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Abstract 

Proton Magnetic Resonance Spectroscopy (1H-MRS) is used by clinicians to study diseases by 

obtaining detailed information on the intra- and extra-cellular biochemical components. This 

technique provides unique ways for disease diagnosis. However, one of its remaining problems is 

the absence of a reliable algorithm for baseline correction, sometimes considered one of the largest 

sources of uncertainty for in vivo Magnetic Resonance Spectroscopy (MRS) quantification. 

Baselines commonly appear in signals with short echo time (TE) and poorly shimmed volume of 

interest (VOI), as with 1H-MRS signals. In the last two decades, many baseline estimation methods 

have been proposed. These algorithms are based on different mathematical approaches, such as 

cubic spline interpolation, smoothing filters, wavelets, and penalised least squares, among others. 

Although some approaches are good for estimating the absorption component of the baseline, most 

of them do not perform well for the complex MRS signal. This leads to problems at the 

quantification step, resulting in non-reliable data and possibly study failure. This thesis proposes a 

novel method for baseline correction that combines time-domain (TD) and frequency-domain (FD) 

processing of the MRS data. To identify where and how to include this processing, a testing step was 

proposed, where state-of-the-art (SOTA) algorithms were compared by using real signals with 

simulated baselines, i.e. with ground truth data. The proposed method obtained, on average, better 

RMSE than two of the four SOTA algorithms. The proposed novel method was later compared using 

fourteen real datasets from anonymised patients. The comparison metric proposed in this project is 

the Fit Quality Number (FQN), where only the baseline correction performance was compared, 

using the same preprocessing and quantification method for every tested algorithm. The results of 

the novel proposal show an efficient performance when combining methods in TD and FD for 

baseline correction, achieving better results than the four SOTA algorithms that were compared in 

this evaluation, with the advantage of correcting the complex signal, instead of only estimating the 

baseline for the absorption spectrum. Further work should be focused on improving the performance 

of the algorithm.  1

Keywords —  in vivo 1H-MRS, MRS, MRI, CSI, MRSI, baseline correction
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Resumen 

La Espectroscopia de Resonancia Magnética Protonica (1H-MRS) es utilizada por los clínicos 

para estudiar enfermedades al obtener información detallada sobre los componentes bioquímicos 

intra y extra celulares. Esta técnica proporciona formas únicas de diagnóstico de enfermedades. Sin 

embargo, uno de sus problemas pendientes es la falta de un algoritmo confiable para la corrección 

de la línea de base, a menudo considerada una de las fuentes más grandes de incertidumbre en la 

cuantificación de Espectroscopia de Resonancia Magnética in vivo (MRS). Las líneas de base 

comúnmente aparecen en señales con un tiempo de eco (TE) corto y un volumen de interés (VOI) 

mal ajustado, como en las señales de 1H-MRS. En las últimas dos décadas, se han propuesto muchos 

métodos de estimación de la línea de base. Estos algoritmos se basan en diferentes enfoques 

matemáticos, como la interpolación cúbica spline, filtros de suavizado, wavelets y mínimos 

cuadrados penalizados, entre otros. Aunque algunos enfoques son buenos para estimar el 

componente de absorción de la línea de base, la mayoría de ellos no funcionan bien para la señal 

compleja de MRS. Esto conlleva problemas en la etapa de cuantificación, lo que resulta en datos no 

confiables y posiblemente en el fracaso del estudio. Esta tesis propone un método novedoso para la 

corrección de la línea de base que combina el procesamiento en el dominio del tiempo (TD) y en el 

dominio de la frecuencia (FD) de los datos de MRS. Para identificar dónde y cómo incluir este 

procesamiento, se propuso una etapa de prueba, donde se compararon algoritmos de última 

generación (SOTA) utilizando señales reales con líneas de base simuladas, es decir, con datos de 

referencia. El método propuesto obtuvo, en promedio, un RMSE mejor que dos de los cuatro 

algoritmos SOTA. El método novedoso propuesto se comparó posteriormente utilizando catorce 

conjuntos de datos reales de pacientes anonimizados. La métrica de comparación propuesta en este 

proyecto es el Número de Calidad de Ajuste (FQN), donde solo se comparó el rendimiento de la 

corrección de la línea de base, utilizando el mismo procesamiento previo y método de cuantificación 

para cada algoritmo probado. Los resultados de la propuesta novedosa muestran un rendimiento 

eficiente al combinar métodos en TD y FD para la corrección de la línea de base, logrando mejores 

resultados que los cuatro algoritmos SOTA que se compararon en esta evaluación, con la ventaja de 

corregir la señal compleja en lugar de solo estimar la línea de base para el espectro de absorción. El 

trabajo futuro debería centrarse en mejorar el rendimiento del algoritmo.  
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1. Chapter 1. Introduction 

1.1. Main introduction 

Magnetic Resonance Spectroscopy (MRS) is a technique that provides a detailed fingerprint of 

the concentrations of major biochemical compounds present in biological tissues [1]. In comparison 

to Magnetic Resonance Imaging (MRI), where it is possible to identify anatomical structures in a 

volume of interest (VOI), biochemical analysis of living tissues also allow the determination of 

different types of tissues present in this volume, e.g. normal tissues or tumours. This technique can 

thus complement the diagnosis of diseases and sometimes provides greater specificity to define the 

correct medical diagnosis and treatment. 

The support that MRS provides for disease diagnosis has been increasing over the last decades. 

Initially, researchers used this technique to identify biochemical composition in human organs, 

focusing mainly on tumours [2]. When observing anatomical images, determining the severity of a 

tumour in the brain and grading is a complicated task. After multiple investigations, researchers 

observed biochemical differences between normal and pathologic tissues, allowing doctors to make 

a more detailed diagnosis and thus act more appropriately to solve the problem [3]. In recent years, 

this technique has been refined and extended to multiple applications and different organs of the 

body, e.g., the prostate [4] and breast [5]. Despite all the advances, the technique is still not part of 

routine studies for disease diagnosis in non-academic centres due to the need to improve the quality 

of the spectrum before quantification. 

In vivo MRS signals often have a low signal-to-noise ratio (SNR), and contain, apart from 

biochemical information of the metabolites, residual water and lipid signals. Because of this, good 

data acquisition is necessary to increase the SNR to distinguish the amplitudes of the different 

metabolites present in the brain [6]. Yet, in the case of proton MRS (1H-MRS) of the brain, signals 

acquired for a short echo time (TE) present a strong baseline, which has negative effects on the 

accuracy with which the spectrum can be quantified [7]. 

There are multiple sources of disturbances that can contribute to the formation of a baseline. In 

some cases, applying frequency filters produces non-linear artefacts [8]. It is also possible that some 



2

artefacts are produced by inhomogeneity of the magnetic field ( ) applied by the scanner [9]. 

Following this, it is possible to observe artefacts that may arise from residual water amplitudes or 

even lipids and other metabolites present in abundance in the brain [10]. Finally, some artefacts are 

produced simply by (involuntary) movements of the patient during the acquisition. These problems 

must be overcome, before quantifying the spectra, to obtain precise and reliable data, which allows, 

in its turn, a reliable diagnosis. 

Over the last two decades, many algorithms have been proposed for estimating the baseline at in 

vivo 1H-MRS — and general Nuclear Magnetic Resonance (NMR) — spectra. The most common 

approaches are smoothing filters and spline interpolations because, by definition, a baseline could be 

assimilated to a low-frequency signal with broad and smooth components. Other methods also 

include least squares, wavelets, Lorentzian functions, or even just computing the lower envelope of 

the spectrum. Algorithms like Adaptive Baseline fitting algorithm (ABfit) [11], Baseline 

Recognition with Combination and Improvement (BRCI) [12], Automated Quantitative approach 

based on a Convex Envelope (AQoCE) [13], and adaptive iteratively re-weighted Penalized Least 

Squares (airPLS) [14] propose semi-automatic functions, but the user requires expertise to identify 

the best entry values for a specific signal. Most methods work in the Frequency Domain (FD), but 

some of them, such as TARQUIN [15], also use Time-Domain (TD) information to estimate the 

baseline. There is no consensus on validating the performance of baseline correction algorithms. 

Some papers suggest determining the flexibility of the estimated spectrum to minimise 

quantification errors [16], while most works rely on visual inspection and comparison with past 

algorithms. 

