Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFigueroa Zuñiga, Jorge Isaac, supervisor de grado-
dc.contributor.authorToledo Balboa, Juan Guillermo-
dc.descriptionTesis para optar al grado de Magíster en Estadí
dc.description.abstractModels involving the Kumaraswamy distribution have been a very studied in the past years in the analysis and modeling of bounded continuos variables. In this paper we focus on one in particular: the Trapezoidal Kumaraswamy model. We present an estimation method for its parameters based on bayesian approaches: the Stochastic EM algorithm (SEM), which avoids the most common issues of the classical EM. Then, we apply this method to the daily covid-19 cases in Chile using this
dc.publisherUniversidad de Concepción, Facultad de Ciencias Físicas y Matemáticas, Departamento de Estadí
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile-
dc.subjectDistribución de Kumaraswamy-
dc.subjectTeoría Bayesiana de Decisiones Estadísticas-
dc.titleTrapezoidal Kumaraswamy distribution and sem
Appears in Collections:Estadística - Tesis Magister

Files in This Item:
File Description SizeFormat 
Tesis Trapezoidal Kumaraswamy Distribution and SEM Algorithm.Image.Marked.pdf352,32 kBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons