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PhD. in Electrical Engineering

Reviewer

Daniel Sbárbaro Hofer

Ph.D. in Electrical Engineering

Reviewer

Carlos Saavedra Rubilar

PhD. in Physics

External Reviewer



Abstract

In this thesis, a novel pixel wise, affine image-degradation model for push-broom hy-
perspectral cameras (PBHCs) is proposed by considering an optoelectronic approach,
and thereby generating an accurate mathematical representation of the hyperspectral
acquisition process. The image-degradation model is linear and the parameters asso-
ciated to the striping noise (SN) are assumed to be spatially uncorrelated, spectrally
independent, and decoupled from camera’s spectral response. The applicability of
these assumptions was verified by an experimental characterization of the hyperspec-
tral cameras in our disposal. Further, the spatial, spectral, and temporal information
are assumed to be highly redundant due to the high spectral resolution and the fast
temporal scanning of modern PBHCs. In this manner, and based on the proposed
observation model, two novel multidimensional striping noise compensation (SNC) al-
gorithms for PBHCs have been developed, the multidimensional neural network (NN)
and moment matching (MM) algorithms. The algorithms simultaneously exploit the
spatial and temporal information contained in a target scene as well as the spectral
information contained at adjacent spectral images. The ability of the algorithms to
estimate and compensate for the SN parameters, subject to the restrictions of the in-
put radiation, was demonstrated mathematically. An additional algorithm has been
included to relax the assumption of spectral redundancy, reducing the loss of spectral
resolution in the hypercube. The applicability of the multidimensional SNC algo-
rithms was successfully tested on real hyperspectral data acquired using a laboratory
prototype, achieving compensated images remarkably good compared to their unidi-
mensional versions. The experimental setup, based on both Photonfocus Hurricane
and Xeva Xenics hyperspectral cameras, has been implemented to acquire data in the
range of 400-1000 [nm] and 900-1700 [nm], respectively. It is worth mentioning that
both cameras present distinctive noise patterns in terms of spectral structure. Fur-
ther, a mobile platform was used to simulate and synchronize the scanning procedure
of the cameras and a uniform tungsten lamp is installed to ensure an equal spectral
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radiance between the different bands for calibration purposes. In addition, raw data
recollected from the Earth-observing CHRIS/PROBA CCD sensor was tested.
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Resumen

En esta tesis, se propone un novedoso modelo de degradación af́ın de imágenes para
cámaras hiperespectrales de barrido (PBHCs), siguiendo un enfoque optoelectrónico
y generando una representación matemática precisa del proceso de adquisición hipere-
spectral. El modelo de degradación de imagen es lineal y los parámetros asociados
al ruido de franjas (SN) son asumidos espacialmente correlacionados, espectralmente
independientes y desvinculados de la respuesta espectral de la cámara. La aplicabil-
idad de estos supuestos se verificó mediante una caracterización experimental de las
cámaras hiperespectrales a nuestra disposición. Además, se asume que la información
espacial, espectral, y temporal son altamente redundante debido a la alta resolución
espectral y al rápido barrido temporal de las PBHCs modernas. De esta manera, y
con base en el modelo de observación propuesto, se han desarrollado dos nuevos algo-
ritmos multidimensionales de compensación de ruido de franjas (SNC) para PBHCs,
los algoritmos multidimensionales de redes neuronales (NN) y de ajuste de momentos
(MM). Los algoritmos explotan simultáneamente la información espacial y temporal
contenida en una escena objetivo, aśı como la información espectral contenida en las
imágenes espectrales adyacentes. La habilidad de los algoritmos de estimar y com-
pensar los parámetros de SN, sujetos a las restricciones de la radiación de entrada, fue
demostrada matemáticamente. Un algoritmo adicional ha sido incluido para relajar
el supuesto de redundancia espectral, reduciendo la perdida de resolución espectral en
el hipercubo. La aplicabilidad de los algoritmos SNC multidimensionales fue probada
con éxito en datos hiperespectrales reales adquiridos usando un prototipo de labora-
torio, logrando comparativamente mejores imágenes compensadas que sus versiones
unidimensionales. Se ha implementado una configuración experimental, basada en
las cámaras hiperespectrales Photonfocus Hurricane y Xeva Xenics, para adquirir
datos en el rango de 400-1000 [nm] y 900-1700 [nm], respectivamente. Vale la pena
mencionar que ambas cámaras presentan patrones distintivos de ruido en términos
de estructura espectral. Además, se utilizó una plataforma móvil para simular y sin-
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cronizar el procedimiento de barrido de las cámaras y, para fines de calibración, una
lámpara de tungsteno uniforme fue instalada para asegurar una radiancia espectral
igual entre las diferentes bandas. Además, para probar los algoritmos, se utilizaron
los datos crudos recolectados desde el sensor CCD Earth-observing CHRIS/PROBA.
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Chapter 1
Introduction

In this chapter, a general overview of hyperspectral imaging systems is presented, from

the optoelectronic acquisition mechanism to the signal modeling and the estimation

schemes for the parameters model. Next, a general vision of the hyperspectral system,

knowledge that becomes necessary for finding comprehensive solutions for problems

where the available information is restricted, is obtained. We define our hypothesis

and the objectives required to prove it, and finally, the organization of this thesis is

depicted.

1.1 Hyperspectral Imaging: An Overview

A push-broom hyperspectral camera (PBHC) is an imaging system which collects,

for each spatial location being imaged, a set of hundreds of high spectral resolution

images that jointly form the spectrum of a target scene. This set of hyperspectral

images is termed as “the hypercube” [1]. PBHCs have become popular in all sorts of

scientific and industrial applications due to the high spectral resolution of the images

in the hypercube. Examples of such applications are remote sensing [1], food science

and engineering [2], and chemical imaging [3].

A PBHC can be described, in brief, as an optoelectronic system composed of four

sub-systems: the optics, the spectrograph, the sensor, and the readout electronics [1].

The front-end sub-system is the optics, which is formed by the lens, whose purpose

is to focus the incoming radiance onto the next sub-system: the spectrograph. The

spectrograph is, typically, a slit-based diffraction grating that limits the area of ob-
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Chapter 1. Introduction 2

servation to a single line while simultaneously forming a spectrum of the line being

imaged. The third sub-system is the sensor, which is typically a two-dimensional

focal plane array (FPA) that collects the spatio-spectral information of the line image

by converting the photon energy into an electric charge. For PBHCs, unlike broad-

band imagers, the spatial information is mapped onto one FPA dimension, while the

spectral information is mapped onto the FPA’s second dimension. Therefore, a target

scene must be scanned one line at a time by moving the camera along a trajectory

orthogonal to the dimension used to encode the spectral information. Finally, the

readout electronics is the sub-system retrieving sensor’s electric charge, which is con-

verted into a voltage signal that is amplified, and ultimately, converted to digital

counts at each pixel.

As any practical device, a PBHC is affected by different noise sources, which may

arise at every part of the system. For instance, at the optics sub-system, blurring oc-

curs due to lens imperfections or lack of focusing [4]. At the spectrograph, variations

in the slit’s width introduce non-uniformity (NU) in the number of photons collected

per spectral band [5]. At the sensor sub-system, manufacturing imperfections intro-

duce further variations in the number of photons to be collected by the FPA [5, 6].

For instance, inhomogeneous pixel responsivities produce a different photon-electron

conversions per pixel [7] and photo-detector’s dark current introduces an offset noise

per pixel. Finally, at the readout electronics, typical readout architectures, such as

passive-pixel sensor (PPS) or active-pixel sensor (APS), introduce both temporal and

spatially patterned noises [8, 9].

The noise observed in the images rendered by PBHCs can be simply categorized,

based on the noise randomness, into spatially unstructured and spatially structured

noise. The spatially unstructured noise appears as a “random” noise superimposed

over every monochromatic hyperspectral image, that is, no recognizable pattern is

observed on top of the hyperspectral images. Examples of spatially unstructured noise

are the shot noise, the dark-current noise, the electronic noise, as well as the speckle

noise [4]. Conversely, the spatially structured noise is a type of noise exhibiting a

well-defined spatial pattern laid over the hyperspectral images. Examples of spatially

structured noise are the NU noise [10] and the striping noise (SN) [5, 6].

The SN is defined as either a periodic or an aperiodic yet partially deterministic

line pattern appearing along the direction of scanning in hyperspectral images ren-
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dered by PBHCs [6]. The SN, also termed as the vertical SN [5, 10], is an artifact

common to push-broom scanners that severely affects the quality of the images in the

hypercube. The SN is generated by one or several NUs affecting the spectrograph,

the sensor, and the readout electronics sub-systems. The SN in PBHCs is mathemat-

ically represented by a set of parameters that are included in an image degradation

model. A striping noise compensation (SNC) algorithm is the mathematical proce-

dure employed to estimate the noise parameters and compensate the raw images in

the hypercube.

SNC of multispectral and hyperspectral images has been conducted by means of

tailored image processing algorithms. For instance, Gadallah and Csillag, [11], as

well as Rakwatin et al., [12], proposed SNC algorithms for multispectral push-broom

cameras using statistical estimation theory. Chang et al. proposed a moment match-

ing (MM) technique in conjunction with wavelet-based multiresolution analysis to

compensate for the SN [13]. In addition, standard low-pass and Wavelet-transform–

based filters were used to compensate for the spatial frequency components of the

SN at each spectral band [14, 15]. Chen et al. implemented a method, based on the

discrete Wavelet transform, for removing oblique SN in multispectral images. The

method maps every multispectral image onto the spatial frequency domain where

the noise is filtered out [16]. Following the same ideas, Münch et al. developed a

Wavelet-Fourier spatial filter that considers a reduced number of Wavelet decompo-

sition steps and is robust to changes in the noise pattern [17]. Remarkably, Leathers

et al. observed that the NU noise in broadband infrared cameras is akin to the SN,

and applied scene-based non-uniformity correction (NUC) algorithms to compensate

for the SN in PBHCs [10]. More recently, variational methods have been considered

as a viable solution for SNC under the assumption that the noise is unidirectional.

Shen et al. proposed a maximum-a-posteriori SNC algorithm based on a Huber-

Markov regularization model [18]. Also, Bouali and Ladjal proposed a SNC method

that minimized the signal estimation error subject to a total-variation regularizing

constraint.

It is worth noting that the aforementioned algorithms compensate for the SN using

the information contained at a single spectral band; consequently, they disregard the

large amount of the spectral information contained in the hypercubes. To the best of

our knowledge, only in [6], [19], and [20] the SN was compensated exploiting the high
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degree of correlation exhibited by neighboring bands in hyperspectral imagery. Acito

et al. proposed in [6] a subspace-based SNC algorithm that imposed no constraints on

the spatial statistical distribution of the scenes. They also assumed that the SN was

not the dominant noise term. The algorithm used both the spatial and the spectral

information in the hypercube to compute projection matrices. These matrices and

the raw data were used to estimate the true scene and the SN components. With

these estimates at hand, a polynomial-based estimator was used to determine the SN

and then to compensate the spectral raw images. Sun et al. proposed an automatic

SNC method based on spectral-domain MM estimators [19]. The method was used

to compensate for the striping artifacts in the Earth-Observing-1 Hyperion imaging

spectrometer. Meza et al. relied on the strong signal correlation at adjacent bands of

PBHCs to propose a method for calculating a multidimensional (spatial and spectral)

target image. This target image was, in turn, used to estimate in a recursive manner

the noise parameters and ultimately to compensate for the SN [20].

Despite the fact that the use of additional spectral information is helpful during

the SNC process, it carries a disadvantage in terms of how the spectral resolution

is affected. In this regard, Chen et al. introduced a spatial-spectral domain mixing

prior in a maximum a posteriori framework to compensate for Gaussian noise in

hyperspectral imaging [21], minimizing the modifications in the spectral signature.

However, the proposed prior is defined in terms of the first-order derivatives, limiting

the spectral information only to adjacent bands. Tomasi and Manduchi in [22] propose

a spatial edge-preserving bilateral filter, stating that for a pixel to influence another

pixel, it should not only occupy a nearby spatial location but also have a similar

intensity value. Peng et al. extended this concept into the spectral domain in [23],

measuring the intensity differences in each spectral band to generate one spectral filter

to be applied in each band. However, this approach is useful only when images are

to be merged, like multispectral RGB images, not when the objective is to maintain

the spectral resolution during a SNC process.

In this thesis, we present an observation model for PBHC in a comprehensive

manner, understanding the optoelectronic nature of each parameter. The novelty of

the model arises from: (i) assuming that the SN parameters are spatially uncorrelated

and spectrally independent; (ii) decoupling the multiplicative SN parameter from the

spectral response of the camera; and (iii) the capability of the model for abstracting
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practical readout architectures such as APS and PPS, which are known to generate

different noise patterns [8].

Consequently, two image-processing–based SNC algorithms have been developed

so that they can effectively use the redundant information supplied by high spectral

resolution PBHCs. The novel algorithms are termed as multidimensional due to they

exploit, simultaneously, the spatial information contained in an image and the spectral

information contained in adjacent spectral images. The algorithms extended here are

the recursive least mean square (LMS), neural network (NN) approach by Meza et

al. [20] and the classical MM algorithm by Gadallah and Csillag [11]. Further, a third

multidimensional SNC algorithm based on bilateral filters is proposed to compensate

for the reduction in spectral resolution caused by an overuse of the spectral data. The

experimental assessment of the proposed multidimensional SNC algorithms has been

conducted using real raw hyperspectral data collected by means of a visible (VIS)

hyperspectral camera in the range of 400 to 1000 [nm] at a resolution of 1.04 [nm],

and a near infrared (NIR) hyperspectral camera in the range of 900 to 1700 [nm] at

a resolution of 3.06 [nm]. Hypercubes from the aforementioned PBHCs exhibit two

different noise patterns, which are attributed to APS and PPS readout architectures.

After conducting a theoretical analysis of the proposed algorithms, it was concluded

that the spectral redundant information can be effectively used only when the SN

parameters are spectrally uncorrelated. If this condition is not met, the spectral

information does not increase the performance of the SNC algorithms.

1.2 Hypothesis

It is possible to model the sensor response of a hyperspectral system in a pixel-based

manner considering the time, space, and spectral parameters.

1.3 Objectives

i To obtain a pixel-based model that represents the response of a hyperspectral

system:

Y = f(X,
−→
φ ,
−→
θ ),
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where
−→
φ are the parameters of the model and

−→
θ its restrictions.

ii To study the spectral information, analyzing the scene characteristics and any

possible drift presented in the parameters.

iii To analyze the noise present in the camera, its structure, correlation and spec-

tral dependence.

iv To integrate redundant spatial and spectral information to improve SNC algo-

rithms.

v To develop a figure of merit to evaluate the performance of the hyperspectral

acquisition model.

vi To define a neural model subject to temporal, spatial and spectral redundancy.

1.3.1 Extended Objectives

i To develop a destriping algorithm that benefits from all the information present

in the data cube.

ii To design an experimental setup to acquire hyperspectral images.

1.4 Thesis Organization

This thesis deals with the study of the physical and the optoelectronic properties

of hyperspectral imaging systems. In Chapter 2 a comprehensive model to fit the

requirements in terms of the trustworthy system response and signal restoration is

proposed. Chapter 3 describes the laboratory setups used to acquire hyperspectral

data, and an experimental assessment of the model parameters is included. Next,

in Chapters 4 and 5 two SNC algorithms that incorporate prior knowledge on the

hyperspectral acquisition process are mathematically extended. We tested the al-

gorithms with experimental data to evaluate their performance. Also, we proposed

a third SNC algorithm to tackle the spectral resolution problem produced by the

overuse of spectral information. Finally, Chapter 6 outlines the conclusions of this

thesis and the future steps required to achieve a better performance on the proposed

SNC algorithms.



Chapter 2
The Hyperspectral Acquisition

Process

The main requirements in modern hyperspectral imaging applications are the reliabil-

ity and accuracy of the acquired spatio-spectral information. In this regard, obtaining

a high quality output depends on the calibration of several system components, such

as the spectrograph and the imaging sensor array. In this chapter, we analyze the

signal pathway in a hyperspectral imaging system and divide the basic structure of

the hyperspectral camera into four sub-systems regarding the task performed by each

one. Further, we discuss how each sub-system affects the signal during the photon-to-

electron conversion, and identify the undesired noise sources. With this knowledge,

we provide a comprehensive observation model that meets the requirements for de-

veloping effective noise compensation schemes.

2.1 The Signal Pathway

Before discussing the stages concerning the signal transduction process, we need to

describe the required mechanism for collecting irradiance from a target scene. Such

information is useful in identifying how the spatial and temporal dimensions are

recorded within the acquired data, which in turn is essential for the mathematical

modelling. In general, hyperspectral cameras can be classified into two types depend-

ing on how the acquisition of the scene is performed: i)whisk-broom and ii)push-

broom cameras [24]. On one hand, the whisk-broom hyperspectral camera (WBHC)

7
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carries out scanning by means of a set of mirrors, which rotate and sweep in a per-

pendicular direction of the camera movement (across track scanning). Nevertheless,

due to the movement associated with the mirrors, the spatial distortion on the ren-

dered image must to be corrected. Further, WBHCs has low spatial signal-to-noise

ratio (SNR) due to limited integration time [25]. On the other hand, a PBHC has no

moving parts, and the scanning procedure is performed in the direction of the camera

movement (along track scanning) [26]. This type of camera offers higher integration

time, hence, collecting more light and achieving larger SNR value than the WBHC.

In Figure 2.1, both types of scanning technology are illustrated.

(a) (b)

Figure 2.1: Illustration the scanning mechanism of a: a)whisk-broom hyperspectral
camera and a b)push-broom hyperspectral camera works.

In this thesis we focus on PBHCs. The basic elements of PBHCs can be grouped

into four sub-systems: i)the focusing optics; ii)the dispersive spectrometer; iii)the

image sensor array; and iv)the readout electronics. A schematic diagram of the basic

elements of a hyperspectral imager is presented in Fig. 2.2.

The front-end sub-system is the optics. Some of the problems associated with

the use of a high number of lenses are reflections off lens edges, residual aberrations,

including astigmatism at outer wavelengths, degraded diffracted wave-front, and a

limited wavelength range that can be limited by the level of chromatic aberration

correction over the operating spectral range [27]. In particular, the first set of lenses

collects and focuses the incoming light onto an entrance slit that limits the area of

observation to a single line, acting as a field stop view. This slit is essential to the

spectrometer’s performance and determines the photon flux that enters the camera.
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Figure 2.2: Schematic diagram of the basic elements for PBHCs.

Also, slit’s purpose is to control the spectral resolution of the PBHC, that is its ability

to separate close wavelengths [28]. This will be addressed again when we consider the

relationship between the entrance slit and the exit slit located in the third sub-system.

After the entrance slit, a collimating optic is used to bring parallel rays to the

next sub-system: the dispersive spectrometer. The dispersive element is typically a

diffraction grating (although prisms may also be used) dispersing the light into its

color spectrum. Both the grating and the prism induce a wavelength-dependent shift

in the position of the image. In simple words, the output spectrum leaves the grat-

ing at slightly different angles, with the angles dependent upon the wavelength [29].

The further away from the grating, the distance between wavelengths increases in the

dispersed radiation. At this stage, the alignment is essential since any miss calibra-

tion can produce a mixed reading between the spatial and spectral data. Then, the

dispersed radiation is focused (by a second-stage of focusing optic) on the third sub-

system: the sensor. This sub-system is typically a two-dimensional FPA composed

of P × Q detectors that collect the spatio-spectral information of the line image by

converting the photon energy into an electric charge [30]. Here, any manufacturing

imperfection on the pixel active area may introduce variations in the number of pho-

tons to be collected by each detector [5,6], which becomes a significant problem when

facing P × Q different responses. Also, inhomogeneous pixel responsivities produce

different photon-electron conversions per pixel and photo-detector’s dark current in-

troduces an offset noise per pixel [7]. Furthermore, unlike broadband imagers, in

a PBHC the spatial information is mapped onto one dimension of the FPA while
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the spectral information is mapped onto the second dimension. The dispersed light

spectrum impinging the FPA is mapped in Q′ spectral bands, where each band is

centered at the wavelength λj with j = 1, . . . , Q′ ≤ Q. Similar to the concept of a

monochromator, each detector row is considered as an exit slit, and their width is

equal to the pixel size [31]. Hence, the instrument spectral bandpass is defined ei-

ther by the entrance slit width or the pixel size in the FPA (whichever is larger) and

not by the number of rows along the spectral axis of the FPA. In other words, the

bandpass is set by the user, and the spectral resolution is restricted by the functional

limits of the instrument. Further, the bandpass is determined when the full width at

half maximum (FWHM) of a monochromatic emission line is not reduced, even when

the slit width continues to be narrowed (see Fig. 2.3). If the spectral bandpass is

greater than the instrument resolution, the interference between neighbouring bands

increases, a phenomenon better known as spectral crosstalk.

Figure 2.3: Gaussian spectral intensity distribution of wavelengths arriving to the
pixel. The spectral bandpass is defined by the red boundaries and the image slit
width by the black boundaries.

Ideally, the slit width should be matched to the pixel size of the FPA for optimal

spectral performance. If the slit width is too narrow, then the light intensity received

by the detector will be too small, and the SNR will decay [32]. Conversely, if the

slit width is too large, two problems emerge: i)the spectral discrimination between

spectral lines is reduced, increasing the possibility of spectral crosstalk; and ii)the

SNR will be good to a point where it decreases due to the increment in continuum

background emission [29]. In practical terms, an unofficial design rule recommends
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matching the slit width with three pixels to avoid reducing the photon flux. It is

worth mentioning that any uncontrolled variation in the slit’s width introduces NU

in the number of photons collected at any spectral band [5].

Finally, the readout electronics is the sub-system retrieving sensor’s electric charge,

converting it into a voltage signal. The signal is amplified, and ultimately, converted

to digital counts at each pixel [33]. Furthermore, the amplification scheme applied on

each pixel is selected depending on the application, the characteristics of the target

scene and the costs involved in its construction. Kodak et al. presented in [34] the

most popular designs in analog-digital conversion architectures, the PPS and the APS

readout schemes.

i PPS sensors:

The PPS readout architecture is analogous to a simple switch in the pixel to

readout the photo-diode integrated charge. In a two-dimensional structure, after

addressing the pixel by opening the row-select transistor, the pixel is reset along

the column bus and through the row-select transistor. Further, the amplification

stage is performed at the end of each column. The schematic of the PPS scheme

is shown in Fig. 2.4 where it can be noted that PPS contains a photo-diode and

a transistor, known as thin film transistor (TFT). The TFT does the reset and

row selection of the pixel information.

Figure 2.4: PPS structure

Since within each pixel, there is no other purpose than photon collection and

conversion, the active area for photon collection is almost the entire pixel area.
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Hence, this architecture achieves a high fill factor value (near 100%), which

leads to a high quantum efficiency. However, the PPS scheme suffers from slow

readout speed and small SNR.

ii APS sensors:

In the APS readout architecture, part of the readout electronics is designed

next to the photo-detector junction within the pixel itself; hence, every pixel

gets its own amplifier. This provides a preamplification of the signal and low

output impedance with advantages such as i)problems of charging large parasitic

capacitance of row and column buses are limited (noise reduction); ii)the time

required for the readout of each pixel is shorter; iii)pixels or clusters of pixels

can be separately addressed (windowing); iv)power optimization. The basic

APS architecture is shown in Fig. 2.5.

Figure 2.5: APS structure

Among the drawbacks of the APS architecture are: i)the active area for photons

collection is only a fraction of the overall pixel area when compared with the

PPS architecture; ii)the gain can be slightly different among different pixels due

to the preamplification stage, which determines a non-uniform response between

detectors at the FPA output.

Regardless of the readout scheme, the signal preamplification (be it inside or

outside the single pixel) is almost always a conversion from charge to voltage. The

adjustment of the signal to a digital level requires several active and passive electronic

components per pixel. Ideally, these components must have the same value per pixel,
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but in reality there are always slight variations. These variations introduce spatially

structured noise into the signal where the pattern depends on the readout scheme [35].

Due to the column-by-column amplification used in the PPS architecture, a stripe-

like pattern affect the FPA when the signal is readout. On the other hand, the

pixel-by-pixel preamplification carried out in the APS architecture produce a grid-

like pattern. Figure 2.6 illustrates the noise pattern observed in a two-dimensional

array as a function of the analog-digital conversion scheme implemented.

(a) (b)

Figure 2.6: Structured noise pattern presented in an FPA using a)PPS and b)APS
readout architecture.

After this stage, each recorded frame is stored in a hyperspectral data cube, better

known as a hypercube. In Fig. 2.7, the three dimensions recorded in the hypercube

are displayed.

If the hypercube is affected by noise, each spectral image will display a striping

pattern, independent of the noise pattern observed in the FPA. This is due to the

assembly process of the spectral image, which requires fixing a spectral band and

then appending each recorded line. Since measurements of the spectral band are

performed by the same row of the FPA, the noise pattern affecting the spectral band

is reflected in the final spectral image. This is explained from a mathematical point

of view in the next section, where we present a model for a PBHC.



Chapter 2. The Hyperspectral Acquisition Process 14

Figure 2.7: Basic hypercube structure.

2.2 Observation Model for a Push-broom Hyper-

spectral Camera

Based on the characteristics of a PBHC exposed in the previous section, let us consider

a PBHC equipped with a FPA composed of P × Q photo-detectors. Suppose that,

at a given sample time, only one spatial line from a given target scene is mapped

by the camera onto a P -dimensional vector. Suppose also that, for each element in

such vector, the spectrograph generates a Q′-dimensional vector with the spectrum

of each spatial sample, where Q′ ≤ Q. Furthermore, suppose that the target scene is

completely imaged in the spatial domain by acquiring S lines at consecutive sample

times. For the sake of notation, from now on a spatial position on the FPA shall be

denoted using either ij or (i, j), and a spatial position on the target scene shall be

denoted as ik.

In this thesis, the digital output of the PBHC, Y (i, λj, k), which corresponds to

the observed input irradiance at ikth spatial location of the target scene and at the

λj spectral band (or wavelength), is modeled as:

Y (i, λj, k) = r(λj)a(i, j)X(i, λj, k) + b(i, j) + V (i, j, k), (2.1)

where i = 1, . . . , P , j = 1, . . . , Q, k = 1, . . . , S, X(i, λj, k) is the true input irradiance

at the ikth spatial location of the target scene and at the λj spectral band, V (i, j, k)

is an additive spatial white noise associated with the readout electronics of the ijth

photo-detector, r(λj) is the overall spectral response, and a(i, j) and b(i, j) are param-
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eters representing the SN at the ikth pixel of the hyperspectral image sampled at λj

wavelength. The terms a(i, j) and b(i, j) represent, respectively, all the multiplicative

(gain) and additive (offset) noise sources corrupting the output of a PBHC.

For the proposed observation model, in Eq. (2.1), the following set of assumptions

has been made. First, the input irradiance of the target scenes is assumed to be a

continuous, fairly smooth function of the wavelength. Second, the overall spectral

response of the camera is assumed to be a known-parameter, which is either supplied

by the camera manufacturer or can be experimentally characterized. Third, we impose

the practical assumption that the white noise V (i, j, k) is negligible compared to

the offset b(i, j). Fourth, the SN parameters a(i, j) and b(i, j) are assumed to be

spectrally independent yet dependent upon the spatial location of a photo-detector

in the FPA. The former assumption is justified by the fact that the main SN sources

are wavelength independent [36] while the latter assumption is commonly made in the

literature. It must be commented that, in some PBHCs, the SN pattern appears to be

inhomogeneous over the wavelengths; however, such inhomogeneity is not generated

by any spectral-dependent effect but mainly by the readout electronics as, for instance,

in the case of APS architectures [8].

The observation model in Eq. (2.1) differs in various aspects when compared to

other first-order models used in the literature: i)the first-order model traditionally

used is based on a single-image processing approach where the spectral dimension is

disregarded (cf. Eq. (1) in [37], Eq. (2) in [38], Eq.(1) in [39]); ii)other first-order

models do not decouple the spectral response from the multiplicative term associated

with the striping noise (cf. Eq. (5) in [36], Eq. (1) in [40]); iii)another class of models

considers a signal-dependent and an additive striping noise parameter (cf. Eq. (1)

in [41]); iv)yet another model incorporates additional PBHCs’ sub-systems, such as

the blurring effect produced by the optical sub-system (cf. Eq. (3) in [42]).

The novelty of the observation model can be summarized as: (i) regarding the

SN parameters as spatially dependent yet spectrally independent, and (ii) including

the overall spectral response of the FPA. Note that this new representation for

the observation model allows us to think of r(λj) as a striping-noise–free parameter

that models ideally all the multiplicative effects in the spectral response, while the

term a(i, j) takes into account all the multiplicative SN sources. Note also that the

notation emphasizes the spatial and/or spectral dependence of each term by clearly



Chapter 2. The Hyperspectral Acquisition Process 16

distinguishing between a spectral band, λj, and its column number in the FPA, j.

It is worth mentioning that the SN can be observed in a mathematical fashion. To

observe this effect, first the variable j is dropped from the analysis by fixing a spectral

band. Second, a spatially and temporally flat input, i.e., X(i, k) = x0 for all i and

k is assumed. With this, the image assembled by the PBHC at a fixed band is the

collection of pixel values {Y (i, k) : Y (i, k) = a(i)x0 + b(i)}, which clearly represents

a flat image corrupted by horizontal or vertical stripes. The orientation depends on

the scanning direction.

2.3 Summary

We have detailed the signal pathway through a PBHC, describing how the signal

is physically modified by each component and how it is affected by different noises

sources. In this case, we can say that the most critical stages of the process are the

dispersive spectrometer and the image sensor array, decomposing the input radiation

and performing the photon-electron conversion, respectively. Furthermore, noises af-

fecting signal were analysed in terms of their sources and pattern structures, which

can be described as stripe-like or grid-like noise patterns. Here, we emphasize that the

dominant source of structured noise is the readout electronics, where the electrical de-

sign scheme is a determinant characteristic of the pattern observed. We have derived

a first order model for a PBHC where each parameter is carefully defined in terms of

its properties and dependencies. In order to maintain the physical coherence of the

proposed model, we separate the multiplicative parameter into two terms, abstracting

all the effects that are wavelength-dependent from the effects that are positionally-

dependent. Also, we define the noise parameters to model structured patterns that

can affect the FPA, hence, such structures can be seen as a representation of the

electronic design.



Chapter 3
Analysis of the Model Parameters

In this chapter, a detailed model parameter analysis through experimental charac-

terization of PBHCs is performed. The conclusions obtained here validate the as-

sumptions suggested by the observation model presented in Chapter 2. Finally, the

required experimental setups are designed, based on calibration procedures using de-

vices such as spectrally uniform lamps, diffuse reflection surfaces, etc., elements that

are described in Appendix B.

3.1 Experimental Setup

In order to assess the theory expressed in Chapter 2, we analyze the PBHC spectral

response, bandpass and noise parameters employing the setups illustrated in Fig. 3.1.

These setups are composed of two different hyperspectral cameras. The first one

operates in the NIR spectral range, between 900-1700 [nm], with a nominal spectral

resolution of 3.64 [nm]. This camera is composed of a P = 320 and Q′ = 256 InGaAs

photo-diode array with a PPS readout architecture, which allows to obtain Q = 236

spectral bands. The second camera operates in the VIS spectral range, between 400-

1000 [nm], with a nominal spectral resolution of 2.73 [nm]. The FPA is composed

of a P = 1024 and Q′ = 1024 CMOS array with an APS readout architecture, with

Q = 574 readable spectral bands. Also, to render spectral images from the raw data,

the target is mounted on a linear-stage platform to simulate the along-track scanning

procedure of practical PBHCs, whose travel speed is synchronized with the camera

integration time.

17
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(a) (b)

Figure 3.1: a) Laboratory prototype to retrieve the system spectral response and to
analyse the noise patterns. b) Laboratory prototype to study the spectral crosstalk.

