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Abstract

This study compares the solubility predictions of the Flory-Huggins-HSP (FH-HSP) model
with those of openCOSMO-RS and PC-SAFT, for evaluating the screening capabilities of the
Hansen solubility parameters (HSP) using the relative energy difference (RED) parameter.
Two deep eutectic solvents, thymol + L-menthol (TM) and thymol + cyclohexanone (TC),
and their precursors were investigated. The threemodels performed reasonably well in pre-
dicting the solubility of thymol and L-menthol in organic solvents but showed significant
deviations in predicting solid solubility in cyclohexanone. For solubility predictions in DES
compared toavailable experimental data, the root-mean-square logarithmicdeviation (RM-
SLD) values obtainedwith FH-HSP, openCOSMO-RS, andPC-SAFTwere 0.86, 0.27, and 0.93,
respectively. Using FH-HSP with HSP obtained from an ideal mixing rule of the parameters
of pure compounds resulted in a deviation of 1.13. The screening assessment of the studied
DES revealed a 70.4%match rate between theREDparameter and ln𝛾∞

𝑖
, with 6.9% false neg-

atives. UsingHSPobtained from the idealmixing rule resulted in similar scores, with a 68.5%
match rate and 10.4% false negatives. The results suggest that the HSP theory can aid DES
screening processes by identifying promising DES-solute pairs, thus allowing the targeting
of more robust methods of computational resources in smaller sets of compounds.
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1. Introduction

1.1. Deep eutectic solvents and solubility parameters

Deep eutectic solvents (DESs) are mixtures whose components present enthalpic-driven
negative deviations from thermodynamic ideality. Thesemixtures are characterized by hav-
ing at least one component that would typically be a solid unsuitable as a solvent [2–4]. The
interest in DES arises because these solvents often exhibit convenient properties, such as
low costs [5], ease of preparation, low toxicity [6], biodegradability [7], and low volatility [8],
among others. However, as these characteristics are not general to all DES andmust be eval-
uated for each system individually [9–13], the key advantage of these solvents lies in their
versatility. Since DESs are mixtures, it is possible to tune their physicochemical characteris-
tics by carefully choosing their precursors and adjusting their mole ratios [3].
Among the most investigated applications for DES are extraction and separation pro-

cesses, for which solubility estimation is crucial. In this sense, a frequently used approach
for solvent selection is the solubility parameters theory [14–16]. This theory developed by
Hildebrand is based on the empirical concept “like dissolves like” [17]. The base concept
is the cohesive energy density (𝑐𝑖 ), which reflects the molar energy change associated with
separating the molecules of a compound 𝑖 from the condensed phase into an ideal gas [18].
From this, Hildebrand introduced the term solubility parameter (𝛿𝑖 ), as given by Eq. 1.1,

𝛿𝑖 ≡ 𝑐
1/2
𝑖

=

(
−𝐸𝑖
𝑉𝑖

)1/2
(1.1)

where 𝐸𝑖 is the molar cohesive energy and 𝑉𝑖 is the molar volume of the condensed phase
of this pure component. The practical implication of Eq. 1.1 is that a suitable solvent could
be selected for a target solute according to the likeness of the 𝛿𝑖 . However, this was gener-
ally limited to non-polar substances. For improving the applicability„ Hansen extended the
solubility parameter concept by considering that𝐸𝑖 canbedivided into the sumof three con-
tributions [1] as shown in Eq. 1.2,

𝐸𝑖 = 𝐸d,𝑖 + 𝐸p,𝑖 + 𝐸h,𝑖 (1.2)
where d, p, and h refer to dispersion, polar and hydrogen bonding contributions, respec-
tively. By dividing the Eq. 1.2 by the molar volume, the total solubility parameter of compo-
nent 𝑖 (𝛿𝑇 ,𝑖 ) can be obtained by the sum of the Hansen solubility parameters (HSP) for each
contribution, according to Eq. 1.3.

𝛿 2𝑇 ,𝑖 = 𝛿
2
d,𝑖 + 𝛿

2
p,𝑖 + 𝛿

2
h,𝑖 (1.3)

While the Hildebrand solubility parameter 𝛿𝑖 is a well-defined thermodynamic quantity
(Eq. 1.1), the split into three contributions is an empirical step forward [18]. As a result, even
though 𝛿𝑖 = 𝛿𝑇 ,𝑖 in practical terms, there must be a distinction between the thermodynami-
cally defined by Eq. 1.1 and the empirically computed by Eq. 1.3.

1



Joaquín Otárola-Sepúlveda 1. Introduction

The HSP for each component 𝑖 can be represented as a coordinate (𝛿d,𝑖 ,𝛿p,𝑖 ,𝛿h,𝑖 ) in the 3D
space. In this sense, the degree of interaction between a component 𝑖 and 𝑗 is quantified by
a “distance” between each coordinate (𝑅a), given by Eq. 1.4.

𝑅a2 = 4(𝛿d,𝑗 − 𝛿d,𝑖 )2 + (𝛿p,𝑗 − 𝛿p,𝑖 )2 + (𝛿h,𝑗 − 𝛿h,𝑖 )2 (1.4)
Smaller𝑅a values translate into higher solubility between compounds. A useful parameter

for solvent screening purposes is the relative energy difference (RED) [1] defined as the ratio
of 𝑅a and themaximum value where solubility can be expected (𝑅0), as shown in Eq. 1.5.

RED =
𝑅a
𝑅0

(1.5)

0 < RED < 1 values mean high affinity, RED = 1 means the limit for solubility, and higher
RED values translate into lower affinities.
The RED parameter has been used extensively as a screening tool due to its accessibility,

as it can be obtained from experimental data [1, 19, 20] or from group contributionmethods
[21, 22]. The simplicity of these calculations is attractive and useful for researchers in several
fields [23–26].
For a multi-component system, Eq. 1.1 can be expanded in terms of the internal energy

change of mixing (Δ𝑈 ), the molar volume of the mixture (𝑉 ) and the molar fraction of each
component (𝑥𝑖 ), according to Eq. 1.6.

𝛿 2 =
𝑛∑︁
𝑖=1

𝑥𝑖𝛿
2
𝑖

𝑉𝑖

𝑉
− Δ𝑈

𝑉
(1.6)

If a thermodynamic ideality is assumed (Δ𝑈 = 0), Eq. 1.6 reduces to Eq. 1.7 where the
volume fraction of component 𝑖 (𝜙𝑖 ) is used instead of the volume.

𝛿 2ideal =
𝑛∑︁
𝑖=1

𝜙𝑖𝛿
2
𝑖 (1.7)

However, the linearapproach𝛿 ≈ ∑𝑛
𝑖=1 𝜙𝑖𝛿𝑖 , rather thanEq. 1.7, is themost commonway to

estimate the solubility parameters ofmixtures. In any case, their applicability to systems that
exhibit specific interactions is limited and not well defined, as extensively discussed early by
Barton [27] andHansen [1], andmore recently by Panayiotou [28–30]. Despite this, there are
several examples in the literature where HSP theory and Eq. 1.7 are used both for ideal and
non-ideal systems, including ionic liquids (ILs) and DES [14, 31–38].
Some studies have addressed the validity of Eq. 1.7. For instance, Takebayashi et al. [39]

found that Eq. 1.7 may be underestimating the HSPmixtures values of (polar aprotic + pro-
tic) systems, as suggested by overestimations of indomethacin solubility in this system and
non-ideal deviations of Kamlet-Taft parameters. Vella andMarshall [40] used the Perturbed-
Chain Statistical Associating Fluid Theory (PC-SAFT) to estimate the solubility parameters
of mixtures. PC-SAFT and Eq. 1.7 gave similar results for several systems, even for non-ideal
ones, which agreed well with experimental results. However, noticeable deviations were ob-
served for systems where none of the precursors engaged in hydrogen bonding interactions
in their pure state. Bergua et al. [41] used different correlations to calculate the HSP of the
thymol +L-menthol systemusing several physical quantities suchasdipolemoment anden-
ergyof vaporization. They reported thatnoticeablemolar fractiondependencewasobserved

2



Joaquín Otárola-Sepúlveda 1. Introduction

only for 𝛿p. The available literature on the subject suggests a scenariowhere the dependency
of the HSP on the molar fraction of DES, and the extent to which this affects HSP solubility
predictions for these systems, is not entirely clear.

1.2. Motivation and scope

The rationale of this work stems from twomain reasons. The first one comes from the ques-
tion of to what extent the HSP theory can give valuable insights regarding the solubility in
DES. As mentioned before, the simplicity of the theory has motivated its use in novel sol-
vents like DES and ILs. The usual form found in the literature to obtain the HSP in DES is
by calculating the HSP of the pure compounds, via experimental techniques or group con-
tribution methods, and then using Eq. 1.7 to obtain the mixture’s parameters. However, in
addition to the fact that the strong intermolecular interactions present in DES complicate
the use of theHSP, there is no certainty in whether the resultingHSP from thismethod accu-
rately represents the interactions present in the actual mixture.
The second reason arises from the fact that, although several studies have been published

over the years regarding methodologies for HSP calculation, those are validated, almost in-
variably, using the data compiled in the Hansen handbook [1]. An important number of val-
ues included in this dataset are estimated rather than experimentally determined, and even
those have an important degree of uncertainty. This raises doubts about what can be con-
cluded from these error metrics since obtaining a “true” value for any of the HSP appears
as a rather uncertain task. Hence, for studying the HSP in DES, an alternative to bypass the
need to have reference HSP values for each system is to directly evaluate its ability for mak-
ing solubility and affinity predictions. For this task, several theoretical tools are available, in-
cluding well-suitedmodels such as COSMO-RS and PC-SAFT. On the one hand, COSMO-RS
(COnductor-like ScreeningMOdel for Real Solvents) [42, 43] is a statistical thermodynamics
theory based on COSMO polarization charge densities that has been extensively applied to
investigate solute-solvent interactions. Since it is fully predictive, it has become a frequently
usedmethod for screening applications of complex solvents such as ILs andDES [44–47]. On
the other hand, PC-SAFT [48, 49] is a widely used equation of state (EoS) to model the ther-
modynamic properties of fluids, particularly in the context of phase equilibria. PC-SAFT has
proven to be an effective tool for modeling the solubility of different compounds in various
solvents [50, 51], including DES [52–54].
In this work, two binarymixtures, thymol + L-menthol (TM) and thymol + cyclohexanone

(TC),wereprepared todetermine theHSPusing twodifferent experimental approaches. The
first one uses the sphere fitting method, which takes as input binary information of “good”
and “bad” solventswith knownHSP. The secondapproachuses intrinsic viscosity toquantify
the interactions between DES in different solvents, and then from this data extract the HSP
of each DES using different methods. The recent open-source implementation of COSMO-
RS reported by Gerlach et al. [55] (openCOSMO-RS) and PC-SAFT EoS [48, 49] were used to
calculate the activity coefficients of these DES with several compounds of different charac-
teristics in order to evaluate the solubility estimations of the HSP theory. Given that the HSP
theory has been applied to systems that gowell beyond the constraints for which it was orig-
inally developed, the purpose of this study is to assess the scope of theHSP theory as applied
to DES by comparing common experimental methods for HSP determination with robust
computational tools.

3
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DES HSP

openCOSMO-RS
PC-SAFT

Solid solutes

Figure 1.1.: Graphical representation of the aim of this study. The ability of the HSP the-
ory to model the solubility of solids in DES is evaluated by comparing it with
openCOSMO-RS and PC-SAFT.

1.3. Hypothesis and objectives

1.3.1. Hypothesis

1. Hansen solubility parameters allow for the calculation of the solubility of solid solutes
in deep eutectic solvents.

2. Intrinsic viscosity allows the determination of Hansen solubility parameters values for
deepeutectic solvents, which canbeused topredict the solubility of these systemswith
solid solutes.

3. The Hansen solubility parameters of a deep eutectic solvents deviate from linear be-
havior with respect to composition.

1.3.2. Objectives

General objective

Determine experimentally the solubility parameters of differentDES, and study their poten-
tial estimation from their pure components.

Specific objectives

1. To study the predictive ability of Hansen solubility parameters in terms of solubility of
solid solutes in deep eutectic solvents.

4
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2. To compare the Hansen solubility parameters obtained in deep eutectic solvents us-
ing the solubility test technique with those obtained from intrinsic viscosity measure-
ments.

3. Evaluate whether the ideal mixing rule used to estimate the solubility parameters of
mixtures applies to deep eutectic solvents.

4. To explore the possibility of establishing amixing rule, based on preferential solvation
theory, to predict the solubility parameters of binaryDES from their pure components.

5. To compare the performance of the Hansen solubility parameters theory for calculat-
ing the solubility of solid solutes in deep eutectic solvents with COSMO-RS and PC-
SAFTmodels.

6. To evaluate the capacity of Hansen solubility parameters theory for screening applica-
tions of solid solutes in deep eutectic solvents.

5



2. Methods and materials

2.1. Chemicals

Thechemicalsused forDESpreparation is included inTable2.1, alongwith thespecifications
reported by the provider. The solvents used for the solubility test are attached to Table A.1.
All the compounds were used without purification.

Table 2.1.: Specificationsof thecompoundsused in thiswork forDESpreparation, alongwith
their molar mass (𝑀 ), CAS number, and supplier.

Chemical name 𝑀 / g ·mol−1 CAS Supplier Purity / wt.%
Thymol 150.218 89-83-8 Sigma Aldrich ≥ 98.5
L-Menthol 156.265 2216-51-5 TCI Chemicals ≥ 99.0
Cyclohexanone 98.143 108-94-1 Sigma Aldrich ≥ 99.0

2.2. Mixtures preparation

The DES used in this work were prepared gravimetrically at different compositions using
an analytical balance (Practicum 224-1s Sartorius, Germany) in different proportions. The
mixtures were heated under stirring at 323.15 K until a homogeneous and clear liquid was
formed. After cooling at room temperature, only the samples that remained a stable liquid
were selected for solubility parameter determination. Thewater content of themixtureswas
measured using a Karl Fischer Coulometer (831 KFMetrohm, Switzerland) and a Volumetric
Karl Fischer (870 KF Titrino plus Metrohm, Switzerland). Detailed information on the pre-
pared DES is presented in Table 2.2.

2.3. Modeling

2.3.1. Hansen solubility parameters (HSP)

The HSP of the pure compounds selected in this work were obtained from the dataset re-
ported by Díaz de los Ríos and Hernández Ramos [56]. HSP were estimated using the group
contributionmethod described byMathieu [57] for compounds not included in this dataset.
In order to calculate the HSP for DES, two experimental approaches were used. In the first
approach (HSP1), eachDES samplewas dissolved in 20 solvents using 0.5mL ofDES in 7mL
of solvent, shaken for 24 h at 160 rpm and 298.15 K, and left to settle for 1 h before interpret-
ing the results. Each solvent was rated as "good" or "bad" based on its ability to dissolve the
solute completely or not, respectively, by visual inspection. Then, the Excel Sheet developed

6



Joaquín Otárola-Sepúlveda 2. Methods andmaterials

Table 2.2.: Specifications of the studied DES. 𝑥thy is the mole fraction of thymol,𝑀DES is the
molar mass, and 𝜙thy is the volume fraction of thymol.

DES 𝑥thy / mol ·mol−1 𝑀DES / g ·mol−1 𝜙𝑎thy / mL ·mL−1 Water content / ppm

Thymol + L-Menthol (TM)

0.3303 154.27 0.3042 118.5
0.4171 153.75 0.3882 1004.8
0.4978 153.26 0.4678 117.7
0.5905 152.70 0.5611 548.5
0.6818 152.14 0.6552 64.4

Thymol + Cyclohexanone (TC)

0.0772 102.16 0.1117 5048
0.1513 106.02 0.2112 5549
0.2844 112.95 0.3738 4324
0.6145 130.14 0.7054 4655
0.7833 138.93 0.8445 5026

a Calculated using densities reported by the provider of 0.965 g·mL−1, 0.890 g·mL−1, and 0.947 g·mL−1 for
thymol, L-menthol, and cyclohexanone, respectively.

byDíazde losRíos andHernándezRamos [56]wasutilized,which takespreviousbinary clas-
sification as an input to determine the best coordinates for the center of the Hansen sphere
and the radius 𝑅0 for each DES, while considering errors caused by good and bad solvent
mismatches.
The second experimental approachuses intrinsic viscositymeasurements ([[𝑖 ]) of diluted

DES samples in 8 organic solvents, which are included in Tables S2 and S3. These dilutions
were prepared by mixing 0.25 mL of DES and 5 mL of solvent. The dynamic viscosities of
the pure solvent ([0) andDES+solventmixture ([) weremeasured using an Anton Paar Lovis
2000MEmicroviscometer (Graz, Austria) at 298.15 K. Then, the intrinsic viscosity was calcu-
lated using a single concentration measurement using the Solomon-Ciută equation [58], as
shown in Eq. 2.1,

[[𝑖 ] =

√︂
2

[
[
[0

− 1 − ln
(
[
[0

)]
𝐶

(2.1)

where𝐶 is the concentration of the DES in the solvent in g/100mL.
Intrinsic viscosity data has been successfully used for calculating solubility parameters of

molecules smaller than polymers, such as ILs and p-xylene oxidation derivatives. However,
to the best of the authors’ knowledge, Eq. 2.1 has not been previously used for DESs. A brief
discussion of the applicability of Eq. 8 for these systems is included in .
To calculate theHSP fromviscosity data, three calculationmethodswereused for compar-

ison. Thefirstmethod, proposedby SegarceanuandLeca [59] (HSP2-S), uses thenormalized
intrinsic viscosity ([[ ′

𝑖
] = [[𝑖 ]/[[max]) and the HSP of each solvent used (𝛿d,𝑖 , 𝛿p,𝑖 and 𝛿h,𝑖 ) to

calculate the HSP of each DES using Eq. 2.2.

𝛿x =

∑ (
𝛿𝑥,𝑖 ·

[
[ ′
𝑖

] )∑ [
[ ′
𝑖

] ; 𝑥 = d,p,h (2.2)

The secondmethod is the one proposed by Bustamante et al. [60] (HSP2-B). This method
fits the intrinsic viscosity measurements of each DES sample in the different solvents using
the least-squares method with 7 constants (𝐶0-𝐶6), according to Eq. 2.3.
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ln[[𝑖 ] = 𝐶0 +𝐶1𝛿d𝑖 +𝐶2𝛿 2d𝑖 +𝐶3𝛿p𝑖 +𝐶4𝛿 2p𝑖
+𝐶5𝛿h𝑖 +𝐶6𝛿 2h𝑖

(2.3)

Then, the HSP of each DES are calculated using these constants by Eq. 2.4.

𝛿d = −
(
𝐶1
2𝐶2

)
; 𝛿p = −

(
𝐶3
2𝐶4

)
; 𝛿h = −

(
𝐶5
2𝐶6

)
(2.4)

The last method computes the functional solubility parameters (FSP) of each DES sam-
ple. The central assumption of this method is that the intrinsic viscosity of the DES in each
solvent gives a quantitative measure of the affinity between both compounds, allowing to
construct a density function which has for domain the 3D-space formed by the contribu-
tions (𝛿d, 𝛿p, 𝛿h), and the [[𝑖 ] values as the range. The density function and FSP calculation
were done using theMATLAB-FreeFEM++ workflow available in the original work of Howell
et al. [61], to which the reader is referred for details of themethod.
Regardless of the method used to obtain the HSP, the activity coefficient for component 𝑖

(𝛾𝑖 ) can be calculated using the extended Hansen model combined with the Flory-Huggins
entropy correction [62, 63], according to Eq. 2.5,

ln𝛾𝑖 = ln
𝜙𝑖

𝑥𝑖
+ 1 − 𝜙𝑖

𝑥𝑖
+ 𝜒𝑖 𝑗𝜙2

𝑗 (2.5)

where 𝜒𝑖 𝑗 is the Flory-Huggins interaction parameter between components 𝑖 and 𝑗 . This pa-
rameter can be expressed in terms of HSP according to Eq.2.6,

𝜒𝑖 𝑗 = 𝛼
𝑉𝑖

4𝑅𝑇 𝑅
2
a (2.6)

where𝑅 is the ideal gas constant,𝑇 is the absolute temperature of the systemand the param-
eter 𝛼 is set equal to 0.6 as suggested by 62.

2.3.2. COSMO-RS

TheCOSMO-RS theoryassumes that the thermodynamicsof a systemcomposedof chemical
compounds can be described by the thermodynamics of an ensemble of pairwise interact-
ing surface segments. The interactions between these segments can be set to be a function
of various descriptors, with the main one being the screening charge 𝜎 . These charges are
calculatedusingquantumchemistry, particularly density functional theory (DFT). Toobtain
the𝜎 values for each segment, amolecule isfirst representedasacavity,which is a smoothed,
continuum surface that covers themolecule. This cavity is embedded in a hypothetical per-
fectly conductingmedium (infinite permittivity). Then, the geometry of themolecule is op-
timized in several steps, and the screened charge generated in each of the segments of the
cavity is calculated. Using this information, the 𝜎-profile, which is the actual input for the
statistical thermodynamics calculations of themethod, can be computed. The 𝜎-profile is a
histogram of the screening charge of themolecules, i.e. the probability of finding a segment
with a screened charge 𝜎 [64].
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Once the 𝜎-profile is obtained, the calculations regarding the surface contact interactions
are conducted. The fraction of a segment type 𝐼 in a segment mixture can be expressed as,

𝑋 𝐼 =

∑
𝑖 𝑥𝑖𝑛

𝐼
𝑖∑

𝑖

∑
𝐽 𝑥𝑖𝑛

𝐽
𝑖

(2.7)

where 𝑛𝐼
𝑖
is the number of segments of type 𝐼 on a molecule of type 𝑖 , and ∑

𝐽 sums over all
the types of segments. The activity coefficient of each segment is given by the expression,

Γ𝐼 =
1∑

𝐽 𝑋
𝐽 Γ𝐽𝜏𝐼 𝐽

(2.8)

where the interaction parameter 𝜏𝐼 𝐽 can be defined as,

𝜏𝐼 𝐽 = exp
(
−𝐺 𝑖𝑛𝑡

𝐼 𝐽

𝑅𝑇

)
(2.9)

where −𝐺 𝑖𝑛𝑡
𝐼 𝐽

is the interaction free energy of a contact between segments 𝐼 and 𝐽 . This in-
teraction free energy is specified as a function of the set of segment type descriptors. Eq.2.8
corresponds to the general COSMOSPACE equations and can be solved iteratively by simple
repeated substitution [65]. Once these equations have been solved, it is possible to calculate
the residual part of the activity coefficient at a given composition with respect to the pure
compound 𝑖 as,

ln𝛾 res𝑖 =
∑︁
𝐼

𝑞𝑖

𝑎eff
(ln Γ𝐼 − ln Γ𝐼𝑖 ) (2.10)

where𝑞𝑖 is the total surface areaofmolecule 𝑖 ,𝑎eff is the sizeof the surface segments, and Γ𝐼
𝑖
is

the activity coefficient of segment 𝐼 in an ensemble of pure compound 𝑖 . The combinatorial
contribution is calculated using the Staverman-Guggenheim expression [66],

ln𝛾 comb
𝑖 = ln 𝜙𝑖

𝑥𝑖
+ 1 − 𝜙𝑖

𝑥𝑖
− 0.5𝑧 𝑞𝑖

𝑞

(
ln 𝜙𝑖

\𝑖
+ 1 − 𝜙𝑖

\𝑖

)
(2.11)

𝜙𝑖

𝑥𝑖
=

𝑉𝑖∑
𝑗 𝑥𝑗𝑉𝑗

(2.12)

\𝑖

𝑥𝑖
=

𝑞𝑖∑
𝑗 𝑥𝑗𝑞𝑗

(2.13)

where 𝑧 is the coordination number and is typically chosen to be equal to 10. 𝑞𝑖 and𝑉𝑖 are
considered to be the volume and surface area of the cavity of molecule 𝑖 , respectively. 𝑞 is a
universal parameter of themodel.
Then, the activity coefficient of component 𝑖 is calculated according to Eq. 2.14,

ln𝛾𝑖 = ln𝛾 res𝑖 + ln𝛾 comb
𝑖 (2.14)

To test the accuracy of the calculations, in this work the infinite dilution activity coeffi-
cients (𝛾∞

𝑖
) were calculated using openCOSMO-RS and compared to both experimental val-

ues and predictions from the COSMOthermX C30_1705 software, as reported by Brouwer
and Schuur [67].
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The COSMO-RS calculations were carried out using the open-source implementation
developed by Gerlach et al. [55] (openCOSMO-RS). The geometries of all the investigated
molecules were optimized using the RDKit/ORCA workflow [55], which acts as a “sieve”, fil-
tering conformers based on energy and re-optimizing them with more robust calculations.
First, RDKit is used to generate a set of initial conformers of the targetmolecule using the re-
spective SMILES, utilizing the distance geometry approach [68, 69] andMMFF94 force field.
Conformers are filtered and optimized using ORCA [70–72] in successive steps, with a final
COSMOsingle point calculation atDFT/BP86/def2-TZVPD level. The generated .orcacosmo
files are used as input for the subsequent COSMO-RS calculations, which are carried out us-
ing Python. The reader is referred to the original work for the detailedmethodology [55].

2.3.3. PC-SAFT

PC-SAFT is an equation of state developed by Gross and Sadowski [48, 49], which has been
widely used in themodeling of thermodynamic properties of fluids. The core of the PC-SAFT
model is the residual Helmholtz energy of the fluid (𝑎res), which is expressed as a sum of dif-
ferent contributions. These include a hard chain as reference fluid (𝑎hc), dispersion interac-
tions (𝑎disp), and association contributions (𝑎𝑎𝑠𝑠𝑜𝑐 ), as shown in Eq. 2.15.

𝑎res = 𝑎hc + 𝑎disp + 𝑎assoc (2.15)

At least three parameters are necessary to define amolecule with the PC-SAFT framework
properly. These parameters include the number of segments (𝑚𝑠 ), the segment diameter
(𝜎), and the dispersion energy between segments (Y). For molecules with association sites,
two additional parameters are required, including the association volume (^𝐴𝐵 ) and the as-
sociation energy (Y𝐴𝐵 ). Although these parameters can be adjusted to fit specific properties,
improving the accuracy of the predictions [73], the PC-SAFT EoS was used in this work in a
predictive way using the COSMO computations as recently shown by Mahmoudabadi and
Pazuki [74] (Table E.1). In this approach, association volumes are fixed at^𝐴𝐵 = 0.02, and the
association scheme 2B was assumed for associating compounds.
Furthermore, the respective mixing rules of the model were used to extend it to mixtures

without the need for any binary interaction parameters, making PC-SAFT as fully predictive
as COSMO-RS in this work.
The activity coefficient for a component 𝑖 in the PC-SAFTmodel canbe obtainedusing the

fugacity coefficient in themixture (𝜙𝑖 ) and in the pure state at the same system temperature
and pressure (𝜙𝑖 ,pure), as is shown in Eq. 2.16.

ln𝛾𝑖 = ln𝜙𝑖 − ln𝜙𝑖 ,pure (2.16)
In the previous equation, the fugacity coefficients were calculated using Eq. 2.17,

ln𝜙𝑖 = 𝑎res + (𝑍 − 1) +
(
𝜕𝑎res
𝜕𝑥𝑖

)
𝑇 ,𝑣,𝑥𝑘≠𝑖

−
𝑁∑︁
𝑗=1

[
𝑥𝑗

(
𝜕𝑎res
𝜕𝑥𝑗

)
𝑇 ,𝑣,𝑥𝑘≠𝑗

]
− ln𝑍

(2.17)
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where the compressibility factor (𝑍 ) is calculated by using Eq. 2.18.

𝑍 = 1 + 𝜌
(
𝜕𝑎res
𝜕𝜌

)
𝑇 ,𝑥𝑘

(2.18)

2.3.4. Solid-liquid equilibrium

The mole fraction solubilities of a solid solute 𝑖 in a solvent, 𝑥𝑖 , were calculated for all the
different activity coefficientmodels under the assumption of a pure solid phase by using Eq.
2.19 [75],

ln(𝑥𝑖𝛾𝑖 ) =
Δ𝑚𝐻𝑖

𝑅

( 1
𝑇𝑚,𝑖

− 1
𝑇

)
+
Δ𝑚𝐶𝑝,𝑖

𝑅

(
𝑇𝑚,𝑖

𝑇
− ln 𝑇𝑚,𝑖

𝑇
− 1

) (2.19)

where Δ𝑚𝐻𝑖 is its melting enthalpy,𝑇𝑚,𝑖 is its melting temperature, and Δ𝑚𝐶𝑝,𝑖 is its heat ca-
pacity change uponmelting condition. Generally, the heat capacity term is negligible com-
pared with the enthalpic term [75, 76], obtaining Eq. 2.20.

ln(𝑥𝑖𝛾𝑖 ) =
Δ𝑚𝐻𝑖

𝑅

( 1
𝑇𝑚,𝑖

− 1
𝑇

)
(2.20)

Themelting properties of each compound are listed in Table F.1.

11



3. Results

This section is organized as follows. Firstly, in Sec. 3.1, we discuss the non-ideality of the
eutectic systems under study, with a particular focus on TC since this specific mixture has
not been previously reported in the literature.
Next, in Sec. 3.2, we assess the capabilities of the HSP theory when applied to the pure

substances used in the formation of DES, namely thymol, L-menthol, and cyclohexanone.
This assessment involves both quantitative and qualitative predictions, as we compare the
HSP theory to COSMO-RS and the predictive PC-SAFT. Solubility predictions of thymol and
L-menthol are evaluated using these as solutes in several common organic solvents, since
both are solids at room temperature. As cyclohexanone is liquid at room temperature, HSP
are evaluated by estimating the solubility of solid solutes in it. Although mixing these two
approaches (using some substances in question as solutes and other as solvent) is not ideal,
evaluating theHSPmodel using cyclohexanoneas a solutewasnotpossible, since thismodel
is not aimed for liquid-liquid calculations. Moreover, cyclohexanone melting point is very
low (around -31°C), so although there are correlations to extrapolate theHSP values to other
temperatures, such a lower temperature would escape the capabilities of themodel.
Subsequently, in Sec. 3.3, wepresent theHSPobtainedusingdifferentmethods, i.e., HSP1,

HSP2-S, HSP2-B, and FSP. Additionally, we evaluate these HSP in terms of their capabilities
for solubility predictions. Due to the scarcity of experimental solubility data in systems like
TM and TC, each model is also compared using a larger set of solid solutes that, although
lack experimental data, allow to assess the predictions in amore general way.
The results are presented in the order shown (i.e. pure substances first, thenDES) in order

to observe the limitations of themodel in amore systematic manner.

3.1. Non-ideality of the mixtures

A common approach for determining whether a eutectic mixture is a DES is to measure the
SLE and check for negative deviations from thermodynamic ideality. TM is a well-studied
system, and its equilibriumdata have been reported in the literature [77, 78], demonstrating
its non-ideality [79] and thus qualifying it as a DES. Conversely, to the best of our knowl-
edge, the SLE of TC has not been reported in the literature. Nevertheless, the non-ideality
of the system can be demonstrated using a qualitative approach. For that, various TC sam-
ples at different concentrations were kept at approximately 263 K for seven days. The results
revealed that all samples analyzed maintained homogeneity as liquids, indicating that the
SLE of TC has a negative deviation from ideality, as is shown in Fig. S1. For example, the
ideal solubility line predicts that the sample containing 𝑥thy = 0.7 should precipitate ideally
at around 308.4 K, which is 45 K higher than the temperature at which it was observed as a
homogeneous liquid. Also, Fig. S1 demonstrates that the openCOSMO-RS prediction aligns
well with the experimental observations, showing liquidus lines with a sharp slope. The ob-
served shape is common among eutectic mixtures that form cocrystals [78, 80, 81], which is
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reflected in the segmented lines of the SLE diagram due to the different melting properties
of each cocrystal. It ismost likely that the openCOSMO-RS prediction shown is only valid for
the rangewhere only pure crystals precipitate from themixture. From these results, it can be
concluded that TC is a DES.

Figure 3.1.: Ideal SLE diagram for thymol + cyclohexanone, along with the predictions using
openCOSMO-RS. Red points are DES compositions observed to remain a stable
liquid at the respective temperature. Melting properties of thymol are included
in Table F.1, whilemelting properties of cyclohexanonewere obtained from liter-
ature [82] (𝑇m = 245.2 K and Δ𝑚𝐻 = 1.33 kJ·mol−1).

3.2. HSP of pure compounds

Although severalmethods exist for calculating HSP, including recent advancements [83–85],
in several applications the critical test for these parameters is their effectiveness in screening
processes. To assess this, the predictive capabilities of HSP were evaluated quantitatively by
calculating mole fraction solubility and qualitatively by classifying solute-solvent pairs as
“good” or “bad” on its ability to dissolve the solute by visual inspection.
The precursors of the studied DES were selected to evaluate the HSP approach to solu-

bility for systems of pure solid solutes in pure solvents. Experimental solubility data for L-
menthol and thymol in 7 organic solvents, as well as the solubility data of 8 solid solutes in
cyclohexanone,were collected from the literature. These collecteddatawere then compared
to predictions obtained using openCOSMO-RS, FH-HSP, and PC-SAFT. Literature data are
summarized in Table G.1. To determine the accuracy of the solubility predictions obtained
from eachmodel, the root-mean-square logarithmic deviation (RMSLD) was used as amet-
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ric, which is calculated using Eq. 3.1,

RMSLD =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(log10 𝑥
pred
𝑖

− log10 𝑥
exp
𝑖

)2 (3.1)

where𝑁 represents thenumberof experimental datapoints of a solute 𝑖 and the superscripts
“pred” and “exp” refer to predicted and experimental solubility data, respectively.
As observed in Fig. 3.2, the three models give a reasonable performance for the solubility

of thymol and L-menthol, with RMSLD < 0.13 log units. As shown in Fig. 3.2a, worse predic-
tions are obtained for the solubility of solid solutes in cyclohexanone, with RMSLDs of 0.63,
0.46 and 0.55 log units for openCOSMO-RS, FH-HSP and PC-SAFT, respectively. For thema-
jority of cyclohexanone data, and for some thymol and L-menthol data points, it is observed
that FH-HSP has a tendency to underestimate solubilities by overestimating 𝛾𝑖 , whereas
openCOSMO-RS and PC-SAFT tend to overestimate solubilities by underestimating 𝛾𝑖 . For
FH-HSP, this can be understood considering that the𝑅a termdoes not allow negative values,
being a positive contribution to Eq. 2.5 regardless of the system. For the openCOSMO-RS
model, overestimations in the solid solubilities have been previously reported in the liter-
ature [73]. One possible explanation comes from inaccuracies in the estimation of the hy-
drogen bonding free energy contribution, as has been observed in other works [86]. There
are some ways to improve this behavior. For example, although not used in this work,
openCOSMO-RS allows the use of element scaling parameters, which weigh the strength of
the interactions between segments according to the respective element. Parametrization for
the use of these descriptors may improve the predictions.
Regarding PC-SAFT, the deviations observed in Fig. 3.2 can be rationalized by considering

that PC-SAFT was employed in a fully predictive manner. In this approach, the parameters
of the pure substances were obtained fromCOSMO calculations using ORCA, and no binary
parameters were fitted. It is known that the accuracy of PC-SAFT can be improved by incor-
porating parameters that are fitted to liquid properties such as density and vapor pressure.
These parameters provide amore precise characterization of the solvent, which, in turn, can
help improve the prediction of solid solubilities. However, the parametrization strategy used
for liquid solvents cannot be applied to solutes, which have low volatility and high melting
points. Instead, it is necessary to use experimental solubility data in particular pure solvents,
which has been shown to give accurate results [50, 87, 88]. Although fitting binary parame-
ters would be the standard way to proceed in this case, it was not within the scope of this
study, since the aim was to evaluate the three models in a predictive fashion, avoiding the
use of extra adjustable parameters to the experimental data so as to prevent overfitting and
maintain a comparative balance between the models. For instance, the FH-HSP model has
also been shown capable of fitting the solubility of APIs in several solvents, but by letting the
HSP of the API and another two parameters as adjustable ones [39].
For the qualitative evaluation of the HSP approach, the RED parameter was compared to

ln𝛾∞
𝑖
obtained using openCOSMO-RS. This parameter has been successfully used as an in-

dicator in solvent screening applications [45, 89], were decreasing negative values of ln𝛾∞
𝑖

correspond to higher solute-solvent interactions, analogous to smaller values of RED. This
limit can be understood considering that the activity coefficient can be expressed as,

ln𝛾𝑖 =
`𝑖 − `0𝑖
𝑅𝑇

(3.2)
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Figure 3.2.: Deviations obtained for each model in solubility prediction in pure solvents. (a)
Relationship between the prediction error with experimental solubilities close
to 298.2 K (see Table G.1). Each point corresponds to solute-solvent pairs which
include thymol ( ), L-menthol ( ), and cyclohexanone ( ); (b) RMSLD of each
model for thymol, L-menthol, and cyclohexanone. The experimental data used
from the literature is included in Table G.1.

where `𝑖 and `0𝑖 are the chemical potential of solute 𝑖 in the mixture and in a system with
𝑥𝑖 = 1, respectively. Negative values for ln𝛾𝑖 would mean that introducing a molecule of 𝑖
into themixture is energetically more favorable than introducing it in the pure at these con-
ditions. This means that the solute molecule 𝑖 will have a tendency to undergo change into
the solvent. This limit is somehow analogous to the limit of RED = 1, which means that the
solvent is just entering the “solubility region” of a given solute. The aim was to determine
how closely these two criteria corresponded.
The results of the qualitative evaluation of HSP for pure solvents are presented in Fig. 3.3.

The solute-solvent pairs evaluated and the respective HSP are reported in the Excel file in-
cluded in the Supporting Information. The plane is divided into four quadrants, represent-
ing zoneswithmatches (I and III) andmismatches (II and IV) between ln𝛾∞

𝑖
andRED.Out of

the 2204 pairs that were evaluated, 66.1% of the points correspond tomatches between RED
and ln𝛾∞

𝑖
. Quadrant II correspond to 21.7%, andquadrant IV to 12.2%. It isworthnoting that

while both quadrant II and IV represent mismatches, quadrant IV is less desirable because
it corresponds to false negatives, i.e. solvents that RED would screen as “bad” for the given
solute, contrary to openCOSMO-RS prediction. As a result, quadrant IV points should be
treatedwith caution, aswithout experimental corroboration is not possible to knowwhether
RED or ln𝛾∞

𝑖
are correctly describing solute-solvent affinity. False positives, which are rep-

resented by datapoints in quadrant II, are generally less harmful to the screening process
than false negatives. This is because the RED parameter is often used as an initial filter, and
further refinement of the screening process can be performed using more rigorous tools in
subsequent stages. From a practical point of view, RED is able to reduce the initial dataset to
around half (1100 pairs), from which 56.6% (622 pairs) are true positives, which is a reason-
able performance considering the simplicity of the calculations.
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Figure 3.3.: Hexbin plot showing the relationship between predicted ln𝛾∞
𝑖

using
openCOSMO-RS and the RED parameter between a pure solid solute 𝑖 and
a pure solvent at 298.15 K. The color intensity represents the number of points in
each hexagon. The plot is divided into four quadrants, representing thematches
(I and III) andmismatches (II and IV) between both screening parameters.

3.3. HSP of DES

3.3.1. HSP results

The measured solubility parameters for TM and TC at each HBA:HBD ratio are reported in
TableH.1, and the intrinsic viscosity calculations are included inTables C.2 andC.3. One im-
portant objective of thisworkwas to investigate thedependenceofHSPwithmole fraction in
DES. Fig. 3.4 shows theHSPobtained forTMandTCasa functionof𝑥thy for each system. Two
immediate observations canbemade from this plot. First, each solubility parameter exhibits
a deviation from the ideal prediction (Eq. 1.7) in both systems,with thehighest deviation ob-
served in 𝛿p. Second, themethods (HSP1, HSP2S, HSP2-B, and FSP) used for computing the
HSP do not reveal a dependence of these parameters with mole fraction. Both observations
are discussed in the following.
TheHSPvaluesobtainedwitheachmethodshowasimilar tendency, except for theHSP2-B

method. It shows a significant deviation from the general trend in the calculated values (Fig.
3.4b, 3.4c, and 3.4f). Moreover, the HSP2-B method resulted in negative HSP values for two
TC samples (𝑥thy = 0.0772 and 0.7833), which were left out of the plot. To investigate this, a
bootstrappingwas performed forHSP2-B andHSP2-S for comparison. Bootstrappingworks
by randomly resampling the experimental data, generating the called “bootstrap samples”,
with which the target indicator (in this case the respective HSP) can be recalculated (see the
Supporting Information for further details on bootstrapping). It was found thatminor errors
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Figure 3.4.: HSP values calculated for TM (left panel) and TC (right panel), using the solu-
bility test method HSP1 ( ), and the intrinsic viscosity based methods HSP2-S
( ), HSP2-B ( ), and FSP ( ), as a function of the mole fraction of thymol, 𝑥thy, at
298.15 K. Predictions calculated using Eq. 1.7 are also included ( ).

in the direct experimental measurements (e.g. mass or viscosity) would cause significant
errors in the calculated HSP values using the HSP2-B method, as observed in the error bars
of the HSP2-B method in Fig. 3.4 compared to HSP2-S. Therefore, the following discussion
will focus on the HSP1, HSP2-S, and FSPmethods.
It is important to remember the nature of themethods bywhich one tries to arrive at some
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numerical value for the solubility parameters from experimental information. On the one
hand, somemethods estimate the cohesive energy betweenmolecules bymeasuring aprop-
erty directly from the system, e.g. vaporization enthalpy. On the other hand, methods like
those used in this study estimate theHSP by using information regarding how themolecules
of the system interact with other compounds. Although the latter vary in the level of detail
in which the interactions are represented (intrinsic viscosity methods allow to distinguish
how “good” a solvent is, unlike the binary classificationHSP1method), these still rely on the
similarity principle, which assumes that if the DES and other compound exhibit high inter-
actions, one could expect those to have similar HSP. Since this thermodynamicmodel relies
on pairwise interactions, the parameters can quantify the specific interaction abilities of the
molecules [28, 90, 91]. Consequently, to use the HSP theory to investigate the solvation be-
havior of DESs, it is necessary to determine whether the similarity principle alone accounts
for the interactions between DESs and other compounds.
To this end, Fig. 3.5 shows the ln𝛾∞

𝑖
values calculated using openCOSMO-RS for 325 com-

pounds in TM and TC at a 1:1 HBA:HBD ratio as a function of each contribution to the HSP.
It should be noted that the calculation of ln𝛾∞

𝑖
using openCOSMO-RS is independent of the

simplifying assumptions of Hansen theory; it merely illustrates the patterns of HSP values
when sorted according to ln𝛾∞

𝑖
. Fig. 3.5 shows that, in general, the interactions represented

by intrinsic viscosity are qualitatively coherent with the openCOSMO-RS calculations, as
seen by the position of the vertical lines with respect to the negative values of ln𝛾∞

𝑖
.

Nevertheless, in some cases (e.g., Fig. 3.5.d), there is not a clear tendency, as the negative
values of ln𝛾∞

𝑖
are quite scattered. The observedmismatches between the vertical lines and

the ln𝛾∞
𝑖
minimummay arise due to various factors. As a simple illustration, we calculated a

ln𝛾∞
𝑖
-weighted average of each HSP contribution using the compounds that exhibit ln𝛾∞

𝑖
<

−2 for each DES. This provides an estimation of where each HSP would be positioned solely
based on the ln𝛾∞

𝑖
values. Table 3.1 presents the differences between these values and those

obtained with eachmodel. The total difference, Δ𝛿total, is also provided.
As expected, the ideal model demonstrates the largest deviation, which can be attributed

principally to the underprediction of the polar contribution. This is not surprising, consid-
ering that the values are derived from a simple mole fraction average of each contribution
from thepure components, neglecting thepotential changes in the interaction type thatmay
occur upon mixing. Among the other two methods, FSP exhibits the smallest deviation for
both DES, with differences below 1 MPa0.5 for each parameter. This is particularly remark-
able since by only using the [[] values of 8 solvents obtained with an approximation (Eq.
2.1), and even the visual discrimination of the HSP1 method, one can reasonably capture
the interaction tendency of a much larger set of compounds.
The deviations in 𝛿d can be explained by considering that the cohesive energy of DESs

and its compounds primarily originates from specific interactions, which encompass po-
lar and hydrogen bonding forces. Furthermore, since every system experiences dispersive
interactions irrespective of the nature of themolecules involved, the strength of the interac-
tions between a DES and another compound is primarily governed by specific interactions.
Hence, differences in 𝛿d between a given compound and a DES would generally not dictate
the strength of the interaction. For instance, methanol (𝛿d = 14.7 MPa0.5, 𝛿p = 12.3 MPa0.5,
𝛿h = 22.3 MPa0.5) is a good solvent for benzamide [92] (𝛿d = 21.2 MPa0.5, 𝛿p = 14.7 MPa0.5,
𝛿h = 11.2MPa0.5), even though they have a difference in 𝛿d of 6.5 MPa0.5. However, from the
methods used here, it cannot be saidwhich one better isolates the dispersion interactions in
the mixture at a molecular level. Methods with greater theoretical robustness could be suit-
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Figure 3.5.: Logarithmic activity coefficients at infinite dilution calculated using
openCOSMO-RS expressed as a function of the HSP. Calculations were made
for 325 solutes diluted in TM (left panel) and TC (right panel) in a 1:1 HBA:HBD
molar ratio. Vertical lines correspond to the respective HSP calculated with FSP
( ), HSP1 ( ), and Eq. 1.7 ( ).

able for this task, such as the one recently developed by Gaudin et al. [93], which would be
interesting to compare.
The deviations observed for the polar contribution can be rationalized, considering the
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Table 3.1.: Differences between the ln𝛾∞
𝑖
-weighted average values of eachHSP contribution,

and the values obtainedwith three of the usedmethods, expressed inMPa0.5. The
total difference refers to Δ𝛿total = Δ𝛿d + Δ𝛿p + Δ𝛿h.

TM0.5 TC0.5
Model Δ𝛿d Δ𝛿p Δ𝛿h Δ𝛿total Δ𝛿d Δ𝛿p Δ𝛿h Δ𝛿total

FSP 0.98 0.43 0.62 2.03 1.02 1.15 0.42 2.60
HSP1 0.59 0.73 3.07 4.39 3.37 1.06 0.23 4.67
Ideal 0.66 5.62 1.47 7.75 1.25 4.54 1.77 7.57

cumbersome empirical division of the total cohesive energy in the three contributions. It is
difficult to have any degree of certainty about the interactions contributing to 𝛿p. Even if a
solvent is slightly polar regarding dipole-dipole interactions, which would allegedly trans-
late into low 𝛿p values, a polar solute might induce a dipole in the solvent molecules sur-
roundings, giving rise to induced dipole-dipole interactions. Moreover, in the case of thy-
mol, benzene rings form quadrupoles that, although not contribute to the dipole moment
of themolecule, may contribute to quadrupole-dipole interactions.
Regarding the two observations mentioned at the beginning of this section, it has to be

kept in mind that the conclusions that can be drawn from Fig. 3.4 and 3.5 are limited by the
methodsused. Asmentionedearlier theHSPvalues calculated from intrinsic viscosity values
do not represent an inherent property of DES, but rather how these solvents interact with
other substances. Thus, the estimatedHSP for theDES result fromweighting theHSPof each
solvent by its affinitywith theDES,measuredby [[𝑖 ]. Accordingly, thedeviations observed in
Fig. 3.4 are not the deviations of inherent 𝛿d,𝛿p and 𝛿h values of eachDES, but a consequence
of the ability of the DES to display different polar or hydrogen bonding behavior, depending
on the solute chemistry. The solvation behavior of the DES is simplified by attempting to
assign a unique value to each of theHSPwhere higher solute-DES interactions are observed,
even when this may happen in a broad range of values in the Hansen space (as observed
in Fig. 3.5). Accordingly, the non-dependence of the HSP with 𝑥thy observed in Fig. 3.4 only
indicates that thedegreeof affinity of each systemwith thedifferent chemicals is not affected
by its HBA:HBDmolar ratio.
This is one of the reasons why amixing rule such as the onementioned in Objective 4 was

not further developed. Although with expressions based on preferential solvation theory,
particularly those based on thework of Bosch et al. [94], it is possible to adjust for deviations
such as those shown in Fig. 3.4, such an expression would be of little use. The advantage of
fitting this rule was to be able to use the vast amount of HSP reported for pure substances.
However, since the calculated HSPs show no distinguishable dependence on mole fraction,
fitting a function of the type HSPmix = 𝑓 (HSPpures, 𝑥1) would result in overfitting, naturally
being futile in practical terms.
Nevertheless, it must be noted that the results will most likely differ if the HSP of the sys-

tems considered here are determined using correlations that relate the HSP to bulk features
of themixture. Thevalueshere reportedwereobtainedby “forcing” the solubility parameters
tomatch the similarity principle, according to the experimentalmeasurements. Another sig-
nificantmention is that the HSP of the DES precursors were obtained from the handbook of
Hansen [1], as it is awidely used reference. However, from the values there reported, only cy-
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clohexanone has some experimental confirmation, while thymol and L-menthol come from
group contribution calculations. It is possible that Eq. 1.7 could represent the experimen-
tal values of the mixture if the same methods determined the HSP of the pure compounds.
The high dependence of HSP values on themethod used to calculate them is one significant
drawback and reason for questioning the theory. However, it is essential to remember that
the extent to which any method can be said to “work” depends on the precision expected
and needed for specific applications. Thus, the following section discusses the applicability
of the calculated HSP for prediction purposes.

3.3.2. Solubility estimations of solids in DES

The evaluation of the predictive capabilities for the HSP of DES follows the same structure
as in Section 3.2. Table 3.2 shows the experimental solubility of quercetin and curcumin in
TM at different HBA:HBDmolar ratios, along with the RMSLD values for eachmodel. Com-
pared to the other models, the best performance is observed for openCOSMO-RS (RMSLD
= 0.27), which is close to what has been reported in other studies [88, 95, 96], within ranges
between 0.2 and 0.5 log units. As expected, the FH-HSP model underpredicts the solubility
in the four cases (RMSLD= 0.86). Moreover, using the ideal HSP calculatedwith Eq. 1.7 gives
further underpredictions, scoring the highest error (RMSLD = 1.13). However, it is impos-
sible to obtain a representative metric about the performance of each model by using only
these datapoints. Unfortunately, experimental data that includes both solubility in the stud-
ied DES and themelting properties of the solutes is scarce. For this reason, the threemodels
were compared by calculating the solubility of 21 solid solutes (indicated in the Excel file in
the Supporting Information) in each of the thymol mole fractions studied, resulting in 210
solute-DES pairs. Since openCOSMO-RS showed better performance in the cases discussed
above, its predictions were used as the reference value for comparison purposes. The pre-
dictions resulted in differences of 0.76, 0.70, and 0.71 log units for FH-HSP using Eq. 1.7,
FH-HSP using the FSP values, and PC-SAFT, respectively, with respect to openCOSMO-RS.
Additionally, thepredictionsof eachmodel aredepictedas violinplots inFig. 3.6. Here, the

width of each histogram along the y-axis represents the density distribution of the number
of solute-DES pairs predicted at thatmole fraction range. It is observed that the FH-HSP and
PC-SAFT give similar predictions, with no significant differences between the distributions
of both DES. Additionally, in both models, most of the values are located at low mole frac-
tions. However, openCOSMO-RS tend to estimate larger solubility values for more solutes
in both DES, as seen by the width of the distribution above 0.25 mol · mol−1. Moreover, it
indicates that TC gives higher solubility for more solutes near 0.4 mol ·mol−1.
Although similar performances for FH-HSP and PC-SAFT are observed, it should be noted

that the ability of PC-SAFT to accurately predict mixture phase equilibria for complex sys-
tems of unlike molecules without using any binary interaction parameters fitted to experi-
mental data is generally limited. Of course, this purely predictive capacity can be improved
by using interaction parameters, which is also one of the advantages of PC-SAFT.
Additionally, FH-HSP predictions are limited to the temperature at which the HSP were

calculated, while PC-SAFT and openCOSMO-RS can integrate this dependence. Neverthe-
less, it is interesting to see that a simple model such as FH-HSP provides reasonable esti-
mations for DES when compared to the purely predictive parametrization of PC-SAFT. For
futurework, it would be valuable to obtain experimental confirmation on the solid solubility
in the typeofDES studiedhere, particularly for solutes that exhibit highpredicted solubilities
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in all themodels.
For the qualitative evaluation of the HSP, the screening parameters RED and ln𝛾∞

𝑖
were

calculated for 26 solid solutes (refer to the Excel file in the Supporting Information), each in
TM and TC at the five thymol concentrations. Fig. 3.7 shows the matches and mismatches
between both approaches. A comparison is made between the RED values computed using
the values from the FSP method (Fig. 3.7a) and the ideal HSP from Eq. 1.7 (Fig. 3.7b). In-
terestingly, the number of matches (quadrants I and III) is similar in both cases, with 70.4%
and 68.5% for Fig. 3.7a and 3.7b, respectively. Regarding themismatches, the FSP values per-
form slightly better since quadrant IV contains 6.9% of the pairs, compared to 10.4% when
using the idealHSP. The latter introduces someextra falsenegatives inquadrant IV,whichare
worse errors as these leave out potentially suitable candidates. For example, openCOSMO-
RSshowsTC is agreat candidate fordissolvingquercetin, corresponding to themostnegative
ln𝛾∞

𝑖
values in the III quadrants. However, only the FSP values are accordant to this, as seen

by RED < 1 values. Thismay be explained by the higher polar contribution calculated for TC
when using the FSP, and as quercetin has a high polar contribution (𝛿p = 16.85 MPa0.5), the
prediction improves. Moreover, the ideal HSP displaces several points to the left, indicating
RED predicting stronger interactions when openCOSMO-RS suggests only slight ones.
The results indicate that the HSP are unsuitable for accurately predicting DES solubility if

a high or intermediate level of numerical accuracy is needed. However, the HSP theory can
still provide a valuable tool for screening processes in DES applications. Specifically, it can
broadly capture the trend in DES-solute affinities compared to the more accurate ln𝛾∞

𝑖
val-

ues. This makes the HSP approach advantageous during the initial screening phase, when
manycandidatesmustbe evaluated. Usingmore refined techniquesmaydemandhighcom-
putational costs. Thus, the HSP method can provide a cost-effective and time-saving alter-
native.

Table 3.2.: Experimental and calculated solubilities of quercetin and curcumin in TM. FH-
HSP predictions using theHSP from the FSPmethod and the idealmixing expres-
sion (Eq. 1.7) are included. RMSLD with respect to the experimental value is also
shown.

Mole fraction solubility
Solute HBA:HBDmole ratio Experimental FH-HSP (Eq. 1.7) FH-HSP (FSP) openCOSMO-RS PC-SAFT

Quercetin
1:2 1.27 · 10−3 [41] 5.40 · 10−5 1.37 · 10−4 4.07 · 10−3 2.55 · 10−4
1:1 5.93 · 10−4 [41] 5.40 · 10−5 1.42 · 10−4 9.23 · 10−4 2.56 · 10−4
2:1 3.32 · 10−4 [41] 5.20 · 10−5 1.39 · 10−4 2.79 · 10−4 2.56 · 10−4

Curcumin 5:8 2.74 · 10−2 [97] 1.70 · 10−3 1.64 · 10−3 2.65 · 10−2 5.65 · 10−4

RMSLD 1.13 0.86 0.27 0.93
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Figure 3.6.: Violin plots representations of solubility predictions for solid solutes in TM and
TC. Themodels are: FH-HSP using the HSP from Eq. 1.7 (FHSP1), FH-HSP using
the FSPmethod (FHSP2), openCOSMO-RS (oCRS), and PC-SAFT (PCS). The vio-
lin plot shows kernel density trace or smoothed histograms to describe the data
distribution pattern. The width of the violin at any point represents the density
of data points at that particular mole fraction. Black lines inside the curves rep-
resent the datapoints.
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Figure 3.7.: Hexbin plot showing the relationship between predicted ln𝛾∞
𝑖

using
openCOSMO-RS and the RED parameter between a pure solid solute 𝑖 and
a DES at 298.15 K. The color intensity represents the number of points in each
hexagon. RED was calculated using the HSP obtained with (a) the FSP method
and (b) ideal values from Eq. 1.7. Both subfigures are divided into four quad-
rants, representing the matches (I and III) and mismatches (II and IV) between
both screening parameters
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4. Conclusions

This study aimed to assess the efficacy of using HSP to predict solid solubility in DES and
its screening capabilities. Although HSP theory is commonly used in screening processes,
its applicability to systems with strong specific molecular interactions is limited. Two DES
(TM and TC) and their respective precursors were investigated to test the HSP model. The
predictions of the FH-HSPmodel were compared with openCOSMO-RS and PC-SAFTmod-
els using solubility calculations. These were contrasted with experimental data reported in
the literature. The RED parameter of the HSP was used to evaluate its screening capabilities
against ln𝛾∞

𝑖
values calculated with openCOSMO-RS.

The obtained HSP values of each DES deviated from the ideal mixing rules and did not
show a dependence on the thymol mole fraction. The calculated HSP captured the interac-
tions between a large set of chemicals of different natures and the studiedDES, asmeasured
by the calculated ln𝛾∞

𝑖
. Among themethods employed, the FSP approach exhibited the best

performance.
The FH-HSP model performed reasonably well in predicting the solubility of thymol and

L-menthol in organic solvents, with deviations of 0.12 and 0.11 log units, respectively. Ad-
ditionally, for these same substances, the RMSLD values were lower for openCOSMO-RS
(0.02 for thymol and 0.04 for L-menthol) and similar for PC-SAFT (0.11 log units for both).
In contrast, all three models showedmore significant deviations in predicting the solubility
of solid compounds in cyclohexanone. Specifically, FH-HSP, openCOSMO-RS, and PC-SAFT
had RMSLD values of 0.46, 0.63, and 0.55 log units, respectively.
Regarding screening assessment, out of 2204 solute-solvent pairs evaluated, the RED pa-

rameter showed a 66%match rate compared to ln𝛾∞
𝑖
, with 12% false negatives.

For solubility predictions in DES compared to available experimental data, all models
showed higher RMSLD values, with FH-HSP, openCOSMO-RS, and PC-SAFT yielding 0.86,
0.27, and 0.93 log units, respectively. Using FH-HSP with HSP obtained from an ideal mix-
ing rule of the parameters of pure compounds resulted in a deviation of 1.13 log units. The
screening assessment of the studied DES revealed a 70% match rate between the RED pa-
rameter and ln𝛾∞

𝑖
, with 6.9% false negatives. Using HSP obtained from the idealmixing rule

resulted in similar scores, with 68.5%match rate and 10.4% false negatives.
The results of this work indicate that the HSP are not recommended for solubility calcula-

tions in DES if high accuracy is required. However, it can be a useful tool for differentiating
between "good" and "bad" solvents and for guiding the selection of potential DES-solute
pairs. Thismakes it a valuable aid in screening processes, especially during the initial stages
when many candidates must be evaluated. By using HSP theory to identify promising sol-
vents, computational resources can be focused on a smaller set of compounds using more
refinedmethods.
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4.1. Assessment of the hypotheses

Based on the results obtained from this project, the following answers can be given for the
hypotheses proposed at the beginning:

1. Hansen solubility parameters allow for the calculation of the solubility of solid solutes in
deep eutectic solvents. No. The solubility calculated for solid solutes in the studiedDES,
using the FH-HSPmodel, gives results with important deviations. This was evidenced
when comparing the predictions with experimental data for quercetin and curcumin
in TM. Moreover, large deviations were observed for other solutes when compared to
openCOSMO-RS, which was the model that performed the best in most cases. Hence,
this model is not recommended if a high level of accuracy is needed. It must be men-
tioned that these calculations assume that the precipitation of the solid solute occurs
as a pure compound. Therefore, the formation of co-crystals between the solute and
the components of the DES is not considered, which may contribute to the errors of
all the models. However, the obtained HSP were found to be useful for screening tasks
using the RED parameter.

2. Intrinsic viscosity allows the determination of Hansen solubility parameters values for
deep eutectic solvents, which can be used to predict the solubility of these systems with
solid solutes. Yes. By calculating the intrinsic viscosity of the studied DES, it was pos-
sible to calculate HSP values for these solvents. The obtained HSP was better than the
ones obtained from Eq. 1.7 for capturing the interactions between the DES and other
substances. This was shown by the calculated ln𝛾∞

𝑖
using openCOSMO-RS (Fig. 3.5).

Although using theHSP from intrinsic viscosity calculations for estimating the solubil-
ity of solid solutes in the DES resulted in smaller deviations than when using Eq. 1.7, is
still not suited for quantitatively accurate solubility predictions.

3. The Hansen solubility parameters of deep eutectic solvents deviate from linear behavior
with respect to composition. Yes. However, this was evaluated by using HSP obtained
from information regarding the affinity of the DES with other compounds, along with
theHSPof those compounds. Therefore, a better affirmationwould be that “theHSPof
a binary DES that best represents its interactions with other compounds deviates from
a linear behavior”. Nevertheless, one must be aware that the HSP for any compound
hardly have “true” reference values, since its origin is an empirical, although conve-
nient, division in additive contributions to the totalmolar cohesive energy. This brings
up the question of howwould one proceed to define "true" or rigorousHSP values for a
mixture, since this should be established in order to talk about deviations froman ideal
thermodynamic behavior. For instance, it is quite intuitive to see that the Hildebrand
parameter of amixture is awell-definedquantity, since inprinciple itwouldbe approx-
imately given by the heat of vaporization of the system at that compositionminus 𝑅𝑇 .
However, it would be hard to distinguish what portion of that energy is due to disper-
sive forces, polar interactions, or hydrogen bonding interactions. In this sense, Gaudin
et al. [93] recently described an alternative for calculating the dispersive HSP contri-
bution, 𝛿d, by introducing the concept of COSMOmorph (the molecule is depicted as
a COSMO cavity with all surface charge densities and dielectric energy equal to zero),
addressing the splitting in a more rigorous way. However, a similar treatment has not
been developed for the polar and hydrogen bonding contributions. Despite the above
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mentioned, in terms of practical application, it is helpful to know that if one estimates
the HSP of a DES by using Eq. 1.7, less accuracy should be expected in terms of affin-
ity predictions than if one calculates them from experimental measurements, such as
intrinsic viscosity.

4.2. Outlook

The motivation for this investigation was embedded in the context of solvent screening for
polymer dissolution using alternative solvents. As DES were the chosen solvents, this led to
themore specific question of whether HSP could be used for these solvents in the first place.
The results of this study helped to discern the capabilities of this approach when applied to
DES.
Regarding the solubility parameters in general, it is the author’s opinion that efforts should

not be concentrated on developing more methods to predict HSPs aimed at reducing the
error, as long as these errors are calculated using as reference the values reported in the
Hansen manual. This is in no way meant to diminish the importance of the contribution
of this database. Rather, it is to highlight the bottleneck that the HSP theory inherently has.
In this context, undoubtedly the most important progress that has been made in exploit-
ing the concept of solubility parameters is the development made by Panayiotou [98]. The
extension of HSPs to partial solubility parameters and their integration into an equation of
state framework has been shown to be successful in predicting thermodynamic properties
[99–101]. However, it has failed to take off in the scientific community. In this context, an
interesting effort would be to implement the framework developed by Panayiotou in a freely
available library, written in a widely used language, such as Python or Julia.
Regarding the continuation of thework conducted in this investigation, future work at the

group should focus on developing a systematic workflow for solvent screening for polymers
of interest. Such amethodologywould benefit from integrating theHSP approach in the first
stages, as it would reduce the computational cost by filtering easy-to-distinguish bad sol-
vents. For more rigorous calculations, openCOSMO-RS appears as a great alternative. As an
open-access tool, itwouldbeof interest to investigate, for example, the optimalwayof repre-
senting polymers for the COSMO-RS calculations, in terms of chain length, terminal groups,
and combinatorial contribution of the activity coefficients. As an open-source implementa-
tion, openCOSMO-RS invites to try various interesting tasks. For instance, optimization of
the element-scalingdescriptors to evaluate thepotential improvement on thepredictionsby
using available experimental data, or the addition of equilibrium routines into the library.
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List of Acronyms

COSMO-RS COnductor-like ScreeningMOdel for Real Solvents
DES Deep Eutectic Solvent
FH-HSP Flory-HugginsHansen Solubility Parameters model
FSP Functional Solubility Parameters
HBA Hydrogen Bond Acceptor
HBD Hydrogen BondDonor
HSP Hansen Solubility Parameters
HSP1 Method 1 for calculating HSP
HSP2-B Method 2 for calculating HSP, using Bustamante equation
HSP2-S Method 2 for calculating HSP, using Segarceanu equation
PC-SAFT Perturbed-Chain Statistical Associating Fluid Theory
RMSLD Root-Mean-Squared LogarithmicDeviation
TC Thymol + Cyclohexanone
TM Thymol + L-Menthol
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Appendix

A. Chemicals

Table A.1.: Specifications of the solvents used in this work. Molar mass (𝑀 ), CAS number,
supplier and Hansen solubility parameters obtained from literature [1] are in-
cluded. 𝛿d, 𝛿d and 𝛿d are expressed inMPa0.5.

Solvent 𝑀 / g ·mol−1 CAS Supplier 𝛿d 𝛿p 𝛿h

1,4-Dioxane 88.11 123-91-1 Merck 17.5 1.8 9
2-Propanol 60.1 67-63-0 Merck 15.8 6.1 16.4
Acetic acid 60.05 64-19-7 Merck 14.5 8 13.4
Acetic anhydride 102.09 108-24-7 Merck 16 11.7 10.2
Acetone 58.08 67-64-1 Merck 15.5 10.4 7
Acetonitrile 41.05 75-05-8 Merck 15.3 18 6.1
Chlorobenzene 112.56 108-90-7 Merck 19 4.3 2
Chloroform 119.38 865-49-6 Merck 17.8 3.1 5.7
Diethyl ether 74.12 60-29-7 Merck 14.5 2.9 4.6
Dimethyl formamide (DMF) 73.09 68-12-2 Merck 17.4 13.7 11.3
Dimethyl sulfoxide (DMSO) 78.13 67-68-5 Merck 18.4 16.4 10.2
Ethanol 46.08 64-17-5 Merck 15.8 8.8 19.4
Ethyl acetate 88.11 141-78-6 Winkler 15.8 5.3 7.2
Ethylene glycol 62.07 107-21-1 Merck 17 11 26
Formic acid 46.03 64-18-6 Merck 14.3 11.9 16.6
Methanol 32.04 67-56-1 Merck 14.7 12.3 22.3
Dichloromethane 84.93 75-09-2 Merck 17 7.3 7.1
Tetrahydrofuran (THF) 72.11 109-99-9 Merck 16.8 5.7 8
Toluene 92.14 108-88-3 Merck 18 1.4 2
Water 18.01 7732-18-5 Merck 15.5 16 42.3
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B. Functional solubility parameters (FSP)

While HSP theory is widely used for assisting the selection of solvents for different applica-
tions, and the methods used to compute these parameters continue to be improved, there
are criticisms to inherent considerations in this theory. Some of these are:

• Differences in experimental observations. It is a common issue that, when fitting the
sphere to affinity data, the sphere may include solvents rated as “bad” and exclude
“good”.

• Different methods used for the optimization of the sphere of the same compound can
result in important differences in the final result (values of 𝛿d, 𝛿p and 𝛿h), even when
feeding the same data set to the algorithm.

• In several cases solubility data must be reduced to a binary classification (“good” and
“bad” solvents), losing information regarding the magnitude of the affinity between
solute and solvent.

• An implicit assumption in approaching the solubility space as a sphere is that in-
termolecular interactions and dispersion, polar and hydrogen bonding contributions
equally influence the solubility of the system. This assumption of isotropy in solubility
behavior has been criticized by several authors [61, 102].

To address these problems, Howell et al. [61] developed a method that considers the solu-
bility space as a function, i.e., at each point in the space defined by 𝛿d-𝛿p-𝛿h, a species A
must dissolve in a solvent B by a certain amount, which can be zero. Themethod is based on
assuming a solubility function, 𝑓 , which is unknown, to which a value is assigned for each
solvent. In this work, that value will be the intrinsic viscosity of the solute in each solvent, as
reported by Boucher [103]. Thus, this function can be considered as the density of the solid
formed by the points corresponding to each solvent in theHansen space, and the functional
solubility parameters (FSP) correspond to the coordinates of its center ofmass. Fig. B.1 illus-
trates thebasic concepts of themethod, for a simplified space in twodimensions, 𝛿𝑎−𝛿𝑏 . The
spatial domainΩ ∈ ℝ of the solubility function 𝑓 is considered as the convex envelope of the
group of solvents used, i.e., those that are miscible with the solute in question. This creates
an object with polyhedral faces, which will be triangulated, thus allowing the interpolation
of 𝑓 throughout the domain. Themethod chosen for triangulation, as recommended in [61],
is theDelaunay triangulation. Given a set of points, thismethod computes a list of simplices
in terms of the indices of the nodes fed to the algorithm, and a list of triangular faces that
constitute the boundaries of the triangulation. Once the .mesh file is obtained, it is used
to interpolate the 𝑓 function over the entire domain. Then, this function is considered as a
density function of the solid, and the center of mass of the solid is found by numerical inte-
gration. For this, we use the finite element software FreeFEM++ [104].
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Figure B.1.: Illustration of the FSP methodology. (a) Dissolved concentrations of a solute in
several solvents, representedascoordinates in the𝛿𝑎−𝛿𝑏 plane; (b)TheΩdomain
of the 𝑓 function is given by the Delaunay triangulation of the (𝛿𝑎 − 𝛿𝑏 ) points
with a concentration above zero; (c) interpolation of 𝑓 using the concentration
values; (d) comparisonbetween the FSP values and the ones obtainedwith other
methods. Reproduced from [61].
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C. Intrinsic viscosity measurements

On the applicability of Solomon-Ciuta (SC) equation for DES

To thebest of the authors’ knowledge, neither the intrinsic viscositymethodnor the SCequa-
tion has been utilized to estimate the HSP of DES. However, several studies have employed
the intrinsic viscositymethod to calculate solubility parameters for ILs, yielding values com-
parable to those obtained through other conventional methods [105–109]. Unfortunately,
these studies do not report the experimental viscosity data for those the [[] values were ob-
tained. Thus, validation of the SC equation for these systems, which could otherwise serve
as a reference for molecules smaller than oligomers or polymers, is not possible.
The only study that the authors were able to find, which considers molecules of similar

size, is the one from Seuvre and Mathlouthi [110]. The authors report intrinsic viscosity for
different sugars in water (D-glucose, D-fructose, D-galactose, sucrose, andmaltose), and in
water + salts. Using the [sp/𝐶 vs. 𝐶 data, we compared the reported [[] values, calculated
via the extrapolation method, with the ones obtained using SC equation for several values
of𝐶 . Fig. C.1a shows the relative error of the SC equation for these systems as a function of
𝐶 . As expected, the error increases with increasing concentration. For around 𝐶 = 5%, the
relative error averages a 7.2% considering the five systems (only the dilutions in water were
considered). Moreover, the following expression can be used to estimate the expected error
for the SC equation [111],

% error = 100[[]𝐶
(1
6 − 𝛽

)
(C.1)

where 𝛽 = 1/2 − 𝐾𝐻 , with 𝐾𝐻 the Huggins constant. Fig. C.1b shows the error of SC equation
represented as contour lines, calculated by Eq. C.1, for different values of 𝐾𝐻 and [[]𝐶 . For
the sugars above mentioned, average [[]𝐶 values are ∼ 0.13, while for 𝐾𝐻 the values are ∼
1.05 [110]. Locating these values in Fig. C.1b, one obtains errors between 6-8%, which is
coherent with the average relative error mentioned above. Given that the structure of the
mentioned sugars is similar to the DES precursors used in this study (rings that engage in
hydrogenbonding interactions), it is reasonable to expect similar errors for the studiedDESs.
The question that arises is what value of 𝐶 should be used for the SC equation. From the

above discussion, it seems that the smallest possible value should always be used. In this
study, a value of 𝐶 ∼ 5% was employed because DES exhibit lower viscosity compared to
macromolecules or oligomers, resulting in smaller differences between the viscosity of the
pure solvent and the DES + solvent mixture. Consequently, higher concentrations are nec-
essary to ensure a detectable disparity in viscosity upon dilution. Working with small con-
centrations may reduce the error associated with Eq. C.1, but such small variations would
also introduce larger experimental errors related to equipment precision and sample prepa-
ration.
The discussion above focused on the error associatedwith using the SC equation as an ap-

proximation of the traditional extrapolationmethod. To evaluate the sensibility of the calcu-
lated [[] values to the experimental errors, the system thymol + L-menthol (1:1) (TM0.5) is
used for illustration. A sensibility analysis was conducted using SALib Python library [112].
For simplicity, the uncertainty of mass and density measurements was propagated to the
concentration. Thus, the inputs to the SC equation function were 𝐶 , [, and [0. The uncer-
tainty of the viscosities was calculated from the variation coefficient of each measurement
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Figure C.1.: Errors associatedwith the use of the SC equation for calculating the intrinsic vis-
cosity. (a) Relative error of the calculated [[] as a function of concentration in
various aqueous sugar dilutions; (b) contour lines of the estimated error for [[]
calculated with Eq. C.1 as a function of the Huggins constant and the product
[[]𝐶 .

Table C.1.: Illustration of the sensibility of the experimental error in the calculated intrinsic
viscosity for thymol + L-menthol (1:1), using SC equation.

1st order Sobol indices / %
Solvent 𝐶 / g·dL−1 [ / mPa·s [0 / mPa·s [[] / dL·g−1 𝜎[[ ] (%) 𝐶 [ [0

Acetonitrile 4.370 0.3822 0.3556 0.01671 1.68 0.07 46.23 53.31
THF 4.064 0.5113 0.4949 0.00807 2.70 0.03 48.23 51.37
Dichloromethane 4.660 0.4674 0.4665 0.00042 47.00 0.00 48.84 49.97
Methanol 4.180 0.5973 0.5540 0.01823 1.03 0.19 46.03 53.41
Chloroform 4.243 0.5884 0.5667 0.00891 2.04 0.05 47.97 51.61
Ethyl acetate 4.422 0.4771 0.4408 0.01811 1.23 0.13 45.86 53.62
Chorobenzene 4.548 0.7953 0.7611 0.00974 1.30 0.11 47.62 51.89
Acetic anhydride 4.269 0.9129 0.8728 0.01060 1.11 0.17 47.55 51.91

givenby the rolling-ball viscometer (between2·10−3 and3·10−3mPa·s onaverage). Anormal
distributionwas assumed for each input variable, with themeasured value as themean, and
a sample of 1024 datapoints was generated around this mean using the respective standard
deviations. The Sobol sensitivity indices were also calculated. These quantify howmuch of
the variance in themodel output each uncertain parameter is responsible for. Here, only the
first-order Sobol sensitivity indices are shown,whichmeasure the direct effect eachparame-
ter has on the variance of themodel. Note that although these are expressed as percentages,
they do not necessarily sum up 100%, since some contributions may come from combina-
tions between parameters (higher order indices).
The results of the sensibility analysis for the TM0.5 DES are shown in Table C.1. It is ob-
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served that the standard deviation values of the calculated [[] using SC equation are below
3%, except for the particularly high value for dichloromethane (47%). This is a consequence
of the very small change in viscosity upon DES addition to the dichloromethane; [[] values
are around 2 orders of magnitude lower than in the other solvents. This was observed for
dichloromethane in thymol + L-menthol systems, and for 1,4-dioxane in thymol + cyclohex-
anone systems. Nevertheless, the large deviation, which is relative to a small intrinsic viscos-
ity, does not have a great effect on the HSP calculations. Since the HSP2-S and FSPmethods
use the intrinsic viscosity values as weights (each [[] is divided by the maximum obtained
value) the contribution of the solvent to the calculation is negligible, regardless of the devi-
ation. This is not the case for the HSP2-B method which, as mentioned in the manuscript,
is more sensitive to small variations. The first order Sobol sensitivity indices show that the
variance of the calculated [[] is given almost completely by the uncertainty in the viscosi-
ties. The standard deviation of the concentration, not the concentration as a variable itself,
has practically no effect on the standard deviation of [[] when compared to the standard
deviation of the viscosities.

49



Joaquín Otárola-Sepúlveda Appendix

Table C.2.: Intrinsic viscosity calculated for thymol + L-menthol at different molar fractions
and 298.15 K.

Thymol molar fraction Solvent [ / mPa·s [[𝑖 ] / 100mL·g−1 Water content / ppm

0.33

Acetonitrile 0.3808 0.01514 1182.2
THF 0.5245 0.01282 1463.4
Dichloromethane 0.4768 0.00479 412.8
Methanol 0.6188 0.02464 2827.0
Chloroform 0.606 0.01483 314.9
Ethyl acetate 0.4843 0.02090 4056.1
Chlorobenzene 0.8068 0.01287 289.8
Acetic anhydride 0.9303 0.01410 42.5

0.42

Acetonitrile 0.3794 0.01436 1142.8
THF 0.5184 0.01042 1363.0
Dichloromethane 0.4615 0.00238 423.5
Methanol 0.5989 0.01812 2165.0
Chloroform 0.5942 0.01017 256.6
Ethyl acetate 0.472 0.01525 4038.0
Chlorobenzene 0.7935 0.00963 223.5
Acetic anhydride 0.9122 0.01040 200.7

0.5

Acetonitrile 0.3822 0.01671 784.2
THF 0.5113 0.00807 1306.5
Dichloromethane 0.4674 0.00041 395.9
Methanol 0.5973 0.01823 2095.6
Chloroform 0.5884 0.00891 219.7
Ethyl acetate 0.47705 0.01811 4347.5
Chlorobenzene 0.7953 0.00974 245.2
Acetic anhydride 0.9129 0.01060 126.0

0.59

Acetonitrile 0.374 0.01117 1148.2
THF 0.5192 0.01097 1880.7
Dichloromethane 0.4661 0.00018 478.2
Methanol 0.6066 0.01928 2970.4
Chloroform 0.5937 0.01018 332.4
Ethyl acetate 0.4739 0.01638 4163.6
Chlorobenzene 0.7943 0.00946 302.2
Acetic anhydride 0.919 0.01156 227.6

0.67

Acetonitrile 0.3739 0.01104 701.0
THF 0.5171 0.01055 1888.6
Dichloromethane 0.4716 0.00228 381.2
Methanol 0.596 0.01790 2180.5
Chloroform 0.592 0.00958 239.4
Ethyl acetate 0.4739 0.01693 4178.6
Chlorobenzene 0.7911 0.00941 256.4
Acetic anhydride 0.9192 0.01207 170.2
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Table C.3.: Intrinsic viscosity calculated for thymol + cyclohexanone at different molar frac-
tions and 298.15 K.

Thymol molar fraction Solvent [ / mPa·s [[𝑖 ] / 100mL·g−1

0.05

Acetonitrile 0.3694 0.00835
THF 0.5026 0.00329
Dioxane 1.2018 0.00286
Methanol 0.5743 0.00765
Chloroform 0.6041 0.01388
Ethyl acetate 0.4654 0.01184
DMSO 2.0598 0.00611
Acetic anhydride 0.8965 0.00599

0.1

Acetonitrile 0.3805 0.01494
THF 0.5106 0.00681
Dioxane 1.2076 0.00179
Methanol 0.5787 0.01032
Chloroform 0.6053 0.01473
Ethyl acetate 0.4658 0.01187
DMSO 2.0722 0.00484
Acetic anhydride 0.9001 0.00680

0.2

Acetonitrile 0.3718 0.00995
THF 0.506 0.00471
Dioxane 1.216 0.00027
Methanol 0.5798 0.00962
Chloroform 0.5995 0.01183
Ethyl acetate 0.4686 0.01332
DMSO 2.0954 0.00241
Acetic anhydride 0.9058 0.00806

0.5

Acetonitrile 0.3764 0.01258
THF 0.5152 0.00865
Dioxane 1.2467 0.00524
Methanol 0.593 0.01501
Chloroform 0.6011 0.01227
Ethyl acetate 0.4724 0.01527
DMSO 2.1468 0.00291
Acetic anhydride 0.9401 0.01641

0.7

Acetonitrile 0.3826 0.01601
THF 0.5167 0.00944
Dioxane 1.2592 0.00746
Methanol 0.5954 0.01561
Chloroform 0.5948 0.01039
Ethyl acetate 0.4782 0.01807
DMSO 2.1748 0.00590
Acetic anhydride 0.9165 0.01082
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Table C.4.: Viscosity of the solvents used for intrinsic viscosity calculations. Data gathered at
298.15 K

[ [mPa·s]
Solvent This work Literature
Acetonitrile 0.3556 0.344 [113]
THF 0.4949 0.463 [113]
Dichloromethane 0.4665 0.406 [113]
Methanol 0.554 0.550 [113]
Chloroform 0.5667 0.5418 [114]
Ethyl acetate 0.4408 0.430 [113]
Chlorobenzene 0.7611 0.763 [113]
Acetic anhydride 0.8728 0.843[115]
1,4-Dioxane 1.2175 1.178 [113]
DMSO 2.1187 1.989 [113]

D. Bootstrapping

In a general sense, and in the context of the present study, the process of bootstrappingmay
be summarized [116]. When presented with a set of experimental data, which is used to cal-
culate certain indicator, bootstrapping involves(i) generating a new dataset, known as boot-
strap samples, using the same experimental data; (ii) calculating the desired indicator based
on the bootstrapped dataset; and (iii) tracking that indicator. This process is then repeated
multiple times to estimate adistributionof the calculated indicator. In thepresent study, this
process is utilized to explore the sensitivity of two of the methods used to calculate the HSP
from intrinsic viscosity data, HSP2-S and HSP2-B. The procedure goes as follows:

1. For each sample, i.e. eachmolar fraction of the respective HBA:HBD system, there are
measured values of mass, density, and viscosity. Hence, it is considered that these 3
variables add uncertainty to the solubility parameter calculation.

2. As eachmeasured quantity is obtained by using digital equipment with high accuracy,
it is assumed that themeasured value corresponds to a hypothetical mean of a normal
distribution of values.

3. Each column (e.g. solvent viscosity, density, solvent mass, etc) is resampled, that is,
each value is used as the mean to randomly generate another value using NumPy li-
brary in Python, with the scale parameter corresponding to the standard deviation of
each column (e.g. a mass column would have the precision of the analytical balance),
and a size of 10000. Then, from the random values generated, one is randomly picked.

4. Bothmethods, HSP2-S andHSP2-B, are employed to calculate theHSP using the boot-
strapped values.

5. This process is repeated 500 times.
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This procedure allows to assign a standard deviation to eachHSP, which reflects the variabil-
ity in the HSP estimates due to the uncertainty in the measured variables. In this way, it is
possible to calculate the standard deviation lines for HSP2-B and HSP2-S shown in Fig. 3
of the main document. It should be noted that this procedure is not applicable to the HSP1
method, as the inputs are binary (1 or 0). Regarding the FSP method, the developers of this
method implemented specific metrics of reliability in the FreeFEM++ code described in the
original work [61]. These involve characteristics of the tetrahedra obtained from the trian-
gulation.
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E. PC-SAFT parameters

Table E.1.: Total volume and surface area of the cavity obtained from ORCA, along with PC-
SAFT parameters for the solid compounds and solvents calcualted in this work.

Compound 𝑉 / bohr3 𝐴 / bohr2 𝑚𝑖 / - 𝜎𝑖 𝑖 / Å 𝜖𝑖 𝑖/𝑘 / K 𝜖A𝑖B𝑖 /𝑘 / K
Solids:
2-Chlorobenzoic acid 1102.40 622.85 1.76 5.62 345.36 2181.94
3-Chlorobenzoic acid 1104.38 626.86 1.79 5.59 343.94 2189.21
Acridine 1441.54 759.70 1.87 6.02 362.70 2093.61
Ascorbic Acid 1178.52 681.11 2.01 5.49 337.97 2219.60
Benzamide 994.57 572.19 1.67 5.52 339.54 2211.61
Benzoic acid 964.12 555.87 1.63 5.51 338.80 2215.36
Borneol 1349.91 723.62 1.84 5.92 359.11 2111.91
Caffeine 1420.21 779.83 2.08 5.78 353.36 2141.21
Curcumin 2827.04 1519.14 3.88 5.91 358.56 2114.71
Dapsone 1820.70 983.52 2.54 5.88 357.36 2120.83
d-Camphor 1309.23 705.31 1.81 5.89 357.98 2117.63
D-xylose 1033.80 604.92 1.83 5.43 333.48 2242.48
Glycine 575.69 377.12 1.43 4.85 272.78 2551.76
Ibuprofen 1774.10 988.07 2.71 5.70 349.56 2160.58
Ketoprofen 2008.79 1071.51 2.70 5.95 360.19 2106.41
L-Menthol 1434.51 797.27 2.18 5.71 350.13 2157.63
Monuron 1510.82 836.42 2.27 5.73 351.20 2152.20
Paracetamol 1196.11 683.51 1.97 5.56 341.78 2200.17
Perylene 1976.25 970.95 2.07 6.46 374.19 2035.07
Phenol 798.72 471.32 1.45 5.38 330.23 2259.03
Quercetin 2006.87 1047.61 2.52 6.08 364.56 2084.14
Salicylic acid 1012.18 575.99 1.65 5.58 343.13 2193.30
Succinic acid 854.82 529.80 1.80 5.12 307.66 2374.04
Thymol 1332.24 752.54 2.12 5.62 345.43 2181.57
Liquids:
1,2-Propanediol 660.25 425.96 1.57 4.92 283.59 2496.69
1-Butanol 726.85 462.08 1.65 4.99 293.09 2448.29
Acetonitrile 425.68 293.88 1.24 4.60 227.10 2784.53
Cyclohexanone 865.38 511.01 1.58 5.38 329.96 2260.43
Ethanol 459.73 318.27 1.35 4.59 224.27 2798.97
Ethyl acetate 767.37 486.18 1.73 5.01 295.18 2437.64
Hexane 947.02 590.02 2.03 5.10 304.85 -
Limonene 1300.72 727.95 2.02 5.67 348.18 2167.59
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F. Solids properties

Table F.1.: Thermal properties of selected solutes for solubility calculation.
Chemical CAS 𝑀𝑤 / g·mol−1 𝑇𝑚 / K Δ𝐻𝑚 / kJ·mol−1

2-Chlorobenzoic acid 118-91-2 156.57 414.0[117] 25.25[117]
2-Methylbenzoic acid 118-90-1 136.15 376.9[118] 20.2[118]
3,5-Dinitrobenzoic acid 99-34-3 212.12 480.4[119] 22.8[119]
3-Chlorobenzoic acid 535-80-8 156.57 427.4[118] 23.9[118]
3-Methylbenzoic acid 99-04-7 136.15 381.9[118] 15.7[118]
3-Nitrobenzoic acid 121-92-6 167.12 414.3[120] 19.3[120]
Acridine 260-94-6 179.22 383.2[121] 20.7[121]
Adipic acid 124-04-9 146.14 419.0[122] 33.7[122]
Ascorbic Acid 50-81-7 176.12 465.15[123] 29.2[123]
Benzamide 55-21-0 121.14 400.4[115] 19.5[115]
Benzoic acid 65-85-0 122.12 395.5[124] 18.0[124]
Borneol 464-45-9 154.25 480.3[125] 7.3[125]
Caffeine 58-08-2 194.19 508.7[126] 19.6[126]
Curcumin 458-37-7 368.38 453.4[127] 47.3[128]
Dapsone 80-08-0 248.30 454.41[129] 28.62[129]
d-Camphor 464-49-3 152.23 451.0[130] 6.2[130]
Diclofenac 15307-86-5 296.15 452.6[131] 40.4[131]
D-Xylose 10257-31-5 150.13 416.2[132] 31.7[132]
Glutaric acid 110-94-1 132.11 370.9[133] 20.7[133]
Glycine 56-40-6 75.07 569.0[134] 21.0[134]
Ibuprofen 15687-27-1 206.29 350.4[135] 39.5[135]
Ketoprofen 22071-15-4 254.28 368.0[136] 37.3[136]
L-Menthol 2216-51-5 156.27 315.7[137] 12.9[137]
Monuron 150-68-5 198.65 447.6[138] 29.3[138]
Naproxen 22204-53-1 230.26 428.8[136] 34.2[136]
p-Aminobenzoic acid 150-13-0 137.14 458.7[139] 22.6[139]
Paracetamol 103-90-2 151.16 443.2[140] 27.6[140]
Perylene 198-55-0 252.30 551.0[118] 31.9[118]
Phenol 108-95-2 94.11 314.0[141] 11.5[141]
Quercetin 117-39-5 302.24 589.6[41] 41.5[142]
Salicylic acid 69-72-7 138.12 432.5[143] 23.1[143]
Succinic acid 110-15-6 118.09 460.2[144] 33.0[144]
Thymol 89-83-8 150.22 323.5[137] 19.6[137]
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G. Experimental solubility of solids in pure solvents

Table G.1.: Experimental solubility values obtained from literature, along with the predic-
tions from eachmodel.

Solute Solvent Literature 𝑇 / K FH-HSP openCOSMO-RS PC-SAFT
L-menthol Acetonitrile 0.4047[145] 298.15 0.7417 0.3791 0.7454
L-menthol 1-Butanol 0.7103[145] 298.15 0.7415 0.7446 0.7503
L-menthol Ethanol 0.6510[145] 298.15 0.7459 0.7396 0.7479
L-menthol Ethyl acetate 0.6805[145] 298.15 0.7429 0.7644 0.7509
L-menthol Hexane 0.6927[145] 298.15 0.6591 0.7275 0.7365
L-menthol R-Limonene 0.6906[145] 298.15 0.7122 0.7278 0.7490
L-menthol 1,2-Propanediol 0.6179[145] 298.15 0.7308 0.7024 0.7498
Thymol Acetonitrile 0.7059[145] 298.15 0.5731 0.6958 0.5345
Thymol 1-Butanol 0.6663[145] 298.15 0.5743 0.7117 0.5416
Thymol Ethanol 0.6586[145] 298.15 0.5912 0.6931 0.5407
Thymol Ethyl acetate 0.7090[145] 298.15 0.5730 0.7590 0.5429
Thymol Hexane 0.3380[145] 298.15 0.1805 0.3709 0.4715
Thymol R-Limonene 0.4797[145] 298.15 0.5148 0.4681 0.5372
Thymol 1,2-Propanediol 0.6959[145] 298.15 0.5481 0.7325 0.5413
2-Methylbenzoic acid Cyclohexanone 0.2045[146] 298.2 0.1533 0.4994 0.4287
3,5-Dinitrobenzoic acid Cyclohexanone 0.1402[146] 298.2 0.0107 0.3624 0.1713
3-Methylbenzoic acid Cyclohexanone 0.1789[146] 298.2 0.2149 0.5256 0.4982
3-Nitrobenzoic acid Cyclohexanone 0.1904[146] 298.2 0.0691 0.4534 0.3340
Adipic acid Cyclohexanone 0.0148[147] 298.75 0.0089 0.1479 0.1394
Benzoic acid Cyclohexanone 0.2363[146] 298.2 0.1351 0.4648 0.4094
Glutaric acid Cyclohexanone 0.1891[148] 299.7 0.1375 0.3847 0.4478
Succinic acid Cyclohexanone 0.01131[144] 298.55 0.0057 0.1632 0.0976
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H. Calculated HSP

Table H.1.: Summary of the HSP calculated for thymol + cyclohexanone (TC) and thymol +
L-menthol (TM) with each method. Calculated at 298.15 K and 1 atm. — indi-
cates that the regression was not able to adjust a feasible value. HSP of the pure
compounds were retrieved from [1].

HSP1 HSP2-S HSP2-B FSP
DES Molar fraction 𝛿d 𝛿p 𝛿h 𝛿d 𝛿p 𝛿h 𝛿d 𝛿p 𝛿h 𝛿d 𝛿p 𝛿h

TM

0.0 16.60 4.70 10.60 16.60 4.70 10.60 16.60 4.70 10.60 16.60 4.70 10.60
0.33 16.90 9.90 8.50 16.29 8.79 9.80 16.81 13.31 13.69 16.18 9.57 9.92
0.42 17.30 7.80 13.30 16.26 8.95 9.77 16.86 12.97 13.27 16.16 9.69 9.88
0.5 17.70 9.50 12.30 16.17 9.33 9.81 16.91 12.96 12.68 16.13 9.80 9.85
0.59 17.30 7.80 13.30 16.21 8.63 10.30 16.78 13.93 13.37 16.14 9.64 10.06
0.67 17.50 9.30 12.30 16.23 8.67 10.15 16.89 13.29 13.21 16.16 9.61 9.94
1.0 19.00 4.50 10.80 19.00 4.50 10.80 19.00 4.50 10.80 19.00 4.50 10.80

TC

0.0 17.80 6.30 5.10 17.80 6.30 5.10 17.80 6.30 5.10 17.80 6.30 5.10
0.05 16.10 7.50 11.70 16.47 9.46 9.40 — — — 16.36 11.01 10.82
0.1 16.29 7.59 11.71 16.23 10.07 9.47 16.83 10.08 18.52 16.30 11.19 10.75
0.2 17.00 6.90 10.00 16.23 9.11 9.50 16.92 10.46 17.32 16.23 11.08 10.94
0.5 13.90 10.90 10.50 16.02 9.75 10.33 15.88 10.37 14.68 16.25 10.99 11.15
0.7 15.80 7.90 11.40 16.13 10.19 10.08 — — — 16.28 11.00 11.06
1.0 19.00 4.50 10.80 19.00 4.50 10.80 19.00 4.50 10.80 19.00 4.50 10.80
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I. openCOSMO-RS benchmark

Figure I.1.: Predictions obtained with openCOSMO-RS over the experimental data and
COSMO-RS predictions. (a) parity plot of the predictions, where the solid line
indicates perfect predictions, and the gray band indicates a relative deviation
of ±20% ; (b) histogram of the differences of the predictions for ln𝛾∞

𝑖 𝑗
with the

openCOSMO-RS, COSMO-RS and the corresponding experimental values (exp)
from [67]. Δ ln𝛾∞

𝑖 𝑗
= ln𝛾∞

𝑖 𝑗
pred − ln𝛾∞

𝑖 𝑗
exp. 𝑁 represents the number of binary mix-

tures 𝑖 𝑗 for which the differences are within the given intervals.
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