This thesis presents an extended review of significant artefacts found at in vivo 1H-MRS signals 

and their causes. Experts' consensus and recommendations are also included [17]. In addition, this 

research introduces a detailed list of baseline correction algorithms for in vivo 1H-MRS and general 

NMR spectra. This document proposes a novel method for improving baseline correction for in 

vivo 1H-MRS signals by combining information obtained from TD and FD processing. 

This document is structured as follows: Chapter 1 presents a brief introduction to the thesis, 

describes the thesis proposal, the aim of the project, general and specific objectives, the 

methodology for achieving the goals, and scopes and limitations. The state-of-the-art (SOTA) of 

B0
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proton magnetic resonance spectroscopy are contained in Chapter 2, where we review the artefacts 

that affect these signals, their sources, and available methods for estimating the baseline 

components. We describe in Chapter 3 the implementation of the available SOTA algorithms found 

in the literary research; this chapter also contains the design of the proposed algorithm. All results of 

the final evaluation of the SOTA algorithms and our proposed algorithm are listed in Chapter 4. 

Finally, Chapter 5 summarises this thesis, the main conclusions, and thoughts for future steps. 

1.2. Hypothesis 

The baseline correction in brain 1H-MRS spectra can be improved with respect to SOTA methods 

by the integration of time- and frequency-domain methods to the estimation algorithm . 

1.3. Objectives 

The main objective is to develop an algorithm for baseline correction of brain 1H-MRS spectra by 

combining math approaches in Time Domain and Frequency Domain, to outperform the SOTA 

algorithms. 

To achieve this goal, the following specific objectives were established: 

1. Identify the most common and important artefacts in 1H-MRS brain signals and available 

methods for baseline correction for 1H-MRS spectra. 

2. Design and implement a baseline correction algorithm aiming at improving the complex 

spectrum without overfitting the estimated baseline. 

3. Evaluate the algorithm with simulated and real data, and compare it with state-of-the-art 

methods. 

1.4. Methodology 

1. Identify the most common and significant artefacts in 1H-MRS brain signals. 

• Literature review about 1H-MRS signal acquisition and preprocessing for short and long 

echo time. 

• Literature review about sources of baseline and their composition. 
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2. Identify available methods for baseline correction for 1H-MRS and general NMR signals. 

• Literature review about available algorithms for baseline correction since 2005. 

• Literature review about mathematical methods implemented in baseline correction 

algorithms. 

3. Determine the advantages and disadvantages of available methods for baseline correction. 

• Implement algorithms in MATLAB and RStudio for performance comparison. 

• Use simulated (ground truth) data for comparison between algorithms. 

4. Design and implement the new baseline correction algorithm. 

• Design a new approach based on findings from previous steps. 

• Evaluate the approaches in MATLAB and RStudio using simulated (ground truth) data, 

i.e. real signals with minimum baseline effects that will be combined with simulated 

(already known) baselines. 

• Select the best algorithm based on the minor alteration of the metabolite peaks, 

magnitude and phase. 

5. Evaluate and compare the proposed algorithm. 

• Evaluate the approach using real anonymised in vivo 1H-MRS signals for short TE. 

• Evaluate the approach by using the Fit Quality Number (FQN). 

• Compare the results from the proposed algorithm and the available state-of-the-art 

algorithms by using FQN. 

6. Improvements after evaluation. 

• Identify potential problems and improvements for the proposed algorithm, and 

implement corrections. 

• Identify the advantages and disadvantages of the proposed algorithm compared with the 

available approaches. 

7. Writing the WOS article and final thesis report. 
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• Writing a WOS article describing the developed method, to be submitted to Magnetic 

Resonance Imaging or NMR in Biomedicine journal. 

• Writing the final thesis report. 

1.5. Scope and limitations 

As mentioned in the methodology, the literature review about existing baseline correction 

algorithms will comprehend only the approaches published since 2005. This assumption is based on 

the idea that every past algorithm has already been studied, analysed, implemented, refuted, or 

improved by a recent publication. Although algorithms proposed before 2005 will be included in the 

review but not implemented or evaluated in the following steps of this thesis. 

Regardless of the programming language in which each algorithm has been coded, the 

implementation and evaluation of each method, including the proposed one, will be performed in 

MATLAB and RStudio. This statement relies on the efficiency optimisation of the execution time by 

using only these programming tools for the entire thesis. 

Every data used in this project must be real or simulated from real data to be used for scientific 

purposes. Therefore, the data will be entirely and meticulously anonymised to protect patient 

privacy. The data already anonymised will be provided by Ph.D. Johannes Slotboom from the 

University Hospital of Bern, Switzerland. 
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2. Chapter 2. State of the Art 

2.1. Magnetic resonance spectroscopy 

Magnetic Resonance Spectroscopy (MRS) and MRS Imaging (MRSI) are non-invasive 

techniques for obtaining in vivo information on the biochemical processes inside the human body 

[18]. MRI, MRS, and MRSI are often applied together in one examination. The technique begins 

with NMR signals being acquired by the scanner in TD, followed by the conversion of the signals to 

FD spectra. Preprocessing is often applied to correct severe imperfections and artefacts such as 

phase, baseline signals, and residual water amplitudes. Preprocessing the signals is strictly necessary 

before the quantification step, where metabolite peaks in the spectra are identified, and values are 

assigned according to their amplitude. Only afterwards, clinicians analyse the results. 

Proton MRS (1H-MRS) is based on NMR principles. In simple terms, a magnetic field ( ) is 

used to bring atoms (whose nuclei have a magnetic momentum) within the human body to the 

Boltzmann distribution [19]. Subsequently, a radio frequency (RF) pulse is emitted to a specific 

atom — hydrogen protons in the case of signals used in this thesis — transferring coherence to the 

spin system [20]. To change the state of these atoms, an RF pulse must be applied at the resonance 

frequency of the selected atom under the influence of the magnetic field by using the Larmor 

equation [1]. After the stimulation, the atoms release the accumulated energy to return to the 

Boltzmann distribution. Finally, this energy is captured by the magnetic resonator or RF-coil as 

signals in the time domain, also known as free induction decay (FIDs), as the signal shown in Figure 

2.1.A. 

Signals from protons or other elements nuclei (e.g., phosphorus or sodium) can be acquired in an 

NMR study. However, MRS measures biochemical components (i.e., significant metabolites inside 

the human body). The Chemical Shift phenomenon is considered to differentiate each metabolite 

peak in the spectrum [21]. In simple words, the resonance frequency varies minimally depending on 

the atoms that compose a molecule, apart from the element being measured, as a result of a local 

magnetic field surrounding each molecule. The Chemical Shift is measured in parts per million 

(ppm). The resonance frequency of each molecule in ppm has already been standardised [1]. An 

B0
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example of the spectrum after applying the Discrete Fourier Transform (DFT) to an FID is shown in 

Figure 2.1.B, including the expected peaks from each molecule to be identified. 

Figure 2.1. (A) FID example. (B) spectrum from FID after applying DFT [1]. 

2.2. Signal acquisition and preprocessing 

MRS studies can be performed in two major modalities: Single-Voxel Spectroscopy (SVS) 

(where signals are acquired from a single region), and Multi-Voxel Spectroscopy, also known simply 

as MRSI or Chemical Shift Imaging (CSI) (where signals are simultaneously acquired from multiple 

regions) [22]. In SVS studies, three RF pulses are emitted to a VOI to receive signals orientated in 

three orthogonal axes. The most common pulse sequences are PRESS (three pulses in 

90º-180º-180º) and STEAM (three pulses in 90º-90º-90º). Applying these pulse sequences improves 

the spatial localisation of the signal but often decreases the SNR due to pulse imperfections [23]. 

Other techniques, such as semi-LASER (Localization by Adiabatic Selective Refocusing) and EPSI 
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(Echo-planar Spectroscopic Imaging), can be found in [24]. PRESS and STEAM sequences can also 

be used in MRSI. Still, other sequences, such as EPSI, are also implemented to improve acquisition 

quality because of the bigger VOI and smaller regions (i.e., divisions) than in SVS studies. It is 

important to mention that FIDs are generated after the first pulse, and the second and third pulses 

create spin-echoes (SE) and stimulated echoes (STE) [25]. 

Timing is important when acquiring signals, and in MRS — just like in NMR — relaxation times 

must be considered while planning a pulse sequence. The relaxation times T1 and T2, known as 

longitudinal and transverse relaxation times, are both natural constants, and the timing of the study 

must be adapted to them. The repetition time (TR) is the total time the sequence takes to complete, 

and it is then repeated. A complete recovery of the atoms into the Boltzmann distribution is needed 

to perform a new sequence. Usually, TR is considered as five times T1 or higher. The echo time (TE) 

is the response time from the middle of the first RF pulse until the peak of the echo [22]. Depending 

on the length of the TE, the acquisition can be for short TE (~20ms) or long TE (~140ms). An 

adequate TE is essential to observe signals from every important metabolite on each acquisition, and 

to reduce the noise produced by big molecules (e.g. lipids) [1]. In Figure 2.2, an SVS spectrum 

obtained after applying a STEAM sequence shows the different outcomes depending on the TE 

used. For short TE, the spectrum amplitudes are higher than for long TE. In addition, more 

metabolite peaks are observed in the short TE spectrum, but lipid and lactate amplitudes also emerge 

[1]. 

FIDs are time-domain signals that need to be transformed into frequency-domain to analyse the 

concentrations of the metabolites in the VOI. One FID can be mathematically represented as a 

complex exponential decay oscillator. In the following equation, the frequency is represented with 

, the initial amplitude , the initial phase offset , and the decaying factor ,  denotes the 

imaginary component, and  is the time vector [7]: 

     (2.1) 

After transforming the FIDs into the frequency domain, the spectrum is compounded by a real 

part (also called absorption spectrum) and an imaginary part (called dispersion spectrum). Both the 

pre-processing of the signal and the analysis of the concentrations of the metabolites must be 

performed using the absorption and dispersion spectra. 

Ω A0 ϕ0 λ i

t

f (t) = A0eiΩt−λt−iϕ0
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Figure 2.2. Short and long TE comparison for SVS spectrum acquired with a STEAM pulse 
sequence. (A) and (B) spectra were acquired using a magnetic field strength of 1.5 Tesla (T). (C) and 
(D) spectra were acquired using 3.0T. (E) spectrum was acquired using 7.0T, more commonly used 
for research purposes [1]. 

The data can be pre-processed in the time and/or frequency domain to increase the FD SNR, but 

reducing the spectral resolution. For example, a method for reducing the FD noise in the signal is 

multiplying by a decreasing function. Also, it is common to convert the Lorentzian line shape of the 

spectrum into a Gaussian line shape by applying a Lorentzian-Gaussian Transform [7]. A mandatory 

pre-processing is the suppression of water and macromolecular (MM) components (e.g., lipids) and 

residual water removal. Because the amplitude of the water in the spectrum is larger than the 

amplitude of other small molecules (e.g., metabolites like N-Acetylaspartate (NAA)), suppressing 

and removal of the water signal is important to proceed with the study of the metabolites peaks. In 

Figure 2.3, a spectrum without residual water suppression is presented in contrast to the spectrum 

after residual water suppression [7]. 
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Figure 2.3. 1H-MRS spectra before (blue) and after (red) residual water removal using a high-pass 
band-reject filter [7]. 

2.3. Artefacts in in vivo 1H-MRS spectra and characterisation of baseline. 

As many experts remark, the term baseline should be used exclusively for the smoothly varying 

signal underlying the metabolite spectra [26]. This is commonly mistaken by including MM 

components (e.g., proteins, lipids) when they should be considered as MM background signals. 

Their differences rely on their sources and the methods to correct the irregularities that arise from 

both signals. Background signals commonly appear in short TE as broad spectral lines overlapping 

in the frequency domain with the metabolites components [27]. These signals are usually eliminated 

with a fitting model before the acquisition, estimating the MM components and then subtracting the 

signal from the acquired data [28, 29]. Also, some researchers have found that the effects of these 

signals can be minimised by using a long TE [30]. Unfortunately, even after applying fitting models 

or adjusting parameters, some MM still appear in the spectrum. Bertholdo et al. [6] described most 

metabolites and MM that can be observed in 1H-MRS, e.g., lipids and lactate that remain after the 

MM fitting. But, lipids are not visible in long TE spectra, while lactate appears in short and long TE 

spectra, and its peak is inverted for TE between 135 and 144 ms. 

Baseline sources are more numerous and difficult to estimate. Even after MM contributions are 

modeled and corrected prior to metabolite fitting, baseline signals still appear from any unexpected 

signal sources (e.g., from the broad tails of imperfect suppressed water peak) [17]. Tang [8] 

concluded that for general NMR spectra (i.e., not only in vivo), major sources of baseline artefact 

also arise during the acquisition due to inappropriate sampling time, or they produce by filtering the 
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signals. Most of these problems can easily be overcome before and during the acquisition, and the 

remaining components must be corrected during data pre-processing. For in vivo 1H-MRS, Kreis et 

al. [26] concurred with sources from analogue and digital filtering affecting the initial points of the 

FID. 

Furthermore, a detailed list of sources for baseline artefacts is presented, including (1) mostly 

originated from sub-optimal localisation performance, (2) non-reproducible features caused by water 

and/or mobile lipids from outside the VOI, (3) insufficient water suppression, (4) hardware 

imperfections affecting the first data points in the FID, and (5) inaccurate timing of the echo during 

data acquisition. Some observable effects in the spectrum are indicated in Figure 2.4. For artefacts 

from source (2), Posse et al. [10] explain that some baseline artefacts are originated from some 

signals that spread from the peripheral fat layer in the scalp located at the interface of two adjacent 

voxels. 

Kreis et al. [26] classify baseline correction as an operation for removing imperfections. 

Furthermore, in [31], the author states that a wrong baseline model could be a source of systemic 

errors. However, knowing baseline signals could be useful for checking: (1) ghosts, i.e., spurious 

echoes originated due to inhomogeneities in the magnetic field, (2) unidentified metabolites, (3) 

outer volume signals, (4) wrong metabolite peaks assignments, and (5) standard deviation (SD) of 

residual signals and noise. 

2.4. Baseline correction for in vivo 1H-MRS and general NMR spectra 

The unwanted features exposed in the last section are almost impossible to predict and to recreate 

prior data acquisition. Near et al. [17] suggest that when handling baseline artefacts, either time-

domain or frequency-domain methods could be used, assuming a rapid decay of baseline signal 

components (i.e. components appear at initial points of the FID) and smooth line shape of the 

spectral baseline. Kreis et al. argue that most baseline correction approaches have a mathematical 

base, usually without physical meaning, e.g., splines [32] and wavelets [33] that represent the broad 

features of the baseline or simply considering the initial part of the FID [34]. Nevertheless, 

implementing a good and reliable baseline correction algorithm is necessary to perform adequate 

data quantification. 
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Figure 2.4. Commonly observed artefacts in in vivo 1H-MRS spectra at short TE. A: ’smiley-
artefacts’ originated from non-ideal side effects of digital filtering, residual water components that 
were not completely suppressed, and MM components (e.g., mobile lipids and small/medium-size 
peptides) producing broad lines in the spectrum. B: strong residual water affecting metabolites 
amplitudes. C: noticeable ‘smiley-artefact’. 

Most algorithms approach baseline removal in the frequency domain. For simplification, the 

spectrum is commonly treated as a signal, and the object is to find its lower frequency components. 

Polynomial fitting was one of the initial methods used to estimate baselines, combined with a 

parametrized-automatic algorithm for determining points that are most likely to match with a 

smooth baseline definition, such as the methods proposed by Dietrich et al. [35] (derivation plus 

polynomial fitting) and later Brown [36] (iteration method with Bernstein polynomials) to correct 

spectral baselines in NMR spectra. Young et al. [33] proposed one of the first baseline correction 

algorithms for in vivo 1H-MRS spectra with short TE, based on a least square model of the prior 
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knowledge of MM components to eliminate background signals, followed by a smoothing filter and 

wavelet transform to estimate the nuisance spectral components. In subsequent research, wavelets 

have been frequently used. For example, Golotvin et al. [37] and Chang et al. [38], employed 

average filters to estimate the baseline in NMR spectra. The program TARQUIN [15] uses a 100-

point Gaussian window convolution to correct short TE in vivo 1H-MRS baseline. Figure 2.5 shows 

a diagram with every mathematical method found during this review.  

Figure 2.5. Mathematical models used for baseline correction in in vivo 1H-MRS and general NMR 
spectra. The middle layer shows mathematical approaches, and the outer layers show named 
algorithms. Marked algorithms are some of the methods that were tested in this thesis. Tables 2.1 
and 2.2 contain a detailed list of the methods. 
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The most common FD approaches are smoothing filters and spline interpolation. Widely used 

quantification algorithms like LCModel [39] and AQSES [40] include smoothing and penalised 

splines for baseline correction. A more recent algorithm, ABfit [11], uses penalised splines to 

achieve optimal flexibility of the baseline spectrum. By contrast, algorithms in the time domain have 

been largely used, and in the last three decades, only two approaches have been partially proposed. 

AQSES includes TD filtering by using an FIR filter for removing specific resonances. Ratiney et al. 

[34] implemented a quantification algorithm omitting baseline components by truncating the initial 

points of the FID.  

In Tables 2.1 and 2.2 a detailed list is presented with every baseline correction algorithm for in 

vivo 1H-MRS and general NMR that was found in this review. A total of 20 documents that propose 

a method for baseline estimation were found, including articles, communications and conference 

papers. Only baseline correction methods were presented in 12 papers, and others were included in 

the remaining documents as a sub-step for a quantification algorithm. Also, 12 methods were 

designed for removing in in vivo 1H-MRS spectra, and almost all of them for short TE. Most 

algorithms can handle complex spectra [41-44], and a few were developed for handling only the 

absorption component [39, 45, 46]. 

Table 2.1. Baseline correction methods in the literature. 

Author DOI Short name Aim Type of spectra TE
W. Dietrich et 
al. 

Pub. year 1991

doi.org/
10.1016/0022-
2364(91)90402
-F

Not found Baseline 
correction

NMR spectra Not mentioned

D. E. Brown 

Pub. year 1995

doi.org/
10.1006/
jmra.1995.1138 

Not found Baseline 
correction

NMR spectra Not mentioned

K. Young et al. 

Pub. year 1998

doi.org/
10.1002/
mrm.19104006
06 

Not found Background 
signals with 
baseline 
correction

In vivo 1H-
MRS

Short

S. Golotvin 

Pub. year 2000

doi.org/
10.1006/
jmre.2000.212
1

Not found Baseline 
correction

NMR spectra Not mentioned

http://doi.org/10.1006/jmra.1995.1138
http://doi.org/10.1002/mrm.1910400606
http://doi.org/10.1006/jmre.2000.2121
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S. W. 
Provencher 

Pub. year 2001

doi.org/
10.1002/
mrm.19103006
04 

LCModel Quantification 
algorithm with 
baseline 
correction

In vivo 1H-
MRS

Both

H. Ratiney et 
al. 

Pub. year 2004

doi.org/
10.1007/
s10334-004-00
37-9 

Not found Quantification 
algorithm with 
baseline 
correction

In vivo 1H-
MRS

Short

J. C. Cobas et 
al. 

Pub. year 2006

doi.org/
10.1016/
j.jmr.2006.07.0
13 

Not found Baseline 
correction

NMR spectra Not mentioned

P. Gillies et al. 

Pub. year 2006

doi.org/
10.1002/
nbm.1060 

Not found Quantification 
algorithm with 
baseline 
correction

In vivo 1H-
MRS

Long

D. Chang et al. 

Pub. year 2007

doi.org/
10.1016/
j.jmr.2007.05.0
08

Not found Baseline 
correction

NMR spectra Not mentioned

J. Poullet et al. 

Pub. year 2007

doi.org/
10.1002/
nbm.1112 

AQSES Quantification 
algorithm with 
baseline 
correction

In vivo 1H-
MRS

Short

Z. Zhang et al. 

Pub. year 2010

doi.org/
10.1039/
b922045c 

airPLS Baseline 
correction

NMR spectra Not mentioned

M. Wilson et 
al. 

Pub. year 2011

doi.org/
10.1002/
mrm.22579 

TARQUIN Quantification 
algorithm with 
baseline 
correction

In vivo 1H-
MRS

Short

S. De Sanctis 
et al. 

Pub. year 2011

doi.org/
10.1016/
j.jmr.2011.03.0
01 

AUREMOL-
SSA/ALS

Background 
signals with 
baseline 
correction

NMR spectra Not mentioned

Q. Bao et al. 

Pub. year 2012

doi.org/
10.1016/
j.jmr.2012.03.0
10 

BRCI Baseline 
correction

NMR spectra Not mentioned

A. J. Wright et 
al. 

Pub. year 2012

doi.org/
10.1002/
mrm.24182 

Not found Baseline 
correction

In vivo 1H-
MRS

Long

http://doi.org/10.1002/mrm.1910300604
http://doi.org/10.1007/s10334-004-0037-9
http://doi.org/10.1016/j.jmr.2006.07.013
http://doi.org/10.1002/nbm.1060
http://doi.org/10.1016/j.jmr.2007.05.008
http://doi.org/10.1002/nbm.1112
http://doi.org/10.1039/b922045c
http://doi.org/10.1002/mrm.22579
http://doi.org/10.1016/j.jmr.2011.03.001
http://doi.org/10.1016/j.jmr.2012.03.010
http://doi.org/10.1002/mrm.24182
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2.5. Validation and comparison methods 

Most of the algorithms presented in the previous sub-section were tested with simulated and real 

data. In some cases, they are compared with other methods for performance and visual examination. 

In any case, no possible testing approach has been found to establish the efficiency in baseline 

correction. Zhang et al. [16] suggest that a method for baseline smoothness and flexibility degree 

computation, based on root-mean-square error (RMSE), can be used to determine the best baseline 

to fit, i.e., under- or over-smoothed baseline could lead to significant quantification errors. 

The RMSE between two signals is used in this project for evaluating the performance of the 

selected state-of-the-art algorithms. We compute the RMSE between two list of N values (simulated 

baseline  and estimated baseline ) with equation (2.2). 

M. A. Parto et 
al. 

Pub. year 2014

doi.org/
10.1109/
EMBC.2014.6
944302 

Not found Baseline 
correction

In vivo 1H-
MRS

Short

W. Dou 

Pub. year 2015

doi.org/
10.1371/
journal.pone.01
37850 

AQoCE Quantification 
algorithm with 
baseline 
correction

In vivo 1H-
MRS

Short

O. Bazgir 

Pub. year 2018

doi.org/
10.1109/
ssiai.2018.8470
319 

Not found Baseline 
correction

In vivo 1H-
MRS

Short

H. Hun Lee et 
al. 

Pub. year 2017

doi.org/
10.1002/
mrm.26502 

Not found Quantification 
algorithm with 
baseline 
correction

In vivo 1H-
MRS

Short

M. Wilson 

Pub. year 2021

doi.org/
10.1002/
mrm.28385 

ABfit Baseline 
correction

In vivo 1H-
MRS

Short

Observation: This first part presents every baseline correction method found from 1990 to 2021. Only methods that 
propose a new approach were included in the list, even if the algorithm was proposed as a step of another algorithm 
(e.g. quantification). This first part shows the following categories: (1) DOI, (2) the short or commercial name of the 
general proposed algorithm, (3) the aim of the presented work, (4) if the algorithm was proposed for general NMR 
spectra or specifically for in vivo 1H-MRS, and (5) if the algorithm was proposed/tested for short or long (or both) TE.

S ̂S

http://doi.org/10.1109/EMBC.2014.6944302
http://doi.org/10.1371/journal.pone.0137850
http://doi.org/10.1109/ssiai.2018.8470319
http://doi.org/10.1002/mrm.26502
http://doi.org/10.1002/mrm.28385


17

                                               (2.2) 

Slotboom et al. [47] presented Fit Quality Number (FQN), a value for determining the quality of 

model fitting after quantification. FQN is the ratio between the signal model (i.e., model after 

quantification) and the fit residuals (i.e., signal model minus experimental signals). For FQN values 

higher than 1.0, the model does not completely match the initially acquired signal, meaning that the 

model has been negatively over-modified. The same situation happens for FQN values lower than 

1.0, where the model is over-fitted, i.e., artefacts were overestimated. The model has a perfect match 

on average with the experimental signal when FQN is equal to 1.0. Poor FQN results suggest 

problems in any of the pre-processing steps, e.g., insufficient water removal, poor MM components 

model, or poorly described baseline, resulting in an inadequate signal model. The FQN is calculated 

with equation (2.3), with  representing the FQN,  is the variance of the signal noise component, 

 is the residue from the quantification process, and  is the number of points of the least-squares 

fit. 

                                                    (2.3) 

Alternatively, the FQN can be calculated only for the absorption channel using equation (2.4), 

where  is the FQN of the absorption channel,  is the variance of the signal noise 

component, and  is the variance of the residue from the quantification process. 

                                                    (2.4) 

R MSE =

N
∑
i=1

(Si − ̂Si)2

N

Qfit σ

R N

Qfit (N ) =
R

N ⋅ σ

Qfit−abs σres

σres

Qfit−abs (N ) =
σres

σnoise
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Table 2.2. Baseline correction methods in the literature.

Author Availability Signal Domain Automatic Math method
W. Dietrich et 
al.

Not found N.M. FD Automatic 
Parametrized

Derivation, and polynomial 
fitting

D. E. Brown Not found N.M. FD Automatic 
Parametrized

Iteration, and Bernstein 
Polynomials

K. Young et 
al.

Not found N.M. FD Automatic 
Parametrized

Least squares with prior 
knowledge for model fitting, 
and wavelets

S. Golotvin Not found N.M. FD Automatic 
Parametrized

Standard deviation plus 
threshold for point detection, 
and average smoothing filter

S. W. 
Provencher

Java-based, 
software package

Abs FD Automatic 
Parametrized

Regularization method, and 
smoothing splines

H. Ratiney et 
al.

Not found Clx TD Automatic 
Parametrized

Truncation of the first 3 
points

J. C. Cobas et 
al.

MATLAB Abs FD Automatic 
Parametrized

Continuous wavelet 
transformation, and 
whittaker smoother 
algorithm

P. Gillies et al. Not found Clx FD Automatic 
Parametrized

The DAUB4 discrete 
wavelet transform

D. Chang et 
al.

Not found N.M. FD Automatic 
Parametrized

Smoothing filters

J. Poullet et al. Java-based, 
software package

Clx TD Parametrized FIR filter for specific 
resonances, and penalized 
splines

Z. Zhang et al. R, MATLAB, 
Python, C++

Clx FD Parametrized Least squares

M. Wilson et 
al.

Software package Clx FD Automatic 
Parametrized

Smoothing filter with 100 
points Gaussian window 
convolution, and linear 
extrapolation

S. De Sanctis 
et al.

Software package Clx FD Automatic 
Parametrized

Linear spline interpolation

Q. Bao et al. MATLAB Abs FD Automatic 
Parametrized

Continuous wavelet 
transformation, Whittaker 
smoother algorithm, sliding 
window algorithm, and 
iterative threshold algorithm

A. J. Wright et 
al.

Not found Clx FD Automatic 
Parametrized

Single lorentzian algorithm
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2.6. Discussion 

This chapter presented a review of in vivo 1H-MRS and its relevance for early disease diagnosis. 

As shown, these signals are commonly affected by a variety of noisy components coming from 

different sources, e.g., bad  shimming, digital filters, patient involuntary movement, etc. Most of 

these sources can be overcome by optimizing acquisition procedures, followed by applying 

correction algorithms for water and other MM components. However, some components still appear 

after these corrections, and their source remains unknown or complex to address by conventional 

approaches. Therefore, an algorithm for baseline estimation is needed. 

Many algorithms for baseline correction have been proposed in the last two decades. Most of 

these algorithms work in FD since it is very intuitive, and the corrected spectrum can be visually 

examined. But, only a few methods use the whole complex signal, which is crucial when the 

quantification step requires both the absorption and dispersion channels. Also, a disadvantage of 

most SOTA algorithms lies in their exclusive reliance on mathematical formulations, rather than a 

comprehensive physical interpretation. Their emphasis is predominantly centered on improving the 

visual  appearance of the spectrum instead of finding the baseline components to minimise the bias 

in parameter estimates. 

M. A. Parto et 
al.

Not found Clx FD Automatic 
Parametrized

Empirical Mode 
Decomposition

W. Dou Not found N.M. FD Automatic 
Parametrized

Lower Convex Envelope 
(convex hull), and sectional 
baseline removal

O. Bazgir MATLAB Abs FD Automatic 
Parametrized

Local minima polynomial 
interpolation

H. Hun Lee et 
al.

Not found Clx FD Automatic 
Parametrized

Convolutional Neural 
Network with training model

M. Wilson R Abs FD Automatic 
Parametrized

Penalized splines (P-splines) 
smoothing.

Observation: This second part shows the following categories: (1) the programming language the method was written 
or if the algorithm can be found as a software package, (2) if the algorithm was proposed for address complex (Clx) 
signals or only absorption (Abs)/dispersion(Dsp) components, Not Mentioned (N.M.), (3) if the work proposes a time 
domain or frequency domain approach (or both), (4) if the algorithm is fully automatic, semi-automatic (parameters 
can be set), or it requires entry values, and (5) the main implemented mathematical methods.

B0
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Another very important feature to take into consideration is the full automatisation of the 

algorithm. Almost every SOTA algorithm that surpasses the problems mentioned above requires 

entry parameters, therefore, whoever uses the algorithms must have experience in in vivo 1H-MRS 

signals, baseline signals, and the baseline estimation algorithm to perform an adequate correction. If 

the person who runs the study does not have the necessary expertise using the algorithm, then it 

might take longer than to perform the standard process for baseline correction, i.e., interpolate 

manually picked points of the spectrum, which also requires a high level of experience. Also lactate 

could potentially be a problem for baseline correction algorithms because its peak is inverted for TE 

between 135 and 144 ms. 

Addressing the baseline correction problem in the time domain could improve the output because 

sections of the signal directly affected by baseline sources would be incorporated into the result. 

Finally, a new algorithm should only have the raw signal as input, or a minimum number of entry 

parameters to be set/defined by the user, to speed up the pre-processing of the signal. 
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3. Chapter 3. Testing SOTA algorithms and design of the proposed algorithm 

3.1. Implementation of SOTA algorithms 

3.1.1. Simulated data characterisation 

The dataset used for testing the algorithms was composed of 500 complex signals of 1,024 values 

each, which were pre-processed using  removing most amplitudes from water and MM, which 

encompassed Fourier transformation, frequency alignment of the spectra, and automatic zero-order 

phasing, to obtain an artefact-free spectrum. Then, an equal number of different baseline signals 

were simulated by using equation (2.1), considering that baselines decay rapidly and only affect the 

first points of the acquired signals. An example of these signals and baselines is shown in Figure 3.1; 

both were added together to obtain the inputs for the algorithms. 

Figure 3.1. A: input signal (black) composed of artefact-free signal with simulated baseline (red). B: 
Spectral components of the input signal (black), simulated baseline (red), and artefact-free signal 
(blue). 
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3.1.2. Testing and results 

Four algorithms were found to meet the conditions proposed in the previous section: (1) adaptive 

iteratively re-weighted penalised least squares (airPLS) by Zhang et al. [14], (2) a method based on 

Continuous Wavelet Transformation and Whittaker Smoother algorithm by Cobas et al. [45], named 

CWT for the purposes of this thesis, (3) Baseline Recognition with Combination and Improvement 

(BRCI) by Q. Bao et al. [12], and (4) Adaptative Baseline fitting (ABfit) by M. Wilson [11]. These 

algorithms were downloaded from the repositories indicated by their authors. For the 

implementation, MATLAB R2021a and RStudio v1.4.1717 were used in a Mac mini (M1, 2020) 

with 16GB RAM. 

The baselines estimated with the four SOTA algorithms were compared to the original simulated 

baselines, using the RMSE equation (2.2) to determine the difference in (1) the 1,024 values of each 

signal and (2) the metabolite range considering the values from 4.7048 ppm to 0.8825 ppm (400 

values in total). The results are presented in Figure 3.2. On average, CWT had the lowest RMSE for 

the whole signal, around 42.21, followed by BRCI with 60.35, then ABfit with 140.85, and airPLS 

with 142.33. 

3.1.3. Discussion 

In total, 16 algorithms found in the literature were discarded, most of them because they were not 

available at the time of this study. Some baseline correction algorithms were proposed as a sub-step 

for a quantification algorithm, we discarded these algotihms because we needed to use directly the 

baseline correction algorithm into our evaluation pipeline. 

From the implementation of the algorithms that met the requirements (airPLS, CWT, BRCI, and 

ABfit), the RMSE values in Figure 3.2 show that the main problem relies on the metabolite section 

of the spectrum, being the RMSE values in the metabolite section always higher for the whole 

spectrum. The worst RMSE results were obtained by ABfit, followed closely by airPLS, but it is 

important to notice that the airPLS method is the only one tested that works for both absorption and 

dispersion channels. Also, airPLS claims that the result can be improved by setting new parameters, 

but that requires more knowledge of the algorithm.  
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Figure 3.2. RMSE between simulated baselines and estimated baselines by using ABfit, airPLS, 
BRCI, and CWT. A: RMSE from the 1,024 values of each signal. B: RMSE from 400 values in the 
metabolite section from 4.7048 ppm to 0.8825 ppm of each signal. The mean RMSE of the 500 
estimated baselines is plotted as a red point. 

During the testing of the available methods, it was possible to notice that, although most 

algorithms performed poorly for the ground truth data, they still can be improved, mainly because 

they return acceptable values in sections of the spectrum without metabolites. 

3.2. Design of baseline correction method 

To address the poor correction in the metabolites ppm range, the spectrum was divided into three 

sections, as indicated in Figure 3.3. Sections A and C correspond to frequencies without metabolite 

amplitudes. Baseline components are very notorious in these sections, and they can be easily 

corrected by applying a smoothing filter in FD. However, as discussed previously, most algorithms 

have problems to estimate the baseline signal at the metabolite amplitudes, which corresponds to 

section B. 

The diagram in Figure 3.4 presents the final version of the proposed method for estimating the 

baseline. The input is a time-domain in vivo 1H-MRS signal, and the output is the estimated 

baseline, which is built up from four pre-estimated spectra as follows: 
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Figure 3.3. Sections of an in vivo 1H-MRS spectrum. Sections A and C do not contain metabolite 
amplitudes, and section B contains metabolite amplitudes. 

1. First, a smoothed Spectrum1 for sections A and C, shown in Figure 3.5.A, was obtained by 

applying a moving mean filter, followed by a cubic spline interpolation. A window size of around 

1.5% of the length of the signal was implemented for the filter. For the interpolation, we set a 

window of nearly 7% of the length of the signal (e.g., 64 points for a signal with 1,024 points). 

The selected points were equidistant, and the first and last points matched the ones of the input 

spectrum to avoid interpolation errors. 

2. Second, a Spectrum2, shown in Figure 3.5.B, computed from a truncation of the time-domain 

signal at the 4th zero-crossing. Zero-crossings are preferred over a fixed number of points to 

avoid adding artefacts to the spectrum because of an abrupt truncation of the signal, as shown in 

Figure 3.6.A. 

3. Spectrum3 and Spectrum4, shown in Figure 3.5.C and 3.5.D, respectively, were obtained from 

a minimisation algorithm. The estimated signals from spectra 3 and 4 are shown in Figure 3.6.B 

and 3.6.C, respectively. The objective function is defined from equation (2.1), where the 

parameters to be found are the frequencies   of the periodic component and the amplitude  

(see equation (4.1)). We decided to optimise with two frequencies to reduce overestimation of the 

θ1, θ2 A
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baseline, but this minimisation step could also be studied for three or more frequencies. In 

equation (4.1), the imaginary components are denoted with , and  is the time vector. 

Figure 3.4. Pipeline of the proposed method. 

          (4.1) 

i t

fperiodic(t) = A(sin(θ12π t)i + cos(θ12π t) + sin(θ22π t)i + cos(θ22π t))



26

Figure 3.5. Pre-estimated spectra for the proposed method. A: Spectrum1, from the moving mean 
filter in FD. B: Spectrum2, from truncation in TD. C: Spectrum3, from the minimisation step. D: 
Spectrum4, from the minimisation step. E: Spectrum5, mean between Spectra 2, 3, and 4. 
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Figure 3.6. Pre-estimated signals for the proposed method. A: Signal2, from truncation in TD. B: 
Signal3, from the minimisation step. C: Signal4, from the minimisation step. 

According to the SOTA, the signal is affected by the baseline in the first points of the FID; 

therefore the exponential component  was re-written to force the estimated baseline in TD to be 

extremely close to zero after the middle point of the signal (see equation (4.2)). 

                                    (4.2)  

Then,  was calculated by assuming equation (4.2) close to zero after time : 

 

 

λ

fexponential(t) = exp (
ln (10−100)

tE
t)

λ tE

exp(−λ tE) ≈ 0 ⟶ exp(−λ tE) = 10−100

⟹ − λ tE = ln(10−100)
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Then, the objective function is obtained from the multiplication of both equations (4.1) and (4.2), 

plus an offset value: 

                 (4.3) 

The final expression for our objective function involves the amplitude  and the frequencies 

 as the parameters to be minimised: 

   

The initial parameters are set automatically according to the input signal: 

(a) The amplitude  is the range of the signal (i.e., the difference between maximum 

and minimum values). A positive range is used for Spectrum3, and a negative range 

is used for Spectrum4 to consider a baseline with a starting value below zero. 

(b)  The frequencies  are set as indicated in equations (4.4) and (4.5). The term T 

corresponds to the average period of the signal. To calculate T, first, we computed 

the distance between two zero crossings of the signal in TD, we repeated this for 

every following zero crossing, and finally, we computed the average of those 

distances to obtain T. We chose to start from two different frequencies (  100 times 

higher than ) to address both smiley artefacts (high frequencies) and broad 

components at the metabolite range (lower frequencies). 

                                                               (4.4) 

                                                           (4.5) 

(c) The offset is set as the average value of the signal, which will be equal to zero for 

our data. 

⟹ − λ =
ln(10−100)

tE

fobjectiveFunc = fperiodic(t)fexponential(t) + of fset

A

θ1, θ2

argminA,θ1,θ2
A (sin (θ12π t) i + cos (θ12π t) + sin (θ22π t) i + cos (θ22π t)) exp (

ln (10−100)
tE

t) + of fset

A

θ1, θ2

θ2

θ1

θ1 =
1
T

θ2 =
100
T
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The cost function was defined as the norm between the input spectrum  and estimated 

baseline , both of length N,  as the limit between sections A and B, and  as the limit 

between sections B and C. Then, the loss  is computed as: 

 

 

                                                   (4.6) 

4. Finally, the smoothed spectrum was used in sections A and C, and the mean between the 

spectrum2, spectrum3, and spectrum4, shown as spectrum5 in Figure 3.5.E, was used in section 

B. The union of these three sections is performed using two vectors: (1) ones for sections A and 

C, zeros for section B, and (2) zeros for sections A and C, ones for section B. For a smooth 

transition at the limits of each section, the vectors gradually change from one to zero (and from 

zero to one) in a range of 50 points. To determine the points ( ) that separate each section, a 

moving standard deviation window is used to determine a threshold to discard the metabolite 

amplitudes, following the diagram in Figure 3.7. 

Figure 3.7. Pipeline for determining the limits of each section of the spectrum. 

3.3.    RMSE on simulation with the designed algorithm 

The designed algorithm was tested with the simulated signals presented previously and compared 

against the four SOTA algorithms. The new results from estimating the simulated baselines are 

shown in Figure 3.8. 

The proposed method did perform slightly better than airPLS and ABfit but still retrieved higher 

RMSE than CWT and BRCI. Our proposed method had an average RMSE of 96.56 for the whole 

s(k)

f (k) P1 P2

L

L1 (s, f ) = ∑P1
k=0 (s (k) − f (k))

2
+ 1

∑P2
k=P1+1 (s(k) − f(k))

2 + ∑N
k=P2+1 (s (k) − f (k))

2

L2 (s, f ) = ∑N
k=0 ( |s (k) | − | f (k) |)

2

L (s, f ) = (L1 (s, f ) + L2 (s, f ))

P1, P2
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signal. When comparing the average RMSE in the metabolites section, the best result was achieved 

by CWT with 66.67, followed by our method with 94.23, then BRCI with 95.91, airPLS with 

171.81, and the highest being ABfit with 213.78. 

Figure 3.8. RMSE between simulated and estimated baselines using ABfit, airPLS, BRCI, CWT, 
and our proposed algorithm. A: RMSE from the 1,024 values of each signal. B: RMSE from 400 
values in the metabolite section from 4.7048 ppm to 0.8825 ppm of each signal. The mean RMSE of 
the 500 estimated baselines is plotted as a red point. 
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4. Chapter 4. Algorithm evaluation 

4.1. Evaluation setup 

To compare the SOTA algorithms to our proposed algorithm, the five steps presented in Figure 

4.1 were followed: (1) the collection of real datasets, (2) the pre-processing of the signals with the 

same water suppression algorithm, (3) the application of the baseline correction algorithm, (4) the 

estimation of the fits with the same spectral fitting model, (5) computation of the FQN for each 

signal in each dataset. In this setup, all signals were processed with the same algorithms and models, 

except the five baseline correction algorithms, allowing us to compare the FQN to determine which 

algorithm has the best impact for fitting the amplitudes of the molecules. 

Figure 4.1. Evaluation setup for algorithms comparison. 

4.2. Real data characterisation 

Datasets from fourteen subjects were used for the testing of the algorithms, from which thirteen 

were semiLASER MRSI datasets at 3T with 40ms TE, and one was PRESS MRSI datasets at 1.5T 

with 40ms TE; eight corresponded to female subjects and six to male subjects. Ten datasets had 112 

signals (or voxels), two had 192 signals, the rest had 256 signals, and all were composed of 1,024 

complex values. The data used in this evaluation was anonymised to protect patient privacy. Table 

4.1 contains more information of interest on the data used to evaluate the algorithms, such as the 

diagnosis for each subject. 
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We used the integrated tools of the SpectrIm-QMRS software package to quantify the datasets. 

We manually built a spectral model (i.e., ideal spectral representation of the metabolite amplitudes 

in a dataset) for datasets Generic1 to Generic10, and another spectral model for datasets Generic11, 

Generic 12, and Generic13. We could not implement a spectral model for dataset Generic14, 

because it required a higher knowledge and longer construction time. We only performed a visual 

analysis of the results for dataset Generic14. The spectral models comprised 13 metabolites 

components (including NAA-CH3, Cr-CH3, CH3, etc.). The spectral models were applied once to the 

baseline-corrected data for each dataset, using each baseline correction method. We also quantified 

the data without correction for datasets Generic1 to Generic10. 

Table 4.1. Description list of real data used for comparison part 2. 

Subject Sex Age 
(Years)

Diagnosis IDH LOH MGMT Sequence B-field TE N° 
Signals

Generic1 M 61 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic2 M 48 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic3 F 57 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic4 F 60 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic5 F 63 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic6 M 63 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic7 F 50 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic8 M 67 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic9 M 59 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic10 F 68 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 112

Generic11 M 64 H.C. N.A. N.A. N.A. semiLASER 3T 40 ms 192

Generic12 F 68 AC-g2 + N.A. N.A. semiLASER 3T 40 ms 256

Generic13 F 53 MS N.A. N.A. N.A. PRESS 1.5T 30 ms 256

Generic14 F 71 GBM - + - semiLASER 3T 40 ms 192
Abbreviations: Female (F), Male (M), positive diagnosis (+), negative diagnosis (-), Not applicable (N.A.), 
Glioblastoma Multiforme (GBM), Anaplastic Oligodendroglioma (AO), Astrocytoma Grade II (AC-g2), Multiple 
Sclerosis (MS), Healthy Control (H.C.), Intradialytic hypotension (IDH), Loss of heterozygosity (LOH), protein O(6)-
Methylguanine-DNA-methyltransferase (MGMT), milliseconds (ms).
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4.3. Results 

Estimated baselines with our method for the absorption channel of signals in datasets Generic12 

and Generic14 are presented in Figures 4.2 and 4.3, respectively, including the results for the 

algorithms ABfit, airPLS, CWT, and BRCI for comparison. Figure 4.4 presents the baseline 

estimation for the dispersion channel of a signal in dataset Generic12., Figure 4.5 shows the 

Magnitude and Phase of the corrected spectrum of a signal in dataset Generic12. 

In Figure 4.6, we show the FQN map over the CSI data for the NAA-CH3 component in dataset 

Generic1. The voxels represent the signals in dataset Generic1. The colour in each voxel varies per 

algorithm. The colour range was scaled from the minimum to the maximum FQN obtained by the 

algorithm presented in a map. Therefore, each colour range is different in each colour map. The 

FQN obtained for a single voxel is represented by a two-decimal number over the voxel. 

The box plot in Figure 4.7 summarizes the FQNs results obtained by each tested algorithm for 

datasets Generic1 to Generic10. We included the FQN result when no correction was applied prior 

to quantification. 

The box plot in Figure 4.8 contains the execution time per signal of the evaluation for each 

algorithm. On average, the lowest execution time per signal was achieved by airPLS with 5.95ms, 

followed closely by BRCI with 9.56ms, then CWT with 85.60ms, and our method with 223.85ms, 

the slower being ABfit with 31.870s. 

In the case of datasets Generic11, Generic12, and Generic13, the output of the quantification tool 

did not return the FQNs for each voxel. Table 4.2 contains the minimum and maximum FQN, the 

mean, standard deviation, skewness, and kurtosis, for datasets Generic11, Generic12, and 

Generic13. 

Finally, Table 4.3 contains the average loss ( ) of Spectrum3 ( ) and Spectrum4 ( ) from our 

proposed method for each dataset. 

L L3 L4
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Figure 4.2. Baseline estimations (red) and spectrum corrections (blue) for absorption channel of 
input spectrum n°1 (black) in dataset Generic12. Estimates made with (A) ABfit, (B) airPLS, (C) 
CWT, (D) BRCI, and (E) our method. 
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Figure 4.3. Baseline estimation (red) and spectrum corrections (blue) for absorption channel of 
input spectrum n°1 (black) in dataset Generic14. Estimations made with (A) ABfit, (B) airPLS, (C) 
CWT, (D) BRCI, and (E) our method. 
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Figure 4.4. Baseline estimation (red) and spectrum corrections (blue) for dispersion channel of input 
spectrum n°1 (black) in dataset Generic12. Estimations made with (A) ABfit, (B) airPLS, (C) CWT, 
(D) BRCI, and (E) our method. 

Figure 4.5. Magnitude (Left) and Phase (Right) of the corrected spectrum (blue) for input spectrum 
n°1 (black) in dataset Generic12. Corrections were made with (A) ABfit, (B) airPLS, (C) CWT, (D) 
BRCI, and (E) our method. 

A

B

A.1 A.2

B.1 B.2
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Figure 4.6. FQN map displayed over CSI data (NAA-CH3 component) computed before baseline 
correction (Top-Left), and after correction with ABfit (Top-Right), airPLS (Middle-Left), BRCI 
(Middle-Right), CWT (Bottom-Left), and our method (Bottom-Right). Each colour map has a 
different range; the strongest red box in a map corresponds to the highest FQN obtained by that 
correction method, and the same for the strongest blue box. 
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Figure 4.7. FQN results for datasets Generic1 to Generic10. 

Figure 4.8. Execution time in milliseconds (ms) of the implemented methods (ABfit, airPLS, BRCI, 
CWT, and Ours) for every signal corrected in all 14 datasets. Box plots are scaled in different ranges 
to show the different execution time boxes. A: scaled from 0ms to 36000ms. B: scaled from 0ms to 
350ms. C: scaled from 0ms to 16ms. 
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Table 4.2. FQN results of evaluating proposed method and state-of-the-art methods 

Table 4.3. The average loss  of Spectra 3 and 4 from our proposed method. 

Method Min Max Mean Std Dev

Generic11 airPLS 1.39 4.31 3.25 0.68

CWT 1.14 4.00 2.81 0.70

Ours 1.22 2.71 2.01 0.32

Generic12 airPLS 0.90 4.70 2.35 0.73

CWT 1.07 5.01 2.10 0.60

Ours 0.59 4.15 1.73 0.67

Generic13 airPLS 0.90 4.70 2.35 0.73

CWT 1.13 2.63 1.78 0.33

Ours 1.20 3.27 1.88 0.34
Observation: The results correspond to the FQNs obtained for the complete dataset.

L

Generic1

Generic2

Generic3

Generic4

Generic5

Generic6

Generic7

Generic8

Generic9

Generic10

Generic11

Generic12

Generic13

4.53 ⋅ 1064.53 ⋅ 106

L3

5.75 ⋅ 1065.61 ⋅ 106

4.03 ⋅ 106

L4

3.95 ⋅ 106

5.87 ⋅ 106

5.48 ⋅ 106

4.14 ⋅ 106

3.96 ⋅ 106

2.48 ⋅ 106

3.91 ⋅ 106

2.45 ⋅ 106

4.20 ⋅ 106

6.95 ⋅ 106

5.42 ⋅ 106

2.91 ⋅ 1062.93 ⋅ 106

3.91 ⋅ 106

2.81 ⋅ 106

6.68 ⋅ 106

5.87 ⋅ 106

4.06 ⋅ 106

3.90 ⋅ 106

4.02 ⋅ 106

2.28 ⋅ 106
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4.4. Discussion 

The estimated baselines presented in Figures 4.2 and 4.3 show that the proposed method not only 

performs as well as the SOTA algorithms at section B with metabolite amplitudes but also does not 

have a negative impact on the other section where the baseline is much easier to estimate. Moreover, 

airPLS and CWT are susceptible to remaining water amplitudes, or the lactate peak that commonly 

appears with short TE, as shown in Figure 4.2. 

As observed in Figure 4.3, our proposed method also has good flexibility on different spectrum 

shapes, depending on the pulse sequence and TE chosen to acquire the signals. Compared to airPLS, 

using a moving mean filter does not negatively impact sections A and C, where the baseline can be 

easily estimated with a moving mean filter. 

The proposed method also performs well for estimating the baseline at the dispersion spectrum, 

as shown in Figure 4.4. When analysing the Magnitude and Phase of the corrected spectra shown in 

Figure 4.5, we can observe that all SOTA algorithms do change the phase at the metabolites section 

of the spectrum. In contrast, our method positively changes the phase at sections A and C but 

maintains mostly similar the phase at sections. This is a good indication of the low negative impact 

our method has on the original signal. 

Something that must be studied and improved is the  value, reported in Table 4.3, from the 

minimisation step, which is too high. Although, this is expectable given the cost function from 

equation (4.6). If  is equal to zero, then the output result from the minimisation would be equal to 

the input signal. However, we are looking for an estimation of the baseline, matching most of the 

input signal by using only two frequencies. Therefore, in this case,  will never be equal to the input 

signal, and probably be a high value. 

The FQN results generally show that the proposed method performs better than the SOTA 

algorithms. When analysing the values reported in Table 4.2, the proposed method returned FQNs 

more uniform and closer to 1 than airPLs and CWT. This means that combining the smoothing filter 

Generic14 2.76 ⋅ 109

Observations: Spectrum3 loss ( ), Spectrum4 loss ( ).L3 L4

2.48 ⋅ 109

L

L

L
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with time-domain information improves the correction. Also, when looking at the colour map of 

Figure 4.6, the FQNs obtained with our method are more uniform than the ones obtained with the 

other two SOTA algorithms. This conclusion is evident in Figure 4.7, where our approach obtained, 

on average, better performance than airPLS, which is the only other algorithm that estimates the 

baseline for the complex values of the signal. Even when ABfit, BRCI, and CWT obtained better 

FQN results, these algorithms only estimated the baseline for the absorption channel. Therefore, 

these algorithms are instantly discarded. 

Another advantage of the algorithm is the good performance it can achieve when used with its 

pre-defined parameters. In contrast, half of the SOTA algorithms require more predefined setups 

(which were all suggested by their authors). ABfit requires a spectral model as input, which makes it 

the most complicated of the four SOTA algorithms. Alternatively, the author provides a function for 

a basis spectral model depending on the MRS data type, which can help to speed up the input 

process, but is not yet the ideal. For instance, airPLS requires five parameters: a smoothing 

parameter, the order of the difference of penalties, a weight exception proportion value, an 

asymmetry parameter, and the maximum iterations. The user must adjust these parameters 

depending on the MRS input dataset and, in some cases, for each signal. CWT and BRCI require 

fewer and easy-to-implement parameters. CWT can be used fully automatically, but the user can 

also modify the threshold scale factor, which is used to determine different peaks that will impact 

the final baseline estimation. BRCI can also be used fully automatically, but the user can change 

flags to include broad peak detection if needed. 
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5. Chapter 5: Conclusions 

5.1.   Summary 

This thesis presents a new method for baseline correction algorithm for quantification of in vivo 
1H-MRS. The proposed method performs the baseline estimation by combining time-domain and 

frequency-domain approaches. These approaches were applied depending on the section of the 

spectrum. A moving mean filter was applied to sections A and C (without metabolite amplitudes), 

which, according to the literature research, is still one of the simplest yet effective approaches for 

estimating the baseline in the mentioned sections. For section B (with metabolites), a combination of 

three baselines is used: one estimated by truncation of the signal in TD and the other two obtained 

with a minimisation function. The complete description of the method is shown in Figure 3.4. 

Twenty algorithms were found in the literature review, presented in Tables 2.1 and 2.2, from 

which only four were found to meet the requirements presented in the Methodology of this thesis: 

ABfit, airPLS, BRCI, and CWT. They were implemented in MATLAB and RStudio to compare their 

performance against our proposed method. 

The evaluation consisted in comparing the performance of the algorithms with real data. We 

collected fourteen datasets described in Table 4.1. The setup consisted of pre-processing and 

quantifying the data with the same methods, being the baseline correction the only step with 

different methods applied to the datasets. The Fit Quality Number (FQN) was set as a comparison 

metric. Overall, the best results were achieved by our method when directly compared to airPLS, 

which is the only SOTA method that also performs baseline correction for complex values of the 

signal. 

5.2.   Conclusion 

At the end of this thesis, the main objective of this thesis and the three specific objectives were 

accomplished. We built an algorithm for baseline correction of brain 1H-MRS spectra by including 

analysis in Time and Frequency Domain. To do so, we identified the most common and important 

artefacts in 1H-MRS brain signals, e.g. ‘smiley-artefacts’, among others shown in Figure 2.4, and the 
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available methods for baseline correction for 1H-MRS spectra, presented in Tables 2.1 and 2.2. Then 

we designed and implemented a baseline correction algorithm aiming at improving the complex 

spectrum without overfitting the estimated baseline, which was proven by the FQN obtained from 

the evaluation. Lastly, we reported an extensive evaluation of the algorithm with simulated and real 

data and compared it with state-of-the-art methods. 

The main challenge faced in this work was the lack of ground truth data. As mentioned in the 

literature review, baseline signals can be composed of artefacts from many sources and with 

unknown features. Therefore, there is no unique estimation, but the main objective is to find an 

estimation allowing clinicians to obtain the best quantification for their data. This is why we had to 

consider an evaluation setup to compare our proposed method against the SOTA algorithms without 

knowing the ‘real’ baseline, but only the best fit for our data. 

Another challenge was related to the few SOTA algorithms found in the literature review that we 

could use for comparison. Most baseline estimation algorithms were designed to function with a 

background signal correction or a quantification method. Of the four SOTA algorithms available for 

comparison, three only perform the baseline estimation in the absorption spectrum, which is a 

crucial disadvantage compared to our method. The only SOTA algorithm that could be compared 

with our method was airPLS, which achieved good results in almost no time. But, airPLS requires 

too many entry parameters, which makes it practically impossible to implement if an automatic 

process is needed. 

Finally, the baseline correction in brain 1H-MRS spectra can be improved in comparison to the 

performance of the SOTA algorithms by combining TD and FD math approaches. The combination 

of truncation of the signal, smoothing filters of the spectra, and minimisation function adds more 

flexibility to the baseline estimation, allowing the user to use the algorithm fully automatically. Also, 

the proposed algorithm estimates the baseline for the complex values of the signal, being only 

comparable to one of the tested SOTA algorithms —which slightly outperforms. This feature is a 

mandatory condition to perform the spectral fitting and quantification of the spectrum for different 
1H-MRS spectra. 
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5.3.   Future work 

Further work will be focused on improving the performance of the proposed algorithm. The 

minimisation function can still be improved, focusing on reducing the loss . Also, a possibility 

could be an error value to minimise obtained from the magnitude and phase of the spectrum. A 

robust method to determine the points for the limits of Sections A, B, and C to get a better baseline 

estimation for edges (more external values to the left and right) of the spectrum. Finally, another 

goal could be a lower processing time closer to airPLS. 

L
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