The calibration device employed in our setup is a quartz tungsten halogen (QTH)

lamp, which guarantees an uniform and continuous spectral illumination between 200-

2500 [nm] with a programmable input power between 200-1000 [W]. Further, we use a

Spectralon SRT-99-120 as a diffuse reflectance target that ensures a reflectance of 99%

between 250-2000 [nm] (see Fig. 3.1.a). Finally, we use two discrete spectral emission

lamps to characterize the spectral resolution of both cameras (see Fig. 3.1.b). It

should be noted that most emission lines of these calibration lamps have a line width

of less than 0.001 [nm], which is less than the resolution of the optical systems.

3.1.1 System Spectral Response

The response of the elements which in combination generate the system spectral re-

sponse of a PBHC are: i) the optics; ii) the dispersive spectrometer; iii) the spectral

responsivity of the detector material. Here, we measured the spectral response for

each camera by employing the QTH lamp, which provides a spectrally uniform illumi-

nation in the operational spectral range for both cameras (using the set-up described

in Fig. 3.1.a). The light impinges the SRT-99-120 surface, producing a diffuse reflec-

tion in the operating spectral range, obtaining a uniform illumination in spectrum

and space. Each hypercube is 500 frames long and then averaged over time and space

to compensate for random noise. Finally, we present the resulting response curve for

the VIS and NIR hyperspectral cameras in Fig. 3.2. It must be remarked that, for

the VIS camera, the abnormal fluctuations observed in Fig. 3.2.a are generated by
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the fluctuating photonic response of the CMOS FPA detector as described in Photon

Focus Inc. [43].
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Figure 3.2: System spectral response for the a) VIS and b) NIR hyperspectral cam-
eras.

Unlike the VIS camera, the spectral response curve obtained for the NIR hyper-

spectral camera can be considered smoother along its spectral response, however, it

is observed a more sudden decrease at lower and higher spectral bands. It must be

emphasized that the number of bands is less than the amount of column detectors

due to the responsivity of the semiconductor material. That is, the effective spec-

tral range is displayed on a smaller area than the FPA; hence, the column detectors

located at the edges of the FPA are disabled.

3.1.2 Nonuniformity Noise

In Section 2.2, the noise parameters are defined by the terms a(i, j) (gain) and b(i, j)

(offset). The calibration procedure conducted here consists in generating three refer-

ence points to determine the three parameters in Eq. (2.1). The first reference point

corresponds to a dark reference value for determining the offset level b(i, j). This ref-

erence point can be obtained by blocking the camera input. This is further justified

because the radiation emitted by the blocking object is not detectable in either VIS

or NIR spectral range. Figure 3.3 shows the offset acquired for both cameras.

Both experimental offsets were calculated from a hypercube of 500 frames long,

where each hypercube is averaged in time to reduce the temporal electronic noise

(V (i, j, k)). The stripe-like noise pattern observed in Fig. 3.3.b corresponds to what
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(a) (b)

Figure 3.3: Experimental offset level for the a) VIS and b) NIR hyperspectral camera.

is expected when dealing with PPS readout architecture. It should be remarked that

this type of pattern exhibits a high correlation in the spectral domain. Similarly, the

grid-like pattern in Fig. 3.3.a resembles the pattern observed in cameras with an APS

readout architecture.

Furthermore, the other two reference points correspond to two different light in-

tensities, which are reflected by the Spectralon target to obtain the gain a(i, j) and

the overall spectral response r(λj). Several works have stated that, in many opera-

tional conditions, the offset level overshadow the gain level [44–46]. In this regard,

by comparing the experimental values obtained for both parameters, we observe that

the variation for the offset are greater than the variation of the gain parameter. In

Fig. 3.4 the gain level acquired for both cameras is presented.

(a) (b)

Figure 3.4: Experimental gain level for the a) VIS and b) NIR hyperspectral camera.

It should be noted that the fluctuations observed at the edges of Fig. 3.4.a are

attributed to minor estimation errors in the spectral response.
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Moreover, in this thesis we have stated that the noise parameters do not change

over a period of time (drift). To support this assumption, a study is performed on

the noise parameters in terms of its temporal variation. Since the offset variation

are greater than the gain variation, we will analysis only the temporal characteristics

for the offset value, and we will determine if there is any significant variation over

time that may affect the noise compensation process. In Fig. 3.5, the response of 9

neighbouring pixels randomly selected is shown, where each point of the curve is the

temporal average of the selected pixels. Further, noise measurements were conducted

using both cameras, with a time frame between measurements of 1 hour. The exper-

imental conditions for each measurement were the same: i) room temperature of 21o

C; ii) the integration time for VIS and NIR cameras was fixed at 178 ms and 20.3

ms, respectively; and iii) each hypercube was 300 frames long. It is worth mentioning

that, unlike the VIS camera, the NIR camera has an integrated cooling system that

was set to 10 oC.

From Fig. 3.5, we note that detectors’s response for each camera follows a similar

trend in time. This trend can be attributed to internal thermal variations of each

camera, which emphasizes the harmful effect that uncontrolled variations in ambient

temperature could have on the detectors response. Regardless of this effect, it can

be seen (in both figures) that the response of each detector varies over time with a

temporal deviation of less than 1% of the dynamic range, for each camera. Hence,

the assumption that the parameters defining the noise are time-invariant, during the

a window of time, remains valid.

3.1.3 Spectral Dependence

The results obtained in Sections 3.1.1 and 3.1.2 allow us to conduct an analysis on the

spectral dependence for the SN parameters. From Section 2.2, noise sources modeled

by the gain a(i, j) and offset b(i, j) are not spectrally dependent; hence, it is expected

that these results will support our research.

Figure 3.6 presents both parameters, the estimated gain and offset SN parameters

averaged over the spatial dimension for each camera, i.e. ā(j) = P−1
∑P

i=1 a(i, j)

and b̄(j) = P−1
∑P

i=1 b(i, j). Roughly speaking, Fig. 3.6.a shows that both pa-

rameters have, on average, no spectral dependence for the VIS camera. These
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Figure 3.5: Temporal drift response of 9 neighbouring pixels for the a) VIS and b)
NIR hyperspectral cameras.

results support also that SN parameters are spatially dependent to the detector

position. The average gain parameter is ma =
∑Q

j=1 ā(j)/Q = 1.0 with a stan-

dard deviation of σa =
√∑Q

j=1(ā(j)−ma)2/(Q− 1) = 0.09, and the average off-

set parameter is mb =
∑Q

j=1 b̄(j)/Q = 411.8 with a standard deviation of σb =√∑Q
j=1(b̄(j)−mb)2/(Q− 1) = 71.65.

A deeper statistical analysis of the data shows also that the variance of the offset

parameter is fairly homoscedastic along the band number, while the variance of the

gain parameter shows heteroscedasticity at the lowest and the highest band numbers.

This behavior is attributed to the fact that, at the lowest and highest spectral bands,

the overall spectral response of the system is close to zero and the spatial variations

in the gain increase due to the lowest signal-to-noise ratio.

In Fig. 3.6.b, the NIR camera exhibits SN parameters with a marked spectral
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Figure 3.6: Spectral analysis of the gain and offset parameters for the a) VIS and
NIR hyperspectral cameras.

dependence. These results are in agreement with the design of a PPS readout ar-

chitecture. The average gain parameter is ma = 1.0 with a standard deviation of

approximately σa = 0. The low value of the gain standard deviation corroborates

that the gain parameter remains practically constant at the different spectral bands.

Similarly, the average offset parameter is mb = 1059.4 with a standard deviation of

σb = 7.66. It should be noted that the outliers observed in the offset are due to

saturated and dead pixels. Although the offset curve was obtained through a spatial

average, these values differ considerably from the rest, shifting the average value.
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3.1.4 Spectral Bandpass

The spectral bandpass and resolution indicate the limits of instrument’s ability to

separate adjacent spectral information, where the smallest possible bandpass is the

spectral resolution. Further, the spectral bandpass is directly related with the con-

tamination between neighboring bands (spectral crosstalk). That is, the spectral

bandpass represents the system response when excited by a monochromatic light

source, hence, hyperspectral systems with a large spectral bandpass are affected by

spectral crosstalk when acquiring radiance [47, 48]. However, this problem can be

avoided by combining the spectral data from a group of pixels into a single pixel

(pixel binning), limiting the spectral resolution but increasing the SNR.

The two hyperspectral cameras at our disposal are described by the manufacturer

with a low spectral bandpass and the crosstalk can be neglected. To corroborate this,

we intend to determine the spectral bandpass FWHM of both cameras by using the

following expression:

FWHM = AWD ·Wexap, (3.1)

where AWD is the average linear wavelength dispersion (in [nm/mm]) at a specific

wavelength and it is calculated as the ratio between the spectral range of the camera

versus the length of the pixels column; Wexap is the pixel size or the image width of

the entrance aperture (slit image), whichever is greater. According to the collected

information from the manufacturer company (see Appendix B), the width of the

image for the entrance aperture covers approximately three and one pixel for the VIS

and NIR camera, respectively. Such low values indicate that the spectral crosstalk is

not an issue in both cameras. To experimentally verify this statement, we used two

discrete spectral lamps connected to an optical fiber, Hg-1 (UV-VIS) and Ar-1 (NIR).

These types of lamps provide discrete illumination in a small area to theoretically

illuminate one spectral band on the FPA. Therefore, the acquired hypercube contains

details on how the incident radiation has spilled out in neighbouring bands on the

FPA. The results obtained using this type of lighting are presented in Fig. 3.7.

For each measurement, we selected the lines closest to the center wavelength of a

particular band. Also, we compensated both spectral lines in terms of their respective

offset levels and spectral gain. For the VIS camera, the spectral line in band 147 (546

[nm] line) is selected, which produces a spectral crosstalk equal to [0.30 0.41 0.29]
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Figure 3.7: Spectral response for the a)VIS and the b)NIR hyperspectral cameras
when using discrete illumination.

(normalize response for the bands 146 to 148). The rest of the neighbouring bands

has intensity values similar to the noise level.

For the NIR camera, we selected the spectral line in band 21 (965 [nm] line),

producing a spectral crosstalk equal to [0.20 0.54 0.26] (normalize response for the

bands 20 to 22). In this case, we can appreciate a center intensity value higher than

in neighbouring bands, which indicates a higher concentration of spectral information

in a single pixel (band).

Finally, we have that the theoretical FWHM is approximately equal to 3.1 [nm]

and 3.4 [nm] for the VIS and NIR camera, respectively. Both values are similar to

those presented in the datasheet of the cameras but, it must be stressed that the

spectral bandpass was calculated from average values.

3.2 Summary

The results obtained support the assumptions made in Chapter 2 related to the

proposed observation model. Specifically, the idea of decoupling the multiplicative

effect, generated by the conjunction of all the optoelectronic components, into spectral

and noise parameters. Further, the heterogeneous behaviour of the noise parameters

observed in Fig. 3.6 confirms that the intensity value read by a detector depends only

on their spatial location in the FPA.

Moreover, the assumption that the SN parameters are deterministic and remain

constant during a time window remains valid. Namely, Fig. 3.5 shows that the
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variations in the intensity value from 9 individual pixels, during a time frame of 7

hours, are less than 1%. Nevertheless, this value may increase if cameras are under

uncontrolled environmental conditions.

It is worth mentioning that the spectral crosstalk can be overlooked due to the

low value observed in both PBHC. Such problems are usually compensated through

hardware modifications as pixel binning or subsampling. Hence, we disregard this

effect due to the low influence in the spectral response of the cameras at our disposal.



Chapter 4
Multidimensional Striping Noise

Compensation

In this chapter, an extension over the spectral domain of two SNC algorithms is

presented. The objective is to take advantage of the high spectral resolution provided

by the hyperspectral imaging system, which entails a high spectral redundancy in the

acquired hypercube. Thus, the massive spectral information available is included on

the extended SNC process, increasing its effectiveness. Also, the dependency between

the spectral redundancy and the structure of noise patterns during the SNC process

is studied. Furthermore, we discuss the diminishing effects on the spectral resolution

when the proposed compensation schemes are applied and an alternative algorithm

to compensate for this problem is also proposed.

4.1 Spectral Redundancy and Multidimensional Strip-

ing Noise Compensation Algorithms

It is well-known that hyperspectral data cubes generated by high resolution PBHCs

contain highly redundant spatial and spectral data [49,50]. The spatial and spectral

redundancy are manifested in the large amount of spatial and spectral correlation

exhibited at adjacent spatial pixels and spectral bands. Most of the SNC algorithms

rely solely on the redundant spatial information contained in the hyperspectral images

and, consequently, process each hyperspectral images independently. Here, the spec-

27
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tral redundancy has also been exploited to develop two SNC algorithms that already

take advantage of the spatial redundancy; the modified algorithms take advantage of

both the spatial and spectral redundant information available in the hypercubes.

The first SNC algorithm modified in this thesis is the NN-based approach in [20],

which was inspired by the work of Scribner et al. [51]. The NN-based algorithm

uses a retina-like processing technique to exploit the spatial redundancy exhibited by

neighboring pixels in an image. More precisely, the retina-like technique considered

the pixel wise computation of a target value at the λj spectral band, X(i, λj, k), as

the spatial average X(i, λj, k) = 1/(2∆I + 1)
∑i+∆I

u=i−∆I
X̂(u, λj, k), where 2∆I + 1 is

the size of the spatial neighborhood.

The spectral redundancy concept can be used to extend the definition of such

target values to the following multidimensional definition:

X(i, λj, k) ,
1

(2∆I + 1)(2∆J + 1)

i+∆I∑
u=i−∆I

j+∆J∑
v=j−∆J

X̂(u, λv, k), (4.1)

where 2∆J + 1 is the number of adjacent spectral bands satisfying the spectral re-

dundancy.

The SN parameters can be recursively estimated solving for X(i, λj, k) in Eq. (2.1)

and considering the multidimensional target value calculation in Eq. (4.1). Thus, the

following expressions are obtained:

X̂(i, λj, k + 1) =
ĝ(i, j, k)

r(λj)
Y (i, λj, k) +

ô(i, j, k)

r(λj)
, (4.2)

ĝ(i, j, k + 1) = ĝ(i, j, k)− ηg(λj)


(
X(i, λj, k)− X̂(i, λj, k)

)
Y (i, λj, k)

r(λj)

 , (4.3)

ô(i, j, k + 1) = ô(i, j, k)− ηo(λj)

[
X(i, λj, k)− X̂(i, λj, k)

r(λj)

]
, (4.4)

where a(i, j) = 1/g(i, j), b(i, j) = −a(i, j)/o(i, j), ĝ(i, j, k) and ô(i, j, k) are, respec-

tively, estimates of g(i, j) and o(i, j) after k iterations, and ηg(λj) and ηo(λj) are

spectrally-dependent learning rates defined to speed up the convergence time of the

recursive estimation algorithm. These spectrally-dependent learning rates must be

adjusted according to the spectral information contained in the target scene.
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It should be noted that the extension in the spectral domain carries out two

major modifications on the Scribner algorithm: (i) Equation (4.1) corresponds to a

generalization of the unidimensional target computation presented in [51]; and (ii) the

spectrally-dependent learning rates are also a generalization of the original learning

rates defined for broadband imagers.

The second SNC algorithm modified in this thesis is the classical MM approach

proposed by Gadallah and Csillag in [11]. They claim that, if sensors differ only in the

gain and offset, these values can be estimated using the MM assumption: The mean

and standard deviation of sub-scenes are similar between each other. Further, due to

the lack of statistical information of the input irradiance, Gadallah and Csillag use a

random sensor as statistical reference. Following the rationale of the MM assumption,

it is claimed here that, along the scanning direction, the temporal first and second

order statistics of the irradiance of a spectral image, mX(i, λj) and σX(i, λj), remain

constant and can be estimated using the spectrally redundant information contained

at neighboring spectral bands. Further, it is supposed also that proper estimators for

such statistics are the sample mean and the sample standard deviation taken over a

subset of 24J + 1 bands centered at λj. More precisely:

mX(i, λj) ∼ mY (i, λj) =
1

24J + 1

j+4J∑
v=j−4J

mY (i, λv), (4.5)

σX(i, λj) ∼ σY (i, λj) =
1

24J + 1

j+4J∑
v=j−4J

σY (i, λv), (4.6)

where mY (i, λj) [correspondingly, σY (i, λj)] is the temporal mean (correspondingly,

the temporal standard deviation) of the digital output and 4J > 0.

