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Abstract

The aim of this thesis is to develop high order mixed finite element discretizations for the numerical
solution of partial differential equations arising from continuum mechanics, focusing on scenarios in
which our methods contribute to improve the accuracy of the finite element approximation, namely,
the treatment of curved domains and the presence of singularities or high gradients of the solution.

First, we propose a high order mixed finite element method for steady-state diffusion problems
with Dirichlet boundary condition on a curved domain. Our approach is based on approximating the
domain by a polyhedral computational subdomain where a high order Galerkin method is considered
to compute the solution, and on a transferring technique to approximate the Dirichlet data on the
computational boundary. Under suitable hypotheses on the distance between the curved and compu-
tational boundaries, and the finite dimensional subspaces, we prove the well-posedness of the resulting
Galerkin scheme, and derive the corresponding error estimates, as well.

Next, we extend the previous ideas to the Stokes equations in which the pseudostress tensor and
the fluid velocity are the only unknowns, whereas the fluid pressure is computed via a postprocessing
technique. For the case where the computational boundary is constructed by interpolating the real
boundary by a piecewise linear function, we also develop a reliable and quasi-efficient residual-based
a posteriori error estimator. Its definition employs a more accurate approximate velocity to achieve
the same rate of convergence of the method when the solution is smooth enough.

Finally, we present an error analysis of a conforming finite element discretization for a four-field
formulation for the stationary Biot’s consolidation model in poroelasticity. Assuming standard hy-
potheses on the discrete spaces, we first prove well-posedness and optimal a priori error estimates of
the associated Galerkin scheme. Next, we develop a reliable and efficient residual-based a posteriori
error estimator. We show that both the reliability and efficiency estimates are independent of the
modulus of dilatation, even in the incompressible limit.

For all the problems described above, we provide numerical examples validating the theory.

iii



Resumen

El objetivo de esta tesis es desarrollar discretizaciones de elementos finitos mixtos de alto orden
para la solución numérica de ecuaciones diferenciales parciales que surgen de la mecánica del medio
continuo, centrándose en escenarios en los que nuestros métodos contribuyen a mejorar la precisión
de la aproximación de elementos finitos, a saber, el tratamiento de dominios curvos y la presencia de
singularidades o altos gradientes de la solución.

Primero, proponemos un método de elementos finitos mixto de alto orden para problemas de difusión
de estado estacionario con condición de contorno de Dirichlet sobre un dominio curvo. Nuestro enfoque
se basa en aproximar el dominio por un subdominio computacional poliédrico donde se considera un
método de Galerkin de alto orden para calcular la solución, y en una técnica de transferencia para
aproximar el dato Dirichlet sobre la frontera computacional. Bajo hipótesis adecuadas sobre la dis-
tancia entre las fronteras curva y computacional, y los subespacios finito-dimensionales, demostramos
el buen planteamiento del esquema de Galerkin resultante, y también obtenemos las estimaciones de
error correspondientes.

A continuación, extendemos las ideas anteriores a las ecuaciones de Stokes en las que el tensor de
pseudo-esfuerzo y la velocidad del fluido son las únicas incógnitas, mientras que la presión del fluido
se calcula mediante una técnica de post-procesamiento. Para el caso en que la frontera computacional
se construye interpolando la frontera real por una función lineal a trozos, también desarrollamos un
estimador de error a posteriori residual, confiable y cuasi-eficiente. Su definición emplea una velocidad
aproximada más precisa para lograr la misma tasa de convergencia del método cuando la solución es
lo suficientemente suave.

Finalmente, presentamos un análisis de error de una discretización conforme de elementos finitos
para una formulación de cuatro campos del modelo de consolidación de Biot estacionario en poroe-
lasticidad. Asumiendo hipótesis estándar sobre los espacios discretos, primero demostramos el buen
planteamiento y estimaciones de error a priori óptimas del esquema de Galerkin asociado. Luego, de-
sarrollamos un estimador de error a posteriori residual, confiable y eficiente. Mostramos que tanto las
estimaciones de confiabilidad como de eficiencia son independientes del módulo de dilatación, incluso
en el límite incompresible.

Para todos los problemas descritos anteriormente, proporcionamos ejemplos numéricos que validan
la teoría.
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Introduction

Solving partial differential equations with the help of finite element (FE) methods is of key impor-
tance for scientific research and industrial development on a wide range of problems that arise from
continuum mechanics. For instance, they have been used to describe two-phase flow [6], fluid flow in
porous media [81] and natural convection phenomena [110].

At the beginning, finite element methods were typically associated to low order approximations,
using mostly linear or quadratic polynomials. However, Babuška et al. [14] introduced the so-called
p version of these methods, in which accuracy is improved by increasing the polynomial degree, p,
while keeping a mesh of the domain fixed, opening the door to discussions about the best version of
finite elements (see, e.g., [15, 101]). In particular, high order methods seem to be, at first glance,
good candidates for applications requiring high-fidelity solutions (see, e.g., [65, 87]) and for large-scale
problems where refining the mesh is still computationally quite costly.

Now, let us recall that mixed finite element methods started in the early fifties with papers related
to structural engineering (see references in [128, Chapter 9]), and have gained considerable attention
because, in addition to the original unknowns, they allow for a direct approximation of further variables
of physical interest, such as rotations in linear elasticity (see, e.g., [4, 130]). Before them, obtaining
such approximations was only possible through a post-processing of the system solution, although
often at the expense of losing accuracy.

Mixed methods have been successfully applied to Stokes equations [46, 50, 78], Navier-Stokes equa-
tions [47], Brinkman equations [75], linear elasticity [4, 10, 13] and exterior problems [76, 77, 79], to
name a few. In particular, the introduction of the pseudostress tensor (term coined by [45] in the con-
text of least-squares methods) as an additional unknown in incompressible flow problems, has shown
benefits from the point of view of implementation. In fact, there is no need for a symmetry condition
as in the classical stress-based approach, allowing for an easy discretization via mixed finite elements
developed for second-order elliptic partial differential equations (PDEs), i.e., Raviart–Thomas [118]
and Brezzi–Douglas–Marini [39] spaces. For previous ideas regarding weakly imposed symmetry (via
Lagrange multipliers) and PEERS finite elements, we refer the reader to the pioneering paper by
Arnold et al. [10]. It is also worth mentioning that the need of locking-free finite element schemes
for nearly incompressible materials (see, e.g., [16]) is the main reason why mixed methods have been
introduced to solve elasticity problems. The latter is also important nowadays in the discretization of
poroelasticity equations (see, e.g., [107, 114, 147]).

On the other hand, although FE methods are well-known in the numerical treatment of PDEs in
regard to a priori error estimates to guarantee convergence, the accuracy of the numerical approxima-
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tion may be affected by singularities or high gradients of the continuous solution, often as a result of
domains with re-entrant corners or boundary layers. Adaptive mesh refinements based on a posteriori
error estimators constitute a useful technique for error control in such situations (see, e.g., [139]),
with much less computational cost than a uniform or quasiuniform refinement. To be precise, starting
from a coarse mesh Th, the critical regions are marked to be refined according to a global estimator
Θ in terms of local quantities ΘT defined for all T ∈ Th. The global estimator is called reliable (resp.
efficient) if it yields upper (resp. lower) bounds of the error up to high order terms. Both properties
together verify that Θ is more or less equivalent to the error. Furthermore, an a posteriori error
estimator is of residual type if it is obtained from the PDE residuals. We refer to [62, Section 1] for a
complete review of residual-based a posteriori error estimators for mixed FE methods.

Another reason why standard FE methods lose accuracy arises from the discretization of PDEs in
domains Ω ⊆ Rd (d = 2, 3) with curved boundary Γ. Indeed, since, in practice, the problem in Ω
is solved approximately on a convenient computational domain Dh, the space in which one looks for
the discrete solution is no longer a subspace of the continuous space and the price to pay for that
is called a variational crime. Strang [131] was the first who studied this fact and established how
to estimate the consistency error term introduced by the “crime”. This term will usually be of low
order and dominate the error analysis. To remedy this drawback and recover optimality, different
numerical methods have been investigated since the seventies (see, e.g., [8, 20, 27, 28, 32, 42, 86, 97,
131, 132, 134]), all of them with advantages and disadvantages. In general, they can be classified as
fitted or unfitted. In fitted methods, the mesh is matched or “fitted” to Γ with enough accuracy to
reduce the error of consistency. For instance, if isoparametric finite elements in two dimensions are
considered, each triangle at the computational boundary Γh := ∂Dh will have at most one curved side
resulting from a local interpolation of Γ. This approach gives high order accuracy when the degree of
the interpolation polynomial is large enough [96], but its use may increase the effort required for mesh
generation, specially for complicated geometries or moving domains. By contrast, the idea behind
unfitted methods, such as CutFEM [42] or immersed boundary methods [97, 111], is to make the
construction of Dh as independent of Γ as possible. This can be done by immersing Ω in a background
mesh and setting Dh to be the union of all the elements of the mesh that lie inside Ω. For this, one
only needs an implicit description (via a level set function, for instance) of Ω. However, it is not
easy to construct a high order unfitted method, mainly because the boundary data on Γh is imposed
“away” from the true boundary.

A novel unfitted method for steady-state convection-diffusion with Dirichlet boundary conditions
was developed in [59], and later analyzed in [57] in the framework of purely diffusive problems, using
hybridizable discontinuous Galerkin (HDG) methods and a transferring technique proposed for one-
dimensional problems [56]. Assuming that σ := ∇u is part of the system equations and u = g on
Γ, the method proposes to rewrite u on Γh by performing a line integration of σ along a family of
segments, called transferring paths, joining both boundaries. Proceeding as for u and integrating the
extrapolation of the discrete approximation of σ, an approximation of g on Γh is obtained. Thus, the
problem is solved in Dh and its solution is extended by local extrapolations to the complementary
region Ω \ Dh. In [57], it has been shown that the method keeps high order accuracy when the
distance d(Γ,Γh) between Γ and Γh is only of order of the computational meshsize, say h. Fitted
methods obtained through a piecewise linear interpolation of Γ, in which case d(Γ,Γh) is of order of
h2, are also covered by this technique. Moreover, an extension of the method to Neumann boundary
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conditions and for an elliptic transmission problem has been proposed by [117].

According to the above, our aim is to develop high order mixed finite element discretizations for
the numerical solution of problems arising from continuum mechanics, focusing on scenarios in which
our methods contribute to improve the accuracy of the finite element approximation. In particular,
since, the transferring technique [56, 57, 59] has only been applied to HDG methods, we are interested
in extending its applicability to dual-mixed formulations of elliptic PDEs, starting from purely diffu-
sive problems. We also aim at proposing an adaptive method on curved domains approximated by
computational subdomains, which, to our knowledge, has not received much attention until now. On
the other hand, as far as polyhedral domains are concerned, the goal is to contribute in the direction
of [92] and develop a reliable and efficient residual-based a posteriori error estimator for a four-field
formulation for the stationary Biot’s consolidation model.

This work is organized as follows. In Chapter 1, we propose and analyze a high order unfitted
mixed method for diffusion problems with Dirichlet boundary condition. For this, the Dirichlet data is
approximated on Γh by using the transferring technique described above. To deal with the boundedness
of the consistency term introduced by the variational crime, we provide suitable hypotheses on the
finite dimensional subspaces and the integration segments, ensuring that the resulting Galerkin scheme
is well-posed. A feasible choice of discrete spaces is given by Raviart–Thomas elements of order k ≥ 0
for the vector variable and discontinuous polynomials of degree k for the scalar variable, yielding
optimal convergence of order hk+1 if the distance d(Γ,Γh) is at most of order h. In addition, the
solution is approximated on the complement of Dh and the corresponding error estimates are derived.
This first contribution was published in the journal detailed below:

[109] R. Oyarzúa, M. Solano, and P. Zúñiga, A High Order Mixed-FEM for Diffusion
Problems on Curved Domains, J. Sci. Comput., 79 (2019), pp. 49–78.

Next, in Chapter 2, we extend the unfitted mixed method to the incompressible Stokes equations
in which the pseudostress tensor and the fluid velocity are the only unknowns, whereas the fluid
pressure is computed via a postprocessing technique. It is worth pointing out that, by contrast with
related work by Solano and Vargas [126], here the novelties are, on the one hand, the treatment of the
pseudostress approximation in Dh and, on the other hand, it is the first time that a residual-based
a posteriori error estimator resulting from the transferring technique is analyzed, as long as Γh is
constructed through a piecewise linear interpolation of the boundary Γ. Moreover, unlike the Stokes
problem in polyhedral domains [78], our estimator is efficient up to calculable terms involving curved
segments and a postprocessed velocity converging with one order higher than the original approximate
velocity. This work has been recently accepted for publication in the journal Computer Methods
in Applied Mechanics and Engineering. The preprint version is detailed below:

[108] R. Oyarzúa, M. Solano, and P. Zúñiga, A priori and a posteriori error analyses of a
high order unfitted mixed-FEM for Stokes flow, Preprint 2019-15, Centro de Investigación
en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile, Preprint avail-
able at https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.
php?id=365.

Finally, in Chapter 3, we focus on the numerical approximation of stationary Biot’s consolidation

https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=365
https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=365
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model in the theory of poroelasticity, describing the fluid-structure interaction of an elastic solid
infiltrated by an interconnected network of fluid-saturated pores.

Let us briefly comment on the origins of the poroelasticity equations. In 1925, Karl von Terzaghi
[133] proposed a simple mechanism to describe consolidation of soils, i.e., the gradual decrease of
volume in fully saturated soils under loading. In such a case, the excess pore pressures dissipate and
water leaves the soil slowly, resulting in the so-called settlement of the soil. Terzaghi’s theory, although
restricted to the one-dimensional consolidation problem, has several assumptions, including isotropy
of the porous skeleton and small solid deformations. For the general theory, Maurice A. Biot later
extended this problem to higher dimensions [25] and to the case of anisotropy [26].

In the displacement-pressure formulation of Biot’s model, Darcy’s law for the motion of the fluid is
coupled to Hooke’s theory of linear elasticity for the solid deformation. Due to the complex coupling,
obtaining analytical solutions for this model is rarely possible (see, e.g., [18]) and, therefore, the
development of efficient numerical solvers is indispensable. It is well-known, however, that the main
difficulties encountered when developing numerical methods for Biot’s model are volumetric locking
and spurious, nonphysical pressure oscillations (see, e.g., [114, 147]).

Recently, Oyarzúa et al. [107] proposed and analyzed a three-field formulation for the stationary
Biot’s model using classical FE methods that are locking-free and free of spurious pressure oscillations.
More precisely, in addition to the displacement and fluid pressure, they introduced the total pressure
(or volumetric part of the total stress) as an additional unknown. To achieve a numerical scheme that
is also mass conserving, they later extended this approach to a four-field formulation by introducing
the “fluid flux” as an additional unknown [92]. They propose to approximate the solid displacement
in this model by a discontinuous finite volume method while remaining unknowns are approximated
by a mixed finite element method.

In Chapter 3, we present an a priori and a posteriori error analysis of a conforming FE discretiza-
tion for the four-field formulation of stationary Biot’s consolidation model [92]. For the a priori error
analysis we provide suitable hypotheses on the corresponding finite dimensional subspaces ensuring
that the associated Galerkin scheme is well-posed. We show that a suitable choice of subspaces is
given by the Raviart–Thomas elements of order k ≥ 0 for the fluid flux, discontinuous polynomials
of degree k for the fluid pressure, and any stable pair of Stokes elements for the solid displacements
and total pressure. We furthermore show that the scheme is locking-free. Next, we develop a reliable
and efficient residual-based a posteriori error estimator. Both the reliability and efficiency estimates
are shown to be independent of the modulus of dilatation. We remark that, up to our knowledge,
this is the first work where efficiency estimates for high order approximations of stationary Biot’s
consolidation model are proven. The contents of this chapter gave rise to the following preprint:

[106] R. Oyarzúa, S. Rhebergen, M. Solano, and P. Zúñiga, Error analysis of
a conforming and locking-free four-field formulation for the stationary Biot’s model.
Preprint 2019-31, Centro de Investigación en Ingeniería Matemática (CI2MA), Universi-
dad de Concepción, Chile, Preprint available at https://ci2ma.udec.cl/publicaciones/
prepublicaciones/prepublicacion.php?id=381.

https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=381
https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=381


Introducción

Resolver ecuaciones diferenciales parciales con la ayuda de métodos de elementos finitos es clave para
la investigación científica y el desarrollo industrial en una amplia gama de problemas que surgen de
la mecánica del medio continuo. Por ejemplo, ellos han sido utilizados para describir flujos bifásicos
[6], el flujo de fluidos en medios porosos [81] y fenómenos de convección natural [110].

En sus origenes, los métodos de elementos finitos se asociaban típicamente a aproximaciones de
bajo orden, utilizando principalmente polinomios lineales o cuadráticos. Sin embargo, Babuška y
colaboradores [14] introdujeron la versión p de estos métodos, en la cual se mejora la precisión de la
aproximación al aumentar el grado polinomial, p, mientras se fija una malla del dominio, abriendo
la puerta a discusiones sobre la mejor versión de elementos finitos (ver, por ejemplo, [15, 101]). En
particular, los métodos de alto orden parecen ser, a primera vista, buenos candidatos para aplicaciones
que requieren soluciones de alta fidelidad (ver, por ejemplo, [65, 87]) y para problemas a gran escala
en los que refinar la malla sigue siendo muy costoso desde el punto de vista computacional.

Recordemos ahora que los métodos de elementos finitos mixtos comenzaron a principios de los años
cincuenta con publicaciones relacionados con la ingeniería estructural (ver referencias en [128, Chapter
9]), y han ganado considerable atención porque, además de las incógnitas originales, permiten una
aproximación directa de otras variables de interés físico, tales como rotaciones en elasticidad lineal
(ver, por ejemplo, [4, 130]). Antes de ellos, la obtención de tales aproximaciones sólo era posible a
través de un post-proceso de la solución del sistema, aunque a menudo a costa de perder precisión.

Los métodos mixtos han sido aplicados con éxito a las ecuaciones de Stokes [46, 50, 78], ecuaciones
de Navier–Stokes [47], ecuaciones de Brinkman [75], elasticidad lineal [4, 10, 13] y problemas exteriores
[76, 77, 79], por nombrar algunos. En particular, la introducción del tensor de pseudo-esfuerzo (término
acuñado por [45] en el contexto de los métodos de mínimos cuadrados) como una incógnita adicional en
problemas de flujo incompresible, ha mostrado beneficios desde el punto de vista de la implementación
numérica. En efecto, no hay necesidad de una condición de simetría como en el enfoque clásico
basado en el tensor de esfuerzos, lo que permite una fácil discretización a través de elementos finitos
mixtos desarrollados para ecuaciones diferenciales parciales (EDPs) elípticas de segundo orden, es
decir, espacios de Raviart–Thomas [118] y Brezzi–Douglas–Marini [39]. Para ideas previas sobre
simetría débil (a través de multiplicadores de Lagrange) y elementos finitos PEERS, remitimos al
lector al artículo pionero de Arnold y colaboradores [10]. También vale la pena mencionar que la
necesidad de esquemas de elementos finitos libres de bloqueo para materiales casi incompresibles
(ver, por ejemplo, [16]) es la razón principal por la cual los métodos mixtos han sido introducidos para
resolver problemas de elasticidad. Esto último es igualmente importante hoy en día en la discretización
de las ecuaciones de poroelasticidad (ver, por ejemplo, [107, 114, 147]).

5
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Por otro lado, aunque los métodos de elementos finitos son bien conocidos en el tratamiento numérico
de EDPs en lo que respecta a las estimaciones de error a priori para garantizar la convergencia, la
precisión de la aproximación numérica puede verse afectada por singularidades o altos gradientes de la
solución continua, a menudo como resultado de dominios con esquinas reentrantes o capas límite. Los
refinamientos adaptativos basados en estimadores de error a posteriori constituyen una técnica útil
para el control de errores en tales situaciones (ver, por ejemplo, [139]), con un costo computacional
mucho menor que un refinamiento uniforme o cuasi-uniforme. Para ser preciso, a partir de una malla
gruesa Th, las regiones críticas se marcan para ser refinadas de acuerdo a un estimador global Θ en
términos de cantidades locales ΘT definidas para todo T ∈ Th. El estimador global se dice confiable
(resp. eficiente) si entrega cotas superiores (resp. inferiores) del error salvo, posiblemente, términos de
alto orden. Ambas propiedades juntas verifican que Θ es más o menos equivalente al error. Además,
se dice que un estimador de error a posteriori es del tipo residual si se obtiene de los residuos de la
EDP. Remitimos al lector a [62, Section 1] para una revisión completa de los estimadores de error a
posteriori del tipo residual para métodos de elementos finitos mixtos.

Otra razón por la cual los métodos de elementos finitos estándar pierden precisión surge de la
discretización de EDPs en dominios Ω ⊆ Rd (d = 2, 3) con frontera curva Γ. En efecto, dado que, en
la práctica, el problema en Ω se resuelve aproximadamente en un dominio computacional conveniente
Dh, el espacio en el que se busca la solución discreta deja de ser un subespacio del espacio continuo
y el precio a pagar se llama crimen variacional. Strang [131] fue el primero que estudió este hecho y
estableció cómo estimar el término de error de consistencia introducido por el “crimen”. Este término
generalmente será de bajo orden y dominará el análisis de error. Para remediar este inconveniente y
recuperar optimalidad, diferentes métodos numéricos han sido investigados desde los años setenta (ver,
por ejemplo, [8, 20, 27, 28, 32, 42, 86, 97, 131, 132, 134]), todos ellos con ventajas y desventajas. En
general, pueden ser clasificados como fitted o unfitted. En los métodos fitted, la malla se ajusta a Γ con
precisión suficiente para reducir el error de consistencia. Por ejemplo, si se consideran elementos finitos
isoparamétricos en dos dimensiones, cada triángulo en la frontera computacional Γh := ∂Dh tendrá
como máximo un lado curvo resultante de una interpolación local de Γ. Este enfoque proporciona
alto orden cuando el grado del polinomio de interpolación es lo suficientemente grande [96], pero su
uso puede aumentar el esfuerzo requerido para la generación de mallas, especialmente para geometrías
complicadas o dominios en movimiento. Por el contrario, la idea detrás de los métodos unfitted, tales
como CutFEM [42] o los métodos immersed boundary [97, 111], es hacer que la construcción de Dh sea
tan independiente de Γ como sea posible. Esto se puede hacer insertando Ω en una malla background y
configurando Dh para que sea la unión de todos los elementos de la malla que se encuentran contenidos
en Ω. Para esto, uno sólo necesita una descripción implícita (a través de una función de conjunto
de nivel, por ejemplo) de Ω. Sin embargo, no es fácil construir un método unfitted de alto orden,
principalmente porque el dato sobre la frontera Γh se impone “lejos” de la frontera real.

Un novedoso método unfitted para problemas de convección-difusión estacionarios con condiciones
de Dirichlet fue propuesto en [59], y luego analizado en [57] en el contexto de problemas puramente
difusivos, usando métodos de Galerkin discontinuo hibridizable (HDG) y una técnica de transferencia
propuesta para problemas unidimensionales [56]. Asumiendo que σ := ∇u es parte de las ecuaciones
del sistema y que u = g sobre Γ, el método propone reescribir u sobre Γh a través de una integral de
línea de σ a lo largo de una familia de segmentos, llamados caminos de transferencia, uniendo ambas
fronteras. Procediendo como para u e integrando la extrapolación de la aproximación discreta de σ,
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se obtiene una aproximación de g sobre Γh. De este modo, el problema se resuelve en Dh y su solución
se extiende mediante extrapolaciones locales a la región restante de Ω. En [57], se ha demostrado que
el método mantiene el alto orden de la aproximación cuando la distancia d(Γ,Γh) entre Γ y Γh es sólo
del orden del tamaño de la malla computacional, digamos h. Los métodos fitted obtenidos a través de
una interpolación lineal a trozos de Γ, en cuyo caso d(Γ,Γh) es de orden h2, también están cubiertos
por esta técnica. Además, una extensión del método a condiciones de contorno de Neumann y para
un problema de transmisión elíptico ha sido propuesto por [117].

De acuedo a lo anterior, nuestro objetivo es desarrollar discretizaciones de elementos finitos mixtos
de alto orden para la solución numérica de problemas que surgen de la mecánica del medio continuo,
centrándose en escenarios en los que nuestros métodos contribuyen a mejorar la precisión de la aprox-
imación de elementos finitos. En particular, dado que la técnica de transferencia [56, 57, 59] sólo
se ha aplicado a los métodos HDG, estamos interesados en extender su aplicabilidad a las formula-
ciones duales-mixtas de EDPs elípticas, comenzando por problemas puramente difusivos. También
pretendemos proponer un método adaptativo en dominios curvos aproximados por subdominios com-
putacionales, el cual, hasta donde sabemos, no ha recibido mucha atención hasta ahora. Por otro
lado, en lo que respecta a los dominios poliédricos, el objetivo es contribuir en la dirección de [92] y
desarrollar un estimador de error a posteriori residual, confiable y eficiente, para una formulación de
cuatro campos del modelo de consolidación de Biot estacionario.

Este trabajo está organizado de la siguiente manera. En el Capítulo 1, proponemos y analizamos
un método mixto unfitted de alto orden para problemas de difusión con condición de contorno de
Dirichlet. Para esto, el dato Dirichlet se aproxima sobre Γh utilizando la técnica de transferencia
descrita anteriormente. Para lidiar con el acotamiento del término de consistencia introducido por el
crimen variacional, proporcionamos hipótesis adecuadas sobre los subespacios de dimensión finita y
los segmentos de integración, asegurando que el esquema de Galerkin resultante está bien puesto. Una
opción factible de espacios discretos está dada por Raviart–Thomas de orden k ≥ 0 para la variable
vectorial y polinomios discontinuos de grado k para la variable escalar, entregando convergencia óptima
de orden hk+1 si la distancia d(Γ,Γh) es como máximo de orden h. Además, la solución se aproxima
sobre el complemento de Dh y se derivan las estimaciones de error correspondientes. Esta primera
contribución fue publicada en la revista que se detalla a continuación:

[109] R. Oyarzúa, M. Solano, and P. Zúñiga, A High Order Mixed-FEM for Diffusion
Problems on Curved Domains, J. Sci. Comput., 79 (2019), pp. 49–78.

A continuación, en el Capítulo 2, extendemos el método mixto unfitted a las ecuaciones de Stokes
en las que el tensor de pseudo-esfuerzo y la velocidad del fluido son las únicas incógnitas, mientras
que la presión del fluido se calcula mediante una técnica de post-procesamiento. Vale la pena señalar
que, en contraste con el trabajo de Solano y Vargas [126], aquí las novedades son, por un lado, el
tratamiento de la aproximación del pseudo-esfuerzo en Dh y, por otro lado, que es la primera vez que
se analiza un estimador de error a posteriori del tipo residual que resulta de la técnica de transferencia,
mientras que Γh se construye a través de una interpolación lineal a trozos de la frontera Γ. Además,
a diferencia del problema de Stokes en dominios poliédricos [78], nuestro estimador es eficiente salvo
términos calculables que involucran segmentos curvos y una velocidad post-procesada que converge con
un orden más alto que la velocidad aproximada original. Este trabajo ha sido recientemente aceptado
para publicación en la revista Computer Methods in Applied Mechanics and Engineering.
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La pre-publicación se detalla a continuación:

[108] R. Oyarzúa, M. Solano, and P. Zúñiga, A priori and a posteriori error analyses of a
high order unfitted mixed-FEM for Stokes flow, Preprint 2019-15, Centro de Investigación
en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile, Preprint avail-
able at https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.
php?id=365.

Finalmente, en el Capítulo 3, nos enfocamos en la aproximación numérica del modelo de con-
solidación de Biot estacionario en la teoría de la poroelasticidad, describiendo la interacción fluido-
estructura de un sólido elástico infiltrado por una red interconectada de poros saturados de fluido.

Comentemos brevemente sobre los orígenes de las ecuaciones de poroelasticidad. En 1925, Karl
von Terzaghi [133] propuso un mecanismo simple para describir la consolidación de suelos, esto es, la
disminución gradual del volumen en suelos (completamente saturados) debido a una carga aplicada. En
tal caso, el exceso de presión del agua en los poros se disipa y el agua abandona el suelo lentamente, lo
que resulta en el llamado asentamiento del suelo. La teoría de Terzaghi, aunque restringida al problema
de consolidación unidimensional, tiene varios supuestos, incluyendo la isotropía del esqueleto poroso
y pequeñas deformaciones en el sólido. Para la teoría general, Maurice A. Biot luego extendió este
problema a tres dimensiones [25] y al caso de anisotropía [26].

En la formulación desplazamiento-presión del modelo de Biot, la ley de Darcy para el movimiento
del fluido está acoplada a la teoría de la elasticidad lineal de Hooke para la deformación del sólido.
Debido al complejo acoplamiento, rara vez es posible obtener soluciones analíticas para este modelo
(ver, por ejemplo, [18]) y, por lo tanto, el desarrollo de solvers numéricos eficientes es indispensable. Sin
embargo, es bien sabido que las principales dificultades encontradas al desarrollar métodos numéricos
para el modelo de Biot son el bloqueo volumétrico y las oscilaciones de la presión (ver, por ejemplo,
[114, 147]).

Recientemente, Oyarzúa y colaboradores [107] propusieron y analizaron una formulación de tres
campos para el modelo de Biot estacionario utilizando métodos clásicos de elementos finitos que son
libres de bloqueo y de oscilaciones de la presión. Más precisamente, además del desplazamiento y
la presión del fluido, introdujeron la presión total (o parte volumétrica del esfuerzo total) como una
incógnita adicional. Para lograr un esquema numérico que también conserve masa, más tarde los
autores extendieron este enfoque a una formulación de cuatro campos al introducir el “flujo de fluido”
como una incógnita adicional [92]. Ellos proponen aproximar el desplazamiento del sólido en este
modelo por un método de volumenes finitos discontinuo, mientras que las incógnitas restantes se
aproximan por un método mixto.

En el Capítulo 3, presentamos un análisis de error a priori y a posteriori de una discretización de
elementos finitos conforme para la formulación de cuatro campos del modelo de consolidación de Biot
estacionario [92]. Para el análisis de error a priori establecemos hipótesis adecuadas sobre los sube-
spacios finito-dimensionales correspondientes, asegurando que el esquema de Galerkin asociado está
bien puesto. Demostramos que una elección adecuada de subspacios está dada por Raviart–Thomas
de orden k ≥ 0 para el flujo de fluido, polinomios discontinuos de grado k para la presión de fluido,
y cualquier par de elementos estables para Stokes en el caso de los desplazamientos del sólido y la
presión total. Además, mostramos que el esquema es libre bloqueo. A continuación, desarrollamos un

https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=365
https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=365
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estimador de error a posteriori del tipo residual y se demuesta que tanto las estimaciones de confia-
bilidad como de eficiencia son independientes del módulo de dilatación. Observamos que, hasta donde
sabemos, este es el primer trabajo donde se demuestra la eficiencia del estimador para approximaciones
de alto orden del modelo de consolidación de Biot estacionario. El contenido de este capítulo dio lugar
a la siguiente pre-publicación:

[106] R. Oyarzúa, S. Rhebergen, M. Solano, and P. Zúñiga, Error analysis of
a conforming and locking-free four-field formulation for the stationary Biot’s model.
Preprint 2019-31, Centro de Investigación en Ingeniería Matemática (CI2MA), Universi-
dad de Concepción, Chile, Preprint available at https://ci2ma.udec.cl/publicaciones/
prepublicaciones/prepublicacion.php?id=381.

https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=381
https://ci2ma.udec.cl/publicaciones/prepublicaciones/prepublicacion.php?id=381


CHAPTER 1

A high order mixed-FEM for diffusion problems on curved domains

In this chapter we propose and analyze a high order mixed finite element method for diffusion
problems with Dirichlet boundary condition on a domain Ω with curved boundary. The method
is based on approximating Ω by a polyhedral subdomain where a high order Galerkin scheme
is considered to compute the solution. We provide suitable hypotheses on the mesh near the
curved boundary and the corresponding finite dimensional subspaces to achieve a well-posed
discrete formulation with optimal a priori error estimates. Numerical experiments illustrate the
performance of the scheme and validate the theory.

1.1 Introduction

Given f ∈ Ld(Ω) and g ∈ H1/2(Γ) we are interested in approximating, by a mixed finite element
discretization, the vector field σ and the scalar field u satisfying the following first-order system of
equations:

σ = ∇u in Ω, divσ = −f in Ω, u = g on Γ, (1.1)

where Γ := ∂Ω is the boundary of Ω, which is assumed to be piecewise C2 and Lipschitz. Our approach
is based on a technique originally developed in the context of high order hybridizable discontinuous
Galerkin (HDG) methods [56, 57, 59]. It consists of approximating Ω by a polyhedral subdomain Dh,
with boundary Γh, and transferring the Dirichlet boundary datum g from Γ to the computational
boundary Γh, in such a way that the method keeps high order accuracy when Dh does not necessarily
fit Ω. As we will detail below in Section 1.2.1, the transferred boundary datum on Γh, denoted by g̃,
is obtained by integrating σ = ∇u along a family of segments joining Γh and Γ, which will be referred
to as transferring paths. At the discrete level, g̃ is approximated by a boundary datum g̃h obtained by
integrating the extrapolation of the discrete approximation of σ along the transferring paths. Thus,
the problem is solved in Dh by means of any standard mixed method for polyhedral domains.

This technique, as mentioned before, has been introduced for HDG methods. It was first proposed
and analyzed for the one-dimensional case in [56]. The approach was extended in [59] to two dimen-
sions where numerical evidence indicated that the method performs optimally. Later, the authors in
[57] proved that the method converges with optimal order in two and three dimensions under assump-
tions regarding the transferring paths. In addition, this technique has been successfully applied to

10
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convection-diffusion problems [60], exterior diffusion equations [58], the Stokes flow problem [126], the
semi-linear Grad–Shafranov equation [122], and the Oseen equations [125]. We point out that in all
these papers the distance d(Γh,Γ) between Γh and Γ is only of the order of the meshize h and there
is no need of fitting the domain Ω. On the other hand, also in the context of HDG methods, [117]
applied this technique to a diffusion problem with mixed boundary conditions and to an elliptic trans-
mission problem where the interface is not piecewise flat. In these two cases, the boundary/interface
needs to be interpolated by a piecewise linear computational boundary/interface in order to obtain
high order accuracy, which means that the distance between the computational boundary/interface
and the true boundary/interface has to be at most of order h2. The reason why this approach works
for the Dirichlet problem under a less restrictive assumption than the Neumann problem (d(Γh,Γ) of
order h versus order h2) relies on the fact that the PDE provides a way to determine the Dirichlet
data at the computational boundary through performing a line integration of the equation σ = ∇u.
An appropriate transferring procedure of the Neumann datum, allowing d(Γh,Γ) to be of order h,
remains as an open problem.

On the other hand, a variety of numerical methods dealing with curved boundaries or interfaces have
been proposed since the seventies; most of them provide low order approximations. In general, they
can be classified in two groups: fitted and unfitted methods. Fitted methods adjust the computational
boundary to Γ. For example, Γh can be constructed by a linear interpolation of Γ and the boundary
data is transferred in a natural way, i.e., if x ∈ Γh and x̄ ∈ Γ is a projection of x in Γ, then g̃(x) := g(x̄).
We recall that g̃ denotes the boundary data on Γh. This idea, which was first introduced in [35] and
then extended to interface problems in [36], leads to a low order approximation. To achieve a high order
approximation in the context of fitted methods, an alternative procedure is to use isoparametric finite
elements (see, e.g., [96]). However, these meshes are not easy to construct, especially for complicated
geometries or when dealing with moving domains. On the contrary, unfitted methods, such as the
immersed boundary method, allow us to work with background meshes, which is useful in complicated
geometries. Nevertheless, since the boundary of the resulting polygonal domain is “far” from the curved
boundary, the boundary data must be incorporated differently from the classical approaches. We refer
the reader to [57, Section 1] for a review of unfitted methods, including the work [33, 97, 102, 112].

The method presented in this chapter can be classified as an unfitted method, where the boundary
data is transferred in such a way that optimal high order accuracy is achieved. To the best of our
knowledge, this technique has only been applied to HDG methods. Therefore, the purpose of our
work is to consider this approach to the context of dual–mixed formulations of elliptic problems. The
literature regarding mixed methods in polygonal/polyhedral domains is extensive. For instance, we
refer the reader to [41] and [73] for a detailed analysis of mixed methods applied to different problems.
However, in the context of curved domains the literature is scarce. Up to the author’s knowledge,
probably the only works dealing with mixed methods in curved domains are [22] and [23], where
a parametric Raviart–Thomas finite elements for domains with curved boundaries is employed. In
particular, the authors in [22] take an approximate polygonal domain Ωh instead of Ω, where the
paramatric Raviart–Thomas space of order k ≥ 0 is constructed through the standard Piola trans-
formation (see, e.g., [73]) and a piecewise polynomial mapping Fh of degree k + 1 from a reference
domain Ω̂h to Ωh. They then define the parametric Raviart–Thomas interpolation operator from the
classical interpolation operator associated to Ω̂h and the mapping Fh. Furthermore, they extended
that operator to the complement of Dh by using a piecewise polynomial representation, providing
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high order approximation properties under suitable regularity assumptions on the exact solution. The
last approach was successfully applied to a mixed formulation of the Poisson problem with Neumman
boundary condition, retaining the optimal convergence in the high order case for domains with piece-
wise Ck+2 boundary (for k ≥ 0), provided that the solution and the data are regular enough. On the
contrary, in our method we can relax the smoothness requirement of the boundary to piecewise C2

only, and, besides, we take into account Dirichlet boundary conditions, in which case, to the best of
our knowledge, a parametric-type method allowing high order approximation for mixed problems has
not been presented yet.

This chapter is organized as follows. In the remainder of this section we recall notation and general
definitions. Then, the domain Ω is approximated by a polyhedral subdomain where a Galerkin scheme
is introduced and analyzed in Section 1.2. In Section 1.3, we derive the corresponding a priori error
analysis whenever the distance d(Γ,Γh) is at most of O(h). Next, in Section 1.4 we make precise the
definition of the involved discrete spaces and recall some approximation properties. In Section 1.5,
several numerical examples illustrating the good performance of the method, are reported.

We end this section by introducing definitions and notation. In the sequel, when no confusion
arises, | · | will denote the Euclidean norm in Rn, n = 2, 3. Additionally, in what follows we utilize
standard simplified terminology for Sobolev spaces and norms, where spaces of vector-valued functions
are denoted in bold face. In particular, if O is a domain in Rn, Σ is an open or closed Lipschitz curve
(respectively surface in R3), and s ∈ R, we define Hs(O) := [Hs(O)]n and Hs(Σ) := [Hs(Σ)]n.
However, when s = 0 we write L2(O) and L2(Σ) instead of H0(O) and H0(Σ), respectively. The
corresponding norms are denoted by ‖ · ‖s,O for Hs(O), Hs(O), and ‖ · ‖s,Σ for Hs(Σ) and Hs(Σ). For
s ≥ 0, we write | · |s,O for the Hs-seminorm and Hs-seminorm. In addition, we define the Sobolev
space (see, e.g., [41, 73, 84]):

H(div;O) :=
{
τ ∈ L2(O) : div τ ∈ L2(O)

}
,

equipped with the norm ‖τ‖div,O :=
(
‖τ‖20,O + ‖div τ‖20,O

)1/2
, where the divergence operator, div, is

understood in the sense of distributions, that is,

〈div τ , ϕ〉D ′(O)×D(O) := −
∫
O
τ · ∇ϕdx ∀ϕ ∈ D(O) := C∞0 (O),

with 〈·, ·〉D ′(O)×D(O) being the distributional paring between D ′(O) and D(O). Note that if τ ∈
H(div;O), then τ · ν∂O ∈ H−1/2(∂O), where ν∂O denotes the outward unit vector normal to the
boundary ∂O and H−1/2(∂O) corresponds to the dual space of H1/2(O). Hereafter, 〈·, ·〉∂O denotes
the duality pairing between H−1/2(∂O) and H1/2(∂O) with respect to the L2(∂O)-inner product.

Finally, by 0 we will refer to the generic null vector (including the null functional and operator),
and we will denote by C and c, with or without subscripts, bars, tildes or hats, generic constants
independent of the meshsize, but might depend on the polynomial degree, the shape-regularity of the
triangulation and the domain. Moreover, for quantities A and B, we write A . B, whenever there
exists C > 0 such that A ≤ CB.
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1.2 The Galerkin method

In this section we derive our numerical scheme and analyze its well-posedness. Throughout this section,
by the sake of simplicity of notation and exposition, we will consider the two-dimensional case. Most
of the results are straightforward for three dimensions, but some of them require technicalities that
will be addressed in Appendix B. We begin by introducing some notation and auxiliary results.

1.2.1 Notation and preliminaries

For the sake of completeness and easy presentation of the main ideas, we start by briefly recalling the
mixed formulation of the Poisson problem, which reads: Find (σ, u) ∈ H(div; Ω)× L2(Ω) such that

a(σ, τ ) + b(τ , u) = G(τ ) ∀ τ ∈ H(div; Ω),
b(σ, v) = F (v) ∀ v ∈ L2(Ω),

(1.2)

where the bilinear forms a : H(div; Ω) ×H(div; Ω) → R, b : H(div; Ω) × L2(Ω) → R, and the linear
functionals G : H(div; Ω)→ R, F : L2(Ω)→ R are defined by

a(σ, τ ) :=
∫

Ω
σ · τ dx, b(τ , v) :=

∫
Ω
v div τ dx, G(τ ) := 〈τ · νΓ, g〉Γ, F (v) := −

∫
Ω
f v dx.

Here νΓ stands for the outward unit normal to Γ. For the well-posedness analysis of this problem we
refer the reader to [73, Chapter 2].

Next, to derive our numerical method, from now on we suppose that Ω can be approximated by
a family of polygonal subdomains Dh. In doing so, the most natural choice, guided by [59, Section
2.1], consists of considering a background domain B ⊃ Ω easy to triangulate. More precisely, given
a mesh Th of B made up of triangles K of diameter hK , we use a level set function ϕ to determine
which elements are inside of Ω in order to set our subdomain Dh; see an illustration in Figure 1.1.
Here ϕ : B → R is a continuous function such that ϕ < 0 in Ω, ϕ = 0 in Γ and ϕ > 0 in B \ Ω. We
then set Th := {K ∈ Th : ϕ(x) ≤ 0 ∀x ∈ K} and Dh :=

(
∪K∈Th

K
)◦
. We also set Γh := ∂Dh and

Dc
h := Ω \Dh.

Figure 1.1: Example of curved domain Ω (annulus of boundary Γ), a background domain B, and
corresponding polygonal subdomain Dh. (figure produced by the author)
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Now, we introduce notation associated with the sets introduced above. Hereafter, h denotes the
meshsize of the triangulation Th of Dh, that is, h := max{hK : K ∈ Th}. In addition, we denote by
Eh the set of all edges of Th, subdivided as follows:

Eh = E0
h ∪ E∂h ,

where E0
h := {e ∈ Eh : e ⊆ Dh} and E∂h := {e ∈ Eh : e ⊆ Γh}. Finally, for all K, νK will denote the

the unit outward normal vector on the boundary ∂K. However, to emphasize that a unit vector is
normal to Γh or to an edge e of K, we will write νΓh

or νe, respectively. In the remainder of the
chapter, we will drop the subscripts when referring to outward normal vectors whenever no confusion
will occur.

In the computational domain Dh, the solution of (1.2) satisfies in a distributional sense,

σ = ∇u in Dh, divσ = −f in Dh. (1.3)

Moreover, by the first equation in (1.3), the trace of u on Γh, denoted by g̃, can be written as

g̃(x) := g(x)−
∫

C (x)
σ ·m(x) dr, (1.4)

where C (x) is, in principle, any path starting at x ∈ Γh and ending at x̃ ∈ Γ, m(x) is the unit tangent
vector of C (x), and g(x) := g(x̃(x)). In Section 1.2.2 we specify a construction of a suitable family of
paths. Note that the value of g̃ is independent of the integration path since it comes from integrating
σ = ∇u. In addition, it is easy to see that the solution of (1.2) also satisfies

ah(σ, τ ) + bh(τ , u)− 〈τ · νΓh
, g̃〉Γh

= 0 ∀ τ ∈ H(div; Dh),
bh(σ, v) = Fh(v) ∀ v ∈ L2(Dh),

(1.5)

where the bilinear forms ah : H(div; Dh) ×H(div; Dh) → R and bh : H(div; Dh) × L2(Dh) → R, and
the functional Fh : H(div; Dh)→ R, are given by

ah(σ, τ ) :=
∫

Dh

σ · τ dx, bh(τ , v) :=
∫

Dh

v div τ dx, Fh(v) := −
∫

Dh

f v dx. (1.6)

We end this section by mentioning that, instead of using standard mixed methods to provide a
Galerkin scheme for (1.2), we aim to propose a Galerkin scheme for (1.5), under a suitable approxi-
mation of the Dirichlet data on the boundary Γh, denoted by g̃h, allowing a high order approximation
and keeping high order accuracy when the distance between Γ and Γh is of only order h. Before doing
that, we proceed analogously to [57] and construct the aforementioned family of transferring paths.

1.2.2 Family of transferring paths

We now summarize the procedure introduced in [59] to construct the family of transferring paths
{C (x)}x∈Γh

connecting Γh and Γ. Let u and v be the vertices of a boundary edge e, x be a point on
e and Ke the only element of Th where e belongs. We first determine points ũ and ṽ in Γ associated
to u and v, respectively:
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Step 1 : For the vertex u, we suggest two approaches to define ũ.

• One possibility is to use the algorithm proposed in [59, Section 2.4.1] that uniquely
determines a point ũ as the closest point to u such that C (u) does not intersect any
other path and does not intersect the interior of the domain Dh. In Figure 1.2 (left) we
display an illustration where ũ is the point in Γ associated to u.

• An alternative is to assume that Γ is C2 and the mesh is fine enough. In this case ũ can
be set as the orthogonal projections of u onto Γ.

Let m̂u := ũ− u. We set mu := m̂u/|m̂u| if |m̂u| 6= 0 and mu = νe, otherwise. To define
ṽ and mv we proceed similarly.

Then, for a point x ∈ e, which is not a vertex,

Step 2 : C (x) is determined as a convex combination of those paths originated from the vertices of e.
More precisely, for θ ∈ [0, 1], we write x = u(1− θ) + θv and define m̂ := mu(1− θ) + θmv.
Then, we write m := m̂/|m̂| if |m̂| 6= 0 and m := νe, otherwise. Thus, we set x̃ as the
intersection between the boundary Γ and the ray starting at x whose unit tangent vector is
m; see Figure 1.2 (right) for an illustration.

Figure 1.2: Transferring paths from a boundary edge e. (figure produced by the author)

Consequently, the transferring path connecting a point x ∈ Γh to the point x̃ := x+`(x)m ∈ Γ, where
`(x) := |x̃− x|, is given by

C (x) := {x + tm : t ∈ [0, `(x)]} . (1.7)

Furthermore, for each edge e ∈ E∂h with vertices u and v, we define K̃e
ext as the region enclosed by the

intersection of Dc
h with the cones (see Figure 1.3):

C1 :=
{
u + η1(ũ− u) + η2(v− u) : η1, η2 ∈ R+

}
,

C2 :=
{
v + η1(ṽ− v) + η2(u− v) : η1, η2 ∈ R+

}
,

and denote by T̃h :=
{
K̃e
ext : e ∈ E∂h

}
the partition of Dc

h, satisfying Dc
h =

⋃{
K̃e
ext : e ∈ E∂h

}
.
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1.2.3 Statement of the Galerkin scheme

Let us introduce generic finite dimensional subspaces Hh(Dh) and Qh(Dh) of H(div; Dh) and L2(Dh),
respectively. On each K ∈ Th, we let (M(K),W(K)) be a pair of arbitrary finite dimensional sub-
spaces, where M(K) is the space of two-dimensional vector functions on K, and W(K) is the space
of scalar functions on K. Then, our approach consists of approximating the exact solution (σ, u) by
a pair (σh, uh) belonging to the product space Hh(Dh)×Qh(Dh), where

Hh(Dh) :=
{
τ h ∈ H(div; Dh) : τ h

∣∣
K
∈M(K) ∀K ∈ Th

}
,

Qh(Dh) :=
{
vh ∈ L2(Dh) : vh

∣∣
K
∈W(K) ∀K ∈ Th

}
.

(1.8)

A feasible choice of (M(K),W(K)) will be specified in Section 1.4. Inspired now by (1.4), for any x
lying in e ∈ E∂h , g̃ can be approximated by

g̃h(x) := g(x)−
∫ `(x)

0
Eh(σh)(x + tm) ·m dt, (1.9)

where Eh(σh) is a local extension operator from Ke to K̃e
ext acting on σh. In practice, since M(K) is

a space of polynomials, given ζh ∈M(K), we consider Eh(ζh) as the extrapolation of ζh from Ke to
K̃e
ext. In this way, defining now

dh(ζh, τ h) :=
∑
e∈E∂

h

∫
e

(∫ `(x)

0
Eh(ζh)(x + tm) ·m dt

)
τ h · νe dSx (1.10)

and
Gh(τ h) :=

∑
e∈E∂

h

∫
e
g τ h · νe dSx (1.11)

for all ζh, τ h ∈ Hh(Dh), the Galerkin scheme of (1.5) reads: Find (σh, uh) ∈ Hh(Dh)×Qh(Dh) such
that

(ah + dh)(σh, τ h) + bh(τ h, uh) = Gh(τ h) ∀ τ h ∈ Hh(Dh),
bh(σh, vh) = Fh(vh) ∀ vh ∈ Qh(Dh),

(1.12)

where the bilinear forms ah, bh and the functional Fh were defined in Section 1.2.1. We remark that
problem (1.12) can be seen as the discrete version of problem (1.5) where g̃ has been approximated by
g̃h in (1.9). Moreover, if Ω were a polygonal domain coinciding with Dh, the term dh(ζh, τ h) would
be zero for all ζh, τ h ∈ Hh(Dh), and then problem (1.12) would become well-posed provided the
Babuška–Brezzi conditions are proved, namely, the coercivity of ah on the kernel of bh, the discrete
inf-sup condition for bh and the boudedness of all the forms involved.

We would like to comment that mixed boundary conditions could be considered. However, it is not
straightforward how to deal with this situation in the discrete case since the Neumann data cannot
be treated in the same way as the Dirichlet data. This is subject of ongoing work.

1.2.4 Solvability analysis

We now aim to prove the well-posedness of problem (1.12). We begin by stating the assumptions
regarding the Galerkin method, the triangulation and the closeness between Γh and Γ. Let us first
introduce some assumptions on the boundary Γ and the mesh Th.
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Assumptions A. For some technical results concerning inverse inequalities, we first assume that
the elements K in Th are shape-regular in the sense of Ciarlet [53]:

(A.2) There is a constant γK such that hK ≤ γKρK , where ρK is the radius of the largest ball
contained in K.

Next, in order to give sense to the integrals involved in (1.10) and (1.11), we need g̃h (cf. (1.9)) to be
a measurable function. This certainly holds under the following assumptions on the boundary Γ (see
[57, Lemma 3.1]):

(A.2) Γ is a compact Lipschitz boundary,

(A.3) There exists Γ̃ ⊂ Γ closed in Γ such that |Γ̃| = 0 and Γ\Γ̃ is C2.

Furthermore, we can introduce an extension operator from Ω to R2. In fact, relaxing the smoothness
requirement in Assumption (A.3) to C1 only, the following extension theorem holds. For its proof we
refer to [129, Chapter VI].

Theorem 1.1. There is an extension mapping E : Hm(Ω) → Hm(R2) defined for all non-negative
integers m satisfying E (ζ)

∣∣
Ω = ζ for all ζ ∈ Hm(Ω) and

‖E (ζ)‖m,R2 ≤ C‖ζ‖m,Ω,

where C is independent of ζ.

In order to simplify the technicalities of the analysis on the region Dc
h, for every e ∈ E∂h and x ∈ e,

we assume that

(A.4) the intersection of the ray
{
x + η(x̃− x), η ∈ R+} with Γ is unique.

This prevents situations like the one shown at the right of Figure 1.3.

Figure 1.3: Examples of sets K̃e
ext. (figure produced by the author)

Next, we describe two sets of hypotheses establishing the constraints on the choice of the discrete
subspaces in (1.8).
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Assumptions B. Let VDh be the discrete kernel of bh, i.e.,

VDh = {τ h ∈ Hh(Dh) : bh(τ h, vh) = 0 ∀ vh ∈ Qh(Dh)} .

In order to have a more explicit definition of VDh we introduce the following assumption:

(B.1) div Hh(Dh) ⊆ Qh(Dh).

In fact, by Assumption (B.1), the subspace VDh can be characterized as follows:

VDh = {τ h ∈ Hh(Dh) : div τ h ≡ 0 in Dh} .

Consequently, the bilinear form ah satisfies the identity

ah(τ h, τ h) = ‖τ h‖2div,Dh
∀ τ h ∈ VDh .

This shows that ah is coercive on VDh with constant α̂ = 1.

In addition, we assume that the following inf-sup condition holds:

(B.2) There exists β̂ > 0, independent of h, such that

sup
τh∈Hh(Dh)

τh 6=0

bh(τ h, vh)
‖τ h‖div,Dh

≥ β̂‖vh‖0,Dh
∀ vh ∈ Qh(Dh).

For the subsequent analysis we will also need the following hypotheses on the local discrete spaces.

Assumptions C. Given an integer k ≥ 0 and a region O ⊂ R2, we denote by Pk(O) the space of
polynomials of degree at most k defined on O, and let Pk(O) := [Pk(O)]2. Let n1, n2 and n3 be
integers such that n1, n2 ≥ 1 and n3 ≥ 0. For every e ∈ E∂h , we assume that

(C.1) M(Ke) ⊆ Pn1(Ke),

(C.2) M(Ke) · νKe

∣∣
ẽ
⊆ Pn2(ẽ) for all edge ẽ ⊂ ∂Ke,

(C.3) W(Ke) ⊆ Pn3(Ke),

Next, in Section 1.4 we specify suitable choices of finite element subspaces satisfying (B.1), (B.2)
and (C.1)-(C.3).

In what follows, we introduce assumptions related to the sets K̃e
ext and the bilinear form dh. They

are smallness assumptions on certain quantities that will appear in the analysis of our method when
approximating the L2-norm of functions defined on K̃e

ext. These conditions determine how close the
boundaries Γ and Γh must be.
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Assumptions D. Let e be any edge in E∂h . We define r̃e := H̃e/h
⊥
e , where H̃e := maxx∈e `(x) and

h⊥e is the distance between the vertex of Ke, opposite to e, and the plane determined by e. We assume

(D.1) r̃e ≤ R,

where R denotes a constant that does not dependent on the meshsize h. This hypothesis indicates
that the distance d(Γ,Γh) must be at most of O(h). We note that, by construction, the family of
paths (Σh) presented in Section 1.2.2 satisfies (D.1).

To establish the remaining hypotheses, for each K ∈ Th we denote

Nh(∂K) =
{
w ∈ L2(∂K) : w

∣∣
e
∈ Pn2(e) for all edges e of K

}
,

and introduce the following constant:

Ceeq := h
1/2
Ke sup

wh∈Nh(∂Ke)
wh 6=0

‖wh‖0,∂Ke

‖wh‖−1/2,∂Ke
. (1.13)

This definition can be inferred using the equivalence of the norms ‖ · ‖0,∂K and ‖ · ‖−1/2,∂K on the
space Nh(∂K) for all K ∈ Th; see [62, Lemma 3.2] for further details. Moreover, the value of Ceeq
depends solely on the shape-regularity constant γKe and the polynomial degree of the space Nh(∂Ke).

We shall also make frequent use of the quantity

|||p|||e :=
(∫

e

∫ `(x)

0
|p(x + tm(x))|2 dt dSx

)1/2

, (1.14)

where e ∈ E∂h and p is smooth enough in order to make the integral well-defined. In addition, we
define

C̃eext := r̃−1/2
e sup

ζh∈M(Ke)
ζh 6=0

|||Eh(ζh)|||e
‖ζh‖0,Ke

. (1.15)

We recall that Eh(ζh) is the extrapolation of the polynomial ζh from Ke to K̃e
ext, since M(Ke) is

a space of polynomials thanks to (C.1). The constant C̃eext is independent of the meshsize h, but
depends on the shape-regularity constant γKe and on the polynomial degree; see Appendix A.

We are now in a position of discussing the boundedness of the bilinear form dh. Let ζh ∈ Hh(Dh).
According to the notation introduced in Section 1.2.2, for any x lying on a boundary edge e, we set

w̃h(x) :=
∫ `(x)

0
Eh(ζh)(x + tm(x)) ·m(x) dt.

Applying now the Cauchy–Schwarz inequality, considering definitions (1.14) and (1.15), and the fact
that, for all x ∈ e, `(x) ≤ H̃e = r̃eh

⊥
e ≤ r̃ehKe , we obtain

‖w̃h‖20,e ≤
∫
e
`(x)

∫ `(x)

0
|Eh(ζh)|2(x + tm(x)) dt dSx

≤ r̃eH̃e

(
C̃eext

)2
‖ζh‖20,Ke

≤ r̃2
ehKe

(
C̃eext

)2
‖ζh‖20,Ke .

(1.16)
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Then, by definition of dh (cf. (1.10)), applying the Cauchy–Schwarz inequality, and using (1.13) and
Assumption (C.2), it follows that

|dh(ζh, τ h)| ≤
∑
e∈E∂

h

‖w̃h‖0,e‖τ h · νKe‖0,∂Ke ≤ max
e∈E∂

h

{
r̃eC̃

e
extC

e
eq

}
‖ζh‖div,Dh

‖τ h‖div,Dh
, (1.17)

for all ζh, τ h ∈ Hh(Dh), where the continuity of the normal trace operator acting from H(div;Ke)
onto H−1/2(∂Ke) (see, e.g., [73, Theorem 1.7]) has been applied to bound ‖τ · νKe‖0,∂Ke . Therefore,
the boundedness of dh is satisfied if we assume that

(D.2) maxe∈E∂
h

{
r̃eC̃

e
extC

e
eq

}
≤ 1/2.

In most cases the above condition is not entirely verifiable because the left-hand side might be not a
fully computable quantity. Certainly it holds if r̃e is of order h and h is small enough, as it happens
when the boundary is interpolated by a piecewise linear function.

Having introduced the aforementioned hypotheses, we are now in a position of establishing the
main result of this section, namely, the well-posedness of problem (1.12). To allow for a more compact
notation, in the sequel we employ the norm

‖(τ ,v)‖H(div;Ω)×L2(Ω) :=
(
‖τ‖2div,Ω + ‖v‖20,Ω

)1/2
∀ (τ ,v) ∈ H(div; Ω)× L2(Ω).

Theorem 1.2. Suppose that Assumptions A, B, C and D are satisfied. Then, given f ∈ L2(Ω) and
g ∈ H1/2(Γ), there exists a unique (σh, uh) ∈ Hh(Dh)×Qh(Dh) solution to problem (1.12), satisfying

‖(σh, uh)‖H(div;Dh)×L2(Dh) . ‖Fh‖[Q(Dh)]′ + ‖Gh‖[Hh(Dh)]′ .

Proof. We first discuss the stability of the forms involved in (1.12). It is clear that ah and bh are
bounded with constants less or equal to 1. Moreover, Fh is bounded with ‖Fh‖[H(Dh)]′ ≤ ‖f‖0,Dh

. To
obtain a bound for ‖Gh‖[Hh(Dh)]′ , we first note that the composition g(·) := g(x̃(·)) is a function in
H1/2(Γh), since x̃ : Γh → Γ is a continuous mapping and g ∈ H1/2(Γ). Then, we apply the boundedness
of the normal trace operator acting from H(div; Dh) onto H−1/2(Γh) (see [73, Theorem 1.7]) and obtain
Gh is bounded with ‖Gh‖[Q(Dh)]′ ≤ ‖g‖1/2,Γh

.

On the other hand, the bilinear form ah + dh is coercive on VDh . In fact, the result follows from
(1.17) and Assumptions (B.1) and (D.2), that is,

(ah + dh)(τ h, τ h) ≥ 1
2‖τ h‖

2
div,Dh

τ h ∈ VDh .

Finally, the discrete inf-sup condition for bh is fulfilled by virtue of Assumption (B.2). Therefore, the
result is a straightforward consequence of the classical Babuška–Brezzi theory.

1.3 Error analysis

In this section we carry out the error analysis for our Galerkin scheme (1.12). We first derive error
estimates on Dh by considering the arbitrary finite element subspaces satisfying the assumptions in
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Section 1.2.4, and well-known Strang-type estimates for saddle point problems. Then, we will follow
the procedure in [57, Section 5.2] to control the errors on Dc

h. Moreover, we use the aforementioned
analysis to state the theoretical rates of convergence when using the specific discrete spaces provided
in Section 1.4.

1.3.1 Error estimates on Dh

Let (σ, u) ∈ H(div; Ω)× L2(Ω) be the solution of (1.2) satisfying (1.5), and let (σh, uh) ∈ Hh(Dh)×
Qh(Dh) be the solution of (1.12). Firstly, we are interested in obtaining upper bounds for

‖(σ, u)− (σh, uh)‖H(div;Dh)×L2(Dh).

To this end, we rearrange (1.5) and (1.12) as the following pair of continuous and discrete formulations:

ah(σ, τ ) + bh(τ , u) = 〈τ · νΓh
, g̃〉Γh

∀ τ ∈ H(div; Dh),
bh(σ, v) = Fh(v) ∀ v ∈ L2(Dh),

(1.18)

and
ah(σh, τ h) + bh(τ h, uh) = Gh(τ h)− dh(σh, τ h) ∀ τ h ∈ Hh(Dh),

bh(σh, vh) = Fh(vh) ∀ vh ∈ Qh(Dh).
(1.19)

Thus, as we have already pointed out before and as suggested by the structure of the foregoing systems,
in what follows we proceed similarly to [82] (see also [63]) and apply a Strang-type estimate for saddle
point problems whose continuous and discrete schemes differ only in the functionals involved. For the
sake of completeness, this result is recalled next. We refer the reader to [121, Theorem 11.2] for more
details.

Theorem 1.3. Let H and Q be two Hilbert spaces, G ∈ H′, F ∈ Q′, and let a : H ×H → R and
b : H×Q→ R be bounded bilinear forms satisfying the Babuška–Brezzi conditions, that is,

i) There exists α > 0 such that
a(τ , τ ) ≥ α‖τ‖2H ∀ τ ∈ V,

where V := {τ ∈ H : b(τ , v) = 0 ∀ v ∈ Q}.

ii) There exists β > 0 such that

sup
τ∈H
τ 6=0

b(τ , v)
‖τ‖H

≥ β‖v‖Q ∀ v ∈ Q.

In addition, let Hh and Qh be two finite dimensional subspaces of H and Q, respectively, and for each
h > 0 consider functionals Gh ∈ H′h and Fh ∈ Q′h. Assume that:

iii) There exists α̂ > 0, independent of the discretization parameter h, such that

a(τ h, τ h) ≥ α̂‖τ h‖2H ∀ τ h ∈ Vh,

where Vh := {τ h ∈ Hh : b(τ h, vh) = 0 ∀ vh ∈ Qh}.
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iv) There exists β̂ > 0, independent of the discretization parameter h, such that

sup
τh∈Hh
τh 6=0

b(τ h, vh)
‖τ h‖H

≥ β̂‖vh‖Q ∀ vh ∈ Qh.

Furthermore, let (σ, u) ∈ H×Q and (σh, uh) ∈ Hh ×Qh be such that

a(σ, τ ) + b(τ , u) = G(τ ) ∀ τ ∈ H,

b(σ, v) = F(v) ∀ v ∈ Q,
(1.20)

and
a(σh, τ h) + b(τ h, uh) = Gh(τ h) ∀ τ h ∈ Hh,

b(σh, vh) = Fh(vh) ∀ vh ∈ Qh.
(1.21)

Then, for each h > 0, the following estimates hold:

‖σ − σh‖div,Dh
≤
(

1 + ‖a‖
α̂

)(
1 + ‖b‖

β̂

)
inf

ζh∈Hh

‖σ − ζh‖H + ‖b‖
α̂

inf
wh∈Qh

‖u− wh‖Q

+ 1
β̂

(
1 + ‖a‖

α̂

)
sup

wh∈Qh
wh 6=0

|(F − Fh)(wh)|
‖wh‖Q

+
( 1
α̂

)
sup
τh∈Hh
τh 6=0

∣∣(G − Gh)(τ h)
∣∣

‖τ h‖H
,

(1.22)

and
‖u− uh‖0,Dh

≤ ‖a‖
β̂

(
1 + ‖a‖

α̂

)(
1 + ‖b‖

β̂

)
inf

ζh∈Hh

‖σ − ζh‖H

+
(

1 + ‖bh‖
β̂

+ ‖b‖
β̂

‖a‖
α̂

)
inf

wh∈Qh

‖u− wh‖Q

+ ‖a‖
β̂2

(
1 + ‖a‖

α̂

)
sup

wh∈Qh
wh 6=0

|(F − Fh)(wh)|
‖wh‖Q

+ 1
β̂

(
1 + ‖a‖

α̂

)
sup
τh∈Hh
τh 6=0

∣∣(G − Gh)(τ h)
∣∣

‖τ h‖H
.

(1.23)

Hence, applying (1.22) and (1.23) to (1.18) and (1.19), and noting that in our case α̂ = 1 and
‖a‖, ‖b‖ ≤ 1, we deduce that

‖σ − σh‖div,Dh
≤ C1

S inf
ζh∈Hh(Dh)

‖σ − ζh‖div,Dh
+ C2

S inf
wh∈Qh(Dh)

‖u− wh‖0,Dh
+ Tσ (1.24)

and

‖u− uh‖0,Dh
≤ C3

S inf
ζh∈Hh(Dh)

‖σ − ζh‖div,Dh
+ C4

S inf
wh∈Qh(Dh)

‖u− wh‖0;Dh
+ 2
β̂
Tσ, (1.25)

with C1
S , C

2
S , C

3
S and C4

S being positive constants independent of the discretization parameters and

Tσ := sup
τh∈Hh(Dh)

τh 6=0

∣∣〈τ h · νΓh
, g̃〉Γh

− (Gh(τ h)− dh(σh, τ h))
∣∣

‖τ h‖div,Dh

. (1.26)

We now proceed to bound Tσ.
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Lemma 1.4. There exists a positive constant C, independent of h, such that

Tσ ≤ inf
ζh∈Hh(Dh)

∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(ζh)|||e + 1
2‖σ − ζh‖Dh

+ 1
2‖σ − σh‖Dh

. (1.27)

Proof. Firstly, using the Cauchy–Schwarz inequality, (1.9) and (1.13), we obtain

Tσ ≤
∑
e∈E∂

h

Ceeqh
−1/2
Ke ‖g̃ − g̃h‖0,e. (1.28)

On the other hand, from definitions (1.4) and (1.9) we have, for each e ∈ E∂h and x ∈ e,

(g̃ − g̃h)(x) = −
∫ `(x)

0
(σ −Eh(σh))(x + tm(x)) ·m(x) dt.

Applying now the Cauchy–Schwarz inequality,

‖g̃ − g̃h‖20,e ≤ H̃e|||σ −Eh(σh)|||2e ≤ r̃ehKe |||σ −Eh(σh)|||2e.

Combined with (1.28) this implies

Tσ ≤
∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(σh)|||e.

Let now ζh ∈ Hh(Dh). Adding and subtracting Eh(ζh) to the term on the right-hand side of the last
inequality, and using definition (1.15) and Assumption (D.2), we obtain

Tσ ≤
∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(ζh)|||e +
∑
e∈E∂

h

(r̃e)1/2Ceeq|||Eh(ζh)−Eh(σh)|||e

≤
∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(ζh)|||e + 1
2
∑
e∈E∂

h

‖ζh − σh‖0,Ke .

Thus, adding and subtracting σ we obtain (1.27).

In summary, (1.24), (1.25) and (1.27), yield the following result.

Theorem 1.5. Suppose that assumptions of Theorem 1.2 are satisfied. Let (σ, u) ∈ H(div; Ω)×L2(Ω)
be the solution of (1.2) satisfying (1.5), and (σh, uh) ∈ Hh(Dh) × Qh(Dh) be the solution of (1.12).
Then, there holds

‖(σ, u)− (σh, uh)‖H(div;Dh)×L2(Dh)

. inf
wh∈Qh(Dh)

‖u− wh‖0,Dh
+ inf
ζh∈Hh(Dh)

‖σ − ζh‖div,Dh
+
∑
e∈E∂

h

(r̃e)1/2Ceeq|||σ −Eh(ζh)|||e

 . (1.29)
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1.3.2 Approximating σ and u in Dc
h

In this section we provide error estimates outside the computational domain. Before doing so, we need
to show that, under certain conditions, the norms ‖ · ‖0,K̃e

ext
and ||| · |||e are equivalent.

Let u and v be the vertices of a boundary edge e, and ũ and ṽ be their corresponding points in Γ
described in Section 1.2.2. We recall that K̃e

ext is the region determined by u, v, ũ and ṽ as Figure
1.3 (left) shows. Then, a point x on e can be represented as x(θ) = u + θ(v − u) for θ ∈ [0, 1].
According to Section 1.2.2, the tangent vector of the path associated to x can be then written as
m̂(θ) := mu + θ(mv−mu). Moreover, m(θ) := m̂(θ)/|m̂(θ)| if m̂(θ) 6= 0; and m(θ) = νe, otherwise.

Thus, for y ∈ K̃e
ext we have:

y(θ, s) = x(θ) + m(θ)s s ∈ [0, `(θ)], θ ∈ [0, 1], (1.30)

where `(θ) is the length of the transferring path associated to x(θ).

Now, for a vector w = (w1, w2), we define w⊥ := (−w2, w1) and the Jacobian of the above trans-
formation is given by

J(s, θ) =
∣∣∣∣∣|e|m(θ) · νe + s

α(θ)m(θ) · (mv −mu)⊥
∣∣∣∣∣, (1.31)

where α(θ) = |m̂(θ)| if m̂(θ) 6= 0; and α(θ) = 1, otherwise. In turn, considering the parametrization
(1.30), we have that

‖p‖20,K̃e
ext

=
∫
K̃e

ext

|p(y)|2 dy =
∫ 1

0

∫ `(θ)

0
|p(y(s, θ))|2|J(s, θ)| ds dθ. (1.32)

Therefore, the equivalence of norms holds if |J(s, θ)| is bounded from above and below for which
specific conditions must be satisfied by the vectors appearing in (1.31). More precisely, we have,

Lemma 1.6. Let p ∈ L2(K̃e
ext) and suppose that Assumptions A are satisfied. In addition, let us

consider the following conditions:

i) mu ·mv ≥ 0,

ii) there exists constant βe, independent of h, such that m(θ) · νe ≥ βe > 0 for all θ ∈ [0, 1]; and

iii) mu · (mv)⊥ ≥ 0.

If i) holds, then
‖p‖0,K̃e

ext
≤ Ce2 |||p|||e, (1.33)

where Ce2 :=
(
1 + 2γKe r̃e

√
2
)1/2

. Moreover, if ii) and iii) hold, then

Ce1 |||p|||e ≤ ‖p‖0,K̃e
ext
, (1.34)

with Ce1 := β
1/2
e .

We point out that, if mu and mv are parallel to νe, then |J(s, θ)| = |e|, which means that |||p|||e =
‖p‖0,K̃e

ext
and conditions i)-iii) are not required.
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Proof. By assumption i), we obtain

α(θ)2 = θ2 + (θ − 1)2 + 2θ(1− θ)mu ·mv ≥ θ2 + (θ − 1)2 ≥ 1/2.

Since `(θ) ≤ H̃e ≤ r̃ehKe ≤ γKe r̃e|e| for all θ ∈ [0, 1], then

|J(s, θ)| ≤ |e|+ `(θ)
α(θ)(|mu|+ |mv|) ≤ |e|+ 2γKe r̃e

√
2|e|.

Thus,

‖p‖20,K̃e
ext

≤
(
1 + 2γKe r̃e

√
2
)
|e|
∫ 1

0

∫ `(θ)

0
|p(y(s, θ))|2 ds dθ =

(
1 + 2γKe r̃e

√
2
)
|||p|||2e,

which implies (1.33).

On the other hand, we note that the Jacobian (1.31) can be written as

J(s, θ) =
∣∣∣∣∣|e|m(θ) · νe + s

α(θ)mu · (mv)⊥
∣∣∣∣∣. (1.35)

Then, by assumptions ii) and iii), we have that J(s, θ) ≥ βe|e|. By (1.32), we obtain (1.34).

Then we have the following intermediate result.

Lemma 1.7. In addition to the hypotheses of Theorem 1.2 and assumption (i) in Lemma 1.6, we
suppose that there exists an integer m ≥ 0 such that σ ∈ Hm+1(Ω), with divσ ∈ Hm+1(Ω). Then, for
any ζh ∈ Hh(Dh), there holds∑

e∈E∂
h

‖σ −Eh(ζh)‖0,K̃e
ext

. hm+1‖σ‖m+1,Ω + ‖σ − ζh‖0,Dh
(1.36)

and ∑
e∈E∂

h

‖σ −Eh(ζh)‖div,K̃e
ext

. ‖σ − ζh‖div,Dh
+ hm+1

(
‖σ‖m+1,Ω + ‖divσ‖m+1,Ω

)
. (1.37)

Proof. Let ζh ∈ Hh(Dh) and E : Hm+1(Ω) → Hm+1(R2) be the extension operator introduced in
Theorem 1.1. Since Γ is Lipschitz continuous thanks to Assumption (A.1), we define

ψe :=
(
Tm+1
e (E σ1),Tm+1

e (E σ2)
)T

, (1.38)

where, for each i ∈ {1, 2} and for any e ∈ E∂h , Tm+1
e (E σi) is the Taylor polynomial of degree m + 1

of the function E σi around the center of the ball B̃e (see [37, Chapter IV] for details), with B̃e being
the ball of radius h

B̃e (equal to the diameter of K̃e
ext ∪Ke) centered at the middle point of the edge

e; see Figure 1.4. Thus, by definition, ψe ∈ Ps(B̃e) with s < m+ 1.

Then, applying the triangle inequality, and using (1.15) and Lemma 1.6, we obtain

‖σ −Eh(ζh)‖0,K̃e
ext
≤ ‖σ −ψe‖0,K̃e

ext
+ ‖ψe −Eh(ζh)‖0,K̃e

ext

≤ ‖σ −ψe‖0,K̃e
ext

+ Ce2(r̃e)1/2C̃eext‖ψe − ζh‖0,Ke

≤
(
1 + Ce2(r̃e)1/2C̃eext

)
‖σ −ψe‖0,K̃e

ext
+ Ce2(r̃e)1/2C̃eext‖σ − ζh‖0,Ke ,

(1.39)
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Figure 1.4: Example of ball B̃e associated with a boundary edge e. (figure produced by the author)

where in the last line we added and subtracted σ. Furthermore, using the approximation properties
of Taylor polynomials [37], we have

‖σ −ψe‖0,K̃e
ext
≤ hm+1|EEEσ|

m+1,B̃e , (1.40)

where EEEσ := (E σ1,E σ2)T . Thus, substituting (1.40) into (1.39), summing over all e ∈ E∂h , and using
the continuity of EEE and Assumptions D, we obtain (1.36).

On the other hand, we note that div Eh(ζh)(y) = Eh(div ζh)(y) for all y ∈ K̃e
ext. Then, mimicking

the steps that led us to (1.36), but this time taking we := Tm
e (E (divσ)) ∈ Ps(B̃e), with s < m,

instead of ψe, we readily deduce that∑
e∈E∂

h

‖div (σ −Eh(ζh)) ‖0,K̃e
ext
≤
∑
e∈E∂

h

(
‖divσ − we‖0,K̃e

ext
+ ‖div Eh(ζh)− we‖0,K̃e

ext

)
. hm+1‖divσ‖m+1,Ω + ‖div (σ − ζh)‖0,Dh

.

Combined with (1.36) this implies (1.37).

We now propose suitable approximations for σ and u in Dc
h. These approximations, in abuse of

notation, will also be named σh and uh. For this, we let (σh, uh) ∈ Hh(Dh)×Qh(Dh) be the unique
solution of (1.12).

First, to approximate σ in Dc
h, we proceed analogously to [57, Section 2.1.3] and simply take the

extrapolation of σh in Dc
h, that is, for any e ∈ E∂h and any y ∈ K̃e

ext, we define

σh(y) := Eh(σh)(y). (1.41)

Note that, for each edge e ∈ E∂h , the extrapolation of σh|Ke to K̃e
ext belongs to H(div; K̃e

ext), but not
necessarily to H(div; Dc

h). Consequently, for the subsequent analysis we introduce the broken space
(see, for instance [67])

H(div; T̃h) :=
∏
e∈E∂

h

H(div; K̃e
ext),

endowed with the broken norm ‖ξ‖div,T̃h
:=
(∑

e∈E∂
h
‖ξ‖2

div,K̃e
ext

)1/2
.

The following result establishes the estimate for (σ − σh) in Dc
h.
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Lemma 1.8. Suppose that assumptions of Lemma 1.7 are satisfied. Then, there hold

‖σ − σh‖div,T̃h
. inf
ζh∈Hh(Dh)

‖σ − ζh‖div,Dh
+ inf
wh∈Qh(Dh)

‖u− wh‖0,Dh

+ ‖σ − σh‖div,Dh
+ hm+1 (‖σ‖m+1,Ω + ‖divσ‖m+1,Ω)

(1.42)

and
‖σ − σh‖0,Dc

h
. inf
ζh∈Hh(Dh)

‖σ − ζh‖0,Dh
+ inf
wh∈Qh(Dh)

‖u− wh‖0,Dh

+ ‖σ − σh‖0,Dh
+ hm+1‖σ‖m+1,Ω.

(1.43)

Proof. Let ζh ∈ Hh(Dh). Applying estimate (1.37) and using definition (1.15), we obtain

‖σ − σh‖div,T̃h

≤
∑
e∈E∂

h

‖σ − σh‖div,K̃e
ext
≤
∑
e∈E∂

h

(
‖σ −Eh(ζh)‖div,K̃e

ext
+ ‖Eh(ζh)− σh‖div,K̃e

ext

)
. ‖σ − ζh‖div,Dh

+ hm+1 (‖σ‖m+1,Ω + ‖divσ‖m+1,Ω) +
∑
e∈E∂

h

C̃eext (r̃e)1/2 ‖ζh − σh‖div,T e .

(1.44)

Thanks to Assumption (D.1), the last term on the right-hand side of (1.44) is bounded as follows:∑
e∈E∂

h

C̃eext (r̃e)1/2 ‖ζh − σh‖div,T e . ‖ζh − σh‖div,Dh
. (1.45)

From (1.44) and (1.45), adding an subtracting σ to ‖ζh−σh‖div,Dh
, and applying estimate (1.29), we

obtain
‖σ − σh‖div,T̃h

. inf
wh∈Qh(Dh)

‖u− wh‖0,Dh
+ ‖σ − ζh‖div,Dh

+
∑
e∈E∂

h

|||σ −Eh(ζh)|||e + hm+1 (‖σ‖m+1,Ω + ‖divσ‖m+1,Ω) . (1.46)

Furthermore, by the equivalence of norms given by Lemma 1.6, and considering once more the estimate
(1.37), we find ∑

e∈E∂
h

|||σ −Eh(ζh)|||e .
∑
e∈E∂

h

‖σ −Eh(ζh)‖0,K̃e
ext

. ‖σ − ζh‖div,Dh
+ hm+1 (‖σ‖m+1,Ω + ‖div,σ‖m+1,Ω) ,

and then (1.46) implies

‖σ − σh‖div,T̃h
. inf

wh∈Qh(Dh)
‖u− wh‖0,Dh

+ ‖σ − ζh‖div,Dh
+ hm+1 (‖σ‖m+1,Ω + ‖divσ‖m+1,Ω) ,

which clearly gives (1.42). The estimate (1.43) is obtained analogously, but considering the estimate
(1.36) instead of (1.37).

Now, to define the approximation of u in Dc
h, we proceed again analogously to [57, Section 2.1.3]

and adopt the same ideas as for g̃h defined in (1.9). More precisely, given e ∈ E∂h , for any point
y ∈ K̃e

ext there is a path C (x), starting at x ∈ Γh and ending at x̃ ∈ Γ, such that we can write
y = x + (η/`(x))(x̃− x) for some η ∈ [0, `(x)]. Then, for any e ∈ E∂h and y ∈ K̃e

ext, we set

uh(y) := u(ỹ)−
∫ |ỹ−y|

0
σh(y + sw(y)) ·w(y)ds, (1.47)
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where ỹ := x̃, w(y) := (ỹ− y)/|ỹ− y| and σh is defined as in (1.41).

We now address the estimate for (u− uh) by using the L2-norm on Dc
h.

Lemma 1.9. Suppose that assumptions of Lemmas 1.6 and 1.7 are satisfied. Then, there holds

‖u− uh‖0,Dc
h
. hm+2‖σ‖m+1,Ω + h

(
inf

wh∈Qh(Dh)
‖u− wh‖0,Dh

+ inf
ζh∈Hh(Dh)

‖σ − ζh‖div,Dh

)
. (1.48)

Proof. We first use (1.33) to obtain

‖u− uh‖20,Dc
h
≤
∑
e∈E∂

h

(Ce2)2 |||u− uh|||2e =
∑
e∈E∂

h

(Ce2)2
∫
e

∫ `(x)

0
|u− uh|2(x + tm(x)) dt dSx. (1.49)

Let y = x+tm(x). Using the definition of uh(y) (cf. (1.47)) and the fact that ỹ = x̃ and w(y) = m(x),
we find

(u− uh)(y) = −
∫ |ỹ−y|

0
(σ − σh)(y + sw(y)) ·w(y) ds

= −
∫ (`(x)−t)

0
(σ − σh)(x + (t+ s)m(x)) ·m(x) ds.

From this, applying the Cauchy–Schwarz inequality and a simple change of variables, yields

|u− uh|2(y) ≤ (`(x)− t)
∫ `(x)

t
|(σ − σh)(x + rm(x))|2 dr

≤ `(x)
∫ `(x)

0
|(σ − σh)(x + rm(x))|2 dr.

(1.50)

Substituting (1.50) into (1.49), it follows that

‖u− uh‖20,Dc
h
≤
∑
e∈E∂

h

(Ce2)2
∫
e
`(x)2

∫ `(x)

0
|(σ − σh)(x + rm(x))|2 dr. (1.51)

Since `(x) ≤ H̃e = r̃eh
⊥
e ≤ r̃ehKe , we obtain, thanks to Assumption (D.1) and (1.34), that

‖u− uh‖20,Dc
h
≤
∑
e∈E∂

h

(Ce2)2 r̃ehKe |||σ − σh|||2e ≤ (Rh)2 max
e∈E∂

h

(Ce2)2 (Ce1)−2‖σ − σh‖20,Dc
h
,

and then the result follows from (1.43).

Remark 1.1. The solvability and error analyses in previous sections depend on how the computational
domain and transferring paths are constructed since the Assumption A, D and the assumptions of
Lemma 1.6 need to be satisfied. We recall that in our present setting the domain is immersed in a
background mesh and Dh is the union of all the elements inside Ω, and hence d(Γ,Γh) . h. Although
the Assumption (D.2) cannot be verified in practice for this case, we will see in Section 1.5 that it
provides optimal performance of the method.

