Please use this identifier to cite or link to this item: http://repositorio.udec.cl/jspui/handle/11594/9474
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFigueroa Zuñiga, Jorge Isaac, supervisor de grado-
dc.contributor.authorToledo Balboa, Juan Guillermo-
dc.date.accessioned2022-01-14T18:15:57Z-
dc.date.available2022-01-14T18:15:57Z-
dc.date.issued2021-
dc.identifier.urihttp://repositorio.udec.cl/jspui/handle/11594/9474-
dc.descriptionTesis para optar al grado de Magíster en Estadística.es
dc.description.abstractModels involving the Kumaraswamy distribution have been a very studied in the past years in the analysis and modeling of bounded continuos variables. In this paper we focus on one in particular: the Trapezoidal Kumaraswamy model. We present an estimation method for its parameters based on bayesian approaches: the Stochastic EM algorithm (SEM), which avoids the most common issues of the classical EM. Then, we apply this method to the daily covid-19 cases in Chile using this model.es
dc.language.isoeses
dc.publisherUniversidad de Concepción, Facultad de Ciencias Físicas y Matemáticas, Departamento de Estadística.es
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/-
dc.subjectDistribución de Kumaraswamy-
dc.subjectAlgoritmos-
dc.subjectTeoría Bayesiana de Decisiones Estadísticas-
dc.titleTrapezoidal Kumaraswamy distribution and sem algorithm.es
dc.typeTesises
Appears in Collections:Estadística - Tesis Magister

Files in This Item:
File Description SizeFormat 
Tesis Trapezoidal Kumaraswamy Distribution and SEM Algorithm.Image.Marked.pdf352,32 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons