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Resumen

Las motocicletas son sistemas con un comportamiento dinámico complejo que pueden
volverse inestables en determinadas condiciones de conducción. Evitar estas inestabilidades
desde la fase de diseño no es trivial, ya que dependen de varios parámetros interrelacionados,
uno de los cuales es la aerodinámica. Las fuerzas aerodinámicas en un vehículo
pueden describirse esencialmente por sus componentes longitudinal (arrastre) y vertical
(sustentación) que actúan en un punto conocido como centro de presión (CoP). Además,
la fuerza de sustentación, que se ha utilizado de forma importante en las motocicletas
deportivas en los últimos años, también puede influir en la estabilidad, sin embargo, su
efecto no se ha descrito en la literatura. Por lo tanto, el objetivo de esta investigación es
desarrollar un modelo de estabilidad que tenga en cuenta la fuerza de sustentación y las
diferentes posiciones del CoP. Para ello, implementamos un modelo básico de estabilidad y
lo extendimos para cumplir nuestros requisitos. Consideramos la sustentación aerodinámica
creada por las alas invertidas y la posición del CoP. Además, desarrollamos un modelo capaz
de considerar condiciones de curvas constantes. El resultado contribuye a la comprensión
de la dinámica de la motocicleta y puede servir como aproximación inicial a los estudios
de estabilidad de la motocicleta.

Palabras clave – Estabilidad, Aerodinámica, Motocicleta, Modelo.
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Abstract

Motorcycles are systems with complex dynamic behaviour that can become unstable
under certain driving conditions. Avoiding such instabilities from the design stage is not
trivial since they depend on various interrelated parameters, one of which is aerodynamics.
Aerodynamic forces in a vehicle can be essentially described by its longitudinal (drag) and
vertical (lift) components acting in a point known as the centre of pressure (CoP). Further,
the lift force, which has been used importantly in sports motorcycles in recent years,
can also influence stability, however, its effect has not been described in the literature.
Therefore the aim of this research is to develop a stability model that considers downforce
and different CoP positions. To this end, we implemented a basic stability model and
extended it to fulfil our requirements. We consider the aerodynamic lift created by the
inverted wings and the position of the CoP. Additionally, we developed a model that
is capable of considering steady cornering conditions. The result contributes to the
understanding of motorcycle dynamics and can serve as an initial approach to motorcycle
stability studies.

Keywords – Weave, Wobble, Downforce, Motorcycle stability, Aerodynamics.
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Chapter 1

Introduction

This chapter briefly introduces the problem of motorcycle stability and aerodynamic lift,
together with a brief state-of-the-art and the solution proposed. Subsequently, general
and specific objectives of this work are presented, followed by the methodology.

1.1 Problem description

Motorcycle racing focuses on the pursuit of better lap times which is achieved by increasing
top and cornering speed. To increase top speed, power output needs to be maximised
while aerodynamic and mechanic drag are minimised. Conversely, to increase cornering
speed, motorcycle grip needs to be maximised, which is achieved by adequately balancing
power delivery, suspension settings and aerodynamic forces. Additionally, settings for top
speed are usually in conflict with those for cornering. For example, if there is excessive
power delivery, tyres suffer premature wear, and grip during cornering decreases. On the
other hand, maximising grip increases drag and worsens the top speed. Therefore, it has
been seen that the winning motorcycle is the one that finds the best balance between
cornering and top speed.

Large racing motorcycles, like the ones used in MotoGP, suffer a phenomenon called
understeering due to its Centre of Mass (CoM) being towards the front end (Lot &
Sadauckas, 2021). Understeering behaviour means the front axle begins to slip before the
rear axle, therefore, the vehicle turns less than desired. On the contrary, oversteering
means the rear axle slips more than the front, resulting in a tendency of excessive rotation
of the vehicle. Therefore, neutral behaviour is sought, giving a better feeling to the rider
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and better vehicle control.

In motorsport, a solution to this problem is the inclusion of the motorcycle’s aerodynamic
properties in its design. Since the objective is to maximise the lateral force on the wheels,
the grip is considered as the resistance of the tyres to lateral slip. When a downforce is
added to the front axle, the grip in the front wheels increases, the tendency of “wheelie”
reduces and the vehicle becomes oversteering. Similarly, when downforce is added to the
rear axle, more grip is generated in the rear tyres and the vehicle becomes understeering.
Therefore, for each race, there is an ideal setup, which may not be optimal for other
circumstances.

However, the aerodynamic properties of a motorcycle change over the course of a race. The
movement of the rider generates air flow interference, changing the aerodynamic effects
of some devices. Sport motorcycles have a longer suspension travel compared to sports
cars, making their pitch angle constantly change. In conjunction with the previous factors,
motorcycles lean for cornering, changing both geometry and airflow through their body.
Consequently, the aerodynamics of a motorcycle is constantly changing, making it more
challenging to have an ideal vehicle setup.

To simplify the aerodynamic analysis effects are condensed in a single force and moment
acting on the Centre of Pressure (CoP). From the literature, it is known that CoP needs to
be behind the CoM to keep the system stable (Foale, 2002). But to correct understeering
behaviour is sought to have it towards the front end, which may compromise the motorcycle
stability.

The study of motorcycle lateral stability encompasses several phenomena, with a primary
focus on the crucial modes of vibration, which are Weave and Wobble. The firsr is a
low-frequency oscillation, from 0.5 to 5 [Hz], similar to a fishtail movement, while the
latter is an oscillatory movement from the motorcycle steering with a frequency between 5
and 10 [Hz]. It has been shown that multiple factors can affect those modes of vibration,
such as frame stiffness, and tyre properties, among others. However, there is no clarity
about the influence of aerodynamic lift and CoP position on motorcycle stability.
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1.2 State of the art

1.2.1 Stability

Motorcycle stability has been a field of study for more than 40 years, the first attempt to
predict Weave and Wobble modes was done by Sharp (1971). His mathematical model
has four Degrees of Freedom (DoF) which are roll, yaw, steer, and lateral displacement.
This paper considers two rigid bodies joined at the steering axis, with a linear steering
damper. The work of Sharp (1971) is now a classic model for motorcycle stability studies,
being the foundation of several publications.

In the following years, the influence on the stability of certain system components has
been studied. Frame flexibility has been proven to affect mainly in weave mode, damping
it at medium and high speeds (Sharp (1974); Kane (1979)). Koenen & Pacejka (1982)
show the relation between rider lean and weave mode, along with the effect of the rotating
wheel dampening the wobble mode. A detailed tyre model is considered by Cossalter et al.
(2002b), where they demonstrated its impact on weave and wobble modes by considering
detailed characteristics of the front tyre. It is clear that several parameters affect stability
and considering them all together generates more precise predictions.

A new stability model with 11 DoF is presented by Cossalter & Lot (2002), with more
detailed approaches and predictions closer to the real behaviour. It takes into account
the motorcycle suspension and the dynamic behaviour of the tyres in combination with
its geometric shape. This model is extended, adding a DoF to consider fork bending,
showing an important effect over wobble mode (Cossalter et al., 2007). All of the detailed
considerations bring better results to the model, however, at the same time, make it more
complex and difficult to evolve.

Additionally, several other works were done in the motorcycle stability field, testing different
models and modifications. For example, Lot & Lio (2004) developed a model to describe
the procedures for the automatic generation of the equations of motion. Similarly, Cheli
et al. (2006) developed an independent model to study motorcycle stability and compared
the results with experimental tests. On the other hand, stability of the motorcycle while
cornering was studied by Cossalter et al. (2004), including experimental tests. Finally, all
of the mentioned works presents similar plots for stability, within a certain range of values
regardless of the numerous considerations, as shown in Figure 1.1.
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(a) Stability in (Cossalter & Lot, 2002) (b) Stability in (Cheli et al., 2006)

(c) Stability in (Lot & Lio, 2004) (d) Stability in (Cossalter et al., 2011)

(e) Stability in (Cossalter et al., 2007) (f) Stability in (Cossalter et al., 2004)

Figure 1.1: Stability plots available on the literature.
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1.2.2 Aerodynamics

The influence of aerodynamics on stability was studied under particular cases,
understanding the effect of fairings and a top box. Cooper (1983) tested different fairings
on a motorcycle and shows an impact only over wobble mode because the author can not
study weave. Furthermore, weave mode can be excited by airflow due to some accessories,
as it is shown by Bridges & Russell (1987). Aerodynamics can have an important impact
on stability, but it was not studied for almost 20 years.

In the 21st century, new research about aerodynamics appears, now centred on airflow
around motorcycles. Due to modern trends in sport motorcycling, rider body interference
is studied, to understand how it affects airflow through aerodynamic devices, such as
winglets (Sedlak et al., 2012). The airflow in inverted wings when cornering is applied to
car winglets, showing the importance of considering different flow for cornering conditions
(Keogh et al., 2015). Dijck (2015) describes the forces acting on motorcycles when cornering,
and it reveals the influence of aerodynamic lift in motorcycle dynamics. Is important to
understand the airflow on the motorcycle to study aerodynamics, in particular, the forces
generated by them.

Recent research on aerodynamics and stability are an extension of (Cossalter & Lot, 2002)
model, a study of a particular motorcycle, and a simple model from a book. The extension
of the previously mentioned 11 DoF model shows that adding aerodynamic drag can make
the wobble mode more damped and the weave mode less damped (Meijaard & Popov,
2006). Sharma & Limebeer (2012) presents a complete study about an aerodynamic
efficient motorcycle, and includes a study about CoP position using commercial software
for motorcycle dynamics. Finally, Lot & Sadauckas (2021) presents a 5 DoF model which
considers fork bending, aerodynamic drag and a detailed tyre model. This model is the
simplest one that attains reasonable results compared to the literature, which is great for
extending its aerodynamic variable.

1.3 Solution proposal

Despite the extensive research on motorcycle stability, there is a potential risk of reaching
unstable behaviour when adding aerodynamic forces, which has yet to be studied. To fill
that research gap, it is intended to extend Lot & Sadauckas (2021) model, considering
longitudinal CoP position and adding aerodynamic lift. This study aims to develop a
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motorcycle stability model considering downforce with its respective position. Also, the
model has to be suitable for straight running and cornering conditions.

1.4 General objective

Develop a basic mathematical model to study motorcycle stability considering downforce
and different centre of pressure positions in straight-running and steady cornering.

1.5 Specific objectives

1. Estimate geometrical characteristics of inverted wings used in sports motorcycles to
obtain a range of aerodynamic forces.

2. Develop a motorcycle stability model based on Lot & Sadauckas (2021) including
downforce and changing centre of pressure position.

3. Develop equations of motion to study motorcycle stability in steady cornering
considering downforce and changing centre of pressure position.

1.6 Methodology

Estimate geometrical characteristics of inverted wings used in sports

motorcycles.

In motorsport, inverted wings create downforce and modify vehicle behaviour as mentioned
earlier. Since there are different circumstances in each race, aerodynamic devices vary
from one to another. Therefore, it is desired to know how are the main wing profiles used
in sports motorcycles and understand their characteristics. First, a literature review about
wings will be done, to understand how they generate lift and their defining parameters.
Then, from literature and motorsport information available on the web, characteristics of
typical wing geometries will be extracted.

Develop a motorcycle stability model for straight running conditions.

To develop a stability model with lift and CoP position, the model of Lot & Sadauckas
(2021) will be extended. The first step will be to set the CoP position with x (longitudinal)
and z (vertical) values. Then, aerodynamic components will be included in load transfer
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over normal forces. Moreover, equations of motion will be modified, including downforce
in the vertical axis.

Develop a motorcycle stability model for steady turning conditions.

The first model developed in this work is suited for straight-running conditions, which
means several assumptions and linearisations. Then, to study the behaviour in steady
cornering conditions it is necessary to modify some components. In particular, the main
DoF affected is the roll of the motorcycle, now considering a base lean angle plus the
oscillation. Additionally, wheel spin velocity, and steering angle are sensitive to cornering
conditions Therefore, equations of motion are modified and generalised.

Work plan

Figure 1.2: Gantt chart of the project

Summarising, the present work has three main stages, where the first is the study about
motorcycle wings. Secondly, the first modification to the original model is done, including
downforce with a longitudinal position. Finally, the model is modified again for a more
generalised case that allows to consider an initial roll angle for cornering.
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Chapter 2

Aerodynamics

This chapter formally presents the two main topics covered in the present work: Stability
and Aerodynamics. First, the fundamentals of stability analysis are presented. Then, a
brief review of motorcycle aerodynamics and a characterisation of winglets used in sports
motorcycles is described.

2.1 Stability

Stability can be defined as the capacity of a system to return to its equilibrium state after
a perturbation. Modes of vibration are distinct patterns of motion that a system can adopt
when excited from its equilibrium position. A stable system remains within predefined
bounds and is essential for reliable and predictable operation. Each mode corresponds to
a unique frequency and represents a combination of displacements and velocities of the
components of the system. On the other hand, resonance is when an external force is
applied at or near the natural frequency of the system, resulting in a heightened response
amplitude. Resonance can lead to significant magnification of vibrations, causing potential
performance issues. Understanding stability, modes of vibration, and the potential for
resonance is crucial in engineering design, as it ensures safe and efficient systems for a
wide range of uses.

To study the stability of a system, equations of motion are formulated and the associated
eigenvalues problem is solved. The general eigenvalue problem reads

Au = su, (2.1)
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where A is the matrix of the system made from equations of motion (EoM), u is the
matrix of eigenvectors and s are the eigenvalues. If eigenvalues are complex, means that
the system oscillates. If the real part of the eigenvalues is negative, the system is stable.
Summarising, the study of the stability of a system consists in solving the associated
eigenvalue problem and relating it to the modes of vibration.

2.2 Aerodynamics

The aerodynamics of motorcycles is challenging to study due to their irregular shape and
constantly changing conditions. For several years, the main goal of aerodynamic studies
on motorcycles relied on the search for a lower drag coefficient. However, nowadays racing
teams are using aerodynamic downforce to enhance the performance of motorcycles.

History of motorcycle aerodynamics

At the beginning of aerodynamic studies of racing motorcycles, the main strategy was to
reduce the drag force to increase top speed. Large fairings used in early racing motorcycles
were a solution to the problem (see Figure 2.1a). However, those fairings had a large
lateral area, which caused instabilities when exposed to cross-winds. Therefore, safety
regulations prohibited it and next generations fairings were considerably smaller as can be
seen in Figure 2.1b. This fairing shape continued its progressive evolution for almost six
decades as shown in Figure 2.2, until the new aero-fairings appeared in 2018 changing the
scene.

The main purpose of the latest aero-fairings is to take advantage of downforce. Frontal
downforce is used to decrease the tendency of “wheelie” in straight line and to enhance
the cornering grip. While rear downforce is used to decrease the tendency of “stoppie”
at braking. “Wheelie” is the phenomenon where the front wheel loses contact with the
ground due to excessive load transfer to the rear wheel in acceleration. On the contrary,
“stoppie” is the phenomenon where the rear wheel losses contact with the ground due to
excessive load transfer to the front wheel while braking. In recent motorcycle races, both
phenomena have seriously decreased in comparison with past years.

As can be seen in Figure 2.3, downforce in motorcycles is not something new, Suzuki
experimented with a primitive winglet in 1979 with the RG 500. However, for some
undocumented reasons, these experiments stopped and winglets were not part of the new
MotoGP era until Ducati used it in 2009 (Sedlak et al., 2012) (see Figure 2.4a). Furthermore,



10 2.2. Aerodynamics

(a) 1955 Moto-Guzzi v8 (Cathcart, 2013). (b) 1966 Honda RC166 (Shea, 2018).

Figure 2.1: Early motorcycle fairings.

in 2015, Ducati was the first manufacturer to include winglets in its prototype, as shown
in Figure 2.4b, which became a tendency among all makers. Nevertheless, the new
aerodynamic devices lasted until 2017 when were banned due to safety reasons, giving way
to the current aero-fairings. Aero-fairings focuses on increasing overall vehicle performance
through downforce usage and airflow distribution.

Winglet characterisation

The key part of aero-fairings, and the most relevant to the present work, are the inverted
wings used in the front of the motorcycle (Figure 2.5). Those inverted wings are different
among manufacturers, however, the average properties can be deduced from images found
in the web. The main characteristics of inverted wings are the airfoil, the surface area and
the angle of attack. Since in the present work wings will be considered perfectly rigid and
the model does not consider pitch degree of freedom, the angle of attack will be constant.
Whereas the airfoil is used to determine the lift coefficient (Cl) and the airfoil-induced
drag coefficient (Cd) range.

Lifting line theory

Since each racing team uses different airfoils and there is no public information available
about wings used, is it necessary to estimate some parameters. Here, the main variable is
the Cl, however, to have a reasonable approach to a real airfoil, a simple theory is used.
First, the basic theory to estimate Cl from an airfoil is called “Thin Airfoil theory”, and
its equation is Clα = 2πα, where α is the angle of attack. However, this theory considers
an infinite wingspan and does not provide a Cd. Secondly, another basic theory is called
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(a) 1979 Suzuki RG500. (b) 1985 Honda NSR500 (Scott, 2019).

(c) 1996 Honda NSR500 (Repsol, 2023). (d) 2008 Ducati Desmosedici (Scott, 2008).

Figure 2.2: MotoGP fairings in each decade.

“Lifting Line Theory” (LLT), which simplified theory for symmetrical airfoils and depends
on the wing aspect ratio (AR). LLT attains reasonable results compared to reality, thus,
is an acceptable approach for this work. Furthermore, LLT is used to estimate the ranges
of lift and drag forces generated by each wing considering several angles of attack and
surfaces. Finally, the equation for the lift coefficient is

Cl = Clα
AR

AR + 2
, (2.2)

where AR is given by the expression AR = wingspan
chord

, considering the wingspan of a single
wing. It is useful to mention that the wingspan is the distance from the wing base in the
motorcycle fairing to its tip. While chord is the distance from the front end to the rear
end of the wing.

The LLT equation for airfoil-induced drag coefficient is
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Figure 2.3: Winglet used in 1979 Suzuki RG500 (Foale, 2002).

Cd = Cd0 +
C2

l

eπAR
, (2.3)

where e is the Oswald efficiency number, and Cd0 is the minimum drag coefficient (Scott,
2004).

Now the equation for downforce is

D =
1

2
ρClSV

2, (2.4)

where ρ is the air density, V is the longitudinal speed and S is the projected surface area
of the wing.

Then, the drag force is calculated by

Fad =
1

2
ρCdSV

2, (2.5)

which is the classical formula to obtain the drag force generated by a body.

Results

All characteristics are based on what has been seen in the 2023 MotoGP championship.
Pictures of 2023 MotoGP bikes are shown in Figure 2.5

• Surface: Fédération Internationale de Motocyclisme (FIM) regulations set the
maximum width of the fairing to 600 [mm]. Therefore, by dividing this magnitude
into three: two wings and the central part of the fairing, the maximum length of
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each wing could be 200 [mm]. Whereas, by a visual inspection of several pictures of
MotoGP motorcycles, the chord is set to 100 [mm] to keep the aspect ratio.

• Number of wings: Ducati motorcycles use four double main wings at the front.
Whereas, Aprilia, Honda, KTM, and Yamaha use only two double main wings in
the front. Yamaha in some races uses an extra wing at the tail of the motorcycle, as
well as KTM and Aprilia. On the contrary, Ducati and Honda use smaller diagonal
wings, which do not create downforce and their effect is beyond the scope of the
present study. To sum up, four wings at the front end and one at the rear end are
considered to generate downforce.

• Lift coefficient: Considering an angle of attack of 15°, LLT gives a maximum Cl

of 1.6. Alternatively, other studies about the aerodynamics of motorcycles consider
NACA airfoils. Kamalakkannan et al. (2020) uses NACA 0012 and Pednekar (2021)
uses NACA 6412, which information can be seen in Table 2.1 Finally, the range of Cl

used is from - 0.5 to 1.7, since a motorcycle without wings generates lift and wings
generates downforce.

Airfoil α Cl Cd Chord Length N° Wings Total Lift [N]
0012 10 1.2 0.01 0.1 0.2 5 595
6412 10 1.95 0.015 0.1 0.2 5 967
LLT 10 1.09 0.288 0.1 0.2 5 540
LLT 15 1.64 0.63 0.1 0.2 5 813
LLT 20 2.2 1.1 0.1 0.2 8 1746

Table 2.1: Airfoil data

XFOIL analysis

To verify the values used for lift coefficients, the specialised software XFOIL is used. XFOIL
is a relatively simple tool for design and analysis of subsonic airfoils with a database of
four and five digit NACA profiles. Therefore, the NACA airfoils previously mentioned
were tested in the software, obtaining the values showed in the Table 2.1.

Summarising, stability is a challenging field of study with multiple ways to understand
its results, however, with the right techniques the work is more efficient. Besides that, it
is really important to understand the characteristics of the winglets, since they produce
a force that excites the system, affecting its stability. Furthermore, it was seen that
motorcycle aerodynamics had encompassed several objectives throughout its history.
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(a) 2009 Valentino Rossi’s Ducati
Desmosedici (Sedlak et al., 2012).

(b) 2016 Andrea Dovizioso’s Ducati
Desmosedici (Beeler, 2018).

Figure 2.4: First winglets in modern era.

(a) 2023 Alex Marquez’s Ducati Desmosedici
(Iwanbanaran, 2023).

(b) 2023 Fabio Quartararo’s Yamaha YZR-
M1 (McLaren, 2023).

(c) 2023 Maverick Viñales’ Aprilia RSGP
(Fialho, 2023).

(d) 2023 Brad Binder’s KTM RC16
(Ramanujam, 2023).

Figure 2.5: 2023 MotoGP motorcycles.
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Chapter 3

Straight running

This chapter presents the original stability model extracted from Lot & Sadauckas (2021)
and the modifications to include aerodynamic lift with longitudinal position.

3.1 Original model

The present work is an extension of the previously mentioned model. The main goal of
the model is to predict the stability of the two well-known modes of vibration: Weave and
Wobble. System equations are developed, which include the sum of forces and moments of
the whole vehicle in x, y and z axis. Moments with respect to the bending axis of the fork
(β), respect to the steering (δ), and a linear tyre model are considered. This model has five
DoF, being the simplest one with reasonable results according to Lot & Sadauckas (2021).
The DoF are roll (φ), yaw (ψ), steer angle (δ), fork bending (β) and lateral velocity of the
chassis (Vy). Furthermore, Lot & Sadauckas (2021) presents equations of motion (EoM)
and the state-space formulation matrices.

3.1.1 Model geometry

The model represents the motorcycle as a system composed of four bodies: a rear frame
(chassis, engine, rider and tank), a front frame (fork and handlebar) and two wheels. The
front and rear frames are connected by the steering axis as a revolute joint, as well as the
wheels with the frames. The rider is considered rigidly attached to the rear frame of the
motorcycle. The motion of the suspension is not taken into account, therefore, the pitch
angle is negligible.
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There are two coordinate systems: The main coordinate system and the front coordinate
system. The main coordinate system has its origin O at the contact point of the rear wheel
Cr. The x and y axes lie permanently in the road plane, while the z axis is perpendicular
to the ground and is directed downwards. The front coordinate system, which is used
for the front frame and the bending body, has its origin in the joint of the rear and front
frames. Thus, its z axis is rotated at an ε angle from the main system, remaining aligned
with the steering axis. The lateral and longitudinal forces of the ground exerted on the
tyres are always on the road plane, whereas normal force is parallel to the z axis.

In Figure 3.1 the overall geometry can be seen to understand the principal dimensions.
Additionally, in Figure 3.2 is presented a detailed view of the front frame.

CoP

Rr ρr
ρf

Cr Cf

w

wA

m
mf

mbeb

ef

xf

zf

b

bA

bf

bb

h
hA

ε

z

x

hb

hf

Rf

Lr

Pr Pf

Lf

Figure 3.1: Geometry of the model, modified from Lot & Sadauckas (2021).

3.2 Kinematic equations

Since motorcycles roll in cornering, and the fork is installed with a caster angle ε, it is
necessary to establish some kinematical relations.

The front wheel roll φf differs from roll measured at the chassis φ and are related by
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z

ε β

Figure 3.2: Front frame geometry.

φf = φ+ δ sin(ε) + β cos(ε), (3.1)

Similarly, the angle between the symmetry axis of the chassis and the front wheel projected
to the ground ∆ is different to δ, so the relation is

∆ = δ cos(ε)− β sin(ε). (3.2)

Regarding the angular velocity of the front and rear wheels, ωf and ωr respectively, they
are defined as

ωr =
Vx
Rr

(3.3a)

ωf =
Vx
Rf

. (3.3b)

Next, some other geometrical parameters are used in equations of motion, where bf and
bb are the longitudinal position of the front assembly CoM and the bending mass CoM,
respectively. Additionally, zb is the vertical position of bending mass CoM in the front
coordinate system. Then, their equations are
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bf = w +
xf + an − hf sin(ε)

cos(ε)
(3.4a)

bb = w +
xb + an − hb sin(ε)

cos(ε)
(3.4b)

zb = lb +
(an + xb) sin(ε)− hb

cos(ε)
. (3.4c)

Lastly, the practical sideslip of the motorcycle tyres is expressed as

αr = −Vy
Vx

(3.5a)

αf = δ cos(ε)− β sin(ε) +
anδ̇ − wψ̇ − Vy + (lb − ρf cos(ε))β̇

Vx
. (3.5b)

3.2.1 Forces description

First, α′ is the tyre contact patch sideslip and γ is the wheel camber, which we represent
as φ since is the same as roll angle. Second, ka and kt are the normalised stiffness of
aligning and twist torque respectively. At last, kα and kγ are the normalised sideslip and
camber stiffness respectively.

Lateral forces in both tyres are considered linear and are calculated as follows

Yr = (kαrα
′
r + kγrφr)Nr (3.6a)

Yf = (kαfα
′
f + kγfφf )Nf , (3.6b)

where Nf and Nr are the normal forces on the front and rear wheels. Then, including load
transfer due to aerodynamic drag, inertial forces and torques of the spinning wheels, it
results

Nr = Nr0 +
hA
w
Fad +

1

w

(
mh+

Iωr
Rr

+
Iωf
Rf

)
ax (3.7a)

Nf = Nf0 −
hA
w
Fad −

1

w

(
mh+

Iωr
Rr

+
Iωf
Rf

)
ax. (3.7b)

For static loads, the normal forces are
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Nr0 =

(
1− b

w

)
mg

Nf0 =
b

w
mg.

Following the formulation proposed by Lot & Sadauckas (2021), tyre yaw torques for front
and rear tyres can be calculated as

Mrz = (karα
′
r + ktrφr)Nr (3.9a)

Mfz = (kafα
′
f + ktfφf )Nf , (3.9b)

where ka and kt are the normalised stiffness of aligning and twist torque respectively.

Aerodynamic drag force for the entire motorcycle is given by

Fad =
1

2
ρCDAV

2
x , (3.10)

where A is the frontal area of the motorcycle.

Tyre transient behaviour model considers relaxation lengths, which depend on normal
forces and are given by

Lr =
kαrNr

klr
(3.11a)

Lf =
kαfNf

klf
, (3.11b)

where klf and klr are the transverse stiffness of the front and rear tyre respectively.

3.3 Equations of motion

In the original text (Lot & Sadauckas, 2021), the EoMs were derived with MAPLE software.
However, the EoMs were revised and derived by the author (Gonzalez, 2023), using Python
and SymPy due to the accessibility of the software.
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3.3.1 Forces

The sum of forces can be assessed as

ma+mfaf +mbab = fr + ff + fA. (3.12)

Then, expressing the terms of the equations along each axis of the main coordinate system
it reads

max = Xr +Xf − Fad (3.13a)

m(V̇y + bψ̈ + hφ̈+ Vxψ̇) +mfef δ̈ −mbzbβ̈ = Yr + Yf + (δ cos(ε)− β sin(ε))Xf (3.13b)

0 = −mg − (Nf +Nr), (3.13c)

where ax is the longitudinal acceleration, and Xr is the rear wheel traction force.
Additionally, Xf is the longitudinal force of the front wheel, which is considered 0 in this
work due to the inexistent traction or brake forces. b and h are the longitudinal and
vertical motorcycle CoM position, respectively. Similarly, ef is the longitudinal position of
the front assembly CoM in the front coordinate system.

3.3.2 Moments

The rotational EoMs with respect to the origin of the main coordinate system, which is
aligned with the rear wheel contact point Cr are expressed as

Ioω̇ + Iof ω̇f + Iobω̇b + ω × Ioω + ωf × Iof ωf + ωb × Iobωb =Mx +My +Mz (3.14)

Inertias

Since the inertias of the different bodies is expressed on their centre of mass, it is necessary
to transfer them to the origin point O of the main system. First, we use Steiner’s theorem
for moments of inertia (MoI), which states that Iii = ICoM +md2. Along with that, we use
also the product of inertia (PoI), defined as Iij = Ix′z′ +mxy As a result, the inertias of
the different bodies are now expressed in the origin of their respective coordinate systems.
Thus, it is easier to work and understand the inertias of the motorcycle.
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Along with that, the front coordinate system needs to be rotated at an angle of ε to be
aligned with the main system as explained on Shames (1999). Below we include a brief
example of the rotation, where aki and aqi are the direction cosines.

First, for MoI, the transformation is given by

Ikk =Ixxa
2
kx − Ixyakxaky − Ixzakxakz

− Ixyakyakx + Iyya
2
ky − Iyzakyakz

− Ixzakzakx − Iyzakzaky + Izza
2
kz.