Remark 1.2. We now illustrate an alternative way to construct the computational domain Dh. If Ω
is convex, we can construct Γh interpolating Γ by a piecewise linear function. Thus, the subdomain Dh

is the region enclosed by Γh and the transferring paths associated to the interior points of a boundary
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edge e can be chosen so that they are perpendicular to e. In this setting, Assumptions A and D hold
and actually r̃e is of order h. Moreover, the norms ‖·‖0,K̃e

ext
and ||| · ||| coincide, and hence Assumptions

i)-iii) of Lemma 1.6 are not necessary. If Ω is not convex, we can proceed similarly and our analysis
still holds under the additional assumption that the solution (σ, u) of (1.2) can be extended to the
region Ωc ∩Dh.

1.4 Particular choice of finite elements

Given an integer k ≥ 0 and a set O in R2, we denote by P̃k(O) ⊂ Pk(O) the space of polynomials of
total degree equal to k. In addition, we define the local Raviart–Thomas space of order k, for each
K ∈ Th, as

RTk(K) := Pk(K)⊕ P̃k(K)x,

where x := (x1, x2)T is a generic vector of R2, and Pk(K) stands for the space of vector-valued
polynomials of degree at most k on the element K. A concrete example of discrete spaces is then
given by the sets:

Hh(Dh) :=
{
τ h ∈ H(div; Dh) : τ h

∣∣
K
∈ RTk(K) ∀K ∈ Th

}
,

Qh(Dh) :=
{
vh ∈ L2(Dh) : vh

∣∣
K
∈ Pk(K) ∀K ∈ Th

}
.

(1.52)

It is well-known that these spaces satisfy Assumptions B and C in Section 1.2.4. Moreover, they have
the following approximation properties (see, e.g., [73, 88]):

(APσ
h) For each r ∈ (0, k + 1], and for each σ ∈ Hr(Dh) ∩H(div; Dh) with divσ ∈ Hr(Dh), there

holds
inf

ζh∈Hh(Dh)
‖σ − ζh‖div,Dh

. hr (‖σ‖r,Dh
+ ‖divσ‖r,Dh

) .

(APu
h) For each r ∈ (0, k + 1], and for each u ∈ Hr(Dh), there holds

inf
wh∈Qh(Dh)

‖u− wh‖0,Dh
. hr‖u‖r,Dh

.

The following theorem establishes the a priori error estimates for the Galerkin scheme (1.12) under
suitable regularity assumptions on the exact solution. It also provides estimates of the error in the
non-meshed region Dc

h.

Theorem 1.10. In addition to the hypotheses of Theorem 1.5, Lemmas 1.6 and 1.7, suppose that the
exact solution (σ, u) satisfies σ ∈ Hk+1(Ω) ∩ H(div; Ω), with divσ ∈ Hk+1(Ω), and u ∈ Hk+1(Ω).
Then, there hold

‖(σ, u)− (σh, uh)‖H(div;Dh)×L2(Dh) . hk+1 (‖σ‖k+1,Ω + ‖divσ‖k+1,Ω + ‖u‖k+1,Ω) ,

‖σ −Eh(σh)‖div,T̃h
. hk+1 (‖σ‖k+1,Ω + ‖divσ‖k+1,Ω + ‖u‖k+1,Ω) ,

‖u− uh‖0,Dc
h
. hk+2 (‖σ‖k+1,Ω + ‖divσ‖k+1,Ω + ‖u‖k+1,Ω) .
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Proof. The result follows from Theorem 1.5, Lemmas 1.8, 1.9, and the approximations properties
(APu

h) and (APσ
h) specified above.

Remark 1.3. The theory developed above covers other similar finite element subspaces available in
the literature, such as the local Brezzi–Douglas–Marini space of order k ≥ 1:

BDMk(K) := Pk(K).

More precisely, one can also choose the discrete spaces in (1.8) as

Hh(Dh) :=
{
τ h ∈ H(div; Dh) : τ h

∣∣
K
∈ BDMk(K) ∀K ∈ Th

}
,

Qh(Dh) :=
{
vh ∈ L2(Dh) : vh

∣∣
K
∈ Pk−1(K) ∀K ∈ Th

}
,

and obtain the well–posedness of the discrete problem and optimal error estimates, as well.

1.5 Numerical results

In this section we present numerical experiments in two dimensions illustrating the performance of
the discrete scheme introduced and analized in Section 1.2. The numerical results shown below were
obtained using a MATLAB code. As a direct solver we used UMFPACK [64]. In all the computations
we consider the specific finite element subspaces Hh(Dh) and Qh(Dh) in (1.52) with k = 0, . . . , 3.
With regard to this, an important issue is the computational implementation of specific basis functions
providing high order approximations. This is facilitated through the use of hierarchical basis for the
local Raviart–Thomas space of order k, as was introduced in [24], and Dubiner basis for the local
polynomial space of degree at most k (see, e.g., [66]).

We begin by introducing additional notation. Firstly, we must take into account that, in all our
examples, the computational domain Dh and the region Dc

h change with h. That is why we compute
the relative errors:

eint(u) := ‖u− uh‖0,Dh

‖u‖0,Dh

, eint(σ) := ‖σ − σh‖div,Dh

‖σ‖div,Dh

,

eext(u) :=
‖u− uh‖0,Dc

h

‖u‖0,Dc
h

, eext(σ) :=
‖σ −Eh(σh)‖div,T̃h

‖σ‖div,T̃h

.

Furthermore, we define the experimental rates of convergence as

rint(·) := −2[log(eint(·)/e′int(·))/ log(N/N ′)], rext(·) := −2[log(eext(·)/e′ext(·))/ log(N/N ′)],

where N and N ′ denote the number of elements of two consecutive meshes with their respective errors
eint and e′int (resp. eext and e′ext).

Example 1. We take u(x1, x2) := sin(πx1) sin(πx2) as exact solution, and choose Ω to be the an-
nular domain consisting in two concentric circles of radius 1.5 and 0.7, respectively. As required by
Assumption (D.1), the subdomain Dh is constructed in such a way that the distance d(Γ,Γh) is at
most of O(h). In doing so, we consider a background triangulation Th of the square B ⊃ Ω, obtained
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by subdividing the squares of the Cartesian grid into four congruent triangles, and then follow the
process in Section 1.2.1 to choose those elements of Th inside of Ω. In Table 1.1 we present the history
of convergence and observe that the convergence rates predicted by Theorem 1.10 are attained by
all the unknowns, namely O(hk+1) for eint(σ), eext(σ) and eint(u), and O(hk+2) for eext(u). Next, in
Figure 1.5 we display the approximate value of the second component of σ, denoted by σh,2, obtained
for the approximation RT3 − P3 with total number of degrees of freedom (d.o.f) equal to 32560 and
N = 1152 elements. The corresponding extrapolated solution on the set Dc

h is also displayed there.

Errors on Dh Errors on Dc
h

k N h d.o.f eint(u) rint(u) eint(σ) rint(σ) eext(u) rext(u) eext(σ) rext(σ)

0

248 0.262 664 2.28e− 01 – 2.30e− 01 – 9.84e− 03 – 2.99e− 01 –
1152 0.131 2956 1.08e− 01 0.96 1.10e− 01 0.96 2.28e− 03 1.90 1.24e− 01 1.14
4840 0.065 12260 5.31e− 02 0.99 5.39e− 02 0.99 5.52e− 04 1.97 6.50e− 02 0.90
22028 0.031 55352 2.20e− 02 1.16 2.26e− 02 1.14 1.62e− 04 1.61 3.28e− 02 0.90
89384 0.015 224020 1.09e− 02 0.99 1.12e− 02 0.99 3.22e− 05 2.30 1.58e− 02 1.03

1

248 0.262 2072 2.79e− 02 – 2.37e− 02 – 3.62e− 03 – 1.08e− 01 –
1152 0.131 9368 5.44e− 03 2.13 5.51e− 03 1.90 4.72e− 04 2.65 2.43e− 02 1.94
4840 0.065 39040 1.32e− 03 1.96 1.36e− 03 1.95 5.35e− 05 3.03 6.70e− 03 1.79
22028 0.031 176790 2.95e− 04 1.97 3.03e− 04 1.97 5.02e− 06 3.12 1.79e− 03 1.74
89384 0.015 716200 7.36e− 05 1.98 7.56e− 05 1.98 5.86e− 07 3.06 4.41e− 04 1.99

2

248 0.262 4224 6.51e− 03 – 2.88e− 03 – 9.75e− 04 – 2.16e− 02 5.87
1152 0.131 19236 2.74e− 04 4.12 2.58e− 04 3.14 4.57e− 05 3.98 1.76e− 03 3.26
4840 0.065 80340 3.01e− 05 3.07 3.13e− 05 2.93 4.51e− 06 3.22 2.97e− 04 2.48
22028 0.031 364310 2.32e− 06 3.38 2.42e− 06 3.37 1.18e− 07 4.80 2.53e− 05 3.24
89384 0.015 1476500 2.84e− 07 2.99 2.96e− 07 3.00 7.08e− 09 4.02 2.92e− 06 3.08

3

248 0.262 7120 2.27e− 03 – 7.27e− 04 – 2.25e− 04 – 5.59e− 03 –
1152 0.131 32560 2.83e− 05 5.70 1.70e− 05 4.88 3.48e− 06 5.43 2.82e− 04 3.88
4840 0.065 136160 1.16e− 06 4.44 1.22e− 06 3.67 2.25e− 07 3.81 2.56e− 05 3.34
22028 0.031 617910 1.67e− 08 5.59 2.18e− 08 5.31 1.72e− 09 6.43 1.52e− 06 3.72
89384 0.015 2505000 9.51e− 10 4.09 1.14e− 09 4.20 4.27e− 11 5.28 8.87e− 08 4.05

Table 1.1: History of convergence of the approximation in Example 1. (table produced by the author)

Example 2. We set f and g such that u(x1, x2) := x2
1 exp(2(x2−1)), and consider the kidney-shaped

domain Ω whose boundary satisfies the equation

(2[(x1 + 0.5)2 + x2
2]− x1 − 0.5)2 − [(x1 + 0.5)2 + x2

2] + 0.1 = 0.

The way to construct Dh is the same as in the previous example. In Table 1.2 we present the
corresponding convergence history and again observe there that optimal convergence rates predicted
by Theorem 1.10 are reached by all the unknowns. In Figure 1.6 we display the approximate value
of the first component of σ, denoted by σh,1, obtained for the approximation RT3 − P3 with total
number of degrees of freedom (d.o.f) equal to 18480 and N = 654 elements.

Example 3. We consider exactly the same domain Ω as in Example 2, but this time we choose
u(x1, x2) := sin(10πx1 − 5πx2) as exact solution instead. The goal is to explore how the error of our
method is affected when we consider keeping a triangulation of Dh fixed and varying the degree k
of the finite element spaces in (1.52). In Figure 1.7 we show the results for three fixed meshes with
N = 146, N = 654 and N = 3068 elements, respectively. As expected, it can be appreciated there
that the quality of the approximations improves as h diminishes or k increases.
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Figure 1.5: Example 1: σh,2 for the approximation RT3 − P3 with N = 1152 elements. (figure
produced by the author)

Errors on Dh Errors on Dc
h

k N h d.o.f eint(u) rint(u) eint(σ) rint(σ) eext(u) rext(u) eext(σ) rext(σ)

0

146 0.131 384 1.65e− 01 – 5.12e− 02 – 3.51e− 03 – 1.01e− 01 –
654 0.065 1677 7.88e− 02 0.98 2.61e− 02 0.89 1.51e− 03 1.12 5.25e− 02 0.88
3068 0.031 7748 3.84e− 02 0.93 1.12e− 02 1.09 2.91e− 04 2.13 2.63e− 02 0.89
12579 0.015 31602 1.89e− 02 0.99 5.64e− 03 0.97 7.13e− 05 1.99 1.32e− 02 0.96
50877 0.007 127500 9.44e− 03 0.99 2.82e− 03 0.98 1.66e− 05 2.08 6.68e− 03 0.98

1

146 0.131 1206 1.22e− 02 – 2.19e− 03 – 4.48e− 04 – 8.88e− 03 –
654 0.065 5316 2.68e− 03 2.02 5.23e− 04 1.91 6.60e− 05 2.55 2.40e− 03 1.74
3068 0.031 24700 6.84e− 04 1.76 1.17e− 04 1.93 7.47e− 06 2.81 6.89e− 04 1.61
12579 0.015 100940 1.67e− 04 1.99 2.89e− 05 1.98 9.24e− 07 2.96 1.78e− 04 1.91
50877 0.007 4076400 4.12e− 05 2.00 7.20e− 06 1.99 1.29e− 07 2.81 4.29e− 05 2.03

2

146 0.131 2466 2.74e− 04 – 6.18e− 05 – 1.59e− 05 – 5.59e− 04 –
654 0.065 10917 3.16e− 05 2.88 1.23e− 05 2.14 2.66e− 06 2.38 9.84e− 05 2.31
3068 0.031 50856 2.83e− 06 3.12 5.62e− 07 4.00 6.59e− 08 4.78 1.09e− 05 2.83
12579 0.015 208020 3.40e− 07 3.00 6.31e− 08 3.10 2.96e− 09 4.39 1.36e− 06 2.95
50877 0.007 840400 4.20e− 08 2.99 7.67e− 09 3.01 2.00e− 10 3.85 1.66e− 07 3.01

3

146 0.131 4164 4.76e− 06 – 1.58e− 06 4.94 6.26e− 07 – 2.62e− 05 –
654 0.065 18480 4.73e− 07 3.07 2.78e− 07 2.31 6.11e− 08 3.10 3.00e− 06 2.89
3068 0.031 86216 9.83e− 09 5.01 4.52e− 09 5.33 6.07e− 10 5.96 1.40e− 07 3.96
12579 0.015 352830 5.27e− 10 4.14 1.66e− 10 4.67 1.42e− 11 5.32 8.00e− 09 4.06
50877 0.007 1425800 3.15e− 11 4.03 8.91e− 12 4.19 4.87e− 13 4.82 5.05e− 10 3.95

Table 1.2: History of convergence of the approximation in Example 2. (table produced by the author)
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Figure 1.6: Example 2: σh,2 for the approximation RT3−P3 with N = 654 elements. (figure produced
by the author)
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Figure 1.7: Example 3: Log of the error vs (k + 1) for k = 0, . . . , 7 and three fixed meshes. (figure
produced by the author)
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Example 4. In our last experiment, we observe the performance of the method considering another
type of computational domain, as Remark 1.2 mentioned. We take u(x1, x2) := sin(x1) sin(x2) as
exact solution and consider Ω to be the annular domain consisting of two concentric circles of radius
2 and 0.5, respectively. In this case, the computational boundary Γh is defined through a piecewise
linear interpolation of Γ as Figure 1.8 shows. Here the distance d(Γ,Γh) is at most of O(h2). Table
1.3 shows that the experimental rates of convergence for eint(σ), eext(σ) and eint(u) are optimal, i.e.,
O(hk+1). In addition, the convergence rate of eext(u) is of O(hk+3). This behavior can be explained
by the proof of Lemma 1.9. In fact, since r̃e is now of order h, the estimate (1.48) yields

‖u− uh‖0,Dc
h
. h2‖σ −Eh(σh)‖0,Dc

h
. hk+3.

Errors on Dh Errors on Dc
h

k N h d.o.f eint(u) rint(u) eint(σ) rint(σ) eext(u) rext(u) eext(σ) rext(σ)

0

150 0.660 395 1.39e− 01 – 1.26e− 01 – 8.03e− 05 – 9.38e− 02 –
608 0.355 1560 6.89e− 02 1.00 6.25e− 02 1.00 9.51e− 06 3.04 4.62e− 02 1.01
2396 0.187 6070 3.50e− 02 0.98 3.16e− 02 0.99 1.16e− 06 3.05 2.35e− 02 0.98
9358 0.095 23555 1.78e− 02 0.99 1.61e− 02 0.99 1.46e− 07 3.04 1.18e− 02 1.00
37798 0.050 94815 8.98e− 03 0.98 8.05e− 03 0.99 1.87e− 08 2.94 5.99e− 03 0.97

1

150 0.660 1240 8.68e− 03 – 1.10e− 02 – 2.42e− 05 – 1.39e− 02 –
608 0.355 4944 2.23e− 03 1.93 2.73e− 03 1.99 1.68e− 06 3.81 3.36e− 03 2.03
2396 0.187 19328 5.69e− 04 1.99 6.98e− 04 1.99 1.02e− 07 4.07 9.36e− 04 1.86
9358 0.095 75184 1.46e− 04 1.98 1.79e− 04 1.99 7.27e− 09 3.89 2.44e− 04 1.97
37798 0.050 30302 3.63e− 05 2.00 4.44e− 05 1.99 4.72e− 10 3.91 6.31e− 05 1.94

2

150 0.660 2535 5.86e− 04 – 5.65e− 04 – 1.44e− 06 – 6.96e− 04 –
608 0.355 10152 6.99e− 05 3.03 7.02e− 05 2.98 5.43e− 08 4.68 1.01e− 04 2.74
2396 0.187 39774 8.92e− 06 3.00 9.17e− 06 2.96 1.70e− 09 5.04 1.40e− 05 2.88
9358 0.095 154890 1.14e− 06 3.01 1.18e− 06 2.99 5.64e− 11 5.00 1.73e− 06 3.06
37798 0.050 624630 1.42e− 07 2.98 1.47e− 07 2.99 1.90e− 12 4.85 2.40e− 07 2.83

3

150 0.660 4280 1.81e− 05 – 2.36e− 05 – 6.37e− 08 – 4.11e− 05 –
608 0.355 17184 1.29e− 06 3.77 1.49e− 06 3.94 8.55e− 10 6.16 2.80e− 06 3.84
2396 0.187 67408 8.32e− 08 4.00 9.66e− 08 3.99 1.58e− 11 5.81 1.78e− 07 4.01
9358 0.095 262660 5.54e− 09 3.97 6.37e− 09 3.99 2.55e− 13 6.05 1.21e− 08 3.93
37798 0.050 1059600 3.38e− 10 4.00 3.90e− 10 3.99 4.13e− 15 5.90 8.40e− 10 3.83

Table 1.3: History of convergence of the approximation in Example 4. (table produced by the author)
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Figure 1.8: Example 4: Left, mesh with N = 150 elements where Γh is constructed through a piecewise
linear interpolation of the boundary Γ (blue line) and right, part of the domain Ω that lies in the first
quadrant of the Cartesian plane. (figure produced by the author)



CHAPTER 2

A priori and a posteriori error analyses of a high order unfitted
mixed-FEM for Stokes flow

In this chapter we continue the investigation on unfitted mixed finite element methods by
extending the theory presented in Chapter 1 to the pseudostress-velocity formulation of the
incompressible Stokes equations. For the case when the computational boundary is constructed
through a piecewise linear interpolation of the curved boundary, we furthermore introduce a
reliable and quasi-efficient residual-based a posteriori error estimator. Numerical experiments il-
lustrate the performance of the scheme, show the behaviour of the associated adaptive algorithm
and validate the theory.

2.1 Introduction

It is well-known that standard Galerkin procedures devised to solve PDEs on curved domains Ω do not
achieve high order accuracy whenever Ω is approximated by a nearby domain Dh. In principle, neither
the regularity of the solution nor the smoothness of the curved boundary Γ are the reasons behind the
loss of accuracy. Instead, the difficulties arise from the variational crimes (see, e.g., [37, Chapter 10])
given by an eventual noncoforming method. For stationary problems, isoparametric elements can be
efficiently implemented without much difficulty. However, in evolving domains, remeshing is a major
issue for body-fitted approaches.

Alternatively, unfitted methods, minimize the complexity of mesh generation by, for instance, im-
mersing Ω in a background uniform mesh and setting, for example, Dh as the union of all the elements
of the mesh that lie inside Ω. However, one of the main challenges in this case is the imposition of the
boundary data on the computational domain. One of the first contribution in this context was devel-
oped in the seventies by [34], where the boundary-value correction is based on Nitsche’s approach [105]
combined with the polygonal domain approximation method of [134]. Since then, a vast literature
related to unfitted methods using this type of penalty approach for interface problems can be found,
mostly for low order approximations. During the last years, the development of cut finite element
method (CutFEM) [42, 43, 44] has strengthened the capabilities of non-body fitted approaches, even
in the high order case. In fact, there are numerical techniques to improve the cut cell integration for
level set domains and achieve higher order accuracy [103]. Theoretical framework in this context has

36
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been also developed [95].

Provided a domain Ω with Lipschitz continuous and picewise C2 boundary Γ, a novel high order
unfitted method for Dirichlet boundary value problems has been proposed in the context of hybridiz-
able discontinuous Galerkin (HDG) methods [56, 57, 59]. More precisely, denoting by u the variable
such that σ := ∇u in Ω and u = g on Γ, it consists of transferring the Dirichlet datum g from Γ to Γh
by integrating σ along a family of segments joining both boundaries, which are usually referred to as
transferring paths. At the discrete level, the transferred data, say g̃, is approximated by g̃h obtained
by integrating the extrapolation of the discrete approximation of σ along the transferring paths. Thus,
the problem is solved in Dh and its solution is extended by local extrapolations to Dc

h. It is remarkable
that the method keeps high order accuracy when the distance d(Γ,Γh) between Γ and Γh is only of
order of the meshsize h. Also, it covers the case where Γh is constructed through a picewiese linear
interpolation of Γ. In addition, also in the context of HDG methods, this transferring technique has
been successfully applied to a wide variety of problems in continuum mechanics, including exterior
diffusion equations [58], convection-diffusion problems [60], the semi-linear Grad–Shafranov equation
[122], the Stokes equations for incompressible flow [126], and the Oseen equations [125]. It has been
also extended to a diffusion problem with mixed boundary conditions and to an elliptic transmission
problem where the interface is not piecewise flat, for which we refer to [117].

Another method based on the idea of imposing the boundary data on a computational boundary
which is order h away from Γ is the shifted boundary method [99, 100]. There, the approximate data
g̃h is obtained by a Taylor expansion of the solution at the boundary points. Finally, we would like to
mention a recent approach developed by [52] based on polynominal extrapolations. Roughly speak-
ing, that method forces a polynomial extension of the approximate solution to match the prescribed
boundary data on Γ.

On the other hand, in Chapter 1 we proposed and analyzed a high order unfitted mixed finite ele-
ment method for diffusion problems where the Dirichlet datum is transferred according to the above
transferring technique. Considering general finite dimensional subspaces, we showed the well-posed
of the discrete formulation by means of the classical Babuška–Brezzi theory (see, e.g., [73]). In par-
ticular, we showed that Raviart–Thomas elements of order order k ≥ 0 for the vectorial variable
and discontinuous polynomials of degree k for the scalar variable, ensure unique solvability and opti-
mal convergence of O(hk+1) of the associated Galerkin scheme, which rely only on some hypotheses
involving the closeness between Γ and Γh.

According to the above, our first goal in this chapter is to additionally contribute in the direction
of Chapter 1 and provide a high order unfitted mixed-FEM for the incompressible Stokes equations
in which the pseudostress tensor [45] and the fluid velocity are the only unknowns, whereas the
pressure is computed via a postprocessing procedure. We refer the reader to the early work of Gatica
et al. [78] (see also [46]), for the analysis of this problem in polyhedral domains. A few points
for this choice deserve comments. First, the pseudostress tensor has been widely used to overcome
the well-known disadvantages of considering the symmetric stress tensor (see, e.g., [10, 13, 15, 41]).
Indeed, in the modeling equations the pseudostress takes the place of the stress without requiring
symmetry. In addition, an accurate direct calculation of further physical quantities such as the velocity
gradient, the vorticity and the stress, can be expressed in terms of the pseudostress discretization via
a simple postprocessing procedure, and with the same accuracy. Finally, we remark that, different
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from the work by Solano and Vargas [126], here the novelty lies on the treatment of the pseudostress
approximation in Dh.

Now, in addition to the loss of accuracy over curved domains, the numerical approximation could
be deteriorated by singularities or high gradients of the solution, often as a result of domains with re-
entrant corners or solutions having interior/boundary layers. In order to guarantee a good convergence
behaviour in those cases, one usually needs to apply an adaptive mesh refinement near the critical
region; for a survey, we refer the reader to [141]. The elements to be refined are marked according to
a global estimator Θ given in terms of local indicators ΘT on each element T of a given mesh. The
estimator Θ is said to be efficient (resp. reliable) if there exists Ceff > 0 (resp. Crel > 0), independent
of the meshsizes, such that

CeffΘ + h.o.t. ≤ ‖error‖ ≤ CrelΘ + h.o.t.,

where h.o.t. is a generic expression denoting one or several high order terms. In particular, concerning
our problem of interest, a residual-based a posteriori error estimator has been developed by [78].
However, in all the proofs, Ω has been assumed to be polyhedral.

In this chapter, provided Γ is interpolated by a piecewise linear function, we further contribute
in developing the first residual-based a posteriori error analysis for Stokes flow where the above
mentioned transferring technique is employed. Unlike the polygonal case, our estimator is efficient up
to calculable terms involving curved segments and a postprocessed velocity with enhanced accuracy.
It is important to remark that the literature regarding high order approximations and adaptive mesh
refinement on curved domains is scarce. Up to the authors’s knowledge, probably the only work
treating this matter was carried out in [8], where the Poisson problem was solved by using the hp
finite element method [15], combined with isoparametric elements fitting a Lipschitz continuous and
piecewise Ck+2 boundary Γ (for k ≥ 0). However, the associated hp adaptivity strategy is difficult to
implement. Indeed, at each refinement step and on each marked element, it must be decided whether
to refine the mesh (h-version of FEM) or increase the polynomial degree (p-version of FEM). In our
analysis the assumption on Γ can be relaxed to piecewise C2 only. Moreover, our adaptive algorithm
keeps the polynomial degree fixed and improves the accuracy of the approximation by refining the
mesh without the need of using isoparametric elements.

We have organized this chapter as follows. In the remainder of this section we recall recurrent nota-
tion and general definitions. Next, in Section 2.2 we present the model problem and recall its classical
dual-mixed formulation, having the pseudostress tensor and the fluid velocity as main unknowns. In
Section 2.3, the fluid domain Ω is approximated by a polyhedral subdomain Dh where a high order
Galerkin scheme is introduced and analyzed. Next, an a priori error analysis, involving hypotheses
of closeness between Γ and Γh, is derived in Section 2.4. Moreover, in Section 2.5 we derive our a
posteriori error estimator and establish its main properties, as long as Γ is interpolated by a piecewise
linear function. Finally, in Section 2.6 we present numerical experiments validating the theory.

In the sequel, when no confusions arises, | · | will denote the Euclidean norm in Rn, n = 2, 3.
In turn, given tensor fields σ := (σij)1≤i,j≤n and τ := (τij)1≤i,j≤n, we let div τ be the divergence
operator, div, acting along the rows of τ , and define the trace tr (τ ) :=

∑n
i=1 τ ii, the inner product

σ : τ :=
∑n
i,j=1 σijτij , and the deviatoric tensor τ d := τ − 1

ntr (τ )I, where I stand for the identity
tensor in Rn×n. Also, we adopt standard simplified terminology for Sobolev spaces and norms, where
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spaces of vector-valued and tensor-valued functions are denoted in bold face and blackboard bold face,
respectively. For instance, if O is a domain in Rn, C is an open or closed Lipschitz curve (resp. surface
in R3), and s ∈ R, we define

Hs(O) := [Hs(O)]n , Hs(O) := [Hs(O)]n×n and Hs(C ) := [Hs(C )]n ,

with the convention that H0(O) = L2(O), L2(O) = H0(O) and L2(C ) = H0(C ). The corresponding
norms are denoted by ‖ · ‖s,O and ‖ · ‖s,C , whereas the seminorm is denoted by | · |s,O. Furthermore,
we recall that

H(div;O) :=
{
τ ∈ L2(O) : div τ ∈ L2(O)

}
,

equipped with the norm ‖ · ‖div,O :=
(
‖ · ‖20,O + ‖div (·)‖20,O

)1/2
, is a Hilbert space. Note that if

τ ∈ H(div;O), then τn∂O ∈ H−1/2(∂O), where H1/2(∂O) is the space of traces of H1(O), H−1/2(∂O)
corresponds to the dual space of H1/2(∂O), and n∂O denotes the outward unit normal vector on ∂O.
Hereafter, 〈·, ·〉∂O denotes the duality pairing between H−1/2(∂O) and H1/2(∂O) with respect to the
L2(O)-inner product. The following estimate (see, e.g., [73, Theorem 1.7]) holds:

‖τn‖−1/2,∂O ≤ ‖τ‖div,O ∀ τ ∈ H(div;O). (2.1)

In addition, by 0 we will refer to the generic null vector (including the null functional and operator),
and we will denote by C and c, with or without subscripts, bars, tildes or hats, generic constants
independent of the meshsize, but might depend on the polynomial degree, the shape-regularity of the
triangulation and the domain. Furthermore, for quantities A and B, we write A . B, whenever there
exists C > 0 such that A ≤ CB. Finally, A ' B stands for both A . B and B . A being satisfied.

2.2 The continuous problem

2.2.1 Governing equations

Let Ω be a bounded and open, not necessarily polyhedral region with boundary Γ, which we assume
to be piecewise C2 and Lipschitz continuous. We are interested in approximating, by a mixed finite
element method, the Stokes equations describing a steady viscous incompressible fluid flow occupying
Ω, under the action of external forces, given by

σ = 2µ∇u− pI in Ω, divσ = −f in Ω,

div u = 0 in Ω, u = g on Γ,
∫

Ω
p = 0.

(2.2)

Here, the unknowns are the fluid velocity u, the fluid pressure p, and the so-called pseudostress tensor
σ; the given data are a volume force f ∈ L2(Ω) and the boundary velocity g ∈ H1/2(Γ), while the
kinematic viscosity µ is a positive constant. Note that the incompressibility constraint div u = 0 in
Ω, which expresses the conservation of mass, enforces that g must satisfy the compatibility condition∫

Γ
g · nΓ = 0, (2.3)

where nΓ stands for the outward unit normal vector to Γ. Furthermore, the last condition in (2.2)
is added to ensure uniqueness of solution, and this will lead us to the introduction of the space
L2

0(Ω) :=
{
q ∈ L2(Ω) :

∫
Ω q = 0

}
.
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2.2.2 The pseudostress-velocity formulation

In what follows, we briefly recall the pseudostress-velocity formulation employed in [46] and [78] for
the Stokes problem described in the previous section. Let us first remark that taking the matrix
trace operator in the first equation and using the incompressibility condition, we easily obtain the
postprocessing formula

p = −1
2tr (σ) in Ω. (2.4)

In this way, using (2.4) we can eliminate p from (2.2), obtaining
1

2µσ
d = ∇u in Ω, divσ = −f in Ω,

u = g on Γ,
∫

Ω
tr (σ) = 0.

(2.5)

Notice that the last condition is a consequence of (2.4) and of the requirement on the pressure space,
and this therefore suggests the introduction of the space H0(div; Ω) := {τ ∈ H(div; Ω) :

∫
Ω tr (τ ) = 0}

satisfying H(div ; Ω) = H0(div; Ω)⊕P0(Ω)I, where P0(Ω) is the space of constant polynomials defined
on Ω. More precisely, each τ ∈ H(div; Ω) can be decomposed uniquely as τ = τ 0 + cI, with

τ 0 := τ −
( 1

2|Ω|

∫
Ω

tr (τ )
)
I ∈ H0(div; Ω) and c := 1

2|Ω|

∫
Ω

tr (τ ) ∈ R.

As a consequence of the above, from (2.5) it is not difficult to obtain the following variational formu-
lation of (2.5): Find (σ,u) ∈ H0(div; Ω)× L2(Ω) such that

a(σ, τ ) + b(τ ,u) = 〈τnΓ,g〉Γ ∀ τ ∈ H0(div; Ω),

b(σ,v) = −
∫

Ω
f · v ∀ ∈ L2(Ω),

(2.6)

where nΓ stands for the outward unit normal vector on Γ, whereas the bounded bilinear forms a :
H(div; Ω)×H(div; Ω)→ R and b : H(div; Ω)× L2(Ω) are given, respectively, by

a(σ, τ ) := 1
2µ

∫
Ω
σd : τ d and b(τ ,v) :=

∫
Ω

v · div τ .

We refer the reader to [78, Theorem 2.1] for the well-posedness analysis of this problem. In particular,
the respective continuous dependence result provided by the classical Babuška–Brezzi theorem (see,
for instance [78, Theorem 2.3]), implies that the following global inf-sup conditions holds:

‖(ζ,w)‖H(div;Ω)×L2(Ω) . sup
(τ ,v)∈H0(div;Ω)×L2(Ω)

(τ ,v) 6=0

|a(ζ, τ ) + b(τ ,w) + b(ζ,v)|
‖(τ ,v)‖H(div;Ω)×L2(Ω)

(2.7)

for all (ζ,w) ∈ H0(div; Ω) × L2(Ω), where ‖(ζ,w)‖H(div;Ω)×L2(Ω) :=
(
‖ζ‖2div,Ω + ‖w‖20,Ω

)1/2
. The

specific purpose of this estimate will become clear below in Section 2.5 when dealing with the a
posteriori error analysis.

To end this section, we remark that the solution of (2.6) solves the original problem (2.5) in the
sense of the following lemma. The proof is omitted because it is straightforward.

Lemma 2.1. Let (σ,u) ∈ H0(div; Ω) × L2(Ω) be the unique solution of (2.6). It satisfies in a
distributional sense, (2µ)−1σd = ∇u in Ω, and divσ = −f in Ω. Moreover, u ∈ H1(Ω) and satisfies
the boundary condition described in (2.5).
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2.3 The Galerkin scheme

Throughout this section, by the sake of simplicity, we will develop the theory for the two-dimensional
case. The results that we will present can be extended to the three-dimensional case, but some of
them require technicalities that will be addressed in Appendix B.

2.3.1 Preliminary results

In the context of curved domains, we now proceed as in Chapter 1 (see also [57, 59] for HDG methods)
and suppose that there exists a family of subdomains Dh of the fluid region Ω having a polygonal
boundary Γh := ∂Dh, which may not necessarily fit the true boundary Γ. The index h will refer to
the size of a given triangulation of Dh. For ease of presentation, in this section we develop the theory
and postpone the construction of Dh to Sections 2.5 and 2.6.

As a consequence of Lemma 2.1, we can infer that the solution of (2.6) satisfies in a distributional
sense,

1
2µσ

d = ∇u in Dh, divσ = −f in Dh. (2.8)

In turn, following the approach of [59], the trace of u on Γh, denoted by g̃, can be conveniently
rewritten in terms of σ. Indeed, integrating componentwise 1

2µσ
d = ∇u along a segment, say C (x),

starting at x ∈ Γh and ending at x̃ ∈ Γ, which is often referred to as transferring path and whose
definition will be detailed in Section 2.3.2, we get

g̃(x) = g(x)− 1
2µ

∫
C (x)

σd m(x) dη, (2.9)

where g(x) := g(x̃(x)) and m(x) is the unit tangent vector to C (x). Clearly, this definition coincides
with the trace of u on Γh, as it does not depend on the integration path. Moreover, when high order
accuracy is required, the line integral in (2.9) allows us to obtain a better approximation of g̃ than
the trace of the finite element solution associated to u on Γh.

Next, after reducing the equations of (2.8) to a weak form and using (2.9), it readily follows that
the solution of (2.6) satisfies∫

Dh

tr (σ) = −
∫

Dc
h

tr (σ) with Dc
h := Ω \Dh, (2.10)

and
ah(σ, τ ) + bh(τ ,u) = 〈τnΓh

, g̃〉Γh
∀ τ ∈ H(div; Dh),

bh(σ,v) = Fh(v) ∀v ∈ L2(Dh),
(2.11)

where nΓh
denotes the unit vector pointing in the outward normal direction of Γh with respect to Dh,

and ah(·, ·) on H(div; Dh) × H(div; Dh), bh(·, ·) on H(div; Dh) × L2(Dh), and Fh(·) on H(div; Dh),
denote the forms defined, respectively, by

ah(σ, τ ) := 1
2µ

∫
Dh

σd : τ d, bh(τ ,v) :=
∫

Dh

v · div τ , Fh(v) := −
∫

Dh

f · v. (2.12)
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However, defining σ0 ∈ H(div; Dh) by

σ0 := σ|Dh
−
(

γ

2|Dh|

)
I with γ := −

∫
Dc

h

tr (σ), (2.13)

it is not difficult to see that σ0 ∈ H0(div; Dh) if and only if (2.10) holds, and therefore, the equations
(2.10)-(2.11) can be rewritten, equivalently, as

ah(σ0, τ ) + bh(τ ,u) = 〈τnΓh
, g̃〉Γh

∀ τ ∈ H0(div; Dh),
bh(σ0,v) = Fh(v) ∀v ∈ L2(Dh),

(2.14)

provided that the compatibility condition
∫

Γh
g̃ · nΓh

= 0 is satisfied. The latter is, indeed, a conse-
quence of Gauss’ divergence theorem and the equation div u = 0 in Dh, obtained from the first equation
of (2.8) by applying the matrix trace operator. In addition, let us observe that since σd = σd

0, (2.9)
can be written in terms of σ0 as

g̃(x) = g(x)− 1
2µ

∫
C (x)

σd
0 m(x) dη, (2.15)

Therefore, in what follows we propose a Galerkin scheme for (2.14). Before discussing further this
matter, in the next section we introduce notation that will be useful to define our approximation in
the region Dc

h.

2.3.2 Meshes and transferring paths

We consider a shape-regular family of triangulations {Th}h>0 that subdivides the polygonal region Dh

into triangles T of diameter hT and outward unit normal vector nT . Here, the index h > 0, refers to
the meshsize h := max {hT : T ∈ Th}. Furthermore, we denote by E ih and E∂h the sets of interior and
boundary edges, respectively, and denote Eh = E ih ∪ E∂h . Given e ∈ Eh, we denote by T e the element
of Th having e as an edge. In addition, to emphasize that a unit vector is normal to Γh or to an edge
e ∈ E∂h , we will write nΓh

and ne, respectively.

We now turn to specify the family of transferring paths connecting Γh and Γ, and follow similar
steps as in [59, Section 2.4] (see also Section 1.2.2). Given e ∈ E∂h , let p1 and p2 its two vertices. To
each of them, we assign a unique point in Γ, denoted by p̃1 and p̃2, respectively. In the numerical
experiment section we will describe how p̃i (i = 1, 2) can be obtained. Now, let m̂pi := p̃i − pi. We
set mpi := m̂pi/|m̂pi | if |m̂pi | 6= 0 and mpi = ne, otherwise. Given x ∈ e, C (x) is determined as a
convex combination of those paths originated from the vertices of e. More precisely, for θ ∈ [0, 1], we
write x = p1(1−θ)+θp2 and define m̂ := mp1(1−θ)+θmp2 . Then, we write m := m̂/|m̂| if |m̂| 6= 0
and m := ne, otherwise. Thus, we set x̃ as the closest intersection between the boundary Γ and the
ray starting at x whose unit tangent vector is m. In other words, the transferring path connecting a
point x ∈ Γh to a point x̃ ∈ Γ, is given by

C (x) := {x + ηm(x) : 0 ≤ η ≤ `(x) := |x̃− x|} .

In addition, concerning our approximate solution outside Dh, we consider, for each boundary edge e
with vertices p1 and p2, the cones

Ce
p1 :=

{
p1 + ε1(p̃1 − p1) + ε2(p2 − p1) : ε1, ε2 ∈ R+

}
,

Ce
p2 :=

{
p2 + ε1(p̃2 − p2) + ε2(p1 − p2) : ε1, ε2 ∈ R+

}
,
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and define, for e ∈ E∂h ,
T̃ eext := {C (x) : x ∈ e} ∩ Ce

p1 ∩ Ce
p2 ∩Dc

h.

Also, it will be convenient to write Γe to denote the intersection between Γ and the closure of the
region T̃ eext.

Finally, given e ∈ E∂h , the exterior region T̃ eext is said to be an admissible set if for every x ∈ e,
the intersection of the ray

{
x + ε(x̃− x) : ε ∈ R+} with Γ is a single point (see left panel of Figure

2.1). According to the above and for the sake for simplicity, from now on we assume that T̃ eext is an
admissible set, and denote by T̃h the partition of Dc

h into those sets. Therefore, for instance, cases like
the one on the right of Figure 2.1 are not considered.

Figure 2.1: Examples of sets T̃ eext. The admissible case is the one on the left. (figure produced by the
author)

2.3.3 Statement of the Galerkin scheme

In this section we specify the Galerkin approximation of (2.14). It requires first some definitions.
Given an integer l ≥ 0 and a subset O of R2, we let Pl(O) (resp. P̃l(O)) be the space of polynomials
of degree at most l defined on O (resp. of degree equal to l) and according to the terminology described
in Section 2.1, we set Pl(O) := [Pl(O)]2 and Pl(O) := [Pl(O)]2×2. Then, for each integer k ≥ 0 and
for each T ∈ Th, we define the local Raviart–Thomas space of order k (see, e.g., [41, 73]) as

RTk(T ) := Pk(T )⊕ P̃k(T )x,

where x := (x1x2)T is a generic vector of R2. Furthermore, in agreement with the previous notation,
the space of matrix-valued functions whose rows belong to RTk(T ) will be denoted by RTk(T ). Also,
we let

Hh(Dh) :=
{
τ ∈ H(div ; Dh) : τ

∣∣
T
∈ RTk(T ) ∀T ∈ Th

}
,

and
Qh(Dh) :=

{
v ∈ L2(Dh) : v

∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
.

