

Universidad de Concepción

Facultad de Ingeniería

Departamento en Ciencias de la Computación

Mutation Testing Techniques for

Mobile Applications

Tesis para optar por el grado académico de

Doctor en Ciencias de la Computación

POR: ISYED DE LA CARIDAD RODRÍGUEZ TRUJILLO

Profesores Guía: PhD. Macario Polo Usaola
Escuela Superior de Informática e

 Instituto de Tecnologías y Sistemas de Información
Universidad de Castilla-La Mancha

 PhD. Diego Seco Naveiras
Departamento de Ingeniería Informática y

 Ciencias de la Computación
Facultad de Ingeniería

Universidad de Concepción

junio 2021
Concepción, Chile

© Se autoriza a la reproducción total o parcial, con fines académicos, por

cualquier medio o procedimiento, incluyendo la cita bibliológica del

documento.

II

ACKNOWLEDGMENTS

For the development of this thesis, the collaboration and help of

many people was necessary. First, I thank my advisor Macario Polo, for

being unconditional, for his commitment, for sharing his knowledge and

experience, and for being an example as an engineer. I thank the Alarcos

group of the Castilla - La Mancha University for hosting and supporting

me during my research stays. Also, to the Coruña University where I did

my first research stay and to whom I am very grateful for the opportunity

they offered me. Especially, to all the professors and members of the

Department of Computer Science of the University of Concepción, for

their knowledge and support in these years of study. To Professor Diego

Seco, for his teachings, dedication in his work and for his friendship. To

my fellow Ph.D. students and to the old and new friends I met at Udec.

Finally, I thank my parents for being always present in every stage of my

life and for their love, Kiki for being a wonderful person and my husband

Jose Luis for being my support and my strength.

Thank you all

III

SUMMARY

Mutation testing has the important drawback of its high computational

cost, especially in the testing of mobile software, due to implications in

dealing with mutants (i.e., compile, link, deploy and execute the mutated

versions on the mobile device are high-cost tasks). So far, works on

mutation testing for mobile mainly focus on the development of new

mutation operators. However, to our best knowledge, none of them has

evaluated cost reduction techniques in this context to deal with the

problem of execution time. The main contributions of this research are

related to (1) how several well-known cost reduction techniques help to

the effective improvement of testing time and (2) the suitability of the

proposed mathematical models for describing the execution time of test

cases in mutation testing. In addition, we present the design and

architecture of BacterioWeb v.2 in a distributed environment, to enable

mutation testing for teams of testers and contribute to the transition of

mutation testing from academic to industrial application.

IV

TABLA OF CONTENTS

CHAPTER 1 .. 1

INTRODUCTION ... 1

 Goals .. 4

 Research Methods ... 5

 structure of the thesis ... 6

CHAPTER 2 .. 7

THEORETICAL FRAMEWORK AND STATE OF THE ART....... 7

 Background ... 7

 Mutation testing ... 7

 Structure and Test of Android Applications 10

 Related Work ... 15

 Mutation Operators .. 15

 Mutation Testing Problems and Techniques 17

 Mutation Testing in Mobile Applications 27

 Partial Conclusions .. 30

CHAPTER 3 .. 31

A CONTRIBUTION TO THE IMPROVEMENT OF MOBILE

MUTATION TESTING ... 31

 First Attempt to Improve Mutation Testing on Mobile

Applications .. 32

 Mutant Generation at Bytecode Level 32

V

 BacterioWeb v.1: First version of Android Mutation Testing

Tool 41

 Mutant Schema Using Wrappers (MSW) 43

 Successful Approach to Mutation Testing on Mobile

Applications .. 57

 Mutant Generation at Source Code Level 57

 Untch Mutant Schema (UMS) ... 63

 BacterioWeb v.2: Improved version of Android Mutation

Testing Tool .. 69

 Mathematical Models of Cost Reduction Techniques 80

 Research Questions .. 86

CHAPTER 4 .. 88

EXPERIMENTATION AND RESULTS ... 88

 Mutation testing tool ... 88

 Target Android Apps and Mobile Devices 89

 Applied mutation operators ... 92

 Experimental Setup ... 95

 Research Questions Answered .. 99

 Analysis of the experiments .. 109

 Test suite reduction .. 109

 Test case prioritization ... 112

 Structure of test cases ... 115

 Threats to validity .. 116

FUTURE WORK .. 118

VI

 Specific operators for mobile software and operators

subsumption .. 118

 Mutant generation guided by metrics 119

 Mutant execution guided by static analysis 119

 Algorithms for Parallel Execution... 120

CONCLUSIONS ... 122

BIBLIOGRAPHY ... 124

VII

LIST OF TABLES

Table 1. A possible original program and three mutants [3] 9

Table 2. Results produced when executing the test cases on the original

program and the mutants ... 10

Table 3. A small program and three mutants .. 20

Table 4. Mutant Schema (adapted from Untch, Offutt and Harrold [72])

 ... 21

Table 5. Mutant Schema (adapted from Mateo and Usaola [20]) 22

Table 6. An “all against all” killing matrix for a supposed system 24

Table 7. An “Only against alive” killing matrix for a supposed system 25

Table 8. A reduced test suite obtained from Table 6 25

Table 9. Android mutation operators .. 28

Table 10. Source code of a simple setter method and two bytecode

translations .. 34

Table 11. Some UOI mutants and their bytecode translation (v integer) 35

Table 12. Some UOI mutants and their bytecode translation (v double) 36

Table 13. Execution tasks depending on the type of tests 81

Table 14. The first test kills all the mutants (= 1/5) 84

Table 15. The last test kills all the mutants (= 5/5) 84

Table 16. Some characteristics of the apps ... 91

Table 17. Tcompile with and without Mutant Schema 100

Table 18. Tpush with and without Mutant Schema 100

Table 19. Tinstall with and without Mutant Schema 101

Table 20. Trun with and without Mutant Schema 101

Table 21. Times with the Mangosta project, No Mutant Schema and All

against all... 103

VIII

Table 22. Times with the Mangosta project, No Mutant Schema and Only

Alive .. 103

Table 23. Times with the Mangosta project, with Mutant Schema and All

against all... 104

Table 24. Times with the Mangosta project, with Mutant Schema and

Only Alive ... 104

Table 25. Mean execution times of Alarm Clock’s test cases 112

IX

LIST OF FIGURES

Figure 1. “Traditional mutation testing process”, where T is the test suite

and P is the program under test and TC is a test case 2

Figure 2. Mutation Score .. 9

Figure 3. Some folders and files in an Android project 11

Figure 4. Compilation and packaging of an Android app....................... 13

Figure 5. Organization of tests in WordPress ... 14

Figure 6. Special characteristics of mobile software 27

Figure 7. Class hierarchy of instructions .. 33

Figure 8. Pseudocode of Operator::generateMutants(c: Class) 37

Figure 9. Structure of the abstract Operator ... 39

Figure 10. Three abstract specializations of Operator 39

Figure 11. Dependencies of our Operator with respect to ASM 40

Figure 12. General structure of BacterioWeb v.1 42

Figure 13. Collaboration among different instances of BacterioWeb v.1

 ... 43

Figure 14. A simple system ... 44

Figure 15. Mutants and originals packages ... 44

Figure 16. Inclusion of a controller ... 45

Figure 17. Final structure of the Mutant Schema 46

Figure 18. Interface template .. 47

Figure 19. Triangle_Mutant interface ... 48

Figure 20. Copy of the original (Triangle_0) .. 49

Figure 21. Controller template .. 50

Figure 22. Wrapper generated for Triangle .. 51

Figure 23. Wrapper for Triangle ... 53

file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527483
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527483
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527488
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527489
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527494
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527495
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527495

X

Figure 24. Pseudocode of the execution engine...................................... 54

Figure 25. A simple system with inheritance.. 55

Figure 26. The Triangle, before and after the preprocessing 56

Figure 27. The Project screen is used to generate mutants, run tests, etc.

 ... 58

Figure 28. Decoupled design of the mutant generation engine 58

Figure 29. Hierarchical structure of the operators 60

Figure 30. Implementation of the UOI operator in Untch's 61

Figure 31. Mutants generated by MDroid+ .. 62

Figure 32. Mutants for a sample application .. 63

Figure 33. Implementation of PLUS in the MutantDriver...................... 65

Figure 34. Implementation of the ITR operator in the MutantDriver 65

Figure 35. A small excerpt of the Kuar design 66

Figure 36. A fragment of the code in the SlidingBoards’ getFirst method

 ... 66

Figure 37. One of the schema mutants of getFirst in SlidingBoard 67

Figure 38. A piece of code, two classic mutants and a Mutant Schema. 68

Figure 39. Functional view of BacterioWeb v.1 70

Figure 40. Main tables in the database .. 72

Figure 41. Connection to the remote Device Web Servers 73

Figure 42. Launching remote emulators ... 73

Figure 43. Available devices after Figure 42 .. 74

Figure 44. A DeviceProxy interacts in the CWS with a remote device,

located at the DWS .. 74

Figure 45. Sequence of operations for starting a test execution 77

Figure 46. Console command for executing a test case and its result 79

Figure 47. Connection between a DeviceProxy (on the CWS) and its

physical device (on the DWS) .. 79

file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527509
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527509
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527510
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527511
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527512
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527513
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527514
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527521
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527522
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527523
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527524
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527525
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527527
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527528
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527529
file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527529

XI

Figure 48. Ten measures of Tms and Tcompile for WordPress and its 538

Java files .. 82

Figure 49. General view of BacterioWeb v.2 .. 88

Figure 50. Screenshots of Figures ... 90

Figure 51. Execution combinations .. 96

Figure 52. Two excerpts of the global.txt file, generated by BacterioWeb

v.2 .. 97

Figure 53. Summary of times in BacterioWeb v.2 98

Figure 54. Actual and estimated times in the Mangosta project 105

Figure 55. All combination of techniques in the Mangosta project 106

Figure 56. Theoretical tendency in the Improvement Factor with 1 device

and different values of 𝜌 (top) and observed tendency in WordPress .. 108

Figure 57. Two test cases in a supposed test suite 110

Figure 58. Reducing the test suite does not always produce reliable results

 ... 111

Figure 59. A mutation process, specifically adapted to mobile software

 ... 115

Figure 60. Kuar’s board .. 116

Figure 61. Killing matrix during one execution 121

file:///C:/Users/ASUS/Google%20Drive/TESIS_2020/RESEARCH/Entrega%20Tesis%20a%20Tribunal/Research_Isyed_entregarBibliotecav2.docx%23_Toc75527531

1

CHAPTER 1

INTRODUCTION

As it is well known, exhaustive testing of software systems (i.e.,

testing the system with its possible inputs and environmental conditions) is,

in practice, impossible, since it is unfeasible to reproduce all the running

situations. So, the tester must make decisions about which parts of the system

must be tested and the degree of depth of the test cases.

When a test engineer is testing a software artifact, he/she needs to

know which portions of the system are running their test cases. For this,

coverage criteria are used because they allow to know the "amount of

product" that is being tested (number of lines of code, methods, decisions,

conditions, etc.). If the tester knows the coverage that a set of test cases

reaches on the SUT (the System Under Test), he/she will be able to determine

which portions of the system are not being covered by the test cases:

• If the coverage is lower than a prefixed threshold, the tester must add

more test cases to cover the SUT more in depth, to force the execution

of the unexplored system areas.

• If the coverage is greater than that prefixed threshold and the test cases

do not find any error, then the SUT has a very high quality.

Figure 1 shows a mutation testing process that combines error

detection with coverage measurement. This process is a modified version

elaborated by Polo and Reales [1] of the mutation testing proposed by Offut

[2]. In the refined process in Figure 1, the tester evaluates the correction of

the input program for the initial test suite. Once the tester has a process

model to follow, the next point of interest is reducing costs in the “create

2

mutants,” “run T on each alive mutant,” and “threshold reached” boxes of

the figure. Eliminating ineffective test cases can occur during test case

execution or after, by applying a test-suite-reduction algorithm based on

mutation [1].

Mutation testing builds on discovering the artificial faults inserted in

copies of the System Under Test (SUT) which are called mutants. Mutation

testing subsumes several test criteria by incorporating appropriate mutation

operators [3]. A test criterion C1 subsumes another C2 if for every program,

any test set T that satisfies C1 also satisfies C2. Indeed, since mutants can be

placed anywhere in the code, mutation coverage can be used as surrogate for

almost any other form of structural coverage. Some studies (i.e., [3]) have

discussed how discovering all faults seeded by mutation operators might

subsume several coverage criteria widely accepted (such as decision,

condition, condition/decision, and modified decision/condition). From here,

the Mutation Score (coverage criterion used in mutation testing) is

considered as an adequate-coverage criterion if good mutation operators are

Figure 1. “Traditional mutation testing process”, where T is the test suite

and P is the program under test and TC is a test case

3

applied [3], [4]. So, this makes mutation testing a highly generic and flexible

approach to software testing.

One of the results of this thesis redefines this process proposed by Polo

and Reales [1] for the context of mobile applications.

The effectiveness of mutation testing has been demonstrated in many

empirical studies [5], although it has the important drawback of its high

computational cost, which is closely related to the number of mutants

generated. Thus, cost reduction in mutation testing is a very active research

matter [1], [6]–[14].

The situation is especially hard in the testing of mobile software, for

several reasons:

1. Testing traditional programs is different from testing mobile

applications, due to their specific features. For example, their

sensibility before context events such as: location changes, screen

orientation, phone calls, and many other events. In addition, mutation

testing in mobile applications has implications in dealing with

mutants, especially regarding the time needed to compile, link, deploy

and execute the SUT and its mutated versions on the mobile device.

2. As Deng et al. point out [15], “for a variety of technical reasons, test

execution [in Android] tends to be quite slow”, which “is particularly

troublesome for Android testers”. These authors report that “a single

iteration of an experiment required more than 20 hours”. In the

4

experimentation carried out in this research, we have often far

exceeded that value.

Related to the latter, this is due to the nature of instrumented Android

test cases. In Android, test suites can be composed of “unit” or

“instrumented” test cases:

• Unit test cases can be executed as classical Junit tests, directly on the

developer’s computer, and their execution is relatively fast.

• Instrumented test cases simulate interactions of the user with the

application or use Android-specific resources (sensors, for example).

These tests require the application under test to be deployed and

installed on an emulator or mobile device.

Instrumented tests turn compilation, deployment, and installation into

highly costly tasks, slowing down the whole mutation process. This is also

highlighted by Escobar-Velásquez et al. [14], for whom “Time is an issue in

mutation testing, for both generation and testing time”.

As shown in Epigraph 2.2.3 several researchers that have applied

mutation testing to mobile software. To our best knowledge, all of them are

focused on the proposal and development of mutation operators for this

specific context, but none deals with the problem of execution time.

Nonetheless, all of them mention it as one of the biggest obstacles in mobile

mutation testing.

 GOALS

The main goal of this thesis is: To contribute to reducing the cost of

mutation testing for mobile applications.

In order to fulfilling it, we must also reach the following subgoals (SG):

SG 1. To elaborate the theoretical conceptual framework of this

research from the study of the main concepts, phases, and problems of

mutation testing.

5

SG 2. To study the state of the art of the most used techniques in

mutation testing.

SG 3. To know and analyze the state of the art of mutation testing

in mobile applications.

SG 4. To develop a framework to automate the mutation testing

process in mobile applications.

SG 5. To model combinations of cost reduction techniques that

directly influence execution time and directly impact mobile technology.

SG 6. To validate the research applying techniques of Empirical

Software Engineering to real mobile.

 RESEARCH METHODS

Different research methods are used during this thesis:

• An Experiment is a procedure carried out to support, refute, or

validate a hypothesis. An experiment deals with an independent

variable of the environment or phenomenon under study and

measures its effect on other dependent variable [16]. Wohlin et

al. [17] have described a process for Software Engineering

experiments with five steps: scope definition, scheduling,

operation, analysis & interpretation, and presentation &

dissemination.

• A Case Study in Software Engineering is an empirical research

that uses different sources of evidence for researching an

instance of a phenomenon inside its real context [18].

According to Runeson et al. [18], case studies: (1) are flexible

(since they deal with complex and dynamic characteristics of

actual phenomena), (2) their qualitative and quantitative

conclusions are based on a clear set of evidences, taken from

multiple sources in a planned, consistent way and (3) add

6

knowledge to the pre-existent, based on a previously established

theory or setting up a new one.

 STRUCTURE OF THE THESIS

Chapter 2 Theoretical Framework and State of the Art is divided into

two sections. First, the main concepts related to mutation testing and the

structure and testing of Android applications are described. Second, some

relevant related works, which are part of the state of the art in mutation

testing and mobile mutation testing, are discussed.

Chapter 3 Contribution to the improvement of mobile mutation testing

forms the core of the research, describes the development of mutation testing

techniques with different approaches and implementations, details the tool

we have developed for supporting the whole mutation testing process of

mobile software, defines various mathematical models of the applied cost

reduction techniques, and raises the research questions.

Chapter 4 Experimentation and Results describes the experiments

performed to answer the research questions in terms of: mutation testing

techniques applied, mutation operators used, target mobile applications for

the execution of the tests. Then, the results obtained are analyzed and a set

of best practices resulting from the experimentation carried out during the

research are listed.

Finally, the Future work section describes some lines of work that

could drive future research and the Conclusion section summarizes the main

contributions of this thesis.

7

CHAPTER 2

THEORETICAL FRAMEWORK AND STATE OF

THE ART

This chapter is divided into two key aspects. The first (Background)

details the mutation-based testing process and the main concepts associated

with mobile applications, specifically Android applications. The second

(Related work) presents (1) a state of the art in terms of the works and

techniques that have addressed the different problems of mutation testing

and (2) a state of the art on mutation testing in mobile applications.

 BACKGROUND

 Mutation testing

Mutation Testing goes through three main stages [19]:

• Mutant Generation: It consists in creating mutants of the

original program using mutation operators.

• Test case execution: It consists in executing the test cases

against the original program and the mutants.

• Results Analysis: It consists in (1) analyzing the results of the

executions of the test cases on the mutants (comparing them

with the same test case results on the original) and (2) in

calculating the mutation score to evaluate the quality of the test

cases.

A mutant 𝑀 of a program under test 𝑃 is a copy of 𝑃 that contains a

small code change that is interpreted as a fault. These faults are introduced

by mutation operators. Consider a simple instruction such as 𝑟𝑒𝑡𝑢𝑟𝑛 𝑎 + 𝑏

8

(where 𝑎 and 𝑏 are integers): mutation operators can mutate it in at least 10

different ways (a − b, a × b, a / b, a + b++, −a + b, a + − b, 0 + b, a + 0,

|a| + b, a + |b|), depending on each operator. Thus, the number of mutants

generated even for a medium-size program can be very large.

Once the mutation operators generate the mutants, test cases are run.

A test case T finds the error inserted in a mutant M when the test case result

is different for the original program P and for the mutant: in this case it is

said that the mutant is killed; otherwise, the mutant is alive. The goal of

mutation testing is to kill all the mutants (i.e., to find all the artificial errors):

a test suite that kills all the mutants is mutation adequate. Since a mutation

adequate test suite finds all the artificial faults, it is expected that it finds also

all the natural faults (those inadvertently inserted by the programmer). In the

sense of Figure 1, if the test suite finds all the artificial faults and does not

find any fault in the SUT, it is very likely that this one is free of them (the

artificial faults must be “good” faults, representative enough of those that

could be committed by programmers).

Many mutants that remain alive will never be killed because they are

equivalent mutants and will always produce the same output as 𝑃 for any

test case. The fault introduced in equivalent mutants is not a fault but an

optimization or de-optimization of the code (for example, the Java

instructions return a and return a++ provide the same result). Equivalent

mutants are really “noisy” and make difficult analyzing test case execution

results. Taking into account the set of equivalent mutants, the following

equation gives the quality of a test suite (measured in terms of the number

of mutants killed) and defines the mutation score (MS) [20]:

𝑀𝑆(𝑃, 𝑇) =
𝐾

𝑀 − 𝐸

Where 𝑃 is the program under test; 𝑇 is the test

suite; K is the number of mutants killed; 𝑀 is the

number of mutants generated; and 𝐸 is the number

of equivalent mutants.

9

Figure 2. Mutation Score

For example: The first row of the following of Table 1, shows the code

of a max(int a, int b, int c) function that returns the maximum of the three

numbers it receives as arguments. Four of the many possible mutants that

can be obtained are also shown in the Table 1: in Mutant 1, the AND operator

(&&) has been replaced by OR (||); in the second, a pre-increment operator

has been inserted before returning a; in the third, a post-increment is

introduced, which produces an equivalent mutant (i.e., a mutant whose

behavior is indistinguishable from the behavior of the original program).

Version of program Code
Original public int max (int a, int b, int c){

 if (a >= b && a >= c)
 return a;
 if (b >= a && b >= c)
 return b;
 return c;
}

Mutant 1

Operator LOR:

(Logical Operator

Replacement)

public int max (int a, int b, int c){
 if (a >= b || a >= c) ***
 return a;
 if (b >= a && b >= c)
 return b;
 return c;
}

Mutant 2

Operator UOI: (Unary

Operator Insertion,

pre-increment)

public int max (int a, int b, int c){
 if (a >= b && a >= c)
 return ++a; ***
 if (b >= a && b >= c)
 return b;
 return c;
}

Mutant 3

In this case is the same

UOI operator, but

introducing a post-

increment

public int max (int a, int b, int c){
 if (a >= b && a >= c)
 return a;
 if (b >= a && b >= c)
 return b;
 return c++; ***
}

 Table 1. A possible original program and three mutants [3]

Table 2 shows a possible test suite for the mentioned max function.

Inner cells show the results returned by each test case in every program

version: the 𝑡𝑐1 test case only kills mutant 2. Test cases 𝑡𝑐2 and 𝑡𝑐3 both

10

kill mutant 1. However, none of three test cases kill mutant 3, because this

mutant always produces the same result than the original program. This is

an example of an equivalent mutant. If no mutant would have been killed,

then the tester should have to design manually new test cases for killing

them.

 Data of Test Cases (𝒕𝒄𝒋)

Version 𝒕𝒄𝟏 (𝟑, 𝟐, 𝟏) 𝒕𝒄𝟐 (𝟏, 𝟐, 𝟏) 𝒕𝒄𝟑 (𝟐, 𝟐, 𝟑)

Original 3 2 3

Mutant 1 3 1 2

Mutant 2 4 2 3

Mutant 3 3 2 3

Table 2. Results produced when executing the test cases on the original program

and the mutants

 Structure and Test of Android Applications

A mobile application (app) is a software application that runs into a

small mobile device, such as a cellular phone or a tablet.

According to a very recent report of IDC1 (International Data

Corporation), Android and iOS are the most widely used operating systems

across the world. The iOS operating system only runs on iPhone devices,

whilst Android is more open and is the native operating system of many

mobile devices’ brands. With some exceptions, Android devices are in

general much cheaper than iPhones. Based on these facts and in the wide

availability of tools for dealing with Android devices and with the Android

operating system, we will use this platform for the more technical aspects of

this thesis.

1 Available at (October 23, 2020), https://www.idc.com/promo/smartphone-market-share/os

https://www.idc.com/promo/smartphone-market-share/os

11

In general, Android native applications are developed with Android

Studio. In this IDE (Integrated Development Environment), every project

(Gradle project) has at least one 𝑏𝑢𝑖𝑙𝑑. 𝑔𝑟𝑎𝑑𝑙𝑒 file that drives the

compilation, testing and deployment of the app. Android Studio structures

the projects in a set of fixed directories (Figure 3). A project is hosted on a

directory (see the ModernTriType folder in Figure 3, which holds the

homonymous project) and may have several modules, each one located in a

subdirectory. Android apps have an app directory where there are:

• The build.gradle file.

• The src folder, which has the Java source code and the resource files.

• The build folder, which has two significant subdirectories:

- intermediates (where the Java compiler leaves the .class files

corresponding to the source files).

- outputs (whose apk subfolder saves the .apk files that will be

pushed and installed onto the mobile device).

Figure 3. Some folders and files in an Android project

Android apps are usually written in Java or Kotlin and packaged for

installation on the device as an .apk file. When compiled, the .java or .kt

source files are translated into their corresponding .class files (made up of a

Java Virtual Machine compatible bytecode) and, from there, a second stage

of compilation translates them into .dex files. Together with the resource

files, the .dex files are packaged into an .apk file which contains the app. On

12

the physical device, .dex files are interpreted either by the Dalvik or by the

ART (Android Runtime) virtual machines, depending on the Android

version.

Given an app with test cases, the gradle project usually has at least two

tasks for compiling:

• gradlew assembleDebug, which builds the apk file corresponding to

the app. Typically, this file is called app-debug.apk.

• gradlew assembleDebugAndroidTest, which builds a different apk file

with the test cases. By default, this file is called app-debug-

androidTest.apk.

Both compilation tasks invoke the required internal operations of the

Android SDK for generating the .class files, .dex files and to produce the

final .apk file. This is, there are two compilation steps (from .java to .class

and from .class to .dex) and one packaging step (.apk) before the application

is installed on the device.

Since every mutant is a slightly modified version of the SUT, all this

whole process described previously should be done with each mutant (i.e.,

the generation of a different .apk with each program version), what would

require an additional, significant cost in this type of technology. This

particularity of the packaging step requires to use an efficient mutation

testing technique or the combination of several techniques.

Regarding the test cases of an Android application, suppose an app

(app.apk) composed of three classes (Screen1 and Screen2, which conform

the user interface and are specializations of Activity, and DomainObject,

which does not have any relation with the Android libraries). In the example

we have two different types of tests (Figure 4):

13

• Unit tests, which exercise the business logic. These test cases do not

need any special Android resource. These test suites do not need the

construction of an apk and can be executed without any device.

• Instrumented tests, whose test cases require special Android

resources for interacting with the user interface (clicking, writing…),

using sensors, etc. Its execution requires the production of a

separated apk file (testApp.apk in the example), which must be

installed on the device.

Although the testApp.apk file only needs one deployment, a classic

mutation approach [2], [1] requires that a different version of the app.apk is

compiled, packaged and installed on the device for each mutant. The costs

of compiling, packaging, and installing are so high that testing a mobile app

with a classic mutation testing process becomes almost completely

impracticable. Thus, mobile software testing is an especially suitable context

for applying cost reduction techniques.

Figure 4. Compilation and packaging of an Android app

14

Figure 5 shows part of the actual organization of the test files in

WordPress, which is one of the apps we have used in our experiments.

Instrumented and unit tests are respectively located under the androidTest

and test folders. Files in these folders can be auxiliary classes (mocks, for

example) or test suites. When the tests are to be executed from the official

IDE (Android Studio), this one:

• For the instrumented test cases, the IDE creates a testApp.apk and

one app.apk file. Both apks are pushed and installed on the mobile

device (either an emulator or a physical device). Then, the IDE opens

a virtual terminal on the device (whose operating system is based on

Linux) and sends a command for running the tests (i.e., adb shell am

instrument -w -r -e…). If all the test files are selected, the device

iterates on each file and, inside each file, on each test method.

• For the unit tests, the IDE directly calls the gradlew test command

on the folder where the project is located (there can be variations of

the command). It launches a compilation of the project and the

execution of the tests under the test folder. These test cases do not

need any connected device.

Figure 5. Organization of tests in WordPress

15

There are frameworks, such as Robolectric [21], that allow to execute

instrumented test cases without any connected device (physical or emulated).

Robolectric also mentions the execution time as its main reason for

existence: “Running tests on an Android emulator or device is slow!

Building, deploying, and launching the app often takes a minute or more”.

The main problem with this framework is that it does not support all the

functionalities of real devices.

 RELATED WORK

 Mutation Operators

Mutation operators try to imitate common errors that programmers

make. It relies on two hypotheses:

• The Competent Programmer Hypothesis states that a program written

by a competent programmer may be incorrect, but it will differ from

the correct version by relatively simple faults [4]. Therefore, mutation

testing, only introduces faults consisting in simple syntactical

changes, which represent the faults that are made by “competent

programmers”.

• The Coupling Effect states that a test suite that detects all simple faults

in a program is so sensitive that it also detects more complex faults

[1], [4], [22].

The suitability of mutation testing for detecting faults has been widely

demonstrated along many years. Currently, the main research concerns are

related with: (1) the application of mutation in new contexts and paradigms

and (2) the reduction of its execution cost and time [20]. These two points

are quite important for our research.

Mutation testing evolution has led to the proposal and development of

multiple operators for all kind of testing levels, programming languages,

paradigms and platforms. Thus, for example:

16

• First works about mutation testing targeted individual functions and

methods of Fortran programs, in a kind of unit testing [2], [4], [22],

[23].

• Later, mutation operators for integration testing were developed [24],

[25]. These operators reproduce common faults that programmers

commit in software units’ interactions.

• Ma, Offutt and Kwon [26] proposed specific operators for object

orientation, and implemented them in the MuJava tool, which are

method-level operators and class-level operators.

• Reales et al. [27] defined several mutation operators for testing multi-

class systems at the integration and system levels. The authors group

them into five categories, depending on the faults they can insert.

• Different authors have proposed specific operators for several other

programming languages: C [24], [28], C# [29], [30], C++ [31], SQL

[32], [33], Aspect programs [34]–[36] or Python [37].

• There are also mutation operators for other contexts: relational

databases [38], the ATL model transformation language [39] or BPEL

[40].

• Besides using mutation testing at the software implementation level,

it has also been applied at the design level to test the specifications or

models of a program. For example, there are operators for Finite State

Machines [41], [42], Network protocols [43], [44], Web Services [45],

[46] and Security Policies [47], [48].

Thus, the variety of work is large, due to the diversity of systems,

platforms, and environments. Mutation operators for a certain type of

system, paradigm or programming language are responsible of inserting the

common faults that programmers and developers commit when they build

the system: the Virtual Modifier Insertion Operator for C++ [31], for

example, cannot be applied to a BPEL or a PHP specification. It is worth

17

noting this fact: the suitability of mutation operators for testing programs

depends on the programming language.

Android mutation operators are mentioned in Epigraph 2.2.3

(Mutation Testing in Mobile Applications).

 Mutation Testing Problems and Techniques

Although Mutation Testing can effectively assess the quality of a test

suite; despite this, it presents some drawbacks.

The main drawback is the high computational cost, since even a huge

number of mutants can be generated from a medium-sized program. Let us

suppose a system under test from which 500 mutants are generated and a test

suite with 50 test cases (what is a relatively small system). If each test

requires 0.5 seconds to be executed, the execution of all the test cases against

the original system and the mutants will require 50*0.5 + 500*50*0.5 = 25+

12500= 12,525 seconds = 208.75 minutes = 3.47 hours, which is too much

time just to get the execution results.

Equivalent mutants are another problem, since they involve additional

human effort to identify them [49] and an useless waste of computational

time when they are executed [50]. Also, when the mutation score established

is not reached, the tester needs to design new test cases, which also implies

additional human effort.

Many works have focused on the development of techniques or

strategies for cost reduction, but these problems are not totally closed yet.

Besides, due to technological development, the number of platforms and

applications is growing, and testing techniques need to be adapted to these

changes.

Next, we review the main cost-reduction techniques proposed in

mutation testing for its three main steps (mutant generation, test case

execution and results analysis).

18

 Mutant Generation

The number of mutants is the main cost factor in mutation testing,

since the further steps completely depend on them. So, several mutant

reduction techniques have been proposed for this first step:

• Mutant Sampling [51]: is a simple approach that randomly chooses

a small subset of mutants from the entire set, according to a predefined

percentage. Wong and Mathur [52] conducted an experiment using a

variable selection rate x from 10% to 40%. The results of this study

shown that Mutant Sampling is valid with an x value higher than 10%.

De Millo et al. [53] and King and Offutt [23] also evidenced these

results. Recently, Derezińska and Rudnik [54] proposed different

mutant sampling criteria based on equivalence partitioning with

respect to object-oriented program features. Based on the results, class

random sampling and operator random sampling are recommended

for OO in standard mutation testing, since the mutant sampling

technique is easily applicable in comparison to other cost reduction

techniques.

• Mutant Clustering [55]–[57]: Instead of selecting mutants randomly,

mutant clustering chooses a subset of mutants using clustering

algorithms. Hussain’s empirical results [55] suggest that Mutant

Clustering is able to select fewer mutants but still maintaining the

same mutation score.

• Higher Order Mutation: is a form of mutation testing introduced by

Jia and Harman [58]. This technique combines two or more mutants

into the same mutated program (a higher order mutant, HOM). The

empirical results of Polo et al. [59], [60] suggest that applying second

order mutants reduces the test effort by approximately 50%, without

19

much loss of test effectiveness. Langdon, Harman an Jia [61] build

higher order mutants that are harder to kill than any first order mutant.

More recently, Abuljadayel and Wedyan [9] present an approach to

generate higher order mutants using a genetic algorithm, also harder

to kill than first order mutants.

• Selective Mutation: firstly suggested by Mathur [62] and later

extended by Offutt, Rothermel, and Zapf [63], states that the number

of mutants can be reduced by applying a subset of the mutation

operators. Therefore, the objective is to find a small set of mutation

operators that generates a subset of all possible mutants without a

major loss of test efficiency. Some of the most recent works in this

line of research are [64]–[67].

 In this very same category (mutant generation), there are other strategies

that accelerate the process of mutant generation or test case execution:

• Mutation at bytecode level: consists in injecting the changes directly

in the compiled code, avoiding the cost of mutant compilation. This

technique has been used by tools such as MuJava[26], Javalanche [68]

and Bacterio [69].

• Bogacki and Walter [70], [71] introduced an alternative approach to

reduce compilation cost using Aspect-Oriented Programming:

mutants are implemented as aspects that introduce changes in the

behavior of the SUT methods. Unfortunately, these researchers

abandoned this research works after some very preliminary results.

• Mutant Schema [72]: is designed to reduce the total cost of mutation

testing. The basic idea of this technique is to compose different

programs into a metaprogram (all program versions are included in a

single file). To determine which of the program versions included in

20

the schema must be executed, some type of control mechanism must

be implemented.

For illustrating the Mutant Schema approach, consider the example

shown in Table 3.

Original Mutant 1
class ClassA {
 public int foo (int a, int b){
 for (b < 10) {
 a++;
 b = b + 2;
 }
 return a;
 }
 }

class ClassA {
 public int foo (int a, int b){
 for (b < 10) {
 a++;
 b = b - 2; ***
 }
 return a;
 }
 }

Mutant 2 Mutant 3
class ClassA {
 public int foo (int a, int b){
 for (b < 10) {
 a++;
 b = b * 2; ***
 }
 return a;
 }
}

class ClassA {
 public int foo (int a, int b){
 for (b < 10) {
 a++;
 b = b / 2; ***
 }
 return a;
 }
}

Table 3. A small program and three mutants

 To our best knowledge, the first work about Mutant Schema is that of

Untch, Offutt and Harrold [72], who created a mutant schema generator for

Fortran. They used metamutants and metaprocedures. A metamutant

contains all the mutants in a single file as a set of metaprocedures, which are

functions that gather the different changes introduced by mutation operators.

In Table 4, we have written a metaprocedure in Java for the AOR

(Arithmetic Operator Replacement) operator.

 Inside the AOR function, a switch statement asks for the mutant

version that must be executed depending on the mutant descriptor passed by

a test driver, which invokes the metamutant and directs which mutants are

to be instantiated. The code of the original class is substituted by a call to the

21

corresponding metaprocedure. Actually, the paper [72] does not give too

many implementation details.

Mutant Schema (metaprocedure)
class ArithmeticOp{
 public static int AOR (int a, int b, String mutantDescriptor){
 switch (mutantDescriptor){
 case "SUB" ∶ return a - b;
 case "MUL" ∶ return a * b;
 case "DIV" ∶ return a / b;
 default∶ return a + b;
 }
 return a;
 }
}

Possible mutant code
class ClassA{
 public static int foo (int a, int b){
 for (b < 10){
 a++;
 b = ArithmeticOp (b, 2, MUTANT_DESCRIPTOR);
 }
 return a;
 }
}

 Table 4. Mutant Schema (adapted from Untch, Offutt and Harrold [72])

 That work, of 1993, has inspired other researchers:

• Ma, Offutt and Kwon [26] adapt the idea to Java programs in

the MuJava tool, also automating the metamutant generation.

These authors create metaprocedures for the object-oriented

characteristics, such as inheritance, polymorphism, and

instantiation overhead. Some of these authors reuse this very

same approach (Kim, Ma and Kwon, in [73]).

• Papadakis and Malevris [74] apply the original Untch et al.’s

approach, but adapting it to symbolic execution.

• Reales and Polo ([20], [75]) include metamutants instrumenting

the original Java bytecode with the insertion of if-else

statements. Table 5 shows the metamutant for the example

22

shown in Table 3. It includes several conditional statements to

know what mutant must be executed by means of the exec

function. In the same way, these authors do not explain how

that exec function drives the mutant instantiation.

Mutant Schema

class ClassA{
 public static int foo (int a, int b){
 for (b < 10){
 a++;
 if(exec(m1)){
 b=b-2;
 } else if(exec(m2)){
 b = b * 2;
 } else if(exec(m3)){
 b = b / 2;
 } else {
 b = b + 2; // original statement
 }
 }
 return a
 }
}

Table 5. Mutant Schema (adapted from Mateo and Usaola [20])

Discussion: In traditional mutation testing, the execution environment

must load, for each mutant, the class containing the mutated statement

(because each mutant is a version different of class) and then to execute the

test cases. As we have pointed out, one of the bottlenecks in mobile mutation

testing is the deployment of the application into the device: at a first glance,

it could be required to deploy the application once per mutant. Thus, the use

of Mutant Schema technique may help to package all mutants in just an

application version, reducing the number of deployments to one. However,

as noted above, these Mutant Schema approaches do not provide many

technical details neither about the construction of the Mutant Schema

structure nor about the controller in charge of assigning the current mutant.

Anyway, these approaches require to analyze the program code to (1) detect

23

the statements to be changed, (2) substitute the original statements by calls to

the metaprocedures, (3) create the metaprocedures and (4) implement the test

driver.

Bytecode translation is also a very interesting technique: since Android

applications are written in Java and, before being compiled into .dex files, are

compiled into .class classes, we will explore the introduction of mutation

operators in this intermediate step.

With respect to techniques such as High Order Mutation, Mutant

Sampling and Mutation Selective, they are focused on reducing the number

of mutants generated, but we have decided to leave them out of the scope of

this research because execution time is the most worrying factor in mobile

mutation tests.

 Test Case Execution

The strategy used for test execution also has a strong impact on the

total testing time [2]¸ [1]. In fact, in the most primitive model, the tester

executes all test cases against all mutants, although it is possible to reduce

the number of executions if each test case is only launched against those

mutants remaining alive: suppose a system with 7 mutants (𝑚1, … , 𝑚7) and

5 test cases (𝑡1, … , 𝑡5). Suppose also that the killing matrix obtained after

executing all tests against all mutants is the one appearing in Table 6: as

shown, 40 executions (5 test cases against 7 mutants plus the original

program) are required to complete the process.

24

 m1 m2 m3 m4 m5 m6 m7

t1 X X X X

t2 X X X X X

t3 X X X

t4 X X

t5 X X X X

Table 6. An “all against all” killing matrix for a supposed system

However, if test cases are launched against mutants that, after each

iteration, remain alive (i.e., the test suite does not attempt to “kill twice” the

same mutant), the number of executions may be lower whilst the mutation

score is preserved: in Table 7, t2 is not executed against the mutants that t1

has already killed and, in general, tn+1 is not launched against the mutants

killed by t1..tn. In this example, 20 executions are required (15 + 5 of the

original).

• t1 kills m1, m4, m5 and m7, which are removed from the mutant suite

(there are 7 executions at this point).

• Then, when the next case 𝑡2 is to be executed, is not executed against

the mutants that t1 has already killed. Hence, t2 is directly executed

against 𝑚2, 𝑚3 and 𝑚6 (3 executions), and 𝑚6 is removed from the

mutant suite because is killed by t2.

• Then, 𝑡3 is launched only against m2 and m3 (2 executions). They are

not removed from the mutant set because they are not killed.

• In general, tn+1 is not launched against the mutants killed by t1..tn.

In this example, only 20 test case executions are required (15 + 5 of

the original) instead of 40, and the test suite can be reduced to 4 test cases.

25

 m1 m2 m3 m4 m5 m6 m7

t1 X X X X

t2 X

t3

t4 X

t5 X

Table 7. An “Only against alive” killing matrix for a supposed system

Discussion: In the example, this technique shows that the final test

suite is formed by {t1, t2, t4, t5}, because it reaches 100% as mutation score.

However, the Table 8 shows that {t1, t5} is also a mutation-adequate

test suite. Overall, for regression testing (i.e., the execution of an existing

test suite against a SUT after this one is modified), a smaller test suite is

better than other with more test cases.

Although the problem of minimizing a test suite (the optimal test-suite

reduction problem) has been shown to be NP-hard [76], several approaches

present greedy algorithms for its solution. Gupta et al. [77] have worked

intensively in this area. However, these greedy algorithms require the

complete execution of all test cases against all the mutants. Though, since

testing is often programmed as an unattended, nightly batch process, the

complete execution and further application of a greedy algorithm is a good

choice to deal with test suites reduction and obtain a test suite like the one in

the Table 8.

 m1 m2 m3 m4 m5 m6 m7

t1 X X X X

t5 X X X X

 Table 8. A reduced test suite obtained from Table 6

26

Weak Mutation [73], [78]–[80]: in strong mutation, the decision

about if a mutant is killed or alive is taken at the end of the execution of the

test case: with this approach, a mutant is killed when the three RIP conditions

are got: Reachability (the mutated statement is reached), Infection (once the

statement has been reached, the test case causes an erroneous state on the

mutant), and Propagation (the erroneous state is propagated to the output).

In weak mutation, the mutants are checked immediately after the point where

the mutation has been introduced, rather than checking the mutant output

after execution ends. So, weak mutation only requires the two first conditions

(reachability and infection). The main drawback is that detected faults may

not be observable in strong mutation, so accepting faults of less quality.

Discussion: The advantage of weak mutation is that test case

execution can be analyzed before its completion since the difference of states

between the SUT and the mutants can be immediately checked after the

mutated statement is executed. The main drawback is that detected faults

may not be observable in strong mutation, so accepting faults of less quality.

Moreover, the concept of equivalent mutant may be different now, also

because of the non-observability of the output.

Another strategy is to use advanced execution environment, such as

parallel execution [81]–[84]. This technique executes mutants in parallel

processors, reducing the total time of execution with no loose of

effectiveness. However, it is necessary to have a good infrastructure.

 Results Analysis

The most important obstacle in the result analysis stage is the presence

of equivalent mutants. From a formal point-of-view, the problem of

detecting all equivalent mutants is undecidable [5]. Annotating the SUT with

constraints [85] may help in the automatic discovering, but this technique is

never used in practice.

27

The best strategies for reducing costs in result analysis consist in

diminishing the number of mutants generated with some of the techniques

reviewed in Section 2.2.2.1.

 Mutation Testing in Mobile Applications

The massive development of software for mobile devices is so recent,

and the platforms and operating systems evolve so quickly, that techniques

and tools that could be valid a few years ago may not be longer applicable

today: as Kirubakaran and Kasthikeyani pointed out [86]. This section

reviews some relevant works related to mutation testing on mobile software.

The special characteristics of mobile software (Figure 6) have a direct

influence on testing. Most research works on mobile testing have focused on

the proposal of new mutation operators for injecting faults based to

reproduce the problems associated to these characteristics. The most

significant research works about this area focus on: (1) analyzing the

suitability of classic mutation operators to mobile software and (2) the

proposal of new mutation operators to reproduce common faults in this

environment.

(1) Connectivity and mobility with multiple network connections with
different bandwidths.
(2) Different screens sizes, resolutions and orientations.
(3) Resource constraints (memory, processor).
(4) Context awareness and multiple input channels (users,sensors,
networks).
(5) Potential interaction with other applications.
(6) Security and vulnerability.
(7) Finite energy source.
(8) Double nature of apps (native and web).
(9) Short development life cycle (to gain competitive advantage).
(10) Performance.
(11) Multiple devices and operating systems.

Figure 6. Special characteristics of mobile software

28

Deng et al. [15] proposed 11 mutation operators for simulating faults

in the parts of the code that use the new programming features of Android

(Table 9), although they leave for the future the implementation of others,

specially related to the context-awareness of applications: “… we have not

yet considered all aspects of Android apps. For instance, one important

distinct characteristic of mobile apps is that they are context-aware”. Their

source of faults is some Google’s technical documentation for testers and

some significant characteristics of Android apps (event-driven nature,

configuration saved in XML files, null values and screen orientation). They

analyze the quality of their operators generating mutants for several apps and

execute tests against the mutants. It is worth noting that Deng et al. [15]

emphasize the excessive cost of tests execution, because their mutant

generation tool builds an .apk file for each mutant.

Deng et al.’s [15] mutation operators

Category Operator

Intents Intent Payload Replacement

Intent Target Replacement

Activity Lifecycle Lifecycle Method Deletion

Event Handler OnClick Event Replacement

OnTouch Event Replacement

XML Activity Permission Deletion

Button Widget Deletion

EditText Widget Deletion

Button Widget Switch

Common faults Fail on Null

Orientation Lock

 Table 9. Android mutation operators

In a very recent article, Escobar-Velásquez et al. [14] extended a

previous study of 2017 [87]. They analyzed 2,023 fault reports taken from

six different sources (bug reports of open-source Android apps, bug-fixing

commits of Android open-source apps, Android-related Stack Overflow

29

discussions, the Exception hierarchy of the Android APIs, Crashes and bugs

described in previous studies and Reviews posted by users of Android apps

on the Google Play Store). Their analysis shows that 65% of the bugs are

typical of any Java application, and that the remaining 35% are directly

related to Android-specific characteristics. They classify the bugs using a

taxonomy with 14 high-level categories of faults. Some categories (e.g.,

“Collections and Strings”) only contain Java faults, others (e.g., “Activities

and Intents”) Android-specific faults, and others (such as “Input/Output”)

contain a mix of both. The authors propose 38 mutation operators covering

10 out of the 14 categories. Some of the operators are specifically designed

for Android. Besides the taxonomy and the operators, an additional and

interesting contribution is their MutAPK tool that directly inserts the faults

into the compiled and packaged APK file. They also describe MDroid+ [8],

another tool that generates the faults from the source code.

Deng et al. [7] apply 17 mutation operators specifically designed for

Android applications and compare their ability to detect faults with other

four techniques. These authors conclude that mutation is effective at

detecting faults in Android applications, although more research effort is

needed.

Polo et al. [88] describe a generic architecture for the development of

mutation operators for Android. All operators are specializations of a set of

abstract classes. Their goal is to make easy the development of new operators

and to decouple the operators’ implementation from the external libraries

used for manipulating the Java bytecode and injecting the faults.

Jabbarvand and Malek [89] search “energy anti-patterns” and, from

them, they build many operators that, for example, increase the frequency of

the location update requests or do not switch off the Bluetooth. Their testing

framework is called μDroid. The μDroid generates mutants and, to determine

whether a mutant is killed, it compares its power consumption with the

30

original program. There are no details about how test cases are executed.

Regarding the test execution time, the authors only report about the mean

times for determining whether mutants are killed (i.e., comparing the traces

of energy consumption). The mean time is 11.7 seconds in the 9 apps used in

their experiments.

More recently, Paiva et al. [12] describe 3 mutation operator to test the

specific behavior of mobile applications (UI patterns). The iMPAcT tool is

designed to deal with the mutants generated by these operators [90].

 PARTIAL CONCLUSIONS

According to the state of the art, we can conclude that research in

Mutation Testing can be classified in five items:

1. Definition of mutation operators for specific context and

technologies.

2. Reduction of the number of mutants generated, since it is the most

influencing factor in the general cost of the process.

3. Reduction of the cost of test cases execution.

4. Designing ways to reduce the cost of result analysis.

With respect to Mobile Mutation Testing, there is a common

agreement related to the need of having specific mutation operators that

reproduce common faults in Android applications, and it is evidenced the

adequacy of the mutation score as a valid coverage criterion for mobile

software.

However, to our best knowledge, there is a lack of works analyzing,

adapting, or proposing the use of specific techniques to reduce the cost of

mutation testing in this concrete environment. Deng et al. [15] are the only

who point out that performance should be improved with parallel execution,

using fewer mutants or building a faster test framework. This is one of the

main goals of this research.

31

CHAPTER 3

A CONTRIBUTION TO THE IMPROVEMENT OF

MOBILE MUTATION TESTING

Our objective is to address the cost of mutation testing in mobile

applications. The main cost factor of mutation testing is the number of

mutants generated, which influences on generation, execution and result

analysis times. In this regard, techniques such as mutant scheme and parallel

execution are effective. In the case of mobile applications, mutation testing

has implications when dealing with mutants, especially regarding the time

needed to compile, link, deploy and execute the SUT and its mutated

versions on the mobile device. Our first attempt for improvement the

mutation testing on mobile applications began with (1) the mutant generation

at Java bytecode level and (2) the implementation of a novel strategy of

Mutant Schema using wrappers, thus introducing the same mutations as the

classical form. But this first attempt was not successful and is explained in

detail in the next section. However, it allowed us to understand in depth

mutation testing in mobile applications, reuse the good practices acquired

and use the knowledge learned to: improve the generation of mutants in

terms of design and form, redefine the Mutant Schema approach, redesign

the implementation and architecture of the mutation tool used. In addition,

the extensive experimentation, design, and implementation of different

approaches and techniques, allowed to build a mathematical model to

estimate the execution cost of a mutation testing cycle.

32

 FIRST ATTEMPT TO IMPROVE MUTATION TESTING ON

MOBILE APPLICATIONS

 Mutant Generation at Bytecode Level

Mutation operators are designed to introduce artificial errors into the

SUT, these can be errors at the source code level or at the java bytecode

level. In this section, we describe and discuss mutant generation at the

bytecode level (code embedded in the .class files).

 Bytecode manipulation

BacterioWeb v.1 is a web tool for the mutation testing of mobile

applications (Epigraph 3.1.2), which we have developed as an evolution of

Bacterio [69]. BacterioWeb v.1 introduces mutants in the Java bytecode of

the SUT using the ASM library. ASM is a powerful API to directly

manipulate the bytecode produced by the Java compiler [91]. With ASM, a

.class file can be loaded into a ClassNode, an object that wraps the class,

holds all the information required to know the wrapped class details and

offers all kind of operations to manipulate it. Thus, a ClassNode has the

collections of fields and methods in two respective lists of FieldNode and

MethodNode. Besides other information (name, annotations, exceptions,

etc.), every MethodNode has its bytecode instructions in an InsnList object,

which implements a doubly linked list of instructions.

Every bytecode instruction is an instance of 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐼𝑛𝑠𝑛𝑁𝑜𝑑𝑒, an

abstract class with so many specializations as instructions categories showed

in Figure 7. AbstractInsNode has an opcode, which determines the concrete

type of operation it performs. This field may take one of the values defined

in the constants in the Opcodes interface, which represent the Java Virtual

Machine assembler instructions.

33

Table 10 shows the Java source code of a simple method of the Figures

project, that assigns a parameter value to a field and two bytecode

translations: one with and another with no debugger information. From the

first one we observe that:

• ALOAD 0: the first local variable (index 0) is loaded onto the stack.

• ILOAD 1: the first parameter of the method is loaded onto the stack.

Moreover, it is an integer due to the “I” prefix of the instruction name.

• PUTFILED Figures.i : I : assigns the i field of this Figures object the

integer value in the top of the stack.

Figure 7. Class hierarchy of instructions

34

Source code Bytecode with debug info

public void setI(int v) {
 this.i = v;
}

public setI(I) V
L0
LINENUMBER 14 L0
ALOAD 0
ILOAD 1
PUTFIELD Figures.i ∶ I
L1
LINENUMBER 15 L1
RETURN
L2
LOCALVARIABLE this Figures; L0 L2 0
LOCALVARIABLE v I L0 L2 1
MAXSTACK = 2
MAXLOCALS = 2

Bytecode with no debug info

public setI(I)V
ALOAD 0
ILOAD 1
PUTFIELD Figures.i ∶ I
RETURN
MAXSTACK = 2
MAXLOCALS= 2

Table 10. Source code of a simple setter method and two bytecode translations

Besides having an opcode, each instruction is an instance of one of the

concrete subtypes of Figure 7. For example:

• ALOAD and ILOAD belong to the 𝑉arInsnNode type.

• PUTFIELD is an instance of FieldInsnNode.

• RETURN is of the InsnNode subtype.

Besides the inherited opcode field, subtypes have additional fields.

When we write, for example, v + + or v - - (being v an int variable), the

compiler translates it into the instruction: IINC 1 or IINC 1 - 1, where the

first argument is the index of the variable to be incremented or decremented,

and the second is the amount to be summed to the variable. IINC is an

instance of the IincInsnNode, and its constructor has in fact these two

arguments: the index of the variable and the amount. Thus, inserting a pre or

post increment or decrement involves: (1) the construction of the adequate

IincInsnNode with the suitable variable index, (2) the insertion of this object

in the right place of the instructions' list (i.e., in the InsnList) that is being

mutated.

Continuing with the previous example, applying the Unary Operator

Insertion (UOI) to the assignment of source code showed in Table 10 , where

35

v is integer, may produce at least five mutants, some of which appear in

Table 11. In the bytecode column, we have underlined the change introduced

by the Java compiler.

Source code (mutant) Bytecode mutant Instruction subclas

i = - v;

ALOAD 0
ILOAD 1
INEG
PUTFIELD Figures.i ∶ I
RETURN

VarInsnNode

VarInsnNode

InsnNode

FieldInsnNode

InsnNode

i = v ++;

ALOAD 0
ILOAD 1
IINC 1 1
PUTFIELD Figures.i ∶ I
RETURN

VarInsnNode

VarInsnNode

IincInsnNode FieldInsnNode

InsnNode

 Table 11. Some UOI mutants and their bytecode translation (v integer)

Although, the set of required instructions to insert the mutation

changes depending on the data type of the variable. For example, the same

assignment and mutants of Table 11, if the variable v is double, the

changes normally involve more than one instruction. For example, the

addition of the unary minus only needs the insertion of the DNEG

instructions, but the pre and post increments and decrements need four

instructions.

For example, v ++ requires:

• DUP2, to duplicate the two words on the stack.

• DCONST_1, to put the 1 number (as a double) on the stack.

• DADD, to sum 1 and the values in the stack.

• DSTORE 1, to store the result in the local variable 1.

36

Source code (mutant) Bytecode mutant Instruction subclas

i = - v;

ALOAD 0
ILOAD 1
DNEG
PUTFIELD Figures.i ∶ D
RETURN

VarInsnNode

VarInsnNode

InsnNode

FieldInsnNode

InsnNode

i = v ++;

ALOAD 0
ILOAD 1
DUP2
DCONST 1
DADD
PUTFIELD Figures.i ∶ D
RETURN

VarInsnNode

VarInsnNode

InsnNode (92)

InsnNode (15)

InsnNode (99)

VarInsnNode (57)

FieldInsnNode

InsnNode

Table 12. Some UOI mutants and their bytecode translation (v double)

 Mutable Instructions and Mutant Generator

The behavior of a mutant generator may consist in going through every

mutation operator and asking it to get the mutants of the class to mutate.

Supposing (for the shake of clarity) that only constructors and methods can

be mutated, the operator goes through every operation in the class, and, for

each operation, it goes in turn over all its instructions to determine whether

it can or cannot mutate the method.

Figure 8 shows the pseudocode of an implementation of a

generateMutants(c: Class) method that belongs to the Operator class: as

observed, it adds to a mutableMethods collection all the methods in c that it

can mutate. For every mutable method, it calls an additional mutate(c: Class,

m: Method) function, that applies the mutation operator to the method passed

as parameter. The behavior described in the pseudocode of Figure 8 is

common for all the mutation operators: thus, even though the Operator class

must be abstract (because the change implementation obviously depends on

the self-operator), this operation may be concrete.

37

The function called by generateMutants (i.e., mutate(c: Class, m:

Method)) goes over the instructions of m and gets the corresponding mutants:

if the operator can produce p mutants for a given instruction and there are q

mutable instructions in the method, the operator must generate p x q mutants.

Figure 8. Pseudocode of Operator::generateMutants(c: Class)

Thus, for each mutable instruction in m, mutate(c, m) calls mutate(c,

m, instruction), that:

1. Gets the list of changes applicable to the instruction passed.

2. For each change, performs the mutation by calling

performMutation(method, instruction, change).

Obviously, both getting the list of changes and performing the

mutation depend on the concrete operator.

 Operators Architecture

We define a reusable architecture to easily implement mutation

operators, we have defined an abstract Operator class that holds as many

concrete methods as posible. In Figure 9:

• Each operator has two fields: the class file name (which is used to

process its bytecode with ASM) and the family, which is used to group

the operators by categories in the web user interface. Some values of

the family field can be "Traditional" (in the sense of the classification

38

given in [26]) or "Android" (meaning that the operator is designed to

Android apps).

• Since we want to give the tool a plugin architecture (i.e., new operators

can be added, loaded at applied at runtime), the class constructor is

protected and is not visible from the outside. To instantiate and load

the operators, the tool will look for all the concrete specializations of

Operator and, over every one, it will call its constructor with a

reflective call to its newInstance method (inside the java.lang.Class).

• getName returns the class operator name, and it is the acronym shown

in the user interface. For example, if the AOR operator is implemented

in the AOR.class file, it reflectively returns the "AOR" string.

• getDescription is abstract, because it returns a textual description of

the operator. For AOR, for example, it returns "Arithmetic Operator

Replacement".

• Both mutate methods implement the tasks described in the previous

subsection, and they are concrete.

• instructionIsMutable is abstract, since its implementation depends on

the concrete operator.

• performMutation modifies the method and instruction whose indexes

are passed as parameters. The change may be a single instruction

(substituting machine instructions IADD by ISUB, for example) or a

list of instructions: thus, the third parameter is a list of instructions

(i.e., an instance of InsnList). This is the method that builds up each

mutant, returning it as a ClassNode object with its bytecode.

39

Figure 9. Structure of the abstract Operator

 The Operator class has three direct, abstract specializations shown in

Figure 10 (InsertionOperator, ReplacementOperator and DeleteOperator).

Figure 10. Three abstract specializations of Operator

The implementation of classic operators and Android operators is

supported by means of the methodIsMutable operation defined in Operator,

the root of the hierarchy. Overriding this method makes possible to build

operators for specific operations of the system under test. methodIsMutable,

40

together to instructionIsMutable, are especially useful for the characteristics

of mobile applications.

For implementing the mutation operators at bytecode level, is require

an external library to manipulate the bytecode. Both inheritance and external

libraries increase the system coupling. Inheritance introduces Content

coupling, probably the most dangerous of all, since the structure and

behavior of all subclasses have a complete dependence on all their ancestors;

thus, the modification of a superclass affects all its descendants. If the

superclass is implemented in a third-party component, then the evolution of

our system becomes completely dependent on the evolution of such external

system.

Type use is a “not so bad” type of coupling. It occurs when

“component A uses a data type defined in component B” [92]. If B is the

external library and this does not evolve according to A's requirements, A

must be modified, maybe with the substitution of B by a new library. This

type of coupling is better than content coupling because the structure and

behavior of A is actually implemented in A itself, being under the control of

A's developer.

Due to these risks (ASM is an external library), the development of

operators in BacterioWeb v.1 uses Type use coupling (Figure 11) and the

dependence on changes of ASM is not as strong as with Content coupling.

 Figure 11. Dependencies of our Operator with respect to ASM

41

 Partial conclusions

In traditional java projects, it is known that the insertion of the errors

in .class files avoids a recompilation of the mutated file [26]. For that reason,

we believed that in mobile technology, this type of error insertion could

reduce the high cost of packaging applications on the device. However, when

we applied mutation testing techniques on mobile apps, e.g., Mutant Schema

technique, the .class files (under test) required to be decompiled into its

corresponding .java files, so that Android Studio could translate them into

.dex files. As compilation tasks take the source files as input (.java files) and

directly generate the .apk as output, the mutant generation at bytecode level

are not usable for Android testing (we reached the above conclusion after

several experiments and implementations).

 BacterioWeb v.1: First version of Android Mutation Testing
Tool

In mutation testing, the generating, executing, and analyzing the

results are costly tasks, so is a necessity the automation. In this sense, we

develop BacterioWeb v.1, a mutation testing tool for mobile applications.

BacterioWeb v.1, runs on a web server and can be executed with any

browser. The user (a tester) uploads his/her Android projects to the server.

Figure 12 describes, as use cases, the main functionalities of the tool and its

relationships with external actors: the projects are saved in MongoDB

databases (therefore making the projects accessible from any place) and in

the server’s local file system. The tool oversees generating the mutants,

composing the Mutant Schema (if required by the user), compiling the

mutated system, executing the test cases, and collecting the results.

The communication with the external devices (physical devices or

emulators) is achieved by means of the creation of operating system

processes. For example, the execution of a command on a device requires

42

creating an operating system process for sending the order. All

communication between the frontend and the backend is based on the

websocket (ws) protocol to keep the user informed of the progress of mutant

generation, test execution, etc.

Moreover, and to push forward the parallelism, BacterioWeb v.1 may

communicate with other instances of BacterioWeb v.1 running on other

servers and this in turn helps the use of the devices they are not using at some

point: in Figure 13, instance 1 can send mutants and test cases for execution

on the devices connected to instances 2 and 3.

Figure 12. General structure of BacterioWeb v.1

43

 Mutant Schema Using Wrappers (MSW)

 This approach systematizes the creation of the Mutant Schema using

Wrappers with a set of relatively simple transformations of the original

program structure. This section gives all implementation details about both

the creation of the Mutant Schema structure and the test and mutant

execution control.

 Structure of the MSW

 To illustrate the structure, let us consider the simple system shown in

Figure 14: it contains an implementation of the classic Triangle class (which

in this case is the class under test) and a ManualTestCases class, which holds

two test cases.

 When mutants are generated, they are placed in a specific mutants

package and numbered from 1 to n, so being Triangle_1, Triangle_2, etc. the

mutants of the class under test. Additionally, a slightly modified, adapted

copy of the original Triangle class, called Triangle_0, is placed in an

originals package (Figure 15).

Figure 13. Collaboration among different instances of BacterioWeb v.1

44

Figure 14. A simple system

Figure 15. Mutants and originals packages

 Test cases (those located at the ManualTestCases class in Figure 14)

call the methods offered by the original Triangle class. Since now the logic

has been moved to the copies (Triangle_0 to Triangle_n), the original

Triangle class is replaced by a wrapper (also called Triangle) that will

forward the calls from the tests to the adequate mutant. To avoid compilation

problems, this wrapper offers the test suite the same methods and

constructors, with the same signature. So, the two constructors and the two

methods are included in the wrapper, but obviously with a different

implementation: (1) constructors, instead of directly assigning the parameter

values to the instance fields, create an instance of the corresponding mutant

version; (2) in the same way, getType and longest call the homonym methods

45

in the mutant. An exception to this same-signature rule is in those methods

that include the class under test in their return type or in their parameter types,

such as Triangle longest(Triangle t): in order to preserve the compatibility

with test cases and with the whole system, these types are changed to

Triangle_Mutant, an interface that is explained below.

 The wrapper asks for the creation of every mutant to a

Triangle_Controller class (Figure 16), which holds as many createMutant

methods as there are constructors in the class under test. Each createMutant

method returns the adequate version of Triangle depending on the value of

its currentMutant field. This value is updated by loadCurrentMutant()

according to the value saved in the mutantFileName file. This file is explicitly

required by mobile applications: during the iterations that launch the tests

against the original and the mutants, a separated Android process creates this

file and, then, a second process launches the test cases. In this way, we avoid

modifying the application permissions for writing and reading the internal

storage of the device.

Figure 16. Inclusion of a controller

46

 As we have said, when a test case asks for the creation of a Triangle, it

still continues calling the Triangle constructor that, in turn, calls the

corresponding createMutant method in the controller. As shown in Figure 17,

createMutant returns an instance of the Triangle_Mutant interface according

to the value saved in the mutantFileName file. Triangle_Mutant is

implemented by the wrapper (Triangle), by all the mutants (Triangle_1…)

and by the adapted copy of the original class (Triangle_0). In this way, the

wrapper indirectly knows the actual mutant instance by means of the

interface, which has been instantiated by the controller: the association from

Triangle to Triangle_Mutant in Figure 17 points to that actual instance of the

mutant.

Figure 17. Final structure of the Mutant Schema

47

 Implementation Details

 For the implementation of MSW we use the ASM library [91], which

allows the direct manipulation of the bytecode of compiled Java files. With

ASM, a class is handled as a tree via a ClassNode, which offers an API for

accessing and changing the wrapped class. Below we explain how to get the

structure shown in Figure 17.

 Creating the Interface

 An interface is created for every class under test (the Triangle_Mutant

interface, in our example). All interfaces have the same structure and, so, they

proceed from the template shown in Figure 18, which

has two tokens:

• #CLASS# is replaced by the class under test name.

• #METHODS# is substituted by the signature of all the methods in the

class under test, preserving in most cases the return type, parameters,

and exceptions. It is important to note that all type names will be fully

included and, therefore, no import statements are required.

package edu.mutantSchema.interfaces;

public interface #CLASS#_Mutant {

#METHODS#

}

 Figure 18. Interface template

 Thus, the Triangle_Mutant interface remains as in Figure

19. The longest method illustrates how to deal with methods whose return

type or some parameter type coincides with the class under test (Triangle): it

compares the perimeter of this triangle with another passed as parameter,

48

returning the longest one. Observe that the return and the parameter types

(which were Triangle in the original) have been changed to Triangle_Mutant.

package edu.mutantSchema.interfaces;

public interface Triangle_Mutant {

String getType() throws Exception;

Triangle_Mutant longest(Triangle_Mutant t);
}

 Figure 19. Triangle_Mutant interface

 Creating the Adapted Copy of the Classes Under Test

 Once the interface has been created, we generate an almost exact copy

of the original class, which is placed in the originals package. The changes

introduced are detailed in Figure 20: (1) the declared package is

changed to originals; (2) it implements the corresponding interface

(Triangle_Mutant in the example); (3) the class name is suffixed with _0, also

changing the constructor names and the types of the local variables whose

type is the class under test; and (4) in methods, the return types and

parameters whose type is the class under test are changed to the interface (see

the longest method in Figure 20).

package edu.mutantSchema.originals;

public class Triangle_0 implements
Triangle_Mutant {
 private int x, y, z;
 ...

 public Triangle_0(int x, int y, int z) {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 public String getType() throws Exception {
 ...
 }

 public Triangle_Mutant
longest(Triangle_Mutant t)
 throws Exception {
 ...
 }

49

}

 Figure 20. Copy of the original (Triangle_0)

 Creating the Controller

 There is a controller for each class under test. They have the same name

than the original class, but suffixed with _Controller, and are placed in the

controllers’ package.

 Controllers are generated from the template shown in Figure 21:

• The #CLASS# token is replaced by the original class name.

• #CURRENT_MUTANT_FILENAME# is replaced by a file name, which

saves the id (a number from 0 to n) of the mutant to be executed. The

location of this file depends on the type of project, for mobile projects,

it is saved directly on the device, so that the .apk (actually, the

loadCurrentMutant) can access the file at runtime. The mutant id is

unique, even for different classes under test of the project.

• #CREATE_MUTANTS# is replaced by so many static createMutant

methods as constructors there are in the class under test, with or without

parameters depending on the constructor signature. This method

executes the loadCurrentMutant() method, which reads the mutant id

from the mutantFileName mentioned: depending on the read value, it

returns the corresponding mutant instance.

50

package edu.mutantSchema.controllers;

import java.io.FileInputStream;

import edu.mutantSchema.interfaces.#CLASS#_Mutant;

import edu.mutantSchema.mutants.*;

import edu.mutantSchema.originals.#CLASS#_0;

 public class #CLASS#_Controller {

 public static int currentMutant = 0;

 private static String mutantFileName=

 "#CURRENT_MUTANT_FILENAME#";

 private static void loadCurrentMutant(){

 try{

 FileInputStream fis=

 new FileInputStream(mutantFileName);

 byte[] b = new byte[fis.available()];

 fis.read(b);

 fis.close();

 String s=new String(b);

 currentMutant=Integer.parseInt(s.trim());

 }

 catch(Exception e){ currentMutant =0; }

 }

#CREATE_MUTANTS#

}

Figure 21. Controller template

 Since the Triangle class has two constructors (one with three

parameters and another one with none), the replacement of the tokens

produces the file shown in Figure 22: note the presence of two

createMutant methods, that return either the instance corresponding to the

mutant read, or the original (Triangle_0) if the mutant id does not match with

any value in the switch statement. The mutantFileName points to a location

in the mobile device (/data/local/tmp/currentMutant.txt).

51

package edu.mutantSchema.controllers;

import java.io.FileInputStream;

import edu.mutantSchema.interfaces.Triangle_Mutant;

import edu.mutantSchema.mutants.*;

import edu.mutantSchema.originals.Triangle_0;

 public class Triangle_Controller {

 public static int currentMutant = 0;

 private static String mutantFileName=

 "/data/local/tmp/currentMutant.txt";

 private static void loadCurrentMutant(){

 ...

 }

 public static Triangle_Mutant createMutant() {

 loadCurrentMutant();

 switch (currentMutant) {

 case 1 : return new Triangle_1();

 case 2 : return new Triangle_2();

 ...

 }

 return new Triangle_0();

 }

 public static Triangle_Mutant createMutant(

 int x, int y, int z) {

 loadCurrentMutant();

 switch (currentMutant) {

 case 1 : return new Triangle_1(x, y, z);

 case 2 : return new Triangle_2(x, y, z);

 ...

 }

 return new Triangle_0(x, y, z);

 }

}

 Figure 22. Wrapper generated for Triangle

 Creating the Wrapper

 Wrappers substitute the mutated classes. They offer test cases the same

operations than the original classes, but they forward calls to the

corresponding controller which, in turn, send them to the respective mutant.

 For creating a wrapper, we use the ASM library to analyze the bytecode

of the class under test and, then:

52

• We preserve the package of the original class, reading it from the

ClassNode.name field, which proceeds from the .class original file.

• The wrapper implements the generated interface (Triangle_Mutant in

the example).

• All the non-static fields of the original class are removed.

• An additional mutant field is added, whose type is the interface. This

field is initialized in the constructor, calling the createMutant included

in the controller.

• We add to the wrapper a method for each one of the methods in the

original class with the same signature, but whose body is replaced by

calls to the homonym methods of the mutant class. Moreover, if the

method return type or any of its parameters' types are of the class under

test, then they are changed to its interface.

Figure 23 shows the code of the Triangle wrapper: (1) the addition of the

Triangle_Mutant field; (2) how this field is instantiated by means of calls to

Triangle_Controller in the constructors; (3) getType preserves the signature

in the original class; and (4) the longest method signature has been adapted

from Triangle longest(Triangle t) to Triangle_Mutant

longest(Triangle_Mutant t).

53

package demos.com.moderntritype.domain;

import edu.mutantSchema.interfaces.Triangle_Mutant;

import edu.mutantSchema.controllers.Triangle_Controller;

public class Triangle implements Triangle_Mutant {

 Triangle_Mutant mutant;

 public Triangle() {

 this.mutant=Triangle_Controller.createMutant();

 }

 public Triangle(int x, int y, int z) {

 this.mutant=Triangle_Controller.createMutant(x,y,z);

 }

 public String getType() throws Exception {

 return this.mutant.getType();

 }

 public Triangle_Mutant longest(Triangle_Mutant t)

 throws Exception {

 return this.mutant.longest(t);

 }

}

Figure 23. Wrapper for Triangle

 Test Execution

 In the original project, test cases send call the methods offered by the

classes under test. After generating the Mutant Schema structure, these calls

are received by the wrappers, which forward them to the controllers. In this

way, there are no compilation problems at all.

 Test cases are executed against the n versions of the system under test

(original and mutants). To tell the test suite which mutant must be executed,

the mutantFileName file with the id of the corresponding mutant is created

before launching the test suite.

 The pseudocode in Figure 24 illustrates how test cases are

executed: each iteration writes the id of the mutant in the afore mentioned

file, launches the test cases, collects the results of the execution and completes

the killing matrix. The value saved in the mutantFileName file is read by the

54

controller's loadCurrentMutant() method: depending on its value, the

controller instantiates either the copy of the original class (Triangle_0) or the

suitable mutant (Triangle_1, etc.).

km : KillingMatrix =

for i=0 to |mutants|

 write i in mutantFileName

 results = execute tests against the i-th
mutant

 build(km, results)

next

 Figure 24. Pseudocode of the execution engine

 In mobile projects, the execution process is launched from the server

to the device by opening an Android console (through the adb command). In

the first iteration, an Android process saves a 0 (for Triangle_0) in the

mutantFileName file and, with a new Android process, launches the test cases

against the original (Triangle_0). When the test suite execution has finished,

the output of the console is processed to fill in the killing matrix. The process

continues with every mutant, saving 1, 2… and instantiating Triangle_1,

Triangle_2...

 Disadvantages of Mutant Schema Using Wrappers

• Preprocessing Classes with Inheritance

This approach requires a preprocessing classes with inheritance, as

long as the classes under test (mutated classes) have inheritance. Suppose

our system has an abstract Figure superclass with two Triangle and

Quadrilateral specializations (Figure 25). Remind that the

fields of the class under test are removed in the wrappers and substituted

by a mutant field (whose type is its corresponding interface). If the

superclass is mutated, subclasses will not be able to access the attributes

55

in the superclass. So, get and set methods must be included in the

superclass. Moreover, in the subclasses, direct accesses to the superclass

fields are replaced by calls to the corresponding get and set methods.

 Figure 25. A simple system with inheritance

Therefore, before creating the Mutant Schema, a preprocessing of the

system may be required only when a superclass is selected to be mutated:

- Superclasses are preprocessed for ensuring that they have get and set

methods for accessing all their attributes. This task is done using the

ASM library.

- In subclasses, direct accesses to the superclass attributes are replaced

by calls to the corresponding get or set methods, also manipulating the

bytecode with ASM.

- In addition, all methods of the superclass must be reproduced in their

subclasses. Hence, inheritance is not preserved in the mutated system.

Figure 26 shows the result of the constructor preprocessing in one subclass.

Methods setA, setB and setC, which did not exist in the superclass, have also

been added.

56

Before

public Triangle(int x, int y, int z) {

 this.a=x;

 this.b=y;

 this.c=z;

}

After

public Triangle(int x, int y, int z) {

 this.setA(x);

 this.setB(y);

 this.setC(z);

}

Figure 26. The Triangle, before and after the preprocessing

 In short, this implementation strategy of the Mutant Schema has the

main disadvantage that it does not preserve the object-oriented characteristics

of the original program (inheritance, polymorphism, etc.).

 Some of the newest characteristics of Java programs have not been

tested in depth, such as the lambda expressions.

 Partial conclusions

Mutant Schema using Wrappers (MSW) is a different implementation

strategy of Untch's idea [72]. MSW is independent on the type of operator

used, so it can be combined with other complex mutation operators and other

techniques, such as Higher order mutants. MSW implementation is time

consuming, but tracking mutations is easy (e.g., analysis of equivalent

mutants). This implementation of Mutant Schema, introduce the same

mutations as the classical form, since a copy of the SUT is created for each

mutation (i.e: Triangle_1, Triangle_2) (see Epigraph 3.1.3.1) and therefore

the same number of trivial mutants as the classical mutation. However, this

approach has two drawbacks: (1) the processing of the classes with

inheritance of the SUT and (2) the mutant schema structure is implemented

by manipulating the bytecode (therefore, to apply it in mobile applications,

57

the manipulated .class files should be decompiled into .java files). For these

reasons, we develop another approach to the Mutant Schema (see Section

3.2.2).

 SUCCESSFUL APPROACH TO MUTATION TESTING ON

MOBILE APPLICATIONS

 Mutant Generation at Source Code Level

A recent study by Hariri et al. [13] has shown that mutation testing at

source level produces much fewer mutants than at bytecode level, so making

test execution less expensive.

For this approach we implement two mutant generation engines:

• The "classic engine" creates as many copies of every mutated file as

mutants there are.

• The "Untch's engine" groups all the mutants corresponding to a file in

a metamutant file, according to the Untch's mutant schema idea [72].

The tester selects the files to be mutated in the Project screen Figure

27. At this point, if she/he clicks the Generate mutants button, the tool shows

the screen for choosing the mutation operators and generating the mutants.

We discuss in [88], the design of the operators of several mutation

tools: one of the main problems highlighted is the dependency of the internal

operators' design with respect to the libraries used for parsing the source of

the bytecode of the system under test. In BacterioWeb v.2, the architecture

of the generation engines has been carefully designed to avoid coupling with

respect to external libraries and make the tool easily extensible thinking both

in the easy addition of new operators as in the processing of other

programming languages, such as Kotlin.

This decoupled design is shown in Figure 28: the tester (using her/his

user agent) asks for the WSMutantsGeneration websocket to generate the

mutants, sending in the message the selected operators and files. The

58

websocket passes in turn the order to the CWS's Manager, who in turn

instantiates the two mutant generators (classic and Untch's).

Figure 27. The Project screen is used to generate mutants, run tests, etc.

Figure 28. Decoupled design of the mutant generation engine

59

The processing of the Java source files is made with the javaparser

library [93]. As it can be seen in the Figure 28, only the classes in the package

labelled as Java mutant generation engine have dependency from this third-

party library.

 ClassicMutationOperator and UntchMutationOperator are abstract

classes that have so many concrete specializations as mutation operators are

implemented. Figure 29 shows an excerpt of them. Note there is a parallel

structure in the specializations of both superclasses, although it is not

mandatory that all the operators under Classic are also implemented under

Untch: for example, there exist AOR and UOI in both subsystems, but the

NotParcelable operator [14] (removes 'implements Parcelable' and

'@Override' annotations) has only classic implementation.

Mutation operators are loaded at runtime using the Java Reflection

API. Thus, if new operators are added, BacterioWeb v.2 will load and show

them without touching its code.

BacterioWeb v.2 iterates on the selected mutation operators and on the

selected files. For each source file, BacterioWeb v.2 recovers its AST

(abstract syntax tree) from the database. Then, it checks whether the current

operator is applicable:

• If the operator is "classic", it performs a change in the AST,

saves the resulting code in the classic_mutant table and, after,

undoes the change to continue with the next mutable statement

(if the change is not undone, the last mutant would have

accumulated all the changes introduced).

• For "Untch's" operators, firstly a copy of the AST of the original

file is made. If the operator is applicable to a given statement,

the generator replaces the statement in the AST by a new

60

statement consisting in a call to the corresponding operation of

the MutantDriver (Section 3.2.2).

As an example, Figure 30 shows the code of the generateMutants

method in the Unary Operation Insertion Untch's mutation operator: the first

parameter is a Node containing a mutable expression according to this

operator; the second one is the counter of mutants generated for this project.

Suppose that node contains the expression x (which is an int variable):

in its second line, the method recovers the unary operators applicable to this

expression (since x is a number, the operators are the unary minus, prefix

increment, prefix decrement, postfix increment and postfix decrement).

Then, it builds a string (the sbTransformation variable) consisting in a call

to the MutantDriver.UOI operation: the first parameter of this call is the

original expression (x), and it adds as remaining parameters the counter of

mutants generated (so many as operators). The built string (newExpr) is, for

this example, MutantDriver.UOI(x, 27, 28, 29, 30, 31), where the numbers

Figure 29. Hierarchical structure of the operators

61

27 to 31 will represent, when the tests are executed, the current mutant under

execution.

Finally, newExpr is translated (using the javaparser library) into a

valid Expression of the abstract syntax tree. After all operators have been

applied to this file, it is saved in the untch_mutant table of the database.

In addition, we have added a new mutant import function. To our best

knowledge, BacterioWeb v.2 is the only mutation tool offering this

interesting functionality (Import of mutants). Other tools only deal with the

mutants that they generate themselves or, at least, do not have any automated

process to incorporate third-party mutants.

BacterioWeb v.2 has a special importer for MDroid+ [8], the tool

generates Android-specific mutants, and a general importer for uploading

versions of a given file. When MDroid+ generates mutants, it creates a folder

per mutant. In this folder there is an exact copy of the original application,

only differing in the file mutated (Figure 31).

The log file generated contains a description of every mutant that

includes the mutant index, name of the mutated file, operator applied and

@Override
protected Expression generateMutants(Node node, int[] projectCounter) {

 Expression originalExpression = (Expression) node;

 Operator[] otherOperators = getOtherOperators();

 StringBuilder sbTransformation=
 new StringBuilder("MutantDriver.UOI(" +
 originalExpression.toString() + ", ");

 for (int i=0; i<otherOperators.length; i++)
 sbTransformation.append((++projectCounter[0]) + ", ");

 String newExpr=sbTransformation.substring(0,
 sbTransformation.length()-2) + ")";

 Expression mutatedExpression =
 StaticJavaParser.parseExpression(newExp);
 return mutatedExpression;
}

Figure 30. Implementation of the UOI operator in Untch's

62

line number. Our MDroid+ importer analyses this file and uploads to the

database only the mutated files, including the operator's name (see the

classic_mutant table in the database schema in Figure 40).

 The "general importer" takes a folder as input, searches all the source

files it contains and, if the file name coincides with some of the project files,

adds it, as a mutant, to the database. In this case, the mutation operator

column is set to "Imported".

As an example, Figure 32 shows the count of mutants per operator for

a sample application: ROR, UOI and LOR mutants have been generated by

BacterioWeb v.2; MuJava has generated the 22 mutants labelled as

"Imported"; the remaining ones proceed from MDroid+.

Figure 31. Mutants generated by MDroid+

63

 Untch Mutant Schema (UMS)

The Mutant Schema are generated from the source code following the

Untch’s idea [72]. This approach creates metamutants that contains all the

mutants in a single file and metaprocedures that have the different changes

that the mutation operators can introduce in the program. This approach was

adapted for Android mobile apps.

Every Java source file is processed with the javaparser library [93].

This library builds the abstract syntax tree (AST) of each processed file. In

the relational database we save the source code and the serialized AST, using

the own javaparser serialization functionalities.

The Mutant Schema generator iterates trying to apply each selected

mutation operator to the considered file. For example, the traditional AOR

operator takes all the binary expressions in the file and, if the corresponding

operator is +, -, *, / or %, modifies the original statement by a call to

MutantDriver.X, where X is the name of original operator.

Consider the statement a+b+c: in prefix notation it can be written as

+(a, +(b, c)). If we substitute the operator by a call to a PLUS method in a

MutantDriver, the statement can be rewritten as:

MutantDriver.PLUS(a, MutantDriver.PLUS(b, c))

Figure 32. Mutants for a sample application

64

In this case, every operator can be replaced by the other four operators.

This is: + is replaced by -, *, / and %; – is replaced by +, *, / and %, etcetera.

Suppose the first mutated binary expression is b+c. In order to

represent the four possible mutants, the statement MD. PLUS(b, c) will be

written as:

MutantDriver.PLUS(b, c, 1, 2, 3, 4)

The four indexes (1-4) reference the mutant index.

Then, the second binary expression (a+b+c, that now is a+

MutantDriver.PLUS(b, c, 1, 2, 3, 4)) is mutated. The whole expression

remains as follows:

MutantDriver.PLUS(a, MutantDriver.PLUS(b, c, 1, 2, 3, 4), 5, 6,

7, 8)

The MutantDriver implements the PLUS(int x, int y, int… indexes)

metaprocedure as the method shown in Figure 33: the first two

parameters are the numbers to be added; the others are the indexes of the

applicable mutants (note that Java allows to pass a variable number of

parameters with the suspension points, which can be processed as an array).

Consider the following situations:

a. We are executing the test suite against the original program, which

has 0 as mutant index: in this case, the implementation of PLUS

reads the value of currentMutant from a file. Since its value is zero,

it returns the result pointed by the first if: a+b, which is the same

than in the original program.

b. We are now executing the mutant index with value 3, that is the 3rd

mutant proceeding from b+c. This value has been saved in the

aforementioned file and is assigned to currentMutant in the

loadCurrentMutant method. This value (3) is searched in the array

passed in the variable parameters set (it was [1, 2, 3, 4]) and found

with location=2. Then, the method returns a/b.

65

c. If we are executing the test suite against the mutant index number

100, since this value is not found in the array, the method returns the

expression in the first if.

public static int PLUS(int a, int b, int... indexes) {
 loadCurrentMutant();
 int location =
 Arrays.binarySearch(indexes, currentMutant);

 if (currentMutant == 0 || location < 0) return a + b;
 if (location == 0) return a - b;
 if (location == 1) return a * b;
 if (location == 2) return a / b;
 if (location == 3) return a % b;
 return a + b;
}

 Figure 33. Implementation of PLUS in the MutantDriver

As an additional example, Figure 34 shows the implementation we

have given to the ITR mutation operator described by Deng et al. [15] and by

Escobar-Velásquez et al. [14].

public static Intent ITR(Context ctx, Class<?> activityClass, int index) {

 loadCurrentMutant();
 if (index == currentMutant)
 return new Intent(ctx, Activity.class);
 return new Intent(ctx, activityClass);
}

 Figure 34. Implementation of the ITR operator in the MutantDriver

The ITR operator replaces the target activity of an Intent. Consider the

statement:

Intent i = new Intent(this, MainActivity.class)

Supposing the mutant to be generated is the 15th, the statement is

changed to:

Intent i = MD.ITR(this, MainActivity.class, 15)

66

When the mutant is to be applied (i.e., currentMutant==15), the

program will behave as if the programmer would have written:

Intent i = new Intent(this, Activity.class)

 Disadvantages of UMS

• Triviality of schema mutants

Often, schema mutants are much easier to kill than traditional ones.

Consider the small, selected, fragment of the Kuar app (one of the projects

used in our experiments) shown in Figure 35: a SlidingBoard

holds a collection of Square instances.

 Figure 35. A small excerpt of the Kuar design

Figure 36 shows a small piece of code of the getFirst method of the

SlidingBoard class. Note that it takes the Square instance located at the

coordinates (row, col) and, if it is not null, reads its value and casts it as an

Integer. Since the whole decision is evaluated in short-circuit, if the instance

is null, the second condition is not evaluated.

if (squares[row][col].getValue() != null &&
 (Integer) squares[row][col].getValue() == 1) {
 ...
}

Figure 36. A fragment of the code in the SlidingBoards’ getFirst method

67

The statement in Figure 36 works rightly both in the original program

as in a classic mutant that replaces, for example, the && by applying the

LOR operator.

Consider however the effect produced by the same operator with

Mutant Schema, that appears in Figure 37: the original infix expression

(with the form A && B) is translated into a prefix expression

MutantDriver.AND(A, B, 2), where the last value references the mutant

index.

In this second case, the decision is not evaluated in short-circuit and,

then, both conditions are evaluated. Suppose that the Square instance is null:

in the first time, the instance is compared to null. With independence of the

result returned, the second condition is checked and, since the instance is

null, the program cannot cast it to an Integer and crashes, producing what is

usually known as a trivial mutant [14].

