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gracias a los profesores Patricio Salgado y Fernando Izaurieta, los cuales me brindaron
todo su apoyo y disposición de su tiempo para poder desarrollarme tanto como profe-
sional y persona. Por otro lado, le doy las gracias al Centro de Estudios Cient́ıficos de
Valdivia por su hospitalidad durante esta tesis, y en particular al profesor Jorge Zanelli
por entregarme sus técnicas y sugerencias en mi desarrollo como investigador integral.

Finalmente, agradezco a mi hermano por su grata compañ́ıa en mis años de estudios en
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Resumen

En esta tesis hacemos uso del Método de Campo de Fondo (MCF) para encontrar la
ecuación de las copias de Gribov en el caso de SU(2), en la presencia de potencial qúımico
y temperatura. También es analizada la ecuación de gap para el parámetro de Gribov para
la teoŕıa de Yang-Mills SU(2) en presencia de potencial qúımico. Las soluciones numéricas
de esta ecuación determinan cómo el parámetro de Gribov depende del potencial qúımico,
y por lo tanto también la estructura no-perturbativa del propagador del gluón en la
aproximación semi-clásica.
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Abstract

In this thesis, we make use of the Background Field Method (BFM) to find the
equation for Gribov’s copies in the SU(2) case, in the presence of chemical potential and
temperature. Also the gap equation for the Gribov’s parameter for SU(2) Yang-Mills
theory in presence of chemical potential and temperature is analyzed. The numerical
solutions of this equation determine how the Gribov’s parameter depends on the chemical
potential, and therefore also the non-perturbative structure of the gluon propagator in
the semi-classical approximation.
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Chapter 1

Introduction

From earliest times, the physicists have had the tendency to unify the theories that explain the work-
ings of nature. Apparently, this natural inclination is generated from events that have occurred along
the history of Physics, just as it was for example, the unification of terrestrial and celestial gravity,
the unification of electricity and magnetism, or more recently the unification of electromagnetism
and weak nuclear interactions. It is well known nowadays that there are four fundamental forces that
govern the Universe: gravity, electromagnetism and, strong and weak interactions. Unfortunately,
there is no concrete way to unify gravity with the other three forces. Despite this, one of the things
that these forces have in common is the existence of symmetries. The symmetries provide, to some
extent, the structure and coherence to the laws of nature just as the laws of nature do on a set of
events. They play an important role in Physics for the understanding in depth the essence of the prob-
lem. Therefore, from this common quality that the four fundamental forces have, it is believed that
the possible unification towards a full theory would be through a single principle, the gauge principle.

The symmetries and gauge principle are very well represented by the known gauge theories. These
theories are invariant under certain local symmetry transformations, which maintain unaltered the
physics of the problem. The gauge theories gave a description to all the fundamental forces along
with their interactions. For example has been found that gravity has as a mediator particle, the
graviton of spin 2, for the electromagnetism the photon and, the gluon and W and Z bosons for the
strong and electroweak interactions, respectively. It is important to remark that the gauge principle
introduces all the radiation fields, which are responsible to explain the interactions of the particles
in a natural way.

The appearance of the gauge principle arises basically of Hermann Weyl’s work which had as main
consequence to elevate the grade of the gauge invariance, from a symmetry to a fundamental princi-
ple of Physics. This idea took about sixty years to consolidate, beginning with the Einstein’s theory
of gravitation, and ending with the discovery of the strong interactions described by the Yang-Mills
gauge theory. In the electroweak case, it was established by the Glashow-Salam-Weinberg model
with a gauge group G = SU(2)× U(1). On the other hand, for the strong interaction, the necessity
to understand it like a gauge theory, gave the remarkable result of a new phenomenon: the asymp-
totic freedom. This phenomenon pointed out that at short distances quarks and gluons behave as
free particles.
From the experiments of 60s, and the discovery of asymptotic freedom in the quarks, the theoretical
physicists could develop strong interactions as a gauge theory invariant under a non-abelian group,
G = SU(3). This gauge theory for strong interactions is known as Quantum Chromodynamics or

1



2 CHAPTER 1. INTRODUCTION

QCD.

Quantum Chromodynamics is a theory that describes strong interactions by field called quarks,
with spin 1/2, and with the mediators known as gluons, with spin 1. In particular, in this thesis we
only worry about the part that describes the Yang-Mills field of QCD, i.e., the gluonic part.
The QCD gluonic part is very similar to the photonic part in Quantum Electrodynamics, since both
describe (in principle) massless particles. However, the big difference that exists between them is on
the QCD gluonic part, because unlike photons (observable particles), the gluons (also the quarks)
have never been observed in an isolated form. This phenomenon is known as confinement. It will,
in the second part of this thesis, be the central topic.
Although Yang-Mills theory managed to explain certain things about strong interactions, it left many
open problems: in particular confinement. Many of the works involved in the understanding of the
confinement problem, elucidate the solutions from different perspectives, but with certain things in
common. All of these approaches try to capture, in theoretical way, the possible solutions in relation
to the observed world in the experiments. In this sense, this thesis will be based on how the insertion
of the Yang-Mills part in the QCD action can determines possible signals about the confinement.
It leads us directly to the quantization of the Yang-Mills theory. In this framework, we will try to
understand if the residual gauge degrees of freedom left after the gauge fixing (when we perform
the quantization), could play a important role for the understanding of the infrared behaviour in
Yang-Mills theory. It is worth to mention, that the first one to realize the importance of this issue
was V. Gribov [1] (his approach was refined later by Zwanziger [2]).

On the other hand, it is important remark that the thermodynamics of QCD nowadays is an active
area of research. The nature of the phase transitions caused by strong quantum corrections, finite
temperature and density effects, have direct implications in the physical world, from high energy
physics to the dynamics of how the universe is cooled and expanded after the Big Bang. In par-
ticular, gauge theories with non-zero temperature and chemical potential are of interest in plasma
physics, for quark-gluon plasma [3, 4], the color superconductivity in QCD [5], astrophysics [6], and
cosmology [7, 8]. In this direction, the first person that considered different thermal relativistic
non-abelian field theories in presence of chemical potentials was Kapusta in Ref.[9]. In this work,
the chemical potentials are related to the (Noether) conserved charges, which (after an integration
over momenta) can be interpreted as background fields for the temporal components of the gauge
fields. Although the relation between the temporal-components of the gauge fields and chemical
potentials can be obtained by a straightforward calculation, there is an argument purely thermo-
dynamic, which suggests that the chemical potentials can be associated to the expectation values
of the temporal components of the fields. For these reasons, in order to devise an approach where
the chemical potential is able to distinguish between confinement and deconfinement phase in the
Gribov-Zwanziger approach, we make use of the Background Field Method (BFM). This method is
inserted in the Chapter 5. The consequences of BFM in the first part of this thesis on the finite gauge
transformations for the GZ action throw a key vision about how the degrees of freedom are affected.
On the other hand, the dynamical part of the thesis will show the effects of chemical potential in
the gap equation of Gribov-Zwanziger approach, and subsequently to the gluon propagator.
Thus, a kinematic and dynamic part will be the basic structure of this thesis. The first part (the
kinematic part) corresponds to the study of the gauge symmetry with non-zero chemical potential
of the Yang-Mills theory. In the second part we will focus to the determination of the Gribov pa-
rameter, and how it is affected by the presence of chemical potential.
More precisely, the thesis is structured in the following way: the first four chapters correspond to
introductory chapters about the theme what we will build; in particular, for the second chapter we
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will develop the conventions and properties of the Yang-Mills theory, next we develop the quan-
tization of it. We will analyse briefly the infrarred behaviors of the Yang-Mills theory, and some
possible confinement scenarios for the gluon as well as the gauge fixation. We will utilize the usual
quantization method for non-abelian gauge theories: the so-known Faddeev-Popov procedure. By a
particular gauge choice, and in order to perform the quantization of the theory, non-physical extra
fields are necessary.
The Gribov’s view on the Faddeev-Popov procedure involved new changes in the theory, in order
to avoid the overcounting of the degrees of freedom. The Gribov’s solution, and subsequently all
the experimental data in accordance to it, will be analyzed. In particular, the infrarred behaviors
of the Yang-Mills theory together with the Gribov’s ideas will give a description of the confinement
problem. It will be seen in Chapter 3.
Later on, Zwanziger [2] by a thorough study about to the Gribov’s idea managed to put it within
a framework of a renormalizable theory. Due to this last, a new symmetry and extra fields are
necessary, which will be explicated in Chapter 4.
The second part of the thesis is dedicated to the dynamic study of the Gribov-Zwanziger theory,
in particular to the analysis of the gluon propagator. The standard way on how one must insert
chemical potentials in abelian and non-abelian gauge theories will be seen in Chapter 5.
Finally, I will present an appropriate procedure to insert these chemical potentials like background
fields. The Gribov mass parameter that appears in the gluon propagator of the Gribov-Zwanziger
model, will be determined in presence of this chemical potential by means original regularization
methods, explicated in Chapter 6. We will obtain the gap equation that give us as solution the
Gribov mass parameter.
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Chapter 2

Yang-Mills Theory and its Infrared
Behaviour

QCD is the theory of the strong interactions, and it possesses two parts: the spinorial part, de-
scribing particles with half-integer spin, and the gauge term, describing the gluons with 1-spin. The
Yang-Mills theory describes the second part, i.e., the gluonic part.
Due to the existence of a gauge symmetry in Yang-Mills theory, we should select only one repre-
sentative among all the physically equivalent gauge field configurations to avoid any overcounting
of degrees of freedom. In Sect. 2.3, we will describe the standard procedure for gauge fixing in
perturbation theory as well as in non-perturbative regime.
The infrared behaviour (IR) of the gluons correlation functions are investigated in Sect. 2.3 by means
the usual relativistic invariant quantization method elaborated by Faddeev and Popov [10]. Next,
we will present the Gribov’s idea about the gauge fixing in the Faddeev-Popov quantization, and
how he showed that for a non-abelian gauge theory (for example SU(2)) there are distinct equivalent
transverse configurations satisfying the same gauge condition. In the final section of this chapter we
will shortly review the relation between IR behaviours of propagators and confinement, and some
confinement scenarios. In particular, one of them latter will be developed in Chapter 4.

2.1 The action of Yang-Mills theory

The Maxwell’s electromagnetism theory was the first gauge theory invariant under an abelian group,
the known U(1) group. Some years later, physicists as Feynman, Dyson, Schwinger and Tomonaga
developed the quantum version of this theory. This gave birth to the Quantum Electrodynamics or
QED, which gives a correctly accurate account between electromagnetic fields and forces. This the-
ory predicted new splitting of energy levels, and scattering process between photons and electrons.
In 1954, in order to have a better understanding of the strong interactions in the atomic nucleus,
the physicists Chen Yang and Robert Mills extended the concept on a gauge theory invariant under
an abelian group to the case of a gauge theory invariant under a non-abelian group [11]. Nowadays,
this models are known as non-abelian gauge theories.

The fundamental property in common between Maxwell and Yang-Mills equations is that both
provide a classical description of massless waves travelling at the speed of light. In the 50s, it was
hard understand whether a non-abelian gauge theory could describe other forces in the nature. The
QCD theory emerged by a series of experimental and theoretical discoveries made in the 1960s and

5



6 CHAPTER 2. YANG-MILLS THEORY AND ITS INFRARED BEHAVIOUR

1970s, involving exclusively the strong interactions. We will see how the non-abelian Yang-Mills
action works in the description of QCD theory.

The Lagrangian density of QCD is

LQCD = ψ̄(− /D +m)ψ + LYM , (2.1)

where /D = γρDρ, with γρ the four-dimensional Pauli matrices. Here, the quarks are in the fun-
damental representation of the gauge group while the gauge potential in the adjoint representation
(see Appendix A for more details about these representations). The second term corresponds to the
Yang-Mills Lagrangian defined by

LYM =
1

2g2
TrF ∧ ∗F =

1

4g2
δabF

a
ρσF

ρσb (2.2)

where δab corresponds to the Killing metric on the SU(N) algebra, such that

Tr (TaTb) =
δab
2
, (2.3)

and with g a coupling constant. The first term in LQCD describes the propagation of the massive
quarks ψ and its interactions with gluons by means the covariant derivative Dρ,

Dρ = ∂ρ(·) + ig[Aρ, ·]. (2.4)

The term LYM constitutes the gluonic part of QCD which contains the propagation of the gluons
and its self-interactions. In some sense, QCD appears as an expanded version of QED, but with
some differences (for more details see Appendix C).
Moreover, continuing with the study of Yang-Mills action, the symbol “Tr” in Eq. (2.2) denotes an
invariant quadratic form on the Lie algebra of SU(N), “∧” denotes the product of differential forms,
and “*” represents to the Hodge operator. 1

The two-form F in Eq.(2.2) can be defined considering to Ta as the hermitian generators which
form a Lie algebra of the form

[Ta, Tb] = f cabTc (2.6)

where f cab are the structure constants of SU(N) group. Therefore, the components of the curvature
F , to say F aρσ, are defined as

F aρσ = ∂ρA
a
σ − ∂σAaρ + ig[Aaρ, A

b
σ]. (2.7)

The gauge field Aρ lives in an algebra defined by the hermitian generators Ta. Therefore, the
decomposition of the gauge field is

Aρ = AaρTa, (2.8)

and similarly for the field strength tensor:

F aρσ = ∂ρA
a
σ − ∂σAaρ + igfabcAbρA

c
σ, (2.9)

1The Hodge operator is an invertible map of type

∗ : Ωp(M(d) → Ωd−p(M(d)) (2.5)

where p is the range of the differential form and d is the dimension of the manifold Ω.
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where we have used the relation (2.6). The finite transformation of the gluon field under which the
YM action (2.2) is invariant, is given by

Aρ(x)→ AUρ (x) ≡ U(x)Aρ(x)U−1(x) + (∂ρU(x))U−1(x), (2.10)

where U(x) is

U(x) = eigω(x), (2.11)

and ω(x) a Lie algebra valued gauge parameter: ω(x) = ω(x)aTa. This kind of transformations are
known as gauge transformations, and their infinitesimal version reads

δAaρ = −∂ρωaρ − gfabcωbAcρ = −Dab
ρ ω

a (2.12)

where the covariant derivative Dab
ρ , in the adjoint representation, is defined as

Dab
ρ = δab∂ρ + gfabcAcρ. (2.13)

As we mentioned in the introduction, the strong interaction is governed by the compact simple Lie
group SU(3), but during this thesis only the SU(2) case will be considered to explain key features
of our problem.

If we vary the action of the theory associated to LYM , we obtain the following field equations:

(Dρ)
a
bF

ρσb = 0. (2.14)

On the other hand, the two-form F aρσ also satisfies a Bianchi identity

(DρFσδ)
a + (DδFρσ)a + (DσFδρ)

a = 0. (2.15)

which is equivalent to the Jacobi identity

[Dρ, [Dσ, Dδ]] + [Dδ, [Dρ, Dσ]] + [Dσ, [Dδ, Dσ]] = 0 (2.16)

since [Dρ, F
a
ρδ] = DρF

a
σδ. Also very useful is to define the strength tensor F̃ ρσ = 1

2ε
ρσδγFδγ , then

the Bianchi identity (2.15) can be rewritten as

DρF̃
ρσ = 0. (2.17)

Is noteworthy that the field equations in Eq.(2.14) are non-linear- in contrast to the Maxwell equa-
tions, but have certain properties in common with them. Like the Eintein equations, few exact
solutions are known. (See for example Ref. [12]).

2.2 Path integral quantization of the Yang-Mills theory

The path integrals provide an alternative to the canonical quantization of complicated gauge theories,
and it also gives a direct route to the study regimes where perturbation theory is either inadequate
or is not well-defined.
A brief topic and systematic details on the functional integral can be seen in Appendix B.
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The perturbative quantization problem, was solved locally by L. Faddeev and A. Popov [10].
Their method of quantization starts from the functional integral 2

Z =

∫
DAρe−

∫
LYMd4x (2.18)

in Euclidean space-time and the integral run over all gauge potential Aρ including those which are
related by the gauge transformation (2.10). Due to this last, the integral diverges, and hence some
sort of restriction is necessary. This restriction exists and is known as the gauge fixing condition.
In the following section, we will describe the Faddeev-Popov technique for the particular Landau
gauge condition.

2.3 Fixing the gauge

The source of problem in quantizing the Yang-Mills action is due to that one integrates, in the usual
Feynman path integral, over equivalent gauge field configurations. But obviously we only want to
take into account gauge fields physically different. Due to the symmetry transformation in Eq. (2.10),
there are many redundant degrees of freedom, which prevent sensible computations. In particular,
the configuration space A for a gauge theory is made of different equivalence classes which each class
correspond to a different physical state. Thus, the “physical” configuration space, Aphys, is given by

Aphys = A/G, (2.19)

where G is the gauge group (in our case SU(2) group). A/G means that gauge fields which are related
by a gauge transformation must be identified. The process to obtain the physical configuration space
from A is called “gauge fixing” and consist in imposing some constraints or “gauge conditions” over
the gauge fields, or sometimes only over certain components of it.
It is useful to introduce here the notion of a gauge orbit, which is the set of all the field configurations
connected by gauge transformations

O[A] := {A′ρ| A′ρ = AUρ } (2.20)

and where AUρ is given in Eq. (2.10). Thus, if one choose a gauge condition Ga[Aρ] ≡ 0, it should
fix completely the gauge. In the present thesis, we will only consider the covariant Landau gauge
condition, i.e., Ga[Aρ] = ∂ρAaρ = 0. Even though the gauge fixing condition guarantees that the
gauge is locally fixed, it does not imply that it is globally fixed. The gauge fixing condition works as
follows. The gauge orbits can be thought a foliation of the functional space of the gauge field Aρ. We
want to select one and only one representative for each gauge orbit. Thus, the gauge fixing condition,
defined by Ga[Aρ] = ∂ρA

a
ρ = 0, should intersect every gauge orbit once and only once (see Figure 2.1).

2Here we will use the natural units which c = ~ = 1. For this reason, the fields in d = 4 has mass units for that
exponential function it is well defined.
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Figure 2.1: Ideal situation: Landau gauge condition intersecting once and only once the gauge orbits
in the functional space.

Apparently, up to here the gauge fixing process is quite right. In particular, in the usual
commutative QED the gauge fixing condition ∂ρAρ = 0 fixes the gauge completely. In other words,
if Aρ satisfies the Landau gauge fixing condition, the transformed field under the transformation
(2.10) does not

∂ρĀρ[ω] 6= 0, ω 6= 0, (2.21)

where ω is some function of x considered as a parameter of the transformation. One can conclude
that the equation (2.21) has only the trivial solution ω = 0. A recent work in non-commutative QED
[13] explains that the zero mode equation (2.21) can exhibit non-trivial solutions.
However, it may happens that gauge fixing conditions intersect more than once the gauge orbits,
and consequently the gauge fixing is unable to completely eliminate the overcounting of the degrees
of freedom; this is a typical phenomenon in non-abelian gauge theories, and is known as Gribov
ambiguity [1]. Due to the Gribov ambiguity, gauge fixing conditions, for example the Landau gauge
fixing ∂ρAρ = 0, needs to be improved at non-perturbative level.

In order to have a better understanding about this overcounting in the degrees of freedom, let
us start with a simple case of a Klein-Gordon field φ(x) with mass m, which its dynamics is described
by the action functional

SKG =

∫
d4x

(
1

2
∂ρφ∂

ρφ− m2

2
φ2

)
=

∫
d4x

(
−1

2
φ(� +m2)φ

)
(2.22)

where we have integrated by parts in the last step and neglected boundary terms. Our goal is try
to perform the path integral for the partition function associated to SKG in presence of an external
source J(x):

Z[J ] =

∫
Dφ exp

(
i

∫ +∞

−∞
d4x

[
LKG + J(x)φ(x) +

i

2
εφ2(x)

])
=

∫
Dφ exp

(
−i
∫
d4xd4y

[
1

2
φ(x)(�(x) +m2 − iε)δ(x− y)φ(y) + i

∫
d4xJ(x)φ(x)

])
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where we have introduced a damping term proportional to ε > 0. Realizing a Gaussian integration,
we obtain

Z[J ] =
1√

idet(� +m2 − iε)
exp

(
i

2

∫
J(x)∆F (x− y)J(y)d4xd4y

)
. (2.23)

Here ∆F denotes the Feynman propagator and corresponds to the inverse of the operator (�+m2−iε)
that satisfies the Green’s equation:

(�(x) +m2 − iε)∆F (x− y) = δ(x− y). (2.24)

It is direct show that the operator (�(x)+m2− iε) has inverse, and therefore it is possible determine
the Feynman propagator ∆F .

Now, let’s see what happens in the Yang-Mills case. In fact, the quadratic part of Yang-Mills
action is give by

SYM =

∫
d4x

(
1

2
Aρa (gρσ�− ∂ρ∂σ)Aσa

)
. (2.25)

Here, we need the inverse of the operator (gρσ� − ∂ρ∂σ), and so be able to find the Feynman
propagator which satisfies

(gρσ�− ∂ρ∂σ)Dρσ
ab (x− y) = δabδ

(4)(x− y). (2.26)

Unfortunately this operator has no inverse. If the operator (gρσ�− ∂ρ∂σ) would be invertible, then
the equation below

(gρσ�− ∂ρ∂σ)Xσ = 0, (2.27)

would only have the trivial solution Xσ ≡ 0. But the simple choose Xσ = ∂σΛ also satisfies the
equation (2.27). This proves that (gρσ�−∂ρ∂σ) is not invertible, and therefore we cannot define the
Feynman propagator.

This zero mode arises due to the gauge symmetry. Thus, we must require the insertion of a gauge
fixing condition through the path integration such as proposed by Faddeev and Popov.

In order to have a deep understanding about this problem, we start showing a simple example
of the ordinary integration. Let us consider the integral

I :=

∫ ∫
dxdye−(x2+y2) (2.28)

which is invariant under the usual two-dimensional rotation (the SO(2) symmetry). Using polar
coordinates, we find

I =

∫
dθ

∫
drre−r

2

(2.29)

where the redundant factor in the box due to the rotational symmetry is factored out. In the Yang-
Mills path integral there is a similar redundancy which must be eliminated.

We note that (2.29) can be written as,

I =

∫
dθ

∫
drr

∫
dθe−r

2

δ(θ), (2.30)
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where we have choose the path θ = 0. Instead of doing that, we consider the generalized non-zero θ
path, for example

y cos θ = x sin θ. (2.31)

To apply it to the integration (2.30), the path function is chosen as

f(θ) = y cos θ − x sin θ = 0. (2.32)

Now, from the property of the Dirac-delta one has

δ(f(θ)) =
∑
j

1∣∣∣df(θj)
dθ

∣∣∣δ(θ − θj), f(θj) = 0. (2.33)

In our case, we have ∫
dθδ(f(θ)) =

2

r
=

2√
x2 + y2

. (2.34)

To compensate the additional factor, we define the new function ∆(r) such that

∆(r)

∫
δ(f(θ))dθ = 1, ∆(

√
x2 + y2) =

√
x2 + y2

2
. (2.35)

Then, the function f is the simple rotation operation,

y′ = y cos θ − x sin θ, x′ = x cos θ + y sin θ. (2.36)

From this last, the equality (2.35) is rewritten as

∆(
√
x′2 + y′2)

∫
δ(f(y′))dθ = 1. (2.37)

This equation seem to be the identity. Hence, (2.30) becomes

I =

∫
dθ

∫
dx′dy′e−(x′2+y′2)∆(

√
x′2 + y′2)δ(y′). (2.38)

We observe that ∆ plays a role to isolate the volume factor of each gauge orbit. We can calculate
this factor explicitly as

(∆(r))−1 =

∫
δ(f(θ))dθ =

∫
δ(f(θ))

∣∣∣∣det

(
dθ

df

)∣∣∣∣ df =

∣∣∣∣det

(
dθ

df

)∣∣∣∣ ∣∣∣∣
f=0

. (2.39)

Thus,

∆(r) =

∣∣∣∣det

(
df

dθ

)∣∣∣∣ ∣∣∣∣
f=0

. (2.40)

Now, our goal is use a similar method to remove the redundant gauge symmetry over the
Yang-Mills action, applying the same previous computations for gauge fields.
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2.3.1 The Faddeev-Popov operator

The Faddeev and Popov idea is similar to the previous computation. In order to avoid the over-
counting of the degrees of freedom, we consider the gauge condition f [A] = 0 (here the fields A
are functions of spacetime coordinates), which can be inserted in the path integral by a delta func-
tional δ(f [A]). Thus, we need that the functional Jacobian of the gauge variation of f [A] to be
non-degenerate.

Let U be the (finite) gauge parameter, and AU be the transformed field configuration associated
to A. One can interpret this transformation as two points of one equivalence class, which are always
connected by U . The Jacobian factor of this gauge transformation U is

J [A,U ] =

∣∣∣∣det
δf [AU ]

δU

∣∣∣∣ (2.41)

where | · | denotes the absolute value. Formally, we may insert

1 =

∫
DUδ(f [AU ])

∣∣∣∣det
δf [AU ]

δU

∣∣∣∣ (2.42)

into (2.18), and then write the path integral as

Z =

∫
DADUδ(f [AU ])

∣∣∣∣det
δf [AU ]

δU

∣∣∣∣ e− ∫ LYMd4x.
We now make the change of variables

AUρ → AU
′

ρ (2.43)

where AU
′

ρ is other arbitrary gauge transformation, and then the partition function reads:

Z =

∫
DUDAU

′
δ(f [AU◦U

′
])

∣∣∣∣∣det
δf [AU◦U

′
]

δU

∣∣∣∣∣ e− ∫ LYM [AU
′
]d4x

=

∫
DUDAU

′
δ(f [AU◦U

′
])

∣∣∣∣∣det
δf [AU◦U

′
]

δ(U ◦ U ′)

∣∣∣∣∣
∣∣∣∣det

δ(U ◦ U ′)
δU

∣∣∣∣ e− ∫ LYM [AU
′
]d4x, (2.44)

Here U ◦ U ′ denotes the composition of the two gauge transformations. We now choose U ′ = U−1,
and we use the gauge invariance of the Lagrangian LYM [A] and of the measure DAρ to write the
partition function as

Z =

[∫
DU

] ∫
DA

∣∣∣∣det
δf [AU ]

δU

∣∣∣∣
U=0

∣∣∣∣ δ(f [A])e−
∫
LYM [A]d4x. (2.45)

The Jacobian factor

∆FP ≡
∣∣∣∣det

δf [AU ]

δU

∣∣∣∣
U=0

∣∣∣∣ (2.46)

is known as the Faddeev-Popov determinant. On the other hand, the factor in brackets in Eq. (2.45)
is the infinite constant ∫

DU = v(G)V (2.47)
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where v(G) is the volume of the gauge group and V is the infinite volume of space-time. As well
as in Eq. (2.38), this infinite constant is nothing but the result of summing over gauge-equivalent
states. Therefore, we were able in find the rule to fix the gauge by dividing out the infinite factor of

the volume of the group element which comes directly of the insertion of det δf [AU ]
δU .

For example, we can calculate the quantity ∆FP for U(1) case, i.e., Maxwell’s electromagnetic theory.
In fact, if we choose the gauge f [Aρ] = ∂ρA

ρ and the gauge transformation U = U(x) = eiΛ(x), we
get

f [AUρ ] = ∂ρ(A
ρ + ∂ρΛ) = ∂ρA

ρ + ∂2Λ. (2.48)

Therefore,
δf(x)

δΛ(y)
= ∂2δ(x− y). (2.49)

Thus, for an abelian theory under the particular Landau gauge condition, the Faddeev-Popov deter-
minant acquires the following form:

∆FP [Aρ] = det ∂2. (2.50)

The peculiarity of be an independent non-vanishing constant of the fields Aρ, it comes from the
abelianility of the Maxwell’s theory. It also occur in the case of axial gauge for non-abelian gauge
theories. However, we see will that it be a non-trivial functional with the covariant Landau gauge
fixing condition in non-abelian gauge theories.

For our case of a non-abelian gauge theory, in particular for the gauge transformation (2.12),
our gauge condition it yields

f [(Aa)U ] = ∂ρ(A
a
ρ)U = ∂ρAaρ − ∂ρDab

ρ ω (2.51)

where ω is defined by U(x) = 1 + ω(x). Thus, the Faddeev-Popov determinant reads

|∆FP (x, y)| =
∣∣∣∣det

δf [AU (x)]

δω(y)

∣∣∣∣ =
∣∣∣det

(
∂ρD

ρδ(4)(x− y)
)∣∣∣ , (2.52)

where Dρ is the usual covariant derivative defined in Eq. (2.13), and δ(4)(x− y) is the 4-dimensional
Dirac-delta. Moreover, notice that it is an explicit function of the gauge field. To write Eq.(2.52)
DU =

∏
aDωa have been assumed in expression (2.42). This can be done when dealing with in-

finitesimal gauge transformations, i.e., U = 1 + ω. Thus, in the case fa[AU ] = 0 there is a solution
for U , and therefore the integration in (2.42) runs over an infinitesimal region around that solution.

A simple covariant Landau gauge choice for non-abelian gauge theory is

fa[A] = ∂ρA
ρ
a. (2.53)

Following ’t Hooft, we now can make the following (also known as the ’t Hooft trick). We note that
physical quantities are independent of fa[A]. Hence we can multiply the generating functional by
a weight factor and integrate all f . Thus, the Gaussian form necessary for that be inserted in the
partition function, it is defined as

F [fa] :=

∫
Dfδ(fa − ga)e−

i
2ξ

∫
d4xgaga = e−

i
2ξ (∂ρAρ)2 . (2.54)

Therefore, the gauge fixed Lagrangian is

L = LYM −
1

2ξ
(∂ρA

ρ
a)2, (2.55)
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where ξ is known as the gauge fixing parameter. Also one can see that the gauge fixing term only
modifies the kinetic term of the Lagrangian, because is quadratic in the gauge fields.

On the other hand, since the quantity ∆FP [Aρ] is a determinant, it can be written as a path integral
over a set of fermionic ghost fields, denoted by cα(x) and c̄α(x), one per generator:

∆FP = det
δfα[AU ]

δUβ
=

∫ ∏
α

dc̄α
∏
β

dcβ exp

(
ic̄α

δfα[AU ]

δUβ

∣∣∣∣
U=0

cβ
)
. (2.56)

Here α, β are indices labelling the gauge fixing condition and the gauge parameter at all spacetime
points (appropriately discrete) or in momenta space, all momenta. We must note that the absolute
value is neglected in order to introduce the c, c̄-variables. Thus, one is implicitly assuming that the
Faddeev-Popov determinant does not changes sign.

Therefore, the continuum version of the Grassmannian integral on the RHS of the partition function
is

∆Z =

∫
Dc̄Dce−Sgh[A,c̄,c]. (2.57)

where the “ghost” action Sgh is obtained by linearising f [AU ] with respect to the gauge parameter
U , replace the infinitesimal gauge parameter Ua by ca, then multiply by c̄ and integrate over the
space-time. c and c̄ are Grassmannian scalar fields, and are referred as Faddeev-Popov ghosts. They
do not appear in asymptotic states, their role only is played through coupling to the gauge fields
(and matter fields if they enter the gauge fixing condition), and enter loop diagrams.

In particular, the ghost action associated with the Landau covariant gauge fixing function ∂ρA
ρ
a = 0

is

Sgh =

∫
d4xc̄a∂ρ(∂

ρca + fabcA
ρ
bcc)

= −
∫
d4x(∂ρc̄a∂

ρca + fabc∂ρc̄aA
ρ
bcc). (2.58)

We see that c, c̄ has the same propagator as massless scalar fields (up to the overall sign which is
a matter of convention), but couple to Aaρ through a cubic vertex only (unlike the minimally coupled
scalar). Furthermore, since c, c̄ are Grassmannian ghost fields, each ghost loop comes with a minus
sign, as in the Feynman rules for fermions. These “particles” do not satisfy the general conditions
for causality and unitarity, therefore these cannot create physical states.

In summary, the full form of the Yang-Mills partition function in a Feynman-’t Hooft covariant
gauge, is given by

Z =

∫
DADcDc̄ei

∫
dDxLYM [A,c,c̄] (2.59)

where the new effective Lagrangian density is

LYM [A, c, c̄] = − 1

4g2
F aρσF

ρσa − 1

2ξ
(∂ρA

ρ
a)2 + c̄a∂ρD

ab
ρ c

b. (2.60)

As wee this pure gauge theory is non-linear. It will have relevancy in the perturbative and non-
perturbative aspects of Yang-Mills gauge theories.
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In summary, the prescription for the functional integral in a gauge theory consist in to choose a
gauge fixing, and then construct Lgf by adding the f2-term to the classical Lagrangian density and
also adding the Faddeev-Popov ghost term.3 Now, a “good” gauge fixing must produce a hyper-
plane which intersects each gauge orbit transversally once and only once. When the gauge fixing
surface intersect more than once, then the integration over all points on the chosen surface leads to
overcounting of the degrees of freedom. However, the overcounting of the intersections in the gauge
orbits is unavoidable for all smooth gauge-fixings in a non-abelian gauge theory or restrictions on
the integration in the path integral, as will be discussed in more detail in the following section.

2.4 Replacing gauge symmetry with the BRST symmetry

The full Lagrangian density defined in Eq. (2.60), was fixed to a hyperplane in the field configuration
space. Due to the insertion of the ghost fields, a new symmetry emerges. This new Lagrangian
density, with gauge fixing and ghost terms, develops a global fermionic symmetry which, in some
sense, remembers the gauge invariance of the original theory. It is known as BRST symmetry, and
in this section we will see how works.

2.4.1 BRST symmetry

The BRST (Becchi-Rouet-Stora-Tyutin) symmetry [14, 15, 16], arises when the gauge fixing and the
ghost Lagrangian densities have been added to the original gauge invariant Yang-Mills Lagrangian
density. It is very useful to prove the renormalizability and unitarity of a theory, see for example
Refs. [17], [22].
The corresponding transformations of BRST symmetry can be derived from the standard gauge
transformations by replacing the gauge parameter ω by a ghost field c. It is a convenient way to
introduce the gauge fixing condition via an auxiliary Lie-algebra valued field b as∫

Dbae−
∫
dx(ibafa[A]) = Nδ(fa[A]), (2.61)

where we used the integral representation for the Dirac delta δ(fa[A]). The field ba is known as
“Hubbard-Stratonovich field” and, it works as an auxiliary field which has no dynamics itself, and
transforming as a vector in the adjoint representation of some G group. Furthermore, it will be
useful to express the Faddeev-Popov determinant as an integral over Grassmann variables, i.e.,

det(iMa
b ) = det(i1) det(Ma

b ) =

∫
Dc̄Dc exp

(
−i
∫
d4xd4yc̄a(x)Mab(x, y)cb(y)

)
.

⇒ det(Ma
b ) ∼

∫
Dc̄Dc exp

(
i

∫
d4xc̄a∂

ρDab
ρ cb

)
, (2.62)

where c̄a and cb are the Faddeev-Popov ghosts. The factor det(i1) can be absorbed in a
normalization factor N of Z, which do not affects the normalized correlation functions of the theory.
It is important to emphasize that this procedure is valid when the Faddeev-Popov determinant is

3We note that f2−term cannot be gauge invariant because in such case Mab(x, y) will has zero modes, i.e.,
detM = 0, and then M−1 does not exist.
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not zero.
Thus, the generating functional in the Landau gauge can be written as

Z =

∫
DAρ det(Ma

b )δ(f [Aρ])e
i
∫
d4xL

=

∫
DAρDc̄DcDb exp

(
i

∫
d4x(LYM − ba∂ρAaρ

)
=

∫
DAρDc̄DcDb exp

(
i

∫
d4xLeff

)
. (2.63)

where we have considered the QCD Lagrangian L in the Feynman-’tHooft covariant gauge. The
effective Lagrangian density is defined by

Leff = ψ̄(i /D −m)ψ − 1

4
F aρσF

ρσ
a −

1

2
baba + ba∂

ρAaρ + c̄a∂ρDab
ρ c

b. (2.64)

Due to that Leff has been gauge fixed, then it does not posses the gauge invariance of the original
theory. However, there is a global fermionic residual symmetry, reads

δAaρ = −ε(Dρ)
a
bη
b, (2.65)

δψ = igεηataψ, (2.66)

δηa = − ε
2
fabcηbηc, (2.67)

δη̄a = εba, (2.68)

δba = 0. (2.69)

where ε is an anticommuting constant parameter. The transformations (2.65) and (2.66), are
local gauge transformations as such leave invariant the first two terms of the effective Lagrangian
of Eq. (2.64). The invariance of the fourth and fifth terms holds because the change of δA in the
fourth term cancels against the change of c̄ in the fifth term. Also the changes of the fields Aρ and
c in the fifth term of Eq.(2.64) cancel out. The third term of Eq. (2.64) is trivial.
A substantial property of the BRST symmetry is its nilpotency, δ2 = 0, off-shell. For this reason
the gauge parameter ε is an anticommuting variable. The nilpotency property allows an easy way to
fix the gauge without the need of a path integral [23]. This statement is based on the fact that it is
possible add a quantity to Lagrangian that comes from a BRST transformation. It quantity usually
is known as exact BRST quantity.
In addition, the total Lagrangian density Leff is also invariant under the infinitesimal bosonic
symmetry transformations

δ′ηa = εηa, (2.70)

δ′c̄a = −εη̄a (2.71)

with all others fields remaining inert. Here ε represents a commuting infinitesimal parameter, and
the generator of this symmetry transformation corresponds to the operator that counts the number
of ghost fields. This is known as the ghost scaling symmetry of the theory. 4

Furthermore, in the case of the Landau gauge, where f [A] = ∂ρAρ, this prescription to fix the gauge
directly leads to the known gauge fixing terms:

Lgf = δ(η̄afa[A]) = δ(η̄a∂ρA
a
ρ) =

= iba(∂ρA
a
ρ)− η̄a∂ρ(−Dab

ρ η
b) = iba(∂ρA

a
ρ)− η̄aMabηb. (2.72)

4The fact that these transformations are like scale transformations are in accordance with the particular hermiticity
properties that the ghost and anti-ghost fields satisfy for a consistent covariant quantization of the theory.
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The minus sign stems from the anti-commutativity property of ε and η̄. This method can be used
also for other gauges and allows the use of gauge fixing conditions depending on ghost fields [23].

2.4.2 The propagator

When the gauge fixing condition breaks the gauge invariance, it renders the theory non-singular make
it possible to define the propagator of the theory and derive the Feynman rules for the non-abelian
gauge theory. In fact, we return to the full Lagrangian density obtained after of the gauge fixing

LYM = −1

4
F aρσF

ρσa − 1

2ξ
(∂ρAaρ)2 + c̄a∂ρDρc

a. (2.73)

In order to derive the propagators, we only take care of the quadratic part of LYM , i.e.,

LquadYM = −1

4
(∂ρA

a
σ − ∂σAaρ)(∂ρAσa − ∂σAρa)− 1

2ξ
(∂ρA

a
ρ)2 + ∂ρc̄a∂ρc

a,

=
1

2
Aaρ

(
gρσ�−

(
1− 1

ξ

)
∂ρ∂σ

)
Aaσ − c̄a�ca,

=
1

2
Aaρ(Oρσ)abAbσ + c̄aMabcb, (2.74)

where in the step last we used integration by parts, neglected boundary terms. The operators O and
M are defined as

(Oρσ)ab = δab
(
gρσ�−

(
1− 1

ξ

)
∂ρ∂σ

)
, (2.75)

Mab = −δab�. (2.76)

These operators in the momentum space take the forms

(Oρσ)ab(p) = −δab
(
gρσp2 −

(
1− 1

ξ

)
pρpσ

)
, (2.77)

Mab(p) = δabp2. (2.78)

The reason to go to momentum space is because the propagators for the gauge and ghost fields are
the inverses of O and M, respectively, and therefore are easily calculates in this space.

In fact, the inverse of Mab(p) is (analogous to the propagator of a massless scalar field)

(Mab)−1(p) =
δab

p2
. (2.79)

On the other hand, the inverse of O can be calculated by the following parametrization:

(Oabρσ)−1(p) = δab
(
a0gρσ + a1

pρpσ
p2

)
(2.80)

where a0, a1 are arbitrary parameters must be determined. In order to determine these parameters,
we make use of the identity that must satisfy O with its inverse O−1,

Oρσab(p)(Obcσλ)−1(p) = δacδρλ (2.81)



18 CHAPTER 2. YANG-MILLS THEORY AND ITS INFRARED BEHAVIOUR

which later of a small algebra, we obtain

a0 = − 1

p2
, a1 =

(1− ξ)
p2

. (2.82)

So that we can write the inverse in (2.80) as

(Oabρσ)−1(p) = −δab
p2

(
gρσ + (ξ − 1)

pρpσ
p2

)
(2.83)

Now, the generating functional Z associated to LquadYM can be written as

Zquad = N exp

(
− i

2

[
Jρa(−p), (Oabρσ)−1(p)Jσb(p)

]
+ i
[
c̄a(−p), (Mab)−1(p)cb(p)

])
(2.84)

where (, ) denotes the integration over p, and N a normalization constant. Therefore, one can
deduces the propagators of the free theory as

iGabρσ(p) =
(−i)2

Zquad
· δ2Zquad
δJρa(−p)δJσb(p)

∣∣∣∣
Jρa=ca=c̄a=0

= i(Oabρσ)−1(p). (2.85)

From definition of the gluon propagator in (2.83), one can observe that when ξ = 0, i.e., in Landau
gauge, this propagator is transverse. Mathematically, transverse reads

pρ

(
gρσ − pρpσ

p2

)
= 0. (2.86)

This follows from the gauge condition ∂ρA
ρ = 0. Since there is a pole at p2 = 0, it means that

p0 =
√
~p2 = |~p|, then it tells us that this theory has a massless particle, the photon.

While for ξ = 1 (Feynman gauge) the propagator has a much simpler form which is more suit-
able for perturbative calculations.

Similarly, the ghost propagator can be deduce as,

iGab(p) =
(−i)2

Zquad
· δ2Zquad
δc̄a(−p)δcb(p)

∣∣∣∣
Jρa=ca=c̄a=0

=
iδab

p2
. (2.87)

The gluon and ghost propagators can be diagrammatically represented, respectively, as

.

We can now write the complete generating functional as

Z[J ] = exp

(
i

∫
d4xLint

(
1

i

δ

δJ

))
Zquad. (2.88)
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Here Lint indicates some interaction as a monomial in the basic field variables and derivatives, and
with factors depending on the coupling constant g,

Lint = LYM − LquadYM = gfabc∂ρA
a
σA

ρbAσc − g2

4
fabpf cdpAaρA

b
σA

ρcAσd − gfabcAaρ∂ρc̄ccb. (2.89)

From this interaction Lagrangian density, all the Feynman rules can be determined, as for
example the interactions vertices, and others perturbative calculations useful to understand the
renormalization process. For more details about the Feynman rules in Yang-Mills theories, see Ref.
[24].

2.5 Some confinement scenarios

During the past forty years, much attention has been devoted to the study of the gluon and ghost
propagator, including their low energy behavior where Yang-Mills gauge theories are confining. Due
to the confined property, the gluon cannot be considered as a free particle.
An intuitive view of the confinement mechanism is that if one tries to separate a quark-antiquark
pair, the energy necessary to perform this action grows linearly with distance between the quark
and antiquark. This should happen because a chromo-electric flux appears in the non-perturbative
vacuum between two heavy test quarks (see Fig. 2.2).

Figure 2.2: Simulation of a quark-antiquark pair (labeled q and q̄), which a little “colour electric flux
tube” forms between them, when one tries to separate.

Thereby it is impossible to observed isolated quarks. By the 70s the hypothesis that the quarks
are confined, was tested in computer simulations as well as by ordinary experiments. However, the
full understanding of this problem is still a lacking.
In this section we will give a short overview about some confinement scenarios directly related to
propagator behaviours. In particular, one of them will be analysed in details more later.

2.5.1 The Gribov-Zwanziger confinement scenario

As we mentioned in Sec.2.3, a Lorentz invariant gauge fixing condition which would select one and
only one representative for each gauge orbit, is not possible [25]. The problem was first noticed by
Gribov [1] and nowadays, it is solved by the so-called Gribov-Zwanziger action [2]. Its derivation
and IR analysis are described in Chapter 4. For the moment we only will mention the qualitative
consequences of this improved gauge fixing for the theory.
One of the main features of the Gribov-Zwanziger confinement scenario in the Landau gauge is that
the gluon propagator vanishes at zero momentum. In fact, the three-level gluon propagator derived
from this approach is

Dab
ρσ(p2) = δab

(
gρσ −

pρpσ
p2

)
p2

p4 + λ4
, λ4 = 2g2Nγ4, (2.90)

where N is the number of colors and γ a mass parameter, which is not free but determined by a
horizon condition (or called gap equation). This condition has to be enforced in order to make the
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theory well-defined. The expression (2.90) does not allow us to attach the usual particle meaning
to the gluon propagator. Then gluons cannot be considered as part of the physical spectrum. In
other words, the gluons are confined by the Gribov horizon, whose presence is encoded in the explicit
dependence of expression (2.90) on the Gribov parameter γ.

2.5.2 Others confinement scenarios

In addition to the Gribov-Zwanziger confinement scenario, there are different approaches to the
confinement problem. For example, the mechanism proposed by Kugo and Ojima [17] has the same
qualitative predictions in the IR behavior on the gluon and ghost propagators, such as the Gribov-
Zwanziger scenario, but the fundamental difference is that here the BRST symmetry is a global and
non-perturbatively symmetry. Another idea is to try solve non-perturbatively for quark and gluon
propagators and vertex functions, by means an infrared expansion of the complete set of Schwinger-
Dyson equations [18, 19, 20]. However, the most popular scenario is described in terms of Wilson
loop [26] with the requirement to fall off exponentially with the minimal area of the loop. Here
the QCD functional integral is dominated by certain class of field configurations, such as magnetic
monopoles and center vortices, and sometimes merons [27] and calorons [28, 29].



Chapter 3

The Gribov Problem

The usual method of quantization of Faddeev and Popov in the Landau gauge for non-abelian gauge
theories, needs improvements to fix the gauge at non-perturbative level since in 1978, Gribov showed
that the gauge-fixing condition doesn’t fix completely the gauge. In the same year, I. Singer [25]
demonstrated that Gribov copies appear in all gauge fixings with derivatives acting on the gauge
fields. In this chapter, we will analyse the Gribov’s solution by means the limitation on the integration
range in the path integral which suggest a possible case for eliminating equivalent fields.

3.1 Equivalent field configurations: Gribov copies

As was explained in Section (2.3), abelian gauge theories as QED, the Gribov problem does not
apply, because the zero mode equation (2.21) has only trivial solutions. Now, let us consider the
non-abelian case with two field configurations Aρ and Āρ, which are connected by the following gauge
transformation

Āρ = UAρU
−1 − ig(∂ρU)U−1 (3.1)

with U a SU(N) unitary matrix. When it happens that both field configurations meet the same
gauge fixing condition (in this case the Landau gauge), one call to Āρ a copy of Aρ. Nowadays it is
known as a Gribov copy.

Figure 3.1: Equivalent field configurations satisfying (or cutting of in points 1,2,3,4) the Landau
gauge condition over the same gauge orbit.

21
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The Gribov copy equation reads

∂ρAρ = 0 = ∂ρĀρ, (3.2)

⇔ ∂ρ(U)AρU
−1 + UAρ∂ρU

−1 − ig∂2
ρ(U)U† − ig∂ρ(U)∂ρ(U

−1) = 0. (3.3)

If we consider an infinitesimal transformation U±1 ≈ 1± α, with α = αaT
a, and Ta the generators

of the SU(N) group, this last expression can be expand to first order

−∂2
ρα− ig∂ρ[Aρ, α] = 0 ⇒ −∂ρ(∂ρα− ig[α,Aρ]) = 0. (3.4)

Using the definition of covariant derivative give in Eq. (2.13), we obtain

−∂ρDρα = 0. (3.5)

From this equation one can see that the Gribov copies connected with the identity are nothing more
than the zero modes of the Faddeev-Popov operator Mab = −(∂ρDρ)

ab. Thus, the presence of
“small” copies affect the Faddeev-Popov procedure of quantization. Some explicit examples of zero
modes of it operator can be seen in [30, 31].

Let us remark that when Aρ → 0, the equation (3.4) reduces to

−∂ρ∂ρα = 0. (3.6)

But, since one needs to have smooth solutions for the parameters α, then the unique smooth solution
will be α = 0. Therefore, it turns out that the gauge transformation, which relates the trivial
perturbative vacuum Aρ = 0 and its Gribov copies, is far apart within the functional space. Thus,
the copies are relevant for the non-perturbative dynamic regions, but irrelevant as far as perturbative
expansions are concerned. Due to this, the semi-classical expansion around the perturbative vacuum
makes sense.

3.1.1 Gribov region and gauge fixing for Z

The structure of the Faddeev-Popov determinant to the covariant Landau gauge fixing condition is:

∆FP ≡M = det(∂ρDρ[A]). (3.7)

We see that the derivation of the Faddeev-Popov determinant is valid under the requirement
that the gauge-fixing condition intersects only once each gauge orbit. Therefore, the equation for
∂ρA

U
ρ = 0 should only have the trivial solution. However, for the Landau gauge, non-trivial solutions

for the equation ∂ρA
U
ρ = 0 can be found, and so there are gauge equivalent fields satisfying the same

gauge fixing condition. This implies that the Landau gauge fixing is not complete. However, the
fact that gauge is not fixed completely by a local gauge fixing condition is not a specific property of
the Landau gauge, but valid for all local gauge fixing conditions. The Singer’s theorem formalizes
this statement, by establishing that a choice of unique representative field, on each gauge orbit by a
linear gauge condition, such as ∂ρA

ρ = 0, is impossible in a non-abelian gauge theory [25].
Starting with a gauge configuration fulfilling the Landau gauge condition, ∂ρAρ = 0, we can

perform an infinitesimal gauge transformation like Eq.(2.10) demanding that the results again fulfils
the Landau gauge condition:

∂ρA
U
ρ = 0→ ∂ρAρ − ∂ρDρω

!
= 0⇒Mω

!
= 0. (3.8)
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It indicates that if the Faddeev-Popov operator has zero modes, then there are still gauge equivalent
configurations left.
In order to differentiate perturbative and non-perturbative analysis in the functional space, firstly
one encounters that there are no zero modes of the Faddeev-Popov operator in the case for Aρ ≈ 0,
i.e., the equation

−∂ρ∂ρψ = ε(A)ψ (3.9)

is solvable only for positive ε. Thus, for a greater value of the functional norm of the field A, zero
modes can appear, and thus the Faddeev-Popov will have zero eigenvalues. This implies the existence
of Gribov copies, in other words the positivity of the Faddeev-Popov operator is no longer ensured.

Following to Gribov [1], one can imagine the functional space divided into regions Cn, whose bound-
aries are determined by the vanishing of one or more eigenvalues of Faddeev-Popov operator.
In particular, Gribov proposed to restrict the functional space in the path integral to the first region
C1 ≡ Ω, where all the eigenvalues of the Faddeev-Popov operator M(A) are strictly positive:

Ω := {A; ∂ρA
ρ = 0; M(A) > 0}. (3.10)

Inside Ω, the operator M is invertible and then the propagators of the Faddeev-Popov ghost exist.
The Ω region is known as Gribov region and has the following properties at the Landau gauge:

• Perturbation theory, i.e., A = 0 lies within the Gribov region becauseM(0) = −� is a positive
operator, i.e., quantum fluctuations around the trivial vacuum does not feel the presence of
Gribov copies.

• The Gribov region is bounded in all the directions [32]. This is not valid in any gauge [33].

• It is a convex region. Let us consider two arbitrary configurations A1 and A2 within the Gribov
region. These configurations can be combined by a new configuration A3 that lies also within
the Gribov region as follows [32] :

A3 = αA1 + (1− α)A2, 0 ≤ α ≤ 1. (3.11)

• Every gauge orbit passes at least once through the Gribov region [34, 1]. This property permits
the Gribov restriction without missing any gauge orbits. In other words, all the physical field
configurations of the theory are within the Gribov region.

• However, there are still gauge copies in the Gribov region (however a region completely free
of copies, called modular region can be defined) so that the Gribov approach is not complete
[31], but some arguments suggest that expectation values are not influenced by these additional
copies [32]. Therefore, it is common to employ the Gribov region restriction as we will do in
this thesis.
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Figure 3.2: Intersection between the Gribov region and the fundamental modular region.

3.2 Gribov region implemented in generating functional

As we saw in the previous section, Gribov proposed to restrict the path integral to the so-called
Gribov region Ω defined in Eq.(3.10). Let’s see how to insert this statement in the Landau gauge 1

on the path integral. In fact, let us consider the following partition function

ZG = N
∫

[DA][Dc̄][Dc]δ(∂ρAρ) det(M)e−SEYM ν(Ω). (3.12)

Here the factor ν(Ω) ensures that the integration is performed only over Ω. From relationship
between the ghost sector and the Faddeev-Popov determinant, one can see clearly how is the factor
ν(Ω). Then, we start calculating the ghost propagator given by

〈c̄a(x)cb(y)〉c =
δ

δJbc (y)

δ

δJac̄ (x)
ZG

= N
∫

[DAρ][Dc][Dc̄]δ(∂A)c̄a(x)cb(y)e−(SEYM+
∫
d4xc̄a∂ρD

ab
ρ c

b)ν(Ω)

= N
∫

[DAρ]δ(∂A)e−SEYM det(−∂ρDρ)[∂ρD
ab
ρ δ(x− y)]−1. (3.13)

Applying Fourier transform to the last expression, we obtain

〈c̄a(p)cb(−p)〉c =

∫
[DA]δ(∂ρA

a
ρ) det(−∂ρDab

ρ )

∫
d(x− y)eip(x−y)M−1

ab (x, y)e−SEYM . (3.14)

To bring about the integral on the momentum space in the expression for the ghost propagator, one
make use of the Wick theorem (for most details about the derivation of it propagator, the reader
can see Ref. [35]), then we obtain the following expression

〈c̄a(p)cb(k)〉c = δ(p+ k)δabG(k2), (3.15)

1From now on, we shall work in the Landau gauge, unless explicitly mentioned
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with

G(k2) =
1

k2

1(
1− 11g2N

48π2 ln Λ2

k2

) 9
44

(3.16)

where Λ is the ultraviolet cutoff, N is the color indices and g the coupling constant of SEYM .
From the expression for G(k2) one obtains the following conclusions:

• The pole k2 = 0 tells us that we are approaching to the horizon, and when 1/k2 > 0, then we
stay inside the Gribov region.

• The pole k2 = Λ2 exp
(
−48π2/11g2N

)
can be complex or switch his sign, indicating that we

have left the Gribov region.

• On the other hand, we can only approach the Gribov horizon when k = 0. So, this pole must
be eliminated.

In order to stay inside the Gribov region, we must to impose some condition, where can be well-
defined the function G(k2). In fact, this relation exists and is known as the no-pole condition.

3.2.1 No-pole condition

Let us evaluate the two-point ghost function, given by

δab〈c̄a(x)cb(y)〉 = −〈x, a|1/M|y, a〉δab = N
∫

[DA][Dc][Dc̄]δ(∂A)c̄acae−SEYM−
∫
d4xc̄aMabcb

= N
∫

[DA]δ(∂A)e−SEYMG(x, y;A). (3.17)

Now we will try to write G(x, y;A) in perturbation theory up to second order and considering
the gluonic field Aρ as a external field [35]. Thus, G(k,A) function at space momentum, reads

G(k,A) =
V

k2
(1 + σ(k,A)) ≈ 1

k2

V

1− σ(k,A)
= (M−1)ab(k,A), (3.18)

with

σ(k,A) =
4

k2

∫
d4q

(2π)4

Aaρ(q)Aaσ(−q)kρ(kσ − qσ)

(k − q)2
. (3.19)

Here Aaρ(p) is the Fourier component of the field Aρ, V is the volume of the system, and σ(k,A)
defines positions of the poles of G(k,A).

Due to that in the Landau gauge the fields Aρ(p) are transverse, i.e., pρAρ = 0, thus overaring
over the gluon polarization directions λ, we have

σ(k,A) = 4

∫
d4p

(2π)4

|Aa,λ(p)|2

(k − p)2

(
1− (kp)2

k2p2

)
. (3.20)

Assuming that the quantity |Aa,λ(p)|2 over the main range of integration turns out to decrease
with p2, so that σ(k,A) decreases as k2 increases, hence one can imposes

1− σ(0, A) > 0. (3.21)
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This condition implies that the ghost propagator Gab(k,A) has no poles at finite non-vanishing
k, and that the Faddeev-Popov operator has no zero modes. Moreover, positivity of Gab(k,A) en-
sures that the Gribov horizon δΩ is not crossed. Later on, Zwanziger [2] was able to implement
the no-pole condition to all orders, relying on the equivalence between the microcanonical and the
canonical Boltzmann ensemble [36].

Finally, taking Eq.(3.21) as a condition for ν(Ω), we obtain a functional integral which is easy
to calculate, if ν(1− σ(k,A)) is written in the form 2

ν(Ω) = ν(1− σ(0, A)) = θ(1− σ(0, A))

=

∫
dβ

2iπβ
eβ(1−σ(0,A)). (3.22)

Now, we have the expression for the factor ν(Ω) we were looking, then the generating functional
(3.12) yields,

Z = N
∫

dβ

2πiβ

∫
[DAρ]δ(∂A)eβ(1−σ(0,A))e−SEYM det(−∂ρDρ). (3.23)

3.3 Gluon propagator and Gribov parameter

Due to the insertion of the Gribov restriction in the generating functional, the Gribov propagator
differs substantially from the perturbative propagator in the infrared region.
Let us consider the path integral (3.23) under the influence of an external source J(x) as

Z = N
∫

dβ

2πiβ

∫
DAeβ(1−σ(0,A))e−SYM+

∫
ddx 1

2ξ (∂ρAρ)2+
∫
ddxAaρ(x)Jaρ (x), (3.24)

where N is the normalization factor. At the same way that we calculated the gluon propagator of
the Yang-Mills theory in Sec. 2.4.2 is only necessary the quadratic (or free) part in the Yang-Mills
Lagrangian. Therefore, by a integration by parts, we have

Squad
YM +

∫
ddx

1

2ξ
(∂ρA

ρ)2 +

∫
ddxAaρ(x)Jaρ (x)

=

∫
ddx

(
1

2
Aρ

(
gρσ∂2 − ξ − 1

ξ

)
Aσ − JρAρ

)
. (3.25)

This last result can be expressed in Fourier space as follows

Squad
YM +

∫
ddx

1

2ξ
(∂ρA

ρ)2 +

∫
ddxAaρ(x)Jaρ (x)

=

∫
ddp

(2π)d

[
1

2
Aaρ(p)

(
δρσp

2 − ξ − 1

ξ
pρpσ

)
Aaσ(−p)−Aaρ(p)Jaρ (−p)

]
, (3.26)

2Here, we will use the step function defined as θ(x) = 1 for x > 0, θ(x) = 0 for x < 0, and moreover his useful

integral representation: θ(x) = 1
2iπβ

∫ i∞+ε
−i∞+ε dβe

βx, with ε→ 0+.
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then the gluon propagator takes the following form

〈Aaρ(k)Aaρ(p)〉 =
δ2

δJaρ (−p)δJbσ(−p)

∫
deβ

2iπβ

∫
DA

× exp

[
−
∫

ddp

(2π)d

{
Aaρ(p)

βNg2

V d(N2 − 1)

δρσ
p2
Aaσ(−p)

+
1

2
Aaρ(p)

(
δρσp

2 − ξ − 1

ξ
pρpσ

)
Aaσ(−p)

}] ∣∣∣∣
J=0

=
δ2

δJaρ (−p)δJbσ(−p)

∫
deβ

2iπβ

∫
DA exp

[
−
∫

ddp

(2π)d

{
1

2
Aaρ(p)PabρσAbσ(−p)

+ Aaρ(p)Jaρ (−p)
}] ∣∣∣∣

J=0

where,

Pabρσ = δab
(

2βNg2

V d(N2 − 1)

δρσ
p2

+ δρσp
2 − ξ − 1

ξ
pρpσ

)
. (3.27)

Evaluating the Gaussian integral for the field A under Fourier transform [35], we arrived to

〈Aaρ(k)Abρ(p)〉 = N ′δ(k + p)

∫
dβeβ

2πiβ

1√
det(Pabρσ)

(Pabρσ)−1 (3.28)

with N ′ being other normalization constant obtained after of the Gaussian integration.

Following to [37], the determinant of the operator P is possible evaluated, resulting a factor in-
dependent of p, thus the gluon propagator reads

〈Aaρ(k)Aaρ(p)〉 = Ñ δ(k + p)

∫
dβeβ

2iπβ
ef(β)(Pabρσ)−1 (3.29)

where,

f(β) = β − lnβ − d− 1

2
(N2 − 1)

∫
ddp

(2π)d
ln

(
p2 +

βNg2

d(N2 − 1)

2

V p2

)
. (3.30)

The integration over β can be evaluated by applying the saddle point method, which yields the
following minimum condition

f ′(β0) = 0, (3.31)

which yields

1 =
1

β0
+
d− 1

d
Ng2

∫
ddp

(2π)d
1

p4 + γ4
, γ4 =

2g2β0N

d(N2 − 1)V
. (3.32)

Since, in the thermodynamic limit V is infinity (Euclidean volume), then in order to have a finite γ
, β0 ∼ V . Thus, Eq. (3.32) becomes the gap equation defined as:

1 =
d− 1

d
Ng2

∫
ddp

(2π)d
1

p4 + γ4
, γ4 =

2g2N

d(N2 − 1)
. (3.33)

Thus, it is important to emphasize that the Gribov parameter is not a free parameter of the theory
but is self-consistently determined by the gap equation (3.33) as a function of some cut-off (the QCD
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scale).

The only thing we have to do is to determine the inverse of the operator P in Eq.(3.29), but
this kind of computations was realized in Eq. (2.80), then we can find the following propagator:

Dab
ρσ(p) ≡ 〈Aaρ(k)Abσ(p)〉 = δ(k + p)δab

p2

p4 + γ4

[
δρσ −

pρpσ
p2

]
, (3.34)

where we have evaluated in the Landau gauge, i.e., ξ = 0. This result is very important to analyse the
physic behaviours of the gluon, since in contrast to the result found in Eq. (2.83), now the propagator
depends of a parameter γ, known as Gribov mass parameter, it turn depends of the gap equation
(3.33). This propagator violates positivity of the spectral density function of the Källén–Lehmann
representation [38], then this can be interpreted as a manifestation of the gluon confinement.
It is straightforward to verify that the propagator (3.34) has two complex conjugated poles

p2

p4 + γ4
=

1

2

(
1

p2 + iγ2
+

1

p2 − iγ2

)
. (3.35)

The unphysical excitations associated to the complex masses p2 = ±iγ2 have been called i−particles
[39]. Although, the i−particles do not correspond to observable particles, they provide a useful set
up in order to extract the analytic properties of correlation functions of gauge invariant composite
operators [40].

On the other hand, it is important to remark that this same expression for the gluon propaga-
tor has been determined in d = 4 and 3 dimensions, and in all this cases the gluon propagator turns
out to be suppressed in the infrared region. Unfortunately, this suppression are only observed for
lattice data in 2 dimensions, and for recent lattice data in d = 4, 3 dimensions this computations are
not agreement [41, 42, 43]. However, it does not happen for Refined Gribov-Zwanziger formulation
[44] in d = 4, 3 dimensions, which is in very good agreement with the numerical data. (See for
example for d = 4 Ref. [45]).
In this thesis we will work in the Gribov-Zwanziger approach because it describes very well the phase
diagrams with temperature and chemical potential.



Chapter 4

The Gribov-Zwanziger
Confinement Scenario

Although Gribov suggested improved gauge fixing, he did not manage to get a local action. At the
end of the 80s, Zwanziger was able to show that the restriction to the Gribov region can be done
within a local and renormalizable field theory framework. The resulting action is called Gribov-
Zwanziger action [1, 2] and constitutes the best option available so far to achieve a complete gauge
fixing in the functional space.
This Chapter is organized as follows: firstly, from the global Gribov action, we will derive a standard
local form for this action by means the insertion of auxiliary fields. Due to the implementation of
this fields, a new symmetry emerges. The topic about this new symmetry will be explained briefly
from the local action. Finally, we will derive the gluon propagator in the Landau gauge.

4.1 The Gribov-Zwanziger action

In this section we deliver a brief derivation of the local formulation of the Gribov-Zwanziger action.
His name it must be to Gribov, who was the first to suggest a solution to overcome the problem
with gauge fixing, and Zwanziger, who brought this idea more formally, in terms of a local action
and several properties of the first Gribov horizon.

4.1.1 Motivation

Let us start with the Gribov’s solution [1] about the problem of gauge fixing condition, by means
the restriction on the integration domain in the path integral,

Ω := {Aaρ; ∂ρA
a
ρ = 0, Mab > 0, }. (4.1)

It is defined by these gauge field configurations for which the lowest non-trivial eigenvalue of the
Faddeev-Popov operator vanishes.

Also, as we saw in the previous chapter, Gribov parametrized the ghost propagator as

Dab
cc̄ (p) = −δ

ab

p2

1

(1− σ(p,A))
, (4.2)
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where σ(p,A) can be calculated as a series in A , which increases when p decreasing. In order to
avoid this increase, it was sufficient demand that σ(0, A) < 1. The so-called no-pole condition.

Although the Gribov’s idea is correct, Zwanziger [2] derived a closed and formal expression to perform
the integration within Gribov region, by means the function

h(x, y) := lim
γ(x)→γ

∫
dy(Dac

ρ (x)γ2(x))(M−1)ab(x, y)(Dbc
ρ (y)γ2(y)). (4.3)

The limit γ(x)→ γ must be taken after localizing the action. The condition to be within the Gribov
horizon is phrased as the horizon condition [2]:∫

dxh(x) < γ4d(N2 − 1)V, (4.4)

where d, N , V are the number of dimensions, the numbers of colours and the space-time volume,
respectively. Notice that this condition can be enforced via a Heaviside functional as the no-pole
condition.
Moreover, the interesting observation is that the resulting path integral has similarities with the
partition function of a canonical ensemble which is equivalent to the microcanonical ensemble in the
thermodynamic limit [46], so that the Heaviside functional transforms by a delta functional, and the
horizon condition becomes ∫

dxh(x) = γ4d(N2 − 1)V. (4.5)

The resulting action that enforces to the restriction (4.5) is known as Gribov-Zwanziger action, and
is given by

SNL = SFP + Sh, (4.6)

where,

SFP = SYM + Sgf , (4.7)

Sh =

∫
dx(h(x)− γ2(N2 − 1)V ), (4.8)

SYM =
1

4

∫
dxF aρσF

ρσa, (4.9)

Sgf =

∫
dx(iba∂ρA

a
ρ + c̄aDad

ρ c
d). (4.10)

Since Sh is non local (NL) the standard tools of quantum field theory can not be employed. Then,
in order to express the action SNL in a local form, auxiliary fields will are necessary.

4.2 From non-local action to a local action

In fact, in order to localize the horizon function we need two pairs of additional fields: ϕabρ and ϕ̄abρ ,

which are complex conjugate to each other, and ωabρ and ω̄abρ Grassmann fields.

These new fields are BRST doublets, i.e.,

sϕabρ = ωabρ , sωabρ = 0,

sω̄abρ = ϕ̄abρ , sϕ̄abρ = 0. (4.11)
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Here the Greek indices run as ρ = 1, ..., d and the Latin indices as a, b = 1, ..., (N2 − 1). From the
Gaussian integrations, one can see∫

D[ϕϕ̄]e−
∫
dx(ϕ̄acρ M

abϕbcρ +γ2gfabcAaρ(ϕbcρ −ϕ̄
bc
ρ )) = (detM)−d(N2−1)e−γ

4g2faceAaρ(M−1)cdfbdeAbρ ,∫
D[ωω̄]e

∫
dxω̄acρ M

abωbcρ = (detM)d(N2−1).

Then, the bosonic felds are used for localizing the non-local term Sh, and the fermionic fields for
canceling of determinant. From this, one can show

e−Sh =

∫
D[ϕϕ̄ωω̄]e−

∫
dx(ϕ̄acρ M

abϕbcρ +γ2gfabcAaρ(ϕbcρ −ϕ̄
bc
ρ )−ω̄acρ Mωbcρ −dγ

4(N2−1)). (4.12)

Therefore, the local Gribov-Zwanziger action turns out to be

Slocal = SFP + SGZ , (4.13)

SGZ =

∫
dx
(
ϕ̄acρ Mabϕbcρ + γ2gfabcAaρ(ϕbcρ − ϕ̄bcρ )− ω̄acρ Mabωbcρ − dγ4(N2 − 1)

)
.

Let us now translate the nonlocal horizon condition (4.5) into a local version [2]. The local
action that we obtained previously, SYM + Sgf + SGZ , can be related as follows,∫

[DA][Db][Dc][Dc̄]e−(SYM+Sgf+SGZ) =

∫
[DA][Db][Dc][Dc̄][Dϕ][Dϕ̄][Dω][Dω̄]e−S

local

. (4.14)

Next, if we take the partial derivative in both sides with respect to γ2 (with γ 6= 0), we obtain

−2γ2

∫
dxh(x)

γ4
= 〈gfabcAaρ(ϕbcρ + ϕ̄bcρ )〉. (4.15)

In this last result, we used the fact that 〈∂ρϕaa〉 = 0 and 〈∂ρϕ̄aa〉 = 0, with 〈· · · 〉 stands functional
integral over the fields.

Therefore, using the expression (4.5), and assuming that γ 6= 0, we can write the local version
of the horizon condition (4.15) as

〈gfabcAaρ(ϕbcρ + ϕ̄bcρ )〉+ 2γ2V d(N2 − 1) = 0. (4.16)

Moreover by adding the vacuum term
∫
d4xγ4d(N2 − 1) to Sh, we can write the horizon condition

as
∂Γ

∂γ2
= 0, (4.17)

with Γ the quantum action defined as

e−Γ =

∫
[dΦ]e−SGZ , (4.18)

where
∫

[dΦ] indicates the integration over all the fields.
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For end this section, we recall that sometimes in the literature the action Slocal contains the
term

S∆BRST
=

∫
dxgfabeω̄acρ ∂σ[(Ded

σ c
d)ϕbcρ ]. (4.19)

This term appears as a shift in the field ω and has the advantage of remains BRST symmetry most
manifest. The only term in Slocal + S∆BRST

invariant is the one proportional to γ2

s
(
γ2gfabcAaρ(ϕbcρ − ϕbcρ )

)
= γ2gfabc

(
(−Dad

ρ c
d)(ϕbcρ − ϕ̄bcρ ) +Aaρω

bc
ρ

)
. (4.20)

Moreover to make explicit the BRST symmetry, this shift over the field ωaρ implies a Gribov-Zwanziger
action renormalizable. This insertion of a term in Sg is far from being trivial, since no new parameter
now is needed to take into account vacuum divergences [21].

4.3 The gluon and ghost propagator

In this section, our disposal is to calculate the gluon and ghost propagator from the local Gribov-
Zwanziger action, at lowest order. We verify that the same result is obtained as in the semi-classical
approximation obtained by Gribov.

4.3.1 The gluon propagator

In order to calculate the propagators, we again need only the free part of SGZ ,

SquadGZ =

∫
ddx

(
1

4
(∂ρA

a
σ − ∂σAaρ)2 +

1

2ξ
(∂ρA

a
ρ)2 + ϕ̄abρ ∂

2ϕabρ

− γ2g(fabcAaρϕ
bc + fabcAaρϕ̄

bc
ρ ) + · · ·

)
, (4.21)

The · · · stands for the constant term −d(N2 − 1)γ4 and other terms in the ghost and ω, ω̄
fields irrelevant for the calculation of the gluon propagator. Next, we integrate out the ϕ- and ϕ̄-
fields. Since we are only interested in the gluon propagator, we simply use the equations of motion:
δSquadGZ /δϕbcρ = 0 and δSquadGZ /δϕ̄bcρ = 0, which results

∂2ϕbcρ = ∂2ϕ̄bcρ = γ2gfabcAaρ. (4.22)

Utilizing these equations, we can rewrite SquadGZ as

SquadGZ =

∫
ddx

(
1

4
(∂ρA

a
σ − ∂σAaρ)2 +

1

2ξ
(∂ρA

a
ρ)2 + γ4g2fabcAaρ

1

∂2
fdbcAdρ

− 2γ4g(fabcAaρ
1

∂2
gfdbcAdρ) + · · ·

)
=

∫
ddx

(
1

4
(∂ρA

a
σ − ∂σAaρ)2 +

1

2ξ
(∂ρA

a
ρ)2 −Nγ4g2Aaρ

1

∂2
Aaρ + · · ·

)
, (4.23)

where in the last step we used the relation of SU(N) group theory fabcfdbc = Nδad. Then, from a

small algebraic exercise, SquadGZ can be rewrite as:

SquadGZ =

∫
ddx

(
1

2
Aaρ∆ab

ρσA
b
σ + · · ·

)
(4.24)
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with

∆ab
ρσ =

[(
∂2 +

2g2Nγ4

∂2

)
δρσ − ∂ρ∂σ

(
1− 1

ξ

)]
δab. (4.25)

The inverse of this operator is easily calculated in the momentum space, which takes the form

∆ab
ρσ(p) = −

[(
p2 +

2g2Nγ4

p2

)
δρσ − pρpσ

(
1− 1

ξ

)]
δab. (4.26)

The derivation of the inverse of ∆ab
ρσ(p) is a bit involved. Firstly, we note that the Green’s function

(∆ab
ρσ)−1 is a symmetric second rank tensor and with all the Lorentz structures available (pρ, δρσ),

then we can parametrize the most general form of the inverse as

(∆ab
ρσ)−1 =

(
αδρσ + β

p2pρpσ
p4 + λ4

)
δab, λ4 = 2Ng2γ4, (4.27)

where α, β are arbitrary parameters to be determined. From this, we note that the inverse is defined
to satisfy

∆ρσ
ab (p)(∆bc

σλ)−1 = δcaδ
ρ
λ[(

p4 + λ4

p2

)
δρσ − pρpσ

(
1− 1

ξ

)][
αδσλ + β

p2pσpλ
p4 + λ4

]
= −δρλ[

α

(
p4 + λ4

p2

)
+ 1

]
δρλ +

[
β − α

(
1− 1

ξ

)
− β

(
1− 1

ξ

)(
p4 + λ4

p2

)]
pρpλ = 0.

Setting the coefficients of each distinct Lorentz structure to zero and taking the limit ξ → 0, we
obtain

α = − p2

p4 + λ4
(4.28)

β =
1

p2
. (4.29)

So that we can write the inverse of the operator. Thus, the gluon propagator can be determined
by taking the inverse of ∆ab

ρσ, which results

〈Aaρ(p)Abσ(k)〉 = δ(p+ k)
p2

p4 + λ4

[
δρσ −

pρpσ
p2

]
δab, (4.30)

which coincides with the expression obtained by Gribov (see Eq. (3.34)). Once more, due to the
complex poles in this last expression, it does not allow us to attach the usual particle meaning to the
gluon propagator, which implies that gluons cannot be considered as part of the physical spectrum;
they are confined by the Gribov horizon, whose presence is encoded in the explicit dependence the
propagator on the Gribov parameter γ.

4.4 Why a breaking in BRST symmetry?

Due to the existence of Gribov copies, an intuitive argument suggests that it could affect the BRST
symmetry. In 1983, Fujikawa showed [47] (see also [48]) that the Gribov problem may then induce
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dynamical instability of the BRST symmetry.
The BRST transformations of the GZ action (4.13) are

sAaρ = −Dab
ρ c

b = −(∂ρδ
ab + gfabcAcρ)c

b,

sca =
g

2
facbcbcc,

sc̄a = iba,

sba = 0,

sϕabρ = ωabρ , sωabρ = 0,

sω̄abρ = ϕ̄abρ , sϕ̄abρ = 0. (4.31)

From this only some terms of the local GZ action are BRST invariant. In particular, one finds

s

∫
d4x

(
1

4
F aρσF

ρσa + s
[
c̄a∂ρA

a
ρ − ω̄acσ ∂σDab

σ ϕ
bc
ρ

])
= 0. (4.32)

On the other hand, the full GZ action is not left invariant by the BRST transformations (4.31), since
the term Sγ it broken, namely

sSγ =

∫
d4x

[
γ2gfabcsAaρ(ϕbcρ − ϕ̄bcρ ) + γ2gfabcAaρ(sϕbcρ − sϕ̄bcρ )

]
= γ2

∫
d4x

(
−gfabcDad

ρ c
d(ϕbcρ − ϕ̄bcρ ) + gfabcAaρω

bc
ρ

)
6= 0. (4.33)

We note that the breaking is quadratic in the fields, so that it has to be treated as a composite
field operator, a feature which requires the introduction of a suitable set of external sources in order
to implement the Slavnov-Taylor identities 1. In this direction, many works has shown that this
breaking can be converted into a linear one, resulting a nilpotent linearly broken BRST symmetry
[49]. As consequence, the linearly broken BRST symmetry can be thus directly converted into a set
of useful Slavnov-Taylor identities. Therefore, the quantum aspects of the Gribov-Zwanziger theory
can be analyzed by means of the cohomology of a local nilpotent operator. In [50, 51], it was pointed
out that the softly broken BRST symmetry of the GZ action can be converted into a exact symmetry,
however non-local. This non-local invariance has been localized in [52], though the resulting BRST
symmetry is not nilpotent.

In summary, we can state that this breaking is clearly due to the introduction of the horizon into
the Yang-Mills action. Similarly, the BRST invariance may be regarded as a consequence of the fact
that the non-perturbative gauge fixing introduced above has been done in the Landau gauge, and
has not been carried out in other covariant gauges. The main result obtained so far remains that of
the renormalizability of the theory.

1The Slavnov-Taylor identities are relations between various scattering amplitudes of the non-abelian theory, namely
are the analogous to Ward-Takahashi identities in a abelian gauge theory.



Chapter 5

Field Theory at Finite
Temperature and Density

The study of the Feynman path integral implies a direct connection between the quantum field theo-
ries and the equilibrium statistical physics, by means the partition function. Due to this connection,
many authors [53, 54] have studied what happens when a system described by a quantum field the-
ory, is heated or exposed to certain densities.
In the present chapter, we will review the basic procedures to induce chemical potential and tem-
perature to a field theory. In this line, many aspects about thermal field theories are presented in
many textbooks. In particular, pedagogical presentations can to visit in Refs. [55, 56, 57].

5.1 Statistical mechanics

A brief summary about the principal elements of statistical mechanics are analysed in this section.
We will use the notation φ for we refer to bosonic fields and ψ for fermionic fields. We restrict
ourselves to grand canonical ensemble in order to include the effects of chemical potentials.

To obtain the equilibrium properties of a system in the canonical grand ensemble, we define the
density matrix:

ρ̂ =
1

Z
exp

−β
H −∑

j

µjQj

 (5.1)

where the dynamics of the system it is described by the Hamiltonian H, Qj denotes all the conserved
charges, µj the chemical potentials associated to those charges, and β = 1/T being the inverse of
the temperature. From this definition, we can determine the expectation values of some observable
O, by means:

〈O〉 = Tr(ρ̂O). (5.2)

In general a chemical potential µ can be associated to any conserved charge of the system. Then,
these conserved charges can be the number of particles, electric charge, isospin, or as we will see
below conserved charges in the internal space of a gauge theory. Thus, the system can be described
by:

Z = Tr
(
e−β(Ĥ−µQ̂)

)
, (5.3)

35
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where the operators Q̂ denote the conserved charges. In the case that exist several conserved charges
simultaneously, the operators must be diagonalized in the same basis, i.e., they must commute.
Therefore, a simple way to include chemical potentials in the theory is:

H → H − µj · Q̂j , (5.4)

such that [
H, Q̂j

]
= 0,[

Q̂i, Q̂j

]
= 0. (5.5)

A requirement for chemical potentials is that the corresponding charges must be additive observ-
ables, i.e., the eigenvalues of an operator for a composite system is the sum of eigenvalues for the
components of the system.

It is known that the most important quantity in equilibrium statistical mechanics is the partition
function. It is a function of the temperature T and the chemical potential in the grand canonical
ensemble, and is enough to determine other thermodynamical properties of the system. The parti-
tion function is denoted by Z, as it is shown in Eq. (5.1).

We know that for canonical ensembles, the partition function can be written as a trace of the

operator e−βĤ , which in the basis of eigenstates of energies |n〉, with eigenvalues of energies En, is
given by:

Z = Tr
(
e−βĤ

)
=
∑
n

〈n|e−βĤ |n〉 =
∑
n

e−βEn . (5.6)

Here the sum correspond to all the eigenstates of the system. In the case in which there is also a
chemical potential the expression is

Z(T, µ, V ) = Tr exp
[
−β(Ĥ − µN̂)

]
=
∑
φn

〈φn| exp
(
−β(Ĥ − µN̂)

)
|φn〉, (5.7)

where φn denote the eigenstates of the operator (Ĥ −µN̂). All the thermodynamical properties can
be derived from Z, for example the pressure p, energy E, entropy S, and the number of particles N .
Many times (by practical purposes) it is useful to define the thermodynamical potential, known as
the free energy F , by F (T, µ,N) = −T lnZ(T, µ,N), such that

p = −∂F
∂V

, S = −∂F
∂T

, (5.8)

N = −∂F
∂µ

, E = F + TS + µN. (5.9)

Continuing with our study about the partition function in the continue case, we can consider
this integral as a path integral. In fact, the matrix elements 〈φn| − β(Ĥ − µN̂)|φn〉 it can be
interpreted as a transition amplitude in the imaginary time τ = it, carrying states from τ = 0 to
τ = β, obviously in the case that the “temporal evolution” is governed by the operator (Ĥ − µN̂).
Thus, we have

〈φ1| exp
[
−β(Ĥ − µN̂)

]
|φ0〉 =

=

∫ φ(~x,β)=φ1

φ(~x,0)=φ0

Dφ
∫
Dπ exp

[∫ β

0

dτ

∫
d3~x

(
iπ(~x, τ)φ̇(~x, τ)−H(π, φ) + µN (π, φ)

)]
.(5.10)
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where π denotes the canonically conjugate fields of φ(~x, τ), such that are solved from

iφ̇ =
∂(H− µN )

∂π
, (5.11)

On the other hand, H and N correspond to Hamiltonian and number densities, respectively.
Due to our case of study, the Lagrangian density will be quadratic in π [58], so that a Gaussian
integration is possible. The partition function reads

Z(T, µ, V ) =

∫
Dφ exp

(∫ β

0

dτ

∫
d3~xL′(φ, φ̇)

)
, (5.12)

It is common to write the subscript “periodic” to indicate explicitly that the integration is
performed over all the fields satisfying boundary conditions in τ . We will not follow this notation,
but the periodicity of the fields will be explicated below.
The Lagrangian density L′(φ, φ̇) in Eq. (5.12) differs from the Lagrangian defined of the vacuum
theory when the chemical potentials are non-zero. In other words, we have

L′(φ, φ̇) = iπ(φ, φ̇)φ̇−H(π(φ, φ̇), φ) + µN (π(φ, φ̇), φ), (5.13)

Due to the presence of the trace in Eq. (5.7) it follows that bosonic fields are periodic

φ(~x, 0) = φ(~x, β), (5.14)

while for the fermionic fields will be anti-periodic, ψ(~x, 0) = −ψ(~x, β). It is appropriate to expand
the fields in Fourier series at imaginary-time. Thus, from Eq. (5.14) follows that

φ(~x, τ) = T

+∞∑
n=−∞

eiωnτφn(~x), (5.15)

where the frequencies ωn are given by:

ωn =

{
2πnT, for bosonic fields,

(2n+ 1)πT, for fermionic fields.
(5.16)

known as the Matsubara frequencies. This Fourier expansion gives us a new interpretation of the
finite-theory as a tridimensional theory with infinite fields φn, n ∈ N.

We now consider a gauge model which contains a charge density q = eN/V , with e the fundamental
charge and N the number of external particles. It charge can be add to the partition function as:

Z(T, q) =

∫
Dφ exp

[∫ β

0

dτ

∫
d3~x(LE + iqA0)

]
. (5.17)

Therefore, the chemical potential will be the conjugate variable N :

µq = −T ∂

∂N
ln (Z(T, q)) ,

= − ie

Z(T, q)

∫
Dφ

(
T

V

∫ β

0

dτ

∫
d3~xA0

)
exp

[∫ β

0

dτ

∫
d3~x(LE + ieA0)

]
,

= − ieT
V

∫ β

0

dτ

∫
d3~xA0 = −ie〈A0〉. (5.18)
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This result indicates that, the chemical potentials can be associated with the temporal components
of the fields.
On the other hand, for a gauge theory one know that the thermal equilibrium is achieved when the
free energy is stationary with respect to the fluctuations around to the medium value of the gauge
field 〈A0〉. Therefore, the thermal equilibrium is achieved only when:

Q ∼ ∂F

∂µQ
∼ ∂F

∂〈A0〉
= 0. (5.19)

This tells us that for the gauge charges case, the chemical potentials must be choose in such
way that the system be neutral with respect to them.

Next, we will show three cases of field theories, where a relation between the temporal compo-
nents of the gauge fields and the chemical potentials is realized. We start with a simple scalar field,
then we analyse the Yang-Mills gauge case in SU(2), and finally coupled Yang-Mills theory with
scalar and fermionic fields.

5.1.1 Scalar field case

Let us consider a non-interacting charged scalar field with the Lagrangian density

L = ∂ρφ∗∂ρφ−m2φ∗φ, ρ = 1, 2 (5.20)

with

φ =
1√
2

(φ1 + iφ2), φ∗ =
1√
2

(φ1 − iφ2). (5.21)

There is a gauge symmetry U(1), and then a conserved current given by

Qρ = i(φ∗∂ρφ− φ∂ρφ∗). (5.22)

The Hamiltonian density has the form

H =
1

2

[
πρπρ + (~∇φρ) · (~∇φρ) +m2φρφρ

]
, (5.23)

with πρ the momenta associated to the fields φρ. From these expressions, we can build (in the
euclidean-time) the partition function associated to (5.20) in presence of a chemical potential µ,
which acquires the following form

Z = N

∫
[dπ1][dπ2]

∫
[dφ1][dφ2] exp

[∫ β

0

dτ

∫
V

d3x

(
iπ1

∂φ1

∂τ
+ iπ2

∂φ2

∂τ
+ µ(φ2π1 − φ1π2)

−1

2
(π1)2 − 1

2
(π2)2 − 1

2
(~∇φ1)2 − 1

2
(~∇φ2)2 − 1

2
m2(φ1)2 − 1

2
m2(φ2)2

)]
. (5.24)

Following the calculation of Bernard [59], it is convenient realize a careful evaluation of the
∫

[dπ],
by an interchange between the integrals and sums. The full computation is realized in the Kapusta’s
work in [9]. It and others field theories are analyzed in details under the presence of chemical
potentials.
Therefore, evaluating the Gaussian integration over the momenta, the partition function reads

Z = [Ñ(β)]2
∫

[dφ1][dφ2] exp

(
−1

2

∫ β

0

dτ

∫
V

d3x

[(
∂φ1

∂τ

)2

+

(
∂φ2

∂τ

)2

+ (~∇φ1)2 + (~∇φ2)2

+m2(φ1)2 +m2(φ2)2 + 2iµ

(
φ1
∂φ2

∂τ
− φ2

∂φ1

∂τ

)
− µ2[(φ1)2 + (φ2)2]

])
. (5.25)
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Finally, considering the forms of the fields in (5.21) and integrating by parts, it yields

Z = [Ñ(β)]2
∫

[dφ][dφ∗] exp

(∫ β

0

dτ

∫
V

d3x{−φ∗[(∂0 + iµ)2 − ~∇2 +m2]φ}

)
. (5.26)

It is the final form of the partition function in presence of a background charge (chemical po-
tential), which is only affected in the temporal-component of the derivative by the shift ∂0 → ∂0 + iµ.
It is direct show that over a euclidean metric the shift is ∂0 → ∂0 − µ.

5.1.2 Non-abelian case

Let us consider a pure Yang-Mills theory described by the Lagrangian

LYM = −1

4
F aρσF

a
ρσ, (5.27)

F aρσ = ∂ρA
a
σ − ∂σAaρ + gfabcAbρA

c
σ, (5.28)

where fabc are the structure constants of the group. For SU(2), one has fabc = εabc, then by
Noether’s theorem [60], the global symmetry implies that there is a conserved current Qaρ given by

Qaρ =
∑
n

∂L
∂(∂ρφn)

δφn
∂ε

. (5.29)

Here εa are infinitesimal parameters of the gauge transformation and φn denotes some arbitrary
fields. Since the Lagrangian (5.27) is invariant under the infinitesimal gauge transformation δAaρ =
1
g∂ρε

a − fabcAbρεc, then our charge reads

Qaρ = −εabcF bρσAcσ. (5.30)

In this case the charge Qaρ is associated to the diagonalized generator τ3 of the SU(2) group, such
that commutes with the others elements of the group. In the language of group theory, τ3 belongs
to the SU(2) Cartan subalgebra [61] (for more details see appendix A).

Our form to evaluate the partition function will be defining the Hamiltonian density associated
to (5.27), given by

HYM =
1

2
Πi
aΠi

a +
1

4
F aijF

ija, i, j = 1, 2, 3. (5.31)

Since the chemical potential is associated to Qa0 , then the partition function takes the form

Z = N(β)

∫ ∏
a

[dP aj ]

∫
[dAaj ] exp

{∫ β

0

dτ

∫
d3x[iP aj Ȧ

a
j −H(Aaj , P

a
j ) + µQa0(P aj )]

}

= N(β)

∫ ∏
a

[dP a1 ][dP a2 ][dP a3 ]

∫
[dAa1 ][dAa2 ][dAa3 ] exp

{∫ β

0

dτ

∫
d3x

[
−1

2

(
P 1
a −B1

a

)2
+

1

2
B1
aB

1
a −

1

2

(
P 2
a −B2

a

)2
+

1

2
B2
aB

2
a −

1

2

(
P 3
a −B3

a

)2
+

1

2
B3
aB

3
a −

1

4
F aijF

ija

]}
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where Bia is defined as Bia ≡ F 0i
a + µεabcA

i
c. Realizing the integration over the momenta, we obtain

Z = N(β)(2π)3/2
∏
a

∫
[dAai ] exp

(
1

2

∫ β

0

dτ

∫
d3x

[
(B1

a)2 + (B2
a)2 + (B3

a)2 − 1

2
F aijF

ija

])
. (5.32)

From the definition of the Bai fields, the compact term FρσaF
ρσa it is produced shifting the usual

field Aρ as

Aρa → Aρa +
µ

g
δρ0τ

aδa3. (5.33)

Therefore, we arrived to

Z = N ′(β)

∫
DAδ(∂ρAρa) exp

(∫ β

0

∫
d3xLeff(A, iȦ)

)
(5.34)

where the effective Lagrangian is defined by

Leff = −1

4
FaρσFρσa = ∂ρAσa − ∂σAρa − gεabc

(
Aρb +

µ

g
δρ0δb3

)(
Aσc +

µ

g
δσ0δc3

)
. (5.35)

In conclusion the non-abelian case has as usual prescription transferred a shift in the vectorial
gauge field Aρ. This also is a simple prescription to introduce chemical potentials into an abelian
gauge theory.

As a last example, let us consider a SU(2) non-abelian gauge field theory with a fermion
and a scalar field transforming in the fundamental representation of the gauge group. The density
Lagrangian is given by

L = DρΦ
†DρΦ−m2Φ†Φ− 1

4
F aρσF

ρσa + ψ̄i /Dψ. (5.36)

This theory has two conserved charges, associated to the baryon number and the third component
of isospin,

B =

∫
d3~xψ̄γ0ψ,

Q3 =

∫
d3~x

(
1

2
ψ̄γ0τ

3ψ − i

2

[
(D0Φ)†τ3Φ− Φ†τ3D0Φ

]
− ε3bcAσbF cρσ

)
, (5.37)

with γρ denoting the usual three-dimensional Pauli-matrices. Thus, in order to insert chemical
potential in the theory, we must insert two chemical potentials associated to each charge of Eq.(5.37).
Therefore, the partition function obtained (already realized the integration over momenta), has the
following form:

Z =

∫
Dφ exp

[∫ β

0

dτ

∫
d3~x(LE + µBψ̄γ0ψ)

]
(5.38)

where µB corresponds to the chemical potential associated to the baryonic number, and LE is
the Lagrangian density obtained from the original Lagrangian (5.36) going to imaginary time and
by making the change

A3
0 → A3

0 −
iµQ
g
. (5.39)
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with µQ the chemical potential associated to the conserved charge of the third component isospin.
Once more, we thus see that the chemical potentials can be interpreted as background fields for the
temporal components of the gauge fields.

In summary, the rule to insert a chemical potential in a field theory is thus to perform a shift
on A0 as a constant imaginary term −iµ. As we see this term is considered not dynamical. This
leads to consider the chemical potential as a background field which does not fluctuate.
In the next section, we will deepen this idea in detail, and we will explain the relation of the effects
of chemical potential in the usual calculations of functional integrations [62].