(3.15)

Then, the transformation for PoI is

−Ikq =Ixxakxaqx − Ixyakxaqy − Ixzakxaqz

− Ixyakyaqx + Iyyakyaqy − Iyzakyaqz

− Ixzakzaqx − Iyzakzaqy + Izzakzaqz,

(3.16)

Finally, by applying it to the reference frame of the front assembly, it results

ax′x = cos(ε)

ax′y = 0

ax′z = cos(90− ε) = sin(ε)

az′x = cos(90 + ε) = − sin(ε)

az′y = 0

az′z = cos(ε),

where x′ and z′ are the target axis, in this case, the body reference frame, while x, y and z
are the axis fixed to the front assembly.

Now, we present the extended form of the equations. Due to the its length, they are split
into two: the inertial side and the external moments side.
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Thus, the inertial side of the sum of moments is

(mbh− Ixz)ψ̈ + (mh2 + Ixx)φ̈+ (mfefhf + Ifzz sin(ε))δ̈+

(Ibxx cos(ε)−mbhbzb)β̈ +mh(V̇y + Vxψ̇) =Mx (3.17a)

−mhax − (Iωf ω̇f + Iωrω̇r) =My (3.17b)

(mb2 + Izz)ψ̈ + (mbh− Ixz)φ̈+ (mfefbf + Ifzz cos(ε))δ̈ + (Ibxx sin(ε)−mbbbzb)β̈+

mb(V̇y +Vxψ̇)+ (mbzbβ−mhφ−mfefδ)V̇x− Iωr(ωrφ̇+ ω̇rφ)− Iωf (ωf φ̇f + ω̇fφf ) =Mz,

(3.17c)

While the side of external moments of the equations is presented below

Mx = [(an − sin(ε)ρf )δ+ (lb − cos(ε)ρf )β − ρfφ]Nf − ρrφNr +mghφ−mbgzbβ +mfgefδ

(3.18a)
My = wNf − bmg + hAFad (3.18b)

Mz = wYf − ρrXrφ+ hAFadφ+Mrz +Mfz+

[(an + ω cos(ε)− ρf sin(ε))δ − ρfφ+ (lb − ρf cos(ε)− w sin(ε))β]Xf , (3.18c)

3.3.2.1 Moments with respect to the steering axis δ

The steering axis is aligned with the z axis of the front reference frame, which means
that inertias has to be translated and rotated to the steering axis. Then, its behaviour is
governed by the following equation
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(mfe
2
f + Ifzz)δ̈ + (mfefhf + Ifzz sin(ε))φ̈−mbebzbβ̈ + (mfefbf + Ifzz cos(ε))ψ̈+

mfef (V̇y + Vxψ̇ + V̇x cos(ε)δ) + Iωfωf (ψ̇ sin(ε)− φ̇ cos(ε))− Iωf (ωf β̇ + ω̇fβ) =

Mδ − cδ δ̇ − anYf +Mfz cos(ε) + [(lb cos(ε) + an sin(ε))β + ρf cos(ε)φf ]Xf+

+ [(an − ρf sin(ε))φf + (lb sin(ε) + an cos(ε))β]Nf+

+ (ax cos(ε) + g sin(ε))(mfefδ −mbzbβ) + gmfefφ, (3.19)

where Mδ is the rider input torque, and cδ is the torque generated by steering bearings
friction and the action of and steering damper if it exists.

3.3.2.2 Fork bending

One of the main contributions of Lot & Sadauckas (2021) model, is the lateral fork bending.
The importance of considering fork bending is demonstrated in Cossalter et al. (2007).
In this case, fork bending angle is presented as β, and acts in the bending axis, which is
parallel to x axis of the front coordinate system. Then, equation of fork bending oscillation
is

− (mbbbzb − Ibxx sin(ε))ψ̈ + (Ibxx cos(ε)−mbhbzb)φ̈−mbebzbδ̈+

+ (mbz
2
b + Ibzz)β̈ −mbzb(V̇y + Vxψ̇) + Iωfωf (φ̇f + ψ̇ cos(ε)) =

− lbYf −Mfz sin(ε) + [(lb − ρf cos(ε))Nf + ρf sin(ε)Xf ]φf

− kββ +mbzb[ax(β sin(ε)− δ cos(ε))− gφf ], (3.20)

where right-hand terms are moments generated with respect to the bending axis xb. And
kβ is the bending stiffness of the fork.

Tyre model

As mentioned at the beginning of the section, the present work uses a model that captures
the transient behaviour of the tyres. Since the contact patch of the tyre changes as a
consequence of motorcycle roll, its sideslip is affected, generating the new component α′.

The relation between both sideslips is expressed by
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Lr
α̇r

′

Vx
+ α′

r = αr +
(1− kγr)Nr

klr

φ̇r

Vx

Lf
α̇f

′

Vx
+ α′

f = αf +
(1− kγf )Nf

klf

φ̇f

Vx
,

3.4 Model upgrade

In this section, modifications to the original model are explained, and the new terms in
equations are shown underlined to highlight the difference. As mentioned earlier, downforce
is calculated through the classical lift equation, depending on the Cl. Since airfoils also
generate drag, the equation of aerodynamic drag gets modified and it reads

Fad =
1

2
ρ(CDA+ CdS)V

2
x , (3.22)

where CD is the motorcycle drag coefficient without airfoils and Cd is the airfoil-generated
drag coefficient. Moreover, the CoP position is determined by weighing the front and rear
total lift surface areas.

Centre of pressure position

To determine CoP longitudinal position it is necessary to introduce the new length between
the position of the front and rear wings. Since it is analogous to the wheelbase w, we define
it as wA. Likewise, the longitudinal position of CoM b is equivalent to the longitudinal
position of CoP bA. Therefore, the equation is

bA =
DfwA

D
, (3.23)

where D is the total downforce on the motorcycle and Df is the downforce generated by
the front wings. To avoid introducing more complex parameters, the rear point of the
downforce application is considered aligned with Cr.
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Normal forces

Since downforce is downwards it increases the normal forces, thus, the resultant forces can
be calculated as

Nr = Nr0 +
hA
w
Fad +

1

w
(mh+

Iωr
Rr

+
Iωf
Rf

)ax+

(
1− bA

wA

)
D (3.24a)

Nf = Nf0 −
hA
w
Fad −

1

w
(mh+

Iωr
Rr

+
Iωf
Rf

)ax+
bA
wA

D. (3.24b)

Equations of motion

Then, EoMs are modified to include downforce in the sum of forces and in the sum of
moments. For the sum of forces in the z axis the equation reads

0 = −mg − (Nf +Nr)+D. (3.25)

Besides, external moments in y and z are affected by downforce resulting

My = wNf − bmg + hAFad−bAD (3.26a)

Mz = wYf − ρrXrφ+ hAFadφ+Mrz +Mfz + [(an + ω cos(ε)− ρf sin(ε))δ − ρfφ+

(lb − ρf cos(ε)− w sin(ε))β]Xf−bADφ, (3.26b)

Lastly, all aerodynamic parameters used in the model are detailed in the Table 3.1.