After some algebraic manipulation of Eq. (2.1), the following noise parameter

estimates can be derived:

â(i, j) =
σY (i, λj)

r(λj)σY (i, λj)
, (4.7)

b̂(i, j) = mY (i, λj)− r(λj)â(i, j)mY (i, λj). (4.8)

Next, by plugging Eqs. (4.7) and (4.8) in Eq. (2.1) and solving for X(i, λj, k),
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the following estimator can be obtained:

X̂(i, λj, k) =
σY (i, λj)

σY (i, λj)

(
Y (i, λj, k)−mY (i, λj)

)
+mY (i, λj). (4.9)

Observing the ratio of similarity between the variances leads to the conclusion

that the lack of variability in the spectral domain diminishes the SNC effect of the

multidimensional algorithm because solely the temporal and spectral averages are

considered in the compensation.

4.2 Correlation in the Noise Parameters and its

Effect on the Spectral Redundancy

Traditional SNC algorithms use a single spectral image and rely on the spatial vari-

ability provided by the scene being imaged. Any effective multidimensional SNC

algorithm using the raw spatial and spectral data to filter out the SN must rely also

on the variability contained in the raw spectral data. Note that when the model (2.1)

is constrained by the spectral redundancy assumption, the spectral variability in the

raw data must be provided by the noise parameters. In other words, in a subset of

spectral bands fulfilling the spectral redundancy assumption, the spectral irradiance

can be considered approximately the same. Therefore, variability in the raw spectral

data can only be achieved when the SN parameters in Eq. (2.1) are uncorrelated.

The SN parameters in PBHCs can be regarded as uncorrelated when the readout

electronics is implemented using an APS architecture [8]. This claim is supported

by the fact that, for such architectures, every photodetector in the FPA has its own

signal amplifier. It is worth mentioning here that the noise parameters of PBHCs

employing PPS readout architectures can be regarded as correlated, because their

photodetectors share electronic signal amplifiers. Thus, the previous claims and their

effects on the proposed algorithms are formally supported. To this end, both, the

spectral redundancy assumption and the lack of correlation in the SN parameters have

been modeled, and their impact on the multidimensional SNC algorithms presented

in Section 4.1 is analyzed.

First, let us consider the NN-based SNC algorithm and note that the spectral
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redundancy assumption states that X(i, λj, k) ≈ X(i, λv, k) for j−4J ≤ v ≤ j+4J .

By plugging Eq. (2.1) and (4.1) in (4.2) and after some algebraic manipulation, the

following expression can be obtained:

X(i, λj, k) =
1

(24I + 1)

i+4I∑
u=i−4I

[
X(u, λj, k − 1)

j+4J∑
v=j−4J

ĝ(u, v, k − 1)a(u, v)

(24J + 1)
+

j+4J∑
v=j−4J

ĝ(u, v, k − 1)b(u, v)

r(λv)(24J + 1)
+

j+4J∑
v=j−4J

ô(u, v, k − 1)

r(λv)(24J + 1)

]
.

(4.10)

Equation (4.10) shows the spectral averaging effect that the multidimensional

SNC algorithm performs over the estimates ĝ(i, j, k) and ô(i, j, k), which ultimately

mitigates the impact of the SN on the compensated images. As a special case, let us

consider a situation where the noise parameters are highly correlated in a subset of

spectral bands. This situation is modeled setting a(u, v) = a(u) and b(u, v) = b(u),

and consequently, ĝ(u, v, k − 1) = ĝ(u, k − 1), ô(u, v, k − 1) = ô(u, k − 1). Therefore,

for this special case Eq. (4.10) simplifies to:

X(i, λj, k) =
1

(24I + 1)

i+4I∑
u=i−4I

[
X(u, λj, k − 1)ĝ(u, k − 1)a(u) + ĝ(u, k − 1)b(u)

j+4J∑
v=j−4J

1

r(λv)(24J + 1)
+ ô(u, k − 1)

j+4J∑
v=j−4J

1

r(λv)(24J + 1)

]
,

(4.11)

where one can easily observe that there is no spectral averaging over the noise pa-

rameters.

For the MM algorithm, recalling Eq. (4.5) and calculating the averaged spectral

information in a subset of bands 24J + 1 centered in λj, the following is obtained:

mY (i, λj) =
1

24J + 1

j+4J∑
v=j−4J

mY (i, λv)

=
1

24J + 1

j+4J∑
v=j−4J

r(λv)a(i, v)mX(i, λv) + b(i, v)



Chapter 4. Multidimensional Striping Noise Compensation 32

=
1

24J + 1

j+4J∑
v=j−4J

r(λv)a(i, v)mX(i, λv) +
1

24J + 1

j+4J∑
v=j−4J

b(i, v). (4.12)

We state that due to spectral redundancy, the statistics of the irradiance measured

by a particular band are approximately equal to the statistics of the neighboring

spectral bands. Hence, mX(i, λj) = mX(i, λv) for j −4J ≤ v ≤ j +4J , then

mY (i, λj) = mX(i, λj)
1

24J + 1

j+4J∑
v=j−4J

r(λv)a(i, v) +
1

24J + 1

j+4J∑
v=j−4J

b(i, v) (4.13)

= mX(i, λj)mra(i) +mb(i), (4.14)

where mra(i) and mb(i) represent the spectral average values of the multiplicative

and additive terms, respectively. Therefore, we obtain

mX(i, λj) =
mY (i, λj)−mb(i)

mra(i)
. (4.15)

By developing Eq. (4.6), we have for the variance:

σ2
Y (i, λj) =

1

24J + 1

j+4J∑
v=j−4J

σ2
Y (i, λj)

= σ2
X(i, λj)

1

24J + 1

j+4J∑
v=j−4J

[r(λv)a(i, v)]2 = σ2
X(i, λj)m[ra]2(i), (4.16)

where m[ra]2(i) is the average value of the square multiplicative terms. Finally, we

have:

σ2
X(i, λj) =

σ2
Y (i, λj)

m[ra]2(i)
. (4.17)

Finally, let us consider the special case where both the spectral irradiance and the

noise parameters are highly correlated in the spectral domain. We have a(i, j) = a(i)

and b(i, j) = b(i). Recalling Eq. (4.13) and Eq. (4.16) the following result is obtained

mY (i) = mX(i, λj)a(i)
1

24J + 1

j+4J∑
v=j−4J

r(λj) + b(i)
1

24J + 1

j+4J∑
v=j−4J

1 (4.18)

= mX(i, λj)a(i)mr + b(i) (4.19)
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σY (i, λj) = σX(i, λj)a
2(i, v)

1

24J + 1

j+4J∑
v=j−4J

r2(λv) (4.20)

= σ2
X(i, λj)a

2(i)mr2(i). (4.21)

It is clear that the parameters defining the striping noise have been mitigated

by using the spectral redundancy concept, hence, a single spectral approach can be

followed when dealing with a highly correlated noise pattern, but again, the knowledge

of the noise structure can be used otherwise.

4.3 Breaking the Spectral Redundancy Assump-

tion and its Effect on the Spectral Resolution

It was mentioned in this thesis that we take advantage of the high spectral resolu-

tion provided by a PBHC by assuming spectral redundancy over the hypercube for

later use in SNC algorithms. When selecting a spectral subset size that satisfies the

spectral redundancy assumption, the SNC process does not reduce the capacity to

distinguish spectral information between bands. Kumar et. al states that the combi-

nation of spectral bandpass and sampling interval determines the spectral resolution

of the sensor which, in turn, dictates the spectral discrimination [52]. Based on the

sampling theorem and a deconvolution process, Kumar et. al effectively extracts 17

non-overlapping bands from 64 bands. These bands exhibit spectral redundancy due

to oversampling and crosstalk, therefore, the ability to discriminate spectral infor-

mation is not affected by averaging redundant spectral data. On the contrary, when

the spectral subset size violates a redundancy assumption, a sub-sampling or filtering

process can lead to a reduction in spectral resolution over the hypercube.

In general, the loss in resolution is a well known adverse effect produced when

low-pass filters are applied in the spatial and/or spectral domain; however, many

efforts have been devoted to reduce this undesired effect in the spatial domain [53–

55] but only few works have tackled the loss in spectral resolution. Peng et al.

presented in [23] an extension of the bilateral filter (BF) algorithm introduced by

Tomasi and Manduchi [22]. Originally, for a pixel to influence another pixel, it should

occupy a nearby spatial location and have a similar intensity value. Hence, the
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BF takes a weighted sum of the pixels in a local neighborhood, where the weights

depend on both the spatial distance and the intensity differences (range). Tomasi and

Manduchi defined two functions to calculate such distances, the closeness function

(Fs) and similarity function (Fr) for the spatial and intensity domain, respectively.

This filtering scheme is defined as follow:

X(i, λj) =

i+4I∑
u=i−4I

j+4J∑
v=j−4J

X̂(u, v)Fs(u, v, i, λj)Fr(X̂(u, v), X̂(i, λj))

i+4I∑
u=i−4I

j+4J∑
v=j−4J

Fs(u, v, i, λj)Fr(X̂(u, v), X̂(i, λj))

. (4.22)

Peng et al. proposes to measure the intensity differences in each spectral band,

separately, for the design of one filter (Fr) applied in each band. This procedure is

useful when images are to be merged, as in multispectral RGB images, but not when

the objective is to maintain the spectral resolution during a SNC process. There-

fore, we redefine the bilateral algorithm in order to relax the spectral redundancy

assumption when using a large spectral subset of bands during the SNC.

Above all, we have to take certain considerations when redefining this filter over

the hyperspectral model. Therefore, Fs will be defined as a uniform spatio-spectral

filter equal to that implemented in Eq. (4.1), giving the same weight value to each

pixel located in the spatio-spectral neighborhood. In this regard, it makes no sense to

measure the similarity of the intensity values per band (as presented by Peng et al.),

since the closeness function now weighs pixels in a neighborhood defined in the spatial

and the spectral domain. Thus, the similarity function has to measure the intensities

in a central band with respect to its neighboring bands, that is, the spectral intensity

between the pixel in the i spatial location at λj spectral band and the rest of the

pixels in the spatio-spectral neighborhood. In Eq. (4.23), we define Fr as a Gaussian

spatio-spectral filter:

Fr(X̂(u, v), X̂(i, λj)) = e
−

(X̂(u,v)−X̂(i,λj))
2

2σ2r . (4.23)

The parameter σr defines the range of spectral intensity values that are considered

as “nearby” values. As σr increases, the filter will give the same weight value to each

pixel located in the neighborhood, reverting to the traditional BF scheme.
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With this new spatio-spectral BF at hand, we integrate this filtering scheme into

the NN algorithm presented in Section 4.1. In particular, we intend to enhance the

estimation of the multidimensional target value (X(i, λj, k)) proposed in Eq. (4.1),

eliminating any high spectral difference from the calculation. Then, the multidimen-

sional target value is calculated as follows

X(i, λj) =

i+4I∑
u=i−4I

j+4J∑
v=j−4J

X̂(u, v)e
−

(X̂(u,v)−X̂(i,λj))
2

2σ2r

i+4I∑
u=i−4I

j+4J∑
v=j−4J

e
−

(X̂(u,v)−X̂(i,λj))
2

2σ2r

. (4.24)

The rest of the estimation process conducted by the multidimentional NN algorithm

remains without modification.

4.4 Summary

The spectral redundant information captured from the target scene has been success-

fully integrated into the multidimensional SNC algorithms. Further, a mathematical

analysis is made on the noise spectral structure and its effect on noise compensation.

In this sense, Eqs. (4.10), (4.14) and (4.16) prove that the SN parameters are being

mitigated through the proposed multidimensional approach. On the other hand, Eqs.

(4.11), (4.19) and (4.21) shows that a high spectral correlation on the SN parameters

diminish the additional information provided by spectral bands. Nevertheless, this

only occurs due to the spectral redundancy previously assumed. If both, a high cor-

relation in the SN parameters and the spectral redundancy are satisfied in the scene,

the information that provides a set of neighboring spectral images will be equivalent

to that of a single spectral image.

Finally, by considering the spectral variations from the scene, the BF modification

has the potential to be an effective tool for relaxing the condition of spectral redun-

dancy in the acquired data. To study this modification, the next chapter include an

experimental section that compare the spectral signature resulting from the proposed

multidimensional algorithms.



Chapter 5
Experimental Results

In this chapter, the strength and applicability of the proposed multidimensional

SNC algorithms are tested using raw hyperspectral data. We have used the setup

described in Chapter 3 (see Fig. 3.1) and have acquired different target scenes

with the VIS and NIR hyperspectral cameras. For the VIS camera, two hyper-

cubes were collected from the covers of IEEE Signal Processing Magazine. Hy-

percube 1 contains images with a high variation of tones and colors in the VIS

spectral range, while Hypercube 2 contains images with abrupt changes in inten-

sity in order to test how the estimated SN parameters are affected by these rapid

changes in the spatial information. Also, the hypercubes CHRIS YU 120916 EA04 41

and CHRIS WY 060821 7299 41 acquired using the Earth-observing CHRIS/PROBA

CCD sensor were also used. Data in such hypercubes contain different landmarks cap-

tured from space. CHRIS YU 120916 EA04 41 corresponds to the Yasuni National

Park, Ecuador and CHRIS WY 060821 7299 41 corresponds to Redcliff, Canada.

Both scenes were selected because their SN patterns have a high contrast against

the background information. It must be mentioned that the multidimensional NN

SNC algorithm depends on the image-degradation model. Thus, in the experiments

conducted in this thesis two models were considered. The first model, labeled as

“Model 1,” follows the approach in [20] (cf. Eq. (2)) and disregards the overall spec-

tral response of the PBHC, that is, r(λj) = 1 for all wavelengths. The second model

is the one presented in (2.1) and was labeled as “Model 2.”. We have compensated

for both the gain and offset parameters, and the performance of the SNC algorithms

is evaluated using quality metrics. Moreover, a noise structure analysis is developed

36
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together with a study of the SNC effects on the spectral resolution when the spectral

redundancy assumption is violated.

5.1 Striping Noise Performance Metrics

In this section, the four metrics used to compare the SNC performance are presented.

The first metric is the root mean squared error (RMSE) between the reference image

Xref(λj) and the SN compensated image X̂(λj), at wavelength λj:

RMSE(λj) =
( 1

PS

P∑
i=1

S∑
k=1

(Xref(i, λj, k)− X̂(i, λj, k))2
) 1

2
, (5.1)

where Xref(λj) =
(
Xref(i, λj, l)

)
P×S and X̂(λj) =

(
X̂(i, λj, l)

)
P×S. The reference

image is obtained, whenever possible, by means of a laboratory calibration procedure

such as the two-point calibration method in [20]. Note that since the RMSE is highly

sensitive to bias estimation errors, SN compensated images have been rescaled to the

same contrast and brightness as the original corrupted image for valid comparisons.

The second metric is the noise reduction index (NR) and measures the effectiveness

of a SNC algorithm. The NR index calculates, at a given wavelength, the ratio

between the noise power of the raw and the SN compensated images [12]. The NR

index is mathematically defined as:

NR(λj) =

∑
u∈U PȲ (u, λj)∑
u∈U P ¯̂

X
(u, λj)

, (5.2)

where the PȲ (u, λj) and P ¯̂
X

(u, λj) are, respectively, the magnitude power spectrum,

at the frequency component u and wavelength λj, of the time-averaged cross-track

profile of the raw and the SN compensated images. More precisely, PY (u, λj) =

|DFT{Ȳ (i, λj)}| with Ȳ (i, λj) = S−1
∑S

k=1 Y (i, λj, k), P ¯̂
X

(u, λj) = |DFT{ ¯̂
X(i, λj)}|

with
¯̂
X(i, λj) = S−1

∑S
k=1 X̂(i, λj, k), and DFT{·} is the discrete Fourier transform.

In (5.2), the set U represents those frequencies where the SN components are con-

centrated [12]. A reduction in the SN power is obtained when the NR index is larger

than one.

The third metric used here is the improvement factor (IF) and quantifies the
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impact of the SNC algorithm on the radiometric quality of the image [56]. This index

is defined as:

IF (λj)=10 log10

(∑P
i=1(Ȳ (i, λj)− ¯̂

X(i, λj)⊗ f)2∑P
i=1(

¯̂
X(i, λj)− ¯̂

X(i, λj)⊗ f)2

)
, (5.3)

where f is a 5× 1 averaging low-pass filter and the symbol ⊗ represents the discrete

convolution. The quantity
¯̂
X(i, λj)⊗ f is termed in [56] as the noise free cross-track

profile, and represents an estimate of the actual signal. Thus, a higher IF value

indicates an improvement on the radiometric quality of the compensated image.

The last metric used in this paper is a modified version of the roughness index

in [57]. This index is used in NUC of infrared images due to its ability to quantify the

amount of grid-like noise in infrared images [57]. Unlike the original metric, the SN

roughness index, ρSN , quantifies the amount of SN in an image, at each wavelength,

and is defined as:

ρSN(λj) =
||h⊗ X̂(λj)||
||X̂(λj)||

, (5.4)

where h is a high-pass filter, || · || is the `1-norm, and the symbol ⊗ represents the

discrete 2D convolution. In (5.4), the filter h is designed to detect the intensity

variations in the cross-track direction and is defined as the vector h = [−1 1]. Con-

sequently, the SN roughness index measures the spatial frequency components of the

noise. From (5.4), it can be observed that ρSN is a non-negative real number, with

ρSN(λj) = 0 whenever X̂(λj) is flat; therefore, the closer ρSN to zero the better the

SNC.

5.2 Multidimensional Striping Noise Compensa-

tion Analysis

The initial conditions for the recursive NN SNC algorithm were set to ĝ(i, j, 0) = 1

and ô(i, j, 0) = 0 for all the pixels in the array. A total number of S = 800 recursions

were carried out for each pixel. In addition, to compute the multidimensional target

value a spatial neighborhood of 2∆I + 1 = 3 pixels and subsets of 2∆J + 1 =

{1, 15, 31, 61, 91, 151, 181} adjacent spectral bands were considered (see Eq. (4.1)).
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Also, the learning rates in (4.3) and (4.4) were regarded, for simplicity, as constants

and set to ηg(λj) = 5 · 10−10 and ηo(λj) = 5 · 10−2 for all wavelengths. These

values were obtained experimentally by minimizing the RMSE between calibrated

and compensated images.

Table 5.1: Hypercube 1: Performance metrics as a function of the number of adjacent
spectral bands, for a hyperspectral image at 686 [nm] when the multidimensional NN
algorithm was used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Model 1 15 31 61 91 151 181
RMSE 1 77.68 76.39 76.64 75.18 73.18 71.48 71.51

2 42.94 38.66 36.78 36.62 37.22 38.88 40.10
NR 1 2.10 2.16 2.14 2.15 2.19 2.30 2.35

2 5.88 6.84 6.92 6.96 6.96 6.91 6.88
IF 1 25.87 28.63 28.43 28.21 28.47 30.03 30.96

2 23.52 24.94 25.13 25.18 25.20 25.16 25.15
ρSN 1 0.0268 0.0266 0.0267 0.0267 0.0265 0.0259 0.0256

2 0.0176 0.0162 0.0162 0.0160 0.0161 0.0162 0.0162

Tables 5.1 and 5.2 list the performance results of the multidimensional NN SNC

algorithm as a function of the number of adjacent spectral bands. Results for all

metrics show an increase in their values as the number spectral bands does, which

represents an effective compensation on the SN parameters for a spectral image.

In terms of the RMSE, results show that Model 2 outperforms Model 1, even in

the unidimensional case (2∆J + 1 = 1). In particular, the lowest values achieved

by the RMSE was 36.62 (respectively, 23.04) when 61 (respectively, 181) adjacent

spectral bands of Hypercube 1 (respectively, Hypercube 2) were used to compensate

for the SN. Similar results for Model 2 were observed in terms of the NR metric

for both hypercubes. More precisely, the NR factor was equal to 6.96 (respectively,

10.22) when 61 (respectively, 181) adjacent spectral bands were used during the SNC

process of Hypercube 1 (respectively, Hypercube 2). In terms of the IF metric, Model

2 outperforms Model 1 only in the case of the Hypercube 2 data set, also when 181

spectral bands are used during the SNC process. However, for Hypercube 1, Model 1

achieves the best results but both models do exhibit an overall improvement on the

compensated images. This can be explained by analyzing the IF mechanics, which

measures the radiometric accuracy on the compensated images. In this sense, the
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use of highly variable spectral data during the SNC modified the overall radiometric

response for the spectral image.

Table 5.2: Hypercube 2: Performance metrics as a function of the number of adjacent
spectral bands, for a hyperspectral image at 728 [nm] when the multidimensional NN
algorithm was used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Model 1 15 31 61 91 151 181
RMSE 1 88.31 89.66 78.99 68.26 64.60 62.25 61.44

2 32.49 32.09 31.06 28.15 26.56 23.99 23.04
NR 1 3.09 2.92 3.00 3.19 3.28 3.31 3.31

2 11.33 11.56 11.19 10.76 10.45 10.21 10.22
IF 1 24.30 24.88 25.68 27.23 28.01 28.75 28.92

2 34.37 34.79 34.85 35.17 35.50 36.05 36.28
ρSN 1 0.0225 0.0229 0.0226 0.0220 0.0216 0.0214 0.0214

2 0.0121 0.0119 0.0121 0.0123 0.0124 0.0125 0.0125

For the SN roughness metric, all the values are close to zero meaning that both

hypercubes were effectively compensated for the SN. Also, it can be observed that

the ρSN index remains almost constant when more than one spectral band is used

to compensate for the SN. From a conceptual point of view, the ρSN measures

the amount of high frequency components that are presents in the image and, by

obtaining similar value after the SNC when increasing the spectral bands subset,

it is safe to assume that the algorithm does not reduce the spatial details of the

scene. It should be noted that a ρSN value closer to zero could indicate that the

algorithm is malfunctioning, removing frequency components of the scene, producing

a flat image. Hence, a visual inspection of the compensated image is required for a

better interpretation of the ρSN metric, which will be presented later in this Section.

Tables 5.3 and 5.4 list the values of the performance metrics for hyperspectral

images, at different spectral bands, when 61 adjacent spectral bands were used to

compensate for the noise. The results achieved by the image quality metrics show

that all the spectral images were successfully compensated for the SN. From Table

5.3, the best results were achieved for the hyperspectral image at 707 [nm]. When

Model 2 was used, the RMSE was equal to 34.15 while the NR factor was 7.68. From

Table 5.4, the best results were obtained for the hyperspectral image at 748 [nm], with

an RMSE of 28.05 and an NR factor of 12.11. It is worth mentioning that estimation
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procedure for both Tables 5.3 and 5.4 was made considering the same learning rate at

each spectral band. It should be noted that the SNC could be improved by selecting

a different learning rate for each spectral image according to the variability of the

acquired spatio-spectral information.

Table 5.3: Hypercube 1: Performance metrics for some hyperspectral images, when
61 spectral bands were used by the multidimensional NN algorithm to compensate
for the SN.

Central wavelength [nm]
Metric Model 644 665 686 707 728
RMSE 1 72.21 90.16 75.18 121.15 99.76

2 31.14 32.92 36.62 34.15 36.97
NR 1 2.18 2.01 2.15 1.93 1.92

2 6.68 6.74 6.96 7.68 7.10
IF 1 28.75 29.26 28.21 28.42 28.25

2 25.25 25.38 25.18 25.99 24.83
ρSN 1 0.0264 0.0271 0.0267 0.0277 0.0275

2 0.0163 0.0161 0.0160 0.0154 0.0157

Table 5.4: Hypercube 2: Performance metrics for some hyperspectral images, when
61 spectral bands were used by the multidimensional NN algorithm to compensate
for the SN.

Central wavelength [nm]
Metric Model 686 707 728 748 769
RMSE 1 63.04 86.27 68.26 77.03 94.38

2 34.35 28.11 28.15 28.05 45.65
NR 1 3.59 3.10 3.19 3.38 3.37

2 11.03 11.45 10.76 12.11 11.86
IF 1 26.00 27.34 27.23 26.95 25.13

2 33.72 36.46 35.17 36.25 35.19
ρSN 1 0.0221 0.0221 0.0220 0.0209 0.0172

2 0.0129 0.0118 0.0123 0.0114 0.0094

Proceeding with the MM SNC algorithm. To initialize the recursions (4.5) and

(4.6), the sample mean and the sample standard deviation, in the along-track direc-

tion, must be calculated using 2∆J + 1 adjacent spectral bands. As in the case of the

multidimensional NN algorithm, subsets containing 2∆J+1 = {1, 15, 31, 61, 91, 151, 181}
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spectral bands were considered. It must be noted that, unlike the NN algorithm, the

multidimensional MM SNC algorithm does not depend on the overall spectral re-

sponse of the PBHC due to such terms that are canceled out in (3.1). Consequently,

the SNC properties of this algorithm hold for both Model 1 and Model 2.

Tables 5.5 and 5.6 list the performance metrics achieved by the MM SNC algo-

rithm. From the tables, the best values were obtained when 61 adjacent spectral

bands were used during the image destriping process. For Hypercube 1, the RMSE

was 50.23, the NR factor was 1.90, and the IF index was 12.97 while, for Hypercube 2,

the RMSE was 62.64, the NR factor was 2.37, and the IF index was 12.25. As in

the case of the NN algorithm, the roughness metric was close to zero in all cases and

remained almost constant when more than one spectral band was used to compensate

for the SN. The discarded value from the IF in Tables 5.5 and 5.6, when the unidi-

mentional case is considered, is due to the condition imposed by the MM algorithm

and how the IF metric is calculated. That is, the original MM algorithm imposes

that the temporal mean calculated in the along-track direction needs to be the same

for all the detectors in that spectral band, generating a compensated image with a

constant cross-track profile. Hence, when the IF is applied, the low-pass filter used

for estimating the noise free cross-track profile produces the same constant value. Fi-

nally, the difference between the estimated cross-track and noise free profiles is close

to zero in the denominator, generating an abnormal large value for the IF metric.

Table 5.5: Hypercube 1: Performance metrics as a function of the number of adjacent
spectral bands, for a hyperspectral image at 686 [nm], when the multidimensional MM
algorithm was used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Model 1 15 31 61 91 151 181
RMSE 2 92.74 60.18 52.22 50.23 50.82 51.55 52.38

NR 2 1.57 1.76 1.84 1.90 1.90 1.89 1.88
IF 2 – 9.47 11.47 12.97 13.15 13.11 13.02
ρSN 2 0.0311 0.0375 0.0345 0.0326 0.0325 0.0326 0.0327

As in Tables 5.3 and 5.4, raw hyperspectral images at different spectral bands

were compensated for SN using a fixed number of 61 adjacent spectral bands. Ta-

bles 5.7 and 5.8 present the results achieved by the multidimensional MM algorithm

for the different quality metrics. From Table 5.7, the best result was achieved for the
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Table 5.6: Hypercube 2: Performance metrics as a function of the number of adjacent
spectral bands, for a hyperspectral image at 728 [nm], when the multidimensional MM
algorithm was used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Model 1 15 31 61 91 151 181
RMSE 2 66.44 64.55 63.42 62.64 65.03 65.34 67.82

NR 2 2.22 2.21 2.33 2.37 2.41 2.42 2.44
IF 2 – 10.28 11.72 12.25 12.37 12.84 12.87
ρSN 2 0.0264 0.0355 0.0326 0.0317 0.0315 0.0311 0.0311

hyperspectral image at 644 [nm], where the RMSE was 49.77, the NR factor was 1.84,

and the IF was 11.91. Similarly, from Table 5.8, the SN compensated hyperspectral

image at 686 [nm] scored a RMSE of 50.64, a NR factor of 2.45, and an IF of 12.43.

Table 5.7: Hypercube 1: Performance metrics for some hyperspectral images, when
61 spectral bands were used by the multidimensional MM algorithm to compensate
for the SN.

Central wavelength [nm]
Metric Model 644 665 686 707 728
RMSE 2 49.77 60.63 50.22 74.61 60.91

NR 2 1.84 1.64 1.90 1.56 1.76
IF 2 11.91 11.10 12.97 11.21 12.45
ρSN 2 0.0346 0.0358 0.0326 0.0369 0.0333

Table 5.8: Hypercube 2: Performance metrics for some hyperspectral images, when
61 spectral bands were used by the multidimensional MM algorithm to compensate
for the SN.

Central wavelength [nm]
Metric Model 686 707 728 748 769
RMSE 2 50.64 71.01 62.64 72.64 87.54

NR 2 2.45 2.27 2.37 2.47 1.88
IF 2 12.43 11.66 12.25 12.18 10.49
ρSN 2 0.0318 0.0342 0.0317 0.0303 0.0267

A comparison between raw hyperspectral images and their corresponding SN com-

pensated versions is depicted in Figs. 5.1 and 5.2 for the case of Model 2. A simple

naked-eye inspection shows that the multidimensional NN and MM algorithms are
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indeed efficient in eliminating the SN, and moreover, they provide better results than

those obtained using the unidimensional SNC algorithms.

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Hypercube 1: Sample image at 686 [nm] and compensated using Model 2.
(a) Raw image; and (b) reference image. SN compensated images obtained using the
unidimensional: (c) NN algorithm; and (d) MM algorithm. SN compensated images
obtained using the multidimensional: (e) NN algorithm; and (f) MM algorithm. In
the latter two cases algorithms exploited information from 61 adjacent spectral bands.

A closer examination to Figs. 5.1(e) and 5.1(f) shows regions with fewer verti-

cal artifacts than those appearing in Figs. 5.1(c) and 5.1(d). This shows that the

SN compensated images rendered by the multidimensional algorithms have smoother

intensity transitions between spatial pixels. It should be noted that these artefacts

are produced by a poor estimation of the gain and offset parameters [57]. That is,

when compensating for a particular spectral band, the reassembled spectral image

carries the estimation error along the scanning direction, superimposing spatial in-

formation unrelated to the original image. The most compelling evidence about the

excellent performance of the multidimensional MM algorithm images can be observed

in Fig. 5.2. Note that the words, and more precisely, the letters in Fig. 5.2(f) are

smoother, less blurry, and show fewer vertical artifacts than those in Fig. 5.2(d).

As an overall comparison between the two multidimensional SNC algorithms pro-

posed here, results show that the NN algorithm slightly outperforms the MM algo-
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Hypercube 2: Sample image at 728 [nm] and compensated using Model 2.
(a) Raw image; and (b) reference image. SN compensated images obtained using the
unidimensional: (c) NN algorithm; and (d) MM algorithm. SN compensated images
obtained using the multidimensional: (e) NN algorithm; and (f) MM algorithm. In
the latter two cases algorithms exploited information from 61 adjacent spectral bands.

rithm. This difference lies in the estimation method used by each algorithm. While

the efficiency of the MM algorithm relies on the accuracy of the estimated statistics

of the whole scene, the NN algorithm uses a learning rate to adjust each iteration

step to reach its global minimum. This adaptive feature results in lesser artifacts in

the SN compensated images than in the case of the MM algorithm, even when there

is little variability in the data [58].

5.2.1 Striping Noise Compensation over Correlated Noise

Parameters

As a proof of concepts, we conducted an experimental analysis on the SNC algo-

rithms when a highly correlated noise between bands affect the hypercube, which will

verify what was demonstrated in Section 4.2. It should be remarked that the SNC

algorithms are expected to perform poorly due to the violation of this assumption.

The algorithms are tested using raw hyperspectral data acquired with the NIR hy-

perspectral camera. As in Chapter 3.1, the FPA of the NIR camera is affected by
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a stripe-like pattern due to its readout architecture (PPS). Furthermore, the size of

the corrupted hypercube is equal to 320 × 236 × 500 in the spatial, spectral and

temporal domain, respectively.

Table 5.9: Performance metrics as a function of the number of adjacent spectral bands,
for a hyperspectral image at 1332 [nm], when the multidimensional SNC algorithms
were used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Method Model 31 61 91 151 181
RMSE NN 1 214.74 209.85 204.67 200.77 200.69

NN 2 105.27 105.61 105.99 107.15 107.56
MM 2 213.52 216.57 219.29 223.29 225.34

NR NN 1 1.05 1.06 1.06 1.06 1.06
NN 2 1.70 1.69 1.69 1.67 1.67
MM 2 1.04 1.04 1.04 1.03 1.02

IF NN 1 1.12 1.23 1.36 1.43 1.42
NN 2 11.32 11.21 11.13 10.86 10.76
MM 2 1.00 0.84 0.77 0.58 0.49

ρSN NN 1 0.0790 0.0785 0.0779 0.0780 0.0781
NN 2 0.0415 0.0416 0.0417 0.0421 0.0427
MM 2 0.0798 0.0812 0.0818 0.0831 0.0839

The performance metrics for the compensated image taken at 1332 [nm], consid-

ering spectral subsets of different sizes, are presented in Table 5.9. It can be observed,

all the quality metrics of the processed images are very similar, independent of the

number of bands considered in the SNC process. For the sake of clarity, the follow-

ing results are presented in terms of its average. The NN algorithm using Model 1

achieves an average RMSE of 206.14, with a NR of 1.06 and IF of 1.31. For the MM

algorithm, the results are similar to the previous, scoring an average RMSE of 219.60,

with a NR of 1.31 and IF of 0.74. This type of behavior is expected due to the results

obtained in Section 4.2. However, the NN algorithm using Model 2 obtain an average

RMSE of 106.32, a NR equal to 1.68 and a IF of 11.06. The results are remarkably

good for this experiment, not for the compensation of SN parameters, but for the

use of Model 2. This Model separates the system spectral response from the multi-

plicative noise term, weighing the spectral intensities during the SNC. Therefore, the

variability of the spectral information is lowered, achieving a more accurate inten-

sity distribution for the spectral image than by assuming a uniform system response.
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It is worth mentioning that, when using the extended MM algorithm with a subset

size ∆J = 0, the algorithm works like the traditional case without contaminating the

statistics of the selected spectral band with the noise statistics of neighbouring bands.

Moreover, the reassembled images obtained after the SNC process, considering

61 spectral bands, are presented in Fig. 5.3. As expected, when comparing the raw

image (Fig. 5.3.a) with its compensated versions (Figs. 5.3.b-d), it is clear that the

noise pattern affecting the spectral image was not reduced.

(a) (b) (c) (d)

Figure 5.3: Sample image at 1132 [nm]. (a) Raw image. SN compensated images
obtained using the multidimensional: (b) NN algorithm with Model 1; (c)NN algo-
rithm with Model 2; and (d) MM algorithm using Model 1. In the latter three cases
algorithms exploited information from 61 adjacent spectral bands.

Additionally, we have compensated raw data acquired from the Earth-observing

CHRIS/PROBA CCD sensor, where this type of sensor is an example of a PBHC

exhibiting highly correlated SN parameters. That is, the CCD offer high quantum

efficiency due to the use of a PPS readout architecture, which prevents limiting the ef-

fective area with integrated amplifiers per detector but generating a highly correlated

pattern between rows [8].

The selected data consists in two hypercubes, whose dimensions are 66 spectral

bands, with a spatial resolution of 336 pixel and 320 samples taken during the scanning

procedure. Hypercubes CHRIS YU 120916 EA04 41 and CHRIS WY 060821 7299 41

were compensated for SN using the multidimensional NN and MM algorithms consid-

ering a subset of 25 adjacent spectral bands. Due to the overall spectral response of

the sensor is unknown, the image-degration model used in the evaluations corresponds
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to Model 1.

Performance results achieved by the algorithms are listed in Table 5.10. For

comparison, the roughness index of the raw hyperspectral images are, respectively,

3.66 and 2.93 for the CHRIS YU 120916 EA04 41 and CHRIS WY 0608 21 7299 41

hypercubes. From the tables, it becomes clear that the MM algorithm does not

compensate for the SN because, for instance, in the case of CHRIS YU 120916 EA

04 41 the algorithm scored an IF of 0.32 (no improvement) and a roughness index of

3.62, which is very close to the roughness index of the raw image. Further, the same

behavior can be observed for Hypercube CHRIS WY 060821 7299 41 .

Table 5.10: Performance metrics for the CHRIS/PROBA data set. Hyperspectral
image in channel 20 was compensated for the SN using 25 adjacent spectral bands
and the multidimensional NN and MM algorithms.

CHRIS YU 120916 EA04 41 CHRIS WY 060821 7299 41
Metric NN MM NN MM

NR 1.03 1.02 1.05 1.01
IF 17.61 0.32 20.29 0.72
ρSN 0.0316 0.0362 0.0207 0.0292

Unlike the MM algorithm, Table 5.10 shows also that the multidimensional NN

algorithm yields some reduction in the SN, regardless of using spectral information

corrupted by the same SN pattern. For this algorithm, the IF achieved was 17.61 (cor-

respondingly, 20.29) for Hypercube CHRIS YU 120916 EA04 41 (correspondingly,

Hypercube CHRIS WY 060821 7299 41), with a roughness index of 0.0316 (corre-

spondingly, 0.0207). It should be noted that the relative large IF value obtained with

the NN compensated images is due to the IF mechanics. That is, the IF assumes

that a good representation of a noise free profile is obtained applying an averaging

low-pass filter over the estimated signal. When the NN algorithm is applied over a

data set with correlated SN parameters, the SNC is performed only by the averaging

process in the spatial dimension. This results in a cross-track profile similar to that

assumed by the metric, reducing the error and increasing the IF value.

From Fig. 5.3 and 5.4, it can be observed that some SN pattern still remains

on top of the compensated hyperspectral images. As expected, hyperspectral images

compensated by means of the multidimensional NN algorithm exhibit lesser SN pat-

terns than those compensated using the MM algorithm. This destriping capability
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Raw satellite images taken with ESA Earth-observing CHRIS/PROBA
sensor at channel 20. Hypercube CHRIS YU 120916 EA04 41: (a) raw hyperspec-
tral image. SN compensated images obtained using the multidimensional: (b) NN
algorithm; and (c) MM algorithm. Hypercube CHRIS WY 060821 7299 41: (d) raw
hyperspectral image. SN compensated images obtained using the multidimensional:
(e) NN algorithm; and (f) MM algorithm.

in the NN algorithm is attributed to the averaging process, in the spatial dimension,

conducted by the algorithm when using a single spectral band. Such compensation

does not occur in the MM algorithm because estimates are obtained in a pixel wise

fashion in the temporal domain and the spatial information is disregarded.

5.3 Preserving the Spectral Resolution

As mentioned in Chapter 4, the multidimensional SNC process can affect the ability

to distinguish spectral information between neighboring bands depending on how the

compensation scheme is carried out. In this section, we evaluate the performance of

SNC algorithms over the spectral domain when the spectral redundancy assumption
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is violated. First, we compare the SNC schemes in term of a specific reassembled

image to analyze the level of compensation achieved by each algorithm. Second, we

compared the spectral signature obtained when the hypercube is compensated to

determine which scheme introduces less modifications over the spectral information.

In particular, we are comparing three versions of the multidimensional NN algorithm

to reduce the number of parameters to evaluate. The versions of the algorithm are

the following:

i The multidimensional NN algorithm based on Model 1 (see Section 4.1).

ii The multidimensional NN algorithm based on Model 2 (see Section 4.1).

iii The multidimensional NN algorithm based on Model 2, including the proposed

modification on the target image estimation (see Section 4.3).

Since the modification using the BF scheme for calculating the target value (see

Section 4.3) is based on measuring the differences between spectral intensities through

a Gaussian function, we have evaluated different values for the filter parameter (σr =

{1, 5, 10, 25}). Furthermore, when computing the multidimensional target value for

the three algorithms, we have employed a spatial subset with ∆I = 1 pixels and a

spectral band subset of 2∆J + 1 = {61, 91, 151, 181} pixels. It should be noted that

we have considered these subset sizes to push the spectral assumption to the limit.

Also, the algorithms are tested over the same hypercubes used in Section 5.2. In the

following Tables 5.11 and 5.14, the SNC results obtained under these conditions are

in terms of the RMSE and ρSN metrics.

The RMSE values presented in Table 5.11 indicate that the modification with the

BF can achieve equivalent results compared to the multidimensional NN algorithm

without modification. The best RMSE value is 36.62 for the NN algorithm using

Model 2 and a RMSE of 36.51 when using the BF with σr = 10. In both cases

the subset of spectral bands is equal to 61. Further, it is shown that decreasing the

σr produces RMSE values relatively higher compared to σr = 25. The amount of

the spectral information taken into account is limited by the size of the BF and the

spectral signature redundancy observed in the selected spectral subset.

In Table 5.12, the ρSN values confirm the presence of high frequency components

after the SNC, denoting the existence of remaining stripe noise and some artifacts
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Table 5.11: Hypercube 1: RMSE values as a function of the number of adjacent
spectral bands, for a hyperspectral image at 686 [nm], when the multidimensional
NN algorithm was used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Model σr 61 91 151 181

NN 1 - 75.18 73.18 71.48 71.51
NN 2 - 36.62 37.22 38.88 40.10

NN :(BF) 2 1 48.45 48.41 48.42 48.43
NN :(BF) 2 5 42.60 42.45 43.86 44.43
NN :(BF) 2 10 36.51 36.80 38.65 39.39
NN :(BF) 2 25 36.94 36.99 38.38 39.31

Table 5.12: Hypercube 1: ρSN values as a function of the number of adjacent spec-
tral bands, for a hyperspectral image at 686 [nm], when the multidimensional NN
algorithm was used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Model σr 61 91 151 181

NN 1 0.0267 0.0265 0.0259 0.0256
NN 2 0.0160 0.0161 0.0162 0.0162

NN :(BF) 2 1 0.0389 0.0389 0.0389 0.0389
NN :(BF) 2 5 0.0272 0.0271 0.0297 0.0308
NN :(BF) 2 10 0.0159 0.0156 0.0176 0.0186
NN :(BF) 2 25 0.0156 0.0157 0.0155 0.0155

produced during the compensation. The best ρSN values are 0.0160 and 0.0155 for the

NN algorithm using Model 2 and for the BF with σr = 25, respectively. It should be

remarked that the ρSN metric has shown similar behavior to that seen with the RMSE

metric when different σr values are evaluated. Figure 5.5 displays the compensated

images, at 686 [nm], when considering 151 adjacent spectral bands.

When comparing the reference image (Fig. 5.5.b) with its compensated versions,

it is clear that the best results are obtained with the NN scheme based on Model

2 (Fig. 5.5.d) and the spatio-spectral BF with σr = 25 (Fig. 5.5.f). In particular,

the remaining striping noise observed in Fig. 5.5.e is due to the small value of σr.

Namely, a small standard deviation reduces the range of spectral intensities considered

in the spatio-spectral neighbourhood, decreasing the amount of information processed

during the noise compensation. However, a small value of σr can be beneficial when
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Hypercube 1: Sample image at 686 [nm]. (a) Raw image; and (b) reference
image. SN compensated images obtained using Model 1 and the: (c) NN algorithm.
SN compensated images obtained using Model 2 and the: (d) NN algorithm; (e) NN
algorithm with the BF modification and σr = 5; and (f) NN algorithm with the BF
modification and σr = 25. The algorithms exploited information from 151 adjacent
spectral bands.

facing a scene with a highly variable spectral signature.

Table 5.13: Hypercube 2: RMSE values as a function of the number of adjacent
spectral bands, for a hyperspectral image at 728 [nm], when the multidimensional
NN algorithm was used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Model σr 61 91 151 181

NN 1 68.26 64.30 62.25 61.44
NN 2 28.15 26.56 23.99 23.04

NN :(BF) 2 1 40.85 40.83 40.80 40.80
NN :(BF) 2 5 36.39 36.05 35.31 35.53
NN :(BF) 2 10 32.63 31.81 30.64 30.92
NN :(BF) 2 25 28.63 26.46 25.14 24.42

For Hypercube 2, Tables 5.13 and 5.14 display similar results as those obtained

using Hypercube 1. In particular, the RMSE values obtained when σr = 5 are re-

markably good (35.31 considering 151 adjacent spectral bands), however, they exhibit
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a high ρSN value (0.0227 considering 151 adjacent spectral bands). This ρ value is

due to the presence of residual noise in the compensated image.

Table 5.14: Hypercube 2: ρSN values as a function of the number of adjacent spec-
tral bands, for a hyperspectral image at 728 [nm], when the multidimensional NN
algorithm was used to compensate for the SN.

Number of spectral adjacent bands: 2∆J + 1
Metric Model σr 61 91 151 181

NN 1 0.0220 0.0216 0.0214 0.0214
NN 2 0.0123 0.0124 0.0125 0.0125

NN :(BF) 2 1 0.0351 0.0351 0.0350 0.0350
NN :(BF) 2 5 0.0228 0.0231 0.0227 0.0235
NN :(BF) 2 10 0.0140 0.0147 0.0142 0.0146
NN :(BF) 2 25 0.0127 0.0120 0.0119 0.0118

Figure 5.6 displays the compensated images, at 728 [nm], when considering a

spectral subset size of 151. As expected, Figs. 5.6.d and 5.6.f exhibit the best

compensation when compared to the rest. Further, Fig. 5.6.e shows some remaining

striping noise after the compensation, which corroborates the 0.0227 roughness value.

However, this image shows a regular background intensity level when compared to

Fig. 5.6.c (with less artifacts), which in turn explains the low RMSE value of 35.31.

The following analysis shows the effect produced over the spectral resolution after

the hypercube is compensated for the SN. The spectral range under analysis is

selected due to the high variation observed in the spectral data. It should be noted

that the curves are displayed with a fixed intensity range for comparative purposes.

In Fig. 5.7, it is appreciated that all the spectral curves obtained after the SNC

present a shift on the base level with respect to the reference (Fig. 5.7.a). The curves

in Figs. 5.7.b and 5.7.c show similarities with respect to the reference spectral curve,

but with a noticeable change in the spectral intensities range. Further, the spectral

curve observed in Fig. 5.7.e not only shows a similar shape to the reference curve,

but also a more accurate intensity estimation. Comparing the shifts in the base level

observed in the spectral curves, the results in Fig. 5.7.d and Fig. 5.7.e are closer to

the reference curve. This result is consistent with what was expected since the BF

weighs differently the information of neighboring bands, discarding the outliers from

the estimation.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Hypercube 2: Sample image at 728 [nm]. (a) Raw image; and (b) reference
image. SN compensated images obtained using Model 1 and the: (c) NN algorithm.
SN compensated images obtained using Model 2 and the: (d) NN algorithm; (e) NN
algorithm with the BF modification and σr = 5; and (f) NN algorithm with the BF
modification and σr = 25. The algorithms exploited information from 151 adjacent
spectral bands.

As illustrated in Figs. 5.8.b and 5.8.c, the loss of spectral details due to the

averaging process performed by each algorithm is more evident than in Fig. 5.7.

Further, the Fig. 5.8.d shows that the spectral signature is still affected by noise

after the compensation, which is corroborated with the reassembled image observed

in Fig. 5.6.e. Nevertheless, the spectral curve presented in Fig. 5.8.e resembles the

spectral behaviour of the reference curve but with an abrupt spectral transition in

band 450. This clearly shows the potential of a bilateral filtering scheme for the

preservation of the spectral resolution when compensating for SN.

5.4 Summary

In this chapter we have evaluated the effectiveness of the noise compensation al-

gorithms proposed in Section 4. Further, we have tested the performance of the

algorithms when the hyperspectral data is affected by different types of stripe pat-
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Figure 5.7: Hypercube 1: Spectral curves for the fixed spatial point 400 at the frame
800 and considering information from 151 neighboring spectral bands. (a) Reference.
SN compensated spectral curves obtained using Model 1 and the (b) NN algorithm.
SN compensated spectral curves obtained using Model 2 and the: (c) NN algorithm;
(d) NN algorithm with the BF modification and σr = 5; and (e) NN algorithm with
the BF modification and σr = 25.

terns.

