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Resumen

Esta tesis tiene como principal objetivo explorar desde un punto de vista ter-
modinámico la interacción de la gravedad con campos de materia. En particular,
estudiamos el acoplamiento de un campo escalar y un campo de gauge bajo diferentes
escenarios. En tres dimensiones, obtenemos nuevas soluciones desde una acción de
gravedad con un campo escalar y campo de gauge conformalmente acoplados. En
cuatro dimensiones, consideramos una solución diónica en presencia de un campo es-
calar dilatónico, la cual sirve de laboratorio para aclarar el rol de la carga magnética
en la primera ley de la termodinámica. Para cumplir el objetivo de esta tesis,
algunos conocimientos previos son de relevancia. Primero explicamos un método
hamiltoniano para calcular cargas conservadas, el cual es considerado a lo largo de
todo su desarrollo. Este es el llamado método de Regge-Teitelboim. Otro tema de
estudio es considerar la presencia de campos de materia y cómo su presencia influye
en el comportamiento de la métrica en infinito. Esto es de mucha importancia al
calcular las cargas globales del sistema ya que estas son sensibles a las condiciones
asintóticas de los campos. Con estas herramientas verificamos que la variación de
la carga magnética aparece como consecuencia de que la acción hamiltoniana tenga
un extremo, aun cuando esta no proviene de ninguna simetŕıa de la acción. Cuando
la gravedad es formulada como una teoŕıa Chern-Simons, la termodinámica de agu-
jeros negros puede también ser obtenida exclusivamente en término de los campos de
gauge y la topoloǵıa de la variedad. Mostramos que esto también es posible cuando
hay campos escalares acoplados minimal y conformalmente, pudiéndose aplicar las
mismas técnicas que para gravedad pura en este tipo de agujeros negros. En partic-
ular, esto es posible ya que esta clase de soluciones pueden escribirse en término de
conexiones de gauge. Luego, las condiciones de regularidad son impuestas sobre las
holonomı́as a lo largo del ciclo termal del toro en el horizonte de eventos, fijando sus
potenciales qúımicos. La entroṕıa es calculada de dos maneras, desde la enerǵıa libre
de Gibbs y luego usando la fórmula de la entroṕıa para una teoŕıa Chern-Simons.
Ambas dan como resultado la ley del área modificada para la entroṕıa.
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Abstract

The principal goal of this thesis is to explore the interaction among matter fields and
gravity from a thermodynamic point of view. In particular, we explore the presence
of a scalar field and a gauge field, coupled to gravity in different scenarios. In three
dimensions, we obtain new solutions from an action of gravity with a conformally
coupled scalar and gauge field. In four dimensions, we consider a dyonic black hole
with a dilatonic scalar field which serves as a laboratory to study the role of the
magnetic charge in the first law of black hole thermodynamics. Some ingredients are
relevant for accomplishing the objetive. First, we explain a Hamiltonian method for
computing charges which is considered along the whole thesis. This is the Regge-
Teitelboim approach. In this context, we note that the global charges of a system
are sensitive to the asymptotic conditions of the fields; this issue is studied when
matter fields are included since they can backreact on the asymptotic behavior of
the metric at infinity. With these tools we verify that the variation of the magnetic
charge appears as a consequence that the Hamiltonian action has an extremum,
although it is not originated by any symmetry of the action. Whenever it is possible
to describe gravity as a Chern-Simons theory, the thermodynamics of black holes
can be obtained exclusively in terms of gauge fields and the topology of the manifold.
It is shown that when we have scalar fields conformally and minimally coupled to
gravity, the same technics can be applied to hairy black holes even though we are
no longer in a topological theory. In particular, this is possible since the hairy black
holes can be written in terms of gauge connections. Then, regularity conditions are
imposed on the holonomies along the thermal cycle of the torus at event horizon,
fixing the chemical potentials of the solutions. The entropy is derived in two ways;
the first one from the Gibbs free energy and the second one from a general formula
for the entropy in terms for a Chern-Simons theory. Both give the same result
compared with the modified area law.
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Chapter 1

Introducción

A lo largo de los últimos años, los agujeros negros han estado involucrados en un gran
número de aplicaciones f́ısicas. De forma más reciente, la colisión de dos agujeros
negros llevaron a la confirmación final de la existencia de las ondas gravitacionales
[1]. Es aśı como desde un punto de vista fenomenológico, estos objetos son de
extrema importancia dado que representan la evolución final de un cuerpo muy
masivo que ha colapsado gravitacionalmente. Cuando esto ocurre, el espaciotiempo
está tan fuertemente curvado, que ningún cuerpo, incluyendo la luz, pueden salir de
él. Aparentemente, todo lo que entra en él pierde su identidad, preservando solo su
masa, carga y momentum angular. De hecho, esos son los únicos parámetros desde
los cuales podemos caracterizar agujeros negros hasta el momento.

Por otro lado, desde el punto de vista teórico, los agujeros negros también
han tenido un rol protagónico dado que podŕıan exhibir aspectos cuánticos de la
gravedad. Los trabajos seminales de Bekenstein y Hawking [2, 3] mostraron que los
agujeros negros tiene propiedades parecidas a las termodinámicas y que en efecto,
rad́ıan. A partir de esto, nos hemos convencido de que la primera ley de la ter-
modinámica para agujeros negros,

δM = TδS − ΩδJ,

es más que una relación mecánica de sus parámetros, si no que también una pieza
fundamental en la búsqueda de una teoŕıa cuántica de la gravedad. La entroṕıa S
del agujero negro no seŕıa una cantidad térmica, si no más bien una medida de la
información perdida cuando un objeto entra en él. Además, la existencia de esta
cantidad tiene directa relación con la mecánica cuántica, dado que al tomar el ĺımite
~→ 0 no hay ninguna interpretación clásica para la entroṕıa de Bekenstein-Hawking

S =
A

4G~
.
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En este contexto, gravedad en tres dimensiones ha sido un lugar fruct́ıfero para
estudiar aspectos cuánticos de la gravedad dado que no hay grados de libertad
propagantes, lo que hace posible formularla como una teoŕıa de Chern-Simons, al
ser puramente topológica. Otro aspecto que ha potenciado este estudio es que el
comportamiento asintótico de la métrica de anti-de Sitter (AdS) en tres dimensiones
es invariante bajo las transformaciones del grupo conforme en dos dimensiones [7].
Esto influyó en la formulación de la correspondecia AdS3/CFT2 [8], que implica que
una teoŕıa conforme de campos correspondeŕıa a la teoŕıa cuántica de AdS en tres
dimensiones. Aqúı, la existencia de una solución, el agujero negro de BTZ (Bañados-
Teitelboim-Zanelli) [9, 10], también ha servido como laboratorio para probar tales
aspectos cuánticos. De hecho, la entroṕıa de este agujero negro pudo ser obtenida
desde el conteo microscopico de microestados a través de la fórmula de Cardy [11].

Otro aspecto muy activo de tres dimensiones ha sido el estudio de soluciones
asintóticamente AdS provistas de un campo escalar. Notablemente, su compor-
tamiento asintótico, aun en presencia de materia, es invariante bajo el grupo con-
forme en dos dimensiones, lo que ha servido para que estas soluciones hayan sido rela-
cionadas con superconductores a través de la conjetura de dualidad gravedad/teoŕıa
de gauge [12]. Adicionalmente, en una área paralela, existen esfuerzos recientes para
medir el teorema de no-pelo desde observaciones astronómicas [13, 14]. La amplia
literatura acerca de estos agujeros negros y su aplicaciones demuestran su relevancia
f́ısica. Esto empezó con una solución precursora de agujero negro dotada de un
campo escalar conformalmente acoplado [15] y luego minimálmente acoplado [16],
dando paso a un gran número de soluciones con similares caracteŕısticas [17]-[28].
Como fue demostrado primero en [16], y luego discutido vastamente en la literatura
(ver [29] por ejemplo), el campo escalar puede tener un decaimiento en el infinito
tan lento que termina contribuyendo a la masa del agujero negro. Aśı mismo, otro
resultado interesante en esta área, es que el cálculo de la entroṕıa de este tipo de
soluciones fue obtenida exitosamente a través de la fórmula de Cardy [19, 20, 21, 28].
En este contexto, es posible considerar otros tipo de acoplamientos de materia igual-
mente sencillos, entre los cuales están los campos de gauge. Por ejemplo, el BTZ
cargado fue introducido en [9] y la versión rotante cargada en [24]. En ambos casos,
la dinámica del campo de gauge estuvo determinada por el lagrangiano de Maxwell
usual, que mostraba un campo eléctrico con un comportamiento logaŕıtmico y de-
pendiente de la coordenada radial. Es en este escenario de soluciones y aplicaciones
en el cual se enmarcan los primeros dos trabajos de esta tesis. Ambas son nuevas
soluciones de gravedad con campos de materia acoplados en tres dimensiones, como
los anteriormente descritos y son además objetos de interés termodinámico. La
primera de ellas se estudia siguiendo la formulación métrica usual, y la segunda, en
términos de conexiones siguiendo las técnicas conocidas para gravedad como una
teoŕıa Chern-Simons.
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Como ya fue mencionado, el modelo más simple para estudiar la interacción de
campos de materia con la gravedad es a través del acoplamiento de campos escalares.
Tales modelos no solo poseen soluciones de agujeros negros si no que también evaden
la conjetura de no-pelo. El primer ejemplo de este hecho fue dado a través de una
solución de gravedad en un espacio asintóticamente plano en cuatro dimensiones
con un campo escalar y un campo electromagnético [30] [31], [32]. Desafortunada-
mente, el campo escalar diverge en el horizonte y la métrica corresponde al caso
de un agujero negro Reissner-Nordström extremo. Este no es el caso de la solución
que consideramos en esta tesis, la cual cumple con presentar estos campos [33]; un
campo eléctrico, un campo magnético y un campo escalar dilatónico. Esta solución
es un agujero negro asintóticamente AdS debido a la presencia de un potencial de
autointeracción. En su análisis termodinámico [33], se afirmó que la primera ley de
la termodinámica no se satisfaćıa a menos que se agregara una nueva carga, canti-
dad que los autores interpretaron como una carga escalar [33], [34]. Sin embargo,
esto conflictúa con el hecho que no existen cargas escalares asociadas a la solución,
al no estar ésta originada en ninguna simetŕıa de la acción (ya sea de Noether o
topológica). Además, ya se ha identificado claramente cómo los campos escalares
contribuyen a la variación de la masa con términos no integrables genéricamente.
Esto ha sido demostrado a través de condiciones asintóticas generales a través del
método Hamiltoniano [29], además de otros métodos [36], [37]. Una solución en tres
dimensiones que exhibe también este comportamiento, se presenta también en esta
tesis [38].

Otra motivación para estudiar la solución [33] tiene que ver con el cálculo de su
enerǵıa libre de Gibbs. Al hacerlo, se debe proceder desde una acción bien definida
que además presente algunas caracteŕısticas termodinámicas, como por ejemplo ex-
hibir las cargas del sistema con sus respectivos potenciales qúımicos. La enerǵıa
libre de Gibbs presentada en [33] falla en este aspecto dado que no puede recobrar
la contribución magnética, ni tampoco incluye la supuesta carga escalar. Como se
verá, la adición de un nuevo término hará que se obtenga la contribución magnética
a la acción euclidea.

Esta tesis está organizada de la siguiente manera:
En el primer capitulo, damos el marco teórico en el cual se desarrolla. La formu-

lación Hamiltoniana de la gravedad será nuestra principal herramienta para calcular
cargas conservadas y verificar la validez de la primera ley de la termodinámica para
agujeros negros, al requerir que la acción Hamiltoniana tenga un extremo. Después,
en el segundo caṕıtulo, destacamos la importancia de las simetŕıas asintóticas en
gravedad y damos un ejemplo, gravedad en tres dimensiones con constante cos-
mológica negativa (Λ < 0). Destacamos también cómo la presencia de materia
puede alterar el comportamiento asintótico de la métrica si el campo escalar tiene
una expansión asintótica lo suficientemente lenta en el infinito.
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En el tercer caṕıtulo, consideramos gravedad con constante cosmológica negativa
en la presencia de un campo escalar y un campo de gauge abeliano. Esta fuente de
materia compuesta está caracterizada por el hecho que ambos campos están confor-
malmente acoplados a gravedad. La teoŕıa admite soluciones de agujero negro las
cuales son descritas a través de sus propiedades termodinámicas. Además, calcu-
lamos sus cargas conservadas e imponemos condiciones de borde sobre la variación
de la masa para que sea integrable, de la misma forma que se explica en el segundo
caṕıtulo de esta tesis.

En el caṕıtulo cuatro, explicamos cómo gravedad en tres dimensiones puede ser
vista como una teoŕıa Chern-Simons y cómo es posible desarrollar el análisis ter-
modinámico exclusivamente en términos de los campos de gauge y la topoloǵıa de la
variedad, sin hacer referencia a la métrica del espaciotiempo. El caṕıtulo cinco sigue
este procedimiento, pero para una acción que tiene un campo escalar acoplado con-
formalmente, donde la solución de agujero negro asociada es expresada en términos
de conexiones. La versión eucĺıdea de esta acción es usada para analizar la ter-
modinámica de una solución rotante de agujero negro en el ensemble gran canónico.
La condición de regularidad es impuesta pidiendo que la holonomı́a evaluada en el
horizonte sea trivial. Esto fija las constantes de integración del sistema en términos
de los potenciales qúımicos. La masa y el momentum angular son también calcula-
dos, las cuales coiciden con las cantidades obtenidas por el método hamiltoniano. La
entroṕıa en cambio, es calculada de dos maneras, la primera desde la enerǵıa libre
de Gibbs y la segunda desde la ley general para la entroṕıa en una teoŕıa Chern-
Simons. Ambas coinciden con la ley para la entroṕıa del área modificada, la cual es
aplicada en este tipo de acciones con acoplamiento no minimal de materia. La parte
final de este caṕıtulo está dedicado a explicar cómo esta formulación puede también
aplicarse cuando el campo escalar está minimalmente acoplado a la gravedad.

El caṕıtulo final de esta tesis intenta aclara los roles de ciertos campos de materia
en la primera ley de la termódinámica para agujeros negros. En particular, usando
una solución diónica en presencia de una campo escalar dilatónico, determinamos el
rol de la carga magnética como también la contribución del campo escalar al requerir
que la acción Hamiltoniana tenga un extremo. Para probar lo anterior, formulamos
un principio de acción bien definido y finito para el sistema y probamos que existe un
término adicional debido a la existencia del monopolo magnético. Concluimos que
la carga magnética, a pesar de tener un origen topológico, aparece en la primera ley
de la termodinámica para agujeros negros, mientras que el campo escalar aparece
como una contribución a la masa.
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Chapter 2

Introduction

In different contexts during the last years, a great number of physical applications
involving black holes have emerged. Most recently, the merge of two black holes
led to the final confirmation of the gravitational waves existance [1]. From a phe-
nomenological point of view, black holes are extremely important because they are
what remains after an extremely massive object has suffered gravitational collapse.
The spacetime is so strongly curved that no kind of object, including the light, can
come out. Apparently, everything that falls into the black hole, loses its features,
preserving only its mass, charge, angular momentum. In fact, these are the only
parameters that we have from which we can characterize black holes.

On the other hand, from a theoretical point of view, black holes have an in-
triguing role since they could exhibit quantum aspects of gravity. From the seminal
works of Bekenstein [2, 3] that show thermodynamic-like features of black holes
and Hawking’s work which proves that black holes radiate [4], we have convinced
ourselves that the fist law of black hole thermodynamics

δM = TδS − ΩδJ,

is more than a mechanical relation, but a fundamental piece in the search of a
quantum theory of gravity. The entropy of the black hole would not be a thermal
entropy but a quantity related with the information lost after an object enters into
it. Moreover, it would be senseless if there were no quantum theory of gravity
because taking the limit ~→ 0 does not have any physical interpretation by virtue
of Bekenstein-Hawking entropy

S =
A

4G~
.

In this context, three-dimensional gravity has been a fruitful arena for quantum
gravity since it is devoid of degrees of freedom and it has a topological formulation
as a Chern-Simons theory [5, 6] . In particular the asymptotic conditions of three-
dimensional anti-de Sitter spaces (AdS) are left invariant under the conformal group
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in two dimensions [7]. This means that using the AdS/CFT correspondence [8],
this conformal field theory should correspond to the quantum AdS gravity in three
dimensions. Here, the existance of a black hole solution, the Bañados-Teitelboim-
Zanelli (BTZ) black hole [9, 10], has served as a laboratory to test quantum issues. In
fact, the entropy of this black hole could be obtained from microscopical computation
of the semiclassical black hole entropy by means of Cardy formula [11].

Asymptotically anti-de Sitter black holes endowed with a scalar field have been
also a very active topic in three dimensions. Their asymptotic conditions even in the
presence of matter are left invariant under the conformal group in two dimensions.
For this reason, they have been related to superconductors by means of the grav-
ity/gauge duality [12]. Additionally, in a different scenario, efforts towards testing
the no-hair theorem from astronomical observations have been recently developed
[13, 14]. The extensive literature about hairy black holes and the broad applications
confirm their physical relevance. It started with the precursory hairy black holes
dressed with a conformally [15] and a minimally coupled scalar field [16], and they
were followed by a number of other exact three-dimensional hairy black holes [17]-
[28]. As was proved first in [16], and then vastly discussed in the literature (see for
instance [29]), the scalar field can exhibit a slow fall-off at infinity in such a way that
it contributes to the mass of the black hole. Other interesting subject is the compu-
tation of the entropy of the three-dimensional hairy black holes from the asymptotic
growth of the number of states by means of Cardy formula [19, 20, 21, 28]. On the
other hand, another kind of simple matter couplings can be considered, in particular
gauge fields. For example, the electrically charged BTZ black hole was introduced
in [9] and its rotation version was presented in [24]. In both cases the dynamics of
the gauge field was defined by the usual Maxwell Lagrangian, and consequently, the
gauge field exhibited a logarithmic dependence on the radial coordinate, as expected
in 2+1 dimensions. This is the context in which the two first works of this thesis are
presented. Both of them show novel hairy black hole solutions in three dimensions
and study their properties from a themodynamic point of view. The first one from
the usual metric formulation and the second one, in terms of gauge fields using the
technics developed for a Chern-Simons theory.

As was mentioned, the simplest model that studys the interaction among matter
fields and gravity is given through the coupling of scalar fields. Remarkably, such
a model has shown to possess black hole solutions circumventing the no-hair con-
jecture. The first example of this fact is the four-dimensional solution obtained by
Bocharova, Bronnikov, and Melnikov [30] in the oriental part of the world and then
by Bekenstein [31], [32] in occident. The black hole has a conformally coupled scalar
field (including electromagnetism) with vanishing cosmological constant. Unfortu-
nately the scalar field diverges on the horizon and the metric corresponds to the
extreme Reissner-Nordström metric. The black hole solution that will be treated in
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this thesis in [33] has the ingredients above mentioned; an electric field, a magnetic
field and also a scalar field with a dilatonic coupling. This black hole is asymptot-
ically AdS provided the system is endowed with a self-interacting potential. In the
thermodynamical analysis of [33], the authors claimed that the first law of black
hole thermodynamics is not satisfied unless one adds a term which is interpreted as
a scalar charge [33], [34]. However, this argument conflicts with the fact that there
is no a scalar charge associated to the solution because it has neither a symmetric
origin nor a topological one. Moreover, it has been clearly identified that the scalar
field contributes to the mass variation, generically, with non-integrable terms. This
has been proven with general asymptotic conditions through Hamiltonian [29] and
other methods [36], [37], and even with an explicit black hole example in presence
of gauge fields in three dimensions [38].

Another motivation for studying the black hole solution presented in [33] has
to do with the computation of its Gibbs free energy. To do so, one has to have a
well-defined action and also to present other thermodynamic features, e.g. to match
all the charges of the solution with their respective chemical potentials. The Gibbs
free energy presented in [33] fails to do that since it cannot recover the magnetic
contribution to the Euclidean action, not even if one includes the additional scalar
charge. The value of the action in [33] was obtained through the holographic renor-
malization method described in [39], by adding counterterms, which only include
radial surface terms, to get a finite action principle. As we will see in this thesis, it
is necessary to add an additional term to obtain the magnetic contribution to the
Euclidean action.

This thesis is organized as follows:
In the first chapter, we give the theoretical frame in which this thesis is devel-

oped. The Hamiltonian formulation of gravity will be our main tool for computing
conserved charges and verifiyng the validity of the first law of black hole thermo-
dynamics, by requiring the Hamiltonian action to attain an extremun. Later on, in
the second chapter we stress the importance of the asymptotic symmetrys and give
an example, three-dimensional gravity with negative cosmological constant (Λ < 0).
We claim also that the presence of matter can change the asymptotic behavior of
the metric if the scalar field has a sufficiently slow fall-off at infinity.

In the third chapter we consider three-dimensional gravity with negative cosmo-
logical constant in the presence of a single real scalar field and an Abelian gauge
field. This composite matter source is characterized by the fact that both fields are
conformally coupled to gravity. The theory admits black hole solutions wich are
characterized through their thermodynamic properties. Boundary conditions are
neccesary for having an integrable mass, in the sense of what is explained in the
second chapter .

In chapter four, we explain how gravity in three dimensions can be seen as a
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Chern-Simon theory and how we are able to perform a themodynamic analysis of the
BTZ black hole exclusively in terms of gauge fields and the topology of the manifold,
without making any reference to the spacetime metric. Chapter five follows the
former approach but now, applied to hairy black holes. We present a procedure to
describe these solutions for gravity with a conformally coupled scalar field in terms of
connections and formulate the action as a Chern-Simons-like action. The Euclidean
version of this action is used for analyzing the thermodynamics of the rotating hairy
black hole solution in the grand canonical ensemble. Regularity conditions on the
holonomy at the horizon fix the integration constants of the solution in terms of
the chemical potentials. The mass and angular momentum are computed and they
coincide with the global charges obtained from the Hamiltonian approach. The
entropy is derived in two ways; the first one from the Gibbs free energy and the
second one from a general formula for the entropy in terms of the on-shell holonomies.
Both give the same result compared with the modified area law. The final part of
this chapter is devoted to explain how this formulation can be also applied to gravity
with a minimally coupled scalar field.

The final chapter of this thesis addresses the question about the role of certain
fields in the first law of black hole thermodynamics. In particular, by using a dyonic
solution in the presence of a dilatonic scalar field, we settle the role of the mag-
netic charge and the scalar field contribution in thermodynamics by requiring the
Hamiltonian action to attain an extremun. To prove the latter, we formulate a well-
defined and finite Hamiltonian action principle for the system and we prove that
there is an additional term coming from a total derivative in the polar angle which
appears due to existence of a magnetic monopole. We conclude that the magnetic
charge, despite of having a topological root, appears in the first law of black hole
thermodynamics, while the scalar field appears as a contribution to the mass.
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Chapter 3

Hamiltonian formalism for
General Relativity

At first sight, the utility of the Hamiltonian formalism for General relativity could
be unclear for who are used to the covariance of the theory. The Einstein equations
written in a covariant way

Gµν = κTµν , (3.1)

are extremely beautiful since they represent the fact that the laws of physics are
independent of the observer. However, because of the Bianchi identities,

∇µG
µν = 0, (3.2)

gravity is actually a constrained system. Then, there are parts of the Einstein
equations which are dynamical and parts which are constraints. To elucidate this
issue forward to the quantization of the theory, fundamental work was done during
the fifty’s by P. Dirac [40], and then by R. Arnowitt, S. Deser and C.W. Misner
which resume their work of years in [41].

The dynamics of General Relativity is considered a Cauchy problem, where the
evolution of a (d − 1) surface (where the fields are defined) is considered. Let Σ a
spacelike hypersurface of a manifoldM and ξ⊥, ξi deformations on it. The generator
of the hypersurface deformation is given by the Hamiltonian of the system H[ξ⊥, ξi],
where

H[ξ⊥, ξi] =

ˆ
dxd−1

(
ξ⊥H⊥ + ξiHi

)
+Q[ξ⊥, ξi]. (3.3)

The Hamiltonian is a linear combination of the constraints H⊥. They are explicitly
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given by

H⊥ =
2κ
√
γ

(
πijπij −

1

(d− 2)

(
πii
)2
)
−
√
γ

2κ
(R− 2Λ) , (3.4)

Hi = 2∇jπ
j
i. (3.5)

The dynamical variables of the system are given by the set {γij, πij}, where γij is the
spatial metric of hypersurface, obtained from ADM decomposition of the spacetime
metric gµν

gµν =

(
g00 g0j

g0i gij

)
(3.6)

=

(
−N2

⊥ +N iNi Nj

Ni γij

)
, (3.7)

and

gµν =

(
g00 g0j

g0i gij

)
(3.8)

=

(
− 1
N2
⊥

Nj

N2
⊥

N i

N2
⊥

γij − N iNj

N2
⊥

)
. (3.9)

We identify N⊥ as the Lapse function and Ni as the Shift fuction which are related
with the deformations of the spacetime. On the other hand, πij is the momentum
conjugated to the three-dimensional metric γij,

πij = −
√
γ

2κ

(
Kij − γijK

)
, (3.10)

where the extrinsic curvature Kij is given by

Kij =
1

2N⊥
(∇iNj +∇jNi − γ̇ij) . (3.11)

In (3.4), R stands for the scalar curvature of the (d− 1)-dimensional spatial metric
γij, Λ is the cosmological constant and κ is the gravitational constant. In (3.3) Q
is the surface integral at spatial infinity needed to have a well defined functional
derivative, as was pointed out in the work of Regge and Teitelboim [42].

When (3.3) is varied, the total derivatives that appear are transformed into
surface terms. Those surface terms must be canceled by δQ, which is the criteria for
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determining its value, i.e. δH = 0 on the constraint surface. The explicit expression
for the surface integral in any dimension is given by

δQ =

ˆ
dd−2SlG

ijkl
(
ξ⊥∇kδγij − ∂kξ⊥δγij

)
+

ˆ
dd−2Sl

[
2ξkδπ

kl +
(
2ξkπjl − ξlπkj

)
δγjk

]
, (3.12)

with

Gijkl =
1

2

√
γ
(
γikγjl + γilγjk − 2γijγkl

)
. (3.13)

In the canonical formalism, the transformation law of the fields (γij, π
ij) are obtained

after performing the Poisson bracket of the field with the canonical Hamiltonian.
The basic non-vanishing Poisson brackets are given by{

γij (x) , πlm (x′)
}

=
1

2

(
δliδ

m
j + δmi δ

l
j

)
δ (x− x′) , (3.14)

Then we can compute the following Poisson brackets,

δγij =

{
γij (x) ,

ˆ
dd−1x′

(
ξ⊥H⊥ + ξiHi

)}
= ξ⊥

4κ
√
γ

(
πij −

1

(d− 2)
γijπ

)
+∇iξj +∇jξi, (3.15)

and

δπij =

{
πij (x) ,

ˆ
dd−1x′

(
ξ⊥H⊥ + ξiHi

)}
= −

ξ⊥
√
γ

2κ

(
Rij − 1

2
γijR + Λγij

)
+
κξ⊥
√
γ
γij
(
πklπkl −

1

(d− 2)
π2

)
−4ξ⊥κ
√
γ

(
πilπ

jl − 1

(d− 2)
ππij

)
+

√
γ

2κ

((
∇(i∇j)ξ⊥

)
− γij

(
∇k∇kξ

⊥))
+
(
∇kξ

k
)
πij −

(
∇kξ

i
)
πkj −

(
∇kξ

j
)
πki + ξk

(
∇kπ

ij
)
. (3.16)

The Hamiltonian evolution coincides with the Lie derivative of the fields when we
are on-shell, i.e the equations of motion are satisfied. For a further discussion of the
relation, see [43].

Note that δQ in (3.12) stands for the surface term after taking the functional
derivatives with respect to the canonical variables in the phase space of the Hamil-
tonian generator H. This surface term determines the conserved charges in the
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Regge-Teitelboim approach [42]. A priori, for a generic configuration δQ is a non-
integrable quantity and one must then also provide the asymptotic behaviour of
the fields representing the space of solutions at infinity. In some cases the latter
is not enough for integrating δQ and some additional integrability conditions must
be imposed on the phase space (for all practical purposes, on the integration con-
stants of the solution). We shall also need the variation of the canonical variables
under surface deformations, which are given by the Poisson brackets of the phase
space variables and the Hamiltonian generators. The importance of the asymptotic
conditions, preserved under asymptotic symmetries, will be detailed in the next
Chapter.
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Chapter 4

Asymptotic structure of
three-dimensional gravity with
negative cosmological constant

We define the asymptotic symmetries of a system by all the surface deformations(
ξ⊥, ξi

)
that preserve the asymptotic conditions making the corresponding boundary

terms (3.12)–that we identify as the global charges of the system– integrable and
finite. By asymptotic conditions, we refer to the behavior of the dynamic fields
at infinity (an example will be see further in detail). The asymptotic symmetries
of gravity are in general non trivial because they can be given by a greater group
than the group of isometries of the space-time. For example, for flat spaces in three
and four dimensions the group of asymptoyic symmetries is the infinite dimensional
BMS group (Bondi-van der Burg-Metzner-Sachs) [44, 45]. On the contrary, in four
dimensional gravity with a negative cosmological constant, the isometry group is
the same as the group of the asymptotic symetries, the SO(3, 2) group [46].

In this context, there is a crucial example that helped to promote the AdS/CFT
conjecture. In the work of Brown and Henneaux [47], it was claimed that the asymp-
totic symmetries of gravity with negative cosmological constant in three dimensions
is the conformal group in two dimensions with the presence of a central charge. The
boundary conditions considered for obtaining that result are the following

ftt = O (1) , ftr = O
(

1
r3

)
, ftθ = O (1) , (4.1)

frr = O
(

1
r4

)
, frθ = O

(
1
r3

)
, fθθ = O (1) , (4.2)

where fµν corresponds to the deviation with respect to background ḡµν , i.e. gµν =
ḡµν + fµν , which is the AdS spacetime in three dimensiones

ds̄2 = ḡµνdx
µdxν = −

(
r2

l2
+ 1

)
dt2 +

(
r2

l2
+ 1

)−1

dr2 + r2dθ2, (4.3)
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and l is the AdS radius. The group of transformations that left the asymptotic
conditions (4.1) y (4.2) invariant, is generated by the vectorial field,

ξ+ = Y + +
l2

2r2
∂2
−Y
− + . . . ,

ξ− = Y − +
l2

2r2
∂2

+Y
+ + . . . ,

ξr = −r
2

(
∂+Y

+ + ∂−Y
−)+ . . . ,

(4.4)

where it has been used the change of variables x± = t/l ± θ and Y ± are arbitrary
functions of x±.

The conditions (4.1) and (4.2) can be satisfied even when localized matter fields
are present. More precisely, this happens when their fall-off is sufficiently fast at
infinity, so as to give no contributions to the surface integrals defining the generators
of the asymptotic symmetries.

When 2+1 gravity minimally coupled to a self-interacting scalar field is consider,

I[g, φ] =

ˆ
dx3
√
−g
[
R

2κ
− 1

2
(∇φ)2 − V (φ)

]
, (4.5)

there are solutions of the theory that decay at infinity as φ ∼ r1/2 . When this
occurs, the generators of the asymptotic symmetries acquire a contribution from
the scalar field, but the algebra of the canonical generators possesses the standard
central extension [16]. The asymptotic fall-off of these solutions read as

φ =
χ (t, θ)

r1/2
− 2

3

χ (t, θ)3

r3/2
+O

(
r−5/2

)
, (4.6)

and the asymptotic decay of the grµ must go slower as compared with (4.1) and
(4.2),

grr =
l2

r2
− 4l2χ (t, θ)2

r3
+O

(
r−4
)
,

grθ = O
(
r−2
)
,

grt = O
(
r−2
)
. (4.7)

In this way, when the contributions of the scalar field and the asymptotic decayment
of the metrics are considered in the definition of the charges, using the Regge-
Teitelboim approach, we get that

δQ = δQG + δQφ, (4.8)
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where δQG is given in (3.12) and

δQφ = −
ˆ
dSi
(
ξ⊥
√
γ∂iφδφ+ ξiπφδφ

)
. (4.9)

In particular, when the decayment of the fields are considered as (4.6) and(4.7),
it is possible to see that there are a divergent pieces appearing in the gravitational
part and also in the scalar field part. Remarkably, they cancel each other when
grr is considered dependent of χ in the way it was. In this context, the asymptotic
expansion for the scalar field can be considered more general, i.e. where the leading
an sub-leading terms of the expansion are independet, such that

φ =
χ (t, θ)

r1/2
− β (t, θ)

r3/2
+O

(
r−5/2

)
, (4.10)

however, invariance of the asymptotic conditions under the Virasoro symmetry im-
plies

β = αχ3. (4.11)

The only example of this generic behavoir (4.10) for an exact solution was obtained
in a work that is part of this thesis in Chapter 5.

There are other interesting cases, for example, when the mass saturates the
Breitenlohner-Freedman bound mBF = −(d − 1)2/4l2. This bound for the mass of
the scalar feld is a lower bound for having an stable system in the anti-de Sitter
space [49]. Here, the asymptotic behavior of the metric has a slower fall–off than
that of pure gravity with a localized distribution of matter due to the backreaction
of the scalar field, which has a logarithmic branch decreasing as r−(d−1)/2ln (r) at
spatial infinity. This behavior does not affect the asymptotic symmetry group as
compared with pure gravity with negative cosmological constant. There is also a
general analysis for d ≥ 4 [29]. In there, it is noticed that when the mass of the
scalar field belongs to the range m2

BF ≤ m2 ≤ m2
BF + l−2, it has a slow fall-off at

infinity which back reacts on the metric. This fact modifies its standard asymptotic
behavior and forces to impose some conditions for having well defined Hamiltonian
generators, for all elements of the anti-de Sitter algebra. A physical condition is to
left the scalar field invariant under asymptotic AdS symetry ξ,

φ→ φ+ Lξφ. (4.12)

As a result, the above implies to impose a functional relationship on the coefficients
of the leading and subleading term of the scalar field fall-off, as it will be seen in
the example presented in Chapter 7.
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Chapter 5

Three-dimensional black holes
with conformally coupled scalar
and gauge fields

In this Chapter we consider three-dimensional gravity with negative cosmological
constant in the presence of a single real scalar field and an Abelian gauge field. This
composite matter source is characterized by the fact that both fields are conformally
coupled to gravity, in contrast with some recently proposed models [25, 26]. The
action for the scalar field contains, in addition to the kinetic term, an interacting
term with the curvature and a sixth-power self interaction potential. With these
ingredients, this non-minimal action for the scalar field becomes conformal invari-
ant. On the other hand, it is well known that the Maxwell action is invariant under
conformal transformations of the metric only in four dimensions. This symmetry is
recovered in any spacetime dimension n if the Maxwell Lagrangian is raised to the
(n/4)th power [27]. Therefore, a Lagrangian of this form describes the Abelian gauge
field considered in this work. Remarkably, this conformal invariant action for the
gauge field may provide a Coulomb-like electric field in arbitrary dimensions. We
introduce the action and the corresponding field equations, which are solved using
a circularly symmetric ansatz and the black hole solutions are identified. Since the
solutions are given by simple expressions, the search for black holes is greatly sim-
plified. The geometries asymptotically approach anti-de Sitter spacetime, and the
scalar fields are regular on and outside of the corresponding horizons. The mass and
electric charge of the black holes are determined using the Regge-Teitelboim method
[42]. Boundary conditions over the leading and sub-leading terms in the asymptotic
form of the scalar field are required for obtaining the mass. Since the scalar field is
defined for two independent integration constants, a wide class of boundary condi-
tions are allowed, even those that spoil the asymptotic AdS invariance. It is also
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performed the thermodynamic analysis of the solution. The temperature, electric
potential and entropy are determined. The entropy is not automatically a positive
definite quantity in this non-minimal frame and additional conditions must be im-
posed on the integration and self-interacting coupling constants in order to ensure
a positive entropy.

5.1 Black hole solutions

We consider three-dimensional gravity with negative cosmological constant in pres-
ence of a scalar and an electromagnetic field, being both fields conformally coupled
to gravity. The action is given by

I[gµν , φ, Aµ] =

ˆ
d3x
√
−g
[
R + 2l−2

2κ
− 1

2
gµν∇µφ∇νφ−

1

16
Rφ2 − λφ6 (5.1)

+σ (−F µνFµν)
3/4
]
, (5.2)

where κ is the gravitational constant and l is the AdS radius. Moreover, λ and σ
are the coupling constants of the self-interaction potential and the nonlinear elec-
tromagnetic term, respectively.

The equations of motion are

Eµν ≡ Gµν + Λgµν − κ
(
T φµν + TAµν

)
= 0, (5.3a)

�φ− 1

8
Rφ− 6λφ5 = 0, (5.3b)

∂µ
(√
−gF−1/4F µν

)
= 0, (5.3c)

with Fµν = ∂µAν − ∂νAµ and F = −F µνFµν .
The energy-momentum tensor of the scalar field is given by

T φµν = ∂µφ∂νφ−
1

2
gµν∂

λφ∂λφ− λgµνφ6 +
1

8
[gµν�−∇µ∇ν +Gµν ]φ

2, (5.4)

and
TAµν = σ

(
3FλµF

λ
νF−1/4 + gµνF3/4

)
(5.5)

is the corresponding one for the nonlinear electromagnetic field.
It is worth noticing that the negative sign inside the nonlinear electromagnetic

term in the action (5.1) ensures that purely electric configurations remain real.
Furthermore, the coupling constant σ is chosen to be positive1 in order to keep

1Without lost of generality, σ is chosen to be 21/4 just for simplifying numerical factors.
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the energy density of the electromagnetic field –the TA
0̂0̂

component of the energy-
momentum tensor in the orthonormal frame– positive for this class of configurations.

Since the fields are conformally coupled, their corresponding stress tensors are
traceless on-shell, so that Einstein’s equations (5.3a) imply

R = −6l−2. (5.6)

We will deal with asymptotically AdS spacetimes. In this context, potentials un-
bounded from below, for instance the case for λ < 0 in the action (5.1), do not
generate the sort of instabilities as in asymptotically flat spacetimes, provided the
mass of the scalar field is bounded from below by the Breitenlohner-Freedman one
m2
BF [50, 51, 52]. In three dimensions, m2

BF = −l−2, and because of (5.6), in our
case the mass of the scalar field is 3/4l−2, which satisfies the mentioned bound.

We look for static and circularly symmetric configurations described by the line
element

ds2 = −F (r)dt2 + F−1(r)dr2 + r2dθ2, (5.7)

a scalar field depending just on the radial coordinate, and a gauge field of the form
A = At(r)dt, which generates a purely radial electric field. The coordinates range
as −∞ < t <∞, 0 ≤ r <∞, 0 ≤ θ < 2π.

From the subtraction Et
t − Er

r in (5.3a), a second-order differential equation for
the scalar field is obtained, whose integration yields

φ(r) =

√
b

r + c
, (5.8)

where b and c are integration constants. Moreover, from the nonlinear Maxwell
equation (5.3c) the gauge field is easily obtained (modulo gauge transformations)

A = −q
r
dt. (5.9)

The constant q is related with the electric charge as we will show below in Subsec.
5.2. Finally, the metric function F (r) can be directly obtained from equation (5.6),
which gives

F (r) =
r2

l2
+ a1 +

a2

r
, (5.10)

where a1 and a2 are integration constants. It is clear, from the line element (5.7) and
the radial dependence of F shown in (5.10), that these solutions are asymptotically
anti-de Sitter spacetimes whose asymptotic behaviors match the well-known Brown-
Henneaux conditions [47]. However, as is discussed in Sec. 5.2, boundary conditions
on the matter fields could spoil the conformal invariance of the full configuration.
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The case of vanishing scalar field (b = 0) was studied in [53], and we will not con-
sider it here. The remaining equations of motion give relations among the integration
constants a1, a2, b, c and q. Since we are interested in the case of nonvanishing scalar
field we assume b 6= 0 in these equations, which give rise to two different branches:
i) c = 0 and ii) c 6= 0. Furthermore, it is convenient to address the case without
self-interaction potential (λ = 0) in a separate section.

5.1.1 Case c = 0: Black hole dressed with a stealth compos-
ite matter source

The solution is determined by the metric function

F (r) =
r2

l2
+ 24λb2, (5.11)

the scalar field

φ(r) =

√
b

r
, (5.12)

and the gauge field given by (5.9) with

|q|3/2 = −λb3. (5.13)

The scalar field is real provided b > 0. Moreover, in order to ensure a real q it is
necessary to fix the coupling constant λ ≤ 0 as one can see from the r.h.s. of (5.13).
In this case, the spacetime corresponds to a black hole, whose horizon is located at
r2

+ = −24λl2b2. It should be noticed that this black hole has the same metric as the
static and uncharged BTZ black hole. However, it possesses a nonvanishing electric
charge and is dressed with a conformal scalar field. This occurs because the total
energy-momentum tensor vanishes, i.e., the scalar field and gauge field contributions
cancel out. Therefore, the above solution can be considered as a stealth configuration
[54, 55, 56, 57, 58, 59] produced by two different matter sources. The metric is free
of singularities and the matter fields diverge at the origin, r = 0.

5.1.2 Black holes in the general case c, λ 6= 0

First, it is convenient to redefine the coupling constant as λ = κ2α/(512l2), where
now α plays the role of the coupling constant associated to the self-interaction
potential. Additionally, we also define b = 8ac/κ, where a is an integration constant.

In this way, the solution with a nonvanishing scalar field is given by the metric
function

F (r) =
r2

l2
− (1− αa2)

l2

(
2c3

r
+ 3c2

)
, (5.14)
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the scalar field

φ(r) =

√
8

κ

√
ac

r + c
, (5.15)

and the gauge field shown in (5.9), with an integration constant q satisfying

|q|3/2 = −c
3(1− αa2)(1− a)

κl2
. (5.16)

This expression indicates that the gauge field vanishes for two particular values of a,
which allow to rediscover previous uncharged solutions. The case a = 1 corresponds
to the scalar hairy black hole found in [15, 16], and the case a = 1/

√
α is the massless

hairy solution reported in [18]. Hereafter, we focus our attention in new black hole
configurations with q 6= 0.

The horizons are located at the positive roots of the cubic equation F (r) = 0.
By replacing r = cx, this problem is reduced to solve

x2 − (1− αa2)

(
2

x
+ 3

)
= 0. (5.17)

In the case c > 0, we are interested in the positive roots of (5.17), and for c < 0 the
relevant roots correspond to the negative ones. Since we are dealing with a cubic
equation, it is possible to write down their exact roots xi in the following form

xi = z+
i z
−
i

(
z+
i + z−i

)
, i = 1, 2, 3 (5.18)

with
z+
i = γi(1 +

√
αa2)1/3 and z−i = γ̄i(1−

√
αa2)1/3. (5.19)

Here γi represent the roots of unity γ3
i = 1, and γ̄i are their complex conjugates .

These are

γ1 = 1, γ2 = −

(
1 + i

√
3

2

)
, γ3 = −

(
1− i

√
3

2

)
. (5.20)

For α ≤ 0, z−i = z̄+
i so that all the roots (5.18) are real. In the opposite case α > 0,

we note that x1 is always a real root of (5.17) and x2, x3 are complex.
The qualitative behavior of the roots is illustrated in figures (5.1) and (5.2). The

real roots correspond to the intersection of a parabola with a hyperbola as is shown
in (5.17). This can be described as follow:

• If 1− αa2 > 0, the root x1 is positive and the nature of x2 and x3 depend on
the sign of α. If α < 0, x2 and x3 are negative. On contrary, if α > 0, x2 and
x3 are complex numbers (see Fig. (5.1)).
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123

Figure 5.1: Case (1 − αa2) > 0: The roots x1, x2, x3 are shown for the case (1 −
αa2) > 0. The root x1 is positive and the roots x2 and x3 depend on the sign of
α. If α < 0, x2 and x3 are negative. Alternatively, if α > 0, x2 and x3 are both
complex numbers, since the hyperbola does not intersect the parabola for x < 0.

1

Figure 5.2: Case (1 − αa2) < 0: The roots x1, x2, x3 are shown for the case (1 −
αa2) < 0. The root x1 is negative and x2 and x3 are both complex roots.

• If 1 − αa2 < 0, the root x1 is negative and x2 and x3 are complex roots (see
Fig. (5.2)).

After capturing the general properties of the roots of (5.17), we are in position
to analyze the existence of black hole solutions. The analysis requires to study both
signs of the integration constant c as is shown below. Note that, for thermodynamic
considerations explained in Sec. 5.3, the presence of a horizon is not enough to
ensure physically sensible black hole solutions.

5.1.2.1 Event horizon for c > 0

The previous analysis indicates that only for 1 − αa2 > 0 there is a positive root,
x1. Moreover, the condition a > 1 appears by demanding positivity of the r.h.s of
(5.16). The intersection of these two inequalities, 1 − αa2 > 0 and a > 1, implies
that: (A) there is no restriction for any α < 0, or (B) for a positive self-interacting
coupling parameter α, it is required to be bounded from above such that 0 < α ≤ 1,
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in conjunction with a bounded integration constant 1 < a < 1/
√
α.

Under the conditions (A) or (B) there exists an event horizon located at r+ =
x1c. Additionally, from the analytic expression of x1 it is possible to determine
bounds for the event horizon according to the sign of the self-coupling parameter.
Under the conditions (A) we have r+ > 2c, while (B) provides the bounds 0 <
r+ < 2c.

Since r and c are positive, the scalar field is regular everywhere. The gauge field
and metric are singular at the origin r = 0, as one can read from (5.9) and from the
Kretschmann invariant, 12l−4(1 + 2c6(1− αa2)2r−6), respectively.

5.1.2.2 Event horizon for c < 0

We are now interested in the negative roots of (5.17). First, the root x1 < 0 can be
discarded since it requires the condition 1 − αa2 < 0 and also, from (5.16), a > 1.
This last requirement is incompatible with the necessary condition a < 0 to ensure
a real scalar field (5.15). Therefore, x1 does not produce an event horizon. Second,
it is possible to consider the roots x2 and x3, which become negative real numbers
provided 1−αa2 > 0 and α < 0 (conditions labeled by (C)). From the definitions of
x2 and x3 one can to extract the following properties: 2/3 < |x2| < 1 and |x3| > 1.
Then, since |x3| > |x2| the event horizon is located at r+ = x3c, provided conditions
(C) are satisfied. The root x2 gives rise an inner horizon. Since we are considering
α and a 6= 0, the root x2 cannot equal x3, then an extreme black hole does not
occur. Due to the inequality r+ > −c, the singularity of the scalar field at r = −c
is hidden by the event horizon r+. As in the previous case, the metric and gauge
field are singular only at the origin.

5.1.3 Black hole in absence of self-interaction potential (λ =
0)

A particularly simple solution is obtained in absence of self-interaction potential.
The metric function F (r) reduces to

F (r) =
(r + c)2(r − 2c)

rl2
, (5.21)

and the gauge and scalar fields are given by (5.9) and (5.15), respectively. Now, the
constant q satisfies

|q|3/2 =
c3(a− 1)

κl2
. (5.22)

Although it is possible to consider c < 0, the double zero of F (r) at r = −c is not
suitable to be promoted to event horizon because the scalar field (5.15) is singular
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there. We adopt a conservative point of view saying that the singularity of the scalar
field prevents the existence of an extreme black hole. Thus, we consider only the
simple root r = 2c, which becomes an event horizon for c > 0. The condition a > 1
arises from (5.22). As in the previous case with c > 0, the gauge and metric fields
are singular at the origin, and the scalar field is regular everywhere.

5.2 Mass and electric charge

The aim of this section is to determine the conserved charges of the black holes intro-
duced above. For this goal we consider the hamiltonian Regge-Teitelboim method
[42]. In this approach the charges Q[ξ, ξA] are the surface terms added to the Hamil-
tonian generator in order to ensure well-defined functional derivatives. The bulk
piece of the canonical generator

H[ξ, ξA] =

ˆ
dx2

(
ξ⊥H⊥ + ξiHi + ξAG

)
+Q[ξ, ξA], (5.23)

is a linear combination of the constrains H⊥ and Hi, where i denotes the two spatial
dimensions, and G is the Gauss constraint associated to the Abelian gauge field.
The charge corresponds to the canonical generator for vanishing constraints. The
vector ξ = (ξ⊥, ξi) represents the asymptotic symmetries of the spacetime, and ξA

is the parameter associated to the Abelian gauge symmetry.
For the class of solutions we are dealing with, it is sufficient to consider a min-

isuperspace of circularly symmetric configurations defined by the line element

ds2 = −
(
N⊥(r)

)2
dt2 + F (r)−1dr2 + r2dθ2, (5.24)

a scalar field φ(r) and a gauge field A = At(r)dt. In this case, the only nontrivial
canonical momentum is that corresponding to the gauge field E(r), which is given
by

E(r) = 3r

(
F (r)

(N⊥(r))2

)1/4

|Ftr|1/2 sign(Ftr). (5.25)

Since all the canonical momenta associated to the gravitational field and the scalar
field vanish, the constraint Hi is identically zero, H⊥ takes the form

H⊥ =
1√
F

(
F ′

2κ

(
1− κφ2

8

)
+
rF

4
(φ′2 − φφ′′)− φφ′

8
(rF ′ + 2F )− r

l2κ
(5.26)

+rλφ6 +
E3

27r2

)
, (5.27)

and the Gauss constraint reduces to G = −∂rE .
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The variation of surface term δQ is chosen so that δH = 0 on the vanishing
constraints. In this case, the boundary is a circle S1 of infinite radius. Integrating
over the angular coordinate, we obtain

δQ(ξ⊥, ξA) =

[
πξ⊥ (−8 + κφ (φ+ 2rφ′))

8κ
√
F

δF − 1

2
πr
√
F
(
φ
(
ξ⊥
)′

+ 3ξ⊥φ′
)
δφ

+
1

2
πr
√
Fξ⊥φδφ′ + 2πξAδE

]
r→∞

. (5.28)

The integration of δQ requires to choose suitable asymptotic conditions for all fields.
These conditions should allow for the asymptotic behavior of the exact solutions
found in the previous section. These conditions, specified up to the order that
contributes to the charge, are given by

F (r) =
r2

l2
+ F0 +O

(
1

r

)
, (5.29)

φ(r) =
φ0

r1/2
+

φ1

r3/2
+O

(
1

r5/2

)
, (5.30)

E(r) = E0 +O
(

1

r

)
, (5.31)

ξ⊥(r) =
r

l
ξ0 +O

(
1

r

)
, (5.32)

ξA(r) = ξA0 +O
(

1

r

)
, (5.33)

where the quantities labeled with subscripts 0 and 1 are arbitrary constants. Under
these asymptotic conditions the variation ((5.28)) reduces to

δQ = ξ0

(
−πδF0

κ
+

π

2l2
(3φ1δφ0 − φ0δφ1)

)
+ 2πξA0 δE0. (5.34)

The mass M is the conserved charge associated to time translation symmetry,
parametrized here by ξ0, and the electric charge Qe is that coming from the U(1)
gauge invariance, represented by the gauge parameter ξA0 . From (5.34) we can read
directly

δM = −πδF0

κ
+

π

2l2
(3φ1δφ0 − φ0δφ1) , (5.35)

δQe = −2πδE0. (5.36)

The minus sign in (5.36) comes from the sign difference between the electric field
density and the canonical momentum of the gauge field. The electric charge can be
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immediately integrated, and is given by the leading term of the canonical momentum
of the gauge field:

Qe = −2πE0. (5.37)

It is clear that the second term in (5.35), which takes into account the contribution
of the scalar field to the mass, provided φ0 6= 0 and φ1 6= 0, needs a boundary
condition for integrating it, i. e., a functional relation φ1 = φ1(φ0). In simple words,
the mass is determined after imposing boundary conditions, and is given by2

M = −πF0

κ
+

π

2l2

ˆ (
3φ1 − φ0

dφ1

dφ0

)
dφ0. (5.38)

Apart from the boundary conditions φ0 = 0 or φ1 = 0, there is only one additional
case which also leads a vanishing contribution from scalar field to the mass: the
functional relation

φ1 = γφ3
0, (5.39)

where γ is a constant without variation. These three boundary conditions share a
same feature: they do not spoil the conformal invariance of a scalar field approaching
to infinity in the form (5.30), as pointed out in [16] (for a recent related discussion
in four dimensions see [60]). Any other functional relation φ1 = φ1(φ0), in the way
of Designer Gravity [61], breaks the conformal invariance of the scalar field and
consequently, the asymptotic AdS symmetry of the whole configuration.

We can now compute the mass and electric charge for the black holes found
in Section 7.11. The first case is the black hole with stealth matter described in
section 5.1.1. In this case, F0 = 24λb2, φ0 =

√
b, φ1 = 0 and E0 = 3λ1/3b sign(q).

Then, evaluating (5.38) and (5.37), the corresponding mass and electric charge are

M = −24πλb2

κ
, and Qe = 6π(−λ)1/3b sign(q), (5.40)

respectively.
For the black holes found in section 5.1.2, φ0, φ1 6= 0 and a boundary condition

is required in order to determine the mass. For instance, the boundary condition

φ1 = γφn0 , (5.41)

where γ, n 6= −1 are constants without variation, yields a mass

M = −πF0

κ
+
πγ(3− n)

2l2(n+ 1)
φn+1

0 . (5.42)

2Two arbitrary additive constants (but fixed, i. e. without variation) appear in the integration
of (5.35) and (5.36). They will be set to zero in order that the massless BTZ has a vanishing mass,
and in absence of the gauge field, the solution be electrically uncharge.
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Then, using the asymptotic values for this class of black holes,

F0 = −3c2(1− αa2)

l2
, φ0 =

√
8ac

κ
, φ1 = −

√
2ac3

κ
, (5.43)

the mass and the electric charge can be written as

M =
3πc2(1− αa2)

κl2
+
πγ(3− n)

2l2(n+ 1)

(
8ac

κ

)n+1
2

, (5.44)

Qe = 6π|q|1/2 sign(q), (5.45)

where q is given in Eq. (5.16). Note that the boundary condition (5.41) fixes a
relation between the integration constants a and c. Finally, the limit α → 0 in
(5.44) and (5.45) gives the mass and electric charge of the black hole without self-
interaction potential described in Section 5.1.3.

5.3 Thermodynamics

This section is devoted to study thermodynamic properties of the charged hairy black
holes shown in Subsec. 7.11. The conjugate variables associated to the conserved
charges, mass and electric charge, are the temperature and the electric potential,
respectively. The temperature can be obtained by means of the surface gravity κH

T =
κH

2π
, (5.46)

which is given by κ2
H = −1/2∇µχν∇µχ

ν with χµ = (1, 0, 0). Additionally, the
electric potential is defined as

Φ := A0(r+)− A0(∞) = − q

r+

. (5.47)

The entropy can be found using the modified Bekenstein-Hawking area formula,

S = Ω(r+)
4π2r+

κ
, (5.48)

where the factor Ω(r+) = 1 − κφ(r+)2/8 comes from the nonminimally coupling
term in the action [62, 63]. Since this factor is not positive definite, the entropy
could become negative. In order to avoid such a non-well-behaved thermodynamic
situation, solutions in which Ω(r+) is negative must be discarded as black holes.
For this reason, it is necessary to impose additional constrains on the integration
constants and α as discussed in detail below.

26



We start examining the validity of the first law for the black holes introduced in
Subsec. 7.11. Using the variation of the global charges (5.35) and (5.36), and the
expressions for the temperature (5.46), entropy (5.48) and electric potential (5.47),
evaluated on each particular black hole, it is possible to prove that the first law of
black hole thermodynamics

δM = TδS + ΦδQ (5.49)

holds in all the cases. It can be seen as follow. In the general case c 6= 0 the
expressions for each member of the above equation are given by

δM = −2πc2

l2κ
(1 + 3αa) δa+

6πc

l2κ

(
1− αa2

)
δc (5.50)

δQe = −25/6πsign(q)σ2/3c (3αa2 − 2αa− 1) δa

κl2(1− a)2/3 (1− αa2)2/3

−3 25/6πsign(q)σ2/3 (1− a)1/3 (1− αa2)
1/3
δc

κl2
(5.51)

δS = − 4π2xδa

κ(1 + x)
− 4π2(−1 + a− x)xδc

κ(1 + x)
+

4π2c(−a+ (1 + x)2)δx

κ(1 + x)2
. (5.52)

After applying repeatedly the following identities which comes from F (r+) = 0

x3 = (1− αa2)(2 + 3x), δx = − 2αa(2 + 3x)δa

3(−1 + αa2 + x2)
, (5.53)

it is possible to show that the first law is satisfied. Note that this property holds
regardless a relation between a and c, i. e., the first law is satisfied for any boundary
condition. For c = 0 the check is easier, we have

δM = −48πλbδb

κ
, (5.54)

δQe = 6π(−λ)1/3sign(q)δb, (5.55)

δS =
8l
√

6|λ|δb
κ

. (5.56)

Now, we analyze the thermodynamic behavior of the black hole solutions according
to the different values of c. In the case c = 0, discussed in Subsec. 5.1.1, there exists
an event horizon only if the coupling constant λ is negative. Then, the temperature,
electric potential and entropy are

T =
r+

2πl2
, Φ = − sign(q)r+

24(−λ)1/3l2
, S =

(
1− κ

8l
√

24(−λ)

)
4π2r+

κ
, (5.57)
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c>0
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Figure 5.3: Temperature vs horizon: The behavior of the temperature T as
a function of the horizon radius r+ is shown. For all possible values of the inte-
gration constant c, the temperature is a monotonically increasing function of r+.
For large values of r+, T approaches a linear function of r+ with a slope 1/(2πl2),
which matches the straight line describing the case c = 0. Note that for a given
temperature, three possible black hole configurations of different sizes can exist.

respectively. We can see that these quantities are linear functions of r+ = 2
√

6|λ|lb.
However, the entropy is positive only if

√
−λ < κ/8l

√
24. Thus, this physical

requirement on the entropy yields an upper bound for the coupling constant λ.
For the case c 6= 0, studied in Sec. 5.1.2, the expressions for temperature, electric

potential, and entropy computed from (5.46), (5.48), and (5.47) are

T =
3r+

2πl2

(
r+ + c

3r+ + 2c

)
, Φ = − sign(q)c2(1− αa2)2/3(1− a)2/3

(κl2)2/3r+

, (5.58)

S =

(
1− ac

r+ + c

)
4π2r+

κ
, (5.59)

respectively.
First, we analyse the temperature behavior. Since r+ + c > 0, the temperature

is a positive, monotonically increasing function of r+ as shown in Fig. 5.3. For
large values of r+, the temperature approaches a linear function of r+ with the same
slope, 1/(2πl2), as for that in the case c = 0, which coincides with the temperature
of the static BTZ black hole.

Now, we focus the attention on the entropy (5.59) for c 6= 0. As mentioned, the
entropy derived from the action (5.1) is not a positive definite quantity. Then, the
conditions that guarantee black holes with positive entropy must be determined.

A conformal transformation maps the action (5.1) to the Einstein frame (EF),
where the scalar field is minimally coupled to gravity. The entropy in the Einstein
frame follows the Bekenstein-Hawking area law, and hence is positive definite quan-
tity. Naively, one may think that negative entropy configurations, now mapped into
the Einstein frame could have a positive entropy. Remarkably, as shown in [64], for
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a similar class of solutions in four dimensions, they are not mapped into black holes
but naked singularities in the new frame. The mechanism acts as follow. In three
dimensions the conformal transformation is given by

gEF
µν = Ω(φ)2gµν =

(
1− κ

8
φ2
)2

gµν (5.60)

First, we note the hypersurfaces where the conformal factor Ω(φ) vanishes are
mapped into curvature singularities of the corresponding image in the EF. For the
solutions presented in this work, Ω(φ) is a monotonously increasing function of r ap-
proaching 1 for a large r, but it is not a positive definite function. For configurations
where Ω(φ(r+)) ≤ 0, the conformal factor necessarily vanishes in a hypersurface lo-
cated at r0 ≥ r+ generating a naked singularity in the EF. On contrary, for those
configurations with Ω(φ(r+)) > 0, the curvature singularity occurs at r0 < r+. Only
in the latter case black holes in the conformal frame are mapped into black holes
in the EF. In consequence, since Ω(φ(r+)) > 0 is the same condition for ensuring
a positive entropy, only black holes having a well-defined entropy in the conformal
frame generate black holes in the EF. Therefore one concludes that the conditions
for the black holes parameters in the conformal frame, ensuring the entropy to be
positive, exactly coincide with the ones that guarantee cosmic censorship in Einstein
frame.

When the gauge potential is turned off, we get hairy black holes solutions. Some
of them are already known in the literature. In Chapter 7 we give a novel way to
obtain the thermodynamic parameters for this kind of solutions in three dimensions.
Actually, the tools considered so far, are used for connections in a Chern-Simons
theory. That is the reason because next Chapter will be a preparation for presenting
our work.

29



Chapter 6

General Relativity in three
spacetime dimensions as a
Chern-Simons theory

Three-dimensional gravity has proven to be a remarkably fertile ground for the study
of gravity. The theory is topological and since there are no propagating degrees of
freedom, the theory can be expressed as a Chern-Simons theory. In this scheme, the
only fields are gauge connections, where we lost the sense of causality present in the
metric formulation. This issue affects directly the way in wich we understand black
holes and how we characterize them. The next chapter is focused on presenting the
Chern-Simons action and how it is related with gravity. For pure (2 + 1) gravity, it
consists of one copy of the Poincaré algebra and for positive cosmological constant
one copy of SO(3, 1). For negative cosmological constant, in particular, there is
a black hole solution, the BTZ black hole and the action can be reformulated in
terms of two Chern-Simons connections for sl(2,R). In this case, we characterize
the solution through its thermodynamics by regularazing the connnection along its
contractible cycles. 1

6.1 Action and field equations

The Chern-Simons action is given by following

ICS =
k

4π

ˆ

M

〈
AdA+

2

3
A3

〉
, (6.1)

1This Chapter is based on the lecture notes [68].
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where M is a manifold, such that M = Σ×R, where Σ is a spacelike surface and R
is a real timelike line. Here k is a constant called level, relevant at quantum regime
and A is the gauge field spanned in the algebra such that A = AIµTIdx

µ where TI
stand for the generators of a Lie algebra g. This algebra is assumed to admit an
invariant nondegenerate bilinear form gIJ = 〈TI , TJ〉.

The Chern-Simons field equations can be readly obtain taking the variation of
(6.1)

δICS =
k

4π
δ

ˆ

M3

〈
AdA+

2

3
A3

〉
=

k

4π
δ

ˆ

M4

〈
F 2
〉

(6.2)

=
k

2π

ˆ

M4

〈FDδA〉 =
k

2π

ˆ

M4

〈d (FδA)〉 (6.3)

=
k

2π

ˆ

M3

〈FδA〉 , (6.4)

where

F = dA+ A2 = 0 . (6.5)

Then, the field equations for a Chern-Simons theory implies that the connection is
locally flat on-shell.

6.2 Canonical formulation

The Chern-Simons action (6.1) can be written in a Hamiltonian form, where

IH = − k

4π

ˆ

Σ×R

dtd2xεij
〈
AiȦj − AtFij

〉
+BH . (6.6)

This is straightforward when it is considered that the connection is split as A =
Aidx

i + Atdx
t. In the above equation, BH is a boundary term included in the

Chern-Simons action for having gauge invariance in the action and depends on the
boundary conditions. From (6.6), it is possible to see also that At is a Lagrange
multiplier and that Aj are the dynamical fields. They satisfy the following Poisson
bracket {

AIi (x) , AJj (x′)
}

=
2π

k
gIJεijδ (x− x′) , (6.7)

where the constraint associated to At is given by

G =
k

4π
εijFij . (6.8)
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As a consequence, the smeared generator (see e. g. [65, 66, 67]) reads,

G (Λ) =

ˆ

Σ

d2x 〈ΛG〉 . (6.9)

With the definition of the generator, we are able to compute the infinitesimal gauge
transformation on the dynamical fields, which is given by δAi = {Ai, G (Λ)} =
∂iΛ + [Ai,Λ], where the parameter Λ is Lie algebra valued.

When geometry has a boundary ∂Σ 6= 0 at spatial infinity, then G (Λ) should
be supplemented by a boundary term Q (Λ) according to the Regge-Teitelboim ap-
proach [42],

Ḡ (Λ) = G (Λ) +Q (Λ) . (6.10)

This term improves the generator such that its functional variation is well-defined
everywhere, where the variation of the conserved charge associated to the asymptotic
gauge symmetry spanned by Λ is given by

δQ (Λ) = − k

2π

ˆ

Σ

〈ΛδAθ〉 dθ , (6.11)

which is determined by the dynamical fields at a fixed time slice at the boundary Σ.
When the system is on-shell Fνµ = 0, by virtue of LξAµ = ∇µ (ξνAν) + ξνFνµ,

the diffeomorphisms δξAµ = −LξAµ are the same as the gauge transformations with
parameter Λ = −ξµAµ. As a result, the variation of the asymptotic symmetry
generator spanned by an asymptotic Killing vector reads

δQ (ξ) =
k

2π

ˆ

∂Σ

ξµ 〈AµδAθ〉 dθ . (6.12)

On the other hand, the transformation of the Lagrange multiplier At is given by

δAt = ∂tΛ + [At,Λ] . (6.13)

This variation is recovered when one requires that the improved action is invariant
under gauge transformations.

In order to integrate the variation of the canonical generators (6.11) a precise
set of asymptotic conditions must be given. In the next section, we will explicitly
show the relation between three-dimensional gravity and a Chern-Simons theory.

32



6.3 General Relativity with negative cosmological

constant in three dimensions

General Relativity in vacuum can be described in terms of a Chern-Simons action
[5, 6]. In particular, when we are considering gravity with Λ < 0 the actions reads
as ,

I = ICS
[
A+
]
− ICS

[
A−
]
. (6.14)

Here the connection A is defined in the Lie algebra g = g+ + g−, where g± stand for
two independent copies of sl (2,R) (details of the change of basis from so(2, 2) are
give in Appendix 11). We assume that the algebra is described by the same set of
matrices Li, with i = −1, 0, 1, given by

L−1 =

(
0 0
1 0

)
; L0 =

(
−1

2
0

0 1
2

)
; L1 =

(
0 −1
0 0

)
, (6.15)

so that the sl (2,R) algebra reads

[Li, Lj] = (i− j)Li+j . (6.16)

The connection then splits in two independent sl (2,R)-valued gauge fields, accord-
ing to A = A+ +A−. On the other hand, the invariant bilinear forms correspond to
the trace for the representation (6.15) where its nonvanishing components are given
by 〈L1, L−1〉 = −1 and 〈L0, L0〉 = 1

2
.

For making the relation with the fields of gravity in first order, let us consider
that the gauge fields are written in terms of the spacetime geometry fields e, ω as

A± = ω ± e

l
, (6.17)

where the field ea = eaµdx
µ is the dreibein 1-form and ωa = ωaµdx

µ is the dualized spin
connection 1-form, which defines the dualized curvature 2-formRa = dωa+ 1

2
εabcωbωc.

Then, using (6.17) and (6.14), it is possible to recover

IGR =
1

2κ

ˆ (
2Raea −

Λ

3
εabce

aebec
)
. (6.18)

The above action is the first order formulation of gravity in three dimensions with
cosmological constant Λ. Here, the metric is recovered from gµν = 2tr (eµeν) and
the equation of motion associated to ω gives rise to a torsionless condition, leading
to a Riemannian spacetime.
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6.3.1 BTZ black hole and its thermodynamics

The asymptotic behaviour of gravity with negative cosmological constant can be
aslo reformulated in terms of the gauge fields A±. In this formalism, it is interesting
to notice that the radial dependence is entirely captured by the group elements
g± = e±ρL0 , so that the asymptotic form of the connections is given by

A± = g−1
± a±g± + g−1

± dg± , (6.19)

where a± = a±θ dθ + a±t dt. If we consider the change of variables, x± = t
l
± θ, then

the connection is given by

a± = ±
(
L±1 −

2π

k
L±L∓1

)
dx± , (6.20)

where the functions L± = L± (t, θ) . The asymptotic form of the dynamical fields
a±θ is preserved under gauge transformations, δa±θ = ∂θΛ

± +
[
a±θ ,Λ

±], generated by

Λ± (ε±) = ε±L±1 ∓ ε′±L0 +
1

2

(
ε′′± −

4π

k
ε±L±

)
L∓1 , (6.21)

where the prime indicates the derivative with respect to θ. Here ε± = ε± (t, θ)
provided the functions L± transform as

δL± = ε±L′± + 2L±ε′± −
k

4π
ε′′′± . (6.22)

It is also necessary to impose on a±t to be mapped into themselves under the same
gauge transformations, considering also the transformation laws in (6.22). This
impose some chirality conditions on L± and the parameters ε± ,

∂∓L± = 0 , ∂∓ε± = 0 . (6.23)

In the connection (6.20), when L± are nonnegative constants, the asymptotic con-
ditions contain also the BTZ black hole solution .

Now we are in position to study the BTZ thermodynamics as shown in [69]. The
Euclidean black hole has the topology of a solid torus that corresponds to R2 × S1,
where R2 stands for the one of the ρ− τ plane. Here, τ = −it is the Euclidean time,
fulfilling 0 ≤ τ < β, where β = T−1 is the inverse of the Hawking temperature.

An important objet to consider here is the holonomy of the gauge field around
a closed cycle C, defined as

HC = P exp

(ˆ
C
Aµdx

µ

)
. (6.24)
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H is an element of the gauge group and it is sensitive to the global properties of
the manifold. For the solution we are considering, the gauge group corresponds to
SL (2,R)× SL (2,R), the holonomy around C is

H±C = P exp

(ˆ
C
A±µ dx

µ

)
. (6.25)

As the topology of the manifold is the one of a solid torus, there are contractible
cycles along the thermal coordinate. We say they are trivial because satisfy,

H±C = −1 , (6.26)

where the negative sign is due to the fact that, according to (6.15), we are dealing
with the fundamental (spinorial) representation of SL (2,R). For simplicity, here
we computate the static case, i.e., for L := L±. Since the holonomies around the
thermal cycle of the BTZ black hole are trivial, the conditions in (6.26) reduce to

H±τ = eβa
±
τ = eiβa

±
t = −1 . (6.27)

The eigenvalues of iβat are given by ±inπ, where n is a positive integer, then

β2tr
[(
a±t
)2
]

= 2n2π2 . (6.28)

The above ecuation fix the Euclidean time as

β = l

√
πk

2L
, (6.29)

choosing n = 1, so as to make contact with the metric formulation, where β is fixed
demanding the absence of conical singularities at the horizon. The value (6.29)
coincides with the Hawking temperature.
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Chapter 7

Gravity with a scalar field in 3D
from a Chern-Simons form:
thermodynamics of hairy black
holes in terms of gauge fields

In this section, we present the theory of gravity with a conformally coupled scalar
field and a novel rotating black hole solution. We generalized the result of 1970
obtained by Deser in d dimensions, that it is posible to recast the conformally
invariant scalar field action as a gravity action. After that, we formulate the theory
in terms of one-forms, so that we can redifine them as connections. We express the
action as a Chern-Simons form and compute the global charges of the theory from
the boundary terms of Chern-Simon. We study the thermodynamics of a hairy black
hole solution in terms of gauge fields using the regularity conditions for connections
in a Chern-Simons theory. The same analysis can be done in the case of Einstein
gravity with a minimally coupled self-interacting real scalar field in three spacetime
dimensions. We present the connections and equations of motion of this formulation.

7.1 Gravity with a conformally coupled scalar field

7.1.1 Metric formulation and black hole solution

We are interested in a scalar field conformally coupled to gravity in presence of a self-
interaction potential λφ6, which does not spoil the conformal invariance, described
by the matter action

Iφ [gµν , φ] =

ˆ
d3x
√
−g
(
−1

2
gµν∂µφ∂νφ−

1

16
Rφ2 − λφ6

)
, (7.1)
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and the gravitational theory to be considered is standard gravity with a cosmological
constant Λ. Then, the full action that describes this theory is given by

I(2) [gµν , φ] =

ˆ
d3x
√
−g
(
R− 2Λ

2κ
− 1

2
gµν∂µφ∂νφ−

1

16
Rφ2 − λφ6

)
, (7.2)

where κ is the gravitational constant and λ is the self-interaction parameter. The
corresponding field equations are

Gµν + Λgµν = κTµν , (7.3)

�φ− 1

8
Rφ− 6λφ5 = 0. (7.4)

The stress tensor

Tµν = ∂µφ∂νφ−
1

2
gµν∂αφ∂

αφ− gµνλφ6 +
1

8
(gµν�−∇µ∇ν +Gµν)φ

2, (7.5)

is traceless by virtue of (7.4), so that the scalar curvature is constant, R = −6`−2.
The above field equations admit an asymptotically anti-de Sitter rotating black

hole solution

ds2 = −N⊥ (r)2 dt2 + F (r)−2 dr2 +H (r)2 (dθ +N θ (r) dt
)2
, (7.6)

with

N⊥ (r)2 =
r2F (r)2

H (r)2 N2 (∞) , (7.7)

F (r)2 =
r2

`2
− (1− α)

`2

(
2c3

r
+ 3c2

)
, (7.8)

H (r)2 = r2 +
(1− α)ω2

1− ω2

(
2c3

r
+ 3c2

)
, (7.9)

N θ (r) = N θ (∞) +
(1− α)ω

` (1− ω2)H (r)2

(
2c3

r
+ 3c2

)
N (∞) , (7.10)

dressed with a scalar field

φ (r) =

√
8c

κ (r + c)
, (7.11)

where c, ω, N (∞), N θ (∞) are integration constants and α = 512`2λ/κ2 is a
convenient redefinition of self-interaction constant λ. The coordinates range as
−∞ < t < ∞, 0 ≤ r ≤ ∞ and 0 ≤ θ < 2π. Here rN (∞) /` and N θ (∞)
are the values of the lapse and shift functions at r → ∞, respectively. Following
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the standard normalization of the time-like Killing vector ∂t at infinity, we choose
N (∞) = 1. The scalar field remains real in the asymptotic region r →∞ provided
c > 0. Under this condition the scalar field is regular everywhere for r ≥ 0.

This black hole corresponds to the spinning version of that introduced in [16]
and can be obtained from the static one performing a suitable boost in the t − θ
plane. The event horizon is located at r+ = cx, where

x = (1− α)1/3
[(

1 +
√
α
)1/3

+
(
1−
√
α
)1/3
]
, (7.12)

provided by α < 1 (otherwise there is no horizon). For α < 0, r+ > 2c and for
0 ≤ α < 1, the horizon ranges as 2c ≥ r+ > 0. The limit cases α = 1 and c = 0
produce a massless BTZ dressed with a stealth scalar field, i. e., a non-trivial scalar
field with a vanishing stress tensor, and they will be discarded hereafter.

The areal function H(r)2 remains positive on and outside the horizon, if apart
from the conditions previously demanded (c > 0, α < 1) is also required that ω2 < 1.
In Sec. 7.2.1, the integration constant ω will be related with the angular velocity.

The metric is singular at the origin r = 0 for α 6= 1, as one can see from the
Kretschmann invariant

RµνλρRµνλρ =
12

`4

(
1− 2c6 (1− α)2

r6

)
, (7.13)

and its asymptotic behavior fullfills the Brown-Henneaux boundary conditions [47]
because the scalar field has a sufficiently fast falloff at infinity (see Appendix 12).

7.1.2 Recasting the conformally invariant scalar field action
as a gravity action

In 1970, Deser [70] proved that the four-dimensional version of (7.1) can be recast as
the Einstein-Hilbert action by using a conformal transformation of the metric. In-
deed, this can be done in arbitrary dimensions including also a conformally invariant
self-interaction potential. Let us consider the conformal transformation

ḡµν(x) = φ(x)
4

n−2 gµν(x), (7.14)

in n > 2 dimensions. The Ricci scalar transforms as

√
−ḡR̄ =

√
−g
(
Rφ2 − 4(n− 1)

n− 2
φ�φ

)
(7.15)

=
√
−g
(
Rφ2 +

4(n− 1)

n− 2
gµν∂µφ∂νφ

)
(7.16)

−4(n− 1)

n− 2
∂µ
(√
−ggµνφ∂νφ

)
, (7.17)
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and therefore

−
ˆ
dnx
√
−g
(

1

2
gµν∂µφ∂νφ+

n− 2

8(n− 1)
Rφ2 + λφ

2n
n−2

)
=

1

2κ̄

ˆ
dxn
√
−ḡ
(
R̄− 2Λ̄

)
,

(7.18)
up to a boundary term, where

κ̄ = −4(n− 1)

n− 2
and Λ̄ = κ̄λ. (7.19)

This simple computation shows that the action for a conformally coupled scalar field
can be written as an Einstein-Hilbert action with a cosmological constant for the
rescaled metric, where the gravitational constant, which depends on the dimension,
is negative and the cosmological constant is proportional to the self-interaction con-
stant, but with opposite sign. Note that in absence of a self-interaction potential
(λ = 0), we have Λ̄ = 0.

In consequence, in three dimensions (n = 3) we can write (7.2) as

I(2) [gµν , φ] =
1

2κ

ˆ
dx3
√
−g (R− 2Λ) +

1

2κ̄

ˆ
dx3
√
−ḡ
(
R̄− 2Λ̄

)
, (7.20)

with κ̄ = −8 and Λ̄ = −8λ. We have expressed the total action I(2) [gµν , φ] as the
sum of two standard gravity action with different gravitational and cosmological
constants. This last statement has a fundamental role for the upcoming analysis.

7.1.3 Formulation in terms of one-forms

Inspired by (7.20) of the action (7.2) the following action is proposed,

I(1) [e, φ] =
1

2κ

ˆ (
2Raea −

Λ

3
εabce

aebec
)

+
1

2κ̄

ˆ (
2R̄aēa −

Λ̄

3
εabcē

aēbēc
)
. (7.21)

The 1-form field ea = eaµdx
µ is the dreibein and ωa = ωaµdx

µ is the dualized 1-form
spin connection, which defines the dualized 2-form curvature Ra = dωa + 1

2
εabcωbωc.

Here, ωa is the torsionless spin connection associated to ea that is obtained by solving
the equation of motion associated to ωa,

T a = dea + εabcω
bec = 0. (7.22)

From the vanishing torsion condition we obtain

ωaµ =

(
1

2
eaµε

bcd − εabcedµ
)
eνbe

λ
c∂νedλ, (7.23)
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The field ēa = ēaµdx
µ is a function of the scalar field φ and ea through the relation

ēaµ = φ2eaµ, (7.24)

and the 2-form R̄a is defined in terms of ω̄a = ω̄aµdx
µ as R̄a = dω̄a+ 1

2
εabcω̄bω̄c. From

the equation of motion associated to ω̄, dēa + εabcω̄
bēc = 0, we fix the value of ω̄a as

ω̄a = ωa + 2φ−1 ∗ (eadφ) . (7.25)

The Hodge dual means ∗ (eadφ) = εabc∂νφe
ν
bec.As a result, the Euler-Lagrange equa-

tions for each field in the action (7.21) are given by

δea : 2Ra − Λεabce
bec = −κ

κ̄
φ2
(
2R̄a − Λ̄εabcē

bēc
)
, (7.26)

δφ : φea
(
2R̄a − Λ̄εabcē

bēc
)

= 0, (7.27)

where the variations δI/δωa and δI/δω̄a vanish by virtue of (10.5) and(10.6).The
equations of motion obtained from the metric formalism (7.3)-(7.4) and those com-
ing from the action, (7.26) and (7.27), are respectively equivalent, as is shown in
Appendix 10. The equivalence can be established using the following correspondence
between the dreibein and the metric

ηabe
a
µe
b
ν = gµν , (7.28)

in conjunction with the one relating the curvature 2-form and the Riemann curvature

Rab
µν (ω) = eaλe

b
ρR

λρ
µν (Γ) . (7.29)

In a similar way the equivalence at the level of the action is obtained (see the details
in Appendix 10).

7.2 The action from a Chern-Simons form

Considering the action proposed in the previous section (7.21), appearing as a sum
of two gravity actions with different gravitational and cosmological constants, it is
possible to give a description of gravity in the presence of a conformally coupled
scalar field by means of a Chern-Simons form, which is the main goal of this section.
In fact, based on the well-known results [5] and [6], the action (7.21) can be written
as

I(1)
[
A [e] , Ā [e, φ]

]
= ICS [A] + ICS

[
Ā
]
, (7.30)
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with

ICS [A] =
k

4π

ˆ

Σ

〈
AdA+

2

3
A3

〉
, (7.31)

ICS
[
Ā
]

=
k̄

4π

ˆ

Σ

〈
ĀdĀ+

2

3
Ā3

〉
, (7.32)

where k = 2π/κ and k̄ = 2π/κ̄. These Chern-Simons forms are defined on a manifold
Σ of topology Σ = R × ∂Σ, where ∂Σ stands for the space-like section. This
formulation for serve for

The gauge connection A can be valued in the (anti-)de Sitter or Poincaré al-
gebras, depending on the signs of the effective cosmological constant Λ, where the
generators Ja and Pa are such that

A = ωaJa + eaPa, (7.33)

whose the invariant bilinear form is given by

〈Ja, Jb〉 = 〈Pa, Pb〉 = 0, 〈Ja, Pb〉 = ηab, (7.34)

and ηab = diag (−1, 1, 1). The commutation relations of so(2, 2) generators read as

[Ja, Jb] = εabcJ
c , [Ja, Pb] = εabcP

c , [Pa, Pb] = −ΛεabcJ
c. (7.35)

On the other hand, the gauge connection Ā is written as

Ā = ω̄aJ̄a + ēaP̄a, (7.36)

where ē = ē (e, φ) and ω̄ = ω̄ (e, φ) are given in (7.24) and (7.25), respectively. Since
Λ̄ is defined according to the value of the self-interaction parameter λ, the generators
J̄a and P̄a span three different algebras[

J̄a, J̄b
]

= εabcJ̄
c ,

[
J̄a, P̄b

]
= εabcP̄

c ,
[
P̄a, P̄b

]
= −Λ̄εabcJ̄

c. (7.37)

For a vanishing λ, Λ̄ = 0 and the above algebra corresponds to the Poincaré algebra.
For λ > 0, we have an anti-de-Sitter-like case because Λ̄ < 0 which implies the
so(2, 2) algebra. Finally, we have de-Sitter-like case for λ < 0 due to Λ̄ > 0 and the
above commutation relations represent the so(3, 1) algebra.

The suitable invariant bilinear form for these algebras is given by〈
J̄a, J̄b

〉
=
〈
P̄a, P̄b

〉
= 0 ,

〈
J̄a, P̄b

〉
= ηab, (7.38)

Since the action (7.30) written in terms of the dynamical fields e, φ exactly
coincides with the action (7.21), the variation of (7.30) with respect to the dynamical
fields leads to the same equations of motion found in section 2.2., i.e. equations
(7.26), (7.27). The action (7.21) as a Chern-Simons form offers an useful and simple
formalism for studying the thermodynamical properties of black-hole solutions of
this theory as is explained in the next section.
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7.2.1 Black hole thermodynamics

The thermodynamical properties of the hairy rotating black hole (7.6)-(7.11) will
be studied by means of the Euclidean approach. In this scheme, τ = −it is the
Euclidean time with period β, where β is the inverse of the temperature T . The
Euclidean version of a stationary non-extremal three-dimensional black hole has a
topology R2×S1, where S1 is the circle parametrized by θ and R2 is the plane r− τ
described in polar coordinates centered at r = r+. Identifying the points (r, τ, θ)
and (r, τ + β, θ + 2π) the black hole becomes a solid torus [69]. On the other hand,
the Euclidean Hamiltonian action IE is a linear combination of the Hamiltonian
constraints with an additional surface term B that makes the Euclidean action
a well-defined functional [42]. Once the constraints are fulfilled and considering
stationary configurations —required for holding the thermodynamical equilibrium—
the Euclidean action is just given by the surface term

IE =

ˆ ∞
r+

dr∂rB = B (∞)−B (r+) , (7.39)

so that
δIE = δB (∞)− δB (r+) . (7.40)

For the Euclidean version of (7.30), the variation of the surface term is given by
[65, 66]

δB = −kβ
2π

ˆ

S1

〈AτδAθ〉 dθ −
kβ

2π

ˆ

S1

〈
ĀτδĀθ

〉
dθ, (7.41)

Note that since the fields are stationary the integration along τ yields the factor β
in (7.41).

7.2.2 Grand canonical ensemble: mass, angular momentum
and entropy

Since we are interested in obtaining IE, then it is necessary to integrate each piece
of (7.40). This integration requires to impose boundary conditions at infinity and
at the horizon. In thermodynamics, this procedure is equivalent to fix an ensemble.
In our case we choose the grand canonical ensemble, where the on-shell action is
related to the Gibbs free energy G as

IE = βG. (7.42)

The Gibbs free energy depends on the mass M , angular momentum J and entropy
S of the system, and is given by

G = M + ΩJ − TS. (7.43)
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In equilibrium, the extensive parameters M , J and the entropy S are functions of
the chemical potentials β = T−1 and the angular velocity Ω, which are fixed. Thus,
we can write

IE(β,Ω) = βM + βΩJ − S. (7.44)

Therefore, from the equilibrium condition δIE = 0 we can obtain

M =

(
∂IE
∂β

)
Ω

− Ω

β

(
∂IE
∂Ω

)
β

, (7.45)

J =
1

β

(
∂IE
∂Ω

)
β

, (7.46)

S = β

(
∂IE
∂β

)
Ω

− IE. (7.47)

The above expressions allow us to determine the global charges and entropy from
the Euclidean action.

7.2.3 Euclidean action computation

This section is focused on the calculation of IE for the hairy rotating black hole
introduced in section 2. This solution is asymptotically AdS, then the symmetry
algebra for the first C-S is so(2, 2). We start with the variation of the surface term
at infinity δB (∞). From (7.41), we get

δB (∞) = βδ

(
3π(1− α)c2 (1 + ω2)

`2κ (1− ω2)

)
+ βN θ (∞) δ

(
6π(1− α)c2ω

`κ (1− ω2)

)
. (7.48)

Because the chemical potentials β and Ω = N θ (∞) are fixed, the integration of
(7.48) yields

B (∞) = β

(
3π(1− α)c2 (1 + ω2)

`2κ (1− ω2)

)
+ βN θ (∞)

(
6π(1− α)c2ω

`κ (1− ω2)

)
. (7.49)

Now, we turn to determine the contribution of the surface term to the Euclidean
action at the horizon. Here it is necessary to demand the regularization of the
connection A on the horizon r+ as has been explained in detail for the BTZ black
hole in [69], and for higher spin black holes, for instance, in [72]. The regularity
condition dictates that the holonomy H along the thermal cycle at the horizon must
be trivial.

H = exp

[ˆ
Aµdx

µ

]
r+

= exp [βAτ ]r+ = −I. (7.50)
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Such regularization implies that the integration constants c and ω of the black hole
are set in terms of β and N θ (∞), in agreement with the definition of the grand
canonical ensemble.

The (A)dS algebras have a suitable matrix representation, from which one can re-
cover the invariant bilinear form required for constructing the proper Chern-Simons
action. Then, such regularization process can be performed through the direct di-
agonalization of the holonomy H at the horizon. As mentioned, the action (7.21)
is written as the sum of a Chern-Simons action depending on the gauge connection
A spanned in the so(2, 2) algebra, and a second part, which is a Chern-Simons-like
action for a connection Ā that can be spanned in different algebras depending on
the sign of Λ̄. In absence of a self-interacting potential, Ā is defined on the Poincaré
algebra that needs a different method to implement the regularity conditions. This
is because of the lack of a suitable matrix representation from which one can recover
the invariant bilinear form required for constructing the proper action. Then, despite
it is possible to proceed for the so(2, 2) and so(3, 1) algebras following the process
mentioned above (by solving (7.50) using a matrix representation) the regularity
conditions for Ā will be implemented following an alternative method presented in
[71]. This procedure covers the Poincaré case and also resume all the computations
including the case Λ̄ 6= 0 . First, the method requires to find an adequate gauge
transformation g that permits to gauge away the τ - components of the dreibein ēτ .
In general, such gauge transformation is generated by the group element

g = ep
aPaeρ

bJb , (7.51)

so that gĀg−1 ≡ ā is the gauge transformation of Ā. For our purpose, it not
necessary to find a suitable group element, this is because of the form of the chosen
frame for describing the black hole (11.1). Since the holonomy condition (7.50)
is evaluated at the event horizon, where F (r+)2 = 0, the time component of the
vielbein on the horizon vanishes eτ (r+) = 0 only if N θ(r+) = 0. This can be seen
explicitly

āτ =
8(α− 1)(3x+ 2)c(N θ(∞)`+ ω)

κ(x+ 1)` (ω2 − 1)

√
x
(

(α−1)(3x+2)ω2

ω2−1
+ x3

)P2 (7.52)

+
3(α− 1)(x+ 1)c(N θ(∞)`ω +N∞)

`2 (ω2 − 1)

√
x
(

(α−1)(3x+2)ω2

ω2−1
+ x3

)J2, (7.53)

fixing N θ (∞) as

N θ (∞) = −ω
`
, (7.54)
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if the removal of the P2 component is demanded.
The second step is to calculate the holonomy of the spin connection ω̄ along

the thermal cycle at the horizon and to request to be trivial. Then the regularity
condition is stated as

H = exp

[ˆ
ω̄µdx

µ

]
r+

= exp [βω̄τ ]r+ = −I, (7.55)

The characteristic polynomial of the sl(2,R) matrix is given by

(ξ)2 + det [βωτ ] = 0. (7.56)

A more convenient form of the above condition can be obtained as follows. The
regularity condition (7.50) impose that the eigenvalue ξ must be ±iπ, and using the
Cayley-Hamilton theorem, we can get an equivalent condition

tr
[
(βω̄τ )

2]+ 2π2 = 0, (7.57)

which is solved for β2, yielding

β2 =
4π2x4`4

9c2 (1 + x)2 (1− α)2 (1− ω2)
, (7.58)

after Eq. (7.54) is used.
Now, we proceed to impose the regularity condition on the gauge connection A.

Since so(2, 2) ' so (2, 1)+ ⊕ so (2, 1)−, the latter can be written in terms of two
copies of sl(2,R) (to see more details, go to appendix 11). Thus, for this case the
action (7.31) is split in two terms as,

ICS [A] = ICS
[
A+
]
− ICS

[
A−
]
, (7.59)

where k = 2π`/κ. The 1-forms A± = An±L
±
n are valued on the sl(2,R) algebra. The

generators for each copy are described by the same set of matrices as above Ln.
Taking this into account, the holonomy condition (7.50) becomes

H± = exp

[ˆ
A±µ dx

µ

]
r+

= exp
[
βA±τ

]
r+

= −I, (7.60)

The characteristic polynomials of the sl(2,R) matrices in this case are given by(
ξ±
)2

+ det
[
βA±τ

]
= 0. (7.61)

By using that the eigenvalues ξ± must be ±iπ, and using the Cayley-Hamilton
theorem, the equations (7.61) turn out to be

tr
[(
βA±τ

)2
]

+ 2π2 = 0. (7.62)
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The chemical potential N θ(∞) already computed (7.54) is replaced in (7.62). Then,
it is obtained that the chemical potential β takes the form given in (7.58). By
choosing its positive branch, we get that

β =
2πx2`2

3c (1 + x) (1− α)
√

1− ω2
. (7.63)

By replacing the value of the chemical potentials (7.54) and (7.63) in the variation
the surface term δB (7.41) evaluated at horizon, this surface term can be integrated
yielding

B (r+) =
4π2cx2

κ (1 + x)
√

1− ω2
. (7.64)

Once the variation of the surface term is integrated at infinity (7.49) and at the
horizon (7.64), the Euclidean action is determined as the subtraction of both con-
tributions (7.39),

IE = β

(
3π(1− α)c2 (1 + ω2)

`2κ (1− ω2)

)
+ βN θ (∞)

(
6π(1− α)c2ω

`κ (1− ω2)

)
− 4π2cx2

κ (1 + x)
√

1− ω2
.

(7.65)
Considering the equations (7.54) and (7.63), it is possible to replace c and ω as
functions of β and N θ (∞) in the Euclidean action (7.65) as required in the grand
canonical ensemble. This yields

IE(β,N θ(∞)) = − 4π3x4`2

3β(1 + x)2
(
1−N θ (∞)2 `2

)
(1− α)κ

. (7.66)

Using the thermodynamical relations defined in (7.45), the mass M , angular
momentum J and entropy S are determined to be

M =
4π3x4`2

(
1 +N θ (∞)2 `2

)
3β2κ(1 + x)2

(
1−N θ (∞)2 `2

)2
(1− α)

=
3π (1− α) c2 (1 + ω2)

κ`2 (1− ω2)
,(7.67)

J =
8N θ (∞) π3x4`4

3(1 + x)2
(
1−N θ (∞)2 `2

)2
(α− 1)β2κ

=
6π (1− α) c2ω

κ` (1− ω2)
, (7.68)

S =
8π3x4`2

3(1 + x)2
(
1−N θ (∞)2 `2

)
(1− α)βκ

=
4π2cx2

κ (1 + x)
√

1− ω2
. (7.69)

The mass and angular momentum coincide with those computed following the
Regge-Teitelboim method [42], as is shown in the Appendix 12. Also, the en-
tropy matches with the one found through the modified Bekenstein-Hawking formula
[62, 63],

S =
(
1− πGφ(r+)2

) A
4G

, (7.70)
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where A denotes the area of the horizon and κ = 8πG.
We also verify the general formula for the entropy of the black hole in terms of

the on-shell holonomies proposed in [72]. Here we have to consider the contribution
of both gauge connections

{
A, Ā

}
such that

S = −kβ〈AτAϕ〉on-shell − k̄β〈Āτ Āϕ〉on-shell, (7.71)

which gives as a result (7.70).

7.3 Changing the frame

In this section we want to show how it is possible to have the same kind of formulation
in term of connections for gravity with a minimally coupled scalar field. In fact,
what is helpful for getting this result is to consider that the action for gravity with
a conformally coupled scalar scalar field and a self-interacting potential,

I(2)
[
g̃µν , φ̃

]
=

ˆ
d3x
√
−g̃

(
R̃− 2Λ

2κ
− 1

2
ḡµν∂µφ̄∂νφ̄−

1

16
R̃φ̃2 − λφ̃6

)
, (7.72)

can be mapped by the scale transformation ḡµν = Ω−2gµν to the action of Einstein
gravity with a self-interacting minimally coupled scalar field in three spacetime
dimensions

I [φ, gµν ] =

ˆ
d3x
√
−g
(
R

2κ
− 1

2
gµν∂µφ∂νφ− V (φ)

)
, (7.73)

with the potential

V (φ) =
Λ

κ
cosh6

(√
κ

8
φ

)
− λ sinh6

(√
κ

8
φ

)
. (7.74)

For obtaining the kinetic term of the scalar field, we have to fix

Ω =
(

1− φ̃2
)
, (7.75)

redefining φ̃ = tanh (φ). In this sense –and following the same spirit of the confor-
mally coupled action and gravity– we can apply the transformation(7.75) to both
vielbains e and ē presented above. The result of this transformation is shown in the
following section.
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7.4 Gravity with a minimally coupled scalar field

In this section we show that the action of Einstein gravity with a self-interacting
minimally coupled scalar field in three spacetime dimensions

I [φ, gµν ] =

ˆ
d3x
√
−g
(
R

2κ
− 1

2
gµν∂µφ∂νφ− V (φ)

)
, (7.76)

with the potential

V (φ) =
Λ

κ
cosh6

(√
κ

8
φ

)
− λ sinh6

(√
κ

8
φ

)
, (7.77)

can be recast using a Chern-Simons form built from the direct sum of the algebras
g+ and g−, where g± can be the (anti-)de Sitter or Poincaré algebras, depending on
the signs of the effective cosmological constant Λ and the self-interacting coupling
constant λ.

The potential V (φ) represents a two-parameter family of the self-interactions for
the scalar field that admits hairy black holes solutions. In the case of Λ < 0 and
λ ≥ Λ/κ, static black holes were found [16] and further analyzed in [18, 19]. A
rotating black hole with λ = 0 was presented in [21]. These black holes are dressed
with a scalar field, whose fall-off at infinity is slow enough as it can contributes to
mass, relaxing in this way the usual Brown-Henneaux asymptotic conditions in pure
gravity.

Let us consider the action

I
[
φ, e, ω+, ω−

]
=
k+

4π

ˆ 〈
A+dA+ +

2

3
A3

+

〉
+
k−

4π

ˆ 〈
A−dA− +

2

3
A3
−

〉
, (7.78)

where the gauge connections read as follow

A+ = cosh2

(√
κ

8
φ

)
eaP+

a + ωa+J
+
a , (7.79)

A− =
8

κ
sinh2

(√
κ

8
φ

)
eaP−a + ωa−J

−
a . (7.80)

The generators of the gauge connections obey the following algebras[
J±a , J

±
b

]
= εabcJ

c
± ,

[
J±a , P

±
b

]
= εabcP

c
± ,

[
P±a , P

±
b

]
= −Λ±εabcJ

c
± . (7.81)

which correspond to so(2, 2) if Λ± < 0, so(3, 1) if Λ± > 0, and iso(2, 1) for Λ± = 0.
The nonvanishing components of the brackets are

〈
J±a , P

±
b

〉
= ηab, where ηab

stands for the Minkowski metric. The levels are k+ = 2π/κ and k− = −π/4.

48



The independent fields are
{
φ, ea, ωa±

}
, however the field equations associated to

ωa±,

d

(
cosh2

(√
κ

8
φ

)
ea

)
+ cosh2

(√
κ

8
φ

)
εabcω

b
+e

c = 0 , (7.82)

d

(
sinh2

(√
κ

8
φ

)
ea

)
+ sinh2

(√
κ

8
φ

)
εabcω

b
−e

c = 0 , (7.83)

are algebraic for ωa±:

ωa± (e, φ) = ωa (e)− 2

√
κ

8
tanh±1

(√
κ

8
φ

)
∗ (eadφ) . (7.84)

where ωa is the torsionless spin connection associated to ea (therefore the theory is
defined on a Riemannian geometry).

A second order action I(ea, φ) is obtained by replacing (7.84) in the Chern-
Simons action (7.78). This action is equivalent to (7.76), up to a boundary term,
with a self-interaction potential

V (φ) =
Λ+

κ
cosh6

(√
κ

8
φ

)
− Λ−

8

(
8

κ

)3

sinh6

(√
κ

8
φ

)
, (7.85)

where Λ+ = Λ and Λ− = 8λ
(
κ
8

)3
. This fact can be explicitly shown using that

ηabe
a
µe
b
ν = gµν , Rab

µν = eaλe
b
ρR

λρ
µν , (7.86)

where Rab
µν are the components of the curvature two-form associated to the tor-

sionless spin connection ωa, and Rλρ
µν are the components of the Riemann tensor.

7.5 Field equations

In this section we will obtain the field equations from the Chern-Simons action
(7.78). It is well known that the variation of a generic Chern-Simons action is given
by

δICS =
k

2π

ˆ
〈FδA〉 , (7.87)

up to boundary terms, where F = dA + A2 stands for the curvature two-form
associated to the gauge connection A.
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Using this result for the action (7.78), we obtain that its variation becomes

δI =
k+

2π

ˆ 〈
F+δA+

〉
+
k−

2π

ˆ 〈
F−δA−

〉
=

1

2π

ˆ 〈(
k+F+ δA

+

δea
+ k−F−

δA−

δea

)
δea +

(
k+F+ δA

+

δφ
+ k−F−

δA−

δφ

)
δφ

〉
.

In the above computation, the variations δI/δωa± have been considered to vanish by
virtue of (7.84).

Taking into account the definition of A± given in (7.79) and (7.80), beside of the
fact that the components of F± stand exclusively along the Lorentz generators by
virtue of (7.84), the field equations related to the variations of ea and φ turn out to
be

cosh2

(√
κ

8
φ

)
F+
a − sinh2

(√
κ

8
φ

)
F−a = 0 , (7.88)(

F+
a − F−a

)
ea = 0 , (7.89)

respectively, with

F a
+ = Ra

+ −
1

2
Λ+ cosh4

(√
κ

8
φ

)
εabcebec , (7.90)

F a
− = Ra

− −
4

κ
Λ− sinh4

(√
κ

8
φ

)
εabcebec , (7.91)

where Ra
± = dωa±+ 1

2
εabcω±b ω

±
c is the curvature two-form associated to ωa±. By using

(7.84) and the relations (7.86), it is possible to show that equations (7.88) and (7.89)
reduce respectively to the Einstein and the scalar field equations,

Rµν −
1

2
gµνR = κTµν , (7.92)

�φ− dV (φ)

dφ
= 0 , (7.93)

where the potential V (φ) is given in (7.77) and the resulting energy-momentum
tensor has the expected form

Tµν = ∂µφ∂νφ−
1

2
gµνg

αβ∂αφ∂βφ− gµνV (φ) . (7.94)
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Chapter 8

Conserverd charges and
thermodynamics of the AdS4
dyonic black hole

We present the Lagrangian and the AdS4 dyonic dilatonic black hole solution of [33].
We focus on the Hamiltonian analysis and the corresponding conserved charges. The
mass and the electric charge are computed using the Regge-Teitelboim Hamiltonian
approach. There are two contributions in the variation of the mass, the gravitational
part and the scalar field part (already identified in [73]). Integrability conditions
have to be imposed because the presence of the scalar field leads to a non-integrable
term. Suitable boundary conditions are chosen in order to preserve the AdS symme-
try of the scalar field fall-off. This implies a precise relation among the coefficients
of the leading and subleading terms of the scalar field, as was noted in [29]. We also
perform the thermodynamic analysis of the solution and introduce the Hamiltonian
Euclidean action. For simplicity the calculations are done in a suitable Euclidean
minisuperspace. To obtain the Gibbs free energy we compute the value of the Eu-
clidean Hamiltonian action endowed with a suitable radial boundary term and an
additional term. These terms have to be added in order to have a well-defined and
finite Hamiltonian action principle. It is possible to identify the variation of the
Hamiltonian conserved charges of the system from the variation of the boundary
term at infinity, which are the mass and the electric charge. On the other hand, the
variation of the magnetic charge comes from the additional term. This term has to
be considered due to the presence of a magnetic monopole. The chemical potentials
associated to the Noether charges are the Lagrange multipliers of the system at
infinity. Unlike the magnetic potential, they are obtained through regularity condi-
tions at the horizon. Remarkably, the magnetic potential is already determined by
the variation of the additional term, together with the magnetic charge. It is worth
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noting that the first law of black hole thermodynamics is satisfied independently of
the integrability conditions on the mass, since the relation only involves the varia-
tion of the conserved charges. Once the Gibbs free energy is obtained the value of
the mass, the electric charge, the magnetic charge and the entropy are verified using
the known thermodynamic relations.

8.1 AdS4 dyonic black hole solution

We consider four-dimensional gravity with negative cosmological constant in the
presence of an Abelian gauge field and a dilatonic scalar field with a self-interacting
potential. The action reads

I[gµν , Aµ, φ] =

ˆ
d4x
√
−g
(
R

2κ
− 1

2
gµν∂µφ∂νφ−

1

4
e−
√

3φF µνFµν − V (φ)

)
. (8.1)

Hereafter the gravitational constant is chosen as κ = 1/2.1 The self-interacting
potential of the scalar field is given by

V (φ) = −6g2 cosh

(
φ√
3

)
, (8.2)

where the coupling constant g determines the AdS radius as `2 = g−2. The theory
given by (8.1) corresponds to the bosonic sector of two possible dimensional reduc-
tions, which depend on the coupling constant g in the following way. In the case
of vanishing g the action is obtained after a S1 reduction of five-dimensional pure
gravity. On the other hand, if g 6= 0 the action can be obtained after a S7 reduction
of eleven-dimensional supergravity [35].

The gravitational field equations for the action (8.1) are

Gµν = T φµν + TAµν , (8.3)

where the contributions to the energy-momentum tensor of the dilatonic scalar field
and the gauge field are given by

T φµν =
1

2
∂µφ∂νφ−

1

4
gµν∂

λφ∂λφ+
1

2
gµνV (φ), (8.4)

TAµν =
1

2
e−
√

3φ

(
F λ
µ Fνλ −

1

4
gµνF

λρFλρ

)
, (8.5)

respectively. The equation for the scalar field is

1The vacuum permeability constant located in front of the Maxwell-like action in (8.1) turns
out to be normalized to one after the dimensional reduction.

52



�φ+

√
3

4
e−
√

3φF µνFµν −
dV

dφ
= 0, (8.6)

and the equation for the gauge field reads

∇µ

(
e−
√

3φF µν
)

= 0. (8.7)

This system admits an AdS dyonic black hole which is static and spherically
symmetric [33]. The line element of this configuration can be written as

ds2 = − (H1H2)−1/2 fdt2 +
dr2

(H1H2)−1/2 f
+ (H1H2)1/2 r2

(
dθ2 + sin2 (θ) dϕ2

)
, (8.8)

where the functions H1, H2 and f are given by

f (r) = f0 (r) + g2r2H1 (r)H2 (r) , f0 (r) = 1− 2µ

r
, (8.9)

H1 (r) = γ−1
1

(
1− 2β1f0 (r) + β1β2f0 (r)2) , (8.10)

H2 (r) = γ−1
2

(
1− 2β2f0 (r) + β1β2f0 (r)2) , (8.11)

with γ1 = 1−2β1 +β1β2, and γ2 = 1−2β2 +β1β2. The dilatonic scalar field is given
by

φ (r) =

√
3

2
log

(
H2 (r)

H1 (r)

)
, (8.12)

whereas the one-form gauge field has the following form

A = At(r)dt+ Aϕ(θ)dϕ. (8.13)

The time component of (8.13) is

At (r) =

√
2 (1−H1 (r)− β1 (f0 −H1 (r)))√

β1γ2H1 (r)
, (8.14)

while the definition of the angular component of the gauge potential depends on the
hemisphere, in order to avoid the Dirac string [74]. Hence,

Aϕ (θ) =

{
p(1 + cos (θ)) , 0 ≤ θ < π

2
− δ,

p (−1 + cos (θ)) , π
2

+ δ < θ ≤ π,
(8.15)

where p = 2
√

2µγ−1
2

√
β2γ1 and δ → 0 (Wu-Yang monopole [75], [76]). In this

solution the coordinate ranges are 0 < r < ∞, −∞ < t < ∞, 0 ≤ θ < π and
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0 ≤ ϕ < 2π. All the integration constants (µ, β1, β2 , γ1, γ2) are restricted to be
positive.

In the case of β1 = β2, the dilatonic scalar field is decoupled and the solution
turns out to be an AdS dyonic Reissner-Nordström black hole where the electric and
magnetic charges have the same value. If β1 = 0 the solution is purely magnetic
and in the case of β2 = 0 the configuration becomes purely electric. If µ = 0 the
solution turns out to be AdS spacetime.

8.2 Hamiltonian generator and surface integrals

The Hamiltonian generator for the Lagrangian (8.1) reads

H
[
ξ, ξA

]
=

ˆ
d3x

(
ξ⊥H⊥ + ξiHi − ξAG

)
+Q

[
ξ, ξA

]
, (8.16)

where the boundary term Q
[
ξ, ξA

]
, which corresponds to the conserved charges in

the Regge-Teitelboim approach, ensures that the Hamiltonian generator has well-
defined functional derivatives [42]. The bulk term appearing in (8.16) is a linear
combination of the constraints H⊥, Hi and G, where the first two are the energy and
momentum densities and the last one corresponds to the Gauss constraint associated
to the Abelian gauge field. The asymptotic surface deformations of the spacetime
are given by the vector ξ =

(
ξ⊥, ξi

)
and ξA is the gauge parameter of the Abelian

symmetry. The constraints are explicitly given by

H⊥ =
1
√
γ

(
πijπij −

1

2

(
πii
)2
)
−√γR

+
π2
φ

2
√
γ

+
√
γ

(
1

2
∂iφ∂iφ+ V (φ)

)
+ e

√
3φ π

iπi
2
√
γ

+
1

4

√
γe−

√
3φF ijFij,

Hi = 2∇jπ
j
i + πφ∂iφ+ πjFij,

G = ∂iπ
i. (8.17)

The dynamical variables of the system are the spatial components of the fields
{γij, Ai, φ}, where γij is the spatial metric of the ADM decomposition. Here R
stands for the scalar curvature of the three-dimensional spatial metric γij and the
self-interacting potential of the scalar field V (φ) is defined in eq. (8.2). The mo-
mentum conjugated to the three-dimensional metric γij is

πij = −√γ
(
Kij − γijK

)
, (8.18)

where the extrinsic curvature is given by

Kij =
1

2N⊥
(∇iNj +∇jNi − γ̇ij) . (8.19)
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The momentum for the dilatonic field φ reads

πφ =

√
γ

N⊥

(
φ̇−N i∂iφ

)
, (8.20)

and for the gauge field Ai,

πi = −
√
γe−

√
3φ

N⊥
(
−γijF0j +N jγikFjk

)
. (8.21)

The variation of the surface term gets different contributions according to the
field content of the theory, such that

δQ
[
ξ, ξA

]
= δQG

[
ξ, ξA

]
+ δQφ

[
ξ, ξA

]
+ δQA

[
ξ, ξA

]
, (8.22)

where δQ was obtained after demanding that δH = 0 on the constraint surface. The
explicit expressions for the surface integrals are given by

δQG =

ˆ
dSlG

ijkl
(
ξ⊥∇kδγij − ∂kξ⊥δγij

)
+

ˆ
dSl
[
2ξkδπ

kl +
(
2ξkπjl − ξlπkj

)
δγjk

]
,

(8.23)

δQφ = −
ˆ
dSi
(
ξ⊥
√
γ∂iφδφ+ ξiπφδφ

)
, (8.24)

δQA = −
ˆ
dSi

[
ξ⊥
√
γe−

√
3φF ijδAj +

(
ξiπj − πjξi

)
δAj − ξAδπi

]
, (8.25)

with

Gijkl =
1

2

√
γ
(
γikγjl + γilγjk − 2γijγkl

)
. (8.26)

8.2.1 Conserved charges of the AdS4 dyonic black hole

In order to obtain the above surface integrals let us consider a static and spherically
symmetric minisuperspace in which the AdS4 dyonic black hole (8.8) is included.
For simplicity we perform the following change of variable in the radial coordinate

ρ2 =
√
H1 (r)H2 (r)r2. (8.27)

The line element then reads

ds2 = −N⊥ (ρ)2 dt2 +
dρ2

F (ρ)
+ ρ2

(
dθ2 + sin2 (θ) dϕ2

)
. (8.28)
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The gauge field ansatz is given by

A = At (ρ) dt+ Aϕ (θ) dϕ, (8.29)

and the scalar field also depends on the radial coordinate φ = φ(ρ). Taking this into
consideration the only nonvanishing momentum in the minisuperspace is the radial
component of the electromagnetic one, where πρ = pρ (ρ, θ). Therefore, the value of
the Hamiltonian charges, computed on the sphere S2 of infinite radius, is given by

δQ =

[
−ξt

(
8πρN⊥δF√

F
+ 4π

√
FN⊥ρ2∂ρφδφ

)

−ξtπ

[(ˆ
N⊥e−

√
3φ

√
Fρ2

dρ

)
csc(θ)δAϕ∂θAϕ

]θ=π
θ=0

+ 2πξA
πˆ

0

δpρdθ


ρ→∞

.(8.30)

Here, we have applied the definition of the deformation vectors ξ⊥ and ξi in terms
of the Killing vectors ξt and ξ̄i, which read

ξ⊥ = N⊥ξt, (8.31)

ξi = ξ̄i +N iξt. (8.32)

In order to compute and perform a proper analysis of the charges, we must give
suitable asymptotic conditions that determine the behavior of the fields at infinity.
These conditions are specified up to the orders that contribute to the charges, such
that

F (ρ) = g2ρ2 + 1 + F0 +
F1

ρ
+O

(
1

ρ2

)
, (8.33)

N⊥ (ρ) = gρ+O
(

1

ρ

)
, (8.34)

φ (ρ) =
φ1

ρ
+
φ2

ρ2
+O

(
1

ρ3

)
, (8.35)

pρ (ρ, θ) = p0 sin (θ) +O
(

1

ρ1

)
, (8.36)

ξA = ξA0 +O
(

1

ρ

)
. (8.37)

The coefficients in the expansions given above are parameters that depend on the
integration constants of the corresponding solution. The variation of the charge
obtained after inserting the proposed asymptotic behavior in (8.30) is given by2

2It has to be noted that a divergent term appears in the variation of the charge but it vanishes
once it is evaluated on the solution. This is because the divergent part of the gravitational contri-
bution is cancelled by the divergent part of the scalar field contribution by virtue of the relation

δF0 = g2

2 φ1δφ1.

56



δQ = ξt
[
−8πδF1 + 4πg2 (2φ2δφ1 + φ1δφ2)

]
+ 4πξA0 δp0. (8.38)

The mass is the conserved charge associated to time translations, which in this
approach is obtained from δM = δQ [ξt], while the electric charge is the charge
associated to the Abelian gauge transformations, where δQe = δQ

[
ξA
]
. Then, the

variations of the mass and the electric charge read

δM = −8πδF1 + 4πg2 (2φ2δφ1 + φ1δφ2) , (8.39)

δQe = 4πδp0. (8.40)

The electric charge can be directly integrated for the AdS4 dyonic black hole, which
in terms of the integration constants of the solution is written as

Qe =
16π
√

2µ
√
β1γ2

γ1

. (8.41)

In contrast, the mass is generically non-integrable and its variation is explicitly given
by

δM = δ

(
16π (1 + β1) (1− β2) (1− β1β2)µ

γ1γ2

+
64πg2µ3 (1− β1β2) (β1 − β2)2 γ

γ3
1γ

3
2

)
+Φ,

(8.42)
with

γ = β1 + β2 − 8β1β2 + 6β2
1β2 + 6β1β

2
2 − 8β2

1β
2
2 + β3

1β
2
2 + β2

1β
2
2 . (8.43)

Note that the variation of the mass coincides with the one computed in [73], which
has the non-integrable term Φ that comes from the scalar field part of the energy
density. This term is given by

Φ = 4πg2 (2φ2δφ1 + φ1δφ2) , (8.44)

where the leading and subleading terms of the scalar field fall-off are respectively

φ1 =
2
√

3 (β2 (1 + β1
2)− β1 (1 + β2

2))µ

γ1γ2

, (8.45)

φ2 =
2
√

3
(
−β2

2 (1− β4
1)− 2β1β

2
2(−4 + 3β2)

)
µ2

γ2
1γ

2
2

+
2
√

3
(
−2β3

1β2(−3 + 4β2)− β1
2
(
−1 + 8β2 − 8β3

2 + β4
2

))
µ2

γ2
1γ

2
2

. (8.46)
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The presence of a non-integrable term Φ in the variation of the mass (8.39)
forces us to impose relations among the fall-off coefficients of the scalar field. If
the variations are treated as exterior derivatives, the condition δ2M = 0 is a suf-
ficient condition to ensure the existence of M . Indeed, this condition is equivalent
to requiring that the second derivatives of the functional M with respect to the
integration constants commute. Then,

δ2M = δΦ (8.47)

= 4πg2 (2δφ2 ∧ δφ1 + δφ1 ∧ δφ2) (8.48)

= 4πg2δφ2 ∧ δφ1 ≡ 0 . (8.49)

This implies the functional relation φ2 = φ2 (φ1). Hence, the mass generically takes
the form

M = −8πF1 + 4πg2

ˆ (
2φ2 + φ1

dφ2

dφ1

)
dφ1. (8.50)

At this point it is necessary to impose a boundary condition that fixes a precise
relation between the leading and subleading terms of the scalar field behavior at
infinity. One possible condition is to demand preservation of the AdS symmetry
of the scalar field’s asymptotic fall-off, which can be done since the AdS4 dyonic
dilatonic black hole of [33] is within the asymptotic conditions for AdS spacetimes
analyzed in [37], [49], [29]. These references construct a set of boundary conditions
for having well-defined and finite Hamiltonian generators for all the elements of the
AdS algebra in the case of gravity minimally coupled to scalar fields. We are allowed
to impose certain relations on the leading and subleading terms of the scalar field
fall-off provided the scalar field does not break the AdS symmetry at infinity. These
boundary conditions are (φ1 = 0, φ2 6= 0), (φ1 6= 0, φ2 = 0) and φ2 = cφ2

1, where
c is not allowed to vary. In terms of the integration constants the relation φ2 = cφ2

1

becomes

−2(β1 − β2)µ2
[
−
(√

3 + 6c
)
β2 −

(√
3− 6c

)
β1

3β2
2

−β1

(√
3− 6c− 8

√
3β2 + 6

(√
3− 2c

)
β2

2
)

−β1
2β2

(
6
(√

3 + 2c
)
− 8
√

3β2 +
(√

3 + 6c
)
β2

2
)]

= 0. (8.51)

From eq. (8.51) we observe three cases, two of them being nontrivial. When µ = 0
the mass, the electric charge and the magnetic charge vanish giving rise to the vac-
uum solution which turns out to be AdS4 spacetime. The other two cases imply that
β1 = β1 (β2) in such a way, that they force the terms in (8.42) that are proportional
to g2 to vanish. Hence, the mass becomes the AMD mass [81], [82] obtained in [33],

M =
16π (1− β1) (1− β2) (1− β1β2)µ

γ1γ2

. (8.52)
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This fact is in agreement with [60], where it was pointed out that some holographic
prescriptions are suitable for computing the mass for hairy spacetimes when the
scalar field respects the AdS invariance at infinity. In this context, different kinds
of boundary conditions were considered in [83], [84], [22].

8.3 Thermodynamics of the AdS4 dyonic black

hole

The thermodynamic analysis of the AdS4 dyonic dilatonic black hole is performed in
this section. We define the Euclidean Hamiltonian action of the theory including a
surface term and an additional polar boundary term to have a finite action principle.
The presence of the latter is due to the existence of a magnetic monopole in the
solution. For simplicity, we take a minisuperspace in which the AdS4 dyonic black
hole is included. The variation of the Euclidean Hamiltonian action is computed in
the grand canonical ensemble, where the chemical potentials are fixed. Remarkably,
the magnetic charge emerges from the additional term accompanied by its respective
chemical potential. The value of the temperature and the electric potential, on the
other hand, are fixed by imposing regularity conditions. When the variations of
the additional surface and polar boundary terms are determined, as was mentioned
above, integrability conditions are needed to be imposed to determine the value of
the Euclidean Hamiltonian action leading to the Gibbs free energy.

8.3.1 Hamiltonian action and Euclidean minisuperspace

Let us consider spacetimes with a manifold of topology R2 × S2. The plane R2 is
centered at the event horizon r+ and is parametrized by the periodic Euclidean time
τ and the radial coordinate r. These plane coordinates range as

0 ≤ τ < β, (8.53)

r+ ≤ r <∞, (8.54)

with β the inverse of the Hawking temperature and the 2-sphere S2 stands for the
topology of the base manifold. The Hamiltonian Euclidean action for the system is
given by

IE =

βˆ

0

dτ

ˆ

Σ

d3x
[
γ̇ijπ

ij + Ȧiπ
i + φ̇πφ −

(
N⊥H⊥ +N iHi − AτG

)]
+B, (8.55)

where Σ = R × S2 is the spatial section of the manifold. Note that the additional
term B in (8.55) needs to be added to the action in order to have a well-defined
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variational principle, and it is crucial for determining the value of the action for
stationary configurations.

The Euclidean continuation of the AdS4 dyonic black hole (8.8) is considered.
The line element reads

ds2 = N⊥ (r)2 dτ 2 +
dr2

F (r)
+H(r)

(
dθ2 + sin2 (θ) dϕ2

)
, (8.56)

where the gauge field ansatz and the scalar field are given by

A = Aτ (r) dτ + Aϕ (θ) dϕ, (8.57)

φ = φ(r). (8.58)

The radial component of the electromagnetic field momentum is πr = pr (r, θ) (all
the other momenta of the fields vanish). Hence, it is possible to obtain the following
reduced action

IE = −2πβ

∞̂

r+

dr

πˆ

0

dθ
(
N⊥ (r)H⊥ − Aτ (r)G

)
+B, (8.59)

from (8.55), where the reduced constraints take the form

H⊥ = −e
−
√

3φ sin(θ)

2
√
FH

[
− csc2(θ) (∂θAϕ)2 − 2e

√
3φH

(
∂rF∂rH + 2F∂2

rH − 2
)

(8.60)

+e
√

3φH2

(
12g2 cosh

(
φ√
3

)
− F (∂rφ)2

)
e
√

3φF (∂rH)2 + csc2(θ)e2
√

3φ (pr)2
]
, (8.61)

G = ∂rp
r. (8.62)

The variation of the reduced action (8.59) with respect to the Lagrange multipliers
N⊥ and Aτ indicates that the constraints have to vanish

H⊥ = 0, G = 0. (8.63)

These equations define the constraint surface. On the other hand, the variation
of (8.59) with respect to the independent functions of the dynamical fields in the
minisuperspace leads to the field equations. The field equations related to F (r) and
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H (r) are given by

e−
√

3φ sin(θ)

4F 3/2H

(
N⊥

(
− csc2(θ) (∂θAϕ)2 − F (∂rH)2 e

√
3φ + csc2(θ)e2

√
3φ (pr)2

)
+H2N⊥e

√
3φ

(
F (∂rφ)2 + 12g2 cosh

(
φ√
3

))
+ 4He

√
3φ
(
N⊥ − F∂rH∂rN⊥

))
= 0,

(8.64)

e−
√

3φ sin(θ)

2
√
FH2

(
N⊥

(
− csc2(θ) (∂θAϕ)2 − F (∂rH)2 e

√
3φ + csc2(θ)e2

√
3φ (pr)2

)
−H2e

√
3φ

(
N⊥

(
12g2 cosh

(
φ√
3

)
− F (∂rφ)2

)
− 2

(
∂rF∂rN

⊥ + 2F∂2
rN
⊥))

+He
√

3φ
(
N⊥

(
∂rF∂rH + 2F∂2

rH
)

+ 2F∂rH∂rN
⊥)) = 0,

(8.65)

respectively. The field equations associated to Aϕ (r, θ) and pr (r, θ) are

N⊥e−
√

3φ csc(θ)√
F (r, s)H(r, s)

(
∂θAϕ cot(θ)− ∂2

θAϕ
)

= 0, ∂rAτ +
csc(θ)N⊥e

√
3φpr√

FH
= 0,

(8.66)
and finally the scalar field equation reads

−e
−
√

3φ sin(θ)

2
√
FH

(
N⊥

(√
3 csc2(θ) (∂θAϕ)2 + 2FHe

√
3φ∂rH∂rφ

+H2e
√

3φ

(
∂rF∂rφ+ 2F∂2

rφ+ 4
√

3g2 sinh

(
φ√
3

))
+
√

3 csc2(θ)e2
√

3φ (pr)2
)

+ 2FH2e
√

3φ∂rφ∂rN
⊥
)

= 0. (8.67)

Then, the variation of the reduced action (8.59) on the constraint surface, evaluated
on-shell (i.e. eqs. (8.64) to (8.67) have to be satisfied), becomes

δIE
∣∣∣
on−shell

= −2πβ

ˆ π

0

dθ

[
N⊥ sin (θ)

(
∂rHδF + ∂rFδH√

F
−
√
F∂rHδH

H

+

√
FH∂rφδφ

2
+ 2
√
F∂rδH

)
− ∂r

(
2N⊥ sin (θ)

√
F
)
δH − Aτδpr

]∞
r+

−2πβ

ˆ ∞
r+

dr

[
N⊥e−

√
3φ

H
√
F sin θ

∂θAϕδAϕ

]π
0

+ δB. (8.68)
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If we demand that the action has an extremum, i.e., δIE
∣∣∣
on−shell

= 0, the variation

of the additional term δB must necessarily be given by

δB = 2πβ

ˆ π

0

dθ

[
N⊥ sin (θ)

(
∂rHδF + ∂rFδH√

F
−
√
F∂rHδH

H

+

√
FH∂rφδφ

2
+ 2
√
F∂rδH

)
− ∂r

(
2N⊥ sin (θ)

√
F
)
δH − Aτδpr

]∞
r+

+2πβ

ˆ ∞
r+

dr

[
N⊥e−

√
3φ

H
√
F sin (θ)

∂θAϕδAϕ

]π
0

. (8.69)

It is possible to recognize two kinds of terms in this expression. The surface term
comes from a total derivative in the radial coordinate and a boundary term that
comes from a total derivative in the polar angle. The latter is clearly not vanishing
because of the presence of an angular component depending on the polar angle in
the gauge field. The analysis of the variation of the term B and the evaluation on
the AdS4 dyonic black hole (8.69) will be performed in the following subsection.

8.3.2 Gibbs free energy and first law

From (8.69) we can identify different contributions, depending on whether the term
comes from a total derivative in the radial coordinate, or whether the term comes
from a total derivative in the polar angle, which will be identified as a polar boundary
term. The surface term evaluated at infinity will be denoted by δB (∞) while δB(r+)
will stand for the surface term at the horizon. The polar boundary term will be
denoted by δBθ. Hence, the variation of B, see (8.69), can be written as

δB = δB(∞) + δB(r+) + δBθ, (8.70)

where the surface term at infinity is given by

δB(∞) = 2πβ

ˆ π

0

dθ

[
N⊥ sin (θ)

(
∂rHδF + ∂rFδH√

F
−
√
F∂rHδH

H

+

√
FH∂rφδφ

2
+ 2
√
F∂rδH

)
− ∂r

(
2N⊥ sin (θ)

√
F
)
δH − Aτδpr

]
∞

,

(8.71)
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the surface term at the horizon is

δB(r+) = −2πβ

ˆ π

0

dθ

[
N⊥ sin (θ)

(
∂rHδF + ∂rFδH√

F
−
√
F∂rHδH

H

+

√
FH∂rφδφ

2
+ 2
√
F∂rδH

)
− ∂r

(
2N⊥ sin (θ)

√
F
)
δH − Aτδpr

]
r+

,

(8.72)

and the polar boundary term reads

δBθ = 2πβ

ˆ ∞
r+

dr

[
N⊥e−

√
3φ

H
√
F sin (θ)

∂θAϕδAϕ

]π
0

. (8.73)

Once the different contributions to the variation of B are identified one can ana-
lyze their physical content. It is possible to find the variation of the charges coming
from symmetries of the action together with their respective chemical potentials
from the surface term at infinity δB (∞). The chemical potentials correspond to the
Lagrange multipliers of the respective symmetry at infinity (as was shown in Section
8.2). This is because at the end of the day the term (8.71) is obtained from the
boundary term of the Hamiltonian, which ensures that the canonical generators have
well-defined functional derivatives [42]. The variations of the mass and the electric
charge of the AdS4 dyonic dilatonic black hole will be identified from δB (∞). The
entropy of the black hole, which corresponds to the Bekenstein-Hawking entropy,
will be obtained from the surface term at the horizon δB (r+). Finally, the con-
tribution of the topological charge of the system, leading to the variation of the
magnetic charge multiplied by the magnetic potential, can be identified from the
polar boundary term δBθ .

Let us introduce the Euclidean continuation of the AdS4 dyonic dilatonic black
hole that satisfies the field equations (8.64)-(8.67) and the constraints (8.63). This
is obtained after performing the identifications t → −iτ and β1 → −β1 in the
Lorentzian solution. Then the black hole functions take the form

H1 (r) = γ−1
1

(
1 + 2β1f0 (r)− β1β2f0 (r)2) , (8.74)

H2 (r) = γ−1
2

(
1− 2β2f0 (r)− β1β2f0 (r)2) , (8.75)

where γ1 = 1 + 2β1 − β1β2 and γ2 = 1− 2β2 − β1β2. The functions F (r) and H (r)
in the line element (8.56) are

F (r) =
f (r)√

H1 (r)H2 (r)
, H (r) =

√
H1 (r)H2 (r)r2, (8.76)
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where the function f (r) is the same as the one given in (8.9). The lapse function is
N⊥ (r) =

√
F (r). The scalar field is defined in (8.12) and the temporal component

of the gauge field is given by

Aτ (r) = −
√

2 (1−H1 (r) + β1 (f0 (r)−H1 (r)))√
β1γ2H1 (r)

+ Φe. (8.77)

Note that the possibility of adding a constant Φe allows one to have a regular gauge
field at the horizon. This constant is related to the electrostatic potential of the
solution when the regularity conditions on the black hole horizon are established.
The angular component of the gauge field takes the same definition as given in
(8.15).

Inserting the Euclidean continuation of the AdS4 dyonic dilatonic black hole in
the surface term at infinity δB (∞), given in eq. (8.71), we get

δB (∞) = −βδM − βΦeδQe, (8.78)

where the variations of the mass and the electric charge are given by

δM = δ

(
16π (1 + β1) (1− β2) (1 + β1β2)µ

γ1γ2

)
+ Θ, (8.79)

δQe = 4πδ

(
2
√

2µ
√
β1γ2

γ1

)
. (8.80)

The above variations coincide with the values computed in (8.42) and (8.41). In the
variation of the mass we clearly obtain a contribution

Θ =
64πg2µ3 (1 + β1β2) (β1 + β2)2 γ

γ3
1γ

3
2

+ ΦE

= −32πg2µ3 (β1 + β2)

γ2
1γ

2
2

(β2 (1− 2β1 − 2β2 + β1β2) δβ1 ,

−β1 (1 + 2β1 + 2β2 + β1β2) δβ2) (8.81)

where ΦE is the Euclidean continuation of Φ. Here Θ corresponds to the new scalar
charge term in the context of [33].

The inverse of the temperature β and the electrostatic potential Φe are deter-
mined through the regularity conditions at the horizon. Indeed, we find

β =
4π
√
H1 (r+)H2 (r+)

f ′ (r+)
, Φe = −

√
2

β1γ2

(
1 + β1 −

1 + β1f0 (r+)

H1 (r+)

)
. (8.82)

The value of the temperature is obtained by demanding absence of conical singu-
larities around the event horizon, while the electrostatic potential comes from the
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trivial holonomy condition of the gauge field around a temporal cycle on the plane
r − τ at the event horizon. Inserting the values of the chemical potentials (8.82)
into the surface term at the horizon δB (r+), we get that this term exactly coincides
with the Bekenstein-Hawking entropy

δB (r+) = δ
(

16π2
√
H1 (r+)H2 (r+)r2

+

)
= δS. (8.83)

The polar boundary term δBθ has to be carefully computed using the definition of
the angular component of the gauge field given in (8.15). Then,

δBθ = 2πβ

(ˆ ∞
r+

dr
e−
√

3φ

H

)([
∂θAϕδAϕ

sin (θ)

]π/2−δ
0

+

[
∂θAϕδAϕ

sin (θ)

]π
π/2+δ

)
δ→0

= −2πβ

(ˆ ∞
r+

dr
e−
√

3φ

H

)(
[pδp (1 + cos (θ))]π/2−δ0 + [pδp (−1 + cos (θ))]ππ/2+δ

)
δ→0

= 4πβ

(ˆ ∞
r+

dr
e−
√

3φ

H

)
pδp. (8.84)

This term can be conveniently written as

δBθ = −βΦmδQm, (8.85)

where we can identify the magnetic potential

Φm = −
√

2

β2γ1

(
1− β2 −

1− β2f0 (r+)

H2 (r+)

)
, (8.86)

and also the value of variation of the magnetic charge

δQm = 4πδ

(
2
√

2µ
√
β2γ1

γ2

)
. (8.87)

As a consequence, the variation of the boundary term B is given by

δB = δS − βδM − βΦeδQe − βΦmδQm. (8.88)

Note that once this term is integrated, the value of B corresponds to the Euclidean
Hamiltonian action IE evaluated on stationary configurations and on the constraint
surface. In the grand canonical ensemble IE is related to the Gibbs free energy
by IE = −βG. It is also worth to point out that since the first law of black hole
thermodynamics,

δM = TδS − ΦeδQe − ΦmδQm, (8.89)
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is a consequence of the Euclidean action having an extremum, (8.89) is identically
satisfied independently of the boundary conditions on the mass. This is because
(8.89) is a relation that only involves the variation of the conserved charges. This
can be shown explicitly by introducing the value for the charge variations (8.79),
(8.80), (8.87) and the chemical potentials obtained by using the regularity conditions
(8.82) into (8.89).