According to Escobar-Velásquez et al. [14], a trivial mutant is a

mutant that always or frequently crashes at runtime. Trivial mutants

introduce “noise” in the result analysis phase and may lead to misinterpret

the mutation score.

if (MutantDriver.AND(squares[row][col].getValue()!= null,
 (Integer) squares[row][col].getValue() == 1, 2)) {
 ...
}

 Figure 37. One of the schema mutants of getFirst in SlidingBoard

In general, these operators are more frequent with schema than with

traditional mutants, although Deng et al. [15], who do not use Mutant

Schema, also are aware of the problem they represent (“we need to make our

tool generate fewer mutants that immediately crash […]”).

68

• Legibility of schema mutants

The example in Figure 38 proceeds from the Kuar app too: the original

statement checks whether a point is inside the area of a board. The statement

is a decision with four conditions and is mutable in several ways.

Suppose that the tester wants to investigate why one of this statement’s

mutants remains alive: clearly, this task is much easier comparing the

original code in rows 2 and 3, than with the too confusing call to the Mutant

Driver of the last row.

Original program

if (x >= board.getLeft() && x <= board.getRight() && y >= board.getTop() && y <=
board.getBottom()) {

LOR mutant

if (x >= board.getLeft() || x <= board.getRight() && y >= board.getTop() && y <=

board.getBottom()) {

ROR mutant

if (x >= board.getLeft() && x != board.getRight() && y >= board.getTop() && y <=

board.getBottom()) {

Mutant Schema combining LOR and ROR

if
MutantDriver.AND(MutantDriver.AND(MutantDriver.AND(MutantDriver.GREATER_EQUALS(x,
board.getLeft(), 214, 215, 216, 217, 218), MutantDriver.LESS_EQUALS(x, board.getRight(),
219, 220, 221, 222, 223), 176), MutantDriver.GREATER_EQUALS(y, board.getTop(), 224,
225, 226, 227, 228), 177), MutantDriver.LESS_EQUALS(y, board.getBottom(), 229, 230, 231,
232, 233), 178)) {

 Figure 38. A piece of code, two classic mutants and a Mutant Schema

 Partial conclusions

Untch Mutant Schema (UMS) is "our own" Untch's implementation,

because no author gives enough technical details to have a faithful

reproduction of their method. The works [83], [26], [74] that refer to the use

of this approach are limited to referencing Untch et al. [72] and in some cases

give details only of the metaprocedures. However, none of them provides

how to implement or how to work with the driver that invokes the

69

metamutants and which indicates which mutants should be instantiated.

UMS requires to analyze the program code to (1) detect the statements to be

changed, (2) substitute the original statements by calls to the

metaprocedures, (3) create the metaprocedures and (4) implement the test

driver, all without making any copy of the SUT. However, on many

occasions some mutants overlap (which depends on the order and selection

of the operators), therefore the number of mutations that are generated with

UMS does not always coincide with the number generated in a traditional

way. On the other hand, UMS implementation is easy, the structure mounting

is fast, but the mutated code readability is cumbersome, and it also often

produces what are known as trivial mutants.

 BacterioWeb v.2: Improved version of Android Mutation
Testing Tool

BacterioWeb v.2, is a web tool for the mutation testing of Android

mobile applications in a distributed environment, we have developed it as an

evolution of BacterioWeb v.1. To our best knowledge, BacterioWeb v.2 is

the first mutation testing tool which is available on the web. All mutation

tools we know ([26], [68], [69], [89], [94], [8], [95]) are "standalone" or

desktop tools, that operate with projects saved on the same machine where

the mutation tool is installed. Existing tools make it difficult to share a

mutation testing project among a team of testers. Also, to take advantage of

the power of these and other mutant generation tools, BacterioWeb v.2 offers

the possibility of importing mutants (Section 3.2.1). Moreover, BacterioWeb

v.2 implements mutation techniques that allow tester to perform mutation

testing with reasonable cost and time, such as (1) Selective Mutation, to

select the mutation operators to apply, but we have not made any analysis to

check possible subsumptions among operators, (2) Mutant Schema, to

reduce the packaging time of the mutants, (3) Execution mutants parallel, (4)

Only Alive strategy, test cases are launching only against those mutants

70

remain alive and (5) Mutant Sampling, to randomly choose a small subset of

mutants from the entire set.

BacterioWeb v.2 consists of two web applications (Figure 39): The

Central Web Server (CWS) is the entry point for testers. It allows to create

and manage projects and to access the mobile devices offered by the Device

Web Servers. The Devices Web Server (DWS) offers the CWS a web

interface for managing the SUT on the devices it has connected. The CWS

saves the whole project on a relational database, which is also known by the

DWS's. Mutants generation is performed in the CWS. Test execution is

launched and coordinated by the CWS, although the tests run on the devices

connected to each DWS.

For both systems we have created a web resource for every of the use

cases shown in Figure 39. Some of them are implemented as http resources,

whilst others are offered via websockets. In both systems too, all the web

Figure 39. Functional view of BacterioWeb v.1

71

resources pass their received requests to a Manager, which is a singleton that

holds all the knowledge about the business objects, which are placed in the

internal layers.

 Project Creation

The tester uploads the folder containing the Android project to the

CWS. This one copies the folder in its own file system and uploads every of

its files to the project_file table of the database (Figure 40). The file contents

are saved in binary format in the contents column.

Each time a .java file is uploaded, we use the javaparser library to

build its abstract syntax tree (AST), which is serialized and saved in the

compilation_unit column of the project_file table. Keeping the AST together

to the file avoids reanalyze the file when mutants are to be generated.

Moreover, source files are analyzed to check whether they are test

classes. In this case, they are separately saved in the test_class table, and

their test cases in the test_method table.

Once the project has been uploaded, the CWS calculates some

parameters that will be needed to compile, install, and execute the tests.

These values are saved in the project_configuration table and are modifiable

by the tester.

72

 CWS-DWS communication

When the browser's tester arrives to the Run screen in the CWS, this

one contacts via http requests with all the DWS's, whose ip's are saved in the

database. Each connected DWS returns the list of its available devices and

the list of emulators it may offer.

Figure 41 is showing that the Device Web Server at 192.168.1.11

offers one emulator (Pixel_2_API_30, which is not currently running) and

has one available physical device (that one with id 94769a87); the DWS at

192.168.1.60 offers three emulators and has one device running (4bd3f236).

Figure 40. Main tables in the database

73

If the tester selects one or more emulators (Figure 42), she/he can

launch them in order to make them available as more remote running devices:

after launching the three selected emulators in Figure 42, the tester has 5

available Android devices (2 physical devices and 3 emulators) to execute

the tests (Figure 43).

Figure 42. Launching remote emulators

Figure 41. Connection to the remote Device Web Servers

74

In the Central Web Server, every remote device is represented as an

instance of a DeviceProxy object (Figure 44), which offers the tester all the

required operations for executing the tests: downloadAndInstallNextMutant,

push, install, compile, runNextText... The DeviceProxy sends all these

operations to the Device Web Server where the corresponding physical

device is located via http requests. These ones are cached in the DWS by a

RunController that, passing by a manager, routes the request to a Device

instance. Finally, this one sends the command to the physical device through

an operating system process (Figure 47).

Figure 44. A DeviceProxy interacts in the CWS with a remote device,

located at the DWS

Figure 43. Available devices after Figure 42

75

 Starting test execution

The tester launches the execution of the tests by pressing one of the

three buttons Original, Classic mutants or Untch mutants shown in Figure

41. She/he must also select the remote devices where the tests will be

executed. Moreover, she/he has other choices:

1) All against all or Only Alive: the first one executes all the test cases

against all the mutants. The second one executes the test cases only

against the mutants remaining alive.

2) Sequential or Best test case first: with the first one, each device

executes one test case after the other, in a given order. With the second

one, the Device instance asks for the Central Web Server which one is

the test case that, in all the devices, has killed more mutants, and

executes it. At this point, it is worth noting that, after executing every

test case, the DWS sends back the result to the CWS.

The tester may also:

3) Either select a percentage of mutants to be executed. In this case, the

CWS makes a random selection of mutants and distributes them

equally among the remote devices.

4) Or select some concrete mutants, which is a list of numbers (the

mutant indexes) separated by commas or tabs.

When one of the afore-mentioned execution buttons is pressed, the

browser sends a message with all the execution configuration to a WebSocket

listening at the Central Web Server, which creates an object

(TestRunnerGroup) for controlling the progress of the execution.

Figure 45 illustrates the interactions between four of the five types of

systems involved in the starting of a test execution scenario (we have taken

out the database for clarity): after pressing the desired execution button, the

tester's browser sends a message to the CWS's WebSocket. After checking

76

the data received, creates an instance of TestRunnerGroup. This oner

recovers from the database the available list of remote hosts: as well as a

DeviceProxy represents a remote device in the CWS, a RemoteHost instance

is a proxy used to send http messages to a DWS.

The TestRunnerGroup asks each RemoteHost to download the project.

The RemoteHost instance sends (message 5) a http request to the DWS's

RunController. This one asks for the DWS's manager (who knows the

database) to download it.

When it has been downloaded, the RunController sends back a

200/OK http response to the CWS's RemoteHost, who sends in turn a new

http request for compiling both the project APK and its test APK. Note that

both downloading and compiling do not depend on the device.

When the DWS has successfully compiled the project and the tests,

sends back a new 200/OK response to the RemoteHost. Each time a remote

device has successfully installed both the app and the tests, its corresponding

DeviceProxy instance tells the TestRunnerGroup that the remote device is

ready (message 28, the last one in Figure 45).

When all devices are ready, the TestRunnerGroup asks every

DeviceProxy instance to push and install both APK's (the app and the tests)

on the physical remote devices. These requests (that now contain the device

name) are sent to the same RunController, who sends the corresponding call

to the Device instance. This one creates an operating system process that

sends the corresponding adb command to the physical device.

77

If any of the remote hosts returns a fault in the downloading or

compilation, or a remote device in the pushing or installation, the process is

stopped, and the tester is reported. But if all the remote devices are ready, the

TestRunnerGroup equally distributes the mutant ids among the remote

devices and sends them the starting execution message.

At first glance, all the operations performed so far will be only useful

if the tester has pressed the Original button: in fact, the original app does not

need to be compiled or installed when mutants are to be run. However, to

perform these previous steps are useful to check that the app is valid for all

the remote devices (an app compiled with Android version 8 cannot be

installed on a device with Android version 4), that it has space enough, that

there are no compilation errors, etc.

Figure 45. Sequence of operations for starting a test execution

78

 Test execution

The TestRunnerGroup asks for every DeviceProxy to start the test

execution when all the devices have installed both the app and the tests.

The DeviceProxy sends the corresponding http request to the

RunController, who locates the target device by means of the manager. The

execution of a test case from the console consists in writing and executing a

command like that in Figure 46: it launches the Android's adb program with

several parameters, some of which are the device name, the test class, the

test method in this test class and the test execution runner. The adb program

may be located at different locations in each remote host. Thus, the

remote_host table in the database holds the Android SDK and AVD paths.

The test execution runner is specified in the gradle file of the project (during

the project uploading).

Therefore, the CWS's DeviceProxy sends the corresponding test case

execution request to the DWS's RunController, who in turn locates the

Device instance corresponding to the target physical device. Running a test

case on the Device consists in creating an operating system process (see

Figure 47) imitating the one shown in Figure 46. The output of the process

is saved in a file on the disk of the DWS, which is sent back to the

DeviceProxy (in the CWS). The DeviceProxy sends the result to the

TestRunnerGroup that, through the WebSocket, updates the tester's browser.

79

Besides knowing (through the WebSocket) the tester's browser, the

TestRunnerGroup holds also an instance of a KillingMatrix class, which is

updated each time a device sends a test case result. If the execution options

the tester did select included the option Best test case first, the

TestRunnerGroup asks the KillingMatrix for the best test case (i.e., that one

that kills more mutants), and sends it to be run in the remote device.

Figure 47. Connection between a DeviceProxy (on the CWS) and its physical

device (on the DWS)

Figure 46. Console command for executing a test case and its result

80

 Mathematical Models of Cost Reduction Techniques

As described above, we have implemented, designed, and

experimented with different mutant generation techniques and mutant

schema approaches. In addition, we have performed several complete cycles

of mutation testing on mobile applications using the BacterioWeb v.2 tool,

which has allowed us to build mathematical models that model the

theoretical savings of the cost reduction techniques used in the

experimentation of Chapter 4.

From the execution time point of view, the worst situation is when no

cost-reduction technique is applied: neither Mutant Schema nor Parallel

Execution. In this situation, all test cases are executed against all mutants.

Although the absence of cost-reduction techniques is obviously unadvised,

it is useful to take it as a baseline for estimating the cost reduction achieved.

This idea is similar to that of Grindal and Offutt [96] in their paper about

combinatorial test generation: although All combinations is not a good

technique (it produces many test cases, many of which are redundant), “it is

often used as a benchmark with respect to the number of test cases”.

Setting aside the result analysis step, the total time required for

executing T (a set of test cases) against M (a set of mutants) is the sum of the

times for mutant generation (Tgen) and for the required steps for executing

the tests (Texec) (Eq. 1).

𝑇 = 𝑇𝑔𝑒𝑛 + 𝑇𝑒𝑥𝑒𝑐 (1)

Both with or without Mutant Schema, and independently of the

execution algorithm, the mutant generation time (Tgen) is equal and it does

not depend on the approach. So, we will not consider it in the next equations.

81

 Mathematical model of Texec without any cost-reduction technique

With respect to the execution time, it depends on:

(1) The number of test cases and the number of mutants (|M|).

(2) The nature of the test suite (unit or instrumented). The execution of

instrumented test suites requires compiling the app, packaging it into

an apk, pushing it onto the device and executing the tests. Unit tests

only need the compilation and the execution.

(3) The execution algorithm: in this research we distinguish between

executing all test cases against all the mutants (“All against all”,

such as in the example of Table 6) and only against the mutants

remaining alive (“Only Alive”, like in Table 7).

Table 13 summarizes the tasks to be performed depending on the type

of test.

Type of test Tasks

Unit
Compile

Run tests

Instrumented

Compile (and build APK)

Push APK onto devices

Install APK

Run tests

Table 13. Execution tasks depending on the type of tests

In the case of instrumented tests, the tester must build, push, and install

an apk with the change that corresponds to every mutant. The tests are

launched against all the mutants (M), as shown in Eq. (2). For unit test cases,

Tpush=Tinstall=0.

𝑇𝑒𝑥𝑒𝑐
𝑁𝑜𝑇𝑒𝑐ℎ = |𝑀| · (𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒 + 𝑇𝑝𝑢𝑠ℎ + 𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙 + 𝑇𝑟𝑢𝑛) (2)

In Eq. (2):

• Tcompile is the time required to compile one version of an app.

82

• Tpush is the time required for pushing the apk file corresponding

to an app from the computer to the device.

• Tinstall is the time required for installing an app on a device. The

apk file has been previously deployed onto that device.

• Trun is the time required for executing the test suite against an

app.

 Mathematical Model of Texec with Mutant Schema

The same steps are required for Mutant Schema. There is however a

previous step to generate and mount the schema (Tms), but there is only one

compilation and, for instrumented tests, only one pushing and one

installation. As in the previous case (we are considering the All against all

execution), all the tests are launched against all the mutants, as shown in Eq.

(3).

𝑇𝑒𝑥𝑒𝑐
𝑀𝑆 = 𝑇𝑚𝑠 + 𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒 + 𝑇𝑝𝑢𝑠ℎ + 𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙 + |𝑀| · 𝑇𝑟𝑢𝑛 (3)

Tms is negligable in most cases (7-8 milliseconds in almost all

projects). Even in the case of WordPress (one of the selected applications for

our experiment, which has 538 Java source files and 109,991 lines of code),

the generation of the mutant schema is almost insignificant Figure 48. Thus,

we will remove Tms from our equations.

Figure 48. Ten measures of Tms and Tcompile for WordPress and its 538 Java files

83

 Mathematical Model of Parallel Execution

Without Mutant Schema and with n devices, the execution time is

directly reduced in 1/n (Eq. 4): every task is made |M| times but distributed

in parallel on the n connected devices.

𝑇𝑒𝑥𝑒𝑐,𝑛
𝑁𝑜𝑇𝑒𝑐ℎ =

|𝑀|·(𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙+𝑇𝑟𝑢𝑛)

𝑛
 (4)

Mutant Schema still requires only one compilation; the system must

be uninstalled and installed on all the devices but, since these tasks are

executed in parallel, it is like performing them only once. Trun is reduced in

1/n (Eq. 5):

𝑇𝑒𝑥𝑒𝑐,𝑛
𝑀𝑆 = 𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒 + 𝑇𝑝𝑢𝑠ℎ + 𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙 +

|𝑀|·𝑇𝑟𝑢𝑛

𝑛
 (5)

Equations (4) and (5) substitute Equations (2) and (3) with the

introduction of the new parameter, n (n=1 when there is no parallel

execution).

 Mathematical Model of Only Against Alive (OA) with Mutant

Schema

The success of Only against alive depends on the better or worse

“luck” in the execution order of the test cases:

• The best situation happens if the first test case is able to kill all the

mutants, since no more test cases need to be executed (i.e., the killing

matrix would have only one row with all the mutants killed). This is

illustrated in Table 14, where the first test finds all the artificial faults.

In this case, there is a cost reduction factor (we call it) of 1/|T|.

• The worst situation is when none of the tests kills any mutants (all

the cells in the matrix would be empty) or if the last test case executed

is the only one that kills mutants Table 15. In any of these two

84

situations, all the tests are executed against all the mutants. There is

no cost reduction in this case, so = 1.

 m1 m2 m3 m4 m5 m6 m7

t1 X X X X X X X

t2

t3

t4

t5

Table 14. The first test kills all the mutants (= 1/5)

 m1 m2 m3 m4 m5 m6 m7

t1

t2

t3

t4

t5 X X X X X X X

Table 15. The last test kills all the mutants (= 5/5)

Without Mutant Schema, the total time is given by Eq. (6):

𝑇𝑒𝑥𝑒𝑐,𝑛
𝑁𝑜𝑇𝑒𝑐ℎ,𝑂𝐴 =

|𝑀|·(𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙+𝜌 𝑇𝑟𝑢𝑛)

𝑛
 (6)

With Mutant Schema, the total time is (Eq. 7):

𝑇𝑒𝑥𝑒𝑐,𝑛
𝑀𝑆,𝑂𝐴 = 𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒 + 𝑇𝑢𝑛𝑖𝑛𝑠𝑡𝑎𝑙𝑙 + 𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙 +

|𝑀|·𝜌·𝑇𝑟𝑢𝑛

𝑛
 (7)

In the worst case, the reduction factor is 𝜌 = 1, being in this case the

times equal to those in Eqs. (4) and (5).

In the best case, the reduction factor is 𝜌 = 1 |𝑇|⁄ , where |T| is the

number of test cases. This behavior occurs if all the mutants are killed by the

first test case executed.

85

In the average case, the reduction factor takes intermediate values.

Therefore:
1

|𝑇|
≤ 𝜌 ≤ 1

 Improvement factor

The improvement in the execution time with respect to our benchmark

(non-using any technique, Eq. 2) can be described as a quotient. Thus, the

“improvement factor” (IF) of applying Mutant Schema with Parallel

execution on n devices and an arbitrary reduction factor () is given by Eq.

(8). Note that, if =1, this equation is valid for the All against all execution

algorithm.

𝐼𝐹 =
𝑇𝑒𝑥𝑒𝑐,𝑛

𝑁𝑜𝑇𝑒𝑐ℎ,𝑂𝐴

𝑇𝑒𝑥𝑒𝑐,𝑛
𝑀𝑆,𝑂𝐴 (8)

We develop the equation replacing (4) and (5) in (8):

𝐼𝐹 =

|𝑀|·(𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙+𝜌·𝑇𝑟𝑢𝑛)

𝑛

𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙+
|𝑀|·𝜌·𝑇𝑟𝑢𝑛

𝑛

 (9)

Removing n from the numerator:

𝐼𝐹 =
|𝑀|·(𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙+𝜌·𝑇𝑟𝑢𝑛)

𝑛·(𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙)+|𝑀|·𝜌·𝑇𝑟𝑢𝑛
 (10)

As |M| grows up, IF improves, although it tends to asymptotically

stabilize towards a maximum (Eq. 11).

lim
|𝑀|→

𝐼𝐹 =
𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙+𝜌·𝑇𝑟𝑢𝑛

𝜌·𝑇𝑟𝑢𝑛
= 1 +

𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙

𝜌·𝑇𝑟𝑢𝑛

(11)

 Assumptions

The comparison of the times and the calculus of the limit in Eq. (11)

requires that the different times can be compared. Thus, we assume that all

of them are equal: this is, the times required to compile (Tcompile), pushing

(Tpush) and installing (Tinstall) an app are equal with or without mutant schema

or parallel execution. In the same way, we assume that Trun, which is the time

86

required to execute 1 test case against an app is also the same, independently

on the use of mutant schema.

 The execution time of all test cases against all mutants is formaly

defined as: ∑ 𝑇𝑟𝑢𝑛 𝑖, 𝑗
𝑖=𝑀,𝑗=𝑇
𝑖=0,𝑗=1 , where M (a set of mutants), T (a set of test

cases) and 𝑇𝑟𝑢𝑛𝑖, 𝑗 is the execution of test case j on mutant i. We can say that

its upper bound is 𝑀 ∙ 𝑇𝑟𝑢𝑛𝑖, 𝑗 where 𝑇𝑟𝑢𝑛𝑖, 𝑗 is the longest execution time of

a test case j on a mutant i; i.e: ∑ 𝑇𝑟𝑢𝑛 𝑖, 𝑗
𝑖=𝑀,𝑗=𝑇
𝑖=0,𝑗=1 is 𝑂(𝑀 ∙ 𝑇𝑟𝑢𝑛𝑖, 𝑗). For

obtaining a simpler model, we assume that the longest 𝑇𝑟𝑢𝑛𝑖, 𝑗 is 𝑇𝑟𝑢𝑛 so,

the mathematical models roughly estimate how long it may take to run

mutation tests in a mobile app.