We have successfully exploited the spectral redundancy concept and proposed two
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Figure 5.8: Hypercube 2: Spectral curves for the fixed spatial point 300 at the frame
800 and considering information from 151 neighboring spectral bands. (a) Reference.
SN compensated spectral curves obtained using Model 1 and the (b) NN algorithm.
SN compensated spectral curves obtained using Model 2 and the: (c) NN algorithm;
(d) NN algorithm with the BF modification and σr = 5; and (e) NN algorithm with
the BF modification and σr = 25.

efficient multidimensional algorithms for SNC in hyperspectral imaging systems. Fur-

thermore, the SN has been addressed from an optoelectronic point of view, integrating
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prior knowledge into the compensation schemes. The results observed in Section 5.2

indicates a good performance of the SNC algorithms when they are extended over

the spectral domain. The multidimensional NN and the MM algorithms reduce the

artifacts produced during the parameter estimation of noise, as shown in Figs. 5.1

and 5.2. Furthermore, it should be noted that both algorithms were designed to

maintain the spatial fidelity of the assembled spectral image by fixing a low value

of ∆I, equal to 0 in the case of the MM scheme. Nevertheless, depending on the

spatial structure of the captured scene, an even better compensated image could be

generated by increasing this value.

In Section 5.3 it is experimentally verified how the proposed compensation schemes

are negatively affected when the FPA suffers from a stripe-like noise pattern (highly

correlated noise between bands). That is, by having the same noise pattern on each

band and due to the spectral redundancy assumption, the subset of spectral images

does not contribute with additional information during the compensation process. It

should be remarked that the readout electronics is the dominant source of structured

noise. In this sense, if the design of the electronics determines the type of noise

pattern observed in the hypercube, its should be used as prior knowledge in the noise

compensation scheme.

In Section 5.4, the spectral signature is modified when the spectral redundancy

assumption is not fulfilled. Also, by comparing the noise compensation capabilities

together with the level of spectral modification of each algorithm, we are able to

determine the best scheme to follow. The effectiveness of the BF modification is clear

when observing the reassembled images in Fig. 5.6 and the spectral signatures in Fig.

5.8. That is, to achieve an effective noise compensation in the selected spectral image,

while keeping the shape of the measured spectral signature. The compensation level

observed when using the BF can be increased by following an estimation scheme to

determine the optimal σr parameter. Such as, selecting a σr value equal to the overall

standard deviation of the noise present in the raw data.



Chapter 6
Conclusion and Future Work

In this chapter, conclusions derived from this work are presented and detailed. Also,

the tentative future research due to the results of the thesis are outlined below.

6.1 Conclusions

In this thesis, the spectral redundancy concept has been successfully exploited and

two novel multidimensional algorithms for SNC in hyperspectral imaging systems are

proposed. Furthermore, the SN has been addressed from an optoelectronic point of

view, instead of just using digital image processing techniques, obtaining remarkable

results. Namely, the algorithms use a novel pixel wise, affine image-degradation

model, which assumes that the SN parameters are spatially uncorrelated, spectrally

independent, and decoupled from camera’s spectral response.

The experimental characterization performed in this work is a fundamental task

for supporting the statements made during the design of the SNC process. In par-

ticular, results regarding the spectral dependence verify the relationship between SN

parameters and the type of readout architecture used by the cameras, having a pro-

found impact on the design of the SNC algorithms. Further, the low temporal drift of

the SN parameters ensures that the noise pattern remains constant during the acquisi-

tion of a target scene. Also, the low spectral crosstalk observed in both hyperspectral

cameras allows to disregard such effect in the model.

The research conducted here has shown that the use of a large number of bands,

supported by the spectral redundancy concept, increases the performance of unidi-

58
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mensional SNC algorithms. This idea has been tested on hyperspectral data exhibit-

ing different stripe patterns on each band. The experiments have demonstrated that

the proposed methods not only compensate for the SN, but also are able to render

filtered images with fewer ghosting artifacts, which are normally induced during the

parameter estimation. The results obtained by the BF modification applied over the

NN algorithm are certainly encouraging. The modification provides means for weight-

ing the spectral information in neighboring bands as function of their similarity with

respect to the central band. The latter allows us to relax the assumption on the

spectral redundancy, extending the applicability of multidimensional SNC algorithms

to scenes with greater spectral variability.

Furthermore, it has been proven that highly correlated stripe patterns between

neighboring spectral bands diminish the amount of useful spectral information for

SNC. In this regard, our results using the NIR hyperspectral camera and the satellite

imagery from the CHRIS/PROBA sensor have shown that the estimated parameters

obtained with the multidimensional approach proposed here perform similarly to an

unidimensional approach due to the lack of additional spectral information.

Finally, it should be remarked that the performance metric ρSN has proven to

be useful for measuring levels of SN in corrupted images. That is, focusing only on

spatial structures that produce high frequency components in the same direction as

the SN and scoring results in accordance with the performance metrics traditionally

used.

6.2 Contribution to Knowledge

• A novel pixel wise, affine image-degradation model for PBHCs is proposed by

considering an optoelectronic approach, and thereby generating an accurate

mathematical representation of the hyperspectral acquisition process.

• Decoupling the system spectral response from the multiplicative SN term have

proven to be beneficial when designing a SNC algorithm for hyperspectral push-

broom scanners.

• To our knowledge, the noise structure for PBHCs have been never explained

from the point of view of the readout structure. In this sense, the model include
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the capability for abstracting practical readout architectures such as APS and

PPS, which are known to generate different noise patterns.

• Two novel multidimensional SNC algorithms for PBHCs have been developed,

the multidimensional NN and MM algorithms. Both algorithms successfully

exploit the spectral redundancy assumption, achieving remarkable results for

the spectral compensated images when compared to the unidimensional case.

• In order relax the spectral redundancy assumption, a BF algorithm is proposed.

The preliminary results obtained in this thesis exhibit the potential for main-

taining the spectral detail when using a multidimensional scheme.

• The experimental data used in this thesis is available to the scientific community

at the following address https://www.dropbox.com/sh/qudw8camw2fz03m/YBuN_

nvfZ5.

6.3 Future Work

Recapitulating the results obtained from this work, we extract that the adaptability

of the proposed SNC algorithms must be verified using different hyperspectral tech-

nologies, spectral bands, and spectral resolutions. Also, the SNC performed by the

NN algorithm could be improved by selecting a different learning rate for each spectral

image according to the variability of the acquired spatio-spectral information.

During the design of the SNC algorithms, we have assumed that the SN param-

eters are not correlated between spectral bands. However, when the parameters are

highly correlated, it is possible to take advantage of this information by modifying

the SNC procedure. Namely, designing an algorithm that uses the information from

the SN parameters spectral structure, without discriminating on the type of spectral

correlation exhibited in the hypercube.



Appendix A
Summary of Contributions

As a result of work done in the course of this thesis, there have been various publica-

tions oriented to fulfilling the objectives initially proposed.

• Chapter 2 was partially presented at the SPIE Infrared Sensors, Devices, and

Applications; and Single Photon Imaging II held in San Diego, CA, USA, in

2011 [A.2.2]. A preliminary version of the observation model was accepted for

publication at Elsevier Infrared Physics & Technology in 2014 [A.1.3].

• Chapter 3 was partially presented at the SPIE Electro-Optical Remote Sensing,

Photonic Technologies, and Applications VI Conference held in Edinburgh, UK

in 2012 [A.2.1]. The results of the hyperspectral calibration where used in the

article accepted for publication at AMB Express in 2013 [A.1.2].

• Chapter 4 was preliminarily developed in the article published at Optic Let-

ters in 2010 [A.1.4], and then further developed in the an article submitted

to Transactions on Geosciences and Remote Sensing in 2013 [A.1.1], still in

peer-review.

• Chapter 5 was submitted to Transactions on Geosciences and Remote Sensing

in 2013 [A.1.1], still in peer-review.
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Appendix B
Experimental Equipment

B.1 Datasheet

The following document are included in the Appendix:

i Spectral Camera Test Report: Photonfocus Hurricane-40

ii Spectral Camera Test Report: Xenics XEVA-USB 2.0

iii Calibrated Light Source: QTH Calibration Source M-63978

iv Calibrated Light Source: AR-1 Argon Calibration Source

v Calibrated Light Source: AR-1 Argon Calibration Source

vi Diffuse Reflectance Target: Spectralon SRT-99-120
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Test results 

 

 

Spectral Camera Test Report 

Spectral Camera Spectral camera model PFH

Camera model Photonfocus Hurricane-40

Sensor type 10.85x10.85mm -1024x1024 pixels

Camera serial number 013500004047

Spectrograph model V10E 2/3"

Spectrograph serial number V10E_1107_221

Grating serial number V170_0307_2x

Slit size / µm 30

Nominal spectral range / nm 400 - 1000

Nominal spectral resolution / nm 2.73

Nominal spatial bending / nm 0.125

Numerical aperture 2.4

Measurement setup Camera model Photonfocus Hurricane-40

Sensor type 10.85x10.85mm -1024x1024 pixels

Calibration sources
- HgAr calibration lamp - Calibrated 
radiance standard 

Filters OG-590 

Spectral resolution  Spectral resolution according to the Rayleigh criterion

Peak / nm FWHM / nm

435.8 2.9

696.5 2.91

912.3 2.94

Optical characteristics 

 
 
 
 
 
  
 

Mechanical characteristics 

 

Straylight at 545 nm - 547 nm 1.2%

Spectral range / nm 245 - 1331

Spatial bending (smile) acceptable Yes

Visible ghost lines or images No

Wavelength calibration equation y = 8.193e-005*x^2 + 0.97514*x + 240.695

Appearance checked Yes

Camera mount checked Yes

Fore lens mount checked Yes
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Spectrum lamp images 

 

 

 

 

Diffraction efficiency 

Captured image - HgAr calibration lamp 

Notes 

Tested and approved by

191107 / MAU
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Test results 

 

 
 

Spectral Camera Test Report 

Spectral Camera Spectral camera model NIR (USB)

Camera model Xenics XEVA-USB 2.0

Sensor type 8.8x6.6mm -320x256 pixels

Camera serial number XEVA-545

Spectrograph model N17E 2/3"

Spectrograph serial number N17E_1207_97

Grating serial number V156_1006_18

Slit size / µm 30

Nominal spectral range / nm 900 - 1700

Nominal spectral resolution / nm 3.64

Nominal spatial bending / nm 0.35

Numerical aperture 2

Measurement setup Camera model Xenics XEVA-USB 2.0

Sensor type 8.8x6.6mm -320x256 pixels

Calibration sources

Filters LPF-1400 

Spectral resolution  Spectral resolution according to the Rayleigh criterion

Peak / nm FWHM / nm

1129 4.6

1357 4.0

1530 4.7

Optical characteristics 

 
 
 
 
 
  
 

Mechanical characteristics 

 

Straylight at 1300 nm - 1324 nm 1.5%

Spectral range / nm 880 - 1750

Spatial bending (smile) acceptable Yes

Visible ghost lines or images No

Wavelength calibration equation y = 0.00060434*x^2 + 3.258*x + 876.719

Appearance checked Yes

Camera mount checked Yes

Fore lens mount checked Yes
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Spectrum lamp images 

 

 

 

 

Diffraction efficiency 

Captured image  

Notes 

Tested and approved by

10.12.2007    HKA
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Oriel Calibrated Sources and Services

63945 Calibrated Deuterium Lamp

These NIST traceable calibrated lamps are reliable sources of
known spectral irradiance in the UV and VIS-NIR. Use these
systems to calibrate your own irradiance source, or to transfer
our NIST traceable calibration to a spectroscopic detection
system. We offer deuterium and quartz tungsten halogen
irradiance standards as individual lamps and as complete
sources, which include a Radiometric Power Supply, lamp
mount and lamp (with calibration data).

NIST Traceable

Each of our calibrated lamps is thoroughly tested to
specification. Lamps are preconditioned and selected as
necessary. The irradiance measurements are taken in our
specially outfitted calibration laboratory. In the U.S., the
National Institute of Standards and Technology (NIST) provides
original uncertainties for their standard lamps. This range varies
according to wavelength and lamp structure. There is an
additional, small, uncertainty introduced during our procedure.
Tables 1 and 2 show both (NIST and Newport’s) uncertainty
values for the 1000 W QTH and 30 W deuterium lamps.

Table 1 k = 2 Uncertainty Values for 63978 1000 W 
QTH Source

Wavelength (nm)
Approximate NIST

Uncertainty (%)
Approximate Newport's

Uncertainty* (%)
250 2.23 2.8

350 1.35 2.5

654.6 1.01 2.5

900 1.34 2.5

1300 1.42 2.5

1600 1.89 2.8

2000 3.29 2.8

2400 6.50 2.8

* Additional uncertainty due to calibration transfer.
Note: the uncertainty values can vary from time to time.

Table 2 k = 2 Uncertainty Values for 63979 30 W
Deuterium Source

Wavelength Range (nm)
Approximate NIST

Uncertainty (%)
Approximate Newport's

Uncertainty* (%)
200 1.1 3.0

210 1.0 3.0

250 1.0 3.0

350 1.0 3.0

* Additional uncertainty due to calibration transfer.
Note: the uncertainty values can vary from time to time.

Produce Your Own Standard

Lamps have a limited life. If you use the lamp frequently, we
recommend that you purchase one or more non-calibrated
lamps to produce your own working standard(s).

Which Source Do I Choose?

We offer three types of calibrated irradiance sources:

Calibrated QTH Sources

• 250 - 2400 nm or 300 - 2400 nm (lamp dependent)
calibration range

• Offered in 45 W, 200 W and 1000 W powers

Calibrated Deuterium Sources

• 250 - 400 nm calibration range

• 30 W model, only

Custom Sources/Calibrations

• Calibrations of your lamp

• Custom standards

Choose a lamp that provides irradiance levels close to what you
would like to measure in your wavelength range of interest.
Using a lamp that produces too much or too little irradiance
puts higher demands on the linearity of your detection system.
If you need an irradiance standard below ~330 nm, choose the
deuterium lamp. This lamp provides more UV radiation than the
QTH lamps (see Fig. 1), is calibrated down to 200 nm, and has
the additional advantage of producing very little visible light.
The low level of visible and near IR radiation reduces the out of
band problems that plague UV calibration of instruments based
on silicon photodiodes and other broadband detectors.



Appendix B. Experimental Equipment 70

7733

E m a i l :  s a l e s @ n e w p o r t . c o m  •  We b :  n e w p o r t . c o m

TECHN
ICAL 

REFEREN
CE

CA
LIB

RATIO
N

 SO
U

RCES
DEUTERIUM

 SOURCES
ARC SOURCES

IN
CAN

DESCEN
T SOURCES

M
ON

OCHROM
ATOR AN

D
FIBER ILLUM

IN
ATORS

SOLAR SIM
ULATORS

PHOTOLITHOGRAPHY
IN

STRUM
EN

TS
ACCESSORIES FOR

ORIEL LIGHT SOURCES

WAVELENGTH (nm)

IR
R

A
D

IA
N

C
E

   
(m

W
 m

nm
)

-2
-1

0.01

10

1.0

0.1

100

200 12001000400 1400600 1600800 1800 2000 2200 2400

1000 W
QTH LAMP

45 W
QTH LAMP

200 W
QTH LAMP

DEUTERIUM
LAMP

Fig. 1 Spectral irradiance of calibrated lamps

Open Air Lamp Mounts

Our Calibrated Lamps are run in open-air. The mounts holding
the lamps are simple, rod-mounted holders. They have a 1/4-20
tapped hole in the base for an optical rod. The appropriate
lamp mount for your lamp is included with each source - or you
can purchase individually.

Calibration Services

Please contact a Newport Sales Engineer for a quote on your
custom calibration requirement. Typically, an annual calibration
is recommended for calibrated lamps - although calibration
dramatically varies with lamp usage.

Safety Considerations

When there is no clear selection of lamp, based upon irradiance
level, the working environment may make the determination. The
proper way to operate these lamps for calibration is in our open-
air mounts. Therefore, the lower power calibrated QTH lamps are
significantly easier to work with. These lamps are as safe as any
bright domestic bulb except for the emission of ultraviolet. The 
1 kW lamp is uncomfortably bright and heats any absorbing
surface close to it; no flammable material should be placed near
the lamp. Conversely, the deuterium lamp produces little visible
light but very intense UV radiation. In all cases, UV goggles
should be worn and exposure to the skin should be minimized.
Always post appropriate safety signs - (see page 246 for UV
safety eyewear, gloves and UV safety signs).