Once the mass is integrated using arbitrary boundary conditions (see Section
8.2), it is possible to find the value of the Gibbs free energy which is equivalent to
the Euclidean Hamiltonian action evaluated on-shell,

IE = S − βM − βΦeQe − βΦmQm. (8.90)

Recalling that we have chosen the grand canonical ensemble and taking the Eu-
clidean action as our thermodynamic potential, the values of the extensive quanti-
ties, the mass, the electric charge, the magnetic charge and the entropy are obtained
through the following thermodynamic relations

M = −
(
∂IE

∂β

)
Φe,Φm

+
Φe

β

(
∂IE

∂Φe

)
β,Φm

+
Φm

β

(
∂IE

∂Φm

)
β,Φe

, (8.91)

Qe = − 1

β

(
∂IE

∂Φe

)
β,Φm

, (8.92)

Qm = − 1

β

(
∂IE

∂Φm

)
β,Φe

, (8.93)

S = IE − β
(
∂IE

∂β

)
Φe,Φm

. (8.94)

The values of the charges and the entropy computed above coincide with (8.50),
(8.41), (8.87) and (8.83), respectively.
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Chapter 9

Conclusions

Throughout this thesis, we have studied the interaction among matter fields and
gravity from a thermodynamic point of view. In particular, we explored the presence
of a scalar field and a gauge field, coupled to gravity in different scenarios.

In Chapter 5, we have obtained exact, circularly symmetric, three-dimensional
black holes, which are regular on and outside their event horizons, endowed with
conformally coupled scalar and gauge fields. The black holes are described by means
of very simple expressions, even in the presence of a self-interaction potential com-
patible with the conformal invariance. For this reason, their geometries and thermo-
dynamic properties can be easily explored, and consequently, the physical meaning
of them becomes clear. In general, the integration of the field equations provides
two arbitrary constants which parametrize the solutions in conjunction with the
self-interaction coupling constant. The black holes can be classified in three groups.
The first group, discussed in Sec. 5.1.1, includes those with a stealth composite
matter source, where the contributions of both fields to the energy-momentum ten-
sor cancel out. The case in which the three parameters do not vanish defines the
second group treated in Sec. 5.1.2. Here two black holes appear, one with a single
horizon, and another one having an inner horizon, which can not become extreme,
keeping a nontrivial scalar field. The third group is defined by the absence of the
self-interaction potential (Sec. 5.1.3). This class contains the electrically charged
version of the black hole found in [15]. Additionally, an extreme black hole emerges
if the condition of regularity for the fields at the horizon is removed.

It is worth noting that the asymptotic behavior of the metrics satisfies the Brown-
Henneaux asymptotic conditions even in the case of a nontrivial scalar and gauge
fields. This means that these are asymptotically AdS spacetimes. However, the
entire configuration is endowed with the asymptotic AdS invariance only if the scalar
field allows it.

The conserved charges, mass and the electric charge, were determined under the
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Regge-Teitelboim approach. It was found that boundary conditions on the leading
and sub-leading terms of the asymptotic form of the scalar field are necessary in
order to obtain the mass. This fact is in accordance with the physical statement
which says that the mass is well defined after boundary conditions are imposed.

Remarkably, the scalar fields presented in sections 5.1.2 and 5.1.3 have an asymp-
totic behavior allowing to analyze a wide class of boundary conditions, even including
those that break the asymptotic AdS symmetry. This is possible because the scalar
field contains two independent integration constants unlike other exact solutions as
far we know, which are defined with only one integration constant and hence no
other boundary condition is required. These black holes could be considered in the
context of the so-called Designer Gravity theories [61], in which general boundary
conditions were numerically studied. However, since the black holes shown here are
exact solutions, these could be very useful for those models.

The temperature of the black holes is a monotonically increasing function of
the horizon radius r+, which approaches the linear one for large r+ as it happens
in general for the AdS black holes. On the other hand, the factor appearing in the
modified entropy area law is not necessarily positive definite. Hence the positiveness
of the entropy requires extra conditions on the integration constants and the coupling
parameter α. We note that for a large enough negative coupling constant the entropy
is positive without other conditions apart of those necessary for the existence of black
holes. Since in the Einstein frame the entropy is a positive definite quantity, one may
think that negative entropy configurations could have a well-defined thermodynamic
description in that frame as well. However, this class of solutions are mapped
to naked singularities in the Einstein frame. It is worth pointing out the exact
correspondence between the the positiveness of the entropy in the conformal frame
and the cosmic censorship principle in the Einstein frame. The black holes in the
Einstein frame, and their geometrical and thermodynamic properties deserve further
attention and they are interesting enough as to be considered in a future work.
Finally, in three dimensions adding angular momentum is not a difficult task, and
it would be interesting to study the spinning versions of the black holes introduced
here.

In Chapter 7, we have discussed how an action in terms of one-forms naturally
arises after the matter action, given by a conformally coupled scalar field with a self-
interaction λφ6 –that does not spoil the conformal invariance– is mapped to pure
gravity by means of conformal transformation involving the scalar field. The result-
ing gravity action has a negative gravitational constant and a cosmological constant
−8λ. This leads to a Chern-Simons-like description for this system. This is possible
since the metric can be written in terms of gauge connections. In this context, a new
hairy black hole was introduced, which corresponds to a rotating solution. The ther-
modynamics of this black hole was analyzed in the grand canonical ensemble, where
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the free energy, defined as a surface term, was derived from the Euclidean version
of the Chern-Simons-like action. The advantage of this formulation comes for the
simplicity of this surface term in comparison with the one associated to second-order
metric formalism. The regularity conditions were imposed on the holonomies along
the thermal cycle of the torus at event horizon, fixing the chemical potentials of the
solutions. The entropy was derived in two ways; the first one from the Gibbs free
energy and the second one from a general formula for the entropy in terms for a
Chern-Simons theory. Both gave the same result compared with the modified area
law. We showed how this aproach is also valid for gravity with a minimally coupled
scalar field. An interesting problem related to this work is to analyze the dynamical
structure of the proposed action in terms of one-forms . The canonical formulation
would shed light about its symmetries and propagating degrees of freedom. More-
over, it would be also worth to explore a different three-dimensional gravity action,
for instance, the so-called new massive gravity with a conformally coupled scalar
field.

In Chapter 8, we have carried out the thermodynamic analysis of a new class of
AdS4 dyonic dilatonic black holes recently proposed in [33], which are solutions of
the bosonic sector of a Kaluza-Klein reduction of eleven-dimensional supergravity.
The conserved Noether charges were computed using the Regge-Teitelboim Hamil-
tonian approach. These correspond to the mass, which acquires contributions from
the scalar field and the electric charge. It was also shown that the mass acquires
non-integrable contributions from the scalar field, in which case it was necessary to
impose integrability conditions to have a definite mass. These conditions are generi-
cally solved by imposing boundary conditions that relate the leading and subleading
terms of the scalar field fall-off. A possible physical condition to establish the ar-
bitrary functions coming from the integrability condition is to preserve the AdS
symmetry of the scalar field behavior at infinity as was established in [16], [37], [49],
[29]. The Hamiltonian Euclidean action was computed by demanding that the action
has an extremum, where its value was given by the corresponding radial boundary
term plus an additional term, because of the presence of a magnetic monopole. The
computation was performed in the grand canonical ensemble. The conserved charges
were identified from the thermodynamic analysis. The Noether charges, the mass
and the electric charge, were obtained from the radial boundary term at infinity,
unlike the magnetic charge. The latter one comes from the additional term. Re-
markably, the magnetic potential appeared already in the variation of the boundary
term, unlike the chemical potentials associated to the Noether charges which are
the Lagrange multipliers of the system at infinity. They are obtained by imposing
regularity conditions at the horizon. Considering the above, it is possible to verify
that the first law of black hole thermodynamics is identically satisfied. This is a
consequence of having a well-defined and finite Hamiltonian action principle.
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A different way to deal with the thermodynamics of dyonic black holes is to
consider a manifestly duality invariant action that involves two U(1) symmetries,
producing the appearance of electric and magnetic Gauss constraints [86]. The dy-
onic Reissner-Nordström black hole is a solution of the system proposed in [86],
however in that case the magnetic and the electric fields appear as Coulomb po-
tentials, hence the solution is devoid of stringy singularities. In this case, all the
conserved charges that appear in the first law come from symmetries of the action.

It would be interesting to analyze the existence of phase transitions between the
dyonic dilatonic black hole solution and the dyonic Reissner-Nordström black hole,
i.e. studying the probability that below a critical temperature the dyonic Reissner-
Nordström black hole spontaneously changes to a state that is dressed with a dilaton
scalar field. This kind of results have been reproduced, for instance, in the case of
four-dimensional topological black holes dressed with a scalar field in [87].
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Chapter 10

Appendix A: Action and equations
of motion: from the action in term
of one forms to the second-order
formulation

In this appendix we show how the action

I(1) [e, φ] =
1

2κ

ˆ (
2Raea −

Λ

3
εabce

aebec
)

+
1

2κ̄

ˆ (
2R̄aēa −

Λ̄

3
εabcē

aēbēc
)

(10.1)

can be mapped to (7.2). The first part of the above action is mapped to

1

2κ

ˆ
d3x
√
−g (R− 2Λ) , (10.2)

just using the following relations

εabce
a
µe
b
νe
c
ρ = eεµνρ, Ra

µν (ω) =
1

2
εabce

b
λe
c
ρR

λρ
µν (Γ) , (10.3)

As claimed, the second part

1

2κ̄

ˆ (
2R̄aēa −

Λ̄

3
εabcē

aēbēc
)

(10.4)

is mapped to (7.1) provided Λ̄ = κ̄λ, κ̄ = −8. This can be seen as follows. From
the vanishing torsion condition, dea + εabcω

bec = 0, we impose

ωaµ =

(
1

2
eaµε

bcd − εabcedµ
)
eνbe

λ
c∂νedλ, (10.5)
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so ω̄ reduces to
ω̄a = ωa + 2φ−1εabcebecν∂

νφ. (10.6)

Replacing the above in

R̄a = dω̄a +
1

2
εabcω̄bω̄c, (10.7)

and considering the conformal transformation ēa = φ2ea, as well as the relations
(10.3), the action (10.4) becomes the second-order one (7.1).

Now, we will show that the equations of motion

2Ra − Λεabce
bec = −κ

κ̄

(
2R̄a − Λ̄εabcē

bēc
)
, (10.8)

φea
(
2R̄a − Λ̄εabcē

bēc
)

= 0, (10.9)

are equivalent to the second-order equations for the conformally coupled scalar field.
First, the l.h.s of (10.8) can be easily identified with

Gµν + Λgµν , (10.10)

just after considering that the relation between the 2-form curvature and the Riem-
man tensor (10.3) holds and recalling that Gµν = Rµν− 1

2
gµνR is the Einstein tensor.

Now, for computing the r.h.s. of (10.8) one must solve consider the value fir ω (10.5),
which implies (10.6). At last, replacing (10.6) in (10.7), one gets that the r.h.s of
(10.8) is reduced to the conformal coupling stress-energy tensor (7.5), i.e.

κ

8

(
Ḡµν − 8λḡµν

)
φ2 = κTµν , (10.11)

where ḡµν = φ4gµν and

Ḡµν = Gµν − 2∇µ∇ν log φ+ 2gµν∇α∇α log φ+ 4∇µ log φ∇ν log φ, (10.12)

obtaining the well-known Einstein equations

Gµν + Λgµν = κTµν . (10.13)

The scalar field equation (7.4) can be recovered from (10.9). Following the same
steps required for obtaining (10.11), Eq. (10.9) reduces to

2eḡµν
(
Ḡµν − 8λḡµν

)
φ5 = 0, (10.14)

and using (10.12), the scalar field equation

�φ− 1

8
Rφ− 6λφ5 = 0. (10.15)

is easily recovered.
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Chapter 11

Appendix B : Black hole gauge
connection

The dreibein for the line element (7.6) is chosen as

e0 = N⊥ (r) dt, e1 =
dr

F (r)
, e2 = H (r)

(
dθ +N θ (r) dt

)
, (11.1)

where the Lorentz metric is ηab = diag (−1, 1, 1). Then, the components of the
1-form field ēa are

ē0 = φ2N⊥ (r) dt, e1 =
φ2dr

F (r)
, e2 = φ2H (r)

(
dθ +N θ (r) dt

)
, (11.2)

with the scalar field

φ (r) =

√
8c

κ (r + c)
. (11.3)

For obtaining the spin connection, one solves the torsion equation dea+εabcωbec =
0, whose general solution is

ωa =

[(
1

2
eaµε

bcd − εabcedµ
)
eνbe

λ
c∂νedλ

]
dxµ. (11.4)
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Thus, the components reads as

ω0 =
1

2

[
2N θ (r)H (r)′ +H (r)N θ (r)′

]
dt+H (r)′ F (r) dθ, (11.5)

ω1 =
H (r)2N θ (r)′

2rF (r)
dr, (11.6)

ω2 =

[
rF (r)F (r)′

H (r)
+
F (r)2 (H (r)− rH (r)′

)
H (r)2 − H (r)3N θ (r)N θ (r)′

2r

]
dt

− H (r)3N θ (r)′

2r
dr. (11.7)

From (10.6), one can write ω̄a = ωa + ω̃a, with

ω̃a = 2φ−1εabcebecν∂
νφ, (11.8)

whose components are

ω̃0 = 2φ (r)−1 F (r)H (r)
[
dθ +N θ (r) dt

]
φ (r)′ , (11.9)

ω̃1 = 0, (11.10)

ω̃2 = 2φ (r)−1 F (r)N⊥ (r)φ (r)′ dt. (11.11)

The gauge connection A is defined as

A = eaPa + ωaJa, (11.12)

where Pa and Ja are the generators of the anti-de Sitter algebra so (2, 2) in three
dimensions, which reads as

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = −ΛεabcJ
c, (11.13)

with Λ = −1/`2. But so(2, 2) ' so (2, 1)+⊕so (2, 1)−, where the generators for each
copy of the Lorentz algebra in three dimensions will be denoted by the set j±a . The
isomorphism between the so(2, 2) and the so (2, 1)± generators is given by

`Pa = j+
a − j−a , Ja = j+

a + j−a , (11.14)

and the so (2, 1)± algebras are [
j±a , j

±
b

]
= εabcj

± c. (11.15)

Considering the above explanation, the hairy black hole gauge connection can be
written as a direct sum of gauge connections for the Lorentz algebra so(2, 1) , i.e.,
A = A+ ⊕ A−, where

A± =

(
ωa ± ea

`

)
j±a . (11.16)
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Finally, one has to consider that so (2, 1)± ' sl (2,R)±, where the generators for
each copy of the special linear group in two dimensions are L±n with n = −1, 0, 1
and its algebra reads [L±n , L

±
m] = (n−m)L±n+m. The change of basis is

j±0 =
1

2

(
L±−1 + L±1

)
, j±1 =

1

2

(
L±−1 − L±1

)
, j±2 = L±0 . (11.17)
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Chapter 12

Appendix C : The hairy black hole
charges in the Regge-Teitelboim
approach

We will obtain the global charges of the black hole solution (7.6)-(7.11) as surface
integrals using the Regge-Teitelboim approach [42]. For this purpose, we consider
the following stationary minisuperspace

ds2 = −N⊥(r)2dt2 + F (r)−2 dr2 +H (r)2 (dθ +N θ (r) dt
)2
, (12.1)

where the scalar field just depends on the radial coordinate φ = φ(r).
The Hamiltonian generator of the asymptotic symmetry ξ is determined by a

linear combinations of the canonical constraints, H⊥ and Hi, and by a surface term
Q[ξ],

H[ξ] =

ˆ
d2x

(
ξ⊥H⊥ + ξiHi

)
+Q[ξ], (12.2)

where the surface term is chosen such that H[ξ] has well defined functional deriva-
tives. The components ξ⊥, ξθ of the allowed surface deformation vector.

The only non-vanishing canonical momentum in the proposed minisuperspace is
πrθ ≡ P (r). Therefore, the constraints for the action (7.2) are given by

H⊥ =
1

κ

[
4κ2P 2

FΩ(φ)H3
+ Ω(φ)F

′
H
′ − κ

4
FH

′
φφ
′
+ Ω(φ)FH

′′

+
H

F

(
Λ + κλφ6 − κ

4
FφF

′
φ
′
+
κ

4
F 2
(
φ
′2 − φφ′′

))]
, (12.3)

Hθ = −2P ′, (12.4)
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with

P (r) = −FH
3Ω(φ)(N θ)′

4κN⊥
, (12.5)

and Ω(φ) = 1− κφ2/8.
Then, the variation of the surface term at infinity is

δQ[ξ] =
2π

κ

[
ξ⊥
(κ

4
FH

(
φδφ

′ − 3φ
′
δφ
)
− Ω(φ)FδH

′
+
(κ

4
Hφφ

′ − Ω(φ)H
′
)
δF
)

+ ξ⊥
′
F
(

Ω(φ)δH − κ

4
Hφδφ

)
+ 2κξθδP

]
r→∞

, (12.6)

where the integration over θ, which provides the factor 2π in (12.6), has been done.
On the other hand, the asymptotic behavior of the fields at infinity that accom-

modates the black hole solution is given by

F 2(r) =
r2

`2
+ F1 +O

(
1

r

)
, (12.7)

H2(r) = r2 +H1 +O
(

1

r

)
, (12.8)

P (r) = P0 +O
(

1

r

)
, (12.9)

φ(r) =
φ0

r1/2
+

φ1

r3/2
+O

(
1

r5/2

)
, (12.10)

and the asymptotic symmetries behave as

ξ⊥(r) =
r

`
+O

(
1

r

)
, (12.11)

ξθ(r) = ξθ0 +O
(

1

r2

)
. (12.12)

Above, the quantities labelled with subscript 0 and 1 are constants.
The mass is the charge associated to the gauge parameter ξ⊥, then M = Q(ξ⊥ =

1, ξθ = 0) = Q(∂t), and the angular momentum J = Q(ξ⊥ = 0, ξθ = 1) = Q(∂θ) is
the charge related to ξθ.

In consequence, for the given asymptotic conditions (12.7) and the asymptotic
symmetries (12.11), the variation of the global charges are

δM = δQ [∂t] = −πδF1

κ
+

2πδH1

κ`2
+

π

2`2
(3φ1δφ0 − φ0δφ1) , (12.13)

δJ = δQ [∂θ] = 4πδP0. (12.14)
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The integration of the scalar field contribution requires a functional relation between
φ0 and φ1. This contribution vanishes1 if the scalar field is invariant against rescaling
of the radial variable at infinity, which demands that φ1 is proportional to φ3

0, as
occurs for the scalar field considered here. Therefore, we have

M = −πF1

κ
+

2πH1

κ`2
, J = 4πP0. (12.15)

The arbitrary additive constants, coming from the integration of each variation, are
set to be zero in order to obtain vanishing mass and angular momentum for the
massless BTZ black hole.

For the particular rotating black hole solution presented in Sec. 2, we have

F1 = −3c2(1− α)

`2
, H1 =

3c2ω2(1− α)

1− ω2
, P0 =

3c2ω (1− α)

2κ` (1− ω2)
, φ1 = − κ

16
φ3

0,

(12.16)
then, the mass and angular momentum for the hairy rotating black hole are

M =
3πc2 (1− α) (1 + ω2)

κ`2 (1− ω2)
, J =

6π (1− α) c2ω

κ` (1− ω2)
. (12.17)

1A recent discussion about this contribution to the mass and the asymptotically AdS symmetry
can be found in [38] and [60], for three and four spacetime dimensions, respectively. A review
based on the Hamiltonian approach, which includes higher dimensions, is available in [29].
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