5.2 The background field method

In this section we will analyze the tools of the Background Field Method (BFM) following the line
of Refs. [62, 63, 64].
This method was first introduced by DeWitt [62] for one-loop process. Later on, ’t Hooft in [63]
reformulated this approach for multi-loops computations. Due to its effectiveness, BFM have been
useful for studies of quantum theory of gravity [65], and also in QCD, e.g for the computations of
β-function [64, 66, 67]. Although an adequate choice of the background field reduces considerably the
computations, for example the elements of the S−matrix or the independence of the quantum field
in the gauge fixing condition, the BFM still remains complicated to apply to the renormalization of
the electroweak interactions in the Standard Model. However, it should be noted that recent works
have made possible the application of BFM to QCD and electroweak interactions of Standard Model
[68].

This method is useful every time the fields of the path integral can be divided into a “classical
part” which does not fluctuate, and a quantum fluctuate.
In the first part, we present the generating functional for the connected and irreducible Green’s
functions of the conventional theory and in the BFM. In the final part is developed an equivalence
between the BFM and the conventional approach.

5.2.1 Background field method for Yang-Mills theories

Let us consider the generating functional for pure Yang-Mills field, 1

Z[J ] =

∫
DAdet

[
δGa

δωb

]
exp

(
i

∫
d4x

[
L(A)− 1

2ξ
GaG

a + JρaA
a
ρ

])
, (5.40)

with the usual definitions given in (5.27). Ga is the gauge-fixing term, where we will consider the
covariant Landau gauge: Ga = ∂ρAaρ. Moreover, δGa/δωb is the derivative of the gauge-fixing term
under an infinitesimal gauge transformations

δAaρ = −fabcωbAcρ +
1

g
∂ρω

a. (5.41)

Due to this last transformation, the field F ρσ becomes F aρσ−fabcωbF cρσ and L remains his form, i.e.,
is gauge-invariant.

1Here fermions play no role in the background field method, they are treated as in the ordinary formalism, and
therefore will be neglected.
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We now define the partition function, analogous to Z, in the background field method. We de-
note this by Z̃. It is defined exactly like the conventional generating functionals except that the field
in the classical Lagrangian is written not Aρ but as Aρ +Bρ, where Bρ is the background field, (we
do not couple the background field to the source J .). Thus, our new partition function is defined by

Z̃[J,B] =

∫
DAdet

[
δG̃a

δωb

]
exp

(
i

∫
d4x

[
L(A+B)− 1

2ξA
G̃aG̃

a + JρaQ
a
ρ

])
, (5.42)

where δG̃a/δωb is the derivative of the gauge-fixing term under the infinitesimal gauge transformation
δAaρ = −fabcωb(Acρ+Bcρ)+(1/g)∂ρω

a. We know that the Green’s functions of the theory are generated
by means the following definitions:

W [J ] = −i lnZ[J ], (5.43)

thus by means of a Legendre’s transformation, we find that

Γ[Ā] = W [J ]−
∫
d4xJρa Ā

a
ρ, with Āaρ =

δW

δJρa
. (5.44)

Here the field Ā denotes an argument of the effective action Γ. Therefore, the derivative of the
effective action with respect to Ā will be the irreducible one-particle Green’s function of the theory
[69].
Up to now, we have defined the generating functional Z̃ in the background field method, then we
only need to determine the analogous quantities W̃ and Γ̃. In fact, we define

W̃ [J,B] = −i ln Z̃[J,B] (5.45)

with the background effective action given by

Γ[Ã, B] = W̃ [J,B]−
∫
d4xJρa Ã

a
ρ, with Ãaρ =

δW̃

δJρa
. (5.46)

On the other hand, we know that L(A) is invariant under the transformation: δAaρ = −fabcωbAcρ +
1
g∂ρω

a, then L(A+B) is invariant under

δAaρ = D̄ρω
a − facbωbAaρ, (5.47)

δBaρ = 0, (5.48)

where D̄ρ = ∂ρ + ig[Bρ, ·] is the background covariant derivative. As we see, in the spirit of the
background field, the field B is not dynamical and therefore does not fluctuate. Moreover, since we
will consider situations in which the background field represents the chemical potential, B does not
transforms under gauge transformation.
In order to maintain invariant the gauge term in Z̃[J,B], then we choose the background field gauge
condition:

G̃a = ∂ρAaρ + gfacbBbρA
c
ρ. (5.49)

Therefore, Γ̃[Ã, B] is invariant under the transformations:

δÃaρ = D̄ρω
a − facbωbAaρ (5.50)

δBaρ = 0, (5.51)

in the background field gauge (5.49).
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5.2.2 Background field method for scalar fields

Let us look how works the background field method over a simple field scalar φ 2. In fact, we define
the generating functional

exp

(
− i
~
W [J ]

)
≡
∫
Dφ exp

(
i

~
S[φ]− i

~

∫
dxJ(x)φ(x)

)
, (5.52)

where S[φ] denotes the full quantum action including the classical action. By means the Legendre
transform we find that

Γ[φ̄] ≡ −W [J ]−
∫
Jφ̄, with φ̄(x) =

δW [j]

δJ(x)
. (5.53)

Once more, the field φ̄ denotes the argument of the effective action Γ. Now inserting the definition
J(x) = δΓ[φ̄]/δφ̄(x) and using Eq. (5.53), we arrived to

exp

(
i

~
Γ[φ̄]

)
=

∫
Dφ exp

i

~

(
S[φ]−

∫
dx(φ− φ̄)(x)

δΓ[φ̄]

δφ̄(x)

)
. (5.54)

By means the use of the background field method we can shift the integration field as: φ→ φ̄+
√
~ϕ,

exp

(
i

~
Γ[φ̄]

)
=

∫
Dφ exp

i

~

(
S[φ̄+

√
~ϕ]−

√
~
∫
dxϕ(x)

δΓ[φ̄]

δφ̄(x)

)
. (5.55)

The principal gain with this last expression is achieved by the following expansion around to ~:

S[φ] = S0[φ] + (~)nSn[φ], (5.56)

Γ[φ̄] = Γ0[φ̄] + (~)nΓn[φ̄] n ≥ 1. (5.57)

Obviously the terms Sn, n ≥ 1 are clearly the counterterms to loop n, and Γn[φ̄] the n-loop corrections
to effective action. Finally, considering that S0 describes a field like Eq.(2.22), and by means the
expansion of perturbation theory, we obtain the 1-loop correction:

Γ1[φ̄] = Γ1[0] +
i

2
ln det

(
1 + V ′′(φ̄)(� +m2)−1

)
+ S1[φ̄] (5.58)

At first sight, this expression is the same standard 1-loop expansion that is obtained without the
use of the background field method. In conclusion, the background field method over scalar fields is
only like a minimal coupling to the usual field φ.

2Only for convenience in this section, we will use explicitly the Planck’s constant ~.
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Chapter 6

Background Field Method in
Gribov-Zwanziger Approach

In the present chapter, we implement a chemical potential as our background field within the GZ
scenario. Firstly, we discuss the Gribov copies in the Landau-DeWitt gauge. The resulting gauge-
fixation for the Yang-Mills action is equivalent to consider the chemical potential as an external and
non-dynamic field, proportional to the temporal-component of the gauge field. Finally, we will see
that the chemical potential affects directly the solution of gap equation for the Gribov parameter,
and therefore the gluon propagator.

6.1 Background field method in GZ action

We consider the thermal SU(N) YM theory in d = 4 dimensions with Euclidean time τ ∈ [0, β],
where β = 1/T is the inverse temperature. The Euclidean action reads

SYM =
1

4

∫ β

0

dτ

∫
d4xF aρσF

ρσa (6.1)

where F aρσ = ∂ρA
a
σ − ∂σAaρ + gfabcAbρA

c
σ.

In the background field method one introduces a fixed background gauge field configuration Bρ,
through the splitting

Aρ → aρ ≡ Aρ +Bρ, (6.2)

Here, the A and B fields has different roles in the theory. In this case, A is the quantum field,
i.e., the variable of integration in the functional formalism, meanwhile B meet the role of a classical
background field without dynamical (as we will see more later in our case the background field
represents the chemical potential). In terms of aρ, our Landau gauge condition Ga[A] = ∂ρA

a
ρ = 0

for the quantum field takes the following form

G̃a[B] ≡ D̄ρA
a
ρ = 0. (6.3)

It is known as the Landau-DeWitt (LDW) gauge fixing condition, and where D̄ρ = ∂ρδ
ab + gfacbBcρ

is the “background” covariant derivative.

45
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From this new assumption for the gauge fixing condition, one can rewritten the action (4.8) as

SgfB =

∫ β

0

dτ

∫
dd−1x

(
1

4
F aρσF

ρσa + c̄aD̄ρ(B)Dρ(a)ca − (D̄ρ(B)Aρ)2

2ξ

)
(6.4)

with c and c̄ denoting the ghost and antighost fields, respectively. In particular, the LDW gauge
can be recovered taken the limit ξ → 0 at the very end of each computation. On the other hand, we
can identify the new FP operator M̄ ≡ −D̄ρDρ(a) which with our suitable choose of the background
field is invertible. Analogously, the horizon condition (4.5) also is well-defined with the choose of our
background field.

Since even the Landau-DeWitt gauge is plagued by Gribov copies, then the procedure of Gribov-
Zwanziger applies. Therefore, the Gribov-Zwanziger local action in Eq. (4.13) acquires the following
form:

SGZ =

∫ β

0

dτ

∫
dd−1x

(
1

4
F aρσF

ρσa + c̄aD̄ρ(B)Dρ(a)ca − (D̄ρ(B)Aρ)2

2ξ

+ ω̄acρ D̄
ab
σ (B)Dbd

σ (a)ωdcρ − gγ2fabcAaρ(ϕbcρ + ϕ̄bcρ )− γ4d(N2 − 1)
)
. (6.5)

The last action has the symmetry [9]:

SGZ [Φ] = SGZ [UΦU−1] (6.6)

where Φ accounts for the quantizing fields, A, c̄, c, ω̄, ω, ϕ̄, and ϕ, and U is a SU(N) matrix. The
gauge symmetry of (6.5) in the presence of a background field becomes

Aρ +Bρ → A′ρ +B′ρ = U−1∂ρU + U−1AρU + U−1(Aρ +Bρ)U. (6.7)

At the infinitesimal level [70], U ≈ 1 + ω, ω � 1, the above gauge symmetry reads

δAaρ = −fabcωb(Aaρ +Bcρ) +
1

g
∂ρω

a, (6.8)

δBaρ = 0. (6.9)

Clearly, such transformation has no effects to B, because is just prescribed as a classical background
field, i.e., it does not transform under gauge transformations. In our case, it background field will
corresponds to the chemical potential which do not fluctuate like the quantum field Aρ. These
transformations induce an ordinary gauge transformation on A+B, i.e.,

δ(Aaρ +Baρ ) =
1

g
∂ρω

a − fabcωb(Acρ +Bcρ). (6.10)

Consequently, the symmetry transformation in Eq. (6.7) can be written as

Aρ → AUρ = U−1∂ρU + U−1AρU + U−1BρU −Bρ . (6.11)
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6.2 Chemical potential as background field

In order to describe the effects of this background field on the Gribov copies, and in particular on
the solution of the gap equation, we will use the following prescription for the background field:

Baρ = − iµ
g
δa3δρ0. (6.12)

We have chosen the third component of the internal SU(2) group. The i factor denotes explicitly the
euclidean form as well as the apparition of the chemical potential like a charge density non-fluctuating.

From now on, we restrict ourselves only to SU(2) case, thus the gauge fixing condition defined
in Eq.(6.3) under the prescription (6.12) acquires the form

G̃ρ[B]Aρ = ∂ρA
a
ρ − iµεa3bAb0 = 0. (6.13)

Therefore, the Gribov’s equation for field configurations satisfying the same LDW gauge fixing con-
dition, i.e., D̄ ·A = D̄ ·AU = 0, becomes

∂ρAUρ + g[Bρ, AUρ ] = 0, (6.14)

where AUρ is defined in Eq. (6.11).
A straightforward exercise tells us that the background gauge field Bρ satisfies also the LDW gauge
fixing condition

∂ρB
ρ + g[Bρ, Bρ] = 0. (6.15)

In some sense, the last equation indicates that the background gauge field play the role of vacuum,
i.e., Bρ = 0, and due to this the “chemical vacuum” satisfies the chosen gauge fixing condition.

The following standard parametrization of the SU(2)-valued functions U(xi) will be useful

U(xi) = Y 01 + Y aτa, U−1(xi) = Y 01− Y aτa, (6.16)

Y 0 = Y 0(xi), Y a = Y a(xi), (6.17)

(Y 0)2 + Y aYa = 1. (6.18)

where, of course, the sum over repeated indices is understood also in the case of the group indices
(in which case the indices are raised and lowered with the flat metric δab). The SU(2) generators τa
satisfy the relation (A.20).

6.2.1 Gribov copies of the vacuum with chemical potential

From Eq. (6.11), the gauge transformation of the vacuum is given by

0→ U−1∂ρU + U−1BρU −Bρ. (6.19)

Subsequently, the equation for the Gribov copies of the vacuum are

∂ρ
(
U−1∂ρU + U−1BρU −Bρ

)
+ g[Bρ, U−1∂ρU + U−1BρU −Bρ] = 0 , (6.20)

which under the prescription (6.12) and the functions (6.16) becomes

(∂ρ − iµδρ0[τ3, ·])×
(
εabcYa∂

ρYbτc + Y 0∂ρY cτc − Y c∂ρY 0τc −
2iµ

g
δρ0
(
Y aY 0εa3c + Y 3Y c

)
τc

−2iµ

g
δρ0 (Y 0)2τ3

)
= 0. (6.21)
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As we see it corresponds to a system of coupled non-linear partial differential equations, and due to
the intrinsic non-linear nature of this system, it is necessary to introduce a suitable technical tool
to study and reduced the number of equations. The derivation of this equation for the vacuum is
shown in Appendix C.

In particular, we will choose the geometrical interpretation of hedgehog ansatz as a form to re-
duce the system (6.21) to a single scalar non-linear differential equation. This systematic reduction
is the first ansatz in general coordinates beyond spherical symmetry [72].

In fact, let us consider the standard spherically symmetric hedgehog ansatz:

U = 1 cosα(xρ) + n̂a(xρ)τa sinα(xρ), (6.22)

where α(xρ) is a scalar function, and with the n̂a normalized with respect to the internal metric δab
as

δabn̂
an̂b = 1, (6.23)

which means that in terms of the variable Y 0 and Y a corresponds to

Y 0(xρ) = cosα(xρ), Y a(xρ) = n̂a sinα(xρ). (6.24)

6.2.2 Vacuum Gribov copies with T 3 topology

Here we will study the presence of Gribov copies with chemical potential in the space with T 3-
topology. The choose of this kind of regions is due to the research in QCD theory, as for example
glueballs, and also to study of the topology of the Yang-Mills configuration spaces [71], [72].

In this topology, the borderless flat spatial metric describing T 3 is

ds2 =

3∑
i=1

λ2
i (dφi)

2, (6.25)

where λi ∈ R and the coordinates φi ∈ [0, 2π) correspond to the i−th factor S1 in T 3 while λi
represents the size of the i-th factor S1.

Since the transformation must be proper [35, 72], i.e., to be everywhere smooth and vanish into
infinity, then in this case U is proper if

U(φi + 2miπ) = U(φi), mi ∈ Z, i = 1, 2, 3. (6.26)

We now consider the following ansatz for the unitary vectors (time-independent) n̂a, defined by

α = α(φ1), n̂1 = cos(pφ2 + qφ3), n̂2 = sin(pφ2 + qφ3), n̂3 = 0, (6.27)

with p, q arbitrary integers. From this ansatz, the Eq. (C.10) reduces to the following single scalar
non-linear differential equation:

d2α

dφ2
1

= ξ sin(2α), (6.28)

with
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ξ =
λ2

1

2

[(
p

λ2

)2

+

(
q

λ3

)2
]
−

(√
2µλ1√
g

)2

. (6.29)

The Eq. (6.28) can be reduced to a first order conservation law

V =
1

2

[(
dα

dφ1

)2

+ ξ cos(2α)

]

⇒ φ1 − φ0 = ±
∫ α(φ1)

α(φ0)

dy√
2V − ξ cos(2y)

. (6.30)

where φ0, V are integration constants. Since φ1 belongs to the range [0, 2π), so let us take φ1 = 2π
and φ0 = 0. In turn, the condition (6.26) implies α(φ1) = α(φ0) + 2πk, where k ∈ Z. Taking this
into account, we have for (6.30) the following expression

2π = ± 1

ξ1/2

∫ α(0)+2πk

α(0)

dy√
W − cos(2y)

, W =
2V

ξ

then the integrand must be well defined at least in the range y ∈ (0, 2πk). For this, it is necessary
that W > 1 because cos(2y) ∈ [−1, 1].

In order to analyse explicitly the effect of the chemical potential on the Gribov copies for this
ansatz, let us consider the weight of a copy AU as its norm in the functional space [74]

N [U ] =

∫
T 3

d4x
√
gTr

[
(U−1∂ρU + U−1BρU −Bρ)2

]
(6.31)

where g corresponds to the determinant of the metric given in Eq. (6.25). Therefore, the norm of
the copy in presence of chemical potential acquires the following form

N [U ] =
(2π)2λ2λ3

λ1

∫ 2π

0

dφ1

[(
dα

dφ1

)2

+ 2ξ sin2 α

]
,

=
(2π)2λ2λ3

λ1

∫ 2π

0

dφ1

[
2V + 3ξ sin2 α(φ1)− ξ cos2 α(φ1)

]
, (6.32)

where in the last equality we used the definition (6.30) of the constant V . In the figure 6.1, we
show the curve of the norm N [U ] for values p = q = λi = 1 increasing when r0 ≡ −iµ grows both for
k = 1 and k = 2. In some sense, the importance of the Gribov copies decreases when the chemical
potential acquires high values. Moreover, it is possible to carry out a thorough analysis outside the
range studied here, for example |p| > 1 and |q| > 1. However, just with simple calculation one can
suggests that the Gribov gap equation in presence of chemical potential also should be affected.
It is worth to emphasize [74] that the larger is N [U ], the less relevant is the copy AU (at least from
the path integral point of view). Thus the above numerical results suggest that the bigger is the
chemical potential, the less relevant is the Gribov problem.
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6.2.3 Another example of Gribov copies in T 3

Now, let us consider a non-vacuum gauge field configuration Āρ in the presence of chemical potential.
A suitable family of gauge fields (like pure gauge) for which the generalized hedgehog ansatz (6.22)
works is

Āρ = η(φ1)(Uo)−1∂ρU
o, (6.33)

with
Uo = v̂aτa, (Uo)−1 = −Uo, (6.34)

and
v̂1 = cos(p̄φ2 + q̄φ3), v̂2 = sin(p̄φ2 + q̄φ3), v̂3 = 0, p̄, q̄ ∈ Z, (6.35)

where η(φ1) is a scalar function. In order to show that the Āρ field also satisfies the LDW gauge
fixing condition, we write it as

Āρ = ηv̂a∂ρ(v̂a) + ηv̂a∂ρ(v̂b)τcε
abc. (6.36)

Thus, the LDW gauge fixing condition becomes

∂ρĀ
ρ + g[Bρ3, Ā

ρ] = ηv̂
′

av̂
′

bε
abcτc,

=
∑
c

ηv̂
′

av̂
′

bε
abcτc,

= ηv̂
′

av̂
′

bε
ab1τ1 + ηv̂

′

av̂
′

bε
ab2τ2 + ηv̂

′

av̂
′

bε
ab3τ3, (but v̂3 = 0),

= 0 + 0 + ηv̂
′

av̂
′

bε
ab3τ3

= −γ2(p̄, q̄)ηv̂[bv̂a]ε
(ab)3τ3

= 0.
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where the prime denotes derivative with respect to the φi angles. Therefore, this suitable gauge
field configuration satisfies the LDW gauge fixing condition (6.3). Inserting Āρ into the equation of
Gribov’s copies in Eq. (C.12), we obtain the following single scalar differential equation:

α′′(φ1) + L sin(2α) = 0, (6.37)

where

L =
η(φ1)

g
− ξ,

ξ =
β(p, q)

2
−

(√
2µλ1√
g

)2

,

β(p, q) = λ2
1

((
p

λ2

)2

+

(
q

λ3

)2
)
.

We observe that Eq.(C.12) reduces to the equation (6.37) of sine-Gordon type, with a vertical force
proportional to η(φ1) function, very similar to the obtained in [35]. Thus, one can constructs many
explicit examples of copies using the freedom in choosing the function η(φ1).
It is important remark that the equations of the Gribov’s copies depend only of the gauge symmetry
of the theory, and then it have no influence on some physical property of the theory. Once more, as
in the previous case, the Gribov copies are affected by the chemical potential non-trivially, and as
we will see in the next section the gap equation also.

6.3 Solving the GZ gap equation

6.3.1 The background field potential at one-loop

In order to determine the gap equation, we will proceed to calculate the effective potential of the
Gribov-Zwanziger action at the one-loop approximation.
We know that the thermal effective action at one-loop is given by

exp
(

Γ(1)[Φc]
)

=

∫
DΦe

∫ β
0
dτ
∫
d4xLquadGZ (x̄) (6.38)

with x̄ = (iτ, ~x), and LquadGZ corresponding to the free Gribov-Zwanziger Lagrangian density associated
to (6.5). On the other hand, it is well known [69] that the effective potential corresponds to the
effective action when the classical field is a constant, i.e.,

Γ(1)[Φc = cte = v] = β

∫
d3xεv = βV εv. (6.39)

The quadratic Gribov-Zwanziger Lagrangian is

LquadGZ =
1

4
F aρσF

ρσa − (D̄ρ(B)Aρa)2

2ξ
+ c̄aD̄ab

ρ (B)Dbd
ρ (a)cd + ϕ̄acρ D̄

ab
σ (B)Dbd

σ (a)ϕdcρ + ω̄acρ D̄
ab
σ (B)Dbd

σ (a)ωdcρ

−gγ2fabcAaρ(ϕbcρ + ϕ̄bcρ )− γ4d(N2 − 1). (6.40)

We use the equations of motion δSGZ
δϕ = 0 and δSGZ

δϕ̄ = 0, which give

ϕbcρ = ϕ̄bcρ = − 1

D̄D
γ2gfabcAaρ. (6.41)
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Thus, if we use this result to rewrite LquadGZ , we obtain

LquadGZ ≈ 1

2
Aaρ∆ab

ρσA
b
σ + c̄D̄Dc+ ω̄D̄Dω − γ4d(N2 − 1) (6.42)

where

∆ab
ρσ =

[(
−D̄D − 2g2Nγ4

D̄D

)
δρσ − D̄ρDσ

(
1

ξ
− 1

)]
δab. (6.43)

Utilizing Eqs. (6.38) and (6.39), and evaluating the limit ξ → 0, then the background field
potential reads

εv(T, µ) = −d(N2 − 1)

2Ng2
λ4 +

1

2βV
(d− 1)Tr ln

(
D̄4 + λ4

−D̄2

)
− 1

2βV
Tr ln(−D̄2). (6.44)

where V is the spatial volume, λ4 = 2Ng2γ4, with γ the Gribov parameter, and D̄ the background
covariant derivative in the adjoint representation.

After the Fourier transform, one obtains that the covariant derivative go to D̄2 = (ωn − isµ)2 + ~p2,
where ωn = 2πnT are the Matsubara frequencies, and ~p is the spacelike momentum component, and
s is the isospin SU(2) which take the values −1, 0 and +1.

