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as schematically shown in figure C.4.1.

μa
x

x

P
x2

1

μ

xμ

x1

x
2

(P)

(P)

Figure C.1.: 2-D translation transformation.

The values of a field ΨA(x) does not change under a translation transformation (C.37),

ΨA (xµ(P )) → Ψ̄A (x̄µ(P )) = Ψ(xµ(P )), (C.38)

but its coordinates x̄µ do and hence

Ψ̄(x̄µ) = ΨA (x̄µ + aµ) , (C.39)

where Ψ̄A(x̄) is the same field ΨA(x), but as seen in the translated coordinate system.
Suppose now that the displacement of the center of the coordinate system is infinitesimally

small, i.e. the centers of the original and translated systems can be as close as we want,
but not exactly in the same place. This type of transformation is called an infinitesimal
spacetime translation and can be obtained assuming that the displacement parameters of
the transformation aµ are now infinitesimal in value

aµ = εµ + (ε2), (C.40)

and therefore

xµ(P ) → x̄µ(P ) = xµ(P )− εµ +O(ε2). (C.41)

Fields invariant under spacetime translations

A field ΨA(x) is said to be invariant under spacetime translations in the direction εµ, when
the field Ψ̄A(x̄) in a translated coordinate system in the direction εµ, “looks” the same as in
the original coordinate system. In order to mathematically express this condition, consider
an arbitrary point P of spacetime with coordinates xµ(P ) in the original system and another
geometrically different point Q, which in the infinitesimally translated coordinate system has
the same numerical values of its coordinates x̄µ(Q), i.e.

x̄µ(Q) = xµ(P ). (C.42)
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Then, as shown in figure B.4.2, the field ΨA(x) will be geometrically invariant under the a
translation transformation in the direction εµ, when it satisfies

Ψ̄A(x̄(Q)) = ΨA(x(P )). (C.43)

μ

x

x

x

Ψ

P

Q

(      )x (P)

Ψ (      )x (Q)
A

A

=

ε

x2

2

1

1

μ

μ

Figure C.2.: A field with translation invariance in direction εµ.

If we now insert (C.39) in the invariance condition (C.43) for the case of an infinitesimal
transformation (C.41) and use the fact that P and Q have the same coordinates in both
coordinate systems (C.42), the invariance condition simplifies to

ΨA(x̄µ(P ) + εµ) = ΨA(xµ(P )). (C.44)

Let us expand the left hand side of (C.44) in Taylor series to first order in εµ, since it is an
infinitesimal parameter, and if we cancel the contributions of ΨA(xµ(P )) at both sides, we fi-
nally arrive to the differential condition which an invariant field under spacetime translations
in the direction εµ must satisfy:

εµ∂µΨ
A(x) = 0, (C.45)

i.e. the directional derivative of the field (n̂µ∂µ)Ψ
A in the direction defined by εµ = εn̂µ

must vanish. A field satisfying the condition (C.45) it is also said to be homogeneous in the
direction εµ. When the field is “homogeneous in time”, it is really a time-independent field.

C.4.2. Energy-momentum conserved quantities in an open system

The condition (C.45) of a field to be invariant under spacetime translations is exactly
what we need so that the right hand side of the energy-momentum balance equations (C.7)
and (C.25) can be zero. Therefore, let us multiply (C.25) by some constant parameter εµ,
to obtain

∂ν(ε
µΘµ

ν)
.
= − ∂L

∂ΨA
(J)

∂µ(ε
µΨA

(J)) (C.46)
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As a consequence, if all the external fields ΨA
(J) are invariant under spacetime translations

in the direction defined by εµ, i.e.

∂µ(ε
µΨA

(J)) = 0, ∀J = 1, ...,M, (C.47)

then the canonical and the Belinfante energy-momentum tensors of the open system will be
conserved in the direction εµ, even though the external fields are not trivial:

∂ν(ε
µΘµ

ν) = 0. (C.48)

We will obtain different continuity equations and conserved quantities, depending on the
direction εµ in which the external fields ΨA

(J) are homogeneous. There can be at most 4 inde-
pendent direction in which energy-momentum conserved quantities can be found, depending
on the symmetries presented by the external fields.
The components of the energy-momentum tensors Tµ

ν and Θµ
ν are always identified as

Θµ
ν =

(
U Si/c

−cπi −pi
j

)
, (C.49)

where U is the energy density of the field, Si the energy flux density, πi the momentum
density of the field and pi

j the momentum flux density. Therefore, in the case that the
external fields are invariant under temporal translations, i.e. if they do not depend explicitly
on time, then the 4-vector εµ(0) := cεδµ0 will lead to a continuity equation for energy:

∂ν(ε
µ
0Θµ

ν) = 0 ⇒ ∂νΘ0
ν = 0 ⇒ ∂U

∂t
+ ∂iS

i = 0. (C.50)

On the other hand, if the external fields are spatially homogeneous in one or more directions
of the coordinates axes x, y or z, the linearly independent 4-vectors εµ(i) := εδµi , with i =
1, 2, 3, lead to the balance equation for the component i of the momentum:

∂ν(ε
µ
i Θµ

ν) = 0 ⇒ ∂νΘi
ν = 0 ⇒ ∂πi

∂t
+ ∂jpi

j = 0. (C.51)

C.4.3. Lorentz transformations

Another very important group of transformations in physics, which appear in all relativis-
tic theories are the Lorentz transformations. For details about the physical interpretation of
a Lorentz transformation, please see the beginning of section 3.2, since here we summarize
some of its geometrical properties. A Lorentz transformation can be geometrically under-
stood as a “spacetime rotation” of the axes of a coordinate system by constant “angles”
contained in the matrix Λµ

ν , where the indexes µ, ν identify the axis around which the rota-
tion in spacetime is made. Therefore, if the coordinates of an arbitrary geometrical point P
of spacetime are given by xµ(P ) in the original coordinate system, in the “rotated” system
the coordinates of the same point will be given by

xµ(P ) → x̄µ(P ) = Λµ
νx

ν(P ). (C.52)
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μ
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Figure C.3.: 2-D Lorentz transformation as a rotation of the coordinate systems in spacetime

A geometrical picture of this transformation is presented in figure C.4.3. In order for this
spacetime rotation (C.52) to preserve the four-dimensional “length” of 4-vectors, it must
satisfy the condition

ηµν = Λρ
µΛ

σ
νηρσ. (C.53)

This is analogous to the case of a three-dimensional rotation matrix Ri
j, which must sat-

isfy δij = Rk
iR

l
jδkl, in order to preserve the length of three-dimensional vectors. In other

words, a Lorentz transformation is a generalization of the usual spatial three-dimensional
rotations, but now in a four-dimensional spacetime with the Minkowski metric ηµν :=
diag(1,−1,−1,−1). In fact, for a purely spatial Lorentz transformation, the components
Λi

j coincide with a usual rotation matrix Ri
j around the axes x, y, z or combinations of

them, whereas the “time-space components” Λ0
i are interpreted as a change between different

inertial observers, also known as boosts.
The Lorentz transformations have the particularity that a field ΨA(x) will in general change

its values in different ways, depending on its tensor rank. For instance, a scalar field φ(x) is
defined such that it does not change its value under a Lorentz transformation: φ̄(x̄) = φ(x),
whereas a contravariant 4-vector field Aµ(x) is defined such that their components change in
the same way as the coordinates: Āµ(x̄) = Λµ

νA
ν(x). A tensor field of rank (1, 1) ΨA → Aµ

ν ,
the energy-momentum tensor for example, will change as Āµ

ν(x̄) = Λµ
ρ(Λ

−1)σνA
ρ
σ, under a

Lorentz transformation, where (Λ−1)µν is the inverse matrix of Λµ
ν . In general, for a tensor

field ΨA(x) of any rank, its values will change in the form

ΨA(x(P )) → Ψ̄A(x̄(P )) = SA
B(Λ)Ψ

B(x(P )), (C.54)

where SA
B(Λ) is a linear operator, function of Λµ

ν , whose form will depend on the field ΨA.
Transforming also the coordinates in the right hand side of (C.54), the field in the rotated
coordinate system can be finally written as

Ψ̄A(x̄µ) = SA
B(Λ)Ψ

B
(
(Λ−1)µν x̄

ν
)
. (C.55)
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Analogously as for the spacetime translation (C.41), there can also be an infinitesimal
Lorentz transformation, if the matrix Λµ

ν is supposed to be infinitesimally close to the
identity, i.e.