Notice that H(Dh) = H0,h(Dh)⊕RI, where H0,h(Dh) := Hh(Dh)∩H0(div; Ω). In this way, we propose
to approximate the solution of (2.14) by (σ0,h,uh) ∈ H0,h(Dh)×Qh(Dh), satisfying

(ah + dh) (σ0,h, τ h) + bh(τ h,uh) = Gh(τ h) ∀ τ h ∈ H0,h(Dh),
bh(σ0,h,vh) = Fh(vh) ∀vh ∈ Qh(Dh),

(2.16)
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where ah, bh and Fh are given by (2.12),

Gh(τ h) :=
∑
e∈E∂

h

∫
e
g · (τ hne)(x) dSx, (2.17)

and
dh(ξh, τ h) := 1

2µ
∑
e∈E∂

h

∫
e

(∫ `(x)

0
Eh(ξd

h)(x + ηm(x)) m(x) dη
)
· (τ hne)(x) dSx (2.18)

for ξh, τ h ∈ Hh(Dh), where we recall that g(x) := g(x̃(x)). Above, Eh is the extrapolation operator
given by

Eh : Pn(Th) 3 τ h 7−→ Eh(τ h)(y) :=
{
τ h(y) ∀y ∈ T, ∀T ∈ Th,
τ h|T e(y) ∀y ∈ T̃ eext, ∀ e ∈ E∂h ,

(2.19)

where for any integer n ≥ 0, Pn(Th) :=
∏
T∈Th

Pn(T ). We observe that Eh(σd
0,h) is well-defined since

σ0,h|T ∈ RTk(T ) ⊆ Pk+1(T ) for all T ∈ Th. We also observe that above we are implicitly using the
following approximation of g̃ (cf. (2.15)):

g̃h(x) := g(x)− 1
2µ

∫ `(x)

0
Eh

(
σd

0,h
)
(x + ηm(x)) m(x) dη, (2.20)

for any edge e ∈ E∂h and for each x ∈ e. Note that if Ω = Dh is a polygonal domain, then g̃h = g and
dh ≡ 0. Hence, (2.16) would be reduced to the standard approach to approximate the saddle-point
problem (2.6).

We end this section by recalling the approximation properties of the corresponding discrete spaces.
To that end, we first introduce the L2(Dh)-orthogonal projector onto Qh(Dh), PPPkh : L2(Dh)→ Qh(Dh),
which for each v ∈ Hl(Dh), with 0 ≤ l ≤ k + 1, satisfies the approximation property

‖v−PPPkh(v)‖0,T . hlT |v|l,T ∀T ∈ Th. (2.21)

Furthermore, we recall the classical Raviart–Thomas interpolation operator Πk
h : H1(Dh)→ Hh (Dh),

which, given τ ∈ H1(Dh), is characterized by the identities∫
T

Πk
h(τ ) : ξh =

∫
T
τ : ξh ∀ ξh ∈ Pk−1(T ), ∀T ∈ Th, when k ≥ 1,∫

e

(
Πk
h(τ )ne

)
·ψh =

∫
e
(τne) ·ψh ∀ψh ∈ Pk(e), ∀ e ∈ Eh, when k ≥ 0,

whence it is easy to show that div (Πk
h(τ )) = PPPkh(div τ ) for all τ ∈ H1(Dh). Moreover, the local

approximation properties of Πk
h (see, e.g., [41, 121]) satisfy

• For each τ ∈ Hl(Dh), with 1 ≤ l ≤ k + 1, there holds

‖τ −Πk
h(τ )‖0,T . hlT |τ |l,T ∀T ∈ Th. (2.22)

• For each τ ∈ H1(Dh) such that div τ ∈ Hl(Dh), with 0 ≤ l ≤ k + 1,∥∥div (τ −Πk
h(τ ))

∥∥
0,T . hlT |div τ |l,T ∀T ∈ Th. (2.23)
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• For each τ ∈ H1(Dh), there holds

‖(τ −Πk
h(τ ))ne‖0,e . h1/2

e ‖τ‖1,T e ∀ e ∈ Eh. (2.24)

We also recall that the interpolation operator Πk
h can be defined as a bounded linear operator from

the larger space Hs(Dh) ∩ H(div,Dh) into Hh(Dh) for all s ∈ (0, 1] (see, e.g., [88, Theorem 3.1]) and
in that case, the approximation property reduces to

‖τ −Πk
h(τ )‖div,T . hsT (‖τ‖s,T + ‖div τ‖s,T ) ∀T ∈ Th. (2.25)

2.3.4 Well-posedness

We first introduce some hypotheses regarding the closeness between Γ and Γh. We remark that most
of the notation and ideas here are closely connected to the ones of [57] and Section 1.2.4.

Let e ∈ E∂h . We define r̃e := H̃e/h
⊥
e , where H̃e := maxx∈e `(x) and h⊥e is the distance between

the vertex, opposite to e, and the plane determined by e. In turn, for each T ∈ Th, we introduce
Sk(∂T ) :=

∏
e∈E(T ) Pk(e), and for each edge e ∈ E∂h , we set

Ceeq := h
1/2
T e sup

vh∈Sk(∂T e)
vh 6=0

‖vh‖0,∂T e

‖vh‖−1/2,∂T e
, (2.26)

C̃eext := (r̃e)−1/2 sup
τh∈Pn(T e)
τh 6=0

|||Eh(τ h)|||e
‖τ h‖0,T e

, (2.27)

where the mapping

ξ 7−→ |||ξ|||e :=
(∫

e

∫ `(x)

0
|ξ(x + ηm(x))|2 dη Sx

)1/2

(2.28)

defines a norm over the space L2(T̃ eext), which is equivalent to the standard L2(T̃ eext)-norm (see Lemma
1.6) if we assume that

i) mp1 ·mp2 ≥ 0,

ii) there exists a constant δe, independent of h, such that m(θ) · ne ≥ δe > 0 for all θ ∈ [0, 1]; and

iii) mp1 · (mp2)⊥ ≥ 0, with (mp2)⊥ being the vector obtained from mp2 through a counterclockwise
rotation by π/2 about the origin.

We notice that both norms coincide when mp1 and mp2 are parallel to ne, and in such a case, conditions
i)-iii) are no longer required. On the other hand, (2.26) is inspired by the equivalence between the
norms ‖ · ‖−1/2,∂T e and ‖ · ‖0,∂T e (see, e.g., [61, Lemma 3.2]), whereas (2.27) was originally introduced
by [57] with the L2(T̃ eext)-norm, and later generalized to the norm ||| · |||e by Lemma 1.6. We also
recall that both Ceeq and C̃eext are independent of the meshsize h, but depend on the shape-regularity
constant and the polynomial degree. In turn, we denote R := maxe∈E∂

h
r̃e and assume

(A1) R ≤ C, where C > 0 is independent of h; and
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(A2) maxe∈E∂
h

{
r̃eC̃

e
extC

e
eq

}
≤ C1/4C2.

Above, C1 and C2 are positive constants, depending only on Dh, such that

C1‖τ‖20,Dh
≤ ‖τ d‖20,Dh

+ ‖div τ‖20,Dh
∀ τ ∈ H0(div; Dh) (2.29)

and
‖τ d‖0,Dh

≤ C2‖τ‖div,Dh
∀ τ ∈ H(div,Dh). (2.30)

In particular, the proof of (2.29) can be found in [12, Lemma 3.1] (see also [41, Proposition 3.1]).

Let us briefly discuss the implications of these constraints. We are interested in two scenarios where
we consider that our method can be used. This first one is the case where Γh is constructed by
interpolating Γ by a picewise linear function, hence d(Γ,Γh) . h2. In this case, Assumption (A1)
holds since R is of order h and h is upper-bounded. Assumption (A2) is also satisfied for h small
enough. The second scenario corresponds to the case where the domain is immersed in a background
mesh and Dh is the union of all elements inside Ω. In this situation, d(Γ,Γh) . h and R is of order
one, which means (A1) is satisfied, but for a general domain Ω we cannot guaranty (A2) holds.
However, we think this theoretical assumption could be relaxed because our numerical experiments
show optimal rates of convergence even in the latter case.

We have then the following result.

Lemma 2.2. Suppose that (A1) and (A2) hold. There exist positive constants C̃d and α̃, independent
of the meshsize h, such that

|dh(ξh, τ h)| ≤ C̃d‖ξh‖div,Dh
‖τ h‖div,Dh

∀ ξh, τ h ∈ H0,h(Dh), (2.31)
(ah + dh)(τ h, τ h) ≥ α̃‖τ h‖2div,Dh

∀τ h ∈ Vh(Dh), (2.32)

where Vh(Dh) := {τ h ∈ H0,h(Dh) : bh(τ h,vh) = 0 ∀vh ∈ Qh(Dh)}.

Proof. We proceed analogously to Section 1.2.4. In fact, having in mind the estimation of dh, let us
first define for any ξh ∈ H0,h(Dh) and any edge e ∈ E∂h ,

wh(x) :=
∫ `(x)

0
Eh(ξd

h)(x + ηm(x)) m(x) dη ∀x ∈ e.

Integrating this vector-valued function over the edge e, applying the Cauchy–Schwarz inequality, using
the constants C̃eext (cf. (2.27)) to bound the norm ||| · |||e, the fact that h⊥e ≤ hT e , and the estimate
(2.30), yields

‖wh‖20,e ≤
∫
e
`(x)

∫ `(x)

0
|Eh(ξd

h)(x + ηm(x))|2 dη dSx ≤ r̃eH̃e

(
C̃eext

)2
‖ξd

h‖20,T e

≤ hT e

(
r̃eC̃

e
ext

)2
‖ξd

h‖20,T e ≤ hT e

(
r̃eC̃

e
extC2

)2
‖ξh‖2div,T e .

(2.33)

Then, applying the Cauchy–Schwarz inequality together with (2.33), we have

|dh(ξh, τ h)| ≤ 1
2µ

∑
e∈E∂

h

‖wh‖0,e‖τ hnT e‖0,∂T e ≤ C2
2µ‖ξh‖div,Dh

∑
e∈E∂

h

r̃eC̃
e
exth

1/2
T e ‖τ hnT e‖0,∂T e
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for all ξh, τ h ∈ H0,h(Dh). From this, by the definition of Ceeq (cf. (2.26)) and estimate (2.1), and after
some algebraic manipulations, we have from Assumption (A1) that (2.31) holds. On the other hand,
to obtain the coercivity of (ah + dh) on Vh(Dh), we note that τ h ∈ Vh(Dh) implies div τ h ≡ 0 in Dh,
since divH0,h(Dh) ⊆ Qh(Dh). Consequently, from the inequality (2.29), the boundedness of dh and
Assumption (A2), it follows that

(ah + dh)(τ h, τ h) ≥ 1
2µ‖τ

d
h‖20,Ω −

C1
8µ‖τ h‖

2
div;Dh

≥ 3C1
8µ ‖τ h‖

2
div,Dh

for all τ h ∈ Vh(Dh), showing that (2.32) is satisfied with α̃ = 3C1/8µ and concluding the proof.

Remark 2.1. The boundedness of the functional Gh in (2.17) can be deduced from the continuity of the
mapping x̃ : Γh → Γ (cf. Section 2.3.2). In fact, since g(·) = g(x̃(·)) belongs to H1/2(Γh), we apply the
continuity of the normal trace operator and estimate (2.1), to obtain |Gh(τ h)| ≤ ‖g‖1/2,Γh

‖τ h‖div,Dh

for all τ h ∈ H0,h(Dh), as required.

Furthermore, we recall that the pair (Hh,0(Dh),Qh(Dh)) satisfies the following discrete inf-sup
condition (see, for instance [78, Lemma 3.2]):

inf
τh∈H0,h(Dh)

τh 6=0

bh(τ h,vh)
‖τ h‖div,Ω

≥ β̂‖vh‖0,Ω ∀vh ∈ Qh(Dh), (2.34)

with β̂ > 0, independent of h.

We are now ready to state the main result concerning the well-posedness of (2.16).

Theorem 2.3. Suppose that (A1) and (A2) hold. Given f ∈ L2(Ω) and g ∈ H1/2(Γ), there exists a
unique (σ0,h,u) ∈ Hh,0(Dh)×Qh(Dh) solution to the problem (2.16), which satisfies

‖(σ0,h,uh)‖H(div ;Dh)×L2(Dh) . ‖Fh‖[Qh(Dh)]′ + ‖Gh‖[H0,h(Dh)]′ .

Proof. The proof follows from the discrete version of the Babuška–Brezzi theorem (see, e.g., [73,
Section 2.5]).

We end this section by providing a postprocessing technique for approximating the pseudostress
σ and the pressure p in the computational domain Dh. For this, we let (σ0,h,uh) ∈ Hh,0(Dh) ×
Qh(Dh) be the unique solution of (2.16) and based on the definition (2.13), we propose the following
approximations of σ and p:

σh := σ0,h +
(

γh
2|Dh|

)
I, (2.35)

and
ph := −1

2tr (σh), (2.36)

where
γh := −

∫
Dc

h

tr
(

Eh(σ0,h)−
(

1
2|Ω|

∫
Dc

h

tr (Eh(σ0,h))
)
I
)
, (2.37)

and Eh(σ0,h) denotes the extrapolation of σ0,h (cf. (2.19)). Notice that the following identity holds:∫
Dh

tr (σh) = γh. (2.38)
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2.4 A priori error bounds

Given (σ,u) ∈ H0(div; Ω)×L2(Ω) and (σ0,h,uh) ∈ H0,h(Dh)×Qh(Dh) solutions of (2.6) and (2.16),
respectively, we are now interested in obtaining upper bounds for

‖σ − σh‖div,Dh
, ‖u− uh‖0,Dh

and ‖p− ph‖0,Dh
,

where σh and ph are given by (2.35) and (2.36), respectively. These errors, as we shall see below,
depend on a Céa-type estimate for ‖σ0 − σ0,h‖div,Dh

, with σ0 defined as in (2.13). For this reason,
we follow the strategy of Section 1.3: we first derive the corresponding Céa estimate, then apply
it to derive error bounds for the main variables, even on the complement Dc

h, and finally infer the
theoretical rate of convergence. Most of the arguments that we will employ to obtain the Céa estimate
consist of an application of the same components of the method in Chapter 1. However, as we will
see, in our case we need to take into account the influence of the term (γ − γh) arising from the fact
that we are looking for the first component of the solution in the space H0(div; Dh).

2.4.1 Estimates on Dh

We begin with a Céa-type estimate for our Galerkin scheme (2.16). For its proof we proceed similarly
to the proof of Theorem 1.5.

Theorem 2.4. Let (σ,u) ∈ H0(div; Ω) × L2(Ω) and (σ0,h,uh) be the unique solutions of (2.6) and
(2.16), respectively. Let σ0 be defined as in (2.13) and suppose that hypotheses of Theorem 2.3 are
satisfied. Then, there holds

‖(σ0 − σ0,h,u− uh)‖H(div;Dh)×L2(Dh)

. inf
vh∈Qh(Dh)

‖u− vh‖0,Dh
+ inf
ξ0,h∈H0,h(Dh)

‖σ0 − ξ0,h‖div,Dh
+
∑
e∈E∂

h

∣∣∣∣∣∣∣∣∣σd −Eh

(
ξd

0,h
)∣∣∣∣∣∣∣∣∣

e

 .
Proof. Recalling that (σ0,u) solves (2.14), and rearranging conveniently (2.16), it follows that

ah(σ0, τ ) + bh(τ ,u) = 〈τnΓh
, g̃〉Γh

∀ τ ∈ H0(div ; Dh),
bh(σ0,v) = Fh(v) ∀v ∈ L2(Dh),

and
ah(σ0,h, τ h) + bh(τ h,uh) = Gh(τ h)− dh(σ0,h, τ h) ∀ τ h ∈ H0,h(Dh),

bh(σ0,h,vh) = Fh(vh) ∀vh ∈ Qh(Dh).
It should be noted that the structure of these problems differs only in the functionals concerning the
Dirichlet boundary condition. This leads us to apply the well-known Strang-type estimate to obtain
our preliminary error bounds as done in Section 1.3.1 (see also [63, Lemma 5.2] or [82, Section 4.1]):

‖σ0 − σ0,h‖div,Dh
≤
(

1 + ‖ah‖
α̂

)(
1 + ‖bh‖

β̂

)
inf

ξ0,h∈H0,h(Dh)
‖σ0 − ξ0,h‖div,Dh

+ ‖bh‖
α̂

inf
wh∈Qh(Dh)

‖u−wh‖0,Dh
+ 1
α̂
Tσ,

(2.39)



2.4. A priori error bounds 49

and
‖u− uh‖0,Dh

≤ ‖ah‖
β̂

(
1 + ‖ah‖

α̂

)(
1 + ‖bh‖

β̂

)
inf

ξ0,h∈H0,h(Dh)
‖σ0 − ξ0,h‖div,Dh

+
(

1 + ‖bh‖
β̂

+ ‖bh‖ ‖ah‖
β̂α̂

)
inf

wh∈Qh(Dh)
‖u−wh‖0,Dh

+ 1
β̂

(
1 + ‖ah‖

α̂

)
Tσ,

(2.40)

where α̂ is the coercivity constant of the bilinear form ah (actually, α̂ = C1/2µ), β̂ is the positive
constant satisfying (2.34), ‖ · ‖ denotes the norm of the corresponding bilinear forms, and Tσ is the
error of the boundary condition on Γh given by

Tσ := sup
τh∈H0,h(Dh)

τh 6=0

|〈τ hnΓh
, g̃〉Γh

− (Gh(τ h)− dh(σ0,h, τ h))|
‖τ h‖div,Dh

= sup
τh∈H0,h(Dh)

τh 6=0

|〈τ hnΓh
, g̃− g̃h〉Γh

|
‖τ h‖div,Dh

.

It remains therefore to bound Tσ from above. To this end, using the Cauchy–Schwarz inequality, the
constant Ceeq of (2.26), the definition of r̃e, and the norm given in (2.28), it follows that

Tσ ≤ 1
2µ

∑
e∈E∂

h

Ceeqh
−1/2
T e ‖g̃− g̃h‖0,e ≤

1
2µ

∑
e∈E∂

h

Ceeq(r̃e)1/2
∣∣∣∣∣∣∣∣∣σd −Eh

(
σd
h

)∣∣∣∣∣∣∣∣∣
e
, (2.41)

where we recall that σh has been defined in (2.35) and σd
h = σd

0,h.

Now, we will establish an upper bound for
∣∣∣∣∣∣σd −Eh(σd

h)
∣∣∣∣∣∣
e. Inspired by (2.35), let ξ0,h ∈ H0,h(Dh)

and
ξh := ξ0,h +

(
ch

2|Dh|

)
I, (2.42)

with constant ch being defined as γh in (2.37) by replacing σ0,h by ξ0,h. Then, adding and subtracting
Eh(ξd

h) in (2.41), using the constants C̃eext and C2 (cf. (2.27) and (2.30), respectively), and also
employing Assumption (A2), we have

Tσ ≤ 1
2µ

∑
e∈E∂

h

Ceeq(r̃e)1/2
∣∣∣∣∣∣∣∣∣σd −Eh(ξd

h)
∣∣∣∣∣∣∣∣∣
e

+ C1
8µ‖σh − ξh‖div,Dh

,

from which, adding and subtracting σ and considering the identity ξd
h = ξd

0,h, it holds

Tσ ≤ 1
2µ

∑
e∈E∂

h

Ceeq(r̃e)1/2
∣∣∣∣∣∣∣∣∣σd −Eh(ξd

0,h)
∣∣∣∣∣∣∣∣∣
e

+ C1
8µ
(
‖σ − ξh‖div,Dh

+ ‖σ − σh‖div,Dh

)
. (2.43)

Furthermore, according to definition (2.13), we know that σ|Dh
= σ0 +

(
γ

2|Dh|

)
I and

∫
Dh

tr (σ) = γ.
Thus, concerning the last term in (2.43), we use (2.38) to infer

‖σ − σh‖div,Dh
≤ ‖σ0 − σ0,h‖div,Dh

+
∥∥∥∥(γ − γh2|Dh|

)
I
∥∥∥∥

0,Dh

= ‖σ0 − σ0,h‖div,Dh
+
∥∥∥∥ 1

2|Dh|

(∫
Dh

tr (σ − σh)
)
I
∥∥∥∥

0,Dh

≤ ‖σ0 − σ0,h‖div,Dh
+ 1√

2
‖σ − σh‖div,Dh

,
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and hence,
‖σ − σh‖div,Dh

≤
( 2

2−
√

2

)
‖σ0 − σ0,h‖div,Dh

. (2.44)

Similarly, we have
‖σ − ξh‖div,Dh

≤
( 2

2−
√

2

)
‖σ0 − ξ0,h‖div,Dh

. (2.45)

Therefore, from (2.39), (2.43), (2.44) and (2.45), we deduce, after simple algebraic manipulations and
recalling that α̂ = C1/2µ, that(

3− 2
√

2
4− 2

√
2

)
‖σ0 − σ0,h‖div,Dh

. inf
wh∈Qh(Dh)

‖u−wh‖0,Dh
+ ‖σ0 − ξ0,h‖div,Dh

+
∑
e∈E∂

h

∣∣∣∣∣∣∣∣∣σd −Eh

(
ξd

0,h

)∣∣∣∣∣∣∣∣∣
e
.

(2.46)

Finally, dividing (2.46) by
(

3−2
√

2
4−2
√

2

)
> 0, placing the resulting inequality together with (2.40), one

easily arrives at the claimed result.

Corollary 2.5. Suppose that hypotheses of Theorem 2.4 hold. Then,

‖p− ph‖0,Dh
+ ‖σ − σh‖div,Dh

. inf
vh∈Qh(Dh)

‖u− vh‖0,Dh
+ inf
ξ0,h∈H0,h(Dh)

∥∥∥σ0 − ξ0,h

∥∥∥
div,Dh

+
∑
e∈E∂

h

∣∣∣∣∣∣∣∣∣σd −Eh

(
ξd

0,h

)∣∣∣∣∣∣∣∣∣
e

 .
Proof. A direct application of definitions (2.4) and (2.36), and estimate (2.44), implies

‖p− ph‖0,Dh
+ ‖σ − σh‖div,Dh

≤
( 3

2−
√

2

)
‖σ0 − σ0,h‖div,Dh

.

The rest of the proof follows from Theorem 2.4.

2.4.2 Approximation in Dc
h and rate of convergence

We now turn to provide approximations of the pseudostress σ, the velocity u and the pressure p
outside Dh. To alleviate the notation, these approximations will be also denoted by σh, uh and ph,
respectively.

In order to approximate σ in Dc
h, we follow the idea in [57, Section 2.1.3]. To that end, given

(σ0,h,uh) ∈ H0,h(Dh)×Qh(Dh) the unique solution of (2.16), let σh be the tensor defined in (2.35).
Then, for each e ∈ E∂h and any y ∈ T̃ eext, we set

σh(y) := Eh(σh)(y). (2.47)

Remark 2.2. From (2.37), we have that
∫

Dc
h

tr (Eh(σ0,h)) = − |Ω||Dh|γh, thus∫
Dc

h

tr (σh) =
∫

Dc
h

tr (Eh(σ0,h)) +
(
γh
|Dh|

)
|Dc

h| = −γh,
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and by (2.38) we conclude that
∫
Ω tr (σh) = 0. In addition, we can write

σh = Eh(σ0,h)−
(

1
2|Ω|

∫
Dc

h

tr (Eh(σ0,h))
)
I in Ω. (2.48)

When Assumption (A1) and definition (2.47) (or equivalently, (2.48)) are considered, it is impor-
tant to point out that since, in Dc

h, the normal component of the extrapolated σh is, in general,
discontinuous across the transferring paths {C (x)}x∈Γh

(cf. Section 2.3.2), the method ensures that,
at least, σh belongs to the broken Sobolev space (see, e.g., [67, Section 1.2.6])

H(div; T̃h) :=
{
τ ∈ L2(Dc

h) : τ
∣∣
T̃ e

ext
∈ H

(
div; T̃ eext

)
∀ e ∈ E∂h

}

endowed with the broken norm ‖ · ‖div,T̃h
:=
(∑

e∈E∂
h
‖ · ‖2

div,T̃ e
ext

)1/2
, where T̃h is the mesh defined in

Section 2.3.2.

On the other hand, by defining

ph := −1
2tr (σh) in Dc

h, (2.49)

it is clear from Remark 2.2 that
∫

Ω ph = 0. Moreover, from definitions (2.4) and (2.49), we have

‖p− ph‖0,Dc
h
≤ 1

2‖σ − σh‖0,D
c
h
. (2.50)

The latter suggests to establish firstly the error estimate associated to the pseudostress.

Let us start by introducing the following intermediate result.

Lemma 2.6. Let (σ,u) ∈ H0(div; Ω) × L2(Ω) be the unique solution of (2.6) and assume that
hypotheses of Theorem 2.4 hold. Suppose further that there exists an integer l ≥ 0 such that σ ∈
Hl+1(Ω), with divσ ∈ Hl+1(Ω). Then, for any ξh ∈ Hh(Dh), we have∑

e∈E∂
h

‖σ −Eh(ξh)‖0,T̃ e
ext

. ‖σ − ξh‖0,Dh
+ hl+1‖σ‖l+1,Ω, (2.51)

and ∑
e∈E∂

h

‖σ −Eh(ξh)‖div,T̃ e
ext

. ‖σ − ξh‖div,Dh
+ hl+1 (‖σ‖l+1,Ω + ‖divσ‖l+1,Ω) . (2.52)

Proof. The proof makes use of averaged Taylor polynomials (cf. [37, Chapter 4]) in the neighborhood
of the curved boundary Γ, and their well-known approximation properties. For details of the proof we
refer to Lemma 1.7.

The following lemma allows us to deduce upper bounds for (σ − σh) in the L2-norm, as well as in
the broken H(div)-norm on Dc

h. The general idea of the proof is inspired by Lemma 1.8.

Lemma 2.7. Assume the same hypotheses of Theorem 2.4. Let (σ,u) ∈ H0(div; Ω) × L2(Ω) and
(σ0,h,uh) ∈ H0,h(Dh) ×Qh(Dh) be the unique solutions of (2.6) and (2.16), respectively. Let σh be
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defined as in (2.47). Suppose further that there exists an integer l ≥ 0 such that σ ∈ Hl+1(Ω), with
divσ ∈ Hl+1(Ω). Then, we have

‖σ − σh‖0,Dc
h
. inf

wh∈Qh(Dh)
‖u−wh‖0,Dh

+ inf
ξ0,h∈H0,h(Dh)

‖σ0 − ξ0,h‖0,Dh
+ hl+1‖σ‖l+1,Ω, (2.53)

and

‖σ − σh‖div,T̃h

. inf
wh∈Qh(Dh)

‖u−wh‖0,Dh
+ inf
ξ0,h∈H0,h(Dh)

‖σ0 − ξ0,h‖div,Dh
+ hl+1 (‖σ‖l+1,Ω + ‖divσ‖l+1,Ω) .

(2.54)

Proof. Let ξh be given by (2.42). Adding and subtracting convenient terms, applying the estimate
(2.51), using the definition of C̃eext in (2.27), and making use of Assumption (A1), we obtain

‖σ − σh‖0,Dc
h
≤
∑
e∈E∂

h

(
‖σ −Eh(ξh)‖0,T̃ e

ext
+ ‖Eh(ξh)− σh‖0,T̃ e

ext

)
. hl+1‖σ‖l+1,Ω + ‖σ − ξh‖0,Dh

+
∑
e∈E∂

h

C̃eext(r̃e)1/2‖σh − ξh‖0,T e

. hl+1‖σ‖l+1,Ω + ‖σ − ξh‖0,Dh
+ ‖σ − σh‖0,Dh

.

(2.55)

On the other hand, the same arguments as for (2.44) and (2.45) imply

‖σ − ξh‖0,Dh
+ ‖σ − σh‖0,Dh

≤
( 2

2−
√

2

)(
‖σ0 − σ0,h‖0,Dh

+ ‖σ0 − ξ0,h‖0,Dh

)
. (2.56)

Combining (2.55) and (2.56), and employing the error estimate given by Lemma 2.4, it yields

‖σ − σh‖0,Dc
h
. hl+1‖σ‖l+1,Ω +

∑
e∈E∂

h

∣∣∣∣∣∣∣∣∣σd −Eh(ξd
0,h)

∣∣∣∣∣∣∣∣∣
e

+ ‖σ0 − ξ0,h‖0,Dh
+ inf

vh∈Qh(Dh)
‖u− vh‖0,Dh

.

(2.57)

Furthermore, by using the fact that ‖ · ‖0,T̃ e
ext

and ||| · |||e are equivalent norms over L2(T̃ eext) (cf. Lemma
1.6), and noting that ‖τ d‖0,T̃ e

ext
. ‖τ‖0,T̃ e

ext
holds for all τ ∈ H(div; T̃ eext), we find

∑
e∈E∂

h

∣∣∣∣∣∣∣∣∣σd −Eh(ξd
0,h)

∣∣∣∣∣∣∣∣∣
e

=
∑
e∈E∂

h

∣∣∣∣∣∣∣∣∣σd −Eh(ξd
h)
∣∣∣∣∣∣∣∣∣
e

.
∑
e∈E∂

h

‖σd −Eh(ξd
h)‖0,T̃ e

ext
.
∑
e∈E∂

h

‖σ −Eh(ξh)‖0,T̃ e
ext

. hl+1‖σ‖l+1,Ω + ‖σ − ξh‖0,Dh
. hl+1‖σ‖l+1,Ω + ‖σ0 − ξ0,h‖0,Dh

.

(2.58)

Therefore, (2.53) is obtained by gathering (2.57) and (2.58), and by noting, thanks to the identity
(2.13), that ‖σ0‖l+1,Dh

. ‖σ‖l+1,Ω. The estimate (2.54) is obtained analogously to (2.53), but con-
sidering the estimate (2.52) instead of (2.51).

The following result is a direct consequence of inequalities (2.50) and (2.53).
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Corollary 2.8. Let us suppose that hypotheses of Lemma 2.7 are satisfied. Let p and ph be defined
as in (2.4) and (2.49), respectively. There holds

‖p− ph‖0,Dc
h
. inf

wh∈Qh(Dh)
‖u−wh‖0,Dh

+ inf
ξ0,h∈H0,h(Dh)

‖σ0 − ξ0,h‖0,Dh
+ hl+1‖σ‖l+1,Ω.

To conclude this section, it remains to specify uh in Dc
h. In doing so, we proceed exactly as in [57,

Section 2.1.3]. In fact, given an edge e ∈ E∂h , it is easy to see that for each point y ∈ T̃ eext there exists
a transferring path C (x), starting at x ∈ Γh and ending at x̃ ∈ Γ, such that y = x + (ε/`(x))(x̃− x)
for some ε ∈ [0, `(x)]. As a result, the definition of uh in Dc

h can be stated similarly to the one of g̃h,
that is,

uh(y) := u(ỹ)− 1
2µ

∫ |ỹ−y|

0
σd
h(y + ηk(y))k(y) dη, (2.59)

where σh is defined as in (2.47), ỹ := x̃ and k(y) := (ỹ− y)/|ỹ− y|. Actually, it is possible to define
uh with either σh or σ0,h upon taking into account the identity σd

h = σd
0,h.

The next lemma provides an upper bound for (u − uh) in the L2-norm on Dc
h. The proof, which

involves the estimate (2.53), is basically the same as for Lemma 1.9, and for this reason is omitted.

Lemma 2.9. Suppose that the hypotheses of Lemma 2.7 are satisfied. Then, there holds

‖u− uh‖0,Dc
h
. Rh

(
inf

wh∈Qh(Dh)
‖u−wh‖0,Dh

+ inf
ξ0,h∈H0,h(Dh)

‖σ0 − ξ0,h‖0,Dh

)
+Rhl+2‖σ‖l+1,Ω.

Finally, the following theorem provides the theoretical rate of convergence of our Galerkin scheme
(2.16) and the main unknowns, provided the usual regularity assumptions on the exact solution.

Theorem 2.10. In addition to the hypotheses of Theorem 2.4 and Lemma 2.7, suppose that there
exists s ∈ (0, k + 1] such that σ ∈ Hs(Ω), divσ ∈ Hs(Ω) and u ∈ Hs(Ω). Then, there hold

‖(σ0 − σ0,h,u− uh)‖H(div;Dh)×L2(Dh) . hs (‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω)

and
‖σ − σh‖div,Dh

+ ‖p− ph‖0,Dh
. hs (‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω) .

Furthermore, in the non-meshed region Dc
h, we have

‖σ − σh‖div,T̃h
+ ‖p− ph‖0,Dc

h
. hs (‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω)

and
‖u− uh‖0,Dc

h
. Rhs+1 (‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω) .

Proof. It is concluded from Theorem 2.4, Corollary 2.5, Lemma 2.7, Corollary 2.8, Lemma 2.9, the
approximation properties (2.21)-(2.23), and (2.25), and the usual interpolation estimates.

It is interesting to note here that the extra power of h related to ‖u−uh‖0,Dc
h
follows exclusively from

Assumption (A1), i.e., from the fact that in (2.59) the maximum length of the integration segments
is of order of Rh. However, the convergence rate of the method is entirely determined by the error
estimates on the computational domain Dh.
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2.5 A residual-based a posteriori error analysis

In this section we develop a reliable and quasi-efficient residual-based a posteriori error estimator
for the Galerkin scheme (2.16). For simplicity, however, we restrict ourselves to the problem in two
dimensions and to the case where Γh is constructed by interpolating Γ by a piecewise linear function
and Dh is contained in Ω. In that case, the distance between Γh and Γ is of order h2. We emphasize that
the a priori error analysis in previous sections holds under the less restrictive assumption that d(Γh,Γ)
is of only order h, as long as Assumption (A.1) and (A.2) are satisfied. However, the corresponding
a posteriori error analysis of the latter case is not trivial and is subject of ongoing work. In Section
2.5.3 we will comment how to deal with the case when Dh is not necessarily contained in Ω. We will
discuss the a posteriori error estimator in three dimensions in Section 2.5.4.

We start by introducing some useful notation and previous results. In what follows, he stands for the
length of a given edge e ∈ Eh. Moreover, for every e ∈ Eh we fix a unit normal vector ne := (ne,1, ne,2)T

to the edge e, and let te := (−ne,2, ne,1)T be the unit tangential vector along e. We define nΓe and tΓe

similarly. In particular, for every e ∈ E∂h (resp. Γe ⊂ Γ), we take ne (resp. nΓe) as the vector pointing
in the outward direction of Γh (resp. Γ) from Dh (resp. Ω). However, when no confusion arises we
will simply write n and t instead of ne and te (or, nΓe and tΓe), respectively. Now, given an edge
e ∈ Eh, v ∈ L2(Ω) and τ ∈ L2(Ω), such that v|T ∈ [C(T )]2 and τ |T ∈ [C(T )]2×2 on each T ∈ Th, we
let JvK and Jτ tK be the corresponding jumps across e, that is,

JvK :=
(
v
∣∣
T+

) ∣∣
e
−
(
v
∣∣
T−

) ∣∣
e

and Jτ tK :=
{(
τ
∣∣
T+

) ∣∣
e
−
(
τ
∣∣
T−

) ∣∣
e

}
t,

where T+ and T− are two triangles of Th sharing a common edge e. Finally, if v := (vi)i=1,2 and
τ := (τij)i,j=1,2 are sufficiently smooth vector-valued and tensor-valued functions, respectively, we let

curl (v) :=


∂v1
∂x2

−∂v1
∂x1

∂v2
∂x2

−∂v2
∂x1

 and curl (τ ) :=


∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

 .

Let (σ0,h,uh) ∈ H0,h(Dh)×Qh(Dh) be the unique solution of (2.16) and σh be defined as in (2.35).
For the forthcoming analysis we introduce an element-by-element postprocessed velocity u?h being the
unique function in

∏
T∈Th

Pk+1(T ), such that, for all T ∈ Th,∫
T
∇u?h : ∇q = 1

2µ

∫
T
σd
h : ∇q ∀q ∈ Pk+1(T ),∫

T
u?h =

∫
T

uh.
(2.60)

It is immediate to check that u?h is well-defined. Moreover, if we assume that u ∈ Hm+1(Dh) and
σ ∈ Hl(Dh), with m, l ∈ [1, k + 1], it is not difficult to verify (see, e.g., [55, Theorem 5.2]) that

‖u− u?h‖0,Dh
. hmin{l+1,m+1} (‖σ‖l,Dh

+ ‖u‖m+1,Dh
) . (2.61)

Therefore, the pair (σh,u?h) is an optimal convergent approximation of (σ,u) ∈ Hh(Dh) ×Qh(Dh).
For the sake of simplicity, the extrapolation of u?h on Dc

h, in the sense of (2.19), will be denoted simply
as u?h.
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We introduce the following global a posteriori error estimator:

Θ :=

∑
T∈Th

Θ2
T

1/2

, (2.62)

where ΘT is the local error indicator defined, for each T ∈ Th, as

Θ2
T := h2

T

∥∥∥∥curl
{ 1

2µσ
d
h

}∥∥∥∥2

0,T
+

∑
e∈E(T )∩Ei

h

(
he

∥∥∥∥
s

1
2µσ

d
ht

{∥∥∥∥2

0,e
+ h−1

e ‖Ju?hK‖20,e

)

+
∥∥∥∥ 1

2µσ
d
h −∇u?h

∥∥∥∥2

0,T
+ ‖f + divσh‖20,T +

∑
e∈E(T )∩E∂

h

‖f + divσh‖20, T̃ e
ext

+ ‖uh − u?h‖20,T +
∑

e∈E(T )∩E∂
h

‖uh − u?h‖20,T̃ e
ext

+ J2
T + K2

T .

(2.63)

Here, JT and KT are computable terms concerning the curved boundary Γ, which take the form

JT :=

 ∑
e∈E(T )∩E∂

h

h−1
e ‖g− u?h‖20,Γe


1/2

, (2.64)

and

KT :=

 ∑
e∈E(T )∩E∂

h

hT e

∥∥∥∥dgdt − 1
2µσ

d
ht
∥∥∥∥2

0,Γe


1/2

. (2.65)

Note that, from the strong equations (2.5) and the regularity of the continuous weak solution, the
residual character of each term defining (2.63) becomes clear. Note also that (2.65) requires that
dg/dt ∈ L2(Γe) for each curved edge Γe being part of the boundary Γ, which is overcome below by
simply assuming that g ∈ H1(Γ). Moreover, since by (2.61) with l = m = k+ 1 the postprocessed u?h
converges to u with order O(hk+2) in the L2(Dh)-norm, it should be expected, and this is verified in
practice (cf. Section 2.6), that the global a posteriori error estimator Θ retains the rate of convergence
of our method, i.e., O(hk+1), if the solution is smooth enough.

We are now in position of establishing the main result of this section.

Theorem 2.11. Assume that g ∈ H1(Γ). Then, there exist positive constant Crel and Ceff , both
independent of the meshsizes and the continuous and discrete solutions, such that

‖(σ − σh,u− uh)‖H(div;Ω)×L2(Ω) ≤ CrelΘ, (2.66)

and
CeffΘ ≤ ‖(σ − σh,u− uh)‖H(div;Ω)×L2(Ω) + B, (2.67)

where

B :=

∑
T∈Th

J2
T

1/2

+

∑
T∈Th

K2
T

1/2

, (2.68)

and JT and KT are given by (2.64) and (2.65), respectively.
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We recall from Section 2.4.2 that σh in Dc
h is obtained by (2.47) and satisfies

∫
Ω tr (σh) = 0. Then,

since Γh is constructed by a picewise linear interpolation of Γ, it is clear that σh ∈ H0(div; Ω), and
hence the norm in the left-hand side of (2.66) makes sense. In addition, we notice from (2.67) that
Θ is efficient up to the term B, which is usually referred as quasi-efficiency (see, e.g., [5, 83]). More
importantly, the terms JT and KT lie on both sides of the inequality (2.67), which does not represent
any problem since they provides computable estimates for the approximations u?h and (2µ)−1σd

ht of
the boundary data g and its tangential derivative along Γ, respectively. It should be noted, however,
that B must have at least the same rate of convergence of the global error if the exact solution is
smooth enough. In section 2.5.2 we treat this matter in more detail.

The proof of Theorem 2.11 is separated into several steps. In Section 2.5.1 we prove that Θ satisfies
the reliability property (2.66), whereas the corresponding quasi-efficiency property (2.67) is derived in
Section 2.5.2.

2.5.1 Reliability of the a posteriori error estimator

We proceed similarly as in [80] (see also [78, 81]), that is, we start by using the global inf-sup condition
in (2.7). In fact, we have

‖(σ − σh,u− uh)‖H(div;Ω)×L2(Ω) . ‖uh − u?h‖0,Ω + ‖(σ − σh,u− u?h)‖H(div;Ω)×L2(Ω)

. ‖uh − u?h‖0,Ω + sup
(τ ,v)∈H0(div;Ω)×L2(Ω)

(τ ,v) 6=0

|a(σ − σh, τ ) + b(τ ,u− u?h) + b(σ − σh,v)|
‖(τ ,v)‖H(div;Ω)×L2(Ω)

,

from which

‖(σ − σh,u− uh)‖H(div;Ω)×L2(Ω) . ‖uh − u?h‖0,Ω + ‖f + divσh‖0,Ω + ‖R‖H0(div;Ω)′ , (2.69)

where R : H0(div; Ω)→ R is the linear and bounded functional defined as

R(τ ) := 〈τnΓ,g〉Γ − a(σh, τ )− b(τ ,u?h) ∀ τ ∈ H0(div; Ω). (2.70)

To obtain the reliability estimate (2.66) it suffices to bound (2.70). We notice that in the case of
mixed methods with Ω being polygonal, this is typically accomplished by using a stable Helmholtz
decomposition of τ . In what follows, with the help of an auxiliary polygon different from Dh, we shall
extend that idea to domains Ω with curved boundary.

Given e ∈ E∂h such that e 6= Γe, we suppose that there exists an auxiliary triangle T̃ eaux, with
diameter h

T̃ e
aux

, satisfying

(B1) T̃ eaux has e as a boundary edge, Γe ⊂ T̃ eaux, hT̃ e
aux
' hT e , |Γe| ' he; and if F = T̃ ei

aux ∩ T̃ ej
aux, with

ei, ej ∈ E∂h , i 6= j, then F is either a common vertex or a common edge of T̃ ei
aux and T̃ ej

aux; see
an illustration in Figure 2.2.

