INDICE GENERAL

1	Introducción	1
	1.1 Definición de sólidos mesoporosos	1
	1.2 Síntesis de tamices moleculares mesoporosos.	2
	1.2.1 Ruta electrostática $(S^+\Gamma)$ para la formación de sílicas	2
	mesoporosas	
	1.2.2 Rutas Electroestáticas Alternativas para la Formación de	10
	óxidos Inorgánicos.	
	1.2.3 Ruta neutra para la formación de tamices moleculares	11
	mesoporosos.	
	1.2.4 Ruta no iónica NºIº para la formación de tamices	13
	moleculares mesoporosos.	
	1.2.5 Ruta de enlaces dativos para la formación de tamices	17
	moleculares mesoporosos.	
	1.2.6 Obtención de tamices moleculares a partir de	
	polioxicationes (PILC).	18
	1.3 Avances en Tamices Moleculares Mesoporosos	19
	1.3.1 Condiciones bajas de pH con surfactantes del tipo PEO.	19
	1.3.2 Síntesis de sílicas mesoestructuradas estables desde	
	surfactantes PEO y fuentes de sílica solubles.	20
	1.4 Aplicaciones catalíticas de los tamices moleculares mesoporosos.	21
	1.4.1 Fundamentos de la Catálisis.	21
	1.4.2 Aspectos relevantes de la catálisis estereoselectiva de	
	alquinos	22
	1.4.3 Hidrogenación asimétrica de cetonas activadas.	25
	1.4.3.1 Alcaloides cincona y compuestos relacionados.	26
	1.4.3.2 Características de los sustratos.	28
	1.4.3.3 Modificadores eficientes.	31
	1.4.3.4 Mecanismos propuestos para las hidrogenaciones	
	asimétricas.	34
	1.4.3.4.1 Modelo de Wells.	34
	1.4.3.4.2 Modelo de Baiker.	35

	1 4 3 4 3 Modelo de Augustine	37
	1 4 3 4 4 Modelo de Margitfalvi	38
2 -	Parte Experimental	- 30 - 40
2.	2 1 Síntesis de los sonortes	40
	2.1 Diffestive los soportes. 2.1.1 Preparación de la MCM-41	40
	2.1.1 Troparation de la MCM-41	41
	2 1 2 Preparación de la MSU	41
	2 1 3 Preparación de la HMS	42
	2.1.4 Preparación del PILC.	43
	2.2 Preparación de los catalizadores.	43
	2.2.1 Envenenamiento con Pb.	44
	2.3 Actividad catalítica.	44
	2.3.1 Hidrogenación estéreoselectiva de fenil alquil acetilenos.	44
	2.3.1.1 Hidrogenación competitiva de fenil alquil	
	acetilenos.	45
	2.3.2 Hidrogenación enantioselectiva del piruvato de etilo, 3,4-	
	hexanodiona, 2,3-butanodiona.	46
	2.3.3 Hidrogenación enantioselectiva de la 1-fenil-1,2-	
	propanodiona.	47
	2.4 Técnicas de Caracterización.	49
	2.4.1 Caracterización de Los Soportes.	49
	2.4.1.1 Difracción de Rayos X.	49
	2.4.1.2 Análisis Térmico.	49
	2.4.1.3 Isotermas de adsorción-desorción de nitrógeno.	50
	2.4.1.4 Resonancia Magnética Nuclear (RMN).	50
	2.4.1.5 Microscopía Electrónica de Transmisión (TEM).	51
	2.4.2 Caracterización de los catalizadores.	51
	2.4.2.1 Quimisorción de H_2 y CO.	51
	2.4.2.2 Estudios de reducción térmica programada (TPR).	52
	2.4.2.3 Espectroscopía fotoelectrónica de rayos X (XPS).	52
3	Resultados y Discusión	53
	3.1 Caracterización de los soportes.	53
	3.1.1 Caracterización MCM-41.	53