3.4.1 State-space formulation matrices

As mentioned above, the stability of a system can be assessed by solving the eigenvalues
problem associated with the system of equations. Here, the system of equations is given by

Eẋ = Ax (3.27)

Where A and E are 10x10 matrices, and x is the 10-dimensional state vector shown below
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Parameter Value Unit Description
Wingspan 0.2 m y axis wing length

Chord 0.1 m x axis wing length
N° wings 5 - Number of wings on the motorcycle

Cl 1.5 - Lift coefficient
CDA 0.467 m2 Aerodynamic drag factor w/frontal area
wl 1.448 m Aerobase
bl 1.16 m CoP longitudinal position
hA 0.35 m CoP vertical position
e 0.8 - Oswald efficiency number

Table 3.1: Aerodynamic parameters.

x =
[
Vy ψ̇ φ̇ δ̇ β̇ α′

r α′
f φ δ β

]T
(3.28)

Therefore, the associated eigenvalues problem is given by

A u = s E u (3.29)

Re-written it reads

E−1 A u = s u (3.30)

Now, the matrices A and E are presented by their entries due to the extension of their
equations.

A matrix is more complicated and depends on longitudinal speed Vx.

A1,2 = −mVx

A1,6 = kαrNr

A1,7 = kαfNf

A1,8 = kγfNf + kγrNr

A1,9 = Xf cos(ε) +Nfkγf sin(ε)

A1,10 = −Xf sin(ε) +Nfkγf cos(ε)

A2,2 = −mbVx
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A2,3 = Iωfωf + Iωrωr

A2,4 = Iωfωf sin (ε)

A2,5 = Iωfωf cos (ε)

A2,6 = Nrkar

A2,7 = Nfkaf +Nfkαfw

A2,8 = FadhA + Iωf ω̇f + Iωrω̇r +Nf (kγfw + ktf ) +Nrktr −Xfρf −Xrρr + axhm−DbA

A2,9 = Iωf ω̇f sin (ε) + Nfktf sin (ε) + Xf (an − ρf sin (ε) + w cos (ε)) + axefmf +

Nfkγfw sin(ε)

A2,10 = Iωf ω̇f cos (ε) + Nfktf cos (ε) + Xf (lb − ρf cos (ε)− w sin (ε)) − axmbzb +

Nfkγfw cos(ε)

A3,2 = −Iωfωf − Iωrωr − Vxhm

A3,4 = −Iωfωf cos (ε)

A3,5 = Iωfωf sin (ε)

A3,8 = −Nfρf −Nrρr + ghm

A3,9 = −Iωf ω̇f cos (ε) +Nf (an − ρf sin (ε)) + efgmf

A3,10 = Iωf ω̇f sin (ε) +Nf (lb − ρf cos (ε))− gmbzb

A4,2 = −Iωfωf sin (ε)− Vxefmf

A4,3 = Iωfωf cos (ε)

A4,4 = −cδ

A4,5 = Iωfωf

A4,7 = Nf (−ankαf + kaf cos (ε))

A4,8 = Nf (anktf cos(ε) (1− kγf )− ρf sin (ε))−Xfρf cos (ε) + efgmf +Nfktf cos(ε)

A4,9 = kγfanNf sin(ε) +mfefax cos(ε) + A4,8 sin(ε)−Nfankγf sin(ε)

A4,10 = Xf (an sin (ε) + lb cos (ε)− ρf cos
2 (ε))−mbzb (ax cos (ε) + g sin (ε)) +

Iωf ω̇f sin (ε) +Nf (ktf cos
2 (ε) + lb sin (ε)− ρf sin (ε) cos (ε))−Nfankγfcos(ε)



28 3.4. Model upgrade

A5,2 = −Iωfωf cos (ε) + Vxmbzb

A5,3 = −Iωfωf

A5,4 = −Iωfωf sin(ε)

A5,5 = −Iωfωf cos(ε)

A5,7 = Nf (−kaf sin (ε)− kαf lb)

A5,8 = Nf (−ktf sin (ε) + lb (1− kγf )− ρf cos (ε)) +Xfρf sin (ε)− gmbzb

A5,9 = kγf lbNf sin(ε)−mbzbax cos(ε) + A5,8 sin(ε)

A5,10 = kγf lbNf cos(ε) +mbzbax sin(ε) + A5,8 cos(ε)− kβ

A6,1 = −klr
Nr

A6,3 = 1− kγr

A6,6 = −Vxklr
Nr

A7,1 = −klf
Nf

A7,2 = −klfw

Nf

A7,3 = 1− kγf

A7,4 = (1− kγf ) sin (ε) +
anklf
Nf

A7,5 = (1− kγf ) cos (ε) + (lb − ρf cos(ε))
klf
Nf

A7,7 = −Vxklf
Nf

A7,9 =
Vxklf cos (ε)

Nf

A7,10 = −Vxklf sin (ε)

Nf

A8,3 = 1

A9,4 = 1

A10,5 = 1

Appendix A0.1 contains all the parameters used to solve the system.
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Whereas, E matrix is square, full rank, constant and symmetric, thus, the non-zero entries
are:

E1,1 = m E2,2 = mb2 + Izz
E1,2 = mb E2,3 = mbh− Ixz
E1,3 = mh E2,4 = mfefbf + Ifzz cos(ε)
E1,4 = mfef E2,5 = −mbbbzb − Ibxx sin(ε)
E1,5 = −mbzb

E3,3 = mh2 + Ixx E4,4 = mfe
2
f + Ifzz

E3,4 = mfefhf + Ifzz sin(ε) E4,5 = −mbebzb
E3,5 = −mbhbzb + Ibxx cos(ε)

E5,5 = mbz
2
b + Ibzz E8,8 = 1

E6,6 = kαr E9,9 = 1
E7,7 = kαf E10,10 = 1

Table 3.2: Components of the Matrix E

To summarise, a comprehensive analysis of motorcycle stability has been presented,
using Lot & Sadauckas (2021)’ model. The detailed exploration of the model geometry
provided the understanding necessary to delve into subsequent analyses. The formulation
of kinematic equations and EoMs allowed the characterisation of motion and behaviour of
the motorcycle. Furthermore, the model was extended to incorporate two aerodynamic
considerations more, factors that may significantly influence the behaviour of the motorcycle.
Thus, an integral motorcycle stability model has been constructed, offering a robust
framework for future research in the field of motorcycle dynamics. This chapter serves as
a guide for comprehending the motorcycle stability model and continuing its development.
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Chapter 4

Cornering

In this chapter, model is modified to allow the stability study in steady cornering conditions.
Along with that, new parameters and assumptions are explained. To reinforce the
development of the model, the results of this chapter were compared to Cossalter et al.
(1999), Schwab et al. (2005) and Cossalter (2006b).

4.1 Model modification for cornering conditions

The previous model had several linearised equations since it is supposed to be used in
straight-running conditions. However, in this work, EoMs are generalised to be suitable for
larger roll and steering angles. For this reason, it is necessary to introduce new diagrams
to explain the complex geometry of motorcycle steering. Those detailed diagrams are
crucial to understand the formulation of equations.

In addition, for steady cornering conditions, the motorcycle has an initial and constant
roll angle φ0 and an initial steering angle δ0. To study the stability of the system, we
formulate the EoMs considering the initial angle plus an oscillatory one as φ0 + φ, and
the same for steering angle with δ0 + δ.

Now, with intricate geometry, new steering angles are defined, of which only two are
relevant for the final model. First, the motorcycle real steering angle is called δ, which is
measured in a plane orthogonal to the steering head axis. Second, the kinematic steering
angle is called ∆, which is the steering angle projected to the ground.

At this point, it is important to add an explanation of the following Figures 4.1 and 4.2.
First, the green-coloured plane represents the initial plane of the vehicle, in its initial
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Figure 4.1: Motorcycle geometry in cornering.

position, without steering or rolling angle. Second, the red planes show the chassis plane
modified only by steering angle, which represents the yaw angle ψ, as shown in Figure 4.2.
Third, blue planes come from the addition of steering and rolling angle, which projects
the rotation centre below the ground level as shown in Figure 4.1. Lastly, the yellow plane
represents the front wheel plane, which goes out of the previously mentioned planes and
intersects them.