We observe that in the case of e = Γe, we can simply take T̃ eaux as T e. For this reason, from now on we
assume, without loss of generality, that for all e ∈ E∂h , e 6= Γe. By defining T̃ auxh :=

{
T̃ eaux : e ∈ E∂h

}
,

we further assume that



2.5. A residual-based a posteriori error analysis 57

Figure 2.2: Example of an auxiliary triangle T̃ eaux (gray region). (figure produced by the author)

(B2) the triangulation T ∗h := Th ∪ T̃ auxh is shape-regular.

These hypotheses are expected to be satisfied on sufficiently fine meshes since Γh is constructed
through a picewise linear interpolation of Γ, even though, as we shall see later, the auxiliary triangles
will not be used to compute our a posteriori error estimator. It is then straightforward to extend
the Raviart–Thomas interpolation operator (cf. Section 2.3) to the polygonal region D∗h induced by
the triangularization T ∗h , say D∗h =

⋃
{T : T ∈ T ∗h }. Therefore, the approximation properties of this

operator also hold in T ∗h .

Next, we introduce the Clément interpolation operator [54]

Ih : H1(D∗h)→
{
v ∈ C(D∗h) : v

∣∣
T
∈ P1(T ) ∀T ∈ T ∗h

}
.

From this operator we recall the following classical approximation properties.

Lemma 2.12. Assume that (B1)-(B2) are satisfied. Then, for all v ∈ H1(D∗h) there hold

‖v − Ih(v)‖0,T . hT |v|1,∆(T ) ∀T ∈ T ∗h (2.71)

and
‖v − Ih(v)‖0,e . he|v|1,∆(e) ∀ edge e of T ∗h , (2.72)

where ∆(T ) :=
⋃
{T ′ ∈ T ∗h : T ∩ T ′ 6= ∅} and ∆(e) :=

⋃
{T ′ ∈ T ∗h : e ∩ T ′ 6= ∅}.

Let us continue with the estimation of ‖R‖[H0(div;Ω)]′ . For this, we let (see, e.g., [78, Setion 4])

τ = ζ + curl (ϕ) in Ω, (2.73)

with χ ∈ H1(Ω) and ϕ ∈ H1(Ω) satisfying the stability property

‖ζ‖1,Ω + ‖ϕ‖1,Ω . ‖τ‖div,Ω. (2.74)

Furthermore, following essentially the ideas in [78, Section 4.1] (see also the proof of Lemma 3.8 in
[80]), we specify the discrete version of the identity (2.73). First, we recall from [129] that for any
v ∈ H1(Ω) there exists an extension E (v) ∈ H1(R2) such that E (v)|Ω = v and ‖E (v)‖1,R2 . ‖v‖1,Ω.
Then, we let

ζh := Πk
h

(
EEE (ζ)

∣∣
D∗

h

)
and ϕh := Ih

(
EEE (ϕ)

∣∣
D∗

h

)
,
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where Πk
h is the Raviart–Thomas interpolation operator described before, whereas EEE and Ih are

defined componentwise by the extension operator E and the Clément interpolant Ih, respectively.
The discrete Helmholtz decomposition is then defined as

τ h := ζh + curl (ϕh) + c0I in D∗h, (2.75)

with c0 := − 1
2|Ω|

∫
Ω tr (ζh + curl (ϕh)) chosen such that

∫
Ω tr (τ h) = 0.

In this way, adding and subtracting τ h in the argument of R defined in (2.70), using the identities
(2.73) and (2.75), noting that c0I vanishes in the definition of R due to the compatibility condition
(2.3), we obtain

R(τ ) = R(τ h) +R(ζ − ζh) +R(curl (ϕ−ϕh)). (2.76)

In particular, from (2.70) and the identity σd
h : τ d

h = σd
h : τ h, it follows that

R(τ h) =
∑
e∈E∂

h

∫
Γe

g · (τ hnΓe)− 1
2µ

∫
Ω
σd
h : τ h −

∫
Ω

u?h · div τ h. (2.77)

Then, splintting the integrals over Ω into Dh and Dc
h, integrating by parts elementwise on each of

these regions, and recalling that, for every e ∈ E∂h , the vector ne is pointing outwards from Dh, there
hold

1
2µ

∫
Dh

σd
h : τ h +

∫
Dh

u?h · div τ h

=
∑
T∈Th

(∫
T

( 1
2µσ

d
h −∇u?h

)
: τ h +

∫
∂T

u?h · (τ hn)
)

=
∑
T∈Th

∫
T

( 1
2µσ

d
h −∇u?h

)
: τ h +

∑
e∈Ei

h

∫
e
Ju?hK · (τ hne) +

∑
e∈E∂

h

∫
e
u?h · (τ hne),

(2.78)

and
1

2µ

∫
Dc

h

σd
h : τ h +

∫
Dc

h

u?h · div τ h

=
∑
e∈E∂

h

(∫
T̃ e

ext

( 1
2µσ

d
h −∇u?h

)
: τ h +

∫
∂T̃ e

ext

u?h · (τ hn)
)

=
∑
e∈E∂

h

(∫
T̃ e

ext

( 1
2µσ

d
h −∇u?h

)
: τ h −

∫
e
u?h · (τ hne) +

∫
Γe

u?h · (τ hnΓe)
)
.

(2.79)

Combining (2.77), (2.78) and (2.79), and observing that u?h coincides with its extrapolation along
every edge e ∈ E∂h , we obtain

R(τ h) = −
∑
T∈Th

∫
T

( 1
2µσ

d
h −∇u?h

)
: τ h −

∑
e∈Ei

h

∫
e
Ju?hK · (τ hne)

+
∑
e∈E∂

h

(∫
Γe

(g− u?h) · (τ hnΓe)−
∫
T̃ e

ext

( 1
2µσ

d
h −∇u?h

)
: τ h

)
.

(2.80)

The following result plays an important role when estimating |R(τ h)|.
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Lemma 2.13. Suppose that (B1)-(B2) hold. Then, for every edge e ∈ E∂h and each τ ∈ H1(T̃ eaux),
there hold

‖τnΓe‖0,Γe . h
−1/2
T e ‖τ‖1,T̃ e

aux
, (2.81)

‖(τ −Πk
h(τ ))nΓe‖0,Γe . h

1/2
T e ‖τ‖1,T̃ e

aux
, (2.82)

‖τ −Πk
h(τ )‖0,Γe . h

1/2
T e ‖τ‖1,T̃ e

aux
. (2.83)

Proof. Given e ∈ E∂h , let F eaux be the usual invertible affine mapping satisfying F eaux(Tref ) = T̃ eaux,
with Tref denoting the reference element. Let then Γref be the corresponding inverse image of Γe. For
τ ∈ H1(T̃ eaux), we set τ̂ := τ ◦ F eaux. According to [86, Lemma 3], it follows that

‖τ̂‖20,Γref
. ‖τ̂‖0,Tref

‖τ̂‖1,Tref
.

A simple scaling argument yields

h
T̃ e

aux
‖τnΓ‖20,Γe

≤ h
T̃ e

aux
‖τ‖20,Γe

. ‖τ‖20,T̃ e
aux

+
(
h
T̃ e

aux

)2
‖τ‖21,T̃ e

aux
. (2.84)

Combined with the assumption that h
T̃ e

aux
' hT e , this implies (2.81).

The remaining two estimates follow from (2.84), the approximation properties of the Raviart–
Thomas interpolation operator, and the fact that h

T̃ e
aux
' hT e , by replacing τ by τ −Πk

h(τ ).

Similarly, for every e ∈ E∂h and all v ∈ H1(D∗h), we have

‖v− Ih(v)‖0,Γe . h
1/2
T e ‖v‖1,∆(T̃ e

aux), (2.85)

where Ih is the vector Clément interpolant introduced above and ∆(T̃ eaux) is the union of all the
elements of T ∗h intersecting with T̃ eaux.

Under Assumptions (B1)-(B2) the following three lemmas provide upper bounds for |R(τ h)|,
|R(ζ − ζh)| and |R(curl (ϕ−ϕh))| arising from (2.76).

Lemma 2.14. There holds

|R(τ h)| .

∑
T∈Th

Θ2
0,T

1/2

‖τ‖div,Ω, (2.86)

where

Θ0,T :=
∥∥∥∥ 1

2µσ
d
h −∇u?h

∥∥∥∥2

0,T
+

∑
e∈E(T )∩E∂

h

(hT e)−1 ‖g− u?h‖
2
0,Γe

+
∑

e∈E(T )∩Ei
h

(hT e)−1 ‖Ju?hK‖20,e.

Proof. Applying the Cauchy–Schwarz inequality to each term in (2.80), and using (2.26), (2.81), the
estimate ‖ · ‖0,T̃ e

ext
. ||| · |||e (cf. Lemma 1.6), and the extrapolation constant (2.27), it follows that

|R(τ h)| .
∑
T∈Th

∥∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥∥
0,T
‖τ h‖0,T +

∑
e∈Ei

h

Ceeq (hT e)−1/2 ‖Ju?hK‖0,e‖τ h‖div,K(e)

+
∑
e∈E∂

h

(
(hT e)−1/2 ‖g− u?h‖0,Γe

‖τ h‖1,T̃ e
aux

+ C̃eext(r̃e)1/2
∥∥∥∥ 1

2µσ
d
h −∇u?h

∥∥∥∥
0,T e

‖τ h‖0,T̃ e
ext

)
,

(2.87)
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where
K(e) :=

⋃{
T ′ ∈ Th : e ∈ E(T ′)

}
. (2.88)

Notice that ‖τ h‖0,T̃ e
ext

can be bounded by ‖τ h‖0,T̃ e
aux

thanks to Assumption (B1). Combining it with
(2.87), using again the Cauchy–Schwarz inequality, and finally observing that (2.74) and (2.75) give
‖τ h‖1,D∗

h
. ‖τ‖div,Ω, we have

|R(τ h)| . ‖τ‖div;Ω

∑
T∈Th

∥∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥∥2

0,T
+
∑
e∈Ei

h

(
Ceeq

)2
(hT e)−1 ‖Ju?hK‖20,e

+
∑
e∈E∂

h

(
(hT e)−1 ‖g− u?h‖

2
0,Γe

+
(
C̃eext

)2
r̃e

∥∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥∥2

0,T e

)
1/2

,

where, by Assumption (A1), r̃e ≤ C for all e ∈ E∂h . This completes the proof.

Lemma 2.15. There holds

|R(ζ − ζh)| .

∑
T∈Th

Θ2
1,T

1/2

‖ζ‖1,Ω, (2.89)

where

Θ1,T := h2
T

∥∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥∥2

0,T
+

∑
e∈E(T )∩E∂

h

hT e‖g− u?h‖20,Γe
+

∑
e∈E(T )∩Ei

h

hT e‖Ju?hK‖20,e.

Proof. We first observe that, making use of the approximation properties of the Raviart–Thomas
interpolation operator, we obtain, for every edge e ∈ E∂h ,

‖ζ − ζh‖0,T̃ e
ext
≤ ‖EEE (ζ)− ζh‖0,T̃ e

aux
. hT e‖EEE (ζ)‖1,T̃ e

aux
, (2.90)

since, by Assumption (B1), T̃ eext ⊂ T̃ eaux and h
T̃ e

aux
' hT e . Then, after replacing τ h by (ζ − ζh) in

(2.80), we use similar arguments as in the previous lemma to obtain

|R(ζ − ζh)| .
∑
T∈Th

hT

∥∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥∥
0,T
‖ζ‖1,T +

∑
e∈Ei

h

h1/2
e ‖Ju?hK‖0,e‖ζ‖1,K(e)

+
∑
e∈E∂

h

(
(hT e)1/2 ‖g− u?h‖0,Γe + C̃eexthT e(r̃e)1/2

∥∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥∥
0,T e

)
‖EEE (ζ)‖1,T̃ e

aux
.

The result follows from the continuity of the extension operator EEE , Assumption (A1) and the Cauchy–
Schwarz inequality.

Lemma 2.16. Assume that g ∈ H1(Γ). Then, there holds

|R(curl (ϕ−ϕh))| .

∑
T∈Th

Θ2
2,T

1/2

‖ϕ‖1,Ω, (2.91)
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where

Θ2,T := h2
T

∥∥∥∥curl
{ 1

2µσ
d
h

}∥∥∥∥2

0,T
+

∑
e∈E(T )∩E∂

h

hT e

∥∥∥∥dgdt − 1
2µσ

d
0,ht

∥∥∥∥2

0,Γe

+
∑

e∈E(T )∩Ei
h

he

∥∥∥∥
s

1
2µσ

d
ht

{∥∥∥∥2

0,e
.

Proof. We follow [78, Lemma 4.3] and use the integration by parts formula, but more precisely the
identities from [84, eq. (2.17) and Theorem 2.11], and the fact that curl (v)nΓ = dv/dt for a suffi-
ciently smooth vector-valued function v, to obtain

〈curl (ϕ−ϕh)nΓ,g〉Γ = −
∑
e∈E∂

h

∫
Γe

dg
dt · (ϕ−ϕh), (2.92)

which holds true because g ∈ H1(Γ) has been assumed. Moreover, from R(curl (ϕ− ϕh)), using the
identity div (curl (ϕ − ϕh)) = 0, applying [84, Theorem 2.11] to integrate by parts elementwise the
integrals over Dh and Dc

h separately, and combining the resulting terms with (2.92), it follows that

R(curl (ϕ−ϕh)) = −
∑
e∈E∂

h

∫
Γe

dg
dt · (ϕ−ϕh)− 1

2µ

∫
Ω
σd
h : curl (ϕ−ϕh)

= −
∑
T∈Th

∫
T

curl
{ 1

2µσ
d
h

}
· (ϕ−ϕh) +

∑
e∈Ei

h

∫
e

s
1

2µσ
d
ht

{
· (ϕ−ϕh)

−
∑
e∈E∂

h

(∫
T̃ e

ext

curl
{ 1

2µσ
d
h

}
· (ϕ−ϕh) +

∫
Γe

(
dg
dt −

1
2µσ

d
ht
)
· (ϕ−ϕh)

)
.

Next, applying the Cauchy-Schwarz inequality to each term above, noting that similarly to (2.90), one
has

‖ϕ−ϕh‖0,T̃ e
ext

. hT e‖E(ϕ)‖1,∆(T̃ e
aux) ∀ e ∈ E∂h ,

using the extrapolation constant (2.27) in the same fashion as in the proof of Lemma 2.14, and making
use of the approximation properties (2.71)-(2.72) and (2.85), we obtain

|R(curl (ϕ−ϕh))| .
∑
T∈Th

hT

∥∥∥∥curl
{ 1

2µσ
d
h

}∥∥∥∥
0,T
‖ϕ‖1,∆(T ) +

∑
e∈Ei

h

h1/2
e

∥∥∥∥
s

1
2µσ

d
ht

{∥∥∥∥ ‖ϕ‖1,∆(e)

+
∑
e∈E∂

h

(
C̃eexthT e (r̃e)1/2

∥∥∥∥curl
{ 1

2µσ
d
h

}∥∥∥∥
0,T e

+ (hT e)1/2
∥∥∥∥dgdt − 1

2µσ
d
ht
∥∥∥∥

0,Γe

)
‖EEE (ϕ)‖1,∆(T̃ e

aux).

Since the number of triangles in ∆(T̃ eaux), ∆(T ) and ∆(e) is bounded (due to shape-regularity of T ∗h ),
the proof ends by using the same arguments as in the proofs of the last two lemmas.

Finally, from the identity (2.76), estimates (2.86), (2.89), and (2.91), and the stability of the
Helmholtz decomposition (cf. (2.74)), we have

‖R‖[H0(div;Ω)]′ .

∑
T∈Th

2∑
i=0

Θ2
i,T

1/2

.

Combined with (2.69), this yields the reliability estimate (2.66), since he ≤ hT e for all e ∈ E∂h .
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2.5.2 Quasi-efficiency of the a posteriori error estimator

In order to prove the quasi-efficiency of our estimator Θ, in what follows we derive suitable upper
bounds for each term defining the local error indicator ΘT defined in (2.63). In particular, we briefly
discuss at the end of this section the situation of B (cf. (2.68)) involving the Dirichlet datum g and
the postprocessed velocity u?h.

We first notice that, using divσ = −f in Ω (see Lemma 2.1), there holds

‖f + divσh‖20,T = ‖div (σ − σh)‖20,T ≤ ‖σ − σh‖2div,T ∀T ∈ Th, (2.93)

and similarly,
‖f + divσh‖20,T̃ e

ext

≤ ‖σ − σh‖2div,T̃ e
ext

∀ e ∈ E∂h . (2.94)

On the other hand, we have the following result for the terms involving the curl operator and the
tangential jumps across the interior edges of Th.

Lemma 2.17. There hold

he

∥∥∥∥r 1
2µσ

d
ht

z∥∥∥∥2

0,e
. ‖σ − σh‖20,K(e) ∀ e ∈ E ih, (2.95)

and
h2
T

∥∥∥∥curl
{ 1

2µσ
d
h

}∥∥∥∥2

0,T
. ‖σ − σh‖20,T ∀T ∈ Th, (2.96)

where K(e) is given by (2.88).

Proof. It follows by using similar arguments as in the proofs of Lemmas 6.3 and 6.4 in [49] (see also
[17, Lemmas 4.3 and 4.4] or [78, Lemma 4.11]). We omit further details.

Next, we exploit the properties of the postprocessed velocity u?h (cf. (2.60)) and derive the local
efficiency of h−1

e |Ju?hK‖20,e for all e ∈ E ih. In doing so, we follow here the approach of [62, Section 3.2].
Denoting by PPP0

h the L2(Dh)-projection onto the piecewise constant functions on each edge, and then
adding and subtracting a convenient term, we easily get

h−1
e ‖Ju?hK‖20,e . h−1

e ‖(I −PPP0
h)(Ju?hK)‖20,e + h−1

e ‖PPP0
h(Ju?hK)‖20,e, (2.97)

where I denotes the identity operator. We will bound each term on the right-hand side of (2.97). The
first of them is provided next.

Lemma 2.18. For every edge e ∈ E ih, we have

h−1
e ‖(I −PPP0

h)Ju?hK
∥∥2

0,e .
∑

T∈K(e)
‖∇(u− u?h)‖20,T . (2.98)

Moreover, for each T ∈ Th, there holds∥∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥∥2

0,T
. ‖σ − σh‖20,T . (2.99)
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Proof. With minor modifications the result follows from the proofs of Lemmas 3.5 and 3.7 in [62].

The next result establishes an upper bound for the last term in (2.97). The proof is similar to the
proof of Lemma 3.4 in [62], where the equations of the proposed hybridized Raviart-Thomas method
and the posptocessed velocity are used to establish a relation between the residuals on elements and
edges. For the sake of completeness and since we are not using hybrid-based methods, we include a
detailed proof.

Lemma 2.19. For each e ∈ E ih, there holds

h−1/2
e

∥∥PPP0
h(Ju?hK)

∥∥
0,e .

∑
T∈K(e)

∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥
0,T
. (2.100)

Proof. From the Galerkin scheme (2.16) and the equations defining the postprocessed velocity u?h (cf.
(2.60)), it is easy to check that∑

e∈E∂
h

∫
e
g̃h ·

(
τ hne

)
=
∫
T∈Th

( 1
2µ

∫
T
σd
h : τ h +

∫
T

uh · div τ h
)

=
∑
T∈Th

(∫
T

( 1
2µσ

d
h −∇u?h

)
: τ h +

∫
∂T

u?h · (τ hn)
)

for all τ h in the space given by H0,h(Dh) with k = 0 (cf. Section 2.3.3). After some algebraic
manipulations, it yields∑

T∈Th

∫
T

( 1
2µσ

d
h −∇u?h

)
: τ h = −

∑
e∈Ei

h

∫
e
Ju?hK · (τ hne) +

∑
e∈E∂

h

∫
e

(g̃h − u?h) · (τ hne) . (2.101)

In particular, taking τ h such that, for a given edge e′ ∈ E ih and each T ∈ K(e′),∫
e
τ hnT = 0 ∀ e ∈ E(T ), e 6= e′,∫

e′
τ hnT =

∫
e′
PPP0
h(Ju?hK) for the edge e′,

and for all T ∈ Th \ K(e′), ∫
e
τ hnT = 0 ∀ e ∈ E(T ),

we have that τ h|T ≡ 0 for all T ∈ Th \ K(e′), and then (2.101) gives∑
T∈K(e′)

∫
T

( 1
2µσ

d
h −∇u?h

)
: τ h =

∫
e′
Ju?hK · PPP0

h(Ju?hK) =
∥∥PPP0

h(Ju?hK)
∥∥2

0,e′ .

Furthermore, applying the Cauchy–Schwarz inequality and observing that ‖τ h‖0,T . h
1/2
e′ ‖τ hne′‖0,e′

for all T ∈ K(e′) (see, e.g., [62, Lemma A.1]), we obtain

‖PPP0
h(Ju?hK)‖20,e′ ≤

∑
T∈K(e′)

h
1/2
e′

∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥
0,T
‖τ hne′‖0,e′

=
∑

T∈K(e′)
h

1/2
e′

∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥
0,T
‖PPP0

h

(
Ju?hK

)
‖0,e′ .

Clearly, this implies the claimed result.
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Consequently, gathering (2.98) and (2.100) into (2.97) and employing estimate (2.99), we conclude
that, for each edge e ∈ E ih,

h−1
e ‖Ju?hK‖20,e .

∑
T∈K(e)

‖σ − σh‖20,T . (2.102)

The following lemma deals with the corresponding upper bound for the estimator terms involving
only the two velocity approximations.

Lemma 2.20. For each T ∈ Th and h < 1, there holds

‖uh − u?h‖20,T . ‖σ − σh‖20,T + ‖u− uh‖20,T . (2.103)

Furthermore, for all e ∈ E∂h , we have

‖uh − u?h‖20,T̃ e
ext

. ‖σ − σh‖20,T e + ‖u− uh‖20,T e . (2.104)

Proof. Let wh := uh−u?h. Denoting by PPP0
T the L2(T )-projection onto P0(T ), we have PPP0

T (wh

∣∣
T

) = 0
for all T ∈ Th, since u?h solves (2.60). Applying now the approximation property (2.21) with k = 0
and l = 1, and using the fact that PPP0

T (wh

∣∣
T

) = PPP0
h(wh)

∣∣
T
, we obtain

‖wh‖0,T =
∥∥∥wh −PPP0

h(wh)
∥∥∥

0,T
≤ hT |wh|1,T .

Adding and subtracting (2µ)−1σd
h, applying the triangle inequality and assuming h < 1, it follows

that
‖wh‖20,T .

∥∥∥∥ 1
2µσ

d
h −∇u?h

∥∥∥∥2

0,T
+ h2

T

∥∥∥∥ 1
2µσ

d
h −∇uh

∥∥∥∥2

0,T
.

The first term on the right-hand side of the above inequality can be bounded using (2.99). Moreover,
following the proof of [48, Lemma 6.3] (see also [78, Lemma 4.13]), we find

h2
T

∥∥∥∥ 1
2µσ

d
h −∇uh

∥∥∥∥2

0,T
. ‖σ − σh‖20,T + ‖u− uh‖20,T ,

concluding (2.103).

On the other hand, using the equivalence of the norms ‖ · ‖0,T̃ e
ext

and ||| · |||0,e (cf. Lemma 1.6), and
the extrapolation constant (2.27), we obtain

‖wh‖0,T̃ e
ext

. (r̃e)1/2C̃eext‖wh‖0,T e ,

which, combined with the estimate (2.103), implies (2.104) thanks to Assumption (A1).

Therefore, the quasi-efficiency property of the estimator Θ is a consequence of the upper bounds
given by (2.93)-(2.96) and (2.102)-(2.104).

Having established (2.67), as already mentioned at the beginning of this section, the mayor issue is
the convergence rate of B given by (2.68). If g were piecewise polynomial on a polygonal boundary Γ,
it would be possible to apply the results given by Lemmas 4.14 and 4.15 in [78], which are based on
standard tools including the usual localization technique of bubble functions and inverse inequalities,
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to deduce that the convergence order of B is at least O(hk+1) owing to the approximation properties
of the postprocessed velocity u?h. Otherwise, assuming that g is sufficiently smooth, the previous
estimate is actually valid with possible further high order terms arising from Taylor approximations
of the data. The extension of this idea to curved domains is an ongoing work. However, our numerical
results below allow us to conjecture that B has the above mentioned optimal convergence property.

2.5.3 Extension of the estimator to more complicated geometries

When defining the computational boundary as in the previous section, it would be possible to have
ω := Ωc ∩ Dh 6= ∅. Indeed, this certainly happens if we consider nonconvex curved domains Ω, even
though some regions having boundaries that are not completely curved, as for instance the pacman-
shaped domain, could be the exception. Therefore, our intention here is to propose a way of extending
the previous analysis to that situation. For this, we assume that the solution (σ,u) of (2.6) can be
extended to ω, with σ ∈ H(div;ω ∪ Ω), but not necessarily satisfying

∫
ω∪Ω tr (σ) = 0.

Now, since σ solves (2.6), which ensures that
∫

Ω tr (σ) = 0, we can write

σ = σ0 −
1

2|Dh|

(∫
Dc

h

tr (σ)−
∫
ω

tr (σ)
)
I in Dh,

where σ0 ∈ H0(div; Dh). Similarly, the tensor σh could be defined as in (2.35), by replacing γh in
(2.37) by

γh := −
∫

Dc
h

tr
(

Eh(σ0,h)− 1
2|Ω|

(∫
Dc

h

tr (Eh(σ0,h))−
∫
ω

tr (Eh(σ0,h))
)
I
)
, (2.105)

from which we easily obtain that σh ∈ H0(div; Ω), provided σ0,h ∈ H0,h(Dh). As a consequence, the
a priori error bounds in Section 2.4 are still valid on the larger region ω ∪ Ω. Moreover, whenever
T e ∩ ω 6= ∅ we set T̃ eaux in Section 2.5.1 to T̃ eaux = T e. We then define the global a posteriori error
estimator Θ as in (2.62), except that now σh is computed in terms of (2.105).

2.5.4 Extension of the estimator to three dimensions

We start by introducing additional notation. Given a sufficiently smooth vector field v := (vi)1≤i≤3,
we set the differential operator

curl (v) := ∇× v =
(
∂v3
∂x2
− ∂v2
∂x3

,
∂v1
∂x3
− ∂v3
∂x1

,
∂v2
∂x1
− ∂v1
∂x2

)
.

Furthermore, we take a tetrahedralization Th of Dh and consider the same notation as in the introduc-
tion of Section 2.5, but now replacing the word “edge” by “face”. For any tensor τ := (τij)1≤i,j≤3, we
let curl (τ ) and τ ×n denote the tensors whose ith rows (i = 1, 2, 3) are given by curl (τi1, τi2, τi3) and
(τi1, τi2, τi3)×n, respectively. Given a face e ∈ Eh, v ∈ L2(Ω) and τ ∈ L2(Ω), such that v|T ∈ [C(T )]3

and τ |T ∈ [C(T )]3×3 on each T ∈ Th, we let JvK and Jτ × nK be the corresponding jumps across e,
that is, JvK := (v|T+) |e − (v|T−) |e and Jτ × nK := {(τ |T+) |e − (τ |T−) |e} × n, respectively, where T+

and T− are two elements of Th sharing a face e.
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Now, the estimator term KT reads

KT :=

 ∑
e∈E(T )∩E∂

h

hT e

∥∥∥∥(∇u− 1
2µσ

d
h

)
× n

∥∥∥∥2

0,Γe


1/2

,

whereas JT remains as in (2.64). We then set the global indicator as in the two-dimensional case, by
replacing Θ2

T by

Θ2
T := h2

T

∥∥∥∥curl
{ 1

2µσ
d
h

}∥∥∥∥2

0,T
+

∑
e∈E(T )∩Ei

h

(
he

∥∥∥∥
s

1
2µσ

d
h × n

{∥∥∥∥2

0,e
+ h−1

e ‖Ju?hK‖20,e

)

+
∥∥∥∥ 1

2µσ
d
h −∇u?h

∥∥∥∥2

0,T
+ ‖f + divσh‖20,T +

∑
e∈E(T )∩E∂

h

‖f + divσh‖20, T̃ e
ext

+ ‖uh − u?h‖20,T +
∑

e∈E(T )∩E∂
h

‖uh − u?h‖20,T̃ e
ext

+ J2
T + K2

T .

Let us briefly comment on the extension of Theorem 2.11 to three dimensions. First, notice that
surface interpolation techniques allow to construct Dh satisfying d(Γ,Γh) . h2. Then the three-
dimensional analogues of Assumptions (A1)-(A2) and (B1)-(B2) of Sections 2.3.4 and 2.5.1, re-
spectively, make sense for h small enough. In this case, all the results for the reliability estimate
of Section 2.5.1 can be obtained, as in the two-dimensional case, from standard integration by parts
formulae, the global inf-sup condition (2.7), local approximation properties of Clément and Raviart–
Thomas interpolation operators, provided H0(div ; Ω) admits a stable Helmholtz decomposition. The
latter is known to hold for arbitrary polyhedral regions and C1,1 domains; see [74] for further discus-
sion. On the other hand, the quasi-efficiency estimate in three dimensions proceeds along the same
lines as in Section 2.5.2.

2.6 Numerical results

We now present a series of numerical examples in two dimensions devised to illustrate the good
performance of our discrete scheme (2.16), to validate the reliability and quasi-efficiency of the a
posteriori error estimator Θ defined in (2.62), and to show the behavior of the associated adaptive
algorithm. Our implementation is based on a MATLAB code along with the direct linear solver
UMFPACK [64]. All our examples were carried out using the finite element spaces H0,h(Dh) and
Qh(Dh) of Section 2.3.3 with k = 0, . . . , 3. In turn, the condition

∫
Dh

tr (τ h) = 0 for τ h ∈ H0,h(Dh)
was imposed as usual, that is, via a real Lagrange multiplier.

We emphasize that the error estimates presented in this work are independent of the construction
of basis functions. For the numerical simulations, we consider hierarchical basis for the local Raviart–
Thomas space of order k, as presented in [24], and the Dubiner basis (see, e.g., [66]) for the local
polynomial space of degree less or equal to k.

In what follows, we denote by N the total number of elements defining the mesh Th associated to
the computational domain Dh. Denoting by uh the solution of the problem (2.11), and by σh, ph and
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u?h the postprocessed solutions given by (2.35), (2.36) and (2.60), respectively, the individual errors
are defined as

e(u) := ‖u− uh‖0,Ω, e?(u) := ‖u− u?h‖0,Ω,

e(p) := ‖p− ph‖0,Ω, and e(σ) :=
(
‖σ − σh‖2div,Dh

+ ‖σ − σh‖2div,T̃h

)1/2
,

where the approximations in Dc
h are those specified in Section 2.4.2. According to Theorem 2.11, the

global error is computed as
e(σ,u) :=

(
e(u)2 + e(σ)2

)1/2
,

whereas the quality of the a posteriori error estimator Θ is measured by using the effectivity index
eff(Θ) := Θ/e(σ,u). In order to explore the convergence properties of B defined in (2.68), we also
introduce the estimator terms

J :=

∑
T∈Th

J2
T

1/2

and K :=

∑
T∈Th

K2
T

1/2

,

where JT and KT are given by (2.64) and (2.65), respectively. In addition, suppose that e and e′ are any
of the above quantities for two consecutive meshes with N and N ′ number of elements, respectively.
Then, by using the fact that h ' N−1/2, we consider the experimental rate of convergence given by

rate := −2[log(e/e′)/ log(N/N ′)].

The examples to be considered in this section are summarized in Table 2.1. For the examples that
include adaptivity, we use the following algorithm:

1. Start with a coarse mesh Th of Dh.

2. Solve the discrete problem (2.16) on the current mesh Th.

3. Compute ΘT for each T ∈ Th.

4. Check the stopping criterion and decide whether to finish or go to next step.

5. Use red-green-blue procedure to refine each T ′ ∈ Th satisfying:

ΘT ′ ≥ 0.5 max{ΘT : T ∈ Th}.

6. Project every new vertex x of Γh onto the closest point x̃ of Γ by using the transferring paths.

7. Define the resulting mesh as the current mesh Th, and go to step 2.

While Steps 1-5 are applied to refine polygonal meshes (see, e.g., [139]), the 6th step is added to improve
the approximation of the curved boundary (see, e.g., [137]) and also to expect the Assumption (A2)
of Section 2.3.4 to hold. In fact, without including the 6th step, the region Dc

h remains unchanged
when updating Th.

Example 1. This test is aimed at evaluating the performance of the method when the computational
boundary is as far from Γ as the theory allows. To that end, we consider the kidney-shaped domain
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Example d(Γ,Γh) Exact solution Ω Ωc ∩Dh Adaptivity
1 O(h) smooth nonconvex ∅ no
2 O(h2) smooth convex ∅ no
3 O(h2) smooth convex ∅ yes
4 O(h2) with a singularity nonconvex ∅ yes
5 O(h2) with a singularity nonconvex ∅ yes
6∗ O(h2) smooth nonconvex 6= ∅ yes

Table 2.1: ∗It is carried out with the help of the considerations made in Section 2.5.3. (table produced
by the author)

Ω whose boundary satisfies
(
2
[
(x1 + 0.5)2 + x2

2
]
− x1 − 0.5

)2 − [(x1 + 0.5)2 + x2
2
]

+ 0.1 = 0. In turn,
we take the viscosity µ = 1, and f and g such that the solution of problem (2.5) is given by u :=
(u1, u2)T , where u1(x1, x2) := −2x2 sin(x1) and u2(x1, x2) :=

(
x2

1 + x2
2
)

cos(x1) + 2x1 sin(x1), and
p(x1, x2) := sin

(
x2

1 + x2
2
)
− p0(x1, x2), where p0 ∈ R is chosen such that p ∈ L2

0(Ω). In practice, p0
is computed numerically employing a extremely fine polygonal mesh approximating Ω. The precise
construction of Dh is given next. Following [59, Section 2.1] or Section 1.2.1, we consider a uniform
Cartesian background grid Bh of a square domain B such that Ω ⊂ B, and then set Dh as the union of
all elements that are inside Ω; see an example in the left panel of Figure 2.3. Here, the index h > 0,
refers to the meshsize of Bh. By construction, the distance d(Γh,Γ) is only of order h, which increases
the complexity for the implementation of the transferring paths. However, as we have already seen in
Section 2.3.2, this task is reduced to find those paths associated to the vertices p1 and p2 of every edge
e ∈ E∂h . To that end, we use the algorithm proposed in [59, Section 2.4.1] that uniquely determines a
point p̃i (i = 1, 2) in Γ as the closest point to pi such that C (pi) does not intersect any other path
and does not intersect the interior of the domain Dh; computed paths are shown in the right panel of
Figure 2.3.

In Table 2.2 we present the convergence history obtained for this example under a sequence of
uniform triangulations of the background mesh detailed before. We observe there that the convergence
rate predicted by Theorem 2.10, namely O(hk+1), is attained by e(u), e(σ) and e(p). In addition, the
error e?(u) is clearly converging like O(hk+2), that is, it is superconvergent, which corresponds to the
theoretical error bound (2.61) with l = m = k + 1. On the other hand, the approximate pseudostress
component σ11,h obtained with N = 654 and k = 2 is depicted in Figure 2.4. The good accuracy of
the approximation suggests that Assumption (A2) (cf. Section 2.5) holds true, event though it is not
entirely verifiable because some of the quantities involved cannot be calculable explicitly.

Example 2. Next, the accuracy of the proposed scheme (2.16) is tested under a sequence of quasi-
uniform triangulations satisfying the hypotheses in Section 2.5. The main goal is to asses the properties
of the posteriori error estimator Θ (cf. (2.62)) via the effectivity index eff(Θ). We choose Ω as a disc
centered at the origin with radius 2, the viscosity µ = 1 and the smooth solution to the problem (2.5)
given by u := (u1, u2)T , where u1(x1, x2) := π cos(πx2) sin(πx1) and u2(x1, x2) := π cos(πx1) sin(πx2),
and p(x1, x2) := x2 exp(x1)− p0(x1, x2), with p0 satisfying the same as that required by the previous
example, in terms of which we define the corresponding source term f and the Dirichlet data g. Let us
now specify the domain Dh. Given h > 0, let Γh be the computational boundary constructed through
a piecewise linear interpolation of Γ, such that the length of each segment is of order h. We define
Dh as the region enclosed by Γh and then set Th as a quasi-uniform triangulation of Dh with meshsize
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Figure 2.3: Left: the domain Ω defined in Example 1, its boundary Γ (solid line), the first back-
ground mesh Bh under consideration, and corresponding computational domain Dh. Right: computed
transferring paths (dotted lines) associated to the vertices of the computational boundary; they were
obtained by using the algorithm introduced in [59, Section 2.4.1]. (figure produced by the author)

k N h d.o.f e(u) rate e?(u) rate e(σ) rate e(p) rate

0

28 0.263 159 3.98e− 02 – 2.02e− 02 – 8.40e− 01 – 3.09e− 01 –
146 0.131 769 2.50e− 02 0.56 3.87e− 03 2.00 3.81e− 01 0.96 1.21e− 01 1.14
654 0.066 3355 1.39e− 02 0.78 8.99e− 04 1.95 1.76e− 01 1.03 5.16e− 02 1.14
3068 0.031 15497 6.90e− 03 0.90 2.88e− 04 1.47 7.57e− 02 1.10 2.02e− 02 1.21
12579 0.016 63205 3.52e− 03 0.96 7.66e− 05 1.88 3.63e− 02 1.04 9.28e− 03 1.10
50877 0.008 255007 1.78e− 03 0.98 1.90e− 05 1.99 1.77e− 02 1.03 4.51e− 03 1.03

1

28 0.263 485 5.23e− 03 – 2.06e− 03 – 2.08e− 01 – 1.09e− 01 –
146 0.131 2413 1.42e− 03 1.58 1.80e− 04 2.95 2.64e− 02 2.50 7.78e− 03 3.20
654 0.066 10633 3.70e− 04 1.79 4.22e− 05 1.94 7.05e− 03 1.76 2.88e− 03 1.33
3068 0.031 49401 9.54e− 05 1.75 2.52e− 06 3.65 1.20e− 03 2.29 4.18e− 04 2.50
12579 0.016 201883 2.40e− 05 1.95 2.65e− 07 3.19 2.58e− 04 2.18 7.49e− 05 2.44
50877 0.008 815275 6.04e− 06 1.98 2.57e− 08 3.34 5.35e− 05 2.25 1.21e− 05 2.61

2

28 0.263 979 3.15e− 04 – 3.09e− 04 – 2.13e− 02 – 1.41e− 02 –
146 0.131 4933 1.48e− 05 3.70 1.29e− 05 3.85 1.41e− 03 3.29 8.30e− 04 3.43
654 0.066 21835 6.52e− 06 1.10 6.03e− 06 1.02 1.03e− 03 0.42 6.89e− 04 0.25
3068 0.031 101713 1.40e− 07 4.97 6.56e− 08 5.85 1.40e− 05 5.56 8.44e− 06 5.70
12579 0.016 416035 1.62e− 08 3.06 3.48e− 09 4.16 1.35e− 06 3.31 7.88e− 07 3.36
50877 0.008 1680805 2.02e− 09 2.98 2.04e− 10 4.06 1.03e− 07 3.69 5.63e− 08 3.78

3

28 0.263 1641 6.78e− 05 – 6.74e− 05 – 5.78e− 03 – 3.88e− 03 –
146 0.131 8329 1.68e− 06 4.48 1.66e− 06 4.49 1.73e− 04 4.25 1.11e− 04 4.31
654 0.066 36961 1.35e− 07 3.36 1.35e− 07 3.35 2.58e− 05 2.54 1.67e− 05 2.52
3068 0.031 172433 1.27e− 09 6.04 3.97e− 10 7.54 1.77e− 07 6.45 1.06e− 07 6.55
12579 0.016 705661 7.68e− 11 3.97 1.18e− 11 4.99 8.33e− 09 4.33 4.69e− 09 4.42
50877 0.008 2851597 4.77e− 12 3.98 2.86e− 13 5.32 3.46e− 10 4.55 2.01e− 10 4.51

Table 2.2: Example 1: History of convergence of the individual errors under a uniform refinement.
(table produced by the author)
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Figure 2.4: Example 1: Approximate pseudostress component σ11,h obtained with N = 654 and k = 2.
(figure produced by the author)

h. The transferring paths associated to the interior points of a boundary edge e can be chosen so
that they are perpendicular to e, we have d(Γ,Γh) = O(h2) and actually the assumptions of Section
2.3.4 hold for h small enough. Also, all the geometrical hypotheses required by the a posteriori error
analysis (cf. Section 2.5) are satisfied.

The results reported in Table 2.3 are in accordance with the theoretical bounds established in
(2.61) and Theorem 2.10. In addition, from Table 2.4, we can conclude that both estimator terms
J and K yield a convergence O(hk+3/2), which, together with the fact that, for each k ∈ {0, 1, 2, 3},
the effectivity index eff(Θ) remains bounded, verifies not only the reliability of the a posteriori error
estimator Θ, but also suggests its efficiency. In turn, the effectivity index increases as k does, which
is not surprising since, according to Theorem 2.11, the reliability constant depends on the polynomial
degree, and more specifically on the extrapolation constant defined in (2.27).