3.1.1.1 Difracción de rayos X.	53
3.1.1.2 Análisis termogravimétrico.	55
3.1.1.3 Isotermas de adsorción-desorción de N ₂ .	57
3.1.1.4 Microscopía electrónica de transmisión (TEM).	60
3.1.1.5 Resonancia magnética nuclear de ángulo mágico) de
spin del ²⁹ Si (MAS-RMN).	62
3.1.2 Caracterización de Sílicas hexagonales mesoporo	osas
(HMS).	65
3.1.2.1 Difracción de rayos X (DRX).	65
3.1.2.2 Adsorción/Desorción de N ₂ .	66
3.1.2.3 Microscopía electrónica de transmisión (TEM).	69
3.1.3 Caracterización de MSU.	71
3.1.3.1 Difracción de rayos X (DRX).	71
3.1.3.2 Adsorción/Desorción de N ₂ .	72
3.2 Caracterización de los catalizadores.	76
3.2.1 Caracterización catalizadores de Pd soportado en MC	CM-
41.	76
3.2.1.1 Quimisorción de H ₂ y CO.	76
3.2.1.2 Microscopía electrónica de transmisión (TEM).	78
3.2.1.3 Reducción a temperatura programada (TPR).	80
3.2.1.4 Espectroscopía fotoelectrónica de rayos X (XPS).	81
3.2.2 Caracterización catalizadores de Pd soportado en MSI	Uу
HMS.	84
3.2.2.1 Quimisorción de H ₂ y CO.	84
3.2.2.2 Microscopía electrónica de transmisión (TEM).	85
3.2.3 Caracterización catalizadores de Pt soportado en MCM-	41. 87
3.2.3.1 Quimisorción de H ₂ .	87
3.2.3.2 Microscopía electrónica de transmisión (TEM).	87
3.2.3.3 Espectroscopía fotoelectrónica de rayos X (XPS).	. 89
3.3 Hidrogenación estereoselectiva de fenil alquil acetilenos.	91
3.3.1 Sistemas 1%Pd/MCM-41 y 1%Pd/SiO ₂ .	91
3.3.2 Sistemas 1%Pd/Ca-Mont y 1%Pd/PILC.	99
	•1

3.4 Hidrogenación competitiva estereoselectiva de fenil alquil

	acetilenos.	113
	3.4.1 Sistema 1%Pd/MCM-41 y 1%Pd/SiO ₂ .	113
	3.5 Hidrogenación estereoselectiva de 1-fenil-1-hexino.	122
	3.5.1 Sistemas 1%Pd/HMS, 1%Pd/MSU.	122
	3.4 Hidrogenaciónes enantioselectivas de α -cetoesteres y dicetonas.	129
	3.4.1 Hidrogenación de piruvato de etilo sobre 1%Pt/MCM-41 y	
	1%Pt/SiO ₂ .	129
	3.4.2 Hidrogenación de 2,3-butanodiona y 3,4-hexanodiona	
	sobre 1%Pt/MCM-41 y 1%Pt/SiO ₂ .	144
	3.4.3 Hidrogenación de 1-fenil-1,2-propanodiona sobre	
	1%Pt/MCM-41 y 1%Pt/SiO ₂ .	159
4	Conclusiones	168
5	Referencias	172

INDICE DE FIGURAS

Figura 1	Mecanismo de ordenamiento inducido por el silicato de	
	estructuras surfactante-silicato ordenadas hexagonalmente. La	
	calcinación da como resultado la sílica MCM-41 [7].	4
Figura 2	Patrones de difracción de rayos X de las sílicas M41S. (A)	
	MCM-41 hexagonal calcinada, (B) MCM-48 cúbica calcinada y	
	(C) MCM-50 laminar [7].	6
Figura 3	Isotermas de adsorción y desorción de N2 de la MCM-41.	
	(Interior) Corresponde a la curva de la distribución de poro de	
	acuerdo a la ecuación de Horvath-Kawazoe [7].	7
Figura 4	Imagen de TEM de la MCM-41 calcinada.	9
Figura 5	Mecanismo propuesto originalmente para la ruta neutra (S°I°) en	
	la formación de sílicas HMS. La sílica hidrolizada interacciona	
	con moléculas isotrópicas de surfactantes resultando en una	
	formación espontánea de las mícelas. La sílica condensada forma	
	en la superficie una mesoestructura estable [17].	12
Figura 6	Patrones de difracción de rayos X de la sílica HMS calcinada.	
	Mostrando un pico correspondiente a 3 nm [19].	14
Figura 7	Isotermas de adsorción y desorción de N2 de la sílica HMS	
	calcinada. (Adentro) Corresponde a la curva de la distribución de	
	poro de acuerdo a la ecuación de Horvath-Kawazoe [19].	15
Figura 8	Imagen de TEM de la sílica HMS. En ella se observa el	
	crecimiento interno de pequeños granos mesoporosos dentro de	
	las partículas en forma de esponja con intra-partículas con	
	porosidad textural.	16
Figura 9	Formula general de los diferentes modificadores y substratos	
	discutidos en esta introducción.	28
Figura 10	Sistemas de dobles enlaces conjugados de los diferentes	
	substratos utilizados en la hidrogenación enantioselectiva. A: α-	

	cetoesteres, B: α , β -esteres insaturados, C: Trifluoroacetofenona.	30
Figura 11	Algunos modificadores quiralicos naturales y sintéticos para las	
	hidrogenaciones enantioselectivas sobre Pt.	32
Figura 12	Interacciones propuestas entre el reactante y el modificador	
	(intermediarios de reacción) para la hidrogenación heterogénea	
	enantioselectiva de piruvato de etilo sobre platino modificado	
	con cinconidina. Se propone que la superficie de Pt se encuentra	
	debajo de los complejos.	36
Figura 13	Sistema de reacción en fase líquida a presión ambiente.	45
Figura 14	Sistema de reacción en fase líquida a presiones moderadas.	47
Figura 15	Sistema de reducción in situ.	48
Figura 16	Patrones de difracción de rayos X del soporte MCM-41: (A)	
	MCM-41 calcinada, (B) MCM-41 sililada, y (C) MCM-41 sin	
	calcinar.	54
Figura 17	Curva TG para el soporte MCM-41 fresco.	56
Figura 18	Isotermas de Adorción/Desorción de N2 para los soportes MCM-	
	41 calcinado y MCM-41 sililado.	58
Figura 19	Distribución del tamaño de poro del soporte MCM-41 antes y	
	después de la sililación.	60
Figura 20	(a) Micrografía de difracción de electrones de la MCM-41, (b)	
	Micrografía de transmisión de electrones de la MCM-41.	61
Figura 21	Micrografía electrónica de transmisión de la MCM-41.	62
Figura 22	Espectro de ²⁹ Si-MAS-RMN de la muestra MCM-41 calcinada a	
	540 °C bajo flujo de N ₂ .	63
Figura 23	Patrón de difracción de rayos X de la muestra HMS calcinada.	66
Figura 24	Isoterma de Adsorción/Desorción de N2 de la sílica del tipo	
	HMS calcinada y sintetizada con una relación $I^o/S^o = 7$ y en	
	condiciones concentradas de reactivos.	67
Figura 25	Distribución del tamaño de poro para las sílices HMS y MCM-	
	41.	68
Figura 26	Micrografía de campo claro de la sílice HMS calcinada.	70

VI

Figura 27	Micrografía de campo claro en otra región de la sílice HMS	
	calcinada.	70
Figura 28	Patrón de difracción de rayos X de la muestra MSU tratada por	
	el método de extracción con solvente.	71
Figura 29	Isoterma de adsorción/desorción de N2 para la sílica del tipo	
	MSU (extracción con EtOH).	73
Figura 30	Esquema de la influencia de los parámetros en la estructura	
	híbrida de la mícela: (A) estructura inicial, (B) adición de 1,3,5-	
	trimetilbenceno a la cadena alquilica, (C) incremento de la	
	temperatura incrementa la hidrofobicidad de la cadena, y (D)	
	incremento en la relación NaF/Si incrementa la hidrofobicidad	
	de la sílica [162].	74
Figura 31	Distribución de poros obtenida para los diferentes soportes	
	síntetizados.	75
Figura 32	Micrografía de campo claro del catalizador 1%Pd/MCM-41.	79
Figura 33	Micrografía de campo claro del catalizador 1%Pd/MCM-41Si.	79
Figura 34	Perfiles de TPR para los diferentes catalizadores de Pd	
	soportado: (A) 1%Pd/MCM-41, (B) 1%Pd/SiO ₂ , (C) 0.5%Pb-	
	1%Pd/MCM-41 y (D) 0.5%Pb-1%Pd/SiO ₂ .	81
Figura 35	Espectros de XPS de los niveles centrales para los catalizadores	
	reducidos: (A) Pd 3d _{5/2} de 1%Pd/MCM-41, (B) Pd 3d _{5/2} de	
	0.5%Pb-1%Pd/MCM-41, (C) Pb 4f de 0.5%Pb-1%Pd/MCM-41	
	y (C) Pb 4f de 0.5%Pb-1%Pd/SiO ₂ .	82
Figura 36	Micrografía de campo claro del catalizador 1%Pd/HMS.	86
Figura 37	Micrografía de campo claro del catalizador 1%Pd/MSU.	86
Figura 38	Micrografía de campo claro del catalizador 1%Pt/MCM-41.	88
Figura 39	Micrografía de campo claro del catalizador 1%Pt/SiO ₂ .	88
Figura 40	Espectros de XPS de los niveles centrales para los catalizadores	
	reducidos: (A) Pt $4f_{7/2}$ de 1%Pt/MCM-41, (B) Pt $4f_{7/2}$ de	
	1%Pt/SiO ₂ .	90
Figura 41	Evolución de los niveles de conversión en el tiempo para el	

VII

	catalizador 1%Pd/MCM-41.	91
Figura 42	Evolución de los niveles de conversión en el tiempo para el	
	catalizador 1%Pd/SiO ₂ .	92
Figura 43	Selectividad a productos para la hidrogenación estereoselectiva	
	del 1-fenil-1-pentino sobre 1%Pd/MCM-41 como función de la	
	conversión. Masa de catalizador = 25 mg, solvente = THF, T =	
	25 °C, $P_{H2} = 1$ atm.	97
Figura 44	Patrones de DRX para los sólidos Al-PILC y Ca-Mont.	101
Figura 45	Isotermas de adsorción/desorción de N2 para los catalizadores	
	1%Pd/Ca-Mont y 1%Pd/Al-PILC.	102
Figura 46	Evolución de la conversión en función de la masa del catalizador	
	para la hidrogenación de 1-fenil-1-butino, Catalizador:	
	1%Pd/Ca-Mont, R:P = 5000, Solvente = THF, Tamaño de grano	
	= 200 μ m, Velocidad de agitación = 1400 rpm, Volumen total =	
	15 ml, Tempertura = ambiente, Presión = 1 atm.	105
Figura 47	Evolución del TON con el tiempo para los catalizadores de Pd	
	soportado en la hidrogenación estereoselectiva del 1-	
	fenilpropino, R:P = 3500, Temperatura = 25 °C, Presión = 1 atm,	
	Masa de catalizador = 25 mg.	106
Figura 48	Evolución del TON con el tiempo a diferentes R:P para el	
	catalizador 1%Pd/Al-PILC en la hidrogenación estereoselectiva	
	del 1-fenil-1-butino, Temperatura = 25 °C, Presión = 1 atm,	
	Masa de catalizador = 25 mg.	107
Figura 49	Selectividad a los productos de hidrogenación en la	
	hidrogenación estereoselectiva de 1-fenil-1-butino sobre el	
	catalizador 1%Pd/Al-PILC a temperatura ambiente, 1 atm de	
	presión de H_2 y R:P = 3500.	112
Figura 50	Evolución de los niveles de conversión con el tiempo para el	
	sistema 1-fenil-1-pentino/1-fenilpropino sobre el catalizador	
	1%Pd/MCM-41.	115
Figura 51	Dependencia de la concentración de 1-fenil-1-pentino/1-	

VIII

	fenilpropino durante la hidrogenación competitiva. Temperatura	
	ambiente, 1 atm de presión de H ₂ .	119
Figura 52	Niveles de conversión para la transformación del 1-fenil-1-	
	hexino sobre diferentes catalizadores de Pd soportado: T =	
	ambiente, $p = 1$ atm, $R:P = 2500$.	123
Figura 53	Efecto del solvente en la hidrogenación estereoselectiva de 1-	
	fenil-1-hexino para los catalizadores 1%Pd/HMS y 1%Pd/HMS.	126
Figura 54	Productos de selectividad para la hidrogenación de 1-fenil-1-	
	hexino sobre 1%Pd/HMS como función de la conversión.	
	Solvente = THF, $R:P = 2500$, $p = 1$ atm, $T =$ ambiente.	128
Figura 55	Curvas cinéticas en la hidrogenación de piruvato de etilo sobre	
	catalizadores de Pt soportado. $[CD] = 1 \times 10^{-4} M$, $[Sustrato] = 1$	
	M, Solvente = tolueno, $p = 50$ bar.	133
Figura 56	Dependencia de ee versus la conversión en tolueno, $[CD] = 1 x$	
	10 ⁻⁴ M.	137
Figura 57	Esquema de reacción simplificado para la hidrogenación	
	enantioselectiva de piruvato de etilo.	138
Figura 58	Diferentes confórmeros de la cinconidina.	139
Figura 59	Estructura de la cinconidina.	140
Figura 60	Interacción cinconidina - sustrato.	142
Figura 61	Adsorción del confórmero dominante de la cinconidina (CD) vía	
	su anillo quinolina en forma paralela a la superficie metálica.	143
Figura 62	Curvas cinéticas en la hidrogenación de 3,4-hexanodiona sobre	
	el catalizador 5%Pt/Al ₂ O ₃ . [CD] = 1 x 10^{-4} M, [Sustrato] = 1 M,	
	Solvente = tolueno, $p = 50$ bar.	145
Figura 63	Efecto de la técnica de introducción de la CD en el medio de	
	reacción sobre el exceso enantiomérico. Catalizador =	
	5%Pt/Al ₂ O ₃ , [CD] = 1 x 10^{-4} M, [Sustrato] = 1 M, Solvente =	
	tolueno, $p = 50$ bar.	146
Figura 64	Efecto del solvente en la cinética de reacción para la	

hidrogenación de 3,4-hexanodiona sobre el catalizador

5%Pt/Al₂O₃. [CD] = 1 x 10⁻⁴ M, [Sustrato] = 1 M, Solvente = tolueno, p = 50 bar. 147

- Figura 65 Efecto del solvente en el exceso enantiomérico para la hidrogenación de 3,4-hexanodiona sobre el catalizador 5%Pt/Al₂O₃. [CD] = 1 x 10⁻⁴ M, [Sustrato] = 1 M, Solvente = tolueno, p = 50 bar. 148
- Figura 66 Efecto de la concentración de cinconidina en la cinética de reacción para la hidrogenación de 3,4-hexanodiona sobre el catalizador 5%Pt/Al₂O₃. [Sustrato] = 1 M, Solvente = tolueno, p = 50 bar.
- Figura 67 Efecto de la concentración de cinconidina en el exceso enantiomerico para la hidrogenación de 3,4-hexanodiona sobre el catalizador 5%Pt/Al₂O₃. [Sustrato] = 1 M, Solvente = tolueno, p = 50 bar.
- Figura 68 Curvas cinéticas de reacción para la hidrogenación enantioselectiva de 3,4-hexanodiona sobre los catalizadores de Pt soportados. $[CD] = 1 \times 10^{-3} \text{ M}$, [Sustrato] = 1 M, Solvente = tolueno, p = 50 bar. 151
- Figura 69 Efecto de la adición de ATA en el ee para la hidrogenación de 2,3-butanodiona. $[CD] = 1,2 \times 10^{-5} \text{ M}$, [sustrato] = 1 M, solvente = tolueno, catalizador = 0,125 g 5%Pt/Al₂O₃, sustrato purificado, $P_{H2} = 50$ bar, T = ambiente. 157
- Figura 70 Esquema de reacción de la 1-fenil-1,2-propanodiona. 160
- Figura 71Estructura optimizada, ordenes de enlace, angulos de torsión (τ)y longitud de enlace de la 1-fenil-1,2-propanodiona.160
- Figura 72 Curvas cinéticas para la hidrogenación enantioselectiva de la 1fenil-1,2-propanodiona sobre catalizadores de Pt soportado. T = ambiente, $P_{H2} = 20$ bar, [CD] = 6 x 10⁻⁴ M, masa catalizador = 80 mg, solvente = CH₂Cl₂. 162
- Figura 73 Exceso enantiomérico (ee) en función de la conversión de la diona sobre diferentes catalizadores de Pt soportado. $[CD] = 10^{-4}$

149

150

M, Solvente = CH_2Cl_2 , T = ambiente, $P_{H2} = 20$ bar. 164

- Figura 74 Efecto de la concentración de CD en el exceso enantiomérico (ee) durante la hidrogenación de la 1-fenil-1,2-propanodiona sobre el catalizador 1%Pt/MCM-41. 165
- Figura 75 Esquema del mecanismo de hidrogenación de la 1-fenil-1,2propanodiona, (a) en ausencia de modificador, (b) bajo condiciones óptimas de concentración de modificador y (c) altas concentraciones de modificador. 166

INDICE DE TABLAS

Tabla 1	Parámetros de celda ao para las muestras MCM-41.	54
Tabla 2	Caracterización textural de la muestras MCM-41 calcinada y sililada.	59
Tabla 3	Parámetros de entrecruzamiento de ²⁹ Si-MAS-RMN para la muestra	
	MCM-41 calcinada a 540 °C bajo flujo de N ₂ .	64
Tabla 4	Propiedades Físicoquímicas de la sílica del tipo HMS calcinada.	68
Tabla 5	Propiedades físicoquímicas de la sílica del tipo MSU utilizando Brij	
	56 como surfactante.	72
Tabla 6	Relaciones H/Pd y CO/Pd y tamaño de partícula metálica obtenidas de	
	los datos de quimisorción de los catalizadores de Pd soportado.	77
Tabla 7	Medidas de tamaño de partículas obtenidas por TEM para los	
	catalizadores monometálicos.	80
Tabla 8	Energías de enlace (BE, eV) de los niveles centrales y relaciones	
	atómicas superficiales de los catalizadores reducidos de paladio	
	soportado.	83
Tabla 9	Relaciones H/Pd y CO/Pd y tamaño de partícula metálica obtenidas de	
	los datos de quimisorción de los catalizadores 1% Pd/MSU y	
	1%Pd/HMS.	84
Tabla 10	Relaciones H/Pt y tamaño de partícula metálica obtenidas de los datos	
	de quimisorción de H ₂ para los catalizadores de Pt soportado.	87
Tabla 11	Medidas de tamaño de partículas obtenidas por TEM para los	
	catalizadores de Pt soportado.	89
Tabla 12	Energías de enlace (BE, eV) de los niveles centrales y relaciones	
	atómicas superficiales de los catalizadores reducidos de platino	
	soportado.	89
Tabla 13	Constante de velocidad específica (k) y turnover frecuency (TOF) en	
	la hidrogenación de fenil alquil acetilenos sobre catalizadores de Pd y	
	Pb-Pd soportados.	93
Tabla 14	Selectividad al isómero cis sobre los catalizadores de Pd soportado.	96

Tabla 15	Propiedades texturales obtenidas desde los datos de fisisorción de N2 y	
	las reflexiones basales de los soportes y catalizadores de Pd soportado.	99
Tabla 16	Contenido metálico, relaciones H/Pd y CO/Pd y tamaño de partícula	
	metálica obtenidos por quimisorción y TEM para los catalizadores de	
	Pd soportado.	103
Tabla 17	Constantes de velocidad inicial, TOF y selectividad a productos para	
	la hidrogenación estereoselectiva de 1-fenilpropino sobre diferentes	
	catalizadores de Pd soportado a $R:P = 3500$.	108
Tabla 18	Constante de velocidad (k) y turnover frecuency (TOF) en la	
	hidrogenación estereoselectiva de fenil alquil acetilenos a temperatura	
	ambiente a diferentes R:P sobre 1%Pd/Al-PILC.	110
Tabla 19	Selectividad al isómero cis en la hidrogenación estereoselectiva de	
	fenil alquil acetilenos a distintas relaciones R:P sobre el catalizador	
	1%Pd/Al-PILC.	113
Tabla 20	Selectividades de las hidrogenaciones competitivas y coeficientes de	
	adsorción para los sistemas dobles.	118
Tabla 21	Efecto de las reacciones competitivas en la selectividad al alqueno cis	
	sobre 1%Pd/MCM-41.	121
Tabla 22	Constante de velocidad específica (k) y turnover frecuency (TOF) en	
	la hidrogenación de 1-fenil-1-hexino sobre catalizadores de Pd	
	soportados.	124
Tabla 23	Efecto del solvente en la constante de velocidad y TOF a diferentes	
	relaciones R:P para los catalizadores 1%Pd/HMS y 1%Pd/MSU.	127
Tabla 24	Efecto del solvente en la selectividad al cis-1-fenil-1-hexeno a	
	diferentes R:P para los catalizadores de Pd soportado.	129
Tabla 25	Parámetros cinéticos y exceso enantiomérico obtenido (ee) en la	
	hidrogenación enantioselectiva de piruvato de etilo sobre catalizadores	
	de Pt soportado.	134
Tabla 26	Resultados de RMN para el protón del carbono 9 de la cinconidina	
	para la interacción sustrato-modificador en fase líquida.	141
Tabla 27	Resultados de RMN para los protones aromáticos de la cinconidina	

XIII

	durante la interacción sustrato-modificador en fase líquida.	141
Tabla 28	Datos cinéticos para la hidrogenación de diferentes dicetonas sobre	
	catalizadores de Pt soportado en alúmina.	153
Tabla 29	Datos cinéticos de la hidrogenación enantioselectiva de 3,4-	
	hexanodiona sobre diferentes tipos de catalizadores de Pt soportado.	154
Tabla 30	Resultados de RMN para los protones aromáticos de la cinconidina	
	durante la interacción sustrato-modificador en fase líquida.	154
Tabla 31	Efecto del tratamiento de la 3,4-hexanodiona.	156
Tabla 32	Datos obtenidos para la hidrogenación de 3,4-hexanodiona a 4-	
	hidroxi-3-hexanona.	158
Tabla 33	Constante de velocidad y ee para la hidrogenación de 1-fenil-1,2-	
	propanodiona sobre catalizadores de Pt soportados.	163

AGRADECIMIENTOS

Desearía expresar mi agradecimiento a:

Los profesores Dr. Patricio Reyes Nuñez y Dra. Gina Pecchi Sánchez, a quien expreso mi más sincero agradecimiento por su ayuda y orientación brindada en la presente Tesis de doctorado en Ciencias con mención en Química.

CONICYT en la persona de su director por todo el financiamiento y beca de doctorado recibido en la realización del presente trabajo de Tesis doctoral.

Personal docente y profesores quienes brindaron apoyo y conocimiento durante todos los años de trabajo experimental.

Núcleo Científico Milenio ICM P99-92, por el financiamiento recibido en la realización de una pasantía de dos meses en la Academia de Ciencias de Hungría, Budapest-Hungría y por todo el financiamiento prestado en apoyo a congresos nacionales e internacionales.

Proyecto MECESUP, por el financiamiento otorgado en la realización de una pasantía de dos meses en la Academia de Ciencias de Hungría, Budapest-Hungria.

Proyecto Fundación Andes, por el financiamiento otorgado en la realización de una pasantía de un mes en la Universidad Estatal de Michigan, Lansing-USA.

Proyecto Fundación Andes, por el financiamiento otorgado en la asistencia a congresos internacionales de especialidad.

Los integrantes del grupo de Catálisis por metales, especialmente a todos mis compañeros de trabajo, por tenderme la mano en momentos difíciles.

Dr. Joszef Margitfalvi y Dra. Emilia Talas, por la ayuda y discusión de resultados, gracias.

Dr. Tomas J. Pinnavia, por su ayuda en la solución de algunos objetivos propuestos en este trabajo.

Gabriela Alvez mi esposa, por todo su amor y comprensión en momentos difíciles y sobre todo el apoyo en la realización de este trabajo y de otros proyectos a futuro, te amo hasta el infinito.

Elda Astorga Castro mi hermosa Madre, que con tu grandes esfuerzos por sacarnos adelante a mi y mis hermanos hoy en día somos lo que somos, te amo madre, lo volví a lograr, gracias.

Gustavo y Karina Marín Astorga mis grandes hermanos, sin su ayuda y comprensión no hubiera sido posible terminar todo lo que me he propuesto en la vida, los amo mucho, gracias.

Soledad González, Almendra Marín G., Tomas Marín G. y Martín Marín G. (mis hermosos niños), por brindarme todo lo que estuvo a su alcance y por estar en hermosos momentos, los quiero y amo mucho, gracias.

María Teresa Manoli Nazal, Gabriel Alvez Tapia, Gabriel Alvez Alvez y Pablo Alvez Manoli, por todo su apoyo y comprensión en los momentos que lo necesitamos, gracias los quiero mucho.

Mis compañeros de post-grado Fredy Pérez, German Bello, Claudio Jiménez, por prestarme toda la ayuda que necesité para la culminación de este trabajo. Gustavo González y familia, por toda la colaboración y ayuda prestada en los momentos que la necesité, siempre lo recordaré, gracias.

Y por último, a todos lo que en algún momento colocaron su granito de arena para que pudiera culminar esta meta.

Gracias a todos.....

Este trabajo fué realizado en el Laboratorio de Catálisis por Metales de la Ilustre Universidad de Concepción, bajo la tutoría de los profesores Dr. Patricio Reyes y Dra. Gina Pecchi. Concepción –Chile

Dedico este trabajo con todo mi amor a: Gaby por todo el apoyo y amor que me das, te amo. Mi Madre por todo su esfuerzo para lograr lo que soy. Siempre he pensado que nuestra existencia comienza en el momento de nacer y que a veces la vida tarda tanto que no llega nunca. He gastado mucho tiempo en tratar de entender qué era la vida construyendo hipótesis, algunas con sentido. Hoy sé que el amor, la amistad, la felicidad y el dinero son utopías que ha veces generan algunas angustias si las pretendemos completas. El asunto es buscarlas y devorar mis mejores momentos como lo estoy haciendo yo hoy junto a Gaby. Según los chilenos la vida es un buen vino, pero para mi es la canción que te gusta, esa sensación después de amar que te hace sentirte supremo, una buena comida, un gran atardecer, una buena bici y una buena mujer a tu lado. Todo lo demás es un rosario de pesadillas que tenemos que padecer para sentirse por instantes feliz..... con uno mismo. Hoy he cumplido otra meta más de mi vida que espero disfrutarla junto a los que más quiero y amo, gracias a todos por su apoyo y colaboración.

Mauricio Marín-Astorga

RESUMEN

Se prepararon y caracterizaron sólidos mesoestructurados, los cuales fueron utilizados como soportes de catalizadores basados en Pt y Pd. Estos materiales fueron sintetizados por vía catiónica utilizando como direccionador de estructura el bromuro de η -cetiltrimetilamonio (CH₃(CH₂)₁₅N(CH₃)₃Br), mediante la cual se obtuvo un sólido mesoporoso ordenado del tipo MCM-41 y la vía neutra usando como direccionador de estructura los surfactantes Brij 56 y dodecilamina (DDA, C₁₂H₂₅NH₂), obteniéndose las sílices MSU y HMS.

Los catalizadores basados en Pd fueron utilizados en la hidrogenación estereoselectiva de fenil alquil acetilenos a 1 atm y 298 K. El catalizador 1%Pd/MCM-41 presentó una alta actividad catalítica, efectos de confinamiento dentro de los canales pueden argumentarse como una posible explicación al comportamiento observado. La incorporación de plomo a estos catalizadores produce una disminución drástica en la actividad, como consecuencia del envenenamiento de los sitios metálicos. Todos los catalizadores presentaron una alta selectividad al isómero cis.

Las arcillas pilareadas (PILC) como soporte de catalizadores de Pd son adecuadas para las hidrogenaciones estereoselectivas de fenil alquil acetilenos en fase líquida, mostrando actividades comparables con las obtenidas con los sólidos mesoestructurados. La actividad de los catalizadores 1%Pd/Al-PILC y 1%Pd/Ca-Mont aumenta a medida que disminuye la razón R:P, manteniéndose la selectividad al isómero cis.

