

Universidad de Concepción Dirección de Postgrado Facultad de Ciencias Naturales y Oceanográficas Programa de Doctorado en Ciencias con mención en Manejo de Recursos Acuáticos Renovables

Remodelación estructural y funcional en la respuesta transcriptómica de salmón del Atlántico frente a patógenos que afectan a la salmonicultura

Tesis para optar al grado de Doctor en Ciencias con mención en Manejo de Recursos Acuáticos Renovables

> YENY LEAL ACOSTA CONCEPCIÓN-CHILE 2023

> > Profesor Guía: Cristian Gallardo Escárate Departamento de Oceanografía Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción

A mi familia, en especial a mi tío Mario

AGRADECIMIENTOS

Quiero agradecer a todo el que de una forma u otra me ha apoyado durante este intrincado camino.

A mi familia, que aún estando tan distantes geográficamente, siempre han estado a mi lado en cada paso de mi vida, especialmente a mis padres y mi tía Carmen por su apoyo incondicional durante toda mi formación profesional. A mi tío Mario, por siempre creer en mí e inculcarme el amor por la ciencia, donde quiera que esté, sé que estará orgulloso de mis logros. A mi compañero de vida, Richard, por su amor y apoyo incondicional.

Quiero expresar mi sincero agradecimiento a mi director de tesis, Dr. Cristian Gallardo por su guía constante, apoyo y paciencia a lo largo de todo el proceso de elaboración de esta tesis. A la Dra. Valentina Valenzuela, por ser siempre mi revisora favorita.

Gracias a mis amigos y compañeros de laboratorio; Cony, Bárbara, Tony, Gustavo, Diego, Fer, que han estado en todo momento para apoyar de una forma u otra mi trabajo, ya sea a nivel experimental o aportando ideas. A la Clau, por su comprensión y ayuda con cuanto problema surgiera en el camino.

Agradecer también a los miembros de la comisión de tesis, por el tiempo dedicado a la revisión de este trabajo. Igualmente, al programa de doctorado MaReA por darme la oportunidad de iniciarme en este camino.

Además, agradecer al Programa de Becas de Postgrado, la beca de doctorado ANID y al centro FONDAP INCAR por haber aportado al financiamiento de mis estudios de Doctorado.

¡Gracias a todos!

Índice de contenidos

RESU	JMEN	. I
ABST	IRACTI	V
1.	INTRODUCCIÓN	1
1.1.	Salmonicultura en Chile y sus principales desafíos	1
1.2.	Caligidosis y sus métodos de control	3
1.4.	Remodelación estructural y funcional como respuesta transcriptómica del hospedero 1	0
2.	HIPÓTESIS 1	5
3.	OBJETIVO GENERAL 1	5
3.1.	OBJETIVOS ESPECÍFICOS 1	5
4.	MATERIALES Y MÉTODOS 1	.6
4.1. recom	Comparación de la respuesta transcriptómica (remodelación transcriptómica) inducida por la proteína abinante Cr-catepsina de <i>C. rogercresseyi</i> en la línea celular SHK-1 y riñón anterior de salmón del Atlántico 16).
4.1.1.	Expresión y purificación del antígeno recombinante Cr-catepsina 1	6
4.1.2. SHK-	Ensayo de viabilidad celular y estimulación con la proteína recombinante Cr-catepsina en la línea celular 17	r
4.1.3.	Evaluación in vivo de la proteína recombinante Cr-catepsina como inmunógeno 1	8
4.1.4. expue	Secuenciación y caracterización de los transcriptomas de la línea celular SHK-1 y HK de salmón estos a la proteína recombinante Cr-catepsina	9
4.1.5.	Análisis de Gene Ontology (GO) y análisis de enriquecimiento de rutas 1	9
4.1.6.	Análisis de expresión diferencial de lncRNA en SHK-1 y HK de salmón2	20
4.2. y HK	Comparación de la remodelación transcriptómica basada en splicing alternativo en la línea celular SHK- de salmón del Atlántico durante la infección de <i>P. salmonis</i>	1 20
4.2.1.	Mantenimiento de la línea celular SHK-1 y cultivos de P. salmonis.	21
4.2.2. deshic	Determinación de la citotoxicidad de <i>P. salmonis</i> mediante el ensayo de liberación de lactato drogenasa	21
4.2.3.	Infección <i>in vitro</i> de la línea celular SHK-12	21
4.2.4.	Secuenciación de los transcriptomas de línea celular SHK-1 y HK de salmón infectados con <i>P. salmonis</i> 22	
4.2.5.	Análisis de RNA-seq e identificación de expresión de genes diferenciales2	22
4.2.6.	Mapeo e identificación de transcritos e isoformas2	22
4.2.7.	Identificación de los tipos de splicing alternativo en los transcritos DAS2	23
4.2.8.	Análisis de enriquecimiento funcional	23

4.3. Atlántic	Caracterizar los mecanismos de remodelación transcriptómica en células sanguíneas de salmón del co vacunados con Ipath® y expuestos a dos patógenos marinos	24
4.3.1.	Diseño experimental	24
4.3.2.	Secuenciación del transcriptoma de células sanguíneas de salmón del Atlántico	25
4.3.3.	Análisis de RNA-seq e identificación de expresión de genes diferenciales	25
4.3.4.	Análisis de enriquecimiento funcional	25
4.3.5.	Análisis de expresión y enriquecimiento de rutas KEGG específicas	26
5. R	ESULTADOS	27
Capítulo Sea Lou	o 1. Comparative Transcriptomics in Atlantic Salmon Head Kidney and SHK-1 Cell Line Exposed to the use Cr-Cathepsin	27
Capítulo salmoni	o 2. Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the Piscirickettsia is infection: A comparative transcriptome survey	46
Capítulo Atlantic	o 3. Ipath® vaccine promotes blood transcriptional remodeling during two pathogenic infections in e salmon.	89
6. D	ISCUSIÓN1	06
Remode celular S	elación transcriptómica inducida por la proteína recombinante Cr-catepsina de <i>C. rogercresseyi</i> en la líne SHK-1 y riñón anterior de salmón del Atlántico1	a 06
Remode del Atlá	elación transcriptómica basada en splicing alternativo en la línea celular SHK-1 y riñón anterior de salmó intico durante la infección de <i>P. salmonis</i>	on 09
Remode patógen	elación transcriptómica de las células sanguíneas de salmón del Atlántico vacunados y expuestos a dos los marinos	12
7. C	ONCLUSIONES 1	19
8. R	EFERENCIAS 1	22

Índice de figuras

Figura 1. Análisis del transcriptoma de las células sanguíneas de salmón del Atlántico vacunados y retados con dos patógenos) 1
Figura 2. Análisis de clusters de expresión transcripcional) 3
Figura 3. Evaluación de la remodelación transcripcional de la ruta de señalización de receptores tipo Toll	- 97
Figura 4. Evaluación de la remodelación transcripcional de la ruta de apoptosis) 8
Figura 5. Evaluación de la remodelación transcripcional de la ruta de señalización de HIF-110)0
Figura 6. Evaluación de la remodelación transcripcional de la ruta de ferroptosis 10)1
Figura 7. Análisis de tipos de splicing alternativo para los DEGs del grupo experimental Ipath® involucrados en rutas de señalización de HIF-1 y ferroptosis)2
Figura 8. Influencia del hierro en la ruta de señalización de HIF-1 evaluado en riñón anterior de salmó del Atlántico)n 04

Figura 9. l	Influencia	del hierro e	en la ruta de	e ferroptosis	evaluado e	n riñón :	anterior o	le salmón del	
Atlántico									. 105

Índice de tablas

Tabla 1. Anotaciones de genes	por clusters de expresión d	liferencial para cada vacuna	
-------------------------------	-----------------------------	------------------------------	--

RESUMEN

La salmonicultura, como una de las actividades económicas más importante en Chile, se enfrenta a desafíos constantes enfrenta desafíos como las enfermedades infecciosas y el impacto ambiental generado por los tratamientos. Dentro de las principales enfermedades que afectan el cultivo del salmón del Atlántico se encuentran la caligidosis y la septicemia rickettsial salmonídea (SRS). El uso de vacunas como estrategia de inmuno-estimulación activa en el salmón del Atlántico, es una solución prometedora para prevenir enfermedades y reducir la contaminación. Comprender cómo el salmón del Atlántico responde a nivel molecular a estos estímulos o a la presencia de patógenos, es crucial para desarrollar estrategias de manejo y control eficaces. En este sentido, la tecnología de secuenciación del transcriptoma de RNA (RNA-seq) ha contribuido en gran medida a comprender los cambios moleculares y funcionales que ocurren en un organismo en presencia de una estimulación, los cuales conllevan a una remodelación estructural y funcional de su respuesta transcriptómica como mecanismo de defensa. En este contexto, la presente tesis doctoral tiene como objetivo evaluar los mecanismos de remodelación transcriptómica, estructural y funcional de la respuesta del salmón del Atlántico frente a diferentes estímulos inmunológicos, ya sean infecciones patógenas o procesos de vacunación. Para ello, se utilizaron diferentes modelos de estudio in vitro e in vivo, para evaluar los diferentes mecanismos potenciales de remodelación de la respuesta inmune de salmón del Atlántico frente a diferentes estímulos inmunomoduladores. Como primera etapa, se comparó la respuesta transcriptómica de la línea celular SHK-1 estimulada con la proteína recombinante Cr-catepsina de Caligus rogercresseyi y el riñón anterior de salmones del Atlántico inyectados con la misma proteína. Los resultados de este estudio evidenciaron una diferenciación entre los perfiles transcriptómicos de ambos modelos de estudio, sin embargó un 24,15% de la respuesta transcriptómica fue compartida, la cual estuvo asociada fundamentalmente a la estimulación con el antígeno. Tanto en las células SHK-1 como en el riñón anterior se identificaron vías enriquecidas relacionadas con el sistema inmune y la transducción de señales en ambos tejidos, destacando la vía de señalización de las MAP quinasas, señalización de receptores tipo Toll, melanogenesis, entre otras. Además, un análisis de expresión de lncRNAs reveló un patrón de transcripción específico para cada modelo, donde los principales lncRNA compartidos se encontraron altamente correlacionados con varios transcritos involucrados en la respuesta inmune, la homeostasis del hierro, la respuesta inflamatoria y la apoptosis, evidenciando una posible remodelación funcional a través de los lncRNA ocasionada por la estimulación la proteína recombinante Cr-catepsina. A su vez, este estudio permitió demostrar que es posible utilizar las líneas celulares para la detección inicial de antígenos para desarrollar vacunas contra el piojo de mar, reduciendo el consumo de tiempo asociado con la selección del antígeno. Como segunda etapa del estudio se exploró la remodelación transcriptómica, basada en el splicing alternativo (AS), de estos dos modelos de estudio frente a una infección con Psicirickettsia salmonis. Para ello, se infectaron las células SHK-1 con la bacteria y se tomaron muestras a los 0, 7- y 14-días después de la infección (dpi) para la secuenciación del transcriptoma. Por otro lado, se utilizaron conjuntos de datos de RNA-Seq de riñones anterior de salmón del Atlántico infectados con la misma cepa de P. salmonis. Para ambos modelos de estudio, el mayor número de eventos de splicing alternativo diferencial (DAS) se observó a los 7 dpi. En células SHK-1 infectadas con P. salmonis se observó una alta presencia de genes DAS relacionados con el metabolismo de nucleótidos, evidenciando la competencia de la bacteria por estos micronutrientes. Por lo cual las células aumentarían su capacidad de producción para suplir el déficit de nucleótidos, donde los procesos de AS jugarían un papel fundamental. Por el contrario, el riñón anterior de salmón exhibió muchos términos GO asociados con la respuesta inmune, indicando la importancia funcional del AS en la remodelación funcional de procesos complejos contra la infección bacteriana. Como tercera etapa de este estudio, se evaluó la respuesta transcriptómica en las células sanguíneas del salmón del Atlántico frente a una vacunación y exposición a dos patógenos marinos, C. rogercresseyi y P. salmonis. Para ello se diseñaron cuatro grupos experimentales que incluyeron la vacunación con la quimera recombinante Ipath® y dos vacunas comerciales contra P. salmonis: BlueGuard + Livac, BlueGuard + Livac + Ipath®, Ipath® y Control (PBS adyuvado). Cada grupo fue expuesto a una infestación con C. rogercressevi y pasados 25 dpi se infectaron con P. salmonis. Las células sanguíneas de los peces de cada grupo experimental fueron extraídas a los 12 dpi y fueron utilizadas para la secuenciación del transcriptoma. En este trabajo, los patrones globales transcriptómicos de las células sanguíneas de salmón del Atlántico de los cuatro grupos experimentales mostraron niveles de expresión diferenciales. El grupo experimental vacunado con Ipath® mostró una mayor respuesta transcriptómica en comparación con las vacunas comerciales empleadas. Notoriamente, las anotaciones de los genes diferencialmente expresados (DEGs) compartidos por los tres grupos experimentales mostraron un enriquecimiento de genes relacionados con homeostasis y metabolismo del hierro. Adicionalmente, se analizó el

comportamiento de distintas rutas de señalización y su posible remodelación transcriptómica en cada grupo experimental, siendo el grupo vacunado con Ipath® el más representado en todas las rutas, en términos de DEGs. La vía de señalización de HIF-1 y ferroptosis fueron activadas significativamente, lo cual podría predecir que la vacunación con Ipath® podría estar regulando una hipoxia por déficit de hierro, o la muerte celular por ferroptosis, que podrían ocurrir en el salmón del Atlántico durante la exposición a C. rogercressevi y P. salmonis. El presente estudio reveló la remodelación transcriptómica como respuesta a diferentes inmuno-estimulaciones, permitiendo profundizar en los mecanismos moleculares implicados en la respuesta inmune del salmón del Atlántico. Este enfoque permitió explorar en detalle los cambios en la expresión génica y el splicing alternativo que ocurren en diferentes tejidos, proporcionando información valiosa sobre la respuesta inmune adaptativa y la plasticidad del sistema inmunológico del salmón del Atlántico. Además, resalta la importancia de integrar diferentes modelos de estudio para obtener una visión integral de la respuesta inmune en diferentes niveles y contextos. Este trabajo proporciona información valiosa para contribuir al desarrollo de estrategias de manejo de enfermedades en la salmonicultura, incluyendo la identificación de marcadores moleculares de respuesta inmune, la selección de cepas resistentes y el diseño de vacunas más efectivas.

ABSTRACT

Salmon farming, as one of the most important economic activities in Chile, faces constant challenges such as infectious diseases and the environmental impact generated by treatments. Among the main diseases affecting Atlantic salmon farming are caligidosis and rickettsial salmonid septicemia. The use of vaccines as an active immunostimulation strategy in Atlantic salmon is a promising solution to prevent diseases and reduce pollution. Understanding how Atlantic salmon responds at the molecular level to these stimuli or the presence of pathogens is crucial for developing effective management and control strategies. In this regard, RNA transcriptome sequencing technology (RNA-seq) has greatly contributed to understanding the molecular and functional changes that occur in an organism in the presence of stimulation, leading to a structural and functional remodeling of its transcriptomic response as a defense mechanism. In this context, this doctoral thesis aims to evaluate the transcriptomic, structural, and functional remodeling mechanisms of the response of Atlantic salmon to different immunological stimuli, whether pathogenic infections or vaccination processes. For this, in vitro and in vivo study models were used to evaluate the different potential mechanisms of remodeling the immune response of Atlantic salmon against different immunomodulatory stimuli. As a first stage, the transcriptomic response of the SHK-1 cell line stimulated with the recombinant protein Cr-cathepsin from Caligus rogercresseyi and the Atlantic salmon head kidney injected with the same protein were compared. The results of this study showed a differential transcriptomic profile of both study models, however, 24.15% of the transcriptomic response was shared, which was mainly associated with antigen stimulation. Enriched pathways related to the immune system and signal transduction were identified in both tissues, highlighting the MAPK signaling pathway, Toll-like receptor signaling, and melanogenesis, among others. In addition, expression analysis of lncRNAs revealed a specific transcription pattern for each model, where the main shared lncRNAs were found to be highly correlated with various transcripts involved in the immune response, iron homeostasis, the inflammatory response, and apoptosis, evidencing a possible functional remodeling through lncRNA caused by stimulation of the recombinant protein Cr-cathepsin. In turn, this study demonstrates that it is possible to use cell lines for the initial detection of antigens to develop vaccines against sea lice, reducing the time consumption associated with antigen selection. As a second stage of the study, the transcriptomic remodeling, based on alternative splicing (AS), of these two study models against infection with Psicirickettsia salmonis was explored. For this,

SHK-1 cells were infected with the bacterium, and samples were taken at 0, 7 and 14 days after infection (dpi) for transcriptome sequencing. On the other hand, RNA-Seq data sets from Atlantic salmon head kidney infected with the same P. salmonis strain was used. For both study models, the highest number of differential alternative splicing (DAS) events was observed at 7 dpi. In SHK-1 cells infected with *P. salmonis*, a high presence of DAS genes related to nucleotide metabolism was observed, evidencing the competition of the bacteria for these micronutrients. Therefore, the cells would increase their production capacity to supply the nucleotide deficit, where AS processes would play a fundamental role. In contrast, the salmon head kidney exhibited many GO terms associated with the immune response, indicating the functional importance of AS in the functional remodeling of complex processes against bacterial infection. As a third stage of this study, the transcriptomic response in Atlantic salmon blood cells to vaccination and exposure to C. rogercresseyi and P. salmonis was evaluated. Four experimental groups were designed that included vaccination with the recombinant Ipath® chimera and two commercial vaccines against P. salmonis: BlueGuard + Livac, BlueGuard + Livac + Ipath[®], Ipath[®] and Control (adjuvanted PBS). Each group was infested with C. rogercressevi, and after 25 dpi was infected with P. salmonis. Fish blood cells from each group were extracted at 12 dpi and used for transcriptome sequencing. In this work, the global transcriptomic patterns of Atlantic salmon blood cells from the four experimental groups showed differential expression levels. The experimental group vaccinated with Ipath[®] showed a higher transcriptomic response compared to the commercial vaccines used. Notably, the annotations of the differentially expressed genes (DEGs) shared by the three experimental groups showed an enrichment of genes related to iron homeostasis and metabolism. Additionally, the behavior of different signaling pathways and their possible transcriptomic remodeling in each experimental group were analyzed, with the group vaccinated with Ipath[®] being the most represented in all pathways, in terms of DEGs. The HIF-1 signaling pathway and ferroptosis were significantly activated, which could predict that vaccination with Ipath[®] could be regulating hypoxia due to iron deficiency, or cell death due to ferroptosis, which could occur in Atlantic salmon during a C. rogercressevi and P. salmonis exposition. The present study revealed transcriptomic remodeling in response to different immunostimulations, allowing us to delve into the molecular mechanisms involved in the immune response of Atlantic salmon. This approach explores in detail the changes in gene expression and AS that occur in different tissues, providing valuable information on the adaptive immune response and plasticity of the Atlantic salmon immune system. In addition, it highlights the importance of integrating different study models to obtain a comprehensive view of the immune response at different levels and contexts. This work provides valuable information to contribute to the development of disease management strategies in salmon farming, including the identification of molecular markers of immune response, the selection of resistant strains, and the design of more effective vaccines.

1. INTRODUCCIÓN

1.1. Salmonicultura en Chile y sus principales desafíos

La salmonicultura en Chile ha mostrado un crecimiento exponencial desde finales de la década de 1980 convirtiéndose en una de las actividades acuícolas más importantes (Quiñones et al., 2019). El salmón del Atlántico (*Salmo salar*), la trucha Arcoíris (*Oncorhynchus mykiss*) y el salmón Coho (*Oncorhynchus kisutch*) son las principales especies de salmónidos cultivadas (Sernapesca, 2022). Actualmente, la industria salmonera enfrenta una serie de desafíos que atentan contra su desarrollo sostenible (Quiñones et al., 2019). Uno de los principales problemas es la generación de un impacto ambiental negativo en los ecosistemas (Klinger & Naylor, 2012; Maroni, 2000; Tacon & Metian, 2008), tales como contaminación por productos químicos, tales como antibióticos y pesticidas (Burridge et al., 2010), pérdida de hábitat (Stickney & McVey, 2002), así como la transmisión de enfermedades, producto de escapes masivos de peces de cultivo (Chevassus-au-Louis & Lazard, 2009; Svåsand et al., 2007).

A lo largo de los años, las prácticas de cultivo intensivo han provocado la aparición de diversas enfermedades, siendo estas uno de los grandes retos que enfrenta el sector acuícola. En Chile se han reportado diversas enfermedades causadas por agentes infecciosos, tales como virus, bacterias, hongos y parásitos (Figueroa et al., 2019). Dentro de las enfermedades que mayor impacto han causado se encuentran por ejemplo; la enfermedad renal bacteriana (BKD) causada por *Renibacterium salmoninarum*, la anemia infecciosa del salmón (ISAV), virus de la necrosis pancreática infecciosa (IPNV), tenacibaculosis causada por el género Tenacibaculum spp, caligidosis causada por el ectoparásito *Caligus rogercresseyi* y la SRS causada por *Picirickettsia salmonis* (Figueroa et al., 2019)

Los tratamientos de las enfermedades antes mencionadas han generado grandes pérdidas económicas al sector, además de recrudecer los daños en los ecosistemas acuáticos debido al uso de antibióticos, productos químicos y pesticidas (Avendaño-Herrera, 2018). Por ejemplo, los antibióticos más empleados para las infecciones por *P. salmonis* son oxitetraciclina y florfenicol (Avendaño-Herrera, 2018). En el caso de las infecciones por piojos de mar se controlan principalmente a través de medicamentos plaguicidas, siendo el organofosforado azametifos el más

utilizado en Chile (Arriagada et al., 2017). El uso indiscriminado tanto de antibióticos como antiparasitarios han conllevado al desarrollo de resistencia por parte de los patógenos tratados (Bravo et al., 2015b; Núñez-Acuña et al., 2020). Por estas razones, la búsqueda incesante de mecanismos para mitigar los impactos ambientales producidos por los químicos, así como métodos de control para estas enfermedades es fundamental para lograr una salmonicultura sustentable. En este sentido, las vacunas han ganado atención como método profiláctico para prevenir enfermedades virales e infecciosas del salmón (Mondal & Thomas, 2022). Las vacunas como un posible método de control presentan una serie de ventajas, dentro de las cuales se encuentran; la baja probabilidad de desarrollar resistencia por parte del patógeno, la cual en caso de que suceda se puede contrarrestar modificando o incluyendo nuevos componentes antigénicos. Además, pueden presentar acción sostenida en el tiempo producto de una inducción de memoria inmunológica. A su vez, reducen la contaminación del ecosistema y de otras especies, así como la disminución de los costos de vacunación comparados con el uso de químicos (Raynard et al., 2002). La mayoría de las vacunas candidatas se desarrollan con un componente de microorganismo atenuado, muerto, una proteína, o toxina de superficie particular. Por lo general, las vías de producción de vacunas para peces implican el uso de un antígeno específico que estimula la respuesta inmunitaria innata y adaptativa de los peces (Ma et al., 2019; Mondal & Thomas, 2022). Por lo cual las vacunas formuladas con antígenos producidos por tecnología de ADN recombinante se utilizan cada vez más en la industria acuícola (Miccoli et al., 2021; Mondal & Thomas, 2022). Sin embargo, la validación comercial es un proceso largo y costoso. Actualmente, uno de los mayores desafíos es encontrar una molécula antigénica que mejore una respuesta inmune protectora relacionada con antígenos patógenos.

El salmón del Atlántico es la principal especie de salmón cultivada a nivel mundial (FAO, 2022), y específicamente en Chile representa el 68% de los peces de cultivo (Sernapesca, 2022). Para controlar las enfermedades infecciosas que lo afectan se han propuesto numerosas formulaciones de vacunas. Por ejemplo, se han reportado candidatos vacunales contra diferentes patógenos, tales como; *Vibrio anguillarum* (Mikkelsen et al., 2011), *Yersinia ruckeri* (Nguyen et al., 2018), *Moritella viscosa* (Guz, 2003), *P. salmonis* (Rozas-Serri et al., 2019; Tobar et al., 2011; Wilhelm et al., 2006), alfavirus de los salmónidos (SAV) (Røsæg et al., 2021), virus de la necrosis pancreática infecciosa (IPNV) (Aase et al., 2004; Munang'andu et al., 2014), virus de la anemia

infecciosa del salmón (ISAV) (Caruffo et al., 2016), *Lepeoptheirus salmonis* (Swain et al., 2020; Tartor et al., 2021) y *C. rogercresseyi* (Casuso et al., 2022; Valenzuela-Muñoz et al., 2021). Dentro de las enfermedades patógenas que afectan el cultivo de salmones, la Caligidosis y la SRS, son de las más relevantes en términos de afectaciones, tanto para el bienestar de los peces como económicas (Ibieta et al., 2011; Quiñones et al., 2019).

1.2. Caligidosis y sus métodos de control

El ectoparásito marino *C. rogercresseyi* es el causante de la enfermedad conocida como Caligidosis, la cual ha generado grandes pérdidas económicas en la industria productora de salmones en Chile, reportándose un total de US\$80 millones asociados a costos de antiparasitarios en el año 2014 (Bravo et al., 2015a). Para el año 2019 se estimó un aumento de US\$1,4/kg en los costos de producción, dado principalmente por el impacto de *C. rogercresseyi* en los cultivos de salmones y el uso de tratamientos de control de la enfermedad (Dresdner et al., 2019).

El C. rogercresseyi pertenece a la familia Caligidae, donde también se encuentra Lepeoptheirus salmonis, especie predominante en el hemisferio Norte. Mientras que C. rogercresseyi es la principal especie en el hemisferio Sur, parasitando mayoritariamente a salmón del Atlántico y trucha arcoíris (González & Carvajal, 2003), y además peces silvestres como merluza, róbalo y pejerrey (Bravo et al., 2015a). Sin embargo, S. salar se ha reportado como la especie más susceptible a las infestaciones con piojo de mar (Hamilton-West et al., 2012; Valenzuela-Muñoz et al., 2016). El ciclo de vida de este ectoparásito consta de ocho estadios de desarrollo y puede variar entre 26 a 46 días dependiendo de la temperatura del agua (González & Carvajal, 2003). Los primeros tres estadios corresponden a una fase planctónica (nauplius I, nauplius II y copepoditos), luego cuatro estadios juveniles (chalimus I, II, III, IV) y una etapa adulta madura (macho o hembra) (Boxshall & Bravo, 2000; González & Carvajal, 2003). La etapa de copepodito es donde ocurre el reconocimiento y asentamiento en el hospedador utilizando antenas primarias que detectan estímulos químicos que libera el pez. Los copepoditos desarrollan un filamento frontal que les permite estar adheridos al pez durante los siguientes estadios de chalimus (González & Carvajal, 2003). En las etapas adultas, los ectoparásitos son capaces de moverse sobre el pez libremente y sobrevivir hasta siete días en el mar, y por tanto parasitar otros peces (Bravo, 2010). Una vez asentados en el pez, el ectoparásito se alimenta del mucus, piel y sangre de su hospedador (GallardoEscárate et al., 2019; Pike & Wadsworth, 1999), lo cual genera altos niveles de estrés en el pez conllevando a una inmunodepresión, pérdida del epitelio y necrosis tisular; y por tanto se vuelven susceptibles a posibles enfermedades infecciosas (Costello, 2006).

El piojo de mar, C. rogercressevi, al igual que otros parásitos artrópodos pueden secretar sustancias para modular la respuesta inmune de sus hospederos y favorecer su alimentación. Entre las diferentes proteínas del parásito implicadas en la infestación, las proteínas secretoras/excretoras (SEP) juegan un papel esencial, cambiando el entorno de la célula huésped al suprimir su sistema inmunológico, además de facilitar los procesos de alimentación del parásito (Ranganathan & Garg, 2009). Una de las principales proteasas presentes en el secretoma del parásito es la catepsina (Fernando & Fischer, 2020), la cual se ha asociado a procesos de degradación de proteínas en los lisosomas, los núcleos y el citosol (Turk et al., 2002; Wilcox & Mason, 1992). En C. rogercresseyi, se han identificado 56 proteínas similares a la catepsina, expresadas en todas las etapas de desarrollo del piojo de mar (Maldonado-Aguayo et al., 2015). Además, se han observado patrones de expresión diferencial de genes relacionados con el secretoma durante las etapas ontogénicas, como por ejemplo serin proteasas (serpinas) (Maldonado-Aguayo & Gallardo-Escárate, 2014), tripsinas y quimotripsinas (Valenzuela-Miranda & Gallardo-Escárate, 2016b). Respecto a las tripsinas, los autores informaron de una supuesta función en el metabolismo de los fármacos durante la exposición de C. rogercressevi a los antiparasitarios azametifos y deltametrina (Valenzuela-Miranda & Gallardo-Escárate, 2016b).

La respuesta de los peces frente a un ectoparásito está compuesto por múltiples mecanismos de defensa, entre ellos la respuesta inmune innata y adaptativa son fundamentales. Las principales barreras de defensa en los peces son el mucus, la piel, branquias, enzimas digestivas, y además una barrera inmunológica más compleja basada en respuesta humoral y celular (Khan, 2012). En salmón del Atlántico infestado con *C. rogercresseyi* se observó una regulación positiva de genes proinflamatorios, como las interleuquinas *Il-10, Il-4*; *COX-2, MHCII, MMP13*, en la piel y el riñón anterior pasados 14 días después de la infestación (Valenzuela-Muñoz et al., 2016). Esta respuesta inflamatoria también ha sido reportada durante la infestación con *L. salmonis*, observándose cambios en los niveles de expresión de *Il-1* β , *IL-1R*, *IL-12*, *CD4/8*, *factor de necrosis tumoral (TNF\alpha), prostaglandina E2* (Fast et al., 2006; Skugor et al., 2008; Tadiso et al., 2011). Además, en la piel de salmón del Atlántico se observó un incremento en los niveles de expresión transcripcional de *TLR21* y *TLR22a2*, contrariamente en salmón Coho, *TLR13* y *TLR19* estuvieron mayormente expresados, sugiriendo una remodelación de la respuesta inmune innata frente a la infestación con *C. rogrecresseyi* dependiente de la especie (Valenzuela-Muñoz et al., 2016). De igual manera, en un estudio realizado en *Labeo rohita* infestados con *Argulus siamensis*, la expresión de los transcritos de *TLR22* fue elevada, evidenciando la activación de la respuesta inmune innata de los peces ante una infección ectoparásita (Panda et al., 2014). Por otra parte, la inmunidad nutricional ha sido informada como mecanismo de defensa del salmón del Atlántico para combatir la infestación con *C. rogercresseyi*, reportándose el incremento de la expresión de genes relacionados a la homeostasis y metabolismo del hierro (Valenzuela-Muñoz et al., 2017a; Valenzuela-Muñoz & Gallardo-Escárate, 2017b).

Los principales métodos de tratamiento y control de esta enfermedad parasitaria incluyen dietas funcionales (Barman et al., 2013), control biológico (Treasurer, 2012), monitoreo coordinado en los centros de cultivo (Sernapesca, 2022), y tratamientos con drogas antiparasitarias, siendo este último el más utilizado en la industria salmonera en Chile (Bravo et al., 2015b). Dentro de los fármacos antiparasitarios utilizados, el que se encuentra actualmente vigente es el Azametifos, un compuesto organofosforado que actúa sobre la actividad de acetylcholinesterase (AChE) (Burridge et al., 2010). Previamente se han utilizado otros compuestos químicos como avermectinas (benzoato de emanectina), piretroides sintéticos (deltametrina y cipermetrina) que actúan sobre los canales de Na+. (Bravo et al., 2013). Estos ectoparásitos han desarrollado mecanismos de resistencia debido al uso constante y excesivo de estos fármacos (Arriagada et al., 2020; Bravo et al., 2015b; Sáez-Vera et al., 2022). Por lo tanto, las vacunas como método de control profiláctico, es una alternativa sustentable para la industria salmonera.

El desarrollo de vacunas contra ectoparásitos se inició principalmente debido a la reducción de la eficacia del plaguicida para el control de garrapatas en el sector bovino. Una de las vacunas contra ectoparásitos más exitosas ha sido la vacuna recombinante contra la garrapata del ganado tropical, *Rhipicephalus microplus* (Penichet et al., 1994). El enfoque utilizado en esta vacuna fue el empleo de un antígeno oculto, Bm86 (Willadsen & McKenna, 1991); es una glicoproteína que se expresa en pocos sitios de la membrana celular digestiva del parásito que no entra en contacto naturalmente

con el sistema inmune del hospedero durante la infección (Bastos et al., 2010; Penichet et al., 1994). El silenciamiento de genes ha sido reportado como estrategia de vacunas para el ectoparásito L. salmonis, empleando una proteína similar a la vitelogenina, denominada LsYAP (del inglés, L. salmonis yolk-associated protein) (Dalvin et al., 2009). Las proteinasas/peptidasas y sus inhibidores secretados por los ectoparásitos han sido empleadas como antígenos en diversos estudios en garrapatas (Willadsen, 2006). Por ejemplo, dos catepsinas L de Haemaphysalis longicornis (Mulenga et al., 1999), una metaloproteína de Ixodes scapularis (Francischetti et al., 2002) y cuatro serpinas de Rhipicephalus appendiculatus (Mulenga et al., 2001), entre otros. Para el ectoparásito C. rogercresseyi, se reportó una vacuna recombinante basada en la proteína my32 (ortólogo de la proteína akirin-2 de mamíferos), la cual tuvo una reducción del 57% en el número de parásitos por pez, principalmente en la segunda generación de los piojos de mar (Carpio et al., 2011). Otro candidato vacunal de gran proyección, es la proteína quimérica recombinante, Ipath®; que contiene residuos del dominio de unión al hierro de la transferrina y el centro de di-hierro ferroxidasa de la subunidad H de la ferritina del salmón del Atlántico (Valenzuela-Muñoz et al., 2021). Esta vacuna mostró una reducción de la carga parasitaria de más del 90 % en los salmones del Atlántico. Además los perfiles de expresión transcripcional, relacionados con el metabolismo del hierro y el sistema inmune, fueron modulados en los peces vacunados y expuestos posteriormente a una doble infección con C. rogercressevi y P. salmonis (Valenzuela-Muñoz et al., 2021). Recientemente, las proteínas Catepsina y Peritrofina, identificadas por vaccinología reversa en las primeras etapas de ontogenia del C. rogercresseyi, fueron obtenidas por vía recombinante y testeadas como posibles candidatos vacunales en salmón del Atlántico. El grupo vacunado con la formulación que contenía Catepsina mostró una reducción significativa de la carga parasitaria, convirtiéndolo en un candidato vacunal prometedor (Casuso et al., 2022).

1.3. Septicemia rickettsial salmonídea y sus métodos de control

El primer brote de SRS ocurrió en el año 1989 en salmón Coho (*O. kisutch*) (Bravo & Campos, 1989), ocasionando la muerte de aproximadamente 1,5 millones de salmones cultivados en el sur de Chile. Actualmente, SRS es responsable de aproximadamente el 54.2 % de las mortalidades producidas por enfermedades infecciosas en las especies salmónidas cultivadas (Sernapesca, 2022). Según el Instituto Tecnológico del Salmón (https://www.intesal.cl/), las pérdidas económicas

asociadas a la enfermedad han sido estimadas en US\$ 850 millones anuales, representando un 25% de las ganancias totales de exportación anual (Rozas & Enriquez, 2014).

El agente etiológico de esta enfermedad es *P. salmonis*, fue aislada de salmón Coho y denominada como cepa tipo LF-89 (Fryer et al., 1992). *P. salmonis* es una bacteria Gram-negativa, no móvil, no encapsulada, pleomórfica pero usualmente cocoide y se encuentran en pares o estructuras en forma de anillo con un diámetro aproximado de 0.5–1.5 µm. Pertenece a la familia Piscirickettsiaceae en el phylum Proteobacteria, subdivisión gamma de Proteobacterias (Fryer & Hedrick, 2003). En términos de crecimiento, la bacteria utiliza las vacuolas citoplasmáticas para replicarse por fisión binaria, dentro de las células de hospedadores de peces susceptibles (Fryer et al., 1990; Fryer et al., 1992). De igual manera, tiene la capacidad de sobrevivir en macrófagos asociados al hígado, así como en los macrófagos de riñón, bazo y sangre periférica (Bakkemo et al., 2011; Cvitanich et al., 1991; Rojas et al., 2010). Inicialmente, se conocía que *P. salmonis* solamente podía ser cultivada en células eucariontes (Birkbeck et al., 2004), siendo considerada como una bacteria intracelular obligatoria. Posteriormente, diferentes estudios demostraron que además la bacteria podía sobrevivir de manera extracelular (Gómez et al., 2009; Marshall et al., 2011).

SRS afecta salmónidos tanto salvajes como cultivados tales como salmón Coho, salmón del Atlántico y trucha Arcoíris (Gaggero et al., 1995). Los peces afectados por esta patología presentan varios signos de infección tales como, natación errática, pérdida de apetito, letargo, pequeñas manchas blancas, branquias pálidas debido a la anemia que desarrollan, hinchazón abdominal, hemorragias petequiales y equimóticas en la base de las aletas y en áreas perioculares y perianales. De igual manera se observa daños internos; en hígado, bazo, riñón e intestino y en menor medida en cerebro, corazón, músculo esquelético y branquias (Figueroa et al., 2019; Rozas & Enriquez, 2014). Aplicando técnicas de histología, en las manchas blancas amarillentos se han observado granulomas rodeados de macrófagos en diferentes etapas (neutrófilos, células dendríticas y células natural killer) y de posibles células T y B (Rozas-Serri, 2022). La enfermedad ha ido evolucionando en el tiempo, ya que cada nuevo brote es más insidioso y resistente a los tratamientos, mostrándose aumento de la virulencia bacteriana y de la gravedad patológica y clínica, así como diferentes

formas de presentación en especies que se encuentran bajo similares medidas de manejo y condiciones de cultivo (Marshall et al., 2007; Rozas & Enriquez, 2014).

En el caso de bacterias patógenas Gram-negativas, se conoce que poseen moléculas efectoras, que son liberadas por sus sistemas de secreción al entrar en contacto con el hospedero. Estas moléculas efectoras son esenciales para la invasión del hospedero y la supresión del sistema inmune (Costa et al., 2015). En un estudio de expresión in vitro de genes de P. salmonis en la línea celular RTS11, se identificaron cuatro genes de virulencia (dotA, dotB, icmK y icmE; homólogos al sistema de secreción Dot/Icm tipo 4B (T4BSS), el cual se ha descrito como un mecanismo de virulencia en bacterias, responsable de la supervivencia intracelular y replicación en otros patógenos Gramnegativos (Gómez et al., 2013; Marshall et al., 2007). Estos genes se expresaron tanto durante la infección de la línea celular como en medio libre de células, lo cual sugiere que presentan una expresión constitutiva en P. salmonis (Machuca & Martinez, 2016). Un mecanismo de virulencia descrito para P. salmonis, es su interacción con proteínas como clatrina y actina, las cuales resultan fundamentales para la internalización y el desarrollo del proceso infectivo en células de salmones (Ramírez et al., 2015). En este sentido, en un estudio de RNA-seq se indagó en la respuesta transcripcional del salmón del Atlántico durante la infección con P. salmonis, evidenciando una regulación de la vía de endocitosis mediada por clatrina, lo cual sugiere un mecanismo de evasión de respuesta inmune de P. salmonis (Valenzuela-Miranda & Gallardo-Escárate, 2016a). De igual manera, S. salar presentó una respuesta transcriptómica compleja ante la infección con P. salmonis, la cual estuvo representada por una regulación de la vía de biosíntesis/degradación del grupo hemo, así como de proteínas transportadoras de hierro, tales como haptaglobina y hepcidina (Valenzuela-Miranda & Gallardo-Escárate, 2016a). Un estudio de secuenciación simultánea (dual RNA-seq) logró caracterizar los transcriptomas de P. salmonis y S. salar simultáneamente durante el proceso de infección bacteriana. De manera relevante, en este estudio se identificaron una gran cantidad de genes asociados al metabolismo de los aminoácidos. Al comparar el genoma de P. salmonis con diferentes genomas de patógenos de peces, se observó que existía un déficit de genes involucrados en la ruta biosintética de varios aminoácidos, como valina, leucina e isoleucina. Los experimentos in vitro demostraron que la restricción de estos aminoácidos conllevaba a una disminución significativa del crecimiento de P. salmonis. Este comportamiento se logró revertir con la suplementación de al menos uno de los tres aminoácidos en el medio de crecimiento bacteriano. Esto sugirió que existe cierta dependencia metabólica de *P. salmonis* en los aminoácidos de *S. salar*,

lo cual podría implicar un nuevo mecanismo de patogénesis basados en la capacidad de captar nutrientes del huésped por parte de la bacteria (Valenzuela-Miranda & Gallardo-Escárate, 2018). Un estudio en la línea celular SHK-1 informó cambios transcripcionales de *P. salmonis* durante el crecimiento intracelular, aprovechando las propiedades fagocíticas y de tipo macrófago de este modelo *in vitro* (Zúñiga et al., 2019). Además, también se evaluaron los cambios en la viabilidad de la célula huésped y la respuesta inmunitaria después de la infección por *P. salmonis*, y se reportaron biomarcadores asociados con la respuesta inmunitaria, como la disminución de la expresión de las citocinas proinflamatorias *Il-1β*, *IFNγ* e *IFNα*; y mayor expresión de *Il-8*, *Il-12* e *Il-10* (Ortiz-Severín et al., 2020).

Los principales métodos de control de esta enfermedad son fundamentalmente el uso de antibióticos, siendo el florfenicol y oxitetraciclina los más utilizados (Avendaño-Herrera, 2018). Ambos son antimicrobianos bacteriostáticos de amplio espectro y actúan inhibiendo irreversiblemente la síntesis de proteínas a nivel del ribosoma bacteriano_(Cannon et al., 1990; Figueroa, 2019). Sin embargo, el uso indiscriminado de estos antibióticos ha provocado el desarrollo de resistencia por parte de la bacteria hacia estos tratamientos, viéndose reflejado en la disminución de la eficacia del tratamiento antimicrobiano(Henríquez et al., 2016).

Hasta el 2022, en Chile existían 28 vacunas disponibles comercialmente contra SRS según reportes del Servicio Agrícola Ganadero (SAG, julio de 2022); de estas, la mayoría están compuestas por una preparación de la bacteria *P. salmonis* inactivada, incluida BLUEGUARD® SRS+IPN; una vacuna bivalente inactivada contra SRS y Necrosis Pancreática Infecciosa, una vacuna de subunidad, denominada AQUAVAC® SARISTIN 2, que contiene una proteína VP2 del virus de la IPN recombinante y una proteína ORF1-90kDa de la lipoproteína SRS recombinante; y una vacuna viva atenuada, ALPHA JECT LiVac® SRS (Maisey et al., 2016). El protocolo de vacunación, por el cual son regidas las industrias salmoneras en Chile, se basa en una primera inmunización administrando vacunas de células enteras, inactivadas y adyuvadas por inyección intraperitoneal. Una vez que los niveles de anticuerpos contra la bacteria disminuyen en sangre, se utiliza la vacunación oral como refuerzo de la inmunización primaria. Sin embargo, los peces vacunados se han visto afectados con Piscirickettsiosis al final de su ciclo productivo, lo cual es un agravante económico (Evensen, 2016; Figueroa et al., 2019; Tobar et al., 2011). No obstante, lograr

una protección contra la vacunación en condiciones de campo sigue siendo un problema a solucionar, por lo cual la búsqueda de nuevas estrategias de control o terapéuticas es un tema de gran interés para la comunidad científica (Figueroa et al., 2019). En este sentido, varios estudios han reportado candidatos vacunales contra P. salmonis. Por ejemplo, un reporte de una vacuna quimérica obtenida por vía recombinante en Escherichia coli, compuesta por la fusión de una lipoproteína de la superficie de P. salmonis, OspA, a epítopos T promiscuos del virus del sarampión y la toxina del tétano *Clostridium tetani* (tt), obtuvo un porcentaje relativo de supervivencia del 83% (Kuzik, 2001). En un estudio se evaluó el efecto de varias combinaciones de dos a tres proteínas recombinantes aisladas de P. salmonis, entre ellas proteínas de choque térmico, antígenos de unión a membrana, antígenos expuestos a superficie y factores de virulencia. La formulación con chaperoninas recombinantes Hsp60, Hsp70 con una proteína flagelar FlG mostró los mejores niveles de protección en un ensayo de vacunación y reto en salmón del Atlántico, obteniendo un porcentaje relativo de supervivencia del 95% (Wilhelm et al., 2006). Además, un prototipo de vacuna formulada con proteínas inmunogénicas aisladas de la cepa Austral-005 de P. salmonis presentó un 89.6% de protección en salmón del Atlántico en correlación con la inducción de anticuerpos IgM específicos de P. salmonis (Pontigo et al., 2021). Adicionalmente, vesículas de membrana externa (OMV) de P. salmonis fueron aislados y evaluados como vacuna contra la bacteria, utilizando pez cebra como modelo de infección, mostrando niveles de protección tras la exposición a una dosis letal de P. salmonis y una disminución de la carga bacteriana en los grupos inmunizados. Además, indujo secreción de IgM y cambios en la expresión de genes relacionados con el sistema inmune, lo cual hace que las OMV se presenten como un buen candidato contra SRS (Tandberg et al., 2017). No obstante, para desarrollar un buen candidato vacunal es necesario comprender las bases moleculares que rigen el proceso de interacción entre P. salmonis y sus hospederos.

1.4. Remodelación estructural y funcional como respuesta transcriptómica del hospedero

Los organismos patógenos tienen la capacidad de dañar a su hospedero como consecuencia de los efectos colaterales de sus factores de virulencia, ya sean directos o indirectos, los cuales desempeñan funciones específicas asociadas con los procesos de patogénesis (Nash et al., 2015). Los estímulos, tanto internos como externos provocan cambios dinámicos en una célula o tejido, tales como la proliferación y migración de células residentes, homeostasis del tejido o morfogénesis

(Bril et al., 2022); además, de la activación de una respuesta de defensa a nivel inmunológico (Avraham et al., 2015). La tecnología de secuenciación del transcriptoma de ARN (RNA-seq) ha contribuido en gran medida a comprender los cambios moleculares y funcionales que ocurren en un organismo en presencia de una estimulación. Su enfoque permite la medición cuantitativa de todos los transcritos, incluyendo las isoformas de mRNA generadas por eventos de splicing alternativo (Ma et al., 2023; Park et al., 2013), la expresión de especies de RNA no codificante (lncRNA, miRNA, tRNA, sRNA) (Batista et al., 2019), la detección de modificaciones en los niveles de expresión génica durante una infección (Qian et al., 2014), polimorfismos de nucleótidos únicos (SNP) (Pareek et al., 2017), modificaciones post-traduccionales (Gaidatzis et al., 2015) y recientemente fusiones de genes (Dorney et al., 2022). Los cambios moleculares que ocurren en un organismo en presencia de un estímulo específico, conllevan a una remodelación estructural y funcional de su respuesta transcriptómica como mecanismo de defensa. En este sentido, la activación o supresión de genes específicos, las alteraciones de vías metabólicas, así como la regulación de la interacción de los ARNm con proteínas y otras moléculas reguladoras podrían modificar la respuesta inmune del hospedero.

La remodelación del transcriptoma es esencial para la adaptación de un organismo a condiciones ambientales cambiantes, procesos de desarrollo y respuestas a estímulos fisiológicos o patogénicos (Casamassimi et al., 2017; López-Maury et al., 2008). Por ejemplo, en células neuronales se ha descrito que los procesos de remodelación transcriptómica son esenciales para la diferenciación y plasticidad celular (Mazille et al., 2022). Específicamente, en salmón del Atlántico se han reportado múltiples estudios de cambios transcriptómicos en presencia de diferentes estímulos. Por ejemplo, la exposición a un factor estresante agudo: redes y transferencia a nuevos estanques de retención; generó un aumento en los niveles de expresión de genes asociados a la activación sináptica en salmones del Atlántico (parr) (Madaro et al., 2023). La estimulación por dietas funcionales basadas en probióticos en post-smolt de salmón del Atlántico regularon la expresión de genes asociados al sistema inmunitario y defensa oxidativa, los cuales fueron descritos como posibles mecanismos de adaptación a la dieta funcional (Dhanasiri et al., 2023).

Entre los mecanismos de remodelación transcriptómica, el splicing alternativo ha surgido como un elemento central en la regulación de la expresión génica, debido a su participación en casi todas las

funciones biológicas de un organismo o célula, como la localización, unión, propiedades enzimáticas e interacción de proteínas con ligandos (Kelemen et al., 2013). Además, se ha visto involucrado activamente con enfermedades infecciosas; por ejemplo, en el secuestro y cooptación de la maquinaria de empalme del hospedero durante una infección viral como el dengue y el virus Zika (Chauhan et al., 2019; De Maio et al., 2016; Hu et al., 2017). Varios estudios han destacado el papel del splicing alternativo en la respuesta inmune del hospedero durante la infección viral, bacteriana en peces. Por ejemplo en la corvina amarilla grande (Larimichthys crocea) infectados con el parásito ciliado Cryptocaryon irritans, se observó que los eventos diferenciales de genes con splicing alternativo estaban enriquecidos en términos GO relacionados con respuesta inmune; y en vías de KEGG, como la vía de señalización del TNF, vía de señalización de receptores tipo Toll e Imd y vía de señalización del receptor similar a NOD (Qu et al., 2022). Además, en bagres infectados con la bacteria Gram-negativa Edwarsiella ictaluri, se indujo un aumento en los eventos de AS como respuesta del hospedero, obteniendo factores de procesamiento de ARN significativamente sobrerrepresentados después de la infección (Tan et al., 2018). En trucha Arcoíris expuestas a estrés por calor, se demostró que el splicing alternativo estaba influyendo en genes de la ruta de degradación de la lisina involucrada en procesos de regulación del estrés en tejido hepático, así como en procesos metabólicos celulares y de unión a compuestos orgánicos cíclicos (Sun et al., 2022). En un estudio realizado a nivel transcripcional se evaluaron los cambios generados por splicing alternativo en el salmón del Atlántico infectados con C. rogercressevi. Los autores reportaron un mayor número de genes diferencialmente expresados y con splicing alternativo en los peces infectados respecto al control no infectado, los cuales estaban involucrados en procesos de comportamiento, RNA splicing, unión a RNA y respuesta inmune (Bravo et al., 2023). En este sentido, el splicing alternativo desempeña un papel fundamental como mecanismo regulador post-transcripcional clave en la interacción patógeno - hospedero.

Los cambios transcriptómicos asociados a un proceso patogénico han sido estudiados para comprender los mecanismos de interacción patógeno – hospedero entre el salmón del Atlántico y diferentes patógenos. Muchas de estas investigaciones utilizan líneas celulares para tener un primer acercamiento al perfil transcriptómico que sustenta la respuesta de un organismo vivo (Gervais et al., 2023; Lakra et al., 2011). Las particularidades de las líneas celulares de peces, como la facilidad de mantenimiento, las condiciones de cultivo y la factible reproducibilidad de la investigación,

hacen de este un modelo perfecto para la evaluación *in vitro* de la interacción patógeno – hospedero (Lakra et al., 2011). Recientemente se empleó la secuenciación de ARN de una sola célula para estudiar el proceso de interacción huésped-virus del ISAV en la línea celular SHK-1, observándose claramente una diferencia en el tipo de respuesta antiviral, marcada por el alza significativa en la expresión de genes relacionados con el comienzo de una infección viral, tales como *PI3K*, *FAK* o *JNK*, y posteriormente un aumento de la respuesta antiviral, caracterizada por la expresión de las células infectadas a las que aún no habían sido infectadas, dado por una expresión de vías de detección de ARNm, degradación de ARN, ubiquitinación o proteasoma (Gervais et al., 2023).

En el caso de P. salmonis, un estudio reciente reportó información relevante respecto a procesos biológicos que podrían relacionarse con mecanismos de resistencia a la SRS en salmón del Atlántico. La respuesta transcriptómica de los salmones frente a la infección con P. salmonis reveló una posible vía de polimerización de remodelación del citoesqueleto de actina del complejo Arp2/3. La asociación de este mecanismo a una reducción de la replicación de *P. salmonis* en el hospedero sugiere una remodelación activa por parte del hospedero para contrarrestar la evasión de la respuesta inmune de las bacterias (Martinez et al., 2023). Recientemente, un estudio realizado en familias de salmón del Atlántico resistentes y susceptibles a C. rogercressevi mostró una diferenciación en la respuesta a la infestación. En la familia de salmones resistentes se observó una activación de genes asociados al proceso de proliferación celular y reparación tisular. Además se encontró una alta variación de SNPs en las familias resistentes, así como una gran cantidad de lncRNA modulados diferencialmente y correlacionados positivamente con genes de respuesta inmune. Estos autores sugirieron que la resistencia del salmón del Atlántico podría estar asociada con la capacidad de reparación de lesiones tisulares generadas en las etapas tempranas de infección de piojos de mar (Valenzuela-Muñoz et al., 2023), evidenciando mecanismos de remodelación estructural temprana de la respuesta inmune.

En los últimos años los estudios de interacción patógeno – hospedero en salmón del Atlántico se han beneficiado por el incremento de las herramientas genómicas. En este sentido, la profundización en la respuesta del salmón a distintos tipos de estimulación, como infecciones patógenas o vacunación, es de gran relevancia. Esta tesis doctoral se enfoca en el estudio de los

mecanismos de remodelación transcripcional, estructural y funcional como respuesta del salmón del Atlántico ante diferentes vías de inmuno-estimulación. Esta investigación además de incrementar los conocimientos sobre la respuesta inmunológica del salmón del Atlántico ante la presencia de patógenos, podría contribuir a la identificación de biomarcadores, la mejora de las estrategias de vacunación así como a la comprensión de los mecanismos de resistencia a enfermedades. Estos factores tienen el potencial de mejorar la salud y el bienestar de los peces en la acuicultura, así como contribuir a la sostenibilidad y productividad de la industria acuícola.

2. HIPÓTESIS

- **2.1.** La remodelación estructural y funcional a nivel transcriptómico del salmón del Atlántico evidencia una asociación con la respuesta inmunológica frente a patógenos en la salmonicultura en Chile
- **2.2.** La inmunización con antígenos recombinantes y formulaciones comerciales de vacunas de peces induce una remodelación estructural y funcional en salmón del Atlántico.

3. OBJETIVO GENERAL

Evaluar la remodelación transcriptómica, estructural y funcional de la respuesta del salmón del Atlántico frente a diferentes estímulos inmunológicos.

3.1. OBJETIVOS ESPECÍFICOS

3.1.1. Evaluar la respuesta transcriptómica inducida por la proteína recombinante Crcatepsina de *C. rogercresseyi* en la línea celular SHK-1 y riñón anterior de salmón del Atlántico.

3.1.2. Comparar la remodelación transcriptómica basada en splicing alternativo en la línea celular SHK-1 y riñón anterior de salmón del Atlántico durante la infección de *P*. *salmonis*.

3.1.3. Caracterizar los mecanismos de remodelación transcriptómica en células sanguíneas de salmón del Atlántico vacunados con Ipath® y expuestos a dos patógenos marinos.

4. MATERIALES Y MÉTODOS

4.1. Comparación de la respuesta transcriptómica inducida por la proteína recombinante Cr-catepsina de *C. rogercresseyi* en la línea celular SHK-1 y riñón anterior de salmón del Atlántico.

La siguiente metodología describe los pasos realizados para dar cumplimiento al objetivo 1. Brevemente, el antígeno Cr-catepsina del piojo de mar *C. rogercresseyi*, identificado y caracterizado previamente por nuestro grupo de trabajo (Casuso et al., 2022), fue clonado y expresado por vía recombinante en *E. coli*, y posteriormente, purificado por cromatografía de afinidad a quelatos metálicos. Luego, la línea celular SHK-1 fue estimulada con 100 ng/mL de Crcatepsina recombinante y pasadas 24 horas se recogieron las células y se fijaron en RNA later para su procesamiento. Además, se vacunaron salmones del Atlántico con 100 ul por dosis de un prototipo de vacuna formulado en una proporción de 30% Cr-catepsina/ 70% adyuvante comercial MontanideTM ISA 761 VG. Pasados 30 días después de la inmunización se tomaron muestras de riñón anterior se fijaron en RNA later para su procesamiento. Finalmente, utilizando herramientas de secuenciación de RNA (RNA-seq) se caracterizaron los perfiles transcriptómicos de las células SHK-1 y el riñón anterior de salmón del Atlántico expuestos a Cr-catepsina. El detalle de los procedimientos empleados para este objetivo se describe a continuación.

4.1.1. Expresión y purificación del antígeno recombinante Cr-catepsina

La secuencia de nucleótidos sintetizada químicamente con optimización de codones en función de las preferencias de codones de *E. coli*, se clonó en el vector de expresión pET30a (+) (GenScript, Piscataway, NJ, EE. UU.). La construcción de plásmido obtenida, pET30a-Cr-catepsina, se transformó en células competentes de E. coli BL21 (DE3) y se cultivó durante la noche a 37 °C a 250 rpm en medio Luria Bertani (LB) suplementado con 50 µg/mL de kanamicina. Se inoculó un cultivo de 500 mL con 5 mL de células cultivadas y crecidas a 37 °C hasta alcanzar una DO_{600nm} entre 0,5 y 1. La expresión de la proteína recombinante se indujo con isopropil- β -D-tiogalactósido (IPTG) 1 mM (Thermo Fisher Scientific, Waltham, MA, EE. UU.) durante 5 h. Las células bacterianas se recogieron mediante centrifugación a 3500 × g durante 20 min a 4 °C y se lavaron con Tris-HCl 20 mM, pH 7. El sedimento se resuspendió en un tampón de lisis/solubilización (Tris-HCl 20 mM, Imidazol 10 mM, NaCl 300 mM, Urea 6 M, pH 8) y una tableta inhibidora de proteasa

(Thermo Scientific, Waltham, MA, EE. UU.). La disrupción celular se realizó mediante sonicación (Qsonica, Newtown, CT, EE. UU.) durante 10 min (5 s encendido, 10 s apagado) al 95 % de amplitud. Las células lisadas se centrifugaron a $3500 \times g$ durante 20 min a 4 °C y el sobrenadante se filtró con un filtro de jeringa (0,45 µm) y se cargó en una columna de afinidad His Trap FF de 5 ml (GE Healthcare, Chicago, IL, EE. UU.). La purificación se llevó a cabo en el sistema AKTA Prime Plus (GE Healthcare). La columna se equilibró con Tris-HCl 20 mM, Imidazol 10 mM, NaCl 300 mM, pH 8 y un flujo de 1 mL/min y 0.5 MPa. Posteriormente, la proteína se eluyó utilizando un gradiente de imidazol iniciado con 50 mM. La proteína Cr-catepsina eluyó entre 200 y 250 mM de imidazol. Las fracciones de elución se dializaron frente a PBS para un replegamiento completo. La concentración de proteína en las muestras finales se determinó utilizando el kit BCA (Thermo Fisher Scientific, Waltham, MA, EE. UU.). Las proteínas se identificaron mediante análisis SDS-PAGE al 12 % en condiciones reductoras y transferencia Western de anti-His-HRP (Thermo Fisher Scientific, Waltham, MA, EE. UU.).

4.1.2. Ensayo de viabilidad celular y estimulación con la proteína recombinante Crcatepsina en la línea celular SHK-1

Las células SHK-1 (ECACC 97111106) se cultivaron a 18°C en flask T75 cm² (Thermo Fisher Scientific, Waltham, MA, EE. UU.) con medio L-15 GlutaMax (Gibco, Thermo Fisher Scientific) suplementado con suero bovino fetal al 10 % (SBF) (Gibco, Thermo Fisher Scientific). Primeramente, se cuantificó la viabilidad celular expuesta a Cr-catepsina utilizando el kit alamarBlueTM (Thermo Fisher Scientific, Wal-tham, MA, EE. UU.). El protocolo se ajustó para las células adherentes de peces expuestas al agente extracelular. Las células SHK-1 se sembraron a razón de ×10⁶ células/pocillo en una placa negra de 96 pocillos y se incubaron durante la noche a 18°C en L-15 GlutaMax, 10% SBF. Se aspiró el medio y se trataron las células con cinco concentraciones diferentes de proteína de Cr-catepsina diluida en L-15 GlutaMax, 10% SBF. Se utilizaron diluciones seriadas de Cr-catepsina, comenzando desde 200 hasta 12,5 ng/mL. Como controles se utilizó el grupo control expuesto a albúmina de suero bovino (BSA), células no tratadas y medio libre de células. Después de 24 h de incubación a 18 °C, se reemplazó el medio por 100 µL de solución alamarBlueTM en L-15 GlutaMax y las placas se incubaron durante una hora a 18°C, de acuerdo con las instrucciones del fabricante. La cuantificación de la fluorescencia se realizó en un lector de microplacas Synergy H1 Hybrid reader (Agilent Technologies Inc., Santa Clara, CA,

EE. UU.) a 560 nm de excitación y 590 de emisión. El promedio de fluorescencia (unidades arbitrarias) con la desviación estándar correspondiente se calculó a partir de cuatro réplicas para cada condición evaluada. La viabilidad se representó gráficamente como la diferencia en el porcentaje de reducción de la fluorescencia emitida entre las células tratadas y las de control. Esta prueba permitió seleccionar la concentración mínima a la que se observó una disminución de la viabilidad celular, que se definió como la concentración de trabajo. Para el ensayo de estimulación con Cr-catepsina, se sembraron 1×10⁶ células/pocillo en placas de 6 pocillos y se incubaron durante la noche en L-15 GlutaMax, 10% SBF. El medio se aspiró y se cambió a un nuevo medio con 100 ng/mL de proteína recombinante Cr-catepsina diluida L-15 GlutaMax, 10% SBF. El tratamiento con Cr-catepsina se realizó durante 24 h por triplicado. El grupo de control fue expuesto a 100 µg/mL de albúmina de suero bovino (BSA), y como control de estimulación experimental se utilizó una solución de lipopolisacárido (LPS) (Thermo Fisher Scientific). Después del tratamiento, el cambio morfológico de las células se evaluó y registró utilizando el microscopio EVOSTM M5000 (Thermo Fisher Scientific, Waltham, MA, EE. UU.). La células se recolectaron utilizando Trypsin-EDTA al 0, 05% (Gibco, MD, EE. UU.), se fijaron en RNAlater® (Ambion®, Life TechnologiesTM, Carlsbad, CA, EE. UU.) y se almacenaron a -80 °C hasta la extracción de RNA.

4.1.3. Evaluación *in vivo* de la proteína recombinante Cr-catepsina como inmunógeno

Salmones del Atlántico (~100 g) fueron aclimatados durante dos semanas en el laboratorio experimental de la Estación Biológica Marina, Universidad de Concepción, Dichato, Chile. El prototipo de vacuna se formuló a razón de 100 μ L por dosis con 30 μ g de Cr-catepsina, en una proporción de 30% Cr-catepsina/70% adyuvante, utilizando el adyuvante comercial MontanideTM ISA 761 VG (Seppic, París, Francia). Además, se formuló una vacuna control con PBS y adyuvante. Los peces se inyectaron por vía intraperitoneal y se dividieron en dos grupos experimentales (20 peces por tanque), considerando tres repeticiones por grupo experimental. Se tomaron muestras de tejido de riñón anterior (HK) antes de la inmunización y 30 días después de la inmunización. Las muestras se conservaron en RNAlater® y se almacenaron a -80 °C hasta la extracción de RNA. El protocolo desarrollado en esta investigación fue aprobado por el Comité de Ética, Bioética y Bioseguridad de la Universidad de Concepción, Chile. Esta investigación se llevó a cabo siguiendo las recomendaciones de los Principios rectores internacionales para la investigación biomédica con

animales (Consejo para la Organización Internacional de Ciencias Médicas y el Consejo Internacional para la Ciencia de los Animales de Laboratorio, 2012).

4.1.4. Secuenciación y caracterización de los transcriptomas de la línea celular SHK-1 y HK de salmón expuestos a la proteína recombinante Cr-catepsina

El RNA total de los grupos experimentales de células y del HK del salmón fue aislado utilizando el reactivo TRizol (Ambion®, Life TechnologiesTM, Carlsbad, CA, EE. UU.), siguiendo las instrucciones del fabricante. El RNA aislado se evaluó con TapeStation 2200 (Agilent Technologies Inc., Santa Clara, CA, EE. UU.) utilizando el kit de reactivos R6K. Se utilizaron muestras de RNA con RIN > 8,0 para la preparación de bibliotecas. Posteriormente, se construyeron bibliotecas de ADNc de doble cadena con el kit de preparación de muestras de RNA TruSeq v2 (Illumina®, San Diego, CA, EE. UU.). Tres réplicas biológicas fueron secuenciadas por la plataforma Hiseq (Illumina®, San Diego, CA USA) en Macrogen Inc.

Las lecturas de secuenciación de RNA de todas las muestras se ensamblaron *de novo* utilizando el software CLC Genomics Workbench v21 (Qiagen Bioinformatics, Aarhus, Dinamarca). El ensamblaje se realizó utilizando los siguientes parámetros: mismatch cost = 2, insert and deletion costs = 3, contig length > 200 bp, similarity = 0.9, length fraction = 0.8. Los análisis de RNA-Seq se realizaron en el mismo software para calcular la expresión génica de cada conjunto de datos utilizando los mismos parámetros descritos para el ensamblaje. Los valores de expresión fueron estimados como transcritos por millón de reads (TPM). Las comparaciones estadísticas entre los valores de TPM por parte del grupo experimental se obtuvieron calculando el fold change contra el grupo control utilizando una estadística multifactorial basada en un GLM binomial negativo implementado en el software CLC Genomics. Contigs con valores de fold change > |4| y el valor de p de FDR < 0,01 se consideraron diferencialmente expresados y se extrajeron para la anotación de genes. Los contigs diferencialmente expresados (en cualquier grupo contra el control) fueron anotados contra la base de datos SwissProt mediante BlastX. Todas las secuencias con un valor E < 1×10⁻⁶ se consideraron correctamente identificadas en la base de datos de proteínas.

4.1.5. Análisis de Gene Ontology (GO) y análisis de enriquecimiento de rutas

Para los análisis de enriquecimiento, se usaron contigs exclusivos y comunes expresados diferencialmente en células SHK-1 y HK de salmón. Los contigs diferencialmente expresados se anotaron mediante criterios (GO) identificando procesos biológicos (BP) y funciones moleculares (MF) utilizando el complemento Blast2GO en el software CLC Genomics, con parámetros predeterminados. El servidor de anotaciones automáticas KAAS-KEGG (Moriya et al., 2007) se utilizó para la asignación de ortólogos y el mapeo de rutas utilizando el genoma de *S. salar* como referencia.

4.1.6. Análisis de expresión diferencial de lncRNA en SHK-1 y HK de salmón

El análisis de lncRNAs se realizó utilizando una base de datos de lncRNAs de salmón del Atlántico reportada previamente (Valenzuela-Muñoz et al., 2018). Se realizó un análisis de RNA-seq para lncRNA con el mismo protocolo descrito anteriormente para mRNA usando el software CLC Genomics Work-bench v21 utilizando los set de datos de las células SHK-1 y el HK de salmón. Los análisis de correlación se realizaron utilizando los valores de TPM de los 55 principales lncRNA compartidos y que estuvieran regulados al alza y a la baja (fold change $\geq |4|$) y de genes asociados con respuesta inmune, la homeostasis del hierro y los factores de transcripción, entre otros. La correlación de Pearson se realizó utilizando el paquete Corrplot v.0.92 (Wei et al., 2017) escrito en lenguaje R, considerando todas las muestras simultáneamente (p-value < 0.01 y r-value $\geq |0.9|$).

4.2. Comparación de la remodelación transcriptómica basada en splicing alternativo en la línea celular SHK-1 y HK de salmón del Atlántico durante la infección de *P. salmonis*

A continuación se describe de manera general la metodología empleada para la realización del segundo objetivo. Brevemente, se utilizó la tecnología de RNA-seq para evaluar la expresión transcripcional de genes relacionados con splicing alternativo (AS) durante la infección por *P. salmonis*. Los eventos de AS se analizaron en dos modelos biológicos, la línea celular SHK-1 y el tejido HK salmón. Primeramente, la línea celular SHK-1 se expuso a la infección por *P. salmonis* y a los 0, 7 y 14 días después de la infección (dpi) se extrajo el ARN total para la secuenciación de Illumina. Por otro lado, se utilizaron sets de datos de RNA-Seq de HK de salmón del Atlántico infectados con la misma cepa de *P. salmonis* y con los mismos tiempos de infección. A continuación se describen detalladamente los procedimientos realizados para el cumplimiento de este objetivo.

4.2.1. Mantenimiento de la línea celular SHK-1 y cultivos de *P. salmonis*.

La línea celular SHK-1 se cultivó siguiendo los mismos procedimientos descritos en el acápite 4.1.2. La bacteria *P. salmonis* LF-89 (ATCC VR-1361) se cultivó a 20 °C, utilizando el caldo de cultivo Eugon suplementado con 40% de Casaminoácidos y 100 mM de FeCl₃.

4.2.2. Determinación de la citotoxicidad de *P. salmonis* mediante el ensayo de liberación de lactato deshidrogenasa

El daño celular causado por la infección por *P. salmonis* en células SHK-1 se cuantificó mediante la liberación de la enzima lactato deshidrogenasa (LDH) citosólica en el sobrenadante celular utilizando un kit comercial de detección de citotoxicidad LDH (Roche Diagnostics GmbH, Mannheim, Alemania). Se probaron seis concentraciones de *P. salmonis* ($1x10^7$, $1x10^6$, $1x10^5$, $1x10^4$, $1x10^3$, $1x10^2$) por triplicado de pocillos. Para las células adherentes de peces, los niveles de liberación de LDH se midieron en 100 µL de sobrenadante libre de células para cada concentración probada. El sobrenadante de las células no infectadas se usó como low control y el sobrenadante de las células lisadas con solución Triton X-100 al 1% se usó como high control. La absorbancia se midió a 490 nm (620 nm como referencia). La citotoxicidad se obtuvo mediante la siguiente ecuación:

Cytotoxicity (%) = (exp. value - low control/high control - low control)x100

La concentración de trabajo para el ensayo de infección de células SHK-1 se definió como la concentración más baja de *P. salmonis*, donde se observó citotoxicidad.

4.2.3. Infección in vitro de la línea celular SHK-1

Las células SHK-1 se sembraron a una de concentración de 1x10⁶ células/pocillo en una placa de 6 pocillos y se incubaron durante la noche en L-15 GlutaMax, 10 % SBF. El medio se aspiró y se cambió a un medio nuevo con 1x10⁶ células de la cepa LF-89 *de P. salmonis* diluidas en L-15 GlutaMax, 10 % SBF. Las células SHK-1 en medio L-15 GlutaMax, 10 % SBF a los 0 días fueron empleadas como grupo control. Las células se colectaron a los 7 y 14 días después de la infección (dpi) utilizando EDTA-tripsina al 0, 05%. Las muestras se conservaron en RNAlater® y se almacenaron a -80°C hasta la posterior extracción de RNA.

4.2.4. Secuenciación de los transcriptomas de línea celular SHK-1 y HK de salmón infectados con *P. salmonis*

La extracción de RNA total de las células SHK-1, control de calidad, y preparación de las librerías se realizó según lo descrito en al acápite 4.1.4. La secuenciación se llevó a cabo mediante la plataforma Novaseq (Illumina®, San Diego, CA, EE. UU.) en Macrogen Inc. El perfil del transcriptoma de tejido HK de salmón se realizó utilizando dos bases de datos de experimentos de infección con *P. salmonis* en salmón del Atlántico a 0-, 7-, y 14 dpi, informados previamente (Valenzuela-Miranda & Gallardo-Escárate, 2018; Valenzuela-Miranda et al., 2020).

4.2.5. Análisis de RNA-seq e identificación de expresión de genes diferenciales

Los datos de secuenciación se analizaron utilizando el software CLC Genomics Workbench v23. Los adaptadores/índices de Illumina fueron eliminados de las lecturas de secuenciación y se aplicó un filtro basado en la calidad. Se realizaron análisis de RNA-Seq de transcriptoma completo en el software CLC Genomics para calcular la expresión génica de cada conjunto de datos utilizando los siguientes parámetros: mismatch cost = 2, insert deletion costs = 3, similarity = 0.8. El genoma del salmón del Atlántico (GCF_000233385.1), los tracks anotaciones de genes y de mRNA se utilizaron como referencias. La identificación de los genes diferencialmente expresados se realizó según el procedimiento descrito en la sección 4.1.4. Para explorar los DEG se compararon los tiempos de infección 7 y 14 dpi contra el grupo control.

4.2.6. Mapeo e identificación de transcritos e isoformas

Las lecturas de secuenciación sin procesar de diferentes tiempos de infección por *P. salmonis* (0, 7, 14 dpi) de cada modelo de estudio fueron mapeadas en el genoma de referencia del salmón del Atlántico utilizando la herramienta Large Gap Read Mapping (LGRM) incluida en el CLC Genomics Workbench. Los criterios de mapeo utilizados fueron: mismatch cost = 2, insertion cost = 3, deletion cost = 3, length fraction = 0.9, and similarity fraction = 0.9. Para identificar transcritos se utilizó la herramienta Transcript discovery empleando el ensamblaje LGRM obtenido previamente para cada muestra, los tracks de anotaciones de genes y de mRNA y el genoma de referencia del salmón del Atlántico. Los parámetros de configuración utilizados fueron los siguientes: minimum length of ORF= 150, minimum spliced reads = 1, gene merging distance = 100, minimum reads in gene = 10, minimum predicted gene length = 250, and exon merging

distance = 100. Esta herramienta arroja diferentes archivos de salida, de los cuales se utilizaron los Predicted Transcripts (PT) y Accepted Events (AE). En los archivos de PT obtienen los transcritos donde ocurren eventos AS, los cuales se filtraron por total counts \geq 1. Mientras tanto, AE genera un archivo con los eventos AS por transcrito, los cuales se filtraron por spliced evidence = true y spliced counts \geq 1. Luego, se utilizó la herramienta Filter Based on the Overlap incluida en CLC para identificar los PT y AE diferencialmente expresados. Se utilizó como filtro estadístico el análisis DEGs (grupos infectados frente al grupo control) generado previamente en el análisis RNAseq. Finalmente, los AE diferencialmente expresados obtenidos se denominaron eventos DAS, mientras que los PT diferencialmente expresados se denominaron transcritos DAS.

4.2.7. Identificación de los tipos de splicing alternativo en los transcritos DAS

Los transcritos DAS para cada muestra se guardaron como archivos de anotación GTF utilizando el software CLC Genomics. Los archivos GTF, que incluyen las coordenadas del genoma para cada transcrito, se usaron para detectar los eventos DAS para cada muestra con la herramienta computacional SUPPA (https://github.com/comprna/SUPPA 17 de febrero de 2018) (Alamancos et al., 2014). El comando suppa.py generateEvents se utilizó para generar eventos DAS a partir de cada archivo de anotación GTF de entrada. Los tipos de eventos DAS se clasificaron en siete grupos, incluidos: salto de exón (SE), sitios de empalme alternativos 3' y 5' (A3SS/A5SS), retención de intrones (IR) y exones mutuamente excluyentes (MX), primer exón alternativo (AF) y último exón alternativo (AL). Para calcular el valor de abundancia relativa (PSI) por muestra para cada evento DAS local se utilizaron los archivos.ioe de salida (obtenido en el paso anterior) y un archivo de expresión de transcritos (TPM obtenidos del análisis RNA-seq) empleando el comando suppa.py psiPerEvent . El PSI se define como la relación entre una densidad de lecturas de inclusión y la suma de las densidades de lecturas de inclusión y exclusión (Alamancos et al., 2014; Wang et al., 2008).

4.2.8. Análisis de enriquecimiento funcional

Para los análisis de enriquecimiento, los genes DAS se analizaron primero a nivel basal para cada modelo de estudio. Luego, los conjuntos de genes DAS se separaron en un grupo control exclusivo (0 días) y exclusivos debido a la infección con *P. salmonis* para células SHK-1 y HK de salmón (7 y 14 dpi). El enriquecimiento de Gene Ontology (GO) se realizó en RStudio utilizando el paquete

de R 'clusterProfiler' bajo los criterios jerárquicos Biological Processes (BP), Molecular Functions (MF) y Cellular Component (CC). La asignación de ortólogos y el mapeo de rutas se realizó en ShinyGO 0.77 (Ge et al., 2019) utilizando como referencia el genoma del salmón del Atlántico.

4.3. Caracterizar los mecanismos de remodelación transcriptómica en células sanguíneas de salmón del Atlántico vacunados con Ipath® y expuestos a dos patógenos marinos.

A continuación se describe la metodología empleada para el desarrollo del tercer objetivo específico. En resumen, se realizó un experimento de vacunación y reto en salmón del Atlántico empleando el candidato vacunal Ipath® previamente obtenido en nuestro grupo de trabajo (citas) y dos vacunas de origen comercial, BlueGuard (B) y Livac (L) como controles de vacunación de campo. Las vacunas fueron administradas combinadas B+L, B+L+Ipath® y de manera individual se administró Ipath®. Pasadas las 400 UTA se realizó una primera infestación con *C. rogercresseyi* y 25 días post-infestación los peces fueron sometidos a una segunda infección con *P. salmonis*. A los 12 días post-infección se tomaron muestras de sangre y se conservaron en RNA later para su procesamiento. Finalmente, utilizando herramientas de secuenciación de RNA (RNA-seq) se caracterizó el perfil transcriptómico de la sangre de cada grupo experimental. El detalle de los métodos empleados para este objetivo se describe a continuación.

4.3.1. Diseño experimental

Salmones del Atlántico (80 gr ± 12) fueron aclimatados durante dos semanas en el laboratorio experimental de la Estación Biológica Marina, Universidad de Concepción, Dichato, Chile. La vacuna Ipath® recombinante se formuló a razón de 100 µL por dosis con 30 µg de Ipath®, en una proporción de 30% Ipath®/70% adyuvante, utilizando el adyuvante comercial MontanideTM ISA 761 VG. Las vacunas BlueGuard y Livac se utilizaron según las recomendaciones del fabricante. Además, se formuló una vacuna control con PBS y adyuvante. Los peces se inyectaron por vía intraperitoneal y se dividieron en cuatro grupos experimentales, 20 peces por estanque. Pasadas 400 UTAs (unidades térmicas acumuladas) cada grupo experimental se infestó con *C. rogercresseyi* (35 copepoditos/pez). Posteriormente, a los 25 dpi se realizó una infección con *P. salmonis* (1x10⁸ células de la cepa LF-89). Pasados 12 dpi se realizó un muestreo donde se extrajo sangre mediante una punción de la vena caudal de 5 salmones por grupo experimental utilizando una jeringa
previamente cebada con heparina sódica (5 UI). Rápidamente se centrifugó la sangre a 4000 rpm durante 10 min, separando el plasma de las células sanguíneas, siendo estás últimas almacenadas a -80°C para su procesamiento. El protocolo desarrollado en esta investigación fue aprobado por el Comité de Ética, Bioética y Bioseguridad de la Universidad de Concepción, Chile. Esta investigación se llevó a cabo siguiendo las recomendaciones de los Principios rectores internacionales para la investigación biomédica con animales (Consejo para la Organización Internacional de Ciencias Médicas y el Consejo Internacional para la Ciencia de los Animales de Laboratorio, 2012).

4.3.2. Secuenciación del transcriptoma de células sanguíneas de salmón del Atlántico

El RNA total de la sangre de los cuatro grupos experimentales de salmón del Atlántico fue aislado utilizando el reactivo TRizol siguiendo las instrucciones del fabricante con algunas modificaciones. La evaluación de calidad del RNA, la preparación de librerías y la secuenciación se realizó según los descrito en las secciones 4.1.4 y 4.2.4.

4.3.3. Análisis de RNA-seq e identificación de expresión de genes diferenciales

Los datos de secuenciación se analizaron utilizando el mismo procedimiento descrito en la sección 4.2.5 El genoma del salmón del Atlántico (GCA_905237065.2 Ssal_v3), los tracks anotaciones de genes y de mRNA se utilizaron como referencias. La identificación de los genes diferencialmente expresados se realizó según el procedimiento descrito en la sección 4.1.4. Para explorar los DEG se compararon los grupos experimentales vacunados contra el grupo control. Para un análisis de clusters más detallado se utilizó la herramienta K-medoids clustering for RNA-seq incluida en el software CLC Genomics, utilizando los siguientes parámetros: minimum absolute fold change = 4.0, correction = FDR p-value, threshold = 0.05; y como filtro estadístico los DEGs del grupo vacunado con Ipath® comparado contra el grupo control.

4.3.4. Análisis de enriquecimiento funcional

Para los análisis de enriquecimiento, se utilizaron los DEGs exclusivos de cada grupo experimental comparados con el grupo control y los DEGs compartidos entre los tres grupos vacunados. El enriquecimiento de Gene Ontology (GO) se realizó en el software Tbtools_(C. Chen et al., 2020)

según las instrucciones del desarrollador. Se analizaron los criterios jerárquicos Procesos Biológicos (PB), Función Molecular (FM) y Componente Celular (CC). La asignación de ortólogos y el mapeo de rutas se realizó en ShinyGO 0.77 utilizando como referencia el genoma del salmón del Atlántico.

4.3.5. Análisis de expresión y enriquecimiento de rutas KEGG específicas

Los raw data de cada grupo experimental se emplearon para hacer análisis de RNA-seq utilizando las secuencias de los genes del salmón del Atlántico que conformaban cada ruta como referencia. Las comparaciones estadísticas entre los valores de TPM por parte de los grupos experimentales se obtuvieron calculando el fold change contra el grupo control utilizando una estadística multifactorial basada en un GLM binomial negativo implementado en el software CLC Genomics. Los transcritos con fold change > |4| y el valor p de FDR<0,05 se consideraron genes diferencialmente expresados. Los DEGs correspondientes al grupo inmunizado con Ipath® y expuesto a dos infecciones patógenas se identificaron en cuatro rutas KEGG específicas. Además se identificaron los genes de cada ruta que contenían eventos de splicing alternativo utilizando la estrategia descrita en los acápites 4.2.6. y 4.2.7.

5. **RESULTADOS**

Capítulo 1. Comparative Transcriptomics in Atlantic Salmon Head Kidney and SHK-1 Cell Line Exposed to the Sea Louse Cr-Cathepsin

Published in Genes, April 2023

Abstract

The development of vaccines against sea lice in salmon farming is complex, expensive, and takes several years for commercial availability. Recently, transcriptome studies in sea louse have provided valuable information for identifying relevant molecules with potential use for fish vaccines. However, the bottleneck is the in vivo testing of recombinant protein candidates, the dosage, and the polyvalent formulation strategies. This study explored a cell-based approach to prospect antigens as candidate vaccines against sea lice by comparison with immunized fish. Herein, SHK-1 cells and Atlantic salmon head kidney tissue were exposed to the antigen cathepsin identified from the sea louse Caligus rogercressevi. The cathepsin protein was cloned and recombinantly expressed in Escherichia coli, and then SHK-1 cell lines were stimulated with 100 ng/mL cathepsin recombinant for 24 h. In addition, Atlantic salmons were vaccinated with 30 ug/mL recombinant protein, and head kidney samples were then collected 30 days postimmunization. SHK-1 cells and salmon head kidney exposed to cathepsin were analyzed by Illumina RNA sequencing. The statistical comparisons showed differences in the transcriptomic profiles between SHK-1 cells and the salmon head kidney. However, 24.15% of the differentially expressed genes were shared. Moreover, putative gene regulation through lncRNAs revealed tissuespecific transcription patterns. The top 50 up and downregulated lncRNAs were highly correlated with genes involved in immune response, iron homeostasis, pro-inflammatory cytokines, and apoptosis. Also, highly enriched pathways related to the immune system and signal transduction were shared between both tissues. These findings highlight a novel approach to evaluating candidate antigens for sea lice vaccine development, improving the antigens screening in the SHK-1 cell line model.

Article Comparative Transcriptomics in Atlantic Salmon Head Kidney and SHK-1 Cell Line Exposed to the Sea Louse Cr-Cathepsin

Yeny Leal ^{1,2}, Valentina Valenzuela-Muñoz ^{1,2}, Antonio Casuso ^{1,2}, Bárbara P. Benavente ^{1,2} and Cristian Gallardo-Escárate ^{1,2,*}

- ¹ Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- ² Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
- * Correspondence: crisgallardo@udec.cl

Abstract: The development of vaccines against sea lice in salmon farming is complex, expensive, and takes several years for commercial availability. Recently, transcriptome studies in sea louse have provided valuable information for identifying relevant molecules with potential use for fish vaccines. However, the bottleneck is the in vivo testing of recombinant protein candidates, the dosage, and the polyvalent formulation strategies. This study explored a cell-based approach to prospect antigens as candidate vaccines against sea lice by comparison with immunized fish. Herein, SHK-1 cells and Atlantic salmon head kidney tissue were exposed to the antigen cathepsin identified from the sea louse Caligus rogercresseyi. The cathepsin protein was cloned and recombinantly expressed in Escherichia coli, and then SHK-1 cell lines were stimulated with 100 ng/mL cathepsin recombinant for 24 h. In addition, Atlantic salmons were vaccinated with 30 ug/mL recombinant protein, and head kidney samples were then collected 30 days post-immunization. SHK-1 cells and salmon head kidney exposed to cathepsin were analyzed by Illumina RNA sequencing. The statistical comparisons showed differences in the transcriptomic profiles between SHK-1 cells and the salmon head kidney. However, 24.15% of the differentially expressed genes were shared. Moreover, putative gene regulation through lncRNAs revealed tissue-specific transcription patterns. The top 50 up and downregulated lncRNAs were highly correlated with genes involved in immune response, iron homeostasis, pro-inflammatory cytokines, and apoptosis. Also, highly enriched pathways related to the immune system and signal transduction were shared between both tissues. These findings highlight a novel approach to evaluating candidate antigens for sea lice vaccine development, improving the antigens screening in the SHK-1 cell line model.

Keywords: C. rogercresseyi; recombinant protein; transcriptome response; immune response

1. Introduction

One of the most expensive branches of aquaculture is salmon farming, mainly due to the high costs to combat viruses, bacteria, and parasites that threaten fish health and welfare. Several chemical agents and drugs have been used to control fish diseases, which has caused pathogen resistance to these treatments, in addition to safety problems [1,2]. Due to the cost-effectiveness of vaccines, they have been gaining attention as a prophylactic method to prevent viral and infectious salmon diseases [3]. Atlantic salmon is the primary salmon species in farming worldwide [4], and many vaccine formulations have been proposed to control infectious diseases that affect it. For instance, vaccines have been developed for *Vibrio anguillarum* [5], *Yersinia ruckeri* [6], salmonid alphavirus (SAV) [7], *Moritella viscosa* [8], infectious pancreatic necrosis virus (IPNV), infectious salmon anemia virus (ISAV) [9], *Lepeoptheirus salmonis* [10,11], and *C. rogercresseyi* [12–14]. Most candidate vaccines are developed with an attenuated or killed microorganism component or a particular surface

Citation: Leal, Y.; Valenzuela-Muñoz, V.; Casuso, A.; Benavente, B.P.; Gallardo-Escárate, C. Comparative Transcriptomics in Atlantic Salmon Head Kidney and SHK-1 Cell Line Exposed to the Sea Louse Cr-Cathepsin. *Genes* 2023, *14*, 905. https://doi.org/10.3390/ genes14040905

Academic Editors: Erlong Wang, Zihao Yuan and Zehui Yu

Received: 28 February 2023 Revised: 3 April 2023 Accepted: 7 April 2023 Published: 13 April 2023

Copyright © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). MDP

protein or toxin. Usually, fish vaccine production pathways involve the use of a specific antigen that stimulates the fish's innate and adaptive immune response [1,3]. Thus, vaccines formulated with antigens produced by recombinant DNA technology are increasingly used in the aquaculture industry [3,15]. However, commercial validation is an expensive and lengthy process. Currently, one of the biggest challenges is finding an antigenic molecule that enhances a protective immune response related to pathogen antigens. Furthermore, the in vivo platform for selecting candidate antigens is very complex.

In recent years, fish cell culture has emerged as a promising in vitro model for toxicity, immunological studies, and disease diagnostics [16]. The particularities of fish cell lines, such as ease of maintenance, culture conditions, and the feasible reproducibility of the research, make this a perfect model for in vitro evaluation. Therefore, it is crucial to carefully choose cell lines to represent cellular functions similar to those of a living organism [17]. Several fish immune response studies have used fish cell lines derived from macrophages and leukocytes. Furthermore, studies have used fish cell lines to evaluate the immune response against antigens and establish a correlation with in vivo vaccine trials [16]. For instance, recombinant proteins and synthetic peptides from rhabdoviral hemorrhagic septicemia virus (VHSV) were evaluated as vaccines in suspensions of trout blood leukocytes and lymphoid organs cultures, showing an increase in leukocyte proliferation and recognition by anti-VHSV Mab. Thus, it was suggested to use cell lines as an antigen prospection method [18-20]. For instance, a study performed in the SHK-1 cell line exposed to M. viscosa antigens showed an expression modulation of pro-inflammatory genes [21]. In addition, in vitro cell assays have been employed to predict the effect of possible control treatments for pathogens. For instance, macrophage-enriched cell cultures from Atlantic salmon head kidney stimulated with IgM-beads were infected with the intracellular pathogen Piscirickettsia salmonis. This treatment evaluated whether macrophage cultures reversed the lysosomal evasion mechanism of P. salmonis during the infection process. Notably, the results showed an increase in the macrophages' lysosomal activity and a reduction in pathogen viability, indicating the effectiveness of this approach in developing therapeutic strategies against P. salmonis. [22].

The sea louse C. rogercresseyi is an ectoparasite with a high economic impact on the Chilean salmon industry [23]. Delousing drugs control this ectoparasite; however, they often have a low efficacy due to loss of pesticide sensitivity in lice populations [24,25]. Thus, the vaccine developed for sea lice control is a sustainable alternative for the salmon industry. The ectoparasites vaccine development was primarily initiated due to the reduced efficacy of the pesticide to tick control in the bovine sector. One of the most successful ectoparasite vaccines has been the recombinant vaccine against the cattle tick Boophilus microplus [26]. The antigen's search for ectoparasite vaccines has focused on proteinases/peptidases and their inhibitors secreted for the ectoparasite [27]. Thus, understanding parasite infestation's molecular mechanisms is essential to developing and designing new control strategies based on biotechnological tools. Increasing studies in the genomics of numerous species have explored and clarified the biological process and molecular functions involved in the host-parasite interactions [28]. In this sense, the C. rogercresseyi genome assembly [29] allows for the identification of new vaccine candidates against the sea lice that affects the salmon industry. Among the different parasite proteins involved in the infestation, the secretory/excretory proteins (SEPs) play an essential role, changing the cell host environment by suppressing their immune system [30]. Thus, the characterization of SEPs involved in the sea louse infestation process contribute to the identification of antigens for vaccine design. Pathogen proteases are a significant secreted compound during the infection, facilitating the parasite feeding processes, homeostasis, and avoiding the host's immune response modulation [30]. One of the main proteases in the parasite's secretome is cathepsin [31], which has been associated with protein degradation in lysosomes, nuclei, and cytosol [32,33]. In C. rogercresseyi, 56 cathepsin-like proteins have been identified, expressed in all sea louse developmental stages [34]. Recently, our research group used the reverse vaccinology pipeline to identify the cathepsin and Perithopin proteins, characterized in the early developmental stages of *C. rogercresseyi* and formulated as vaccine prototypes for sea lice control. The transcriptomic response of Atlantic salmons immunized with the prototypes was mainly related to the modulation of metabolic processes, energy production, and metal ion handling, which has been essential for the host response to the early *C. rogercresseyi* stages. Furthermore, the group vaccinated with the cathepsin antigen showed a significant parasite burden reduction, making it a promising vaccine candidate [12,35]. Despite these results, the sea lice vaccine development bottleneck is in vivo testing, because it is necessary to use a large amount of fish to evaluate several recombinant protein candidates, dosage, and polyvalent formulation strategies. Thus, using cell lines to assess novel antigens could speed up the production process of recombinant vaccines and simplify the study of their impact on the transcriptional immune response. This study explored a cell-based platform as a tool for antigen prospection to vaccine evaluation and future development. Thus, the transcriptomic profile of two study models, the SHK-1 cell line and Atlantic salmon head kidney (HK), was compared in response to the Cr-cathepsin exposition.

