Universidad de Concepción
Facultad de Ciencias Físicas y Matemáticas
Departamento de Física

Teoría de Einstein-Lovelock e invariancia de gauge tipo Maxwell

Tesis para optar al grado académico de Magíster en Ciencias con mención en Física

por

Evelyn Rodríguez Durán

Director de Tesis: Dr. Patricio Salgado
Comisión: Dr. Jaime Araneda
Dr. Fernando Izaurieta

Octubre, 2013
Dedicado a mis padres, hermana y a Pat.
Índice general

Agradecimientos vii
Resumen ix
Introducción x

I Preliminar matemático xii

1 Semigrupos y Álgebras de Lie 1
 1.1 Estructuras algebraicas .. 1
 1.2 Semigrupos abelianos .. 5
 1.3 Álgebras de Lie .. 7
 1.3.1 Álgebras de Lie Reducidas 9

2 Expansión de álgebras de Lie 10
 2.1 Motivación ... 10
 2.2 Método de expansión dAIPV 11
 2.2.1 Reescalamiento de los parámetros del grupo y método de expansión . 12
 2.3 Método de S-expansión ... 13
 2.3.1 Álgebras 0$_r$-reducidas 14
 2.3.2 Subálgebras Resonantes 16
 2.3.3 Reducción Resonante ... 17
 2.3.4 Expansión con $S = S^{(N)}_E$ 18
 2.3.5 Subálgebras Resonantes con $S = S^{(N)}_E$ 20
2.3.6 Tensores invariantes para álgebras S-expandidas 21
2.4 Formulación dual de la S-expansión .. 23
2.4.1 0S-reducción en álgebras de Lie S-expandidas 24

II Gravedad en altas dimensiones 25

3 Formulación de primer orden de la gravedad 26
3.1 Relatividad General en el formalismo de Einstein 26
3.1.1 Acción de Einstein-Hilbert .. 28
3.2 El vielbein y la conexión de spin .. 29
3.3 Grupo $SO(D - 1, 1)$ y tensores invariantes 32
3.4 Ecuaciones de estructura: Curvatura y Torsión 33
3.5 Acción de Einstein-Hilbert en el formalismo de Cartan 35

4 Teoría de Lovelock de la gravedad 37
4.1 Introducción .. 37
4.2 La acción de Lanczos-Lovelock .. 38
4.3 Problema de los coeficientes ... 40
4.3.1 $D = 2n - 1$: Gravedad Chern-Simons local (A)dS 42
4.3.2 $D = 2n$: Gravedad Born-Infeld .. 44

5 Teoría Chern-Simons de la gravedad 47
5.1 Introducción .. 47
5.2 Forma de Chern-Simons ... 48
5.3 Acción de Chern-Simons .. 50
5.3.1 Chern-Simons y gravitación .. 51

6 Gravedad de Lovelock con torsión 53
6.1 Introducción .. 53
6.2 Series torsionales .. 54
6.3 Series Chern-Simons torsionales .. 56
6.3.1 Ejemplos para dimensiones pares ... 58
6.3.2 Ejemplos para dimensiones impares 60
6.3.3 Generalización a $D = 4k - 1$... 61

7 Relatividad General y álgebras tipo Maxwell 62
 7.1 Introducción ... 62
 7.2 Gravedad Chern-Simons y álgebras tipo Maxwell 63
 7.2.1 Relatividad General desde gravedad Chern-Simons en $D = 5$ 63
 7.2.2 Relatividad General y álgebra \mathcal{M}_{2n+1} 66
 7.2.3 Lagrangianos Chern-Simons invariants bajo \mathcal{M}_{2n+1} 68
 7.3 Gravedad Born-Infeld y álgebras de Maxwell tipo Lorentz 70
 7.3.1 Relatividad General a partir de gravedad Born-Infeld en $D = 4$ 70
 7.3.2 Relatividad General a partir de gravedad Born-Infeld en $D = 2n$... 72
 7.3.3 Lagrangianos Born-Infeld invariants bajo $\mathcal{L}^{\mathcal{M}_{2n}}$ 74

8 Gravedad de Einstein-Lovelock 76
 8.1 Introducción ... 76
 8.2 Estudio de los coeficientes ... 77
 8.3 $D = 2n - 1$: Gravedad Chern-Simons \mathcal{M}_{2n-1} 79
 8.4 $D = 2n$: Gravedad tipo Born-Infeld $\mathcal{L}^{\mathcal{M}}$ 81

9 Gravedad de Einstein-Lovelock con torsión 85
 9.1 Invariantes bajo $\mathcal{L}^{\mathcal{M}}$... 86
 9.2 Gravedad de Lovelock con torsión invariante bajo el álgebra tipo Maxwell
 \mathcal{M}_{2n+1} .. 87
 9.2.1 Ejemplo para $D = 3$.. 87
 9.2.2 Ejemplo para $D = 7$.. 94
 9.2.3 Generalización a $D = 4k - 1$ 98
 9.2.4 Ejemplo para dimensiones pares 99
 9.3 Invariantes de Pontryagín y de Euler 101

A Contracción de Inönü-Wigner 107

B Acción de Einstein-Hilbert 109

C Grupo de Poincaré 111
Agradecimientos

Quisiera expresar mi gratitud a todas aquellas personas que me han apoyado durante el desarrollo de este trabajo, tanto a nivel personal como académico. Primero que todo, quiero agradecer a mis padres y hermana por todo el amor, paciencia, cariño y apoyo incondicional que me han brindado siempre. A mi novio Patrick, por su apoyo de amigo y compañero de estudio, pero sobre todo por el amor que me entrega cada día y por sus palabras en los momentos difíciles.

Deseo agradecer muy especialmente a mi profesor tutor, Dr. Patricio Salgado, por todo su apoyo a lo largo de esta investigación. Por compartir conmigo su conocimiento y anécdotas de vida, por su preocupación y siempre buena disposición para escuchar y dar un consejo. También agradezco a quienes fueron mis profesores en la Universidad de Concepción, por contribuir en mi formación tanto en pregrado como en postgrado.

A mis amigos y compañeros, por todos esos maravillosos momentos vividos. Por las conversaciones dentro y fuera de la sala de clases. En especial quiero agradecer a mi amiga Karen Castillo, por estar siempre a mi lado y por todos sus consejos. A mi amigo Diego Molina, porque junto a él y a Patrick, hemos realizado un buen trabajo en equipo.

Agradezco también al Departamento de Física de la Universidad de Concepción, a sus funcionarios y en especial a las secretarias, por su amabilidad y ayuda en los diversos trámites.

Mi dedicación exclusiva al programa de Doctorado ha sido posible gracias a una beca de la Comisión Nacional de Investigación Científica y Tecnológica CONICYT (2010-2014).
Resumen

En esta tesis se propone una acción tipo Lovelock, a la que llamaremos acción de Einstein-Lovelock (EL), la cual es escrita en dimensiones impares como una forma Chern-Simons para el álgebra tipo Maxwell \mathcal{M}, y como una forma tipo Born-Infeld para el álgebra $\mathcal{L}^\mathcal{M}$ en dimensiones pares, ambas conduciendo a Relatividad General en cierto límite.

En los capítulos 1 y 2 se introducen los conceptos de semigrupo y álgebra de Lie, los cuales juegan un papel muy importante en el desarrollo de este trabajo. Además se describen los mecanismos que permiten obtener nuevas álgebras a partir de una dada, y en particular se estudia el método de expansión de álgebras.

En el capítulo 3 se estudia brevemente Relatividad General, tanto en el formalismo de Einstein como en el formalismo de primer orden.

En los capítulos 4, 5 y 6 se revisa gravedad descrita por la acción de Lanczos-Lovelock, la cual permite construir la teoría de gravedad más general en D-dimensiones como una extensión natural de la teoría de Einstein. En particular, en el capítulo 5 se estudia la teoría Chern-Simons de la gravedad, la cual corresponde a un caso particular de la teoría de Lovelock. Además, se realiza un estudio detallado del caso en que se permite la presencia de torsión en el lagrangiano.

En los capítulos 7 y 8 se estudian las álgebras de Lie tipo Maxwell \mathcal{M} y $\mathcal{L}^\mathcal{M}$, y se muestra la construcción de la acción de Einstein-Lovelock, la cual es escrita como una acción CS invariante bajo el álgebra \mathcal{M}, y como una acción tipo BI invariante bajo $\mathcal{L}^\mathcal{M}$, ambas conduciendo a Relatividad General en cierto límite.

Finalmente, en el capítulo 9 se considera una generalización de la teoría de Einstein-Lovelock, permitiendo términos torsionales en el lagrangiano y se muestra que es posible establecer una relación entre ciertos invariantes topológicos.
Introducción

Actualmente, la posibilidad de que el espacio-tiempo tenga más de cuatro dimensiones es una suposición estándar en física de altas energías. Sin embargo, si queremos extender la dimensión del espacio-tiempo a dimensiones mayores que cuatro, se requiere la reformulación de la estructura de las ecuaciones para el campo gravitacional y además, se tienen que examinar detalladamente los requerimientos mínimos para tener una teoría consistente de la gravedad en una dimensión arbitraria.

Relatividad General estándar describe la gravedad como una manifestación dinámica de la geometría del espacio-tiempo, la cual es descrita por la métrica $g_{\mu\nu}(x)$. Sin embargo, es posible formular la gravitación como una teoría de campo utilizando dos campos independientes para describir las propiedades métrica y afín. En efecto, en el formalismo de primer orden estos campos son el vielbein y la conexión de spin, respectivamente. Estos campos pueden ser interpretados como componentes de una conexión para los grupos de Poincaré o (A)dS.

Las principales suposiciones fundamentales en relatividad general son los requerimientos de covariancia general y que las ecuaciones de campo sean de segundo orden para la métrica. Basados en los mismos principios, el lagrangiano de Lanczos-Lovelock (LL) [10],[11] es definido como la D-forma más general invariante bajo transformaciones locales de Lorentz, construida a partir del vielbein, la conexión de spin y sus derivadas exteriores, sin usar el dual de Hodge\footnote{Evitar el dual de Hodge garantiza que las ecuaciones para los campos que extremizan la acción sean de primer orden}. La teoría de LL se refiere a una familia parametrizada por un conjunto de coeficientes reales α_p, los cuales no son fijados desde primeros principios.
En Ref.[18] R. Troncoso y J. Zanelli mostraron que estos parámetros son fijados en términos de la constante gravitacional y de la constante cosmológica, a través del requisito de que la teoría posea el mayor número posible de grados de libertad. En dimensiones impares, el lagrangiano es una forma Chern-Simons para los grupos (A)dS o Poincaré, mientras que en dimensiones pares, la acción corresponde a una forma tipo Born-Infeld, invariante sólo bajo el grupo de Lorentz. Además, en Ref.[17] se realiza un estudio detallado del caso en que se permite la presencia de torsión en el lagrangiano, surgiendo muchas nuevas posibilidades.

Si estas teorías CS y BI son efectivamente las teorías de gauge apropiadas para describir la interacción gravitacional, entonces dichas teorías deben satisfacer el principio de correspondencia, es decir, ellas deben desembocar en determinados límites en Relatividad General. Un teoría muy interesante fue propuesta en la Ref.[30], en la cual Relatividad General estándar en dimensiones impares (sin constante cosmológica) es embebida en una teoría CS para una cierta álgebra de Lie \mathfrak{B}. Además, recientemente se encontró que Relatividad General estándar en dimensiones pares (sin constante cosmológica) emerge como un límite de una teoría tipo Born-Infeld invariante bajo una cierta subálgebra del álgebra \mathfrak{B}, denotada por \mathfrak{L}^3 [31]. Muy recientemente también fue encontrado que las llamadas álgebras de Lie \mathfrak{B}_m corresponden a las álgebras tipo Maxwell $^2\mathcal{M}_m$ [32].

El objetivo principal de esta tesis es mostrar que el método de S-expansión introducido en [1], nos permitirá construir una acción tipo Lovelock, la cual es escrita como una acción CS para dimensiones impares, invariante bajo el álgebra \mathcal{M} y como una acción tipo BI para dimensiones pares, invariante bajo $\mathfrak{L}^\mathcal{M}$, ambas conduciendo a RG bajo cierto límite. Además, se generalizará esta acción y permitiremos la presencia de torsión, surgiendo nuevos términos torsionales los cuales corresponden a invariantes $\mathfrak{L}^\mathcal{M}$ que involucran la torsión explícitamente, además de combinaciones que no involucran la torsión explícitamente. Como veremos, la principal diferencia con el caso libre de torsión es que ahora, además de los lagrangianos de Einstein-Lovelock, se encuentran también clases tipo Pontryagin.

Por último, mostraremos que es posible establecer una relación entre el lagrangiano invariante de Lorentz, que depende sólo de la conexión de spin y el lagrangiano obtenido para el álgebra \mathcal{M}_{2n+1}, pudiendo relacionar además sus invariantes topológicos asociados.

\[^2\]Estas álgebras también son conocidas como álgebras de Poincaré generalizadas \mathcal{P}_m
Parte I

Preliminar matemático
En este capítulo se describen brevemente algunos conceptos relacionados con semigrupos y álgebras de Lie, los cuales serán necesarios para una mejor comprensión de esta tesis.

1.1 Estructuras algebraicas

Una estructura algebraica o sistema algebraico es una clasificación que depende de las propiedades que las operaciones cumplen sobre un conjunto dado. Todos las estructuras algebraicas de interés en física y matemática tienen en común la propiedad asociativa. Un sistema algebraico dotado de una única ley de composición interna asociativa es conocido como semigrupo. Más interesantes que los semigrupos son los sistemas algebraicos asociativos que tienen un elemento unidad. Las estructuras asociativas dotadas de un elemento unidad son conocidas como monoides.

Un interesante sistema algebraico es obtenido si además aseguramos que cada elemento del monoide posea un inverso.
Monoides donde cada elemento posee un inverso son llamados **grupos**. Un grupo es definido como un conjunto \(G \neq 0 \), junto a una función

\[\bullet : G \times G \to G \]

llamada una operación binaria en \(G \) y que satisface las siguientes propiedades:

1) **Clausura:** \(\forall a, b \in G \) se tiene que \(a \bullet b \in G \)

2) **Propiedad asociativa:** \(\forall a, b \in G \) se cumple \((a \bullet b) \bullet c = a \bullet (b \bullet c) \)

3) **Elemento identidad:** Existe un elemento \(e \in G \) tal que \(\forall a \in G \), se cumpla \(e \bullet a = a \bullet e = a \).

4) **Elemento inverso:** \(\forall a \in G \) existe un elemento \(b \in G \) tal que \(a \bullet b = b \bullet a = e \).

Un grupo \((G, \bullet) \) es llamado un grupo abeliano si se satisface además, la propiedad de conmutatividad, \(ab = ba \), para todo par de elementos \(a, b \in G \). Si introducimos una segunda ley de composición interna, obtenemos un sistema algebraico más complicado llamado **anillo**, y lo denotamos por \((A, +, \circ) \) donde la primera ley de composición interna \(+\) es la de un grupo abeliano y la segunda ley \(\circ \) es la ley de composición interna de un semigrupo. Esta última ley es una ley distributiva sobre \(+\). Tradicionalmente a la primera ley se le llama “adición”, y a la segunda ley se le llama “multiplicación” y se denota por simple juxtaposición, es decir, \(a \circ b = ab \). El elemento identidad de la adición se denota por \(0 \) y es llamado elemento cero del anillo. El “inverso aditivo” de \(x \) es denotado por \((-x) \) y es llamado el negativo de \(x \).

Así, se tiene que si \(A \) es un conjunto dotado de dos leyes de composición, la adición y la multiplicación, entonces el conjunto \(A \) es llamado un anillo si:

1) \((A, +) \) es un grupo abeliano.

2) \((A, \circ) \) es un semigrupo.

3) Los elementos de \((A, +, \circ) \) satisfacen la ley distributiva, es decir, \(\forall a, b, c \in A \) se tiene \(a \circ (b + c) = a \circ b + a \circ c \).
Un conjunto A es llamado un anillo conmutativo si además de satisfacer los puntos anteriores, se satisface la condición de que la operación de multiplicación es conmutativa, es decir, si $a, b \in A$ entonces $ab = ba$. Además, si existe un elemento unidad para la multiplicación, entonces el conjunto A es llamado un anillo con unidad. Denotamos el elemento unidad con 1, de manera que $1a = a1 = a, \forall a \in A$.

Un anillo con unidad en el cual todos los elementos (a excepción del cero) son invertibles, es llamado un campo. Un campo $(F, \cdot, +)$ es un conjunto en el cual se han definido dos operaciones, \cdot y $+$, llamadas multiplicación y adición, que satisfacen las siguientes propiedades:

$i)$ F es cerrado para la suma y la multiplicación

$$\forall a, b \in F, \ a + b \in F \land a \cdot b \in F$$

$ii)$ Asociatividad de la suma y la multiplicación:

$$\forall a, b \in F, \ a + b = b + a \land a \cdot b = b \cdot a$$

$iii)$ Existencia de un elemento neutro:

$$\exists \{0\} \in F, \text{ tal que } \forall a \in F, \ a + 0 = a$$

$$\exists \{1\} \neq 0 \in F, \text{ tal que } \forall a \in F, \ a \cdot 1 = a$$

$iv)$ Existencia de elemento opuesto y de inversos:

$$\forall a \in F, \text{ existe un elemento } -a \in F, \text{ tal que } a + (-a) = 0$$

$$\forall a \neq 0 \in F, \text{ existe un elemento } a^{-1} \in F, \text{ tal que } a \cdot a^{-1} = 1$$

$v)$ Distributividad de la multiplicación respecto de la adición:

$$\forall a, b, c \in F, \ a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Consideremos ahora sistemas que tienen una ley de composición interna y una ley de composición externa. Se define un espacio lineal como un sistema algebraico (M, K, \circ) donde M es un grupo abeliano, K es un campo conmutativo, la ley de composición externa
○ es una acción de K sobre M, y la ley de composición interna $+$ en M está relacionada con la ley de composición externa a través de una ley distributiva mixta,

$$\alpha \circ (x + y) = \alpha \circ x + \alpha \circ y, \quad \forall \alpha \in K \land \forall x, y \in M$$

$$(\alpha + \beta) \circ x = \alpha \circ x + \beta \circ x, \quad \forall \alpha, \beta \in K \land \forall x \in M$$

Tradicionalmente, a los elementos x, y, \ldots de M se les llama vectores y al espacio lineal se le denomina espacio vectorial. Los elementos α, β, \ldots del campo conmutativo K son llamados escalares y K es llamado campo de escalares.

Hasta ahora hemos considerado sistemas algebraicos con una y dos leyes de composición interna, a saber grupos y anillos respectivamente, y sistemas con una ley interna más una ley externa; los espacios lineales. Estudiemos ahora sistemas que tienen dos leyes de composición interna y una ley de composición externa, es decir, sistemas que combinan las propiedades de un anillo con las de un espacio lineal.

Un álgebra lineal se define como un sistema algebraico (A, K, \circ) donde A es un anillo, K es un campo conmutativo, y \circ es la ley de composición externa que define una acción de K sobre A. La ley de composición interna aditiva $+$ en A está relacionada con la ley de composición externa \circ a través de una ley distributiva mixta, y la ley de composición interna multiplicativa \cdot en A está relacionada a la ley de composición externa \circ a través de la la ley asociativa mixta $\alpha \circ (x \circ y) = (\alpha \circ x) \circ y = x \circ (\alpha \circ y)$, donde $\alpha \in K, x, y \in A$.

Otro importante ejemplo de álgebra, es aquella cuya ley de multiplicación algebraica satisface las propiedades de antisimetría y la identidad de Jacobi. Dicha álgebra es llamada álgebra de Lie y será vista con más detalle en secciones posteriores.
1.2 Semigrupos abelianos

Una estructura algebraica que es de particular importancia para el desarrollo de este trabajo es la estructura de semigrupo abeliano. A continuación, se estudiará este concepto y se darán algunas definiciones.

Definición 1 Sea \(S = \{\lambda_1, \lambda_2, \ldots \} \) un conjunto cualquiera. \(S \) será un semigrupo si satisface las siguientes propiedades:

a) **Clausura**: \(\forall \lambda_1, \lambda_2 \ se \ tiene \ \lambda_1 \circ \lambda_2 \in S \)

b) **Asociatividad**: \(\forall \lambda_1, \lambda_2, \lambda_3 \ se \ tiene \ \lambda_1 \circ (\lambda_2 \circ \lambda_3) = (\lambda_1 \circ \lambda_2) \circ \lambda_3 \)

Trabajaremos con un semigrupo \(S = \{\lambda_{\alpha_1}, \lambda_{\alpha_2}, \ldots, \lambda_{\alpha_n}\} \) finito y discreto. La propiedad de clausura expresada por \(\lambda_{\alpha} \circ \lambda_{\beta} \equiv \lambda_{\alpha \lambda_{\beta}} \in S \), es escrita matemáticamente como

\[
\lambda_{\alpha \beta} = \lambda_{\gamma(\alpha, \beta)}. \tag{1.1}
\]

Es conveniente reescribir este producto en la forma

\[
\lambda_{\alpha \beta} = K^{\beta}_{\alpha \rho} \lambda_{\rho}, \tag{1.2}
\]

donde

\[
K^{\beta}_{\alpha \rho} = \begin{cases}
1, \ & \text{cuando} \ \rho = \gamma(\alpha, \beta) \\
0, \ & \text{en otro caso.} \end{cases} \tag{1.3}
\]

El símbolo \(K^{\beta}_{\alpha \rho} \) es llamado 2-selector y puesto que trabajaremos con semigrupos abelianos tenemos que \(K^{\beta}_{\alpha \rho} = K^{\beta}_{\rho \alpha} \). Una importante propiedad de los selectores \(K^{\beta}_{\alpha \rho} \) es encontrada haciendo uso de la propiedad asociativa del semigrupo. De la ecuación (1.2), es directo probar que la propiedad asociativa y la clausura del producto

\[
(\lambda_{\alpha} \lambda_{\beta}) \lambda_{\gamma} = \lambda_{\alpha} (\lambda_{\beta} \lambda_{\gamma}), \tag{1.4}
\]

es equivalente a la condición sobre los 2-selectores

\[
K^{\gamma}_{\alpha \rho} K^{\sigma}_{\rho \gamma} = K^{\sigma}_{\alpha \rho} K^{\rho}_{\beta \gamma} = K^{\rho}_{\alpha \beta \gamma}. \tag{1.5}
\]
De los resultados anteriores podemos ver que los 2-selectores \(K_{\alpha\beta}^\rho \) pueden proporcionar una representación matricial para el semigrupo, en forma análoga a como las constantes de estructura de un álgebra de Lie proporcionan la representación adjunta. En efecto, definiendo

\[
[\lambda_\alpha]^\rho_\gamma = K_{\alpha\gamma}^\rho,
\]

tenemos

\[
[\lambda_\alpha]_\mu [\lambda_\beta]_\sigma = K_{\alpha\beta}^\rho [\lambda_\delta]_\mu = [\lambda_{\gamma(\alpha\beta)}]_\mu^\nu .
\] (1.6)

Además, es posible mostrar que los \(n \)-selectores satisfacen

\[
K_{\alpha_1\ldots\alpha_{n-1}}^{\sigma} K_{\sigma\alpha_n}^\rho = K_{\alpha_1}^\rho K_{\alpha_2\ldots\alpha_n}^{\sigma} = K_{\alpha_1\ldots\alpha_n}^{\sigma} .
\] (1.7)

 Esto significa que siempre es posible expresar un \(n \)-selector en términos de 2-selectores. Puesto que estaremos trabajando con semigrupos abelianos, todo \(n \)-selector debe ser completamente simétrico en sus índices inferiores.

Algunos semigrupos están dotados de un elemento que tiene un comportamiento especial, expresado en la siguiente definición:

Definición 2 Si \(S \) es un semigrupo dotado de un elemento \(0_s \in S \) que satsface

\[
0_s \lambda_\alpha = \lambda_\alpha 0_s = 0_s ,
\] (1.8)

para todo \(\lambda_\alpha \in S \), entonces el elemento \(0_s \) es llamado el cero del semigrupo.

Si \(S = \{\lambda_\alpha\}_{\alpha=0}^{N+1} \) es un semigrupo dotado del elemento \(0_S \), entonces asignaremos el elemento \(\lambda_{N+1} \) al cero,

\[
\lambda_{N+1} = 0_S .
\] (1.9)

Los restantes elementos, \(\lambda_i = 0, \ldots, N \) son asignados a los elementos distintos a \(0_S \).
1.3 Álgebras de Lie

En esta sección se presenta la definición y las principales características de un importante sistema algebraico conocido como álgebra de Lie. Estas álgebras fueron introducidas en el siglo XIX por el matemático noruego Marius Sophus Lie, y han tenido múltiples aplicaciones en física.

Consideremos un espacio vectorial finito dimensional \mathfrak{g} sobre un campo K. Si el grupo del espacio vectorial es extendido a un anillo, donde la operación multiplicativa del anillo es dada por $x \circ y \rightarrow [x, y]$, es decir, la multiplicación algebraica es una operación antisimétrica, entonces \mathfrak{g} es un álgebra de Lie.

Más formalmente, un álgebra de Lie es definida como sigue:

Definición 3: Sea \mathfrak{g} un espacio vectorial en el que hemos definido una operación:

\[
\{ , \} : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
\]

donde

\[
(x, y) \rightarrow [x, y]
\]

(1.10)

que hace de \mathfrak{g} un álgebra y que además verifica:

1. **Antisimetría**: $[x, y] = -[y, x]$
2. **Identidad de Jacobi**: $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$

Se dice entonces que \mathfrak{g} es un álgebra de Lie.

Sean M y N dos subconjuntos del álgebra de Lie \mathfrak{g}. Denotemos con $[M, N]$ al conjunto de la forma $[x, y]$ donde $x \in M$ e $y \in N$. Si M y N son subespacios lineales de un álgebra \mathfrak{g}, entonces son válidas las relaciones

\[
[M_1 + M_2, N] \subset [M_1, N] + [M_2, N]
\]

\[
[M, N] = [N, M]
\]

(1.11)

\[
[\mathfrak{g}, [M, N]] \subset [M, [N, \mathfrak{g}]] + [N, [\mathfrak{g}, M]]
\]

Junto con la definición de álgebra de Lie, es importante conocer otras definiciones de algunos conceptos que serán mencionados en capítulos posteriores.
Definición 4: Un subespacio N del álgebra \mathfrak{g} es una subálgebra, si $[N, N] \subseteq N$.

Definición 5: Un sub-espacio N del álgebra \mathfrak{g} es un ideal, si $[\mathfrak{g}, N] \subseteq N$. Esto significa que un ideal es una subálgebra.

Definición 6: Un ideal N que satsface la condición $[\mathfrak{g}, N] = 0$ es llamado el centro de \mathfrak{g}. Dado que $[N, N] = 0$ se tiene que un centro es siempre conmutativo.

La existencia de subálgebras o de ideales de un álgebra de Lie \mathfrak{g} es reflejada en ciertas restricciones sobre las constantes de estructura. Sea $\{e_1, ..., e_i, ..., e_n\}$ una base del espacio vectorial del álgebra \mathfrak{g}. Si $\{e_1, ..., e_k\}$ es una base de una subálgebra N de \mathfrak{g}, entonces las constantes de estructura deben satisfacer las relaciones

$$C_{ij}^k = 0, \quad \text{para} \quad i, j \leq k \quad \text{y} \quad s > k \quad (1.12)$$

Esto es visto del hecho que si N es una subálgebra $[N, N] \subseteq N$, entonces

$$[N_i, N_j] = C_{ij}^k N_k$$

de modo que para $k < s < n$ se tiene $C_{ij}^k = 0$. Por otro lado, si $\{e_1, ..., e_k\}$ son una base para un ideal entonces

$$C_{ij}^s = 0, \quad \text{para} \quad i \leq k, \quad s > k \quad \text{y} \quad j \text{ arbitrario} \quad (1.13)$$

Esto se debe a que si N es un ideal entonces $[\mathfrak{g}, N] \subseteq N$, es decir

$$[N_i, \mathfrak{g}_j] = C_{ij}^s N_s ; \quad i = 1, ..., k; \quad j = 1, ..., n$$

Se cumplirá que $[\mathfrak{g}, N] \subseteq N$ sólo si $C_{ij}^s = 0$ para $k \leq s \leq n$.

1.3.1 Álgebras de Lie Reducidas

Es interesante notar que dada un álgebra de Lie, es posible obtener álgebras más pequeñas por medio de un procedimiento que llamaremos reducción. De la Ref.[1], tenemos la siguiente definición,

Definición 7 : Consideremos un álgebra de Lie \(g \) de la forma

\[
g = V_0 \oplus V_1
\] (1.14)

donde \(\{T_{a_0}\} \) son los generadores de \(V_0 \) y \(\{T_{a_1}\} \) son los generadores de \(V_1 \). Si se cumple que

\[
[V_0, V_1] \subset V_1
\] (1.15)

es decir, cuando las relaciones de conmutación tienen la forma general

\[
[T_{a_0}, T_{b_0}] = C_{a_0b_0}^{c_0} T_{c_0} + C_{a_0b_1}^{c_1} T_{c_1}
\]

\[
[T_{a_0}, T_{b_1}] = C_{a_0b_1}^{c_0} T_{c_1}
\]

\[
[T_{a_1}, T_{b_1}] = C_{a_1b_1}^{c_0} T_{c_0} + C_{a_1b_1}^{c_1} T_{c_1}
\]

entonces las constantes de estructura \(C_{a_0b_0}^{c_0} \) satisfacen por sí mismas la identidad de Jacobi, por lo cual la relación de conmutación

\[
[T_{a_0}, T_{b_0}] = C_{a_0b_0}^{c_0} T_{c_0}
\] (1.17)

corresponde por sí misma a una álgebra de Lie y es llamada “álgebra reducida” del álgebra \(g \), y será denotada por \(|V_0| \).

Notemos que en general \(|V_0| \) no es una subálgebra de \(g \), sino que es entendida como una “reducción” de \(g \), donde \(V_1 \) no necesita ser un ideal.

La relación entre álgebras de Lie, la obtención de nuevas álgebras a partir de ellas y en particular la construcción de acciones invariantes bajo estas nuevas álgebras, es un problema de gran interés tanto en matemática como en física. Aparte del conocido problema de determinar si una álgebra es o no una subálgebra de otra, existen cuatro diferentes maneras de relacionar y/o obtener nuevas álgebras a partir de una original. Esto será revisado con más detalle en el siguiente capítulo.
Capítulo 2

Expansión de álgebras de Lie

2.1 Motivación

Existen diferentes mecanismos para derivar nuevas álgebras a partir de álgebras ya conocidas. Algunos de estos mecanismos son las contracciones, deformaciones y las extensiones de álgebras. En particular, un tipo de contracción es el procedimiento conocido como contracción de Inönü-Wigner (IW) (ver Apéndice A), introducido por Inönü y Wigner [2] en 1953. La contracción g_c de un álgebra de Lie g es realizada con respecto a una subálgebra L_0 por el reescalamiento de los generadores base del coseto g/L_0 por medio de un parámetro λ, y luego tomando un límite para este parámetro. Los generadores en g/L_0 se hacen abelianos en el álgebra contraída g_c, y la subálgebra $L_0 \subset g_c$ actúa sobre ellos. Como un resultado, g_c tiene una estructura semidirecta, y los generadores abelianos determinan un ideal de g_c.

Otro proceso es la deformación de álgebras, y en particular de álgebras de Lie [3], el cual nos permite obtener álgebras cerradas pero no isomorfas a una dada. Mediante este proceso es posible obtener por ejemplo, el álgebra de Poincaré como una deformación del álgebra de Galileo, de manera que la deformación se puede considerar como una herramienta para desarrollar una teoría física a partir de otra existente. Un tercer procedimiento para obtener nuevas álgebras de Lie es la extensión \tilde{g} de un álgebra g por medio de otra álgebra A [4]. El álgebra extendida \tilde{g} contiene a A como un ideal y $\tilde{g}/A \approx g$, pero g no es necesariamente una subálgebra de \tilde{g}. Si la extensión es considerada como un problema, los datos del problema son g, A y una acción de g sobre A. Cuando A es abeliana, el problema siempre tiene
solución, la suma semidirecta $\tilde{g} = A\oplus g$ (en cuyo caso g es una subálgebra de \tilde{g}). Ejemplo de este proceso son las extensiones supersimétricas en las cuales se agranda el grupo de simetría espacio temporal de manera no trivial.

Todos los métodos mencionados anteriormente comparten la propiedad de conservar la dimensión del álgebra original. Sin embargo, se han explorado otras maneras de obtener nuevas álgebras de dimensión mayor, a partir de un álgebra dada g. Originalmente esta idea fue considerada por M. Hatsuda y M. Sakagushi [5], y consiste en considerar el álgebra g como descrita por las formas Maurer-Cartan (MC) sobre la variedad de su grupo asociado G, y luego reescalar algunos de los parámetros del grupo por un parámetro λ, expandiendo las formas de MC como una serie de λ. Posteriormente, J. A de Azcárraga, J. M. Izquierdo, M. Picón y O. Varela [6] desarrollaron un método más general que permite generar nuevas álgebras de Lie $g(N_0, \ldots, N_n)$ a partir de un álgebra conocida g, y es llamado el método de expansión dAIPV.

En el año 2006, P. Salgado, F. Izaurieta y E. Rodríguez [1] desarrollaron un método de expansión alternativo al método de expansión en series de potencia, la S-expansión. A continuación, veremos ambos métodos de expansión y en particular, se describirá con más detalle el método de S-expansión y veremos en los capítulos posteriores su aplicación en la construcción de nuevas teorías para describir la gravedad, tanto en dimensiones pares como impares.

2.2 Método de expansión dAIPV

El uso de las formas de MC es conveniente para discutir nuevas álgebras. La expansión en formas de MC es un método que destaca de los otros métodos ya mencionados puesto que aumenta el número de generadores del álgebra de Lie. Éstas nos permiten tratar las álgebras de Lie como un caso particular de las álgebras diferenciales libres (p-formas) y desde un punto de vista físico, tener formas invariantes que son usadas para construir acciones. El método de expansión dAIPV consiste en considerar el álgebra original g descrita por sus formas MC, y luego reescalar algunos de los parámetros por un factor λ, expandiendo después las formas MC como una serie de potencias en λ, la cual debe ser truncada para asegurar la clausura del álgebra expandida.
2.2.1 Reescalamiento de los parámetros del grupo y método de expansión

De la Ref.[6], sea G un grupo de Lie, de coordenadas locales g^A, $A = 1, \ldots, r = \dim G$. Sea ahora \mathfrak{g} su álgebra de Lie con base $\{T_A\}$, la cual es obtenida por los generadores invariantes izquierdos (LI) $T_A(g)$ sobre la variedad del grupo. Sea \tilde{G} la correspondiente coálgebra, y sea $\{\omega^A(g)\}$, $A = 1, \ldots, r = \dim G$ la base dual determinada por las 1-formas de Maurer-Cartan sobre G. Entonces, cuando la base $\{T_A\}$ satisface el paréntesis de Lie $[T_A, T_B] = C_{AB}^C T_A$, se satisfacen las ecuaciones de MC

$$d\omega^C + \frac{1}{2} C_{AB}^C \omega^A \wedge \omega^B = 0$$

(2.1)

Tenemos que la redefinición

$$g^L \rightarrow \lambda g^L$$

(2.2)

de alguna coordenada g^L producirá una expansión de la 1-forma MC $\omega^A(g, \lambda)$ como una suma de 1-formas $\omega^{(A,\alpha)}(g)$ sobre G multiplicados por la potencia correspondiente λ^α de λ, a saber

$$\omega^A(g, \lambda) = \sum_{\alpha=0}^{\infty} \lambda^\alpha \omega^{(A,\alpha)}(g).$$

(2.3)

El caso más simple de expansión en serie de potencias se obtiene cuando el álgebra \mathfrak{g} se descompone en la suma de dos subespacios vectoriales.

Sea una descomposición de \tilde{g} en una suma de dos subespacios vectoriales

$$\tilde{g} = \tilde{V}_0 \oplus \tilde{V}_1$$

(2.4)

con \tilde{V}_0, \tilde{V}_1 generados por las formas de MC $\omega^{A_0}(g)$, $\omega^{A_1}(g)$ de \tilde{g} donde los índices corresponden, respectivamente, a los parámetros no modificados y modificados, es decir,

$$g^{A_0} \rightarrow g^{A_0}, \quad g^{A_1} \rightarrow \lambda g^{A_1}, \quad A_0(A_1) = 1, \ldots, \dim \tilde{V}_0 (\dim \tilde{V}_1)$$

(2.5)

Este reescalamiento de las coordenadas del grupo, permite expandir las formas de MC en una serie de potencias en términos del factor λ,

$$\omega^A(g, \lambda) = \sum_{\alpha=0}^{\infty} \lambda^\alpha \omega^{(A,\alpha)}(g)$$

(2.6)
Insertando (2.6) en (2.1) obtenemos que

\[
\sum_{\gamma=0}^{\infty} \lambda^\gamma d\omega^{(C,\gamma)} + \frac{1}{2} C_{AB} ^C \left(\sum_{\alpha=0}^{\infty} \lambda^\alpha \omega^{(A,\alpha)} \right) \wedge \left(\sum_{\beta=0}^{\infty} \lambda^\beta \omega^{(B,\beta)} \right) = 0
\]

\[
\sum_{\gamma=0}^{\infty} \lambda^\gamma \left[d\omega^{(C,\gamma)} + \frac{1}{2} C_{AB} ^C \sum_{\alpha,\beta=0}^{\infty} \delta^\gamma_{\alpha+\beta} \omega^{(A,\alpha)} \wedge \omega^{(B,\beta)} \right] = 0 \tag{2.7}
\]

Esto implica que los coeficientes 1-formas \(\omega^{(A,\alpha)} \) satisfacen

\[
d\omega^{(C,\gamma)} + \frac{1}{2} C_{AB} ^C \delta^\gamma_{\alpha+\beta} \omega^{(A,\alpha)} \wedge \omega^{(B,\beta)} = 0 \tag{2.8}
\]

\[
C_{AB} ^C \delta^\gamma_{\alpha+\beta} = \begin{cases} 0 & \text{si } \alpha + \beta \neq \gamma \\ C_{AB} ^C & \text{si } \alpha + \beta = \gamma \end{cases}
\]

o bien,

\[
d\omega^{(C,\gamma)} + \frac{1}{2} C_{(A,\alpha)(B,\beta)} ^{(C,\gamma)} \omega^{(A,\alpha)} \wedge \omega^{(B,\beta)} = 0 \tag{2.9}
\]

que corresponden a las ecuaciones de Maurer-Cartan para el álgebra expandida. La expansión en serie de potencias para álgebras de Lie con otras estructuras más complejas pueden verse en detalle en Ref.[4].