Los catalizadores de Pt soportado y modificados con cinconidina (CD) fueron probados en la hidrogenación enantioselectiva de α -cetóesteres y dicetonas a 298 K y presiones moderadas.

Con respecto a la hidrogenación de piruvato de etilo, las actividades iniciales fueron similares para todos los catalizadores, sin embargo a mayores conversiones el catalizador soportado en MCM-41 presentó la mayor actividad. Todos los catalizadores presentaron una alta selectividad al R-lactato de etilo (ee = 88 %).

Se estudió la hidrogenación de 2,3-butanodiona y 3,4 hexanodiona utilizando como modificador quiral cinconidina (CD), confirmando que la 2,3-butanodiona es más activa que la 3,4-hexanodiona en todos los catalizadores estudiados. Los resultados cinéticos demostraron que la $[CD] = 1 \times 10^{-3} \text{ M}$, es necesaria para obtener altas velocidades de reacción y excesos enantioméricos (ee) en un rango entre 55 y 65 %. La adición de aminas terciarias aquirales incrementan la velocidad de reacción y la enantioselectividad.

Se estudio la hidrogenación de 1-fenil-1,2-propanodiona a 25°C y 20 bar de presión de H₂ sobre catalizadores de Pt soportado modificados con CD. Los resultados cinéticos confirman que el catalizador 1%Pt/MCM-41 es más activo que el catalizador 1%Pt/SiO₂. El producto principal de reacción fue la *R*-1-hidroxi-1-fenilpropanona (ee = 47 %), sin obtención de los respectivos dioles.

Los resultados de RMN confirma la interacción en la fase líquida y en ausencia de hidrógeno entre el sustrato y el modificador quiral (CD).

ABSTRACT

Mesoporous molecular sieves were synthesized and characterized, which were used as supports of catalysts based on Pt and Pd. These materials were synthesized by cationic route using cetyltrimethylamonium bromide as template $(CH_3(CH_2)_{15}N(CH_3)_3Br)$, a mesoporouos solid ordered MCM-41 was obtained. The neutral route using the surfactants Brij 56 and dodecylamine (DDA, $C_{12}H_{25}NH_2$) as template, obtaining MSU and HMS silica's.

Pd supported catalysts were tested in the stereoselective hydrogenation of phenyl alkyl acetylenes at 1 atm and 298 K. The catalysts 1%Pd/MCM-41 displayed high catalytic activity. Confinement effects within the channels can be argued as a possible explanation to the observed behavior. The poisoning effect of Pb on the supported Pd was also studied. The poisoning with Pb produces a significant drop in the activity. All the catalysts displayed high selectivity to cisisomer.

The Pd supported on pillared clays are effective catalysts in the stereospecific hydrogenation of phenyl alkyl acetylenes in the liquid phase. The catalytic performances for all samples studied were different. 1%Pd/Al-PILC catalyst was more active and most stereoselective than 1%Pd/Ca-Mont catalyst due to the expansion of the layer structure. The catalytic activity decreases with increased the R:P molar ratios due to preferential adsorption of alkynes molecules. The hydrogenation of phenyl alkyl acetylenes to cis-alkene may be regarded as "structure insensitive reaction".

The enantioselective hydrogenation of α -ketoester and diketones at 298 K and moderated pressure on Pt modified catalysts was studied. In the ethyl pyruvate hydrogenation the initial turnover frequency was similar for the three studies catalysts; however, it changes during the time on stream. The sample that kept the activity in a larger extension was the Pt/MCM-41. All the catalysts displayed high selectivity to *R*-ethyl lactate, close to 88%.

Enantioselective hydrogenation of 2,3-butanedione and 3,4-hexanedione was been studied over different type of supported Pt catalysts in the presence of cinchonidine (CD). Kinetic results confirmed that 2,3-butanedione is more reactive than 3,4-hexanedione over all catalysts studied. The kinetic results confirmed also that CD concentration close to 10^{-3} M is necessary to achieve both high reaction rate and enantioselectivity in the range of 55-65 %. The addition of a chiral tertiary amine increases both the reaction rate and the enantioselectivity. The observed poisoning effect is attributed to the oligomers formed from diketones.

The hydrogenation of 1-phenyl-1,2-propanedione at 298 K and 20 bar on supported Pt catalysts using CD, as chiral modifier was been investigated. The highest rate has been obtained over 1%Pt/MCM-41 catalyst. The main product was *R*-1-hydroxy-1-phenylpropanone; the ee of 47 % is promising in comparison with the best ee obtained in the enantioselective hydrogenation of diketones.

NMR results confirmed that the substrate-modifier interaction takes place in the liquid phase.