2. Materials and Methods

2.1. Expression of Cr-Cathepsin Protein in E. coli

For the present study, a cathepsin-encoding mRNA sequence previously identified and characterized by our work group was selected as a recombinant test antigen [12]. Briefly, the nucleotide sequence was chemically synthesized with codon optimization based on E. coli codon preferences, and was subsequently cloned into a pET30a expression vector (GenScript, Piscataway, NJ, USA). The plasmid construct obtained, pET30a-Cr-cathepsin, was transformed into the E. coli BL21 (DE3) competent cells. Isolated colonies were collected and grown overnight at 37 °C at 250 rpm in Luria Bertani medium (LB) supplemented with 50 µg/mL kanamycin. A culture of 500 mL was inoculated with 5 mL of cells cultured and grown at 37 °C until an OD₆₀₀ between 0.5 and 1 was reached. The recombinant protein expression was induced with 1 mM isopropyl-β-D-thiogalactoside (IPTG) (Thermo Fisher Scientific, Waltham, MA, USA) for 5 h. Bacterial cells were harvested by centrifugation at 3500× g for 20 min at 4 °C, and washed once with 20 mM Tris-HCl, pH 7. The pellet was resuspended in a lysis/solubilization buffer (20 mM Tris-HCl, 10 mM Imidazole, 300 mM NaCl, 6 M Urea, pH 8) and a protease inhibitor tablet (Thermo Scientific, Waltham, MA, USA). The cell disruption was performed by sonication (Qsonica sonicators, Newtown, CT, USA) for 10 min (5 s on, 10 s off) at 95% amplitude. The lysed cells were centrifuged at $3500 \times g$ for 20 min at 4 °C, and the supernatant was used in the following purification steps.

2.2. Purification of Cr-Cathepsin Protein by Immobilized Metal ion Affinity Chromatography (IMAC)

The supernatant was filtered by a syringe filter (0.45 μ m) and was loaded on a His Trap FF 5 mL affinity column (GE Healthcare, Chicago, IL, USA). Purification was carried out on the AKTA Prime Plus system (GE Healthcare). The column was equilibrated with 20 mM Tris-HCl, 10 mM Imidazole, 300 mM NaCl, with a pH of 8 and a flow of 1 mL/min y 0.5 MPa. Subsequently, the protein was eluted using an Imidazole gradient started with 50 mM. The Cr-cathepsin protein was eluted between 200–250 mM of imidazole. The elution fractions were dialyzed against PBS for complete refolding. The protein concentration in the final samples was determined using the BCA kit (Thermo Fisher Scientific, Waltham, MA, USA). Proteins were identified by 12% SDS-PAGE analysis under reducing conditions and the western blotting of anti-His-HRP (Thermo Fisher Scientific, Waltham, MA, USA) (Figure S1).

2.3. SHK-1 Cell Viability Assay

Cell viability was quantified in the SHK-1 cell line (ECACC 97111106) exposed to Cr-cathepsin using alamarBlue[™] cell viability reagents (Thermo Fisher Scientific, Waltham, MA, USA). AlamarBlue[™] was used to monitor the cell proliferation and the cytotoxicity of agents [36]. The protocol was adjusted for fish adherent cells exposed to the extracellular

agent. SHK-1 cells were seeded at 1×10^6 cells/well on a 96-well black plate and incubated overnight at 18 °C in L-15 GlutaMax, 10% FBS. The medium was aspirated, and the cells were treated with five different concentrations of recombinant Cr-cathepsin protein diluted in L-15 GlutaMax, 10% FBS. Two-fold dilutions of Cr-cathepsin were used, starting from 200, to 12, 5 ng/mL. The same treatment was employed for the control group exposed to Bovine Serum Albumin (BSA). Furthermore, untreated cells and a control well with no cells were included in the assay. After 24 h of incubation at 18 °C, the medium was replaced with 100µL of alamarBlue™ solution in L-15 GlutaMax, and the plates were incubated for one hour at 18 °C, according to the manufacturer's instructions. The quantification of fluorescence was carried out in a Synergy H1 Hybrid reader microplate reader (Agilent Technologies Inc., Santa Clara, CA, USA) at 560 nm excitation and 590 emissions. The average of fluorescence (arbitrary units) with the corresponding standard deviation was calculated from four replicates for each condition evaluated. The viability was plotted as the difference in percentage reduction in emitted fluorescence between the treated and control cells. This test allowed for the selection of the minimum concentration at which a decrease in cell viability was observed, which was defined as the working concentration for the subsequent assay of SHK-1 cells exposed to recombinant Cr-cathepsin.

2.4. SHK-1 Cell Line Stimulation with Recombinant Cr-Cathepsin Protein

The SHK-1 cell line was grown at 18 °C in T75 cm² flasks (Thermo Fisher Scientific, Waltham, MA, USA) in L-15 GlutaMax medium (Gibco, Thermo Fisher Scientific) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, Thermo Fisher Scientific). When SHK-1 cells were confluent, they were plated at 1×10^6 cells/well in a 6-well plate and incubated overnight in L-15 GlutaMax, 10% FBS. The medium was aspirated and changed to a new medium with 100 ng/mL of recombinant Cr-cathepsin protein diluted L-15 GlutaMax, 10% FBS. The Cr-cathepsin treatment was performed for 24 h in triplicate. The control group was SHK-1 cells in medium L-15 GlutaMax, 10% FBS, and 100 μ g/mL of Bovine Serum Albumin (BSA). Lipopolysaccharide (LPS) solution (Thermo Fisher Scientific) was used as experimental stimulation control. After treatment, the morphological cell change was evaluated and registered using the EVOSTM M5000 Imaging System microscope (Thermo Fisher Scientific, Waltham, MA, USA).

2.5. In Vivo Evaluation of Recombinant Cr-Cathepsin as an Immunogen

The vaccine prototype was formulated at 100 μ L per dose with 30 μ g of Cr-cathepsin, in a ratio of 30% Cr-cathepsin/70% adjuvant, using the commercial adjuvant MontanideTM ISA 761 VG (Seppic, Paris, France). In addition, a control vaccine with PBS and adjuvant was formulated. *Salmo salar* of 100 gr were acclimatized for two weeks in the experimental laboratory of the Marine Biological Station, University of Concepción, Dichato, Chile. Fish were injected intraperitoneally and divided into two experimental groups, each one with 20 fish per tank, considering three replicates per experimental group. Samples of head kidney (HK) tissue were taken before immunization and 7 days post-immunization. Samples were preserved in RNAlater[®] RNA Stabilization Reagent (Ambion[®], Life TechnologiesTM, Carlsbad, CA, USA) and stored at -80 °C until subsequent RNA extraction.

The animal protocol developed in this research was approved by the Ethics, Bioethics and Biosafety Committee, University of Concepción, Chile. This research was carried out following the recommendations of the International Guiding Principles for Biomedical Research Involving Animals (Council for International Organization of Medical Science and The International Council for Laboratory Animal Science, 2012).

2.6. Transcriptome Profiling of SHK-1 Cell Line and Salmon HK Exposed to Recombinant Cr-Cathepsin Protein

The experimental cell groups were stimulated with recombinant Cr-cathepsin, and the control group (BSA) was prepared for transcriptome profiling. Three plates from each experimental cell group were harvested and separately pooled through 0.05% Trypsin-EDTA (Gibco, MD, USA). The total RNA was then isolated using TRizol Reagent (Ambion[®], Life TechnologiesTM, Carlsbad, CA, USA), following the manufacturer's instructions. At the same time, the total RNA of salmon HK was isolated from each experimental fish group using Trizol Reagent, following the manufacturer's instructions. The isolated RNA was evaluated by the TapeStation 2200 (Agilent Technologies Inc., Santa Clara, CA, USA) using the R6K Re-agent Kit. RNA samples with RIN > 8.0 were used for library preparation. Subsequently, double-stranded cDNA libraries were constructed using the TruSeq RNA Sample Preparation Kit v2 (Illumina[®], San Diego, CA, USA). Three biological replicates were sequenced by the Hiseq (Illumina[®], San Diego, CA USA) platform in Macrogen Inc.

RNA sequencing reads of all samples were de novo assembled using the CLC Genomics Workbench v21 software (Qiagen Bioinformatics, Aarhus, Denmark). The assembly was performed using the following settings: mismatch cost = 2, insert and deletion costs = 3, contig length > 200 bp, similarity = 0.9, length fraction = 0.8, with automatic bubble and word sizes. RNA-Seq analyses were conducted in the same software to calculate the gene expression of each dataset using the same settings for costs and similarity fraction as for the assembly. Transcript per million (TPM) values were considered the unit for gene expression analyses. Statistical comparisons among TPM values by the experimental group were obtained by calculating the fold change against the control group using a multi-factorial statistic based on a negative binomial GLM implemented in CLC Genomics software. Contigs with fold change values > |4| and FDR *p*-value < 0.01 were considered as differentially expressed and were extracted for gene annotation. Differentially expressed contigs (in any group against the control) were blasted against the SwissProt database [26] by BlastX considering expect value = 10, word size = 11, match/mismatch = 2/-3, and gap costs = 5 (existence)/2 (extension). All of the sequences with an E-value $< 1 \times 10^{-6}$ were considered as correctly identified in the protein database.

2.7. Gene Ontology and Pathways Enrichment Analysis

For the enrichment analyses, exclusive and common differentially expressed contigs in SHK-1 cells and salmon HK were used. Differentially expressed contigs were annotated by Gene Ontology criteria (GO) into Biological Processes (BP) and Molecular Functions (MF) hierarchies using the Blast2GO plugin in the CLC Genomics software and default parameters. The KAAS—KEGG Automatic Annotation Server [37] was used for ortholog assignment and pathway mapping using the genome of *S. salar* as a reference.

2.8. Long Non-Coding RNAs Expression Analyses

The lncRNAs analysis was performed using the Atlantic salmon lncRNAs database reported by Valenzuela- Muñoz et al. [38]. An RNA-seq analysis for lncRNA was conducted with the same protocol described above for mRNA using CLC Genomics Workbench v21 software (Qiagen Bioinformatics, USA) using the SHK-1 cells and the salmon HK data set. Correlation analyses were performed using TPM values of shared top 55 up- and downregulated lncRNAs (fold change $\geq |4|$) and selected coding transcripts related to immune response, iron homeostasis, and transcription factors, among others. Pearson's correlation was conducted using the Corrplot package v.0.92 [39] written in R language, considering all of the samples simultaneously (*p*-value < 0.01 and *r*-value > |0.9|).

3. Results

3.1. Cr-Cathepsin Cytotoxicity Evaluation

First, the recombinant protein Cr-cathepsin associated with the secretome of the sea louse [12] was expressed and purified (Figure S1). The cell viability on the SHK-1

6 of 18

cell line exposed to recombinant Cr-cathepsin was determined. After 24 h of exposure, the protein concentrations of 25 and 50 ng/mL did not show morphological differences between the treated and the control cells; however, at 100 ng/mL of Cr-cathepsin, vacuole formation was observed (Figure S2). Furthermore, cell viability was not affected by the different recombinant protein concentrations testing (Figure S3), demonstrating that the antigen did not cause cytotoxicity damage. This assay determined that 100 ng/mL was an adequate work concentration for stimulating the cell line. Here, we propose a cell-based antigens prospection workflow for selecting candidate vaccines in Atlantic salmon against *C. rogercresseyi* (Figure S4).

3.2. Comparative Transcriptome Profiling between SHK-1 Cells and Salmon Head Kidney Tissue (HK) in Response to Recombinant Cr-Cathepsin

The de novo assembly encompassed the raw data of all samples sequencing; a total of 142,551 contigs were generated with an N50 equal to 458 pb and an average length of 323 pb. For easier data analysis and interpretation, the two control groups (SHK-1 exposed BSA and salmon HK exposed PBS) were assembled as a pool and renamed as the control group (Ctrls). An RNA-seq analysis evaluated the global transcription profiles in SHK-1 cells and salmon HK exposed to Cr-cathepsin. Interestingly, the transcriptome modulation was strongly clustered due to the study model, showing four differential clusters of upregulated transcripts (Figure 1A). Cluster 1 contigs of SHK-1 cells exposed to Cr-cathepsin were highly expressed compared with the other groups. Among the annotated genes we highlight the nuclear factor of activated T-cells cytoplasmic 3-like isoform X2, Cell wall protein IFF6-like, SPARC, Heat shock factor-binding protein 1, cathepsin H. Meanwhile, cluster 2 was associated with upregulated contigs in salmon HK, presenting annotated genes such as Hemoglobin subunit α -4 and β , Cytochrome c oxidase polypeptide, Metalloendopeptidase, and Ferritin. Furthermore, the hierarchical analysis showed a cluster 3 in the control group, with highly expressed contigs independent of treatment and tissue. Finally, in cluster 4, the contigs were upregulated in SHK-1 cells and salmon HK exposed to the antigen. Among the annotated genes most expressed in cluster 4 were ORF2 protein, Tripartite motif-containing protein 25, TBC1 domain family member 15-like, MHC class I-related gene protein-like isoform X1, and protein NLRC3-like. Nevertheless, the expression level of common contigs in cluster 4 also showed a differentiation dependent on tissue (Figure 1A). The annotation and TPM values of the four most upregulated contigs clusters are listed in Table S1.

Differential expression genes (DEGs) analyses showed a clear differentiation among SHK-1 and salmon HK exposed to Cr-cathepsin compared to the control group. A total of 17,825 and 16,563 contigs were exclusively expressed in SHK-1 cells and salmon HK exposed to Cr-cathepsin, respectively. Notably, both tissues shared 10,949 contigs, representing 24.15% of the total transcriptome response (Figure 1B). From exclusive DEGs annotation, of the top 50 up and downregulated transcripts (fold change $\geq |4|$ and *p*-values < 0.05), identified genes such as *Fibrillin-2*, *Transcription factor* HIVEP3-like isoform X2, Mucin-19-like, and *protein* NLRC3-like were upregulated exclusively in SHK-1 cells exposed to Cr-cathepsin; otherwise, the *Coronin*, *Plastin-2*, *Interleukin-6 receptor subunit* α , and MHC class II antigen β chain was founded in the most downregulated genes in SHK-1 cells exposed to Cr-cathepsin (Figure 1C). Furthermore, ATP-binding cassette sub-family A member 1-like isoform X2, complement C1q-like protein 2, and cell surface A33 antigen-like isoform X2 were exclusively upregulated in salmon HK exposed to Cr-cathepsin. Meanwhile, Ras-related protein Rab-27B, protein NLRC3-like isoform X3, and cathepsin K were downregulated in salmon HK exposed to Cr-cathepsin (Figure 1D) (Table S2).

Figure 1. Transcriptome profiling of mRNA from the SHK-1 cell line and salmon head kidney (HK) exposed to recombinant Cr-cathepsin. (A) Heatmaps for each treatment were constructed with the TPM (transcripts per million of reads) values of mRNAs and grouped by hierarchical clustering based on the Manhattan distance with average linkages. A red color indicates up-regulated mRNAs, and blue represents down-regulated transcripts. (B) Top-20 DEGs expressed in SHK-1 vs. control. (C) Venn diagrams of DEGs among tissues (SHK-1 cell line and HK exposed to Cr-cathepsin) vs. control group (|fold change| > 4, *p*-value < 0.05). Up/down-regulated transcripts were calculated from the comparisons between the SHK-1 cell line vs. control (17,825 transcripts), HK vs. control (16,563 transcripts), and shared (10,949 transcripts). (D) Top-20 DEGs in HK vs. control.

3.3. Function Enrichment of Exclusive and Common DEGs mRNA

To assign potential functions of exclusives and common DEGs from SHK-1 cells and salmon HK, GO and KEGG enrichment analyses were performed. The GO analysis revealed that several Molecular Functions (MF) associated with binding were shared for exclusive and common DEGs, such as ion binding, metal ion binding, cation binding, and catalytic activity was similarly enriched in terms of interception counts (Figure 2A). Furthermore, hydrolase activity was enriched in the exclusive DEGs of both tissues. In addition, ATP binding, anion binding, adenyl ribonucleotide binding, and adenyl nucleotide binding were only enriched on common DEGs. On the other hand, the enrichment of Biological Process (BP) terms has a different behavior (Figure 2B). Several BP were significantly enriched in the exclusive DEGs of SHK-1 cells, and the same processes were found to be enriched in the common DEGs, such as the regulation of the biological process: signaling, signal transduction, cell communication, response to stimulus, and biological regulation. Instead, macromolecule modification was highly enriched in the exclusive DEGs of salmon HK and in the common DEGs. Moreover, exclusive DEGs of salmon HK triggered BPs that were only enriched in this group, including the organonitrogen compound metabolic process, protein metabolic process, proteolysis, and the developmental process (Figure 2B).

Figure 2. GO enrichment analysis for exclusive and common DEGs of the SHK-1 cell line and salmon HK exposed to recombinant Cr-cathepsin. (A) Top-20 of molecular function. (B) Top-20 of biological process.

The KEGG enrichment of exclusive and common DEGs showed variations in the number of genes that were involved in each pathway (Figure 3). Several pathways involved in signal transduction were highly enriched, such as the PI3K-Akt signaling pathway, MAPK signaling pathway, Rap1 signaling pathway, and the JAK-STAT signaling pathway. Notably, pathways related to immune response, such as the C-type lectin receptor signaling pathway, NOD-like receptor signaling pathway, Chemokine signaling pathway, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, melanogenesis, and the toll-like receptor signaling pathway were mainly enriched in exclusive and common DEGs. Moreover, apoptosis, spliceosome, and cytokine-cytokine interactions, among others, were enriched (Table S3). It is worthy of note that the exclusive DEGs for SHK-1 cells showed a higher enrichment of the KEGG pathways; nevertheless, the fact that each pathway is similarly enriched demonstrates the possibility of a shared transcriptomic response.

3.4. RNA-seq Relevant Immune Genes

RNA-seq was conducted using 30 transcripts selected from common DEGs to explore the transcriptional response of immune-related genes in response to Cr-cathepsin (Figure 4). The analysis showed three main clusters, where the genes *TLR13*, *TLR5*, *Il-15R*, *IL-13R*, *MHC class I*, *TGF* β were actively transcribed in SHK-1 cells exposed to Cr-cathepsin. Meanwhile, protein *NLRC3*, *IL-3R*, *IL-1R*, *IFN type I*, *TLR2*, *IL-2R*, and *IL-18R* clustering highly transcriptional modulation in salmon HK exposed to Cr-cathepsin. The transcriptome profiling evinced a gene highly expressed in both study-models: Interferon-induced GTP-binding protein Mx3, and indicated the downregulation of other genes, such as *Heat shock protein 70 kDa* and *Haptaglobin*, compared to the Ctrls group. Overall, the hierarchical heatmap evinced a clusterization of transcriptional response based on tissue. Congruently, *TLR6*, *Ferritin*, and *Cathelicidin* were actively transcribed in SHK-1 cells and the control group, while *MHC class I antigen*, *IL-17R*, *TNF alfa*, *Mx3 protein*, and *Haptaglobin* were highly co-expressed in the salmon HK and the control group (Figure 4).

Figure 4. RNA-seq analysis of 30 immune-related genes selected from common DEGs in response to Cr-cathepsin. Heatmaps for each treatment were constructed with the TPM (transcripts per million of reads) values of mRNAs and grouped by hierarchical clustering based on Manhattan distance with average linkages. A red color indicates up-regulated mRNAs, and blue represents down-regulated transcripts.

3.5. LncRNA Identification and Expression

From 3763 Atlantic salmon lncRNA previously reported by Valenzuela-Muñoz et al. [38], a total of 3485 were found into the SHK-1 cell line and salmon HK exposed to recombinant Cr-cathepsin. A heatmap of the RNA-seq analysis showed a different transcriptional pattern for each group analyzed (Figure 5A). Here, two hierarchical clusters of upregulated lncRNA were clearly differentiated according to tissue and were separated according to the expression pattern of the control group (clusters 1 and 2). Meanwhile, the lncRNAs upregulated simultaneously in SHK-1 cells and salmon HK were grouped in cluster 3. From the DEGs analysis between the Cr-cathepsin exposed groups and the controls, a total of 1194 and 1337 lncRNA were differentially expressed exclusively in SHK-1 cells and salmon HK exposed to Cr-cathepsin, respectively. Meanwhile, 954 lncRNA were identified as common lncRNA sequences (Figure 5B). Both tissues showed a similar fold change variation in upregulated lncRNAs. However, in the SHK-1 cells exposed to Cr-cathepsin, a significant lncRNA downregulation was observed compared to those in salmon HK (Figure 5C).

Figure 5. Transcriptome profiling of lncRNA from the SHK-1 cell line and salmon HK exposed to recombinant Cr-cathepsin. (A) Heatmaps for each treatment were constructed with the TPM (transcripts per million of reads) values of lncRNAs and grouped by hierarchical clustering based on Manhattan distance with average linkages. A red color indicates up-regulated lncRNAs, and blue represents down-regulated transcripts. (B) A Venn diagram representing the significantly expressed lncRNA among tissues (SHK-1 cell line and salmon HK exposed to Cr-cathepsin) vs. control group (|fold change| > 4, *p*-value < 0.05). (C) LncRNA fold-change variation up/down-regulated in SHK-1 cell line and salmon HK exposed to Cr-cathepsin vs. the control group.

3.6. Expression Correlation between Shared mRNA and IncRNA

A correlation matrix by Pearson analysis was conducted between the top 55 up and downregulated lncRNAs (fold change $\geq |4|$) expressed in SHK-1 cells and salmon HK;

and the shared transcripts that scored for relevant genes related to immune response, iron homeostasis, transcription factors, and apoptosis, among others. Co-expression analyses demonstrated that two main clusters of lncRNA have a high and low correlation with coding transcripts (Figure 6). The lncRNAs of cluster 1 showed a positive correlation mainly with various interleukins receptors (*IL-1R*, *IL-2R*, *IL-17R*, *IL-18R*), toll-like receptors (*TLR2*, *TLR6*), and B and T cell receptors. The cytosolic regulator of innate immunity, protein NLRC3-like, was also highlighted for its strong positive correlation with the lncRNA of cluster 1. On the other hand, the lncRNAs grouped into cluster 2 showed a highly positive correlation with another group related to cytokines (*IL-3R*, *IL-13R*, *IL-15R*, *TNF α-induced protein 8*, *IFN-induced GTP binding protein Mx3-like*) and toll-like receptors (*TLR5*, *TLR13*). Notably, several cathepsins and genes related to apoptosis (*Caspase 6-like*, *Caspase 14-like*, and *apoptosis facilitator Bcl2-like*) had a positive correlation with the lncRNA set. *Cathelicidin* and *Heat shock 70 kDa protein 12A-like* exhibited the highest positive correlation IncRNAs grouped into cluster 2 (SsLnc_0005382, SsLnc_0135576, SsLnc_0043072, SsLnc_0061656, SsLnc_0100586, and SsLnc_0064622).

Figure 6. Correlation analyses among the top 55 upregulated shared lncRNA and selected coding transcripts related with immune response, iron homeostasis, and transcription factors. The correlation matrix was based on Pearson's correlation calculation using transcript fold change values. Positive correlations of expression levels are represented in red, and negative correlations are represented in blue.

4. Discussion

Developing successful vaccines for commercial application against sea lice in salmon farming production is time-consuming and expensive. Several potential vaccine candidates against sea lice have been reported [10-14,40-42]. Hence, parasite transcriptomic studies have provided valuable information for understanding the molecular mechanisms involved in the host-parasite interaction [43,44]. Our research group recently reported transcriptional and morphological changes in lice exposed to immunized fish with the IPath® vaccine [13,14]. The findings revealed that IPath® immunization significantly changed the molecular response of sea lice against their host. Moreover, in Atlantic salmon, the effect of a recombinant chimeric protein against L. salmonis was evaluated, showing an efficiency of 56% and the enhancement of systemic and local immunity during the hostparasite interaction [10,45]. The identification of protective antigens is a fundamental step in the development of effective vaccine candidates against ectoparasites. Parasite secretory/excretory products play an essential role in tissue penetration, digestion, shedding, and host immune response evasion [27]. Among the parasite SEPs, cathepsins proteins are widely found [46]. Several studies have taken advantage of cathepsins' functional relevance and antigenic potential for use as vaccines, such as in mammals and chickens [47,48]. In C. rogercresseyi's life cycle, a different expression profile of cathepsin genes has been reported [34]. For instance, a previous study reported a high expression level of several cathepsin B, D, F, K, L, S, and Z-like genes in the copepodid stage, which were previously associated with evasion of the host's immune system, molting, or feeding [34]. Previously, our research group reported using a recombinant C. rogercresseyi cathepsin as a vaccine for sea lice control. In the study, Atlantic salmon injected with the recombinant cathepsin showed a sea lice burden reduction of 57% [12]. However, one of the biggest challenges for developing and designing fish vaccines is that the in vivo evaluation is time-consuming [1]. This study evaluated the use of a cell-based platform for sea lice antigens prospection, comparing the transcriptome variation of two study models: SHK-1 cells and salmon HK tissue exposed to the recombinant Cr-cathepsin.

The SHK-1 cell line was derived from the leucocytes of Atlantic salmon head kidney [49] and has macrophage and dendritic cell characteristics. The main difference between the cell line concerning macrophages is the inability to kill bacteria or pathogens [49]. However, it has excellent potential for immune response studies. The salmonid head kidney is a hematopoietic organ and contains many T and B lymphocytes, macrophages, and melano-macrophages [50–52]. Interestingly, the SHK-1 cell line can synthesize melanin [53], and melanogenesis pathway genes have shown a high expression level in salmon head kidney and SHK-1 cells [51,53].

The statistical comparisons showed differences in the transcriptomic profile between SHK-1 cells and salmon HK, with 24.15% of the transcripts being shared between the two study models, which could be primarily attributed to antigen response. The GO classification in common DEGs showed a molecular functions enrichment associated with metal ion binding and catalytic activity. Ions play a crucial role in different physiological aspects, specifically in the immune system cells, where they must maintain strict homeostasis [54,55]. Ion channels and transporters regulate ion concentrations inside T and B cells, and thus could be modulating the functions of these cells [56,57]. Furthermore, metal ions have been associated with innate immune system activation through different mechanisms. Among them, it has been described that they can directly activate pathogen recognition patterns. In addition, they are involved in the inflammasome activation and, through the release of alarmins, enhance necrotic cellular death [58]. Interestingly, an adjuvant role has been attributed to specific metal ions that promote dendritic cell migration and antigen presentation to T cells-metal specifics [59].

Previously, in Atlantic salmon infected with *C. rogercresseyi*, iron transport genes such as *Hepcidin*, *Transferrin receptor*, and *Haptoglobin* have been reported to be upregulated in the head kidney during sea lice infestation, suggesting a nutritional immune response [60]. Iron regulation plays a fundamental role in fish immunity, protecting host tissues from

oxidative stress and limiting iron availability to pathogens [61]. Here, essential genes of iron regulation were upregulated, and *Ferritin H*, and *Ferritin M* was highly activated in SHK-1 cells exposed to Cr-cathepsin and the *Haptoglobin* gene in salmon HK. Furthermore, the *Transferrin receptor* was upregulated in both study models, suggesting that the cells present iron homeostasis mechanisms. Moreover, pro- and anti-inflammatory cytokines and acute-phase proteins can regulate the transcription of genes involved in iron transport, directly contributing to iron homeostasis [62]. These results support the theory that SHK-1 cells possess the mechanisms to generate nutritional immunity against *C. rogercresseyi* cathepsin.

Congruently, the pathways involved in the immune response are widely enriched in the common DEGs, suggesting that they play a relevant role in the immune response against the recombinant antigen. Cytokine-cytokine receptor interactions, the TNF signaling pathway, the NF-kappaB signaling pathway, and the NOD-like receptor signaling pathway were highly enriched in common DEGs. Different authors suggest that the antigen recognition by immune cells in the head kidney triggered cytokine-cytokine receptor interactions, and then NF-kappaB and TNF signaling pathways enhancing several transcriptions of immune genes and inflammatory factors [63,64]. Furthermore, the activation of Nod-like receptor (NLR) members of the PRR family has been associated with cellular stress, and thus induces the inflammasome assembly. In addition, the endogenous stimuli trigger the activation of signaling pathways such as NF-kappaB and mitogen-activated protein kinases (MAPKs), which induce a proinflammatory response [65,66]. Moreover, the NLRs play an essential role in the fish innate system, recognizing a lipopolysaccharide and polyinosinic-polycytidylic acid (poly I:C) from bacterial pathogens [67]. In this study, the NLRC3-like protein was upregulated in salmon HK, showing a strong response of Atlantic salmon's innate immune system against a C. rogercresseyi cathepsin protein.

Although the signaling pathways and immune-related pathways are enriched in the exclusive and common DEGs, this does not mean that the expression of genes involved in the pathways is the same. Interestingly, the RNA-seq analysis of selected shared immunogenes revealed different transcriptional expression patterns. Several Interleukin receptors were upregulated on the salmon HK exposed to Cr-cathepsin, such as IL-1R, IL-2R, IL-3R, IL-17R, and IL-18R; meanwhile, the transcriptions of IL-13R and IL-15R were highly activated in SHK-1 cells. The expression of pro-inflammatory cytokines has been reported in Atlantic salmon infected with L. salmonis, observing the up-regulation of IL-1R type 1 in the head kidney [68]. Notably, the recombinant protein Cr-cathepsin induces an IL-1R down-regulation in SHK-1 cells. Previously, the effect of three fractions of L. salmonis SEPs purified by size-exclusion chromatography has been reported in adherent head kidney leucocytes [69]. The effects of *L. salmonis* SEPs in SHK-1 cells showed an IL-1 β inhibition after stimulation. IL-1 β regulates several genes, including IL-8, in the CXC family of chemokines. These molecules recruit specific subsets of leukocytes, leading to infection and inflammation, playing a fundamental role in host defense [70]. This study showed a significantly enriched chemokine signaling pathway in both study models, suggesting a host cytokine induction in response to the sea louse recombinant Cr-cathepsin protein.

Furthermore, the toll-like receptor signaling pathway was highly enriched in the KEGG analysis. Interestingly, in head kidney tissue, the *TLR2* was upregulated. Meanwhile, *TLR5*, *TLR6*, and *TLR13* were highly expressed in SHK-1 cells in response to Cr-cathepsin. The *TLR13* gene has been described as the most abundant Toll-like receptor type in the head kidney of Atlantic salmon and Coho salmon [71]. The overexpression of *TLR13* observed in Coho salmon infested with *C. rogercresseyi* was associated with fish resistance to ectoparasite infestation [71]. In our current study, the high expression of *TLR13* in SHK-1 cells could be used as molecular markers for antigen evaluation for a vaccine developed for sea lice control.

Advances in high-throughput sequencing have allowed for a deepening in transcriptomic studies, revealing many transcripts that until now do not have a recognized potential coding. The long non-coding RNAs have been considered as potential regulators of different biological processes [38]. Recently, in teleost fish such as Atlantic salmon, Coho salmon,

and rainbow trout, it has been found that 2.1% of total transcriptome response against sea lice infestation corresponded with lncRNA sequences [38]. In this study, a total of 3485 putative long non-coding RNAs were identified in the SHK-1 cell line and in salmon HK exposed to recombinant Cr-cathepsin. The differential expression analysis identified 1194 and 1337 exclusive lncRNA in SHK-1 cells and salmon HK, respectively. Meanwhile, 954 IncRNA were identified as common IncRNA sequences. Interestingly, as with the hierarchical clustering of coding transcripts, the lncRNA showed tissue-dependent transcription patterns. The co-expression analysis revealed the potential regulation of lncRNAs over the expression of coding genes involved in relevant biological processes. Remarkably, the sea lice infestation in Atlantic salmon has been described close to the location among IncRNAs and coding genes related to cell migration and transcriptional regulation [72]. Furthermore, several studies have demonstrated the modulation of innate and adaptive response pathways by lncRNA [73], and during the bacterial and viral infection in rainbow trout and Atlantic salmon [74,75]. Furthermore, during the C. rogercresseyi infestation of the same species, lncRNA enhanced the modulation of genes associated with the regulation of the immune response, development, cell proliferation, and stress response [38]. This study emphasizes the strong regulation of the lncRNAs of Atlantic salmon over genes related to immune response, iron homeostasis, inflammatory response, and apoptosis, among others. Moreover, it highlights the correlation between cathepsin genes and a high number of lncRNAs that are differently modulated.

5. Conclusions

Significant changes in the transcriptome profiling were found in SHK-1 cells and salmon HK after Cr-cathepsin protein exposition compared with the controls. However, the SHK-1 cells and salmon HK exposed to recombinant Cr-cathepsin shared a transcriptomic response associated with the immune system. The signal transduction pathways and system immune-related pathways were significantly enriched in the common DEGs mRNA of SHK-1 cells and salmon HK. Moreover, the lncRNAs expression analysis reveals a model-specific transcription pattern; and it indicates that they are highly correlated with several transcripts involved in the immune response, iron homeostasis, the inflammatory response, and apoptosis. The current study demonstrates that it is possible to use the culture of cell lines for the initial screening of antigens to develop sea lice vaccines, reducing the time consumption associated with the antigen's selection. However, in the following step, an in vivo assay is required to validate the candidate vaccines and determine their efficacy in sea lice reduction.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/genes14040905/s1, Figure S1: Purification of recombinant Cr-cathepsin protein by affinity chromatography; Figure S2: Effect of recombinant Cr-cathepsin in the SHK-1 cell line; Figure S3: the effect of recombinant Cr-cathepsin in the viability of the SHK-1 cell line; Figure S4: Cell-based antigens' prospective workflow for the selection of candidate vaccines in Atlantic salmon against *C. rogercresseyi*; Table S1: Contig clusters annotation and TPM values for the SHK-1 cell line and salmon HK transcriptome; Table S2: Differential expression genes (DEGs) annotations; Table S3: KEGG Pathways of mRNA DEGs.

Author Contributions: Conceptualization, Y.L. and C.G.-E.; methodology, Y.L., A.C. and B.P.B.; samples collection, Y.L., A.C. and V.V.-M.; data analysis, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L. and V.V.-M.; supervision, C.G.-E.; funding acquisition, Y.L., A.C. and C.G.-E. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CONICYT-Chile through the grants FONDAP-ANID (#1522A0004) and FONDECYT (#1210852) and the ANID- Grant/National Doctorate (#21191482 and #21180084).

Institutional Review Board Statement: The animal study protocol was approved by the Committee of Ethics, Bioethics and Biosafety of the Research and Development Vice-rectory of the University of Concepción, Chile, approval Code: CEBB501-2019. Approval Date: September 2019. This research was carried out following the recommendations of the International Guiding Principles for Biomedical Research Involving Animals (The Council for International Organization of Medical Science and The International Council for Laboratory Animal Science, 2012).

Informed Consent Statement: Not applicable.

Data Availability Statement: BioProject ID (PRJNA954714).

Conflicts of Interest: The authors declare that they have no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. *Microorganisms* 2019, 7, 569. [CrossRef]
- Sneeringer, S.; Bowman, M.; Clancy, M. The U.S. and EU Animal Pharmaceutical Industries in the Age of Antibiotic Resistance; USDA: Washington DC, USA, 2019.
- Mondal, H.; Thomas, J. A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquac. Int. 2022, 30, 1971–2000. [CrossRef] [PubMed]
- 4. FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022.
- Mikkelsen, H.; Lund, V.; Larsen, R.; Seppola, M. Vibriosis vaccines based on various sero-subgroups of Vibrio anguillarum O2 induce specific protection in Atlantic cod (Gadus morhua L.) juveniles. Fish Shellfish Immunol. 2011, 30, 330–339. [CrossRef]
- Nguyen, T.D.; Crosbie, P.B.B.; Nowak, B.F.; Bridle, A.R. The effects of inactivation methods of Yersinia ruckeri on the efficacy of single dip vaccination in Atlantic salmon (Salmo salar). J. Fish Dis. 2018, 41, 1173–1176. [CrossRef] [PubMed]
- Røsæg, M.V.; Thorarinsson, R.; Aunsmo, A. Effect of vaccines against pancreas disease in farmed Atlantic salmon. J. Fish Dis. 2021, 44, 1911–1924. [CrossRef]
- Guz, L. Humoral antibody response of Atlantic salmon, Salmo salar L., vaccinated against Moritella viscosa. Pol. J. Vet. Sci. 2003, 6, 15–17.
- Tobar, J.A.; Jerez, S.; Caruffo, M.; Bravo, C.; Contreras, F.; Bucarey, S.A.; Harel, M. Oral vaccination of Atlantic salmon (Salmo salar) against salmonid rickettsial septicaemia. Vaccine 2011, 29, 2336–2340. [CrossRef]
- Swain, J.K.; Carpio, Y.; Johansen, L.-H.; Velazquez, J.; Hernandez, L.; Leal, Y.; Kumar, A.; Estrada, M.P. Impact of a candidate vaccine on the dynamics of salmon lice (*Lepeophtheirus salmonis*) infestation and immune response in Atlantic salmon (*Salmo salar* L.). PLoS ONE 2020, 15, e0239827. [CrossRef]
- Tartor, H.; Karlsen, M.; Skern-Mauritzen, R.; Monjane, A.L.; Press, C.M.; Wiik-Nielsen, C.; Olsen, R.H.; Leknes, L.M.; Yttredal, K.; Brudeseth, B.E.; et al. Protective Immunization of *Atlantic salmon (Salmo salar L.)* against *Salmon lice (Lepeophtheirus salmonis)* Infestation. *Vaccines* 2021, 10, 16. [CrossRef]
- Casuso, A.; Valenzuela-Muñoz, V.; Benavente, B.P.; Valenzuela-Miranda, D.; Gallardo-Escárate, C. Exploring Sea Lice Vaccines against Early Stages of Infestation in *Atlantic salmon (Salmo salar)*. *Vaccines* 2022, 10, 1063. [CrossRef] [PubMed]
- Valenzuela-Muñoz, V.; Benavente, B.P.; Casuso, A.; Leal, Y.; Gallardo-Escárate, C. Chimeric Protein IPath®with Chelating Activity Improves Atlantic Salmon's Immunity against Infectious Diseases. *Vaccines* 2021, 9, 361. [CrossRef] [PubMed]
- Valenzuela-Muñoz, V.; Benavente, B.P.; Casuso, A.; Leal, Y.; Valenzuela-Miranda, D.; Núñez-Acuña, G.; Sáez-Vera, C.; Gallardo-Escárate, C. Transcriptome and morphological analysis in *Caligus rogercresseyi* uncover the effects of *Atlantic salmon* vaccination with IPath[®]. *Fish Shellfish Immunol.* 2021, 117, 169–178. [CrossRef] [PubMed]
- Miccoli, A.; Manni, M.; Picchietti, S.; Scapigliati, G. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. Vaccines 2021, 9, 140. [CrossRef] [PubMed]
- Goswami, M.; Yashwanth, B.S.; Trudeau, V.; Lakra, W.S. Role and relevance of fish cell lines in advanced in vitro research. Mol. Biol. Rep. 2022, 49, 2393–2411. [CrossRef] [PubMed]
- Lakra, W.S.; Swaminathan, T.R.; Joy, K.P. Development, characterization, conservation and storage of fish cell lines: A review. Fish Physiol. Biochem. 2011, 37, 1–20. [CrossRef] [PubMed]
- Estepa, A.; Thiry, M.; Coll, J.M. Recombinant protein fragments from haemorrhagic septicaemia rhabdovirus stimulate trout leukocyte anamnestic responses in vitro. J Gen Virol 1994, 75 Pt 6, 1329–1338. [CrossRef] [PubMed]
- Lorenzo, G.A.; Estepa, A.; Chilmonczyk, S.; Coll, J.M. Different peptides from hemorrhagic septicemia rhabdoviral proteins stimulate leucocyte proliferation with individual fish variation. Virology 1995, 212, 348–355. [CrossRef]
- Villena, A.J. Applications and needs of fish and shellfish cell culture for disease control in aquaculture. Rev. Fish Biol. Fish. 2003, 13, 111–140. [CrossRef]

- Bjornsdottir, B.; Fast, M.D.; Sperker, S.A.; Brown, L.L.; Gudmundsdottir, B.K. Effects of Moritella viscosa antigens on proinflammatory gene expression in an Atlantic salmon (Salmo salar Linnaeus) cell line (SHK-1). Fish Shellfish Immunol. 2009, 26, 858–863. [CrossRef]
- Pérez-Stuardo, D.; Espinoza, A.; Tapia, S.; Morales-Reyes, J.; Barrientos, C.; Vallejos-Vidal, E.; Sandino, A.M.; Spencer, E.; Toro-Ascuy, D.; Rivas-Pardo, J.A.; et al. Non-Specific Antibodies Induce Lysosomal Activation in Atlantic Salmon Macrophages Infected by *Piscirickettsia salmonis. Front. Immunol.* 2020, 11, 544718. [CrossRef]
- Bravo, S.; Nunez, M.; Silva, M. Efficacy of the treatments used for the control of *Caligus rogercresseyi* infecting *Atlantic salmon*, *Salmo salar* L., in a new fish-farming location in Region XI, Chile. J. Fish Dis. 2013, 36, 221–228. [CrossRef] [PubMed]
- Aaen, S.M.; Helgesen, K.O.; Bakke, M.J.; Kaur, K.; Horsberg, T.E. Drug resistance in sea lice: A threat to salmonid aquaculture. Trends Parasitol. 2015, 31, 72–81. [CrossRef] [PubMed]
- Bravo, S.; Silva, M.T.; Agusti, C.; Sambra, K.; Horsberg, T.E. The effect of chemotherapeutic drugs used to control sea lice on the hatching viability of egg strings from *Caligus rogercresseyi*. Aquaculture 2015, 443, 77–83. [CrossRef]
- Valle, M.R.; Mèndez, L.; Valdez, M.; Redondo, M.; Espinosa, C.M.; Vargas, M.; Cruz, R.L.; Barrios, H.P.; Seoane, G.; Ramirez, E.S. Integrated control of *Boophilus microplus* ticks in Cuba based on vaccination with the anti-tick vaccine Gavac TM. *Exp. Appl. Acarol.* 2004, *34*, 375–382. [CrossRef]
- 27. Willadsen, P. Vaccination against ectoparasites. Parasitology 2006, 133, S9-S25. [CrossRef] [PubMed]
- Reid, A.J.; Berriman, M. Genes involved in host-parasite interactions can be revealed by their correlated expression. Nucleic Acids Res. 2013, 41, 1508–1518. [CrossRef]
- Gallardo-Escárate, C.; Valenzuela-Muñoz, V.; Nuñez-Acuña, G.; Valenzuela-Miranda, D.; Gonçalves, A.T.; Escobar-Sepulveda, H.; Liachko, I.; Nelson, B.; Roberts, S.; Warren, W. Chromosome-scale genome assembly of the sea louse *Caligus rogercresseyi* by SMRT sequencing and Hi-C analysis. *Sci. Data* 2021, *8*, 60. [CrossRef]
- 30. Ranganathan, S.; Garg, G. Secretome: Clues into pathogen infection and clinical applications. Genome Med. 2009, 1, 113. [CrossRef]
- Fernando, D.D.; Fischer, K. Proteases and pseudoproteases in parasitic arthropods of clinical importance. FEBS J. 2020, 287, 4284–4299. [CrossRef]
- Turk, V.; Turk, B.; Guncar, G.; Turk, D.; Kos, J. Lysosomal cathepsins: Structure, role in antigen processing and presentation, and cancer. Adv. Enzym. Regul. 2002, 42, 285–303. [CrossRef]
- Wilcox, D.; Mason, R.W. Inhibition of cysteine proteinases in lysosomes and whole cells. *Biochem. J.* 1992, 285 Pt 2, 495–502. [CrossRef] [PubMed]
- Maldonado-Aguayo, W.; Chávez-Mardones, J.; Gonçalves, A.T.; Gallardo-Escárate, C. Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi. PloS ONE 2015, 10, e0123954. [CrossRef] [PubMed]
- Casuso, A.; Valenzuela-Muñoz, V.; Gallardo-Escárate, C. Dual RNA-Seq Analysis Reveals Transcriptome Effects during the Salmon-Louse Interaction in Fish Immunized with Three Lice Vaccines. *Vaccines* 2022, 10, 1875. [CrossRef] [PubMed]
- Rampersad, S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensor 2012, 12, 12347–12360. [CrossRef] [PubMed]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [CrossRef]
- Valenzuela-Muñoz, V.; Valenzuela-Miranda, D.; Gallardo-Escárate, C. Comparative analysis of long non-coding RNAs in Atlantic and Coho salmon reveals divergent transcriptome responses associated with immunity and tissue repair during sea lice infestation. Dev. Comp. Immunol. 2018, 87, 36–50. [CrossRef] [PubMed]
- 39. Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package 'corrplot'. Statistician 2017, 56, e24.
- Carpio, Y.; Basabe, L.; Acosta, J.; Rodríguez, A.; Mendoza, A.; Lisperger, A.; Zamorano, E.; González, M.; Rivas, M.; Contreras, S.; et al. Novel gene isolated from *Caligus rogercresseyi*: A promising target for vaccine development against sea lice. *Vaccine* 2011, 29, 2810–2820. [CrossRef]
- Carpio, Y.; García, C.; Pons, T.; Haussmann, D.; Rodríguez-Ramos, T.; Basabe, L.; Acosta, J.; Estrada, M.P. Akirins in sea lice: First steps towards a deeper understanding. *Exp. Parasitol.* 2013, 135, 188–199. [CrossRef]
- Contreras, M.; Karlsen, M.; Villar, M.; Olsen, R.H.; Leknes, L.M.; Furevik, A.; Yttredal, K.L.; Tartor, H.; Grove, S.; Alberdi, P.; et al. Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. *Vaccines* 2020, *8*, 32. [CrossRef]
- Hoo, R.; Bruske, E.; Dimonte, S.; Zhu, L.; Mordmuller, B.; Sim, B.K.L.; Kremsner, P.G.; Hoffman, S.L.; Bozdech, Z.; Frank, M.; et al. Transcriptome profiling reveals functional variation in *Plasmodium falciparum* parasites from controlled human malaria infection studies. *Ebiomedicine* 2019, 48, 442–452. [CrossRef] [PubMed]
- Yang, M.Q.; Shang, X.M.; Zhou, Y.Q.; Wang, C.H.; Wei, G.Y.; Tang, J.X.; Zhang, M.H.; Liu, Y.B.; Cao, J.; Zhang, Q.F. Full-Length Transcriptome Analysis of Plasmodium falciparum by Single-Molecule Long-Read Sequencing. *Front. Cell. Infect. Microbiol.* 2021, 11, 1545. [CrossRef] [PubMed]
- Leal, Y.; Velazquez, J.; Hernandez, L.; Swain, J.K.; Rodríguez, A.R.; Martínez, R.; García, C.; Ramos, Y.; Estrada, M.P.; Carpio, Y. Promiscuous T cell epitopes boosts specific IgM immune response against a P0 peptide antigen from sea lice in different teleost species. *Fish Shellfish Immunol.* 2019, 92, 322–330. [CrossRef] [PubMed]

- Mach, L.; Mort, J.S.; Glössl, J. Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J. Biol. Chem. 1994, 269, 13030–13035. [CrossRef] [PubMed]
- Ricciardi, A.; Visitsunthorn, K.; Dalton, J.P.; Ndao, M. A vaccine consisting of *Schistosoma mansoni* cathepsin B formulated in Montanide ISA 720 VG induces high level protection against murine schistosomiasis. *BMC Infect. Dis.* 2016, 16, 112. [CrossRef] [PubMed]
- Xu, X.; Wang, C.; Huang, Y.; Zhang, S.; Yu, H.; Meng, J.; Pan, B. Evaluation of the vaccine efficacy of three digestive protease antigens from *Dermanyssus gallinae* using an in vivo rearing system. *Vaccine* 2020, 38, 7842–7849. [CrossRef]
- Dannevig, B.H.; Brudeseth, B.E.; GjØEn, T.; Rode, M.; Wergeland, H.I.; Evensen, Ø.; Press, C.M. Characterisation of a long-term cell line (SHK-1) developed from the head kidney of Atlantic salmon (*Salmo salar L.*). Fish Shellfish Immunol. 1997, 7, 213–226. [CrossRef]
- 50. Agius, C.; Roberts, R.J. Melano-macrophage centres and their role in fish pathology. J. Fish Dis. 2003, 26, 499–509. [CrossRef]
- Bjørgen, H.; Koppang, E.O. Anatomy of teleost fish immune structures and organs. In Principles of Fish Immunology; Springer: Cham, Switzerland, 2022; pp. 1–30.
- Zwollo, P.; Cole, S.; Bromage, E.; Kaattari, S. B cell heterogeneity in the teleost kidney: Evidence for a maturation gradient from anterior to posterior kidney. J. Immunol. 2005, 174, 6608–6616. [CrossRef]
- Thorsen, J.; Høyheim, B.; Koppang, E.O. Isolation of the Atlantic salmon tyrosinase gene family reveals heterogenous transcripts in a leukocyte cell line. *Pigment Cell Res.* 2006, 19, 327–336. [CrossRef]
- Bohmwald, K.; Gálvez, N.M.S.; Andrade, C.A.; Mora, V.P.; Muñoz, J.T.; González, P.A.; Riedel, C.A.; Kalergis, A.M. Modulation of Adaptive Immunity and Viral Infections by Ion Channels. Front. Physiol. 2021, 12, 6681. [CrossRef]
- 55. Rubaiy, H.N. A Short Guide to Electrophysiology and Ion Channels. J. Pharm. Pharm. Sci. 2017, 20, 48-67. [CrossRef]
- Feske, S.; Skolnik, E.Y.; Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 2012, 12, 532–547. [CrossRef]
- 57. Netea, M.G.; Schlitzer, A.; Placek, K.; Joosten, L.A.B.; Schultze, J.L. Innate and Adaptive Immune Memory: An Evolutionary Continuum in the Host's Response to Pathogens. *Cell Host Microbe* 2019, 25, 13–26. [CrossRef]
- Ferko, M.-A.; Catelas, I. Effects of metal ions on caspase-1 activation and interleukin-1β release in murine bone marrow-derived macrophages. PLoS ONE 2018, 13, e0199936. [CrossRef]
- McKee, A.S.; Fontenot, A.P. Interplay of innate and adaptive immunity in metal-induced hypersensitivity. Curr. Opin. Immunol. 2016, 42, 25–30. [CrossRef]
- Valenzuela-Muñoz, V.; Boltaña, S.; Gallardo-Escárate, C. Uncovering iron regulation with species-specific transcriptome patterns in Atlantic and coho salmon during a *Caligus rogercresseyi* infestation. J. Fish Dis. 2017, 40, 1169–1184. [CrossRef]
- Johnson, E.E.; Wessling-Resnick, M. Iron metabolism and the innate immune response to infection. *Microbes Infect.* 2012, 14, 207–216. [CrossRef]
- 62. Weiss, G. Modification of iron regulation by the inflammatory response. Best Pract. Res. Clin. Haematol. 2005, 18, 183–201. [CrossRef]
- 63. Lim, J.; Hong, S. Transcriptome Analysis in the Head Kidney of Rainbow Trout (*Oncorhynchus mykiss*) Immunized with a Combined Vaccine of Formalin-Inactivated *Aeromonas salmonicida* and *Vibrio anguillarum*. *Vaccines* **2021**, *9*, 1234. [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [CrossRef] [PubMed]
- 65. Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783-801. [CrossRef]
- Franchi, L.; Warner, N.; Viani, K.; Nuñez, G. Function of Nod-like receptors in microbial recognition and host defense. *Immunol. Rev.* 2009, 227, 106–128. [CrossRef] [PubMed]
- Pontigo, J.P.; Yañez, A.; Sanchez, P.; Vargas-Chacoff, L. Characterization and expression analysis of Nod-like receptor 3 (NLRC3) against infection with *Piscirickettsia salmonis* in Atlantic salmon. *Dev. Comp. Immunol.* 2021, 114, 103865. [CrossRef]
- Skugor, S.; Glover, K.A.; Nilsen, F.; Krasnov, A. Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genom. 2008, 9, 498. [CrossRef] [PubMed]
- Fast, M.D.; Johnson, S.C.; Eddy, T.D.; Pinto, D.; Ross, N.W. Lepeophtheirus salmonis secretory / excretory products and their effects on Atlantic salmon immune gene regulation. Parasite Immunol. 2007, 29, 179–189. [CrossRef] [PubMed]
- Laing, K.J.; Zou, J.J.; Wang, T.; Bols, N.; Hirono, I.; Aoki, T.; Secombes, C.J. Identification and analysis of an interleukin 8-like molecule in rainbow trout Oncorhynchus mykiss. Dev. Comp. Immunol. 2002, 26, 433–444. [CrossRef]
- Valenzuela-Muñoz, V.; Boltaña, S.; Gallardo-Escárate, C. Comparative immunity of Salmo salar and Oncorhynchus kisutch during infestation with the sea louse Caligus rogercresseyi: An enrichment transcriptome analysis. Fish Shellfish Immunol. 2016, 59, 276–287. [CrossRef]
- 72. Tarifeño-Saldivia, E.; Valenzuela-Miranda, D.; Gallardo-Escárate, C. In the shadow: The emerging role of long non-coding RNAs in the immune response of Atlantic salmon. *Dev. Comp. Immunol.* 2017, 73, 193–205. [CrossRef]
- 73. Aune, T.M.; Spurlock III, C.F. Long non-coding RNAs in innate and adaptive immunity. Virus Res. 2016, 212, 146–160. [CrossRef]

- Al-Tobasei, R.; Paneru, B.; Salem, M. Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout. PLoS ONE 2016, 11, e0148940. [CrossRef] [PubMed]
- 75. Boltaña, S.; Sanchez, M.; Valenzuela, V.; Gallardo-Escárate, C. Density-dependent effects of *Caligus rogercresseyi* infestation on the immune responses of *Salmo salar*. *Fish Shellfish Immunol.* 2016, *59*, 365–374. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Capítulo 2. Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the Piscirickettsia salmonis infection: A comparative transcriptome survey

Submitted to Fish and Shellfish Immunology, Junio 2023

Abstract

Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because is responsible for 54,2% of Atlantic salmon mortalities. In the last years has been observed the high relevance of Alternative splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS profiles during P. salmonis infection in the two most used study models SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0, 7, and 14 days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis straying were used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9,213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7,684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 28,6% in salmon HK approximately; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS in Atlantic salmon response during P. salmonis infection. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.

Fish and Shellfish Immunology

Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the Piscirickettsia salmonis infection: A comparative transcriptome analysis --Manuscript Draft--

Manuscript Number:	
Article Type:	Full Length Article
Keywords:	Alternative splicing, SHK-1 cell line, Atlantic salmon head kidney, Piscirickettsia salmonis
Corresponding Author:	Cristian Gallardo-Escarate, PhD University of Concepción Concepcion, CHILE
First Author:	Yeny Leal
Order of Authors:	Yeny Leal
	Valentina Valenzuela-Muñoz
	Cristian Gallardo-Escarate, PhD
Abstract:	In the last years, the primary relevance of the alternative splicing (AS) process has been observed as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. The present study evaluated the transcription expression of AS-related genes during Piscirickettsia salmonis infection, a pathogenic bacterium linked with 54,2% of Atlantic salmon mortalities in Chilean aquaculture. The AS events were analyzed in two biological models such as SHK-1 cells line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14 days post-infection (dpi). Then, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strain was used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9,213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7,684 DAS genes in salmon HK, respectively. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 28,6% in salmon HK approximately; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings suggest a putative role of AS in Atlantic salmon in response to P. salmonis infection and contribute to a better understanding of the molecular mechanisms involved in the pathogen-host interactions.
Suggested Reviewers:	Antonio Figueras antoniofigueras@iim.csic.es
	Beatriz Novoa virus@iim.csic.es
	Lin Li linli@zhku.edu.cn
	Winton Chen winton@mail.npust.edu.t
	Hidehiro Kondo hirono@kaiyodai.ac.jp

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Cover Letter

June 8th, 2023

Chris Secombes, BSc, PhD, DSc Editor Fish and Shellfish Immunology

Please find enclosed the manuscript entitled "Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the *Piscirickettsia salmonis* infection: A comparative transcriptome analysis" to be considered for publication in Fish and Shellfish Immunology.

This study explores the alternative splicing profiles of SHK-1 cells and head kidney tissue in *S. salar* exposed to the intracellular bacterium *P. salmonis*. First, the SHK-1 cell line was exposed to *P. salmonis* infection at 0-, 7-, and 14 days post-infection (dpi). Then, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same *P. salmonis* strain was used. The alternative splicing events were analyzed in these two biological models. This study suggests a putative role of alternative splicing in Atlantic salmon in response to *P. salmonis* infection and contribute to a better understanding of the molecular mechanisms involved in the pathogenhost interactions.

Thank you for your consideration of our work. Please address all correspondence concerning this manuscript to us at our University and feel free to correspond with us by email (crisgallardo@udec.cl).

Sincerely,

Dr. Cristian Gallardo-Escárate Laboratory of Biotechnology and Aquatic Genomics Interdisciplinary Center for Aquaculture Research (INCAR) University of Concepción

E-mail: crisgallardo@udec.cl: +56-412203422, +56-412204402

Highlights

- Alternative splicing influences the response of Atlantic salmon during *P. salmonis* infection.
- SHK-1 cells and salmon head kidney were study models.
- Alternative splicing plays a key role in compensating for nucleotide deficit in SHK-1 cells infected with *P. salmonis*.
- Alternative splicing plays modulate immune responses in the salmon head kidney during *P. salmonis* infection.

Manuscript

Fish and Shellfish immunology Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the Piscirickettsia salmonis infection: A comparative transcriptome analysis. Yeny Leal ^{1,2}, Valentina Valenzuela-Muñoz ^{1,2,3} and Cristian Gallardo-Escárate ^{1,2,*} ¹Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile. ²Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile. ³Centro de Biotecnología, Universidad de Concepción, Concepción Chile. *Correspondence: crisgallardo@udec.cl

23 Abstract

24 In the last years, the primary relevance of the alternative splicing (AS) process has been observed 25 as a molecular mechanism associated with infectious conditions and host-pathogen interaction 26 processes, especially in host immune activation. Several studies have highlighted the role of AS in 27 the host's immune response during viral, bacterial, and endoparasite infection. The present study 28 evaluated the transcription expression of AS-related genes during Piscirickettsia salmonis 29 infection, a pathogenic bacterium linked with 54,2% of Atlantic salmon mortalities in Chilean 30 aquaculture. The AS events were analyzed in two biological models such as SHK-1 cell line and 31 salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 32 7-, and 14 days post-infection (dpi). Then, total RNA was extracted for Illumina sequencing. On 33 the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. 34 salmonis strain was used. For both study models, the highest number of differentially alternative 35 splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9,213 DAS genes 36 in SHK-1 cells, and 13,820 DAS events from 7,684 DAS genes in salmon HK, respectively. 37 Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, 38 representing 31% in SHK-1 cells and 28,6% in salmon HK approximately; meanwhile, mutually 39 exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-40 1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. 41 In contrast, the salmon head kidney exhibited many GO terms associated with immune response. 42 Our findings suggest a putative role of AS in Atlantic salmon in response to *P. salmonis* infection 43 and contribute to a better understanding of the molecular mechanisms involved in the pathogen-44 host interactions.

Keywords: Alternative splicing, SHK-1 cell line, Atlantic salmon head kidney, Piscirickettsia
salmonis

47

48

49 **1. Introduction**

50 Salmonid Rickettsial Septicaemia (SRS), caused by the intracellular bacterium Piscirickettsia 51 salmonis, is one of the biggest challenges for the sustainability and development of salmon farming 52 in Chile [1, 2]. SRS is defined as a systemic disease affecting wild and farmed salmonids such as 53 Coho salmon (Oncorhynchus kisutch), Atlantic salmon (Salmo salar), and Rainbow trout 54 (Oncorhynchus mykiss) [3]. It is responsible for 54,2% of the mortalities caused by infectious 55 diseases in farmed Atlantic salmon [4]. The pathogen P. salmonis is a Gram-negative bacterium, 56 non-motile, non-encapsulated, and usually coccoid [5]. Fish affected by this pathology show 57 several signs of infection, such as erratic swimming, loss of appetite, lethargy, small white spots, pale gills due to the anemia they develop, abdominal swelling, petechial and ecchymotic 58 59 hemorrhages at the base of the fins, and periocular and perianal areas. Internal damage is also 60 observed in the head, kidney, liver, spleen, and intestine tissues, and to a lesser extent in the brain, 61 heart, skeletal muscle, and gills tissues [2, 6]. Therefore, the search for new practical tools to control 62 is considered a high-impact topic in the scientific community.

63 The virulence mechanism of *P. salmonis* triggers the interaction of proteins such as Clathrin and 64 Actin, which are essential for internalizing and developing the infective process in salmon cells 65 [7]. In this sense, a transcriptional study was performed in S. salar during P. salmonis infection, 66 demonstrating clathrin-mediated endocytosis pathway regulation, suggesting a mechanism of host 67 immune response evasion [8]. Furthermore, S. salar presented a complex transcriptomic response 68 to P. salmonis infection, represented by a regulation of the heme group biosynthesis/degradation 69 pathway and iron transport proteins, such as Haptoglobin and Hepcidin [8]. A study in SHK-1 cells 70 reported P. salmonis transcriptional changes during intracellular growth, taking advantage of the

3

phagocytic and macrophage-like properties of this *in vitro* model [9]. Furthermore, changes in host
cell viability and immune response after *P. salmonis* infection have also been evaluated, reporting
biomarkers associated with immune response, such as decreased expression of pro-inflammatory
cytokines *IL-1β*, *IFNy*, and *IFNα*; and increased expression of *IL-8*, *IL-12*, and *IL-10* [10].

75 RNA transcriptome sequencing technology (RNA-seq) has greatly contributed to understanding 76 pathogen-host interactions in aquatic species. The massively obtained RNA data from individuals 77 infected with pathogenic organisms have also proved an efficient source for detecting novel 78 transcripts and identifying alternative splicing (AS) [11, 12]. The occurrence of AS events of pre-79 mRNA is a key mechanism for increasing the proteome complexity, causing a diversity of 80 expression of transcripts and proteins in a tissue-specific manner. Alternative splicing is regulated by a variety of splicing factors, and changes in its regulation are strongly related to development, 81 82 cell differentiation, and diseases [13]. AS is a ubiquitous co-transcriptional and post-transcriptional 83 process of gene expression [13], mainly executed by spliceosome machinery [14]. Notably, AS can 84 generate multiple mRNA isoforms from the pre-mRNA transcript, being a pivotal source for RNA 85 modification through epitranscriptome mechanisms [15, 16]. Currently, a large variation in the 86 frequency of AS events is observed in different taxa; in humans, approximately 95% of human 87 genes are subject to alternative splicing events [14], while in invertebrates such as Caenorhabditis 88 elegans, near to 25% of their genes could be spliced [17]. The five most relevant AS types include: 89 skipping exon (SE), retention intron (RI), mutually exclusive exons (MX), alternative 5' splice site 90 (A5SS), and alternative 3' splice site (A3SS) [18]. Also, two more AS types have been described, 91 alternative fist exon (AF) and alternative last exon (AL) [19]. AS patterns are variable under 92 different physiological and environmental conditions, allowing the organism to display phenotypic 93 plasticity [20].

94 AS plays a role in the localization, binding, enzymatic properties, and interaction of proteins 95 with ligands, thus it interferes in almost all biological functions of an organism or cell, emerging 96 as a central element in gene expression regulation [20]. AS are actively associated with infectious 97 diseases, sequestration, and co-opting of the host splicing machinery during a viral infection such 98 as Dengue and Zika virus [21-23]. Several studies have highlighted the role of alternative splicing 99 in the host's immune response during viral, bacterial, and endoparasite infection [24-26]. For 100 example, a study performed in a mouse macrophage cell line exposed to lipopolysaccharides (LPS) 101 showed alternative splicing of TLR4 mRNA, expressing a partially secretory soluble protein. This 102 exogenous protein inhibited LPS-mediated TNF-alpha production and NF-kappaB activation [27]. 103 In mammary gland tissue from cows naturally infected with Staphylococcus aureus, many spliced 104 transcripts involved in the inflammation, defense, and immune processes against infection were 105 reported [26]. Moreover, in catfish infected with the Gram-negative bacterium Edwarsiella 106 ictaluri, an increase in AS events was induced as a host response, obtaining significantly overrepresented RNA processing factors after infection [28]. Despite the relevant function of AS 107 108 in gene modulation and host immune response, there are no studies conducted to understand the 109 role of alternative splicing in Atlantic salmon response to the intracellular bacterium *P. salmonis*. 110 Thus, we designed a comparative transcriptome study using the SHK-1 cell line and salmon head 111 kidney as models to evaluate the occurrence of AS events during the infection process with P. 112 salmonis. The results showed that the highest number of differentially alternative splicing (DAS) 113 events was observed in the SHK-1 cells line compared with head kidney tissue in infected fish. 114 Notably, functional annotation of DAS genes in infected SHK-1 cells showed a significant 115 association with nucleotide metabolism; meanwhile, infected head-kidney exhibited biological 116 processes associated with immune response. Our findings suggest a putative role of AS in Atlantic

salmon in response to *P. salmonis* infection, contributing to understanding the molecular
mechanisms involved in the pathogen-host interactions.

119

120 2. Methodology

121 2.1. SHK-1 cell line and *P. salmonis* culture.

The SHK-1 cell line was grown at 20°C in T75 cm² flasks (Thermo Fisher Scientific, Waltham,
MA, USA) in L-15 GlutaMax medium (Gibco, Thermo Fisher Scientific) supplemented with 10%
Fetal Bovine Serum (FBS) (Gibco, Thermo Fisher Scientific). The bacteria *P. salmonis* LF-89
(ATCC VR-1361) was grown in Eugon broth culture at 20°C, previously reported [29].

126

127 2.2. Determination of Lactate dehydrogenase cytotoxicity assay

128 The cell damage caused by P. salmonis infection in SHK-1 cells was quantified by the release of 129 cytosolic enzyme lactate dehydrogenase (LDH) in the cell supernatant using a commercial 130 Cytotoxicity LDH Detection Kit (Roche Diagnostics GmbH, Mannheim, Alemania). Six concentrations of P. salmonis were tested (1x10⁷, 1x10⁶, 1x10⁵, 1x10⁴, 1x10³, 1x10²) to triplicate 131 132 wells. For fish adherent cells, LDH release levels were measured in 100 µL of cell-free supernatant 133 for each concentration tested. The supernatant of uninfected cells was used as a low control and 134 the supernatant of cells lysed with 1% Triton X-100 solution was used as a high control. 135 Absorbance was measured at 490 nm (620nm as reference). The cytotoxicity was obtained using 136 the following equation:

137 Cytotoxicity (%) = (exp. value – low control/high control – low control)x100

- 138 The working concentration for the subsequent SHK-1 cell infection assay was defined as the lowest
- 139 concentration of *P. salmonis*, where increased cytotoxicity was observed (Fig. 1S).

6

141 2.3. SHK-1 cell line in vitro infection

142 For the in vitro infection model, the SHK-1 cell line was used, according to [29]. Briefly, when 143 SHK-1 cells were confluent, they were plated at 1 x 10⁶ cells/well in a 6-well plate and incubated 144 overnight in L-15 GlutaMax, 10% FBS. The medium was aspirated and changed to a new medium 145 with 1 x 10⁶ cells of *P. salmonis* LF-89 strain diluted in L-15 GlutaMax, 10% FBS. The control 146 group was SHK-1 cells in medium L-15 GlutaMax, 10% FBS at 0 days. Cells were collected at 7-147 and 14- days post-infection (dpi). Samples were preserved in RNAlater® RNA Stabilization Reagent (Ambion®, Life TechnologiesTM, Carlsbad, CA, USA) and stored at -80°C until 148 149 subsequent RNA extraction.

150

140

151 2.4. Transcriptome profiling of SHK-1 cell line and head kidney (HK) exposed to P. salmonis 152 The experimental cell groups were prepared for transcriptome profiling. Three plates from each 153 experimental cell group were harvested and separately pooled through 0.05% Trypsin-EDTA 154 (Gibco, MD, USA). Then, total RNA was isolated using the TRizol Reagent (Ambion®, Life Technologies[™], Carlsbad, CA, USA), following the manufacturer's instructions. The TapeStation 155 156 2200 (Agilent Technologies Inc., Santa Clara, CA, USA) evaluated the isolated RNA using the 157 R6K Re-agent Kit. RNA samples with RIN > 8.0 were used for library preparation. Subsequently, 158 double-stranded cDNA libraries were constructed using the TruSeq RNA Sample Preparation Kit 159 v2 (Illumina®, San Diego, CA, USA). Three biological replicates were sequenced by the Novaseq 160 platform (Illumina®, San Diego, CA USA) in Macrogen Inc. The salmon head kidney tissue 161 transcriptome profile was performed using two database P. salmonis infection experiments in 162 Atlantic salmon at 0-, 7-, and 14 days post-infection (dpi), previously reported [8, 30].

163

7

164 2.5. RNA-seq analyses and differential genes expression identification

165 Sequencing data were analyzed using CLC Genomics Workbench v23 software (Qiagen 166 Bioinformatics, USA). Illumina adapters /index were trimmed, and a quality-based filter was 167 applied to raw sequencing reads. Whole transcriptome RNA-Seq analyses were conducted in CLC 168 Genomics software to calculate the gene expression of each dataset using the following settings: 169 mismatch cost = 2, insert and deletion costs = 3, and similarity = 0.8. The Atlantic salmon genome 170 (GCF 000233385.1), Gene, and mRNA tracks annotations were used as references. Transcript per 171 million (TPM) values were considered the unit for gene expression analyses. Statistical 172 comparisons among TPM values by the infected groups were obtained by calculating the fold 173 change against the control group using a multi-factorial statistic based on a negative binomial GLM implemented in CLC Genomics software. Transcripts with fold change values > |2| and FDR p-174 175 value < 0.05 were considered differentially expressed genes (DEGs) and extracted for gene 176 annotation. To explore the DEGs, the infection times 7 and 14 dpi were compared against the 177 control group. DEGs (in any group against the control) were blasted against the UniProtKB 178 database by BlastX considering expect value = 10, word size = 11, match/mismatch = 2/-3, and gap costs = 5 (existence)/2 (extension). All the sequences with E-value $< 1E^{-6}$ were considered as 179 correctly identified in the protein database. 180

181

182 2.6. Mapping and identification of isoforms and transcripts

The raw sequencing reads from different *P. salmonis* infection times (0, 7, 14 dpi) of each study model were mapped to the Atlantic salmon reference genome using Large Gap Read Mapping (LGRM) tool included in CLC Genomics Workbench. The mapping criteria used were the mismatch cost = 2, insertion cost =3, deletion cost = 3, length fraction = 0.9, and similarity fraction = 0.9. Next, transcript discovery was performed to identify transcripts in all samples using the 188 LGRM assembly previously obtained for each sample, gene, and mRNA tracks annotations of the 189 Atlantic salmon reference genome (GCA 905237065.2 Ssal v3.1). The settings parameters 190 include a minimum length of ORF = 150, minimum spliced reads = 1, gene merging distance = 100, 191 minimum reads in gene = 10, minimum predicted gene length = 250, and exon merging distance = 192 100. The predicted transcripts (PT) files were filtered by total counts \geq 1, and the accepted events 193 (AE) files were filtered by splice evidence = true and spliced counts ≥ 1 . The PT outputs transcripts 194 where AS events are occurring. Meanwhile, AE outputs the number of AS events. Then, a Filter 195 Based on the Overlap tool included in CLC was used to identify the PT and AE differentially 196 expressed. The DEGs analysis (infected groups against the control group) previously generated in 197 RNA-seq analysis was used as a statistical filter. Finally, the differentially expressed AE obtained 198 were named DAS events, while the differentially expressed PT were named DAS transcripts.

199

200 2.7. Identification of differential alternative splicing DAS events

201 The PT differentially expressed for each sample was downloaded in the GTF annotation file from 202 CLC Genomics software. The GFT files, including the genome coordinate for each transcript, were 203 used to detect the DAS events for each sample with SUPPA computational tool 204 (https://github.com/compra/SUPPA_Feb 17th, 2018) [19]. The command suppa.pv generateEvents was used to generate DAS events from each input GTF annotation file. The types 205 206 of DAS events were categorized into seven groups, including skipping exon (SE), alternative 3' 207 and 5' splices sites (A3SS/A5SS), intron retention (IR), and mutually exclusive exons (MX), alternative first exon (AF) and alternative last exon (AL). The output .ioe file and a transcript 208 209 expression file with the transcript abundances (TPM) obtained from RNA-seq analysis were read 210 for SUPPA to calculate the relative abundance (PSI) value per sample for each local DAS event

- 211 using the command *suppa.py psiPerEvent*. The PSI is defined as the ratio of a density of inclusion
- reads to the sum of densities of inclusion, and exclusion reads [19, 31].
- 213

214 2.8. Functional Enrichment analysis

For the enrichment analyses, the DAS genes were first analyzed at the basal level for each study model. Then the DAS gene sets were separated into an exclusive control group (0 days) and exclusive due to infection with *P. salmonis* for SHK-1 cells and salmon HK (7 and 14 dpi). The Gene Ontology (GO) enrichment was performed in RStudio using the R package 'clusterProfiler' under the criteria Biological Processes (BP), Molecular Functions (MF), and Cellular Component (CC) hierarchies. The ShinyGO 0.77 [32] was used for ortholog assignment and pathway mapping using the Atlantic salmon genome as a reference.

222

223 3. Results

3.1. Global transcriptome profiling of SHK-1 cells line and salmon HK during *P. salmonis* infection

226 The global transcriptome profiling of SHK-1 cells line and salmon HK during *P. salmonis* infection 227 evidenced differential transcription patterns according to infection times for the two study models 228 (Fig. 1A, E). The hierarchical clustering for SHK-1 cells showed a high number of exclusively up-229 regulated transcripts for each infection time, evidencing three main clusters of transcriptional 230 expression. Interestingly, cluster 1 corresponding to SHK-1 at 7dpi encompassed a greater number 231 of up-regulated transcripts than clusters 2 and 3 were associated with the control group and 14 dpi, 232 respectively (Table 1S). To explore the differentially expressed genes (DEGs), the infection times 233 7 and 14 dpi were compared against the control group. At 14 dpi, a higher number of DEGs (4,359) 234 was obtained, while at 7 dpi 3,874 DEGs were observed (Fig. 1C). The top 20 of the most up-

10

235 regulated and down-regulated genes for each infection time (7, 14 dpi) are listed (Fig. 1B, D). At 236 7 dpi, among the genes with the highest levels of expression are Leucine-rich repeat and 237 immunoglobulin-like domain-containing nogo receptor-interacting protein 3, Apolipoprotein H, 238 and Cyclin-dependent kinase 5 activator. Meanwhile, among the most downregulated stand out 239 Actin, alpha cardiac muscle 1-like, and La ribonucleoprotein domain family member 7. In contrast, 240 at 14 dpi, the most up-regulated genes were Transposase, Sulfotransferase, and Cyclooxygenase-241 2; meanwhile Chondroitin sulfate proteoglycan 5-like isoform X2, BCL-6 corepressor-like protein 242 1 isoform X2 and Interferon-induced very large GTPase 1-like genes were down-regulated. In 243 salmon HK, the transcriptome profile showed four primary clusters with high expression levels. 244 Cluster 1 down modulated at 7 and 14 dpi. Cluster 2 contains overexpressed genes at 14 dpi, while 245 clusters 3 and 4 include genes up-regulated at 7 dpi (Table S2). Notably, the numbers of DEGs 246 were lower than in SHK-1 cells, observing 1,853 DEGs, and 2,914 DEGs at 7 and 14 dpi, 247 respectively (Fig. 1G). The top 20 up- and down-regulated genes for each infection time (7, 14 dpi) 248 are listed (Fig. 1F, H). The most up-regulated genes at 7 dpi were N-acetylated-alpha-linked acidic 249 dipeptidase-like protein, transcription factor 20-like, and MAGUP p55 subfamily member 2-like. 250 On the other hand, Collagen alpha-1 (XVIII) chain-like isoform X1, disabled homolog 1-like 251 isoform X1 and SCO-spondin were downregulated. For the 14 dpi, the most expressed genes were 252 Cyclin-dependent kinase 2-associated protein 1 isoform X1, Microfibril-associated glycoprotein 4, 253 and Hepcidin-1; meanwhile, Liver-expressed antimicrobial peptide 2, Actin, alpha skeletal muscle 254 2-like and Transducin beta-like protein 3 were down-regulated.

255

3.2. Alternative splicing profiles in SHK-1 cells and salmon HK during *P. salmonis* infection The transcript discovery analysis allowed us to identify differently expressed alternative splicing (DAS) events and genes in SHK-1 cells and salmon HK during *P. salmonis* infection using the

11
259 pipeline described (Fig.2A). After the statistical evaluation by overlapping AS events with DEG, 260 and SUPPA analysis, 16,630 DAS events were identified in SHK-1 (control group), where 4,317 261 correspond to DAS genes. Seven days after P. salmonis infection in SHK-1 cells, 16,830 DAS 262 events were found from 4,050 DAS genes and 16,605 DAS events from 3,479 DAS genes at 14 263 dpi. In HK-T0, 13,756 DAS events were found from 5,211 DAS genes; meanwhile, 13,820 DAS 264 events from 5,216 DAS genes and 13,499 DAS events from 4,666 DAS genes were observed at 7 265 and 14 dpi in salmon HK, respectively (Fig. 2B). In SHK-1 cells, the ratio of AS events per spliced 266 gene was similar at the three infection times evaluated, approximately 3,2 AS events per gene; 267 meanwhile, for DAS genes the ratio increased with the time of infection, reaching 4,77 DAS events 268 per gene at 14 dpi. Concerning HK tissue, an increase was observed at 14 days after P. salmonis 269 infection, obtaining a ratio of 2,05 AS events per gene over the approximate 1,8 at 0 and 7 dpi. In 270 contrast, the ratio remained relatively constant for DAS genes in HK, with approximately 2,65 271 DAS events per gene at 0 and 7 dpi and a slight increase at 14 dpi of 2,89 DAS events per gene 272 (Fig. 2C).

273 The distribution of DAS events along the Atlantic salmon genome was plotted in Circos plots 274 (Fig. 3A, C). In SHK-1 cells, increased spliced counts of DAS events are visualized 14 days after 275 P. salmonis infection. Regarding expression levels (TPM values), spliced counts hot spots of DAS 276 events were observed along the genome, while other areas of high expression have a low number 277 of spliced counts (Fig. 3A, C). A group of chromosomes including chr1, chr2, chr5, chr6, chr7, 278 chr9, chr13, chr14, chr15, chr20, chr21, chr24 showed areas of high CGE index values, evidencing 279 high transcriptional variability between infection times based on spliced counts of DAS events (Fig 280 3A). Nevertheless, a correlation between transcription expression and DAS events reads was 281 observed when a linear regression model was applied, with higher expression levels at 14 days 282 post-infection. However, the highest correlation (R²) was exhibited by SHK-1 (control group) (Fig

3B). In HK samples, the spliced count of DAS events was less represented than in SHK-1 cells along the 29 chromosomes of the Atlantic salmon genome (Fig 3C). The CGE track showed a lower representation of chromosomes with high CGE index values than SHK-1 cells, including chr1, chr9, chr11, and chr19 (Fig. 3C). However, the same pattern as SHK-1 cells were observed in the linear regression model, which showed a higher correlation value in HK tissue (control group) (Fig. 3D). Moreover, this correlation pattern showed a decrease in both expression levels and spliced counts of DAS events at 7 dpi and then an increase at 14 dpi (Fig. 3B, D).

290

291 3.3. Classification of AS types in SHK-1 cells and HK tissue

292 To identify AS types in SHK-1 cells and HK tissue exposed to P. salmonis infection, the DAS 293 genes of each study model at the three infection times were subjected to the SUPPA computational 294 tool, which assigns an AS category to the DAS events discovered. Analyzing the SUPPA results, 295 a difference in the total DAS events and DAS genes between the two study models was evinced, 296 showing that SHK-1 cells had more DAS events for each AS type than HK samples (Fig 4A, C). 297 The distribution of AS types was similar in both study models. Alternative first exon (AF) was the 298 most abundant AS type in the three infection times analyzed, representing approximately 31% in 299 SHK-1 cells and 28,6% in HK tissue. Followed by skipping exon (SE) with 24,9% and 25,3%; alternative 3' splice site (A3SS) with 19,2% and 19,6%; alternative 5' splice site (A5SS) with 14,3% 300 301 and 15,5%; retention intron (RI) with 5,4% and 6,23%; alternative last exon (AL) with 2,8% and 302 3,1%; and mutually exclusive exon (MX) with 2,26% and 2,3%; in SHK-1 cells and HK tissue, 303 respectively (Fig. 4A, C).

Upset plots were elaborated with the intersecting sets of each AS type for all DAS genes in SHK-1 cells (Fig 4B) and HK tissue (Fig 4D). As a result, it was observed that most of the DAS genes generated only one type of AS. In SHK-1 cells, 54,1% (3,463) belonged to individual AS

307 type, including 916 A3SS events, 769 AF events, 706 SE events, 600 A5SS events, 335 RI events, 308 115 AL events, and 22 MX events. The rest of the DAS genes were distributed among different 309 combinations of AS categories. 1,734 and 768 DAS genes presented two and three AS types, 310 respectively, while 434 DAS genes presented more complex combinations between four to six AS 311 types (Fig 4B). In HK tissue, 55,4% (2,966) correspond to individual AS types, including 750 312 A3SS events, 644 AF events, 614 SE events, 514 A5SS events, 312 RI events, 110 AL events, and 313 22 MX events. The rest of the DAS genes were distributed among different AS types, 1,445 and 314 657 generated two and three combinations, respectively, while 282 genes showed combinations 315 between four to six different AS categories (Fig. 4D).

316 The computed PSI values for DAS events were averaged to visualize their behavior during the 317 P. salmonis infection times in each study model (Fig. 4E). For SHK-1 cells, higher PSI values than 318 in HK samples were observed at the three infection times. Also, each study model showed different 319 behavior. In SHK-1 cells, a decrease in PSI average was observed during P. salmonis infection, 320 starting with 54,3 % for SHK-1 (control group) and 52,49% and 52,5% for 7 and 14 dpi, 321 respectively. Meanwhile, a gradual increase in PSI average was shown in HK tissue during P. 322 salmonis infection, starting at 48,8% for HK (control group) and 49,4% and 49,75% for 7 and 14 323 dpi, respectively (Fig. 4E).

324

325 3.4. Functional enrichment analysis at the basal level of SHK-1 cells and HK tissue

Venn diagram of DAS events in SHK-1 (control group) and HK tissue (control group) showed 3,612 exclusive DAS events for SHK-1 (control group), 4,506 exclusive DAS events for HK samples (control group), and 705 shared DAS events (Fig. 5A). The GO terms at the basal level for both study-model, considering the Biological Process (BP), Molecular Function (MF), and Cellular Component (CC) terms, were evaluated for the exclusive and shared DAS events.

331 Regarding BP, both study models shared certain processes related to cellular metabolisms, such as 332 the cellular catabolic, cellular carbohydrate, and cellular nitrogen compound metabolic processes. 333 The DAS events exclusive to SHK-1 (control group) showed significant enrichment of localization, 334 protein metabolism, and protein transport processes. In contrast, for the exclusive DAS events of 335 HK tissue, several processes associated with immunity were enriched, such as response to external 336 stimulus, immune response, and immune system process (Fig. 5B). For both study models, it was 337 found that the most enriched MF were catalytic activity and ion binding. For the DAS events of 338 salmon HK, it is worth noting that several MF related to the immune system were enriched, such 339 as immune receptor activity and cytokine receptor activity; meanwhile, for the DAS events of 340 SHK-1 cells, binding functions were enriched, including ATP binding, and anion binding others 341 (Fig. 5C). Regarding CC, high enrichment of DAS events was related to the cell membrane and its 342 components was observed. The spliceosomal complex, TOR complex, and calcium channel 343 complex were highly enriched for both study models. The most enriched CC in salmon HK was 344 mostly associated with the membrane, its intrinsic components, and the cell periphery. In contrast, 345 in SHK-1 cells, a significant enrichment associated with cellular organelles, endosomes, 346 cytoplasm, and vesicles, including clathrin-coated vesicles, was observed (Fig. 5D).

The KEGG enrichment of the DAS genes for each study model at the basal level showed a differentiation between the number of genes associated with the most significant pathways. HK tissue has the biggest representation of DAS genes-enriched pathways (Fig. 6A, B). Both study models shared most of the enriched pathways, including MAPK signaling pathways, Endocytosis, Purine metabolism, and Apoptosis, among others. In the same way, it should be noted that in HK tissue, enrichment of a greater number of routes associated with the immune response was observed, such as Cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway,

and Melanogenesis (Fig. 6B). Meanwhile, in SHK-1 cells, other exclusively enriched pathways
were highlighted, such as the Insulin signaling pathway and MTOR signaling pathway (Fig. 6A).

357 3.5. Functional enrichment analysis after P. salmonis infection in SHK-1 cells and HK tissue 358 In SHK-1 cells, 1,032, 783, and 484 DAS genes were exclusively presented at 0, 7, and 14 dpi, 359 respectively (Fig. 7A). In HK tissue, 1,184, 1,132 and 836 DAS genes were exclusive at 0, 7 and 360 14 dpi (Fig. 7B). The SHK-1 cells and salmon HK DAS genes with the highest spliced counts were 361 listed for each study model (Fig. 7C, D). The SHK-1 cells annotated DAS genes showed that 362 overall spliced counts decreased at 7 dpi and then increased at 14 dpi (Fig. 7C). Among DAS genes 363 annotated at 7 dpi was Clusterin, Cathelicidin antimicrobial peptide, Cathepsin 1-like. Meanwhile, 364 at 14 dpi, Fibroblast growth factor receptor 3-like was annotated as the DAS gene with the highest 365 value of spliced counts. Similarly, Mannanase and Interferon promoter stimulating protein 1 366 increased their spliced counts at 14 dpi. In HK tissue, DAS genes increased their spliced counts across infection times. For example, Leukocyte cell-derived Chemotaxin 2, Neutrophil cytosol 367 factor 4-like annotated at 0 and 7 dpi. Otherwise, at 14 dpi in HK tissue, DAS genes such as 368 369 Collagenase 3, Hemoglobin subunit beta, and Cytochrome C, among others, were observed (Fig. 370 7D).

GO enrichment analyses for both study models based on BP, MF, and CC were performed for DAS genes exclusive for the control groups and due to *P. salmonis* infection (pooling DAS genes exclusive at 7 dpi and 14 dpi and those shared between them). In SHK-1 cells, several BPs related to the biosynthesis and metabolism of a purine nucleoside, purine ribonucleotide, ribose phosphate, and ribonucleotide were significantly enriched due to *P. salmonis* infection (Fig. 8A). Similarly, the most exclusive enriched MFs found in DAS genes due to *P. salmonis* infection include cation binding, ferritin receptor activity, hydrolase activity, kinase activity, and peptidase activity, among

others (Fig. 8B). On the other hand, a different enrichment of CC terms was observed between the two groups analyzed. In the DAS group, genes due to *P. salmonis* infection were significantly enriched in intrinsic membrane components, a protein complex involved in cell adhesion, and plasma membrane (Fig.8C).

382 The BPs due to P. salmonis infection were differentially enriched in HK tissue. Herein, 383 processes related to immune response were highly enriched, including response to stimulus, CD4-384 positive, alpha-beta T cell activation, and adaptive immune response based on somatic 385 recombination of immune receptors, among others. (Fig. 9A). In MF, a high enrichment was 386 observed in the group of DAS genes associated with P. salmonis infection, highlighting transporter 387 activity, calcium ion binding and signaling receptor binding, cytokine activity, and interleukin-6 388 receptor binding, among others (Fig. 9B). Regarding CC, integral and intrinsic components of the membrane and extracellular region were enriched in both groups of DAS genes evaluated. In the 389 390 group of DAS genes due to P. salmonis infection, CC terms associated with ATPase transporters, 391 such as sodium: potassium-exchanging ATPase complex, cation-transporting ATPase complex, 392 and ATPase-dependent transmembrane transport complex were evidenced (Fig. 9C).

393

394 4. Discussion

Fish are frequently exposed to several stressors, including pathogenic infections. They respond rapidly and effectively to recurrent and unexpected environmental changes, such as regulating gene expression at the transcriptional or post-transcriptional level [28]. Alternative splicing plays a pivotal role as a key post-transcriptional regulatory mechanism [33] and innate immunity of hostpathogen interactions [34]. In teleost fish genomes, about 16-43% of genes have alternative gene isoforms, representing a substantial percentage of the functional proteome [35]. However, studies of alternative splicing in fish during pathogen infections have been scarcely conducted. The

402

403

reported research highlighted the role of alternative splicing in fish immunology, suggesting novel molecular mechanisms displayed by HK and SHK-1 cells during the P. salmonis infection.

404 RNA-Seq has rapidly progressed and is currently used to identify pivotal functional genes, 405 predict novel transcripts, and explore AS [36, 37]. The current study explores RNA-seq data sets 406 from SHK-1 cells and HK tissue during P. salmonis infection to identify AS through a 407 bioinformatic pipeline designed to detect splicing variants and their transcriptional expression 408 level. The two study models observed differences in the proportion of AS events per spliced gene. 409 In SHK-1 cells, the ratio of DAS events per gene was approximately 4.26 for all three infection 410 times. In contrast, the ratio remained relatively constant in head kidney tissue at approximately 411 2.71 DAS events per gene (Fig. 2C). The differences in the ratios of DAS events per gene in each 412 study model were also reflected in the distribution of DAS events along the Atlantic salmon genome (Fig. 3A, C). Here we used the CGE index [38] to explain the coverage differences among 413 414 three infection times along the Salmo salar genome based on the number of spliced counts for DAS 415 events in specific genomic regions. DAS events from SHK-1 cells were highly represented through 416 the Atlantic salmon genome than in HK tissue, reflected in the CGE index, obtaining spliced count 417 hot spots in a higher number of chromosomes in SHK-1 cells. Similarly, in channel catfish during 418 infection with the bacteria Edwardsiella ictaluri, the prevalence of DAS events throughout the 419 genome was reported [28], where it was observed that the number of AS genes and AS events 420 increased sharply during the first days after infection. These authors suggested that the acute 421 changes in AS regulation could be related to the immune response against E. ictaluri [28]. In our 422 study, the spliced counts of DAS events showed different correlation patterns with the transcript 423 activity at each *P. salmonis* infection time, showing a DAS increase at 14 dpi in both study models. 424 This pattern can be associated with the reported fish mortality after a P. salmonis infection at two 425 weeks of experimental infection [8, 39].

426 The analysis of the DAS genes performed with SUPPA [19] revealed that the AS categories 427 were similarly distributed in both study models, with the alternative first exon (AF) being the most 428 abundant, representing 31% in SHK-1 cells and 28.6% in HK tissue. While MXE was the least 429 represented AS type, with 2.26% and 2.3%; in SHK-1 cells and HK tissue, respectively. In AS 430 identification studies, skipping exon (SE) has been reported as the most abundant AS type in 431 humans, chickens, mice, and channel catfish [28, 40, 41] (Fig. 4A, C). Recently, in Atlantic salmon 432 infested with the sea louse Caligus rogercresseyi, SE splicing was also reported as the most 433 represented AS type and MXE as the least abundant [42]. Nevertheless, it should be noted that 434 these studies have been carried out with different bioinformatic tools for the identification of AS. 435 At the same time, SUPPA can identify AF and AL, in addition to the five main AS types [19], and 436 also perhaps the AS types are different in the host as a response to different types of pathogens. In mammals, AF events can influence protein diversity at different levels, producing variants of the 437 438 5' Untranslated Regions (5'UTRs) and N-terminal coding sequences [43]. Recently, it was possible 439 to identify a conserved regulation mechanism in humans and murine macrophages through 440 variations in AF usage after inflammation, which resulted in alterations in the isoforms generated. 441 The authors found that the unannotated AF isoform of Aim2 is the prevailing isoform during the 442 inflammation process, which presents an iron-sensitive element in its 5'UTR, ensuring that iron 443 levels regulate the mRNA translation [44].

Previous research has shown that AS process could influence host gene expression patterns caused by intracellular pathogens infections, for example, *Mycobacterium tuberculosis* [45], *Listeria monocytogenes* [46], *Salmonella typhimurium* [46, 47]. Similarly, in fish, it has been reported that channel catfish (*Ictalurus punctatus*) increased AS levels in response to *E. ictaluri* infection [28]. In this study, the functionality of the DAS genes that were exclusive during *P. salmonis* infection in both study models was evaluated. In SHK-1 cells infected with *P. salmonis*,

450 exclusives BPs associated with the metabolism and biosynthesis of purine nucleotide and 451 ribonucleotide were highlighted. Nucleotide biosynthesis is essential for the survival of bacteria, 452 which are capable of synthesizing and/or acquiring nutrients from the environment or host; and 453 involving them in multiple cellular functions [48]. In this regard, an intriguing question is how 454 pathogens manipulate the host's metabolism to their benefit during their infection process. 455 Previously, in a study of Atlantic salmon infected by P. salmonis, was observed high modulation 456 of genes associated with protein metabolism and especially the biosynthesis/degradation of amino 457 acids [30]. As a result of a background genomic assay used to predict essential and non-essential 458 amino acids, the authors found a deficit of biosynthetic genes associated with valine, leucine, and 459 isoleucine metabolism for P. salmonis. Therefore, it is suggested that P salmonis would benefit 460 from the host's nutrients to survive [30]. In this sense, the cells could use gene alternative splicing 461 as a molecular strategy to enrich the production of the metabolites necessary for the organism and 462 supplement the deficit caused by the infection.

463 The DAS genes of head kidney tissue were enriched to BP related to immune response, response 464 to stimulus, and adaptive immune response. This finding supports that the head kidney is a key 465 hematopoietic organ for teleost fish, where leukocytes and phagocytic macrophages are produced 466 and mature [49]. Therefore, against an infection, post-transcriptional mechanisms are likely to be 467 accentuated to the benefit of an immune response, for example, AS. At the same time, the most 468 enrichment MF in salmon head kidney was related to signaling, transporter activity, cytokine 469 activity, and other functions related to immune response. Several studies have shown that AS can 470 increase the complexity of immune regulation. For example, in human dendritic cells, alternately 471 spliced genes were associated with the cells' development, endocytosis processes, and antigen 472 presentation during Escherichia coli challenge [50, 51]. Moreover, in host cells, IFN production 473 and signaling and the IFN-stimulated gene (ISG) network have been described as an innate

474 response to microbial infection. Studies have indicated that the localization and activity of ISG 475 proteins in the host can be affected by AS, giving them a privileged role in controlling the innate 476 immunity [52]. Our work showed that in both study models exposed to P. salmonis infection, some 477 genes stimulated by IFN were highly spliced, which could be crucial for a salmon response during 478 P. salmonis infection. In the head kidney of Atlantic salmon infected with two strains of P. 479 salmonis (LF-89 and EM-90), an up-regulation of proinflammatory genes ($TNF\alpha$, IL-1b, IL-8) and 480 some mediators of the immune response, among them, IFNy, IL-10, IL-12b, IL-15 was observed 481 [53]. The activation of an IFN-mediated response promotes the differentiation of CD4+ T cells into 482 the Th1 phenotype and thus modulates the immune response to intracellular pathogens [54, 55]. 483 Transcriptional activity of multiple genes has been evaluated as a measure of immune response in 484 several tissues of Atlantic salmon (liver, head kidney, and muscle) exposed to a P. salmonis 485 infection [56]. In the head kidney, an upregulation of $IFN\gamma$ was observed, potentiating the 486 activation of macrophages and the antiviral response. On the other hand, a decrease in the 487 expression of the antimicrobial peptide Cathelicidin-1 was observed in the salmon muscle tissue 488 [56]. In our study, the antimicrobial peptide *Cathelicidin* presented high spliced counts in both 489 study models against infection with P. salmonis. In this sense, AS would influence the regulation 490 of antimicrobial peptides, seeking alternative isoforms to cope with bacterial infection. Recently a 491 study evaluated the impact of the iron chelator deferoxamine mesylate (DFO) as a preventive 492 measure during *P. salmonis* infection in SHK-1 cells [57]. The results of the study supported the 493 observation that DFO provides partial protection against infection, observing a significant 494 reduction of cytopathic effects in the infected groups that were treated with the chelator; and also 495 found that the immune effectors (Cathelicidin-1, Hepcidin, and Inducible nitric oxide synthase 496 iNOS) increased significantly at 7 dpi as a strong antimicrobial response [57]. In rainbow trout,

497 Cathelicidins and their derived peptides have been shown to play an important role in the fish's 498 innate immune response to infection with Aeromonas salmonicida, observing an upregulation of 499 *Cath1* mRNA in different tissues, including gills, spleen, and head kidney [58, 59]. Furthermore, 500 two cell lines, CHSE-214 of Chinook salmon (Oncorhynchus tshawytscha) embryo and the ACL 501 cells line of Atlantic cod (Gadus morhua) larvae, were used to assess Cathelicidin expression 502 against microbial stimuli [60]. These authors suggested that the stimulation of Cathelicidin 503 expression could be related to pattern recognition receptors such as TLR5. Also, they deduced that 504 the signaling pathway leading to *Cathelicidin* upregulation could be a signaling cascade that can 505 include PI3-kinase and cellular trafficking compartment [60]. Therefore, we could support that 506 transcriptional processes, such as alternative splicing mechanisms, would play a fundamental role 507 in regulating the innate immune response of host-pathogen interactions [34].

508 Moreover, beyond the impact of AS on immune system regulation and the developmental 509 process in Metazoa, the proteome dynamics driven by AS can also modulate the functionality of 510 cellular components [61]. The DAS genes associated with P. salmonis infection in both study 511 models enriched cell components mainly associated with the membrane and its intrinsic 512 components. Previously, the disruption of the cellular monolayer in SHK-1 cells during P. salmonis 513 infection has been reported as a relevant cytopathic effect [10, 57]. The intracellular pathogens are 514 recognized to modify the cytoplasmatic components, such as organelles, trafficking vesicles, and 515 the cytoskeleton, to create a favorable environment for their reproduction [62]. One specific target 516 pathogen often exploited to disrupt infected cell metabolism is the dynamic actin cytoskeleton, 517 which is crucial for cellular and tissue organization [7, 63]. In this sense, multiple cytoplasmic 518 vacuoles and actin cytoskeleton alterations have been other phenotypic effects reported in cell 519 cultures infected with P. salmonis [10]. Therefore, the regulation of the cytoskeleton plays a 520 fundamental role during P. salmonis infection has proposed the interaction with endogenous Actin

and *Clathrin* as a crucial step in the internalization of the bacterium [7]. In this context, including new isoforms enhances the functional adaptability and the host's physical cellular capacity to combat an infection effectively. Also, studies have shown the influence of AS on tissue-specific genes that encode proteins involved in endocytosis, membrane deformation, and endosome formation [64, 65]. It modifies the interaction networks of proteins at the cell and tissue level, making the evolutionary process of organisms more complex [66] and, therefore, their response to biotic and abiotic stressors.

528

529 5. Conclusions

530 This study explores the alternative splicing profiles of SHK-1 cells and Head-kidney tissue in S. 531 salar exposed to the intracellular bacterium P. salmonis. The DAS events of both study models 532 showed a similar distribution throughout the Atlantic salmon genome. However, the proportion of 533 DAS events per gene and their transcription expression was higher in SHK-1 cells compared with 534 HK tissue. This finding was also evidenced in significant transcriptome variations, evaluated by 535 the CGE index, during the infection process of SHK-1 cells. Furthermore, the DAS genes 536 associated with the infection in SHK-1 cells showed a higher enrichment in BP related to 537 metabolism and biosynthesis of nucleotides, suggesting that P. salmonis can use cellular 538 micronutrients for bacterial proliferation and survival. Therefore, cells would increase their 539 production capacity to supplement the nucleotide deficit, where alternative splicing processes 540 would play a key role. In the salmon head kidney, functional processes related to the immune 541 system were highlighted, indicating the functional significance of alternative splicing in regulating 542 complex processes against bacterial infection. Future studies will be conducted to uncover how the 543 spliceosome in Atlantic salmon is potentially modulated by disease treatments such as vaccination 544 and antibiotics.

545 Funding: This research was funded by CONICYT-Chile through the grants FONDAP-ANID

546 (#1522A0004) and FONDECYT (#1210852) and the ANID-Grant/National Doctorate

547 (#21191482).

548

549	References

- P. Ibieta Hillerns, V. Tapia, C. Venegas, M. Hausdorf, H. Takle, Chilean Salmon Farming on
 the Horizon of Sustainability: Review of the Development of a Highly Intensive Production, the
 ISA Crisis and Implemented Actions to Reconstruct a More Sustainable Aquaculture Industry,
 2011.
- [2] M. Rozas, R. Enriquez, Piscirickettsiosis and Piscirickettsia salmonis in fish: a review, J Fish
 Dis 37(3) (2014) 163-88.
- [3] A.a.C.H.a.S.A.M. Gaggero, First isolation of Piscirickettsia salmonis from coho salmon,
 Oncorhynchus kisutch (Walbaum), and rainbow trout, Oncorhynchus mykiss (Walbaum),
 during the freshwater stage of their life cycle, Journal of Fish Diseases 18(3) (1995) 277-280.
- [4] Sernapesca, Informe sanitario con información sanitaria de agua dulce y mar 1º semestre año
 2022., Departamento de Salud Animal. Subdirección de Acuicultura. Gobierno de Chile., 2022.
- [5] J.L.a.H.R.P. Fryer, Piscirickettsia salmonis: a Gram-negative intracellular bacterial pathogen of fish, Journal of Fish Diseases 26(5) (2003) 251-262.
- [6] J.a.C.J.a.Y.A.a.O.V.a.R.P.a.M.R.a.M.C.a.R.A.a.A.-H.R. Figueroa, Addressing viral and
 bacterial threats to salmon farming in Chile: historical contexts and perspectives for
 management and control, Reviews in Aquaculture 0(0) (2019).
- [7] R. Ramírez, F.A. Gómez, S.H. Marshall, The infection process of Piscirickettsia salmonis in
 fish macrophages is dependent upon interaction with host-cell clathrin and actin, FEMS
 Microbiology Letters 362(1) (2015) 1-8.
- [8] D. Valenzuela-Miranda, C. Gallardo-Escárate, Novel insights into the response of Atlantic
 salmon (Salmo salar) to Piscirickettsia salmonis: Interplay of coding genes and lncRNAs during
 bacterial infection, Fish & shellfish immunology 59 (2016) 427-438.
- 572 [9] A. Zúñiga, P. Aravena, R. Pulgar, D. Travisany, J. Ortiz-Severín, F.P. Chávez, A. Maass, M.
 573 González, V. Cambiazo, Transcriptomic Changes of Piscirickettsia salmonis During
 574 Intracellular Growth in a Salmon Macrophage-Like Cell Line, Front Cell Infect Microbiol 9
 575 (2019) 426.
- 576 [10] J. Ortiz-Severín, D. Travisany, A. Maass, V. Cambiazo, F.P. Chávez, Global Proteomic
 577 Profiling of Piscirickettsia salmonis and Salmon Macrophage-Like Cells during Intracellular
 578 Infection, Microorganisms 8(12) (2020).
- 579 [11] J.W. Park, C. Tokheim, S. Shen, Y. Xing, Identifying differential alternative splicing events
 580 from RNA sequencing data using RNASeq-MATS, Methods Mol Biol 1038 (2013) 171-9.
- 581 [12] M. Lyu, H. Lai, Y. Wang, Y. Zhou, Y. Chen, D. Wu, J. Chen, B. Ying, Roles of alternative
- splicing in infectious diseases: from hosts, pathogens to their interactions, Chin Med J (Engl)
 136(7) (2023) 767-779.
- 584 [13] F.E. Baralle, J. Giudice, Alternative splicing as a regulator of development and tissue identity,
 585 Nat Rev Mol Cell Biol 18(7) (2017) 437-451.

- [14] M.C. Wahl, C.L. Will, R. Lührmann, The spliceosome: design principles of a dynamic RNP
 machine, cell 136(4) (2009) 701-718.
- [15] C. Ben-Dov, B. Hartmann, J. Lundgren, J. Valcárcel, Genome-wide Analysis of Alternative
 Pre-mRNA Splicing*, Journal of Biological Chemistry 283(3) (2008) 1229-1233.
- 590 [16] B. Gao, M. Chen, M.J. Oliver, Alternative Splicing: From Abiotic Stress Tolerance to
 591 Evolutionary Genomics, Int J Mol Sci 24(7) (2023) 6708.
- [17] A.K. Ramani, J.A. Calarco, Q. Pan, S. Mavandadi, Y. Wang, A.C. Nelson, L.J. Lee, Q. Morris,
 B.J. Blencowe, M. Zhen, Genome-wide analysis of alternative splicing in Caenorhabditis
 elegans, Genome research 21(2) (2011) 342-348.
- 595 [18] B.R. Graveley, Alternative splicing: increasing diversity in the proteomic world, Trends in596 Genetics 17(2) (2001) 100-107.
- 597 [19] G.P. Alamancos, A. Pagès, J.L. Trincado, N. Bellora, E. Eyras, SUPPA: a super-fast pipeline
 598 for alternative splicing analysis from RNA-Seq, bioRxiv (2014) 008763.
- 599 [20] O. Kelemen, P. Convertini, Z. Zhang, Y. Wen, M. Shen, M. Falaleeva, S. Stamm, Function of alternative splicing, Gene 514(1) (2013) 1-30.
- [21] K. Chauhan, H. Kalam, R. Dutt, D. Kumar, RNA Splicing: A New Paradigm in Host–Pathogen Interactions, Journal of Molecular Biology 431(8) (2019) 1565-1575.
- [22] F.A. De Maio, G. Risso, N.G. Iglesias, P. Shah, B. Pozzi, L.G. Gebhard, P. Mammi, E.
 Mancini, M.J. Yanovsky, R. Andino, N. Krogan, A. Srebrow, A.V. Gamarnik, The Dengue
 Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing, PLOS
 Pathogens 12(8) (2016) e1005841.
- [23] B. Hu, Y. Huo, L. Yang, G. Chen, M. Luo, J. Yang, J. Zhou, ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells, Virology Journal 14(1) (2017).
- 610 [24] A.K. Banerjee, M.R. Blanco, E.A. Bruce, D.D. Honson, L.M. Chen, A. Chow, P. Bhat, N.
 611 Ollikainen, S.A. Quinodoz, C. Loney, J. Thai, Z.D. Miller, A.E. Lin, M.M. Schmidt, D.G.
 612 Stewart, D. Goldfarb, G. De Lorenzo, S.J. Rihn, R.M. Voorhees, J.W. Botten, D. Majumdar, M.
 613 Guttman, SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress
 614 Uset Defenses, CoV-2 (2020) 1225 1220 (21)
- 614 Host Defenses, Cell 183(5) (2020) 1325-1339.e21.
- [25] H. Li, J. Huang, J. Zhang, Y. Gao, B. Han, D. Sun, Identification of alternative splicing events
 associated with paratuberculosis in dairy cattle using Multi-Tissue RNA sequencing data, Genes
 13(3) (2022) 497.
- [26] X.G. Wang, Z.H. Ju, M.H. Hou, Q. Jiang, C.H. Yang, Y. Zhang, Y. Sun, R.L. Li, C.F. Wang,
 J.F. Zhong, J.M. Huang, Deciphering Transcriptome and Complex Alternative Splicing
 Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus
 aureus Mastitis, PLOS ONE 11(7) (2016) e0159719.
- [27] K.I. Iwami, T. Matsuguchi, A. Masuda, T. Kikuchi, T. Musikacharoen, Y. Yoshikai, Cutting
 edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide
 signaling, J Immunol 165(12) (2000) 6682-6.
- [28] S. Tan, W. Wang, X. Zhong, C. Tian, D. Niu, L. Bao, T. Zhou, Y. Jin, Y. Yang, Z. Yuan, D.
 Gao, R. Dunham, Z. Liu, Increased Alternative Splicing as a Host Response to Edwardsiella
 ictaluri Infection in Catfish, Marine Biotechnology 20(6) (2018) 729-738.
- 628 [29] D. Valenzuela-Miranda, V. Valenzuela-Muñoz, G. Nuñez-Acuña, C. Gallardo-Escárate,
- Long-term serial culture of Piscirickettsia salmonis leads to a genomic and transcriptomic
 reorganization affecting bacterial virulence, Aquaculture 529 (2020) 735634.

- [30] D. Valenzuela-Miranda, C. Gallardo-Escárate, Dual RNA-Seq Uncovers Metabolic Amino
 Acids Dependency of the Intracellular Bacterium Piscirickettsia salmonis Infecting Atlantic
 Salmon, Front Microbiol 9 (2018) 2877-2877.
- [31] E.T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S.F. Kingsmore, G.P.
 Schroth, C.B. Burge, Alternative isoform regulation in human tissue transcriptomes, Nature
- 636 456(7221) (2008) 470-476.
- [32] S.X. Ge, D. Jung, R. Yao, ShinyGO: a graphical gene-set enrichment tool for animals and
 plants, Bioinformatics 36(8) (2019) 2628-2629.
- [33] T. Maniatis, B. Tasic, Alternative pre-mRNA splicing and proteome expansion in metazoans,
 Nature 418(6894) (2002) 236-243.
- [34] A. Schaub, E. Glasmacher, Splicing in immune cells—mechanistic insights and emerging
 topics, International Immunology 29(4) (2017) 173-181.
- [35] J. Lu, E. Peatman, W. Wang, Q. Yang, J. Abernathy, S. Wang, H. Kucuktas, Z. Liu, Alternative
 splicing in teleost fish genomes: same-species and cross-species analysis and comparisons,
 Molecular Genetics and Genomics 283(6) (2010) 531-539.
- [36] D. Lan, X. Xiong, Y. Wei, T. Xu, J. Zhong, X. Zhi, Y. Wang, J. Li, RNA-Seq analysis of yak
 ovary: improving yak gene structure information and mining reproduction-related genes, Sci
 China Life Sci 57(9) (2014) 925-35.
- [37] J. Sun, Z. Liu, J. Quan, L. Li, G. Zhao, J. Lu, RNA-seq Analysis Reveals Alternative Splicing
 Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss), Marine Biotechnology 24(1)
 (2022) 5-17.
- [38] V. Valenzuela-Muñoz, C. Gallardo-Escárate, B.P. Benavente, D. Valenzuela-Miranda, G.
 Núñez-Acuña, H. Escobar-Sepulveda, J.A. Váldes, Whole-Genome Transcript Expression
 Profiling Reveals Novel Insights into Transposon Genes and Non-Coding RNAs during Atlantic
 Salmon Seawater Adaptation, Biology (Basel) 11(1) (2021).
- [39] V. Valenzuela-Muñoz, D. Valenzuela-Miranda, A.T. Gonçalves, B. Novoa, A. Figueras, C.
 Gallardo-Escárate, Induced- iron overdose modulate the immune response in Atlantic salmon increasing the susceptibility to Piscirickettsia salmonis infection, Aquaculture 521 (2020) 735058.
- [40] E. Chacko, S. Ranganathan, Comprehensive splicing graph analysis of alternative splicing
 patterns in chicken, compared to human and mouse, BMC Genomics 10(1) (2009) S5.
- [41] L. Patthy, Exon skipping-rich transcriptomes of animals reflect the significance of exon shuffling in metazoan proteome evolution, Biology Direct 14(1) (2019) 1-4.
- [42] S. Bravo, F. Leiva, J. Moya, O. Guzman, R. Vidal, Unveiling the Role of Dynamic Alternative
 Splicing Modulation After Infestation with Sea Lice (Caligus rogercresseyi) in Atlantic Salmon,
 Marine Biotechnology (2023).
- [43] J.-R. Landry, D.L. Mager, B.T. Wilhelm, Complex controls: the role of alternative promoters
 in mammalian genomes, TRENDS in Genetics 19(11) (2003) 640-648.
- [44] E.K. Robinson, P. Jagannatha, S. Covarrubias, M. Cattle, V. Smaliy, R. Safavi, B. Shapleigh,
 R. Abu-Shumays, M. Jain, S.M. Cloonan, M. Akeson, A.N. Brooks, S. Carpenter, Inflammation
 drives alternative first exon usage to regulate immune genes including a novel iron-regulated
 isoform of Aim2, Elife 10 (2021).
- [45] H. Kalam, M.F. Fontana, D. Kumar, Alternate splicing of transcripts shape macrophage
 response to Mycobacterium tuberculosis infection, PLoS Pathog 13(3) (2017) e1006236.
- [46] A.A. Pai, G. Baharian, A. Pagé Sabourin, J.F. Brinkworth, Y. Nédélec, J.W. Foley, J.-C.
 Grenier, K.J. Siddle, A. Dumaine, V. Yotova, Z.P. Johnson, R.E. Lanford, C.B. Burge, L.B.
- 677 Barreiro, Widespread Shortening of 3' Untranslated Regions and Increased Exon Inclusion Are

- 678 Evolutionarily Conserved Features of Innate Immune Responses to Infection, PLOS Genetics 679 12(9) (2016) e1006338.
- 680 [47] A.R. Wagner, H.M. Scott, K.O. West, K.J. Vail, T.C. Fitzsimons, A.K. Coleman, K.E. Carter, 681 R.O. Watson, K.L. Patrick, Global Transcriptomics Uncovers Distinct Contributions From
- 682 Splicing Regulatory Proteins to the Macrophage Innate Immune Response, Front Immunol 12 683 (2021) 656885.
- 684 [48] M.I. Goncheva, D. Chin, D.E. Heinrichs, Nucleotide biosynthesis: the base of bacterial 685 pathogenesis, Trends in Microbiology 30(8) (2022) 793-804.
- 686 [49] C. Soulliere, B. Dixon, Immune System Organs of Bony Fishes, Reference Module in Life 687 Sciences, Elsevier2017.
- 688 [50] R. Rodrigues, A.R. Grosso, L. Moita, Genome-Wide Analysis of Alternative Splicing during 689 Dendritic Cell Response to a Bacterial Challenge, PLOS ONE 8(4) (2013) e61975.
- 690 [51] Z. Su, D. Huang, Alternative Splicing of Pre-mRNA in the Control of Immune Activity, Genes 691 (Basel) 12(4) (2021).
- 692 [52] R. Savan, Alternative Splicing in Innate Antiviral Immunity, Journal of Interferon & Cytokine 693 Research 38(8) (2018) 317-318.
- 694 [53] M. Rozas-Serri, A. Peña, G. Arriagada, R. Enríquez, L. Maldonado, Comparison of gene expression in post-smolt Atlantic salmon challenged by LF-89-like and EM-90-like 695 696 Piscirickettsia salmonis isolates reveals differences in the immune response associated with 697 pathogenicity, Journal of Fish Diseases 41(3) (2018) 539-552.
- [54] S. Maruyama, K. Sumita, H. Shen, M. Kanoh, X. Xu, M. Sato, M. Matsumoto, H. Shinomiya, 698 699 Y. Asano, Identification of IFN regulatory factor-1 binding site in IL-12 p40 gene promoter, 700 The Journal of Immunology 170(2) (2003) 997-1001.
- [55] M. Rozas-Serri, A. Peña, L. Maldonado, Transcriptomic profiles of post-smolt Atlantic 701 salmon challenged with Piscirickettsia salmonis reveal a strategy to evade the adaptive immune 702 703 response and modify cell-autonomous immunity, Developmental & Comparative Immunology 704 81 (2018) 348-362.
- 705 [56] L. Tacchi, J.E. Bron, J.B. Taggart, C.J. Secombes, R. Bickerdike, M.A. Adler, H. Takle, 706 S.A.M. Martin, Multiple tissue transcriptomic responses to Piscirickettsia salmonis in Atlantic 707 salmon (Salmo salar), Physiological Genomics 43(21) (2011) 1241-1254.
- [57] R. Díaz, J. Troncoso, E. Jakob, S. Skugor, "Limiting access to iron decreases infection of 708 Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis", BMC Veterinary 709 710 Research 17(1) (2021) 155.
- 711 [58] C.-I. Chang, Y.-A. Zhang, J. Zou, P. Nie, C.J. Secombes, Two Cathelicidin Genes Are Present in both Rainbow Trout (<i>Oncorhynchus mykiss</i>) and Atlantic Salmon (<i>Salmo 712 salar</i>), Antimicrob Agents Chemother 50(1) (2006) 185-195. 713
- [59] V.H. Maier, C.N. Schmitt, S. Gudmundsdottir, G.H. Gudmundsson, Bacterial DNA indicated 714 715 as an important inducer of fish cathelicidins, Mol Immunol 45(8) (2008) 2352-8.
- 716 [60] D.C. Broekman, G.H. Guðmundsson, V.H. Maier, Differential regulation of cathelicidin in 717 salmon and cod, Fish & shellfish immunology 35(2) (2013) 532-538.
- [61] A. Kijewska, M. Malachowicz, R. Wenne, Alternatively spliced variants in Atlantic cod 718 (Gadus morhua) support response to variable salinity environment, Sci Rep 8(1) (2018) 11607. 719
- [62] C.M. Rosenberger, B.B. Finlay, Phagocyte sabotage: disruption of macrophage signalling by 720 721 bacterial pathogens, Nature Reviews Molecular Cell Biology 4(5) (2003) 385-396.
- [63] F. Navarro-Garcia, A. Serapio-Palacios, P. Ugalde-Silva, G. Tapia-Pastrana, L. Chavez-722 Dueñas, Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic 723 724 Escherichia coli pathotypes, Biomed Res Int 2013 (2013) 374395.

725 [64] M. Buljan, G. Chalancon, S. Eustermann, Gunter P. Wagner, M. Fuxreiter, A. Bateman, M.M.

- Babu, Tissue-Specific Splicing of Disordered Segments that Embed Binding Motifs Rewires
 Protein Interaction Networks, Mol Cell 46(6) (2012) 871-883.
- 728 [65] J.D. Ellis, M. Barrios-Rodiles, R. Colak, M. Irimia, T. Kim, J.A. Calarco, X. Wang, Q. Pan,
- 729 D. O'Hanlon, P.M. Kim, J.L. Wrana, B.J. Blencowe, Tissue-specific alternative splicing
- remodels protein-protein interaction networks, Mol Cell 46(6) (2012) 884-92.
- 731 [66] R.E. Blue, E.G. Curry, N.M. Engels, E.Y. Lee, J. Giudice, How alternative splicing affects
- membrane-trafficking dynamics, Journal of Cell Science 131(10) (2018).
- 733

Figure list

Figure 1. Global transcriptome expression of SHK-1 cell line and salmon HK during *P. salmonis* infection. (A) Heatmap based on TPM values of coding transcripts corresponds with SHK-1 cells at T0 (control group), T7 (7 dpi), and T14 (14 dpi) and clustered by Manhattan distance with average linkages. Pink color means up-regulated expression levels, and purple represents down-regulated transcripts. (B) Venn diagram of DEGs among infection times (SHK1 -T7 and SHK1-T14) vs. control group SHK1-T0 ([fold change] > 4, p-value < 0.05). (C) Top 20 DEGs exclusively expressed in SHK1-T7. (D) Top 20 DEGs exclusively expressed in SHK1-T14. Up/down-regulated transcripts were calculated from the comparisons between the SHK1-T7 vs. control, and SHK1-T14 vs. control. (E) Heatmap based on TPM values of coding transcripts corresponds with salmon HK at T0 (control group), T7 (7 dpi), and T14 (14 dpi) and clustered by Manhattan distance with average linkages (F) Venn diagram of DEGs among infection times ([fold change] > 4, p-value < 0.05). (G) Top 20 DEGs exclusively expressed in HK-T7. (H) Top 20 DEGs exclusively expressed in HK-T14. Up/down-regulated transcripts were calculated from the comparisons between the HK-T7 vs. control, expressed in HK-T7. (H) Top 20 DEGs exclusively expressed in HK-T14. Up/down-regulated transcripts were calculated from the comparisons between the HK-T7 vs. control, HK-T14. Vs. control, and shared transcripts were calculated from the comparisons between the HK-T7 vs. control, HK-T14 vs. control, expressed in HK-T7. (H) Top 20 DEGs exclusively expressed in HK-T14.

Figure 2. Alternative splicing identification. (A) AS searching pipeline. (B) Resume of AS events identification using Transcript discovery for each study model and evaluated infection time. AS events correspond with accepted events, AS genes correspond with predicted transcripts, DAS events correspond with accepted events differentially expressed filtered by overlap and DAS genes correspond with predicted transcripts differentially expressed filtered by overlap. (C) The proportion of AS events/AS genes for each study model (SHK-1, salmon HK) and infection time.

Figure 3. Distribution of alternative splicing events. (A) Circos plot showing the distribution of DAS events (SHK-1) and their expression levels along the Atlantic salmon genome. (C) Circos plot showing the distribution of DAS events (salmon HK) and their expression levels along the Atlantic salmon genome. Dots

correspond with DAS gene counts (spliced counts ≥ 10) and heatmap corresponding with TPM values of DAS genes (TPM values ≥ 10). T0, T7 and T14 tracks correspond with different *P. salmonis* infection time. CGE track represent the percentage of DAS genes counts variation between infection time groups. (B) Regression line model representing the correlation between spliced transcripts count of AS genes (DEGs) and transcription activity (TPM values) from SHK-1 cell line in different *P. salmonis* infection times. (D) Regression line model represent the correlation between spliced transcripts count of AS genes (DEGs) and transcription activity (TPM values) from SHK-1 cell line in different *P. salmonis* infection times.

Figure 4. Changes of alternative splicing during *P. salmonis* infection times showing the distribution of different alternative splicing types calculated by SUPPA for two study-model. (A) The number of DAS events and DAS genes for different AS types in SHK-1 cells at T0 (control group), T7 (7 dpi), and T14 (14 dpi). (B) The Upset plot of interaction relationships among the seven different AS types and DAS genes in SHK-1 cells. (C) The number of DAS events and DAS genes for different AS types in salmon HK at T0, T7, and T14. (D) The Upset plot of interaction relationships among the seven different AS types and DAS genes in salmon HK. In upset plots, dots without connection correspond to DAS genes with a single AS type and are marked with seven different colors that correspond with the upper bar. The lines connected dots represent several AS types occurring together in the same transcripts and are marked with teal for two, red for three, and purple for four AS types. SE, skipped exon; RI, retention intron; MX, mutually exclusive exon; A3SS, alternative 3' splice site; A5SS, alternative 5' splice site; AF, alternative first exon; AL, alternative last exon. (E) Percent spliced in- (PSI) average calculated by SUPPA for different *P. salmonis* infection times in each study model.

Figure 5. Gene Ontology (GO) classification for basal DAS genes for SHK-1 cells and salmon HK. (A)Number of DAS genes exclusive and common for SHK1-T0 and HK-T0. (B) GO biological process term.(C) GO molecular function term. (D) GO cellular component term.

Figure 6. KEEGs enrichment analysis for exclusive and common basal DAS genes for SHK-1 cells and salmon HK. (A) Top pathways of exclusive DAS genes of SHK-1 cell line. (B) Top pathways of exclusive DAS genes of salmon HK.

Figure 7. Venn diagram of DAS genes exclusive and common for SHK-1 cells (A) and salmon HK (B) at different infection times. (C) Top 12 of DAS genes with the highest spliced counts of SHK-1 cells at three infection times. (D) Top 12 of DAS genes with the highest spliced counts of salmon HK at three infection times.

Figure 8. Gene Ontology (GO) classification for DAS genes of SHK-1 cells. (A) Number of DAS genes exclusive and common for SHK-1 cells at different *P. salmonis* infection times. (B) GO biological process term. (C) GO molecular function term. (D) GO cellular component term.

Figure 9. Gene Ontology (GO) classification for DAS of salmon HK. (A) Number of DAS genes exclusive and common for salmon HK at different *P. salmonis* infection times (B) GO biological process term. (C) GO molecular function term. (D) GO cellular component term.

Fig. 1

Fig. 4

Fig. 5

Fig. 6

Α			SHK1-T14			В			HK-T14	
	SHK1-	1,032 TO	484 272 254 2,469 544 783 SHK1-T	7			нк-то	49	836 0 547 2,793 744 1,132 HK-T7	
С						D				
Gene	Chromosom	ie ID	Name	Splice	ed counts	Gene	Chromosome	ID	Name	Spliced counts
SHK1-T0 LOC106612633	Chr9	A0A1S3RMY2	Fibroblast growth factor receptor 3-like		7.586	SHK1-T0 LOC106588488	Chr27	B5R186	60S ribosomal protein L11 (Frazment)	1.777
LOC106605689	Chr5	A0A1S3SK04	Histone-lysine N-methyltransferase NSD2-like		6,913	LOC106601071	Chr3	B5X746	Hemoglobin subunit alpha-4	1,547
LOC106607816	Chr6	A0A1S3RKT4	Protein Jade-1		6,296	LOC106611589	Chr9	B5X882	Leukocyte cell-derived chemotaxin 2	660
LOC106612300 LOC106566972	Chr13	DIGEL4	Mannanase Interferon promoter stimulating protein 1		3,228	LOC106605086	Chr5	A0A1S3SL49 A0A1S3RZM8	Steroid 21-hydroxylase isoform X1	290
LOC106573503	Chr16	A0A1S3QU45	Nucleolar and spindle-associated protein 1-like isoform X3		2,774	LOC106591388	Chr2	A0A1S3QE13	Neutrophil cytosol factor 4-like	167
LOC106580821	Chr20	B5X1Z1	Mediator of RNA polymerase II transcription subunit 6		2,207	LOC106603406	Chr4 Chr4	A0A1S3RJQ2	Adrenodoxin-like isoform X2 CD00 entirem like reaction 2 isoform X8	109
LOC106590146 clus	Chr29 Chr15	COHAB7 A0A1S3RR12	Splicing factor, arginino/scrine-rich 5 Zinc finger protein 513-like isoform X3		1,751	LOC106575202 LOC106582467	Chr17 Chr21	B5DFW1	Cytochrome C	89
pdlil	Chr18	A0A1S3SAA5	Phospholipid-transporting ATPase		1,411	LOC100380749	Chr4	COPUQO	Hypoxia up-regulated protein 1 (Fragment)	84
LOC106605143	Chrl	A0A1S3SRZ5	Son of sevenless homolog 2-like		1,893	LOC100136439	Chr14 Chr10	Q49TU5	Cathelicidin antimicrobial peptide	80
LOC106600942	Chrl	A0A1S3M395	Protein ELYS		597	SHK1-T7	Chrig	AUA 155N152	Transferrin receptor protein 1-tike	13
clus	Chr15	C0H9Y2	Clusterin		4,899	LOC106611589	Chr9	B5X6D8	Leukocyte cell-derived chemotaxin 2	1,963
LOC100136439	Chr14	Q49TU5	Cathelicidin antimicrobial peptide		1,977	LOC106607371	Chr6	C0H824	Hemoglobin subunit beta-1	1,092
LOC106564958	Chr12 Chr20	A0A1S3L929	Keratin, type I cytoskeletal 13-like Collseen-binding protein		1,757	LOC106580961	Chr20	A0A1S3T0B3	High affinity immunoglobulin gamma Fc receptor I-like	672
LOC106573503	Chr16	A0A1S3MLI5	Tropomyosin alpha-3 chain-like isoform X14		990	LOC106605923	Chr5	A0A1S3QX44	40S ribosomal protein S27-like	670
thbs2	Chr28	A0A1\$3\$905	Protein dispatched homolog 1-like isoform X1		971	LOC106565855	Chr1 Chr2	B5X9I2	C-C motif chemokine 19 Neutrophil rational factor 4-like	439
LOC106590146 LOC106605143	Chr29 Chr1	B5XAL5 B5DGN6	Myosin regulatory light chain 2, smooth muscle isoform. Calmodulin		961 706	LOC106566237	Chr12	A0A1S3LF73	5-aminolevulinate synthase	334
ppap2a	Chr13	B5X0Y4	Lipid phosphate phosphohydrolase 1		573	lkha4	Chr7	A0A1S3SF36	Leukotriene A(4) hydrolase	302
LOC106580821	Chr20	B9ENC8	Transgelin		562	LOC106579454 LOC100136439	Chr19 Chr14	A0A1S3N132 049TU5	Transferrin receptor protein 1-like Cathelicidin antimicrobial pentide	213
LOC100846955	Chr27 Chr6	B5R138	Cathepsin I-like (Fragment) Metalloproteinace inhibitor 2		399	LOC106582467	Chr21	B5XFR7	Cytochrome C	169
SHK1-T14	- m 3		oversite provession in the second sec			SHK1-T14	Ch-4	D4 X 407	Calleonna 2	4.000
LOC106577506	Chr2	A0A1S3NLH1	Fibroblast growth factor receptor 3-like	-	30,162	LOC106607372	Chr4 Chr6	B5X4P7 B5XD42	Congenase 3 Hemoglobin subunit beta	2,804
LOC106612633 clus	Chrl4	A0A1S3S6B6 A0A1S3SS53	Mannanase Lysyl oxidase homolog		5,726	LOC106588488	Chr27	B5R186	60S ribosomal protein L11 (Fragment)	1,043
LOC106566972	Ch-13	D1GEL4	Interferon promoter stimulating protein 1		4,000	grp78	Chrl1	B5X397	78 kDa glucose-regulated protein	670
LOCIECTOR	Chris				3 582	LOC100136439	Chr14	A0A1S3LYH9	Cathelicidin antimicrobial peptide isoform X1	284
LOC106564005	Chr12	A0A1S3N6B4	Exonuclease 3'-5' domain-containing protein 2		3,502	1.00106570464	Chel 0	A0A 1\$3NT22	Transferrin recentor protein 1, like	192
LOC106564005 LOC100136439 LOC106573503	Chr13 Chr12 Chr14 Chr16	A0A1S3N6B4 A0A1S3QNG4 A0A1S3QWG5	Exonuclease 3'-5' domain-containing protein 2 RNA polymerase-associated protein RTF1 homolog isoform X2 Fibulin-5	1	2,666	LOC106579454 LOC106582467	Chr19 Chr21	A0A1S3NI32 B5XFR7	Transferrin receptor protein 1-like Cytochrome C	183
LOC106564005 LOC100136439 LOC106573503 tpm4	Chr13 Chr12 Chr14 Chr16 Chr10	A0A1S3N6B4 A0A1S3QNG4 A0A1S3QWG5 A0A1S3SAA5	Exonuclease 3°-5° domain-containing protein 2 RNA polymerase-associated protein RTF1 homolog isoform X2 Fibulin-5 Phospholipid-transporting ATPase	Ĩ	2,666 2,565 1,480	LOC106579454 LOC106582467 LOC106612295	Chr19 Chr21 Chr9	A0A1S3NI32 B5XFR7 A0A1S3SWT0	Transferrin receptor protein 1-like Cytochrome C TNFAIP3-interacting protein 1-like isoform X4	183 180 124
LOC106564005 LOC100136439 LOC106573503 tpm4 LOC106576070	Chr13 Chr12 Chr14 Chr16 Chr10 Chr17	A0A1S3N6B4 A0A1S3QNG4 A0A1S3QWG5 A0A1S3SAA5 A0A1S3KZI3	Exonocieses 3-5 dornam-containing protein 2 RNA polymeras-easociated protein RTF1 homolog isoform X2 Fibulin-5 Phospholigid-transporting ATPase Zinc Inger protein RIF1ke	Ĩ	2,666 2,565 1,480 915	LOC106579454 LOC106582467 LOC106612295 LOC106585174	Chr19 Chr21 Chr9 Chr24	A0A1S3NE32 B5XFR7 A0A1S3SWT0 A0A1S3PG11	Transferrin receptor protein 1-like Cytochrome C TNF ALP3-interacting protein 1-like isoform X4 Lipid phosphate phosphohydrolase 1	183 180 124 83
LOC106564005 LOC100136439 LOC106573503 tpm4 LOC106576070 LOC106567035 LOC106567035	Chr13 Chr12 Chr14 Chr16 Chr10 Chr17 Chr13 Chr29	A0A1S3N6B4 A0A1S3QNG4 A0A1S3QWG5 A0A1S3SAA5 A0A1S3KZI3 C8BMB0 A0A1S3M4C4	Exensitieses 3-5 domain-containing protein 2 RNA polymera-associated protein RTF1 homolog isoform X2 Fibulin-5 Zuns fnage protein RIF-like Akrin 2(2) Protein GRBA-like Protein GRBA-like		2,666 2,565 1,480 915 871 704	LOC106579454 LOC106582467 LOC106612295 LOC106685174 LOC106604228 LOC106583433	Chr19 Chr21 Chr9 Chr24 Chr5 Chr22	A0A1S3NB2 B5XFR7 A0A1S3SWT0 A0A1S3SWG1 A0A1S3SWG4 A0A1S3P622	Transferrin receptor protein 1-like Cytochrome C TNF AIP3-instructing protein 1-like isoform X4 Lipid phosphate phosphohydrolase 1 Heat shock 70 kDa protein 4 isoform X4 Interforma-interest enterind 4 like isoform X4	183 180 124 83 52

Fig. 7

Fig. 8

Fig. 9

Supplementary figures

Figure 1S: Determination of Lactate dehydrogenase cytotoxicity assay. The cell damage caused by *P. salmonis* infection in SHK-1 cells was quantified by the release of cytosolic enzyme lactate dehydrogenase (LDH) in the cell supernatant. Six concentrations of *P. salmonis* were tested $(1x10^7, 1x10^6, 1x10^5, 1x10^4, 1x10^3, 1x10^2)$ to triplicate wells. Absorbance was measured at 490 nm (620nm as reference).

Fig. 1S

Capítulo 3. Ipath® vaccine promotes blood transcriptional remodeling during two pathogenic infections in Atlantic salmon.

Este capítulo de la tesis se enfoca en la evaluación de la respuesta transcriptómica en las células sanguíneas del salmón del Atlántico frente a una vacunación y exposición a dos patógenos marinos, *C. rogercresseyi* y *P. salmonis*. El uso del transcriptoma de células sanguíneas como herramienta para monitorear el comportamiento de la respuesta inmune, asistir en el diagnóstico y tratamiento de enfermedades patogénica, es un tema cada vez más recurrente (Ronza et al., 2021). Además, la cuantificación de transcritos de RNA de las células sanguíneas puede ser utilizado para monitorizar cambios fisiológicos no letales en el organismo (Liew et al., 2006), así como evaluar patrones de remodelación estructural y funcional del transcriptoma debido a diferentes estímulos. Sin embargo, en salmón del Atlántico existen pocos estudios al respecto, convirtiéndolo en un tema relevante y que podría ser de gran aplicación en condiciones de campo dada la simplicidad de la toma de muestras (Andrew et al., 2021).

Este trabajo presenta una aproximación de lo que ocurre en una granja de cultivo, en términos de inmuno-estimulación, pero con condiciones controladas. Recientemente, nuestro grupo de investigación informó sobre la actividad quelante de la vacuna de proteína quimérica de transporte de hierro (Ipath®) en salmón del Atlántico desafiado con tres patógenos marinos (Aeromonas salmonicida, C. rogercresseyi y P. salmonis) (Valenzuela-Muñoz et al., 2021). La construcción quimérica contiene residuos del dominio de unión al hierro de la transferrina y el centro de di-hierro ferroxidasa de la subunidad H de la ferritina del salmón del Atlántico y fue expresada en E. coli por vía recombinante. Los principales resultados de este estudio arrojaron que los salmones del Atlántico inmunizados y posteriormente desafiados con C. rogercresseyi y P. salmonis mostraron la modulación de los perfiles de expresión de transcripción relacionados con el metabolismo del hierro y la respuesta inmune. Los genes relacionados con la homeostasis del hierro, como los genes de biosíntesis de ferritina y hemo (biliverdina reductasa, aminolevulinato deshidratasa, CPBG) estaban regulados al alza en riñón anterior; mientras tanto, los genes relacionados con la respuesta inmunitaria estaban regulados a la baja en comparación con el grupo de control (MHCII, IL-1 β , COX-2). Además, en términos de mortalidad se observó un retraso durante la infección bacteriana en comparación con el grupo de control (Valenzuela-Muñoz et al., 2021). Teniendo en cuenta este antecedente se diseñó un ensayo de vacunación y desafío, donde se evaluaron además de Ipath®,

dos vacunas comerciales contra *P. salmonis*. Se diseñaron cuatro grupos experimentales: BlueGuard + Livac, BlueGuard + Livac + Ipath®, Ipath® y Control (PBS adyuvado). Cada grupo experimental fue expuesto a una infestación con *C. rogercresseyi* y pasados 25 dpi se infectaron con *P. salmonis*.

Resultados

Perfil transcriptómico de células sanguíneas de salmón del Atlántico vacunados y expuestos a dos patógenos marinos

Los perfiles transcriptómicos de las células sanguíneas de salmón del Atlántico de los cuatro grupos experimentales mostraron patrones de transcripción diferenciales (Figura 1A). En el heatmap se puede apreciar una agrupación de genes con altos niveles de expresión, destacando tres clusters principales. El cluster 1 agrupa genes altamente expresados en el grupo control y en B+L+Ip, mientras el cluster 2 engloba genes con altos niveles de expresión correspondientes al grupo vacunado con Ipath[®]. En el caso del cluster 3, se observan genes regulados al alza en los grupos experimentales vacunados con Ipath® y B+L. Para el análisis de genes diferencialmente expresados se comparó cada grupo experimental vacunado contra el grupo control (Figura 1B). El diagrama de Venn mostró que entre los tres grupos vacunados se compartió un total de 419 genes. El grupo vacunado con Ipath® exhibió un mayor número de DEGs exclusivos (2,179), seguido del grupo vacunado con BlueGuard y Livac simultáneamente (1,594 DEGs exclusivos). Mientras que la combinación de las tres vacunas mostró un total de 548 DEGs exclusivos. Los análisis de enriquecimiento funcional realizados para los DEGs exclusivos y compartidos de cada grupo experimental consideration las Funciones Moleculares (FM) (Figura 1C) y los Procesos Biológicos (PB) como criterios jerárquicos se muestran en la Figura 1D. En el caso de las FM, los DEGs exclusivos del grupo experimental vacunado con Ipath® enriquecieron mayoritariamente la actividad transferasa, mientras que en el grupo vacunado con B+L+Ipath® se encontró un mayor enriquecimiento de los DEGs en FM asociadas a unión de ribonucleótidos. En el caso del grupo experimental vacunado con B+L llama la atención un enriquecimiento de FM asociadas a regulación de la transcripción de genes dado por la anotación de la actividad deacetilasa de histonas. Los DEGs compartidos por los tres grupos experimentales vacunados enriquecieron fundamentalmente *unión de iones*, no obstante otro MF que destaca en este grupo es la *unión a* *hierro férrico*, lo cual está asociado principalmente con el metabolismo del hierro (Figura 1C). En el caso de los PB de los DEGs exclusivos del grupo experimental vacunado con B+L+Ipath®, se destaca el enriquecimiento de *plegamiento de proteínas*. Los DEGs exclusivos del grupo vacunado con Ipath® enriquecieron procesos asociados a transporte y localización de proteínas y macromoléculas y *regulación de la actividad catalítica*. En el grupo experimental vacunado con B+L, se observó un enriquecimiento de PB asociados a respuesta a estímulos y señalización. Interesantemente, los DEGs compartidos enriquecieron PB asociados al metabolismo y homeostasis del hierro, tales como *homeostasis de iones de hierro, de iones metálicos celulares,* así como *transporte de iones metálicos de transición*, entre otros (Figura 1D).

Figura 1. Análisis del transcriptoma de las células sanguíneas de salmón del Atlántico vacunados y retados con dos patógenos (infestación con *C. rogercresseyi* e infección con *P. salmonis*). (A) Representación heatmap de los cambios de expresión de transcritos entre los cuatro grupos experimentales. (B) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental vacunado comparado con el grupo control. (C, D) Representación en Dotplot del enriquecimiento en términos GO de Funciones Moleculares (C) y Procesos Biológicos (D) de los DEGs exclusivos y compartidos de cada grupo experimental vacunado, obtenido del análisis de expresión diferencial.

Análisis de clusters de expresión diferenciales para cada vacuna

Para una mayor comprensión de la modulación del transcriptoma de las células sanguíneas se llevó a cabo un análisis más detallado de los principales clusters de transcripción obtenidos. El comportamiento de los niveles de expresión se midió utilizando análisis K- medoids, donde se cuantifica la desviación estándar de la media de expresión, tomando en cuenta cada grupo experimental vacunado. El cluster 1 contiene el comportamiento de 130 genes, de los cuales se observa una desviación estándar positiva en los niveles de expresión del grupo vacunado con B+L+Ipath[®], mientras que en el grupo vacunado con Ipath[®] se muestra el efecto contrario, excepto en algunos genes en particular (Figura 2A). El heatmap correspondiente a los genes del cluster 1 muestra una normalización de los valores de TPM, observándose una modulación positiva en la mayoría de los genes en el grupo B+L+Ipath® (Figura 2B). El comportamiento de los genes incluidos en el cluster 2 (n=228 genes) muestra una desviación estándar positiva en la mayoría de los genes en el grupo vacunado con B+L+Ipath®, mientras que en los grupos Ipath® y B+L muestran una desviación estándar negativa (Figura 2C), lo cual se corresponde con los valores de TPM representados en el heatmap (Figura 2D). El cluster 3 incluye un total de 1,042 genes y muestra un comportamiento diferente, observándose una desviación estándar negativa de la media de expresión de los genes en el grupo B+L+Ipath[®]. Los grupos vacunados con Ipath[®] y B+L exhibieron desviaciones estándar positivas mayoritariamente (Figura 2E). La representación heatmap evidenció una modulación negativa en el grupo B+L+Ipath®, mientras que los mayores valores de TPM fueron observados en el grupo Ipath® (Figura 2F).

Figura 2. Análisis de clusters de expresión transcripcional. El análisis se realizó basado en el método K-medoids que analiza la desviación estándar de la media de expresión, teniendo en consideración los grupos vacunados (A) Comportamiento de los niveles de expresión de los genes incluidos en el cluster 1 (n=130 genes) para cada vacuna. (B) Representación heatmap de los niveles de expresión (TPM normalizado) de los genes del cluster 1. (C) Comportamiento de los niveles de expresión de los genes incluidos en el cluster 2 (n=228 genes) para cada vacuna. (D) Representación heatmap de los niveles de expresión (TPM normalizado) de los genes del cluster 2. (E) Comportamiento de los niveles de expresión de los genes incluidos en el cluster 3 (n=1,042 genes) para cada vacuna. (F) Representación heatmap de los niveles de expresión (TPM normalizado) de los genes del cluster 3.

BlueGuard + Livac + IPATH®	TPM	Name
LOC106595378	80.38	Thymosin beta
LOC106586813	31.94	Fibroleukin
fgl2	30.51	Connective tissue growth factor
ctgf	15.88	Coagulation factor XIII A chain
f13a	14.22	CCAAT/enhancer-binding protein
LOC106572480	14.16	Collagenase 3
mmp13	13.07	Matrix metalloproteinase-9
mmp9	10.86	Thrombopoietin receptor-like isoform X1
hyal3	9.01	Endonuclease domain-containing 1 protein

Tabla 1. Anotaciones de genes por clusters de expresión diferencial para cada vacuna Cluster 1

LOC106602544	8.82	SH3 domain-binding glutamic acid-rich-like protein 3
IPATH®	TPM	Name
LOC106586813	560.53	Thymosin beta
fgl2	216.37	Fibroleukin
f13a	199.23	Coagulation factor XIII A chain
ctgf	189.85	Connective tissue growth factor
LOC106560515	178.11	Thrombopoietin receptor-like isoform X1
mmp13	127.87	Collagenase 3
mmp9	98.97	Matrix metalloproteinase-9
LOC106572480	73.86	CCAAT/enhancer-binding protein
LOC106598526	70.69	Regulator of G-protein signaling 2
LOC106602544	68.55	Endonuclease domain-containing 1 protein
BlueGuard + Livac	TPM	Name
LOC106586813	409.77	Thymosin beta
fgl2	163.90	Fibroleukin
mmp13	153.65	Collagenase 3
ctgf	146.68	Connective tissue growth factor
f13a	127.52	Coagulation factor XIII A chain
mmp9	107.26	Matrix metalloproteinase-9
LOC106560515	88.74	Thrombopoietin receptor-like isoform X1
LOC106602544	67.16	Endonuclease domain-containing 1 protein
LOC106613459	59.37	Uncharacterized protein LOC106613459
LOC106572480	54.29	CCAAT/enhancer-binding protein

Cluster 2

BlueGuard + Livac + IPATH®	TPM	Name
LOC106579710	53.81	Decaprenyl-diphosphate synthase subunit 1-like
LOC106611136	36.23	Ornithine decarboxylase 1
LOC106607284	25.56	Heat shock 70 kDa protein-like
LOC106597100	11.56	Probable E3 ubiquitin-protein ligase HERC3 isoform X5
LOC106606889	6.87	Cytochrome c oxidase subunit
LOC106600115	6.46	Ferritin
LOC106602276	4.22	E3 ubiquitin-protein ligase Topors-like
nua41	3.54	NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2
LOC106586024	2.64	Prokineticin receptor 1-like
LOC106585402	1.73	Adhesion G protein-coupled receptor E2-like
IPATH®	TPM	Name
LOC106611136	44.18	Ornithine decarboxylase 1
LOC106597100	13.33	Probable E3 ubiquitin-protein ligase HERC3 isoform X5
LOC106607284	5.63	Heat shock 70 kDa protein-like
LOC106579710	4.56	Decaprenyl-diphosphate synthase subunit 1-like
LOC106600115	3.40	Ferritin
LOC106602276	3.39	E3 ubiquitin-protein ligase Topors-like
nua41	2.71	NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2
LOC106578108	1.50	Ubinuclein-1-like
LOC106567313	1.18	Histone-lysine N-methyltransferase
LOC106585402	1.13	Adhesion G protein-coupled receptor E2-like
BlueGuard + Livac	TPM	Name
LOC106611136	29.81	Ornithine decarboxylase 1
LOC106597100	7.92	Probable E3 ubiquitin-protein ligase HERC3 isoform X5
LOC106600115	6.66	Ferritin
LOC106607284	4.45	Heat shock 70 kDa protein-like
LOC106579710	4.43	Decaprenyl-diphosphate synthase subunit 1-like
LOC106589838	2.38	Inhibitor of apoptosis protein-like isoform X3
LOC106601086	1.68	E3 ubiquitin-protein ligase

LOC106567313	1.65	Histone-lysine N-methyltransferase
nua4l	1.64	NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2
LOC106605173	1.26	Transmembrane protein 222-like

Cluster 3

BlueGuard + Livac + IPATH®	TPM	Name	
eral1	89.49	GTPase Era, mitochondrial	
LOC106601915	30.69	Suppressor of cytokine signaling 3	
LOC106583599	22.79	Myosin regulatory light chain 2, smooth muscle isoform	
LOC106610740	22.73	IsoleucinetRNA ligase, mitochondrial-like	
LOC106596996	15.33	Activated CDC42 kinase 1-like	
LOC106568974	15.20	Growth arrest and DNA damage-inducible protein GADD45 alpha isoform $\mathrm{X2}$	
LOC106606746	11.85	Interferon-induced protein 44-like	
LOC106563386	10.84	Transmembrane protein 88-like	
irf-1	9.77	Interferon regulatory factor	
LOC106574071	8.84	Immediate early response gene 5 protein-like	
IPATH®	TPM	Name	
eral1	1464.49	GTPase Era, mitochondrial	
ddt41	214.81	DNA-damage-inducible transcript 4-like protein	
LOC106601915	158.50	Suppressor of cytokine signaling 3	
LOC106583599	102.15	Myosin regulatory light chain 2, smooth muscle isoform	
LOC106610740	98.58	IsoleucinetRNA ligase, mitochondrial-like	
LOC106568974	85.95	Growth arrest and DNA damage-inducible protein GADD45 alpha isoform X2	
LOC106612251	66.13	Solute carrier family 25 member 48-like	
irf-1	59.53	Interferon regulatory factor	
LOC106582237	56.38	Interferon-induced guanylate-binding protein 1-like isoform X1	
LOC106574071	55.56	Immediate early response gene 5 protein-like	
BlueGuard + Livac	TPM	Name	
eral1	91.62	GTPase Era, mitochondrial	
LOC106583599	37.61	Myosin regulatory light chain 2, smooth muscle isoform	
LOC106601915	35.78	Suppressor of cytokine signaling 3	
LOC106610740	22.81	IsoleucinetRNA ligase, mitochondrial-like	
LOC106596996	13.45	Activated CDC42 kinase 1-like	
LOC106582237	11.39	Interferon-induced guanylate-binding protein 1-like isoform X1	
LOC106568974	11.25	Growth arrest and DNA damage-inducible protein GADD45 alpha- isoform X2	
irf-1	10.40	Interferon regulatory factor	
LOC106574071	9.14	Immediate early response gene 5 protein-like	
LOC106606746	8.38	Interferon-induced protein 44-like	

Remodelación transcripcional en rutas relacionadas con respuesta inmune y apoptosis

Para comprender la remodelación transcriptómica gatillada por las vacunas y las infecciones patógenas en el salmón del Atlántico se analizó el comportamiento de la expresión transcripcional de los genes involucrados en diversas rutas relevantes en la respuesta inmune y apoptosis. Para ello se realizaron análisis de RNA-seq empleando las secuencias de los genes involucrados en cada ruta

como referencia y posteriormente un análisis de expresión diferencial de cada grupo experimental vacunado respecto al control, teniendo en cuenta un límite de expresión (fold change $\geq |4|$).

La primera ruta analizada fue la señalización de receptores tipo-Toll. En la representación heatmap se observa una diferenciación en los niveles de expresión dependiendo del grupo experimental (Figura 3A). En el grupo vacunado con Ipath® se observó que algunos genes fueron activados positivamente de manera exclusiva. El análisis de expresión diferencial mostró un mayor número de DEGs en el grupo vacunado con Ipath® (18 genes) comparado con el grupo control, seguido del grupo L+B (12 genes) y por último el grupo L+B+Ipath® (2 genes). Teniendo en cuenta que el grupo con mayor DEGs fue el vacunado con Ipath®, se escogieron los DEGs exclusivos y compartidos de este grupo para representar su comportamiento dentro de la ruta de señalización de receptores tipo-Toll (Figura 3C). La inmuno-estimulación con la vacuna Ipath® y con los dos patógenos marinos provocó una modulación de la respuesta transcripcional de ciertos genes dentro de la ruta. Por ejemplo, TLR2, IRAK4, CASP8, NF- κB , IL-1 β , CD80, entre otros, fueron regulados positivamente, mientras que genes como TLR3, TOLLIP, Rac1, P13K, AKT, CD40 entre otros, fueron regulados negativamente. Dos genes pertenecientes a esta ruta, mostraron una modulación compartida dependiendo de la isoforma evaluada, TAK1 y AP-1. En 13 genes de esta ruta se encontraron eventos de splicing alternativo, lo cual podría estar regulando además la respuesta transcripcional del salmón, entre ellos, IRAK4, NF-KB, CD40, TAK1, STAT1.

Figura 3. Evaluación de la remodelación transcripcional de la ruta de señalización de receptores tipo-Toll (A) Representación heatmap de los niveles de expresión (TPM) de los genes pertenecientes a la ruta para cada grupo experimental. (B) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental vacunado comparado con el grupo control. (C) Representación en la ruta de señalización de receptores tipo-Toll del comportamiento de cada DEGs obtenido para el grupo experimental vacunado con Ipath[®]. En rojo se representan los genes regulados positivamente, en azul los genes regulados negativamente, mientras que el amarillo corresponde con los genes que presentaron eventos de splicing alternativo. En verde se representan los genes que no se encontraron diferencialmente expresados en este grupo experimental.

Otra ruta de interés para evaluar la remodelación transcripcional es el proceso de apoptosis. Notablemente, en la representación heatmap del análisis de RNA-seq se observa que el grupo experimental vacunado con Ipath® mostró un agrupamiento de genes diferencial al resto de los grupos analizados (Figura 4A). A partir del análisis diferencial de genes se observaron diferencias en el número de DEGs de cada grupo vacunado comparado con el control. En el grupo vacunado con Ipath® se observó la mayor cantidad de DEGs (35 genes), seguido del grupo L+B (16 genes) y finalmente el grupo vacunado con B+L+Ipath® (6 genes) (Figura 4B). Teniendo en cuenta que la vacunación con Ipath® provocó una mayor modulación transcripcional de los genes involucrados en la ruta de apoptosis, se representó el comportamiento de los DEGs exclusivos y compartidos en dicha ruta (Figura 4C). Algunos genes de la ruta fueron exclusivamente regulados al alza (*TNF-R1, IL-3R, AIP, Calpain, Actin y Lamin*), mientras que otros fueron exclusivamente regulados a la baja (*Bid, DIABLO, Apaf-1*). De igual manera, varios genes mostraron una modulación compartida dado la gran cantidad de isoformas, entre ellos, *Cathepsin, ASK-1, CHOP, CASP3, Mcl-1, AP1*,

NF- κB . En 26 genes de esta ruta se encontraron eventos de splicing alternativo, los cuales podrían influir en la respuesta del salmón ante los diferentes estímulos recibidos, entre ellos, TNRF-R1, *Cathepsin, Mcl-1 Calpain, NF*- κB .

Figura 4. Evaluación de la remodelación transcripcional de la ruta de apoptosis (A) Representación heatmap de los niveles de expresión (TPM) de los genes pertenecientes a la ruta para cada grupo experimental. (B) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental vacunado comparado con el grupo control. (C) Representación en la ruta de apoptosis del comportamiento de cada DEGs obtenido para el grupo experimental vacunado con Ipath[®]. En rojo se representan los genes regulados positivamente, en azul los genes regulados negativamente, mientras que el amarillo corresponde con los genes que presentaron eventos de splicing alternativo. En verde se representan los genes que no se encontraron diferencialmente expresados en este grupo experimental.

Remodelación transcripcional en rutas relacionadas con hipoxia y metabolismo del hierro

En ambas rutas analizadas previamente se ha reflejado que el grupo experimental vacunado con Ipath® muestra una mayor respuesta transcripcional comparado con los demás grupos vacunados. Tomando estos resultados a consideración, y que además se ha reportado que la vacunación con Ipath® promueve la regulación transcripcional de genes involucrados en el metabolismo del hierro, quisimos analizar a profundidad algunas rutas de señalización relacionadas. Primeramente se analizó la ruta de señalización del HIF-1 (del inglés, hypoxia inducible factor-1), la cual es de especial interés por la participación del hierro en la regulación del gen *PHD* (del inglés, prolyl-

hidroxylase domain-containing enzime). Este gen es el sensor de oxígeno de la ruta de hipoxia y para su actividad enzimática requiere de la unión de hierro como co-sustrato del oxígeno. En la representación heatmap del análisis de RNA-seq, se pudo observar que el grupo vacunado con Ipath® mostró un agrupamiento de genes involucrados en esta ruta diferente al resto de los grupos evaluados (Figura 5A). Del análisis diferencial de genes, se puede destacar que el mayor número de DEGs se obtuvo para el grupo experimental vacunado con Ipath® (13 genes), mientras que el grupo vacunado con L+B solamente un gen fue diferencialmente expresado, y para el grupo vacunado con B+L +Ipath[®] no se obtuvo ninguno (Figura 5B). El comportamiento transcripcional de los DEGs exclusivos y compartidos obtenidos para el grupo experimental vacunado con Ipath® se representaron en la ruta de señalización de HIF-1. En dicha ruta se observó una activación positiva de los genes involucrados con el metabolismo anaeróbico, tales como Glut1, GAPDH, ENO1, PFK1, PGK1, ALDOA, entre otros, solo el gen PDK-1 involucrado en la inhibición del ciclo del citrato fue exclusivamente regulado a la baja. Por otra parte, algunos genes involucrados en la señalización de la respuesta inmune asociada a hipoxia tuvieron una modulación positiva, entre ellos IL-R6, IFN γR , STAT3, NF- κB . Cabe destacar el gen 4E-BP1, encargado de inhibir la cascada de activación de HIF-1, se muestra regulado positivamente así como el gen PHD, mientras que los genes de activación de HIF-1 están regulados negativamente, incluido el propio gen HIF-1 (Figura 5C). En 14 genes involucrados en esta ruta se encontraron eventos de splicing alternativo, entre ellos *PHD* y *HIF-1* α .

Figura 5. Evaluación de la remodelación transcripcional de la ruta de señalización de HIF-1 (A) Representación heatmap de los niveles de expresión (TPM) de los genes pertenecientes a la ruta para cada grupo experimental. (B) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental vacunado comparado con el grupo control. (C) Representación en la ruta de señalización de HIF-1 del comportamiento de cada DEGs obtenido para el grupo experimental vacunado con Ipath®. En rojo se representan los genes regulados positivamente, en azul los genes regulados negativamente, mientras que el amarillo corresponde con los genes que presentaron eventos de splicing alternativo. En verde se representan los genes que no se encontraron diferencialmente expresados en este grupo experimental.

Otra ruta de especial interés involucrada en el metabolismo del hierro es la ferroptosis. En la representación heatmap del análisis de RNA-seq se observan diferentes patrones de los niveles de expresión de los genes pertenecientes a esta ruta en cada grupo experimental. El grupo vacunado con Ipath® presentó una agrupación de genes con altos niveles de expresión diferencial del resto de los grupos evaluados. (Figura 6A). El análisis de expresión diferencial de genes mostró que el grupo con un mayor número de DEGs comparado con el control fue el vacunado con Ipath® (7 genes), seguido del grupo vacunado con B+L (5 genes) y por último el grupo vacunado con B+L+Ipath® (2 genes) (Figura 6B). El comportamiento transcripcional de los DEGs exclusivos y compartidos obtenidos para el grupo experimental vacunado con Ipath® se representaron en la ruta de la ferroptosis. Algunos genes pertenecientes a esta ruta fueron exclusivamente regulados al alza, como es el caso de *SLC3A2, LPCAT3, SAT1, GPX4, TF, PCBP2* y NOX2, mientras que *GSS, DMT1, ZIP8/14* fueron regulados negativamente. La mayoría de los genes de la ruta se encontraron

regulados tanto positiva como negativamente dependiendo de la isoforma evaluada, entre ellos *TFR1, p53, Ferroportin, HO-1* y *Ferritin*. Además, en 13 genes se encontraron eventos de splicing alternativo, incluyendo, *p53, SAT1, GPX4, TFR1, VDAC2/3* y *HO-1* (Figura 6C).

Figura 6. Evaluación de la remodelación transcripcional de la ruta de ferroptosis (A) Representación heatmap de los niveles de expresión (TPM) de los genes pertenecientes a la ruta para cada grupo experimental. (B) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental vacunado comparado con el grupo control. (C) Representación en la ruta de ferroptosis del comportamiento de cada DEGs obtenido para el grupo experimental vacunado con Ipath®. En rojo se representan los genes regulados positivamente, en azul los genes regulados negativamente, mientras que el amarillo corresponde con los genes que presentaron eventos de splicing alternativo. En verde se representan los genes que no se encontraron diferencialmente expresados en este grupo experimental.

Tipos de splicing alternativo identificados en rutas asociadas al metabolismo del hierro.

Para la identificación del tipo de splicing alternativo que estaba ocurriendo en los genes pertenecientes a cada ruta analizada se utilizó el software SUPPA. En la representación mediante Upset plot se observan los genes que presentaron eventos de splicing alternativo y el tipo de evento que estaba ocurriendo en cada uno de ellos. Para la ruta de señalización de HIF-1 (Figura 7A) se destaca, por ejemplo, que el gen *HIF-1* presentó un solo tipo de splicing alternativo, el A3SS (alternative 3'splice site) generando un total de 10 isoformas (Figura7B). Los genes *HK* y *PDHA1* presentaron cada uno 10 isoformas generadas por una combinación de cuatro tipos de splicing

alternativo. Para el gen *PDH* se generaron solamente 2 isoformas mediante retención del intrón (RI) (Figura 7A,B). En el caso de los genes con eventos de splicing alternativo en la ruta de la ferroptosis se destacan dos genes que presentaron mayor cantidad de isoformas producto de la combinación de cinco tipos de splicing alternativo diferentes, *VDAC2* presentó 21 isoformas, mientras que *NCOA4* presentó 16 isoformas. Otro gen a destacar es *HO-1*, para el cual se generaron 14 isoformas a partir de dos tipos de splicing alternativo (RI y A5SS). Solo dos genes presentaron un solo tipo de splicing alternativo, *GCL* y *TFR1*, generando dos isoformas cada uno a partir de RI (Figura 7C,D).

Figura 7. Análisis de tipos de splicing alternativo para los DEGs del grupo experimental Ipath® involucrados en rutas de señalización de HIF-1 y ferroptosis. (A) Representación Upset plot de la interacción entre siete tipos de splicing alternativo y los DEGs en la ruta señalización de HIF-1. (B) Número de isoformas por cada DEGs de la ruta de señalización de HIF-1. (C) Representación Upset plot de la interacción entre siete tipos de splicing alternativo y los DEGs en la ruta señalización de señalización de HIF-1. (B) Número de isoformas por cada DEGs de la ruta de señalización de ferroptosis. (D) Número de isoformas por cada DEGs de la ruta de ferroptosis.

Influencia del hierro en la remodelación transcripcional de salmón del Atlántico

Previamente observamos el grupo experimental vacunado con Ipath® y expuesto a dos patógenos marinos, mostró una remodelación transcripcional de las rutas de señalización de hipoxia y ferroptosis. Tomando en cuenta que la vacuna Ipath® está compuesta por dos proteínas asociadas al metabolismo del hierro, ferritina y transferrina, se evaluó la remodelación transcripcional

generada por una sobre carga de hierro en salmón del Atlántico. Anteriormente, en nuestro grupo de investigación se había evaluado el rol del hierro en la modulación de la respuesta inmune del salmón del Atlántico durante una infección con *P. salmonis* (Valenzuela-Muñoz et al., 2020). Para ello los salmones del Atlántico fueron inyectados con sobre cargas de hierro dextrano (1 y 5 mg) y posteriormente infectados con la bacteria *P. salmonis*. Utilizamos los datos de RNA-seq del riñón anterior, generados en el estudio previo, para evaluar la influencia del hierro en la remodelación transcripcional de las rutas de señalización de HIF-1 y ferroptosis. Los análisis de RNA-seq de los grupos expuestos a diferentes dosis de hierro, infectados y no infectados con *P. salmonis* se realizaron utilizando como referencia las secuencias de los genes pertenecientes a las ruta de señalización de HIF-1 y ferroptosis.

En la ruta de señalización de HIF-1, se realizó un análisis de expresión diferencial de genes para los grupos inyectados con 1 mg de hierro infectados con P. salmonis (1 mg+Psal) y 1mg no infectados (1mg-Psal) y el grupo inyectado con PBS infectados con P. salmonis (PBS+Psal) y no infectados (PBS-Psal) comparados con el control basal (peces sin inyección ni patógeno). El mayor número de DEGs exclusivos se obtuvo para el grupo 1mg-Psal (43 genes) (Figura 8A). Los niveles de expresión (fold change normalizado) de estos DEGs (1mg-Psal) para cada grupo se representaron mediante un heatmap, observándose para el grupo 1mg-Psal mayor diferencia en el patrón de modulación de los genes de esta ruta con respecto a los otros grupos experimentales. Notablemente, en el grupo 1mg-Psal se reguló negativamente el gen HIF-1 α , comparado con el grupo PBS-Psal donde se observa regulado positivamente, enfatizando la participación del hierro en la ruta de señalización de la hipoxia. La mayoría de los genes que se encuentran regulados positivamente en el grupo 1mg-Psal están asociados a la vía metabólica de la ruta de señalización de la hipoxia, mientras que la infección con P. salmonis conllevó a la activación de genes asociados a la señalización de la respuesta inmune, tales como mTOR, STAT3 y NF-KB (Figura 8B). Al inyectar con 5 mg de hierro se observó que en el grupo 5mg-Psal hubo 52 DEGs exclusivos de la ruta de señalización de hipoxia, mientras que para el grupo 5 mg+Psal se observaron solamente cuatro DEGs (Figura 8C), confirmando la activación de la ruta de señalización de la hipoxia por una sobre carga de hierro. Los niveles de expresión (fold change) de los 52 DEGs fueron representados en un heatmap. Significativamente, el gen HIF-1 α estaba totalmente regulado a la baja en el grupo 5 mg-Psal (Figura 8D). Los niveles de expresión de los DEGs de los grupos 1 mg-Psal y 5 mg-Psal mostraron una alta correlación. No obstante algunos genes escaparon de esta correlación, como es el caso de *HIF-1 \alpha*, el cual estuvo más regulado negativamente en el grupo 5 mg-Psal (Figura 8E).

Figura 8. Influencia del hierro en la ruta de señalización de HIF-1 evaluado en riñón anterior de salmón del Atlántico. (A) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental inyectado con 1mg de hierro (infectado y no infectado con *P. salmonis*) y PBS (infectado y no infectado con *P. salmonis*) comparado con el grupo control basal. (B) Representación heatmap de los niveles de expresión (fold change normalizado) de los DEGs (1mg-Psal) en cada grupo experimental (1mg-Psal, 1mg+Psal, PBS-Psal, PBS+Psal). (C) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental inyectado con 5 mg de hierro (infectado y no infectado con *P. salmonis*). (D) Representación heatmap de los niveles de expresión (fold change) de los DEGs (5mg-Psal) en cada grupo experimental (5mg-Psal, 5m+Psal). (E) Representación de análisis de regresión lineal simple entre los fold change de DEGs encontrados en los grupos experimentales 1mg-Psal y 5mg-Psal. Los puntos rojos representan los genes correlacionados positivamente y en azul los correlacionados negativamente.

En la ruta de ferroptosis, se realizó el mismo análisis descrito anteriormente. En este caso se observó que el grupo con mayor número de DEGs exclusivos fue 1 mg-Psal (26 genes) (Figura 9A). Los niveles de expresión (fold change normalizado) de estos DEGs para cada grupo se representaron mediante un heatmap, observándose para el grupo 1 mg-Psal un patrón de modulación de los genes de esta ruta distinto a los demás grupos experimentales. En este grupo, la mayoría de los genes estuvieron regulados a la baja, no obstante se destaca la regulación positiva de los genes de Ferritina (*FRIM3, FRIM7*), responsable del almacenamiento del hierro (Figura 9B). en los grupos con 5 mg de hierro, el análisis diferencial de genes, evidenció un mayor número de DEGs exclusivos en el

grupo 5 mg-Psal (45 genes), mientras que 5 mg+Psal solamente presentó tres DEGs (Figura 9C). En este caso los niveles de expresión de los DEGs del grupo 5mg-Psal fueron representados mediante un heatmap, observándose una regulación positiva en varias isoformas de ferritina. Mientras que la infección con *P. salmonis* disminuyó los niveles de expresión de dichos genes (Figura 9C). Al correlacionar los niveles de expresión de los DEGs en los grupos 1 mg-Psal y 5 mg-Psal, se observó una correlación media entre ellos. Notablemente, se destaca la correlación positiva existente entre los niveles de expresión de dos isoformas de ferritina (*FRIM3* y *FRIM7*), evidenciando su importancia en el almacenamiento de hierro. De igual manera, destaca el gen *GPX4* correlacionado positivamente, el cual desempeña un papel crucial en la protección celular contra la ferroptosis (Figura 9E).

Figura 9. Influencia del hierro en la ruta de ferroptosis evaluado en riñón anterior de salmón del Atlántico. (A) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental inyectado con 1 mg de hierro (infectado y no infectado con *P. salmonis*) y PBS (infectado y no infectado con *P. salmonis*) comparado con el grupo control basal. (B) Representación heatmap de los niveles de expresión (fold change normalizado) de los DEGs (1mg-Psal) en cada grupo experimental (1 mg-Psal, 1 mg+Psal, PBS-Psal, PBS+Psal). (C) Análisis de expresión diferencial representado en diagrama de Venn para genes diferencialmente expresados en cada grupo experimental inyectado con 5 mg de hierro (infectado y no infectado con *P. salmonis*). (D) Representación heatmap de los niveles de expresión (fold change) de los DEGs (5 mg-Psal) en cada grupo experimental (5 mg-Psal, 5 mg+Psal). (E) Representación de análisis de regresión lineal simple entre los fold change de DEGs encontrados en los grupos experimentales 1mg-Psal y 5mg-Psal. Los puntos rojos representan los genes correlacionados positivamente y en azul los correlacionados negativamente.

6. DISCUSIÓN

El estudio de los mecanismos de respuesta del salmón del Atlántico ante diferentes estímulos inmunológicos, ya sean eventos de vacunación o infecciones con patógenos marinos son fundamentales para comprender mejor la respuesta inmunológica de los peces y para su aplicación en la acuicultura, contribuyendo a una producción más saludable y sostenible. A través de un enfoque transcriptómico, se investigaron los cambios en la expresión génica, las interacciones patógeno-hospedero y procesos de adaptación de la respuesta inmune del salmón. Para ello, se utilizaron modelos de estudio in vitro e in vivo del salmón del Atlántico, donde se evaluaron los mecanismos de remodelación transcripcional como respuesta ante estimulación natural (infecciones patógenas), y estimulación activa (candidatos vacunales). Los modelos de estudio empleados para el desarrollo de esta tesis fueron seleccionados considerando su capacidad de representar diferentes aspectos de la respuesta inmune en el salmón del Atlántico. La línea celular SHK-1 derivada de los leucocitos de riñón anterior de salmón del Atlántico tiene un excelente potencial para estudios de respuesta inmune. Posee características similares a macrófagos y células dendríticas, con la diferencia de que no tiene la capacidad de eliminar bacterias o patógenos (Dannevig et al., 1997). El riñón anterior de los salmónidos es un órgano hematopoyético, considerado análogo de la médula ósea de mamíferos; y juega un papel crucial en la producción de células inmunitarias, tales como linfocitos B y T, macrófagos y melanomacrófagos (Agius & Roberts, 2003; Bjørgen & Koppang, 2022; Zwollo et al., 2005). Por otra parte, las células sanguíneas de los peces a diferencia de los mamíferos, son células nucleadas y contienen organelos en su citoplasma (Glomski et al., 1992). A parte de la función de intercambio de gases, se le han atribuido funciones biológicas asociadas a respuesta inmune, ya que pueden actuar como células presentadoras de antígenos o células fagocíticas (Passantino et al., 2007; Puente-Marin et al., 2018). Además, están implicadas en la modulación de leucocitos, producción de citoquinas, respuesta a patrones moleculares asociados a patógenos (PAMPs) (Morera et al., 2011; Puente-Marin et al., 2019) y la respuesta a infecciones virales (Puente-Marin et al., 2023). Cada modelo aporta información valiosa sobre la respuesta inmune, aunque sus enfoques pueden ser complementarios y proporcionar una visión más completa cuando se utilizan en conjunto.

Remodelación transcriptómica inducida por la proteína recombinante Cr-catepsina de *C. rogercresseyi* en la línea celular SHK-1 y riñón anterior de salmón del Atlántico.

Los perfiles transcriptómicos observados para las células SHK-1 y el riñón anterior de salmón del Atlántico expuestos a la proteína Cr-catepsina mostraron diferencias, no obstante un 24.15% de la respuesta transcriptómica fue compartida, lo cual podría atribuirse principalmente a la remodelación estructural y funcional desarrollada como respuesta al antígeno. La anotación de los términos GO identificados en los DEGs compartidos por ambos modelos de estudio revelaron funciones moleculares asociadas con la unión de iones metálicos y la actividad catalítica. Los iones juegan un papel crucial en diferentes aspectos fisiológicos, específicamente en las células del sistema inmunológico, donde deben mantener una estricta homeostasis (Bohmwald et al., 2021; Rubaiy, 2017). Los canales iónicos y los transportadores regulan las concentraciones de iones dentro de las células T y B y, por lo tanto, podrían estar modulando las funciones de estas células (Feske et al., 2012; Netea et al., 2019). Los iones metálicos se han asociado con la activación del sistema inmunitario innato a través de diferentes mecanismos. Entre ellos, se ha descrito que pueden activar directamente patrones de reconocimiento de patógenos. Además, están implicados en la activación del inflamasoma y, mediante la liberación de alarminas, potencian la muerte celular necrótica (Ferko & Catelas, 2018). Curiosamente, se ha atribuido un papel adyuvante a iones metálicos específicos que promueven la formación de células dendríticas, migración y presentación de antígenos a linfocitos T-metales específicos (McKee & Fontenot, 2016).

En un estudio previo donde se evaluó la respuesta transcriptómica del salmón del Atlántico durante una infestación con *C. rogercresseyi*, se observó que genes asociados al transporte de hierro, como la *hepcidina*, el *receptor de transferrina* y la *haptoglobina*, estaban regulados al alza en riñón anterior, lo cual sugirió una respuesta inmunitaria nutricional (Valenzuela-Muñoz & Gallardo-Escárate, 2017b). La regulación del hierro juega un papel fundamental en la inmunidad de los peces, protegiendo los tejidos del hospedero del estrés oxidativo y limitando la disponibilidad de hierro para los patógenos (Johnson & Wessling-Resnick, 2012). En este trabajo, genes asociados a la regulación del hierro aumentaron sus niveles de expresión, entre ellos, *ferritina H* y *ferritina M* se activaron en las células SHK-1 expuestas a Cr-catepsina, mientras que en riñón anterior se observó una regulación positiva de *haptoglobina*. Además, los niveles de expresión del *receptor de transferrina* se incrementaron en ambos modelos de estudio, sugiriendo que las células también podrían presentar mecanismos para la homeostasis del hierro. Además, se observó la modulación de citocinas proinflamatorias y antiinflamatorias y de proteínas de fase aguda, las cuales podrían estar regulando la transcripción de genes implicados en el transporte de hierro, contribuyendo directamente a la homeostasis del hierro (Weiss, 2005). Estos resultados apoyan la teoría de que las células SHK-1 poseen los mecanismos para generar inmunidad nutricional contra la Catepsina de *C. rogercresseyi*.

Algunas rutas involucradas en la respuesta inmune, como por ejemplo, la ruta de señalización de TNF, rutas de señalización de NF-κB, la ruta de señalización de receptor similar a NOD y ruta interacciones citoquina-receptor de citoquina fueron altamente enriquecidas. Diferentes autores han planteado que el reconocimiento de antígenos en las células inmunes de riñón anterior del salmón desencadena las interacciones citoquina-receptor de citoquina, y luego las vías de señalización de $NF-\kappa B$ y TNF potencian la transcripción de varios genes inmunitarios y factores inflamatorios (Lim & Hong, 2021; Liu et al., 2017). Además, la activación de receptores tipo Nod (NLR) pertenecientes a la familia de receptores de reconocimiento de patrones (PRR), se ha asociado con estrés celular, lo cual induce el ensamblaje del inflamasoma. Por otro lado, los estímulos endógenos desencadenan la activación de vías de señalización como NF-κB y proteínas quinasas activadas por mitógenos (MAPK), que inducen una respuesta proinflamatoria (Akira et al., 2006; Franchi et al., 2009). Además, la ruta de señalización de receptores tipo Toll fue altamente enriquecida. En el riñón anterior, el TLR2 estaba regulado al alza; mientras, TLR5, TLR6 y TLR13 se expresaron en gran medida en las células SHK-1 en respuesta a Cr-catepsina. El gen TLR13 ha sido descrito como el receptor tipo Toll más abundante en riñón anterior de salmón del Atlántico y salmón Coho (Valenzuela-Muñoz et al., 2016). La sobreexpresión de TLR13 observada en el salmón Coho infestado con C. rogercressevi se asoció con la resistencia de los peces a la infestación por ectoparásitos (Valenzuela-Muñoz et al., 2016). En nuestro estudio actual, la alta expresión de TLR13 en las células SHK-1 podría usarse como marcador molecular para la evaluación de candidatos vacunales para el control del piojo de mar.

Otro posible mecanismo de remodelación funcional identificado en este estudio sería la regulación mediada por RNA largos no codificantes. El análisis de correlación de expresión reveló la posible regulación de los lncRNA sobre la expresión de genes codificadores implicados en procesos biológicos relevantes. Durante la infestación de piojos de mar en el salmón del Atlántico se ha descrito la cercana ubicación entre los lncRNA y los genes codificantes relacionados con la

migración celular y la regulación transcripcional (Tarifeño-Saldivia et al., 2017). Varios estudios han demostrado la modulación de las vías de respuesta innata y adaptativa por lncRNA (Aune & Spurlock III, 2016), y durante infecciones bacterianas y virales en la trucha arco iris y el salmón del Atlántico (Al-Tobasei et al., 2016; Boltaña et al., 2016). Además, durante la infestación de *C. rogercresseyi*, lncRNA de salmón del Atlántico potenciaron la modulación de genes asociados con la regulación de la respuesta inmune, el desarrollo, la proliferación celular y la respuesta al estrés (Valenzuela-Muñoz et al., 2018). Este estudio enfatiza la fuerte regulación de los lncRNAs del salmón del Atlántico sobre genes relacionados con la respuesta inmune, la homeostasis del hierro, la respuesta inflamatoria y la apoptosis, entre otros. Además, destaca la correlación entre los genes de catepsina y un alto número de lncRNA modulados diferencialmente.

Remodelación transcriptómica basada en splicing alternativo en la línea celular SHK-1 y riñón anterior de salmón del Atlántico durante la infección de *P. salmonis*

Los peces están frecuentemente expuestos a varios factores estresantes, incluidas las infecciones patógenas. Pueden responder rápida y eficazmente a cambios recurrentes e inesperados mediante mecanismos de regulación génica a nivel transcripcional o post-transcripcional (Tan et al., 2018). El splicing alternativo, como mecanismo post-transcripcional clave (Maniatis & Tasic, 2002), juega un papel fundamental en la regulación de la respuesta inmune y la interacción patógeno - hospedero (Schaub & Glasmacher, 2017). Por tanto, el AS influye en la remodelación de la respuesta transcriptómica del hospedero durante una infección patógena. En estudios previos se ha demostrado que el proceso AS podría influir en los patrones de expresión génica del huésped causados por infecciones intracelulares de patógenos, por ejemplo, Mycobacterium tuberculosis (Kalam et al., 2017), Listeria monocytogenes (Pai et al., 2016), Salmonella typhimurium (Pai et al., 2016; Wagner et al., 2021). De manera similar, en peces, se informó que el bagre de canal (Ictalurus punctatus) aumentó los niveles de AS en respuesta a la infección por Edwarsiella ictaluri (Tan et al., 2018). En este estudio se evaluó la funcionalidad de los genes diferencialmente expresados y que presentaron eventos de AS (DAS), exclusivos durante la infección por P. salmonis en las células SHK-1 y el riñón anterior de salmón del Atlántico. En células SHK-1 infectadas con P. salmonis, se destacaron Procesos Biológicos (PB) exclusivos asociados con el metabolismo y la biosíntesis de nucleótidos y ribonucleótidos de purina. La biosíntesis de nucleótidos es fundamental para la supervivencia de las bacterias, las cuales son capaces de sintetizar y/o adquirir nutrientes del ambiente o del hospedero; e involucrándolos en múltiples funciones celulares (Goncheva et al., 2022). En este sentido, una pregunta intrigante es cómo los patógenos manipulan el metabolismo del hospedero para su beneficio durante su proceso de infección. Previamente, en un estudio de salmón del Atlántico infectado por *P. salmonis*, se observó una alta modulación de genes asociados con el metabolismo de proteínas y especialmente con la *biosíntesis/degradación de aminoácidos* (Valenzuela-Miranda & Gallardo-Escárate, 2018). Como resultado de un ensayo genómico de referencia utilizado para predecir los aminoácidos esenciales y no esenciales, los autores encontraron un déficit de genes biosintéticos asociados con el metabolismo de valina, leucina e isoleucina para *P. salmonis*. Por lo tanto, se sugiere que *P. salmonis* se beneficiaría de los nutrientes del hospedero para sobrevivir (Valenzuela-Miranda & Gallardo-Escárate, 2018). En este sentido, las células podrían utilizar el AS de genes como estrategia molecular para enriquecer la producción de los metabolitos necesarios para el organismo y suplir el déficit provocado por la infección.

Los genes DAS del riñón anterior se enriquecieron en PB relacionados con la respuesta inmune, la respuesta al estímulo y la respuesta inmune adaptativa. Este hallazgo respalda que el riñón anterior es un órgano hematopoyético clave para los peces teleósteos, donde se producen y maduran los leucocitos y los macrófagos fagocíticos (Soulliere & Dixon, 2017). Por lo tanto, frente a una infección, es probable que se acentúen los mecanismos postranscripcionales en beneficio de una respuesta inmune, por ejemplo, el AS. Al mismo tiempo, las Funciones Moleculares (FM) de mayor enriquecimiento en el riñón anterior se relacionó con la señalización, la actividad del transportador, la actividad de las citoquinas y otras funciones relacionadas con la respuesta inmune. Varios estudios han demostrado que AS puede aumentar la complejidad de la regulación inmune. Por ejemplo, en las células dendríticas humanas, los genes empalmados alternativamente se asociaron con el desarrollo de las células, los procesos de endocitosis y la presentación de antígenos durante la exposición a *E. coli* (Rodrigues et al., 2013; Su & Huang, 2021). Además, en las células del hospedero, la producción y señalización de IFN y la red de genes estimulados por IFN (ISG) se han descrito como una respuesta innata a la infección microbiana. Los estudios han indicado que la localización y la actividad de las proteínas ISG en el hospedero pueden verse afectadas por AS, lo que les otorga un papel privilegiado en el control de la inmunidad innata (Savan, 2018). Nuestro trabajo mostró que en ambos modelos de estudio expuestos a la infección por P. salmonis, algunos genes estimulados por IFN mostraron un conteo alto de empalme, lo que podría ser crucial para una respuesta del salmón durante la infección por P. salmonis. En el riñón anterior de salmón del Atlántico infectado con dos cepas de P. salmonis (LF-89 y EM-90), se observó una sobrerregulación de genes proinflamatorios ($TNF\alpha$, IL-1b, IL-8) y algunos mediadores del sistema inmunitario. respuesta, entre ellos, se observó IFNy, IL-10, IL-12b, IL-15 (Rozas-Serri et al., 2018a). La activación de una respuesta mediada por IFN promueve la diferenciación de las células T CD4+ en el fenotipo Th1 y, por lo tanto, modula la respuesta inmune a los patógenos intracelulares (Maruyama et al., 2003; Rozas-Serri et al., 2018b). La actividad transcripcional de múltiples genes ha sido evaluada como una medida de la respuesta inmune en varios tejidos de salmón del Atlántico (hígado, riñón anterior y músculo) expuestos a una infección por P. salmonis (Tacchi et al., 2011). En riñón anterior se observó un aumento de los niveles de expresión de IFNy, potenciando la activación de macrófagos y la respuesta antiviral. Por otro lado, se observó una disminución en la expresión del péptido antimicrobiano catelicidina-1 en el tejido muscular del salmón (Tacchi et al., 2011). En nuestro estudio, el péptido antimicrobiano catelicidina presentó alto conteo de empalme en ambos modelos de estudio durante la infección por P. salmonis. En este sentido, el AS influiría en la regulación de péptidos antimicrobianos, buscando isoformas alternativas para hacer frente a la infección bacteriana. Recientemente, un estudio evaluó el impacto del quelante de hierro mesilato deferoxamina (DFO) como medida preventiva durante la infección por P. salmonis en células SHK-1 (Díaz et al., 2021). Los resultados del estudio respaldaron la observación de que DFO brinda protección parcial contra la infección, observándose una reducción significativa de los efectos citopáticos en los grupos infectados que fueron tratados con el quelante; y también encontró que los efectores inmunes (catelicidina-1, hepcidina y óxido nítrico sintasa inducible iNOS) aumentaron significativamente a los 7 dpi como una fuerte respuesta antimicrobiana (Díaz et al., 2021). En la trucha Arcoíris, se ha demostrado que las catelicidinas y sus péptidos derivados desempeñan un papel importante en la respuesta inmunitaria innata de los peces a la infección por A. salmonicida, observando una regulación positiva del mRNA de Cath1 en diferentes tejidos, incluidas las branquias, el bazo y riñón anterior (Chang et al., 2006; Maier et al., 2008). Además, se utilizaron dos líneas celulares, CHSE-214 de embrión de salmón chinook (Oncorhynchus tshawytscha) y la línea de células ACL de larvas de bacalao del Atlántico (Gadus morhua), para evaluar la expresión de catelicidina frente a estímulos microbianos (Broekman et al., 2013). Estos autores sugirieron que la estimulación de la expresión de *catelicidina* podría estar relacionada con receptores de reconocimiento de patrones como TLR5. Además, dedujeron que la vía de señalización que conduce a la regulación positiva de *catelicidina* podría ser una cascada de señalización que puede incluir PI3-quinasa y el compartimento de tráfico celular (Broekman et al., 2013). Por lo tanto, podríamos sustentar que los procesos transcripcionales, como los mecanismos de AS, jugarían un papel fundamental en la regulación de la respuesta inmune innata de las interacciones patógeno – hospedero (Schaub & Glasmacher, 2017).

Más allá del impacto de AS en la regulación del sistema inmune y el proceso de desarrollo en Metazoa, la dinámica del proteoma impulsada por AS también puede modular la funcionalidad de los componentes celulares (Kijewska et al., 2018). Los genes DAS asociados con la infección por P. salmonis en ambos modelos de estudio enriquecieron los componentes celulares asociados principalmente con la membrana y sus componentes intrínsecos. Anteriormente, la interrupción de la monocapa celular en las células SHK-1 durante la infección por P. salmonis se ha informado como un efecto citopático relevante (Díaz et al., 2021; Ortiz-Severín et al., 2020). Se reconoce que los patógenos intracelulares modifican los componentes citoplasmáticos, como los orgánulos, las vesículas de tráfico y el citoesqueleto, para crear un entorno favorable para su reproducción (Rosenberger & Finlay, 2003). Un blanco específico utilizado por el patógeno para interrumpir el metabolismo de las células infectadas es el citoesqueleto de actina dinámico, que es crucial para la organización celular y tisular (Navarro-Garcia et al., 2013; Ramirez et al., 2015). En este sentido, múltiples vacuolas citoplasmáticas y alteraciones del citoesqueleto de actina han sido otros efectos fenotípicos reportados en cultivos celulares infectados con P. salmonis (Ortiz-Severín et al., 2020). Por lo tanto, la regulación del citoesqueleto juega un papel fundamental durante la infección por P. salmonis, y se ha propuesto la interacción con actina y clatrina endógenas como un paso crucial en la internalización de la bacteria (Ramirez et al., 2015). En este contexto, la inclusión de nuevas isoformas mejora la adaptabilidad funcional y la capacidad física celular del hospedero para combatir una infección de manera eficaz. Además, los estudios han demostrado la influencia de AS en genes tejido-específico que codifican proteínas involucradas en la endocitosis, la deformación de la membrana y la formación de endosomas (Buljan et al., 2012; Ellis et al., 2012). Esto modifica las redes de interacción de las proteínas a nivel celular y tisular, complejizando el proceso evolutivo de los organismos (Blue et al., 2018) y, por tanto, su respuesta a estresores bióticos y abióticos.

Remodelación transcriptómica de las células sanguíneas de salmón del Atlántico vacunados y expuestos a dos patógenos marinos

El estudio de la respuesta inmune en células sanguíneas de peces se ha incrementado en los últimos años, aprovechando sus funciones biológicas para mantener la homeostasis inmunitaria en el organismo. Por ejemplo, las células sanguíneas de tilapias del Nilo (Oreochromis niloticus) expuestas a ácido poliinosínico-policitidílico (poli I:C) mostraron un incremento en los niveles de expresión de TLR3 y varios factores reguladores de Interferón (IRF) (Shen et al., 2018). En células sanguíneas de trucha arcoíris, se expresaron genes de respuesta antiviral en respuesta a una infección con IPNV(Nombela et al., 2017). Así también en eritrocitos de salmón del Atlántico infectados con piscine orthoreovirus, los niveles de expresión de $IFN\alpha$, ácido retinoico inducible, gen de resistencia a myxovirus (MX) y proteinasa quinasa R (PKR) fueron regulados al alza (Wessel et al., 2015). En este trabajo, los patrones globales transcriptómicos de las células sanguíneas de salmón del Atlántico de los cuatro grupos experimentales mostraron niveles de expresión diferenciales. El grupo experimental vacunado con Ipath® mostró un mayor número de DEGs, evidenciando una mayor respuesta transcriptómica asociada a esta vacuna en comparación con las vacunas comerciales empleadas. Notoriamente, las anotaciones de los DEGs compartidos por los tres grupos experimentales, vacunados y expuestos a las infestación de C. rogercressevi e infección con P. salmonis, mostraron un enriquecimiento de genes relacionados con homeostasis y metabolismo del hierro.

El hierro es uno de los nutrientes esenciales involucrados en la inmunidad nutricional y se encuentra en casi todos los organismos, desempeñando un papel clave como cofactor o como grupo prostético de enzimas esenciales involucradas en varios procesos bioquímicos y celulares (Haschka et al., 2021; Schaible & Kaufmann, 2004); tales como la síntesis de ADN, el metabolismo energético, el suministro (hemoglobina) y almacenamiento (mioglobina) de oxígeno, la desintoxicación y la defensa de especies reactivas de oxígeno (ROS) (Gehrer et al., 2023; Haschka et al., 2021). En el contexto de una infección, la inmunidad nutricional juega un papel clave, provocando una batalla por los nutrientes entre el hospedero y los patógenos. El hospedero emplea mecanismos específicos destinados a privar a los microorganismos invasores de nutrientes cruciales, mientras que los patógenos intentan superar estas estrategias defensivas (Gehrer et al., 2023; Núñez et al., 2018). En el caso de la bacteria *P. salmonis* se ha demostrado la competencia por los nutrientes de su hospedero (Valenzuela-Miranda & Gallardo-Escárate, 2016a, 2018). Durante la infestación con *C. rogercresseyi* en salmón del Atlántico se ha observado que existe una limitación del hierro, observándose un aumento en la expresión de *hepcidina* y la *heme oxigenasa*, esta última presente en el catabolismo del grupo Hemo (Valenzuela-Muñoz & Gallardo-Escárate, 2017b).

En los vertebrados, la homeostasis del hierro está regulada por proteínas fijadoras de hierro como la ferritina, haptoglobina, hepcidina, y la transferrina. La regulación de estas proteínas debe ser estrictamente controlada, ya que un exceso o deficiencia de hierro estaría provocando un severo daño oxidativo (Fuhrmann et al., 2020; Zhou et al., 2018). Además, una deficiencia de hierro podría provocar una disminución de los niveles de oxígeno en células y tejidos debido a su participación en el transporte de oxígeno; y por lo tanto, llevar al organismo a una condición de hipoxia (Chepelev & Willmore, 2011). En este estudio se observaron altos niveles de expresión de *ferritina* en los tres grupos experimentales vacunados. La proteína ferritina es responsable del almacenamiento intracelular de hierro. Este complejo heteropolimérico contiene 24 subunidades de cadenas de ferritina pesada (H) y ligera (L) y puede almacenar hasta 4500 átomos de Fe³⁺ (Haschka et al., 2021).

Así también, gran número genes involucrados en la regulación del sistema inmune mostraron altos niveles de expresión en los tres grupos experimentales vacunados, entre ellos timosina beta, fibroleucina y supresor de la señalización de citoquinas 3 (SOCS3). La timosina beta tiene una amplia actividad biológica, entre ellas regular efectos antiinflamatorios (Smart et al., 2007) e inhibición de la apoptosis (Malinda et al., 1997). Además, actúa mitigando el daño inflamatorio al regular las vías de NF- κ B y los receptores tipo Toll, lo que reduce la liberación de citoquinas como *TNF-* α y las quinasas asociadas al receptor de *IL-1* (Xing et al., 2021). Las fibroleucinas, pertenecen a la superfamilia de proteínas relacionadas con el fibrinógeno, para las cuales se ha demostrado que poseen diversas funciones en la respuesta inmune (Chan et al., 2003; Doolittle, 1983). En humanos la fgl2/fibroleucina expresada como proteína soluble en las células T CD4+ y CD8+ de sangre periférica (Rüegg & Pytela, 1995), tiene la capacidad de modular la respuesta de células T y la maduración de las células dendríticas, favoreciendo la producción de células dendríticas tolerogénicas capaces de regular y suprimir la respuesta inmune (Chan et al., 2003). Por su parte, SOCS3 actúa regulando la señalización de liberación de citoquinas (Starr et al., 1997), lo cual requiere un control riguroso para modular la defensa y protección contra infecciones y garantizar el adecuado desarrollo de las diferentes poblaciones de células del sistema inmune (Carow & Rottenberg, 2014). Por ejemplo, modula negativamente la señalización del *factor estimulante de colonias de granulocitos (G-CSF)*, el cual forma parte de una red de factores de crecimiento hematopoyético y citocinas claves para la regulación de la producción de células sanguíneas (Boyle et al., 2007).

Teniendo en cuenta, la alta representación de genes involucrados en la regulación del sistema inmune y en el metabolismo del hierro, en este trabajo se analizó el comportamiento de distintas rutas de señalización y su posible remodelación transcriptómica. El análisis de RNA-seq de la ruta de señalización de receptores tipo Toll, ruta de la apoptosis, ruta de señalización de HIF-1 y ferroptosis, en los cuatro grupos experimentales, evidenciaron una diferenciación en los patrones de expresión dependiendo del grupo experimental, siendo el grupo vacunado con Ipath® el más representado en todas las rutas, en términos de DEGs.

Los TLRs están implicados en el reconocimiento de numerosos patógenos (Gao et al., 2017). Luego de la activación de los TLRs basada en el reconocimiento de los patrones moleculares asociados a patógenos (PAMPs), se despliega una cascada de señalización aguas abajo para promover la translocación nuclear de NF-kB (Kumar et al., 2011; Li et al., 2010), proteína activadora 1 (AP-1) (Gay et al., 2014) y el factor regulador de interferón 3 (IRF3) (Zhao et al., 2015). Cada uno de estos factores de transcripción activan genes específicos que codifican para distintos grupos de proteínas, como citoquinas y quimioquinas proinflamatorias o antivirales (El-Zayat et al., 2019; Moresco et al., 2011). En este trabajo, los genes pertenecientes a la ruta de señalización de los TLRs mostraron cambios de modulación transcripcional en el grupo experimental vacunado con Ipath® y expuesto a C. rogercresseyi y P. salmonis. Entre ellos, los factores transcripcionales NF- κB y AP-1 fueron regulados al alza, al igual que se activó la respuesta de citocinas inflamatorias $IL-1\beta$, *IP-10*, y moléculas co-estimuladoras de células T, como *CD80*. Por otro lado, los TLRs inducen la apoptosis de las células infectadas, inhibiendo su síntesis de proteínas y limitando la propagación de la infección. Además, durante las condiciones inflamatorias de la sepsis, los TLR también regulan negativamente la respuesta inmune, incluyendo a las células dendríticas (El-Zayat et al., 2019; Kaiser & Offermann, 2005).

La regulación de diversos procesos celulares, incluyendo la apoptosis son mediados por el factor de transcripción AP-1, el que puede ser activado por un gran número de estímulos, entre ellos citocinas, factores de crecimiento e infecciones virales y bacterianas (Hess et al., 2004; Kyriakis, 1999; Wang et al., 2013). En este trabajo el grupo experimental vacunado con Ipath® y expuesto a C. rogercressevi y P. salmonis muestran cambios en los niveles de expresión de las isoformas de genes AP-1 y el efector caspasa-3, ambos genes involucrados en la ruta de la apoptosis. previamente, en un estudio realizado en lubina infectadas con una bacteria secretora de exotoxina apoptótica se registró una alta expresión de las moléculas efectoras caspasa-3 y -9 en riñón anterior, donde además se observó una gran cantidad de células apoptóticas; lo cual posiblemente estaría involucrando la vía intrínseca de la apoptosis (Reis et al., 2007a; Reis et al., 2007b). Los efectores caspasa-3, -6 y -7 se encuentran involucrados en la destrucción de las células mediante la escisión de sus sustratos correspondientes (Cohen, 1997; Fuentes-Prior & Salvesen, 2004; Grütter, 2000; Takle & Andersen, 2007). En este trabajo se observó la activación de varios sustratos de clivaje, entre ellos α -tubulina, actina, lamina y MCl-1, las cuales conllevan a varios eventos de apoptosis, como la disrupción de microtúbulos o la pérdida de integridad de la membrana nuclear. Estos eventos estarían remodelando transcripcional y estructuralmente la integridad celular como respuesta a diferentes estímulos, en este caso la vacunación y exposición a patógenos marinos. En un estudio en macrófagos de salmón del Atlántico infectados con P. salmonis se planteó la hipótesis de que la bacteria evita la apoptosis de los macrófagos al comienzo de la infección para asegurar su supervivencia, replicación y posiblemente su transporte dentro de estas células fagocíticas. Al completar el proceso, no se muestra inhibición de la apoptosis de los macrófagos, liberándose las bacterias de las células infectadas y continuando su ciclo de vida (Díaz et al., 2017).

Como se había mencionado anteriormente, el hierro es un factor clave para el mantenimiento de la homeostasis e inmunidad nutricional en el salmón del Atlántico ante la presencia de patógenos invasores. Además, tiene una relación intrínseca con las células sensoras y transportadoras de oxígeno (Chepelev & Willmore, 2011). En la ruta de señalización del HIF-1, en condiciones de normoxia; el hierro actúa como co-sustrato del oxígeno en la actividad enzimática del gen *PHD*, el cual es catalizador enzimático de la hidroxilación del gen *HIF-1* α para su posterior degradación (Chepelev & Willmore, 2011; Myllyharju, 2013). Al existir un déficit de oxígeno o hierro, el *HIF* α es translocado a núcleo, donde forma un heterodímero con *HIF* β para potenciar la respuesta de

elementos hipóxicos (Chepelev & Willmore, 2011). En el grupo experimental vacunado con Ipath[®], el gen 4*E*-*BP1*, encargado de inhibir la cascada de activación de *HIF-1* α fue regulado positivamente así como el gen PHD, mientras que los genes de activación de HIF-1a están regulados negativamente, incluido las propias subunidades HIF-1 α y β . No obstante, se observó una activación positiva de los genes involucrados con el metabolismo anaeróbico, tales como Glut1, GAPDH, ENO1, PFK1, PGK1, ALDOA, entre otros, lo cual podría deberse al alto procesamiento metabólico que ocurre en el pez producto de las infecciones patógenas. En este caso la vacuna Ipath® conformada por una quimera de ferritina y transferrina recombinante podría influir en la prevención de una condición similar a hipoxia por déficit de hierro, que podría generarse en salmón del Atlántico debido la exposición a C. rogercressevi y P. salmonis, para los cuales se ha demostrado la competencia por el hierro y podrían causar una deficiencia del mismo en los salmones (Valenzuela-Miranda & Gallardo-Escárate, 2016a; Valenzuela-Muñoz et al., 2017a; Valenzuela-Muñoz & Gallardo-Escárate, 2017b). Las proteínas ferritina y transferrina contienen elementos de respuesta a hierro (IREs) en sus extremos 5'UTR y 3'UTR respectivamente, a los cuales se unen las proteínas reguladoras del hierro (IRPs) que ejercen una regulación estricta en la liberación y secuestro del hierro necesario para el uso metabólico dentro de la célula (Alberghini et al., 2005; Eisenstein, 2000). Además, el IRP2 es el mayor regulador de la expresión del gen de HIF- 2α , y su estabilidad depende del estado de hierro y oxígeno intracelular (Wallander et al., 2006). Cabe destacar que en este trabajo se observó que en riñón anterior de salmón del Atlántico expuestos a 1mg de hierro el gen HIF-1 α fue regulado a la baja comparado con el grupo infestado con P. salmonis, así como algunos genes de señalización de la respuesta inmune involucrados en la ruta de señalización de HIF-1. Notoriamente, al aumentar la dosis de hierro a 5 mg se observó una disminución de la expresión de HIF-1 α aún más significativa en el grupo no infectado con P. salmonis, sugiriendo que la suplementación con hierro podría prevenir una condición de hipoxia en los peces expuestos a infecciones patógenas.

La regulación de las proteínas involucradas en el transporte y almacenamiento del hierro, es igualmente relevante para desencadenar el proceso de ferroptosis (X. Chen et al., 2020). Este proceso es inducido por una acumulación excesiva de hierro y por la inhibición de la enzima glutatión peroxidasa 4 (GPX4) (Chen et al., 2021), desencadenando una peroxidación de los lípidos de membrana dependiente del hierro (Stockwell & Jiang, 2020). Además, se ha descrito que

bacterias patógenas inducen el proceso de ferroptosis, provocando muerte celular y daño tisular en el hospedero, principalmente por la inhibición de GPX4 (Zhu et al., 2019). Por ejemplo, Pseudomonas aeruginosa, que carece de fosfatidiletanolamina de éter (AA-PE), tiene la capacidad de expresar lipoxigenasa y oxidar la AA-PE del hospedero a 15-hidroperoxi-AA-PE lo cual puede conllevar a la ferroptosis en células epiteliales bronquiales humanas (Dar et al., 2019). En un estudio en ratones, se asoció la muerte de las células macrófagas inducida por M. tuberculosis con el desencadenamiento del proceso de ferroptosis. Los autores observaron una disminución de los niveles de glutatión reducido (GSH) y GPX4, además de un incremento del hierro libre intracelular, así como la formación de superóxido en las mitocondrias y la peroxidación lipídica (Amaral et al., 2019). En este trabajo, se observó que la vacunación con Ipath®, indujo una sobre-expresión de varios genes involucrados en la ruta de la ferroptosis en las células sanguíneas de salmón del Atlántico, entre ellos transferrina, ferritina y GPX4. Se ha descrito que la muerte ferroptótica podría prevenirse mediante la quelación del hierro (Dixon et al., 2012). En este sentido se ha demostrado la actividad quelante del candidato vacunal Ipath® sugiriendo la reducción de las moléculas de hierro disponibles para la bacteria, y por tanto una protección para el salmón del Atlántico expuesto a infecciones con P. salmonis y A. salmonicida (Valenzuela-Muñoz et al., 2021). Por tanto, una sobredosis de hierro podría contrarrestar este efecto y promover la mortalidad por ferroptosis (Dixon et al., 2012). En este trabajo, se observó que en riñón anterior de salmón del Atlántico expuestos a sobredosis de hierro e infectados con P. salmonis, el gen GPX4 fue altamente expresado en el grupo inyectado con 1 mg de hierro, mientras que al inyectar con 5 mg de hierro la expresión de este gen disminuyó, pero no fue inhibida, mientras que durante la infección con P. salmonis, el gen GPX4 fue regulado a la baja. Por tanto, una infección bacteriana o altas dosis de hierro estarían contrarrestando la expresión de GPX4, y promoviendo este tipo de mortalidad celular. En este sentido, se podría postular que la vacunación con Ipath® además de modular la homeostasis del hierro y la respuesta inmune del salmón del Atlántico durante procesos de infección bacterianos y ectoparasíticos (Valenzuela-Muñoz et al., 2021), induce un mecanismo de remodelación transcripcional que de cierta manera contribuye a prevenir una condición de hipoxia por déficit de hierro y la ferroptosis celular.

7. CONCLUSIONES

El estudio de la respuesta del salmón del Atlántico a diferentes estímulos inmunológicos, como infecciones patógenas o vacunas, es clave para profundizar en la dinámica patógeno-hospedero y en la búsqueda de posibles biomarcadores, dianas terapéuticas y estrategias de manejo para la salmonicultura. Este trabajo tuvo como objetivo profundizar en los mecanismos de remodelación transcriptómica, estructural y funcional de la respuesta del salmón del Atlántico ante diferentes inmuno-estimulaciones. Esta aproximación permitió explorar los mecanismos moleculares implicados en la respuesta del salmón ante desafíos inmunológicos, revelando las vías de señalización, los genes y los procesos biológicos implicados en la respuesta inmune.

Durante la inmuno-estimulación con la proteína recombinante Cr-catepsina de C. rogercresseyi, se activaron vías de señalización de receptores tipo Toll, receptores similares a NOD, asociadas a una respuesta inmune innata en el riñón anterior de salmón del Atlántico y en la línea celular SHK-1. Este antígeno igual mostró la capacidad de activar rutas relacionadas a una respuesta adaptativa como las vías de señalización de receptores de células B y T. Por su parte, la vacunación con Ipath® y posterior exposición a C. rogercresseyi y P.salmonis indujo una mayor respuesta transcriptómica en las células sanguíneas de salmón del Atlántico en comparación con las vacunas comerciales utilizadas en este trabajo. Esta mayor respuesta puede atribuirse a la composición única de la vacuna Ipath® y su especificidad antigénica, dado que incluye una quimera de ferritina y transferrina recombinante, y el empleo de adyuvante como potenciador de la respuesta inmune. Esta vacuna demostró ser altamente efectiva en la activación de genes y vías de señalización relacionados con la homeostasis y el metabolismo del hierro, como la vía de señalización de HIF-1 y ferroptosis, lo que subraya la importancia de este nutriente en la respuesta inmune del salmón del Atlántico. Con nuestros resultados podemos inferir que la vacuna Ipath® podría influir en la prevención de una condición similar a hipoxia por déficit de hierro, que podría generarse en salmón del Atlántico durante la exposición a C. rogercresseyi y P. salmonis, para los cuales se ha demostrado que compiten por el hierro y podrían causar una deficiencia del mismo en su hospedero.

En el caso de una inmuno-estimulación natural, como fue la infección con *P. salmonis* en las células SHK-1, la respuesta estuvo más diferenciada hacia el metabolismo y biosíntesis de

nucleótidos, sugiriendo que la bacteria puede utilizar estos micronutrientes celulares para su proliferación y supervivencia. En cambio, en el riñón anterior de salmón del Atlántico durante la infección con *P. salmonis* se destacaron procesos funcionales asociados a respuesta inmune. En ambos modelos de estudio esta respuesta transcriptómica del salmón del Atlántico estuvo enriquecida por isoformas generadas a partir de eventos de splicing alternativo.

La influencia del splicing alternativo en la respuesta del salmón del Atlántico frente a distintos estímulos inmunológicos tuvo un rol crucial en la remodelación transcriptómica observada. Durante la infección con *P. salmonis* se identificaron múltiples isoformas de genes clave involucrados en la respuesta antiviral, como *Interferón* y el péptido antimicrobiano *catelicidina*. Así mismo, en este trabajo se encontró que el splicing alternativo influyó sobre múltiples componentes celulares, lo cual evidencia una remodelación estructural que modula la capacidad física del hospedero para combatir eficazmente una infección. Adicionalmente, en las células sanguíneas del salmón del Atlántico, los mecanismos de splicing alternativo se encontraron remodelando la respuesta transcriptómica ante la combinación de estímulos inmuno-moduladores. En las vías de señalización de receptores tipo Toll, apoptosis, señalización de HIF-1 y ferroptosis se encontraron múltiples isoformas de los genes modulados en estas vías, permitiendo una mayor adaptabilidad y flexibilidad en la respuesta inmunológica del salmón del Atlántico frente a diferentes estímulos.

Los tres modelos de estudio empleados, incluyendo la línea celular SHK-1, el riñón anterior y las células sanguíneas del salmón del Atlántico, brindan una visión integral de la respuesta inmunológica en diferentes niveles y contextos. Los resultados revelaron patrones transcriptómicos distintos en cada uno de estos tejidos, lo que indica que la respuesta inmunológica es altamente dinámica y está influenciada por las características y funciones específicas de cada tejido. No obstante, las células SHK-1 y el riñón anterior del salmón expuestos a Cr-catepsina compartieron un 24.15% de la respuesta transcriptómica, la cual podemos atribuirla a la respuesta específica al antígeno empleado. Este estudio demuestra que es posible el uso de líneas celulares para la detección inicial de antígenos en el desarrollo de vacunas, reduciendo el consumo de tiempo asociado con la selección del antígeno. Por su parte, las células sanguíneas, resultaron un buen modelo para el estudio de la respuesta inmune sistémica del salmón del

Atlántico, que podría ser de gran aplicación en condiciones de campo dada la simplicidad de la toma de muestras.

En resumen, el estudio de estos mecanismos de remodelación y procesos a nivel transcriptómico nos permite comprender mejor la complejidad y plasticidad del sistema inmune del salmón del Atlántico; y explorar enfoques más precisos y efectivos para la protección y el mejoramiento de la salud de esta especie en la acuicultura. Este trabajo crea un precedente para futuras investigaciones, como una caracterización más detallada de la modulación del spliceosoma en el salmón del Atlántico por tratamientos de enfermedades como vacunas y antibióticos; así como la evaluación de nuevas vacunas y tratamientos inmunomoduladores. En conjunto, estos hallazgos brindan una base sólida para la mejora de la salud y el bienestar del salmón del Atlántico.

8. REFERENCIAS

- Aase, B. M., Jacob, T., Peter, A. Â. m., Anne-Lill, H., Erling-Olaf, K., & Espen, R. (2004). Protection of Atlantic salmon Salmo salar against infectious pancreatic necrosis after DNA vaccination. *Diseases of Aquatic Organisms*, 60(1), 11-20. <u>https://www.int-res.com/abstracts/dao/v60/n1/p11-20/</u>
- Agius, C., & Roberts, R. J. (2003). Melano-macrophage centres and their role in fish pathology. *Journal of Fish Diseases, 26*(9), 499-509. https://doi.org/https://doi.org/10.1046/j.1365-2761.2003.00485.x
- Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. *Cell, 124*(4), 783-801.
- Al-Tobasei, R., Paneru, B., & Salem, M. (2016). Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout. *PLOS ONE, 11*(2), e0148940. <u>https://doi.org/10.1371/journal.pone.0148940</u>
- Alamancos, G. P., Pagès, A., Trincado, J. L., Bellora, N., & Eyras, E. (2014). SUPPA: a super-fast pipeline for alternative splicing analysis from RNA-Seq. *bioRxiv*, 008763. <u>https://doi.org/10.1101/008763</u>
- Alberghini, A., Recalcati, S., Tacchini, L., Santambrogio, P., Campanella, A., & Cairo, G. (2005, 2005/08/26/). Loss of the von Hippel Lindau Tumor Suppressor Disrupts Iron Homeostasis in Renal Carcinoma Cells*. *Journal of Biological chemistry, 280*(34), 30120-30128. <u>https://doi.org/https://doi.org/10.1074/jbc.M500971200</u>
- Amaral, E. P., Costa, D. L., Namasivayam, S., Riteau, N., Kamenyeva, O., Mittereder, L., Mayer-Barber, K. D., Andrade, B. B., & Sher, A. (2019). A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. *Journal of Experimental Medicine*, 216(3), 556-570.
- Andrew, S. C., Primmer, C. R., Debes, P. V., Erkinaro, J., & Verta, J.-P. (2021, 2021/04/01/). The Atlantic salmon whole blood transcriptome and how it relates to major locus maturation genotypes and other tissues. *Marine Genomics, 56*, 100809. <u>https://doi.org/10.1016/j.margen.2020.100809</u>
- Arriagada, G., Figueroa, J., Marín, S. L., Arriagada, A. M., Lara, M., & Gallardo-Escárate, C. (2020). First report of the reduction in treatment efficacy of the organophosphate azamethiphos against the sea lice Caligus rogercresseyi (Boxshall & Bravo, 2000). *Aquaculture Research*,
 51(1),
 436-439.
 https://doi.org/https://doi.org/10.1111/are.14334
- Arriagada, G., Stryhn, H., Sanchez, J., Vanderstichel, R., Campistó, J. L., Rees, E. E., Ibarra, R., & St-Hilaire, S. (2017, 2017/01/01/). Evaluating the effect of synchronized sea lice treatments in Chile. *Preventive Veterinary Medicine, 136*, 1-10. https://doi.org/https://doi.org/10.1016/j.prevetmed.2016.11.011
- Aune, T. M., & Spurlock III, C. F. (2016). Long non-coding RNAs in innate and adaptive immunity. *Virus Research*, *212*, 146-160.
- Avendaño-Herrera, R. (2018, 2018/10/01/). Proper antibiotics use in the Chilean salmon industry: Policy and technology bottlenecks. *Aquaculture, 495,* 803-805. <u>https://doi.org/10.1016/j.aquaculture.2018.06.072</u>

- Avraham, R., Haseley, N., Brown, D., Penaranda, C., Jijon, Humberto B., Trombetta, John J., Satija, R., Shalek, Alex K., Xavier, Ramnik J., Regev, A., & Hung, Deborah T. (2015, 2015/09/10/). Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses. *Cell,* 162(6), 1309-1321. <u>https://doi.org/https://doi.org/10.1016/j.cell.2015.08.027</u>
- Bakkemo, K. R., Mikkelsen, H., Bordevik, M., Torgersen, J., Winther-Larsen, H. C., Vanberg, C., Olsen, R., Johansen, L.-H., & Seppola, M. (2011, 2011/12/01/). Intracellular localisation and innate immune responses following Francisella noatunensis infection of Atlantic cod (Gadus morhua) macrophages. *Fish Shellfish Immunol, 31*(6), 993-1004. <u>https://doi.org/10.1016/j.fsi.2011.08.020</u>
- Barman, D., Nen, P., Mandal, S. C., & Kumar, V. (2013). Immunostimulants for aquaculture health management. *J. Mar. Sci. Res. Dev, 3*(3), 1-11.
- Bastos, R. G., Ueti, M. W., Knowles, D. P., & Scoles, G. A. (2010, 2010/11/19). The Rhipicephalus (Boophilus) microplus Bm86 gene plays a critical role in the fitness of ticks fed on cattle during acute Babesia bovis infection. *Parasites & Vectors, 3*(1), 111. <u>https://doi.org/10.1186/1756-3305-3-111</u>
- Batista, T. M., Garcia-Martin, R., Cai, W., Konishi, M., O'Neill, B. T., Sakaguchi, M., Kim, J. H., Jung, D. Y., Kim, J. K., & Kahn, C. R. (2019, Mar 19). Multi-dimensional Transcriptional Remodeling by Physiological Insulin In Vivo. *Cell Rep, 26*(12), 3429-3443.e3423. https://doi.org/10.1016/j.celrep.2019.02.081
- Birkbeck, T. H., Griffen, A. A., Reid, H. I., Laidler, L. A., & Wadsworth, S. (2004). Growth of Piscirickettsia salmonis to high titers in insect tissue culture cells. *Infection and immunity*, 72(6), 3693-3694. <u>https://doi.org/10.1128/IAI.72.6.3693-3694.2004</u>
- Bjørgen, H., & Koppang, E. O. (2022). Anatomy of teleost fish immune structures and organs. *Principles of Fish Immunology*, 1-30.
- Blue, R. E., Curry, E. G., Engels, N. M., Lee, E. Y., & Giudice, J. (2018). How alternative splicing affects membrane-trafficking dynamics. *Journal of Cell Science*, 131(10). https://doi.org/10.1242/jcs.216465
- Bohmwald, K., Gálvez, N. M. S., Andrade, C. A., Mora, V. P., Muñoz, J. T., González, P. A., Riedel, C. A., & Kalergis, A. M. (2021, 2021-October-08). Modulation of Adaptive Immunity and Viral Infections by Ion Channels [Review]. *Frontiers in Physiology*, 12. <u>https://doi.org/10.3389/fphys.2021.736681</u>
- Boltaña, S., Sanchez, M., Valenzuela, V., & Gallardo-Escárate, C. (2016, 2016/12/01/). Density-dependent effects of Caligus rogercresseyi infestation on the immune responses of Salmo salar. *Fish Shellfish Immunol, 59*, 365-374. https://doi.org/https://doi.org/10.1016/j.fsi.2016.11.002
- Boxshall, G. A., & Bravo, S. (2000, 01 Jan. 2000). On the identity of the common Caligus (Copepoda: Siphonostomatoida: Caligidae) from salmonid netpen systems in southern Chile. *Contributions to Zoology, 69*(1-2), 137-146. <u>https://doi.org/10.1163/18759866-0690102015</u>
- Boyle, K., Egan, P., Rakar, S., Willson, T. A., Wicks, I. P., Metcalf, D., Hilton, D. J., Nicola, N. A., Alexander, W. S., Roberts, A. W., & Robb, L. (2007). The SOCS box of suppressor of cytokine signaling-3 contributes to the control of G-CSF responsiveness in vivo. *Blood*, *110*(5), 1466-1474. <u>https://doi.org/10.1182/blood-2007-03-079178</u>

- Bravo, S. (2010, May). The reproductive output of sea lice Caligus rogercresseyi under controlled conditions. *Exp Parasitol, 125*(1), 51-54. <u>https://doi.org/10.1016/j.exppara.2009.12.001</u>
- Bravo, S., & Campos, M. (1989). Coho salmon syndrome in Chile. 17(3).
- Bravo, S., Leiva, F., Moya, J., Guzman, O., & Vidal, R. (2023, 2023/01/11). Unveiling the Role of Dynamic Alternative Splicing Modulation After Infestation with Sea Lice (Caligus rogercresseyi) in Atlantic Salmon. *Marine Biotechnology*. <u>https://doi.org/10.1007/s10126-023-10196-6</u>
- Bravo, S., Nuñez, M., & Silva, M. T. (2013, 2013/03/01). Efficacy of the treatments used for the control of Caligus rogercresseyi infecting Atlantic salmon, Salmo salar L., in a new fish-farming location in Region XI, Chile. *Journal of Fish Diseases, 36*(3), 221-228. <u>https://doi.org/10.1111/jfd.12023</u>
- Bravo, S., Pozo, V., & Silva, M. T. (2015a). Evaluación de la efectividad del tratamiento con agua dulce para el control del piojo de mar Caligus rogercresseyi Boxshall & Bravo, 2000. Latin american journal of aquatic research, 43, 322-328. http://www.scielo.cl/scielo.php?script=sci arttext&pid=S0718-560X201500020008&nrm=iso
- Bravo, S., Silva, M. T., Agusti, C., Sambra, K., & Horsberg, T. E. (2015b, 2015/06/01/). The effect of chemotherapeutic drugs used to control sea lice on the hatching viability of egg strings from Caligus rogercresseyi. *Aquaculture, 443, 77-83.* https://doi.org/https://doi.org/10.1016/j.aquaculture.2015.03.011
- Bril, M., Fredrich, S., & Kurniawan, N. A. (2022, 2022/01/01/). Stimuli-responsive materials: A smart way to study dynamic cell responses. *Smart Materials in Medicine*, *3*, 257-273. <u>https://doi.org/10.1016/j.smaim.2022.01.010</u>
- Broekman, D. C., Guðmundsson, G. H., & Maier, V. H. (2013, Aug). Differential regulation of cathelicidin in salmon and cod. *Fish Shellfish Immunol, 35*(2), 532-538. https://doi.org/10.1016/j.fsi.2013.05.005
- Buljan, M., Chalancon, G., Eustermann, S., Wagner, Gunter P., Fuxreiter, M., Bateman, A., & Babu, M. M. (2012, 2012/06/29/). Tissue-Specific Splicing of Disordered Segments that Embed Binding Motifs Rewires Protein Interaction Networks. *Molecular cell*, 46(6), 871-883. <u>https://doi.org/https://doi.org/10.1016/j.molcel.2012.05.039</u>
- Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. *Aquaculture*, 306(1-4), 7-23.
- Cannon, M., Harford, S., & Davies, J. (1990). A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives. *Journal of Antimicrobial Chemotherapy*, *26*(3), 307-317. <u>https://doi.org/10.1093/jac/26.3.307</u>
- Carow, B., & Rottenberg, M. E. (2014). SOCS3, a Major Regulator of Infection and Inflammation. *Front Immunol, 5*, 58. <u>https://doi.org/10.3389/fimmu.2014.00058</u>
- Carpio, Y., Basabe, L., Acosta, J., Rodríguez, A., Mendoza, A., Lisperger, A., Zamorano, E., González, M., Rivas, M., Contreras, S., Haussmann, D., Figueroa, J., Osorio, V. N., Asencio, G., Mancilla, J., Ritchie, G., Borroto, C., & Estrada, M. P. (2011, Mar 24). Novel gene isolated from Caligus rogercresseyi: a promising target for vaccine

development against sea lice. *Vaccine, 29*(15), 2810-2820. https://doi.org/10.1016/j.vaccine.2011.01.109

- Caruffo, M., Maturana, C., Kambalapally, S., Larenas, J., & Tobar, J. A. (2016, 2016/07/01/). Protective oral vaccination against infectious salmon anaemia virus in Salmo salar. *Fish Shellfish Immunol, 54, 54-59.* https://doi.org/10.1016/j.fsi.2016.03.009
- Casamassimi, A., Federico, A., Rienzo, M., Esposito, S., & Ciccodicola, A. (2017, Jul 29). Transcriptome Profiling in Human Diseases: New Advances and Perspectives. International journal of molecular sciences, 18(8). https://doi.org/10.3390/ijms18081652
- Casuso, A., Valenzuela-Muñoz, V., Benavente, B. P., Valenzuela-Miranda, D., & Gallardo-Escárate, C. (2022, Jul 1). Exploring Sea Lice Vaccines against Early Stages of Infestation in Atlantic Salmon (Salmo salar). Vaccines (Basel), 10(7). <u>https://doi.org/10.3390/vaccines10071063</u>
- Chan, C. W. Y., Kay, L. S., Khadaroo, R. G., Chan, M. W. C., Lakatoo, S., Young, K. J., Zhang, L., Gorczynski, R. M., Cattral, M., Rotstein, O., & Levy, G. A. (2003). Soluble Fibrinogen-Like Protein 2/Fibroleukin Exhibits Immunosuppressive Properties: Suppressing T Cell Proliferation and Inhibiting Maturation of Bone Marrow-Derived Dendritic Cells1. *The Journal* of *Immunology*, 170(8), 4036-4044. https://doi.org/10.4049/jimmunol.170.8.4036
- Chang, C.-I., Zhang, Y.-A., Zou, J., Nie, P., & Secombes, C. J. (2006). Two Cathelicidin Genes Are Present in both Rainbow Trout (<i>Oncorhynchus mykiss</i>) and Atlantic Salmon (<i>Salmo salar</i>). Antimicrobial agents and chemotherapy, 50(1), 185-195. <u>https://doi.org/doi:10.1128/AAC.50.1.185-195.2006</u>
- Chauhan, K., Kalam, H., Dutt, R., & Kumar, D. (2019, 2019/04/05/). RNA Splicing: A New Paradigm in Host–Pathogen Interactions. *Journal of Molecular Biology*, *431*(8), 1565-1575. https://doi.org/10.1016/j.jmb.2019.03.001
- Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020, 2020/08/03/). TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Molecular Plant, 13*(8), 1194-1202. https://doi.org/https://doi.org/10.1016/j.molp.2020.06.009
- Chen, X., Kang, R., Kroemer, G., & Tang, D. (2021, Jun 7). Ferroptosis in infection, inflammation, and immunity. J Exp Med, 218(6). <u>https://doi.org/10.1084/jem.20210518</u>
- Chen, X., Yu, C., Kang, R., & Tang, D. (2020). Iron metabolism in ferroptosis. *Frontiers in cell and developmental biology*, *8*, 590226.
- Chepelev, N. L., & Willmore, W. G. (2011, Mar 15). Regulation of iron pathways in response to hypoxia. *Free Radic Biol Med*, 50(6), 645-666.https://doi.org/10.1016/j.freeradbiomed.2010.12.023
- Chevassus-au-Louis, B., & Lazard, J. (2009). Perspectives pour la recherche biotechnique en pisciculture. *Cahiers agricultures*, *18*(2-3), 91-96 (91).
- Cohen, G. M. (1997). Caspases: the executioners of apoptosis. *Biochemical Journal, 326*(1), 1-16.

- Costa, T. R. D., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., & Waksman, G. (2015, 2015/06/01). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. *Nature Reviews Microbiology*, *13*(6), 343-359. https://doi.org/10.1038/nrmicro3456
- Costello, M. J. (2006, 2006/10/01/). Ecology of sea lice parasitic on farmed and wild fish. *Trends in parasitology*, 22(10), 475-483. <u>https://doi.org/https://doi.org/10.1016/j.pt.2006.08.006</u>
- Cvitanich, J. D., Garate, N. O., & Smith, C. E. (1991). The isolation of a rickettsia-like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch's postulate. *Journal of Fish Diseases, 14*(2), 121-145. <u>https://doi.org/10.1111/j.1365-2761.1991.tb00584.x</u>
- Dalvin, S., Frost, P., Biering, E., Hamre, L. A., Eichner, C., Krossøy, B., & Nilsen, F. (2009, Nov). Functional characterisation of the maternal yolk-associated protein (LsYAP) utilising systemic RNA interference in the salmon louse (Lepeophtheirus salmonis) (Crustacea: Copepoda). Int J Parasitol, 39(13), 1407-1415. https://doi.org/10.1016/j.ijpara.2009.04.004
- Dannevig, B. H., Brudeseth, B. E., GjØEn, T., Rode, M., Wergeland, H. I., Evensen, Ø., & Press, C. M. (1997, 1997/05/01/). Characterisation of a long-term cell line (SHK-1) developed from the head kidney of Atlantic salmon (Salmo salarL.). *Fish Shellfish Immunol, 7*(4), 213-226. <u>https://doi.org/https://doi.org/10.1006/fsim.1996.0076</u>
- Dar, H. H., Tyurina, Y. Y., Mikulska-Ruminska, K., Shrivastava, I., Ting, H.-C., Tyurin, V. A., Krieger, J., Croix, C. M. S., Watkins, S., & Bayir, E. (2019). Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. *The Journal of clinical investigation*, 128(10), 4639-4653.
- De Maio, F. A., Risso, G., Iglesias, N. G., Shah, P., Pozzi, B., Gebhard, L. G., Mammi, P., Mancini, E., Yanovsky, M. J., Andino, R., Krogan, N., Srebrow, A., & Gamarnik, A. V. (2016). The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing. *PLOS Pathogens, 12*(8), e1005841. https://doi.org/10.1371/journal.ppat.1005841
- Dhanasiri, A. K. S., Jaramillo-Torres, A., Chikwati, E. M., Forberg, T., Krogdahl, Å., & Kortner, T. M. (2023, 2023/02/11). Effects of dietary supplementation with prebiotics and Pediococcus acidilactici on gut health, transcriptome, microbiota, and metabolome in Atlantic salmon (Salmo salar L.) after seawater transfer. *Animal Microbiome, 5*(1), 10. <u>https://doi.org/10.1186/s42523-023-00228-w</u>
- Díaz, R., Troncoso, J., Jakob, E., & Skugor, S. (2021, 2021/04/13). "Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis". BMC Veterinary Research, 17(1), 155. <u>https://doi.org/10.1186/s12917-021-02853-6</u>
- Díaz, S., Rojas, M. E., Galleguillos, M., Maturana, C., Smith, P. I., Cifuentes, F., Contreras, I., & Smith, P. A. (2017). Apoptosis inhibition of Atlantic salmon (Salmo salar) peritoneal macrophages by Piscirickettsia salmonis. *Journal of Fish Diseases, 40*(12), 1895-1902. <u>htps://doi.org/https://doi.org/10.1111/jfd.12660</u>

- Dixon, Scott J., Lemberg, Kathryn M., Lamprecht, Michael R., Skouta, R., Zaitsev, Eleina M., Gleason, Caroline E., Patel, Darpan N., Bauer, Andras J., Cantley, Alexandra M., Yang, Wan S., Morrison, B., & Stockwell, Brent R. (2012, 2012/05/25/). Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. *Cell*, 149(5), 1060-1072. <u>https://doi.org/https://doi.org/10.1016/j.cell.2012.03.042</u>
- Doolittle, R. F. (1983, Jun 27). The structure and evolution of vertebrate fibrinogen. Ann N Y Acad Sci, 408, 13-27. <u>https://doi.org/10.1111/j.1749-6632.1983.tb23231.x</u>
- Dorney, R., Dhungel, B. P., Rasko, J. E. J., Hebbard, L., & Schmitz, U. (2022). Recent advances in cancer fusion transcript detection. *Briefings in bioinformatics*, 24(1). https://doi.org/10.1093/bib/bbac519
- Dresdner, J., Chávez, C., Quiroga, M., Jiménez, D., Artacho, P., & Tello, A. (2019, 2019/01/02). Impact of Caligus treatments on unit costs of heterogeneous salmon farms in Chile. *Aquaculture Economics & Management, 23*(1), 1-27. https://doi.org/10.1080/13657305.2018.1449271
- Eisenstein, R. S. (2000). Iron regulatory proteins and the molecular control of mammalian iron metabolism. *Annu Rev Nutr, 20,* 627-662. <u>https://doi.org/10.1146/annurev.nutr.20.1.627</u>
- El-Zayat, S. R., Sibaii, H., & Mannaa, F. A. (2019, 2019/12/12). Toll-like receptors activation, signaling, and targeting: an overview. *Bulletin of the National Research Centre*, 43(1), 187. <u>https://doi.org/10.1186/s42269-019-0227-2</u>
- Ellis, J. D., Barrios-Rodiles, M., Colak, R., Irimia, M., Kim, T., Calarco, J. A., Wang, X., Pan, Q., O'Hanlon, D., Kim, P. M., Wrana, J. L., & Blencowe, B. J. (2012, Jun 29). Tissue-specific alternative splicing remodels protein-protein interaction networks. *Molecular cell*, 46(6), 884-892. <u>https://doi.org/10.1016/j.molcel.2012.05.037</u>
- Evensen, Ø. (2016). Immunization Strategies against *Piscirickettsia salmonis* Infections: Review of Vaccination Approaches and Modalities and Their Associated Immune Response Profiles. *Front Immunol,* 7, 482. https://doi.org/10.3389/fimmu.2016.00482
- FAO. (2022). The State of World Fisheries and Aquaculture 2022.
- Fast, M. D., Muise, D. M., Easy, R. E., Ross, N. W., & Johnson, S. C. (2006, 2006/09/01/). The effects of Lepeophtheirus salmonis infections on the stress response and immunological status of Atlantic salmon (Salmo salar). *Fish Shellfish Immunol, 21*(3), 228-241. <u>https://doi.org/https://doi.org/10.1016/j.fsi.2005.11.010</u>
- Ferko, M.-A., & Catelas, I. (2018). Effects of metal ions on caspase-1 activation and interleukin-1β release in murine bone marrow-derived macrophages. *PLOS ONE*, *13*(8), e0199936-e0199936. <u>https://doi.org/10.1371/journal.pone.0199936</u>
- Fernando, D. D., & Fischer, K. (2020). Proteases and pseudoproteases in parasitic arthropods of clinical importance. *The FEBS Journal, 287*(19), 4284-4299. <u>https://doi.org/10.1111/febs.15546</u>
- Feske, S., Skolnik, E. Y., & Prakriya, M. (2012, 2012/07/01). Ion channels and transporters in lymphocyte function and immunity. *Nature Reviews Immunology*, 12(7), 532-547. <u>https://doi.org/10.1038/nri3233</u>

- Figueroa, J., Cárcamo, J., Yañez, A., Olavarria, V., Ruiz, P., Manríquez, R., Muñoz, C., Romero, A., & Avendaño-Herrera, R. (2019). Addressing viral and bacterial threats to salmon farming in Chile: historical contexts and perspectives for management and control. *Reviews in Aquaculture, 0*(0). <u>https://doi.org/10.1111/raq.12333</u>
- Figueroa, J. a. C. J. a. Y. A. a. O. V. a. R. P. a. M. R. a. M. C. a. R. A. a. A.-H. R. (2019). Addressing viral and bacterial threats to salmon farming in Chile: historical contexts and perspectives for management and control. *Reviews in Aquaculture, 0*(0). <u>https://doi.org/10.1111/raq.12333</u>
- Franchi, L., Warner, N., Viani, K., & Nuñez, G. (2009). Function of Nod-like receptors in microbial recognition and host defense. *Immunological reviews*, 227(1), 106-128. <u>https://doi.org/10.1111/j.1600-065X.2008.00734.x</u>
- Francischetti, I. M., Valenzuela, J. G., Pham, V. M., Garfield, M. K., & Ribeiro, J. M. (2002). Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. *Journal of Experimental Biology, 205*(16), 2429-2451.
- Fryer, J. L., & Hedrick, R. P. (2003). Piscirickettsia salmonis: a Gram-negative intracellular bacterial pathogen of fish. *Journal of Fish Diseases, 26*(5), 251-262. https://doi.org/10.1046/j.1365-2761.2003.00460.x
- Fryer, J. I., Lannan, C. N., Garces, L. H., Larenas, J., & Smith, P. A. (1990). Isolation of a Rickettsiales-Like Organism from Diseased Coho Salmon (Oncorhynchus-Kisutch) in Chile (Vol. 25). <u>https://doi.org/10.3147/jsfp.25.107</u>
- Fryer, J. L., Lannan, C. N., Giovannoni, S. J., & Wood, N. D. (1992). Piscirickettsia salmonis gen. nov., sp. nov., the causative agent of an epizootic disease in salmonid fishes. *Int J Syst Bacteriol*, 42, 120-126. <u>https://doi.org/10.1099/00207713-42-1-120</u>
- Fuentes-Prior, P., & Salvesen, G. S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. *Biochemical Journal*, *384*(2), 201-232.
- Fuhrmann, D. C., Mondorf, A., Beifuß, J., Jung, M., & Brüne, B. (2020, 2020/09/01/). Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. *Redox Biology, 36*, 101670. <u>https://doi.org/https://doi.org/10.1016/j.redox.2020.101670</u>
- Gaggero, A., Castro, H., & Sandino, A. M. (1995). First isolation of Piscirickettsia salmonis from coho salmon, Oncorhynchus kisutch (Walbaum), and rainbow trout, Oncorhynchus mykiss (Walbaum), during the freshwater stage of their life cycle. *Journal of Fish Diseases, 18*(3), 277-280. <u>https://doi.org/10.1111/j.1365-2761.1995.tb00303.x</u>
- Gaidatzis, D., Burger, L., Florescu, M., & Stadler, M. B. (2015). Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. *Nature Biotechnology*, *33*(7), 722-729.
- Gallardo-Escárate, C., Arriagada, G., Carrera, C., Gonçalves, A. T., Nuñez-Acuña, G., Valenzuela-Miranda, D., & Valenzuela-Muñoz, V. (2019). The race between host and sea lice in the Chilean salmon farming: a genomic approach. *Reviews in Aquaculture*, 11(2), 325-339. <u>https://doi.org/https://doi.org/10.1111/raq.12334</u>

- Gao, W., Xiong, Y., Li, Q., & Yang, H. (2017). Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. *Frontiers in Physiology, 8*, 508.
- Gay, N. J., Symmons, M. F., Gangloff, M., & Bryant, C. E. (2014). Assembly and localization of Toll-like receptor signalling complexes. *Nature Reviews Immunology*, *14*(8), 546-558.
- Ge, S. X., Jung, D., & Yao, R. (2019). ShinyGO: a graphical gene-set enrichment tool for animals and plants. *Bioinformatics*, 36(8), 2628-2629. <u>https://doi.org/10.1093/bioinformatics/btz931</u>
- Gehrer, C. M., Mitterstiller, A.-M., Grubwieser, P., Meyron-Holtz, E. G., Weiss, G., & Nairz, M. (2023). Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. *International journal of molecular sciences, 24*(5), 4659. https://www.mdpi.com/1422-0067/24/5/4659
- Gervais, O., Peñaloza, C., Gratacap, R., Papadopoulou, A., Beltrán, M., Henderson, N. C., Houston, R. D., Hassan, M. A., & Robledo, D. (2023, 2023/03/29). Understanding host response to infectious salmon anaemia virus in an Atlantic salmon cell line using single-cell RNA sequencing. *BMC Genomics, 24*(1), 161. <u>https://doi.org/10.1186/s12864-023-09254-z</u>
- Glomski, C. A., Tamburlin, J., & Chainani, M. (1992). The phylogenetic odyssey of the erythrocyte. III. Fish, the lower vertebrate experience. *Histology and histopathology*.
- Gómez, F., Henríquez, V., & Marshall, S. (2009). Additional evidence of the facultative intracellular nature of the fish bacterial pathogen Piscirickettsia salmonis (Vol. 41).
- Gómez, F. A., Tobar, J. A., Henríquez, V., Sola, M., Altamirano, C., & Marshall, S. H. (2013). Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis. *PLOS ONE, 8*(1), e54934-e54934. <u>https://doi.org/10.1371/journal.pone.0054934</u>
- Goncheva, M. I., Chin, D., & Heinrichs, D. E. (2022, 2022/08/01/). Nucleotide biosynthesis: the base of bacterial pathogenesis. *Trends in Microbiology, 30*(8), 793-804. <u>https://doi.org/10.1016/j.tim.2021.12.007</u>
- González, L., & Carvajal, J. (2003, 2003/04/14/). Life cycle of Caligus rogercresseyi, (Copepoda: Caligidae) parasite of Chilean reared salmonids. *Aquaculture, 220*(1), 101-117. <u>https://doi.org/10.1016/S0044-8486(02)00512-4</u>
- Grütter, M. G. (2000). Caspases: key players in programmed cell death. *Current Opinion in Structural Biology*, *10*(6), 649-655.
- Guz, L. (2003). Humoral antibody response of Atlantic salmon, Salmo salar L., vaccinated against Moritella viscosa. *Pol J Vet Sci, 6*(3 Suppl), 15-17.
- Hamilton-West, C., Arriagada, G., Yatabe, T., Valdés, P., Hervé-Claude, L. P., & Urcelay, S. (2012, 2012/05/01/). Epidemiological description of the sea lice (Caligus rogercresseyi) situation in southern Chile in August 2007. *Preventive Veterinary Medicine, 104*(3), 341-345.

https://doi.org/https://doi.org/10.1016/j.prevetmed.2011.12.002

Haschka, D., Hoffmann, A., & Weiss, G. (2021). Iron in immune cell function and host defense. *Seminars in cell & developmental biology, 115,* 27-36. <u>https://doi.org/10.1016/j.semcdb.2020.12.005</u>

- Henríquez, P., Kaiser, M., Bohle, H., Bustos, P., & Mancilla, M. (2016, 2016/04/01). Comprehensive antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis field isolates. *Journal of Fish Diseases, 39*(4), 441-448. https://doi.org/10.1111/jfd.12427
- Hess, J., Angel, P., & Schorpp-Kistner, M. (2004). AP-1 subunits: quarrel and harmony among siblings. Journal of Cell Science, 117(25), 5965-5973. <u>https://doi.org/10.1242/jcs.01589</u>
- Hu, B., Huo, Y., Yang, L., Chen, G., Luo, M., Yang, J., & Zhou, J. (2017). ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells [Article]. *Virology Journal*, 14(1), Article 217. https://doi.org/10.1186/s12985-017-0882-6
- Ibieta, P., Tapia, V., Venegas, C., Hausdorf, M., & Takle, H. (2011). Chilean Salmon Farming on the Horizon of Sustainability: Review of the Development of a Highly Intensive Production, the ISA Crisis and Implemented Actions to Reconstruct a More Sustainable Aquaculture Industry. In B. Sladonja (Ed.), Aquaculture and the Environment A Shared Destiny (1 ed., pp. 215–246). InTech Publishers. https://doi.org/10.5772/30678
- Johnson, E. E., & Wessling-Resnick, M. (2012, 2012/03/01/). Iron metabolism and the innate immune response to infection. *Microbes and Infection*, 14(3), 207-216. https://doi.org/https://doi.org/10.1016/j.micinf.2011.10.001
- Kaiser, W. J., & Offermann, M. K. (2005). Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. *The Journal of Immunology*, 174(8), 4942-4952.
- Kalam, H., Fontana, M. F., & Kumar, D. (2017, Mar). Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection. *PLoS Pathog*, 13(3), e1006236. <u>https://doi.org/10.1371/journal.ppat.1006236</u>
- Kelemen, O., Convertini, P., Zhang, Z., Wen, Y., Shen, M., Falaleeva, M., & Stamm, S. (2013, 2013/02/01/). Function of alternative splicing. *Gene*, 514(1), 1-30. <u>https://doi.org/https://doi.org/10.1016/j.gene.2012.07.083</u>
- Khan, R. A. (2012, 2012/07/31). Host-Parasite Interactions in Some Fish Species. *Journal of Parasitology Research, 2012*, 237280. <u>https://doi.org/10.1155/2012/237280</u>
- Kijewska, A., Malachowicz, M., & Wenne, R. (2018, 2018/08/02). Alternatively spliced variants in Atlantic cod (Gadus morhua) support response to variable salinity environment. *Scientific reports*, 8(1), 11607. <u>https://doi.org/10.1038/s41598-018-29723-w</u>
- Klinger, D., & Naylor, R. (2012). Searching for Solutions in Aquaculture: Charting a Sustainable Course. Annual Review of Environment and Resources, Vol 37, 37, 247-+. <u>https://doi.org/10.1146/annurev-environ-021111-161531</u>
- Kumar, H., Kawai, T., & Akira, S. (2011). Pathogen recognition by the innate immune system. *International reviews of immunology, 30*(1), 16-34.
- Kuzik, M. A., Burian, J., Machander, D., Dolhaine, D., Cameron, S., Cameron, S., Thornton, J.C., Kay, W.W. (2001). An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. *Vaccine*, 19(17), 2337 - 2344. <u>https://doi.org/https://doi.org/10.1016/S0264-410X(00)00524-7</u>

- Kyriakis, J. M. (1999). Activation of the AP-1 transcription factor by inflammatory cytokines of the TNF family. *Gene Expr, 7*(4-6), 217-231.
- Lakra, W. S., Swaminathan, T. R., & Joy, K. P. (2011, Mar). Development, characterization, conservation and storage of fish cell lines: a review. *Fish Physiol Biochem*, 37(1), 1-20. <u>https://doi.org/10.1007/s10695-010-9411-x</u>
- Li, X., Jiang, S., & Tapping, R. I. (2010). Toll-like receptor signaling in cell proliferation and survival. *Cytokine*, 49(1), 1-9.
- Liew, C. C., Ma, J., Tang, H. C., Zheng, R., & Dempsey, A. A. (2006, Mar). The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. *J Lab Clin Med*, 147(3), 126-132. <u>https://doi.org/10.1016/j.lab.2005.10.005</u>
- Lim, J., & Hong, S. (2021). Transcriptome Analysis in the Head Kidney of Rainbow Trout (Oncorhynchus mykiss) Immunized with a Combined Vaccine of Formalin-Inactivated Aeromonas salmonicida and Vibrio anguillarum. *Vaccines*, *9*(11), 1234. <u>https://doi.org/10.3390/vaccines9111234</u>
- Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017, 2017/07/14). NF-κB signaling in inflammation. *Signal Transduction and Targeted Therapy, 2*(1), 17023. <u>https://doi.org/10.1038/sigtrans.2017.23</u>
- López-Maury, L., Marguerat, S., & Bähler, J. (2008, 2008/08/01). Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. *Nature Reviews Genetics*, *9*(8), 583-593. <u>https://doi.org/10.1038/nrg2398</u>
- Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. (2019, Nov 16). A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. *Microorganisms*, 7(11). https://doi.org/10.3390/microorganisms7110569
- Ma, S.-H., He, G.-Q., Navarro-Payá, D., Santiago, A., Cheng, Y.-Z., Jiao, J.-B., Li, H.-J., Zuo, D.-D., Sun, H.-T., Pei, M.-S., Yu, Y.-H., Matus, J. T., & Guo, D.-L. (2023, 2023/02/05/). Global analysis of alternative splicing events based on long- and short-read RNA sequencing during grape berry development. *Gene, 852*, 147056. https://doi.org/https://doi.org/10.1016/j.gene.2022.147056
- Machuca, A., & Martinez, V. (2016). Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism. *PLOS ONE*, 11(12), e0168855. <u>https://doi.org/10.1371/journal.pone.0168855</u>
- Madaro, A., Nilsson, J., Whatmore, P., Roh, H., Grove, S., Stien, L. H., & Olsen, R. E. (2023, 2023/02/01). Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. *Fish Physiology and Biochemistry*, 49(1), 97-116. https://doi.org/10.1007/s10695-022-01163-4
- Maier, V. H., Schmitt, C. N., Gudmundsdottir, S., & Gudmundsson, G. H. (2008, Apr). Bacterial DNA indicated as an important inducer of fish cathelicidins. *Mol Immunol, 45*(8), 2352-2358. <u>https://doi.org/10.1016/j.molimm.2007.11.008</u>

- Maisey, K., Montero, R., & Myron, C. (2016). Vaccines for piscirickettsiosis (salmonid rickettsial septicaemia, SRS): the Chile perspective. *Expert Review of Vaccines*, *16*(3), 215-228. <u>https://doi.org/10.1080/14760584.2017.1244483</u>
- Maldonado-Aguayo, W., Chávez-Mardones, J., Gonçalves, A. T., & Gallardo-Escárate, C. (2015). Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi. *PLOS ONE, 10*(4), e0123954-e0123954. <u>https://doi.org/10.1371/journal.pone.0123954</u>
- Maldonado-Aguayo, W., & Gallardo-Escárate, C. (2014, 2014/06/01/). Increasing transcriptome response of serpins during the ontogenetic stages in the salmon louse Caligus rogercresseyi (Copepoda: Caligidae). *Marine Genomics*, 15, 55-64. <u>https://doi.org/10.1016/j.margen.2014.04.006</u>
- Malinda, K. M., Goldstein, A. L., & Kueinman, H. K. (1997). Thymosin β4 stimulates directional migration of human umbilical vein endothelial cells. *The FASEB journal*, *11*(6), 474-481.
- Maniatis, T., & Tasic, B. (2002, 2002/07/01). Alternative pre-mRNA splicing and proteome expansion in metazoans. *Nature*, 418(6894), 236-243. <u>https://doi.org/10.1038/418236a</u>
- Maroni, K. (2000, Aug). Monitoring and regulation of marine aquaculture in Norway. *Journal* of Applied Ichthyology-Zeitschrift Fur Angewandte Ichthyologie, 16(4-5), 192-195. <u>https://doi.org/10.1046/j.1439-0426.2000.00256.x</u>
- Marshall, S. H., Conejeros, P., Zahr, M., Jorge, O., Gómez, F., Cataldo, P., & Vitalia, H. (2007). Immunological characterization of a bacterial protein isolated from salmonid fish naturally infected with Piscirickettsia salmonis. *Vaccine*, 25(11), 2095 - 2102. <u>https://doi.org/https://doi.org/10.1016/j.vaccine.2006.11.035</u>
- Marshall, S. H., Henríquez, V., Gómez, F. A., & Cárdenas, C. (2011, 2011/01/01). ISPsa2, the first mobile genetic element to be described and characterized in the bacterial facultative intracellular pathogen Piscirickettsia salmonis. *FEMS Microbiology Letters*, 314(1), 18-24. <u>https://doi.org/10.1111/j.1574-6968.2010.02132.x</u>
- Martinez, V., Dettleff, P., Zamorano, P., Galarce, N., Borie, C., & Naish, K. (2023, 2023/05/01/). Host-pathogen interaction involving cytoskeleton changes as well as non-coding regulation as primary mechanisms for SRS resistance in Atlantic salmon. *Fish Shellfish Immunol, 136*, 108711. https://doi.org/https://doi.org/10.1016/j.fsi.2023.108711
- Maruyama, S., Sumita, K., Shen, H., Kanoh, M., Xu, X., Sato, M., Matsumoto, M., Shinomiya, H., & Asano, Y. (2003). Identification of IFN regulatory factor-1 binding site in IL-12 p40 gene promoter. *The Journal of Immunology*, *170*(2), 997-1001.
- Mazille, M., Buczak, K., Scheiffele, P., & Mauger, O. (2022). Stimulus-specific remodeling of the neuronal transcriptome through nuclear intron-retaining transcripts. *The EMBO journal,* 41(21), e110192. https://doi.org/https://doi.org/10.15252/embj.2021110192

McKee, A. S., & Fontenot, A. P. (2016). Interplay of innate and adaptive immunity in metalinduced hypersensitivity. *Current Opinion in Immunology, 42,* 25-30. <u>https://doi.org/10.1016/j.coi.2016.05.001</u>
- Miccoli, A., Manni, M., Picchietti, S., & Scapigliati, G. (2021). State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. *Vaccines*, 9(2), 140. <u>https://www.mdpi.com/2076-393X/9/2/140</u>
- Mikkelsen, H., Lund, V., Larsen, R., & Seppola, M. (2011, 2011/01/01/). Vibriosis vaccines based on various sero-subgroups of Vibrio anguillarum O2 induce specific protection in Atlantic cod (Gadus morhua L.) juveniles. *Fish Shellfish Immunol, 30*(1), 330-339. <u>https://doi.org/https://doi.org/10.1016/j.fsi.2010.11.007</u>
- Mondal, H., & Thomas, J. (2022, 2022/08/01). A review on the recent advances and application of vaccines against fish pathogens in aquaculture. *Aquaculture International, 30*(4), 1971-2000. <u>https://doi.org/10.1007/s10499-022-00884-w</u>
- Morera, D., Roher, N., Ribas, L., Balasch, J. C., Doñate, C., Callol, A., Boltana, S., Roberts, S., Goetz, G., & Goetz, F. W. (2011). RNA-Seq reveals an integrated immune response in nucleated erythrocytes. *PLOS ONE*, 6(10), e26998.
- Moresco, E. M. Y., LaVine, D., & Beutler, B. (2011). Toll-like receptors. *Current Biology*, 21(13), R488-R493.
- Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., & Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. *Nucleic acids research*, *35*(suppl_2), W182-W185. <u>https://doi.org/10.1093/nar/gkm321</u>
- Mulenga, A., Sugimoto, C., Ingram, G., Ohashi, K., & Onuma, M. (1999). Molecular cloning of two Haemaphysalis longicornis cathepsin L-like cysteine proteinase genes. *Journal of Veterinary Medical Science*, *61*(5), 497-503.
- Mulenga, A., Sugino, M., Nakajima, M., Sugimoto, C., & Onuma, M. (2001). Tick-Encoded Serine Proteinase Inhibitors (Serpins); Potential Target Antigens for Tick Vaccine Development. *Journal of Veterinary Medical Science*, 63(10), 1063-1069. <u>https://doi.org/10.1292/jvms.63.1063</u>
- Munang'andu, H. M., Mutoloki, S., & Evensen, Ø. (2014, 2014/04/01/). Acquired immunity and vaccination against infectious pancreatic necrosis virus of salmon. *Developmental & Comparative Immunology, 43*(2), 184-196. https://doi.org/https://doi.org/10.1016/j.dci.2013.08.008
- Myllyharju, J. (2013, Jun). Prolyl 4-hydroxylases, master regulators of the hypoxia response. *Acta Physiol (Oxf), 208*(2), 148-165. <u>https://doi.org/10.1111/apha.12096</u>
- Nash, A. A., Dalziel, R. G., & Fitzgerald, J. R. (2015). Mechanisms of Cell and Tissue Damage. In *Mims' Pathogenesis of Infectious Disease* (pp. 171-231). Copyright © 2015 Elsevier Ltd. All rights reserved. <u>https://doi.org/10.1016/b978-0-12-397188-3.00008-1</u>
- Navarro-Garcia, F., Serapio-Palacios, A., Ugalde-Silva, P., Tapia-Pastrana, G., & Chavez-Dueñas, L. (2013). Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. *Biomed Res Int, 2013*, 374395. <u>https://doi.org/10.1155/2013/374395</u>
- Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B., & Schultze, J. L. (2019, 2019/01/09/). Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host's Response to Pathogens. *Cell Host & Microbe, 25*(1), 13-26. <u>https://doi.org/https://doi.org/10.1016/j.chom.2018.12.006</u>

- Nguyen, T. D., Crosbie, P. B. B., Nowak, B. F., & Bridle, A. R. (2018). The effects of inactivation methods of Yersinia ruckeri on the efficacy of single dip vaccination in Atlantic salmon (Salmo salar). *Journal of Fish Diseases, 41*(7), 1173-1176. <u>https://doi.org/https://doi.org/10.1111/jfd.12803</u>
- Nombela, I., Carrion, A., Puente-Marin, S., Chico, V., Mercado, L., Perez, L., Coll, J., & Ortega-Villaizan, M. D. M. (2017). Infectious pancreatic necrosis virus triggers antiviral immune response in rainbow trout red blood cells, despite not being infective. *F1000Res*, 6, 1968. <u>https://doi.org/10.12688/f1000research.12994.2</u>
- Núñez, G., Sakamoto, K., & Soares, M. P. (2018, Jul 1). Innate Nutritional Immunity. J Immunol, 201(1), 11-18. <u>https://doi.org/10.4049/jimmunol.1800325</u>
- Núñez-Acuña, G., Sáez-Vera, C., Valenzuela-Muñoz, V., Valenzuela-Miranda, D., Arriagada, G., & Gallardo-Escárate, C. (2020). Tackling the Molecular Drug Sensitivity in the Sea Louse Caligus rogercresseyi Based on mRNA and IncRNA Interactions. *Genes*, 11(8), 857. <u>https://www.mdpi.com/2073-4425/11/8/857</u>
- Ortiz-Severín, J., Travisany, D., Maass, A., Cambiazo, V., & Chávez, F. P. (2020, Nov 24). Global Proteomic Profiling of Piscirickettsia salmonis and Salmon Macrophage-Like Cells during Intracellular Infection. *Microorganisms, 8*(12). https://doi.org/10.3390/microorganisms8121845
- Pai, A. A., Baharian, G., Pagé Sabourin, A., Brinkworth, J. F., Nédélec, Y., Foley, J. W., Grenier, J.-C., Siddle, K. J., Dumaine, A., Yotova, V., Johnson, Z. P., Lanford, R. E., Burge, C. B., & Barreiro, L. B. (2016). Widespread Shortening of 3' Untranslated Regions and Increased Exon Inclusion Are Evolutionarily Conserved Features of Innate Immune Responses to Infection. *PLOS Genetics*, *12*(9), e1006338. https://doi.org/10.1371/journal.pgen.1006338
- Panda, R. P., Chakrapani, V., Patra, S. K., Saha, J. N., Jayasankar, P., Kar, B., Sahoo, P. K., & Barman, H. K. (2014, 2014/11/01/). First evidence of comparative responses of Toll-like receptor 22 (TLR22) to relatively resistant and susceptible Indian farmed carps to Argulus siamensis infection. *Developmental & Comparative Immunology, 47*(1), 25-35. https://doi.org/10.1016/j.dci.2014.06.016
- Pareek, C. S., Błaszczyk, P., Dziuba, P., Czarnik, U., Fraser, L., Sobiech, P., Pierzchała, M., Feng, Y., Kadarmideen, H. N., & Kumar, D. (2017). Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology. *PLOS ONE, 12*(2), e0172687. <u>https://doi.org/10.1371/journal.pone.0172687</u>
- Park, J. W., Tokheim, C., Shen, S., & Xing, Y. (2013). Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS. *Methods Mol Biol, 1038*, 171-179. <u>https://doi.org/10.1007/978-1-62703-514-9_10</u>
- Passantino, L., Massaro, M., Jirillo, F., Di Modugno, D., Ribaud, M., Di Modugno, G., Passantino, G., & Jirillo, E. (2007). Antigenically activated avian erythrocytes release cytokine-like factors: a conserved phylogenetic function discovered in fish. *Immunopharmacology and immunotoxicology*, 29(1), 141-152.
- Penichet, M., Rodriguez, M., Castellano, O., Mandado, S., Rojas, Y., Rubiera, R., Sanchez, P., Lleonart, R., & De La Fuente, J. (1994, Sep). Detection of Bm86 antigen in different strains of Boophilus microplus and effectiveness of immunization with recombinant

Bm86. *Parasite Immunol,* 16(9), 493-500. <u>https://doi.org/10.1111/j.1365-</u> <u>3024.1994.tb00377.x</u>

- Pike, A. W., & Wadsworth, S. L. (1999). Sealice on salmonids: their biology and control. Adv Parasitol, 44, 233-337. <u>https://doi.org/10.1016/s0065-308x(08)60233-x</u>
- Pontigo, J. P., Espinoza, C., Hernandez, M., Nourdin, G., Oliver, C., Avendaño-Herrera, R., Figueroa, J., Rauch, C., Troncoso, J. M., Vargas-Chacoff, L., & Yáñez, A. J. (2021, 2021-February-17). Protein-Based Vaccine Protect Against Piscirickettsia salmonis in Atlantic Salmon (Salmo salar) [Original Research]. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.602689
- Puente-Marin, S., Cazorla, D., Chico, V., Coll, J., & Ortega-Villaizan, M. (2023, 2023/04/15/). Innate immune response of rainbow trout erythrocytes to spinycterins expressing a downsized viral fragment of viral haemorrhagic septicaemia virus. *Aquaculture, 568*, 739303. <u>https://doi.org/https://doi.org/10.1016/j.aquaculture.2023.739303</u>
- Puente-Marin, S., Nombela, I., Ciordia, S., Mena, M. C., Chico, V., Coll, J., & Ortega-Villaizan,
 M. D. M. (2018). In silico functional networks identified in fish nucleated red blood cells by means of transcriptomic and proteomic profiling. *Genes, 9*(4), 202.
- Puente-Marin, S., Thwaite, R., Mercado, L., Coll, J., Roher, N., & Ortega-Villaizan, M. D. M. (2019, 2019-May-22). Fish Red Blood Cells Modulate Immune Genes in Response to Bacterial Inclusion Bodies Made of TNFα and a G-VHSV Fragment [Original Research]. *Frontiers in Immunology, 10.* https://doi.org/10.3389/fimmu.2019.01055
- Qian, X., Ba, Y., Zhuang, Q., & Zhong, G. (2014, Feb). RNA-Seq technology and its application in fish transcriptomics. *Omics*, 18(2), 98-110. <u>https://doi.org/10.1089/omi.2013.0110</u>
- Qu, A., Bai, Y., Zhang, X., Zeng, J., Pu, F., Wu, L., Xu, P., & Zhou, T. (2022, 2022/06/01). Tissue-Specific Analysis of Alternative Splicing Events and Differential Isoform Expression in Large Yellow Croaker (Larimichthys crocea) After Cryptocaryon irritans Infection. *Marine Biotechnology*, 24(3), 640-654. https://doi.org/10.1007/s10126-022-10133-z
- Quiñones, R. A., Fuentes, M., Montes, R. M., Soto, D., & León-Muñoz, J. (2019). Environmental issues in Chilean salmon farming: a review. *Reviews in Aquaculture*, 11(2), 375-402. https://doi.org/https://doi.org/10.1111/raq.12337
- Ramirez, R., Gomez, F. A., & Marshall, S. H. (2015). The infection process of Piscirickettsia salmonis in fish macrophages is dependent upon interaction with host-cell clathrin and actin. *FEMS Microbiology Letters*, *362*(1), 1-8.
- Ramírez, R., Gómez, F. A., & Marshall, S. H. (2015). The infection process of Piscirickettsia salmonis in fish macrophages is dependent upon interaction with host-cell clathrin and actin. *FEMS Microbiology Letters*, 362(1), 1-8. https://doi.org/10.1093/femsle/fnu012
- Ranganathan, S., & Garg, G. (2009). Secretome: clues into pathogen infection and clinical applications. *Genome medicine*, 1(11), 113-113. <u>https://doi.org/10.1186/gm113</u>
- Raynard, R. S., Bricknell, I. R., Billingsley, P. F., Nisbet, A. J., Vigneau, A., & Sommerville, C. (2002, Jun). Development of vaccines against sea lice. *Pest Manag Sci, 58*(6), 569-575. <u>https://doi.org/10.1002/ps.474</u>
- Reis, M. I., do Vale, A., Pinto, C., Nascimento, D. S., Costa-Ramos, C., Silva, D. S., Silva, M. T., & Dos Santos, N. M. (2007a). First molecular cloning and characterisation of caspase-

9 gene in fish and its involvement in a gram negative septicaemia. *Molecular Immunology*, 44(7), 1754-1764.

- Reis, M. I., Nascimento, D. S., do Vale, A., Silva, M. T., & dos Santos, N. M. (2007b). Molecular cloning and characterisation of sea bass (Dicentrarchus labrax L.) caspase-3 gene. *Molecular Immunology*, 44(5), 774-783.
- Rodrigues, R., Grosso, A. R., & Moita, L. (2013). Genome-Wide Analysis of Alternative Splicing during Dendritic Cell Response to a Bacterial Challenge. *PLOS ONE, 8*(4), e61975. https://doi.org/10.1371/journal.pone.0061975
- Rojas, V., Galanti, N., Bols, N. C., Jiménez, V., Paredes, R., & Marshall, S. H. (2010, 2010/05/15). Piscirickettsia salmonis induces apoptosis in macrophages and monocyte-like cells from rainbow trout. *Journal of Cellular Biochemistry*, 110(2), 468-476. <u>https://doi.org/10.1002/jcb.22560</u>
- Ronza, P., Álvarez-Dios, J. A., Robledo, D., Losada, A. P., Romero, R., Bermúdez, R., Pardo, B. G., Martínez, P., & Quiroga, M. I. (2021, Apr 30). Blood Transcriptomics of Turbot Scophthalmus maximus: A Tool for Health Monitoring and Disease Studies. *Animals (Basel)*, *11*(5). <u>https://doi.org/10.3390/ani11051296</u>
- Røsæg, M. V., Thorarinsson, R., & Aunsmo, A. (2021). Effect of vaccines against pancreas disease in farmed Atlantic salmon. *Journal of Fish Diseases, 44*(12), 1911-1924. <u>https://doi.org/https://doi.org/10.1111/jfd.13505</u>
- Rosenberger, C. M., & Finlay, B. B. (2003, 2003/05/01). Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. *Nature Reviews Molecular Cell Biology*, 4(5), 385-396. <u>https://doi.org/10.1038/nrm1104</u>
- Rozas, M., & Enriquez, R. (2014, Mar). Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. J Fish Dis, 37(3), 163-188. <u>https://doi.org/10.1111/jfd.12211</u>
- Rozas-Serri, M. (2022). Why Does Piscirickettsia salmonis Break the Immunological Paradigm in Farmed Salmon? Biological Context to Understand the Relative Control of Piscirickettsiosis. Front Immunol, 13, 856896. https://doi.org/10.3389/fimmu.2022.856896
- Rozas-Serri, M., Peña, A., Arriagada, G., Enríquez, R., & Maldonado, L. (2018a). Comparison of gene expression in post-smolt Atlantic salmon challenged by LF-89-like and EM-90-like Piscirickettsia salmonis isolates reveals differences in the immune response associated with pathogenicity. *Journal of Fish Diseases, 41*(3), 539-552. https://doi.org/10.1111/jfd.12756
- Rozas-Serri, M., Peña, A., & Maldonado, L. (2018b, 2018/04/01/). Transcriptomic profiles of post-smolt Atlantic salmon challenged with Piscirickettsia salmonis reveal a strategy to evade the adaptive immune response and modify cell-autonomous immunity. *Developmental* & *Comparative Immunology*, *81*, 348-362. https://doi.org/https://doi.org/10.1016/j.dci.2017.12.023
- Rozas-Serri, M., Peña, A., & Maldonado, L. (2019, 2019/10/01/). Gene expression associated with immune response in Atlantic salmon head-kidney vaccinated with inactivated whole-cell bacterin of Piscirickettsia salmonis and pathogenic isolates. *Fish Shellfish Immunol, 93*, 789-795. <u>https://doi.org/https://doi.org/10.1016/j.fsi.2019.08.031</u>

- Rubaiy, H. N. (2017, 03/15). A Short Guide to Electrophysiology and Ion Channels. *Journal of Pharmacy & Pharmaceutical Sciences, 20*(0), 48-67. <u>https://doi.org/10.18433/J32P6R</u>
- Rüegg, C., & Pytela, R. (1995, 1995/01/01/). Sequence of a human transcript expressed in Tlymphocytes and encoding a fibrinogen-like protein. *Gene, 160*(2), 257-262. <u>https://doi.org/https://doi.org/10.1016/0378-1119(95)00240-7</u>
- Sáez-Vera, C., Núñez-Acuña, G., & Gallardo-Escárate, C. (2022, 2022/01/15/). Sensitivity assessment to azamethiphos by time-to-response bioassay and biomarkers in the sea louse Caligus rogercresseyi. Aquaculture, 546, 737340. https://doi.org/https://doi.org/10.1016/j.aquaculture.2021.737340
- Savan, R. (2018, 2018/08/01). Alternative Splicing in Innate Antiviral Immunity. *Journal of Interferon* & Cytokine Research, 38(8), 317-318. https://doi.org/10.1089/jir.2018.29010.rsa
- Schaible, U. E., & Kaufmann, S. H. E. (2004, 2004/12/01). Iron and microbial infection. *Nature Reviews Microbiology*, 2(12), 946-953. <u>https://doi.org/10.1038/nrmicro1046</u>
- Schaub, A., & Glasmacher, E. (2017). Splicing in immune cells—mechanistic insights and emerging topics. *International immunology, 29*(4), 173-181. <u>https://doi.org/10.1093/intimm/dxx026</u>
- Sernapesca. (2022). Informe sanitario con información sanitaria de agua dulce y mar 1º semestre año 2022.
- Shen, Y., Wang, D., Zhao, J., & Chen, X. (2018, 2018/01/01/). Fish red blood cells express immune genes and responses. *Aquaculture and Fisheries, 3*(1), 14-21. <u>https://doi.org/https://doi.org/10.1016/j.aaf.2018.01.001</u>
- Skugor, S., Glover, K. A., Nilsen, F., & Krasnov, A. (2008, 2008/10/23). Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genomics, 9(1), 498. https://doi.org/10.1186/1471-2164-9-498
- Smart, N., Risebro, C. A., Melville, A. A., Moses, K., Schwartz, R. J., Chien, K. R., & Riley, P. R. (2007). Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. *Nature*, 445(7124), 177-182.
- Soulliere, C., & Dixon, B. (2017). Immune System Organs of Bony Fishes. In *Reference Module* in Life Sciences. Elsevier. <u>https://doi.org/https://doi.org/10.1016/B978-0-12-</u> <u>809633-8.12179-X</u>
- Starr, R., Willson, T. A., Viney, E. M., Murray, L. J., Rayner, J. R., Jenkins, B. J., Gonda, T. J., Alexander, W. S., Metcalf, D., & Nicola, N. A. (1997). A family of cytokine-inducible inhibitors of signalling. *Nature*, 387(6636), 917-921.
- Stickney, R. R., & McVey, J. P. (2002). *Responsible marine aquaculture*. CABI Wallingford, Oxfordshire, UK.
- Stockwell, B. R., & Jiang, X. (2020). The chemistry and biology of ferroptosis. *Cell chemical biology*, *27*(4), 365-375.
- Su, Z., & Huang, D. (2021, Apr 15). Alternative Splicing of Pre-mRNA in the Control of Immune Activity. *Genes (Basel), 12*(4). <u>https://doi.org/10.3390/genes12040574</u>
- Sun, J., Liu, Z., Quan, J., Li, L., Zhao, G., & Lu, J. (2022, 2022/02/01). RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). *Marine Biotechnology*, 24(1), 5-17. <u>https://doi.org/10.1007/s10126-021-10082-z</u>

- Svåsand, T., Crosetti, D., García-Vázquez, E., & Verspoor, E. (2007). Genetic impact of aduaculture activities on native populations. *Genimpact final scientific report (EU contract n. RICA-CT-2005-022802)*.
- Swain, J. K., Carpio, Y., Johansen, L.-H., Velazquez, J., Hernandez, L., Leal, Y., Kumar, A., & Estrada, M. P. (2020). Impact of a candidate vaccine on the dynamics of salmon lice (Lepeophtheirus salmonis) infestation and immune response in Atlantic salmon (Salmo salar L.). *PLOS ONE, 15*(10), e0239827. https://doi.org/10.1371/journal.pone.0239827
- Tacchi, L., Bron, J. E., Taggart, J. B., Secombes, C. J., Bickerdike, R., Adler, M. A., Takle, H., & Martin, S. A. M. (2011). Multiple tissue transcriptomic responses to Piscirickettsia salmonis in Atlantic salmon (Salmo salar). *Physiological Genomics*, 43(21), 1241-1254. <u>https://doi.org/10.1152/physiolgenomics.00086.2011</u>
- Tacon, A. G. J., & Metian, M. (2008, Dec). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158. <u>https://doi.org/10.1016/j.aquaculture.2008.08.015</u>
- Tadiso, T. M., Krasnov, A., Skugor, S., Afanasyev, S., Hordvik, I., & Nilsen, F. (2011, 2011/03/07). Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition. BMC Genomics, 12(1), 141. <u>https://doi.org/10.1186/1471-2164-12-141</u>
- Takle, H., & Andersen, Ø. (2007). Caspases and apoptosis in fish. *Journal of Fish Biology*, 71(sc), 326-349. <u>https://doi.org/https://doi.org/10.1111/j.1095-8649.2007.01665.x</u>
- Tan, S., Wang, W., Zhong, X., Tian, C., Niu, D., Bao, L., Zhou, T., Jin, Y., Yang, Y., Yuan, Z., Gao, D., Dunham, R., & Liu, Z. (2018, 2018/12/01). Increased Alternative Splicing as a Host Response to Edwardsiella ictaluri Infection in Catfish. *Marine Biotechnology, 20*(6), 729-738. <u>https://doi.org/10.1007/s10126-018-9844-2</u>
- Tandberg, J., Oliver, C., Lagos, L., Gaarder, M., Yáñez, A. J., Ropstad, E., & Winther-Larsen, H.
 C. (2017, 2017/08/01/). Membrane vesicles from Piscirickettsia salmonis induce protective immunity and reduce development of salmonid rickettsial septicemia in an adult zebrafish model. *Fish Shellfish Immunol, 67*, 189-198. https://doi.org/https://doi.org/10.1016/j.fsi.2017.06.015
- Tarifeño-Saldivia, E., Valenzuela-Miranda, D., & Gallardo-Escárate, C. (2017). In the shadow: The emerging role of long non-coding RNAs in the immune response of Atlantic salmon. *Developmental & Comparative Immunology*, 73, 193-205.
- Tartor, H., Karlsen, M., Skern-Mauritzen, R., Monjane, A. L., Press, C. M., Wiik-Nielsen, C., Olsen, R. H., Leknes, L. M., Yttredal, K., Brudeseth, B. E., & Grove, S. (2021, Dec 23). Protective Immunization of Atlantic Salmon (Salmo salar L.) against Salmon Lice (Lepeophtheirus salmonis) Infestation. *Vaccines (Basel)*, 10(1). <u>https://doi.org/10.3390/vaccines10010016</u>
- Tobar, J. A., Jerez, S., Caruffo, M., Bravo, C., Contreras, F., Bucarey, S. A., & Harel, M. (2011,
2011/03/09/). Oral vaccination of Atlantic salmon (Salmo salar) against salmonid
rickettsial septicaemia. Vaccine, 29(12), 2336-2340.
https://doi.org/https://doi.org/10.1016/j.vaccine.2010.12.107

- Treasurer, J. W. (2012, Aug). Diseases of north European wrasse (Labridae) and possible interactions with cohabited farmed salmon, Salmo salar L. J Fish Dis, 35(8), 555-562. https://doi.org/10.1111/j.1365-2761.2012.01389.x
- Turk, V., Turk, B., Guncar, G., Turk, D., & Kos, J. (2002). Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. Adv Enzyme Regul, 42, 285-303. https://doi.org/10.1016/s0065-2571(01)00034-6
- Valenzuela-Miranda, D., & Gallardo-Escárate, C. (2016a, 2016/12/01/). Novel insights into the response of Atlantic salmon (Salmo salar) to Piscirickettsia salmonis: Interplay of coding genes and IncRNAs during bacterial infection. Fish Shellfish Immunol, 59, 427-438. https://doi.org/https://doi.org/10.1016/j.fsi.2016.11.001
- Valenzuela-Miranda, D., & Gallardo-Escárate, C. (2016b, 2016/12/01/). Caligus rogercresseyi serine proteases: Transcriptomic analysis in response to delousing drugs treatments. Aquaculture, 465, 65-77.

https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.08.027

- Valenzuela-Miranda, D., & Gallardo-Escárate, C. (2018). Dual RNA-Seg Uncovers Metabolic Amino Acids Dependency of the Intracellular Bacterium Piscirickettsia salmonis Atlantic Salmon. Frontiers Infecting in microbiology, 9, 2877-2877. https://doi.org/10.3389/fmicb.2018.02877
- Valenzuela-Miranda, D., Valenzuela-Muñoz, V., Nuñez-Acuña, G., & Gallardo-Escárate, C. (2020, 2020/12/15/). Long-term serial culture of Piscirickettsia salmonis leads to a genomic and transcriptomic reorganization affecting bacterial virulence. Aquaculture, 529. 735634. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.735634
- Valenzuela-Muñoz, V., Benavente, B. P., Casuso, A., Leal, Y., & Gallardo-Escárate, C. (2021). Chimeric Protein IPath® with Chelating Activity Improves Atlantic Salmon's Immunity against Infectious Diseases. Vaccines, 9(4). https://doi.org/10.3390/vaccines9040361
- Valenzuela-Muñoz, V., Boltaña, S., & Gallardo-Escárate, C. (2016, Dec). Comparative immunity of Salmo salar and Oncorhynchus kisutch during infestation with the sea louse Caligus rogercresseyi: An enrichment transcriptome analysis. Fish Shellfish Immunol, 59, 276-287. https://doi.org/10.1016/j.fsi.2016.10.046
- Valenzuela-Muñoz, V., Boltaña, S., & Gallardo-Escárate, C. (2017a, Sep). Uncovering iron regulation with species-specific transcriptome patterns in Atlantic and coho salmon during a Caligus rogercresseyi infestation. J Fish Dis, 40(9), 1169-1184. https://doi.org/10.1111/jfd.12592
- Valenzuela-Muñoz, V., & Gallardo-Escárate, C. (2017b, 2017/01/01/). Iron metabolism modulation in Atlantic salmon infested with the sea lice Lepeophtheirus salmonis and Caligus rogercresseyi: A matter of nutritional immunity? Fish Shellfish Immunol, 60, 97-102. https://doi.org/https://doi.org/10.1016/j.fsi.2016.11.045
- Valenzuela-Muñoz, V., Gallardo-Escárate, C., Valenzuela-Miranda, D., Nuñez-Acuña, G., Benavente, B. P., Alert, A., & Arevalo, M. (2023). Transcriptome Signatures of Atlantic Salmon—Resistant Phenotypes against Sea Lice Infestation Are Associated with Tissue Repair. Genes, 14(5), 986. https://www.mdpi.com/2073-4425/14/5/986

- Valenzuela-Muñoz, V., Valenzuela-Miranda, D., & Gallardo-Escárate, C. (2018, 2018/10/01/). Comparative analysis of long non-coding RNAs in Atlantic and Coho salmon reveals divergent transcriptome responses associated with immunity and tissue repair during sea lice infestation. *Developmental & Comparative Immunology, 87*, 36-50. https://doi.org/https://doi.org/10.1016/j.dci.2018.05.016
- Valenzuela-Muñoz, V., Valenzuela-Miranda, D., Gonçalves, A. T., Novoa, B., Figueras, A., & Gallardo-Escárate, C. (2020, 2020/05/15/). Induced-iron overdose modulate the immune response in Atlantic salmon increasing the susceptibility to Piscirickettsia salmonis infection. *Aquaculture, 521, 735058.* https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.735058
- Wagner, A. R., Scott, H. M., West, K. O., Vail, K. J., Fitzsimons, T. C., Coleman, A. K., Carter, K. E., Watson, R. O., & Patrick, K. L. (2021). Global Transcriptomics Uncovers Distinct Contributions From Splicing Regulatory Proteins to the Macrophage Innate Immune Response. *Front Immunol*, *12*, 656885. <u>https://doi.org/10.3389/fimmu.2021.656885</u>
- Wallander, M. L., Leibold, E. A., & Eisenstein, R. S. (2006, Jul). Molecular control of vertebrate iron homeostasis by iron regulatory proteins. *Biochim Biophys Acta*, 1763(7), 668-689. <u>https://doi.org/10.1016/j.bbamcr.2006.05.004</u>
- Wang, A., Al-Kuhlani, M., Johnston, S. C., Ojcius, D. M., Chou, J., & Dean, D. (2013). Transcription factor complex AP-1 mediates inflammation initiated by C hlamydia pneumoniae infection. *Cellular Microbiology*, 15(5), 779-794.
- Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P., & Burge, C. B. (2008, 2008/11/01). Alternative isoform regulation in human tissue transcriptomes. *Nature*, 456(7221), 470-476. <u>https://doi.org/10.1038/nature07509</u>
- Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package 'corrplot'. *Statistician*, *56*(316), e24.
- Weiss, G. (2005, 2005/06/01/). Modification of iron regulation by the inflammatory response. *Best Practice & Research Clinical Haematology, 18*(2), 183-201. https://doi.org/https://doi.org/10.1016/j.beha.2004.09.001
- Wessel, Ø., Olsen, C. M., Rimstad, E., & Dahle, M. K. (2015, Mar 6). Piscine orthoreovirus (PRV) replicates in Atlantic salmon (Salmo salar L.) erythrocytes ex vivo. *Vet Res, 46*, 26. <u>https://doi.org/10.1186/s13567-015-0154-7</u>
- Wilcox, D., & Mason, R. W. (1992, Jul 15). Inhibition of cysteine proteinases in lysosomes and whole cells. *The Biochemical journal, 285 (Pt 2)*(Pt 2), 495-502. https://doi.org/10.1042/bj2850495
- Wilhelm, V., Miquel, A., Burzio, L. O., Rosemblatt, M., Engel, E., Valenzuela, S., Parada, G., & Valenzuela, P. D. T. (2006, 2006/06/05/). A vaccine against the salmonid pathogen Piscirickettsia salmonis based on recombinant proteins. *Vaccine*, 24(23), 5083-5091. https://doi.org/https://doi.org/10.1016/j.vaccine.2006.03.027
- Willadsen, P. (2006). Vaccination against ectoparasites. *Parasitology, 133 Suppl,* S9-s25. https://doi.org/10.1017/s0031182006001788

- Willadsen, P., & McKenna, R. V. (1991, Nov). Vaccination with 'concealed' antigens: myth or reality? *Parasite Immunol*, 13(6), 605-616. <u>https://doi.org/10.1111/j.1365-3024.1991.tb00556.x</u>
- Xing, Y., Ye, Y., Zuo, H., & Li, Y. (2021, 2021-December-21). Progress on the Function and Application of Thymosin β4 [Review]. Frontiers in Endocrinology, 12. <u>https://doi.org/10.3389/fendo.2021.767785</u>
- Zhao, G.-N., Jiang, D.-S., & Li, H. (2015). Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. *Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease*, *1852*(2), 365-378.
- Zhou, Y., Que, K.-T., Zhang, Z., Yi, Z. J., Zhao, P. X., You, Y., Gong, J.-P., & Liu, Z.-J. (2018). Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. *Cancer Medicine*, 7(8), 4012-4022. <u>https://doi.org/https://doi.org/10.1002/cam4.1670</u>
- Zhu, H., Santo, A., Jia, Z., & Robert Li, Y. (2019, May). GPx4 in Bacterial Infection and Polymicrobial Sepsis: Involvement of Ferroptosis and Pyroptosis. *React Oxyg Species* (Apex), 7(21), 154-160. <u>https://doi.org/10.20455/ros.2019.835</u>
- Zúñiga, A., Aravena, P., Pulgar, R., Travisany, D., Ortiz-Severín, J., Chávez, F. P., Maass, A., González, M., & Cambiazo, V. (2019). Transcriptomic Changes of Piscirickettsia salmonis During Intracellular Growth in a Salmon Macrophage-Like Cell Line. Front Cell Infect Microbiol, 9, 426. <u>https://doi.org/10.3389/fcimb.2019.00426</u>
- Zwollo, P., Cole, S., Bromage, E., & Kaattari, S. (2005). B cell heterogeneity in the teleost kidney: evidence for a maturation gradient from anterior to posterior kidney. *The Journal of Immunology*, 174(11), 6608-6616.