Λµ
ν = δµν + λµ

ν +O(λ2), (C.56)

where λµ
ν are the infinitesimal parameters, which relate the original and the infinitesimally

transformed coordinate systems. If we replace (C.56) into the condition (C.53), we see
that the parameters λµ

ν must be necessarily antisymmetric in order to describe a Lorentz
transformation:

λµν = −λνµ, with λµν = ηµρλ
ρ
ν . (C.57)

Therefore, using (C.56) in (C.52) and (C.54), we obtain how the coordinates and the fields
change under an infinitesimal Lorentz transformation:

xµ → x̄µ = xµ + λµ
νx

ν +O(λ2), (C.58)

ΨA(xµ) → Ψ̄A(x̄µ) = ΨA(xµ) +
1

2
λρσ(sρσ)

A
BΨ

B(xµ) +O(λ2), (C.59)

where (sρσ)
A
B are the so-called Lorentz generators, which have to be determined for each

field ΨA(x), depending on its tensor rank. For instance, the Lorentz generator of a scalar
field φ(x) is zero (sρσ) = 0 and the Lorentz generator of a contravariant 4-vector Aµ is
(sρσ)

µ
ν = δµρηνσ − δµσηνρ.

The infinitesimal variation of a field under a transformation is defined as

δΨ(x) := Ψ̄(x̄)−Ψ(x), (C.60)

and therefore, for the case of the infinitesimal Lorentz transformation, we have

δΨ(xµ) =
1

2
λρσ(sρσ)

A
BΨ

B(xµ), (C.61)

and δxµ = λµ
νx

ν for the coordinates. For the case of an infinitesimal transformation, using
(C.38) and (C.41), we see that the corresponding variations are δTΨ(x) = 0 and δTx

µ = −εµ.

Fields invariant under Lorentz transformations

In the same way as for the spacetime translations, a field ΨA(x) is said to be invariant under
a given Lorentz transformation around the axis, determined by λµ

ν , when the field in the
infinitesimally rotated coordinate system “looks” geometrically the same as in the original
system, i.e. the field must satisfy

Ψ̄(x̄µ(Q)) = Ψ(xµ(P )), (C.62)

provided P and Q are two geometrically different points in spacetime, but which have the
same numerical coordinates in both systems:

x̄µ(Q) = xµ(P ). (C.63)
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Figure C.4.: A field with rotation invariance.

A schematic picture of a field having rotation invariance is shown in figure B.4.4.
Therefore, if we insert (C.59) in the left hand side of (C.62) we obtain, to first order in

λρσ:

ΨA(xµ(Q)) +
1

2
λρσ(sρσ)

A
BΨ

B(xµ(Q)) +O(λ2) = ΨA(xµ(P )). (C.64)

On the other hand, if we multiply on both sides of (C.63) by an inverse Lorentz matrix
(Λ−1)ρµ, and use (C.52) for the point Q, we obtain

xρ(Q) = (Λ−1)ρµx
µ(P ), (C.65)

and infinitesimally,

xµ(Q) = xµ(P )− λµ
νx

ν(P ) +O(λ2). (C.66)

Then, if we insert (C.66) in the left hand side of (C.64), expand it with a Taylor series
keeping terms up to first order in λρσ, and cancel the contribution of ΨA(x(P )) on both
sides, the invariance condition reduces to

−λµ
νx

ν(P )∂µΨ
A(x(P )) +

1

2
λρσ(sρσ)

A
BΨ

B(x(P )) +O(λ2) = 0. (C.67)

Finally, if we antisymmetrize the first term in (C.67) and take out the label P since we can
tacitly assume that the relation applies for any point P with coordinates xµ, we obtain the
differential condition that a field ΨA(x) must satisfy in order to be geometrically invariant
under a Lorentz transformation around the axis determined by λρσ,

λρσ
[
δAB(xρ∂σ − xσ∂ρ) + (sρσ)

A
B

]
ΨB(x) = 0 (C.68)

or, in a more compact manner,

λρσ(jρσ)
A
BΨ

B(x) = 0, (C.69)
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where jAρσB is the total angular momentum operator already defined in (C.18) and (C.19).
In simpler terms, a field ΨA(x) is invariant under a Lorentz transformation around the

axis determined by λρσ, if the total angular momentum operator (jρσ)
A
B applied to it turns

to be zero. A field which satisfies the condition (C.69) for all purely spatial components
simultaneously, i.e. λij(jij)

A
BΨ

B(x) = 0, ∀i, j = 1, 2, 3, is said to be isotropic in space, i.e.
the field does not have any preferred direction.
To make an analogy of (C.69) with the spacetime translation condition (C.45), sometimes

the 4-momentum operator (pµ)
A
B is defined as

(pµ)
A
B := δAB∂µ, (C.70)

so that a field ΨA(x) which presents spacetime translational invariance in direction εµ, must
satisfy that the 4-momentum operator (pµ)

A
B applied to it turns out to be zero:

εµ(pµ)
A
BΨ

B(x) = 0. (C.71)

Notice that the definition (C.70) is also consistent with the definition of the orbital angular
4-momentum in (4.90). In fact, if we replace (C.70) in the definition (C.19) of the angular
momentum operator (lρσ)

A
B, we have

(lρσ)
A
B = δAB(xρ∂σ − xσ∂ρ) (C.72)

= xρ(pσ)
A
B − xσ(pρ)

A
B. (C.73)

C.4.4. Four-dimensional angular momentum conserved quantities in an
open system

Let us multiply the angular momentum balance equations (C.26) (the same can be done
with (C.15)) by the infinitesimal parameters λρσ of a Lorentz transformation:

(λρσ∂µ)lρσ
µ .
= − ∂L

∂ΨA
(J)

[
λρσ(jρσ)

A
BΨ

B
(J)

]
. (C.74)

By inspecting (C.74), we see that if all external fields ΨA(x) are invariant under a Lorentz
transformation around the axis determined by λρσ, i.e. if the total angular momentum oper-
ator λρσ(jρσ)

A
B acting on all external fields vanish,

λρσ(jρσ)
A
BΨ

B
(J) = 0, ∀J = 1, ...,M, (C.75)

then the Belinfante orbital angular momentum density lρσ
µ (as well as the total angular

momentum density Jρσ
µ), will be conserved around the axis λρσ:

(λρσ∂µ)lρσ
µ = 0. (C.76)

We will obtain different continuity equations and conserved quantities, depending on the
axis λρσ around which all the external fields ΨA

(J) are invariant. There can be at most 6
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independent directions in which angular 4-momentum conserved quantities can be found,
depending on the symmetries presented by the external fields.
The spatial components lij

µ are identified as

li = − 1

2c
εmnkηimlnk

0, (C.77)

Ki
j = − 1

2
εmnkηimlnk

j, (C.78)

where li := εijkη
kmxjπm is the orbital angular momentum density of the system and Ki

j :=
εimkη

knxmpn
j the orbital angular momentum flux density. Therefore, if the external fields

are invariant under spatial rotations around one or more given spatial axes (x, y or z), one
of the 3 independent parameters λρσ

(12), λ
ρσ
(13) and λρσ

(23), defined as λρσ
(ij) := δρiδ

σ
j, will satisfy

(C.75) and lead to a continuity equation for the components x, y and/or z of the orbital
angular momentum. In fact, if we replace λρσ

(ij) in (C.76), multiply it by −εlijηml/2 and use

the identifications (C.77)-(C.78), we obtain

∂lm
∂t

+ ∂nKm
n = 0, (C.79)

for the component li of the orbital angular momentum of the system. The parameters λρσ
(12)

correspond to infinitesimal spatial rotations around the z axis or the xy-plane, while the
parameters λρσ

(13) and λρσ
(23) correspond to rotations around the axes y and x, respectively.

