Please use this identifier to cite or link to this item: http://repositorio.udec.cl/jspui/handle/11594/5841
Title: Estimación de densidad de árboles mediante el uso de imágenes satelitales.
Authors: Guillermo Cabrera V., supervisor de Grado.
Ortega Cárcamo, Daniel
Keywords: Bosques;Dendrómetros;Imágenes Satelitales;Plantación de Árboles;Industria de Productos Forestales;Redes Neurales (Ciencia de la Computación);Mediciones;VIDA DE ECOSISTEMAS TERRESTRES
Issue Date: 2019
Publisher: Universidad de Concepción, Facultad de Ingeniería, Departamento Informática y Ciencias de la Computación.
Abstract: Los recientes avances en el campo de visión computacional mediante redes neuronales han permitido automatizar diferentes tareas en distintas disciplinas. En particular, en la industria forestal, se ha hecho uso de estas técnicas, lo cual ha permitido realizar un control de las plantaciones, mediante el uso de imágenes de drones y satélites con la finalidad de obtener y analizar datos de forma eficiente, efectiva y rápida, disminuyendo el uso del recurso humano y por ende el error asociado a este. En esta memoria se plantea resolver el conteo de árboles mediante el uso de imágenes satelitales, para esto se propone el uso de 3 modelos de redes neuronales que reciben como dato de entrada una imagen satelital y retornan como salida un mapa de densidad, del cual se puede obtener el conteo de árboles en la imagen, mediante la integración de éste. Se entrenaron tres modelos de redes neuronales que permiten generar el mapa de densidad; uno, que consiste en tres columnas convolucionales; otro, que consiste en sólo una, pero con una mayor cantidad de filtros por capa, y el último, que tiene un VGG-16 y unas capas convolucionales dilatadas al final. Finalmente los resultados del error de estos modelos con las diferentes resoluciones indican que, el modelo Congested Scene Recognition Network (CSRNET) entrega los mejores resultados para imágenes de 1 metro mientras que Fully Convolutional Network (FCN) entrega mejores resultados para imágenes de 3 y 5 metros. En detalle, a nivel de conteo se puede concluir que a 1 metro CSRNET entrega los mejores resultados con un 19.12% de error, a 3 y 5 metros FCN entrega los mejores resultados con un 20.23% de error a 3 metros y 27.15% de error a 5 metros
Description: Tesis para optar al grado de Ingeniero Civil Informático.
URI: http://repositorio.udec.cl/jspui/handle/11594/5841
metadata.dc.source.uri: http://ezpbibliotecas.udec.cl/login?url=http://tesisencap.udec.cl/concepcion/ortega_c_d/index.html
Appears in Collections:Ingeniería Informática y Ciencias de la Computación - Tesis Pregrado

Files in This Item:
File Description SizeFormat 
Ortega Carcámo, Daniel Antonio.pdf139,55 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.