Example 3. We set the fluid domain Ω, the computational domain Dh, the transferring paths and
the viscosity as in the previous example. However, this time, the manufactured exact solution adopts
the form

u(x1, x2) :=
(
x1 sin(x2)− sin(x1)
cos(x2) + x2 cos(x1)

)
and p(x, y) := 1

[x2
1 + x2

2 − 2.052]
− p0(x1, x2),

with p0 ∈ R being chosen as before. Notice that p has high gradients near the boundary Γ and thus,
in addition to the accuracy of the method, we now asses the performance of the a posteriori error
estimator Θ by using both quasi-uniform and adaptive refinement strategies. In Figure 2.5, we display
the total error decay with respect to the total number of elements using both refinement strategies
and different polynomial degrees. In all cases, the errors of the adaptive refinement are considerably
smaller than the quasi-uniform ones considering the same number of elements N > 500, and it is
also able to achieve the optimal convergence order for the total error e(σ,u), namely O(hk+1). Some
snapshots of the adapted meshes obtained with k = 0 and k = 2 are depicted in Figure 2.6, and
it is concluded from there that the adaptive procedure is marking where is needed. Moreover, it is
clear that the case k = 2 produces a very accurate approximate pseudostress component σ22,h with a
considerable less number of triangles than its counterpart of lowest order.

Example 4. The next example is on the pacman-shaped domain

Ω :=
{

(x1, x2) ∈ R2 : x2
1 + x2

2 < 1
}
\ ]0, 1[×]− 1, 0[,
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k N d.o.f e(u) rate e?(u) rate e(σ) rate e(p) rate

0

36 191 5.82e+ 00 – 4.89e+ 00 – 2.31e+ 02 – 2.15e+ 01 –
138 721 3.51e+ 00 0.75 1.55e+ 00 1.72 1.40e+ 02 0.75 1.23e+ 01 0.83
528 2721 1.78e+ 00 1.01 4.31e− 01 1.90 7.20e+ 01 0.99 6.15e+ 00 1.03
2120 10713 8.86e− 01 1.01 1.01e− 01 2.09 3.59e+ 01 1.00 3.03e+ 00 1.02
8696 43737 4.43e− 01 0.98 2.49e− 02 1.99 1.79e+ 01 0.98 1.53e+ 00 0.97
34612 173573 2.21e− 01 1.00 6.30e− 03 1.99 8.98e+ 00 1.00 7.63e− 01 1.01

1

36 597 3.30e+ 00 – 1.69e+ 00 – 1.27e+ 02 – 1.19e+ 01 –
138 2269 8.85e− 01 1.96 2.12e− 01 3.09 3.40e+ 01 1.96 4.41e+ 00 1.48
528 8609 2.46e− 01 1.91 2.88e− 02 2.98 9.98e+ 00 1.83 1.16e+ 00 1.99
2120 34145 5.86e− 02 2.06 3.34e− 03 3.10 2.41e+ 00 2.04 2.75e− 01 2.07
8696 139649 1.44e− 02 1.99 4.12e− 04 2.97 5.95e− 01 1.98 6.85e− 02 1.97
34612 554817 3.60e− 03 2.00 5.12e− 05 3.02 1.49e− 01 2.00 1.71e− 02 2.01

2

36 1219 1.08e+ 00 – 4.44e− 01 – 4.51e+ 01 – 5.66e+ 00 –
138 4645 1.67e− 01 2.78 2.10e− 02 4.54 6.73e+ 00 2.83 7.78e− 01 2.95
528 17665 2.17e− 02 3.04 1.66e− 03 3.78 8.96e− 01 3.01 1.15e− 01 2.85
2120 70297 2.61e− 03 3.05 8.91e− 05 4.21 1.08e− 01 3.04 1.36e− 02 3.07
8696 287737 3.29e− 04 2.93 5.46e− 06 3.96 1.36e− 02 2.94 1.65e− 03 2.99
34612 1143733 4.10e− 05 3.02 3.39e− 07 4.02 1.70e− 03 3.02 2.07e− 04 3.00

3

36 2057 3.08e− 01 – 1.43e− 01 – 1.41e+ 01 – 1.98e+ 00 –
138 7849 2.09e− 02 4.01 3.43e− 03 5.56 8.69e− 01 4.15 1.26e− 01 4.10
528 29889 1.89e− 03 3.58 1.24e− 04 4.94 7.68e− 02 3.62 8.06e− 03 4.10
2120 119169 1.01e− 04 4.22 3.64e− 06 5.08 4.13e− 03 4.21 4.57e− 04 4.13
8696 488001 6.34e− 06 3.92 1.19e− 07 4.85 2.61e− 04 3.91 2.95e− 05 3.88
34612 1940321 3.93e− 07 4.03 3.66e− 09 5.04 1.61e− 05 4.03 1.80e− 06 4.05

Table 2.3: Example 2: History of convergence of the individual errors with under a quasi-uniform
refinement. (table produced by the author)

Figure 2.5: Example 3: Log-log plot of e(σ,u) vs N for both refinement strategies and k = 0, . . . , 3.
(figure produced by the author)
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k N d.o.f J rate K rate e(σ,u) rate Θ rate eff(Θ)

0

36 191 6.23e+ 00 – 2.51e+ 01 – 2.31e+ 02 – 2.26e+ 02 – 0.981
138 721 2.20e+ 00 1.55 1.02e+ 01 1.34 1.40e+ 02 0.75 1.43e+ 02 0.69 1.021
528 2721 7.30e− 01 1.65 4.76e+ 00 1.14 7.20e+ 01 0.99 7.42e+ 01 0.97 1.031
2120 10713 4.00e− 01 0.87 1.90e+ 00 1.32 3.59e+ 01 1.00 3.70e+ 01 1.00 1.032
8696 43737 1.23e− 01 1.67 6.63e− 01 1.49 1.80e+ 01 0.98 1.85e+ 01 0.98 1.031
34612 173573 4.38e− 02 1.50 2.36e− 01 1.50 8.98e+ 00 1.00 9.26e+ 00 1.00 1.031

1

36 597 2.13e+ 00 – 4.89e+ 01 – 1.27e+ 02 – 1.86e+ 02 – 1.468
138 2269 4.45e− 01 2.33 5.66e+ 00 3.21 3.40e+ 01 1.96 5.73e+ 01 1.75 1.687
528 8609 6.60e− 02 2.84 8.89e− 01 2.76 9.98e+ 00 1.83 1.60e+ 01 1.91 1.599
2120 34145 1.51e− 02 2.12 1.81e− 01 2.29 2.41e+ 00 2.04 3.88e+ 00 2.04 1.607
8696 139649 2.20e− 03 2.73 2.79e− 02 2.65 5.95e− 01 1.98 9.96e− 01 1.93 1.673
34612 554817 4.08e− 04 2.44 5.26e− 03 2.42 1.49e− 01 2.00 2.47e− 01 2.02 1.657

2

36 1219 7.90e− 01 – 2.83e+ 01 – 4.51e+ 01 – 9.32e+ 01 – 2.067
138 4645 4.44e− 02 4.28 1.01e+ 00 4.95 6.73e+ 00 2.83 1.29e+ 01 2.95 1.911
528 17665 2.94e− 03 4.05 9.89e− 02 3.47 8.96e− 01 3.01 2.17e+ 00 2.65 2.418
2120 70297 3.98e− 04 2.88 1.19e− 02 3.05 1.08e− 01 3.04 2.47e− 01 3.12 2.287
8696 287737 2.75e− 05 3.79 8.85e− 04 3.68 1.36e− 02 2.94 3.11e− 02 2.94 2.279
34612 1143733 2.48e− 06 3.48 7.87e− 05 3.50 1.70e− 03 3.02 3.88e− 03 3.01 2.285

3

36 2057 1.98e− 01 – 9.05e+ 00 – 1.41e+ 01 – 3.08e+ 01 – 2.175
138 7849 5.06e− 03 5.46 1.93e− 01 5.73 8.70e− 01 4.15 2.76e+ 00 3.59 3.176
528 29889 1.56e− 04 5.18 6.55e− 03 5.05 7.68e− 02 3.62 1.99e− 01 3.92 2.594
2120 119169 1.05e− 05 3.88 4.38e− 04 3.89 4.13e− 03 4.21 1.13e− 02 4.13 2.729
8696 488001 2.83e− 07 5.12 1.46e− 05 4.82 2.61e− 04 3.91 7.61e− 04 3.82 2.920
34612 1940321 1.30e− 08 4.46 7.46e− 07 4.31 1.61e− 05 4.03 4.61e− 05 4.06 2.855

Table 2.4: Example 2: History of convergence of some estimator terms and the total error under a
quasi-uniform refinement. (table produced by the author)

Figure 2.6: Example 3: Initial mesh and two adapted meshes according to the residual-based a
posteriori error estimator Θ with k = 0 (first row) and k = 2 (second row), and comparative view of
the approximate pseudostress component σ22,h obtained at the 9th iteration. (figure produced by the
author)
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with µ = 1/2 and the manufactured exact solution given, in polar coordinates, by p(r, λ) := 0 and
u := (u1, u2)t, where u1(r, λ) := r2/3 sin (2λ/3) and u2(r, λ) := r2/3 cos (2λ/3), satisfying f = 0. We
notice that the partial derivatives of u1 and u2 have a singularity at the origin, and then a convergence
of O(h2/3−δ) (δ > 0) should be expected from Theorem 2.10. The construction of the domain Dh and
transferring paths are the same as that indicated in the last two examples. We point out that, since
the nonconvex part of Ω is only including the straight segments {0}×] − 1, 0[ and ]0, 1[×{0}, on
which the boundaries Γh and Γ coincide, the requirement Dh ⊂ Ω holds true. Furthermore, note that
the singularity at the origin is not a concern in our numerical implementation, because the partial
derivatives of u1 and u2 are only used to compute the error e(σ) and none of the quadrature points
falls on the computational boundary.

In Table 2.5 we report the convergence history of the total error for k = 0 using a quasi-uniform
refinement strategy, where the total error is converging like O(h2/3), as expected. In turn, it can be
observed from Figure 2.7 that in all cases the adaptive algorithm reduces significantly the magnitude of
the total error and also restores the optimal convergence order. Again, very accurate approximations
are obtained with a few elements when the polynomial degree is increased as Figure 2.8 shows.

k N d.o.f e(σ,u) r

0

65 349 2.62e-01 –
257 1331 1.58e-01 0.73
1037 5273 1.01e-01 0.65
4143 20873 6.32e-02 0.67
16583 83333 4.08e-02 0.63

Table 2.5: Example 4: History of convergence of the total error under a quasi-uniform refinement
strategy. (table produced by the author)

Figure 2.7: Example 4: Log-log plot of e(σ,u) vs N for both refinement strategies and k = 0, . . . , 3.
(figure produced by the author)
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Figure 2.8: Example 4: Initial mesh and three adapted meshes according to residual-based a posteriori
error estimator Θ with k = 0 (first row) and k = 1 (second row), approximate velocity component
u1,h and approximate pseudostress component σ21,h obtained at the 15th iteration with k = 1 and
N = 2055 (third row). (figure produced by the author)
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Example 5. We are now interested in evaluating the capability of the a posteriori error estimator of
detecting a singularity on a fully curved domain. We consider exactly the same manufactured solution
and model parameters of Example 4 in order to enforce a singularity of the partial derivatives of u1 and
u2 when Ω is chosen as the circle of center (−0.5, 0) and radius 0.5. Figure 2.9 shows the initial coarse
mesh we used in the adaptive algorithm. Notice that the singularity at the origin is not intersecting
the initial Γh, as it did in the previous example.

Two snapshots of adapted meshes obtained with k = 1 are shown in Figure 2.10, where it is clear
that the adaptive algorithm is marking near the singularity on Γ. Moreover, in Figure 2.10 we report
the convergence history of the total error in the case k = 1, showing that the adaptive procedure
reduces the magnitude of e(σ,u) with the expected optimal convergence of O(h2).

Figure 2.9: Example 5: Left, initial mesh and right, part of this mesh near the blue point at the origin.
(figure produced by the author)

Figure 2.10: Example 5: Two adapted meshes according to the residual-based a posteriori error
estimator Θ with k = 1, and log-log plot of e(σ,u) vs N for both refinement strategies and k = 1.
(figure produced by the author)

Example 6. To conclude, we choose Ω to be the annular domain consisting in two concentric circles
of radius 0.5 and 2, respectively. Here the computational boundary is also constructed through a
piecewise linear interpolation of Γ, implying ω := Ωc ∩ Dh 6= ∅. In order to asses the accuracy
of the Galerkin scheme (2.16) we use both quasi-uniform and adaptive refinement strategies and
adopt the considerations made in Section 2.5.3. To that end, we take µ = 1 and the manufactured
exact solution as follows: u := (u1, u2)T , where u1(x1, x2) := x2

[x2
1+x2

2−2.22] − π cos(πx2) sin(πx1) and
u2(x1, x2) := − x1

[x2
1+x2

2−2.22] +π cos(πx1) sin(πx2), and p(x1, x2) = 1
[exp(x2

1+x2
2−0.452)−1] −p0(x1, x2), with

p0 ∈ R being chosen so that p ∈ L2
0(Ω). As a result, the fluid pressure has high gradients near the

boundary of the circle of radius 0.5, whereas the components of the fluid velocity have high gradients
near the circle of radius 2.
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The decay of the total error with respect to the total number of elements using both refinement
strategies is depicted in Figure 2.11. In all cases, although the adaptive procedure is able to recognize
the regions where there exist high gradients of the solution, the error convergence is oscillatory for
small values of N , which could be explained by the fact that the region ω is too big when starting
the mesh refinement process as shown in Figure 2.12. After that, the adaptive refinement strategy is
much superior that the quasi-uniform one because it reduces the magnitude of the total error with
optimal convergence of O(hk+1). We also present in Figure 2.12 the approximate velocity component
u1,h and the approximate pressure ph obtained with the adaptive procedure and k = 2.

Figure 2.11: Example 6: Log-log plot of e(σ,u) vs N for both refinement strategies and k = 0, . . . , 3.
(figure produced by the author)
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Figure 2.12: Example 6: Initial mesh and three adapted meshes according to the residual-based
a posteriori error estimator Θ with k = 2 (first row), approximate velocity component u1,h and
approximate pressure ph obtained at the 12th iteration with k = 2 and N = 11571 (second row).
(figure produced by the author)



CHAPTER 3

Error analysis of a conforming and locking-free four-field
formulation for the stationary Biot’s model

In this chapter we present an a priori and a posteriori error analysis of a conforming finite element
method for a four-field formulation of the steady-state Biot’s consolidation model. For the a
priori error analysis we provide suitable hypotheses on the corresponding finite dimensional
subspaces ensuring that the associated Galerkin scheme is well-posed. Next, we develop a
reliable and efficient residual-based a posteriori error estimator. Both the reliability and efficiency
estimates are shown to be independent of the modulus of dilatation. Numerical examples in
2D and 3D verify our analysis and illustrate the performance of the proposed a posteriori error
indicator.

3.1 Introduction

Linear poroelasticity refers to fluid-structure interaction of an elastic solid infiltrated by an intercon-
nected network of fluid-saturated pores. The modeling equations can be traced back to the pioneering
theory of soil consolidation by Terzaghi [133] and Biot [25, 26], in which Darcy’s law for the motion
of a fluid is coupled to Hooke’s theory of linear elasticity for the solid deformation. Advances in the
understanding of the mechanical and physical aspects of Biot’s consolidation model are of key impor-
tance in many applications. For instance, it has been used to predict the mechanics of groundwater
withdrawals [91], earthquake fault zones [144], CO2 sequestration [142] and biological systems (brain
[19, 98], bones [71], arteries [89], intestines [148], etc.).

There is an extensive literature on theoretical results for this problem. A well-accepted mathe-
matical analysis of existence, uniqueness, and regularity of the solution for the displacement-pressure
formulation of Biot’s model was carried out by Showalter [123, 124]. Moreover, many different nu-
merical schemes have been proposed for this formulation with varying success, e.g., [21, 51, 72, 104,
113, 120, 143, 144, 145, 146, 147] and references therein. The main difficulties encountered when de-
veloping numerical methods for this model are volumetric locking and spurious, nonphysical pressure
oscillations. While volumetric locking is similar to the locking phenomenon in linear elasticity (see,
e.g., [16]), spurious pressure oscillations occur when the displacement of the porous skeleton is driven
to a divergence-free state, the permeability of the porous solid is low and the so-called “constrained

78
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specific storage constant” is close to zero (see, e.g., [114]).

Recently, Oyarzúa et al. [107] (see also [93]) proposed and analyzed a three-field formulation for
the stationary Biot’s model using classical finite element methods that are locking-free and free of
spurious pressure oscillations. More precisely, in addition to the displacement and the pore pressure
of the fluid, they introduced a “total pressure”, showing existence, uniqueness, and stability of the
discrete solution with constants independent of the modulus of dilatation, even in the incompressible
limit. To achieve a numerical scheme that is also mass conserving, they later extended this formulation
to a four-field formulation by introducing also the “fluid flux” as an unknown [92]. They propose to
approximate the solid displacement in this model by a finite volume method (FVM) while remaining
unknowns are approximated by a mixed finite element method (MFE).

In this chapter, we consider a conforming finite element discretization of the four-field formulation
of the stationary Biot’s consolidation model [92]. Assuming standard hypotheses on the discrete
spaces, we first show well-posedness and optimal a priori error estimates of the Galerkin scheme. In
particular, we show that any pair of stable Stokes element, such as the Hood–Taylor elements, for solid
displacements and total pressure, combined with Raviart–Thomas elements of degree k ≥ 0 for the
fluid flux, and discontinuous polynomials of degree k for the pore pressure, are suitable finite element
subspaces for this problem. We furthermore show that the scheme is locking-free.

The main contribution of this chapter, however, is a reliable and efficient residual-based a posteriori
error estimator for the four-field formulation of Biot’s consolidation model. In this direction, an a
posteriori error analysis for a conforming finite element method (with Backward Euler time stepping)
of the displacement-pressure formulation for poroelasticity was presented by Ern and Meunier [69].
They proved reliability and efficiency estimates related to energy norms through direct arguments (dual
problems, local properties of Clément-type interpolation operators, and localization techniques), and
showed an overall convergence of O(h). To show higher order accuracy, an elliptic reconstruction
approach was applied but without efficiency of the estimator. Later, a reliable a posteriori error
estimator based on stress and flux reconstructions was proposed by Riedlbeck et al. [119], while a
reliable space-time a posteriori error estimator for a four-field system, in terms of the total stress tensor,
displacement, fluid flux, and pressure, was derived in [1]. To the best of our knowledge, however, no
efficiency estimates for poroelasticity have been proven for higher order accurate approximations.

In this chapter, we will prove efficiency estimates for higher order accurate approximations of the
four-field formulation of Biot’s consolidation model by using a localization technique by bubble func-
tions and inverse inequalities. Such an approach was previously used, for example, in the a posteriori
analysis of the Stokes-Darcy problem in [80], and of the elasticity problem in [49] and [140]. By inf-
sup conditions on the involved finite element spaces, Helmholtz decompositions, and standard local
approximation properties of Clément and Raviart–Thomas interpolation operators, we furthermore
prove a reliability estimate and propose an adaptive algorithm for our problem.

This chapter is organized as follows. The governing equations, corresponding weak formulation and
well-posedness of the problem are discussed in Section 3.2. In Section 3.3 we introduce the Galerkin
scheme and derive the stability result and corresponding Céa’s estimate. We derive a reliable and
efficient residual-based a posteriori error estimator in Section 3.4 and present numerical results in
Section 3.5.
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3.2 A four-field formulation of Biot’s equations

3.2.1 Notation

Let Ω ⊆ Rd, d ∈ {2, 3}, denote a bounded and simply connected domain with Lipschitz boundary
Γ = Γu∪Γp such that |Γu| > 0 and Γu∩Γp 6= ∅. In what follows we use standard notation for Sobolev
spaces and norms, and denote spaces of vector-valued functions in boldface. For example, if r ∈ R,
we denote Hr(Ω) := [Hr(Ω)]d and Hr(Γ) := [Hr(Γ)]d, with the convention that H0(Ω) = L2(Ω) and
H0(Γ) = L2(Γ). For vector-valued functions we also require the Hilbert space

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the norm
‖ · ‖div,Ω :=

(
‖ · ‖20,Ω + ‖div (·)‖20,Ω

)1/2
.

Furthermore, we denote by H−1/2
00 (Γp) the dual space of H1/2

00 (Γp) :=
{
q
∣∣
Γp

: q ∈ H1
Γu

(Ω)
}
, with

H1
Γu

(Ω) :=
{
v ∈ H1(Ω) : v

∣∣
Γu

= 0
}
. (3.1)

The space H1/2
00 (Γp) is endowed with the norm

‖q‖1/2,00,Γp
:= inf

{
‖v‖1,Ω : q ∈ H1

Γu
(Ω) and v

∣∣
Γp

= q
}
.

Finally, by 0 we will refer to the generic null vector (including the null functional and operator), and
we will denote by C, with or without subscripts, bar, tildes, or hats, generic constants independent of
the discretization parameters.

3.2.2 Governing equations

For all t > 0, given a body force f(t) : Ω→ Rd and a volumetric fluid source `(t) : Ω→ R, the classical
Biot’s consolidation problem, describing the interaction between fluid motion and linear mechanical
response of a porous medium occupying Ω, consists in finding the displacement of the porous skeleton
u(t) : Ω→ Rd, and the total pore pressure of the fluid p(t) : Ω→ R, satisfying

∂t
(
c0p+ α(divu))− 1

η
div [κ(∇p− ρg)] = ` in Ω, (3.2)

σ = λ(divu)I + 2µε(u)− pI in Ω, (3.3)
−divσ = f in Ω, (3.4)

and suitable boundary and initial conditions. Above σ is the total Cauchy solid stress, ε(u) :=
1
2

(
∇u+ (∇u)T

)
is the total strain rate tensor, I is the identity tensor in Rd×d, and div stands for

the divergence operator div acting along the rows of a given tensor. Furthermore, g is the gravity
acceleration (constant and aligned with the vertical direction), α > 0 is the so-called Biot–Willis
parameter (which is close to 1), c0 > 0 is the constrained specific storage coefficient, η, ρ > 0 are
the viscosity and density of the pore fluid, λ, µ are the Lamé parameters of the solid (dilation and
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shear moduli of the solid), and κ is the permeability of the porous solid, here assumed to be uniformly
bounded: 0 < κ1 ≤ κ(x) ≤ κ2 for all x ∈ Ω.

Using Backward Euler time stepping to discretize (3.2)–(3.4) in time, we obtain

(
c0p

n+1 + α(divun+1))− 1
η

div [κ(∇pn+1 − ρg)] = `n+1 +
(
c0p

n + α(divun)) in Ω, (3.5)

σn+1 = λ(divun+1)I + 2µε(un+1)− pn+1I in Ω, (3.6)
−divσn+1 = fn+1 in Ω, (3.7)

where we absorbed the discrete time step into the constants c0 and α. Re-defining `n+1 ← `n+1 +(
c0p

n + α(divun)) and dropping the superscript, we obtain the system of equations that needs to be
solved at each time step:

(
c0p+ α(divu))− 1

η
div [κ(∇p− ρg)] = ` in Ω, (3.8)

σ = λ(divu)I + 2µε(u)− pI in Ω, (3.9)
−divσ = f in Ω, (3.10)

In this paper we will analyze this “stationary” case of Biot’s consolidation problem. In particular,
following [92] by introducing the total fluid-structure pressure (or total volumetric stress) φ = αp −
λ divu and the fluid flux σ = −κ

η (∇p − ρg) as new unknowns, we study a conforming discretization
of the following system

−div (2µε(u)− φI) = f in Ω, (3.11a)
φ = αp− λ divu in Ω, (3.11b)

σ = −κ
η

(∇p− ρg) in Ω, (3.11c)(
c0 + α2

λ

)
p− α

λ
φ+ divσ = ` in Ω, (3.11d)

complemented with suitable boundary conditions

p = pΓ, (2µε(u)− φI)n = mΓ on Γp, (3.12a)
u = 0, σ · n = 0 on Γu, (3.12b)

where mΓ ∈ H−1/2
00 (Γp) and pΓ ∈ H1/2(Γu).

3.2.3 Weak formulation

The weak formulation of the coupled problem (3.11) is given by [92, Section 2]: Find (u, φ,σ, p) ∈
H×Q× Z×Q such that

as(u,v)+ bs(v, φ) = F (v) ∀v ∈ H, (3.13a)
bs(u, ψ)− cs(φ, ψ) +bsf (ψ, p) = 0 ∀ψ ∈ Q, (3.13b)

af (σ, τ )+bf (τ , p) = G(τ ) ∀ τ ∈ Z, (3.13c)
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bsf (φ, q)+ bf (σ, q)−cf (p, q) = H(q) ∀ q ∈ Q, (3.13d)

where, by the boundary conditions (3.12b), the functional spaces are defined as

H := H1
Γu

(Ω), Q := L2(Ω), and Z := {τ ∈ H(div; Ω) : τ · n = 0 on Γu} ,

and the corresponding forms are defined as

as(u,v) := 2µ
∫

Ω
ε(u) : ε(v), bs(v, ψ) := −

∫
Ω
ψ div v, cs(φ, ψ) := 1

λ

∫
Ω
φψ, bsf (ψ, q) := α

λ

∫
Ω
ψq,

af (σ, τ ) :=
∫

Ω

η

κ
σ · τ , bf (τ , q) := −

∫
Ω
q div τ , cf (p, q) :=

(
c0 + α2

λ

)∫
Ω
pq,

F (v) :=
∫

Ω
f · v + 〈mΓ,v〉Γp , G(τ ) :=

∫
Ω
ρg · τ − 〈τ · n, pΓ〉Γp , H(q) := −

∫
Ω
`q.

(3.14)
The subscripts “s” or “f” are introduced to emphasize that a bilinear form is only related to structure
or fluid variables, respectively.

Let us discuss the stability properties of the forms involved in (3.13). Firstly, it is easy to check
that

|as(u,v)| ≤ 2µCk,2‖u‖1,Ω‖v‖1,Ω, |af (σ, τ )| ≤ ηκ−1
1 ‖σ‖div,Ω‖τ‖div,Ω,

|bs(v, ψ)| ≤
√
d‖v‖1,Ω‖ψ‖0,Ω, |bf (τ , q)| ≤ ‖τ‖div,Ω‖q‖0,Ω,

|bsf (ψ, q)| ≤ αλ−1‖ψ‖0,Ω‖q‖0,Ω, |cs(φ, ψ)| ≤ λ−1‖φ‖0,Ω‖ψ‖0,Ω,

|cf (p, q)| ≤
(
c0 + α2λ−1

)
‖p‖0,Ω‖q‖0,Ω,

(3.15)

for all u,v ∈ H, p, q, φ, ψ ∈ Q, and σ, τ ∈ Z. Above, Ck,2 is one of the positive constants satisfying

Ck,1‖v‖21,Ω ≤ ‖ε(u)‖20,Ω ≤ Ck,2‖v‖21,Ω ∀v ∈ H. (3.16)

Also, the functionals F , G, and H can be bounded as follows:

|F (v)| ≤
(
‖f‖0,Ω + ‖mΓ‖−1/2,00,Γp

)
‖v‖1,Ω ∀v ∈ H,

|G(τ )| ≤
(
ρ‖g‖0,Ω + ‖pΓ‖1/2,00,Γp

)
‖τ‖div,Ω ∀ τ ∈ Z,

|H(q)| ≤ ‖`‖0,Ω‖q‖0,Ω ∀ q ∈ Q.

On the other hand, the positivity of the bilinear forms as and af is immediate from the lower bound
for κ and the inequality (3.16). More precisely, we have

as(v,v) ≥ 2µCk,1‖v‖21,Ω ∀v ∈ H, and af (τ , τ ) ≥ ηκ−1
2 ‖τ‖

2
div,Ω ∀ τ ∈ Kf , (3.17)

where
Kf := {τ ∈ Z : bf (τ , q) = 0 ∀ q ∈ Q} = {τ ∈ Z : div τ = 0 in Ω} . (3.18)

Finally, the following inf-sup conditions are well-known to hold (see, e.g., [84]):

sup
vh∈H
vh 6=0

bs(v, ψ)
‖v‖1,Ω

≥ βs‖ψ‖0,Ω ∀ψ ∈ Q, and sup
τ∈Z
τh 6=0

bf (τ , q)
‖τ‖div,Ω

≥ βf‖q‖0,Ω ∀ q ∈ Q,
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where βs, βf > 0 depend on |Ω|.

Let us now briefly comment on the well-posedness of the problem (3.13). To this end, we follow
the approach of [92, Section 2]. We start by recalling the following continuous dependence result for
(3.13) with arbitrary functionals. This will also be useful later on when deriving our a priori and a
posteriori error bounds (cf. Sections 3.3 and 3.4, respectively). To alleviate the notation, in the sequel
we use the norm

|||(v, ψ, τ , q)||| := ‖v‖1,Ω + ‖ψ‖0,Ω + ‖τ‖div,Ω + ‖q‖0,Ω (3.19)

for all v ∈ H, ψ ∈ Q, τ ∈ Z, p ∈ Q.

Lemma 3.1. Given F1 ∈ H′, G1 ∈ Q′, F2 ∈ Z′ and G2 ∈ Q′, let (u, φ,σ, p) ∈ H×Q×Z×Q be such
that

as(u,v)+ bs(v, φ) = F1(v) ∀v ∈ H, (3.20a)
bs(u, ψ)− cs(φ, ψ) +bsf (ψ, p) = G1(ψ) ∀ψ ∈ Q, (3.20b)

af (σ, τ )+bf (τ , p) = F2(τ ) ∀ τ ∈ Z, (3.20c)
bsf (φ, q)+ bf (σ, q)−cf (p, q) = G2(q) ∀ q ∈ Q, (3.20d)

where the bilinear forms as, bs, cs, af , bf , cs and bsf are given by (3.14). There exists a constant
C > 0, independent of λ, such that

|||(u, φ,σ, p)||| ≤ C
(
‖F1‖H′ + ‖G1‖Q′ + ‖F2‖Z′ + ‖G2‖Q′

)
, (3.21)

Now, letM : H × Q × Z × Q → H × Q × Z × Q be the mapping induced by the left-hand side of
(3.20). Then, if (u, φ,σ, p) satisfies (3.20), it follows that

M(u, φ,σ, p) = (RH(F1),RQ(G1),RZ(F2),RQ(G2)),

whereRH : H′ → H, RQ : Q′ → Q andRZ : Z′ → Z are the corresponding Riesz operators. Moreover,
from (3.21) we have

|||(u, φ,σ, p)||| ≤ C|||M(u, φ,σ, p)|||,

which implies thatM has closed range and its kernel is the null vector, or equivalently,M∗ is surjective
(see, e.g., [38, Theorem 2.20]). SinceM is self-adjoint, it becomes clear that the unique solvability of
(3.13) follows from the estimate (3.21) by setting F1 = F , G1 = 0, F2 = G and G2 = H, that is, the
following result holds.

Theorem 3.2. There exists a unique (u, φ,σ, p) ∈ H×Q×Z×Q satisfying (3.13). Moreover, there
exists Cstab > 0, independent of λ, such that

|||(u, φ,σ, p)||| ≤ Cstab
(
‖f‖0,Ω + ‖g‖0,Ω + ‖`‖0,Ω + ‖mΓ‖−1/2,00,Γp

+ ‖pΓ‖1/2,00,Γp

)
.

We close this section by observing that the solution of (3.13) solves the original problem (3.11) in
the sense of the following lemma.

Lemma 3.3. Let (u, φ,σ, p) ∈ H × Q × Z × Q be the unique solution of (3.13). It satisfies in a
distributional sense, −div (2µε(u)−φI) = f in Ω, 1

λ(αp−φ)− divu = 0 in Ω, η
κσ+∇p− ρg = 0 in

Ω,
(
c0 + α2

λ

)
p− α

λφ+ divσ− ` = 0 in Ω. Additionally, u, φ, σ and p satisfy the boundary conditions
described in (3.12a)-(3.12b).
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Proof. The result follows by applying integration by parts in (3.13) and using suitable test functions.
We omit the details.

3.3 The Galerkin method

In this section we introduce the Galerkin approximation of the problem (3.13), analyze its well-
posedness and establish the associated Céa’s estimate. For this, we consider arbitrary finite dimen-
sional subspaces, denoted by

Hh ⊆ H, Qh,Wh ⊆ Q, and Zh ⊆ Z. (3.22)

Hereafter, the index h > 0, refers to the meshsize of a shape-regular triangulation Th of Ω made of
triangles T (when d = 2) or tetrahedra (when d = 3) of diameter hT , i.e., h := max{hT : T ∈ Th}.

In this way, the Galerkin scheme associated to (3.13) reads: Find (uh, φh,σh, ph) ∈ Hh×Qh×Zh×
Wh such that

as(uh,vh)+ bs(vh, φh) = F (vh) ∀vh ∈ Hh, (3.23a)
bs(uh, ψh)− cs(φh, ψh) +bsf (ψh, ph) = 0 ∀ψh ∈ Qh, (3.23b)

af (σh, τ h)+bf (τ h, ph) = G(τ h) ∀ τ h ∈ Zh, (3.23c)
bsf (φh, qh)+ bf (σh, qh)−cf (ph, qh) = H(qh) ∀ qh ∈Wh, (3.23d)

where the bilinear forms and the functionals are as in (3.14).

Next, we proceed as in [92] and make use of the discrete analogue of Lemma 3.1 to prove the well-
posedness of the Galerkin scheme (3.23). Before doing so, in order to ensure the stability properties
of the bilinear forms that are not inherited from the continuous case, we derive general hypotheses on
the subspaces in (3.22).

Let us first look at the discrete kernel of the bilinear form bf , which is given by

Kf,h := {τ h ∈ Zh : bf (τ h, qh) = 0 ∀ qh ∈Wh} .

A more explicit definition of this space can be obtained if we assume that

(H0) div Zh ⊆Wh.

In fact, this implies that Kf,h = {τ h ∈ Zh : div τ h = 0 in Ω}. Moreover, since Kf,h ⊆ Kf (cf.
(3.18)), the ellipticity of bilinear form af on Kf,h is deduced from (3.17), and with the same constant.

Let us also assume that the following discrete inf-sup conditions hold:

(H1) There exists β̂f > 0, independent of h, such that

sup
τh∈Zh
τh 6=0

bf (τ h, qh)
‖τ h‖div,Ω

≥ β̂f‖qh‖0,Ω ∀ qh ∈Wh.
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(H2) There exists β̂s > 0, independent of h, such that

sup
vh∈Hh
vh 6=0

bs(vh, ψh)
‖vh‖1,Ω

≥ β̂s‖ψh‖0,Ω ∀ψh ∈ Qh.

In Section 3.3.1 we specify suitable choices of finite element subspaces satisfying the above hypothe-
ses. We remark in advance that (Hh,Qh) can be taken as a pair of stable finite element subspaces for
the Stokes problem, whereas Zh and Wh are given by, but are not limited to, the Raviart–Thomas
element and the space of discontinuous polynomials, respectively.

The following result is the discrete analogue of Lemma 3.1 and can be proven by a similar technique.

Lemma 3.4. Given F̂1 ∈ H′h, Ĝ1 ∈ Q′h, F̂2 ∈ Z′h and Ĝ2 ∈ W′h, let (uh, φh,σh, ph) ∈ Hh × Qh ×
Zh ×Wh be such that

as(uh,vh)+ bs(vh, φh) = F̂1(vh) ∀vh ∈ Hh, (3.24a)
bs(uh, ψh)− cs(φh, ψh) +bsf (ψh, ph) = Ĝ1(ψh) ∀ψh ∈ Qh, (3.24b)

af (σh, τ h)+bf (τ h, ph) = F̂2(τ h) ∀ τ h ∈ Zh, (3.24c)
bsf (φh, qh)+ bf (σh, qh)−cf (ph, qh) = Ĝ2(qh) ∀ qh ∈Wh, (3.24d)

where the bilinear forms are defined as in (3.14), and suppose that hypotheses (H0)-(H2) hold. There
exists a constant C > 0, independent of λ and h, such that

|||(uh, φh,σh, ph)||| ≤ C
(
‖F̂1‖H′

h
+ ‖Ĝ1‖Q′

h
+ ‖F̂2‖Z′

h
+ ‖Ĝ2‖W′

h

)
. (3.25)

We are now in a position of stating the well-posedness of the Galerkin scheme (3.23) and the
associated Céa’s estimate.

Theorem 3.5. Suppose that (H0)-(H2) hold. Then, there exists a unique (uh, φh,σh, ph) ∈ Hh ×
Qh×Zh×Wh satisfying (3.23). Moreover, there exists a constant Ĉstab, independent of λ and h, such
that

|||(uh, φh,σh, ph)||| ≤ Ĉstab
(
‖f‖0,Ω + ‖g‖0,Ω + ‖`‖0,Ω + ‖mΓ‖−1/2,00,Γp

+ ‖pΓ‖1/2,00,Γp

)
. (3.26)

In addition, there exists Ccea > 0, also independent of λ and h, such that

|||(u− uh, φ− φh,σ − σh, p− ph)|||

≤ Ccea

(
inf

vh∈Hh

‖u− vh‖1,Ω + inf
ψh∈Qh

‖φ− ψh‖0,Ω + inf
τh∈Zh

‖σ − τ h‖div,Ω + inf
qh∈Wh

‖p− qh‖0,Ω
)
.

(3.27)

Proof. We first observe that (3.26) is a particular case of estimate (3.25). Consequently, the unique
solvability of problem (3.23) can be readily deduced. In fact, since in finite dimensional linear problems
existence and uniqueness of the solution are equivalent, it suffices to note, thanks to (3.26), that the
solution of the Galerkin scheme (3.23) with homogeneous data will be the trivial one.
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It remains to prove (3.27), for which we proceed as in the proof of [92, Theorem 5.1]. Firstly, testing
equations (3.13a)-(3.13d) with (v, ψ, τ , q) = (vh, ψh, τ h, qh) ∈ Hh × Qh × Zh ×Wh and subtracting
the resulting system from (3.23), we get the Galerkin orthogonality equations

as(u− uh,vh)+ bs(vh, φ− φh) = 0 ∀vh ∈ Hh, (3.28a)
bs(u− uh, ψh)− cs(φ− φh, ψh) +bsf (ψh, p− ph) = 0 ∀ψh ∈ Qh, (3.28b)

af (σ − σh, τ h)+bf (τ h, p− ph) = 0 ∀ τ h ∈ Zh, (3.28c)
bsf (φ− φh, qh)+ bf (σ − σh, qh)−cf (p− ph, qh) = 0 ∀ qh ∈Wh. (3.28d)

Next, given v̂h ∈ Hh, ψ̂h ∈ Qh, τ̂ h ∈ Zh and q̂h ∈ Wh, we let F̂1 ∈ H′h, Ĝ1 ∈ Q′h, F̂2 ∈ Z′h and
Ĝ2 ∈W′h be the functionals defined as follows:

F̂1(vh) := −as(u− v̂h,vh)− bs(vh, φ− ψ̂h),

Ĝ1(ψh) := −bs(u− v̂h, ψh) + cs(φ− ψ̂h, ψh)− bsf (ψh, p− q̂h),
F̂2(τ h) := −af (σ − τ̂ h, τ h)− bf (τ h, p− q̂h),

Ĝ2(qh) := −bsf (φ− ψ̂h, q)− bf (σ − τ̂ h, q) + cf (p− q̂h, qh).

Then, adding and subtracting convenient terms to the individual errors in system (3.28), and using
Lemma 3.4, it follows that∣∣∣∣∣∣∣∣∣(v̂h − uh, ψ̂h − φh, τ̂ h − σh, q̂h − ph)∣∣∣∣∣∣∣∣∣ ≤ C (‖F̂1‖H′

h
+ ‖Ĝ1‖Q′

h
+ ‖F̂2‖Z′

h
+ ‖Ĝ2‖W′

h

)
. (3.29)

Using the boundedness of the above bilinear forms (cf. (3.15)), we have

‖F̂1‖H′
h
≤ 2µCk,2‖u− v̂h‖1,Ω +

√
d‖φ− ψ̂h‖0,Ω,

‖Ĝ1‖Q′
h
≤
√
d‖u− v̂h‖1,Ω + 1

λ
‖φ− ψ̂h‖0,Ω + α

λ
‖p− q̂h‖0,Ω,

‖F̂2‖Z′
h
≤ η

κ1
‖σ − τ̂ h‖div,Ω + ‖p− q̂h‖0,Ω,

‖Ĝ2‖W′
h
≤ α

λ
‖φ− ψ̂h‖0,Ω + ‖σ − τ̂ h‖div,Ω +

(
c0 + α2

λ

)
‖p− q̂h‖0,Ω.

Therefore, we obtain using the triangle inequality and estimate (3.29),

|||(u− uh, φ− φh,σ − σh, p− ph)||| ≤
(
1 + C̃

) ∣∣∣∣∣∣∣∣∣(u− v̂h, φ− ψ̂h,σ − τ̂ h, p− q̂h)
∣∣∣∣∣∣∣∣∣,

where
C̃ := C max

{
2µCk,2 +

√
d,

1
λ

(1 + α) +
√
d,

η

κ1
+ 1, α

λ
(α+ 1) + c0 + 1

}
.

Above, C̃ can be bounded by a constant independent of λ because λ−1(1 + α) and αλ−1(1 + α) are
bounded. In particular, they are negligible when volumetric locking occurs (i.e., as λ → ∞). The
proof ends by observing that v̂h, ψ̂h, τ̂ h and q̂h are arbitrary.

3.3.1 Specific finite element subspaces

The aim of this section is to take advantage of the flexibility of conforming methods to provide concrete
finite element subspaces satisfying the crucial hypotheses (H0)-(H2). To that end, given an integer



3.3. The Galerkin method 87

l ≥ 0 and a subset S of Rd, we let Pl(S) (resp. P̃l(S)) denote the space of polynomials of degree at
most l on S (resp. of degree equal to l on S). We also set Pl(S) := [Pl(S)]d.

Let k ≥ 0 be an integer. The generalized Hood–Taylor element (see, e.g., [31, Section 8.8.2]) consists
of the pair (Hh,Qh) specified by

Hh :=
{
vh ∈ [C(Ω)]d : vh|T ∈ Pk+2(T ) ∀T ∈ Th, vh = 0 on Γu

}
(3.30)

and
Qh :=

{
ψh ∈ C(Ω) : ψh|T ∈ Pk+1(T ) ∀T ∈ Th

}
. (3.31)

This pair satisfies the inf-sup condition in hypothesis (H2). We refer the reader to [29] for the proof
(see also [31, 40]). In addition, the following approximation properties are well-known to hold:

(APu
h) There exists C > 0, independent of h, such that for each s ∈ (0, k+ 1] and each u ∈ Hs+2(Ω),

there holds
inf

vh∈Hh

‖u− vh‖1,Ω ≤ Chs+1‖u‖s+2,Ω.