6.3.2 Case for T = 0

We will proceed first to show the effective potential to GZ action (6.44) at zero temperature as, in
this case, there is no need to introduce two different form factors in the Landau-De Witt propagator
for the gluon as in [75] nor to consider the plasma approximation as in [76]. From (6.44) the effective
potential without temperature acquires the form

εv(µ) = −d(N2 − 1)

2Ng2
λ4 +

1

2V
(d− 1)Tr ln

D̄4 + λ4

Λ4
− d

2V
(d− 1)Tr ln

−D̄2

Λ2
. (6.45)

Here Λ2 is a scale parameter in order to regularize the result.

Considering the general trace, under Matsubara formalism [55], one obtains

1

βV
Tr ln(−D̄2 +m2) =

∑
s

+∞∑
n=−∞

∫
d4p

(2π)4
ln
(
(−isµ)2 + ~p2 +m2

)
≡

∑
s

I(m2, µ, s). (6.46)

with the function I defined by

I(m2, µ, s) =

+∞∑
n=−∞

∫
d4p

(2π)4
ln
(
(−isµ)2 + ~p2 +m2

)
, (6.47)

where m2 is an arbitrary constant.
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In order to calculate the momenta integral in Eq. (6.47), we make use of Zeta function regular-
ization techniques. We can rewritten I(m2, µ, s) as the derivative respect of some auxiliary variable
ε and then taking the limit ε:

lnx = − lim
ε→0

d

dε
x−ε. (6.48)

From this prescription, (6.47) reads

I =

+∞∑
n=−∞

d4p

(2π)4
ln

(
(−isµ)2 + ~p2 +m2

Λ2

)

= −
+∞∑

n=−∞

∫
d4p

(2π)4
lim
ε→0

∂

∂ε

(
Λ2ε

[
(−isµ)2 + ~p2 +m2

]−ε)
.

Defining a new variable t as |~q| = t
√

(−iµ) +m2 and passing to spherical coordinates, we get∫
d4q = 2π2

∫ +∞

0

dtt3((−isµ)2 +m2)2, (6.49)

which give us

I(µ,m2, s) = lim
ε→0

∂

∂ε

(
−Λ2ε

8π2
((−isµ)2 +m2)2−ε

∫ +∞

0

dtt3(1 + t2)−ε
)
. (6.50)

Carry out the last integral by means the change of variable u = 1 + t2, one obtains∫ +∞

0

dtt3(1 + t2)−ε =
1

2

1

(ε− 2)(ε− 1)
. (6.51)

So, we have

I(µ,m2, s) = lim
ε→0

∂

∂ε

(
− Λ2ε

16π2

((−iµ)2 +m2)2−ε

(ε− 1)(ε− 2)

)
. (6.52)

Finally, a direct computation of the derivative and the limit on ε allow us get

I(µ,m2) =
∑
s

((−isµ)2 +m2)2

32π2

(
ln

(
s2(−isµ)2 +m2

Λ2

)
− 3

2

)
. (6.53)

Inserting now (6.53) in (6.57), and then in (6.45), we have

εv(µ) = −d (N2 − 1)λ4

2Ng2
− (d− 1)λ4

32π2

[
ln

(
λ4 + (iµ)4

Λ4

)
+ ln

(
λ4

Λ4

)
− 6

]
+

(d− 1)(iµ)4

32π2

[
ln

(
λ4 + (iµ)4

Λ4

)
− 3

]
− d(iµ)4

32π2

[
ln

(
(iµ)4

Λ4

)
− 3

]
− (d− 1)(iµ)4λ2

8π2
arctan

(
λ2

(iµ)2

)
(6.54)

where in the last term we took the principal branch of the ln in the complex plane [77]. In order
to normalize the last equation, we shall choose Λ2 in order that for µ = 0 the solution is λ0 = 1.
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Because we are interested in solving the gap equation ∂εv/∂λ
2 = 0, we can re-scale it in the following

way

∂εv(µ, λ)

∂λ2
− λ2

λ2
0

∂εv(µ = 0, λ)

∂λ2
= − (d− 1)λ2

16π2

[
ln

(
λ4 + (iµ)4

λ4
0

)
+ ln

(
λ4

Λ4
0

)]
− (d− 1)(iµ)2

8π2
arctan

(
λ2

(iµ)2

)
= 0. (6.55)

The equation (6.55) can be straightforwardly solved numerically for the critical chemical potential.
In the figure (6.2) it is plotted the left hand side of he gap equation (6.55) as a function of λ2 for
different values of µ.
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Figure 6.2: The gap equation (6.55) as a function of λ2 for different values of r0 ≡ −iµ. The value
of λ which corresponds the curve intersects the x−axis is the solution of (6.55).

Clearly we can see that the intersection value of the curve (which corresponds to the solution
of the gap equation for a given value of µ) decrease when the chemical potential µ grows, as it is
shown in Figure (6.3).
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Figure 6.3: The zeros of the gap equation (6.55) decreasing as a function of the chemical potential
r0 ≡ −iµ when it last grows.

This analysis of the semi-classical Gribov gap equation in the chosen background field and of
the dependence of the Gribov mass γ2 on the chemical potential itself, confirms the results about
the norm of the Gribov copy. We could interpret this as a theory which the gluons becomes less
confined as the Gribov parameter γ reduces. Unfortunately, nowadays the physical interpretation of
such bosonic chemical potential is rather a mistake in the case of non-perturbative gluons.

6.3.3 Case T 6= 0

This section only presents a brief introduction to the computational computation done for the case of
finite-temperature of the effective potential to GZ action (6.44) 1. Moreover, due to this last and the
little knowledge about the chemical potential in gluons then just a possible statement is established.

Well, we consider the effective potential (6.44) to finite-temperature:

εv(T, µ) = −d(N2 − 1)

2Ng2
λ4 +

1

2βV
(d− 1)Tr ln

(
D̄4 + λ4

−D̄2

)
− 1

2βV
Tr ln(−D̄2). (6.56)

The general trace is of the form

1

βV
Tr ln(−D̄2 +m2) = T

∑
s

+∞∑
n=−∞

∫
d3p

(2π)3
ln
(
(ωn − isµ)2 + ~p2 +m2

)
≡

∑
s

IT (m2, µ, s, T ). (6.57)

1It is necessary more computational power to see the full behaviour of the gap equation.
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with the function IT defined by

IT (m2, µ, T ) = T

+∞∑
n=−∞

∫
d3p

(2π)3
ln
(
(ωn − isµ)2 + ~p2 +m2

)
, (6.58)

where m2 is an arbitrary constant.

In order to calculate the momenta integral in Eq.(6.58), we make use of Zeta function regularization
techniques. The prescription starts again rewritten the logarithm function as

lnx = − lim
ε→0

d

dε
x−ε. (6.59)

From this prescription, (6.58) reads

IT = T

+∞∑
n=−∞

d3p

(2π)3
ln

(
(2πnT − iµ)2 + ~p2 +m2

Λ2

)

= −T
+∞∑

n=−∞

∫
d3p

(2π)3
lim
ε→0

∂

∂ε

(
Λ2ε

[
(2πnT − iµ)2 + ~p2 +m2

]−ε)
= −T lim

ε→0

∂

∂ε

+∞∑
n=−∞

Λ2ε

4π

∫
dpp2

[
(2πnT − iµ)2 + p2 +m2

]−ε
= −T lim

ε→0

∂

∂ε

(
Λ2ε

+∞∑
n=−∞

Γ(ε− 3/2)

8π
3
2 Γ(ε)

[
(2πnT − iµ)2 +m2

] 3
2−ε
)

where we had to introduce a renormalization scale Λ to get dimensional agreement, and Γ(ε) is the
usual Gamma function defined as

Γ(t) =

∫ ∞
0

xt−1e−xdx. (6.60)

From the integral representation of the Gamma function (6.60), we can be recast IT to

IT = −T lim
ε→0

∂

∂ε

(
Λ2ε

+∞∑
n=−∞

1

8π
3
2 Γ(ε)

∫
tε−5/2e−t[(2πnT−iµ)2+m2]

)
.

This last integral can be realized by the change of variable z = 4π2T 2t ≥ 0, then IT yields

IT = − lim
ε→0

∂

∂ε

(
Λ2ε T 2−2ε

4επ2ε−3/2Γ(ε)

∫ ∞
0

+∞∑
n=−∞

zε−3/2e
−z
(
n2− iµnπT + iµ2+m2

4π2T2

)
dz

)

= − lim
ε→0

∂

∂ε

(
Λ2ε T 4−2ε

4επ2ε−3/2Γ(ε)

∫ ∞
0

zε−5/2
+∞∑

n=−∞
e−z(n−

iµ
2πT )

2

e
−zm2

4π2T2 dz

)
.

Using the Poisson rule for sums

+∞∑
n=−∞

e−(n+x)2ω =

√
π

ω

(
1 + 2

+∞∑
n=1

e−
n2π2

ω cos(2nπx)

)
, (6.61)
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then after of a numerical integration over z, we arrived to

IT = − lim
ε→0

∂

∂ε
Λ2ε

(
Γ(ε− 2)T 4−2ε

4επ2ε−2Γ(ε)

(
m2

4π2T 2

)2−ε

+

T 4−2ε

4ε−1πεΓ(ε)

(
m2

4π2T 2

)1−ε/2 ∞∑
n=1

nε−2 cosh
(nµ
T

)
K2−ε

(nm
T

))
(6.62)

where Kn(x) is the modified Bessel function of the second kind. Taking the computations over
the variable ε, we obtain

IT [m2, T, µ] =

+1∑
s=−1

(
m4

2(4π)2

[
ln

(
m2

Λ2

)
− 3

2

]
−
∞∑
n=1

m2T 2

π2n2
cosh

(nsµ
T

)
K2

(nm
T

))
. (6.63)

From this last expression, we can see that the first term is the T = 0 contribution, which it depends
of the renormalization scale as it appears in [35]. The second term, is a new term which it indicates
the finite-temperature correction. Unlike the analysis done in [78], here the full analysis of the
convergence of IT is more complicated because the argument of the Bessel function is complex, i.e.,
m2 = ±iλ2, so that oscillate and moreover it must decays faster than the hyperbolic cosine of the
chemical potential in order to get an adequate convergence. This suggest that probably for λ ≈ 0, it
could pass through to cut the x-axis and then be solution also. Therefore, a computational power
larger it is necessary in order to find the critical value for the chemical potential which the gap
equation has no solutions.
However, an analytic asymptotic limit at the expression IT for m2 = 0 is possible,

IT [m2 = 0, T, µ] = −T
4

π2

+1∑
s=−1

[Li4(e
sµ
T ) + Li4(e−

sµ
T )], (6.64)

where Lin(z) =
∑+∞
i=1

zi

in is the polylogarithm function.

On the other hand, the convergence of the second term in (6.63) can be examined by the asymptotic
expansion of the Bessel function

Kn(z) ≈
√

π

2z
e−z

(
+∞∑
k=0

ak(n)

zk

)
, |Arg(z)| ≤ 3

2
π. (6.65)

Thus, if we called J [m2, T, µ] only to the finite-temperature correction in (6.63), and using the
expansion (6.65), we obtain

J [m2, T, µ] = −
∞∑
n=1

m2T 2

π2n2
cosh

(nµ
T

)
K2

(nm
T

)
≈ −

+∞∑
n=1

√
m2T 5/2

2π3/2n2

[
e
n
T (µ−

√
m2) + e

−n
T (µ+

√
m2)
]
O
(

1

n

)
. (6.66)

This expression tell us that if (µcr−
√
m2) > 0 then the expression to J do not diverge. The existence

of this critical value for the chemical potential µcr, it is closely related to the existence of the critical
chemical potential of the gap equation.
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Moreover, probably this critical value µcr could be a signal of confinement zones for gluons, but it
is worth noting that nowadays experiments at LHC or RHIC have not yet confirmed the presence
or signal of free gluons, and therefore associate densities as chemical potentials it is not understood.
However, recent works in quasiparticles model [79, 80, 81] have released a possible effective mass
(due to the interactions between them) for gluons, and the formation of a gluonic Bose-Einstein
condensate in heavy ion collisions.

6.3.4 Gap equation in presence of chemical potential at finite temperature

With the expression for the general trace IT , it only remains to replace in (6.44) and find the gap
equation correspondent. So, for values N = 2 and D = 4 in terms of IT , we have

εv =

+1∑
s=−1

(
− 3

g2
(λ2)2 − 3(λ2)2

2(4π)2

[
ln

(
λ2

Λ2

)
− 3

2

]
+

3

2

(
J [iλ2, µ, T ] + J [−iλ2, µ, T ]

))
(6.67)

where

J [m2, µ, T ] = −
+1∑
s=−1

∞∑
n=1

m2T 2

π2n2
cosh

(nsµ
T

)
K2

(nm
T

)
. (6.68)

Taking the derivative of this effective potential with respect to λ2, we obtain

1 +
g2

2(4π)2
ln

(
λ2

Λ2

)
− g2

2(4π)2
− 1

6

(
∂J

∂λ2
[iλ2, T, µ] +

∂J

∂λ2
[−iλ2, µ, T ]

)
= 0. (6.69)

If we now [35] define, λ0 to be a solution to the gap equation at T = 0:

1 =
g2

2(4π)2

[
1− ln

(
λ2

0

Λ2

)]
, (6.70)

then we can subtract this equation from the general gap equation (6.69), by a Pauli-Villars procedure,
we get

ln

(
λ2

λ2
0

)
=

8π2

3

∑
s

(
∂J

∂λ2
[iλ2, T, µ, s] +

∂J

∂λ2
[−iλ2, µ, T, s]

)
. (6.71)

Therefore, now all integrations in (6.71) are convergent.

The solution for the gap equation corresponds to the intersection of the curves of each side in
(6.71). We will see that the existence of solutions, it depends of the temperature, and the critical
value 2µ2

c > λ. This analysis allows us see that the chemical potential affects non-trivially the gap
equation, and in particular the Gribov mass which appears in the gluon propagator associated to
the GZ action. Therefore, possible assumptions about confined zones for gluons can be established.



Chapter 7

Conclusions and Perspectives

In this thesis, it has been shown that the Gribov copies equation is affected by the presence of
chemical potential. In particular, some examples of copies have been constructed on the T 3-topology
in which the norm of the Gribov copies satisfying the adequate boundary conditions increases when
the value of the chemical potential grows, and thereby less important it turns out be the Gribov
problem from the path integral point of view.
The semi-classical Gribov gap equation in the chosen gauge fixing condition (called also Landau-De
Witt gauge fixing condition) and the dependence of the Gribov mass parameter on the chemical
potential, confirm consistently that the chemical potential affects both the symmetry as well as the
propagator of the theory. In other words, we conclude that the larger is the value of the chemical
potential, the smaller is the corresponding Gribov mass. Therefore, we could interpret this as a sign
that the theory becomes “less confined” as the Gribov parameter reduces and the chemical potential
increases.
In addition, this analysis is consistent with the Gribov-Zwanziger approach both in their “kinematic
part” (corresponding to the Gribov copies equation) as the “dynamic part” (corresponding to the
Gribov gap equation). From the technical point of view, a relevant result of the present thesis
is the extension of the Gribov-Zwanziger approach in the presence of a background field, whose
interpretation can be more general than a chemical potential.
On the other hand, the physical interpretation of a bosonic chemical potential in the case of confined
particles (such a gluons) has not been discussed in details in the literature. However, these results
show that, at least, the problem is mathematically consistent. In some sense, this thesis gives rise
to a new edge on the problem of confinement of gluons.
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Appendix A

Group theory and Lie algebra

It is an apparent fact that the nature exhibits many symmetries, both exact and approximate. A
symmetry is an invariance property of a system under a set of transformations. Symmetry trans-
formations of physical systems have properties analogous to those of a mathematical group. From
this motivation, in this appendix we briefly discuss properties about Lie groups and their algebras,
and in particular the group which we are working, the SU(2) group. We evoke on group representa-
tions, especially irreducible unitary representations. More details can be found in many places, for
example, in a book on unitary symmetry [82].

A.1 A little group theory

A group is a set G equipped with a binary operation G × G : (a, b) 7→ ab such that the following
properties hold:

• a(bc) = (ab)c. (Associative law).

• There is an e ∈ G such that ea = ae = a for all a ∈ G. (Existence of identity).

• For every a ∈ G there is a b ∈ G such that ab = ba = e. (Existence of inverses).

The number of elements of a group can be finite, in which case the group is called a finite group. If
all the elements of a group commute with one another, the group is said to be abelian. Otherwise
the group is non-abelian. A subgroup of a group is a subset of elements which is itself a group under
the same multiplication law. Every group has at least two subgroups: itself and the group consisting
only of the identity. These are called improper subgroups; any others are called proper subgroups.

An element a belonging to G is said to be conjugate to an element b in G if there exists an ele-
ment u in G such that a = ubu−1. Let H be a subgroup of G, and let h be in H and g be in G.
Then, we realize the product elements h′ = ghg−1 for all h. Then h′ form a group H ′ which is
isomorphic to H. If, for all g in G, the elements of H and H ′ are identical, then H is called an
invariant or self-conjugate subgroup of G.

A.2 Group representations

The representation of a group, as in quantum mechanics, fulfils the role of representing the physical
states by column vectors. A representation is a homomorphism between the group and a group of
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linear operators which operate on a vector space. For example, for a finite-dimensional matricial
representation, the representation would be a homomorphism between the group and the group of
matrices. When the representation is isomorphic, the group is then told faithful.
If we consider a G group with elements g, and the elements of the representation by D(g), then a
similarity transformation is a transformation that acts on a representation D, and on a vector V as

D′ = UDU−1, V = UV, (A.1)

where U is the transformation’s matrix. It is important remark that it transformation maintains
unaltered the algebra of the transformed system.

If a representation of dimension n+m is reducible, then exist some basis such that D(g) acquires
the following form in blocks:

D(g) =

(
A(g) C(g)

0 B(g)

)
, (A.2)

where A(g) and B(g) are square matrices of n× n and m×m dimensions, respectively. Otherwise,
the representation is irreducible. We restrict ourselves to irreducible representations.
If exist a matrix that commutes with all the other matrices of the irreducible representation, then it
would be proportional to identity. This statement is called Schur’s lemma.
Now, let’s see how it works the irreducible unitary representations on a concrete case. Let us
consider a transition matrix (φ, ψ) with φ and ψ state vectors describing physical states. A unitary
transformation Ua which acts over the vectors as φ′ = Uaφ and ψ′ = Uaψ, satisfies that

(φ′, ψ′) = (Uaφ,Uaψ) = (U−1
a Uaφ, ψ) = (φ, ψ). (A.3)

Thus, unitary transformations in quantum mechanics leave invariant the transition matrixes.
An example more interesting is the case of unitary representations of groups within the Hamiltonian
formalism. In fact, let us consider the expression

Hψn = Enψn. (A.4)

If we operate on this equation by the right with Ua, we get

UaHψn = UaHU
−1
a Uaψn = EnUaψn, (A.5)

UaHU
−1
a Uaψn = EnUaψn. (A.6)

Now, if H transforms as
H ′ = UaHU

−1
a (A.7)

then Eq. (A.5) becomes
H ′ψ′n = Enψ

′
n. (A.8)

But because Ua is unitary, then H is invariant under it transformation. Thus, one obtains

HUa = UaH ⇒ [H,Ua] = 0, (A.9)

where [H,Ua] = HUa − UaH is called the commutator of H and Ua. Then (A.8) becomes simply

Hψ′n = Enψ
′
n. (A.10)

It tells us that the wave functions ψ′ also are eigenfunctions of H with the same energy levels En.
In conclusion, if there is any operator that commutes with Ua, then all the members of the multiplet
will have the same eigenvalues of that operator.
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A.3 Lie groups

Unlike an ordinary group, a Lie group has a feature more interesting. A Lie group has an infinite
number of parameters which continuously vary. More precisely, a Lie group G has two structures: G
is a group and also is a smooth real and/or complex manifold. The Lie group does not require that
G be connected, therefore any finite group is a 0-dimensional Lie group.
An example of a Lie group are the usual rotations in two dimensions. Here the angle that produces
the rotations continuously vary over the interval [0, 2π]. We note that this group is compact because
the interval is bounded. This does not occur to translations where the parameter vary without a
bound.

Now we discuss the concepts of simple and semi-simple Lie groups. An oversimplified definition,
which is adequate for our purposes, is that a Lie group is simple if it is non-abelian and has no
proper invariant Lie subgroups. On other hand, it is semi-simple if is non-abelian and has no an
abelian invariant Lie subgroup. The direct product of simple and/or semi-simple Lie groups is semi-
simple.
For example the group of the standard model SU(3) × SU(2) × U(1) is not semi-simple because it
has an abelian invariant subgroup U(1). However, the group SU(3) × SU(2) is semi-simple, where
each group by separated, SU(3) and SU(2), are simple.

A.4 Lie algebras

A Lie algebra of a group constitutes the group elements which differ only infinitesimally from the
identity. From these elements we can construct operators called generators which allow us to obtain
an unitary representation of the group. In other words, we can obtain all the elements of the group
which can be generated by continuous transformations from the identity. There is one generator for
each parameter of the group.
When the generators are Hermitian, i.e., H = HT , then an unitary representation Ua of an arbitrary
group element is given by

Ua = e−i
∑
j ajTj , j = 1, 2, ..., r (A.11)

where Tj is the set of generators of the group, and aj are r real parameters.

It can be shown that the Tj form a Lie algebra satisfying the algebraic equations

[Ti, Tj ] = i

r∑
k=1

ckijTk. (A.12)

Here ckij are constants called the structure constants of the group. The structure constants of a
Lie algebra can differ with different choices of generators. To the case of an abelian group, all its
structure constants are zero.

From the Eq. (A.12) one can see that the commutator of any two members of the algebra, i.e.,
generators of the Lie group, is a linear combination of the members of the Lie algebra. Thus, a
representation of a Lie algebra would be a set of matrices which obey the commutation relations
(A.12).
Moreover, one can define the rank of the group as the maximum number of commuting generators
of a Lie group. It is important remark that k commuting generators of a Lie group can be simulta-
neously diagonalized in a matrix representation.
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If a Lie group of rank k is semi-simple and compact, then one can construct from the members of
its Lie algebra, k non-linear invariant operators which commute with every member of the algebra.
These operators are called Casimir operators.
An example, in particular, is the rotation group in three dimensions R(3). This group is character-
ized by 3 parameters (for example the Euler-angles). From the definition of rotations it is possible

show that the number of parameters of R(n) is n(n−1)
2 . For our case, the 3-dimensional parameters

are denoted by Jx, Jy , and Jz . They satisfy the Lie algebra

[Jx, Jy] = iJz, ~ = 1. (A.13)

This group is rank one because none of the Ji commutes with any other. Moreover, it group is
semi-simple (actually simple), so that it has one Casimir operator J2 defined by

J2 = J2
x + J2

y + J2
z . (A.14)

By Schur’s lemma, if J2 commutes with the members of a irreducible representation, then it would
be a multiple of the unit matrix.
In three dimensions, the rotation’s group satisfies

[Ji, Jj ] = iεkijJk, i, j, k = 1, 2, 3. (A.15)

where εkij = −εkji is completely antisymmetric in its indices, and ε123 = 1. Therefore the structure
constants of R(3) are given by εijk.