2.3 Método de S-expansión

El método de expansión de álgebras de Lie es un procedimiento para obtener nuevas álgebras de Lie a partir de una dada. La idea principal de este método es generalizar en una manera natural el procedimiento de contracción de Inönü-Wigner, donde en lugar de multiplicar los generadores por un parámetro numérico, dichos generadores sean multiplicados por los elementos de un semigrupo abeliano.

A continuación, se revisarán los principales aspectos del procedimiento de la S-expansión desarrollado en la Ref.[1]. La S-expansión se basa en la combinación de las constantes de estructura de un álgebra de \(\mathfrak{g} \) con la ley de multiplicación interior de un semigrupo \(S \), para definir el paréntesis de Lie de una nueva álgebra S-expandida \(\mathfrak{S} = S \times \mathfrak{g} \).

Teorema 1 Sea \(S = \{\lambda_\alpha\} \) un semigrupo abeliano finito con el 2-selector \(K_{\alpha\beta}^\gamma \) y sea \(\mathfrak{g} \) un álgebra de Lie con base \(\{T_A\} \) y constantes de estructura \(C_{AB} ^C \). Denotamos un elemento
base del producto directo $S \times \mathfrak{g}$ por $T_{(A, \alpha)} = \lambda_\alpha T_A$ y consideremos el conmutador inducido $[T_{(A, \alpha)}, T_{(B, \beta)}] = \lambda_\alpha \lambda_\beta [T_A, T_B]$. Luego, $S \times \mathfrak{g}$ también es un álgebra de Lie con constantes de estructura

$$C_{(A, \alpha)(B, \beta)}^{(C, \gamma)} = K_{\alpha \beta}^\gamma C_{AB}^C. \quad (2.10)$$

Prueba La prueba de este teorema se puede encontrar en la Ref.[1] ■

Junto con este teorema, tenemos la siguiente definición:

Definición 8: Si S es un semigrupo abeliano y si \mathfrak{g} es un álgebra de Lie, entonces el álgebra de Lie definida como $\mathfrak{S} = S \times \mathfrak{g}$ es llamada “álgebra expandida de \mathfrak{g}” o “álgebra S-expandida de \mathfrak{g}”.

En general, para obtener un álgebra a partir de otra, tal como en el caso de la contracción de Inönü-Wigner, lo que se hace es multiplicar los generadores por un cierto parámetro y después llevar a cabo un proceso como el de tomar un límite. La S-expansión es vista como la generalización natural de esta idea donde en lugar de multiplicar los generadores por un parámetro numérico, los generadores se multiplican por elementos de un semigrupo abeliano. Un álgebra S-expandida es entendida como una copia del álgebra original \mathfrak{g} para cada elemento del semigrupo.

Para poder encontrar estructuras más complejas debemos obtener álgebras más pequeñas a partir del álgebra S-expandida, es decir, subálgebras y álgebras reducidas.

2.3.1 Álgebras 0_s-reducidas

Cuando el semigrupo S está dotado de un elemento 0_S, entonces los correspondientes 2-selectores toman una forma particular, lo cual tiene como consecuencia que el álgebra S-expandida tome una forma especial.

Si denotamos con $\lambda_{N+1} = 0_S$ al elemento cero y a los elementos distintos de cero con λ_i, donde $i = 0, 1, ..., N$, tenemos que de acuerdo con la definición (1.3) los 2-selectores satisfacen las condiciones

$$K_{i, N+1}^j = K_{N+1, i}^j = 0$$
$$K_{i, N+1}^{N+1} = K_{N+1, i}^{N+1} = 1 \quad (2.11)$$
$$K_{N+1,N+1}^j = 0 \quad K_{N+1,N+1}^{N+1} = 1$$ (2.12)

Esto significa que el álgebra \(S \)-expandida \(\mathfrak{G} = S \times \mathfrak{g} \)

$$[T_{(A,\alpha)}, T_{(B,\beta)}] = K_{\alpha\beta}^\gamma C_{AB}^C T_{(C,\gamma)}$$ (2.13)

se puede desdoblar como

$$[T_{(A,i)}, T_{(B,j)}] = K_{ij}^k C_{AB}^C T_{(C,k)} + K_{ij}^{N+1} C_{AB}^C T_{(C,N+1)}$$ (2.14)

$$[T_{(A,N+1)}, T_{(B,j)}] = C_{AB}^C T_{(C,N+1)}$$ (2.15)

$$[T_{(A,N+1)}, T_{(B,N+1)}] = C_{AB}^C T_{(C,N+1)}$$ (2.16)

y como se demuestra en ref.[1], el conmutador

$$[T_{(A,i)}, T_{(B,j)}] = K_{ij}^k C_{AB}^C T_{(C,k)}$$ (2.17)

define un álgebra reducida de \(\mathfrak{G} = S \times \mathfrak{g} \), llamada álgebra de Lie \(0_S \)-reducida.

De (2.14), (2.15) y (2.16) resulta evidente que en este caso particular, la reducción es equivalente a imponer la condición

$$T_{(A,N+1)} = 0_S T_A = 0$$ (2.18)

Así, tenemos la siguiente definición:

Definición 9: Sea \(S \) un semigrupo abeliano dotado de un elemento cero \(0_S \) y sea \(\mathfrak{G} = S \times \mathfrak{g} \) un álgebra \(S \)-expandida. El álgebra obtenida imponiendo la condición \(0_S T_A = 0 \) sobre \(\mathfrak{g} \) es llamada álgebra \(0_S \)-reducida.

De esta manera, la reducción implica la extracción de un álgebra más pequeña desde un álgebra de Lie \(\mathfrak{g} \) cuando se cumplen ciertas condiciones. Sin embargo, cabe destacar que a pasar de la similitud superficial de los conceptos, un álgebra reducida, en general, no es una subálgebra de \(\mathfrak{g} \).
2.3.2 Subálgebras Resonantes

En la Ref.[1] fue desarrollado un método para extraer subálgebras de un álgebra S-expandida, en el cual se introduce el concepto de resonancia. Veamos con más detalle dicho procedimiento.

Consideremos un álgebra de Lie \mathfrak{g} provista de una descomposición en subespacios

$$\mathfrak{g} = \bigoplus_{p \in I} V_p,$$

donde I es un conjunto de índices. Puesto que el álgebra es cerrada, para todo $p, q \in I$ es posible definir $i_{(p,q)} \subset I$, tal que

$$[V_p, V_q] \subset \bigoplus_{r \in i_{(p,q)}} V_r$$

Sea ahora S un semigrupo provisto de la siguiente descomposición

$$S = \bigcup_{p \in I} S_p$$

(donde I es el mismo conjunto que se usó en la descomposición en subespacios de \mathfrak{g}), tal que se satsface

$$S_p \times S_q \subset \bigcap_{r \in i_{(p,q)}} S_r$$

donde el producto de subconjuntos es definido como

$$S_p \times S_q = \{ \lambda \in S \text{ tal que } \lambda = \lambda_\alpha \lambda_\beta, \text{ con } \lambda_\alpha \in S_p \land \lambda_\beta \in S_q \}\}

Cuando esta situación ocurre diremos que la descomposición (2.21) está en resonancia con la descomposición (2.19).

Tenemos así el siguiente teorema:

Teorema 2 : Sea $\mathfrak{g} = \bigoplus_{p \in I} V_p$ una descomposición en sub-espacios de \mathfrak{g}, con una estructura dada por

$$[V_p, V_q] \subset \bigoplus_{r \in i_{(p,q)}} V_r$$

y sea $S = \bigcup_{p \in I} S_p$ una descomposición resonante del semigrupo abeliano S, es decir una descomposición del tipo

$$S_p \times S_q \subset \bigcap_{r \in i_{(p,q)}} S_r$$
Si $W_p = S_p \times V_q$, $p \in I$ son subespacios de $\mathfrak{G} = S \times \mathfrak{g}$, entonces
\[\mathfrak{G}_R = \bigoplus_{p \in I} W_p \]
es una subálgebra del álgebra expandida \mathfrak{G}.

El álgebra de Lie $\mathfrak{G}_R = \bigoplus_{p \in I} W_p$ obtenida es llamada subálgebra resonante del álgebra S-expandida $\mathfrak{G} = S \times \mathfrak{g}$.

El teorema de subálgebras resonantes es una herramienta de gran interés para generar nuevas álgebras partir de \mathfrak{g}. El problema de encontrar subálgebras de $\mathfrak{G} = S \times \mathfrak{g}$ se convierte en el problema de encontrar una partición resonante de S.

2.3.3 Reducción Resonante

Hemos visto que no sólo es posible encontrar subálgebras utilizando la idea de una descomposición resonante sino que también es posible reducir álgebras tal como queda establecido en el siguiente teorema:

Teorema 3: Sea $\mathfrak{G}_R = \bigoplus_{p \in I} S_p \times V_p$ una subálgebra resonante del álgebra S-expandida $\mathfrak{G} = S \times \mathfrak{g}$, es decir, sea \mathfrak{G}_R un álgebra que satisface las condiciones
\[[V_p, V_q] \subset \bigoplus_{r \in \{p,q\}} V_r \] (2.24)
\[S_p \times S_q \subset \bigcap_{r \in \{p,q\}} S_r \] (2.25)

Sea $S_p = \overset{\wedge}{S_p} \cup \overset{\vee}{S_p}$ una partición de los subconjuntos $S_p \subset S$ que satisface las siguientes condiciones
\[\overset{\wedge}{S_p} \cap \overset{\vee}{S_p} = \emptyset \; ; \; \overset{\vee}{S_p} \times \overset{\wedge}{S_q} \subset \bigcap_{r \in \{p,q\}} \overset{\wedge}{S_r} \] (2.26)

Esta descomposición de los subconjuntos $S_p = \overset{\wedge}{S_p} \cup \overset{\vee}{S_p}$ induce la descomposición $\mathfrak{G}_R = \overset{\vee}{\mathfrak{G}_R} \bigoplus \overset{\wedge}{\mathfrak{G}_R}$ en la subálgebra resonante, donde
\[\overset{\vee}{\mathfrak{G}_R} = \bigoplus_{p \in I} \overset{\vee}{S_p} \times V_p \] (2.27)
\[\overset{\wedge}{\mathfrak{G}_R} = \bigoplus_{p \in I} \overset{\wedge}{S_p} \times V_p \] (2.28)
Si se cumplen las relaciones (2.26) entonces
\[\vee [G_R, \hat{G}_R] \subseteq \hat{G}_R \]
por lo que, de acuerdo con la definición de álgebra reducida, tenemos que \(G_R \) es un álgebra reducida de la subálgebra resonante \(G_R \).

Prueba: La demostración de este teorema se puede encontrar en la Ref.[7] ■

Una consecuencia del teorema anterior es el hecho que el procedimiento de \(0_S \)-reducción se puede aplicar sobre subálgebras resonantes, como se muestra en el siguiente corolario:

Corolario 1: Sea \(S \) un semigrupo dotado de un elemento \(0_S \), y sea \(G_R = \bigoplus_{p \in I} S_p \times V_p \) una subálgebra resonante de \(G = S \times g \), tal que para cada subconjunto \(S_p \), \(0_S \subseteq S_p \). Entonces la descomposición \(S_p = \hat{S}_p \cup \vee S_p \) con \(S_p = \{ 0_S \} \) y \(S_p = S_p - \{ 0_S \} \) satisface las condiciones ecs. (2.26) y por lo tanto \(\vee [G_R] \) corresponde a un álgebra reducida \(G_R \) que será llamada álgebra \(0_S \)-reducida de \(G_R \).

Prueba: Ver capítulo 4 de Ref.[7] ■

2.3.4 Expansión con \(S = S_E^{(N)} \)

En el caso de la expansión en formas de MC, vimos que el caso más simple era cuando el álgebra de Lie \(g \) se descompone en la suma de dos subespacios vectoriales, es decir, cuando \(g = V_0 \oplus V_1 \). En este caso, el Teorema 1 de la Ref.[6] nos dice que las constantes de estructura del álgebra expandida son

\[C_{(A,i) (B,j)}^{C,k} = \begin{cases} 0, & \text{si } i + j \neq k \\ C_{AB}^C, & \text{si } i + j = k \end{cases} \tag{2.29} \]

donde los índices \(i, j, k = 0, ..., N \) corresponden a órdenes en la expansión en serie, y \(N \) es el orden del truncamiento.

Ahora bien, estas constantes de estructura son reobtenidas en el contexto de la \(S \)-expansión, cuando se hace una elección particular del semigrupo, al que llamaremos \(S_E^{(N)} \), y aplicando una \(0_S \)-reducción.

El procedimiento de \(S \)-expansión con \(S = S_E^{(N)} \) consiste en
1. Llevar a cabo una S-expansión haciendo uso del semigrupo $S = S_{E}^{(N)}$

2. Encontrar una partición resonante para $S = S_{E}^{(N)}$ y construir la subálgebra resonante \mathfrak{G}_R.

3. Aplicar una 0_s-reducción a la subálgebra resonante.

Hemos visto que si $S = \{\lambda_{\alpha_1}, \lambda_{\alpha_2}, \ldots, \lambda_{\alpha_n}\}$ es un semigrupo finito y discreto, entonces el producto en S es escrito como $\lambda_\alpha \circ \lambda_\beta = \lambda_{\gamma(\alpha, \beta)} = K_{\alpha\beta}^\rho \lambda_\rho$, y donde

$$K_{\alpha\beta}^\rho = \begin{cases} 1, & \text{cuando } \rho = \gamma(\alpha, \beta) \\ 0, & \text{cuando } \rho \neq \gamma(\alpha, \beta) \end{cases}$$

Denotaremos con $S_{E}^{(N)}$ al semigrupo $S_{E}^{(N)} = \{\lambda_0, \lambda_1, \ldots, \lambda_N, \lambda_{N+1}\} = \{\lambda_\alpha, \alpha = 0, 1, \ldots, N, N+1\}$, dotado de la regla de multiplicación

$$\lambda_\alpha \circ \lambda_\beta = \begin{cases} \lambda_{\alpha+\beta}, & \text{si } \alpha + \beta \leq N \\ \lambda_{N+1}, & \text{si } \alpha + \beta \geq N + 1 \end{cases}$$

lo cual significa que

$$K_{\alpha\beta}^\rho = \begin{cases} \delta_{\alpha+\beta}^\rho, & \text{si } \alpha + \beta \leq N \\ \delta_{N+1}^\rho, & \text{si } \alpha + \beta \geq N + 1 \end{cases} \quad (2.30)$$

De la ecuación $\lambda_\alpha \circ \lambda_\beta = \lambda_{\gamma(\alpha+\beta)}$ podemos ver que λ_{N+1} corresponde al elemento cero de $S_{E}^{(N)}$, $\lambda_{N+1} = 0_S$.

Para obtener las constantes de estructura correspondiente a la $S_{E}^{(N)}$-expansión de un álgebra de Lie \mathfrak{g}, consideremos las constantes de estructura para el álgebra S-expandida

$$C_{(A,\alpha)(B,\beta)}^{(C,\gamma)}^{(C,\gamma)} = K_{\alpha\beta}^\gamma C_{AB}^C. \quad (2.31)$$

A partir de esta ecuación, tenemos que las constantes de estructura para el álgebra $S_{E}^{(N)}$-expandida corresponden a

$$C_{(A,\alpha)(B,\beta)}^{(C,\gamma)}^{(C,\gamma)} = \begin{cases} \delta_{\alpha+\beta}^\rho C_{AB}^C, & \text{si } \alpha + \beta \leq N \\ \delta_{N+1}^\rho C_{AB}^C, & \text{si } \alpha + \beta \geq N + 1 \end{cases}$$
donde \(\alpha, \beta, \gamma = 0, 1, ..., N + 1 \).

El paso siguiente consiste en imponer la condición de 0\(_S\)-reducción. En efecto, imponiendo la condición \(\lambda_{N+1} T_A = 0 \), las constantes de estructura toman la forma

\[
C_{(A,i)(B,j)}^{(C,k)} = \delta_{i+j}^k C_{AB}^C
\]

donde \(i, j, k = 0, 1, ..., N \), que son exactamente las constantes de estructura (2.29). Por lo tanto, la 0\(_S\)-reducción del álgebra \(S_{E}^{(N)} \)-expandida \(\mathfrak{G} = S_{E}^{(N)} \times \mathfrak{g} \) coincide con la expansión en formas de MC para un álgebra \(\mathfrak{g} \).

2.3.5 Subálgebras Resonantes con \(S = S_{E}^{(N)} \)

Un caso muy interesante ocurre cuando \(\mathfrak{g} = V_0 \oplus V_1 \), siendo \(V_0 \) una subálgebra y \(V_1 \) un coseto simétrico. Sea \(\mathfrak{g} = V_0 \oplus V_1 \) una descomposición de \(\mathfrak{g} \) en subespacios tal que

\[
\begin{align*}
[V_0, V_0] &\subseteq V_0 \\
[V_0, V_1] &\subseteq V_1 \\
[V_1, V_1] &\subseteq V_1
\end{align*}
\]

(2.33)

Consideremos un álgebra \(S\)-expandida \(\mathfrak{G} = S_{E}^{(N)} \times \mathfrak{g} \). Un partición resonante de \(S_{E}^{(N)} \) es dada por \(S_{E}^{(N)} = S_0 \cup S_1 \), con \(N \) arbitrario, donde

\[
S_0 = \left\{ \lambda_{2m}, \text{ con } m = 0, 1, ..., \left[\frac{N}{2} \right] \right\} \cup \{ \lambda_{N+1} \}
\]

\[
S_1 = \left\{ \lambda_{2m+1}, \text{ con } m = 0, 1, ..., \left[\frac{N-1}{2} \right] \right\} \cup \{ \lambda_{N+1} \}
\]

(2.34)

(2.35)

Esta partición de \(S_{E}^{(N)} \) es resonante con respecto a la estructura del álgebra (2.33) ya que satisface la condición

\[
S_p \times S_q \subseteq \bigcap_{r \in (p,q)} S_r
\]

que para este caso es escrita explícitamente como

\[
\begin{align*}
S_0 \times S_0 &\subseteq S_0 \\
S_0 \times S_1 &\subseteq S_1 \\
S_1 \times S_1 &\subseteq S_0
\end{align*}
\]

(2.36)
Así, siguiendo el Teorema 2, si \(W_0 = S_0 \times V_0 \) y \(W_1 = S_1 \times V_1 \) tenemos que

\[
\mathfrak{G}_R = W_0 \oplus W_1
\]

es un álgebra resonante de \(\mathfrak{G} \). Debe ser notado que es la estructura de los subconjuntos \(S_0 \) y \(S_1 \) la que determina la forma de la subálgebra resonante \(\mathfrak{G}_R \).

Una vez obtenida la subálgebra resonante, el último paso para reproducir el resultado obtenido con el método dAIPV, es realizar una \(0_S \)-reducción de \(\mathfrak{G}_R \), con \(\lambda_{N+1} = 0_S \). Esto significa que la reducción es equivalente a imponer la condición \(\lambda_{N+1}T_A = 0 \).

2.3.6 Tensores invariantes para álgebras \(S \)-expandidas

Encontrar todos los tensores invariantes para una cierta álgebra no es solamente un problema matemático importante, sino que también uno físico. En efecto, un tensor invariante es un ingrediente clave en la construcción de formas Chern-Simons, las cuales pueden ser usadas como lagrangianos de gauge para un grupo de simetría dado en una dimensión impar arbitraria.

Un procedimiento estándar que nos permite obtener un tensor invariante es hacer uso de la traza en alguna representación matricial de los generadores del álgebra. Sin embargo, este método tiene limitaciones para el caso de álgebras \(0_S \)-reducidas.

Por otro lado, una de las ventajas del método de \(S \)-expansión es que éste nos proporciona un tensor invariante para el álgebra \(S \)-expandida \(\mathfrak{G} = S \times \mathfrak{g} \) en términos de un tensor invariante para \(\mathfrak{g} \) [1].

Teorema 4: Sea \(S \) un semigrupo abeliano, \(\mathfrak{g} \) un álgebra de Lie de base \(\{T_A\} \), y sea

\[
\langle T_{A_1} \cdots T_{A_n} \rangle
\]

un tensor invariante para \(\mathfrak{g} \). Entonces, la expresión

\[
\langle T_{(A_1,\alpha_1)} \cdots T_{(A_n,\alpha_n)} \rangle = \alpha_\gamma K_{\alpha_1\cdots\alpha_n}^\gamma \langle T_{A_1} \cdots T_{A_n} \rangle
\]

donde \(\alpha_\gamma \) son constantes arbitrarias y \(K_{\alpha_1\cdots\alpha_n}^\gamma \) es el \(n \)-selector para \(S \), corresponde a un tensor invariante para el álgebra \(S \)-expandida \(\mathfrak{G} = S \times \mathfrak{g} \).

Prueba La demostración de este teorema se puede revisar en detalle en la Ref.[1].

Por otro lado, dado un tensor invariante para un álgebra, sus componentes valuadas en una subálgebra son por sí mismas un tensor invariante para la subálgebra. Para el caso
de subálgebras resonantes, y siempre que todos los \(\alpha_i\)'s sean distintos de cero, el tensor invariante para la subálgebra resonante nunca se anula. De hecho, dada una partición resonante \(S = \bigcup_{p \in I} S_p\), y denotando la base de \(V_p\) como \(\{T_{\alpha_p}\}\), las componentes \(G_R\)-valuadas de (2.37) son dadas por

\[
\langle T_{(\alpha_p_1, \alpha_{p_1})} \cdots T_{(\alpha_{p_n}, \alpha_{p_n})} \rangle = \alpha_\gamma K_{\alpha_{p_1} \cdots \alpha_{p_n}} \langle T_{\alpha_{p_1}} \cdots T_{\alpha_{p_n}} \rangle, \quad \text{con } \lambda_{\alpha_p} \in S_p
\] (2.38)

Estas componentes forman un tensor invariante para la subálgebra resonante \(G_R = \bigoplus_{p \in I} S_p \times V_p\). Puesto que \(S\) es cerrado bajo el producto (1.1), para cada elección de índices \(\alpha_{p_1}, \ldots, \alpha_{p_n}\) siempre existe un valor de \(\gamma\) tal que \(K_{\alpha_{p_1} \cdots \alpha_{p_n}} = 1\), y así (2.38) no se anula.

Sin embargo, como habíamos mencionado anteriormente un álgebra \(0_S\)-reducida no es una subálgebra, y por lo tanto, las componentes valuadas en el álgebra \(0_S\)-reducida de las expresiones (2.37) ó (2.38), no conducen a un tensor invariante. El siguiente teorema, nos ofrece una solución entregándonos una expresión general para un tensor invariante para un álgebra \(0_S\)-reducida.

Teorema 5: Sea \(S\) un semigrupo abeliano con elementos no nulos \(\lambda_i, i = 0, \ldots, N\), y \(\lambda_{N+1} = 0_S\). Sea \(\mathfrak{g}\) un álgebra de Lie de base \(\{T_A\}\), y sea \(\langle T_{A_1} \cdots T_{A_n} \rangle\) un tensor invariante para \(\mathfrak{g}\). Entonces, la expresión

\[
\langle T_{(A_1, i_1)} \cdots T_{(A_n, i_n)} \rangle = \alpha_j K_{i_1 \cdots i_n}^j \langle T_{A_1} \cdots T_{A_n} \rangle
\] (2.39)

donde \(\alpha_j\) son constantes arbitrarias, corresponde a un tensor invariante para el álgebra \(0_S\)-reducida obtenida desde \(\mathfrak{g} = S \times \mathfrak{g}\).

Prueba Ver Ref.[1] para una demostración detallada. ■

Para la \(0_S\)-reducción de una subálgebra resonante, obtenemos que

\[
\langle T_{(\alpha_{p_1}, i_{p_1})} \cdots T_{(\alpha_{p_n}, i_{p_n})} \rangle = \alpha_j K_{i_{p_1} \cdots i_{p_n}}^j \langle T_{i_{p_1}} \cdots T_{i_{p_n}} \rangle, \quad \text{con } \lambda_{i_p} \in S_p
\] (2.40)

es un tensor invariante para el álgebra \(0_S\)-reducida de \(\mathfrak{g}_R = \bigoplus_{p \in I} S_p \times V_p\).
2.4 Formulación dual de la S-expansión

Como vimos en la sección anterior, el método de expansión de un álgebra de Lie implica encontrar una nueva álgebra más grande \mathfrak{G} a través de una serie de pasos bien definidos, desde un álgebra de Lie original \mathfrak{g}. En particular, vimos que la llamada S-expansión involucra el uso de un semigrupo abeliano finito S para lograr esta tarea. Por otro lado, se estudió el método de expansión en serie de potencia, en el cual las 1-formas de Maurer-Cartan eran expandidas en un parámetro λ. En Ref.[8] se estudió el procedimiento de S-expansión en el contexto de la variedad de grupo y de esta manera se desarrolla una formulación dual del método de S-expansión.

De Ref.[8] sabemos que para cada semigrupo abeliano S y un álgebra de Lie \mathfrak{g}, el producto $\mathfrak{G} = S \times \mathfrak{g}$ es también un álgebra de Lie, con un paréntesis de Lie dado por

$$[T_{(A,\alpha)}, T_{(B,\beta)}] = K_{\alpha\beta} \gamma C_{AB}^C T_{(C,\gamma)}$$ \hspace{1cm} (2.41)

Esto a su vez, significa que debe ser posible interpretar esta álgebra de Lie S-expandida \mathfrak{G} desde el punto de vista dual de las formas de MC. En efecto,

Teorema 6: Sea $S = \{\lambda_\alpha, \alpha = 1, \ldots, n\}$ un semigrupo abeliano finito y sean ω^A las formas de MC para un álgebra de Lie \mathfrak{g}. Entonces, las formas de MC $\omega^{(A,\alpha)}$ asociadas con el álgebra de Lie S-expandida $\mathfrak{G} = S \times \mathfrak{g}$ estarán relacionadas a ω^A por

$$\omega^A = \lambda_\alpha \omega^{(A,\alpha)}$$ \hspace{1cm} (2.42)

Por definición, estas formas satisfacen las ecuaciones de MC

$$d\omega^{(C,\gamma)} + \frac{1}{2} K_{\alpha\beta} \gamma C_{AB}^C \omega^{(A,\alpha)} \omega^{(B,\beta)} = 0.$$ \hspace{1cm} (2.43)

La demostración de este teorema es directa. En efecto, si multiplicamos (2.43) por λ_γ y usamos la definición del 2-selector $K_{\alpha\beta} \gamma$, a saber $\lambda_\alpha \lambda_\beta = K_{\alpha\beta} \gamma \lambda_\gamma$, obtenemos

$$\lambda_\gamma \left[d\omega^{(C,\gamma)} + \frac{1}{2} K_{\alpha\beta} \gamma C_{AB}^C \omega^{(A,\alpha)} \omega^{(B,\beta)} \right] = 0,$$ \hspace{1cm} (2.44)

$$d \left[\lambda_\gamma \omega^{(C,\gamma)} \right] + \frac{1}{2} C_{AB}^C \left[\lambda_\alpha \omega^{(A,\alpha)} \right] \left[\lambda_\beta \omega^{(B,\beta)} \right] = 0.$$ \hspace{1cm} (2.45)

Luego, la identificación requerida es obtenida comparando (2.44) con las ecuaciones de MC para \mathfrak{g}.

Notemos que la relación mostrada en la ecuación (2.43) es análoga al método de expansión en serie de potencias desarrollado en [6].
2.4.1 0S-reducción en álgebras de Lie S-expandidas

En ref.[8] se desarrolló además, la formulación dual para el proceso de 0S-reducción en un álgebra de Lie S-expandida \(\mathfrak{g} \), formulada en el lenguaje de las formas de MC.

Sea \(S = \{ \lambda_i, i = 1, ..., N \} \cup \{ \lambda_{N+1} = 0_S \} \) un semigrupo abeliano con elemento cero. Las formas MC expandidas \(\omega^{(A,a)} \) son dadas por

\[
\omega^A = \lambda_i \omega^{(A,i)} + 0_S \bar{\omega}^A
\]

(2.46)
donde \(\bar{\omega}^A = \omega^{(A,N+1)} \).

En la sección anterior vimos que \(K_{ij}^k C_{AB}^C \) eran las constantes de estructura para el álgebra 0S-reducida \(G_R \), cuyos generadores \(T_{(A,i)} \), satisfacen

\[
\left[T_{(A,i)}, T_{(B,j)} \right] = K_{ij}^k C_{AB}^C T_{(C,k)}
\]

(2.47)

En el lenguaje de las formas MC, esto es equivalente a lo que establece el siguiente teorema,

Teorema 7 : Sea \(S = \{ \lambda_i, i = 1, ..., N \} \cup \{ \lambda_{N+1} = 0_S \} \) un semigrupo abeliano con elemento cero y sean \(\{ \omega^{(A,i)} , i = 1, ..., N \} \cup \{ \omega^{(A,N+1)} = \bar{\omega}^A \} \) las formas MC para el álgebra S-expandida \(\mathfrak{g} = S \times \mathfrak{g} \) de \(\mathfrak{g} \) por el semigrupo \(S \). Entonces, \(\{ \omega^{(A,i)}, i = 1, ..., N \} \) son las formas MC para el álgebra S-expandida 0S-reducida \(\mathfrak{g}_R \).

La demostración del teorema es vista como sigue: Las formas MC para el álgebra S-expandida \(\mathfrak{g} \) satisfacen las ecuaciones de MC (2.43), y considerando las componente \(\gamma = k \), tenemos que

\[
d\omega^{(C,k)} + \frac{1}{2} K_{\alpha \beta}^k C_{AB}^C \omega^{(A,\alpha)} \omega^{(B,\beta)} = 0.
\]

(2.48)

Si realizamos la suma sobre \(\alpha \) y \(\beta \) y notando que \(K_{i,N+1}^k = K_{N+1,i}^k = K_{N+1,N+1}^k = 0 \), obtenemos

\[
d\omega^{(C,k)} + \frac{1}{2} K_{ij}^k C_{AB}^C \omega^{(A,i)} \omega^{(B,j)} = 0,
\]

(2.49)

lo que nos muestra que \(\{ \omega^{(A,i)}, i = 1, ..., N \} \) son las formas MC para el álgebra de Lie cuyas constantes de estructura son \(K_{ij}^k C_{AB}^C \).
Parte II

Gravedad en altas dimensiones
Capítulo 3

Formulación de primer orden de la gravedad

3.1 Relatividad General en el formalismo de Einstein

La Teoría de la Relatividad General describe la gravedad como una manifestación dinámica de la geometría del espacio-tiempo. Pero ¿qué se entiende por geometría de espacio-tiempo?. La geometría es a veces entendida como el conjunto de afirmaciones que pueden ser realizadas sobre puntos, líneas y subvariedades de dimensión más alta embebidas en una variedad dada [9]. Esta idea es usualmente vista como codificada en el tensor métrico $g_{\mu\nu}(x)$, el cual proporciona la noción de distancia entre puntos vecinos x^μ y $x^\mu + dx^\mu$,

$$ds^2 = g_{\mu\nu}dx^\mu dx^\nu \tag{3.1}$$

Este es el caso de geometría Riemanniana, en la cual todas las propiedades relevantes definidas sobre la variedad (longitud, área, volúmen, etc.) pueden ser construidas a partir de la métrica. Las componentes coordenadas de este tensor corresponden al producto punto entre los vectores ∂_μ de la base coordenada,

$$g_{\mu\nu} \equiv \partial_\mu \cdot \partial_\nu \tag{3.2}$$
La ecuación (3.2) nos permite conocer el producto punto entre dos vectores arbitrarios A y B, a través de

$$A \cdot B = (A^\mu \partial_\mu) \cdot (B^\nu \partial_\nu) = A^\mu B^\nu (\partial_\mu \cdot \partial_\nu) = g_{\mu \nu} A^\mu B^\nu.$$

(3.3)

Sin embargo, debería hacerse una diferencia entre las características métrica y afín del espaciotiempo. Por un lado, la propiedad afín define la noción de transporte paralelo, mientras que la noción de distancia y de cómo son medidas las distancias en la variedad, son descritas por la propiedad métrica.

En geometría diferencial, el concepto de paralelismo está codificado en la conexión afín $\Gamma^\alpha_{\beta \gamma}(x)$: un vector $\xi^\parallel(x + dx; x)$ será paralelo al vector $\xi(x + dx)$, si sus coordenadas están relacionadas por transporte paralelo,

$$\xi^\parallel(x + dx; x) = \xi^\alpha(x + dx) + dx^\mu \Gamma^\alpha_{\mu \beta} \xi^\beta(x)
= \xi^\alpha(x) + dx \left[\partial_\mu \xi^\alpha + \Gamma^\alpha_{\mu \beta} \xi^\beta(x) \right].$$

(3.4)

La expresión entre paréntesis en (3.4) corresponde a la derivada covariante de ξ^α con respecto a la conexión $\Gamma^\alpha_{\mu \beta}$, a la que denotaremos por

$$D_\mu \xi^\alpha \equiv \partial_\mu \xi^\alpha + \Gamma^\alpha_{\mu \beta} \xi^\beta.$$

(3.5)

En la geometría de Riemann, y por lo tanto también en Relatividad General, se requiere que la conexión afín sea simétrica en sus índices inferiores, es decir,

$$\Gamma^\alpha_{\mu \beta} = \Gamma^\alpha_{\beta \mu}$$

(3.6)

La ecuación anterior expresa la anulación del tensor de torsión,

$$T^\alpha_{\mu \beta} \equiv \Gamma^\alpha_{\mu \beta} - \Gamma^\alpha_{\beta \mu}.$$

(3.7)

La conexión afín $\Gamma^\alpha_{\beta \gamma}$ satisfaciendo (3.6) es conocida como conexión o símbolo de Christoffel, y es escrita como

$$\Gamma^\alpha_{\mu \beta} = \frac{1}{2} g^{\alpha \lambda} (\partial_\mu g_{\lambda \beta} + \partial_\beta g_{\lambda \mu} - \partial_\lambda g_{\mu \beta}).$$

(3.8)
Así, en la formulación original de Relatividad General, Einstein consideró que la métrica del espaciotiempo debería ser el único campo dinámicamente independiente, mientras que la conexión afín debería ser una función de la métrica, como lo muestra (3.8). Sin embargo, es importante notar que si consideramos que estas propiedades no son independientes, es necesario introducir un constraint: el tensor torsión se supone nulo en toda la variedad.

Usando la definición (3.5) es posible calcular como actúa el conmutador de dos derivadas covariantes sobre un vector ξ^α,

$$[D_\mu, D_\nu] \xi^\alpha = R^\alpha_{\beta \mu \nu} \xi^\beta - T^\lambda_{\mu \nu} D_\lambda \xi^\alpha$$

(3.9)

donde $T^\lambda_{\mu \nu}$ corresponde al tensor de torsión (3.7) y $R^\alpha_{\beta \mu \nu}$ es conocido como el *tensor de curvatura de Riemann*, el cual viene dado por

$$R^\alpha_{\beta \mu \nu} \equiv \partial_\mu \Gamma^\alpha_{\nu \beta} - \partial_\nu \Gamma^\alpha_{\mu \beta} + \Gamma^\alpha_{\mu \lambda} \Gamma^\lambda_{\nu \beta} - \Gamma^\alpha_{\nu \lambda} \Gamma^\lambda_{\mu \beta}$$

(3.10)

Definimos además,

\[
R_{\mu \nu} \equiv R^\alpha_{\mu \alpha \nu}, \quad R \equiv g^{\mu \nu} R_{\mu \nu}
\]

los cuales son conocidos como el *tensor de Ricci* y la *curvatura escalar de Ricci*, respectivamente.

3.1.1 Acción de Einstein-Hilbert

Es un hecho bien conocido que las ecuaciones de campo de Einstein (en el vacío)

$$R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R = 0,$$

(3.11)

pueden ser obtenidas a partir de un principio variacional

$$S_g = \int d^4x L_g = \int d^4x \sqrt{-g} L_g.$$

(3.12)

donde $g = \det (g_{\mu \nu}) < 0$ es el determinante del tensor métrico. Puesto que las ecuaciones de campo contienen derivadas de la métrica hasta segundo orden, tenemos que el escalar L_g debe contener sólo a las componentes del tensor métrico $g_{\mu \nu}$ y sus primeras derivadas a
través de la conexión afín $\Gamma^\alpha_{\mu\nu}$. No obstante, no es posible construir un escalar invariante a partir sólo de $g_{\mu\nu}$ y $\Gamma^\alpha_{\mu\nu}$. En 1915, este problema fue solucionado por el matemático alemán David Hilbert. Supongamos que L_g sea un escalar invariante que además de contener $g_{\mu\nu}$ y sus primeras derivadas, contiene también segundas derivadas. De todos los escalares de curvatura que pueden formarse en cuatro dimensiones, Hilbert escogió la curvatura escalar de Ricci R, dado que es el único lineal en la segunda derivada de $g_{\mu\nu}$ y nos provee de ecuaciones de segundo orden para la métrica. Así tenemos que

$$S_{EH}^{(4)} = \int d^4 x \sqrt{-g} R.$$ \hspace{1cm} (3.13)

La variación de la acción nos conduce a las ecuaciones de campo de Einstein (3.11).

Hasta ahora, hemos revisado la formulación de Relatividad General considerando que las propiedades métrica y afín no son independientes. Para esto fue necesario introducir un constraint: el tensor torsión se supuso nulo en toda la variedad. Sin embargo, estas propiedades pueden ser consideradas como nociones independientes.

En las siguientes secciones se revisará brevemente la formulación de la Teoría de la Relatividad General, considerando la independencia de las propiedades de metricidad y paralelismo. Este formalismo es conocido como gravedad de Cartan (cuando se trabaja con formas diferenciales) o formalismo de Palatini (en la formulación tensorial).