(APφ
h) There exists C > 0, independent of h, such that for each s ∈ (0, k+ 1] and each φ ∈ Hs+1(Ω),

there holds
inf

ψh∈Qh

‖φ− ψh‖0,Ω ≤ Chs+1‖φ‖s+1,Ω.

Furthermore, the local Raviart–Thomas space of order k, for each T ∈ Th, is defined as

RTk(T ) := Pk(T )⊕ P̃k(T )x,

where x := (x1, . . . , xd)T is a generic vector in Rd. To approximate the fluid flux σ we consider the
global Raviart–Thomas space of order k which is given by

Zh := {τ h ∈ H(div; Ω) : τ h|T ∈ RTk(T ) ∀T ∈ Th, τ h · n = 0 on Γu} . (3.32)

We consider discontinuous polynomials of order k for the fluid pressure:

Wh :=
{
qh ∈ L2(Ω) : qh|T ∈ Pk(T ) ∀T ∈ Th

}
. (3.33)

It is well-known that the pair (Zh,Wh) satisfies the hypotheses (H0) and (H1) (see, e.g., [41, 73]).
This fact completes the requirements of Theorem 3.5, and therefore the well-posedness of (3.23) holds
for the above subspaces.

Let us now recall the approximation properties of Zh and Wh.

(APσ
h ) There exists C > 0, independent of h, such that for eachm ∈ (0, k+1] and each σ ∈ Hm(Ω)∩Z,

with divσ ∈ Hm(Ω), there holds

inf
τh∈Zh

‖σ − τ h‖div,Ω ≤ Chm(‖σ‖m,Ω + ‖divσ‖m,Ω).

(APp
h) There exists C > 0, independent of h, such that for each m ∈ (0, k + 1] and each p ∈ Hm(Ω),

there holds
inf

qh∈Wh

‖p− qh‖0,Ω ≤ Chm‖p‖m,Ω.
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From the above discussion, the following theorem provides the theoretical rate of convergence of
the Galerkin scheme (3.23) under suitable regularity assumptions on the exact solution.

Theorem 3.6. Given s,m ∈ (0, k+ 1], assume that u ∈ Hs+2(Ω), φ ∈ Hs+1(Ω), σ ∈ Hm(Ω)∩Z such
that divσ ∈ Hm(Ω), and p ∈ Hm(Ω). There exists Crate > 0, independent of λ and h, such that

|||(u− uh, φ− φh,σ − σh, p− ph)|||

≤ Crateh
min{s+1,m} (‖u‖s+2,Ω + ‖φ‖s+1,Ω + ‖σ‖m,Ω + ‖divσ‖m,Ω + ‖p‖m,Ω) .

Proof. The result is a straightforward application of Céa’s estimate (3.27), and the approximation
properties (APu

h), (APφ
h), (APσ

h ) and (APp
h).

Remark 3.1. To approximate the solution of problem (3.13), one may consider other finite element
subspaces available in the literature. For example, for each T ∈ Th, consider the Brezzi–Douglas–
Marini space BDMk(T ) := Pk(T ) of order k ≥ 1 (see, e.g., [41]), and the enriched space P1,b(T ) :=
[P1(T )⊕ span{bT }]d, where bT is the bubble function defined as bT :=

∏d+1
i=1 λi and {λi}, 1 ≤ i ≤ d+1,

are the barycentric coordinates of T . The following finite element spaces,

Hh :=
{
vh ∈ [C(Ω)]d : vh

∣∣
T
∈ P1,b(T ) ∀T ∈ Th, vh = 0 on Γu

}
,

Qh :=
{
ψh ∈ C(Ω) : ψh

∣∣
T
∈ P1(T ) ∀T ∈ Th

}
,

Zh :=
{
τ h ∈ H(div; Ω) : τ h

∣∣
T
∈ BDMk(T ) ∀T ∈ Th, τ h · n = 0 on Γu

}
,

Wh :=
{
qh ∈ L2(Ω) : qh

∣∣
T
∈ Pk−1(T ) ∀T ∈ Th

}
,

(3.34)

result also in a well–posed Galerkin scheme (3.23) with optimal error bounds. In particular, we recall
that (Hh,Qh), which is usually referred to as the MINI-element [11], satisfies the hypothesis (H2).
For its proof in two dimensions, we refer to [11] (see also [41]). The stability of this element in three
dimensions follows, as in the two-dimensional case, by using a suitable Fortin operator (see, e.g.,
[30]).

The theory developed in this section holds for combinations of the pairs (Hh,Qh) and (Zh,Wh)
resulting from the finite element subspaces (3.30)-(3.33) and (3.34).

3.4 A residual-based a posteriori error estimator

We now develop a reliable and efficient residual-based a posteriori error estimator for the Galerkin
scheme (3.23). In doing so, we may use any choice of finite dimensional subspaces satisfying the
hypotheses of Section 3.3. For simplicity, however, we consider the finite dimensional subspaces (3.30)-
(3.33), and restrict ourselves to the problem in two dimensions. In Section 3.4.3 we will comment on
the main consideration for extending the estimator to three dimensions. We begin by introducing
further notation and definitions.

For each T ∈ Th, we let E(T ) be the set of all edges of T , and denote by Eh the set of all edges of Th,
that is, Eh = Eh(Ω)∪ Eh(Γu)∪ Eh(Γp), where Eh(Ω) := {e ∈ Th : e ⊆ Ω}, Eh(Γu) := {e ∈ Th : e ⊆ Γu}
and Eh(Γp) := {e ∈ Th : e ⊆ Γp}. In what follows, he stands for the diameter of a given edge
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e ∈ Eh. For every edge e ∈ Eh we fix a unit normal vector ne := (n1, n2)T to the edge e, and let
se := (−n2, n1)T be the fixed unit tangential vector along e. However, when no confusion arises we
will simply write n and s instead of ne and se, respectively. Given an edge e ∈ Eh(Ω), τ ∈ L2(Ω) and
ξ ∈ [L(Ω)]2×2, such that τ ∈ [C(T )]2 and ξ ∈ [C(T )]2×2 for all T ∈ Th, we let Jτ · sK and JξnK be the
corresponding jumps across e, i.e., Jτ · sK := {(τ |T )|e − (τ |T ′)|e} · s and JξnK := {(ξ|T )|e − (ξ|T ′)|e}n,
respectively, where T and T ′ are two triangles of Th sharing a common edge e. Finally, given scalar
and vector-valued fields ψ and τ := (τi)1≤i≤2, respectively, we set

rot τ := ∂τ2
∂x1
− ∂τ1
∂x2

and curlψ :=

 ∂ψ
∂x2

− ∂ψ
∂x1

 .
Now, let (uh, φh,σh, ph) ∈ Hh × Qh × Zh × Wh be the unique solution of problem (3.23) and

introduce the global a posteriori error estimator

Θ :=

∑
T∈Th

{
Θ2
s,T + Θ2

f,T + Θ2
sf,T

}1/2

, (3.35)

where Θs,T , Θf,T and Θsf,T are the local error indicators defined for each T ∈ Th as follows:

Θ2
s,T := h2

T ‖f + div (2µε(uh)− φhI)‖20,T +
∑

e∈E(T )∩Eh(Ω)
he‖J(2µε(uh)− φhI)nK‖20,e

+
∑

e∈E(T )∩Eh(Γp)
he‖mΓ − J(2µε(uh)− φhI)nK‖20,e,

(3.36)

Θ2
f,T := h2

T

∥∥∥∥∇ph − ρg + η

κ
σh

∥∥∥∥2

0,T
+ h2

T

∥∥∥∥rot
(
η

κ
σh − ρg

)∥∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(Γp)

(
he‖pΓ − ph‖20,e + he

∥∥∥∥(ηκσh − ρg
)
· s+ dpΓ

ds

∥∥∥∥2

0,e

)

+
∑

e∈E(T )∩Eh(Ω)
he

∥∥∥∥
s(

η

κ
σh − ρg

)
· s

{∥∥∥∥2

0,e
,

(3.37)

Θ2
sf,T :=

∥∥∥∥ 1
λ

(φh − αph) + divuh
∥∥∥∥2

0,T
+
∥∥∥∥∥
(
c0 + α2

λ

)
ph −

α

λ
φh + divσh − `

∥∥∥∥∥
2

0,T
. (3.38)

The residual character of each term defining (Θs,T + Θf,T + Θsf,T ) is a consequence of the strong
problem (3.11) and the regularity of the weak solution at the continuous level. It is important to
remark that the third term of Θs,T requires mΓ ∈ L2(e) for all e ∈ Eh(Γp), which will be assumed
from now on. Similarly, as we will see in Lemma 3.11 (see, in particular, equation (3.58)), we need to
assume that pΓ ∈ H1(Γp). The latter implies that the fourth and fifth terms of Θf,T are well-defined.

In what follows we prove the main properties of Θ, namely its reliability and efficiency.

3.4.1 Reliability of the a posteriori error estimator

In this section we focus on the proof of the following result.
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Theorem 3.7. There exists a constant Crel > 0, independent of λ and h, such that

|||(u− uh, φ− φh,σ − σh, p− ph)||| ≤ CrelΘ, (3.39)

where ||| · ||| was defined in (3.19).

The proof of Theorem 3.7 will be separated into several steps. We start by providing a preliminary
upper bound for the total error, as done in [80]. The idea is to bound the global error by dual norms
of the residuals associated with problem (3.23). The following result holds the key to this.

Lemma 3.8. Let (u, φ,σ, p) ∈ H×Q×Z×Q and (uh, φh,σh, ph) ∈ Hh×Qh×Zh×Wh be the unique
solutions of problems (3.13) and (3.23), respectively. There exists a constant C > 0, independent of λ
and h, such that

|||(u− uh, φ− φh,σ − σh, p− ph)||| ≤ C
(
‖F1‖H′ + ‖G1‖Q′ + ‖F2‖Z′ + ‖G2‖Q′

)
,

where F1(·) on H, G1(·) on Q, F2(·) on Z and G2(·) on Q denote the linear functionals defined,
respectively, by

F1(v) := F (v)− as(uh,v)− bs(v, φh), (3.40)
G1(ψ) := −bs(uh, ψ) + cs(φh, ψ)− bsf (ψ, ph), (3.41)
F2(τ ) := G(τ )− af (σh, τ )− bf (τ , ph), (3.42)
G2(q) := H(q)− bsf (φh, q)− bf (σh, q) + cf (ph, q). (3.43)

Proof. Adding and subtracting (uh, φh,σh, ph) to the continuous solution in system (3.13), the conclu-
sion follows directly from the estimate (3.21) by taking F1 = F1, G1 = G1, F2 = F2 and G2 = G2.

Having proved Lemma 3.8, and noting that G1,G2 ∈ Q′ satisfy

‖G1‖Q′ ≤
∥∥∥∥ 1
λ

(φh − αph) + divuh
∥∥∥∥

0,Ω
and ‖G2‖Q′ ≤

∥∥∥∥∥
(
c0 + α2

λ

)
ph −

α

λ
φh + divσh − `

∥∥∥∥∥
0,Ω

,

(3.44)
it is clear that in order to show (3.39), we need to obtain suitable upper bounds for ‖F1‖H′ and
‖F2‖Z′ . From the Galerkin scheme (3.23) we note that F1(vh) = 0 for all vh ∈ Hh, and F2(τ h) = 0
for all τ h ∈ Zh. We can therefore write

‖F1‖H′ := sup
v∈H
vh 6=0

|F1(v − vh)|
‖v‖1,Ω

(3.45)

and
‖F2‖Z′ := sup

τ∈Z
τh 6=0

|F2(τ − τ h)|
‖τ‖div,Ω

, (3.46)

with vh ∈ Hh and τ h ∈ Zh suitably chosen functions that will be defined later.
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Upper bound for ‖F1‖H′

To satisfy homogeneous Dirichlet boundary conditions, we introduce the Clément-type interpolant

Ih,Γu : H1
Γu

(Ω)→ Xh,Γu ,

where
Xh,Γu :=

{
v ∈ C(Ω) : v

∣∣
T
∈ P1(T ) ∀T ∈ Th, v = 0 on Γu

}
⊆ H1

Γu
(Ω),

with H1
Γu

(Ω) defined as in (3.1). It can be shown that this operator satisfies the same approximation
properties as the standard Clément interpolant [54], i.e.,

‖v − Ih,Γu(v)‖0,T ≤ C1hT |v|1,∆(T ) ∀T ∈ Th, and ‖v − Ih,Γu(v)‖0,e ≤ C2h
1/2
e |v|1,∆(e) ∀ e ∈ Eh,

(3.47)
where ∆(T ) and ∆(e) are the union of all the elements intersecting with T and e, respectively.
Furthermore, we denote by Ih,Γu the vector operator defined componentwise by Ih,Γu .

Next, proceeding analogously to [140, Section 6], we state the main result of this section.

Lemma 3.9. Assuming that mΓ ∈ L2(e) for all Eh(Γp), there exists a constant C > 0, independent
of λ and h, such that

‖F1‖H′ ≤ C

∑
T∈Th

Θ2
s,T

1/2

,

where Θs,f is defined in (3.36).

Proof. Integrating by parts (3.40) on each T ∈ Th yields for all w ∈ H,

F1(w) =
∫

Ω
f ·w +

∫
Γp

mΓ ·w − 2µ
∫

Ω
ε(uh) : ε(w) +

∫
Ω
φh divw

=
∑
T∈Th

∫
T
f ·w +

∑
e∈Eh(Γp)

∫
e
mΓ ·w −

∑
T∈Th

∫
T

(2µε(uh)− φhI) : ∇w

=
∑

e∈Eh(Γp)

∫
e
mΓ ·w +

∑
T∈Th

(∫
T

(f + div (2µε(uh)− φhI)) ·w −
∫
∂T

(2µε(uh)− φhI)n ·w
)

=
∑
T∈Th

∫
T

(f + div (2µε(uh)− φhI)) ·w +
∑

e∈Eh(Γp)

∫
e
(mΓ − (2µε(uh)− φhI)n) ·w

−
∑

e∈Eh(Ω)

∫
e
J(2µε(uh)− φhI)nK ·w.

Given v ∈ H, set vh in (3.45) to vh := Ih,Γu(v) and let w := v − vh. Then, applying the Cauchy–
Schwarz inequality to each term above, and by the approximation properties of Ih,Γu (cf. (3.47)), we
obtain

|F1(w)| ≤ C

∑
T∈Th

Θ2
s,T

1/2∑
T∈Th

‖v‖21,∆(T ) +
∑

e∈Eh(Ω)
‖v‖21,∆(e) +

∑
e∈Eh(Γp)

‖v‖21,∆(e)

1/2

.

The result follows by using the definition of F1, and noting, by the shape-regularity of the mesh, that
the number of triangles in ∆(T ) and ∆(e) is bounded.
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Upper bound for ‖F2‖Z′

In this section, a stable Helmholtz decomposition of Z and suitable interpolation operators will be of
paramount importance to define τ h appearing in definition (3.46). This term is necessary to provide an
upper bound for ‖F2‖Z′ . The approach we follow has been widely used in a posteriori error estimators
for mixed methods, see for instance [3, 49, 78].

We start by introducing the L2(Ω)-orthogonal projection onto Wh (cf. (3.33)), Pkh : L2(Ω) → Wh,
which, for each q ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, satisfies the approximation property

|q − Pkh(q)|s,T ≤ Chm−s|q|m,T ∀T ∈ Th, ∀ s ∈ {0, . . . ,m}. (3.48)

In addition, letting

ZRTh :=
{
τ h ∈ H(div; Ω) : τ h

∣∣
T
∈ RTk(T ) ∀T ∈ Th

}
,

we recall the classical Raviart–Thomas interpolation operator Πk
h : H1(Ω) → ZRTh , which, given

τ ∈ H1(Ω), is characterized by the identities∫
T

Πk
h(τ ) · ζ =

∫
T
τ · ζ ∀ ζ ∈ Pk−1(T ), ∀T ∈ Th, when k ≥ 1, (3.49)∫

e
(Πk

h(τ ) · n)ψ =
∫
e
(τ · n)ψ ∀ψ ∈ Pk(e), ∀ e ∈ Eh, when k ≥ 0. (3.50)

Consequently, it is not difficult to check (see, e.g., [73, Lemma 3.7]) that

div (Πk
h(τ )) = Pkh(div τ ) ∀ τ ∈ H1(Ω). (3.51)

Moreover, the following local approximation properties hold [41, 53, 73]:

• For each τ ∈ Hm(Ω), with 0 ≤ m ≤ k + 1,

‖τ −Πk
h(τ )‖0,T ≤ ChmT |τ |m,T ∀T ∈ Th, (3.52)

• For each τ ∈ H1(Ω) such that div τ ∈ Hm(Ω), with 0 ≤ m ≤ k + 1,

‖div (τ −Πk
h(τ ))‖0,T ≤ ChmT |div τ |m,T ∀T ∈ Th, (3.53)

• For each τ ∈ H1(Ω), there holds

‖(τ −Πk
h(τ )) · n‖0,e ≤ Ch1/2

e |τ |1,Te , (3.54)

where Te denotes an element of Th having e as an edge.

We now introduce a stable Helmholtz decomposition of Z. This will require Γu to lie on the
boundary of a convex domain containing Ω. We refer to [3, Lemma 3.9] for the proof of this result in
the tensorial case.
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Lemma 3.10. Assume that there exists a convex domain Ξ such that Ω ⊆ Ξ and Γu ⊆ ∂Ξ. Then, for
each τ ∈ Z there exist ζ ∈ H1(Ω) and ϕ ∈ H1

Γu
(Ω), such that

τ = ζ + curlϕ in Ω, and ‖ζ‖1,Ω + ‖ϕ‖1,Ω ≤ C‖τ‖div,Ω, (3.55)

where C is a positive constant independent of τ , ζ and ϕ.

We now introduce the discrete version of (3.55) and follow similar steps as in [80, Lemma 3.8] (see
also [78, Section 4.1]). Given τ ∈ Z and its Helmholtz decomposition (3.55), we let ζh := Πk

h(ζ) and
ϕh := Ih,Γu(ϕ), where Ih,Γu is the Clément-type interpolant given in Section 3.4.1. We then set the
discrete Helmholtz decomposition as τ h := ζh + curlϕh ∈ Zh.

From the above discussion and by definition of F2 (cf. (3.42)), we can write

F2(τ − τ h) = F2(ζ − ζh) + F2(curl (ϕ− ϕh)). (3.56)

We will bound each term on the right-hand side of (3.56) separately.

Proceeding as in the proof of [78, Lemma 4.4 ], applying the Cauchy–Schwarz inequality, using the
identities (3.49)-(3.51), the approximation properties (3.52) and (3.54), and the fact that the number
of triangles in ∆(T ) and ∆(e) is bounded (due to shape-regularity of the mesh), we obtain, after some
algebraic manipulations,

|F2(ζ − ζh)| ≤ C

∑
T∈Th

h2
T

∥∥∥∥∇ph − ρg + η

κ
σh

∥∥∥∥2

0,T
+

∑
e∈Eh(Γp)

he‖pΓ − ph‖20,e

1/2

‖ζ‖1,Ω. (3.57)

The upper bound for |F2(curl (ϕ−ϕh))| follows by similar arguments as in [78, Lemma 4.3]. Indeed,
using the identity curl (ϕ−ϕh) ·n = d

ds(ϕ−ϕh), assuming dpΓ
ds ∈ L2(Γp), and integrating by parts on

Γp (see [68, Lemma 3.5, eq. (3.34)]), we obtain

〈curl (ϕ− ϕh) · n, pΓ〉Γp = −
〈
dpΓ
ds

, ϕ− ϕh
〉

Γp

= −
∑

e∈Eh(Γp)

∫
e
(ϕ− ϕh)dpΓ

ds
. (3.58)

We can then write F2(curl (ϕ − ϕh)), using (3.58) and applying [84, Theorem 2.11] to integrate by
parts elementwise, as

F2(curl (ϕ− ϕh)) = −
∫

Ω

(
η

κ
σh − ρg

)
· curl (ϕ− ϕh)− 〈curl (ϕ− ϕh) · n, pΓ〉Γp

= −
∑
T∈Th

∫
T

rot
(
η

κ
σh − ρg

)
(ϕ− ϕh) +

∑
e∈Eh(Ω)

∫
e

s(
η

κ
σh − ρg

)
· s

{
(ϕ− ϕh)

+
∑

e∈Eh(Γp)

∫
e

{(
η

κ
σh − ρg

)
· s+ dpΓ

ds

}
(ϕ− ϕh).

Next, applying the Cauchy–Schwarz inequality, using (3.47), and the shape-regularity of the mesh, it
follows that

|F2(curl (ϕ− ϕh))| ≤ C

∑
T∈Th

h2
T

∥∥∥∥rot
(
η

κ
σh − ρg

)∥∥∥∥2

0,T
+

∑
e∈Eh(Ω)

he

∥∥∥∥
s(

η

κ
σh − ρg

)
· s

{∥∥∥∥2

0,e

+
∑

e∈Eh(Γp)
he

∥∥∥∥(ηκσh − ρg
)
· s+ dpΓ

ds

∥∥∥∥2

0,e

1/2

‖ϕ‖1,Ω.

(3.59)
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Finally, combining (3.57) and (3.59), and using the stability of the Helmholtz decomposition (3.55),
we obtain the desired bound as summarized in the next lemma.

Lemma 3.11. Suppose that the hypotheses of Lemma 3.10 hold. Assume further that pΓ ∈ H1(Γp).
Then, there exists C > 0, independent of λ and h, such that

‖F2‖Z′ ≤ C

∑
T∈Th

Θ2
f,T

1/2

,

with Θf,T defined in (3.37).

We end this section by noting that the reliability estimate (3.39) is a direct consequence of Lemmas
3.9 and 3.11, and the estimates given by (3.44)

3.4.2 Efficiency of the a posteriori error estimator

The main result of this section reads as follows.

Theorem 3.12. There exists a constant Ceff > 0, independent of λ and h, such that

CeffΘ ≤ |||(u− uh, φ− φh,σ − σh, p− ph)|||+ h.o.t., (3.60)

where h.o.t. is a generic expression denoting one or several terms of higher order.

To obtain (3.60), we will find upper bounds for each estimator term in (3.36), (3.37) and (3.38),
separately. We can immediately deduce the estimates for the zero-order terms appearing in the
definition of Θsf,T (cf. (3.38)), as done in the following lemma.

Lemma 3.13. For all T ∈ Th, there hold∥∥∥∥ 1
λ

(φh − αph) + divuh
∥∥∥∥

0,T
≤
√

2‖u− uh‖1,T + 1
λ
‖φ− φh‖0,T + α

λ
‖p− ph‖0,T ,

and∥∥∥∥∥
(
c0 + α2

λ

)
ph −

α

λ
φh + divσh − `

∥∥∥∥∥
0,T
≤ ‖σ − σh‖div,T + α

λ
‖φ− φh‖0,T +

(
c0 + α2

λ

)
‖p− ph‖0,T .

Note that volumetric locking is not a concern in the above two inequalities, because at least one
term on the right-hand side does not vanish when λ→∞.

To bound the remaining terms, we introduce further notation and preliminary results. Given T ∈
Th and e ∈ E(T ), we let ΦT and Φe be the usual element-bubble and edge-bubble functions [138],
respectively. In particular, ΦT satisfies ΦT ∈ P3(T ), sup ΦT ⊆ T , ΦT = 0 on ∂T and 0 ≤ ΦT ≤ 1 in
T . Similarly, one has Φe|T ∈ P2(T ), sup Φe ⊆ ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)}, Φe = 0 on ∂T \ {e} and
0 ≤ Φe ≤ 1 in ωe. We then have the following useful result.
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Lemma 3.14. Given an integer k ≥ 0, there exists an extension operator L : C(e)→ C(T ) such that
L(q)|e = q for all q ∈ Pk(e). Moreover, there exist positive constants γi, i ∈ {1, 2, 3, 4}, which only
depend on k and on the shape-regularity parameter of the mesh, such that for each T ∈ Th and each
e ∈ E(T ),

‖ΦTψ‖20,T ≤ ‖ψ‖20,T ≤ γ1‖Φ1/2
T ψ‖20,T ∀ψ ∈ Pk(T ), (3.61)

‖ΦeL(q)‖20,e ≤ ‖q‖20,e ≤ γ2‖Φ1/2
e q‖20,e ∀ q ∈ Pk(e), (3.62)

and
γ3h

1/2
e ‖q‖0,e ≤ ‖Φ1/2

e L(q)‖0,T ≤ γ4h
1/2
e ‖q‖0,e ∀ q ∈ Pk(e). (3.63)

Proof. See [138, Lemma 4.1] or [139, Lemma 3.3] for details.

The following inverse estimate will also be used.

Lemma 3.15. Let k,m, l ∈ N ∪ {0} such that l ≤ m. There exists a constant C > 0, depending only
on k,m, l and the shape-regularity constant of the mesh, such that for each T ∈ Th there holds

|q|m,T ≤ Cinvh
l−m
T |q|l,T ∀ q ∈ Pk(T ). (3.64)

Proof. See [53, Theorem 3.2.6].

Furthermore, we will need the following trace inequality (see, e.g., [9]):

‖v‖0,e ≤ Ctr
(
h−1/2
e ‖v‖0,Te + h1/2

e |v|1,Te

)
∀ v ∈ H1(Te). (3.65)

Above, Te is the mesh element introduced in (3.54). Moreover, the constant Ctr > 0 depends only on
the minimum angle of Te.

In what follows, considering σh the approximate fluid flux in problem (3.23), we often write ξ := η
κσh

and assume, for simplicity, that for r,m ≥ k + 2, the permeability satisfies: κ−1|T ∈ Hr+1(T ) for all
T ∈ Th, and κ−1|e ∈ Hm+1(e) for all e ∈ Eh. Furthermore, the vector counterpart of the projection
operator Pkh (cf. (3.48)) will be denoted in boldface.

The following three lemmas provide upper bounds for the estimator terms in (3.37). We present
here proofs inspired by the proofs of Lemmas 6.10, 6.11 and 6.12 in [50]. Similar ideas can be found
in [48].

Lemma 3.16. There exists a constant c1 > 0, independent of λ and h, such that for all T ∈ Th,

hT

∥∥∥∥rot
(
η

κ
σh − ρg

)∥∥∥∥
0,T
≤ c1 (‖σ − σh‖div,T + h.o.t.) . (3.66)

Proof. Adding and subtracting PPPrh(ξ), and using the triangle inequality, there holds

‖rot (ξ − ρg)‖0,T ≤ C|ξ −PPP
r
h(ξ)|1,T + ‖rot (PPPrh(ξ)− ρg)‖0,T . (3.67)
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Applying now (3.61) to the second term on the right-hand side of (3.67), and noting, by Lemma 3.3,
that ρg = ∇p+ ξ + η

κ(σ − σh) in Ω, we obtain

‖rot (PPPrh(ξ)− ρg)‖20,T ≤ γ1
∥∥∥Φ1/2

T rot (PPPrh(ξ)− ρg)
∥∥∥2

0,T
= γ1

∫
T

ΦT (rot (PPPrh(ξ)− ρg))2

= γ1

∫
T

ΦT rot (PPPrh(ξ)− ρg) rot
(
PPPrh(ξ)− ξ − η

κ
(σ − σh)

)
= γ1

∫
T

curl (ΦT rot (PPPrh(ξ)− ρg)) ·
(
PPPrh(ξ)− ξ − η

κ
(σ − σh)

)
.

It then follows from (3.61) and (3.64) that

‖rot (PPPrh(ξ)− ρg)‖0,Ω ≤ Cinvγ1h
−1
T

(
‖ξ −PPPrh(ξ)‖0,T +

∥∥∥∥ηκ(σ − σh)
∥∥∥∥

0,T

)
. (3.68)

Substituting (3.68) into (3.67), using the lower bound for κ, and applying the approximation property
of PPPrh in (3.48), yields

hT ‖rot (ξ − ρg)‖0,T ≤ C̃
(
‖σ − σh‖div,T + hr+1

T |ξ|r+1,T
)
.

Since r ≥ k + 2, the result follows.

Lemma 3.17. There exists a constant c2 > 0, independent of λ and h, such that for all T ∈ Th,

hT

∥∥∥∥∇ph − ρg + η

κ
σh

∥∥∥∥
0,T
≤ c2 (hT ‖σ − σh‖div,T + ‖p− ph‖0,T + h.o.t.) . (3.69)

Proof. First, adding and subtracting PPPrh(ξ), it follows that

‖∇ph − ρg + ξ‖0,T ≤ ‖∇ph − ρg +PPPrh(ξ)‖0,T + ‖ξ −PPPrh(ξ)‖0,T . (3.70)

To bound the first term on the right-hand side of (3.70), we apply estimate (3.61), integrate by parts,
and use the identity ρg = ∇p+ ξ + η

κ(σ − σh) in Ω, to obtain

‖∇ph − ρg +PPPrh(ξ)‖20,T ≤ γ1
∥∥∥Φ1/2

T (∇ph − ρg +PPPrh(ξ))
∥∥∥2

0,T

= γ1

∫
T

ΦT (∇ph − ρg +PPPrh(ξ)) · ∇(ph − p)

− γ1

∫
T

ΦT (∇ph − ρg +PPPrh(ξ)) ·
(
η

κ
(σ − σh) + ξ −PPPrh(ξ)

)
= −γ1

∫
T

(ph − p) div (ΦT (∇ph − ρg +PPPrh(ξ)))

− γ1

∫
T

ΦT (∇ph − ρg −PPPrh(ξ)) ·
(
η

κ
(σ − σh) + ξ −PPPrh(ξ)

)
.

Using the Cauchy–Schwarz inequality and the estimates (3.61) and (3.64), it follows that

‖∇ph − ρg +PPPrh(ξ)‖0,T ≤ C
(
h−1
T ‖ph − p‖0,T +

∥∥∥∥ηκ(σ − σh)
∥∥∥∥

0,T
+ ‖ξ −PPPrh(ξ)‖0,T

)
,

where C > 0 is independent of λ and h. Combined with (3.70) we obtain estimate (3.69).
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Lemma 3.18. There exists a constant c3 > 0, independent of λ and h, such that for all e ∈ Eh(Ω),

h1/2
e

∥∥∥∥
s(

η

κ
σh − ρg

)
· s

{∥∥∥∥
0,e
≤ c3

∑
T⊆ωe

(‖σ − σh‖div,T + h.o.t.) . (3.71)

Furthermore, assuming that pΓ is a piecewise polynomial, there exist constants c4, c5 > 0, also inde-
pendent of λ and h, such that for all e ∈ Eh(Γp),

h1/2
e

∥∥∥∥(ηκσh − ρg
)
· s+ dpΓ

ds

∥∥∥∥
0,e
≤ c4 (‖σ − σh‖div,T + h.o.t.) , (3.72)

h1/2
e ‖pΓ − ph‖0,e ≤ c5 (‖p− ph‖0,T + (1 + hT )‖σ − σh‖div,T + h.o.t) . (3.73)

Proof. Let us first prove (3.71). In order to simplify notation, given e ∈ Eh(Ω), we decompose
J(ξ − ρg) · sK into χe := J(ξ −PPPmh (ξ)) · sK and ζe := J(PPPmh (ξ)− ρg) · sK. Applying now the estimate
(3.65) and using similar arguments as in the previous two lemmas,

‖J(ξ − ρg) · sK‖0,e ≤ ‖χe‖0,e + ‖ζe‖0,e

≤
∑
T⊆ωe

Ctr
(
h−1/2
e ‖ξ −PPPmh (ξ)‖0,T + h1/2

e |ξ −PPPmh (ξ)|1,T
)

+ ‖ζe‖0,e

≤ h−1/2
e

∑
T⊆ωe

Ctr (‖ξ −PPPmh (ξ)‖0,T + he|ξ −PPPmh (ξ)|1,T ) + ‖ζe‖0,e

≤ Ch−1/2
e

∑
T⊆ωe

hm+1
T |ξ|m+1,T + ‖ζe‖0,e,

(3.74)

where we recall that ωe :=
⋃
{T ′ ∈ Th : e ∈ E(T ′)}. To estimate ‖ζe‖0,e, we use the second inequality

in (3.62), integrate by parts, and use the identity ρg = ∇p+ ξ + η
κ(σ − σh) in Ω. This yields

‖ζe‖20,e ≤ γ2‖Φ1/2
T ζe‖20,e = γ2

∫
e

(ΦeL(ζe)) ζe

=
∑
T⊆ωe

(∫
T

ΦeL(ζe) rot (PPPmh (ξ)− ρg)−
∫
T

(PPPmh (ξ)− ρg) · curl (ΦeL(ζe))
)

=
∑
T⊆ωe

(∫
T

ΦeL(ζe) rot (PPPmh (ξ)− ρg)−
∫
T

(
PPPmh (ξ)− ξ − η

κ
(σ − σh)−∇p

)
· curl (ΦeL(ζe))

)
,

where clearly
∫
T ∇p ·curl (ΦeL(ζe)) = 0 for all T ⊆ ωe. Using the Cauchy–Schwarz inequality and the

inverse estimate (3.64), it follows that

‖ζe‖20,e ≤ C̃
∑
T⊆ωe

h−1
T

(
hT ‖rot (PPPmh (ξ)− ρg)‖0,T + ‖ξ −PPPmh (ξ)‖0,T +

∥∥∥∥ηκ(σ − σh)
∥∥∥∥

0,T

)
‖ΦeL(ζe)‖0,T .

(3.75)
Furthermore, by (3.63) and by construction of Φe, we obtain

‖ΦeL(ζe)‖0,T ≤ ‖Φ1/2
e L(ζe)‖0,T ≤ γ4h

1/2
e ‖ζe‖0,e.

This, together with estimates (3.48), (3.66) and (3.75), and the fact that he ≤ hT for all T ⊂ ωe, gives

‖ζe‖0,e ≤ Ĉh
−1/2
e

∑
T⊆ωe

(
‖σ − σh‖div,T + hm+1

T |ξ|m+1,T
)
. (3.76)
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The result (3.71) follows by combining (3.74) and (3.76).

To prove (3.72), we proceed as in the proof of (3.71). Given e ∈ Eh(Γp), we let %e := PPPmh (ξ)−ρg− dpΓ
ds .

Since pΓ is assumed to be a piecewise polynomial, we use similar arguments as in (3.74) to obtain

‖%e‖20,e ≤ γ2‖Φ1/2
T %e‖20,e = γ2

∫
e

(ΦeL(%e)) %e

=
∫
T e

ΦeL(%e) rot
(
PPPmh (ξ)− ξ − η

κ
(σ − σh)

)
−
∫
Te

(
PPPmh (ξ)− ξ − η

κ
(σ − σh)−∇p

)
· curl (ΦeL(%e)),

where Te denotes the only element of Th having e as an edge. Therefore, (3.72) follows by mimicking
the steps in the proof of (3.71).

Finally, proceeding exactly as in the proof of [78, Lemma 4.14], we find

‖pΓ − ph‖0,e ≤ Ctr
(
h−1/2
e ‖p− ph‖0,T + h1/2

e |p− ph|1,T
)

= Ctr

(
h−1/2
e ‖p− ph‖0,T + h1/2

e

∥∥∥∥ρg − η

κ
σh −

η

κ
(σ − σh)−∇ph

∥∥∥∥
1,T

)

≤ Ctr

(
h−1/2
e ‖p− ph‖0,T + h1/2

e

∥∥∥∥∇ph − ρg + η

κ
σh

∥∥∥∥
0,T

+ h1/2
e

∥∥∥∥ηκ(σ − σh)
∥∥∥∥

1,T

)
.

The result (3.73) then follows immediately from (3.69) and the fact that he ≤ hT .

We remark that (3.72) holds also when pΓ is sufficiently smooth. In this case, we can approximate
this data by a Taylor polynomial approximation and obtain (3.72) with further higher order terms
appearing on the right-hand side.

Next, we provide the upper bounds for the estimator terms in (3.36). Our general strategy consists
of mimicking the proofs of the results in [140, Section 6] under further assumptions on the data. We
have the following lemma.

Lemma 3.19. Suppose that f and mΓ are piecewise polynomials. There exist constants c6, c7 > 0,
independent of λ and h, such that for all T ∈ Th and e ∈ Eh(Γp),

hT ‖f + div (2µε(uh)− φhI)‖0,T ≤ c6 (‖u− uh‖1,T + ‖φ− φh‖0,T ) , (3.77)

h1/2
e ‖mΓ − (2µε(uh)− φhI)n‖0,e ≤ c7 (‖u− uh‖1,T + ‖φ− φh‖0,T ) . (3.78)

Furthermore, there exists a constant c8 > 0, also independent of λ and h, such that for all e ∈ Eh(Ω),

h1/2
e ‖J(2µε(uh)− φhI)nK‖0,e ≤ c8

∑
T⊆ωe

(‖u− uh‖1,T + ‖φ− φh‖0,T ) . (3.79)

Proof. We prove (3.77) and (3.79) using similar arguments as in the proof of Lemma 3.18. We define
χT := f + div (2µε(uh) − φhI) and χe := J(2µε(uh) − φhI)nK. Then, applying (3.61) to ‖χT ‖0,T ,
using that f = −div (2µε(u)− φI) in Ω (cf. Lemma 3.3), integrating by parts, and finally using the
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inverse estimate (3.64), we obtain

‖χT ‖20,T ≤ γ1‖Φ1/2
T χT ‖20,T = γ1

∫
T

ΦTχ
2
T

= γ1

∫
T

ΦTχT · (f + div (2µε(uh)− φhI))

= γ1

∫
T

ΦTχT · div (2µε(uh − u)− (φh − φ)I)

= −γ1

∫
T
∇(ΦTχT ) : (2µε(uh − u)− (φh − φ)I)

≤ Ch−1
T ‖ΦTχT ‖0,T ‖2µε(uh − u)− (φh − φ)I‖0,T .

By (3.61), ‖ΦTχT ‖0,T ≤ ‖χT ‖0,T , thus hT ‖χT ‖0,T ≤ C̃ (‖u− uh‖1,T + ‖φ− φh‖0,T ) providing (3.77).

Next, denoting by L the vector operator defined componentwise by the extension L : C(e)→ C(T )
introduced in Lemma 3.14, using inequality (3.62), and integrating by parts, we find

‖χe‖20,e ≤ γ2‖Φ1/2
e χe‖20,e =

∫
e

ΦeL(χe) · χe

=
∫
e

ΦeL(χe) · (χe + J(2µε(u)− φI)nK)

=
∑
T⊆ωe

(∫
T
∇(ΦeL(χe)) : (2µε(uh − u)− (φh − φ)I) +

∫
T

(ΦeL(χe)) · χT
)

≤
∑
T⊆ωe

h−1
T (‖2µε(uh − u)− (φh − φ)I‖0,T + hT ‖χT ‖0,T ) ‖ΦeL(χe)‖0,T

≤ Ĉh1/2
e

∑
T⊆ωe

h−1
T (‖u− uh‖1,T + ‖φ− φh‖0,T ) ‖ΦeL(χe)‖0,T .

(3.80)

Similar to the steps in the proof of (3.71) we note that ‖ΦeL(χe)‖0,T ≤ γ4h
1/2
e ‖χe‖. Combined with

(3.80) this implies
h1/2
e ‖χe‖0,e ≤ C

∑
T⊆ωe

(‖u− uh‖1,T + ‖φ− φh‖0,T ) ,

since he ≤ hT for all T ⊆ ωe. The result (3.79) follows.

Finally, proceeding as in the proof of (3.72), it is not difficult to see that the proof of (3.79) is
similar to that of (3.78).

Note again that, in the above lemma, if the data is sufficiently smooth instead of piecewise poly-
nomial, then higher order terms arising from suitable polynomial approximations will appear on the
corresponding right-hand sides.

The efficiency estimate (3.60) now follows directly from Lemmas 3.13, 3.16, 3.17, 3.18 and 3.19.

3.4.3 Extension of the estimator to three dimensions

We briefly discuss the a posteriori error estimator in three dimensions.

Given a sufficiently smooth vector field τ , we let curl τ := ∇× τ . Furthermore, we take a tetrahe-
dralization Th of Ω and consider the same notation as in the introduction of Section 3.4 (replacing the
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word “edge” by “face”). Given a face e ∈ Eh(Ω), τ ∈ L2(Ω) and ξ ∈ [L2(Ω)]3×3, such that τ ∈ [C(T )]3

and ξ ∈ [C(T )]3×3 for all T ∈ Th, we let Jτ×nK and JξnK be the corresponding jumps across e, namely,
Jτ × nK := {(τ |T )|e − (τ |T ′)|e} × n and JξnK := {(ξ|T )|e − (ξ|T ′)|e}n, respectively, where T and T ′

are the elements of Th sharing a face e.

The local error indicator Θf,T now reads

Θ2
f,T := h2

T

∥∥∥∥∇ph − ρg + η

κ
σh

∥∥∥∥2

0,T
+ h2

T

∥∥∥∥curl
(
η

κ
σh − ρg

)∥∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(Γp)

(
he‖pΓ − ph‖20,e + he

∥∥∥∥(ηκσh − ρg
)
× n+∇pΓ × n

∥∥∥∥2

0,e

)

+
∑

e∈E(T )∩Eh(Ω)
he

∥∥∥∥
s(

η

κ
σh − ρg

)
× n

{∥∥∥∥2

0,e
,

while the error indicators Θs,T and Θsf,T are defined as for the two-dimensional case in (3.36) and
(3.38), respectively. We then set the global indicator as in (3.35).

All the results for the reliability estimate in Section 3.4.1 hold also in the three-dimensional case,
except the upper bound for ‖F2‖Z′ in Section 3.4.1. To bound this term, we require the following
three results.