 Research Questions

For checking the goodness of our mathematical models to estimate the

execution cost of a mutation testing cycle, we combine three cost reduction

techniques (Mutant Schema, Parallel Execution and Only Alive) both

isolated and in different combinations, as well as the non-use of any cost

reduction technique at all. The fit of the mathematical model is validated

with a set of mobile apps, and it could be extended to consider other cost-

reduction techniques. Although the model is applicable to any other context,

our motivation for developing it has been mobile-software testing because

of its high cost. To do so, the following questions were defined:

 RQ1: Can we accept the assumptions made in the Epigraph 3.2.4.6

(Assumptions) of Section 3.2.4 (Mathematical Models of Cost Reduction

Techniques)? This is, the times for compiling, pushing, installing, and

running are the same, independently of the use or not of Mutant Schema?

 RQ2: How good are the Mathematical models to predict the mutation

testing time?

 RQ3: Does the combination of Parallel Execution, Only Alive strategy

and Mutant Schema improve the mutation testing time?

87

 RQ4: How does the number of mutants influence on the improvement

factor?

88

CHAPTER 4

EXPERIMENTATION AND RESULTS

In this chapter, we answer the research questions with experiments.

Initially, we refer to the tool used, describe the target mobile applications

and the operators used in these experiments. Then, we analyze the results

obtained after experimentation.

 MUTATION TESTING TOOL

The tool used for the experimentation is BacterioWeb v.2 (described

in Section 3.2.3). Figure 49 shows a general view of BacterioWeb v.2: testers

access the system via a Central Web Server (CWS), which manages a

database that saves the projects. This CWS knows a set of Devices Web

Servers (DWS), which, via http and websocket (ws), offer their mobile

devices and emulators to the CWS to execute the tests.

Figure 49. General view of BacterioWeb v.2

89

 TARGET ANDROID APPS AND MOBILE DEVICES

The experiments have been run on the following eight Android apps,

which were selected according to the following criteria:

• To make use of common mobile functions (such as touch events).

• They must have available test cases implemented by the developers.

• Their source code must be also available.

1) WordPress is the biggest application used in this study. It is used for

creating web sites and blogs. It is published in the Google Play Store,

it has over 10 million downloads and almost 150,000 comments. Its

source code is available at github.

2) Figures is a project implemented during the development of

BacterioWeb v.2 for testing some of its characteristics. It is an app

that calculates the perimeter and type of a triangle or of a

quadrilateral. The calculus can be done locally or by querying a

remote web service (Figure 50a). Moreover, the lengths of the sides

can be: (1) directly written (Figure 50b), (2) calculated from the

coordinates where the tester clicks (Figure 50c) or (3) calculated by

clicking on the measures from different sensors (Figure 50d). The

selected combination is saved in a set of preferences. It is not a

complex project, but it holds the logic of the triangle-type

determination problem (proposed by Myers [97] and typically used

in many papers about testing), dealing with user events, with web

communication, with sensors’ data and with preferences.

90

(a) Options

(b) Writing

(c) Drawing

(d) With sensors

Figure 50. Screenshots of Figures

3 and 4) AlarmKlock and JustSit are two of the apps used in Deng et

al.’s [15] work on mutation operators for Android. AlarmKlock

allows to set up alarms for different days and hours; JustSit is a

single app that shows the user two time counters, one in seconds

and the other in minutes.

5) Tourism has been developed by a company for a Spanish regional

government. It uses Google services to plan touristic visits to cities.

The user adds points of interest to a touristic route and constraints

the time and budget; the app gives in return a route fitting the user’s

input.

6) Mangosta is an open source, open standard, XMPP/Jabber client. Its

code is available at github.

91

7) Dexter is an Android library that simplifies the process of requesting

permissions at runtime. It is also available at github.

8) Kuar is a game developed some years ago by Macario Polo Usaola.

The user must consecutively order the numbers on a board using as

few movents as possible.R

Table 16 shows some quantitative data of the apps: the #Files and LOC

columns correspond to the number of Java files in each project (excluding

interfaces) and their number of lines of code. Last columns contain the

number of test cases in each project and the maximum number of mutants

that BacterioWeb v.2 can generate. We wrote the test cases for Figures, Kuar

and JustSit. Test cases for Tourism were provided by its developer. The other

projects have test cases in their respective repositories.

App
Mutated classes

Tests Mutants
#Files LOC

WordPress 538 109991 120 29554

Figures 13 6450 31 1331

Alarm Klock 92 6608 12 3239

JustSit 4 483 10 171

Tourism 54 4902 15 851

Mangosta 59 9902 31 1579

Dexter 30 2872 10 216

Kuar 37 3580 12 3225

Total 827 144788 241 40166

Table 16. Some characteristics of the apps

The deployments (push, installing) of these apps and the test execution

were carried out on two identical physical devices: two Samsung tablets,

model SM-T590 running Android 8.1.0 with 3 Gb RAM.

92

 APPLIED MUTATION OPERATORS

In this thesis, our goal is not to validate mutation operators for

Android, our main goal is to measure the influence of several techniques in

the reduction of the time required for mutation testing in Android projects.

Obviously, using one or another operator with so many mutants and

executions does not have any significant impact on the results of our

experiments, which are not concerned with the quality of operators, but with

the time required for mutation testing. However, we have implemented the

traditional operators most used in the literature for java projects [26] and

some Android-specific operators proposed by Deng et al. [15] and Escobar-

Velásquez et al. [14]. The set of operators will introduce both traditional

errors (typical of the Java language) as specific errors for Android (as event

handlers).

Traditional operators:

LOR (Logical Operator Replacement), which substitutes a logical

operator by another one (|| by &&, |, etc.).

ROR (Relational Operator Replacement), which replaces a relation

operator by another one (e.g., && by ||).

UOI (Unary Operator Insertion), which inserts predecrements,

postdecrements and the unary minus in numeric variables.

AOR (Arithmetic Operator Replacement), that replaces some

arithmetic operators by others (+ by -, *, /, etc.).

IMCA (Invalid Method Call Argument) is one of the Escobar-

Velásquez et al.’s operators [14]. It randomly mutates a method call

argument of a basic type.

Android mutation operators:

The Android operating system makes available to developers, different

mechanisms for storing data in files: SharedPreferences files are key-value

93

tables that allow the application to store small data sets in a simple way. All

changes made in an editor are batched, and not copied back to the original

SharedPreferences until a call to commit() or apply() is executed. We define

3 mutation operators to reproduce errors that can occur when working with

SharedPreferences files:

FEC (Forget Editor Commit): This operator simulates that the

developer forgets calling commit. The values are set with some of the putX

methods, but the changes are not materialized. So, this operator removes the

statement editor.commit(). For killing these mutants, test cases need either

to include an oracle to check that the preferences have been save (what is

unusual), or to execute a long scenario that makes use of the previously saved

preferences: therefore, this operator confirms one of the conclusions of

Gordon and Gargantini in [98], who observed that is preferred to have a few

long test cases than many short test cases. This operator is quite similar to

the CPSE operator proposed by Paiva [12].

FEA (Forget Editor Apply): This operator is similar to FEC, but in this

case it removes the call to the apply() method. It works exactly in the same

way as the FEC mutation operator.

RSPE (Replace Shared Preferences Editor): A typical error in the use

of SharedPreferences.Editor type files is to mismanage the keys entered in

the file. This operator mutates the key-value pairs of the statements

putInt(…), putBoolean(…), putString(…), putLong(…), putFloat(…) of

different ways.

MDL (Lifecycle Method Deletion) is one of Deng et al.’s operators [15].

It deletes each overriding activity method to force Android to call the version

in the super class.

94

ETR (OnTouch Event Replacement) [15]: it searches and stores all

event handlers that respond to OnTouch events in the current class. Then, it

replaces each handler with every other compatible handler.

KER (Key Event Replacement): Key events contain information about

keys pressed. This operator replaces some key events with other equivalent

key events: for example, it replaces KeyEvent.ACTION_UP by

KeyEvent.ACTION_DOWN.

IEC (Interchanges the Event's Coordinates): This operator modifies

motion event's location through interchanges and replacement of axis values.

So, if the user clicks on (100, 200), this mutation operator sends the event to

(200, 100)

IPR_E (Intent Payload Replacement Extension): This operator is an

extension of the IPR operator (Intent Payload Replacement) proposed by

Deng et al. [15]. An Intent can send different types of data from one activity

to another, as key-value pairs. The putExtra(…) method takes the key name

as the first parameter, and the value as the second parameter. IPR_E includes

all mutations of IPR proposed in [15], but it also adds a mutation for the first

parameter (empty String) and different mutations for the key-string pairs.

ITR (Intent Target Replacement) [15], also called

InvalidActivityName in [14]: This operator mutates the Intent target object

(an activity), changing the target activity. This idea also is included in the

NACT operator proposed by Paiva [12].

ORL_M (Orientation Locked Modified): This operator is a

modification of the Deng et al.’s ORL operator [15]. The original ORL

freezes the orientation of an activity to be in portrait or landscape, and this is

done by inserting a locking statement into the source. Our modification

preserves the same idea, but the mutants freeze the orientation of an activity

95

to be in portrait or landscape through insertion or replacement of

setRequestedOrientation(…) statement into the source.

MJP (Modify JSON Put): This operator inserts small changes into the

key-value pairs of the different put(...) methods of the JSONObject class.

JSON is a widely used format for message interchange. Developers tend to

copy and paste calls to put(...) or to build unexpected hierarchies of JSON

objects. This operator modifies keys and values in put calls.

IQ (Incorrect Query): The SQLite database allows the developer to

introduce SQL statements as strings. This operator mutates the query passed

as parameter in calls to SQLiteDatabase.RawQuery(…). This operator is

similar to the InvalidSQLQuery proposed by Escobar Velásquez et al. [14].

RAQ (Replace read-write Access to a database Query): This operator

mutates the calls allowing the iteration through the result set returned by a

database query. It changes moveToFirst, moveToLast, moveToNext and

moveToPrevious by the others.

Currently, there are many specific mobile software operator [14], [15],

[89]. However, the similarity between them is high and their mutations are

like some mutations of the traditional operators; that is why we propose as

future work, a study on subsumption of android mutation operators (Section

5.1).

 EXPERIMENTAL SETUP

For each application under test, we have carried out the following steps:

• Mutant generation. This task generates and saves the mutants in the

relational database.

• Second, we execute the test suites against the mutants with the

combinations of techniques shown in Figure 51. Excepting for

96

WordPress, each test suite has been executed against all the mutants 3

times to minimize bias. For WordPress we have taken a sample (10%)

of mutants, since otherwise the execution time is huge. Maybe 3 times

does not seem too much, but some complete executions with the

combination 1 require around a week. At this point, it is important to

note that, the times of connection to the database, writing, reading, etc.

are removed from the time calculus

1

2

3

4

5

6

7

8

(NoTech, All against all, 1 device)

(NoTech, Only Alive, 1 device)

(NoTech, All against all, 2 devices)

(NoTech, Only Alive, 2 devices)

(Mutant Schema, All against all, 1 device)

(Mutant Schema, Only Alive, 1 device)

(Mutant Schema, All against all, 2 devices)

(Mutant Schema, Only Alive, 2 devices)

Figure 51. Execution combinations

• Third completing a cycle of mutation testing, we obtain a list of the

best test cases applying a greedy algorithm such as the described in

Epigraph 2.2.2.2.

BacterioWeb v.2 saves much information in a set of comma-separated

files: in one of them (global.txt), it accumulates all the execution data of all

the projects; in the other, it saves the same data, but creating a single file for

each test suite execution. Figure 52 shows an excerpt of global.txt: each row

holds the data of the execution of one test case against one mutant. The

columns contain: (A) the unique id of this test suite execution, (B) the project

under test, (C) the test executor used (NoMS or MS), (D) the test case, (E)

the mutant index, (F) the current class under test, (G) the verdict (A or K

97

depending on whether the mutant is alive or killed), (H) the test case type,

(I) the device where the mutant has been installed, the date (J) and time (K),

the execution algorithm (All against all or Only against alive) in column L,

the compile, push and install execution times (M, N, O) and the run time (P)

required by this test case with this mutant.

Figure 52 corresponds to two different executions of a test suite

against the Mangosta project. The execution in the top row took place in the

morning (column K) of May 20, 2020 (column J). The run times always

appear on column P. However, the build, push and install times only appear

when these tasks are effectively performed: for example, the mutant in the

first row (mutant number 117, column E) was deployed to the device

4bd3f236 (column I). Since the test case kills this mutant (see the Verdict in

column G) and we are executing with Only Alive (column L), the execution

of the mutant is interrupted and, on row 302, the deployment of the next

mutant (number 131) to the 4bd3f236 starts.

Figure 52. Two excerpts of the global.txt file, generated by BacterioWeb v.2

98

The bottom row of Figure 52 corresponds to an execution with Mutant

Schema (see column C). So, columns M, N and O are empty because the

building, pushing, and installing are performed before launching the test

suite execution. Anyway, BacterioWeb v.2 shows the tester the times spent

in its test execution window (Figure 53). Also note the presence of the time

devoted to mounting the mutant schema.

Figure 53. Summary of times in BacterioWeb v.2

Therefore, the times collected are:

Tcompile, which is the time required for compiling the application. This

time is only applicable for instrumented test cases.

Tpush, which is the time for pushing the application from the server to

the device. It is also only applicable for instrumented test cases.

Tinstall, which is the time for installing the application onto the device.

This time is only applicable for instrumented test cases.

99

Trun, which is the time spent in executing one test case against one

mutant.

 RESEARCH QUESTIONS ANSWERED

 RQ1: Can we accept the assumptions made in the Epigraph 3.2.4.6

(Assumptions) of Section 3.2.4 (Mathematical Models of Cost Reduction

Techniques)? This is, the times for compiling, pushing, installing, and

running are the same, independently of the use or not of Mutant

Schema?

To answer the RQ1 each test suite has been executed 3 times in each

of the 8 modes shown in Figure 51. This is each test suite has been executed

24 times in every project. These executions have produced a lot of data.

For comparing Tcompile, Tpush and Tinstall with and without Mutant

Schema, we have taken 3,000 random compilations, pushes and installations

with No Mutant Schema and 100 compilations with Mutant Schema. The

reason of the difference in the sample sizes is that No Mutant Schema

compiles, pushes and installs a lot of times, whilst Mutant Schema does them

only once.

Then, for each time, we have compared the values got and applied the

Student’s T. We have two hypotheses:

H0: Tcompile, Tpush and Tinstall are the same with or without

Mutant Schema.

H1: Tcompile, Tpush and Tinstall are different with and without

schema.

H0 can be rejected if p-value<0.05. Note however that our

assumptions are true (or are not false) if H0 cannot be rejected.

Table 17, Table 18 and Table 19 respectively summarize the data

collected from compiling, pushing and installing in the analyzed projects.

Note that all p-values are greater than 0.05, what leads us to not reject H0.

100

Thus, we can accept that there is no significative difference between

compiling, pushing, or installing one app with or without the use of Mutant

Schema.

Some results may surprise the reader and have surprised the writers.

One expects that Tcompile should be significantly greater with Mutant

Schema, since almost every call, arithmetic operation or comparison is

translated into a call to a method in the MutantDriver.

Tcompile (milliseconds)

NoTech MS

p-value
Project Mean Std. Dev. Samples Mean Std. Dev. Samples

AlarmClock - - - - - -

JustSit 2,523 663 3,000 2,486 624 100 0.58

Mangosta 4,373 887 3,000 4,279 911 100 0.30

Figures 1,245 21 3,000 1,241 18 100 0.06

Dexter 1,692 101 3,000 1,684 49 100 0.43

Turismo 2,115 120 3,000 2,095 210 100 0.11

Kuar 1,983 123 3,000 2,001 138 100 0.15

WordPress 5,336 240 3,000 5,301 326 100 0.16

Table 17. Tcompile with and without Mutant Schema

Tpush (milliseconds)

NoTech MS

p-value
Project Mean Std. Dev. Samples Mean Std. Dev. Samples

AlarmClock - - - - - -

JustSit 51 18 3,000 49 23 100 0.28

Mangosta 887 142 3,000 893 151 100 0.68

Figures 102 10 3,000 101 12 100 0.33

Dexter 208 85 3,000 212 106 100 0.65

Turismo 578 186 3,000 588 197 100 0.60

Kuar 281 140 3,000 278 56 100 0.83

WordPress 1,184 452 2,096 1,209 511 100 0.59

Table 18. Tpush with and without Mutant Schema

101

Tinstall (milliseconds)

NoTech MS

p-value
Project Mean Std. Dev. Samples Mean Std. Dev. Samples

AlarmClock - - - - - -

JustSit 979 603 3,000 1,012 611 100 0.59

Mangosta 5,129 189 3,000 5,097 211 100 0.10

Figures 4,431 456 3,000 4,344 480 100 0.06

Dexter 4,540 170 3,000 4,509 206 100 0.08

Turismo 6,185 141 3,000 6,191 143 100 0.68

Kuar 4,798 2,711 3,000 4,526 2,634 100 0.32

WordPress 10,132 2,911 3,000 10,159 10,318 3001 0.53

Table 19. Tinstall with and without Mutant Schema

With respect to Trun, which is the execution time of a tests case

against a mutant, the sample size in both cases is 3,000. This is because we

save (remind the global.txt file in Figure 52) the execution time of every test

case against very mutant and in both cases (with and without Mutant

Schema) thousands of executions have been run in each test cycle. Thus, in

this case we can compare samples of the same size. As it is seen in Table 20,

neither the null hypothesis can be rejected: this is, we cannot distinguish

whether a test case execution against a mutant has been executed with or

without Mutant Schema.

Trun (milliseconds)

NoTech MS

Sample p-value
Project Mean Std. Dev. Mean Std. Dev.

AlarmClock 2,528 801 2,489 815 3,000 0.06

JustSit 9,310 3,129 9,397 3,213 3,000 0.15

Mangosta 10,239 3,755 10,242 3,978 3,000 0.98

Figures 7,453 464 7,465 464 3,000 0.32

Dexter 4,047 666 4,051 689 3,000 0.82

Turismo 11,552 2,960 11,486 2,888 3,000 0.38

Kuar 15,432 8,146 15,704 7,870 3,000 0.19

Table 20. Trun with and without Mutant Schema

102

Partial conclusions

Since there is no evidence to reject H0, we will assume for the

remaining experiments that compiling, pushing, and installing an app onto a

device is the same with independence of the use of Mutant Schema.

Note that the veracity of this assumption would allow us to build

mathematical models with almost not executing tests.

RQ2: How good are the Mathematical models to predict the

mutation testing time?

From the huge amount of data collected by BacterioWeb v.2, we have

built several tables for each project. As an example, next tables summarize

the results for the Mangosta project. Mangosta has a test suite with 31 test

cases and BacterioWeb v.2 generates 1579 mutants for it.

The first five columns in each row includes the number of devices, a

number of mutants, the reached mutation score and the mean of the measured

total run time. Last four columns show the execution time (which is the run

time plus the time for compiling, pushing and installing): the Actual column

is the time actually measured, and Estimated is the time calculated according

to the Mathematical models.

We have executed 3 times all the test cases against the mutants, in the

eight variants: for Mangosta, for example, we have executed 3 times the 31

test cases against the 1579 mutants using 1 and 2 devices, Mutant Schema

(MS) and No Mutant Schema (NoMS), All against all (AA) and Only Alive

(OA). The number of mutants in each row has been randomly selected from

the 1579, being exactly the same mutants for each variant.

103

Texec (millis) Texec (hours)

Devices |M| M.Score Executions Total Trun (millis) Actual Estimated Actual Estimated

1 60 0.98 1860 19533729 20157069 19667880 5.6 5.5

1 100 0.98 3100 32556215 33595115 32779800 9.3 9.1

1 300 0.99 9300 97668645 100785345 98339400 28.0 27.3

1 600 1 18600 195337290 201570690 196678800 56.0 54.6

1 900 0.99 27900 293005935 302356035 295018200 84.0 81.9

1 1200 0.99 37200 390674580 403141380 393357600 112.0 109.3

1 1579 0.99 48949 514062634 530466865 517593042 147.4 143.8

2 60 0.98 1860 9766864 10078534 9833940 2.8 2.7

2 100 0.98 3100 16278107 16797557 16389900 4.7 4.6

2 300 0.99 9300 48834322 50392672 49169700 14.0 13.7

2 600 1 18600 97668645 100785345 98339400 28.0 27.3

2 900 0.99 27900 146502967 151178017 147509100 42.0 41.0

2 1200 0.99 37200 195337290 201570690 196678800 56.0 54.6

2 1579 0.99 48949 257031317 265233432 258796521 73.7 71.9

Table 21. Times with the Mangosta project, No Mutant Schema and All against all

Devices |M| M.Score Executions Total Trun (millis) Actual Estimated Actual Estimated

1 60 0.98 1623 16545387 17168727 17241237 4.8 4.8

1 100 0.98 2702 27516217 28555117 28704678 7.9 8.0

1 300 0.99 7861 83320923 86437623 83605479 24.0 23.2

1 600 1 16441 160600645 166834045 174572799 46.3 48.5

1 900 0.99 24107 254476271 263826371 256181673 73.3 71.2

1 1200 0.99 32295 337790730 350257530 343135305 97.3 95.3

1 1579 0.99 43250 446832322 463236553 459240981 128.7 127.6

2 60 0.98 1623 8151993 8463663 8620618 2.4 2.4

2 100 0.98 2702 13365698 13885148 14352339 3.9 4.0

2 300 0.99 7861 42298690 43857040 41802739 12.2 11.6

2 600 1 16441 78483852 81600552 87286399 22.7 24.2

2 900 0.99 24107 126551797 131226847 128090836 36.5 35.6

2 1200 0.99 32295 165803507 172036907 171567652 47.8 47.7

2 1579 0.99 43250 226817787 235019902 229620490 65.3 63.8

Table 22. Times with the Mangosta project, No Mutant Schema and Only Alive

104

Texec (millis) Texec (hours)

Devices |M| M.Score Executions Total Trun (millis) Actual Estimated Actual Estimated

1 60 0.98 1860 19273002 19283391 19054929 5.4 5.3

1 100 0.98 3100 32035600 33074500 31751289 9.2 8.8

1 300 0.99 9300 96686426 99803126 95233089 27.7 26.5

1 600 1 18600 195662395 201895795 190455789 56.1 52.9

1 900 0.99 27900 281807454 291157554 285678489 80.9 79.4

1 1200 0.99 37200 390442953 402909753 380901189 111.9 105.8

1 1579 0.99 48949 510347625 526751856 501199200 146.3 139.2

2 60 0.98 1860 9454620 9459814 9527464 2.6 2.6

2 100 0.98 3100 15629881 15635075 15875644 4.3 4.4

2 300 0.99 9300 47783962 47789156 47616544 13.3 13.2

2 600 1 18600 99584353 99589547 95227894 27.7 26.5

2 900 0.99 27900 138850704 138855898 142839244 38.6 39.7

2 1200 0.99 37200 194573006 194578200 190450594 54.0 52.9

2 1579 0.99 48949 247904610 247909804 250599600 68.9 69.6

Table 23. Times with the Mangosta project, with Mutant Schema and All against all

Texec (millis) Texec (hours)

Devices |M| M.Score Executions Total Trun (millis) Actual Estimated Actual Estimated

1 60 0.98 1608 16129422 16752762 17087652 4.7 4.7

1 100 0.98 2658 27056441 27066830 27225651 7.5 7.6

1 300 0.99 7943 79851108 79861497 81338766 22.2 22.6

1 600 1 15996 157522747 157533136 163793433 43.8 45.5

1 900 0.99 24595 245490830 245501219 251838594 68.2 70.0

1 1200 0.99 32412 321305761 321316150 331876857 89.3 92.2

1 1579 0.99 43025 440782480 440792869 440543364 122.4 122.4

2 60 0.98 1608 8167560 8172754 8237350 2.3 2.3

2 100 0.98 2752 13695917 13701111 14094058 3.8 3.9

2 300 0.99 7851 40159761 40164955 40198389 11.2 11.2

2 600 1 16407 80848459 80853653 84000831 22.5 23.3

2 900 0.99 23548 115252549 115257743 120559180 32.0 33.5

2 1200 0.99 31974 157441585 157446779 163696087 43.7 45.5

2 1579 0.99 43510 223804294 223809488 222754639 62.2 61.9

Table 24. Times with the Mangosta project, with Mutant Schema and Only Alive

105

Figure 54 depicts the data about actual and estimated times shown in

the previous tables for 1 device. As it is seen, the adjustment of both curves

is almost perfect, with the measured values corresponding almost exactly to

the estimates.

It is worth noting that we get similar results in all the analyzed

projects.

Figure 54. Actual and estimated times in the Mangosta project

Partial conclusions

We can conclude that the estimated times from our mathematical

models and the real times obtained in the execution of test cases are very

similar. Therefore, we can estimate a priori how long it may take to execute

mutation tests in a mobile application and, depending on its feasibility, the

tester can make decisions about which combination of cost reduction

techniques is more convenient.

106

RQ3: Does the combination of Parallel Execution, Only Alive and

Mutant Schema improve the mutation testing time?

 The experiments performed to answer to RQ2 also allow RQ3 to be

answered. For each apps, we have executed the eight the technique

combinations listed in Figure 51. For Mangosta, the data is summarized in

the Figure 55.

In Figure 55 we can see two groups of combinations; group 1 runs on

a single device and group 2 runs on two devices in parallel. As expected, the

fastest combination is Mutant Schema, Only Alive and two devices (MS,

OA, 2 devices). Also, we can see that all combinations in group 2 are much

faster than those in group 1. This indicates that parallel execution is key as a

cost reduction technique.

Point out that we obtained the same combination in all the projects

analyzed.

Figure 55. All combination of techniques in the Mangosta project

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7

Combination of techniques

NoMS, AA, 1 device NoMS, AA, 2 devices NoMS, OA, 1 device

NoMS, OA, 2 devices MS, ALL, 1 device MS, ALL, 2 devices

MS, OA, 1 device MS, OA, 2 devices

107

Partial conclusions

The experimental data have shown that: (1) the most efficient

combination of the applied cost reduction techniques is: Mutant Schema,

Only Alive and Parallel Execution and (2) Parallel Execution is the most

cost-savings technique.

RQ4: How does the number of mutants influence on the

improvement factor?

In Epigraph 3.2.4.5, we defined IF, the Improvement Factor, as the

quotient between the time of non-using any technique (i.e., No Mutant

Schema and All against all) with the time of using one or more cost-reduction

techniques:

𝐼𝐹 =
|𝑀|·(𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙+𝜌·𝑇𝑟𝑢𝑛)

𝑛·(𝑇𝑐𝑜𝑚𝑝𝑖𝑙𝑒+𝑇𝑝𝑢𝑠ℎ+𝑇𝑖𝑛𝑠𝑡𝑎𝑙𝑙)+|𝑀|·𝜌·𝑇𝑟𝑢𝑛
 (10)

We also concluded that the improvement factor got by any

combination of the analyzed techniques tends to stabilize when the number

of mutants grows up. Since the assumptions made in the mathematical

models are acceptable, we can draw the tendencies with arbitrary values for

the different variables involved in Eq. 10. Top side of Figure 56 shows the

tendency of IF with different values of and when the number of mutants

(horizontal axis) grows up:

• The dotted line evidences that the benefit of using Mutant

Schema with All against all (=1) is low if the number of

mutants is high.

• The scatted line shows the tendency in IF with =0.5: this is,

tests are executed with Only Alive and there is a “medium good

luck” in the execution order of test cases.

• Finally, the solid line is the tendency with =0.1. This situation

could correspond either to a “very good luck” in the execution

108

order of test cases or, much better, to a “smart” execution

algorithm that prioritizes the test cases with more ability to kill

mutants. We will recall this point in the Future works section.

Figure 56. Theoretical tendency in the Improvement Factor with 1 device and

different values of 𝝆 (top) and observed tendency in WordPress

The actual tendency observed in WordPress (as in all the Android

apps) is as shown in the bottom side of Figure 56 and coincides with the

trend of the predictive model.

Tendency in the Improvement Factor with 1
device

IF, ρ = 1, 1 device IF, ρ = 0.5, 1 device

IF, ρ = 0.1, 1 device

1,000

1,020

1,040

1,060

1,080

1,100

1,120

1,140

1,160

1,180

1,200

Improvement Factor in WordPress

109

Partial conclusions

As it was predicted in the Mathematical Model, the experimental data

show that Mutant Schema always improves the mutation testing time: the

improvement factor rises quickly when the number of mutants is low, but it

stabilizes and tends to a constant from a certain number of mutants.

 ANALYSIS OF THE EXPERIMENTS

The experimental data have shown that: (1) the estimated times of our

mathematical models and the real times obtained in the execution of test

cases are very similar, (2) the most efficient combination of the applied cost

reduction techniques is: Mutant Schema, Parallel Execution and Only Live

and (3) Parallel execution is the most cost-saving technique. As for Mutant

Schema technique, the results obtained are interesting, because although this

technique significantly reduces the packaging time of the mutants and

therefore improves the total execution time of the mutation testing, two

aspects are questionable: (1) its improvement stabilizes and tends to a

constant from a certain number of mutants and (2) it much more difficult to

find the reason why a mutant remains alive due to a poorer legibility of the

code.

Due to the number of applications, mutants, test cases, combinations of

techniques and -in order to get reliable measures- the number of repetitions

of each task, the process of experimentation and data collection has been

very long. From the observation of BacterioWeb v.1 and BacterioWeb v.2

during test execution, from how it fills-in the killing matrixes and from the

many results analysis made, we have learned new lessons and provided some

ideas to reduce the high cost of mutation testing:

 Test suite reduction

The reduction of the test suite size cannot make sense if the SUT’s

state depends on the test cases previously executed: suppose the test suite

110

shown in Figure 57, which contains two test cases test1 and test2 that

respectively insert and delete a customer from a database.

public void test1() {
 SUT sut = ...;
 Database db = sut.getDatabase();
 db.removeAllCustomers();

 db.insertCustomer(“John”, “Smith”);

 assertTrue(db.gestCustomers()==1);
}

public void test2() {
 SUT sut = ...;
 Database db = sut.getDatabase();

 try {
 db.deleteCustomer(“John”, “Smith”);
 assertTrue(db.gestCustomers()==0);
 } catch (Exception e) {
 fail(“Customer not found”);
 }
}

Figure 57. Two test cases in a supposed test suite

If the mutants that test1 kills are all included in those killed by test2,

test2 is selected for the reduced test suite. However, when test2 is executed

in isolation, the test case will always reach the fail statement, since the

customer inserted in test1 (that is no longer executed) will not be contained

in the database.

We have observed this situation, for example, in Mangosta, the project

we are using as running example:

• Figure 58 (a) shows a fragment of the killing matrix with 27 of its 31

test cases and some randomly selected mutants. The mutation score is

0.75. Figure 58 (c) shows the summary of the execution: 3 test cases

compose the selected reduced test suite:

tryToCreateChatWithoutAddingUsersFirst,

loadMembersAsAdminAndGoToEdit and

tryToAddCommentWithoutText.

• Figure 58 (b) shows some cells of the killing matrix after executing only

the reduced test suite. The results are quite different:

- With the whole test suite, the first test case kills mutants 8, 12,

16, 19, 33 and 35. This test is also the only that kills mutant 24.

111

- Executing only the reduced test suite, the same test leaves those

mutants alive. Moreover, the three test cases kill mutant 24. Note

moreover the quite different mutation score of this supposedly

equivalent test suite, that is only 0.05 (top-left cell of the killing

matrix).

In order to successfully reduce a set of test cases, and for the reduced

test suite to kill the same mutants and obtain the same mutation score as the

original test suite, it is imperative that each test case be repeatable,

autonomous and independent of the other cases in the test suite.

(a) Mutation Score = 0.75

(b) Mutation Score = 0.05

(c) Summary of the execution of the whole test suite

Figure 58. Reducing the test suite does not always produce reliable results

112

 Test case prioritization

(1) In some projects there are test cases whose execution takes much

more time than others. The 14 test cases of AlarmClock, for

example, are grouped in the three files appearing in Table 25. Mean

execution times of Alarm Clock’s test cases, that also shows the

mean execution time of each test case. As it is seen, the last test case

(snoozeAlarm…) needs more than 1 minute, what slows down the

overall execution time very much. Since the mutation process must

only start after all the test cases do not find any error in the original

system, it is a good idea to organize the execution against mutants

in groups of test cases, sorting them by the expected execution time

before launching the tests or, even, excluding the longest test cases

from the test suite.

Test file Test case Mean time (ms)

DaysOfWeekTest testSaturday… 1900

testMondayA… 1932

testSunday… 2095

DurationUtilsTest testBreakdown 2139

AlarmTest setRecurringDays… 2014

snoozeAlarm… 2170

alarm_RingsAt_... (1) 2205

alarm_RingsAt_... (2) 2220

alarm_RingsAt_... (3) 2273

alarm_RingsAt_... (4) 2293

alarm_RingsAt_... (5) 2418

alarm_RingsAt_... (6) 2443

snoozeAlarm_IsSnoozed_... 62172

Table 25. Mean execution times of Alarm Clock’s test cases

113

The mutation testing processes of Offut [2] and of Polo and Reales

[1] include, as an essential technique to reduce costs, the execution

of tests only against the mutants remaining alive (what we have

called Only Alive). Figure 59 redefines the mutation testing process

proposed by Polo and Reales [1], with the consideration of the

execution time (specially worrying in mobile testing) as a

mechanism technique for cost reduction: the tester starts executing

the test suite T against the SUT, S. If there are no errors, s/he

separates (node 3) the test cases in several test files (TF1…TFn)

according to the test case execution times. If it is the first execution,

mutants must be generated (node 4) and the test files iteratively

launched against the mutants, removing the killed mutants (node 6)

and analyzing the mutation score: if the prefixed threshold is

reached, the process can stop. Otherwise, if there are more test files,

the tester launches the next one against the mutants; if there are no

more test files, s/he must create a new one to visit and try to kill the

mutants remaining alive (node 7). This new test file is executed

against the original system on (node 8): if it finds any error, the

system must be fixed (and new mutants will have to be later

generated because S has changed); otherwise, the new file can be

directly executed against M.

For the case of the AlarmClock project, excluding the longest test

case from the first execution saves 4 seconds in the execution of

every mutant. In the second iteration (node 5), this test case will be

launched only against the mutants remaining alive, which are far

fewer than before. The risk, with this approach, is that test cases in

the first test files kill a small number of mutants.

(2) All test cases under the androidTest folder (Figure 5) require the

generation of an apk file and its installation onto a device. Some

114

testers leave the unit tests in this folder, what slows down the

execution time. It is important to leave the unit tests in its own folder

since they are executed much more quickly.

(3) To avoid the execution of test cases against mutants that will not be

visited, the tester should not generate mutants with Android-specific

operators for executing unit tests.

(4) When BacterioWeb v.2 fills the killing matrix, it shows a number

that indicates the order in which the test case has been executed

against every mutant (see Figure 61). This information is interesting

for sorting the test suite when facing future regression test cycles.

(5) The process described in Figure 59 can be adapted for regression

testing: suppose a system S composed by classes A, B and C. Let be

TS a test suite that (1) does not find any fault in S, (2) is mutation-

adequate and (3) only contains the best test cases obtained from the

application of a test suite reduction algorithm. If one the classes in

the system (let be A) changes after the addition of, for example, a

new functionality, the tester must, in the first time, to re-execute TS

against thew new version of S (let be S') to find possible new faults.

If TS does find no faults, then it is recommendable to generate new

mutants (i.e., A1, A2, etc.) only for the classes that have changed and

re-execute TS only against these new mutants. According to the

figure, if TS does not reach the mutation score threshold, new test

cases should be added to TS.

115

Figure 59. A mutation process, specifically adapted to mobile software

 Structure of test cases

(1) Some mutants may lead the app to enter in an infinite loop (for

example, if a counter variable is decreased inside a loop). Android

test cases can be annotated with a timeout label: if the test case has

not finished after this timeout, the mutant is considered killed. Some

authors resolve this with weak mutation by the instrumentation of

the code.

116

(2) It is also interesting to include frequent assertions in test cases (i.e.,

not only an oracle at the end of the test case): when we started to test

Kuar, every test case reproduced a complete match. This required

performing many movements to drive the board to its final state

(from the left side of Figure 60 to the right side) and took a long time

because initially there was only one oracle instruction (assertX) at

the end of each test case to check the final result. To detect killed

mutants as soon as possible, we introduced frequent assertions (one

assert after each movement). This considerably accelerates test

execution.

Figure 60. Kuar’s board

 THREATS TO VALIDITY

The nature of the experiments introduces some threats to validity,

which must be considered in order to evaluate the conclusions.

Construct validity is the degree to which independent and dependent

variables are accurately measured [17]. All our independent variables are

nominal (presence or absence of: Mutant Schema, Parallel Execution and

Only Alive), and the dependent variable (time) is measured objectively by the

mutation tool. To alleviate bias, we performed several repetitions of each

execution so as to reduce the threat.

117

Internal validity is the degree of confidence in a cause-effect

relationship between the factor of interest and the observed results [17]. All

the variables have been controlled during the experiments in order to

minimize threats to internal validity.

External validity is the extent to which the research results can be

generalized to the population under study and other research settings [17].

Obviously, it is quite risky to affirm that our models are valid and applicable

to any other application and environment. In order to alleviate this threat, we

have used a diverse set of apps with different characteristics and a variety of

mutation operators.

With respect to the execution algorithms (All against all and Only

against alive), it is important to note that, in our case, they are completely

deterministic and do not implement any technique to prioritize the execution

order of test cases. However, we consider that the similarity of the

compilation, push and installation times, regardless of the use or not of

Mutant Schema will allow the generalization of the mathematical model to

other applications, contexts and environments (not only mobile mutation

tests) and to realize other theoretical models that should be experimentally

validated.

118

FUTURE WORK

Besides the convenience of applying cost-reduction techniques,

mutation testing for mobile software is quite costly and it requires

researching on new techniques that, furthermore, could be extended to other

kinds of systems. Below we describe some lines of work we consider quite

interesting and that could drive future research.

 SPECIFIC OPERATORS FOR MOBILE SOFTWARE AND

OPERATORS SUBSUMPTION

In this research we have applied classical and Android-specific

mutation operators. Some of these have been reproduced from the

descriptions given in the literature [15], [14] and we have proposed some

others. The idea of mutation operators specifically built for a concrete

technology is to introduce typical errors of such technology.

Many of the Android-specific operators introduce errors that may be

also inserted by classic operators. Consider for example the MDL operator

that deletes a lifecycle method of an activity. Deng et al. [15] propose this

operator but they warn that it is “similar to the Overriding Method Deletion

in muJava” [26]. Thus, if the tool offers the tester both operators, two

redundant mutants will be generated.

Another example is IPR, which replaces the second parameter of the

putExtra method by a default value (zero if it is primitive, null and the empty

string if it is a String, etc.). MJP is like IPR, but changes the values put in

JSON objects. Actually, the same mutants can be generated with other

classical operators, such as the Scalar Variable Replacement operator of the

classic Mothra system [99].

119

Therefore, it is likely required to carry out an extensive study of

operators’ subsumption, to avoid the generation of duplicate mutants.

 MUTANT GENERATION GUIDED BY METRICS

There are many studies that correlate software metrics with the fault-

proneness of the system’s modules [100]–[102]. With a previous static

analysis of the system, the tester could focus mutant generation on those

classes that have more coupling, which is the best predictor according to

those studies.

As an example, the Figures project (that was specifically developed

for testing some of the BacterioWeb v.2 characteristics) has the

LocalCalculus and RemoteCalculus classes, which are used to determine the

type and perimeter of the figure in the self app or via a query to a web server.

Since almost any test scenario runs one of these two classes, it can be

promising to determine “execution clusters” to concentrate the mutant

generation on them.

 MUTANT EXECUTION GUIDED BY STATIC ANALYSIS

Aforementioned “execution clusters” would avoid the execution of

test cases against mutants that they will not kill: for example, it probably

makes no sense to execute a test case that determines the type of a Triangle

against a mutant of Quadrilateral. Before the execution of the tests, a static

analysis of the code could help to relate test cases with classes of the system

under test, therefore producing a more fine-grained set of clusters, composed

now by tests and classes of the SUT. The result of this analysis would guide

the execution of each test only against the mutants from the classes it will

visit.

Some authors have researched on mutant clustering to reduce the

execution time, but applying other strategies: Ma and Kim [57] and Yu and

120

Ma [103] built the clusters based on the mutants that are expected to produce

the same result with test cases. Ji et al. [104] proposed to cluster mutants

based on their Hamming distance.

 ALGORITHMS FOR PARALLEL EXECUTION

At first glance, putting more devices to execute tests and mutants is a

brute force mechanism that, undoubtedly, improve the overall execution

time.

As a mean, we can guess that using 2 devices will require half time

than using 1, and that using n will take 1/n. This premise is generally true,

but during the experimentation we have observed situations where that

assumption is false.

 Figure 61 shows an example of BacterioWeb v.2 executing the

Mangosta test cases against a small sample (only 2%, since the figure is only

for illustrating purposes) of mutants. As it can be seen, it is applying the Only

against alive algorithm (see in the figure the selected “Matrix mode” radio

button) and With Mutant Schema. There are four devices (Samsung tablets,

model SM-T590, Android 8.1.0, 3 Gb RAM) that have received 17 mutants

each. The 2nd, 3rd and 4th devices have finished the execution, whilst the first

one still has 4 mutants left.

121

Figure 61. Killing matrix during one execution

A more equitable time distribution could be achieved by distributing

the mutants with other parallel execution algorithms. For example, when a

device finishes the execution of the test suite (either with Only against alive

or with All against all), it could ask for a new mutant to be executed.

Polo et al. [84] analyzed five different algorithms for parallel

execution in mutation testing, which can improve the performance of test

execution: Distribute mutants between operators, Distribute test cases, Give

mutants on demand, Give test cases on demand and Parallel execution with

dynamic ranking and order.

It is possible to build new mathematical models or to extend those in

Section 3.2.4, with the inclusion of these or of other algorithms.

122

CONCLUSIONS

The main contributions of this thesis are related to how several well-

known cost reduction techniques help to the effective improvement of testing

time. The techniques we have used are Mutant Schema, Only Alive and

Parallel Execution, as well as several combinations of them. The baseline for

the comparisons is a classic model of mutation testing, where there is a

complete cycle of compilation, deployment, and test execution per mutant.

The first technique considered is Mutant Schema, which requires to

generate the schema and just one deployment onto the running device. Being

the deployment a very significant task in mobile testing, the obtained results

always show meaningful cost savings when Mutant Schema is applied.

However, an interesting finding is that its improvement factor tends to be

asymptotic with respect to the number of mutants: in fact, as more mutants

there are and greater is the execution time, less significant is the influence of

the deployment time on the total cost. In addition, we give technical details

about the implementation of the Mutant Schema technique for its

reproducibility and improvement.

The second technique used compares the execution of the test cases

against all the mutants versus only the mutants remaining alive. Here, the

improvement in the testing time depends on the quality of the test cases: the

earlier the mutants are killed, the less test cases will have to be executed.

The third technique is Parallel execution, which has evidenced to be

the most influencing cost-reduction factor. The experiments have shown that

the reduction in time is roughly proportional to the number of devices. The

total execution time is the time required by the device that needs more time

for executing its set of mutants. In this factor influence both the

characteristics of the device (memory, processor...) as the nature of every

123

mutant. When the number of mutants is very high, they are fairly distributed

on the devices (both the "quick" and the "slow" mutants). Thus, the reduction

is not strictly 1/n, but it is very approximate. Even though, the reduction may

be improved with other parallel execution algorithms (see future work 5.4).

In our opinion, this research complements other research works on

mutation testing applied to mobile software. One additional contribution of

this research is the suitability of the proposed mathematical models to

estimate a priori the time required to perform a mutation test on a mobile

app. This result is interesting to build prediction models before implementing

tools and techniques for mutation testing, what can shorten the research

times. On the other hand, we present the design and architecture of

BacterioWeb v.2, a web tool for the mutation testing of mobile applications

in a distributed environment; with the goal of enabling mutation testing for

testers teams and contribute to the transition of mutation testing from

academic to industrial application.

124

 BIBLIOGRAPHY

[1] M. P. Usaola and P. R. Mateo, “Mutation Testing Cost Reduction

Techniques: A survey,” IEEE Softw., vol. 27, no. 3, pp. 80–86, 2010.

[2] A. J. Offutt, “A Practical System for Mutation Testing: Help for the

Common Programmer,” in Proceedings., International Test

Conference, 1994, pp. 824–830.

[3] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage

techniques by mutation testing,” Tech. Rep. ISSE-TR-96-100, Dept. of

Information and Software Systems Eng., George Mason Univ., pp. 1–

14, 1996.

[4] R. J. Lipton and F. G. Sayward, “Hints on test data selection: Help for

the practicing programmer,” IEEE Computer., vol. 11, no. 4, pp. 34–

41, 1978.

[5] Y. Jia and M. Harman, “An Analysis and Survey of the Development

of Mutation Testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–

678, 2011.

[6] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, “Towards Mutation

Analysis of Android Apps,” in 2015 IEEE Eighth International

Conference on Software Testing, Verification and Validation

Workshops (ICSTW), 2015, pp. 1–10.

[7] L. Deng, J. Offutt, and D. Samudio, “Is Mutation Analysis Effective at

Testing Android Apps?,” in 2017 IEEE International Conference on

Software Quality, Reliability and Security (QRS), 2017, pp. 86–93.

[8] K. Moran et al., “MDroid + : A Mutation Testing Framework for

Android,” in 2018 IEEE/ACM 40th International Conference on

Software Engineering: Companion (ICSE-Companion), 2018, pp. 33–

36.

125

[9] A. Abuljadayel and F. Wedyan, “An Approach for the Generation of

Higher Order Mutants Using Genetic Algorithms,” Int. J. Intell. Syst.

Appl., vol. 10, no. 1, pp. 34–45, 2018.

[10] D. Amalfitano, V. Riccio, A. C. R. Paiva, and A. R. Fasolino, “Why

does the orientation change mess up my Android application ? From

GUI failures to code faults,” Softw. Testing, Verif. Reliab., vol. 28, no.

1, p. e 1654, 2018.

[11] B. Kushigian, A. Rawat, and R. Just, “Medusa: Mutant equivalence

detection using satisfiability analysis,” in 2019 IEEE International

Conference on Software Testing, Verification and Validation

Workshops (ICSTW), 2019, pp. 77–82.

[12] A. C. R. Paiva, J. M. E. P. Gouveia, J. D. Elizabeth, and M. E.

Delamaro, “Testing when mobile apps go to background and come

back to foreground,” in 2019 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW),

2019, pp. 102–111.

[13] F. Hariri, A. Shi, V. Fernando, S. Mahmood, and D. Marinov,

“Comparing Mutation Testing at the Levels of Source Code and

Compiler Intermediate Representation,” in 2019 12th IEEE

Conference on Software Testing, Validation and Verification (ICST),

2019, pp. 114–124.

[14] C. Escobar-Velasquez et al., “Enabling Mutant Generation for Open-

and Closed-Source Android Apps,” IEEE Trans. Softw. Eng., pp. 1–1,

Apr. 2020.

[15] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation operators

for testing Android apps,” Inf. Softw. Technol., vol. 81, pp. 154–168,

2017.

[16] M. G. P. V. Marcela Genero, Marcela Genero Bocco, José A. Cruz

Lemus, Métodos de investigación en ingeniería del software. Spain:

126

Ra-Ma, 2014.

[17] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslén, Experimentation in software engineering, 1st ed. Springer,

Berlin, Heidelberg, 2012.

[18] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research

in Software Engineering: Guidelines and Examples, 1st ed. Wiley

Publishing, 2012.

[19] M. Polo Usaola, B. Perez Lamancha, and P. Reales Mateo, Técnicas

combinatorias y de mutación para testing de sistemas software, 1st ed.

España: Ra-Ma, 2012.

[20] P. R. Mateo and M. P. Usaola, “Reducing mutation costs through

uncovered mutants,” Softw. Testing, Verif. Reliab., vol. 25, no. 5–7, pp.

464–489, 2015.

[21] “Robolectric.” [Online]. Available: http://robolectric.org. [Accessed:

10-May-2020].

[22] A. J. Offutt, “Investigation of the software testing coupling effect,”

ACM Trans. Softw. Eng. Methodol., vol. 1, no. 1, pp. 3–18, 1992.

[23] K. N. King and A. J. Offutt, “A Fortran Language System for Mutation

Based Software Testing,” Softw. Pract. Exp., vol. 21, no. 7, pp. 685–

718, 1991.

[24] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Interface

mutation: An approach for integration testing,” IEEE Trans. Softw.

Eng., vol. 27, no. 3, pp. 228–247, 2001.

[25] M. E. Delamaro, “Interface Mutation Test Adequacy Criterion : An

Empirical Evaluation,” Empir. Softw. Eng., vol. 6, no. 2, pp. 111–142,

2001.

[26] Y. S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: An automated class

mutation system,” Softw. Test. Verif. Reliab., vol. 15, no. 2, pp. 97–

133, 2005.

127

[27] P. Reales Mateo, M. Polo Usaola, and J. Offutt, “Mutation at the multi-

class and system levels,” Sci. Comput. Program., vol. 78, no. 4, pp.

364–387, 2013.

[28] H. Shahriar and M. Zulkernine, “Mutation-based Testing of Format

String Bugs School of Computing,” in 2008 11th IEEE High Assurance

Systems Engineering Symposium, 2008, pp. 229–238.

[29] A. Derezińska, “Advanced mutation operators applicable in C#

programs,” in Software Engineering Techniques: Design for Quality,

2006, vol. 227, pp. 283–288.

[30] A. Derezi and A. Szustek, “Tool-Supported Advanced Mutation

Approach for Verification of C# programs,” in 2008 Third

International Conference on Dependability of Computer Systems

DepCoS-RELCOMEX, 2008, pp. 261–268.

[31] P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-Jiménez, A.

García-Domínguez, and F. Palomo-Lozano, “Class mutation operators

for C++ object-oriented systems,” Ann. Telecommun., vol. 70, no. 3–

4, pp. 137–148, 2015.

[32] H. Shahriar and M. Zulkernine, “MUSIC : Mutation-based SQL

Injection Vulnerability Checking School of Computing,” in 2008 The

Eighth International Conference on Quality Software, 2008, pp. 77–

86.

[33] J. Tuya, M. J. Suárez-cabal, and C. De Riva, “SQLMutation : A tool to

generate mutants of SQL database queries,” in Second Workshop on

Mutation Analysis (Mutation 2006 - ISSRE Workshops 2006), 2006,

pp. 1–1.

[34] P. Anbalagan and T. Xie, “Automated generation of pointcut mutants

for testing pointcuts in aspectj programs,” in 2008 19th International

Symposium on Software Reliability Engineering (ISSRE), 2008.

[35] P. Anbalagan and T. Xie, “Efficient mutant generation for mutation

128

testing of pointcuts in aspect-oriented programs,” in Second Workshop

on Mutation Analysis (Mutation 2006 - ISSRE Workshops 2006), 2006.

[36] F. C. Ferrari, S. Paulo, and C. Sp, “Mutation Testing for Aspect-

Oriented Programs,” in 2008 1st International Conference on Software

Testing, Verification, and Validation, 2008, pp. 52–61.

[37] A. Derezińska and K. Hałas, “Analysis of mutation operators for the

Python language,” in Proceedings of the Ninth International

Conference on Dependability and Complex Systems DepCoS-

RELCOMEX. June 30 – July 4, Brunów, Poland. Advances in

Intelligent Systems and Computing, 2014, vol. 286, pp. 155–164.

[38] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Mutating database

queries,” Inf. Softw. Technol., vol. 49, no. 4, pp. 398–417, 2007.

[39] J. Troya, A. Bergmayr, L. Burgueño, and M. Wimmer, “Towards

systematic mutations for and with ATL model transformations,” in

2015 IEEE Eighth International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), 2015, pp. 1–10.

[40] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo,

“Quantitative evaluation of mutation operators for WS-BPEL

compositions,” in 2010 Third International Conference on Software

Testing, Verification, and Validation Workshops, 2010, pp. 142–150.

[41] S. S. Batth, E. R. Vieira, A. Cavalli, and M. Ü. Uyar, “Specification of

Timed EFSM Fault Models in SDL,” in International Conference on

Formal Techniques for Networked and Distributed Systems. Springer,

2007, pp. 50–65.

[42] N. Bombieri, F. Fummi, and G. Pravadelli, “A Mutation Model for the

SystemC TLM 2.0 Communication Interfaces,” in Proceedings of the

Conference on Design, Automation and Test in Europe, 2008, pp. 396–

401.

[43] G. Vigna, W. Robertson, and D. Balzarotti, “Testing Network-based

129

Intrusion Detection Signatures Using Mutant Exploits,” in

Proceedings of the 11th ACM Conference on Computer and

Communications Security, 2004, pp. 21–30.

[44] C. Jing, Z. Wang, X. Shi, X. Yin, and J. Wu, “Mutation Testing of

Protocol Messages Based on Extended TTCN-3,” in 22nd

International Conference on Advanced Information Networking and

Applications (aina 2008), 2008, pp. 667–674.

[45] S. Lee, X. Bai, and Y. Chen, “Automatic Mutation Testing and

Simulation on OWL-S Specified Web Services,” in 41st Annual

Simulation Symposium (anss-41 2008), 2008, pp. 149–156.

[46] J. XU, Wuzhi; OFFUTT, Jeff; LUO, “Testing Web services by XML

perturbation,” in 16th IEEE International Symposium on Software

Reliability Engineering (ISSRE’05), 2005, pp. 10–266.

[47] Y. L. Traon, T. Mouelhi, and B. Baudry, “Testing Security Policies:

Going Beyond Functional Testing,” in The 18th IEEE International

Symposium on Software Reliability (ISSRE ’07), 2007, pp. 93–102.

[48] T. Mouelhiv, F. Fleurey, and B. Baudry, “A Generic Metamodel For

Security Policies Mutation,” in 2008 IEEE International Conference

on Software Testing Verification and Validation Workshop, 2008, pp.

278–286.

[49] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala, “Overcoming

the equivalent mutant problem: A systematic literature review and a

comparative experiment of second order mutation,” IEEE Trans.

Softw. Eng., vol. 40, no. 1, pp. 23–42, 2014.

[50] B. J. M. Grün, D. Schuler, and A. Zeller, “The impact of equivalent

mutants,” in 2009 International Conference on Software Testing,

Verification, and Validation Workshops, 2009, pp. 192–199.

[51] T. A. Budd, “Mutation Analysis of Program Test Data,” ProQuest

Dissertations Publishing, Ann Arbor, United States, 1980.

130

[52] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow

and mutation‐based test adequacy criteria,” Softw. Testing, Verif.

Reliab., vol. 4, no. 1, pp. 9–31, 1994.

[53] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J.

Offutt, “An Extended Overview of the Mothra Testing Environment,”

in Workshop on Software Testing, Verification, and Analysis, 1988, pp.

142–151.

[54] A. Derezinska and M. Rudnik, “Evaluation of Mutant Sampling

Criteria in Object-Oriented Mutation Testing,” in 2017 Federated

Conference on Computer Science and Information Systems (FedCSIS),

2017, pp. 1315–1324.

[55] S. Hussain, “Mutation Clustering,” Master’s thesis., Kings College,

London, 2008.

[56] A. Derezińska, “A quality estimation of mutation clustering in c#

programs,” in New Results in Dependability and Computer Systems,

2013, pp. 119–129.

[57] Y. S. Ma and S. W. Kim, “Mutation testing cost reduction by clustering

overlapped mutants,” J. Syst. Softw., vol. 115, pp. 18–30, 2016.

[58] Y. Jia and M. Harman, “Constructing subtle faults using Higher Order

mutation testing,” in 2008 Eighth IEEE International Working

Conference on Source Code Analysis and Manipulation, 2008, pp.

249–258.

[59] M. Polo, M. Piattini, and I. Garía-Rodríguez, “Decreasing the cost of

mutation testing with second-order mutants,” Softw. Test. Verif.

Reliab., vol. 19, no. 2, pp. 111–131, 2009.

[60] M. Harman, Y. Jia, P. Reales Mateo, and M. Polo, “Angels and

Monsters: An Empirical Investigation of Potential Test Effectiveness

and Efficiency Improvement from Strongly Subsuming Higher Order

Mutation,” in Proceedings of the 29th ACM/IEEE international

131

conference on Automated software engineering - ASE ’14, 2014, pp.

397–408.

[61] W. B. Langdon, M. Harman, and Y. Jia, “Efficient multi-objective

higher order mutation testing with genetic programming,” J. Syst.

Softw., vol. 83, no. 12, pp. 2416–2430, 2010.

[62] A. P. Mathur, “Performance, Effectiveness, and Reliability Issues in

Software Testing,” in 1991 The Fifteenth Annual International

Computer Software & Applications Conference, 1991, vol. 1, pp. 604–

605.

[63] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation

of selective mutation,” in Proceedings of 1993 15th International

Conference on Software Engineering, 1993, pp. 100–107.

[64] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and N.

Gökçe, “Analyzing the validity of selective mutation with dominator

mutants,” in Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering,

2016, pp. 571–582.

[65] P. Delgado-Perez, I. Medina-Bulo, and M. Nuñez, “Using

Evolutionary Mutation Testing to Improve the Quality of Test Suites,”

in 2017 IEEE Congress on Evolutionary Computation (CEC), 2017,

pp. 596–603.

[66] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, and A. Groce,

“Mutation reduction strategies considered harmful,” IEEE Trans.

Reliab., vol. 66, no. 3, pp. 854–874, 2017.

[67] C. A. Sun, L. Pan, Q. Wang, H. Liu, and X. Zhang, “An empirical study

on mutation testing of WS-BPEL programs,” Comput. J., vol. 60, no.

1, pp. 143–158, 2017.

[68] D. Schuler and A. Zeller, “Javalanche: efficient mutation testing for

Java,” in Proceedings of the 7th Joint Meeting of the European

132

Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, 2009, pp. 297–298.

[69] P. R. Mateo and M. P. Usaola, “Bacterio: Java mutation testing tool: A

framework to evaluate quality of tests cases,” in 2012 28th IEEE

International Conference on Software Maintenance (ICSM), 2012, pp.

646–649.

[70] B. Bogacki and B. Walter, “Evaluation of Test Code Quality with

Aspect-Oriented Mutations,” in Extreme Programming and Agile

Processes in Software Engineering, 2006, pp. 202–204.

[71] B. Bogacki and B. Walter, “Aspect-oriented response injection: An

alternative to classical mutation testing,” in Sacha K. (eds) Software

Engineering Techniques: Design for Quality. IFIP International

Federation for Information Processing, 2006, vol. 227, pp. 273–282.

[72] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using

mutant schemata,” SIGSOFT Softw. Eng. Notes, vol. 18, no. 3, pp.

139–148, 1993.

[73] S. W. Kim, Y. S. Ma, and Y. R. Kwon, “Combining weak and strong

mutation for a noninterpretive Java mutation system,” Softw. Test.

Verif. Reliab., vol. 23, no. 8, pp. 647–668, 2013.

[74] M. Papadakis and N. Malevris, “Automatic Mutation Test Case

Generation via Dynamic Symbolic Execution,” in 2010 IEEE 21st

International Symposium on Software Reliability Engineering, 2010,

pp. 121–130.

[75] P. Reales-Mateo and M. Polo-Usaola, “Mutant execution cost

reduction: Through MUSIC (Mutant Schema Improved with Extra

Code),” in 2012 IEEE Fifth International Conference on Software

Testing, Verification and Validation, 2012, pp. 664–672.

[76] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage

and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, 1997.

133

[77] D. Jeffrey and N. Gupta, “Test suite reduction with selective

redundancy,” in 21st IEEE International Conference on Software

Maintenance (ICSM’05), 2005, pp. 549–558.

[78] A. Marshall, D. Hedley, I. Riddell, and M. Hennell, “Static dataflow-

aided weak mutation analysis (SDAWM),” Inf. Softw. Technol., vol.

23, no. 1, pp. 99–104, 1990.

[79] S. D. Lee, “An Empirical Evaluation of Weak Mutation,” IEEE Trans.

Softw. Eng., vol. 20, no. 5, pp. 337–344, 1994.

[80] A. J. Offutt and S. D. Lee, “How Strong is Weak Mutation?,” in

Proceedings of the Symposium on Testing, Analysis, and Verification,

1991, pp. 200–213.

[81] C. Byoungju and A. P. Mathur, “High-performance mutation testing,”

J. Syst. Softw., vol. 20, no. 2, pp. 135–152, 1993.

[82] A. J. Offutt, R. P. Pargas, S. V Fichter, and P. K. Khambekar,

“Mutation Testing of Software Using a MIMD Computer,” in 1992

International Conference Parallel Processing, 1992, vol. 2, pp. 257–

266.

[83] C. J. Wright, G. M. Kapfhammer, and P. McMinn, “Efficient mutation

analysis of relational database structure using mutant schemata and

parallelisation,” in 2013 IEEE Sixth International Conference on

Software Testing, Verification and Validation Workshops, 2013, pp.

63–72.

[84] P. Reales-Mateo and M. Polo Usaola, “Parallel mutation testing,”

Softw. Testing, Verif. Reliab., vol. 23, no. 4, pp. 315–350, 2013.

[85] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants

and infeasible paths,” Softw. Testing, Verif. Reliab., vol. 7, no. 3, pp.

165–192, 1997.

[86] B. Kirubakaran and V. Karthikeyani, “Mobile application testing —

Challenges and solution approach through automation,” in 2013

134

International Conference on Pattern Recognition, Informatics and

Mobile Engineering, 2013, pp. 79–84.

[87] M. Linares-Vásquez et al., “Enabling Mutation Testing for Android

Apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, 2017, pp. 233–244.

[88] M. P. Usaola, G. Rojas, I. Rodriguez, and S. Hernandez, “An

Architecture for the Development of Mutation Operators,” in 2017

IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), 2017, pp. 143–148.

[89] R. Jabbarvand and S. Malek, “μDroid: An Energy-aware Mutation

Testing Framework for Android,” in Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering, 2017, pp. 208–

219.

[90] I. C. Morgado and A. C. R. Paiva, “Impact of Execution Modes on

Finding Android Failures,” Procedia Comput. Sci., vol. 83, pp. 284–

291, 2016.

[91] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: A Code

Manipulation Tool to Implement Adaptable Systems,” Adapt.

Extensible Compon. Syst., vol. 30, no. 19, 2002.

[92] R. S. Pressman, Software Engineering: A Practitioner’s Approach.

New York: McGraw-Hill Education, 2009.

[93] N. Smith, D. Van Bruggen, and F. Tomassetti, “JavaParser-Home,”

JavaParser: Visited Analyse, transform and generate your Java code

base, 2019. [Online]. Available: https://javaparser.org/. [Accessed: 11-

May-2020].

[94] R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An

efficient and extensible tool for mutation analysis in a Java compiler,”

in 2011 26th IEEE/ACM International Conference on Automated

Software Engineering (ASE 2011), 2011, pp. 612–615.

135

[95] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. Inglis, and M. Utting,

“Jumble java byte code to measure the effectiveness of unit tests,” in

Testing: Academic and Industrial Conference Practice and Research

Techniques - MUTATION (TAICPART-MUTATION 2007), 2007, pp.

169–175.

[96] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing

strategies: a survey,” Softw. Testing, Verif. Reliab., vol. 15, no. 3, pp.

167–199, 2005.

[97] G. Myers, The Art of Software Testing, Second edition. 2004.

[98] G. Fraser and A. Gargantini, “Experiments on the test case length in

specification based test case generation,” in 2009 ICSE Workshop on

Automation of Software Test, 2009, pp. 18–26.

[99] B. J. Choi et al., “The Mothra tool set (software testing),” in [1989]

Proceedings of the Twenty-Second Annual Hawaii International

Conference on System Sciences. Volume II: Software Track, 1989, vol.

2, pp. 275–284.

[100] Y. Luo, K. Ben, and L. Mi, “Software Metrics Reduction for Fault-

Proneness Prediction of Software Modules,” in Network and Parallel

Computing, 2010, pp. 432–441.

[101] A. Boucher and M. Badri, “Using Software Metrics Thresholds to

Predict Fault-Prone Classes in Object-Oriented Software,” in 2016 4th

Intl Conf on Applied Computing and Information Technology/3rd Intl

Conf on Computational Science/Intelligence and Applied

Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science

Engineering (ACIT-CSII-BCD), 2016, pp. 169–176.

[102] Ping Yu, T. Systa, and H. Muller, “Predicting fault-proneness using

OO metrics. An industrial case study,” in Proceedings of the Sixth

European Conference on Software Maintenance and Reengineering,

2002, pp. 99–107.

136

[103] M. Yu and Y. S. Ma, “Possibility of cost reduction by mutant clustering

according to the clustering scope,” Softw. Testing, Verif. Reliab., vol.

29, no. 1–2, p. e1692, 2019.

[104] C. Ji, Z. Chen, B. Xu, and Z. Zhao, “A Novel Method of Mutation

Clustering Based on Domain Analysis,” in Proceedings of the 21st

International Conference on Software Engineering & Knowledge

Engineering (SEKE 2009), 2009, pp. 422–425.