A.4.1 Cartan subalgebra

We want to construct a canonical form of commutation relations modeled on the case that we are
interested, SU(2) group. For this purpose we define the notion of Cartan subalgebra. This is a
maximal abelian subalgebra of g, where g is a complex semisimple Lie algebra, such that all its
elements are diagonalisable in the adjoint representation. A Cartan subalgebra H satisfy

• If h1, h2 ∈ H then [h1, h2] = 0,

• for all v ∈ g, if [v, h] = 0 for all h ∈ H then v ∈ H,

• for all h ∈ H, the operator ad(h) is diagonalisable,

where ad(·) symbolize the adjoint representation of the linear transformations of the G group’s Lie
algebra. The two first conditions imply that H is a maximal commuting subalgebra of g. It is
straightforward to construct a subalgebra satisfying those conditions, by induction, but it is non-
trivial to satisfy the last condition. Moreover, all complex semi-simple Lie algebra admits a Cartan
subalgebra.
Cartan subalgebras are not unique, however it can be shown that if H1 and H2 are two Cartan
subalgebras of a matrix Lie algebra L(G) then there exists some g ∈ G such that H1 = gH2g

−1.
Hence the dimension of all Cartan subalgebras are equal.
Let H be a Cartan subalgebra of g, call l its dimension, it is independent of the choice of H and it
is called the rank of g. As we will see more later, for the case SU(2), this has rank 1, (the choice of
Jz for example).
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A.5 Unitary groups and algebras

An unitary group in n-dimensional U(n) is the group of n× n matrices Ua satisfying

U†a = U−1
a , with (Uij)

† = U∗ij , (A.16)

where a stands to the parameters of the group. When the matrix is unitary, there are n2 relations
among these numbers, so that U(n) is characterized by n2 parameters. For example, the electro-
magnetism’s group U(1), it is one-dimensional and is characterized by an unique parameter: the
phase eiθ. On the other hand, the special unitary groups SU(n) have matrices with determinants
equal to the unity. This last fact provides another relation so that SU(n) is characterized by n2 − 1
parameters. This group is semi-simple and rank equal to n − 1, so that SU(n) has n − 1 Casimir
operators.

As we will see in the next section, the group SU(n) has n − 1 so-called fundamental represen-
tations. From these, there are two n-dimensional if n > 2, and there is only one fundamental
(two-dimensional) representation if n = 2.

A.5.1 SU(2) group

The group SU(2) is the set of all two dimensional, complex unitary matrices with unit determinant.
This constraint of unitary determinant removes one more parameter. To understand this idea, it is
better to construct the generators of this group.
In fact, let us consider the usual Pauli spin matrices σ1, σ2 and σ3, given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.17)

The Pauli matrices satisfy the commutation relations

[σi, σj ] = 2iεkijσk. (A.18)

However, it is common write this matrices as τi = iσi, such that

[τi, τj ] = −2εkijτk. (A.19)

These new τ−matrices obey the following three fundamental 2× 2 matrices

τiτj = −δij1− iεijkτk. (A.20)

where 1 is the identity 2× 2 matrix and εabc are the totally antisymmetric Levi-Civita symbols with
ε123 = ε123 = 1.
From the definition in (A.17), these three matrices are hermitian τi = τ †i and traceless Tr(τi) = 0.
Still another representation of the Lie algebra of SU(2) or 3-dimensional rotations is given by the
two-dimensional matrices σ+, σ−, and σ3, where

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (A.21)

The matrix σ+ is called raising operator and σ− is called lowering operator because of their action
on the eigenvectors of the operator σ3. The matrices σ+ and σ− can be written in terms of σ1 and
σ2 as follows:

σ+ =
σ1 + iσ2

2
, σ− =

σ1 − iσ2

2
. (A.22)
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The SU(2) Cartan subalgebra has one commuting operator associate to τ3. This significance that
none rotations around any other axis commute with τ3, so the Cartan subalgebra is one-dimensional.

As we said previously, the rotations are represented by the matrices of the form

e−iθ~σ·θ̂/2 = cos

(
θ

2

)
1− i(~σ · θ̂) sin

(
θ

2

)
. (A.23)

These matrices are 2 × 2 complex unitary matrices with unitary determinant. The determinant is
unitary because

det
(
e−iθ~σ·θ̂/2

)
= eTr(−iθ~σ·θ̂/2) = e0 = 1. (A.24)

These elements are described by a set of three real parameters (θx, θy, θz), which

~σ · θ̂ =

(
θ̂z θ̂x − iθ̂y

θ̂x + iθ̂y −θ̂z

)
. (A.25)

Thus, this set of matrices are elements of a three-dimensional real vector space which can
be identified as the space of physical vectors and, the three generators of rotations, σ1, σ2, σ3,
corresponding to the three components of a physical vector

Ŝx =
~
2
σ1, Ŝy =

~
2
σ2, Ŝz =

~
2
σ3. (A.26)

Moreover, any normalized element of a complex two dimensional vector space (α β)T is also de-
scribed by three real parameters, the real and imaginary parts of α and β with the constraint
|α|2 + |β|2 = 1. One can check easily, that under a −π/2 rotation about the x−axis, the expectation
value for Ŝy for the rotated system should equal the expectation value Ŝz for the non-rotated system:

〈ψ′|Ŝy|ψ′〉 = 〈ψ|Ŝz|ψ〉.

A.5.2 Representation of SU(2) group

As we mentioned, the SU(n) group also has a representation of n2 − 1 dimensions, i.e., the same
number of generators of the group. This representation is called the adjoint representation. Now we
will construct the n-dimensional representations of the algebra SU(n).

A.5.3 Multiplets of special unitary groups

In order to apply the n-dimensional SU(n) generators, we define the column vectors va, a = 1, 2, ..., n,
which are represented at an appropriate form such that the j-th row of va is equal to δaj . For example,
for SU(2) the va are

v1 :=

(
1
0

)
, v2 :=

(
0
1

)
. (A.27)

These vectors belong to the first fundamental representation. Then, for SU(2), there is an unique
fundamental representation.
We construct the multiplets of SU(n) using the vectors va. In particle physics, one can design
the vectors v1 and v2 to state with spin-up and spin-down, respectively, of a particle of 1/2 spin
(for example the quarks). For a system of several particles, we must consider the wave function
v(1)v(2) · · · v(n), where 1, 2, ..., n denote the particle 1, particle 2, etc. On the other hand, we define
the matrices Mab of raising and lowering that operate on a certain state of a N -particle:
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Mab =

N∑
j=1

Mab(j). (A.28)

For simplicity, we start with only two particles. Let the normalized state ψ1 = u1u1, and
operate on ψ1 with the operator Mab

M21ψ1 = (M21(1) +M21(2))v1v1,

= (σ−(1) + σ−(2))v1v1,

=
√

2ψ2, (A.29)

where ψ2 is other normalized state. Analogously, if we again operate with Mab but on the new state
ψ2, we obtain

M21ψ2 =
√

2u2u2 =
√

2ψ3. (A.30)

If we operate on ψ3 we get 0. Thus, if one starts with two doublets of SU(2), we have obtained a
triplet state ψi corresponding to spin or isospin 1. Now, one can construct a state φ1 orthogonal to
ψ2, defined by

φ1 =
(u1u2 − u2u1)

2
. (A.31)

So, if we operate on φ1 we get 0. This state is called singlet, and it to corresponds to spin or isospin 0.
We can obtain the eigenvalues of the diagonal operators J3 and J2 by directly operating on ψi and φ1.

The coefficients multiplying the product of the wave functions uiuj in the expressions for ψi and φi
are known as Clebsch-Gordan coefficients. In this case we have considered, these Clebsch-Gordan
coefficients unique, but in the case of the product of three or more wave functions, the Clebsch-
Gordan coefficients can depend on somewhat arbitrary definitions of wave functions. We can see this
as follows: If we start with the product u1u1u1 , we can use the lowering operator M21 to construct
all the symmetric wave functions belonging to the same multiplet as u1u1u1.

Moreover, the Clebsch-Gordan coefficients depend on what linear combination of these wave
functions we choose. The choice in some instances is given by convention, but real questions of
physics can influence what choice is convenient.

A.6 Isospin

In the preceding sections we saw how wave functions of some rotationally invariant system can be
classified according to representations of the rotation group or SU(2) group. Therefore, there exist
an angular momentum operator acting on wave functions in quantum mechanics. However, in addi-
tion to orbital angular momentum, particles can have intrinsic angular momentum, a contribution
to the angular momentum from the particle internal structure besides the motion of its center of
gravity.
In principle, this can be understood by assuming that the particle has finite dimensions, so that its
rotation around its center of gravity could be responsible for this extra contribution to the angular
momentum, also called spin. This feature is known from classical mechanics (an example is a rotat-
ing top). This way of looking at intrinsic angular momentum is not free from troubles, but this does
not concern us for the moment. Our starting point is that intrinsic angular momentum fits naturally
within the formalism introduced in the previous sections.
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All the elementary particles with the same spin and similar mass values, can be grouped in so-called
multiplets (a multiplet is a set of n linearly-independent vectors, which can be choose orthonormal).
For example,

nucleon-doublet (p, n),

pion-triplet : (π+, π0, π−), (A.32)

Delta-quadruplet : (∆++,∆+,∆0,∆−),

etc.

This structure can be explained by assuming that the subatomic world is quasi-invariant under what
will be referred to as isospin rotations. The isospin rotations form a group, like the usual rotations,
whose elements can be regarded as rotations in some “internal” three-dimensional space, where its
states (isospin multiplets) transform according to irreducible representations of this group. Thus,
the notion of isospin is analogous to the usual notion of spin, which is connected to rotations in
ordinary 3-space.

A physical example occur in the atomic nucleus, where the force that binds the nucleons in an
atomic nucleus is invariant under isospin rotations. As we know it is the strong force. However, the
electromagnetic forces are not. For this reason the electric charges within one multiplet, it aren’t
all the same. The conservation of electric charge is exact in all the spacial directions. This is asso-
ciated with conservation of isospin-“angular momentum” in the 3 direction, since electric charge is
described by the Gell-Mann-Nishijima relation

Q = I3 +
1

2
Y (A.33)

where Y is the “hyper charge ”, which has the same value for all states within one multiplet, and Y
is equal to 1 for the nucleon and ∆ multiplets, and 0 for the pion multiplet. Due to that isospin is
related to strong interaction, then particles as quarks or gluons can be considered as different states
of the same particle (proton, neutron, etc), but with isospin values related to the number of charge
states.

Although it does not have the units of angular momentum and is not a type of spin, the
formalism that describes it is mathematically similar to that of angular momentum in quantum
mechanics, which means that it can be coupled in the same manner. For example, a proton-neutron
pair can be coupled in a state of total isospin 1 or 0. It is a dimensionless quantity and the name
derives from the fact that the mathematical structures used to describe it are very similar to those
used to describe the intrinsic angular momentum (spin).

This term was derived from isotopic spin, a confusing term to which nuclear physicists prefer
isobaric spin, which is more precise in meaning. Isospin symmetry is a subset of the flavour symmetry
seen more broadly in the interactions of baryons and mesons. Isospin symmetry remains an important
concept in particle physics, and a close examination of this symmetry historically led directly to the
discovery and understanding of quarks and of the development of Yang-Mills theory.

Observation of the light baryons (those made of up, down and strange quarks) lead us to believe
that some of these particles are so similar in terms of their strong interactions that they can be treated
as different states of the same particle. In the modern understanding of quantum chromodynamics,
this is because up and down quarks are very similar in mass, and have the same strong interactions.
Particles made of the same numbers of up and down quarks have similar masses and are grouped
together.



Appendix B

Path Integral in Field Theory

When Feynman was trying to formulate the path integral of quantum mechanics, he was inspired by
Dirac’s remark [83] which roughly states that eiS/~ corresponds to the transition amplitude, where
S is the action. Dirac is indeed the forefather of the path integral approach to quantum mechanics.
Due to the Lagrangian seems so the natural and effective in classical physics, it should have a coun-
terpart in quantum mechanics, too. He indeed derived the possibility to compute the transition
amplitude as a sum over histories with the Feynmanian exponential inserted in.

In this appendix we will try to explicate the path integral formulated by Feynman in a field theory
[84]. We will start with a simple example of quantum mechanics, next will define the concept of
“sum of histories”.

B.1 Motivation

We consider the quantum description of one degree of freedom in one dimension. In terms of the op-
erators q̂ as the coordinates, and p̂ as the momentum, then they obey the fundamental commutation
relations

[q̂, q̂] = [p̂, p̂] = 0 , [q̂, p̂] = i~, (B.1)

with ~ the Plancks’ constant. The states of the system at a given time can be taken to be the position
states |q〉 which satisfy

q̂|q〉 = q|q〉, p̂ | q〉 = −i~ ∂
∂q
| q〉, 〈q|q′〉 = δ(q − q′),

∫
dq|q〉〈q| = 1. (B.2)

From this, one can define a canonical transformation in quantum mechanics between the operators
(q̂, p̂) and (Q̂, P̂ ), which does not change the form fundamental of the relations (B.2).
We can observe that 〈q|q̂|Q〉 = q〈q|Q〉 and 〈q|Q̂|Q〉 = Q〈q|Q〉. However, the operators Q̂ and q̂
need not commute so that the value of an arbitrary function g(q̂, Q̂) may note be well defined. For
example,

〈q|f1(q̂)f2(Q̂)|Q〉 = f1(q)f2(Q)〈q|Q〉. (B.3)

Hence we shall have functions that are separable as a function of q̂ times a function of Q̂, namely

〈q|f(q̂, Q̂)|Q〉 = f(q,Q)〈q|Q〉. (B.4)

From this, if one chooses
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〈q|Q〉 = e−i/~f(q,Q) (B.5)

then the mixed transformations are 〈q|p̂|Q〉 = ∂f/∂q〈q|Q〉 and 〈q|P̂ |Q〉 = −∂f/∂Q〈q|Q〉. Then, one
now can find the equations

p̂ =
∂f̂

∂q
, P̂ = − ∂f̂

∂Q
. (B.6)

Our conclusion from this is that f is the quantum equivalent of the generating function of classic
physical. Dirac calls it “corresponds to”.

B.2 The Feynman’s path integral

As saw in the previous section, Dirac tried that time and space variables were treated in an analogous
form. Dirac proceeds, as in quantum mechanics, to apply these ideas to find the transition amplitude
from the state q = q′ at t and Q = q at T :

〈q′(t)|q(T )〉 ∼ e i~
∫ t
T
dtL. (B.7)

Here ∼ denotes an assumption with no way to justify them. In order to better understanding, split
up (T − t) into N infinitesimal time intervals ta = t+ aε; Nε = (T − t). If we use the completeness
relation for the states (B.2), we obtain

〈q′t|qT 〉 =

∫
dq1dq2 · · · dqN−1〈q′t|q1〉〈q1|q2〉 · · · 〈qN−1|qT 〉. (B.8)

Now our goal is to mean Eq.(B.7) as an equality. In fact, we assume this last (up to a constant) only
for an infinitesimal time interval, i.e.,

〈q′t|qt+δt〉 = Ae−
i
~ δtL(q′t,qt+δt) (B.9)

with L as a function of q′t and qt+δt, because this is the equivalent formula of quantum mechanics.
If now one use Eqs. (B.8) and (B.9) for the transition amplitude, yields

〈q′t|qT 〉 = lim
N→∞

AN
∫ N−1∏

j=1

dqje
− i

~
∫ t
T
dtL(q,q̇) ≡

∫
Dqe− i

~S(t,T,[q]), (B.10)

where A is a normalizing factor. This was exactly what Feynman proposed, and tells us that if we
want to compute the probability amplitude for the particle to be at q′ at time t, given that it was
at q at time T , we must express it as the sum over all possible paths that start at q at T and end
at q′ at t weighted by the exponential of − i

~ times the action evaluated for the particular path. We
shall call to it a path integral, and the identifying notation in this expression is the script D. In
the quantum sense, the particle does not takes only one path to go from q to q′ because all paths
contribute to his trajectory.

B.3 The path integral in field theory

Our main goal is to generalize the previous section to a field theory. In order to obtain an analogy
with quantum mechanics, we can describe the states of the system at a given time t by |φ(~x)〉. From
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this, one needs to calculate the transition amplitude between two states at different times. The usual
way that one identifies states of the system is add small perturbations to a zero order approximation
of the theory, which the states can be easily recognized. Then, the effects of this small perturbation
are computed. This procedure can perform only when one already has identified the full theory in
terms of a small perturbation on a simple system. For example, in QCD it is believed that quarks are
not physical particles but that bound states of quarks such as protons, π-mesons, etc., are physical.
Therefore, we have to decide the size of the quark couplings among themselves. For example, we
consider the two cases: if they are small, then quarks could serve as physical states, but if they are
big, it is not good form to talk of quarks because quarks would tend to bind among themselves, and
not appear as asymptotic states.
From this assumptions, we see that the physical states depends very much on the solution of the
field theory, but whatever the states everyone agrees there must be a state of least energy, call it the
vacuum state.

To start with our procedure, we can suppose the transition amplitude of the system from the vacuum
state at t = −∞ to the vacuum state at +∞ in the presence of an arbitrary driving force J(x). If
we consider a self-interacting scalar field described by the action

S =

∫
d4x

(
1

2
∂ρφ∂

ρφ− 1

2
m2φ2 − V (φ)

)
=

∫
d4xL(φ, ∂ρφ) (B.11)

then the vacuum to vacuum amplitude is defined to be

〈Ω|Ω〉J ≡W [J ] = N

∫
DφDπei〈πφ̇−H+Jφ〉 (B.12)

where H is Hamiltonian density defined positive if m2 > 0, π are the conjugate momenta associated
to fields, and V > 0. This expression tells us that, the probability amplitude for the ground state
|0〉 remaining unchanged under the action of the perturbation J(x) in the interval t− T , namely for
the process in which the perturbation does not induce excitations.
As we see, our strategy is to use these amplitudes to calculate the physical consequences of the
theory. N is a constant and 〈· · · 〉 now it means integration over spacetime. If we now integrate over
the momenta, it yields

W [J ] = N ′
∫
Dφei〈 12∂ρφ∂

ρφ− 1
2m

2φ2−V (φ)+Jφ〉. (B.13)

To make disappear the oscillations 1 in the last integrand, define W at Euclidean space by setting
t = −iτ , which it reads

WE [J ] = NE

∫
Dφe−〈 12 ∂̄ρφ∂̄

ρφ− 1
2m

2φ2−V (φ)+Jφ〉. (B.14)

Now, the integrand is negative and therefore Gaussian integrations can be to perform.

The generating functional generally is used to manufacture the Green’s functions which are defined
by the expansion

W [J ] =

∞∑
n=0

in

n!
〈J1J2 · · · JnGn(1, 2, ..., n)〉1,2,...,n (B.15)

1In other cases put a convergence factor as e−
1
2
εφ for ε > 0 is also a convenient way for depreciate the oscillations.
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such that

Gn(1, 2, ..., n) =
1

in
δ

δJ1

δ

δJ2
· · · δ

δJn
W [J ]

∣∣∣∣
J=0

. (B.16)

with Jk = J(xk). The task is to compute the Green’s functions to solve the equations of motion of
the theory, and obtain the propagators of the particles as we discussed below.

B.4 Saddle-point method in the path integral

Following [69], let us consider a smooth function f(x) which it is possible to expand around the
stationary point x0 as:

f(x) ≈ f(x0) +
1

2
f ′′(x0)(x− x0)2 + · · · . (B.17)

Now let us consider the integral

I :=

∫
dxe−f(x). (B.18)

Inserting Eq. (B.17) in (B.18), we obtain

I =

∫
dxe−f(x0)− 1

2 f
′′(x0)(x−x0)2+···,

= e−f(x0)

∫
dxe−

1
2 f
′′(x0)(x−x0)2+···. (B.19)

Thus the last integral is a Gaussian which it is possible calculate iff f ′′(x0) > 0. We want to
perform the same previous computations on the generating functional defined as

WE [J ] = NE

∫
Dφe−SE [φ,J], (B.20)

where SE is the Euclidean action of a simple scalar field

SE [φ, j] =

∫
d4x̄

(
1

2
∂̄ρφ∂̄

ρφ+
1

2
m2φ2 + V (φ)− Jφ

)
. (B.21)

If we expand SE around a classic field configuration φ0, we obtain

SE [φ, J ] = SE [φ0, J ] + 〈δSE
δφ

∣∣∣∣
φ=φ0

(φ− φ0)〉+
1

2!
〈 δ

2SE
δφ1δφ2

∣∣∣∣
φ=φ0

(φ− φ0)1(φ− φ0)2〉12 + · · · . (B.22)

If we suppose that SE is stationary at φ0, then this configuration satisfies the equation of motion

δSE
δφ

∣∣∣∣
φ=φ0

= −�φ0 +m2φ0 − V ′(φ0)− J = 0. (B.23)

On the other hand, the second variation of SE is given by

δ2SE
δφ1δφ2

∣∣∣∣
φ=φ0

=
(
−� +m2 + V ′′(φ0)

)
δ(x̄1 − x̄2). (B.24)
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Therefore, the generating functional acquires the following form:

WE [J ] ≈ NEe
−SE [φ0,J]

∫
Dφe

− 1
2 〈φ1

δSE
δφ

∣∣∣∣
φ=φ0

φ2〉12
,

= NEe
−SE [φ0,J]

∫
Dφe− 1

2 〈φ1Aφ2〉12 ,

≈ e−SE [φ0,J] (det(A))
−1/2

(B.25)

with A = [−�+m2V ′′(φ0)]δ12. Utilizing the relation det(A) = eTr lnA, the expression in Eq. (B.25)
reads

WE [J ] ≈ N ′Ee−SE [φ0,J]− 1
2 Tr ln(A). (B.26)

The physical meaning of this last expression indicates that the first term SE [φ0, J ] gives the Green’s
functions of the theory, and the second term ∼ Tr lnA is the first quantum correction of the Green’s
functions. Generally this expansion is known as one-loop expansion or semi-classical expansion. In
conclusion, if one to insert carefully the Planck’s constant in WE , then the expansion of ZE [J ] is a
asymptotic series in ~, where the power ~1 corresponds to the first quantum correction. Obviously,
the expansions to greater orders in ~ are more difficult to calculate by means some regularization
process.

B.5 The propagator

Our goal is to compute W [J ], given by

W [J ] ≡ N
∫
Dφei〈 12∂ρφ∂

ρφ− 1
2m

2− iε2 φ
2+Jφ〉, (B.27)

where we had consider V = 0 and an infinitesimal parameter ε > 0. For simplicity, we will work at
the momenta space. If we define the four-dimensional Fourier transform as

f̃(p) =
1

(2π)2

∫ +∞

−∞
d4xe−ip·xf(x), (B.28)

then, we find

W [J ] = Ne
− i

2

∫
d4p

|J̃(p)|2

p2−m2+iε

∫
Dφ′ei〈 12∂φ

′∂ρφ′− 1
2 (m2−iε)φ′2〉

= W [0]e
− i

2

∫
d4p

J̃(p)J̃(−p)
p2−m2+iε . (B.29)

The important fact is that we have succeeded in find the explicit form of W [J ]. For that, we go back
to coordinate space

W [J ] = W [0]e−
i
2 〈J1∆12J2〉12 , (B.30)

where ∆12 stands for ∆(x1 − x2):

∆F (x− y) ≡ ∆12 =
1

(2π)4

∫
d4p

e−ip·(x−y)

p2 −m2 + iε
. (B.31)

The subscript F is because this way to insert the damping term iε was performed by Feynmann, and
therefore usually one call to ∆F as the Feynman propagator.
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We can easily calculate the Green’s functions:

G(2)(x1, x2) = ∆F (x1 − x2) (B.32)

G(4)(x1, x2, x3, x4) = −∆F (x1 − x2)∆F (x3 − x4)−∆F (x1 − x3)∆F (x2 − x4)

−∆F (x1 − x4)∆F (x2 − x3), etc... (B.33)

Since W [J ] depends only on J2 and the G′s with odd number of variables, vanishes. Also, one
can find the G(6), G(8), etc, and all depending on G(2). Due to this, it would be apparently more
convenient to set

W [J ] = eiZ[J] (B.34)

and we obtain

iZ[J ] =
∑
n

in

n!
〈G(n)

c (1, ..., n)J1, ..., Jn〉1,...,n (B.35)

The meaning of ∆F is that solves the field equations of the field theory, and in particular to
our case, is the Green’s function of the operator (� +m2). In the view point physical, ∆F identify
a signals that propagates single particle and antiparticle states. In other words, the positive energy
solutions of the Klein-Gordon equation are propagated forward in time, while negative energy solu-
tions are propagated backwards in time.

Moreover, in our case the states are going to be particles with mass m2, and we can interpret
G(2)(x − y) as the amplitude for this particle to go from x to y. Feynman gave a diagrammatic
representation in x−space, associating with ∆F (x − y) a line connecting the two space-time points
x and y:

For the others Green’s function result

where the numbers 1, 2, 3, 4 denotes the coordinates x1, x2, x3, x4, respectively. Analogously,
one can interpret better these diagrams at momenta space by Fourier transformed and the conser-
vation of momentum p1 + · · · pn = 0.
Such diagrams are called tree diagrams, and it are useful to represents the Green’s functions. More-
over, the main meaning of the tree diagrams is that there cannot any closed loop, since if there are
loops we would be facing to quantum orders, i.e., order in ~.



Appendix C

Gribov copies with chemical
potential

In this appendix we consider the derivations and properties of the equation of gauge-equivalent fields
satisfying the same Landau-DeWitt gauge condition in the presence of chemical potential. The cases
for the vacuum and a general field are shown by separate.

C.1 Chemical Gribov copies in the vacuum

Our aim is to calculate the condition for existence of Gribov’s copies in the vacuum:

D̄ρA
U
ρ = 0 (C.1)

where is the “background” covariant derivative D̄ab
ρ = ∂ρδ

ab − iµεab3δρ0 and AUρ is the transformed
quantum field of the theory defined (in the vacuum case) by

AUρ = U−1∂ρU + U−1BρU −Bρ. (C.2)

In terms of the SU(2)-functions (6.16), the pure-gauge field in (C.2) take the form

U−1∂ρU = (Y 0(xρ)1− Y a(xρ)τa)∂ρ(Y
0(xρ)1 + Y b(xρ)τb)

= Y 0∂ρY
01 + Y 0∂ρY

bτb − Y a∂ρY 0τa − Y a∂ρY bτaτb.

Using (A.20) and the identity in (6.16), we get

U−1∂ρU =

(
1

2
∂ρ
(
(Y 0)2 + Y aYa

)
1 + Y 0∂ρY

bτb − Y a∂ρY 0τa + Ya∂ρYbε
abcτc

)
=

(
Y 0∂ρY

c − Y c∂ρY 0 + Ya∂ρYbε
abc
)
τc.

Therefore,

⇒ U−1∂ρU =
(
Y 0∂ρY

c − Y c∂ρY 0 + Ya∂ρYbε
abc
)
τc. (C.3)
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For the term with the background field, we get

U−1BρU = (Y 0(xρ)1− Y a(xρ)τa)
−iµ
g
δρ0τ3(Y 0(xρ)1 + Y b(xρ)τb)

= − iµ
g
δρ0(Y 0(xρ)1− Y a(xρ)τa)(Y 0(xρ)1τ3 + Y b(xρ)τ3τb)

= − iµ
g
δρ0
(
(Y 0)2τ3 + Y 0Y bτ3τb − Y aY 0τaτ3 − Y aY bτaτ3τb

)
.

Utilizing the relation τaτ3τb = −τaδ3b − ε3ab − δa3τb + τ3δab, then

U−1BρU = − iµ
g
δρ0
[
(Y 0)2τ3 + Y 0Y b(−δ3b1− ε3bcτ c)− Y aY 0(−δa31− εa3cτ

c)

− Y aY b(−τaδ3b − ε3ab − δa3τb + τ3δab)
]

= − iµ
g
δρ0
[
(Y 0)2τ3 − Y 0Y bε3bcτ

c + Y aY 0εa3cτ
c + Y aY 3τa + Y aY bεabc (C.4)

+ Y 3Y bτb − Y aYaτ3
]
.

The transformed field AU then acquires the following form:

U−1∂ρU + U−1BρU −Bρ = εabcYa∂ρYbτc + Y 0∂ρY
cτc − Y c∂ρY 0τc

−2iµ

g
δρ0
(
Y aY 0εa3c + Y 3Y c

)
τc −

2iµ

g
δρ0(Y 0)2τ3. (C.5)

In order to obtain a reduced expression for the Eq. (C.5), we must to introduce the generalized
hedgehog ansatz defined in (6.22). Then, we get

U−1∂ρU =

(
sin2 αεabcn̂a∂

ρn̂b + n̂c∂ρα+
1

2
sin(2α)∂ρn̂c

)
τc, (C.6)

U−1BρU = − iµ
g
δρ0(1− 2 sin2 α)τ3 −

iµ

g
δρ0n̂a sin 2αεa3cτ

c − 2
iµ

g
δρ0 sin2(α)n̂3n̂cτc. (C.7)

Applying the covariant background derivative D̄ab
ρ on Eqs. (C.6) and (C.7), we obtain

D̄ρ(U
−1∂ρU) =

(
εabc[sin(2α)n̂a∂ρ(α)∂ρ(n̂b) + sin2(α)n̂a�n̂b] + 2 cos2(α)∂ρn̂c∂ρα+ n̂c�α (C.8)

+
1

2
sin(2α)�n̂c + 2iµδρ0

(
ε3bc

[
n̂b∂ρ(α) +

1

2
sin(2α)∂ρ(n̂b)

]
− sin2(α)[n̂3∂

ρn̂c − n̂c∂ρn̂3]

))
τc,

D̄ρ(U
−1BρU) = 2

iµ

g
δρ0 sin(2α)∂ρ(α)τ3 −

2iµ

g
δρ0
(
εa3c

[
cos(2α)∂ρ(α)n̂a +

1

2
sin(2α)∂ρ(n̂

a)

]
(C.9)

+ 2 sin(2α)∂ρ(α)n̂3n̂c + sin2(α)[∂ρ(n̂3)n̂c + ∂ρ(n̂c)n̂3] + 2
µ2

g

(
sin(2α)n̂c + 2 sin2(α)n̂3n̂aε3ac

))
τ c

Finally, the expression for the vacuum Gribov copies (C.1), it is obtained by means the sum of Eqs.
(6.12), (C.9) and (C.10):
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(
εabc[sin(2α)n̂a∂

ρα∂ρn̂b + sin2 αn̂a�n̂b] + 2 cos2(α)∂ρ(n̂c)∂ρ(α) + n̂c�α

+
1

2
sin(2α)�n̂c − 2iµ

g
δρ0

{
cos(2α)∂ρ(α)n̂aε

a3c +
1

2
sin(2α)∂ρ(n̂a)εa3c

+ 2 sin(2α)∂ρ(α)n̂3n̂c + sin2(α)(∂ρ(n̂3)n̂c + ∂ρ(n̂c)n̂3)
}

+2iµδρ0

(
ε3bc

[
n̂b∂ρ(α) +

1

2
sin(2α)∂ρ(n̂

b)

]
− sin2(α)[n̂3∂ρn̂c − n̂c∂ρn̂3]

)
+2

µ2

g

(
n̂c sin(2α) + 2n̂3n̂aε

3ac sin2 α
))

τc +
2iµ

g
δρ0∂

ρ(α) sin(2α)τ3 = 0 (C.10)

where � = ∂ρ∂
ρ. We can see that this equation depends the metric the define the unitary

vectors n̂a. Obviously, this equation will be more difficult to manipulate, depending on the metric
that we choose.

C.2 Chemical Gribov copies in non-perturbative region

In this case, we only must calculate the term of the form U−1AU , and then add it to the equation
(C.1). In fact, let us consider the expression for the term U−1AU in terms of the generalized hedgehog
ansatz:

U−1AρU =
1

g

(
cos(2α)Aρc + sin(2α)Abρn̂

aεabc + 2 sin2(α)Abρn̂bn̂c
)
τ c. (C.11)

Thus, the application of the background covariant derivative D̄a
ρ , reads

D̄ρ(U
−1AρU) =

1

g

(
2∂ρ(α)[cos(2α)Aρbn̂aεabc + sin(2α)Aρbn̂cn̂b − sin(2α)Aρc ]

+ ∂ρ(A
ρ
c) cos(2α) + [sin(2α)n̂aεabc + 2 sin2(α)n̂cn̂b]∂ρ(A

ρb)

+ sin(2α)Aρb∂ρ(n̂
a)εabc + 2 sin2(α)Aρb∂ρ(n̂cn̂b)

)
τ c

+
2iµ

g2
δρ0
(
cos(2α)Acρε3ca + sin(2α)Aρ3n̂a − sin(2α)Aρan̂3

+ 2 sin2(α)Aρbn̂
bn̂cε3ca

)
τa (C.12)

This last expression should be added to (C.10) to obtain the full expression of the equation of Gribov
copies inside a non-perturbative functional region.
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Appendix D

Brief Introduction to QCD

It is well known that gravity is governed by Einstein’s general relativity, while the other three forces
can be described, to an excellent degree, by a quantum field theory of quarks and leptons based
on a framework consistent with Einstein’s special theory of relativity and quantum mechanics: the
so-called Standard Model (SM). In this appendix we only discuss the physics of strong interaction,
their associated structure, and the interactions of hadronic matter.

D.1 Hadronic matter

What we usually observe in experimental apparatus are hadrons and nuclei which are bound states
of basic building blocks. We understand well about what is “matter”.
A meson is made of the quantum number of a quark and anti-quark pair. For example, the pion has
the quantum number of ūu− d̄d, ūd, and d̄u, naturally color singlets. On the other hand, a baryon
is made from the quantum numbers of 3 quarks, which can form a color singlet because the SU(3)
group multiplication rule says

3× 3× 3 = 1 + 8 + 8 + 10 (D.1)

where 1 represents the color singlet. For example, a proton is made of two “up” quarks and one
“down” quark. Baryons and mesons together are called hadrons, the bounds states of strong interac-
tions. The lowest mass baryons are neutrons and protons, which are together called nucleons. There
are attractive interactions between protons and neutrons, which are the residual color interactions,
just like the Van der Waals forces between neutral atoms and molecules. These nuclear forces are
responsible for binding the nucleons together to form the atomic nuclei, and the origin of the atomic
energy.

D.2 Quarks and gluons

D.2.1 Quarks

The quarks are the fundamental particles that form the hadronic matter. Like the electrons, they are
simple structureless (as far as we know) spin-1/2 particles. They can be described by Dirac spinors
ψα(x) with four components α = 1, ..., 4 as functions of the space-time. In the case that they does
not interact witch each other, the quarks obey the free Dirac equation:

(i/∂ −m)ψ(x) = 0, with /∂ = γρ∂ρ, (D.2)
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where γρ are the four-dimensional Pauli matrices, and m is the free mass. Some states of this
equation are the standard plane waves

ψk,λ(x) = f(k, λ)e−i(Et−~x·
~k), (D.3)

where kρ = (E,~k) and λ denote the four-momentum and polarization, respectively. The function
f(kλ) is the spin-dependent momentum-space wave function.
Although, free quarks have never been observed in laboratory, the physicists have discovered, theo-
retically, six flavors of quarks through various high-energy experiments: up(u), down(d), charm(c),
strange(s), top(t) and bottom(b). These flavours organize themselves into families by means the
weak interactions. “Up” and “down” form the first family (or generation), “charm” and “strange”
the second, and “top” and “bottom” the third. These three families are basically repetitions of the
same pattern (same quantum numbers) with unknown physical significance, but these six quarks are
distinguished by their masses and associated “flavor” quantum numbers. For example, the electric
charges of the up, charm and top quarks are all 2/3 of that of the proton, and the charges of the
down, strange, and bottom are all −1/3.

D.3 Quark masses

The meaning of mass of the quarks requires some explanation more detailed, because we cannot
measured directly it. Thus, we only can say that the mass of a quark is a parameter in the Lagrangian
of the theory which describes the self-interaction of it, and that is not directly observable. As such,
the mass parameter is much like a coupling constant in quantum field theory and is technically
dependent on the momentum scale and the renormalization scheme. According to the Standard
Model, the masses of the quarks are generated through a symmetry breaking in phase transitions of
the electroweak interactions (a transition similar to that of a normal conductor to superconductor
in condensed matter physics, in which an effective mass for the photon is produced). Although the
discovery of the existence of Higgs bosons, the symmetry breaking is still under investigation in
experiments at high-energy colliders.

D.4 Color charge

In the strong interactions, the quarks carry color charges. The color charges are the analogous of
electric charge in Quantum Electrodynamics, but with important differences. Unlike electric charge,
the color charge is a quantum vector charge, similar to angular momentum in quantum mechanics.
The total color charge of a system must be obtained by combining the individual charges of the
constituents according to group theoretic rules.

The quarks have three basic color-charge states, which can be labeled as i = 1, 2, 3, or red, green, and
blue, mimicking three fundamental colors. These three color states form a basis in a 3-dimensional
complex vector space. The color state can be rotated by 3 × 3 unitary matricial transformations
which form a Lie group, the SU(3) group. The 3-dimensional color space forms a fundamental
representation of SU(3). It is customary to label the color charges by the spaces of the SU(3)
representations, 3 in the case of a quark. The rules of adding together color charges follow those
of adding representation spaces of the SU(3) group. Moreover, the quarks, like the electron, have
anti-particles, called antiquarks, often denoted by q̄. The antiquarks have the same spin and mass
as the quarks, but with opposite electric charges. The color charge of an antiquark is denoted by 3̄,
which is a representation space of SU(3) where the vectors are transformed according to the complex
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conjugate of an SU(3) matrix.
From this, the confinement phenomenon can be considered as a color confinement, since the strong
interactions don’t allow states other than color-singlet or color-neutral. We can summary the features
of these six quarks in the following table:

Quark Flavor: up down charm strange top bottom
Mass: 1.5-4 MeV 4-8 MeV 1.25 GeV ∼100 MeV 175 GeV 4.25 GeV

Charge: 2/3 -1/3 2/3 -1/3 2/3 -1/3

Table D.1: Quark masses in the M̄S renormalization scheme at a scale of µ = 2 GeV.

D.4.1 Gluons

The mediators in the strong interactions are called gluons. The gluons corresponds to the kinetic
energy term in the QCD Lagrangian defined by

Lg = −1

4
F ρσaFρσa (D.4)

where Fρσa is the usual Yang-Mills field.

They have a similar function as photons in QED, which mediate electromagnetic interactions be-
tween charged currents. The gluons are massless particles of spin-1 with two polarization states
(left-handed and right-handed). They are represented by a four-component gauge vector potential
Aρ(x) with a Lorentz index ρ = 0, 1, 2, 3, just as in electromagnetism, then gluons are usually called
gauge particles.
We know that there is only one type of photon mediating electromagnetic interactions, however in
strong interactions there are 8 types of gluons mediating the quarks. This proliferation of gauge par-
ticles has to do with the SU(3) color symmetry. A generic SU(3) matrix requires 8 real parameters,
usually written in the form

U = exp

(
i

8∑
a=1

θaλa/2

)
(D.5)

where λa/2 are 3 × 3 hermitian matrices, the so-called generators of SU(3) rotations. Commonly
one refers to these matrices as the Gell-Mann matrices.
The Lagrangian associated to the quarks is invariant under the transformation

A→ U (A+ i∂)U† (D.6)

which generalizes the gauge transformations in classical electromagnetism and reflects that the num-
ber of physical degrees of freedom associated with each gauge potential is just 2, those of massless
spin-1 particles. This gauge symmetry generates a well-defined dynamics of the color charges. The 8
gluons are simply related to the 8 parameters of a general SU(3) transformation. Moreover, because
the gluons carry color charges, their self-interactions are a source of the key differences between QCD
and QED.

A new feature in the interactions of quarks is that, these change its color from i to j by emitting or
absorbing a gluon of color a coupled through SU(3) generator taij = λaij/2.
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Figure D.1: The color of a quark can change from i to j by a gluon of color a

D.5 Asymptotic freedom

For a moment, we forget the fact that the free quarks do not exist and the interaction between quarks
may not be calculable through simple one-gluon exchange.
Let us consider a quark of color i, exchanging a gluon with another quark of color j, scatters into a
quark of color i′, along with a quark of color j′. The scattering for this process is

S ∼ (−igtai′iγρ)Dρσ(q)(−igtaj′jγσ), (D.7)

where

Dρσ(q) = −i δρσ
q2

(D.8)

is the gluon propagator in the Feynman gauge. Here the momentum q of the gluon is space-like:
q2 < 0.
In the language of Feynman diagrams, this process can be viewed as

Figure D.2: Strong interaction of two quarks through one-gluon exchange.

Let us calculate the color factors for the two quarks in the conjugate 6-dimensional subspace
6̄, and the conjugate 3-dimensional fundamental representation 3̄ of SU(3). If two quarks are in 6̄,
for example, we can take a specific case i = j = i′ = j′ = 1. By summing over a, the average color
factor is 1/3. Thus the interaction between the quarks is repulsive (analogous to the electric force).
On the other hand, if the two quarks are in 3̄, the color factor is −2/3, and the force between them
is attractive. Thus, we conclude that the force between two quarks depend on the color states.

Although, the interactions between two quarks are similar to electric interactions, a striking property
it happens in QCD: the asymptotic freedom. These phenomenon states that in strong interactions
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physics, the interaction strength αs = g2/4π between quarks becomes smaller as the distance be-
tween them gets shorter [85].
From relativistic quantum mechanics point of view, the vacuum is not empty because it is just the
lowest energy state of a field system and is filled with electrons of negative energies. Then, when a
photon passes through the vacuum, it can induce transitions of an electron from negative to posi-
tive energy states, virtually creating a pair of electron and positron. This process is called vacuum
fluctuation. Because of this, the interaction between two electrons in the vacuum becomes

F =
αem(r2)

r2
(D.9)

where αem is an effective fine structure constant, depending of r, or momentum transfer q ∼ 1/r. This
constant measures the interaction strength of the low-energy photon. For example in perturbation
theory, this constant is given by

αem(µ) =
α(µ0)

1− αem(µ0)
3π ln µ2

µ2
0

(D.10)

where µ is a momentum scale, roughly corresponding to 1/r. As we see, the interaction strength
of the two electrons gets stronger as the distance between them becomes smaller. Therefore, QED
becomes a strongly-coupled theory at very short distance scale.
On the other hand, in QCD the coupling constant have the following scale-dependence

αs(µ) =
2π

β0 ln(µ/ΛQCD)
(D.11)

with β0 = 11 − 2
3nf with nf is the number of active quark flavor. This new coupling constant

in QCD goes to 0 as the momentum scale µ → ∞ or the distance approaching 0. This strange
behavior of the strong coupling has been verified in high-energy experiments to very high precision.
The integration constant ΛQCD is an intrinsic QCD scale, and it states the scale at which the
coupling constant becomes large and the physics becomes non-perturbative, i.e., the scale for strong
interactions physics. In the scheme M̄S-scheme with 3 quark flavors

ΛQCD ∼ 250MeV. (D.12)

One must emphasize that the force between quarks does not get weaker at the shorter distance,
despite the fact that the coupling does. In fact, the force still grows at short distance in an asymptotic
free theory.

D.6 Color confinement

The confinement problem states that:

Any strongly interaction system at zero temperature and density must be a color singlet at distance
scale larger than 1/ΛQCD.

This is a phenomenon at low-energy, and has as consequence that isolated quarks cannot exist
in nature. It is important remark that the color confinement of QCD is a theoretical conjecture
consistent with experimental facts. The problem can be understood with a simple analogy based on
a spring. When a spring is stretched beyond the elastic limit, it breaks to produce two springs. In
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the case of the quark pair, a new quark-antiquark pair will be created when pulled beyond certain
distance. Part of the stretching energy goes into the creation of the new pair, and as a consequence,
one cannot have quarks as free particles.
The example of above only is a sort of self-speculation of our own intuitions. One would think that
for large distance scales the understanding of these interactions will be more easy. However, is very
difficult at present time. The only way that we know how to solve QCD in the strong coupling regime
is simulate the theory on a finite space-time lattice, or usually called lattice QCD. The lattice QCD
can furnish important additional insight, but for multi-scale and/or time-evolution problems, the
applicability of lattice methods is still severely restricted; the lattice formulation of QCD requires a
Wick rotation to the usual space-time. The time-coordinate can then be treated on an equal foot-
ing with the other dimensions, but intrinsically Minkowskian problems, such as the time evolution
of a system, are inaccessible. The limited size of current lattices also severely constrain the scale
hierarchies that it is possible to “fit” between the lattice spacing and the lattice size.

D.7 Quark-gluon plasma

Although, one cannot observe particle as quarks or gluons in a isolated way, works in QCD and
cosmology have released that at certain temperatures and thermodynamical densities, it could be
possible have quarks (also gluons) interacting like free particles. The more popular model about this
theme is the called Quark-Gluon Plasma.

It is believed that above 109K and/or pressures above 1032Pa, the strong interaction to be the
dominate interaction between the elementary constituents of the matter. Also to low temperatures
and pressures above 1032Pa the matter is describe by a degeneracy neutron gas, which it should
exists in neutron stars. On the other hand, the neutron matter becomes in a nucleon gas if it is
heated to temperatures of several MeV (∼ 10MeV). It is expected that to high temperatures and
pressures the nucleons gas could go through a phase transition to deconfinement state of the matter.
It is due to the existence of the asymptotic freedom phenomenon in QCD. It tells us that strong
interactions decreases to high temperatures. Such deconfinement state of the matter is known as
quark-gluon plasma or QGP. The QGP has a transition at ∼ 200MeV (∼ 2 × 1012K). Here quarks
and gluons are no confined in colorless particles.
Moreover, there are other properties of QCD predicting that to phase transitions should occur at
high temperatures. However, like in QFTs, the spontaneously breaking of the chiral symmetry takes
place to low temperatures, and his restoration to high temperatures becomes a sufficient condition
to the existence of a phase transition. Although, it remains the open question whether the chiral
symmetry transition and the deconfinement transition are or no the same one. Nowadays, only
arguments of the lattice QCD have been able to provide signals about it.
The prediction of a deconfinement region was predicted to high temperatures and/or pressures [86, 87]
after the discovery of asymptotic freedom [85]. In this region, the quarks and gluons interacts weakly
and the system behave as an ideal ultra-relativistic gas. Therefore, the degrees of freedom correspond
to the flavour numbers, spin states and, color and charge states. The name QGP was used to
understood the matter like dissociated compounds. The question if the QGP phase transition takes
place by means certain critical features of T and µ, it is solved by the intrinsic symmetries of the
QCD Lagrangian.
To temperatures ΛQCD ≤ T ≤ charm mass, where the strong interaction is very weak, the QGP is
an ideal gas, and therefore will be constituted by all the elementary particles: leptons, bosons and
light quarks u, d, and s.
Nowadays, the most adequate theoretical method that tested QCD is the lattice which the usual
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space-time is discretized. One of their results is that massless quarks shows a transition at baryionic
chemical potential µB = 0 in accordance to the spontaneous breaking of the chiral symmetry in
QCD. Also lattice QCD computations have studied the parameters of the chiral and deconfinement
transition showing that both transitions occur at the same temperature.
A full review about the QGP features, and their recent results can be found in Ref. [88]
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