3.2 El vielbein y la conexión de spin

Análogamente a Ref.[9], consideremos el espacio-tiempo como una variedad suave D-dimensional, M. En cada punto $x \in M$ hay definido un espacio tangente plano D-dimensional T_x, el cual es una buena aproximación de la variedad M sobre un conjunto abierto en la vecindad de x de signatura lorentziana ($-++,...+).$ Esto significa que hay una manera para representar tensores en M por tensores en T_x, y viceversa.

Si consideramos un sistema coordenado x^μ definido sobre alguna región de la variedad que contenga al punto x, entonces dicho sistema coordenado induce una base para el espacio tangente en X dada por los vectores $\partial_i = \partial_\mu (x)$. Estos vectores corresponden a las derivadas direccionales a lo largo de la curva de parámetro $x^i = x^\mu (x)$, y la base es llamada base coordenada.
Como ya fue mencionado, el producto punto entre dos vectores de la base coordenada es dado por las componentes coordenadas del tensor métrico (ver ec. (3.2)):

$$\partial_i \cdot \partial_j = g_{ij},$$

lo que nos muestra que en general una base coordenada no es ortonormal. No obstante, si consideramos el siguiente cambio de base

$$e_a = e^i_a \partial_i = \partial_a,$$

siempre es posible encontrar una base ortonormal para $T_x (M)$. En efecto, la transformación de coordenadas $z^a = z^a (x^\mu (x)) = z^a (x^i)$, nos conduce de un sistema coordenado arbitrario a uno que es ortogonal en el punto x, de tal manera que $e_a = \partial_a$ es el vector tangente asociado a la línea coordenada z^a. El producto punto de los vectores de la nueva base coordenada es dado por

$$e_a \cdot e_b = e^i_a e^j_b (\partial_i \cdot \partial_j) = e^i_a e^j_b g_{ij} = \eta_{ab}$$

donde η_{ab} corresponde a la métrica de Minkowski y los e^i_a son las matrices de cambio de base. Así, la métrica en el sistema coordenado que genera la nueva base coordenada $\{\partial_a\}$ es diagonal y es elegida a ser la métrica η_{ab} en el punto x.

Por otro lado, siempre es posible encontrar las matrices de cambio de base inversa e^a_i, tal que

$$\partial_i = e^a_i \partial_a,$$

las cuales satisfacen

$$e^a_i e^i_b = \delta^a_b,$$
$$e^a_j e^i_a = \delta^i_j.$$

Además, estas matrices pueden ser escritas explícitamente como

$$e^a_i = \eta^{ab} e^j_b g_{ij},$$

de donde vemos que

$$g_{ij} = e^a_i e^b_j \eta_{ab}.$$
Recordemos que en cada punto \(x \in M \) hemos definido un espacio tangente plano \(d \)-dimensional \(T_x \), el cual es una buena aproximación de la variedad \(M \) sobre un conjunto abierto en la vecindad de \(x \). La relación precisa entre \(M \) y la colección \(\{T_x\} \) es dado por un isomorfismo \(e \), el que se puede realizar como la transformación,

\[
e^a_i = \frac{\partial z^a}{\partial x^i}
\]

(3.22)

Las matrices \(e^a_i \), con \(a = 1, \ldots, D = \dim M \) son llamadas **vielbein**. Notemos que en el caso de Relatividad General, en la cual consideramos el espacio-tiempo a ser una 4-variedad, los \(e^a_i \) son llamados vierbein o tétradas.

La definición (3.22) implica que \(e^a_i \) transforma como un vector covariante bajo difeomorfismos sobre \(M \) y como un vector contravariante bajo rotaciones locales de Lorentz de \(T_x, SO(D - 1, 1) \). En efecto, bajo una transformación de Lorentz, los vielbein transforman como

\[
e^a_i \rightarrow e^a_0 = \Lambda^a_b (x) e^b_i,
\]

(3.23)

donde \(\Lambda (x) \in SO(D - 1, 1) \). Por definición del grupo de Lorentz, las matrices \(\Lambda (x) \) dejan la métrica en el espacio tangente sin cambios,

\[
\Lambda^a_c (x) \Lambda^b_d (x) \eta_{ab} = \eta_{cd}.
\]

(3.24)

Además, tenemos que la ec. (3.21) sigue siendo válida para \(e^a_i \) si las matrices \(\Lambda^a_b (x) \) satisfacen la condición (3.24). Así, podemos decir que la métrica \(g_{ij} \) es invariante bajo (3.23) si las matrices de Lorentz \(\Lambda^a_b (x) \) satisfacen (3.24).

Definimos ahora las **1-forma vielbein** como

\[
e^a \equiv e^a_\mu dx^\mu.
\]

(3.25)

las cuales actúan sobre \(T_x (M) \) y son las 1-formas duales de la base coordenada \(\{\partial_\mu\} \). En cuatro dimensiones (3.25) es llamado **vierbein**.

Es directo mostrar que las 1-formas \(e^a \) transforman como un vector bajo transformaciones locales de Lorentz,

\[
e^a \rightarrow e'^a = \Lambda^a_b (x) e^b
\]

(3.26)

En cada punto del espacio-tiempo es posible realizar la transformación (3.26) independientemente tal que la métrica \(g_{ij} \) permanezca sin cambios.
Si consideramos la derivada exterior de e^a, dada por de^a, vemos que ésta transforma bajo transformaciones locales de Lorentz como

$$de^a \rightarrow (de^a)' = d\Lambda^a_b (x) e^b + \Lambda^a_b (x) de^b$$

(3.27)

de donde vemos que la transformación es lineal pero se introduce el término no homogéneo $d\Lambda^a_b e^b$. Luego, podemos postular una derivada covariante exterior, D, y exigimos que De^a transforme covariantemente bajo transformaciones locales de Lorentz,

$$De^a \rightarrow (De^a)' = \Lambda^a_b (x) De^b$$

(3.28)

Definimos la derivada covariante exterior para el vielbein como

$$De^a \equiv de^a + \omega^a_b e^b,$$

(3.29)

donde ω^a_b es llamada la 1-forma conexión de spin, y presenta la siguiente ley de transformación

$$\omega^a_b \rightarrow \omega'^a_b = \Lambda^a_c (x) \Lambda^d_b (x) \omega^d_c + \Lambda^a_c (x) d\Lambda^d_b (x).$$

(3.30)

3.3 Grupo $SO(D − 1, 1)$ y tensores invariantes

El grupo $SO(D − 1, 1)$ tiene dos tensores invariantes, la métrica de Minkowski, η_{ab}, y el tensor de Levi-Civita totalmente antisimétrico, $\epsilon_{a_1a_2...a_D}$. Estos tensores están definidos por la estructura algebraica del grupo de Lorentz y por lo tanto, son los mismos en cada espacio tangente. Consecuentemente, éstos deben ser constantes a través de la variedad $M : d\eta_{ab} = 0 = d\epsilon_{a_1a_2...a_D}$. Además, como son invariantes deben también ser constantes covariantemente,

$$d\eta_{ab} = D\eta_{ab} = 0$$

(3.31)

$$d\epsilon_{a_1a_2...a_D} = D\epsilon_{a_1a_2...a_D} = 0$$

(3.32)

donde

$$D\eta_{ab} = d\eta_{ab} - \omega^b_a \eta_{ac} - \omega^c_a \eta_{eb}$$

(3.33)

Esto implica que la conexión de spin satisface las siguientes identidades

$$\eta_{ac} \omega^c_b = -\eta_{bd} \omega^c_a;$$

$$\epsilon_{b_1a_2...a_D} \omega^{b_1}_{a_1} + \epsilon_{a_1b_2...a_D} \omega^{b_2}_{a_2} + \cdots + \epsilon_{a_1a_2...b_D} \omega^{b_D}_{a_D} = 0$$

(3.34)

(3.35)
Notemos que la relación (3.34) restringe a la conexión de spin a ser antisimétrica en sus índices de Lorentz, \(\omega_{ab} = -\omega_{ba} \).

3.4 Ecuaciones de estructura: Curvatura y Torsión

Se define la **2-forma torsión** \(T^a \) como la derivada covariante de la 1-forma vielbein,

\[
T^a \equiv De^a = de^a + \omega^a_b e^b,
\]
(3.36)

la cual involucra tanto al vielbein como a la conexión de spin.

Consideremos ahora la derivada exterior covariante de la 2-forma torsión

\[
DT^a = DD e^a = d(De^a) + \omega^a_c De^c.
\]

Después de un simple cálculo se muestra que

\[
DT^a = (d\omega^a_b + \omega^a_c \omega^c_b) e^b,
\]
(3.37)

donde el factor entre paréntesis es definido como la **2-forma curvatura**

\[
R^a_b \equiv d\omega^a_b + \omega^a_c \omega^c_b.
\]
(3.38)

Así, podemos reescribir (3.37) como

\[
DT^a = R^a_b e^b.
\]
(3.39)

Las ecuaciones (3.36) y (3.38) definiendo la 2-forma curvatura y la 2-forma torsión, respectivamente, son llamadas ecuaciones de estructura debido a que éstas describen la estructura geométrica de la variedad \(M \). Es directo ver que estas 2-formas satisfacen las siguientes **identidades de Bianchi**,

\[
DT^a = R^a_b e^b,
\]
(3.40)
\[
DR^a_b = 0.
\]
(3.41)

La elección de los nombres torsión y curvatura para \(T^a \) y \(R^a_b \) tiene su justificación, y se puede ver como sigue. Escribamos las ecuaciones (3.36) y (3.38) en términos de sus componentes
en la base coordinada \(\{ \partial_i \} \),
\[
T^a = \frac{1}{2} T_{ij}^a dx^i \wedge dx^j \tag{3.42}
\]
\[
R_b^a = \frac{1}{2} R_{bij}^a dx^i \wedge dx^j \tag{3.43}
\]
donde
\[
T_{ij}^a = D_i e^a_j - D_j e^a_i = \partial_\epsilon e_i^a_j - \partial_\epsilon e_j^a_i + \omega^\alpha_{bi} e^b_j - \omega^\alpha_{bj} e^b_i \tag{3.44}
\]
\[
R_{bij}^a = \partial_i \omega^\alpha_{bj} - \partial_j \omega^\alpha_{bi} + \omega^\alpha_{ci} \omega^c_{bj} - \omega^\alpha_{cj} \omega^c_{bi} \tag{3.45}
\]
Luego, haciendo uso de la matriz de cambio de base \(e_i^a \) y su inversa \(e^a_i \), es posible escribir lo siguiente,
\[
T_{ij}^k = e_k^a T_{ij}^a
\]
\[
= e_k^a \partial_\epsilon e_i^a_j - e_k^a \partial_\epsilon e_j^a_i + e_k^a \omega^\alpha_{bi} e^b_j - e_k^a \omega^\alpha_{bj} e^b_i \tag{3.46}
\]
\[
R_{mj}^l = e_k^a e^b_m R_{bij}^a
\]
\[
= e_k^a e^b_m \left(\partial_\epsilon \omega^\alpha_{bj} - \partial_\epsilon \omega^\alpha_{bi} + \omega^\alpha_{ci} \omega^c_{bj} - \omega^\alpha_{cj} \omega^c_{bi} \right) \tag{3.47}
\]
De este modo, podemos encontrar una relación entre estas componentes con la definición más familiar de los tensores de torsión y curvatura del cálculo tensorial, dados por
\[
T_{ij}^k = \Gamma_{ij}^k - \Gamma_{ji}^k, \tag{3.48}
\]
\[
R_{mj}^l = \partial_\epsilon \Gamma_{jm}^l - \partial_\epsilon \Gamma_{jm}^l + \Gamma_{mn}^l \Gamma_{jm}^n - \Gamma_{jm}^n \Gamma_{mn}^l \tag{3.49}
\]
En efecto, comparando (3.46) con (3.48) vemos que la identificación
\[
\Gamma_{ij}^k = e_k^a \left(\partial_\epsilon e_i^a_j + \omega^\alpha_{bi} e^b_j \right) \tag{3.50}
\]
nos permite igualar el tensor de torsión \(T_{ij}^k \) con las componentes sobre la base coordinada \(\{ \partial_i \} \) de la 2-forma torsión \(T^a \). Además, si reemplazamos (3.50) en la expresión del tensor de curvatura (3.49), es posible mostrar que dicho tensor corresponde exactamente a las componentes coordenadas de la 2-forma curvatura \(R_b^a \).

Es interesante notar que la expresión (3.50) se puede rescribir en la forma
\[
\nabla_i e^a_j = \partial_\epsilon e^a_j + \omega^\alpha_{bi} e^b_j - \Gamma_{ij}^k e^a_k = 0, \tag{3.51}
\]
es decir, la identificación (3.50) equivale a exigir la anulación de la derivada covariante del vielbein.
3.5 Acción de Einstein-Hilbert en el formalismo de Cartan

En el contexto del formalismo de Cartan la acción de Einstein-Hilbert (EH) es dada por:

\[S^{(4)}_{EH} = \int_M \epsilon_{abcd} R^{ab} e^c e^d, \tag{3.52} \]

donde \(R^{ab} = d\omega^{ab} + \omega^a \omega^b \) es la 2-forma curvatura y \(e^a \) es el vierbein. Además, se ha usado un sistema de unidades tal que \(\kappa = 1 \), con \(\kappa \) la constante de acoplamiento gravitacional. La acción (3.52) es equivalente a la acción de EH en el formalismo tensorial (3.13) (ver Apéndice B).

Consideremos ahora la variación de la acción (3.52). La anulación de \(\delta S^{(4)}_{EH} \) para variaciones arbitrarias de \(e^a \) y \(\omega^{ab} \), nos conducirá a las ecuaciones de movimiento. En efecto, sea la variación de la acción de Einstein-Hilbert

\[\delta S^{(4)}_{EH} = \int \epsilon_{abcd} \delta R^{ab} e^c e^d + \int \epsilon_{abcd} R^{ab} \delta (e^c e^d) \tag{3.53} \]

Consideremos la primera integral en (3.53). El integrando se puede escribir como

\[\epsilon_{abcd} \delta R^{ab} e^c e^d = \epsilon_{abcd} D (\delta \omega^{ab}) e^c e^d, \tag{3.54} \]

donde hemos usado que

\[\delta R^{ab} = \delta (d\omega^{ab} + \omega^a \omega^b) = d (\delta \omega^{ab}) + (\delta \omega^a) \omega^b + \omega^a (\delta \omega^b) = D (\delta \omega^{ab}). \tag{3.55} \]

Así,

\[\int \epsilon_{abcd} \delta R^{ab} e^c e^d = \int \epsilon_{abcd} D (\delta \omega^{ab}) e^c e^d \]

\[= \int \epsilon_{abcd} D (\delta \omega^{ab} e^c e^d) - \int \epsilon_{abcd} \delta \omega^{ab} D (e^c e^d) \tag{3.56} \]

Usando (3.32) y el hecho que \(\epsilon_{abcd} \delta \omega^{ab} e^c e^d \) es un escalar, podemos reescribir lo anterior como

\[\int \epsilon_{abcd} \delta R^{ab} e^c e^d = \int d (\epsilon_{abcd} \delta \omega^{ab} e^c e^d) - \int \epsilon_{abcd} \delta \omega^{ab} D (e^c e^d) \]
De esta manera, la expresión anterior se puede escribir como (módulo término de borde)

\[
\int \epsilon_{abcd} \delta R_{ab}^c e^d = - \int \epsilon_{abcd} \delta \omega^{ab} D (e^c e^d) = -2 \int \epsilon_{abcd} \delta \omega^{ab} (De^c) e^d = -2 \int \epsilon_{abcd} \delta \omega^{ab} T^c e^d
\]

(3.57)

Consideremos ahora el integrando de la segunda integral en (3.53)

\[
\epsilon_{abcd} R^{ab} \delta (e^c e^d) = 2 \epsilon_{abcd} R^{ab} (\delta e^c) e^d,
\]

(3.58)

lo que nos conduce a

\[
\int \epsilon_{abcd} R^{ab} \delta (e^c e^d) = 2 \int \epsilon_{abcd} R^{ab} (\delta e^c) e^d
\]

(3.59)

Reemplazando (3.57) y (3.59) en (3.53), tenemos que \(\delta S^{(4)}_{EH} = 0\) implica lo siguiente

\[
-2 \int \epsilon_{abcd} \delta \omega^{ab} T^c e^d + 2 \int \epsilon_{abcd} R^{ab} (\delta e^c) e^d = 0.
\]

(3.60)

Como las variaciones \(\delta \omega^{ab}\) y \(\delta e^c\) son arbitrarias, tenemos que

\[
\epsilon_{abcd} R^{ab} e^c = 0
\]

(3.61)

\[
\epsilon_{abcd} T^c e^d = 0
\]

(3.62)

La primera de estas ecuaciones es equivalente a las ecuaciones de campo de Einstein (3.11), como se puede verificar escribiendo explícitamente las bases. La segunda ecuación expresa la anulación de la torsión,

\[
T^a = d e^a + \omega^a_b e^b = 0,
\]

(3.63)

la cual se puede resolver para la conexión de spin \(\omega^a_b\), y así ésta es escrita en función del vierbein y sus derivadas.
4.1 Introducción

Desde hace ya varios años, la posibilidad de que el espacio-tiempo pueda tener más de cuatro dimensiones se ha estudiado en el contexto de las teorías de unificación y ésta es actualmente una suposición estándar en física teórica. Si asumimos esta hipótesis como verdadera, es decir, si deseamos extender la dimensión del espacio-tiempo a dimensiones mayores que cuatro, se requiere la reformulación de la estructura de las ecuaciones para el campo gravitacional.

La geometría del espacio-tiempo es descrita en Relatividad General por la métrica $g_{\mu\nu}$. No obstante, como vimos en el capítulo anterior, es posible formular la gravitación como una teoría de campos, utilizando dos campos independientes para describir las propiedades métrica y afín, es decir, suponiendo que la noción de transporte paralelo (propiedad afín) es independiente de la noción de distancia (propiedad métrica). Los campos son la base ortonormal local, usualmente llamado \textit{vielbein}, y la conexión para el grupo de rotaciones locales del espacio tangente, o \textit{conexión de spin}.

[In order to more fully understand this reality, we must take into account other dimensions of a broader reality]

John Archibald Wheeler
Como fue estudiado en el capítulo anterior, sobre una variedad diferenciable M, dos 1-formas naturales son definidas, el vielbein e^a y la conexión de spin ω^{ab}, los cuales dan origen a las dos-formas de curvatura y torsión, definidas a través de las ecuaciones de estructura de Cartan

$$R^{ab} = d\omega^{ab} + \omega^c{}_e \omega^{eb} \quad (4.1)$$
$$T^a = De^a = de^a + \omega^b_k e^b \quad (4.2)$$

donde D es la derivada covariante en la conexión de spin. Éstas son llamadas ecuaciones de estructura debido a que ellas describen la estructura geométrica de la variedad M.

De (4.1) y (4.2) es directo verificar que se satisfacen las siguientes identidades de Bianchi

$$DR^{ab} = 0 \quad (4.3)$$
$$DT^a = R^{a}{}_{b} e^{b} \quad (4.4)$$

La analogía entre la curvatura y la torsión queda de manifiesto si el vielbein y la conexión de spin se combinan en una 1-forma conexión para el grupo de Poincaré (ver Apéndice C).

A continuación, se estudiará la gravedad descrita por la llamada acción de Lanczos-Lovelock [11] (usualmente llamada acción de Lanczos-Lovelock (LL) [10]) la cual permite construir la teoría de gravedad más general en D-dimensiones como una extensión natural de la teoría de Einstein.

4.2 La acción de Lanczos-Lovelock

Como fue mencionado anteriormente, gravitación en $D \geq 3$ es descrita por la acción de Lanczos-Lovelock, la cual es una generalización de la Relatividad General que describe la dinámica de la gravitación en términos de los mismos grados de libertad que la teoría de Einstein.

El teorema de Lovelock [7] afirma que la acción más general para una teoría métrica de la gravedad en D-dimensiones que no involucra torsión, que es generalmente covariante y conduce a ecuaciones de segundo orden para la métrica es dada por

$$S_G = \int \sum_{p=0}^{[D/2]} \alpha_p L^{(p)}, \quad (4.5)$$
donde
\[L^{(p)} = \varepsilon_{a_1 \cdots a_D} R^{a_1 a_2} \cdots R^{a_{2p-1} a_{2p}} e^{a_{2p+1}} \cdots e^{a_D}, \tag{4.6} \]

con \([D/2]\) la parte entera de \(D/2\) y los \(\alpha_p\)'s son constantes arbitrarias de dimensión \([\text{masa}]^{D-2p}\).

El lagrangiano (4.5) es el invariante más general construido a partir de la métrica y la curvatura que conduce a ecuaciones de campo covariantes de segundo orden para la métrica.

La acción (4.5) se puede derivar por lo menos, de otras tres maneras aparentemente independientes [12]:

1. Es la \(D\)-forma más general invariante bajo rotaciones en el espacio tangente, construida a partir del vielbein, la conexión de spin y sus derivadas exteriores sin usar del dual Hodge [13].

2. Es una combinación lineal de la continuación dimensional a \(D\)-dimensiones de todas las clases de Euler de dimensión \(2p < D\) [14] [15].

3. Es la teoría efectiva a baja energía más general para la gravitación que se puede obtener a partir de la cuerda [16].

La primera condición implica que las ecuaciones de campo serían tensoriales y de segundo orden en la métrica. En efecto, el uso de las derivadas exteriores restringe las ecuaciones de campo a ser ecuaciones diferenciales de primer orden para el vielbein y la conexión de spin (porque \(d \wedge d = 0\)); la invariancia de la acción bajo transformaciones de Lorentz garantiza que las ecuaciones de campo resulten ser tensoriales y por lo tanto deberían contener sólo a la métrica, la curvatura y la torsión cuando son expresadas en las componentes coordenadas.

En Ref.[17] A. Mardones y J. Zanelli encontraron todos los lagrangianos que satisfacen la condición (1), en una dimensión \(D\) dada. En ausencia de torsión, ellos encuentran que los lagrangianos de Lovelock (4.5) son la única posibilidad, a excepción de los polinomios
\[P_{2n} = R_{a_2}^{a_1} R_{a_3}^{a_2} \cdots R_{a_n}^{a_{n-1}} R_{a_1}^{a_n}, \quad \text{con } n \text{ par.} \tag{4.7} \]

los cuales existen sólo en dimensiones pares, y son no nulos sólo si \(D = 4k\), con \(k\) entero. Sin embargo, estos polinomios son formas cerradas, por lo que estos pueden ser escritos localmente como derivadas totales y de esta manera, no contribuyen a las ecuaciones de
movimiento. Además, en Ref.[17] se realiza un estudio detallado del caso en que se permite la presencia de torsión, surgiendo muchas nuevas posibilidades.

La teoría de Lanczos-Lovelock se refiere a una familia parametrizada por un conjunto de coeficientes reales α_p’s, $p = 0, 1, \ldots, [D/2]$, que no son fijados a partir de primeros principios. En Ref.[18] R. Troncoso y J. Zanelli mostraron que estos parámetros son fijados en términos de la constante gravitacional y de la constante cosmológica, a través del requisito de que la teoría posea el mayor número posible de grados de libertad.

4.3 Problema de los coeficientes

Los dos primeros términos en (4.5) constituyen la acción de Einstein-Hilbert. Sin embargo, a pesar que relatividad general está contenida en la acción de Lanczos-Lovelock como un caso particular, las teorías con potencias más altas de la curvatura son dinámicamente diferentes de la teoría de Einstein. Por otro lado, se tiene que las constantes α_p’s en (4.5) difieren con las constantes de la teoría de Einstein, a saber, la constante gravitacional G y la constante cosmológica Λ. Además, cuando los α_p’s son arbitrarios, la evolución temporal no queda completamente determinada por las ecuaciones de movimiento. Veamos brevemente la solución a este problema desarrollada en ref.[18].

Consideremos la acción (4.5), como un funcional de la conexión de spin y el vielbein, $S_G = S_G [\omega^{ab}, e^a]$. Al variar la acción con respecto a e^a, se tiene que

$$\sum_{p=0}^{[D/2]} \alpha_p (D - 2p) \varepsilon_{ab_1\cdots b_{D-1}} R^{b_1b_2} \cdots R^{b_{2p-1}b_{2p}} e^{b_{2p+1}} \cdots e^{b_{D-1}} = 0. \quad (4.8)$$

Renombrando

$$\varepsilon_a = \sum_{p=0}^{[(D-1)/2]} \alpha_p (D - 2p) \varepsilon_a^p, \quad (4.9)$$

con

$$\varepsilon_a^p = \varepsilon_{ab_1\cdots b_{D-1}} R^{b_1b_2} \cdots R^{b_{2p-1}b_{2p}} e^{b_{2p+1}} \cdots e^{b_{D-1}}, \quad (4.10)$$

tenemos la siguiente ecuación de movimiento

$$\varepsilon_a = 0. \quad (4.11)$$
Consideremos ahora la variación de la acción con respecto a ω^{ab}. En este caso obtenemos:

$$
\sum_{p=1}^{\left[(D-1)/2\right]} \alpha_p p \left(D - 2p\right) \varepsilon_{ab}^{\alpha_1 \ldots \alpha_D} R^{\alpha_3 \alpha_4} \ldots R^{\alpha_{2p-1} \alpha_{2p}} T^{\alpha_{2p+1}} e^{\alpha_{2p+2}} \ldots e^{\alpha_D} = 0. \tag{4.12}
$$

Renombrando

$$
\tilde{\varepsilon}_{ab} = \sum_{p=1}^{\left[(D-1)/2\right]} \alpha_p p \left(D - 2p\right) \varepsilon_{ab}^p, \tag{4.13}
$$

con

$$
\varepsilon_{ab}^p = \varepsilon_{ab\alpha_1 \ldots \alpha_D} R^{\alpha_3 \alpha_4} \ldots R^{\alpha_{2p-1} \alpha_{2p}} T^{\alpha_{2p+1}} e^{\alpha_{2p+2}} \ldots e^{\alpha_D}, \tag{4.14}
$$

tenemos que la correspondiente ecuación de movimiento es

$$
\varepsilon_{ab} = 0. \tag{4.15}
$$

Las $(D-1)$-formas ε_a y ε_{ab} son tensores de Lorentz independientes y, por lo tanto, se anulan en forma independiente, lo que significa que la estructura métrica es independiente de la afín. Ahora bien, si existiera una relación algebraica entre ambas, significaría que los campos e^a y ω^{ab} estarían relacionados, es decir, que algunas de las componentes de la torsión se deberían anular lo que congelaría grados de libertad de la teoría.

Haciendo uso de las identidades de Bianchi (4.3) y (4.4), y luego de un simple cálculo llegamos a

$$
D \varepsilon_a = \sum_{p=1}^{\left[(D+1)/2\right]} \alpha_{p-1} \left(D - 2p + 2\right) \left(D - 2p + 1\right) e^b \varepsilon_{ba}^p, \tag{4.16}
$$

ecuación que debe ser nula por consistencia con la ecuación de movimiento $\varepsilon_a = 0$. Multiplicando ε_{ab} por e^b, tenemos

$$
e^b \varepsilon_{ba} = \sum_{p=1}^{\left[(D-1)/2\right]} \alpha_p p \left(D - 2p\right) e^b \varepsilon_{ba}^p, \tag{4.17}
$$

la cual también se anula por consistencia con la ecuación $\varepsilon_{ab} = 0$. Si los coeficientes α_p’s fuesen genéricos, entonces las ecuaciones (4.16) y (4.17) implicarían, en general, restricciones adicionales de la forma $e^b \varepsilon_{ba} = 0$ para algunos p’s. Así, algunas componentes de la torsión deben anularse, congelando algunos grados de libertad en la teoría y además permitiendo que otras componentes de la curvatura y la torsión queden indeterminadas por las ecuaciones de campo. De esta manera, podemos decir que diferentes formas de escoger los coeficientes
\(\alpha_p\)'s corresponden a diferentes teorías, con diferente número de grados de libertad físicos que dependen de cuantos vínculos off-shell adicionales son impuestos sobre la geometría por las identidades.

Esto significa que debemos escoger los coeficientes \(\alpha_p\)'s de modo que \(\varepsilon_a y \varepsilon_{ab}\) sean independientes, o bien, elegirlos de manera que tengan el máximo número de componentes independientes.

Como se muestra en la ref.[18] existe una elección muy especial que ocurre sólo en dimensiones impares para las cuales no hay constraints adicionales. En dimensiones pares esta posibilidad no existe; en efecto, las ecuaciones (4.16) y (4.17) son proporcionales término a término para \(D = 2n - 1\) pero para \(D = 2n\), ambas ecuaciones tienen diferente número de términos.

4.3.1 \(D = 2n - 1\) : Gravedad Chern-Simons local (A)dS

En dimensiones impares, las ecuaciones (4.16) y (4.17) tienen el mismo número de términos puesto que el último término en (4.16) se anula. Así, si las ecuaciones (4.16) y (4.17) no imponen ningún constraint algebraico adicional sobre \(R^{ab}\) y \(T^a\), las dos series \(D\varepsilon_a\) y \(e^b\varepsilon_{ba}\) deben ser proporcionales término a término:

\[
\gamma \alpha_{p-1} (D - 2p + 2) (D - 2p + 1) e^b \varepsilon_{p}^{ba} = \alpha_p (D - 2p) e^b \varepsilon_{p},
\]

lo que implica la siguiente relación de de recurrencia para los \(\alpha_p\)’s

\[
\gamma \frac{\alpha_{p-1}}{\alpha_p} = \frac{p (D - 2p)}{(D - 2p + 2) (D - 2p + 1)} \quad (4.18)
\]

donde \(0 \leq p \leq n\), y \(\gamma\) es una constante arbitraria de dimensión [longitud\(^2\)]. La solución a esta ecuación es

\[
\alpha_p = \alpha_0 \frac{(2n - 1) (2\gamma)^p}{(2n - 2p - 1)} \left(\begin{array}{c} n - 1 \\ p \end{array} \right) \quad (4.19)
\]

de modo que la acción contiene sólo dos constantes fundamentales \(\alpha_0\) y \(\gamma\), las cuales están relacionadas a la constante gravitacional y a la constante cosmológica de la siguiente manera

\[
\alpha_0 = \frac{\kappa}{l^{D-1}},
\]

\[
\gamma = -\text{sign} \left(\Lambda \right) \frac{l^2}{2}.
\]
donde l es un parámetro de longitud relacionado a la constante cosmológica por

$$\Lambda = \pm \frac{(D - 1) (D - 2)}{2l^2}, \tag{4.20}$$

y la constante gravitacional G está relacionada con κ a través de

$$\kappa = \frac{1}{2 (D - 2)! \Omega_{D-2} G}. \tag{4.21}$$

Eligiendo los parámetros α_p's como en (4.19), implica que la acción es invariante no sólo bajo rotaciones de locales de Lorentz estándar

$$\delta e^a = \lambda^a_b e^b$$

$$\delta \omega^{ab} = -D \lambda^{ab}$$

sino que también bajo boosts AdS,

$$\delta e^a = -D \lambda^a$$

$$\delta \omega^{ab} = \frac{1}{l^2} (\lambda^a e^b - \lambda^b e^a)$$

Esto se puede verificar porque el lagrangiano en (4.5) con la elección de los coeficientes (4.19), corresponde a la forma de Euler-Chern-Simons para el grupo $SO(D - 1, 2)$, esto es, su derivada exterior es la forma de Euler en $2n$ dimensiones E_{2n},

$$dL_{G_{2n-1}}^{AdS} = \frac{\kappa l}{2^n} \epsilon_{A_1 \ldots A_{2n}} \tilde{R}^{A_1 A_2} \ldots \tilde{R}^{A_{2n-1} A_{2n}} = \tilde{\kappa} E_{2n} \tag{4.22}$$

donde

$$\tilde{R}^{AB} = \begin{bmatrix} R^{ab} + \frac{1}{l^2} e^a e^b & T^a / l \\ -T^b / l & 0 \end{bmatrix}, \tag{4.23}$$

define la curvatura AdS valuada en el álgebra de Lie

$$F = \frac{1}{2} \tilde{R}^{AB} \tilde{J}_{AB} = dA + A^2$$

en términos de la conexión AdS

$$A = \frac{1}{2} W^{AB} \tilde{J}_{AB} = \frac{1}{2} \omega^{ab} J_{ab} + \frac{1}{l} e^a P_a.$$
4.3.2 \(D = 2n : \) Gravedad Born-Infeld

Para dimensiones pares, la ecuación (4.16) tiene un término más que la ecuación (4.17). Por lo tanto, ambas series no pueden ser comparadas término a término como en el caso de dimensiones impares y es así como debemos seguir un camino diferente. Notemos que la ecuación (4.15) es una derivada exterior covariante,

\[\varepsilon_{ab} = DT_{ab}, \]

donde

\[T_{ab} := \frac{\delta L}{\delta R_{ab}} = \sum_{p=1}^{[\frac{D-1}{2}]} \alpha_p p T^p_{ab} \]

y

\[T^p_{ab} = \varepsilon_{a_{b3}...a_{bD}} R_{e^a_{3a4}} ... R_{e^{a_{2p-1}a_p} e^{a_{2p+1}} ... e^{aD}}. \]

Notemos también que \(T^p_{ab} \) está relacionada con \(\varepsilon^p_a \) y \(\varepsilon^p_{ab} \) a través de

\[e^b T^p_{ab} = \varepsilon^p_{a_{b1}}, \]

\[DT^p_{ab} = (D - 2p) \varepsilon^p_{ab}, \]

para \(1 \leq p \leq \left[\frac{D-1}{2} \right] \).

Diferenciando ambos lados de (4.27) y usando (4.28), la identidad (4.16) también se puede escribir para \(D = 2n \) como

\[D \varepsilon_a = T^b \sum_{p=1}^{n-1} 2\alpha_{p-1} (n - p + 1) T^p_{ab} \]

\[- \sum_{p=1}^{n-1} 4\alpha_{p-1} (n - p + 1) (n - p) e^b \varepsilon^p_{ba}. \]

Esta ecuación se puede comparar con la segunda identidad (4.17)

\[e^b \varepsilon^p_{ba} = \sum_{p=1}^{n-1} 2p \alpha_p (n - p) e^b \varepsilon^p_{ba} \]

Ambas ecuaciones (4.24) y (4.30) pueden ser cero si \(T^a = 0 \), o \(T_{ab} = 0 \). Sin embargo, esas son condiciones excesivas para la anulación de (4.29). Es suficiente imponer las condiciones
más débiles $T^a T_{ab} = 0$, y al mismo tiempo que el segundo término de (4.29) sea proporcional a la serie en (4.30). Ahora, ambas series tienen igual número de términos, y por lo tanto, la solución que permite el máximo número de grados de libertad es aquella para la cual ambas series sean igual término a término, salvo un factor global. Así, uno obtiene la siguiente relación de recursión para los α_p's:

$$2\gamma (n - p + 1) \alpha_{p-1} = p \alpha_p$$

(4.31)

para algún γ fijo. Con esta relación la ecuación (4.29) toma la forma

$$D\varepsilon_a = \frac{1}{\gamma} (T^b T_{ab} - e^b \varepsilon_{ab}) = 0$$

(4.32)

y por lo tanto, es aparente que si T^a es sólo un vector nulo de T_{ab}, ambas condiciones de consistencia son las mismas. La solución de la relación de recursión (4.31) es

$$\alpha_p = \alpha_0 (2\gamma)^p \binom{n}{p}$$

(4.33)

con $0 \leq p \leq n - 1$. Esta fórmula se puede extender a $p = n$ sin costo extra, puesto que esto equivale a la adición de la densidad de Euler al lagrangiano con el peso $\alpha_n = \alpha_0 (2\gamma)^n$.

Al igual que en el caso de dimensiones impares, la acción depende sólo de la constante gravitacional y de la constante cosmológica. La elección de los coeficientes (4.33) implica que el lagrangiano toma la forma

$$L = \frac{\kappa}{2n} \varepsilon_{a_1 \ldots a_{2n}} \bar{R}^{a_1 a_2} \ldots \bar{R}^{a_{2n-1} a_{2n}},$$

(4.34)

que es el ptaffiano de la 2-forma $\bar{R}^{ab} = R^{ab} + \frac{1}{l^2} e^a e^b$, y se puede escribir formalmente como la forma tipo Born-Infeld (BI) [19],

$$L = 2^{n-1} (n - 1)! \kappa \sqrt{\text{det} \left(R^{ab} + \frac{1}{l^2} e^a e^b \right)}.$$

(4.35)

En cuatro dimensiones (4.34) se reduce a una particular combinación lineal de la densidad de Euler, la acción de Einstein-Hilbert y la constante cosmológica,

$$L^{(4)}_{BI} = \frac{\kappa}{4} \varepsilon_{abcd} \left(R^{abc} R^{d} + \frac{2}{l^2} R^{a} e^c e^d + \frac{1}{l^4} e^a e^b e^c e^d \right)$$

(4.36)
Aunque el primer término no contribuye a las ecuaciones de campo, éste juega un rol fundamental en la definición de cargas conservadas para las teorías de gravitación en dimensiones \(2n \geq 4 \) [20],[21],[22].

Es importante notar que en dimensiones pares, el lagrangiano (4.34) es invariante sólo bajo transformaciones de Lorentz y no bajo el grupo completo AdS. Por el contrario, como fue mostrado anteriormente, es posible construir teorías de gravedad invariantes de gauge bajo el grupo completo AdS en dimensiones impares.
Capítulo 5

Teoría Chern-Simons de la gravedad

5.1 Introducción

El Modelo Estándar describe tres de las cuatro interacciones fundamentales de la naturaleza, a saber el electromagnetismo, la interacción débil y la interacción fuerte. La estructura dinámica del modelo es una acción de Yang-Mills, construida sobre la suposición de que la naturaleza debería ser invariante bajo un grupo de transformaciones actuando independientemente en cada punto del espacio-tiempo: una simetría local o de gauge. La teoría de Yang-Mills tiene su fundamento en la existencia de una estructura métrica background no dinámica. La métrica de Minkowski $\eta_{\mu\nu} = diag (-1, 1, 1, 1)$ es esencial para la construcción de una teoría de gauge, como se puede ver en la acción

$$ S = -\frac{1}{4} \int d^4 x F_{\mu\nu} F^{\mu\nu} = -\frac{1}{4} \int d^4 x \eta_{\mu\nu} \eta_{\lambda\sigma} F^{\mu\lambda} F^{\nu\sigma} \quad (5.1) $$

Esto significa que en la teoría de Yang-Mills la métrica del espacio-tiempo representa un background no dinámico de geometría fija.

Por otro lado, gravedad descrita por Relatividad General es invariante bajo transformaciones general de coordenadas. Esta invariancia es una simetría local, análoga a la invariancia de gauge de las otras tres interacciones, sin embargo, Relatividad General no califica como una teoría de gauge, excepto por un “accidente” en 3 dimensiones. Sin embargo, debemos notar que existe una gran diferencia, en Relatividad General la métrica es un objeto dinámico, que tiene grados de libertad independientes y obedece a ecuaciones de movimiento dinámicas dadas por las ecuaciones de Einstein. Esto nos dice que en la teoría general de
la relatividad, la geometría es dinámicamente determinada. Así, la construcción de una teoría de gauge para gravedad requiere de una acción que no considere un espacio-tiempo background fijo, o dicho en otras palabras, no considere una métrica background fija.

Veremos que la única posibilidad de tener una acción para gravedad es considerar una acción construida en términos de una conexión y que no considere un espacio-tiempo background fijo.

En dimensiones impares $D = 2n + 1$, una acción que satisface estas condiciones fue propuesta por Chamseddine en refs.[23],[24],[25]. En el formalismo de primer orden, la acción se puede escribir como

$$L_G^{(2n+1)} = \kappa \varepsilon_{a_1 \cdots a_{2n+1}} \sum_{k=0}^{n} \frac{c_k}{(2n-k)+1} R^{a_1 a_2} \cdots R^{a_{2k-1} a_{2k}} e^{a_{2k+1}} \cdots e^{a_{2n+1}} \quad (5.2)$$

donde

$$c_k = \frac{1}{2 (n-k)+1} \binom{n}{k} \quad (5.3)$$

Las constantes κ y c_k son adimensionales y l es un parámetro de longitud.

En este capítulo, se estudiará una teoría caracterizada por una acción independiente de la métrica: La teoría Chern-Simons. En efecto, el lagrangiano (5.2) es considerado como una forma Chern-Simons para el álgebra AdS.

5.2 Forma de Chern-Simons

Las formas de Chern-Simons (CS) se han estudiado desde diferentes puntos de vista, ver por ejemplo Refs.[9],[18],[22],[26],[27]. Veamos una breve construcción de estas formas CS: Sea $\{T_A\}$ una base para el álgebra de Lie \mathfrak{g} de un grupo G. Sea A la 1-forma conexión de gauge valuada en el álgebra de Lie \mathfrak{g},

$$A = A^A T_A \quad (5.4)$$

cuya 2-forma curvatura es dada por

$$F = dA + \frac{1}{2} [A, A]$$

Podemos definir la siguiente clase característica como el producto de $n + 1$ curvaturas

$$P^{(2n+2)} = \langle F^{n+1} \rangle \quad (5.5)$$
donde \((\cdots)\) denota un tensor invariante simétrico de rango \(n + 1\) para \(g\) y \(P^{(2n+2)}\) es una \(2n + 2\)-forma invariante. Además, se puede demostrar que

\[
d\omega_{2n+1} = \langle F^{n+1} \rangle
\]

(5.6)

donde \(\omega_{2n+1}\) es la \textbf{forma de Chern-Simons} asociada a la clase característica (5.5), y es una función polinominal local de la 1-forma \(A\) valuada en el álgebra de Lie \(g\). Explicitamente está es dada por

\[
\omega_{2n+1} = (n + 1) \int_0^1 dt \langle A (tdA + t^2A^2)^n \rangle.
\]

(5.7)

Bajo transformaciones de gauge infinitesimales de la forma

\[
\delta_\lambda A = d\lambda + [A, \lambda]
\]

(5.8)

la forma de Chern-Simons es invariante de gauge módulo términos de borde. Ahora bien, si efectuamos esta transformación de gauge a ambos lados de (5.6), encontramos

\[
d\delta\omega_{2n+1} = 0
\]

(5.9)

y por el lema de Poincaré, \(\delta\omega_{2n+1}\) es una forma exacta.

Bajo una transformación de gauge no infinitesimal

\[
A \rightarrow A^g = g^{-1} Ag + g^{-1} dg
\]

la forma de Chern-Simons transforma como

\[
\omega_{2n+1}^g = \omega_{2n+1} + d\beta + (-1)^n \frac{n!}{(2n+1)!} \langle (g^{-1} dg)^{2n+1} \rangle,
\]

(5.10)

donde \(\beta\) es una \(2n\)-forma, que es una función de \(A\) y depende de \(g\) a través de la combinación \(g^{-1} dg\).

De lo anterior, podemos enunciar el siguiente lema [9]:

Lema 1: Sea \(P(F)\) una \(2n+2\)-forma invariante construida con la curvatura \(F = dA + AA\), donde \(A\) es la conexión de algún grupo \(G\). Si existe una \(2n + 1\)-forma \(\omega_{2n+1}\), dependiente de \(A\) y \(dA\), tal que \(d\omega_{2n+1} = P\), entonces bajo una transformación de gauge, \(\omega_{2n+1}\) cambia por una derivada total (forma exacta), \(\delta\omega_{2n+1} = d(\cdots)\).
Puesto que la forma de CS cambia por una forma exacta, ésta se puede usar como un lagrangiano para una teoría de gauge para la conexión de gauge A. Debe ser enfatizado que ω_{2n+1} define un lagrangiano no trivial que no es invariante bajo transformaciones de gauge, pero que cambia por una función que sólo depende de los campos en el borde: esto es cuasi-invariante. Esto es suficiente para definir un lagrangiano físico tal que el principio de mínima acción considere variaciones de los campos sujetos a condiciones de borde apropiadas. De esta manera siempre es posible seleccionar la condición de borde sobre los campos de tal manera que $\delta \omega_{2n+1} = 0$.

Esta construcción se aplica a invariantes $P = dL_{2n+1}$ los cuales son conocidos como clases características (ver Apéndice E). Algunas clases características son las clases de Euler, de Pontryagin y de Chern con sus correspondientes formas Chern-Simons.

5.3 Acción de Chern-Simons

Como ya hemos visto, las formas de Chern-Simons pueden ser utilizadas para construir acciones invariantes de gauge. Una acción Chern-Simons quedará completamente caracterizada si se conoce el álgebra de Lie \mathfrak{g} y el tensor invariante. En un espacio-tiempo $2n + 1$-dimensional, la acción Chern-Simons es dada por

$$S = (n + 1) k \int_M 0^1 dt \left(A \left(t dA + t^2 A^2 \right)^n \right).$$ (5.11)

Al variar la acción con respecto a la conexión obtenemos las correspondientes ecuaciones de movimiento:

$$\langle F^n T_A \rangle = 0$$ (5.12)

No obstante, a pesar de la presencia de potencias de la curvatura mayores que dos en la acción, las ecuaciones de movimiento son de primer orden en A. A continuación, se describirá gravedad Chern-Simons haciendo uso del grupo de anti-de Sitter (ver Apéndice D). Además, en los próximos capítulos de la tesis se describirá gravedad utilizando grupos obtenidos por medio de la S-expansión de los grupos AdS y Lorentz.

50
5.3.1 Chern-Simons y gravitación

En esta sección se considerará una teoría CS en $D = 2n + 1$ dimensiones para el álgebra anti-de Sitter, $\mathfrak{so}(D - 1, 2)$. La base canónica para esta álgebra está dada por los generadores J_{ab} y P_a, con las siguientes relaciones de conmutación

$$
[J_{ab}, J_{cd}] = \eta_{cb}J_{ad} - \eta_{ca}J_{bd} + \eta_{db}J_{ca} - \eta_{da}J_{cb}
$$

$$
[J_{ab}, P_c] = \eta_{cb}P_a - \eta_{ca}P_b
$$

$$
[P_a, P_b] = J_{ab}
$$

(5.13)

donde $\eta_{ab} = (-, +, \ldots, +)$ es la métrica de Minkowski. La 1-forma conexión de gauge valuada en el álgebra AdS toma la forma

$$
A = \frac{1}{l} e^a P_a + \frac{1}{2} \omega^{ab} J_{ab}
$$

(5.14)

donde e^a es interpretado como el vielbein y ω^{ab} como la conexión de spin, los cuales corresponden a los campos de gauge asociados a P_a y J_{ab} respectivamente.

La 2-forma curvatura asociada a la conexión (5.14) es

$$
F = \frac{1}{l} T^a P_a + \frac{1}{2} \left(R^{ab} + \frac{1}{l^2} e^a e^b \right) J_{ab}
$$

(5.15)

donde

$$
R^{ab} = d\omega^{ab} + \omega^c e^a \omega_{cb},
$$

$$
T^a = de^a + \omega^c e^b,
$$

(5.16)

(5.17)

corresponden a las dos-formas curvatura y torsión, respectivamente.

Para construir un lagrangiano de CS necesitamos un tensor simétrico invariante de rango $n + 1$. Para el álgebra AdS dicho tensor es dado por el tensor de Levi-Civita

$$
\langle J_{a_1 a_2} \cdots J_{a_{2n-1} a_{2n}} P_{a_{2n+1}} \rangle = \frac{2^n}{n+1} \varepsilon_{a_1 \cdots a_{2n+1}}.
$$

(5.18)

De esta manera, si consideramos la 1-forma conexión de gauge valuada en el álgebra AdS (5.14) y el tensor invariante (5.18) en la forma general de una acción Chern-Simons (5.11), obtenemos

$$
L_{AdS}^{(2n+1)} = \kappa \varepsilon_{a_1 \cdots a_{2n+1}} \sum_{k=0}^{n} \frac{C_k}{l^{2(n-k)+1}} R^{a_1 a_2} \cdots R^{a_{2k-1} a_{2k}} e^{a_{2k+1}} \cdots e^{a_{2n+1}},
$$

(5.19)
donde

\[c_k = \frac{1}{2(n-k)+1} \binom{n}{k}, \]

(5.20)
el cual coincide con el lagrangiano (5.2) propuesto por Chamseddine.

Notemos que en el límite \(l \to \infty \) obtenemos gravedad Chern-Simons para el grupo de Poincaré,

\[L = \kappa \varepsilon_{a_{1} \ldots a_{2n+1}} R^{a_{1}a_{2}} \ldots R^{a_{2n}a_{2n}+1} e^{a_{2n+1}}. \]

(5.21)
Capítulo 6

Gravedad de Lovelock con torsión

6.1 Introducción

La acción de Lovelock surgió originalmente en la búsqueda de una generalización de la teoría de Einstein que condujera a ecuaciones de campo de segundo orden para la métrica. Sin embargo, como fue mencionado en el Capítulo 6, uno podría llegar a la acción (4.5) requiriendo las siguientes condiciones:

a) Es la D-forma más general invariante bajo transformaciones locales de Lorentz, construida a partir del vielbein, la conexión de spin y sus derivadas exteriores sin usar del dual Hodge.

b) La conexión es, por definición, libre de torsión (el espacio-tiempo es una variedad Riemanniana).

De esta manera, el teorema de Lovelock asume que la torsión es idénticamente nula. Sin embargo, si la ecuación

$$ T^a = d e^a + \omega^a_{\ b} e^b = 0 \tag{6.1} $$

es asumida como una identidad, significaría la no independencia de los campos e^a y ω^{ab}, lo que nos conduce a una contradicción con la suposición de que estos campos corresponden a dos características independientes de la geometría. Además, para $D \leq 4$, la ecuación (4.12) coincide con (6.1) y por lo tanto, no es necesario imponer el constraint de torsión nula. En
esos casos, la acción se puede variar con respecto a e^a y ω^{ab} independientemente o no, y el resultado es el mismo.

No obstante, en dimensiones más altas, (4.12) no implica (6.1), de tal manera que exigir torsión nula, impone constraints adicionales sobre la conexión. No está claro como imponer aquellos constraints adicionales en una manera natural, sin embargo, en Ref.[17] se estudia la posibilidad menos restrictiva, a saber, permitiendo en el lagrangiano cualquier D-forma invariante bajo transformaciones locales de Lorentz, construídos a partir del vielbein, la curvatura y la torsión de la variedad espacio-tiempo.

6.2 Series torsionales

En esta sección, consideramos la generalización de la acción de Lovelock en la cual la torsión no es asumida a ser nula idénticamente. Como fue mostrado en [17], esta generalización consiste en la adición de todos los posibles invariantes de Lorentz que involucren la torsión explícitamente, además de combinaciones tipo $R^{ab}e_b$, que no involucran la torsión explícitamente, pero que se anulan para $T^a = 0$. Como veremos, la principal diferencia con el caso libre de torsión es que ahora, además de los lagrangianos de Lovelock, se encuentran también las clases de Pontryagin.

Para el caso de $D = 3$ dimensiones el único término torsional nuevo que no está incluído en la familia de Lovelock es

$$e^a T_a$$

y en el caso de $D = 4$ dimensiones existen tres nuevos términos

$$e^a e^b R_{ab}, \quad T^a T_a, \quad R^{ab} R_{ab}$$

Además, una combinación lineal de los dos primeros términos da origen a un invariante topológico conocido como la densidad de Nieh-Yan, el cual es dado explícitamente por

$$N_4 = T^a T_a - e^a e^b R_{ab}$$

De esta manera, los únicos tensores invariantes bajo transformaciones locales de Lorentz que pueden ser construídos aparte de e^a, ω^{ab}, y sus derivadas exteriores son, además de e^a por sí mismo, R^{ab}, T^a, y productos de ellos. Luego, las combinaciones invariantes
que pueden ocurrir en el lagrangiano son contracciones entre estos tensores, incluyendo los tensores invariantes $\varepsilon_{a_1 \ldots a_D}$, η_{ab}, η^{ab}, sin índices libres. Así, los siguientes invariantes pueden ser formados:

$$L_p = \varepsilon_{a_1 \ldots a_D} R^{a_1 a_2} \ldots R^{a_{2p-1} a_{2p}} e^{a_{2p+1}} \ldots e^{a_D}$$

(6.5)

$$R_A = R^{a_1}_{a_2} \ldots R^{a_A}_{a_1}$$

(6.6)

$$V_A = e_{a_1} R^{a_1}_{a_2} \ldots R^{a_D}_{b} e^b$$

(6.7)

$$T_A = T_{a_1} R^{a_1}_{a_2} \ldots R^{a_A}_{b} e^b$$

(6.8)

$$K_A = T_{a_1} R^{a_1}_{a_2} \ldots R^{a_A}_{b} e^b$$

(6.9)

Cualquier otro invariante, y en particular el lagrangiano, es escrito como una combinación lineal de productos de estas combinaciones de invariantes básicos. De esta manera, de acuerdo a estas suposiciones, el lagrangiano tiene que ser de la forma

$$L^{(D)} = \sum_{p=0}^{[D/2]} \alpha_p L_p^{(D)} + \sum \beta_{A_j} L_{A_j}^{(D)},$$

(6.10)

donde los β’s son constantes, y

$$L_{A_j}^{(D)} = R_{A_1} \ldots R_{A_r} T_{B_1} \ldots T_{B_t} V_{C_1} \ldots V_{C_i} K_{D_1} \ldots K_{D_k}$$

(6.11)

donde los índices $A_j = (A_1, \ldots, A_r, B_1, \ldots, B_t, \ldots etc.)$, son tales que $L_{A_j}^{(D)}$ sean D-formas.

Como podemos ver de (6.10) la primera suma corresponde al lagrangiano de Lovelock (4.5). Las nuevas contribuciones (6.11) se anulan con la torsión, a excepción del caso particular $t = v = k = 0$, que corresponde a las densidades Pontryagin,

$$P_{A_j} = R_{A_1} \ldots R_{A_r}$$

(6.12)

donde $2 (A_1 + A_2 + \ldots + A_r) = D$.

De Ref.[17], sabemos que existen restricciones sobre las nuevas contribuciones (6.11), los cuales se anulan idénticamente a menos que se satisfagan las siguientes condiciones

$$A_i = \text{par} \quad \forall i$$

(6.13)

$$B_i = \text{par} \quad \forall i$$

(6.14)

$$C_i = \text{impar} \quad \forall i$$

(6.15)

$$D_i \neq D_j \text{ si } i \neq j$$

(6.16)
En particular, la condición (6.13) implica que las densidades Pontryagin sólo pueden estar definidas en \(D = 4k \) dimensiones, con \(k \) entero.

Además, para facilitar algunos cálculos es importante destacar que a partir de las identidades de Bianchi, se puede mostrar que

\[
\begin{align*}
 dR_A &= 0 \\
 dV_A &= 2K_A \\
 dT_A &= 2K_{A+1} \\
 dK_A &= T_A - V_{A+1}
\end{align*}
\] (6.17) (6.18) (6.19) (6.20)

Estas expresiones son herramientas muy útiles al momento de calcular la derivada exterior de lagrangianos en dimensiones altas, como veremos en capítulos posteriores.

6.3 Series Chern-Simons torsionales

En la sección anterior vimos que la generalización de la teoría de Lanczos-Lovelock incluyendo torsión explícitamente, es obtenida asumiendo que el lagrangiano sea la \(D \)-forma más general construida con el vielbein y la conexión de spin sin usar el dual de Hodge, e invariante bajo transformaciones locales de Lorentz. Al igual que en el caso del lagrangiano de Lovelock, la inclusión explícita de términos torsionales tiene como costo extra un número de coeficientes arbitrarios análogos a los \(\alpha_p \)'s, como se puede ver en (6.10).

En Ref.[18], se muestra que en ciertas dimensiones los coeficientes \(\beta \)'s pueden ser elegidos de manera tal que la invariancia local de Lorentz se amplía a la simetría de gauge AdS. A continuación, veremos esto con más detalle.

Como es bien sabido, (ver por ejemplo ref.[28]) en \(2n \) dimensiones, las únicas \(2n \)-formas invariantes bajo \(SO(N) \) construidas en términos de la curvatura de \(SO(N) \) son la densidad de Euler, sólo para \(N = 2n \), y los \(n \)-ésimos carácteres de Chern, para cualquier \(N \). Una diferencia importante entre estos invariantes es la llamada paridad, la cual es definida por el cambio de signo inducido por una inversión simultánea de una coordenada en el espacio tangente y en la variedad base. Así, la densidad de Euler \(E_{2n} = \epsilon_{a_1 \ldots a_{2n}} R^{a_1 a_2} \ldots R^{a_{n-1} a_{2n}} \), es par bajo paridad, mientras que las clases Pontryagin, \(R^{a_1}_{a_2} \ldots R^{a_{2n}}_{a_1} \), y los invariantes torsionales son de paridad impar. En esta sección, consideraremos la construcción del sector
de gravedad pura como una teoría de gauge que es de paridad impar, siguiendo a [18]. Este sector es descrito por lagrangianos construídos por productos de los campos y sus derivadas exteriores, invariantes de Lorentz, sin usar el símbolo de Levi-Civita.

En dimensiones pares, las únicas D-formas invariantes AdS son, además de la densidad de Euler, combinaciones lineales de productos del tipo

$$P_{n_1 \cdots n_s} = C_{n_1} \cdots C_{n_s}$$

con $2(n_1 + n_2 + \cdots + n_s) = D$. Además, se tiene que

$$C_n = Tr (F)^n$$

define el n-ésimo carácter de Chern de $SO(N)$. Ahora, puesto que la 2-forma curvatura F está en la representación vectorial, ésta es antisimétrica en los índices de grupo. De esta manera, las potencias n_j en (6.22) son necesariamente par, y por lo tanto, (6.21) se anula a menos que D sea un múltiplo de cuatro.

Estos resultados pueden ser resumidos en los siguientes lemas [18]:

Lema 2: Para $D = 4k$, las únicas D-formas de paridad impar construídas a partir de e^a, R^{ab} y T^a, invariantes bajo el grupo AdS, son los caracteres de Chern para $SO(D - 1, 2)$.

Lema 3: Para $D = 4k + 2$, no existen D-formas invariantes bajo $SO(D - 1, 2)$ de paridad impar, construídas desde e^a, R^{ab} y T^a.

Como las expresiones $P_{n_1 \cdots n_s}$ son formas cerradas $4k$-dimensionales, éstas son a lo más términos de borde los cuales no contribuyen a las ecuaciones de movimiento clásicas. Esto nos da una luz de porqué los intentos por construir teorías gravitacionales con invariancia local AdS en dimensiones pares, no han dado resultados exitosos a pesar de varios intentos.

Es posible mostrar que la $4k$-forma $P_{n_1 \cdots n_s}$ se puede expresar localmente como la derivada exterior de una $(4k - 1)$-forma,

$$P_{n_1 \cdots n_s} = dL^{AdS}_{4k-1}(A)$$

 Esto implica que para cada colección $\{n_1, \cdots n_s\}$, L^{AdS}_{4k-1} es un buen lagrangiano para el grupo AdS $SO(4k - 2, 2)$ en $4k - 1$ dimensiones. En una dimensión dada, el lagrangiano más general de este tipo será una combinación lineal de todos los posibles L^{AdS}_{4k-1}’s.

Así, tenemos el siguiente teorema [18]:

57
Teorema 8: En dimensiones impares, existen dos familias de lagrangianos gravitacionales de primer orden $L(e, \omega)$, invariantes bajo transformaciones locales AdS:

a) La forma de Euler-Chern-Simons $L_{G}^{AdS}_{2n-1}$, en $D = 2n - 1$ [paridad par]. Su derivada exterior es la densidad de Euler en $2n$-dimensiones y no involucra torsión explícitamente, y

b) Las formas Pontryagin-Chern-Simons $L_{T}^{AdS}_{4k-1}$, en $D = 4k - 1$ [paridad impar]. Sus derivadas exteriores son los caracteres de Chern en $4k$-dimensiones e involucran torsión explícitamente.

Las teorías para gravedad localmente invariantes bajo AdS existen sólo en dimensiones impares. Éstas son teorías de gauge genuinas, cuya acción proviene de un invariante topológico en $D + 1$ dimensiones. Estos invariantes topológicos pueden ser escritos como la traza de un polinomio homogéneo de grado n en la curvatura AdS. En resumen, podemos concluir que para dimensiones $4k - 1$ (3,7,11,...) ambas familias existen, y para $D = 4k + 1$ (5,9,13,...) sólo la familia a) existe.

6.3.1 Ejemplos para dimensiones pares

En $D = 4$ dimensiones, las únicas 4-formas invariantes locales de Lorentz que pueden ser construidas con las consideraciones anteriores son:

$$
E_{4} = \epsilon_{abcd} R^{ab} R^{cd} \tag{6.24}
$$

$$
L_{EH} = \epsilon_{abcd} R^{ab} e^{c} e^{d} \tag{6.25}
$$

$$
L_{A} = \epsilon_{abcd} e^{a} e^{b} e^{c} e^{d} \tag{6.26}
$$

$$
C_{2} = R^{a}_{b} R^{b}_{a} \tag{6.27}
$$

$$
L_{T_{1}} = R^{ab} e_{a} e_{b} \tag{6.28}
$$

$$
L_{T_{2}} = T^{a} T_{a} \tag{6.29}
$$

Los primeros tres términos son de paridad par y los demás son de paridad impar. Note- mos también que los primeros tres términos corresponden a distintos valores de p en L_{p} (ver (6.7)). Además, $L_{T_{1}} = V_{1}$, $L_{T_{2}} = T_{0}$ y $C_{2} = R_{2}$. De estas 4-formas, E_{4} y C_{2} son
invariantes topológicos, la densidad de Euler y el segundo carácter de Chern para \(SO(4) \), respectivamente. Los otros cuatro términos definen la acción para gravedad pura más general en cuatro dimensiones,

\[
S = \int_{\mathcal{M}_4} \left[c_1 L_{EH} + c_2 L_A + c_3 L_{T_1} + c_4 L_{T_2} \right]
\]

(6.30)

Los primeros dos términos pueden ser combinados con \(E_4 \), dando lugar a la forma Born-Infeld en cuatro dimensiones, la cual es localmente invariante bajo Lorentz, pero no bajo AdS, como fue mencionado anteriormente. Notemos además que, si \(c_3 = -c_4 \), los últimos dos términos son combinados en un invariante topológico, la forma de Nieh-Yan (6.4). De esta manera, la parte completa impar de la acción se convierte en un término de borde. Además, las formas \(C_2 \), \(L_{T_1} \) y \(L_{T_2} \) pueden combinarse y formar la clase característica de Pontryagin (llamado también el segundo carácter de Chern del grupo AdS),

\[
R^a_br^b_a + \frac{2}{l^2} \left(T^a_T - R^{ab}c_ac_b \right) = \tilde{R}^A_B \tilde{R}^B_A
\]

(6.31)

La forma (6.31) es el único invariante AdS construido sólo con el vielbein, la conexión de spin y sus derivadas exteriores, y por lo tanto, no existen teorías para gravedad localmente invariantes bajo AdS en cuatro dimensiones.

A partir de los Lemas 2 y 3, tenemos que los correspondientes funcionales invariantes AdS en dimensiones más altas pueden ser escritos en términos de la curvatura AdS como combinaciones lineales de términos tipo

\[
\tilde{I}_{n_1 \cdots n_s} = \int_M C_{n_1} \cdots C_{n_s}
\]

(6.32)

donde \(C_n = Tr \left[(\tilde{R}^A_B)^n \right] \) es el \(n \)-ésimo carácter de Chern para el grupo AdS, y \(\dim (M) = 2(n_1 + \cdots + n_s) \) es un múltiplo de cuatro. Además, es importante enfatizar que los funcionales \(\tilde{I}_{n_1 \cdots n_s} \) se anulan si uno de los \(r \)'s es impar, lo que ocurre en el caso de \(4k + 2 \) dimensiones. Así, concluimos que no existen teorías de gauge torsionales invariantes bajo AdS en dimensiones pares.
6.3.2 Ejemplos para dimensiones impares

En $D = 3$ dimensiones, las únicas 3-formas invariantes locales de Lorentz que pueden ser construidas con las consideraciones anteriores son:

\begin{align*}
L_{EH} &= \epsilon_{abc} R^{ab} e^c \\
L_A &= \epsilon_{abc} e^a e^b e^c \\
L_3 (\omega) &= \omega^a_b d\omega^b_a + \frac{2}{3} \omega^a_b \omega^b_c \omega^c_a \\
L_{Torsion}^3 &= e^a T_a
\end{align*}

(6.33) \hspace{1cm} (6.34) \hspace{1cm} (6.35) \hspace{1cm} (6.36)

En este caso, existen dos lagrangianos localmente invariantes AdS, y corresponden a combinaciones especiales de las 3-formas anteriores, a saber, el lagrangiano de Einstein-Hilbert con constante cosmológica

\begin{equation}
L_{G,3}^{AdS} = \frac{1}{l^2} \epsilon_{abc} (R^{ab} + \frac{e^a b}{3l^2}) e^c,
\end{equation}

(6.37)

y el lagrangiano “exótico” [29],

\begin{equation}
L_{T,3}^{AdS} = L_3 (\omega) + \frac{2}{l^2} e^a T^a,
\end{equation}

(6.38)

donde

\begin{equation}
L_3 (\omega) = \omega^a_b d\omega^b_a + \frac{2}{3} \omega^a_b \omega^b_c \omega^c_a.
\end{equation}

(6.39)

Los lagrangianos (6.37), (6.38) y (6.39) son las formas Chern-Simons de Euler, Pontryagin y Lorentz, respectivamente. De esta manera, la acción más general para gravedad en 3-dimensiones invariante bajo AdS es la combinación lineal $\kappa L_{G,3}^{AdS} + \beta L_{T,3}^{AdS}$, la cual es dada explícitamente por

\begin{equation}
L_{CS}^{AdS (2+1)} = \kappa \frac{1}{l^2} \epsilon_{abc} (R^{ab} + \frac{e^a b}{3l^2}) e^c + \beta \left[\omega^a_b d\omega^b_a + \frac{2}{3} \omega^a_b \omega^b_c \omega^c_a + \frac{2}{l^2} e^a T^a \right],
\end{equation}

(6.40)

cuyo invariante topológico es

\begin{equation}
P^{(4)} = dL_{CS}^{AdS (2+1)} = \kappa \frac{1}{l^2} \epsilon_{abc} (R^{ab} + \frac{e^a b}{l^2}) T^c + \beta \left[R^a_b R^b_a + \frac{2}{l^2} (T^a T_a - e^a b R_{ab}) \right].
\end{equation}
La siguiente tabla muestra los lagrangianos Chern-Simons en 3-dimensiones con sus respectivos invariantes topológicos, a saber, el invariante topológico de Euler (E_4), el invariante topológico de Pontryagin ($P_{4\text{Lorentz}}^L$) y el invariante de Nieh-Yan (N_4).

<table>
<thead>
<tr>
<th>Tabla 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D = 3$ Lagrangianos Chern-Simons</td>
</tr>
<tr>
<td>$L^{AdS}3 = \frac{1}{7} \epsilon{abc}(R^{ab} + \frac{\epsilon^{ab} b}{3!})e^c$</td>
</tr>
<tr>
<td>$L_3(\omega) = \omega^b_a d\omega^a_b + \frac{2}{3} \omega^b_a \omega^c_b \omega^e_c$</td>
</tr>
<tr>
<td>$L^{Torsion}_3 = e^a T_a$</td>
</tr>
</tbody>
</table>

6.3.3 Generalización a $D = 4k - 1$

Podemos generalizar los resultados anteriores a mayores dimensiones. Recordemos que para $D = 4k - 1$, el número de posibles formas exóticas crece con el número de elementos del conjunto de partición $\pi(k)$ de k, en correspondencia con el número de invariantes de Chern de la forma:

$$P_{\{n_j\}} = \prod_{n_k \in \pi(k)} C_{n_j}. \quad (6.41)$$

De este modo, el lagrangiano más general en $4k - 1$ dimensiones es dado por

$$L_{4k-1}^{AdS} = \kappa L_G^{AdS} + \beta_{\{n_j\}} L_T^{AdS}_{\{n_j\}} 4k-1 \quad (6.42)$$

do donde $dL_G^{AdS} = P_{n_1\ldots n_s}$, con $\sum j n_j = 4k$. A diferencia del caso de dimensiones pares, estos lagrangianos no son términos de bordes y por lo tanto, tienen dinámica propia.

Notemos adicionalmente que los coeficientes κ y $\beta_{\{n_j\}}$ son arbitrarios y adimensionales. En [12] y [18] se muestra que κ y $\beta_{\{n_j\}}$ son cuantizados, respectivamente.

A continuación, se aplicará todo lo visto hasta ahora y veremos como el proceso de S-expansión del grupo AdS nos permitirá construir acciones para describir gravedad en D dimensiones, las cuales tendrán propiedades muy interesantes.
Capítulo 7

Relatividad General y álgebras tipo Maxwell

7.1 Introducción

De capítulos anteriores sabemos que las formas de Chern-Simons pueden ser utilizadas para construir acciones invariantes de gauge. En dimensiones impares $D = 2n + 1$, vimos que una acción para gravedad fue propuesta por Chamseddine como una forma Chern-Simons para el grupo AdS. Además, vimos que dicha acción corresponde a la serie de Lovelock con los coeficientes elegidos de una manera específica, tal que la acción es invariante no sólo bajo rotaciones locales de Lorentz, sino que también bajo boost AdS. Por otro lado, lo más cercano a las teorías CS en dimensiones pares son las llamadas teorías de Born-Infeld. Como fue mencionado anteriormente, el lagrangiano BI es obtenido por una elección particular de los parámetros en la serie de Lovelock, tal que el lagrangiano es invariante sólo bajo rotaciones locales de Lorentz al igual que la acción de Einstein-Hilbert.

Si estas teorías CS y BI son efectivamente las teorías de gauge apropiadas para describir la interacción gravitacional, entonces dichas teorías deben satisfacer el principio de correspondencia, es decir, ellas deben desembocar en determinados límites en Relatividad General.

En la Ref.[30], se mostró que Relatividad General estándar en dimensiones impares (sin constante cosmológica) es embebida en una teoría CS para una cierta álgebra de Lie \mathfrak{g}, la
cual es construida por medio del procedimiento de S-expansión introducido anteriormente. Además, recientemente se encontró que Relatividad General estándar en dimensiones pares (sin constante cosmológica) emerge como un límite de una teoría tipo Born-Infeld invariante bajo una cierta subálgebra del álgebra \mathfrak{B}, denotada por $\mathfrak{L}^\mathfrak{B}$ [31].

Muy recientemente fue encontrado que las llamadas álgebras de Lie \mathfrak{B}_m, corresponden a las álgebras tipo Maxwell \mathcal{M}_m [32]. Estas álgebras tipo Maxwell3 pueden ser obtenidas por medio de una S-expansión resonante reducida del álgebra de Lie AdS cuando usamos $S_E^{(N)} = \{\lambda_\alpha\}_{\alpha=0}^{N+1}$ como semigrupo abeliano. De esta manera, en lo que sigue nos referiremos a las álgebras \mathfrak{B} y $\mathfrak{L}^\mathfrak{B}$ como \mathcal{M} y $\mathcal{L}^\mathcal{M}$, respectivamente.

En este capítulo revisaremos brevemente las álgebras de Lie \mathcal{M} y $\mathcal{L}^\mathcal{M}$, y estudiaremos la construcción de acciones invariantes bajo estas álgebras permitiendo describir gravedad tanto en dimensiones pares como impares.

7.2 Gravedad Chern-Simons y álgebras tipo Maxwell

7.2.1 Relatividad General desde gravedad Chern-Simons en $D=5$

El lagrangiano para gravedad CS AdS 5-dimensional es escrito como (ver ec. (5.19))

$$L_{AdS}^{(5)} = \kappa \epsilon_{abcde} \left(\frac{1}{l} R^{ab} R^{cde} + \frac{2}{3l^3} R^{ab} e^c e^d e^e + \frac{1}{5l^5} e^a e^b e^c e^d e^e \right).$$

(7.1)

De este lagrangiano vemos que ninguno de los límites $l \to \infty$ ni $l \to 0$ conduce al término de Einstein-Hilbert $\epsilon_{abcde} R^{abc} R^{cde}$. Reescalando κ apropiadamente, estos conducirán al término de Gauss-Bonnet o a un término conteniendo sólo la constante cosmológica, respectivamente.

Siguiendo el desarrollo de Ref.[30] consideraremos la S-expansión del álgebra de Lie $\mathfrak{so}(4,2)$ utilizando el semigrupo abeliano $S_E^{(3)}$. Después de extraer una subálgebra resonante y realizar su 0_S-reducción, encontramos una nueva álgebra de Lie a la que denotaremos por \mathcal{M}_5, la

3Estas álgebras también son conocidas como álgebras de Poincaré generalizadas \mathcal{P}_m
cual es generada por \(\{J_{ab}, P_a, Z_{ab}, Z_a\} \),

\[
\begin{align*}
[P_a, P_b] &= Z_{ab}, & [J_{ab}, P_c] &= \eta_{bc} P_a - \eta_{ac} P_b \\
[J_{ab}, J_{cd}] &= \eta_{cb} J_{ad} - \eta_{ca} J_{bd} + \eta_{db} J_{ca} - \eta_{da} J_{cb} \\
[J_{ab}, Z_c] &= \eta_{bc} Z_a - \eta_{ac} Z_b, \\
[Z_{ab}, P_c] &= \eta_{bc} Z_a - \eta_{ac} Z_b, \\
[J_{ab}, Z_{cd}] &= \eta_{cb} Z_{ad} - \eta_{ca} Z_{bd} + \eta_{db} Z_{ca} - \eta_{da} Z_{cb} \\
[Z_{ab}, Z_c] &= [P_a, Z_c] = [Z_a, Z_c] = [Z_{ab}, Z_{cd}] = 0.
\end{align*}
\]

donde estos nuevos generadores pueden ser escritos como

\[
\begin{align*}
J_{ab} &= \lambda_0 \otimes \bar{J}_{ab}, \\
Z_{ab} &= \lambda_2 \otimes \bar{J}_{ab}, \\
P_a &= \lambda_1 \otimes \bar{P}_a, \\
Z_a &= \lambda_3 \otimes \bar{P}_a.
\end{align*}
\]

Aquí \(\bar{J}_{ab} \) y \(\bar{P}_a \) corresponden a los generadores originales de \(\mathfrak{so}(4,2) \), y los \(\lambda_\alpha \) pertenecen a un semigrupo abeliano, cuyos elementos \(\{\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4\} \) obedecen la siguiente ley de multiplicación

\[
\lambda_\alpha \lambda_\beta = \begin{cases}
\lambda_{\alpha+\beta}, & \text{si } \alpha + \beta \leq 4 \\
\lambda_4, & \text{si } \alpha + \beta \geq 4
\end{cases}
\]

Haciendo uso del Teorema VII.2 de la Ref.[1], vemos que las únicas componentes no nulas de un tensor invariante simétrico para el álgebra \(\mathcal{M}_5 \) son dadas por

\[
\begin{align*}
\langle J_{ab} J_{cd} P_e \rangle &= \frac{4}{3} \lambda_3 \alpha_1 \epsilon_{abcde}, \\
\langle J_{ab} J_{cd} Z_e \rangle &= \frac{4}{3} \lambda_3 \alpha_3 \epsilon_{abcde}, \\
\langle J_{ab} Z_{cd} P_e \rangle &= \frac{4}{3} \lambda_3 \alpha_3 \epsilon_{abcde},
\end{align*}
\]

donde \(\alpha_1 \) y \(\alpha_3 \) son constantes arbitrarias independientes de dimensión \([\text{longitud}]^{-3}\).