The other 3 independent Lorentz parameters λρσ
(01), λρσ

(02) and λρσ
(03), defined as λρσ

(0i) :=
δρ0δ

σ
i, can lead to other 3 independent conserved “time-space” components of the angular

4-momentum l0i
µ, but they are not so easy to interpret as the spatial ones, in terms of

rotations around certain axes. When all the external fields ΨA
(J)(x) are invariant under a

boost in the direction of the axis i, with i = 1, 2, 3 or x, y, z, the condition (C.75) will be
satisfied for the components 0i. Then, inserting the parameters λρσ

(0i) := δρ0δ
σ
i in (C.76), we

obtain the continuity equation:

∂

∂t

(
1

c
l0i

0

)
+ ∂jl0i

j = 0. (C.80)

For closed systems, the integral version of (C.80) is related to the conservation of the velocity
of the center of energy of the system, as it is explained in general terms in subsection 4.2.3,
but for open systems this continuity equation is not clear to physically interpret. Maybe we
can just say that (C.80) leads to conserved quantities related to the hypothetical invariance
under boosts of the external fields acting on the open system.

C.5. Explicit expression for the Lorentz invariance
condition of tensorial fields

In section 4.2.1, we studied the conditions under which the constitutive tensor χµνρσ

is invariant under Lorentz transformations and spatial rotations in particular. Since the
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constitutive tensor is a fourth rank tensor, its explicit invariance condition (C.75) under
Lorentz transformations is not trivial. Therefore, this subsection is devoted to the explicit
derivation of (C.75) for different types of external fields. The main difficulty is the calculation
of the Lorentz generators for each tensor rank, which can be calculated using the variation
definition (C.61) and the infinitesimal Lorentz transformation (C.56), applied to tensor fields
of different ranks.

Scalar field

For a scalar field φ, we already said in subsection C.4.3 that its Lorentz generator is
zero and therefore its total angular momentum operator (jρσ)

A
B coincides with the orbital

angular momentum operator (lρσ)
A
B:

(jρσ)
A
B = δAB(xρ∂σ − xσ∂ρ). (C.81)

Now, if we replace (C.81) into (C.75), we obtain that a scalar field invariant under Lorentz
transformations must satisfy

λρσ(xρ∂σφ− xσ∂ρφ) = 0. (C.82)

4-vector field

The variation of a contravariant 4-vector field Aµ under an infinitesimal Lorentz trans-
formation is given by

δAµ(x) = λµ
νA

ν (C.83)

= δµ[ρησ]νλ
ρσAν (C.84)

=
1

2
λρσ(δµρησν − δµσηρν)A

ν . (C.85)

Therefore, comparing (C.85) with (C.61), we see that the Lorentz generator for any con-
travariant Lorentz 4-vector field is given by

(sρσ)
µ
ν := δµρησν − δµσηρν . (C.86)

Notice that the Lorentz generators for a covariant vector field Aµ can be obtained from
(C.86), by lowering the index µ and rising the index ν, which reads

(sρσ)µ
ν = δνσηµρ − δνρηµσ. (C.87)

If we replace (C.86) in (C.75), the condition for a 4-vector field to be invariant under
Lorentz transformations is

λρσ(xρ∂σA
µ − xσ∂ρA

µ + δµρησνA
ν − δµσηρνA

ν) = 0. (C.88)

Finally if we lower the free index µ in (C.88), we obtain

λρσ(xρ∂σAµ − xσ∂ρAµ + ηµρAσ − ηµσAρ) = 0. (C.89)
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Second rank tensor field

The infinitesimal variation of a second rank tensor Aµν is given by

δAµν(x) = (δµαλ
ν
β + δνβλ

µ
α)A

αβ (C.90)

=
1

2
λρσ(δµαδ

ν
ρησβ − δµαδ

ν
σηρβ + δνβδ

µ
ρησα − δνβδ

µ
σηρα)A

αβ, (C.91)

and comparing (C.91) with (C.61), we see that the Lorentz generator for a second rank
tensor field Aµν can be explicitly written by

(sρσ)
µν

αβ := δµαδ
ν
ρησβ − δµαδ

ν
σηρβ + δνβδ

µ
ρησα − δνβδ

µ
σηρα. (C.92)

Then, inserting (C.92) in the general condition (C.75) and lowering the indexes µ and ν, we
finally conclude that a second rank tensor with Lorentz invariance must satisfy:

λρσ(xρ∂σAµν − xσ∂ρAµν + ηνρAµσ − ηνσAµρ + ηµρAσν − ηµσAρν) = 0. (C.93)

Fourth rank tensor field

Analogously to the other cases, the infinitesimal variation of a fourth rank tensor χµνλκ

under a Lorentz transformation is given by

δχµνλκ(x) = (δµαδ
ν
βδ

λ
γλ

κ
δ + δµαδ

ν
βδ

κ
δλ

λ
γ + δµαδ

λ
γδ

κ
δλ

ν
β + δνβδ

λ
γδ

κ
δλ

µ
α)χ

αβγδ (C.94)

=
1

2
λρσ(δµαδ

ν
βδ

λ
γδ

κ
ρησδ − δµαδ

ν
βδ

λ
γδ

κ
σηρδ + δµαδ

ν
βδ

κ
δδ

λ
ρησγ

− δµαδ
ν
βδ

κ
δδ

λ
σηργ + δµαδ

λ
γδ

κ
δδ

ν
ρησβ − δµαδ

λ
γδ

κ
δδ

ν
σηρβ

+ δνβδ
λ
γδ

κ
δδ

µ
ρησα − δνβδ

λ
γδ

κ
δδ

µ
σηρα)χ

αβγδ, (C.95)

and therefore its Lorentz generators (sρσ)
µνλκ

αβγδ can be explicitly written as

(sρσ)
µνλκ

αβγδ = δµαδ
ν
βδ

λ
γδ

κ
ρησδ − δµαδ

ν
βδ

λ
γδ

κ
σηρδ + δµαδ

ν
βδ

κ
δδ

λ
ρησγ − δµαδ

ν
βδ

κ
δδ

λ
σηργ

+ δµαδ
λ
γδ

κ
δδ

ν
ρησβ − δµαδ

λ
γδ

κ
δδ

ν
σηρβ + δνβδ

λ
γδ

κ
δδ

µ
ρησα − δνβδ

λ
γδ

κ
δδ

µ
σηρα.

(C.96)

Finally, if we replace (C.96) into (C.75), we see that the explicit condition for a fourth rank
tensor χαβγδ to be invariant under Lorentz transformations is

λρσ(xρ∂σχαβγδ − xσ∂ρχαβγδ

+ ηαρχσβγδ − ηασχρβγδ + ηβρχασγδ − ηβσχαργδ

+ ηγρχαβσδ − ηγσχαβρδ + ηδρχαβγσ − ηδσχαβγρ) = 0.

(C.97)

113



Appendix D.

Conversion table from SI to gaussian
system of units

Quantity Units
SI Gaussian

Speed of Light c := 1/
√
ε0µ0

Magnetic Induction ~B =
√

µ0

4π
~B

Magnetic Field ~H = 1√
4πµ0

~H

Magnetization ~M =
√

4π
µ0

~M

Electric Field ~E = 1√
4πε0

~E

Electric Displacement ~D =
√

ε0
4π

~D

Polarization ~P =
√
4πε0 ~P

Charge Density ρ =
√
4πε0ρ

Charge Current ~j =
√
4πε0~j

Relative Permittivity tensor εij = εij

Relative Permeability tensor µij = µij

Refraction Index n = n

Table D.1.: Conversion table of some electromagnetic quantities from SI to gaussian units.
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