Ordering Information

Complete Calibration Sources

All sources include lamp mount, power supply, your choice of calibrated lamp and all necessary cables.

Note: Please check our product web pages for more technical information at www.newport.com. 

L i g h t  S o u r c e s

Source Type Wattage Calibration Range (nm) Model
QTH 45 or 200* W 300 - 2400 (for 45 W lamp)

250 - 2400 (for 200 W lamp)
63976

1000 W 250 - 2400 63978

Deuterium 30 W 200 - 400 63979

* Choose between 45 and 200 W lamps when ordering this source; please note that the 45 W lamp is calibrated from 300 - 2400 nm. If you require calibration down to
250 nm, choose the 200 W lamps.

Calibrated Lamps

Lamp Type Wattage Calibration Range (nm) Model
QTH 45 W 300 - 2400 63358

200 W 250 - 2400 63355

1000 W 250 - 2400 63350

Deuterium 30 W 200 - 400 63945

Non-Calibrated Lamps

Lamp Type Wattage Model
QTH 45 W 63360

200 W 63368

1000 W 63362

Deuterium 30 W 63946

For This Lamp Type Lamp Model Numbers Lamp Mount
45 or 200 W QTH 63358, 63355, 63360, 63368 63966

1000 W QTH 63350, 63362 63965
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HG-1 Mercury Argon Calibration Source 

The HG-1 MERCURY ARGON CALIBRATION SOURCE is a wavelength calibration source for UV-VIS-Shortwave
NIR spectrophotometric systems. The HG-1 produces Mercury and Argon lines from 253-922 nm, for use in
performing fast, accurate spectrometer wavelength calibrations. The HG-1 has an SMA 905 termination for
connecting to optical fibers.

Caution!

The beam emerging from the HG-1 produces ultraviolet radiation. Direct contact with the beam could cause
serious eye injury. Never look directly into the light source.
Never take apart the HG-1. The HG-1 contains mercury. Dangerous voltages present. No user-serviceable 
parts inside.

!! The SMA connector may get HOT during operation.

Setting Up

To re-calibrate the wavelength of your spectrometer, you will need the following:
" The HG-1 Mercury-Argon lamp
" Your spectrometer
" An optical fiber (for spectrometers without a built-in slit, a 50-µm fiber works best)
" Either a spreadsheet program (Excel or Quattro Pro, for example) or a calculator that performs third-order

linear regressions. If you are using Microsoft Excel, choose Tools | Add-Ins and check AnalysisToolPak and
AnalysisToolPak-VBA

Operation

1. Plug the wall transformer end of the HG-1’s power supply into a standard 110 V outlet. Plug the 12 V output
end into the back of your HG-1. Or, insert a 9V battery (not included). 

2. Attach a fiber from the spectrometer into the SMA connector on your HG-1. If your spectrometer does not
have an entrance slit, use a 50-µm diameter (or smaller) optical fiber. Larger fibers and slits will have lesser
optical resolution. Also, keep in mind that if the spectrometer has no slit and your experimentation involves
using optical fibers of different diameters, wavelength calibration with each fiber you anticipate using will be
necessary. Calibration is also recommended each time you unscrew the fiber from the spectrometer.

3. Find the on/off switch next to the SMA connector and turn the lamp on. The red indicator will light when the
lamp is on.

Calibration

You are going to be solving the following equation, which shows that the relationship between pixel number and
wavelength is a third-order polynomial:

λp = I + C1p + C2p2 + C2p3

where λ is the wavelength of pixel p, I is the wavelength of pixel 0, C1 is the first coefficient (nm/pixel), C2 is
the second coefficient (nm/pixel2), and C3 is the third coefficient (nm/pixel3). You will be calculating the value
for I and the three Cs.

Operating Instructions: HG-1

- 1 -

#

#
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6. The numbers of importance are indicated in the above figure. You will need to record the Intercept as well as
the First, Second, and Third Coefficients. Also, look at the value for R squared. It should be very close to 1. If
it is not, you have probably assigned one of your wavelengths incorrectly. 

7. Select Spectrometer | Configure from the menu and choose the Wavelength Calibration page to update
the wavelength coefficients within OOIBase32.

8. Repeat this process for each channel in your setup.

Spectral Output

Mercury emission lines are <600 nm. Argon emission lines are >600 nm, and are shown here on the right on an
exaggerated amplitude scale. Below is a list of the most prominent mercury and argon peaks.

Specifications

Operating Instructions: HG-1

- 3 -

Mercury Lines
253.65
296.73
302.15
313.16
334.15
365.01
404.66
407.78
435.84
546.08
576.96
579.07

Argon Lines
696.54
706.72
710.75
727.29
738.40
750.39
763.51
772.40
794.82
800.62
811.53
826.45
842.46
852.14
866.79
912.30
922.45

Output: low-pressure gas discharge lines of Mercury and Argon
Spectral range: 253-922 nm
Dimensions: 11.4 cm x 6.98 cm x 2.54 cm  (LWH), 4.5" x 6.98" x 1.0" (LWH)
Power requirements: 12 VDC wall transformer (comes with unit) or 9 VDC battery
Internal voltage: 600 volts at 30 kHz
Bulb life: ~3,500 hours
Amplitude stabilization: ~1 minute
Aperture: 3 mm
Connector: SMA 905
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AR-1 Argon Calibration Light Source 

AR-1 Argon Calibration Light Source    1 

AR-1 Argon Calibration Light Source 

The AR-1 Argon Calibration Source is a wavelength calibration source for Ocean Optics NIR-256 and 
NIR-512 Spectrometers. The AR-1 produces Argon lines from 866-1705 nm, and is an ideal lamp to use when 
performing fast, accurate spectrometer wavelength calibrations in the NIR range.  

The AR-1 features an SMA 905 Connector for interfacing with our optical fibers. It operates with a 12 VDC power 
supply (included with the unit) or 9V battery (not included). 

The following sections detail the features of the AR-1 Argon Calibration Light Sources. 

Note: The AR-1 is NOT designed to operate as an excitation source in your experiments. 

Parts Included 

The AR-1 ships with the following items: 

• AR-1 Argon Calibration Light Source 

• 12 VDC power supply 

 

 
Warnings 

• The SMA 905 Connector may get extremely hot during lamp operation. After use, allow 
sufficient time to cool before handling. 

• Dangerous voltages are present, and there are no user-serviceable parts inside. Do not 
open the AR-1. 

Using the AR-1 

The following sections provide instructions on setting up the AR-1 light source and performing a wavelength 
calibration using the AR-1: 

Configuring the AR-1 

Follow the steps below to configure the AR-1:  

1. Plug the 12 VDC power supply into a power outlet, then connect the barrel connector of the power supply 
to the power input on the rear of the AR-1. 
 
Alternately, you can use a 9-volt battery (not included) to power the AR-1.  Open the battery hatch of the 
AR-1 and install the 9-volt battery, then proceed to Step 2. 

2. Connect a fiber to the SMA 905 Connector on the AR-1. If your spectrometer does not have an entrance 
slit, use a 50 µm diameter (or smaller) fiber. Larger fibers and slits result in reduced optical resolution.  
 
Please note that if the spectrometer does not have a slit and your experiment requires you to use fibers of 
varying diameters, you will need to perform a wavelength calibration. You should also perform a 
wavelength calibration each time you unscrew the fiber from the spectrometer. 

3. Move the On/Off switch on the AR-1 (next to the SMA 905 Connector) to the On position. The red LED 
will illuminate to indicate that the AR-1 is powered on. 

You have now configured the AR-1 for use. Proceed to the next section for wavelength calibration instructions. 
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AR-1 Argon Calibration Light Source 

AR-1 Argon Calibration Light Source    5 

 

   

AR-1 Specifications 

Output Low-pressure gas discharge lines of Argon 

Dimensions (in mm): 125.7 x 70 x 25.8 

Power consumption: 250 mA at 12 VDC 

Power requirements: 12 VDC wall transformer (included) or 9 VDC battery (optional) 

Bulb life: Approx. 3500 hours (at 20 mA) 

Internal voltage: 600 volts at 30 kHz 

Aperture: 3 mm 

Amplitude stabilization: ~ 1 minute 

Connector: SMA 905 
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Durable Reflectance Panels for Laboratory and Field Applications under Harsh Conditions

DIFFUSE REFLECTANCE TARGETS

Labsphere, Inc. • 231 Shaker St. • North Sutton, NH 03260 • USA • Tel: +1 603 927 4266 • www.labsphere.com

PB-13025-000 Rev 00

FEATURES
Durable and Washable

Various Reflectances Available

Impervious to Harsh Environments

APPLICATIONS
Backlight Illuminators

Environmental Test Targets

Laser Targets

Optical Reflectors

Remote Sensing Targets

TYPICAL 8° HEMISPHERICAL REFLECTANCE SRM-99O

Wavelength (nm)
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SPECTRALON® TARGETS
Spectralon targets are ideal for laboratory and field
applications that require long exposure to harsh 
environmental conditions. Because of the diffuse 
reflectance properties of Spectralon, these targets 
maintain a constant contrast over a wide range of  
lighting conditions. 

Spectralon targets are available in plates up to 24” x 24” 
in white or gray material, mounted in a rugged anodized 
aluminum frame. Calibration data from 250 to 2500 nm, 
every 50 nm is supplied with the targets and is traceable 
to the National Institute of Standards and Technology 
(NIST). All targets are thermally and chemically stable 
and easily cleaned. Custom targets of various reflectance 
values are also available up to 3 m x 3 m.

SPECTRALON® CONTRAST TARGETS
Spectralon Contrast Targets are perfect for the calibration 
of video cameras, densitometers, the contrast transfer of 
propagation media, and the testing of imaging systems 
in field conditions.

These chemically inert targets are durable and washable, 
consisting of a diffuse white (99% reflectance) and a 
diffuse gray (10% reflectance) panel mounted side-by-side 
in an anodized aluminum frame.

Spectralon multi-step targets consist of four panels of  
99, 50, 25 and 12% reflectance mounted side-by-side.  
The four panels provide equal optical density differences 
and equal contrast between each adjacent panel.

TABLE 1: Corrected Reflectance Values for 99% Spectralon Targets 

 Wavelength 8°/Hemispherical Spectral
 Range (nm) Reflectance Values
 250 0.9251

 300 0.925
 350 0.975 - 0.995
 500 - 700 0.985 - 0.995
 750 - 1600 0.975 - 0.995
 1650 - 2500 0.925 
1 If the 99% material is not contained in a Delrin or Aluminum cup, the minimum reflectance is 0.900 at 250 nm.

TABLE 2:  Acceptable 8°/Hemispherical Corrected Reflectance Factors  
for Gray Spectralon Targets

 Nominal Tolerance Flatness Range
 Reflectance at 600 nm over 350 - 760 nm
 2 - 5% ± 2% ± 4%
 6 - 19% ± 3% ± 5%
 20 - 95% ± 5% ± 5%
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SPECIFICATIONS 
Spectralon® Diffuse Reflectance Targets. Refer to Tables 1 & 2 for Tolerances.  
Target part no.  Reflectance Value Reflective  Area (inches)  Size Mounted (LxWxH inches) Order Number   
SRT-02-020 2%   2 x 2   2.25 x 2.25 x 0.56  AA-00823-900
SRT-02-050 2%   5 x 5   5.25 x 5.25 x 0.56  AA-00821-900
SRT-02-100 2%   10 x 10   10.25 x 10.25 x 0.56   AA-00822-900
SRT-02-120 2%    12 x 12   12.25 x 12.25 x 0.56  AA-00827-900
SRT-02-180 2%   18 x 18   18.25 x 18.25 x 0.56  AA-00826-900
SRT-02-240 2%   24 x 24   24.25 x 24.25 x 0.56  AA-00837-900
SRT-05-020 5%   2 x 2   2.25 x 2.25 x 0.56  AA-00823-800
SRT-05-050 5%   5 x 5   5.25 x 5.25 x 0.56  AA-00821-800
SRT-05-100 5%   10 x 10   10.25 x 10.25 x 0.56  AA-00822-800
SRT-10-020 10%   2 x 2   2.25 x 2.25  x 0.56  AA-00823-700
SRT-10-050 10%   5 x 5   5.25 x 5.25 x 0.56  AA-00821-700
SRT-10-100 10%   10 x 10   10.25 x 10.25 x 0.56  AA-00822-700
SRT-20-020 20%  2 x 2   2.25 x 2.25 x 0.56  AA-00823-600
SRT-20-050 20%  5 x 5   5.25 x 5.25 x 0.56  AA-00821-600
SRT-20-100 20%  10 x 10   10.25 x 10.25 x 0.56  AA-00822-600
SRT-40-020 40%  2 x 2   2.25 x 2.25 x 0.56  AA-00823-500
SRT-40-050 40%  5 x 5   5.25 x 5.25 x 0.56  AA-00821-500
SRT-40-100 40%  10 x 10   10.25 x 10.25 x 0.56  AA-00822-500
SRT-50-020 50%  2 x 2   2.25 x 2.25 x 0.56  AA-00823-400
SRT-50-050 50%  5 x 5   5.25 x 5.25 x 0.56  AA-00821-400
SRT-50-100 50%  10 x 10   10.25 x 10.25 x 0.56  AA-00822-400
SRT-50-120 50%  12 x 12   12.25 x 12.25 x 0.56  AA-00827-400
SRT-50-180 50%  18 x 18   18.25 x 18.25 x 0.56  AA-00826-400
SRT-50-240 50%  24 x 24   24.25 x 24.25 x 0.56  AA-00837-400
SRT-60-020 60%  2 x 2   2.25 x 2.25 x 0.56  AA-00823-300
SRT-60-050 60%  5 x 5   5.25 x 5.25 x 0.56  AA-00821-300
SRT-60-100 60%  10 x 10   10.25 x 10.25 x 0.56  AA-00822-300
SRT-75-020 75%   2 x 2   2.25 x 2.25 x 0.56  AA-00823-200
SRT-75-050 75%   5 x 5   5.25 x 5.25 x 0.56  AA-00821-200
SRT-75-100 75%   10 x 10   10.25 x 10.25 x 0.56  AA-00822-200
SRT-75-120 75%   12 x 12   12.25 x 12.25 x 0.56  AA-00827-200
SRT-75-180 75%   18 x 18   18.25 x 18.25 x 0.56  AA-00826-200
SRT-75-240 75%   24 x 24   24.25 x 24.25 x 0.56  AA-00837-200
SRT-80-020 80%  2 x 2   2.25 x 2.25 x 0.56  AA-00823-100
SRT-80-050 80%  5 x 5   5.25 x 5.25 x 0.56  AA-00821-100
SRT-80-100 80%  10 x 10   10.25 x 10.25 x 0.56  AA-00822-100
SRT-99-020 99%  2 x 2   2.25 x 2.25 x 0.56  AA-00823-000
SRT-99-050 99%  5 x 5   5.25 x 5.25 x 0.56  AA-00821-000
SRT-99-100 99%  10 x 10   10.25 x 10.25 x 0.56  AA-00822-000
SRT-99-120 99%  12 x 12   12.25 x 12.25 x 0.56  AA-00827-000
SRT-99-180 99%  18 x 18   18.25 x 18.25 x 0.56  AA-00826-000
SRT-99-240 99%  24 x 24   24.25 x 24.25 x 0.56  AA-00837-000

Spectralon® Contrast Targets
Target Part No.  Type   Reflectance Values  Reflective area (inches)  Order Number
SRT-SP-050  Split   99, 10%   5 x 5    AA-00656-000
SRT-SP-100  Split   99, 10%   10 x 10     AA-00657-000
SRT-SP-180 Split   99, 10%   18 x 18    AA-00658-000
SRT-MS-050  Multi-step   99, 50, 25, 12%   5 x 5    AA-00659-000
SRT-MS-100  Multi-step   99, 50, 25, 12%   10 x 10     AA-00660-000
SRT-MS-180  Multi-step   99, 50, 25, 12%   18 x 18    AA-00661-000

Labsphere, Inc. • 231 Shaker St. • North Sutton, NH 03260 • USA • Tel: +1 603 927 4266 • www.labsphere.com

PB-13025-000 Rev 00
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