Con el fin de escribir un lagrangiano CS para el álgebra \(\mathcal{M}_5 \), comenzamos escribiendo la 1-forma conexión de gauge \(\mathcal{M}_5 \)-valuada

\[
A = \frac{1}{2} \omega^{ab} J_{ab} + \frac{1}{l} \epsilon^a P_a + \frac{1}{2} k^{ab} Z_{ab} + \frac{1}{l} h^a Z_a,
\]

64
y la 2-forma curvatura asociada

\[F = \frac{1}{2} R^{ab} J_{ab} + \frac{1}{l} T^a P_a + \frac{1}{2} \left(D_\omega k^{ab} + \frac{1}{l^2} e^a e^b \right) Z_{ab} + \frac{1}{l} \left(D_\omega h^a + k^a k_b^b \right) Z_a. \] (7.10)

Así, si consideramos la 1-forma conexión de gauge \mathcal{M}_5-valuada (7.9) y las componentes no nulas (7.8) en el lagrangiano CS

\[L_{CS}^{(2n+1)} = (n + 1) \int_0^1 dt \left(A \left(t dA + l^2 A^2 \right)^n \right), \] (7.11)

con $n = 2$, es posible escribir el lagrangiano CS en cinco dimensiones para el álgebra \mathcal{M}_5 como

\[L_{CS}^{\mathcal{M}_5} (5) = \alpha_1 l^2 \epsilon_{abcde} R^{ab} e^c e^d e^e + \alpha_3 \epsilon_{abcde} \left(\frac{2}{3} R^{ab} e^c e^d e^e + 2l^2 k^{ab} e^c e^d T^e + l^2 R^{ab} e^c e^d h^e \right). \] (7.12)

Este lagrangiano se divide en dos piezas independientes, una proporcional a α_1 y la otra proporcional a α_3. La primera de éstas corresponde a la contracción de Iionfi–Wigner del lagrangiano (7.1), y por lo tanto este es el lagrangiano para el grupo de Lie de Poincaré $ISO(4,1)$. La parte proporcional a α_3 contiene el término de EH $\epsilon_{abcde} R^{ab} e^c e^d e^e$, más acoplamientos no lineales entre la curvatura y los campos de materia bosónicos k_{ab} y h_a. Estos acoplamientos son proporcionales a l^2.

Notemos que en el límite estricto donde la constante de acoplamiento es igual a cero, obtenemos únicamente el término de EH en el lagrangiano,

\[L_{CS}^{\mathcal{M}_5} (5) = \frac{2}{3} \alpha_3 \epsilon_{abcde} R^{ab} e^c e^d e^e. \] (7.13)

De la misma manera, en el límite donde $l = 0$ y considerando una solución libre de materia ($k^{ab} = 0, h^a = 0$), la variación del lagrangiano

\[\delta L_{CS}^{\mathcal{M}_5} (5) = 2\alpha_3 \epsilon_{abcde} R^{ab} e^c e^d \delta e^e + 2\alpha_3 \epsilon_{abcde} \delta \omega^{ab} e^c e^d T^e = 0 \] (7.14)

nos conduce a la dinámica de Relatividad General en el vacío

\[\epsilon_{abcde} R^{ab} e^c e^d = 0 \] (7.15)
\[\epsilon_{abcde} e^d T^e = 0 \] (7.16)

Este argumento no es sólo un accidente 5-dimensional, como veremos en la siguiente sección en cada dimensión impar, $D = 2n + 1$, es posible realizar una S-expansión de $so(2n,2)$ encontrando una nueva álgebra de Lie \mathcal{M}_{2n+1}, tomar el límite $l = 0$ y recobrar gravedad EH.
7.2.2 Relatividad General y álgebra \mathcal{M}_{2n+1}

Consideremos ahora el lagrangiano CS AdS para gravedad en $D = 2n + 1$ (ver ec.(5.19))

$$L_{AdS}^{(2n+1)} = \kappa \varepsilon_{a_1 \cdots a_{2n+1}} \sum_{k=0}^{n} \frac{c_k}{k!(n-k+1)} R^{a_1 a_2 \cdots a_{2k} - 1} e^{a_{2k+1}} \cdots e^{a_{2n+1}},$$

(7.17)

donde las constantes c_k son definidas a través de

$$c_k = \frac{1}{2(n-k)+1} \binom{n}{k}.$$

(7.18)

De (7.17) vemos que ninguno de los límites $l \to \infty$ ni $l \to 0$ conduce a la gravedad de Einstein-Hilbert.

Siguiendo el mismo procedimiento de Ref.[30], consideremos la S-expansión del álgebra de Lie $\mathfrak{so}(2n,2)$ haciendo uso del semigrupo abeliano $S_E^{(2n-1)} = \{\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \cdots, \lambda_{2n}\}$, cuyo producto está definido por

$$\lambda_\alpha \lambda_\beta = \begin{cases}
\lambda_{\alpha+\beta}, & \text{cualquier } \alpha + \beta \leq 2n \\
\lambda_{2n}, & \text{cualquier } \alpha + \beta > 2n
\end{cases}$$

(7.19)

Los elementos λ_α son adimensionales, y pueden ser representados por el conjunto de matrices $2n \times 2n$, $[\lambda_\alpha]_i^j = \delta_i^{j+\alpha}$, donde $i, j = 1, \cdots, 2n - 1$, $\alpha = 0, \cdots, 2n$, y δ corresponde a la delta de Kronecker.

Luego de extraer una subálgebra resonante y realizar su $0_S(= \lambda_{2n})$-reducción, encontramos una nueva álgebra de Lie, llamada álgebra tipo Maxwell \mathcal{M}_{2n+1} (también llamada álgebra de Poincaré generalizada \mathcal{P}_{2n+1}), denominada \mathfrak{B}_{2n+1} en Ref.[30], y cuyos generadores definidos por

$$J_{(ab,2k)} = \lambda_{2k} \otimes \tilde{J}_{ab},$$

(7.20)

$$P_{(a,2k+1)} = \lambda_{2k+1} \otimes \tilde{P}_a,$$

(7.21)
con \(k = 0, \ldots, n - 1 \), satisfacen las siguientes relaciones de conmutación

\[
[P_a, P_b] = Z_{ab}^{(1)}, \quad \{J_{ab}, P_c\} = \eta_{bc} P_a - \eta_{ac} P_b \tag{7.22}
\]

\[
[J_{ab}, J_{cd}] = \eta_{cb} J_{ad} - \eta_{ca} J_{bd} + \eta_{db} J_{ca} - \eta_{da} J_{cb} \tag{7.23}
\]

\[
[J_{ab}, Z_c^{(i)}] = \eta_{bc} Z_a^{(i)} - \eta_{ac} Z_b^{(i)} \tag{7.24}
\]

\[
[Z_{ab}^{(i)}, P_c] = \eta_{bc} Z_a^{(i)} - \eta_{ac} Z_b^{(i)} \tag{7.25}
\]

\[
[Z_{ab}^{(i)}, Z_c^{(j)}] = \eta_{bc} Z_{a}^{(i+j)} - \eta_{ac} Z_{b}^{(i+j)} \tag{7.26}
\]

\[
[J_{ab}, Z_{cd}^{(i)}] = \eta_{cb} Z_{ad}^{(i)} - \eta_{ca} Z_{bd}^{(i)} + \eta_{db} Z_{ca}^{(i)} - \eta_{da} Z_{cb}^{(i)} \tag{7.27}
\]

\[
[Z_{ab}^{(i)}, Z_{cd}^{(j)}] = \eta_{cb} Z_{ad}^{(i+j)} - \eta_{ca} Z_{bd}^{(i+j)} + \eta_{db} Z_{ca}^{(i+j)} - \eta_{da} Z_{cb}^{(i+j)} \tag{7.28}
\]

\[
[P_a, Z_c^{(i)}] = Z_{ab}^{(i+1)}, \quad \{Z_{ab}^{(i)}, Z_c^{(j)}\} = Z_{ab}^{(i+j+1)}. \tag{7.29}
\]

De acuerdo a Teorema VII.2 de la Ref.\[1\], las únicas componentes no nulas de un tensor invariante simétrico de orden \(n + 1 \) para el álgebra \(\mathcal{M}_{2n+1} \) son dadas por

\[
\langle J_{(a_1 a_2, i_1)} \cdots J_{(a_{2n-1} a_{2n-1}, i_{2n-1})} \rangle_{P_{(a_{2n+1}, i_{2n+1})}} = \frac{2^n i^{2n-1}}{n + 1} \alpha^j \delta_1^{i_1} \cdots \delta_{i_{2n-1}}^{i_{2n-1}} \epsilon_{a_1 \cdots a_{2n+1}}, \tag{7.30}
\]

donde \(i_p, j = 0, \ldots, 2n - 1 \), y los \(\alpha \)'s son constantes arbitrarias de dimensión \([\text{longitud}]^{-2n+1}\).

La uno-forma conexión de gauge \(\mathcal{M}_{2n+1} \)-valuada \(A \), será dada por

\[
A = \sum_{k=0}^{n-1} \left[\frac{1}{2} \omega^{(ab,2k)} J_{(ab,2k)} + \frac{1}{2} \epsilon^{(a,2k+1)} P_{(a,2k+1)} \right],
\]

mientras que su 2-forma curvatura asociada \(F = dA + AA \), toma la siguiente forma

\[
F = \sum_{k=0}^{n-1} \left[\frac{1}{2} F^{(ab,2k)} J_{(ab,2k)} + \frac{1}{I} F^{(a,2k+1)} P_{(a,2k+1)} \right], \tag{7.31}
\]

donde

\[
F^{(ab,2k)} = d\omega^{(ab,2k)} + \eta_{cd} \omega^{(ac,2i)} \omega^{(db,2j)} \delta_{i+j}^k + \frac{1}{I^2} \epsilon^{(a,2i+1)} \epsilon^{(b,2j+1)} \delta_{i+1}^{k+j+1}, \tag{7.32}
\]

\[
F^{(a,2k+1)} = d\epsilon^{(a,2k+1)} + \eta_{bc} \omega^{(ab,2i)} \epsilon^{(c,2j)} \delta_{i+j}^k. \tag{7.33}
\]
El lagrangiano Chern-Simons $(2n + 1)$-dimensional invariante bajo el álgebra \mathcal{M}_{2n+1} se puede escribir explícitamente como [30]

$$ L^{\mathcal{M}_{2n+1}}_{CS (2n+1)} = \sum_{k=1}^{n} \int 2^{k-2} c_k \alpha_j \delta^{i_1 \ldots \ldots i_{n+1}}_{i_1 \ldots \ldots i_{p_n-k+q_n-k}} \delta^{i_{k+1}}_{p_1+q_1} \ldots \delta^{i_n}_{p_{n-k}+q_{n-k}} $$

$$ \varepsilon_{a_1 \ldots a_{2n+1}} R^{(a_1 a_2 \ldots)} \ldots R^{(a_{2k-1} a_{2k} \ldots)} e^{(a_{2k+1} p_1)} e^{(a_{2k+2} q_1)} \ldots $$

$$ \ldots e^{(a_{2n-1} p_{n-k})} e^{(a_{2n} q_{n-k})} e^{(a_{2n+1} i_{n+1})}. $$

(7.34)

donde

$$ R^{(ab,2k)} = d\omega^{(ab,2k)} + \eta_{cd} \omega^{(ac,2i)} \omega^{(db,2j)} \delta^i_j $$

(7.35)

En el límite $l \to 0$, el único término no nulo en (7.34) corresponde al caso $k = 1$, cuya única componente ocurre para $p = q_1 = \ldots = q_{2n-1} = 0$ y es proporcional al lagrangiano de Einstein-Hilbert en dimensiones impares [30]

$$ \left. L^{CS}_{(2n+1)} \right|_{l=0} = \frac{n}{2n-1} \alpha_{2n-1} \varepsilon_{a_1 \ldots a_{2n+1}} R_{a_1 a_2} e^{a_3} \ldots e^{a_{2n+1}} $$

(7.36)

7.2.3 Lagrangianos Chern-Simons invariantes bajo \mathcal{M}_{2n+1}

Anteriormente vimos que el método de S-expansión nos permite construir en cada dimensión impar $D = 2n+1$, un lagrangiano invariante bajo el álgebra tipo Maxwell \mathcal{M}_{2n+1} (ver (7.34)). Sin embargo, además de considerar estos lagrangianos, es posible construir en cada dimensión impar, lagrangianos invariantes bajo las diferentes álgebras \mathcal{M}_{2m+1}. Además, como veremos a continuación, no todos estos lagrangianos contienen al término de Einstein-Hilbert.

En la Ref.[35] se mostró que una acción Chern-Simons $(2p + 1)$-dimensional invariante bajo el álgebra \mathcal{M}_{2m+1} no siempre conduce a la acción de Relatividad General. En efecto, para ciertos valores de m es imposible obtener el término de Einstein-Hilbert bajo un cierto límite en el lagrangiano Chern-Simons $(2p + 1)$-dimensional invariante bajo \mathcal{M}_{2m+1}. Esto se debe a que si se desea obtener el término de Einstein-Hilbert en el lagrangiano, se necesita la presencia de la componente $\langle J_{a_1 a_2} Z_{a_3 a_4} \ldots Z_{a_{2p-1} a_{2p}} P_{a_{2p+1}} \rangle$ del tensor invariante, la cual es dada por

$$ \langle J_{a_1 a_2} Z_{a_3 a_4} \ldots Z_{a_{2p-1} a_{2p}} P_{a_{2p+1}} \rangle_{\mathcal{M}_{2m+1}} = \begin{cases}
2^{p-1} \alpha_{2p-1} \langle J_{a_1 a_2} J_{a_3 a_4} \ldots J_{a_{2p-1} a_{2p}} P_{a_{2p+1}} \rangle_{AdS} & \text{si } m \geq p \\
0 & \text{si } m < p
\end{cases} $$

(7.37)
Estas observaciones nos permiten establecer el siguiente teorema [35]:

Teorema 9 Sea \mathcal{M}_{2m+1} el álgebra tipo Maxwell, la cual es obtenida por medio de una $S_E^{(2m-1)}$-expansión resonante reducida del álgebra AdS. Si $L_{CS}^{\mathcal{M}_{2m+1}}$ es un lagrangiano Chern-Simons $(2p+1)$-dimensional invariante bajo el álgebra \mathcal{M}_{2m+1}, entonces el lagrangiano Chern-Simons $(2p+1)$-dimensional conducirá al lagrangiano de Einstein-Hilbert en un cierto límite de la constante de acoplamiento l, si y sólo si $m \geq p$.

El teorema anterior nos permite construir la siguiente tabla, en la cual se clasifican los diferentes lagrangianos Chern-Simons $L_{CS}^{\mathcal{M}_{2m+1}}$ invariants bajo el álgebra tipo Maxwell \mathcal{M}_{2m+1}, los cuales desembocan en la dinámica de Relatividad General en un cierto límite.

\mathcal{M}_3	$L_{CS}^{\mathcal{M}_3}$ (3)
\mathcal{M}_5	$L_{CS}^{\mathcal{M}_5}$ (3) $L_{CS}^{\mathcal{M}_5}$ (5)
\mathcal{M}_7	$L_{CS}^{\mathcal{M}_7}$ (3) $L_{CS}^{\mathcal{M}_7}$ (5) $L_{CS}^{\mathcal{M}_7}$ (7)
\vdots	\vdots
\vdots	\vdots

| \mathcal{M}_{2n-1} | $L_{CS}^{\mathcal{M}_{2n-1}}$ (3) $L_{CS}^{\mathcal{M}_{2n-1}}$ (5) $L_{CS}^{\mathcal{M}_{2n-1}}$ (7) \ldots $L_{CS}^{\mathcal{M}_{2n-1}}$ (2n-1) |
| \mathcal{M}_{2n+1} | $L_{CS}^{\mathcal{M}_{2n+1}}$ (3) $L_{CS}^{\mathcal{M}_{2n+1}}$ (5) $L_{CS}^{\mathcal{M}_{2n+1}}$ (7) \ldots $L_{CS}^{\mathcal{M}_{2n+1}}$ (2n-1) $L_{CS}^{\mathcal{M}_{2n+1}}$ (2n+1) |

Notemos que los lagrangianos de la diagonal $L_{CS}^{\mathcal{M}_3}$, $L_{CS}^{\mathcal{M}_5}$, \ldots, son aquellos lagrangianos dados por la expresión (7.34), para cada dimensión impar. Además, es interesante observar que para cada dimensión impar D tenemos que el lagrangiano $L_{CS}^{\mathcal{M}_{2n+1}}$ (D) invariante bajo el álgebra \mathcal{M}_{2n+1}, contiene todos los otros lagrangianos D-dimensionales valuados en un álgebra \mathcal{M}_{2m+1} con $m < n$. De esta manera, siempre es posible obtener una acción invariante bajo una álgebra de orden menor apagando los campos correspondientes.
7.3 Gravedad Born-Infeld y álgebras de Maxwell tipo Lorentz

7.3.1 Relatividad General a partir de gravedad Born-Infeld en \(D = 4 \)

El lagrangiano para gravedad Born-Infeld en \(D = 4 \) dimensiones es escrito como sigue (ver ec. (4.36))

\[
L_{BI}^{(4)} = \frac{\kappa}{4} \varepsilon_{abcd} \left(R^{ab}_{\quad cd} + \frac{2}{l^2} R^{ab}_{\quad cde} + \frac{1}{l^4} \varepsilon^{\quad abcd}_{\quad e} \varepsilon_{\quad efghi} \right).
\]

(7.39)

De este lagrangiano vemos que aparentemente ninguno de los límites \(l \to \infty \) ni \(l \to 0 \) conducirán al término de Einstein-Hilbert. Reescalando \(\kappa \) apropiadamente, estos límites desembocarán en la densidad de Euler o bien en el término de la constante cosmológica, respectivamente. Puesto que la densidad de Euler es un invariante topológico, ésta no contribuye a las ecuaciones de movimiento y así tenemos que en \(D = 4 \) dimensiones y considerando \(l \to \infty \), el término dominante sería el término de Einstein-Hilbert \(\varepsilon_{abcd} R^{abcd} \).

Sin embargo, para dimensiones \(D > 4 \) esta afirmación ya no es válida y tenemos que ningún límite nos permite obtener el término deseado.

Notemos que el lagrangiano (7.39) es invariante bajo el álgebra de Lorentz \(\mathfrak{so} (3, 1) \), cuya elección es crucial puesto que permite la interpretación del campo de gauge \(\omega_{ab} \) como la conexión de spin. No obstante, a continuación se mostrará que existen otras álgebras de Lie que también permiten una identificación similar. Además, dichas álgebras permitirán construir un lagrangiano tipo Born-Infeld el cual conducirá al lagrangiano de Einstein-Hilbert en un cierto límite.

Siguiendo el desarrollo de la Ref. [31], consideremos la \(S \)-expansión del álgebra de Lie \(\mathfrak{so} (3, 1) \) usando el sub-semigrupo \(S_0^{(3)} = \{ \lambda_0, \lambda_2, \lambda_4 \} \) del semigrupo \(S_E^{(3)} = \{ \lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4 \} \). Luego de realizar el proceso de \(0_S \)-reducción, se encuentra una nueva álgebra de Lie, a la que denotaremos por \(\mathfrak{L}^{M_5} \) (llamada \(\mathfrak{L}^{g_{M_5}} \) en [31]), la cual es una subálgebra de la llamada álgebra tipo Maxwell \(\mathcal{M}_5 \), cuya estructura es dada por (7.2). Los generadores de esta nueva álgebra de Maxwell tipo Lorentz \(\mathfrak{L}^{M_5} \) definidos por \(J_{ab} = \lambda_0 \tilde{J}_{ab}, Z_{ab} = \lambda_2 \tilde{J}_{ab} \) (siendo \(\tilde{J}_{ab} \) los
generadores de \(\mathfrak{so}(3,1) \), satisfacen las siguientes relaciones de conmutación

\[
\begin{align*}
[J_{ab}, J_{cd}] &= \eta_{cb} J_{ad} - \eta_{ca} J_{bd} + \eta_{db} J_{ca} - \eta_{da} J_{cb}, \\
[J_{ab}, Z_{cd}] &= \eta_{cb} Z_{ad} - \eta_{ca} Z_{bd} + \eta_{db} Z_{ca} - \eta_{da} Z_{cb}, \\
[Z_{ab}, Z_{cd}] &= 0.
\end{align*}
\]

(7.40)

Usando el Teorema VII.2 de la Ref.[1], y teniendo en cuenta que

\[
\langle \hat{J}_{ab} \hat{J}_{cd} \rangle_{Lorentz} = \varepsilon_{abcd}
\]

es posible mostrar que las únicas componentes no nulas de un tensor invariante para el álgebra \(\mathfrak{L}^{M_5} \) son dadas por

\[
\langle J_{ab} J_{cd} \rangle_{\mathfrak{L}^{M_5}} = \alpha_0 l^2 \varepsilon_{abcd}, \quad (7.41)
\]

\[
\langle J_{ab} Z_{cd} \rangle_{\mathfrak{L}^{M_5}} = \alpha_2 l^2 \varepsilon_{abcd}, \quad (7.42)
\]

donde \(\alpha_0 \) y \(\alpha_2 \) son constantes arbitrarias independientes de dimensión \([\text{longitud}]^{-2}\).

Haciendo uso del procedimiento dual de la \(S \)-expansión en términos de las formas de Maurer-Cartan [8], encontramos que el lagrangiano Born-Infeld invariante bajo el álgebra \(\mathfrak{L}^{M_5} \) es dado por

\[
L_{BI(4)}^{\mathfrak{L}^{M_5}} = \frac{\alpha_0}{4} \varepsilon_{abcd} l^2 R^{ab} R^{cd} + \frac{\alpha_2}{2} \varepsilon_{abcd} \left(R^{ab} e^c e^d + l^2 D_\omega k_{ab} R^{cd} \right). \quad (7.43)
\]

Este lagrangiano se divide en dos partes independientes, una proporcional a \(\alpha_0 \) y la otra a \(\alpha_2 \). La primera de éstas es proporcional al invariante de Euler, y la otra parte contiene al término de Einstein-Hilbert \(\varepsilon_{abcd} R^{ab} e^c e^d \), más un término de borde el cual contiene además de la curvatura usual \(R^{ab} \), un campo de materia bosónico \(k_{ab} \).

A diferencia del lagrangiano de Born-Infeld (7.39), ahora la constante de acoplamiento \(l^2 \) no aparece explícitamente en el término de Einstein-Hilbert. De esta manera, si consideramos el límite estricto donde \(l \) es igual a cero en (7.43), obtenemos únicamente el término de EH en el lagrangiano,

\[
L_{BI(4)}^{\mathfrak{L}^{M_5}} = \frac{\alpha_2}{2} \varepsilon_{abcd} R^{ab} e^c e^d.
\]

La variación del lagrangiano (7.43), módulo términos de borde, es dada por

\[
\delta L_{BI(4)}^{\mathfrak{L}^{M_5}} = \varepsilon_{abcd} \left(\alpha_2 R^{ab} e^c \right) \delta e^d + \varepsilon_{abcd} \delta \omega^{ab} \left(\alpha_2 T^e e^d + \alpha_2 l^2 k_{ab} R^{cd} \right). \quad (7.44)
\]
Así, considerando el caso de una solución libre de materia \(k^{ab} = 0 \), \(\delta L^{LM}_{BI} (4) = 0 \) conduce a la dinámica de Relatividad General,

\[
\varepsilon_{abcd} R^{ab} e^c = 0 \quad (7.45) \\
\varepsilon_{abcd} T^c e^d = 0 \quad (7.46)
\]

Notemos que para obtener las ecuaciones de campo de RG, no fue necesario imponer ningún límite en la constante de acoplamiento. Sin embargo, para recobrar las ecuaciones de campo de RG en dimensiones pares \(D > 4 \), es necesario tomar un límite en \(l \) [31].

Este desarrollo no es sólo un accidente 4-dimensional, análogamente al caso de dimensiones impares, en cada dimensión par \(D = 2n \) es posible realizar una \(S \)-expansión del álgebra de Lorentz \(so(2n-1, 2) \) encontrando una nueva álgebra de Lie \(\mathcal{L}^{M_{2n+1}} \), tomar el límite \(l = 0 \) y recobrar gravedad EH.

7.3.2 Relatividad General a partir de gravedad Born-Infeld en \(D = 2n \)

Un lagrangiano tipo Born-Infeld para gravedad en \(D = 2n \) dimensiones es dado por

\[
L^{(2n)}_{BI} = \frac{\kappa}{2n} \left(\frac{n}{p} \right)^{2p-2n} \varepsilon_{a_1 \ldots a_{2n}} R^{a_1 a_2} \ldots R^{a_{2p-1} a_{2p}} e^{a_{2p+1}} \ldots e^{a_{2n}}, \quad (7.47)
\]

donde \(e^a \) corresponde a la 1-forma vielbein, y \(R^{ab} = d\omega^{ab} + \omega^a e^{cb} \) a la 2-forma curvatura de Lorentz en el formalismo de primer orden.

La acción (7.47) es invariante off-shell bajo el álgebra de Lie de Lorentz \(so(2n-1, 1) \), cuyos generadores \(\tilde{J}_{ab} \) satisfacen las relaciones de conmutación

\[
\left[\tilde{J}_{ab}, \tilde{J}_{cd} \right] = \varepsilon_{cb} \tilde{J}_{ad} - \varepsilon_{ca} \tilde{J}_{bd} + \varepsilon_{db} \tilde{J}_{ca} - \varepsilon_{da} \tilde{J}_{cb} \quad (7.48)
\]

El símbolo de Levi-Civita \(\varepsilon_{a_1 \ldots a_{2n}} \) en (7.47), es la única componente no nula del tensor invariante simétrico de rango \(n \) para el álgebra de Lorentz, a saber

\[
\left\langle \tilde{J}_{a_1 a_2} \ldots \tilde{J}_{a_{2n-1} a_{2n}} \right\rangle = \frac{2^{n-1}}{n} \varepsilon_{a_1 \ldots a_{2n}}. \quad (7.49)
\]
De (7.47) vemos que ninguno de los límites $l \to \infty$ ni $l \to 0$ conduce a la gravedad de Einstein-Hilbert.

Siguiendo el mismo procedimiento de Ref.[31], consideremos la S-expansión del álgebra de Lie $\mathfrak{so}(2n-1,1)$ usando como semigrupo el sub-semigrupo $S_E^{(2n-1)} = \{\lambda_0, \lambda_2, \lambda_4, \lambda_6, \cdots, \lambda_{2n}\}$ del semigrupo abeliano $S_E^{(2n-1)} = \{\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \cdots, \lambda_{2n}\}$. Después de realizar su $0_S(= \lambda_{2n})$-reducción, encontramos una nueva álgebra de Lie, llamada $\mathcal{L}^{M_{2n+1}}$, la cual es una subálgebra de la llamada álgebra M_{2n+1}. Los generadores definidos por $J_{ab} = \lambda_0 J_{ab}$, $Z_{ab}^{(1)} = \lambda_2 J_{ab}$, $Z_{ab}^{(2)} = \lambda_4 J_{ab}$, ..., $Z_{ab}^{(n)} = \lambda_{2n} J_{ab}$ satsface las siguientes relaciones de conmutación

$$[J_{ab}, J_{cd}] = \eta_{cb} J_{ad} - \eta_{ca} J_{bd} + \eta_{db} J_{ca} - \eta_{da} J_{cb};$$

$$[J_{ab}, Z_{cd}^{(i)}] = \eta_{cb} Z_{ad}^{(i)} - \eta_{ca} Z_{bd}^{(i)} + \eta_{db} Z_{ca}^{(i)} - \eta_{da} Z_{cb}^{(i)}, \quad (7.50)$$

$$[Z_{ab}^{(i)}, Z_{cd}^{(j)}] = \eta_{cb} Z_{ad}^{(i+j)} - \eta_{ca} Z_{bd}^{(i+j)} + \eta_{db} Z_{ca}^{(i+j)} - \eta_{da} Z_{cb}^{(i+j)}.$$

Haciendo uso Teorema VII.2 de la Ref.[1], es posible mostrar que las únicas componentes no nulas de un tensor invariante para el álgebra $\mathcal{L}^{M_{2n+1}}$ son dadas por

$$\langle J_{(a_1 a_2, i_1)} \cdots J_{(a_{2n-1} a_{2n}, i_k)} \rangle = \frac{2^{n-1} 2^{n-2}}{n} \alpha_j \delta_{i_1 + \cdots + i_k}^{a_1 \cdots a_{2n}}, \quad (7.51)$$

donde $i_k = 0, \cdots, 2n - 2$ y los α_j's son constantes arbitrarias independientes de dimensión $[\text{longitud}]^{-2n+2}$.

Con el propósito de construir un lagrangiano Born-Infeld para el álgebra $\mathcal{L}^{M_{2n+1}}$, comenzamos escribiendo la 2-forma curvatura

$$F = \sum_{k=0}^{n-1} \frac{1}{2} F^{(ab,2k)} J_{(ab,2k)} \quad (7.52)$$

donde

$$F^{(ab,2k)} = d\omega^{(ab,2k)} + \eta_{cd} \omega^{(ac,2i)} \omega^{(db,2j)} \delta_{i+j}^k + \frac{1}{l^2} e^{(a,2i+1)} e^{(b,2j+1)} \delta_{i+j}^k,$$

Haciendo uso del procedimiento dual de la S-expansión en términos de las formas de Maurer-Cartan [8], es posible escribir el lagrangiano 2n-dimensional tipo Born-Infeld invariante bajo
el álgebra $\mathfrak{L}^{M_{2n}+1}$ como

$$L_{BI}^{M_{2n}+1} = \sum_{k=1}^{n} l^{2k-2} \frac{1}{2n} \binom{n}{k} \alpha^j \delta^j_{l_1 + \cdots + l_k l_1 + q_1} \cdots \delta^i_{n = k + q_{n-k}}$$

$$\varepsilon_{a_1 \cdots a_{2n}} R(a_1 a_2, i_1) \cdots R(a_{2k-1} a_{2k}, i_k) e(a_{2k+1}, p_1)$$

$$e(a_{2k+2}, q_1) \cdots e(a_{2n-1}, p_{n-k}) e(a_{2n}, q_{n-k})$$

(7.54)

Del (7.54) podemos ver que en el límite $l = 0$ el único término no nulo corresponde al caso $k = 1$ cuya única componente ocurre para $p = q_1 = \cdots = q_{2n-1} = 0$ y es proporcional al lagrangiano de Einstein-Hilbert en dimensiones pares [31]

$$L_{BI}^{M_{2n}+1} \bigg|_{l=0} = \frac{1}{2} \alpha^{2n-2} \varepsilon_{a_1 \cdots a_{2n}} R(a_1 a_2, 0) e(a_3, 1) \cdots e(a_{2n}, 1)$$

$$= \frac{1}{2} \alpha^{2n-2} \varepsilon_{a_1 \cdots a_{2n}} R^{a_3 a_2} e^{a_3} \cdots e^{a_{2n}}. \quad (7.55)$$

7.3.3 Lagrangianos Born-Infeld invariantes bajo $\mathfrak{L}^{M_{2n}}$

Hemos visto que el método de S-expansión nos permite construir en cada dimensión par $D = 2n$, un lagrangiano invariante bajo el álgebra tipo Lorentz $\mathfrak{L}^{M_{2n+1}}$ (ver (7.54)). Sin embargo, además de considerar estos lagrangianos, es posible construir en cada dimensión par, lagrangianos invariantes bajo las diferentes álgebras $\mathfrak{L}^{M_{2n+1}}$. Además, como veremos seguidamente, no todos estos lagrangianos contienen al término de Eistein-Hilbert.

Antes de revisar esto más detalladamente, es importante mencionar que el álgebra $\mathfrak{L}^{M_{2n+1}}$ tiene la propiedad de ser idéntica al álgebra $\mathfrak{L}^{M_{2n}}$. Sin embargo, estas álgebras difieren en su origen, ya que la primera de éstas corresponde a una subálgebra del álgebra tipo Maxwell M_{2n+1}, la cual es obtenida desde el álgebra AdS por medio de una $S_{E}^{(2n-1)}$-expansión resonante reducida, mientras que $\mathfrak{L}^{M_{2n}}$ es una subálgebra de M_{2n}, la cual es obtenida por medio de una $S_{E}^{(2n-2)}$-expansión resonante reducida del álgebra AdS. Por simple conveniencia, desde ahora denotaremos al álgebra de Maxwell tipo Lorentz como $\mathfrak{L}^{M_{2n}}$.

Como hemos mencionado anteriormente, en cada dimensión par podemos construir lagrangianos invariantes bajo las diferentes álgebras de Maxwell tipo Lorentz. Sin embargo,
en la Ref. [35] se mostró que un lagrangiano Born-Infeld 2p-dimensional invariante bajo el álgebra \mathfrak{L}^{2m} no siempre conduce al lagrangiano de Relatividad General. En efecto, para ciertos valores de m es imposible obtener el término de Einstein-Hilbert bajo un cierto límite en el lagrangiano Born-Infeld 2p-dimensional invariante bajo \mathfrak{L}^{2m}. Esto se debe a que si queremos la presencia del término de Einstein-Hilbert, es necesaria la componente $\langle J_{a_1a_2}Z_{a_3a_4}\cdots Z_{a_{2p-1}a_{2p}} \rangle$ del tensor invariante, la cual es dada por

$$\langle J_{a_1a_2}Z_{a_3a_4}\cdots Z_{a_{2p-1}a_{2p}} \rangle_{\mathfrak{L}^{2m}} = \begin{cases} l^{2p-2}\alpha_{2p-2} \langle J_{a_1a_2}\cdots J_{a_{2p-1}a_{2p}} \rangle_{\mathfrak{L}}, & \text{si } m \geq p \\ 0, & \text{si } m < p. \end{cases}$$

(7.56)

Esta observación nos conduce a establecer el siguiente teorema [35]:

Teorema 10 Sea \mathfrak{L}^{2m} el álgebra obtenida desde el álgebra de Lorentz por medio de una $S^{(2m-2)}_0$-expansión reducida, la cual corresponde a una subálgebra del álgebra \mathcal{M}_{2m}. Si L_{BI}^{2p} es un lagrangiano tipo Born-Infeld (2p)-dimensional invariante bajo el álgebra \mathfrak{L}^{2m}, entonces el lagrangiano tipo Born-Infeld (2p)-dimensional conducirá al lagrangiano de Einstein-Hilbert en un cierto límite de la constante de acoplamiento l, si y sólo si $m \geq p$.

Una forma simple de comprender este teorema se expresa mediante la siguiente tabla, en la cual son clasificados los lagrangianos tipo Born-Infeld en cada dimensión par $D = 2n$, invariantes bajo \mathfrak{L}^{2m}, los cuales desembocan en la dinámica de Relatividad General bajo ciertas condiciones.

<table>
<thead>
<tr>
<th>\mathfrak{L}^{M_4}</th>
<th>$L_{BI}^{M_4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathfrak{L}^{M_6}</td>
<td>$L_{BI}^{M_6}$</td>
</tr>
<tr>
<td>\mathfrak{L}^{M_8}</td>
<td>$L_{BI}^{M_8}$</td>
</tr>
<tr>
<td>: : :</td>
<td>: : :</td>
</tr>
<tr>
<td>$\mathfrak{L}^{M_{2n-2}}$</td>
<td>$L_{BI}^{M_{2n-2}}$</td>
</tr>
<tr>
<td>$\mathfrak{L}^{M_{2n}}$</td>
<td>$L_{BI}^{M_{2n}}$</td>
</tr>
</tbody>
</table>

(7.57)

Notemos que lo lagrangianos ubicados en la diagonal, $L_{BI}^{M_4}$, $L_{BI}^{M_6}$, ...,son aquellos lagrangianos dados por la expresión (7.54), para cada dimensión par.
Capítulo 8

Gravedad de Einstein-Lovelock

8.1 Introducción

Hasta ahora hemos visto que el procedimiento de S-expansión permite construir gravedades Chern-Simons en dimensiones impares invariantes bajo el álgebra tipo Maxwell \mathcal{M} (o álgebra de Poincaré generalizada), y gravedades tipo Born-Infeld en dimensiones pares invariantes bajo el álgebra $\mathcal{L}^\mathcal{M}$, ambas conduciendo a Relatividad General en un cierto límite. Estas gravedades son descritas por la acción de Einstein-Chern-Simons [30],[33] y por la acción de Einstein-Born-Infeld [31], respectivamente.

Siguiendo con el estudio de estas álgebras, en este capítulo se desarrollará la construcción de una acción tipo Lovelock, a la cual llamaremos acción de Einstein-Lovelock (EL), la cual es escrita como una acción CS para dimensiones impares, invariante bajo el álgebra \mathcal{M} y como una acción BI para dimensiones pares, invariante bajo $\mathcal{L}^\mathcal{M}$, ambas conduciendo a RG bajo cierto límite en la constante de acoplamiento.

Así, mostraremos que el procedimiento de expansión nos permite escribir un lagrangiano tipo Lovelock haciendo uso del semigrupo $S_E^{(D-2)} = \{\lambda_i\}_{i=0}^{D-1}$, el cual bajo el requerimiento de tener el número máximo de grados de libertad conduce, en el caso de dimensiones impares $D = 2n - 1$, al lagrangiano para una teoría Chern-Simons y en el caso de dimensiones pares $D = 2n$, al lagrangiano para una teoría tipo Born-Infeld.
La acción de Einstein-Lovelock está dada por [34]

\[S_{\mathcal{E}L} = \int \sum_{p=0}^{[D/2]} \lambda_i \alpha_p L_{\mathcal{E}L}^{(p,i)} \]

(8.1)

donde \(\alpha_p \) y \(\lambda_i \) son constantes arbitrarias y \(L_{\mathcal{E}L}^{(p,i)} \) es dado por

\[L_{\mathcal{E}L}^{(p,i)} = t^{D-2} \delta_{i_1+\cdots+i_{D-p}}^{i} \varepsilon_{a_1a_2\cdots a_D} R^{(a_1a_2,i_1)} \cdots R^{(a_{2p-1}a_{2p},i_p)} e_e^{(a_{2p+1},i_{p+1})} \cdots e_e^{(a_{D,i_{D-p}})}, \]

(8.2)

donde

\[R^{(ab,i)} = d\omega^{(ab,i)} + \eta_{cd}\omega^{(ac,j)}\omega^{(db,k)}\delta_{j+k}^i. \]

(8.3)

La expresión (8.1) se puede usar tanto en dimensiones pares como en dimensiones impares. Al igual que en el caso de la teoría de LL vista en el Capítulo 4, los coeficientes \(\alpha_p \) en (8.1), con \(p = 0, 1, \cdots, [D/2] \), no son fijados desde primeros principios. Como en la Ref.[18], es posible fijar los coeficientes de acuerdo al criterio de que las condiciones de integrabilidad para las ecuaciones de campo, no deberían imponer constraints algebraicos adicionales sobre los tensores curvatura y torsión.

A continuación, se fijarán estos coeficientes de acuerdo a este criterio y veremos al final de este capítulo que el proceso de S-expansión no modifica los \(\alpha_p \)’s fijados en [18].

8.2 Estudio de los coeficientes

En el formalismo de primer orden, la nueva acción de Einstein-Lovelock es escrita en función del vielbein, de la conexión de spin y de nuevos campos de materia bosónicos los cuales surgen debido a la \(S_E^{(D-2)} \)-expansión. Así, consideraremos la acción (8.1) como un funcional de estos campos, \(S_{\mathcal{E}L} = S_{\mathcal{E}L} [e^{(a,j)}, \omega^{(ab,j)}] \). Las correspondientes ecuaciones de campo variando con respecto a \(e^{(a,j)} \) y \(\omega^{(ab,j)} \) vienen dadas respectivamente por:

\[\varepsilon_a^{(i)} = \sum_{p=0}^{[(D-1)/2]} \lambda_i \alpha_p (D - 2p) \varepsilon_a^{(p,i)} = 0, \]

(8.4)

\[\varepsilon_{ab}^{(i)} = \sum_{p=1}^{[(D-1)/2]} \lambda_i \alpha_p p (D - 2p) \varepsilon_{ab}^{(p,i)} = 0, \]

(8.5)
donde

\[\varepsilon^{(p,i)}_a = \varepsilon_{ab}^{(p,i)} = l^{D-2} \delta^{i}_{t_1 + \ldots + i_{D-p-1}} \varepsilon_{ab1 \ldots b_{D-1}} R^{(b_1 b_2 \ldots, i_1)} \ldots R^{(b_{2p-1} b_{2p} \ldots, i_p)} e^{(b_{2p+1} \ldots i_{p+1})} \ldots e^{(b_{D-1}, i_{D-p-1})} \]

\[(8.6) \]

y

\[T^{(a,i)} = d \varepsilon^{(a,i)} + \eta_d \tilde{\omega}^{(ad,j)} \varepsilon^{(c,k)} \delta^{i}_{j+k} \] representa la 2-forma torsión expandida. Usando la identidad de Bianchi para la 2-forma curvatura expandida (ver Apéndice F) tenemos

\[D \varepsilon^{(p,i)}_a = l^{D-2} (D - 1 - 2p) \delta^{i}_{t_1 + \ldots + i_{D-p-1}} \varepsilon_{ab1 \ldots b_{D-1}} R^{(b_1 b_2 \ldots, i_1)} \ldots R^{(b_{2p-1} b_{2p} \ldots, i_p)} T^{(b_{2p+1} \ldots i_{p+1})} e^{(b_{2p+2} \ldots i_{p+1})} \ldots e^{(a_{D-1}, i_{D-p-1})}. \]

\[(8.8) \]

Por otro lado, podemos escribir lo siguiente

\[e^{(b,j)} \varepsilon_{ba}^{(p,k)} \delta^{i}_{j+k} = l^{D-2} \delta^{i}_{t_1 + \ldots + i_{D-p-1}} \varepsilon_{ba1 \ldots a_{D-2}} R^{(a_1 a_2, i_1)} \ldots R^{(a_{2p-3} a_{2p-2} \ldots, i_{p-1})} \]

\[T^{(a_{2p-1} i_{p-1})} e^{(a_{2p} i_{p-1})} \ldots e^{(a_{D-2}, i_{D-p-1})}. \]

\[(8.9) \]

de donde

\[e^{(b,j)} \varepsilon_{ba}^{(p+1,k)} \delta^{i}_{j+k} = l^{D-2} \delta^{i}_{t_1 + \ldots + i_{D-p-1}} \varepsilon_{ba1 \ldots a_{D-1}} R^{(a_1 a_2, i_1)} \ldots R^{(a_{2p-2} a_{2p-1} \ldots, i_{p-1})} \]

\[T^{(a_{2p} i_{p-1})} e^{(a_{2p+1} i_{p-1})} \ldots e^{(a_{D-1}, i_{D-p})}. \]

\[(8.10) \]

Luego, comparando las ecuaciones (8.8) y (8.10) se tiene que

\[D \varepsilon^{(p,i)}_a = (D - 1 - 2p) e^{(b,j)} \varepsilon_{ba}^{(p+1,k)} \delta^{i}_{j+k} \]

para \(0 \leq p \leq \lfloor (D-1)/2 \rfloor \). Esto significa que

\[D \varepsilon^{(i)}_a = \sum_{p=0}^{\lfloor (D-1)/2 \rfloor} \lambda_i \alpha_p (D - 2p) (D - 1 - 2p) e^{(b,j)} \varepsilon_{ba}^{(p+1,k)} \delta^{i}_{j+k}. \]

\[(8.11) \]

Llamando \(p' = p + 1 \) se tiene que

\[D \varepsilon^{(i)}_a = \sum_{p'=1}^{\lfloor (D+1)/2 \rfloor} \lambda_i \alpha_{p'-1} (D - 2p' + 2) (D - 2p' + 1) e^{(b,j)} \varepsilon_{ba}^{(p',k)} \delta^{i}_{j+k}. \]

\[(8.12) \]
lo cual se puede rescribir como

\[D\varepsilon^{(i)}_a = \sum_{p=1}^{[(D+1)/2]} \lambda_i \alpha_{p-1} (D - 2p + 2) (D - 2p + 1) e^{(b,j)}_a \varepsilon^{(p,k)}_{ba} \delta_{j+k}^i. \] (8.13)

Esta última ecuación debe ser nula por consistencia con la ecuación de movimiento \(\varepsilon^{(i)}_a = 0 \). Además, multiplicando \(\varepsilon^{(k)}_{ba} \) por \(e^{(b,j)} \), tenemos

\[e^{(b,j)} \varepsilon^{(k)}_{ba} \delta_{j+k}^i = \sum_{p=1}^{[(D-1)/2]} \lambda_i \alpha_{p-1} (D - 2p) e^{(b,j)}_a \varepsilon^{(p,k)}_{ba} \delta_{j+k}^i. \] (8.14)

la cual también se anula por consistencia con la ecuación \(\varepsilon^{(i)}_{ab} = 0 \).

Al igual que en el caso de la teoría de LL, diferentes maneras de escoger los coeficientes \(\alpha_p \)'s, corresponden en general a diferente teorías, con diferente número de grados de libertad. Es posible elegir los \(\alpha_p \)'s de tal manera que \(\varepsilon^{(i)}_a \) y \(\varepsilon^{(i)}_{ab} \) sean independientes, o bien, elegirlos de tal manera que estos tengan el máximo número de componentes independientes.

8.3 \(D = 2n - 1 \): Gravedad Chern-Simons \(\mathcal{M}_{2n-1} \)

En dimensiones impares, las ecuaciones (8.13) y (8.14) tienen el mismo número de términos. Esto se debe a que el último término de la ec. (8.13) se anula para \(p = (D + 1)/2 = n \). Luego, para \(D = 2n - 1 \) la ec. (8.13) toma la forma

\[D\varepsilon^{(i)}_a = \sum_{p=1}^{[(D-1)/2]} \lambda_i \alpha_{p-1} (D - 2p + 2) (D - 2p + 1) e^{(b,j)}_a \varepsilon^{(p,k)}_{ba} \delta_{j+k}^i. \] (8.15)

De modo que estas ecuaciones no imponen ningún constraint algebraico adicional sobre \(R^{(ab,i)} \) y \(T^{(a,i)} \). De este modo, las dos series \(D\varepsilon^{(i)}_a \) y \(e^{(b,j)} \varepsilon^{(k)}_{ba} \delta_{j+k}^i \) deben ser proporcionales término a término:

\[\alpha_{p-1} (D - 2p + 2) (D - 2p + 1) e^{(b,j)}_a \varepsilon^{(p,k)}_{ba} \delta_{j+k}^i = \gamma \alpha_{p-1} (D - 2p + 2) (D - 2p + 1) e^{(b,j)}_a \varepsilon^{(p,k)}_{ba} \delta_{j+k}^i, \] (8.16)

de donde

\[\gamma \frac{\alpha_{p-1}}{\alpha_p} = \frac{p (D - 2p)}{(D - 2p + 2) (D - 2p + 1)} \] (8.17)
donde $1 \leq p \leq n$ y γ es una constante arbitraria de dimensión $[\text{longitud}]^2$. La solución a esta ecuación viene dada por

$$\alpha_p = \alpha_0 \frac{(2n - 1)(2\gamma)^p}{(2n - 2p - 1)} \binom{n - 1}{p},$$

donde las constantes α_0 y γ están relacionadas a la constante gravitacional y a la constante cosmológica respectivamente en la forma

$$\alpha_0 = \frac{\kappa}{(D - 1)}; \quad \gamma = -\text{sgn}(\Lambda) \frac{l^2}{2},$$

y donde para cualquier dimensión, l es un parámetro de longitud relacionado a la constante cosmológica por

$$\Lambda = \pm \frac{(D - 1)(D - 2)}{2l^2}.$$

Eligiendo los parámetros α_p's como en (8.18), el vielbein expandido y la conexión de spin expandida pueden ser acomodados dentro de una conexión para el álgebra \mathcal{M}_{2n-1},

$$A = \sum_{k=0}^{n-2} \left[\frac{1}{2} \omega_{(ab,2k)} f_{(ab,2k)} + \frac{1}{l} e^{(a_2 k+1)} P_{(a_2 k+1)} \right],$$

permiendo que el lagrangiano (8.1) se convierta en la forma Chern-Simons

$$L_{CS}^{(2n-1)} = \sum_{p=0}^{n-1} l^{2p-2} \frac{\kappa}{2(n-p) - 1} \binom{n-1}{p} \lambda_{\delta 1^{i_1} + \cdots + 1^{2n-1-p}} \varepsilon_{a_1 a_2 \cdots a_{2n-1}} R^{(a_1 a_2) i_1} \cdots R^{(a_{2p-1} a_{2p}) i_p} e^{(a_2 k+1) i p+1} \cdots e^{(a_2 n - 1) i_{2n-1-p}}.$$

Notemos que la $(2n-1)$-forma CS (8.22) entrega la misma información que el lagrangiano [30]

$$L_{CS}^{(2n-1)} = \sum_{k=1}^{n-1} l^{2k-2} c_k \alpha_1 i_1^{i_1 + \cdots + i_n} \delta_{p_1 + q_1}^{i_{k+1}} \cdots \delta^{i_{n-1}}_{p_{n-1-k} + q_{n-1-k}} \varepsilon_{a_1 \cdots a_{2n-1}} R^{(a_1 a_2 i_1)} \cdots R^{(a_{2k-1} a_{2k} i_k) e^{(a_2 k+1) q_1}} e^{(a_2 k+2 q_1)} \cdots e^{(a_{2n-3} p_{n-1-k}) e^{(a_2 n - 2) q_{n-1-k}}} e^{(a_2 n - 1) i_n},$$

donde los α_i's son constantes independientes arbitrarias de dimensión $[\text{longitud}]^{-2n+3}$, y las constantes c_k vienen definidas por

$$c_k = \frac{1}{2(n-k) - 1} \binom{n-1}{k},$$
donde
\[R^{(ab,2i)} = d\omega^{(ab,2i)} + \eta_{cd}\omega^{(ac,2i)}\omega^{(db,2k)}\delta_{j+k}^{i}. \quad (8.25) \]

Así, concluímos que en dimensiones impares la elección de los coeficientes dados por (8.18), nos permiten escribir el lagrangiano (8.1) como una forma Chern-Simons para el álgebra tipo Maxwell \(M_{2n-1} \), denominado lagrangiano de Einstein-Chern-Simons (EChS) en [30]. Notemos además, que el proceso de \(S \)-expansión no modificó los coeficientes \(\alpha_p \) de Ref.[18] para el caso de dimensiones impares.

8.4 \(D = 2n \) : Gravedad tipo Born-Infeld \(\mathcal{L}^\mathcal{M} \)

La variación del lagrangiano con respecto a \(R^{(ab,i)} \) es dada por,
\[
\delta L = \sum_{p=1}^{[\frac{D-1}{2}]} \lambda_i \alpha_p \delta L^{(p,i)}, \quad (8.26)
\]
donde
\[
\delta L^{(p,i)} = l^{D-2p} \delta_l^{i_1+i_2+\ldots+i_D-p} \varepsilon_{a_1a_2\ldots a_D} \left(\delta R^{(a_1a_2,i_1)} \right) \cdots R^{(a_{2p-1}a_{2p},i_p)} e^{(a_{2p+1},i_{p+1})} \cdots e^{(a_{D},i_{D-p})} ,
\]
lo cual se puede escribir como
\[
\frac{\delta L}{\delta R^{(ab,i)}} = \sum_{p=1}^{[\frac{D-1}{2}]} \lambda_i \alpha_p p l^{D-2p} \delta_l^{i_1+i_2+\ldots+i_D-p} \varepsilon_{a_1a_2\ldots a_D} R^{(a_{2p-1}a_{2p},i_p)} \cdots R^{(a_{2p-1}a_{2p},i_{p-1})} e^{(a_{2p+1},i_{p+1})} \cdots e^{(a_{D},i_{D-p})}, \quad (8.27)
\]
lo cual se puede expresar como
\[
\frac{\delta L}{\delta R^{(ab,i)}} = \sum_{p=1}^{[\frac{D-1}{2}]} \lambda_i \alpha_p p T_{ab}^{(p,i)} , \quad (8.29)
\]
Luego, definiendo
\[
T_{ab}^{(p,i)} = \frac{\delta L}{\delta R^{(ab,i)}} = \sum_{p=1}^{[\frac{D-1}{2}]} \lambda_i \alpha_p p T_{ab}^{(p,i)} , \quad (8.29)
\]
con
\[
T_{ab}^{(p,i)} = l^{D-2p} \delta_l^{i_1+i_2+\ldots+i_D-p} \varepsilon_{a_1a_2\ldots a_D} R^{(a_{2p-1}a_{2p},i_p)} \cdots R^{(a_{2p-1}a_{2p},i_{p-1})} e^{(a_{2p+1},i_{p+1})} \cdots e^{(a_{D},i_{D-p})}, \quad (8.30)
\]
y haciendo uso de la identidad de Bianchi, es posible escribir

\[
DT^{(p,i)}_{ab} = l^{2p-2} (D - 2p) \delta^i_{1+...+i_{D-p-1}} \varepsilon_{ab1...i_{D-2}} R^{(a_3 a_4, i_1)} ... R^{(a_{2p-1} a_{2p}, i_{p-1})} \\
\left(D e^{(a_{2p+1}, i_p)} \right) e^{(a_{2p+2}, i_{p+1})} ... e^{(a_{D}, i_{D-p-1})}
\]

y de esta manera, tenemos que

\[
DT^{(i)}_{ab} = \left[\frac{D-1}{2} \right] \sum_{p=1} \lambda_i \alpha_p p^D - 2 (D - 2p) \delta^i_{1+...+i_{D-p-1}} \varepsilon_{ab1...i_{D-2}} R^{(a_3 a_4, i_1)} ... R^{(a_{2p-1} a_{2p}, i_{p-1})} \\
T^{(a_{2p+1}, i_p)} e^{(a_{2p+2}, i_{p+1})} ... e^{(a_{D}, i_{D-p-1})}.
\]

Comparando con las ecuaciones (8.5) y (8.7) vemos que

\[
\varepsilon^{(i)}_{ab} = DT^{(i)}_{ab}
\]

de manera que

\[
DT^{(p,i)}_{ab} = (D - 2p) \varepsilon^{(p,i)}_{ab}
\]

para \(1 \leq p \leq \left[\frac{D-1}{2} \right] \).

Por otro lado, \(T^{(p,i)}_{ab}\) se puede relacionar con \(\varepsilon^{(p,i)}_{a}\) puesto que

\[
\varepsilon^{(p-1,i)}_{a} = l^{2p-2} \delta^i_{1+...+i_{D-p-1}} \varepsilon_{a1...i_{D-2}} R^{(b_1 b_2, i_1)} ... R^{(b_{2p-3} b_{2p-2}, i_{p-1})} e^{(b_{2p-1}, i_{p+1})} ... e^{(b_{D}, i_{D-p-1})}
\]

de modo que es posible escribir

\[
e^{(b,j)} T^{(p,k)}_{ab} \delta^i_{j+k} = \varepsilon^{(p-1,i)}_{a}
\]

para \(1 \leq p \leq \left[\frac{D-1}{2} \right] \). Luego tenemos que

\[
D\varepsilon^{(p-1,i)}_{a} = T^{(b,j)} T^{(p,k)}_{ab} \delta^i_{j+k} - (D - 2p) e^{(b,j)} \varepsilon^{(p,k)}_{ab} \delta^i_{j+k}
\]

Definiendo ahora \(p' = p + 1\) y considerando \(1 \leq p \leq \left[\frac{D-1}{2} \right] \) se tiene

\[
D\varepsilon^{(i)}_{a} = \sum_{p'=2} \left([(D+1)/2] \sum_{p''=2} \lambda_i \alpha_{p''-1} (D - 2p'' + 2) D\varepsilon^{(p'-1,i)}_{a}
\]

82
de modo que

\[D\varepsilon_a^{(i)} = \sum_{p=2}^{[\frac{D+1}{2}]} \lambda_i \alpha_{p-1} (D - 2p + 2) D\varepsilon_a^{(p-1,i)} \]

\[= \sum_{p=2}^{[\frac{D+1}{2}]} \lambda_i \alpha_{p-1} (D - 2p + 2) \left[T^{(b,j)} T^{(p,k)}_{ab} - (D - 2p) e^{(b,j)} e^{(p,k)}_{ab} \right] \delta_{j+k} \]

Así, para \(D = 2n \), tenemos

\[D\varepsilon_a^{(i)} = \lambda_i T^{(b,j)} \sum_{p=1}^{n-1} 2\alpha_{p-1} (n - p + 1) T^{(p,k)}_{ab} \delta_{j+k} \]

\[- \lambda_i \sum_{p=1}^{n-1} 4\alpha_{p-1} (n - p + 1) (n - p) e^{(b,j)} e^{(p,k)}_{ab} \delta_{j+k}. \]

(8.36)

Dicha ecuación se puede comparar con la identidad (8.14)

\[e^{(b,j)} e^{(k)}_{ba} \delta_{j+k} = \lambda_i \sum_{p=1}^{n-1} 2\alpha_{p} (n - p) e^{(b,j)} e^{(p,k)}_{ba} \delta_{j+k} \]

(8.37)

Tanto la ecuación (8.32) como la (8.37) son nulas si \(T^{(a,i)} = 0 \) o \(T^{(i)}_{ab} = 0 \). No obstante, esto representan condiciones muy fuertes para (8.36). En realidad es suficiente con imponer la condición más débil \(T^{(a,j)} T^{(k)}_{ab} = 0 \) y exigir simultáneamente que el segundo término en (8.36) sea proporcional a la serie (8.37). Ahora ambas series poseen el mismo número de términos, de modo que la solución que permite el número máximo de grados de libertad se encuentra al igualar las dos series término a término salvo un factor global.

De este modo, obtenemos la siguiente relación de recurrencia para los \(\alpha_p \)'s:

\[\gamma 4\alpha_{p-1} (n - p + 1) (n - p) e^{(b,j)} e^{(p,k)}_{ab} = 2\alpha_p (n - p) e^{(b,j)} e^{(p,k)}_{ba} \]

la cual se puede escribir como

\[\gamma 2\alpha_{p-1} (n - p + 1) = \alpha_p. \]

(8.38)

para algún \(\gamma \) fijo. La solución a esta relación de recurrencia es

\[\alpha_p = \alpha_0 (2\gamma)^p \binom{n}{p}. \]

(8.39)
Con la elección de estos coeficientes el lagrangiano de Einstein-Lovelock (8.1) es escrito como

$$L_{BI}^{\mathcal{M}_{2n}}(2n) = \sum_{k=1}^{n} l^{2k-2} \frac{1}{2n} \binom{n}{k} \alpha_j \delta^j_{i_1+\ldots+i_k} \delta^{p_1+q_1} \ldots \delta^{p_{n-k}+q_{n-k}}$$

$$\varepsilon_{a_1 \ldots a_{2n}} R^{(a_1 a_2 i_1)} \ldots R^{(a_{2k-1} a_{2k} i_k)} e^{(a_{2k+1} p_1)} e^{(a_{2k+2} q_1)} \ldots e^{(a_{2n-1} p_{n-k})} e^{(a_{2n} q_{n-k})},$$

(8.40)

donde los α_j’s son constantes independientes arbitrarias de dimensión $[\text{longitud}]^{-2n+2}$. Este lagrangiano fue denominado lagrangiano de Einstein-Born-Infeld (EBI) en [31] y es invariante bajo el álgebra $\mathcal{L}_{M_{2n}}$, la cual corresponde a una subálgebra del álgebra tipo Maxwell \mathcal{M}_{2n}.

Así, concluimos que el procedimiento de S-expansión no modifica los coeficientes α_p’s definidos en Ref.[18]. Lo interesante de la acción (8.1) es que a diferencia de la acción de Lanczos-Lovelock, ésta nos permite obtener la acción para Relatividad General en un cierto límite de la constante de acoplamiento l, tanto en dimensiones pares como impares.

Notemos que los lagrangianos de EChS y de EBI (conduciendo a RG en un cierto límite) los cuales son dados por (8.23) y (8.40), respectivamente, corresponden a aquellos lagrangianos de la diagonal en las tablas (7.38) y (7.57). Esta aparente restricción se debe a que hemos elegido el semigrupo a ser $S_{E}^{(D-2)} = \{\lambda_i\}_{i=0}^{D-1}$, es decir, la dimensión D del espacio-tiempo nos restringe a un determinado semigrupo, o sea a una determinada álgebra. Sin embargo, como vimos en el capítulo anterior es posible construir otros lagrangianos $(2p+1)$-dimensionales $L_{CS}^{\mathcal{M}_{2n+1}}(2p+1)$, y $(2p)$-dimensionales $L_{BI}^{\mathcal{M}_{2n}}(2p)$, los cuales también conducen a la dinámica de RG en un cierto límite, siempre que $m \geq p$. Es trivial ver que los lagrangianos (8.23) y (8.40) corresponden al caso $m = p$.

En el siguiente capítulo se construirá el lagrangiano más general en D dimensiones sin asumir la condición de torsión nula. Así, generalizaremos la acción de Einstein-Lovelock, permitiendo términos torsionales. Junto con esto, siguiendo a Ref.[34] haremos un estudio de lo invariantes topológicos asociados a los diferentes lagrangianos $L_{CS}^{\mathcal{M}_{2n+1}}(2p+1)$, y veremos como surgen nuevas posibilidades debido al proceso de S-expansión.
Capítulo 9

Gravedad de Einstein-Lovelock con torsión

La acción de Einstein-Lovelock es vista como una generalización de la acción de Lanczos-Lovelock, puesto que es escrita como una forma CS en dimensiones impares y como una forma tipo BI en dimensiones pares, pero con la interesante propiedad de conducir al lagrangiano de Einstein-Hilbert en un cierto límite de la constante de acoplamiento l.

Análogamente a las Refs.[17],[18], podemos considerar términos torsionales en el lagrangiano y así generalizar el lagrangiano de Einstein-Lovelock, surgiendo muchas nuevas posibilidades [34]. Veremos que esta generalización es posible si asumimos que el lagrangiano es la D-forma más general invariante bajo el álgebra tipo Lorentz L^M, construida a partir del vielbein, la conexión de spin, los campos expandidos $e^{(a,2k+1)}$, $\omega^{(ab,2k)}$ y sus derivadas exteriores. Además, estas D-formas tendrán la misma estructura que (6.7), lo que es deducible puesto que estamos trabajando con álgebras de Lie cuyo origen son las álgebras de Lorentz y AdS.

Por último, en este capítulo realizaremos un estudio en diferentes dimensiones de lo invariante topológicos asociados a los lagrangianos L^M_{CS}, invariantes bajo el álgebra M. Además, mediante la formulación dual de S-expansión será posible establecer una relación entre el lagrangiano invariante de Lorentz en $(2+1)$-dimensiones, el cual depende sólo de la conexión de spin, y el lagrangiano invariante bajo el álgebra M_{2n+1}, el cual depende de la conexión de spin, el vielbein y campos bosónicos extra [34].
9.1 Invariantes bajo \mathcal{L}^M

El lagrangiano de Einstein-Lovelock (8.1) se puede interpretar como la D-forma más general invariante bajo una subálgebra tipo Lorentz \mathcal{L}^M del álgebra M, construida a partir del vielbein, la conexión de spin, los campos expandidos $e^{(a,2k+1)}$, $\omega^{(ab,2k)}$ ($k = 1, \ldots, n - 1$) y sus derivadas exteriores. No obstante, es posible generalizar el lagrangiano de Einstein-Lovelock (8.1) agregando explícitamente torsión al lagrangiano de forma análoga a las Refs.[17, 18].

Las únicas formas invariantes bajo \mathcal{L}^M que se pueden construir aparte de $e^{(a,2k+1)}$, $\omega^{(ab,2k)}$ ($k = 0, \ldots, n - 1$) y sus derivadas exteriores, son $R^{(ab,2k)}$, $T^{(a,2k+1)}$, y productos de ellos. Luego, los invariantes que se pueden construir aparte de la acción propuesta de Einstein-Lovelock, son los siguientes [34]:

$$
R^{(i)}_{A} = \lambda_i \delta^i_{2(k_1+\ldots+k_r)} R_{a_1}^{a_1(2k_1)} \cdots R_{a_2}^{a_2(2k_2)},
$$

$$
V^{(i)}_{A} = \lambda_i \delta^i_{2(k_1+\ldots+k_r+k_{r+1}+k_{r+2}+1)} R_{a_1}^{a_1(2k_1)} \cdots R_{b}^{b(2k_r+1)} \epsilon_{a_1}^{(2k_{r+1}+1)} \epsilon_{b}^{(2k_{r+2}+1)},
$$

$$
T^{(i)}_{A} = \lambda_i \delta^i_{2(k_1+\ldots+k_r+k_{r+1}+k_{r+2}+1)} R_{a_1}^{a_1(2k_1)} \cdots R_{b}^{b(2k_r+1)} T_{a_2}^{(2k_{r+1}+1)} T_{b}^{(2k_{r+2}+1)},
$$

$$
K^{(i)}_{A} = \lambda_i \delta^i_{2(k_1+\ldots+k_r+k_{r+1}+k_{r+2}+1)} R_{a_1}^{a_1(2k_1)} \cdots R_{b}^{b(2k_r+1)} T_{a_3}^{(2k_{r+1}+1)} \epsilon_{b}^{(2k_{r+2}+1)},
$$

donde los λ_i's son constantes arbitrarias del semigrupo $S_E^{(N)} = \{\lambda_i\}_{i=0}^{N+1}$ y N dependerá del álgebra \mathcal{L}^M con la que estemos trabajando. Por ejemplo, si queremos saber las formas invariantes bajo \mathcal{L}^{M_4}, entonces tendremos que $\lambda_i \in S_E^{(2)}$, y si queremos conocer las formas invariantes bajo \mathcal{L}^{M_6} entonces $\lambda_i \in S_E^{(4)}$.

Luego, cualquier lagrangiano invariante bajo \mathcal{L}^M se puede escribir como una combinación lineal de productos de estos invariantes. De esta forma, análogamente a la Ref.[17], tenemos que el lagrangiano es de la forma

$$
L^{(D)} = \sum_{p=0}^{[D/2]} \lambda_p \alpha_p L^{(p,i)}_{E\mathcal{L}} + \sum_j \gamma_j L^{D,(i)}_{A_j},
$$

donde los α's y γ's son constantes. Como podemos ver de (9.2), la primera suma corresponde al lagrangiano de Einstein-Lovelock (8.1) y los índices $A_j = (A_1, \cdots, A_r, B_1, \cdots, B_t, \cdots et c.)$ son tales que $L^{D,(i)}_{A_j}$ sean D-formas,

$$
L^{D,(i)}_{A_j} = R^{(i)}_{A_1} \cdots R^{(i)}_{A_r} T^{(i)}_{B_1} \cdots T^{(i)}_{B_t} C^{(i)}_{C_1} \cdots V^{(i)}_{C_1} K^{(i)}_{D_1} \cdots K^{(i)}_{D_t}.
$$

86
9.2 Gravedad de Lovelock con torsión invariante bajo el álgebra tipo Maxwell \mathcal{M}_{2n+1}

De (9.2), vemos que cuando permitimos términos torsionales en el lagrangiano, tenemos que introducir ciertos coeficientes arbitrarios γ_j. Análogamente a lo que realizamos la Sección 8.3, es posible elegir los coeficientes γ's de tal manera que la invariancia bajo $\mathcal{L}^{\mathcal{M}}$ es ampliada a la simetría de gauge tipo Maxwell \mathcal{M}.

Seguidamente veremos que en $D = 4k$ dimensiones, las únicas D-formas invariantes bajo el álgebra tipo Maxwell \mathcal{M} construidas a partir de $e^{(a,2k+1)}$, $R^{(ab,2k)}$ y $T^{(a,2k+1)}$ ($k = 0, \cdots, n - 1$), son D-formas tipo Pontryagin \mathcal{P}. Dichas formas invariantes pueden ser escritas localmente como la derivada exterior de una $(4k - 1)$-forma,

$$dL_{\mathcal{M}}^{(4k-1)} = \mathcal{P}. \quad (9.4)$$

9.2.1 Ejemplo para $D = 3$

Consideremos un lagrangiano $(2 + 1)$-dimensional invariante bajo el álgebra tipo Maxwell \mathcal{M}_5. De la Ref.[30], sabemos que el álgebra tipo Maxwell \mathcal{M}_5 es obtenida mediante una S-expansión del álgebra AdS.

Siguiendo las definiciones de la Ref. [1], consideremos la S-expansión del álgebra de Lie AdS $\mathfrak{so}(2,2)$ usando $S_E^{(3)}$ como semigrupo abeliano. Después de extraer una subálgebra resonante y realizar una 0_S-reducción, uno encuentra el álgebra tipo Maxwell \mathcal{M}_5, la cual fue identificada como álgebra \mathfrak{B}_5 en la Ref. [30]. Los nuevos generadores son escritos como

$$J_{ab} = \lambda_o \otimes \tilde{J}_{ab}, \quad (9.5)$$
$$Z_{ab} = \lambda_2 \otimes \tilde{J}_{ab}, \quad (9.6)$$
$$P_a = \lambda_1 \otimes \tilde{P}_a, \quad (9.7)$$
$$Z_a = \lambda_3 \otimes \tilde{P}_a. \quad (9.8)$$

La 1-forma conexión de gauge valuada en el álgebra \mathcal{M}_5, es dada por

$$A = \frac{1}{2} \omega^{ab} J_{ab} + \frac{1}{l} e^a P_a + \frac{1}{2} k^{ab} Z_{ab} + \frac{1}{l} h^a Z_a, \quad (9.9)$$
con la 2-forma curvatura asociada

\[F = \frac{1}{2} R^{ab} J_{ab} + \frac{1}{l} T^a P_a + \frac{1}{2} \left(D_\omega k^{ab} + \frac{1}{l^2} e^a e^b \right) Z_{ab} + \frac{1}{l} \left(D_\omega h^a + k^a e^b \right) Z_a. \]

(9.10)

Por otro lado, haciendo uso del teorema VII.2 de la Ref. [1], es posible mostrar que las únicas componentes no nula de un tensor invariante simétrico para el álgebra de Lie \(M_5 \) vienen dadas por

\[\langle J_{ab} J_{cd} \rangle_{M_5} = \alpha_0 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}) ; \]

(9.11)

\[\langle J_{ab} Z_{cd} \rangle_{M_5} = \alpha_2 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}) ; \]

(9.12)

\[\langle P_a P_c \rangle_{M_5} = \alpha_2 \eta_{ac} ; \]

(9.13)

\[\langle J_{ab} P_c \rangle_{M_5} = \alpha_1 \epsilon_{abc} ; \]

(9.14)

\[\langle J_{ab} Z_c \rangle_{M_5} = \alpha_3 \epsilon_{abc} ; \]

(9.15)

\[\langle Z_{ab} P_c \rangle_{M_5} = \alpha_3 \epsilon_{abc} ; \]

(9.16)

donde \(\alpha_0, \alpha_1, \alpha_2, \alpha_3 \) son constantes arbitrarias sin dimensión.

Usando el procedimiento dual de la \(S \)-expansión en términos de las formas de MC [8], encontramos que el lagrangiano CS 3-dimensional invariante bajo el álgebra tipo Maxwell \(M_5 \) es dado por

\[L_{(2+1)}^{M_5} = \frac{k}{l} \varepsilon_{abc} \left[R^{ab} e^c + \frac{1}{3l^2} e^a e^b e^c + R^{ab} h^c + k^{ab} T^c - \frac{1}{2} \left(\omega^{ab} h^c - k^{ab} e^c + \omega^{ab} e^c \right) \right]
+ \frac{\gamma_2}{2} \left[\omega^d \omega^b a + \frac{2}{3} \omega^d \omega^c d k^a + k^a d \omega^b a + 2 \omega^a \omega^b k^c + \frac{2}{l^2} e^a T_a \right] \]

(9.17)

donde hemos elegido \(\alpha_0 = \alpha_2 = \gamma_2 y \alpha_1 = \alpha_3 = \kappa \). La derivada exterior de dicho lagrangiano nos entrega el siguiente polinomio invariante

\[P_{(4)}^{M_5} = \frac{k}{l} \left[\varepsilon_{abc} \left(R^{ab} T^c + 1 \frac{l^2}{2} e^a e^b T^c + R^{ab} \left(D_\omega h^c + k^c d e^d \right) + D_\omega k^{ab} T^c \right) \right]
+ \frac{\gamma_2}{2} \left[R^{ab} R^b a + \frac{2}{l^2} \left(T_a T_a - e^a e^b R_{ab} \right) + 2 R^{ab} D_\omega k^b a \right] \]

88
o bien

\[P_{(4)}^{\mathcal{M}_5} = \frac{\kappa}{l} \left[\epsilon_{abc} \left(R^{ab} T^c + \frac{1}{l^2} e^a e^b T^c + R^{ab} \mathfrak{T}^c + \mathfrak{R}^{ab} T^c \right) \right] + \gamma \frac{2}{l} \left[R^a_b R^b_a + \frac{2}{l^2} (T^a T_a - e^a e^b R_{ab}) + 2 R^a_b \mathfrak{R}^b_a \right] \]

(9.18)

donde hemos definido la 2-forma curvatura para el campo \(k^{ab} \) y la 2-forma torsión expandida como

\[\mathfrak{R}^{ab} = D_a k^{ab}, \]

(9.19)

\[\mathfrak{T}^a = D_a h^a + k^a b e^b. \]

(9.20)

Los parámetros \(\kappa, \gamma \) son constantes arbitrarias cuyo origen radica en la existencia de dos posibles tensores invariantes independientes para el álgebra \(\mathcal{M}_5 \) y que aparecen de forma manifiesta debido al proceso de expansión. No obstante, dependiendo de los valores que adquieran las constantes \(\kappa, \gamma \) se obtendrán teorías para gravedad en tres dimensiones con un contenido físico muy distinto.

Podemos resumir este resultado en la siguiente tabla,

<table>
<thead>
<tr>
<th>Tabla 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D = 3) Lagrangianos Chern-Simons</td>
</tr>
<tr>
<td>(L_{E}^{\mathcal{M}_5})</td>
</tr>
<tr>
<td>(L_{3}^{\text{Lorentz}} = \omega^a_b d \omega^b_a + \frac{2}{3} \omega^a_b \omega^b_a \omega^c_a)</td>
</tr>
<tr>
<td>(L_{3}^{\text{Torsion}} = e^{a} T^a)</td>
</tr>
<tr>
<td>(L_{3}^{\text{Lorentz}} (k) = \omega^a_b d k^b_a + k^a_b d \omega^b_a + 2 \omega^a_b \omega^b_c k^c_a)</td>
</tr>
</tbody>
</table>

donde además de la densidad de Maxwell-Euler \(E_{4}^{\mathcal{M}_5} \) vemos que aparece el usual Pontryagin \(P_4 \), el invariante de Nieh-Yan \(N_4 \) y una densidad tipo Pontryagin \(P_4 (k) \) cuyo origen se debe a los nuevos campos \(k^{ab} \). Notemos también que es posible combinar los invariantes \(P_4, N_4 \) y \(P_4 (k) \) en un invariante para el grupo \(\mathcal{M}_5 \). En efecto, cuando hacemos la elección \(\alpha_0 = \alpha_2 = \gamma_2 \), tenemos que es posible definir

\[F_{AB} F_{AB} = R^a_b R^b_a + \frac{2}{l^2} (T^a T_a - e^a e^b R_{ab}) + 2 R^a_b \mathfrak{R}^b_a, \]

(9.21)

89
el cual será llamado invariante tipo Maxwell-Pontryagin. Además, tenemos que

$$
F^{AB} = \begin{pmatrix}
R^{ab} + (\mathfrak{g}^{ab} + \frac{1}{7} e^a e^b) & \frac{1}{7} T^a + \frac{1}{7} (D_\omega h^a + k^a e^c) \\
-\frac{1}{7} T^b - \frac{1}{7} (D_\omega h^b + k^b e^c) & 0
\end{pmatrix}.
$$

(9.22)

define la curvatura F valuada en el álgebra de Lie \mathcal{M}_5

$$
F = \frac{1}{2} F^{AB} J_{AB} = dA + A^2,
$$

(9.23)
en términos de la conexión

$$
A = \frac{1}{2} W^{AB} J_{AB} = \frac{1}{2} \Omega^{ab} J_{ab} + \frac{1}{7} e^a P_a + \frac{1}{2} k^{ab} Z_{ab} + \frac{1}{7} h^a Z_a,
$$

(9.24)
donde

$$
W^{AB} = \begin{pmatrix}
\Omega^{ab} + k^{ab} & \frac{1}{7} e^a + \frac{1}{7} h^a \\
-\frac{1}{7} e^b - \frac{1}{7} h^b & 0
\end{pmatrix}.
$$

(9.25)

Notemos además que el término torsional acompañando a la constante γ_2 en (9.17) se puede escribir como

$$
W^A_B dW^B_A + \frac{2}{3} W^A_B W^B_C W^C_A
= \omega^a_b d\omega^b_a + \frac{2}{3} \omega^a_b \omega^b_c \omega^c_a + \frac{2}{7} e^a_7 T_a + \omega^a_b d\omega^b_a + k^a_b d\omega^b_a + 2 \omega^a_b \omega^b_c k^c_a
$$

(9.26)
cuyo invariante topológico correspondiente es dado por (9.21).

Veamos ahora cómo cambian estos resultados para el mismo caso de gravedad en 3-dimensiones, pero considerando el álgebra tipo Maxwell \mathcal{M}_7 [34]. En tres dimensiones, esta álgebra es obtenida como una S-expansión resonante reducida del álgebra AdS $\mathfrak{so}(2,2)$, usando $S_E^{(5)} = \{\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6\}$ como semigrupo abeliano.
únicas componentes no nulas de un tensor invariante para el álgebra

Haciendo uso del Teorema VII.2 de la Ref.[1], es posible mostrar que para \(D = 2 + 1 \), las únicas componentes no nulas de un tensor invariante para el álgebra \(M_7 \) vienen dados por

\[
\begin{align*}
\langle J_{ab} J_{cd} \rangle_{M_7} &= \alpha_0 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}) , \\
\langle J_{ab} Z^{(1)}_{cd} \rangle_{M_7} &= \alpha_2 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}) , \\
\langle Z^{(1)}_{ab} Z^{(1)}_{cd} \rangle_{M_7} &= \langle J_{ab} Z^{(2)}_{cd} \rangle_{M_7} = \alpha_4 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}) , \\
\langle P_a P_c \rangle_{M_7} &= \alpha_2 \eta_{ac} , \\
\langle P_a Z^{(1)}_{c} \rangle_{M_7} &= \alpha_4 \eta_{ac} , \\
\langle J_{ab} P_c \rangle_{M_7} &= \alpha_1 \epsilon_{abc} , \\
\langle Z^{(1)}_{ab} P_c \rangle_{M_7} &= \langle J_{ab} Z^{(1)}_{c} \rangle_{M_7} = \alpha_3 \epsilon_{abc} , \\
\langle Z^{(2)}_{ab} P_c \rangle_{M_7} &= \langle Z^{(1)}_{ab} Z^{(1)}_{c} \rangle_{M_7} = \langle J_{ab} Z^{(2)}_{c} \rangle_{M_7} = \alpha_5 \epsilon_{abc} .
\end{align*}
\]

donde \(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4 \) y \(\alpha_5 \) son constantes arbitrarias independientes y sin dimensión.
La 1-forma conexión de gauge A \mathcal{M}_7-valuada, es dada por

$$A = \frac{1}{2} \omega^{ab} \mathcal{J}_{ab} + \frac{1}{t} e^a P_a + \frac{1}{2} k^{(ab,1)} Z_{ab}^{(1)} + \frac{1}{t} h^{(a,1)} Z_a^{(1)} + \frac{1}{2} k^{(ab,2)} Z_{ab}^{(2)} + \frac{1}{t} h^{(a,2)} Z_a^{(2)}, \quad (9.46)$$

con su 2-forma curvatura asociada

$$F = \frac{1}{2} R^{ab} \mathcal{J}_{ab} + \frac{1}{t} T^{a} P_a + \frac{1}{2} \left(D_{\omega} k^{(ab,1)} + \frac{1}{t^2} e^a e^b \right) Z_{ab}^{(1)} + \frac{1}{t} \left(D_{\omega} h^{(a,1)} + k^{a (1)} \right) Z_a^{(1)}$$

$$+ \frac{1}{2} \left(D_{\omega} k^{(ab,2)} + k^{a (1)} \omega_{c (1)} \right) Z_{ab}^{(2)} + \frac{1}{t} \left(D_{\omega} h^{(a,2)} + k^{a (2)} \right) Z_a^{(2)}.$$

(9.47)

Luego, haciendo uso del procedimiento dual de la S-expansión, encontramos que el lagrangiano Chern-Simons 3-dimensional invariante bajo el álgebra \mathcal{M}_7 es dado, módulo término de borde, por [34]

$$L^\mathcal{M}_7 \left(_{2+1} \right) = \kappa \varepsilon_{abc} \frac{1}{t} \left[\left(R^{ab} + \frac{1}{3 t^2} e^a e^b \right) e^c + \left(R^{ab} + \frac{1}{t^2} e^a e^b \right) h^{(c,1)} + R^{ab} h^{(c,2)} + \mathcal{R}^{(ab,1)} e^c \right. \right.$$

$$+ \mathcal{R}^{(ab,1)} h^{(c,1)} + \mathcal{R}^{(ab,2)} e^c$$

$$+ \frac{\gamma_2}{2} \left(L^\text{Lorentz} \left(k^{(1)} \right) + L^\text{Lorentz} \left(k^{(1)} k^{(2)} \right) \right.$$

$$+ \frac{2}{t^2} \left[e_a \mathcal{T}^{(a,1)} + h_a^{(1)} T^a \right] \left(\right).$$

(9.48)

donde hemos definido

$$\mathcal{R}^{(ab,1)} = D_{\omega} k^{(ab,1)}, \quad (9.49)$$

$$\mathcal{R}^{(ab,2)} = D_{\omega} k^{(ab,2)} + k^{a (1)} c^{(1)} k^{b (1)} h^{(c,1)}, \quad (9.50)$$

$$\mathcal{T}^{(a,1)} = D_{\omega} h^{(a,1)} + k^{a (1)} e^c, \quad (9.51)$$

$$L^\text{Lorentz} \left(k^{(1)} \right) = \omega_d k_{a (1)}^b + k_{b (1)}^a \omega_a \omega^b c_k^c + \omega_d k_{a (2)} + k_{b (2)}^a \omega_a \omega^b c_k^c$$

$$+ k_{b (1)}^a \omega_{a (1)}^b c_k^c + 2 \omega_{a (1)}^b c_k^c + 2 \omega_{b (1)}^a c_k^c, \quad (9.52)$$

$$L^\text{Lorentz} \left(k^{(1)} k^{(2)} \right) = \omega_d k_{a (1)}^b + k_{b (2)}^a \omega_a \omega^b c_k^c + \omega_d k_{a (1)}^b + k_{b (2)}^a \omega_a \omega^b c_k^c$$

(9.53)

y donde hemos elegido $\alpha_0 = \alpha_2 = \alpha_4 = \gamma_2$ y $\alpha_1 = \alpha_3 = \alpha_5 = \kappa$. Del lagrangiano (9.48) inmediatamente vemos que al aumentar el orden del álgebra, aparecen nuevos términos que no aparecían en (9.17).
La derivada exterior de (9.48) nos entrega el siguiente polinomio invariante:

\[
P_{(4)}^{M_7} = \kappa \varepsilon^{abc} \frac{1}{l^2} \left[\left(R^{ab} + \frac{1}{l^2} e^a e^b \right) T^c + \left(R^{ab} + \frac{1}{l^2} e^a e^b \right) \bar{\mathbf{T}}^{(c,1)} + \frac{2}{l^2} h^{(a,1)} e^b T^c + R^{ab} \bar{\mathbf{\Omega}}^{(c,2)} \right. \\
+ R^{(ab,1)} e^c \bar{\mathbf{T}}^{(c,1)} + R^{(ab,1)} e^c \bar{\mathbf{T}}^{(c,1)} + R^{(ab,2)} T^c \right] \\
+ \frac{\gamma_2}{2} \left[R^a_b R^b_a + \frac{2}{l^2} (T^a T_a - e^a e^b R_{ab}) + 2 R^a_b \bar{\mathbf{\Omega}}^{(1)} + 2 R^a_b \bar{\mathbf{\Omega}}^{(2)} + R^a_b \bar{\mathbf{\Omega}}^{(1)} \right. \\
\left. + 2 \frac{2}{l^2} \left(2 T^a \bar{\mathbf{T}}^{(1)} - e^a e^b \bar{\mathbf{\Omega}}^{(1)} - 2 e^a h^{(b,1)} R_{ab} \right) \right]
\]

Este resultado nos permite construir la siguiente tabla en la cual se clasifican las distintas formas CS con sus correspondientes invariantes,[34]

<table>
<thead>
<tr>
<th>D = 3 Lagrangianos Chern-Simons</th>
<th>Invariante topológico</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_{E_3}^{M_7})</td>
<td>(E_{4}^{M_7})</td>
</tr>
<tr>
<td>(L_{3}^{Lorentz})</td>
<td>(P_4 = R^a_b R^b_a)</td>
</tr>
<tr>
<td>(L_{3}^{Torsion}) (1)</td>
<td>(N_4 = T^a T_a - e^a e^b R_{ab})</td>
</tr>
<tr>
<td>(L_{3}^{Lorentz}) (2)</td>
<td>(P_4 (k^{(1)}) = 2 R^a_b \bar{\mathbf{\Omega}}^{(1)})</td>
</tr>
<tr>
<td>(L_{3}^{Torsion}) (3)</td>
<td>(P_4 (k^{(2)}) = 2 R^a_b \bar{\mathbf{\Omega}}^{(2)})</td>
</tr>
<tr>
<td>(L_{3}^{Torsion}) (4)</td>
<td>(N_4 (h^{(1)}) = 2 T^a \bar{\mathbf{T}}^{(1)} - e^a e^b \bar{\mathbf{\Omega}}^{(1)} - 2 e^a h^{(b,1)} R_{ab})</td>
</tr>
</tbody>
</table>

Notemos que en la tabla anterior aparecen algunos de los invariantes topológicos asociados a las 3-formas Chern-Simons del ejemplo anterior (Ver Tabla 2). Sin embargo, además de los invariantes tipo Maxwell-Euler y Maxwell-Pontryagin, aparece ahora un invariante tipo Maxwell-Nieh-Yan, el cual no estaba presente en el caso del álgebra \(M_5 \). Análogamente al caso anterior, es posible combinar los invariantes \(P_4, P_4 (k), N_4 \) y \(N_4 (h) \) en un invariante tipo Maxwell-Pontryagin para el grupo \(M_7 \). Así, con la elección \(\alpha_0 = \alpha_2 = \alpha_4 = \gamma_2 \) tenemos que

\[
F_{B}^{A} F_{B}^{A} = R^a_b R^b_a + \frac{2}{l^2} (T^a T_a - e^a e^b R_{ab}) + 2 R^a_b \bar{\mathbf{\Omega}}^{(1)} + 2 R^a_b \bar{\mathbf{\Omega}}^{(2)} + R^a_b \bar{\mathbf{\Omega}}^{(1)} \]

\[
+ \frac{2}{l^2} \left(2 T^a \bar{\mathbf{T}}^{(1)} - e^a e^b \bar{\mathbf{\Omega}}^{(1)} - 2 e^a h^{(b,1)} R_{ab} \right),
\]

(9.54)
donde

\[F_{AB} = \begin{pmatrix}
R^{ab} + \left(R^{(ab,1)} + \frac{1}{T} e^a e^b \right) + \left(R^{(ab,2)} + \frac{1}{T} \left[e^a h^{(b,1)} + h^{(a,1)} e^b \right] \right) & \frac{1}{T} T^a + \frac{1}{T} \mathfrak{T}^{(a,1)} + \frac{1}{T} \mathfrak{T}^{(a,2)} \\
- \frac{1}{T} T^b - \frac{1}{T} \mathfrak{T}^{(a,1)} - \frac{1}{T} \mathfrak{T}^{(a,2)} & 0
\end{pmatrix} \]

y donde hemos definido

\[\mathfrak{T}^{(a,2)} = D_\omega h^{(a,2)} + k^{(2)}_c e^c + k^{(1)}_c h^{(c,1)}. \]

La matriz \(F_{AB} \) define la curvatura \(F \) valuada en el álgebra de Lie \(\mathcal{M}_7 \)

\[F = \frac{1}{2} F_{AB} J_{AB} = dA + A^2, \quad (9.55) \]

en términos de la conexión

\[A = \frac{1}{2} W^{AB} J_{AB} = \frac{1}{2} \omega^{ab} J_{ab} + \frac{1}{T} e^a P_a, \quad (9.56) \]

donde

\[W^{AB} = \begin{pmatrix}
\omega^{ab} + k^{(ab,1)} + k^{(ab,2)} & \frac{1}{T} e^a + \frac{1}{T} h^{(a,1)} + \frac{1}{T} h^{(a,2)} \\
- \frac{1}{T} e^b - \frac{1}{T} h^{(b,1)} - \frac{1}{T} h^{(b,2)} & 0
\end{pmatrix}. \quad (9.57) \]

Nuevamente el lagrangiano torsional 3-dimensional se puede escribir como

\[W^A_B dW^B_A + \frac{2}{3} W^A_B W^B_C W^C_A = L_{3}^{\text{Lorentz}} + \frac{2}{T^2} e_a T^a + L_{3}^{\text{Lorentz}} \left(k^{(1)} k^{(2)} \right) + \frac{2}{T^2} \left[e_a \mathfrak{T}^{(a,1)} + h^{(1)} T^a \right] \quad (9.58) \]

cuya derivada exterior entrega el invariante tipo Maxwell-Pontryagin para el grupo \(\mathcal{M}_7 \).

9.2.2 Ejemplo para \(D = 7 \)

Consideremos ahora una acción Chern-Simons \((6 + 1)\)-dimensional invariante bajo el álgebra tipo Maxwell \(\mathcal{M}_7 \). De la Ref.[35] sabemos que el álgebra \(\mathcal{M}_7 \) se puede obtener como una \(S_E^{(5)} \)-expansión resonante reducida del álgebra AdS \(\mathfrak{so} (6, 2) \).
De [35], sabemos además que el lagrangiano Chern-Simons incluyendo términos torsionales, invariante bajo el álgebra \mathcal{M}_7 es dado por

$$L^{\mathcal{M}_7}_{(6+1)}$$

$$= \alpha_1 l^4 \epsilon_{abcdefg} R^{ab} R^{cd} R^{ef} e^g + \alpha_3 \epsilon_{abcdefg} \left(l^4 R^{ab} R^{cd} R^{ef} h^{(g,1)} + 3 l^4 R^{ab} R^{cd} \mathfrak{A}^{(ef,1)} e^g + l^2 R^{ab} R^{cd} e^f e^g \right)$$

$$+ \alpha_5 \epsilon_{abcdefg} \left(l^4 R^{ab} R^{cd} R^{ef} h^{(g,2)} + 3 l^4 R^{ab} \mathfrak{A}^{(cd,1)} e^g + 3 l^4 R^{ab} R^{cd} \mathfrak{A}^{(ef,2)} e^g \right)$$

$$+ 3 l^4 R^{ab} R^{cd} \mathfrak{A}^{(ef,1)} h^{(g,1)} + 2 l^2 R^{ab} \mathfrak{A}^{(cd,1)} e^f e^g + 3 l^2 R^{ab} R^{cd} e^f e^g h^{(g,1)} + \frac{3}{5} R^{ab} R^{cd} e^f e^g$$

$$+ \alpha_{0(2,2)} l^5 \left[(R^a_b R^b_a) L_3^{\text{Lorentz}} \right]$$

$$+ \alpha_{2(2,2)} l^5 \left[(R^a_b R^b_a) \left(L_3^{\text{Lorentz}} k^{(1)}(1) + \frac{2}{l^2} e^c T^c \right) + 2 \left(R^a_b \mathfrak{A}_a^{(1)} \right) L_3^{\text{Lorentz}} \right]$$

$$+ \frac{2}{l^2} \left(T^a T_a - R^{ab} e_a e_b \right) L_3^{\text{Lorentz}}$$

$$+ \alpha_{4(2,2)} l^5 \left[(R^a_b R^b_a) \left(L_3^{\text{Lorentz}} (k^{(1)} k^{(2)}) + \frac{2}{l^2} e^c T^c \right) + \left(\mathfrak{A}_a^{(1)} \mathfrak{A}_b^{(1)} + 2 R^a_b \mathfrak{A}_a^{(2)} \right) L_3^{\text{Lorentz}} \right]$$

$$+ \frac{2}{l^2} \left(T^a T_a - R^{ab} e_a e_b \right) \left(L_3^{\text{Lorentz}} (k^{(1)} k^{(2)}) + \frac{2}{l^2} e^c T^c \right)$$

$$+ \frac{2}{l^2} \left(2 T^a \mathfrak{g}_a^{(1)} - 2 R^{ab} e_a h^{b(1)} - \mathfrak{g}^{(ab,1)} e_a e_b \right) L_3^{\text{Lorentz}}$$

$$+ \alpha_{0(4)} l^5 L_7^{\text{Lorentz}} + \alpha_{2(4)} l^5 \left[L_7^{\text{Lorentz}} (k^{(1)}) + \frac{1}{l^2} T^a R^a_b R^b_c e^c \right]$$

$$+ \alpha_{4(4)} l^5 \left[L_7^{\text{Lorentz}} (k^{(1)} k^{(2)}) \right]$$

$$+ \frac{4}{l^2} \left(T^a R^a_b R^b_c e^{(1)} + \mathfrak{g}_a^{(1)} R^a_b R^b_c e^c + T_a R^a_b \mathfrak{A}_a^{(1)} e^c + T_a \mathfrak{A}_a^{(1)} R^a_c e^c \right)$$

$$+ \frac{1}{l^4} \left[2 \left(R^{ab} e_a e_b + T^a T_a \right) T^c e_c \right]. \quad (9.59)$$

Con el propósito de hacer un estudio de los invariantes topológicos y puesto que los α’s son constantes arbitrarias independientes de dimensión $[\text{longitude}]^{-5}$, es conveniente elegir $\alpha_{0(2,2)} = \alpha_{2(2,2)} = \alpha_{4(2,2)} = l^{-5} \gamma_{2,2}$, $\alpha_{0(4)} = \alpha_{2(4)} = \alpha_{4(4)} = l^{-5} \gamma_4$ y $\alpha_1 = \alpha_3 = \alpha_5 = l^{-5} \kappa$. Así, la derivada exterior del término proporcional a $\kappa (L^M_{E (7)})$, nos permite obtener
el invariante tipo Maxwell-Euler $E_{(8)}^{M}$ para el álgebra M_{7},

$$
E_{(8)}^{M} = \frac{\kappa}{l} \epsilon_{abcdefg} \left(R^{ab}_{\;\;cd} R^{ef}_{\;\;tg} + 3 R^{ab}_{\;\;cd} R^{ef}_{\;\;tg} M^{(e,f,1)} + 3 R^{ab}_{\;\;cd} M^{(c,d,1)} M^{(e,f,1)} T_{g} \right) + 3 R^{ab}_{\;\;cd} R^{ef}_{\;\;tg} \mathfrak{R}^{(e,f,1)} (g,1) + 3 R^{ab}_{\;\;cd} R^{ef}_{\;\;tg} \mathfrak{R}^{(e,f,1)} (g,2) + 3 R^{ab}_{\;\;cd} R^{ef}_{\;\;tg} \mathfrak{R}^{(e,f,2)} T_{g} + 3 R^{ab}_{\;\;cd} e^{c} e^{d} T_{g} + \frac{3}{l} R^{ab}_{\;\;cd} e^{c} e^{d} h^{(f,1)} T_{g}
$$

Por otro lado, considerando el término proporcional a $\gamma_{2,2}$, tenemos que su derivada exterior nos entrega el siguiente invariante tipo Maxwell-Pontryagin

$$
P_{M_{7}}^{(\{2,2\})} = \left(R^{a}_{\;\;b} R^{b}_{\;\;a} \right)^{2} + 4 \left(R^{a}_{\;\;b} R^{b}_{\;\;a} \right) \left(R^{c}_{\;\;d} \mathfrak{R}^{(1)} \right) + 2 \left(R^{a}_{\;\;b} R^{b}_{\;\;a} \right) \left(\mathfrak{R}^{(1)} \mathfrak{R}^{(1)} + 2 R^{e}_{\;\;d} \mathfrak{R}^{(2)} \right)
$$

Por último, considerando la derivada exterior del último término proporcional a γ_{4}, tenemos que

$$
P_{M_{7}}^{(\{4\})} = \left[R^{a}_{\;\;b} R^{b}_{\;\;c} R^{c}_{\;\;d} R^{d}_{\;\;a} + 4 R^{a}_{\;\;b} R^{b}_{\;\;c} R^{e}_{\;\;d} \mathfrak{R}^{(1)} + 6 R^{a}_{\;\;b} R^{b}_{\;\;c} \mathfrak{R}^{(1)} \mathfrak{R}^{(1)} + 4 R^{a}_{\;\;b} R^{b}_{\;\;c} R^{d}_{\;\;a} \right] - \frac{4}{l^{2}} R^{a}_{\;\;b} R^{b}_{\;\;c} R^{c}_{\;\;d} T_{a} + \frac{8}{l^{2}} R^{a}_{\;\;b} R^{b}_{\;\;c} \mathfrak{R}^{(1)} (c) T_{c} + \frac{8}{l^{2}} R^{a}_{\;\;b} R^{b}_{\;\;c} \mathfrak{R}^{(1)} T_{c} + \frac{8}{l^{2}} R^{a}_{\;\;b} R^{b}_{\;\;c} \mathfrak{R}^{(1)} (c) T_{c} - \frac{2}{l^{2}} \left(e_{b} R^{a}_{\;\;c} \right)^{2}
$$

Este resultado nos permite construir las siguientes tablas en las cuales se clasifican las distintas 7-formas CS con sus correspondientes invariantes.
Tabla 4

<table>
<thead>
<tr>
<th>$D = 7$ Lagrangianos Chern-Simons</th>
<th>Invariantes topológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L^\mathbb{M}_7$ (7)</td>
<td>$E^\mathbb{M}_7$</td>
</tr>
<tr>
<td>$(R^a_b R^b_a) L^\text{Lorentz}$</td>
<td>$(P^2_4)^2 = (R^a_b R^b_a)^2$</td>
</tr>
<tr>
<td>$(R^a_b R^b_a) e_c T^c$</td>
<td>$P_4 N_4 = (R^a_b R^b_a) (T^a T_a - e^a c^b R_{ab})$</td>
</tr>
<tr>
<td>$(T^a T_a - R^{ab} e_a e_b) (e_c T^c)$</td>
<td>$(N_4)^2$</td>
</tr>
<tr>
<td>$(R^a_b R^b_a) L^\text{Lorentz} (k^{(1)})$</td>
<td>$P_4 P_4 (k^{(1)}) = 2 (R^a_b R^b_a) R^a_b \mathcal{R}^{(1)}_a$</td>
</tr>
<tr>
<td>$(R^a_b R^b_a) L^\text{Lorentz} (k^{(1)} k^{(2)})$</td>
<td>$P_4 P_4 (k^{(1)} k^{(2)}) = (R^a_b R^b_a) \left(\mathcal{R}^{(1)}_d \mathcal{R}^{d (1)}_c + 2 R^c_d \mathcal{R}^{d (2)}_c \right)$</td>
</tr>
<tr>
<td>$(R^a_b R^b_a) (e_c e^{(1)}_c + h^{(1)}_c T^c)$</td>
<td>$P_4 N_4 (h^{(1)})$</td>
</tr>
<tr>
<td>$(R^a_b \mathcal{R}^{(1)}_a (L^\text{Lorentz} (k^{(1)}))$</td>
<td>$(P_4 (k^{(1)}))^2 = 2 (R^a_b \mathcal{R}^{(1)}_a)^2$</td>
</tr>
<tr>
<td>$(R^a_b \mathcal{R}^{(1)}_a (L^\text{Lorentz} (k^{(1)}))$</td>
<td>$P_4 (k^{(1)}) N_4 = (R^a_b \mathcal{R}^{(1)}_a (T^c T_c - R^d e_d e_d)$</td>
</tr>
</tbody>
</table>

Tabla 5

<table>
<thead>
<tr>
<th>$D = 7$ Lagrangianos Chern-Simons</th>
<th>Invariantes topológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^Lorentz_7</td>
<td>$P_8 = R^a_b R^b_a R^c_d R^d_a$</td>
</tr>
<tr>
<td>$L^\text{Lorentz}_7 (k^{(1)})$</td>
<td>$P_8 (k^{(1)}) = 4 R^a_b R^b_a R^c_d \mathcal{R}^{d (1)}_a$</td>
</tr>
<tr>
<td>$L^\text{Lorentz}_7 (k^{(1)} k^{(2)})$</td>
<td>$P_8 (k^{(1)} k^{(2)}) = 6 R^a_b R^b_a \mathcal{R}^{c (1)}_d \mathcal{R}^{d (1)}_a$</td>
</tr>
<tr>
<td>$L^\text{Torsión}_7$</td>
<td>$(T^2_2 - V^2_3 - 4 R^2_1 R^2_0 - V^2_1 V^2_1$</td>
</tr>
<tr>
<td>$+ (R^{ab} e_a e_b + T^a T_a) T^c e_c$</td>
<td>$+ T^2_0 T^2_0 = T_a R^a_b R^b_c T^c - e_a R^a_b R^b_e R^c_d e^d$</td>
</tr>
<tr>
<td>$+ 4 T^c_d e^d e_a T^a - (e_b R^b_e a)^2 + (T^2_a T^2_a)^2$</td>
<td></td>
</tr>
<tr>
<td>$L^\text{Torsión}_7 (1)$</td>
<td>$2 T^2_2 - 2 V^2_3 - 2 V^2_1 V^2_1$</td>
</tr>
<tr>
<td>$+ \Sigma^{(1)}_a R^a_b R^b_c e^c + T^a_a R^b_a \mathcal{R}^{(1)}_c e^c$</td>
<td>$- V^2_3 (1) = T^2_a R^a_b R^b_c \Sigma^{(1)}_c - e_a R^a_b R^b_c R^c_d h^{(d,1)}$</td>
</tr>
<tr>
<td>$+ T^a_a \mathcal{R}^{(1)}_a R^b_a e^c$</td>
<td>$+ 2 T^2_a R^a_b \mathcal{R}^{(1)}_a T^c - 2 e_a R^a_b R^b c \mathcal{R}^{d (1)}_c e^d$</td>
</tr>
<tr>
<td>$+ e_a R^a_b \mathcal{R}^{(1)}_a R^c_d e^d$</td>
<td></td>
</tr>
</tbody>
</table>

donde $T^{(1)}_2$, $V^{(1)}_3$, $V^{(1)}_3$, etc. vienen dadas por las expresiones (9.1).
Observemos que en cada dimensión espaciotiempo, a medida que aumentamos el orden del álgebra se tiene que el número de invariantes crece drásticamente. Además, notemos que es posible combinar los distintos invariantes (sin considerar el invariante tipo Euler) en un invariante tipo Maxwell-Pontryagin para el grupo \mathcal{M}_7. Así, eligiendo $\alpha_{0(2,2)} = \alpha_{2(2,2)} = l^{-5}\gamma_{2,2}$ y $\alpha_{0(4)} = \alpha_{2(4)} = \alpha_{4(4)} = l^{-5}\gamma_{4}$ tenemos que

\[
(F^A_B F^B_A) (F^C_D F^D_C) = \mathcal{P}^{\mathcal{M}_7}_{(8) \{2,2\}},
\]

\[
F^A_B F^B_C F^C_D F^D_A = \mathcal{P}^{\mathcal{M}_7}_{(8) \{4\}}.
\]

con

\[
F^{AB} = \begin{pmatrix}
R^{ab} + (\mathcal{R}^{(ab,1)} + \frac{1}{l^5} e^a e^b) + (\mathcal{R}^{(ab,2)} + \frac{1}{l^5} [e^a h^{(b,1)} + h^{(a,1)} e^b]) & \frac{1}{l^5} T^a + \frac{1}{l^5} \Sigma^{(a,1)} + \frac{1}{l^5} \Sigma^{(a,2)} \\
-\frac{1}{l^5} T^b - \frac{1}{l^5} \Sigma^{(a,1)} - \frac{1}{l^5} \Sigma^{(a,2)} & 0
\end{pmatrix}
\]

Del estudio anterior podemos apreciar que a medida que aumentamos tanto la dimensión del espacio-tiempo, como la del álgebra, el número de términos en los lagrangianos y por ende la cantidad de invariantes, crece radicalmente. Sin embargo, podemos identificar un patrón que se repite cada $D = 4k - 1$ dimensiones. En efecto, los resultados obtenidos nos permiten generalizar el teorema de la Ref. [18] para el caso del álgebra \mathcal{M}, como veremos a continuación.

9.2.3 Generalización a $D = 4k - 1$

De manera similar a lo que sucede cuando tenemos invariancia AdS (ver Sección 6.3.3), podemos generalizar los resultados anteriores a mayores dimensiones. En efecto, el lagrangiano más general en $(4k - 1)$-dimensiones y que es invariante bajo el álgebra tipo Maxwell \mathcal{M} es dado por

\[
L^\mathcal{M}_{4k-1} - \kappa L^\mathcal{M}_E 4k-1 + \gamma\{n_j\} L^\mathcal{M}_{\{n_j\} 4k-1} (9.65)
\]

donde $dL^\mathcal{M}_{\{n_j\} 4k-1} = P_{n_1...n_s}$, con $\sum_j n_j = 4k$. A diferencia de lo que ocurre en el caso de dimensiones pares (ver siguiente sección), estos lagrangianos no son términos de bordes y por lo tanto, tienen dinámica propia.

De esta manera, los resultados anteriores nos permiten enunciar el siguiente teorema [34]:
Teorema 11: En dimensiones impares, existen dos familias de lagrangianos gravitacionales de primer orden \(L(e^{(2k+1)},\omega^{(2k)}) \), invariants bajo transformaciones locales \(\mathcal{M} \):

- La forma Maxwell-Euler-Chern-Simons \(L_E^{(2n-1)} \), en \(D = 2n - 1 \). Su derivada exterior nos entrega la densidad de Maxwell-Euler en \(2n \) dimensiones.

- Las formas Maxwell-Pontryagin-Chern-Simons \(L_P^{(4k-1)} \), en \(D = 4k - 1 \). Sus derivadas exteriores nos entregan las densidades de Maxwell-Pontryagin \(\mathcal{P}_M^{(2n)} \) en \(4k \) dimensiones.

Una importante observación es que no todos los lagrangianos \(L_E^{(2n-1)} \) contienen al lagrangiano de Einstein-Hilbert. En efecto sólo cuando consideramos el caso particular de invariancia \(\mathcal{M}_{2n-1} \) para el lagrangiano \(L_E^{(2n-1)} \), entonces éste es identificado con el lagrangiano de Einstein-Chern-Simons (8.23). Más aún, las formas de Maxwell-Euler-Chern-Simons \(L_E^{2p-1} \) conducirán al lagrangiano de EH en un cierto límite, si y sólo si, \(p \geq n \), como se puede ver claramente de (7.38).

9.2.4 Ejemplo para dimensiones pares

En \(D = 4 \) dimensiones, las únicas 4-formas invariantes bajo el álgebra \(\mathcal{L}_M^4 \) que pueden ser construidas con las consideraciones anteriores son

\[
\begin{align*}
E_4 &= \varepsilon_{abcd} R^{ab} R^{cd} \\
L_{EH} &= \varepsilon_{abcd} R^{ab} e_c \epsilon^d \\
E_4^{(k)} &= \varepsilon_{abcd} R^{ab} R^{cd} \\
R_2^{(0)} &= R^a_b R_a^b \\
R_2^{(2)} &= \mathcal{R}^a_b R_a^b \\
V_1^{(2)} &= R^{ab} e_a e_b \\
T_0^{(2)} &= T^a T_a
\end{align*}
\]

(9.66)

donde hemos omitido las constantes \(\lambda_i \) en las expresiones (9.1). Esto es posible debido a que las constantes \(\lambda_i \) son los elementos del semigrupo que estamos usando, y por lo tanto, en
(9.1) sólo nos ayudan a diferenciar las diferentes posibilidades que existen para cada forma invariante dependiendo del semigrupo que estamos usando.

Los tres primero términos en (9.66) pueden ser combinados dando lugar al lagrangiano de Einstein-Born-Infeld en cuatro dimensiones, el cual es invariante bajo \mathcal{L}^{M_4}, pero no bajo \mathcal{M}_4. Además, las 4-formas $R_2^{(0)}$ y $R_2^{(2)}$ son invariantes topológicos (tipo Pontryagin). Notemos también que los últimos dos términos en (9.66) pueden ser combinados en un invariante topológico, la forma de Nieh-Yan

$$N_4 = T_0^{(2)} - V_1^{(2)} = T^a T_a - R^{ab} e_a e_b$$

(9.67)

Cabe destacar que las formas $R_2^{(0)}, V_1^{(2)}$ y $T_0^{(2)}$ pueden combinarse y formar el invariante de Maxwell-Pontryagin para el álgebra \mathcal{M}_4,

$$F^A_B F^B_A = R^a_b R^b_a + 2 \left(T^a T_a - e^a e^b R_{ab} \right) + 2 R^a_b \mathcal{R}^b_a$$

(9.68)

donde

$$F^{AB} = \begin{pmatrix}
R^{ab} + (\mathcal{R}^{ab} + \frac{1}{2} e^a e^b) & \frac{1}{4} T^a \\
-\frac{1}{4} T^b & 0
\end{pmatrix}.$$

(9.69)

La forma (9.68) es el único invariante \mathcal{M}_4 construido a partir del vierbein, la conexión de spin, el campo de materia k^{ab} y sus derivadas exteriores, por lo que concluimos que no es posible construir teorías para gravedad invariantes bajo \mathcal{M}_4 en cuatro dimensiones.

Podemos extender este resultado a todas las dimensiones pares y decir que no existen teorías de gauge torsionales invariantes bajo \mathcal{M}_{2n} en dimensiones pares.
9.3 Invariantes de Pontryagin y de Euler

En esta sección, siguiendo a [34] mostraremos que es posible establecer una relación entre el lagrangiano invariante de Lorentz, que depende sólo de la conexión de spin y el lagrangiano obtenido para el álgebra \(\mathcal{M}_{2n+1} \).

De este modo, mostraremos que mediante el procedimiento dual de la \(S \)-expansion [8] es posible obtener los invariante tipo Maxwell-Euler y Maxwell-Pontryagin a partir de una densidad Pontryagin.

Consideremos primero el álgebra de Lorentz \((2 + 1)\)-dimensional \(\mathfrak{L} \),

\[
[J_{ab}, J_{cd}] = \eta_{cb} J_{ad} - \eta_{ca} J_{bd} + \eta_{db} J_{ca} - \eta_{da} J_{cb}
\]

(9.70)
y sean además la 1-forma conexión de gauge \(\mathfrak{L} \)-valuada \(A \) y su 2-forma curvatura \(F \) asociada, dadas por

\[
A = \frac{1}{2} \omega^{ab} J_{ab},
\]

(9.71)
\[
F = \frac{1}{2} R^{ab} J_{ab},
\]

(9.72)

Luego, el lagrangiano para el álgebra de Lorentz \(\mathfrak{L} \) viene dado por

\[
L^{\text{Lorentz}}_3 = \omega^a \omega^b J_{ab} + \frac{2}{3} \omega^a \omega^b \omega^c J_{abc},
\]

(9.73)
el cual es obtenido directamente de la expresión

\[
L^{\text{Lorentz}}_3 = 2 \left< A dA + \frac{2}{3} A^3 \right>,
\]

(9.74)
donde el único tensor invariante simétrico de rango dos no nulo para el álgebra \(\mathfrak{L} \) viene dado por

\[
\langle J_{ab} J_{cd} \rangle_{\mathfrak{L}} = \eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}.
\]

(9.75)

Por otro lado, el lagrangiano \((2 + 1)\)-dimensional para el álgebra \(\mathcal{M}_5 \)

\[
L^{\text{5CS}}_{(2+1)} = \frac{\alpha_1}{l} \epsilon_{abc} \left[R^{ab} e^c - d \left(\frac{1}{2} \omega^{ab} e^c \right) \right]
\]

\[+ \frac{\alpha_3}{l} \epsilon_{abc} \left[\frac{1}{3l^2} e^a e^b e^c + R^{ab} h^c + k^{abc} T_{ac} - \frac{1}{2} d \left(\omega^{ab} h^c - k^{abc} \right) \right]
\]

101
requiere que consideremos el álgebra \mathcal{M}_5, con la 1-forma conexión de gauge

$$A = \frac{1}{l} e^a P_a + \frac{1}{2} \omega^{ab} J_{ab} + \frac{1}{l} h^a Z_a + \frac{1}{2} k^{ab} Z_{ab}. \quad (9.76)$$

y la 2-forma curvatura asociada

$$F = \frac{1}{2} R^{ab} J_{ab} + \frac{1}{l} T^a P_a + \frac{1}{2} \left(D_\omega k^{ab} + \frac{1}{l^2} e^a e^b \right) Z_{ab} + \frac{1}{l} \left(D_\omega h^a + k^a b e^b \right) Z_a. \quad (9.77)$$

Antes de iniciar la S-expansión del álgebra de Lorentz es útil definir

$$J^a = -\frac{1}{2} e^{abc} J_{bc}, \quad \omega_a = -\frac{1}{2} \epsilon_{abc} \omega^{bc},$$

de modo que

$$A = \omega_a J^a, \quad F = F_a J^a. \quad (9.78)$$

con

$$F_a = \frac{1}{2} \epsilon_{abc} R^{bc} = d \omega_a - \frac{1}{2} \eta_{abc} \epsilon^{bcd} \omega^c \omega^d. \quad (9.79)$$

Consideremos ahora la $S_E^{(3)}$ expansión reducida del álgebra de Lorentz. Sabemos que el semigrupo $S_E^{(3)} = \{\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ está dotado del siguiente producto:

$$\lambda_\alpha \lambda_\beta = \begin{cases}
\lambda_{\alpha+\beta} & \text{si } \alpha + \beta \leq 3 \\
\lambda_{N+1} & \text{si } \alpha + \beta > 3
\end{cases} \quad (9.80)$$

con $\lambda_4 = 0$, el elemento cero del semigrupo.

Luego, de forma análoga a la Ref.[8] es posible definir la conexión de spin y la 2-forma curvatura S-expandida como

$$\omega_a = \lambda_0 \omega_a^0 + \lambda_1 \omega_a^1 + \lambda_2 \omega_a^2 + \lambda_3 \omega_a^3, \quad (9.81)$$

$$F_a = \lambda_0 F_a^0 + \lambda_1 F_a^1 + \lambda_2 F_a^2 + \lambda_3 F_a^3. \quad (9.82)$$

donde hemos introducido

$$\omega_a^0 = \omega_a, \quad \omega_a^2 = k_a, \quad \omega_a^1 = \frac{1}{l} e_a, \quad \omega_a^3 = \frac{1}{l} h_a \quad (9.83)$$

102
y donde

\[
F_a^0 = d\omega_a^0 - \frac{1}{2} \eta_{\alpha \beta \epsilon} \epsilon^{bcd} (\omega_c^0 \omega_d^0),
\]

(9.84)

\[
F_a^1 = d\omega_a^1 - \eta_{\alpha \beta \epsilon} \epsilon^{bcd} (\omega_c^0 \omega_d^1),
\]

(9.85)

\[
F_a^2 = d\omega_a^2 - \frac{1}{2} \eta_{\alpha \beta \epsilon} \epsilon^{bcd} (\omega_c^0 \omega_d^2 + \omega_c^2 \omega_d^0 + \omega_c^1 \omega_d^1),
\]

(9.86)

\[
F_a^3 = d\omega_a^3 - \eta_{\alpha \beta \epsilon} \epsilon^{bcd} (\omega_c^0 \omega_d^3 + \omega_c^2 \omega_d^1),
\]

(9.87)

De este modo,

\[
F_a^0 = -\frac{1}{2} \epsilon_{\alpha \beta \epsilon} R^{\beta \epsilon}, \quad F_a^1 = \frac{1}{l} T_\alpha
\]

(9.88)

\[
F_a^2 = -\frac{1}{2} \epsilon_{\alpha \beta \epsilon} \left(D_\omega h^{\beta \epsilon} + \frac{1}{l^2} e^b e^c \right)
\]

(9.89)

\[
F_a^3 = \frac{1}{l} \left(D_\omega h^a + k_{ab} e^b \right)
\]

(9.90)

donde se ha identificado \(e^a \) con el vielbein, \(R^{ab} \) con la curvatura de Lorentz, \(T_\alpha \) con la torsión, y \(k_{ab} \) y \(h^a \) con campos de "materia" bosónica.

Construyamos ahora el lagrangiano \(S_{E}^{(3)} \)-expandido reducido. Para ello recordemos que una de las ventajas del método de \(S \)-expansión es que nos permite obtener los tensores invariantes del álgebra \(S \)-expandida en términos de un tensor invariante para el álgebra original. Usando el Teorema VII.2 de la Ref.[1], se tiene que las únicas componentes no nulas de un tensor invariante simétrico para el álgebra \(M_5 \) son

\[
\langle J_{ab} J_{cd} \rangle = \alpha_0 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}),
\]

(9.91)

\[
\langle J_{ab} Z_{cd} \rangle = \alpha_2 (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}),
\]

(9.92)

\[
\langle P_a P_c \rangle = \alpha_2 \eta_{ac},
\]

(9.93)

\[
\langle J_{ab} P_c \rangle = \alpha_1 \epsilon_{abc},
\]

(9.94)

\[
\langle J_{ab} Z_c \rangle = \alpha_3 \epsilon_{abc},
\]

(9.95)

\[
\langle Z_{ab} P_c \rangle = \alpha_3 \epsilon_{abc}.
\]

(9.96)

donde \(\alpha_0, \alpha_1, \alpha_2 \) y \(\alpha_3 \) son constantes arbitrarias y sin dimensión.

Utilizando los tensores invariantes (9.91 – 9.96) en la expresión general para un lagrangiano Chern-Simons, y eligiendo \(\alpha_0 = \alpha_2 = \gamma_2 \) y \(\alpha_1 = \alpha_3 = \kappa \) encontramos el siguiente
lagrangiano

\[L_{CS}^{M_5} (2+1) = \frac{\kappa}{l} \varepsilon_{abc} \left[\left(R^{ab} + \frac{1}{3l^2} e^a e^b \right) e^c + R^{ab} h^c + k^{ab} T^c - \frac{1}{2} d \left(\omega^{ab} h^c - k^{ab} e^c + \omega^{ab} e^c \right) \right] \]

\[+ \frac{\gamma_2}{2} \left[\omega^i_a d\omega^b_a + \frac{2}{3} \omega^i_a \omega^b_a \omega^c + \frac{2}{3} e^a d k^b_a + k^i_a d \omega^b_a + 2 \omega^i_a \omega^b_a \right] \]

(9.97)

cuyo invariante topológico es dado por

\[P_{(4)}^{M_5} = \frac{\kappa}{l} \left[\epsilon_{abc} \left(R^{ab} T^c + \frac{1}{3} e^a e^b T^c + R^{ab} \left(D^b \h^c + k^b e^c \right) \right) \right] \]

\[+ \frac{\gamma_2}{2} \left[R^a_b R^b_a + \frac{2}{l^2} \left(T^a T_a - e^a e^b R_{ab} \right) \right] \]

Tenemos así dos términos independientes, uno proporcional a \(\gamma_2 \), el cual corresponde al lagrangiano cuya derivada nos entrega un invariante tipo Maxwell-Pontryagin, mientras que el término proporcional a \(\kappa \) contiene el lagrangiano de Einstein Hilbert y además, su derivada exterior nos entrega un invariante tipo Maxwell-Euler. Notemos que la presencia de términos torsionales extras en el lagrangiano aparecen para asegurar la \(M_5 \)-invariancia.

Así, hemos mostrado que es posible establecer una relación entre el lagrangiano invariante de Lorentz, que depende sólo de la conexión de spin y el lagrangiano obtenido para el álgebra \(M_5 \). No obstante, es posible generalizar este resultado para todas las álgebras tipo Maxwell \(M_{2n+1} \).

El lagrangiano \((2+1)\)-dimensional invariante bajo el álgebra \(M_{2n+1} \), módulo término de borde, se puede escribir como

\[L_{CS}^{M_{2n+1}} (2+1) = \sum_{i,k=0}^{n-1} \alpha_j \delta_{2i+2k+1} \delta_{p+q+1} \varepsilon_{abc} \left[R^{(ab,2i)} + \frac{1}{3l^2} e^{(a,2p+1)} e^{(b,2q+1)} \right] \frac{e^{(c,2k+1)}}{l}. \]

(9.98)

y es obtenido a partir de

\[L_{CS}^{M_{2n+1}} (2+1) = \left\langle A dA + \frac{2}{3} A^3 \right\rangle, \]

(9.99)

donde el único tensor invariante simétrico de rango dos no nulo para el álgebra \(M_{2n+1} \) viene dado por

\[\left\langle J_{(ab,2i)} P_{(c,2j+1)} \right\rangle = \alpha_k \delta_{2i+2j+1} \varepsilon_{abc}. \]

(9.100)
Este lagrangiano requiere que consideremos el álgebra \mathcal{M}_{2n+1}, con la 1-forma conexión de gauge

$$A = \sum_{k=0}^{n-1} \left[\frac{1}{2} \omega^{(ab,2k)} J_{(ab,2k)} + \frac{1}{l} e^{(a,2k+1)} P_{(a,2k+1)} \right],$$

(9.101)
y la 2-forma curvatura asociada $F = dA + A^2$

$$F = \sum_{k=0}^{n-1} \left[\frac{1}{2} F^{(ab,2k)} J_{(ab,2k)} + \frac{1}{l} F^{(a,2k+1)} P_{(a,2k+1)} \right],$$

(9.102)
donde

$$F^{(ab,2k)} = d\omega^{(ab,2k)} + \eta_{cd} \omega^{(ac,2i)} \omega^{(db,2j)} \delta_{i+j}^k + \frac{1}{l^2} e^{(a,2i+1)} e^{(b,2j+1)} \delta_{i+j+1}^k,$$

(9.103)
$$F^{(a,2k+1)} = d e^{(a,2k+1)} + \eta_{bc} \omega^{(ab,2i)} e^{(c,2j)} \delta_{i+j}^k.$$

(9.104)

Consideremos ahora la $S_{E}^{(2n-1)}$-expansión reducida del álgebra de Lorentz. Sabemos que el semigrupo $S_{E}^{(2n-1)} = \{\lambda_0, \lambda_1, \ldots, \lambda_{2n}\}$ está dotado del siguiente producto:

$$\lambda_\alpha \lambda_\beta = \begin{cases}
\lambda_{\alpha+\beta} & \text{si } \alpha + \beta \leq 2n - 1 \\
\lambda_{2n} & \text{si } \alpha + \beta > 2n - 1
\end{cases}$$

(9.105)
donde $\lambda_{2n} = 0_s$ es el elemento cero del semigrupo.

Luego, es posible definir la conexión de spin y la curvatura S-expandidas como

$$\omega_a = \lambda_0 \omega_a^0 + \lambda_1 \omega_a^1 + \lambda_2 \omega_a^2 + \cdots + \lambda_{2n-1} \omega_a^{2n-1};$$

(9.106)
$$F_a = \lambda_0 F_a^0 + \lambda_1 F_a^1 + \lambda_2 F_a^2 + \cdots + \lambda_{2n-1} F_a^{2n-1}. $$

(9.107)
donde hemos introducido

$$\omega_a^0 = \omega_a, \quad \omega_a^{2i} = h_a^{(i)} \quad \omega_a^1 = \frac{1}{l} e_a, \quad \omega_a^{2j+1} = \frac{1}{l} h_a^{(j)} $$

(9.108)

con $i, j = 1, \ldots, n - 1$, y donde

$$F_a^k = d\omega_a^k - \frac{1}{2} \eta_{ab} \epsilon^{bcd} \omega_c^l \omega_d^m \delta_{l+m}^k,$$

(9.109)

con $k, l, m = 0, \ldots, 2n - 1$.

105
Construyamos ahora el lagrangiano $S^{(2n-1)}_E$-expandido reducido. Usando el Teorema VII.2 de la Ref.[1], se tiene que las únicas componentes no nulas de un tensor invariante simétrico para el álgebra \mathcal{M}_{2n+1} son

\[\langle J_{(ab,2i)} J_{(cd,2k)} \rangle_{\mathcal{M}_{2n+1}} = \alpha_j \delta^j_{2i+2k} \langle J_{ab} J_{cd} \rangle_L \]

\[= \alpha_k \delta^k_{2i+2j} (\eta_{ad} \eta_{bc} - \eta_{ac} \eta_{bd}) ; \] (9.109)

\[\langle P_{(a,2i+1)} P_{(c,2k+1)} \rangle_{\mathcal{M}_{2n+1}} = \alpha_j \delta^j_{2i+2k+2} \langle J_{a} J_{c} \rangle_L \]

\[= \alpha_j \delta^j_{2i+2k+2} \eta_{ac} ; \] (9.110)

\[\langle J_{(ab,2i)} P_{(c,2k+1)} \rangle_{\mathcal{M}_{2n+1}} = \alpha_j \delta^j_{2i+2k+1} \langle J_{ab} J_{c} \rangle_L \]

\[= \alpha_j \delta^j_{2i+2k+1} \varepsilon_{abc} ; \] (9.111)

con $i, k, = 0, ..., n - 1$ y las constantes α_j son arbitrarias y adimensionales.

Utilizando los tensores invariantes (9.109) – (9.111) en la expresión general para un lagrangiano Chern-Simons, encontramos

\[
L_{CS (2+1)}^{\mathcal{M}_{2n+1}} = \sum_{i,k=0}^{n-1} \alpha_j \delta^j_{2i+2k+1} \delta^i_{p+q+1} \varepsilon_{abc} \left[R^{(ab,2i)}_{(c,2k+1)} + \frac{1}{3!^2} \varepsilon^{(a,2p+1)}_{(b,2q+1)} \right] \frac{\varepsilon_{(c,2k+1)}}{l} \] (9.112)

\[+ \sum_{i,j,l=0}^{n-1} \frac{\alpha_m}{2} \delta^m_{2i+2j+2l} \delta^i_{p+q+1} \left[\omega^a_{(2i)} \omega^b_{(2j)} \omega^c_{(2l)} + \frac{2}{3} \omega^a_{(2i)} \omega^b_{(2j)} \omega^c_{(2l)} + \frac{2}{l^2} \varepsilon^a_{(2p+1)} T^{(a,2q+1)} \right]. \]

De esta manera, mediante el procedimiento de S-expansión hemos podido establecer una relación entre el lagrangiano invariante de Lorentz en $(2 + 1)$-dimensiones, el cual depende sólo de la conexión de spin, y el lagrangiano invariante bajo el álgebra \mathcal{M}_{2n+1}, el cual depende de la conexión de spin, el vielbein y $2n - 2$ campos bosónicos extra.
Apéndice A

Contracción de Inönü-Wigner

La contracción \(\mathfrak{g}_c \) de un álgebra de Lie \(\mathfrak{g} \) en la forma de Inönü y Wigner [2], es llevada a cabo con respecto a una subálgebra \(\mathfrak{L}_0 \) reescalando, por medio de un parámetro, los generadores base del coseto \(\mathfrak{g}/\mathfrak{L}_0 \) y luego tomando un límite singular para este parámetro. En el álgebra contraída \(\mathfrak{g}_c \), los generadores en \(\mathfrak{g}/\mathfrak{L}_0 \) se convierten en abelianos y la subálgebra \(\mathfrak{L}_0 \subset \mathfrak{g}_c \) actúa sobre ellos. Como un resultado, \(\mathfrak{g}_c \) tiene la misma dimensión de \(\mathfrak{g} \), tiene una estructura semidirecta y los generadores abelianos determinan un ideal de \(\mathfrak{g}_c \).

Sea \(\mathfrak{g} = V_0 \oplus V_1 \) un álgebra de Lie, donde:

- \(V_0 \) es una subálgebra de \(\mathfrak{g} \) generada por \(\{X_{i_0}\}_{i_0=1}^{\dim V_0} \). Denotaremos indistintamente con \(\mathfrak{L}_0 \) a la mencionada álgebra \(V_0 \).

- \(V_1 \) es un subespacio de \(\mathfrak{g} \) generado por \(\{X_{i_1}\}_{i_1=1}^{\dim V_1} \), es decir, el subespacio \(\mathfrak{g}/\mathfrak{L}_0 \) es generado por \(\{X_{i_1}\}_{i_1=1}^{\dim V_1} \).

El álgebra de Lie \(\mathfrak{g} \) es descrita por

\[
[X_A, X_B] = C_{AB}^D X_D \quad \text{(A.1)}
\]

donde \(A : (X_{i_0}, X_{i_1}) : 1, 2, \ldots, \dim V_0 + \dim V_1 \).

La contracción de Inönü-Wigner consiste en
1. Reescalar los generadores de \(g/\mathfrak{L}_0 \) : \(\{X_i\} \) por medio de un parámetro numérico \(\lambda \) en la forma

\[
Y_{i_1} = \lambda^{-1}X_{i_1} \quad \Rightarrow \quad X_{i_1} = \lambda Y_{i_1}
\]

(A.2)

y luego tomando el límite \(\lambda \rightarrow \infty \).

2. Descomponer el álgebra (A.1) de la siguiente manera

\[
\begin{align*}
[X_{i_0}, X_{j_0}] &= C_{i_0 j_0} X_{k_0} + C_{i_0 j_0}^{k_1} X_{k_1} \\
[X_{i_0}, X_{j_1}] &= C_{i_0 j_1} X_{k_0} + C_{i_0 j_1}^{k_1} X_{k_1} \\
[X_{i_1}, X_{j_1}] &= C_{i_1 j_1} X_{k_0} + C_{i_1 j_1}^{k_1} X_{k_1}
\end{align*}
\]

(A.3)

3. Tener en cuenta que \(V_0 \), generado por \(\{X_{i_0}\} \) es una subálgebra, lo cual significa que las constantes de estructura deben satisfacer la condición

\[
C_{i_0 j_0}^{k_1} = 0
\]

(A.4)

4. Introducir el reescalamiento (A.2) junto con la condición (A.4) en (A.3). En efecto,

\[
\begin{align*}
[X_{i_0}, X_{j_0}] &= C_{i_0 j_0} X_{k_0} \\
[X_{i_0}, \lambda Y_{j_1}] &= C_{i_0 j_1} X_{k_0} + \lambda C_{i_0 j_1} X_{k_1} \\
[\lambda Y_{i_1}, Y_{j_1}] &= C_{i_1 j_1} X_{k_0} + \lambda C_{i_1 j_1} X_{k_1}
\end{align*}
\]

de donde vemos que

\[
\begin{align*}
[X_{i_0}, X_{j_0}] &= C_{i_0 j_0} X_{k_0} \\
[X_{i_0}, Y_{j_1}] &= \frac{1}{\lambda} C_{i_0 j_1} X_{k_0} + C_{i_0 j_1} X_{k_1} \\
[Y_{i_1}, Y_{j_1}] &= \frac{1}{\lambda^2} C_{i_1 j_1} X_{k_0} + \frac{1}{\lambda} C_{i_1 j_1} X_{k_1}
\end{align*}
\]

(A.5)

5. Tomar el límite cuando \(\lambda \rightarrow \infty \). En efecto, al tomar el límite obtenemos

\[
\begin{align*}
[X_{i_0}, X_{j_0}] &= C_{i_0 j_0} X_{k_0} \\
[X_{i_0}, Y_{j_1}] &= C_{i_0 j_1} X_{k_1} \\
[Y_{i_1}, Y_{j_1}] &= 0
\end{align*}
\]

donde corresponde al álgebra contraída \(g_c \).
Apéndice B

Acción de Einstein-Hilbert

Para verificar la equivalencia de las acciones

\[S_{EH}^{(4)} = \int \varepsilon_{abcd} R^{ab} e^c e^d, \quad (B.1) \]

\[S_{EH}^{(4)} = \int d^4 x \sqrt{-g} R, \quad (B.2) \]

lo primero que debemos hacer es escribir explícitamente las bases de formas diferenciales en el vierbein. Así, expandiendo la 2-forma curvatura \(R^{ab} \) en la base de 2-formas \(\{ e^i e^j \} \), obtenemos

\[\varepsilon_{abcd} R^{ab} e^c e^d = \varepsilon_{abcd} R^{ab} i_j e^i e^j e^c e^d. \quad (B.3) \]

Ahora expandimos la ecuación anterior en la base \(\{ dx^\mu \} \),

\[\varepsilon_{abcd} R^{ab} e^c e^d = \varepsilon_{abcd} R^{ab} i_j e^i e_j e^c e^d \varepsilon^{\mu\nu\rho\sigma} dx^\mu dx^\nu dx^\rho dx^\sigma \]

\[= \varepsilon_{abcd} R^{ab} i_j e^i e_j e^c e^d \varepsilon^{\mu\nu\rho\sigma} d^4 x, \quad (B.4) \]

donde hemos usado el hecho que

\[dx^\mu dx^\nu dx^\rho dx^\sigma = \varepsilon^{\mu\nu\rho\sigma} dx^0 dx^1 dx^2 dx^3 = \varepsilon^{\mu\nu\rho\sigma} d^4 x. \quad (B.5) \]

Usando el conocido resultado

\[\varepsilon^{i_1 \cdots i_n} = e^{i_1}_{\mu_1} \cdots e^{i_n}_{\mu_n} \varepsilon_{\mu_1 \cdots \mu_n} (\det e)^{-1}, \quad (B.6) \]
podemos escribir

\[e^i_\mu e^j_\nu e^k_\rho e^d_\sigma \varepsilon^{\mu
\nu\rho\sigma} = \varepsilon^{ijcd} (\det e) . \]

(B.7)

Por lo tanto, haciendo uso de las identidades

\[\delta_{h_1\cdots h_s j_1\cdots j_r} j_1\cdots j_s j_{s+1}\cdots j_r = \frac{(n-s)!}{(n-r)!} \delta_{h_1\cdots h_s} j_1\cdots j_s \]

(B.8)

\[\delta_{h_1\cdots h_r} j_1\cdots j_r B^{h_1\cdots h_r} = r! B^{j_1\cdots j_r} \]

(B.9)

se tiene que

\[\varepsilon_{abcd} R^{ab} e^c e^d = \varepsilon_{abcd} R^{ij} e^{ijcd} (\det e) \ d^4x \]

\[= \delta_{abcd} R^{ij} (\det e) \ d^4x \]

\[= 2 \delta^a_b R^{ij} (\det e) \ d^4x \]

\[= 4 R^{ij} (\det e) \ d^4x , \]

Por último, dado que \(R^{ij} = R \) y que \(\det e = \sqrt{-g} \), lo anterior se puede escribir como

\[\varepsilon_{abcd} R^{ab} e^c e^d = 4 \sqrt{-g} R \ d^4x . \]

(B.10)

Así,

\[\int \varepsilon_{abcd} R^{ab} e^c e^d = 4 \int \sqrt{-g} R \ d^4x . \]

(B.11)

Lo que nos muestra la equivalencia entre la acción de Einstein-Hilbert escrita con formas diferenciales \((B.1)\) con aquella escrita en el lenguaje tensorial \((B.2)\)
Apéndice C

Grupo de Poincaré

El grupo de Poincaré $G = ISO(D - 1, 1)$ es la suma semidirecta del grupo de traslaciones con el grupo de rotaciones con métrica $\eta_{ab} = diag(-, +, +)$, cuyos generadores son P_a y J_{ab}, respectivamente. Además $a = 1, ..., D$.

El álgebra de Lie del grupo de Poincaré es

\[
\begin{align*}
[J_{ab}, J_{cd}] &= \eta_{cb}J_{ad} - \eta_{ca}J_{bd} + \eta_{db}J_{ca} - \eta_{da}J_{cb} \\
[J_{ab}, P_c] &= \eta_{cb}P_a - \eta_{ca}P_b \\
[P_a, P_b] &= 0
\end{align*}
\]

La 1-forma conexión de gauge A valuada en el álgebra es

\[
A = \frac{1}{2} \omega_{ab} J_{ab} + \frac{1}{l} e^a P_a
\]

(c.2)

cuya 2-forma curvatura asociada es

\[
F = dA + AA = \frac{1}{2} R_{ab} J_{ab} + \frac{1}{l} T^a P_a
\]

(c.3)

donde R_{ab} y T^a son la curvatura y la torsión, respectivamente. De (c.3) vemos que estas 2-formas son las distintas componentes de una única curvatura. Si denotamos con D a la derivada covariante para la conexión A, luego tenemos que

\[
DF = \frac{1}{l} \left(D_a T^a - R^a_{\ b} e^b \right) P_a + \frac{1}{2} \left(D_a R_{ab} \right) J_{ab}
\]

(c.4)
es decir, las condiciones de consistencia para las ecuaciones de estructura de Cartan pueden ser vistas a través de las componentes de la identidad de Bianchi $DF = 0$, es decir, a través de

$$D_\omega R^{ab} = 0$$

$$D_\omega T^a - R^a_{\beta c} b = 0$$

Notemos que el grupo de Poincaré se puede obtener como una contracción del grupo AdS.
Apéndice D

Grupo AdS

El grupo anti-de Sitter denotado por \(G = SO(D - 1, 2) \), es el grupo de rotaciones en \(D + 1 \) dimensiones con métrica \(\eta_{AB} = \text{diag}(-, +, ..., +) \). Este grupo consta de \(\frac{D(D+1)}{2} \) generadores \(J_{AB} \) con \(A, B = 1, ..., D + 1 \). Podemos descomponer estos generadores en \(J_{ab} \) y \(P_a \), con \(a, b = 1, ..., D \), y donde los generadores \(P_a \) son definidos mediante \(J_{aD+1} = P_a \). Así, el generador de AdS es escrito en forma matricial como

\[
J_{AB} = \begin{pmatrix}
J_{ab} & P_a \\
-P_b & 0
\end{pmatrix}
\]

Los generadores \(J_{AB} \) satisfacen el álgebra:

\[
[J_{AB}, J_{CD}] = \eta_{CB} J_{AD} - \eta_{CA} J_{BD} + \eta_{DB} J_{CD} - \eta_{DA} J_{CB}
\]

Por lo tanto, los generadores \(J_{ab} \) y \(P_a \) satisfacen

\[
[J_{ab}, J_{cd}] = \eta_{cb} J_{ad} - \eta_{ca} J_{bd} + \eta_{db} J_{ca} - \eta_{da} J_{cb},
\]

\[
[J_{ab}, P_c] = \eta_{cb} P_a - \eta_{ca} P_b,
\]

\[
[P_a, P_b] = J_{ab}.
\]

La 1-forma conexión de gauge es dada por \(A = \frac{1}{2} W^{AB} J_{AB} \) y su 2-forma curvatura asociada es dada por \(F = dA + AA = \frac{1}{2} \tilde{R}^{AB} J_{AB} \), donde

\[
W^{AB} = \begin{pmatrix}
\omega^{ab} & e^a/l \\
-e^b/l & 0
\end{pmatrix}; \quad \tilde{R}^{AB} = \begin{pmatrix}
R^{ab} + e^a e^b & T^a/l \\
-T^b/l & 0
\end{pmatrix}
\]

donde \(R^{ab} \) y \(T^a \) son la curvatura y la torsión, respectivamente.
Apéndice E

Clases Características

Una clase característica es entendida como un concepto unificador en matemáticas, el cual conecta la topología algebraica, la geometría diferencial y la geometría algebraica. La teoría de las clases características explica matemáticamente por qué no es siempre posible realizar una trasformación de gauge la cual hace que la conexión se anule en todas partes, incluso si ésta es localmente de gauge. El valor no nulo de una clase característica, también llamada invariante topológico, indica una obstrucción a la existencia de una transformación de gauge que trivialize la conexión globalmente.

Los dos invariantes más importantes para una teoría invariante de Lorentz en una variedad de dimensión $D = 2n$, son dados por:

- **La clase de Euler**, asociada con los grupos $O(D - n, n)$. Por ejemplo, la clase de Euler 4-dimensional asociada al grupo $SO(3, 1)$ es dada por

$$E_4 = \frac{1}{32\pi^2} \int_{M_4} \epsilon_{abcd} R^{ab} R^{cd} \tag{E.1}$$

- **La clase de Pontryagin**, asociada con cualquier grupo semisimple G. En 4-dimensiones ésta es dada por

$$P_4 = \frac{1}{8\pi^2} \int_{M_4} R^a_b R^b_a \tag{E.2}$$

La clase de Pontryagin se puede definir para cualquier grupo de gauge compacto G, sobre cualquier variedad compacta de dimensión par,

$$P_{2n} [G] = \frac{1}{2^{n+1}n!} \int_{M_{2n}} \{ F \cdots F \} ,$$

114
donde F es la 2-forma curvatura para el grupo G cuyos generadores son normalizados, tal que $\text{Tr} \{G_a G_b\} = \delta_{ab}$, y los paréntesis $\{\cdots\}$ indican un producto particular de trazas de productos de F’s (ver [28]).

Puesto que la 2-forma curvatura R^{ab} es antisimétrica, la forma Pontryagin de la variedad, $P[SO(D)]$ está definida sólo para $D = 4n$. Notemos que a diferencia de las formas Pontryagin, la forma de Euler no se puede definir para un grupo de gauge genérico G.

Inviantes similares a los anteriores, pero construídos usando la 2-forma torsión T^a son menos conocidos. El invariante torsional de menor dimensión es la 4-forma de Nieh-Yan

$$N_4 = T^a T_a - R_{ab} e^a e^b \quad (E.3)$$

Los invariantes de Nieh-Yan corresponden a la diferencia entre las clases de Pontryagin para $SO(D - 1, 2)$ y $SO(D - 1, 1)$ en D-dimensiones. En efecto, consideremos la conexión para $SO(3, 2)$

$$W^{AB} = \begin{bmatrix} \omega^{ab} & e^a / l \\ -e^b / l & 0 \end{bmatrix}, \quad (E.4)$$

donde $a, b = 1, \ldots, 4$ y $A, B = 1, \ldots, 5$. La 2-forma curvatura construída desde W^{AB} es

$$\tilde{R}^{AB} = dW^{AB} + W^A C W^B = \begin{bmatrix} R^{ab} + \frac{1}{2} e^a e^b T^a / l \\ -T^b / l & 0 \end{bmatrix}, \quad (E.5)$$

Así, es directo verificar que la densidad de Pontryagin para $SO(3, 2)$ es la suma de la densidad de Pontryagin para $SO(3, 1)$ y la densidad de Nieh-Yan

$$\tilde{R}^A_B \tilde{R}^B_A = R^a_b R^b_a + \frac{2}{l^2} [T^a T_a - R_{ab} e^a e^b]$$

Esto nos muestra que

$$\frac{2}{l^2} \int_{M_4} N_4 = P_4 [SO(3, 2)] - P_4 [SO(3, 1)]$$

es un invariante topológico, y es la diferencia de dos clases Pontryagin.

Como no existen invariantes similares en dimensiones impares, no es posible construir acciones Chern-Simons para gravedad en $D = 2n$, invariante bajo los grupos AdS ó Poincaré.
Apéndice F

Identidades de Bianchi

Consideremos la 1-forma conexión $A \mathcal{M}_7$-valuada

$$A = \frac{1}{2} \omega^{ab} J_{ab} + \frac{1}{l} e^a P_a + \frac{1}{2} k^{(ab,1)} Z_{ab} + \frac{1}{l} h^{(a,1)} Z_a^{(1)} + \frac{1}{2} k^{(ab,2)} Z_{ab} + \frac{1}{l} h^{(a,2)} Z_a^{(2)}, \quad (F.1)$$

y su 2-forma curvatura F asociada

$$F = \frac{1}{2} R^{ab} J_{ab} + \frac{1}{l} T^a P_a + \frac{1}{2} \left(D_\omega k^{(ab,1)} + \frac{1}{l^2} e^a e^b \right) Z_{ab}^{(1)} + \frac{1}{l} \left(D_\omega h^{(a,1)} + k^{(a,1)}_{b} e^b \right) Z_a^{(1)}$$

$$+ \frac{1}{2} \left(D_\omega k^{(ab,2)} + k^{(1)}_{c} e^c + \frac{1}{l} \left[e^a h^{(b,1)} + h^{(a,1)} e^b \right] \right) Z_{ab}^{(2)}$$

$$+ \frac{1}{l} \left(D_\omega h^{(a,2)} + k^{(2)}_{c} e^c + k^{(1)}_{c} h^{(1,1)} \right) Z_a^{(2)}. \quad (F.2)$$

Si denotamos como D a la derivada covariante para la conexión A, entonces la identidad de Bianchi establece que

$$DF = 0 \quad (F.3)$$

donde

$$D = d + [A, \cdot] \quad (F.4)$$

Luego tenemos que

$$DF = \frac{1}{2} D_\omega R^{ab} J_{ab} + \frac{1}{l} \left(D_\omega T^a - R^{ac} e_c \right) P_a + \frac{1}{2} \left(D_\omega D_\omega k^{(ab,1)} + k^{(1)}_{c} R^{cb} + k^{(2)}_{c} R^{ac} \right) Z_{ab}^{(1)}$$

$$+ \frac{1}{l} \left(D_\omega D_\omega h^{(a,1)} - R^{ac} h^{(1)}_{c} \right) Z_a^{(1)}$$

$$+ \frac{1}{2} \left(D_\omega D_\omega k^{(ab,2)} + k^{(2)}_{c} R^{cb} + k^{(2)}_{c} R^{ac} \right) Z_{ab}^{(2)}$$

$$+ \frac{1}{l} \left(D_\omega D_\omega h^{(a,2)} - R^{ac} h^{(2)}_{c} \right) Z_a^{(2)}$$
De esta manera, las condiciones de consistencia para las ecuaciones de estructura de Cartan pueden ser vistas a través de las componentes de la identidad de Bianchi \(DF = 0 \), es decir, a través de

\[
D \omega R^{ab} = 0, \quad (F.5)
\]
\[
D \omega T^a - R^{ac} e_c = 0, \quad (F.6)
\]
\[
D \omega D \omega h^{a(1)}_c + k^a_c (1) R^b c + k^b_c (1) R^{ac} = 0, \quad (F.7)
\]
\[
D \omega D \omega h^{a(1)}_c - R^{ac} h^{(1)}_c = 0, \quad (F.8)
\]
\[
D \omega D \omega h^{a(2)}_c + k^a_c (2) R^b c + k^b_c (2) R^{ac} = 0, \quad (F.9)
\]
\[
D \omega D \omega h^{a(2)}_c - R^{ac} h^{(2)}_c = 0. \quad (F.10)
\]

Es interesante notar que al considerar la derivada covariante \(D = d + [A, \cdot] \) del término \(R^{ab} J_{ab} \) expandido, tenemos que

\[
D \left(\sum_{i=0}^{5} \lambda_i R^{(ab,i)} J_{ab} \right) = \sum_{i=0}^{5} D R^{(ab,i)} J_{ab,i}, \quad (F.11)
\]

donde \(\lambda_i \) es un elemento del semigrupo \(S_E^{(5)} \). Podemos reescribir \((F.11)\) como sigue

\[
D \left(\sum_{i=0}^{5} \lambda_i R^{ab,i} J_{ab} \right) = \lambda_0 D R^{ab,0} J_{ab} + \lambda_2 D R^{ab,2} J_{ab} + \lambda_4 D R^{ab,4} J_{ab}
\]
\[
= D \omega R^{ab,0} J_{ab,0} + \omega^a_c R^b c,0 J_{ab,2} + \omega^b_c R^{ac,0} J_{ab,2} + \omega^a_c A R^{ab,0} J_{ab,4} + \omega^b_c A R^{ac,0} J_{ab,4}
\]
\[
+ D \omega R^{ab,2} J_{ab,2} + \omega^a_c R^b c,2 J_{ab,4} + \omega^b_c R^{ac,2} J_{ab,4} + D \omega R^{ab,4} J_{ab,4}
\]

Luego identificando

\[
\omega^{ab,0} = \omega^{ab}, \quad \omega^{ab,2} = k^{(ab,1)}_c, \quad \omega^{ab,4} = k^{(ab,2)}_c,
\]
\[
R^{ab,0} = R^{ab}, \quad R^{ab,2} = D \omega k^{(ab,1)}_c, \quad R^{ab,4} = D \omega k^{(ab,2)}_c + k^a_c (1) k^b_c (1),
\]
\[
J_{ab,0} = J_{ab}, \quad J_{ab,2} = Z^{(1)}_{ab}, \quad J_{ab,4} = Z^{(2)}_{ab},
\]

se tiene que

\[
D \left(\sum_{i=0}^{5} \lambda_i R^{(ab,i)} J_{ab} \right) = D \omega R^{ab} J_{ab} + k^a_c (1) R^b c Z^{(1)}_{ab} + k^b_c (1) R^{ac} Z^{(1)}_{ab} + k^a_c (2) R^b c Z^{(2)}_{ab} + k^b_c (2) R^{ac} Z^{(2)}_{ab}
\]
\[
+ D \omega D \omega k^{(ab,1)}_c Z^{(1)}_{ab} + k^a_c (1) D \omega k^{(cb,1)}_c Z^{(2)}_{ab} + k^b_c (1) D \omega k^{(ac,1)}_c Z^{(2)}_{ab}
\]
\[
+ D \omega D \omega k^{(ab,2)}_c Z^{(2)}_{ab} + D \omega k^a_c (1) k^b_c (1) Z^{(2)}_{ab} - k^a_c (1) D \omega k^{(cb,1)}_c Z^{(2)}_{ab}
\]

117
Reordenando los términos podemos escribir

\[D \left(\sum_{i=0}^{5} \lambda_i R^{(ab)} J_{ab} \right) = D \omega R^{ab} J_{ab} + \left(D \omega D_\omega k_{(ab,1)} + k_c^{(1)} R^{cb} + k_c^{(2)} R^{ac} \right) Z_{ab}^{(1)} \]
\[+ \left(D_\omega D_\omega k_{(ab,2)} + k_c^{(2)} R^{cb} + k_c^{(2)} R^{ac} \right) Z_{ab}^{(2)}, \]

donde identificamos las componentes de la identidad de Bianchi \((F.5), (F.7), (F.9)\). Así, tenemos que

\[D \left(\sum_{i=0}^{5} \lambda_i R^{(ab)} J_{ab} \right) = \sum_{i=0}^{5} \lambda_i DR^{(ab)} J_{ab} = 0 \]

\[(F.13) \]

Notemos además que la única componente no nula de un tensor invariante simétrico de rango 4 para el álgebra \(\mathcal{M}_7\) viene dado por

\[\langle J_{(a_1a_2,i_1)} J_{(a_3a_4,i_2)} J_{(a_5a_6,i_3)} P_{(a_7,i_4)} \rangle = 2!^5 \alpha_j \delta_{i_1+i_2+i_3+i_4} \varepsilon_{a_1a_2a_3a_4a_5a_6a_7}, \]

\[(F.14) \]

donde \(i_p, j = 0, \ldots, 5\), y los coeficientes \(\alpha_i\) son constantes arbitrarias de dimensión \([\text{longitud}]^{-5}\). De modo que al considerar la derivada covariante \(D = d + [A, \cdot]\) sobre el lagrangiano CS 7-dimensional para gravedad, tenemos que

\[DL^{(7)}_{CS} = \sum_{k=1}^{4} i^{2k-2} c_k \alpha_j \delta_{i_1+i_2+i_3+i_4} \delta_{i_1+i_2+i_3+i_4} \ldots \delta_{i_1+i_2+i_3+i_4} \varepsilon_{a_1a_2a_3a_4a_5a_6a_7} \]

\[= \sum_{k=1}^{4} i^{2k-2} c_k \alpha_j \delta_{i_1+i_2+i_3+i_4} \delta_{i_1+i_2+i_3+i_4} \ldots \delta_{i_1+i_2+i_3+i_4} \varepsilon_{a_1a_2a_3a_4a_5a_6a_7} \]

\[R^{(ab)} J_{ab} \ldots R^{(ef)} J_{ef} D \left(\varepsilon_{a_1a_2a_3a_4a_5a_6a_7} \right), \]

donde hemos ocupado las distintas componentes de la identidad de Bianchi \((F.12)\).

Notemos que este mismo procedimiento se puede utilizar en la expresión \((8.6)\), obteniendo así

\[D \varepsilon_a^{(p,i)} = \delta_{i_1+i_2+i_3+\ldots+i_{D-p-1}} \varepsilon_{ab_1\ldots b_{D-1}} D \left(R^{(b_1b_2i_1)} \ldots R^{(b_{2p-1}b_{2p}i_p)} \varepsilon_{(b_{2p+1}i_{p+1})} \ldots \varepsilon_{(b_{D-1}i_{D-p-1})} \right) \]
\[= (D-1-2p) \delta_{i_1+i_2+i_3+\ldots+i_{D-p-1}} \varepsilon_{ab_1\ldots b_{D-1}} R^{(b_1b_2i_1)} \ldots R^{(b_{2p-1}b_{2p}i_p)} \]
\[\varepsilon_{b_{2p+1}i_{p+1}} \ldots \varepsilon_{a_{D-1}i_{D-p-1}}. \]
Referencias