We require the 3D analogue of (3.58). This is an immediate consequence of the identity

〈curlϕ · n,χ〉Γp = −〈∇χ× n,ϕ〉Γ ∀ϕ,χ ∈ H1(Ω).

Its proof, like in the 2D case, follows from [68, Lemma 3.5].

We require also the following integration by parts formula:∫
T

curl τ · χ−
∫
T
τ · curlχ = 〈τ × n,χ〉∂T

for all τ ∈ H(curl ; Ω) :=
{
τ ∈ L2(Ω) : curl τ ∈ L2(Ω)

}
and χ ∈ H1(Ω). Above, 〈·, ·〉∂T stands for the

duality pairing between H−1/2(∂T ) and H1/2(∂T ).

Finally, the stable Helmholtz decomposition in Lemma 3.10 is also valid in this case (see [74,
Theorem 3.2]), where curlϕ in (3.55) is replaced by curlϕ (ϕ ∈ H1

Γu
(Ω)). A proof for the upper

bound for ‖F2‖Z′ , the proof of the reliability of Θ, as well as the efficiency estimate, proceed now as
in the two-dimensional case.

3.5 Numerical examples

We present several tests illustrating the performance of the Galerkin scheme (3.23), verifying the
reliability and efficiency of the a posteriori error estimator Θ, and confirming the locking-free estimates.
All simulations were implemented using the FEniCS library [2]. As a direct solver we used the
Multifrontal Massively Parallel Solver MUMPS [116]. In all our examples we use the finite element
spaces (3.30)-(3.33).
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In what follows, we denote by N the total number of degrees of freedom. The global error and the
effectivity index associated to the global estimator Θ are denoted, respectively, by

e(u, φ,σ, p) :=
(
e(u)2 + e(φ)2 + e(σ)2 + e(p)2

)1/2
and eff(Θ) := e(u, φ,σ, p)/Θ,

where

e(u) := ‖u− uh‖1,Ω, e(φ) := ‖φ− φh‖0,Ω, e(σ) := ‖σ − σh‖div,Ω, e(p) := ‖p− ph‖0,Ω.

Moreover, using the fact that cN−1/d ≤ h ≤ CN−1/d, the experimental rate of convergence of any of
the above quantities will be computed as

rate := −d
[
log(e/e′)/ log(N/N ′)

]
,

where N and N ′ denote the total degrees of freedom associated to two consecutive triangulations with
errors e and e′.

The examples to be considered in this section are described next. Example 1 is used to explore
the performance of the two-dimensional Galerkin scheme (3.23) and the a posteriori error estimator
Θ under a quasi-uniform refinement, especially in the presence of volumetric locking. Furthermore,
the two and three-dimensional simulations in Examples 2, 3 and 4 demonstrate the behavior of the
adaptive algorithm associated to Θ, which reads as follows:

1. Start with a coarse mesh Th of Ω.

2. Solve the discrete problem (3.23) on the current mesh.

3. Compute ΘT for each T ∈ Th.

4. Check the stopping criterion and decide whether to finish or go to the next step.

5. Use Plaza and Carey’s algorithm [115] to refine each T ′ ∈ Th satisfying:

ΘT ′ ≥ Cper max{ΘT : T ∈ Th} for some Cper ∈]0, 1[.

6. Define the resulting mesh as the current mesh Th, and go to step 2.

Note that the above procedure is the usual adaptive refinement strategy from [139], except that the
classical blue-green refinement has been replaced by step 5.

3.5.1 Example 1: Accuracy assessment

This first example is aimed at evaluating the accuracy of the method, as well as the properties of the
a posteriori error estimator through the effectivity index eff(Θ), under a quasi-uniform refinement
strategy. To that end, we consider the domain Ω :=]0, 3/2[×]0, 1[ and split its boundary into Γu :={

(x1, x2)T ∈ R2 : x1 = 0 or x2 = 1
}
and Γp :=

{
(x1, x2)T ∈ R2 : x1 = 3/2 or x2 = 0

}
. We choose

the data f , `, pΓ and mΓ such that the solution of problem (3.11) is given by u := (u1, u2)T ,
where u1(x1, x2) := 0.1

(
sin(πx1) cos(πx2) + x2

1
2λ

)
and u2(x1, x2) := 0.1

(
− cos(πx1) sin(πx2) + x2

2
2λ

)
,
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and p(x1, x2) := π sin(πx1) sin(πx2), and φ and σ defined as in (3.11b) and (3.11c), respectively, with
g := (0, 1)T .

In Table 3.1 we present the convergence history obtained for this example under the following non-
dimensional model parameters: η = α = ρ = 1, c0 = 10−3, κ(x1, x2) := 1 + sin2(πx1) cos2(πx2),
E = 100, g = (0, 0,−1)T and three cases for the Poisson ratio, ν = 0.35, ν = 0.4 and ν = 0.4999.
From Table 3.1 we conclude that there are almost no differences between the corresponding errors
when varying ν. This confirms that the estimates given by Lemma 3.4 are independent of λ :=
2E/[(1 − 2ν)(1 + ν)], i.e., our conforming scheme (3.23) is locking-free. Moreover, for each value of
ν, the effectivity index eff(Θ) remains bounded, thus verifying the reliability and efficiency of the a
posteriori error estimator Θ.

It is worth mentioning that it is desirable to have eff(Θ) → 1 as N → ∞. For the four-field
poroelasticity equations, we claim that eff(Θ) is affected by the values of η/κ in (3.11c). To show
this, we use the same model parameters as before, fix ν = 0.4, and consider the cases of η/κ = 104,
η/κ = 100 and η/κ = 10−4. The decay of the corresponding total errors with respect to the total
number of degrees of freedom, as well as the effectivity indexes, using a quasi-uniform refinement
strategy are depicted in Figure 3.1. From these results, we conclude that the method is not robust
with respect to the ratio η/κ. Moreover, in two cases the effectivity index is far from 1 and for all
cases the effectivity index differs from each other, but is still bounded. This behavior is not surprising
since our a posteriori and a priori error estimates may depend on η/κ. Despite this, we proceed as in
[127] to modify e(u, φ,σ, p) in such a way that eff(Θ) is closer to 1. For this, we first introduce the
estimator terms Θi (i = 1, . . . , 10) given by Θ2

i :=
∑
T∈Th

Θ̂2
i , where

Θ̂2
1 :=

∥∥∥∥∥
(
c0 + α2

λ

)
ph −

α

λ
φh + divσh − `

∥∥∥∥∥
2

0,T
, Θ̂2

2 := h2
T ‖f + div (2µε(uh)− φhI)‖20,T ,

Θ̂2
3 := h2

T

∥∥∥∥rot
(
η

κ
σh − ρg

)∥∥∥∥2

0,T
, Θ̂2

4 :=
∥∥∥∥ 1
λ

(φh − αph) + divuh
∥∥∥∥2

0,T
,

Θ̂2
5 :=

∑
e∈E(T )∩Eh(Γp)

he

∥∥∥∥(ηκσh − ρg
)
· s+ dpΓ

ds

∥∥∥∥2

0,e
, Θ̂2

6 :=
∑

e∈E(T )∩Eh(Γp)
he‖pΓ − ph‖20,e,

Θ̂2
7 :=

∑
e∈E(T )∩Eh(Γp)

he‖mΓ − (2µε(uh)− φhI)n‖20,e, Θ̂2
8 :=

∑
e∈E(T )∩Eh(Ω)

he

∥∥∥∥
s(

η

κ
σh,−ρg

)
· s

{∥∥∥∥2

0,e
,

Θ̂2
9 :=

∑
e∈E(T )∩Eh(Ω)

he‖J(2µε(uh)− φhI)nK‖20,e, Θ̂2
10 := h2

T

∥∥∥∥∇ph − ρg + η

κ
σh

∥∥∥∥2

0,T
.

The history of convergence of these estimator terms for the three values of η/κ are shown in Figure
3.2. Although Θ1 > Θi for all i = 2, . . . , 10 when κ/η = 10−4, the results for κ/η = 100 and
κ/η = 104 allow us to conjecture that the global estimator Θ focuses on refining where the divergence
of 2µε(u − uh) − (φ − φh)I (associated to Θ2) is large. Inspired by [127], this situation leads us to
consider, under further regularity of the solution, the modified total error and effectivity index given
by

ê(u, φ,σ, p) :=

e(u, φ,σ, p)2 +
∑
T∈Th

h2
T ‖div (2µε(u− uh)− (φ− φh)I)‖20,T

1/2
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and
êff(Θ) := ê(u, φ,σ, p)/Θ,

respectively. The left panel of Figure 3.3 illustrates the updated history of convergence, whereas the
associated effectivity indexes are shown on the right panel. It can be concluded that, in general,
êff(Θ) is much closer to 1 than eff(Θ).

ν = 0.35
e(u) e(φ) e(σ) e(p) e(u, φ,σ, p)

N error rate error rate error rate error rate error rate eff(Θ)
220 6.16e-02 – 4.08e-01 – 1.13e+01 – 2.96e-01 – 1.14e+01 – 0.390
762 1.65e-02 2.12 1.09e-01 2.13 3.21e+00 2.03 8.03e-02 2.10 3.21e+00 2.03 0.410
3146 3.87e-03 2.05 2.44e-02 2.11 7.85e-01 1.99 1.93e-02 2.01 7.86e-01 1.99 0.438
11664 1.03e-03 2.02 6.41e-03 2.04 2.11e-01 2.00 5.02e-03 2.05 2.11e-01 2.00 0.449
46975 2.48e-04 2.05 1.49e-03 2.09 5.23e-02 2.00 1.22e-03 2.03 5.24e-02 2.00 0.457
186597 6.23e-05 2.00 3.72e-04 2.02 1.31e-02 2.00 3.07e-04 2.00 1.31e-02 2.00 0.455
744791 1.56e-05 2.00 9.28e-05 2.01 3.32e-03 1.99 7.69e-05 2.00 3.32e-03 1.99 0.459

ν = 0.4
e(u) e(φ) e(σ) e(p) e(u, φ,σ, p)

N error rate error rate error rate error rate error rate eff(Θ)
220 6.17e-02 – 4.48e-01 – 1.13e+01 – 2.96e-01 – 1.14e+01 – 0.400
762 1.66e-02 2.12 1.13e-01 2.22 3.21e+00 2.03 8.03e-02 2.10 3.21e+00 2.03 0.420
3146 3.88e-03 2.05 2.50e-02 2.13 7.85e-01 1.99 1.93e-02 2.01 7.86e-01 1.99 0.448
11664 1.03e-03 2.02 6.49e-03 2.06 2.11e-01 2.00 5.02e-03 2.05 2.11e-01 2.00 0.460
46975 2.48e-04 2.05 1.50e-03 2.11 5.23e-02 2.00 1.22e-03 2.03 5.24e-02 2.00 0.467
186597 6.23e-05 2.00 3.72e-04 2.02 1.31e-02 2.00 3.07e-04 2.00 1.31e-02 2.00 0.465
744791 1.56e-05 2.00 9.24e-05 2.01 3.32e-03 1.99 7.69e-05 2.00 3.32e-03 1.99 0.470

ν = 0.4999
e(u) e(φ) e(σ) e(p) e(u, φ,σ, p)

N error rate error rate error rate error rate error rate eff(Θ)
220 6.19e-02 – 8.81e-01 – 1.13e+01 – 2.96e-01 – 1.14e+01 – 0.415
762 1.66e-02 2.12 1.51e-01 2.84 3.21e+00 2.03 8.04e-02 2.10 3.22e+00 2.04 0.437
3146 3.88e-03 2.05 2.95e-02 2.30 7.85e-01 1.99 1.93e-02 2.01 7.86e-01 1.99 0.468
11664 1.03e-03 2.02 7.16e-03 2.16 2.11e-01 2.00 5.02e-03 2.05 2.11e-01 2.00 0.480
46975 2.48e-04 2.05 1.57e-03 2.18 5.23e-02 2.00 1.22e-03 2.03 5.24e-02 2.00 0.487
186597 6.24e-05 2.00 3.84e-04 2.05 1.31e-02 2.00 3.08e-04 2.00 1.31e-02 2.00 0.485
744791 1.56e-05 2.00 9.46e-05 2.02 3.32e-03 1.99 7.69e-05 2.00 3.32e-03 1.99 0.490

Table 3.1: Example 1: Convergence history of the errors under a quasi-uniform refinement strategy
and different values of the Poisson ratio ν. (table produced by the author)

3.5.2 Example 2: Domain with corner singularity

In this example we set the model parameters (in non-dimensional form) as follows: c0 = η = 0.01,
E = 100, α = 1 and ν = 0.35. Furthermore, we neglect gravity effects and consider the inverted
L-shaped domain Ω :=] − 1, 1[×] − 1, 1[\[0, 1] × [−1, 0], with boundary parts Γp :=] − 1, 1[×{1} and
Γu := Γ \ Γp. The manufactured solution in polar coordinates is given by u := (u1, u2)T , where
u1(r, θ) := r2/3 sin (2θ/3) and u2(r, θ) := r2/3 cos (2θ/3), and p(r, θ) := 1, φ(r, θ) := α and σ(r, θ) := 0,
with corresponding data. Note that Γu does not satisfy the geometrical assumption made in Lemma
3.10, which means that further regularity of the solution on a bigger convex domain needed by the
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Figure 3.1: Example 1: Log-log plots of N vs e(u, φ,σ, p) (left) and eff(Θ) (right) for a quasi-uniform
refinement strategy and different values of the ratio η/κ. (figure produced by the author)
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Figure 3.2: Example 1: Log-log plots of N vs Θi (i = 1, . . . , 10) for a quasi-uniform refinement strategy
and different values of the ratio η/κ. (figure produced by the author)
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Figure 3.3: Example 1: Log-log plots of N vs ê(u, φ,σ, p) (left) and êff(Θ) (right) for a quasi-uniform
refinement strategy and different values of the ratio η/κ. (figure produced by the author)
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Helmholtz decomposition (cf. (3.55)) cannot be guarantied theoretically (see [74] for more details).
We omit this fact for the sake of convenience. Furthermore, we note that a negative power of the
radius r appears when taking partial derivatives of the components of the displacements; this implies
a singularity at the origin. It is well-known that in this case a convergence of O(h2/3−δ) (with some
δ > 0) is expected from Theorem 3.6.

In Figure 3.4 we report the history of convergence of the total error for quasi-uniform and adaptive
refinement strategies. It is clear that the errors using the adaptive refinement are considerably smaller
than when using quasi-uniform refinement. Moreover, the adaptive procedure reduces the magnitude
of e(u, φ,σ, p) with optimal convergence of O(h2). Some adapted meshes obtained with Cper = 0.2
are depicted in Figure 3.5, where it is evident that the a posteriori error estimator Θ detects the
singularity.
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100

e(
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,p

)

quasi-uniform refinement
adaptive refinement
O(h2/3)

O(h2)

Figure 3.4: Example 2: Log-log plot of e(u, φ,σ, p) vs N for both refinement strategies (Cper = 0.2).
(figure produced by the author)

3.5.3 Example 3: Three-dimensional L-shaped domain

We next consider a three-dimensional L-shaped domain as shown in the left panel of Figure 3.6.
For this example we consider the following non-dimensional model parameters: c0 = 0.01, η =
α = ρ = 1, E = 10, κ = 0.05 and ν = 0.4999. Furthermore, the manufactured exact solu-
tion is defined as follows: u := (u1, u2, u3)T , where u1(x1, x2, x3) := 0.1

(
4(x3

2 − 6x5
3 + 15x2

3) + x2
1
λ

)
,

u2(x1, x2, x3) := 0.1
(
2(x2 − 10)x3 + x2

2
λ

)
and u3(x1, x2, x3) := 0.1

(
x2

3 + x2
3
λ

)
, p(x1, x2, x3) := x1x

4
3 −

30x3
2 + x2

3 + 0.1(1.2−x3)
[(1.05−x1)2+(1.05−x3)2] , and φ and σ are defined as in (3.11b) and (3.11c), respectively,

with g := (0, 0,−1)T . We notice that the partial derivatives of p exhibit singularities along the line{
(x1, x2, x3)T ∈ R3 : x1 = x3 = 1.05

}
so that high gradients of p are likely to occur near the re-entrant

edge of the domain.

The right panel of Figure 3.6 illustrates the decay of the total error with respect to N for quasi-
uniform and adaptive refinement strategies. A suboptimal rate of convergence is observed using quasi-
uniform refinement. In contrast, the adaptive algorithm restores the optimal rate of convergence (i.e.,
O(h2)) and reduces the magnitude of e(u, φ,σ, p) by marking the mesh elements near the re-entrant
edge, as shown in Figure 3.7.
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Figure 3.5: Example 2: Initial mesh and two adapted meshes obtained with the adaptive algorithm
and Cper = 0.2 (first row), and approximate displacement magnitude, and approximate displacement
components, denoted by u1,h and u2,h, obtained at the 21st refinement step (second row). (figure
produced by the author)
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Figure 3.6: Example 3: Domain configuration (left) and log-log plot of e(u, φ,σ, p) vs N for both
refinement strategies (right). The adaptive algorithm was carried out with Cper = 0.5. (figure produced
by the author)
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Figure 3.7: Example 3: Initial mesh and three adapted meshes obtained with the adaptive algorithm
and Cper = 0.5 (fist row), and approximate displacement magnitude, approximate fluid flux and
approximate fluid pressure obtained at the 11th refinement step (second row). (figure produced by
the author)
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3.5.4 Example 4: Simple-poroelastic brain model

In our final example we present a 3D computation illustrating the cerebrospinal fluid-tissue interaction
in the human brain. For this, we use the Colin 27 mesh [70] as our initial mesh, see Figure 3.8. We
neglect effects due to gravity.

Figure 3.8: Left, posterior and right, lateral views of the initial mesh (with 99605 elements) used in
Example 4. The inner ventricular boundary is shown in red. (figure produced by the author)

The material properties in our simulations are: E = 1500 [Pa], α = 0.25, c0 = 3 · 10−4 and
η = 100 [Pa · s]. These are inspired by the numerical example of [94, Section 6]. We also consider three
cases for the permeability, κ = 3.75 [mm2], κ = 1.57 ·10−1 [mm2] and κ = 1.57 ·10−3 [mm2], and set Γu
and Γp as the skull (outer boundary) and the ventricles (inner boundary) of the brain, respectively.
Note that Γu does not satisfy the geometrical assumption made in the three-dimensional Helmholtz
decomposition (see Lemma 3.10 for details in the two-dimensional case). We simply omit this fact
and continue by imposing the following boundary conditions:

p = 799.92 [Pa] and (2µε(u)− φI)n = −199.98n on Γp,
u = 0 and σ · n = 0 on Γu.

In Figure 3.9 we observe that there is little displacement when the brain behaves like an elastic
material (ν = 0.4999). Lowering the Poisson ratio to ν = 0.34, the material is able to relax resulting
in more displacement. In the first column we furthermore observe that increasing the permeability
results in more displacement. This is due to a higher filtration rate of the fluid. As expected, in
the elastic limit there is little effect on the displacement when increasing the permeability. In Figure
3.10 we observe compressibility effects due to high filtration when permeability is large, both for high
(ν = 0.4999) and low (ν = 0.34) Poisson ratios. Finally, the 5th adapted mesh for the case ν = 0.4999
and κ = 1.57 · 10−3 [mm2] is depicted in Figure 3.11, from which it is concluded that the adaptive
algorithm refines near the ventricles. It is here where the pressures and displacement are highest.
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(a) ν = 0.34 and κ = 1.57 · 10−3 [mm2]. (b) ν = 0.4999 and κ = 1.57 · 10−3 [mm2].

(c) ν = 0.34 and κ = 1.57 · 10−1 [mm2]. (d) ν = 0.4999 and κ = 1.57 · 10−1 [mm2].

(e) ν = 0.34 and κ = 3.75 [mm2]. (f) ν = 0.4999 and κ = 3.75 [mm2].

Figure 3.9: Example 4: Approximate displacement magnitude for different values of ν and κ obtained
at the 5th refinement step (Cper = 0.3) with: (a) N = 4969116 and 270243 elements, (b) N = 5290281
and 288805 elements, (c) N = 3290456 and 175830 elements, (d) N = 3216013 and 171634 elements,
(e) N = 3865851 and 209323 elements; and (f) N = 3369212 and 180800 elements. (figure produced
by the author)
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(a) ν = 0.34 and κ = 1.57 · 10−3 [mm2]. (b) ν = 0.4999 and κ = 1.57 · 10−3 [mm2].

(c) ν = 0.34 and κ = 1.57 · 10−1 [mm2]. (d) ν = 0.4999 and κ = 1.57 · 10−1 [mm2].

(e) ν = 0.34 and κ = 3.75 [mm2]. (f) ν = 0.4999 and κ = 3.75 [mm2].

Figure 3.10: Example 4: Approximate fluid pressure for different values of ν and κ obtained at the
5th refinement step (Cper = 0.3) with: (a) N = 4969116 and 270243 elements, (b) N = 5290281 and
288805 elements, (c) N = 3290456 and 175830 elements, (d) N = 3216013 and 171634 elements, (e)
N = 3865851 and 209323 elements; and (f) N = 3369212 and 180800 elements. (figure produced by
the author)
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Figure 3.11: Example 4: Initial mesh (left) and the 5th adapted mesh obtained with ν = 0.4999 and
κ = 1.57 · 10−3 [mm2] (right). These meshes have 99605 and 288805 elements, respectively. (figure
produced by the author)



Discussion and future work

In this thesis we considered problems of physical interest subjected to curved domains and singularities
or high gradients of the solution, and developed new high order mixed finite element methods that can
be employed without the risk of losing accuracy in the aforementioned situations. Let us discuss some
aspects of the methods proposed and analyzed in this dissertation that we think the reader should
take into account.

The analysis we presented in Chapter 1 depends on certain hypotheses on the transferring paths
which, in practice, we restricted to two situations where numerical evidence suggested that the method
can be used. First, we may consider fitted methods resulting from a piecewise linear interpolation of
the boundary Γ and conclude that Assumptions D of Section 1.2.4 hold for h small enough. Moreover,
since in this case the transferring paths related to the vertices of a boundary edge e can be chosen so
that they are perpendicular to e, the equivalence norm involving these paths holds without requiring
the assumptions in Lemma 1.6.

The other case we considered is when the domain is immersed in a backgroundmesh and Dh is the
union of all elements inside Ω. This technique is very convenient for complex geometries since Γh
is away from Γ. The first concern here, however, is that Assumption (D.2) is difficult to ensure in
practice. The second issue concerns the numerical implementation of transferring paths satisfying the
hypotheses in Lemma 1.6. In our numerical simulations we considered a two-dimensional algorithm
to compute these paths for which no problems were detected, but we recognize further research on
this computational aspect is needed to see if we can expected the hypotheses in Lemma 1.6 to hold
for general geometries in two and three dimensions.

In Chapter 2 we extended the analysis of purely diffusive problems to the incompressible Stokes
equations in mixed form. This extension by itself is non-trivial because the introduction of the pseu-
dostress tensor as an additional unknown requires the trace of this tensor to satisfy a zero-mean
condition over Dh. The assumptions on the transferring paths are similar to those required by the
previous work. Furthermore, a residual based a posteriori error estimator was developed and both
reliability and quasi-efficiency estimates for the estimator were shown. We restricted this estimator
to the case where the curved boundary is interpolated by a piecewise linear function. However, the a
priori error estimates holds for computational meshes that are not necessarily adjusted to the curved
boundary. In this way, we are interested in extending our a posteriori error estimator to handle those
meshes as well.

The theory we developed in Chapters 1 and 2 can be adapted to three dimensions. In fact, by the
equivalence norm result in Appendix B and the notation introduced in Section 2.5.4, the extension
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of the analyses for both purely diffusive and Stokes problems to three dimensions is straightforward.
The numerical implementation of this case is much harder and will be considered in future work. In
the context of unfitted methods, we would also like to study non-linear problems, such as the Stokes
problem for quasi-Newtonian fluids and Navier–Stokes equations, as well as more general boundary
conditions.

On the other hand, in Chapter 3 we developed an error analysis for a conforming and locking-free
finite element approximation of a four-field formulation of the stationary Biot’s model. An important
limitation of the results we presented is that all the analysis breaks down for the limit case c0 = 0.
In fact, as was pointed out in [92, Section 2], the stability constant in Theorem 3.2 blows up as c0
becomes very small. However, numerical simulations in [92] suggested that for c0 = 0 the analysis
might be derived using a different approach. This is somehow what we might see in two-phase models
of partially melted materials that degenerate in regions where the porosity vanishes, for which some
mixed and HDG methods based on weighted Sobolev spaces have shown to handle the degenerancies
in the porosity [7, 90]. In this direction, it would be interesting to derive a new locking-free method
for Biot’s model following the ideas in [7, 90]. En esta dirección, sería interesante derivar un nuevo
método libre de bloqueo para el modelo de Biot siguiendo las ideas en [7, 90].

As another extension of Chapter 3, we are interested in developing robust numerical methods with
respect to the ratio between the viscosity of the pore fluid and the permeability of the porous solid in
Biot’s consolidation model. Furthermore, since the numerical results obtained for this model are very
promising, especially in the context of our fourth example in Section 3.5, we would also like to extend
our a posteriori error analysis to the more sophisticated model of multiple network poroelasticity [94],
which can be used, for example, to study hydrocephalus [135], cerebral oedema [136], and risk factors
associated with early stages of Alzheimer’s disease [85].



Discusión y trabajos futuros

En esta tesis consideramos problemas de interés físico sujetos a dominios curvos y singularidades o
gradientes altos de la solución, y desarrollamos nuevos métodos de elementos finitos mixtos de alto
orden que pueden emplearse sin el riesgo de perder precisión en las situaciones antes mencionadas.
Discutamos algunos aspectos de los métodos propuestos y analizados en esta tesis que creemos que el
lector debe tener en cuenta.

El análisis que presentamos en el Capítulo 1 depende de ciertas hipótesis sobre los caminos de trans-
ferencia que, en la práctica, restringimos a dos situaciones en las que la evidencia numérica sugiere
que el método puede ser utilizado. Primero, podemos considerar los métodos fitted que resultan de
una interpolación lineal a trozos de la frontera Γ y concluir que las Hipótesis D de la Sección 1.2.4
se cumplen para h lo suficientemente pequeño. Además, dado que en este caso los caminos de trans-
ferencia asociados con los vértices de una cara de frontera e se pueden elegir de tal forma que sean
perpendiculares a e, la equivalencia de normas que involucra estos caminos se cumple sin requerir los
supuestos en Lemma 1.6.

El otro caso que consideramos es cuando el dominio está inmerso en una malla de fondo y Dh es
la unión de todos los elementos contenidos en Ω. Esta técnica es muy conveniente para geometrías
complejas ya que Γh está lejos de Γ. Sin embargo, la primera preocupación aquí es que la Hipótesis
(D.2) es difícil de garantizar en la práctica. El segundo problema se refiere a la implementación
numérica de caminos de transferencia que satisfagan las hipótesis en el Lemma 1.6. En nuestras
simulaciones numéricas, consideramos un algoritmo bidimensional para calcular estos caminos para
las cuales no se detectaron problemas, pero reconocemos que se necesita más investigación sobre este
aspecto computacional para ver si podemos esperar que las hipótesis en el Lemma 1.6 se cimplan para
geometrías generales en dos y tres dimensiones.

En el Capítulo 2 ampliamos el análisis de problemas puramente difusivos a las ecuaciones de Stokes
incompresibles en forma mixta. Esta extensión en sí misma no es trivial porque la introducción del
tensor de pseudo-esfuerzo como una incógnita adicional requiere que la traza de este tensor satisfaga
una condición de media cero sobre Dh. Los supuestos sobre los caminos de transferencia son similares a
los requeridos por el trabajo anterior. Además, se desarrolló un estimador de error a posteriori de tipo
residual y se mostraron estimaciones de confiabilidad y casi eficiencia para el estimador. Restringimos
este estimador al caso en el que la frontera curva se interpola mediante una función lineal a trozos.
Sin embargo, las estimaciones de error a priori se cumplen para mallas computacionales que no están
necesariamente ajustadas a la frontera curva. De esta manera, estamos interesados en extender nuestro
estimador de error a posteriori para manejar esas mallas también.
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La teoría que desarrollamos en los Capítulos 1 y 2 se puede adaptar a tres dimensiones. En efecto,
gracias al resultado de la norma de equivalencia en el Apéndice B y la notación introducida en la
Sección 2.5.4, la extensión a tres dimensiones de los análisis para problemas puramente difusivos y de
Stokes es inmediata. La implementación numérica de este caso es mucho más difícil y será considerada
en trabajos futuros. En el contexto de métodos unfitted, también nos gustaría estudiar problemas no
lineales, como el problema de Stokes para fluidos casi newtonianos y las ecuaciones de Navier-Stokes,
así como también condiciones de frontera más generales.

Por otro lado, en el Capítulo 3 desarrollamos un análisis de error para una aproximación de elementos
finitos conformes y libre bloqueo de una formulación de cuatro campos del modelo de Biot estacionario.
Una limitación importante de los resultados que presentamos es que todo el análisis deja de cumplirse
para el caso límite c0 = 0. En efecto, como se señaló en [92, Sección 2], la constante de estabilidad en
el Teorema 3.2 explota cuando c0 se vuelve muy pequeña. Sin embargo, las simulaciones numéricas
en [92] sugirieron que para c0 = 0 el análisis podría derivarse usando un enfoque diferente. Esto es de
alguna manera lo que podríamos ver en los modelos de dos fases de materiales parcialmente fundidos
que se degeneran en regiones donde la porosidad es cero, para lo cual algunos métodos mixtos y HDG
basados en espacios Sobolev con pesos han demostrado manejar las degeneraciones en la porosidad
[7, 90].

Como otra extensión del Capítulo 3, estamos interesados en desarrollar métodos numéricos robustos
con respecto al radio entre la viscosidad del fluido de los poros y la permeabilidad del sólido poroso en
el modelo de consolidación de Biot. Además, dado que los resultados numéricos obtenidos para este
modelo son muy prometedores, especialmente en el contexto de nuestro cuarto ejemplo en la Sección
3.5, también nos gustaría extender nuestro análisis de error a posteriori al modelo más sofisticado de
poroelasticidad de redes múltiples [94], que se puede utilizar, por ejemplo, para estudiar hidrocefalia
[135], edema cerebral [136], y factores de riesgo asociados con las primeras etapas de la enfermedad
de Alzheimer [85].
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APPENDIXA

Estimates for C̃e
ext

In this section we provide an estimate of the extrapolation constant (1.15). To that end, we use the
norm equivalence given by Lemma 1.6.

The following result extends the estimation in [57, Lemma A.1] to the case when the norm ‖ · ‖0,K̃e
ext

is considered.

Lemma A.1. Let e be any edge in E∂h . Let L be the line segment with endpoints given by the center
of the biggest ball contained in Ke, and the point of the set K̃ext where the polynomial p achieves its
maximum. Suppose that Assumption (A.1) in Section 1.2.4 holds. Assume further that L is contained
in the interior of the closure of the set Ke ∪ K̃e

ext, denoted by Be. Then, for any p ∈ Pl(Be) we have

‖p‖0,K̃e
ext
≤ C(r̃e)1/2(l + 1)2ηle‖p‖0,Ke ,

where r̃e := H̃e/h
⊥
e and ηe := 1+2γKe r̃e+2 (γKe r̃e(1 + γKe r̃e))1/2. Here the constant C solely depends

on the shape-regularity constant γKe.

Proof. We begin by noting that L can be subdivided into

Ieint := {x ∈ L : x ∩Ke 6= ∅} and Ieext := {x ∈ L : x ∩ K̃e
ext 6= ∅},

from which

‖p‖20,K̃e
ext

≤ |K̃e
ext| max

x∈K̃e
ext

|p(x)| ≤ |K̃e
ext|‖p‖2L∞(Ie

ext)
≤ ChKeH̃e‖p‖2L∞(Ie

ext)
,

since |K̃e
ext| ≤ ChKeH̃e.

On the other hand, the estimate ‖p‖L∞(Ie
ext) ≤ η

l
e‖p‖L∞(Ie

int) holds by mimicking similar steps as in
the proof of [57, Lemma A.1]. In fact, since h⊥e ≤ hKe and hKe ≤ γKeρKe , we find

|Ieext|
|Ieint|

≤ |I
e
ext|
ρKe

≤ H̃e

ρKe
≤ γKe

H̃e

hKe
≤ γKe r̃e,

where ρKe is the radius of the biggest ball contained in Ke. From this, the estimate on ‖p‖L∞(Ie
ext)

follows from [56, Lemma 4.3]. Furthermore, we obtain using standard scaling arguments,

‖p‖L∞(Ie
int) ≤ ‖p‖L∞(Ke) ≤ C (hKe)−1 (l + 1)2‖p‖0,Ke .

The conclusion then follows by using that h−1
Ke ≤ (h⊥e )−1 ≤ r̃e/H̃e.
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The previous result, combined with the estimates in Lemma 1.6, implies

C̃eext ≤ C(Ce1)−1Ce2(l + 1)2ηle.



APPENDIXB

Extension of the analysis to three dimensions

Our goal in this section is to comment on the main consideration to extend the analyses of Chapters 1
and 2 to three dimensions.

B.1 Norm equivalence

In this section we extend the proof of Lemma 3.4 in Chapter 1 to show the equivalence between the
L2(T̃ eext)-norm and the norm in (1.14) (see also (2.28)) in three dimensions. To that end, let p1, p2,
p3 be the vertices of a boundary face e. A point x ∈ e, can be parameterized as

x(θ1, θ2) = p1 + θ1(p2 − p1) + θ2(p3 − p1), θ1, θ2 ≥ 0, θ1 + θ2 ≤ 1.

Then, the tangent vector m̂ corresponding to the transferring segment associated to x can be written
as

m̂(θ1, θ2) = mp1 + θ1 (mp2 −mp1) + θ2 (mp3 −mp1) .

By setting α(θ1, θ2) := |m̂(θ1, θ2)| if m̂(θ1, θ2) 6= 0 and α(θ1, θ2) = 1, otherwise, we define the normal-
ized vector m(θ1, θ2) = m̂(θ1, θ2)/α(θ1, θ2). For y ∈ T̃ eext, we write

y(s, θ1, θ2) = x(θ1, θ2) + sm(θ1, θ2), s ∈ [0, `(θ1, θ2)], θ1, θ2 ≥ 0, θ1 + θ2 ≤ 1,

where `(θ1, θ2) stands for the length of the transferring path associated to x(θ1, θ2). Then, the Jacobian
of the mapping (s, θ1, θ2) 7→ y(s, θ1, θ2) is given by

|J(s, θ1, θ2)| =
∣∣∣∣2|e|m(θ1, θ2) · ne + s

α(θ1, θ2)m(θ1, θ2) · [(p2 − p1)× (mp3 −mp1)

−(p3 − p1)× (mp2 −mp1)] +
( 2s
α(θ1, θ2)

)2
m(θ1, θ2) · (mp2 −mp1)× (mp3 −mp1)

∣∣∣∣
and the L2(T̃ eext)-norm of a function v can be written as

‖v‖20,T̃ e
ext

=
∫
T̃ e

ext

|v(y)|2 dy =
∫ 1

0

∫ 1−θ1

0

∫ `(θ1,θ2)

0
|v(y(s, θ1, θ2))|2|J(s, θ1, θ2)| dsdθ2dθ1.

We have then the following result.
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Lemma B.1. Let p ∈ L2(T̃ eext) and consider the following conditions:

i) mp1 ·mp2 ≥ 0, mp2 ·mp3 ≥ 0, and mp1 ·mp3 ≥ 0,

ii) there exists a constant δe > 0, independent of h, such that m(θ1, θ2) · ne ≥ δe > 0 for all
θ1, θ2 ≥ 0, satisfying θ1 + θ2 ≤ 1; and

iii) mp1 · [(p2 − p1)×mp3 ] ≥ 0, mp2 · [(p2 − p1)×mp3 ] ≥ 0, mp2 · [mp1 × (p2 − p1)] ≥ 0, mp1 ·
[mp2 × (p3 − p1)] ≥ 0, mp3 · [mp2 × (p3 − p1)] ≥ 0, mp3 · [(p3 − p1)×mp1 ] ≥ 0, and mp1 ·
[mp2 ×mp3 ] ≥ 0.

If i) is satisfied, there exists Ce1 > 0 independent of h such that ‖v‖0,T̃ e
ext
≤ Ce1 |||v|||e. Moreover, if ii)

and iii) holds, then |||v|||e ≤ Ce2‖v‖0,T̃ e
ext
, where Ce2 > 0 is also independent of h.

Proof. Note that

[α(θ1, θ2)]2 = (1−θ1−θ2)2+θ2
1+θ2

2+2(1−θ1−θ2)θ1mp1 ·mp2 +2θ1θ2mp2 ·mp3 +2(1−θ1−θ2)θ2mp1 ·mp3

and, by i), we have
[α(θ1, θ2)]2 ≥ (1− θ1 − θ2)2 + θ2

1 + θ2
2 ≥

1
3 .

Now, we observe that `(θ1, θ2) ≤ H̃e ≤ r̃ehT e . Moreover, by regularity of the mesh, there exists γ such
that hT e ≤ γhe, and hence

|J(s, θ1, θ2)| ≤ 2|e|+ 4he
`(θ1, θ2)
α(θ1, θ2) + 16

(
`(θ1, θ2)
α(θ1, θ2)

)2
≤ 2|e|

(
1 + C

(√
3r̃eγ2 + 24 (r̃eγ)2

))
. 2|e|.

Combining this expression and (B.1), we deduce

‖v‖20,T̃ e
ext

. 2|e|
∫ 1

0

∫ 1−θ1

0

∫ `(θ1,θ2)

0
|v(y(s, θ1, θ2))|2 dsdθ2dθ1 = |||v|||2e,

which implies the first assertion of the lemma with Ce1 the constant hidden in the symbol .. Finally, by
algebraic manipulations and assumptions ii) and iii), it is possible to obtain |J(s, θ1, θ2)| ≥ 2|e|δe > 0
and the second assertion follows.



APPENDIXC

Additional experiments

This section addresses aspects of the method in Chapter 2 that are not covered by our theory, but
we consider they are important to take into account. More precisely, we study the condition number,
sparsity properties and dependence on the polynomial degree.

C.1 Density and condition number of the matrix

We first notice that (2.16) can be expressed as a linear system[
(A + D) BT

B 0

] [
Xσ

Xu

]
=
[
G
F

]
,

where Xσ (resp. Xu) are the coefficients of σh (resp. uh) expanded with respect to its corresponding
finite element space, whereas A, D and B are the matrices related respectively to the bilinear forms
ah, dh and bh. We shall denote by MD the above matrix and write M0 when D = 0. Notice that M0
corresponds to the standard block symmetric matrix of mixed formulations for polyhedral domains.
In other words, MD can be seen as a perturbation of M0 due to the transferring technique of our
data. In this experiments we want to quantify how this perturbation affects some properties of the
linear system.

We consider Ω to be a circle of center at origin and radius 0.75, meshed by following the two
procedures indicated along Section 2.6 in such a way that d(Γ,Γh) . h and d(Γ,Γh) . h2. In
Table C.1 we compare the number of nonzero entries of M0 vs MD for k = 0, 1, 2, 3, 4 and four
different meshes. We observe no significant differences between M0 and MD in this aspect.

Now, we compare the condition number of matrices M0 and MD denoted by κ0 and κD, respec-
tively. In Figure C.1 we display the ratio κ0/κD for the meshes considered in the experiment of
Table C.1. We observe that when d(Γ,Γh) . h2, there is no significant differences between κ0 and
κD. On the other hand, when the distance between Γ and Γh is of order h, in lowest order case, κD
behaves as κ0. However, when k ≥ 1, κD is much larger than κ0. We think this bad behavior of
the condition number of MD might be related to the fact that Assumption (A2) is not necessarily
satisfied in the latter case, because C̃eext depends on the polynomial degree as shown in Appendix A.
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N M0 MD N M0 MD

k = 0 72 2.3856% 2.3856% 78 2.2812% 2.2812%
360 0.5006% 0.5007% 374 0.4951% 0.4951%

k = 1 72 1.5430% 1.5430% 78 1.4645% 1.4645%
360 0.3184% 0.3186% 374 0.3132% 0.3132%

k = 2 72 1.2978% 1.2978% 78 1.2200% 1.2200%
360 0.2661% 0.2661% 374 0.2594% 0.2594%

k = 3 72 1.1995% 1.1995% 78 1.1236% 1.1236%
360 0.2449% 0.2449% 374 0.2380% 0.2380%

k = 4 72 1.1448% 1.1448% 78 1.0695% 1.0695%
360 0.2330% 0.2330% 374 0.2259% 0.2259%

Table C.1: Percentage of nonzero entries in the matrices M0 and MD. Columns 2-4 corresponds to
the case d(Γ,Γh) . h, whereas columns 5-7 are the results for d(Γ,Γh) . h2. N is the number of
triangles of the mesh. (table produced by the author)

A rigorous analysis of the condition number and preconditioning techniques will be subject of future
work.

Figure C.1: Semi-log plot of (k+1) vs κ0/κD for k = 0, 1, 2, 3, 4. Dashed lines corresponds to the case
d(Γ,Γh) . h, whereas solid lines are the results for d(Γ,Γh) . h2. (figure produced by the author)

C.2 k-dependence of the method

For a fixed mesh we explore the performance of the method for different polynomial degrees. We
consider the same setting of Appendix C.1. In Figure C.2 we observe that the log of the errors linearly
decreases with the polynomial degree. The results for the case k = 6 are affected by rounded-off errors.
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Figure C.2: Left, log-log plot of (k + 1) vs e(u) and right, vs e(σ), for k = 0, 1, . . . , 6. Dashed lines
corresponds to the case d(Γ,Γh) . h, whereas solid lines are the results for d(Γ,Γh) . h2. (figure
produced by the author)
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