Then, from single track vehicle geometry, it is possible to obtain the kinematic steering
angle as

tan(∆) =
w

Rc

, (4.1)

where Rc is the path radius of the curvature.

Equally, steering angle projected to the normal plane to the rear frame plane is

tan(δn) =
w

R
,

where R is the curvature radius seen in Figure 4.1.
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Figure 4.2: Front view of motorcycle geometry.

The relation between R and RC is R cos(φ) = Rc, which gives the equation

tan(δn) = tan(∆) cos(φ) = tan(δ) cos(ε). (4.2)

Then, reordering the terms and replacing Equation (4.1), it reads

δ = arctan

(
cos(φ)

cos(ε)

w

Rc

)
. (4.3)

However, following equations depend on ∆, therefore it is re-written, resulting

∆ = arctan

(
cos(ε)

cos(φ)
tan(δ)

)
. (4.4)

Besides, the equation for frontal roll angle is formulated from Figure 4.1 and is given by

sin(φf ) = cos(δ) sin(φ) + cos(φ) sin(δ) sin(ε).

Rewritten it reads

φf = arcsin(cos(δ) sin(φ) + cos(φ) sin(δ) sin(ε)). (4.5)

To formulate the equation of motorcycle rear frame roll, it is derived from roll equilibrium
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Figure 4.3: Steady turning: roll angle of the motorcycle equipped with real tires.
Extracted from Cossalter (2006b).

as

φ = arctan

(
V 2
x

gRc

)
,

where Vx is the longitudinal velocity and g is the gravitational acceleration.

However, since in this work a toroidal cross-section tyre is considered, it has effect on roll
angle by

∆φ = arcsin

(
ρr sin(φ)

h− ρr

)
,

where ρr is the toroidal cross-section of the rear tyre and h is the height of the motorcycle
CoM.

At the end, the general roll equation reads
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φ0 = arctan

(
V 2
x

gRc

)
+∆φ, (4.6)

which can be seen in Figure 4.3. Here, φ0 is used to clarify the origin of the initial roll
angle.

Additionally, considering tyres with toroidal cross-section implies that wheel radius changes
in relation to roll angle. Therefore, it requires establishing a relation between them, first,
considering the rolling radius at zero roll as Rr − ρr + ρrcos(φ), which results in

ωr =
Vx

Rr + ρr(cos(φ)− 1)
(4.7a)

ωf =
Vx

(Rf + ρf (cos(φf )− 1)) cos(∆)
(4.7b)

where Ri are the wheel radius and ρi are the toroidal cross-section radius.

4.1.1 Fork bending angle β

The degree of freedom β represents the fork lateral bending, which affects the kinematic
steering, the front roll angle and the front sideslip. Adding to Equation (4.2) results in

tan(∆) cos(φ) = tan(δ) cos(ε)− β sin(ε)

tan(δ) cos(ε) = tan(∆) cos(φ) + β sin(ε)

tan(δ) =
cos(φ)

cos(ε)
tan(∆) + β tan(ε)

⇒ δ0 = arctan

(
cos(φ)

cos(ε)
tan(∆) + β tan(ε)

)
.

(4.8)

Note that at the end, we use δ0 since is the initial steering angle. That serves only as
clarification about the origin of δ0.

In line manner, Equation (4.5) results

sin(φf ) = cos(δ) sin(φ) + cos(φ) sin(δ) sin(ε) + β cos(ε) cos(φ). (4.9)
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Figure 4.4: Cornering geometry with front and rear sideslip.

4.1.2 Sideslip

This model consider sideslip of the tyres, changing the geometry of cornering. Therefore,
including sideslip angles to the Equation (4.1) it results

∆∗ = ∆+ αr − αf , (4.10)

where αf and αr are front and rear tyre sideslip respectively.

As can be seen in Figure 4.4, the turning radius of the trajectory, considering tyre sideslip
is

Rcr =
w

tan(∆− αf ) cos(αr) + sin(αr)
. (4.11)

In addition, for small sideslip angles, it can be calculated as

αr = −Vy
Vx

(4.12a)

αf = ∆+
anδ̇ − wψ̇ − Vy + (lb − ρf cos(ε))β̇

Vx
, (4.12b)
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it is important to note that in Equation (4.12b) is already included the fork bending.

Finally, due to small sideslip angles, the turning radius can be approximated by

Rcr ≈
w

∆
(4.13)

4.1.3 Force description

Since larger camber angles are considered, it is necessary to capture its effect in the
equations of tyre forces. By the same, it is necessary to include the lateral force due to
rolling equilibrium, resulting in

Yr = (kαrα
′
r + kγrφr)Nr (4.14a)

Yf =
(
kαfα

′
f + kγfφf

)
Nf . (4.14b)

Equally, tyre yaw torques are affected by large camber angles, which now becomes

Mrz = (karα
′
r + ktrφr)Nr (4.15a)

Mfz = (kafα
′
f + ktfφf )Nf . (4.15b)

Finally, normal forces on the tyres, including aerodynamics are defined by

Nr = Nr0 +
hA
w
Fad +

1

w

(
mh+

Iωr
Rr

+
Iωf
Rf

)
ax +

(
1− bA

wA

)
D cos(φ0 + φ) (4.16a)

Nf = Nf0 −
hA
w
Fad −

1

w

(
mh+

Iωr
Rr

+
Iωf
Rf

)
ax +

bA
wA

D cos(φ0 + φ). (4.16b)

4.2 Equilibrium of forces

Following the same formulation as Section 3.3.1, the EoMs for sum of forces are

max = Xr +Xf cos(∆)− Fad − Yf sin(∆) (4.17a)
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m(V̇y+bψ̈+h cos(φ0+φ)φ̈+Vxψ̇)+mfef δ̈−mbzbβ̈ = Yr+Yf cos(∆)+Xf sin(∆)−D sin(φ0+φ)

(4.17b)

mh sin(φ0 + φ)φ̈ = −mg − (Nf +Nr) +D cos(φ0 + φ), (4.17c)

4.3 Equilibrium of moments

Again, the formulation of rotational equations works in the same way as Section 3.3.2. All
of the equations are with respect to the origin of the main coordinate system, aligned with
the rear wheel contact point Cr. Due to the length of the equations, they are split into
two: the inertial side and the external moments side. The inertial side is

(mbh− Ixz)ψ̈ + (mh2 + Ixx)φ̈+ (mfefhf + Ifzz sin(ε))δ̈+

(Ibxx cos(ε)−mbhbzb)β̈ +mh(V̇y + Vxψ̇) =Mx (4.18a)

−mhax −mh cos(φ0 + φ)V̇x − (Iωf ω̇f cos(φ0f + φf ) + Iωrω̇r cos(φ0 + φ)) =My (4.18b)

(mb2 + Izz)ψ̈ + (mbh− Ixz)φ̈+ (mfefbf + Ifzz cos(ε))δ̈+

(Ibxx sin(ε)−mbbbzb)β̈+mb(V̇y + Vxψ̇) + (mbzbβ−mh sin(φ0 +φ)−mfef sin(δ0 + δ))V̇x−

Iωr(ωrφ̇+ ω̇r sin(φ0 + φ))− Iωf (ωf φ̇f + ω̇f sin(φ0f + φf )) =Mz (4.18c)

While the side of external moments of the equations is presented below



38 4.3. Equilibrium of moments
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Mx = [(an − sin(ε)ρf ) sin(δ0 + δ) + (lb − cos(ε)ρf )β − ρf sin(φ0 + φ)]Nf

− ρrNr sin(φ0 + φ) +mgh sin(φ0 + φ)−mbgzbβ +mfgef sin(δ0 + δ) (4.19a)

My = wNf − bmg + (hAFad − bAD) cos(φ0 + φ) (4.19b)

Mz = wYf − ρrXr sin(φ0 + φ) + (hAFad − bAD) sin(φ0 + φ) +Mrz +Mfz+

[(an + ω cos(ε)− ρf sin(ε)) sin(δ0 + δ)− ρf sin(φ0 + φ) + (lb − ρf cos(ε)−w sin(ε))β]Xf

(4.19c)

4.3.1 Steering

The steering behaviour is governed by the following equation, which is derived around the
steering axis aligned with the z axis of the front system.

(mfe
2
f + Ifzz)δ̈ + (mfefhf + Ifzz sin(ε))φ̈−mbebzbβ̈ + (mfefbf + Ifzz cos(ε))ψ̈+

mfef (V̇y + Vxψ̇ + V̇x cos(ε) sin(δ0 + δ)) + Iωfωf (ψ̇ sin(ε)− φ̇ cos(ε))− Iωf (ωf β̇ + ω̇fβ) =

Mδ − cδ δ̇ − anYf +Mfz cos(ε) + [(lb cos(ε) + an sin(ε))β + ρf cos(ε) sin(φ0f + φf )]Xf+

+ [(an − ρf sin(ε)) sin(φ0f + φf ) + (lb sin(ε) + an cos(ε))β]Nf+

+ (ax cos(ε) + g sin(ε))(mfef sin(δ0 + δ)−mbzbβ) + gmfef sin(φ0 + φ), (4.20)

where Mδ is the rider input torque, and cδ is the torque generated by steering bearings
friction and the action of and steering damper if it exists.

4.3.2 Fork bending

Lastly, the fork bending equation follows the same procedure as Section 3.3.2.2. Then, it
reads
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− (mbbbzb + Ibxx sin(ε))ψ̈ + (Ibxx cos(ε)−mbhbzb)φ̈−mbebzbδ̈+

+ (mbz
2
b + Ibzz)β̈ −mbzb(V̇y + Vxψ̇) + Iωfωf (φ̇f + ψ̇ cos(ε)) =

− lbYf cos(φ0f + φf )−Mfz sin(ε)+

[(lb − ρf cos(ε))Nf + ρf sin(ε)Xf ] sin(φ0f + φ)

− kββ +mbzb[ax(β sin(ε)− sin(δ0 + δ) cos(ε))− g sin(φ0f + φf )], (4.21)

where right-hand terms are moments generated with respect to the bending axis xb, and
kβ is the bending stiffness of the fork.

To conclude, the objective of the present chapter is to extend and develop the stability
model to be suitable for steady cornering conditions. In steady cornering conditions, roll
and steering angles become larger, which modifies the kinematic equations. Therefore, the
kinematic equations were revised and adapted, now they are suitable to consider an initial
angle φ0 and δ0, plus oscillatory angles φ and δ, for roll and steering respectively. For a
better understanding of the formulation, several diagrams for geometries and forces are
presented. complementing the explanation of each equation.
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Chapter 5

Conclusion

In this work, we developed a mathematical model for the lateral stability of the motorcycle.
To achieve that, we studied several stability models and compared the formulation of
them. Thus, the model with better documentation was replicated and extended to consider
aerodynamic lift and different CoP positions. Additionally, the model was modified again
to be suitable for steady cornering conditions.

In motorcycle racing, the manufacturers always look to reduce lap times, mainly by
increasing the top and the cornering speed. The top speed increase requires greater
accelerations, which are limited by the “wheelie” phenomenon, where the front wheel loses
contact with the ground. Therefore, engineers found a solution to the phenomenon using
downforce on the vehicle. However, according to the literature available, that kind of
solution can produce instability on the motorcycle. Consequently, the motivation of this
research was to develop a model to study motorcycle stability considering the current
aerodynamic advances.

The beginning of the project was about studying the different stability models and
the aerodynamics of modern MotoGP motorcycles. Alongside, it was presented a brief
explanation of stability studies and particularities about motorcycle stability. Then, from
the estimation of motorcycle wing characteristics, applied in aerodynamic software, the
required values for the model were obtained. Thus, after a review of the two main topics
of the present work, we were able to implement and develop the stability model.

The geometry of the motorcycle presented by Lot & Sadauckas (2021) was studied and
revised to understand how it works. Later, a downforce component was added to the
model, considering its respective CoP position, which modified several EoMs. At the end
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of that chapter, the presented model was ready to be implemented and obtain preliminary
results. However, that model is only valid for straight running conditions, therefore, it is
necessary to modify it again.

In the last chapter, the model was upgraded to be suitable for cornering conditions, which
consisted mainly of revising the kinematic equations. It also served as an opportunity to
deeply understand the formulation of the inertial equations of the motorcycle. The new
model was compared to other models to revise the right formulation (Cossalter, 2006b),
(Schwab et al., 2005). Additionally, several detailed diagrams were made and included in
the chapter to support the formulations. Thus, the model for cornering considers an initial
roll and steering angle, to which is added an oscillatory angle.

To conclude, this work consisted of developing a motorcycle model to study its lateral
stability. It served to understand the mechanical principles of motorcycle behaviour. The
model developed is a simple one yet gives an approximation of the current tendencies
in the motorcycle world. On the other hand, the formulation of the model was clearly
shown, which allows a better revision and understanding of the procedures. Finally,
the mathematical model developed can be implemented in software to study motorcycle
stability.
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Motorcycle parameters

Parameter Value Units Description
w 1.448 m Wheelbase
ε 26.8 ° Caster angle
an 0.105 m Mechanical trail
m0 195 kg Vehicle mass
b0, h0 0.722, 0.482 m Centre of mass (CoM) position

I0xx, I0xz, I0zz 13.5, 3, 55 kgm2 Moments of inertia
m 270 kg Overall mass (with 75 [kg] rider)
b, h 0.688, 0.64 m Overall CoM position

Ixx, Ixz, Izz 35.5, -1.7, 59.3 kgm2 Overall moments of inertia
mf 34 kg Front assembly mass
ef , hf 0.025, 0.6 m Front CoM coordinates
xf , xb 0.5, 0.155 m Front and Bending CoM longitudinal position
Ifzz 0.83 kgm2 Front moment of inertia

Iωf , Iωr 0.6, 0.8 kgm2 Front and rear wheel spin inertia
cδ 1 Nms/rad Steering damper

Rf , Rr 0.294, 0.299 m Front and rear rolling radius
ρf , ρf 0.064, 0.078 m Tyre cross-section radius
kαf , kαr 16, 14.5 1/rad Normalised cornering stiffness
kφf , kφr 0.85, 0.95 1/rad Normalised camber stiffness
kaf , kar -0.2, -0.2 m/rad Normalised self-aligning stiffness
ktf , ktr 0.015, 0.018 m/rad Normalised twist stiffness
klf , klr 160000, 140000 N/m Transverse structural stiffness
lβ 0.67 m Fork bending axis position
kβ 38 kNm/rad Bending stiffness
mb 18 kg Bending mass
eb, hb 0, 0.35 m CoM coordinates

Ibxx, Ibzz 0.8, 0.8 kgm2 Bending mass moments of inertia
cDA 0.467 m2 Aerodynamic drag factor
hA 0.35 m Aerodynamic centre height

Table A0.1: Vehicle parameters: Sport touring motorcycle
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