Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.udec.cl/jspui/handle/11594/5849
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorVidaux Negre, Xavier; supervisor de gradoes
dc.contributor.authorGarcía Fritz, Natalia Cristinaes
dc.date.accessioned2021-05-17T23:04:19Z-
dc.date.available2021-05-17T23:04:19Z-
dc.date.issued2011-
dc.identifier.urihttp://repositorio.udec.cl/jspui/handle/11594/5849-
dc.descriptionTesis para optar al grado de Magíster en Matemática.es
dc.description.abstractThis thesis consists of two main theorems (Theorems 2 and 6) on the arithmetic of polynomials and some consequences in Mathematical Logic. A simple corollary of our first main theorem, inspired by a paper on powers in arithmetic progressions by Hajdu [10], states in particular that given any field F the quantity a!+b, where a and b are coprime polynomials in F[t], cannot be a power in F[t] for more than M = 4 distinct values of ! ! F, unless both a and b have zero derivative. Here by power, we mean a k-th power for some k " 2. This corollary was actually our very first result and inspired the rest of the thesis. On the one hand, one could naturally try to generalize it in the following ways: 1. Is the condition on coprimality really necessary? If not, how small should the degree of the greatest common divisor of a and b be in order to ensure the existence of an M (guessing that the more a and b have factors in common, the bigger should be M); 2. What about other rings of functions? (such that subrings of function fields, rings of analytic or meromorphic functions, . . . ) 3. What about considering expressions of the form a!2 + b! + c instead of a! + b? What about higher powers? In the work presented here, we deal with generalizations of type 1 (Theorem 2) and of type 3 (Theorem 6). On the other hand, the statement above and its possible generalizations should say something about the first order language LP = {0, 1,+, P} (or languages containing LP ), where P is a unary relation symbol and P(x) is interpreted as “x is a power”. Though to the best of our knowledge this language has not been previously studied by logicians (though Macintyre’s language [12] is somewhat related to it, as it contains a predicate Pk for each k " 2 interpreted as “Pk(x) if and only if x is a k-th power”), the study of consecutive powers and powers in arithmetic progression over the integers has a long history. In 1640, Fermat conjectured that there does not exist four squares in arithmetic progression, and this was proved later on by Euler.es
dc.language.isoenges
dc.publisherUniversidad de Concepción.es
dc.rightsCreative Commoms CC BY NC ND 4.0 internacional (Atribución-NoComercial-SinDerivadas 4.0 Internacional)-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es-
dc.source.urihttps://go.openathens.net/redirector/udec.cl?url=http://tesisencap.udec.cl/concepcion/garcia_f_n/index.html-
dc.subjectAnillos (Álgebra)es
dc.subjectProblemas Ejercicios etc.es
dc.subjectPotencias.es
dc.subjectAritméticaes
dc.subjectProblemas Ejercicios Etc.es
dc.titlePotencias en subsucesiones de progresiones aritméticas en anillos de funciones y un problema de indecidibilidad.es
dc.title.alternativePowers in subsequences of arithmetic progressions in rings of functions and a problem of undecidability.en
dc.typeTesises
dc.description.facultadFacultad de Ciencias Físicas y Matemáticases
dc.description.departamentoDepartamento de Matemática.es
Aparece en las colecciones: Ciencias Físicas y Matemáticas - Tesis Magister

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Tesis_Powers in subsequences_.pdf214,99 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons