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Resumen

El principal concepto a estudiarse en la presente tesis es el de T -variedad: una variedad
algebraica normal X de dimensión n definida sobre un campo K algebraicamente cerrado
y de caracteŕıstica cero, junto con una acción efectiva del toro algebraico (K∗)m sobre X
(ver Definición 2.0.2). El número n − m es la complejidad de la T -variedad X y las T -
variedades de complejidad cero se llaman variedades tóricas. Las variedades tóricas fueron
estudiadas por primera vez por M. Demazure en [9] en 1970, en donde se muestra que
éstas pueden describirse de manera puramente combinatorial usando el lenguaje de aban-
ico de conos: una cierta colección de conos poliedrales racionales en un espacio vectorial
racional (ver Definición 1.1.8). En 2006, K. Altmann, J. Hausen y H. Süss generalizan
esta idea a T -variedades en [4] con la introducción del lenguaje de abanicos divisoriales
(ver Definición 2.2.1). Por otro lado, las T -variedades de complejidad pueden describirse
por medio de su anillo de Cox como muestra D. Cox en [7] y J. Hausen, H. Süss en [12].
Los anillos de Cox son anillos de coordenadas homogéneas globales para variedades al-
gebraicas que permiten describir la variedad original como un cociente categórico de un
conjunto cuasiaf́ın por la acción de un cierto grupo abeliano (ver Sección 1.2.4 o [2] para
una explicación más completa).

El principal fin de esta tesis es hacer uso de ambos lenguajes, abanicos divisoriales y
anillos de Cox, para estudiar deformaciones de variedades tóricas y variedades de com-
plejidad uno. En este aspecto, se ha logrado generalizar la sucesión de Euler usual para
variedades tóricas. Como consecuencia de esto, se puede describir cuáles T -superficies
suaves de complejidad uno son infinitesimalmente ŕıgidas. Por otro lado, con el Teorema
4.2.1 describimos familias de deformación para variedades tóricas usando el lenguaje de
anillos de Cox, de manera similar a como lo hace A. Mavlyutov en [24], demostrando aśı
la equivalencia entre la construcción de A. Mavlyutov y la de N. Ilten con R. Vollmert.
Como último resultado, describimos puntos triples racionales en superficies con acción de
K∗ calculando sus anillos de Cox y la matriz P de la construcción de Cox. Esto se ha
hecho con el propósito de construir deformaciones de dichas singularidades en un proyecto
futuro, adaptando nuestro resultado anterior al caso de variedades singulares.
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Introduction

The main concept to be studied in the present thesis is that of a T -variety: a normal
algebraic variety X of dimension n defined over an algebraically closed field K of char-
acteristic zero, together with an effective action of the algebraic torus (K∗)m on X (see
Definition 2.0.2). The number n−m is the complexity of the T -variety X and T -varieties of
complexity zero are called toric varieties. Toric varieties were first studied by M. Demazure
in [9] in 1970 where he shows that they can be described in a purely combinatorial way
by using the language of fan of cones: certain collections of rational polyhedral cones in a
rational vector space (see Definition 1.1.8). In 2006, K. Altmann, J. Hausen and H. Süss
generalize this idea to T -varieties in [4] with the introduction of the language of divisorial
fans (see Definition 2.2.1). On the other hand T -varieties of complexity at most one can
be described by means of their Cox ring as shown by D. Cox in [7] and J. Hausen, H. Süss
in [12]. Cox rings are global homogeneous coordinate rings for algebraic varieties which
allow to describe the original variety as a categorical quotient of a quasi-affine set by the
action of a certain abelian group (see Section 1.2.4 or [2] for a more complete explana-
tion). The main aim of this thesis is to make use of both languages, divisorial fans and
Cox rings, to the study of deformations of toric varieties and varieties of complexity one.
In these regard our main results are the following. In Theorem 1 we construct a Euler-type
sequence for the cotangent sheaf of a smooth complexity one T -surface which does not
admit torus-invariant elliptic points, i.e. isolated torus-invariant points which lies in the
closure of infinitely many orbits. Given such a surface X there is a morphism π : X → Y
onto a smooth curve Y which is a categorical quotient for the torus action. The reducible
fibers of π consist of certain torus invariant curves E1, . . . , Es whose intersection points are
called hyperbolic fixed points. Moreover the fibration π admits two sections whose images
are called the source F+ and the sink F− of X respectively.

Theorem 1. Let X be a complete smooth K∗-surface without elliptic points, with quotient
morphism π : X → Y , source divisor F+, sink divisor F−, r hyperbolic fixed points which
are intersection of pairs of the prime invariant divisors E1, . . . , Es. There is an exact se-
quence of OX-modules

0 // π∗ΩY ⊗OX OX(ES) // ΩX
// G // Or+1

X
// 0

1



where G is the quotient of ⊕i∈IOX(Ei)⊕OX(F+)⊕OX(F−) by the subsheaf ⊕i<jOX(−Ei−
Ej), where the second sum is taken over all the pairs (i, j) such that Ei ∩ Ej 6= ∅.x

This generalizes the usual Euler sequence for toric surfaces. As a consequence we are
able to describe which smooth complexity one T -surfaces are infinitesimally rigid.

Theorem 2. Let X be a complete smooth K∗-surface without elliptic points. Then the
following are equivalent:

1. The equality h1(X,TX) = 0 holds;

2. X is toric Fano.

Recall that the space of infinitesimal deformations, i.e. over SpecK[ε]/〈ε2〉, of a smooth
variety X is parametrized by the vector space H1(X,TX), where TX is the tangent sheaf.
If X is a smooth complete toric variety the latter vector space admits a generating subset
which can be described in a combinatorial way by means of the fan of X. For each such
generator ξ ∈ H1(X,TX) N. Ilten and R. Vollmert produce a one parameter flat family
of complexity one T -varieties Xξ → A1 whose central fiber is isomorphic to X and whose
Kodaira-Spencer map value is ξ. In Theorem 4.2.1 we describe such a family in the language
of Cox rings in a similar way as A. Mavlyutov did in [24], proving in this way that the
equivalence of A. Mavlyutov construction with that of N. Ilten and R. Vollmert. The Cox
ring for the total deformation space is given by a trinomial in Cox coordinates:

λ
∏

(1,j)∈U1

T
aj
1j −

∏
(2,j)∈U2

T
−aj
2j +

∏
(3,j)∈U3

T
−aj
3j ,

where each Tij is in correspondence with the j-th ray of the fan of X and λ ∈ A1 is the
coordinate of the base space of the one-dimensional deformation (see Section 4.2 for more
details). As a last result, we describe rational triple points in surfaces with K∗-action by
computing their Cox ring and the P -matrix of the Cox construction. This is done with the
purpose of constructing deformations of these singularities in a future project by adapting
our previous result to the case of singular varieties.

Theorem 3. For each triple point we exhibit an affine K∗-surface X with divisor class
group Cl(X) of rank zero, having the triple point as its unique singular point. The table
below shows, for each case, the defining matrix P of X, the grading of the Cox ring and
the divisor class group of X, with the Cox ring being given by R(X) is given by

K[T1, T2, T3]/〈T−p111 − T p122 + T p233 〉

where pij is the (i, j)-th entry of P .

2



Type P-matrix Grading Cl(X)

An,m,p

[ −(n + 1) m + 1 0
−(n + 1) 0 p + 1

−1 −1 −1

]
See 5.2.9

Bm,n

[ −(2m + 3) 2 0
−(2m + 3) 0 n + 1
−(m + 2) 1 −1

]
[4m + n + 5 2m + n + 4 1] Z

(4m+n+7)Z

Cm,n

[ −α 2 0
−α 0 2

−(n + 2) 1 −1

]
See 5.2.2

α=(n+2)m+(2n+3)

Dn,5

[ −(3n + 5) 2 0
−(3n + 5) 0 3
−(n + 2) 1 −1

]
[1 3n + 6 2n + 4] Z

(3n+7)Z

E6,0

[ −4 2 0
−4 0 5
−1 1 −2

]
[1 5 2] Z

6Z

E7,0

[ −5 2 0
−5 0 5
−1 1 −2

]
[3 0 1] Z

5Z

E0,7

[ −3 2 0
−3 0 9
−3 1 −2

]
[1 0 1] Z

3Z

Fn,6

[ −(4n + 7) 2 0
−(4n + 7) 0 3
−(n + 2) 1 −1

]
[2n + 4 n + 4 1] Z

(2n+5)Z

Gn,0

[ −(n + 1) 3 0
−(n + 1) 0 3

−1 1 −1

]
See 5.2.8

Table 1: K∗-surfaces associated to triple points (Source: own elaboration)

The thesis is organized as follows: Chapter 1 is a discussion on the topic of toric varieties
and Cox rings. We start the chapter by going over the basic definitions in toric geometry
and explain the correspondence between toric varieties and fans of cones. After that, we
discuss Cox rings, explaining how they are constructed in general and then looking at the
particular case of Cox rings of toric varieties. In Chapter 2 we briefly recall the language
of divisorial fans for T -varieties as was presented in [4] and a few other related works.
We also treat the specific situation of a two dimensional variety with an action of K∗. In
Chapter 3 we introduce some basic definition of deformation theory, after which we prove
the existence of the Euler-like sequence mentioned above. The chapter ends with a few
applications of this sequence to the study of the cohomology group H1(X,TX). Chapter 4
is dedicated to the construction of one-parameter deformations of toric varieties from the
point of view of Cox rings, as well as showing that this construction is equivalent to the one
done in [20] using divisorial fans. We then apply our results in the study of deformation of
scrolls and deformation of subvarieties. In Chapter 5 we recall how to express the data of
a surface with K∗-action using P -matrices and how to obtain resolutions of singularities.
Then we construct, case by case, surfaces with singularities of multiplicity 3.

3



Chapter 1

Cox Rings and toric varieties

In this chapter we recall the basic facts about toric varieties and their combinatorial de-
scription with the language of fan of cones, following [8, 10]. Then we recall the definition
of the Cox sheaf and Cox ring of a normal complete variety with finitely generated divi-
sor class group following [2]. We further describe the Cox construction of a toric variety,
via Cox rings, and make use of it to describe hypersurfaces of toric varieties by means of
global homogeneous coordinates. In this chapter, and through the whole thesis, we always
consider K to be an algebraically closed field of characteristic zero.

1.1 Toric varieties

We begin by defining the concept of a toric variety [8,10], as well as explaining the one-to-
one correspondence to sets of polyhedral cones.

Consider the algebraic group (K∗)n, with component-wise multiplication. This is called
the n-dimensional torus.

Definition 1.1.1. An n-dimensional normal variety X is called a toric variety if it contains
an n-dimensional torus as a Zariski open subset in such a way that the action of the torus
on itself extends to an action of the torus on X.

Example 1.1.2. A common example is the projective space Pn. It admits a (K∗)n-action
given by

(t1, . . . , tn) · [x1 : . . . : xn+1] = [t1x1 : t2x2 : . . . : tnxn : xn+1].

When restricted to the open set

{[x1 : . . . : xn+1] : xi 6= 0 ∀i} ∼= (K∗)n,

the action reduces to component-wise multiplication on the torus.

4



1.1. TORIC VARIETIES 5

We fix some more notation for this section. Let N ∼= Zn be a lattice of rank n and
let M = Hom(N,Z) be its dual. We denote by 〈−,−〉 : M × N → Z the perfect pairing
defined by (u, v) 7→ 〈u, v〉 := u(v) and by NQ := N⊗ZQ, MQ := M⊗ZQ the corresponding
rational vector spaces.

Definition 1.1.3. Let S ⊆M be a commutative finitely generated semigroup. The semi-
group algebra, denoted by K[S], is the following K-vector space

K[S] =

{∑
m∈S

λmχ
m : λm ∈ K, cm = 0 for all but finitely many m

}
,

with multiplication induced by χm · χm′ = χm+m′

Definition 1.1.4. Let S be a finite subset of NQ. The cone σ ⊂ NQ generated by S is
defined as

σ = cone (S) :=

{∑
v∈S

λvv : λv ∈ Q≥0

}
.

A cone in NQ is any cone generated by some finite subset. The dimension of σ is the
dimension of the smallest linear subspace of NQ that contains σ. A cone is said to be
pointed if it does not contain any linear space. The dual cone of σ, denoted by σ∨, is
defined as

σ∨ = {u ∈M : 〈u, v〉 ≥ 0 for all v ∈ σ}.

Given a cone σ, we can construct an affine toric variety as follows. First, we introduce
the following notation:

Sσ := σ∨ ∩M.

Note that Sσ is a semigroup with vector addition. The map

K[Sσ]→ K[Sσ]⊗K K[M ], χm 7→ χm ⊗ χm

induces an action of SpecK[M ] ∼= (K∗)n on SpecK[Sσ]. Thus, Uσ := SpecK[Sσ] is an affine
toric variety.

To construct non-affine toric varieties, we will need to introduce a few more definitions.
Let m ∈MQ such that m 6= 0, we define the hyperplane

m⊥ := {v ∈ NQ : 〈m, v〉 = 0}.

Definition 1.1.5. Let σ ⊂ NQ be a cone. A face of σ is any subset of the form m⊥ ∩ σ
for some m ∈ σ∨ ∩M . The notation τ � σ is often used to mean ‘τ is a face of σ’.

Lemma 1.1.6. [8, Prop 1.3.16] Let σ ⊂ NQ be a cone and let τ = σ ∩m⊥ be a face of σ
with m ∈ σ∨ ∩M . Then

Sτ = Sσ + Z≥0(−m).
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Lemma 1.1.7. [8, Prop 1.2.13] Given two cones σ1, σ2 ⊂ NQ, if τ = σ1 ∩ σ2 is a face of
each, then

τ = σ1 ∩m⊥ = σ2 ∩m⊥

for all m in the relative interior of σ∨1 ∩ (−σ2)∨.

Definition 1.1.8. A fan Σ in NQ is a finite collection of pointed cones in NQ such that

1. For each cone σ ∈ Σ, all faces of σ are also in Σ.

2. If σ, σ′ ∈ Σ, then σ ∩ σ′ is a face of both cones.

Given a fan Σ, for each pair of cones σ1, σ2 ∈ Σ that share a face τ , we have by Lemma
1.1.6 that for some m ∈M

K[Sτ ] = K[Sσ1 + Z(−m)] ∼= K[Sσ1 ]χm .

By Lemma 1.1.7, we can assume that for this m the following holds

Uσ1 ⊃ (Uσ1)χm = Uτ = (Uσ2)χ−m ⊂ Uσ2 .

Therefore, the affine varieties {Uσ}σ∈Σ can be glued into a toric variety which will be
denoted by XΣ.

σ1
σ2

σ3

Figure 1.1: Fan of P2

(Source: own elaboration)

Example 1.1.9. A classic example is the fan Σ (see Figure 1.1) with rays generated by
(1, 0), (0, 1) and (−1,−1). The duals of the cones are σ∨1 = cone〈(1, 0), (0, 1)〉, σ∨2 =
cone〈(−1, 1), (−1, 0)〉 and σ∨3 = cone〈(0,−1), (1,−1)〉. Then, by definition we have

Uσ1 = SpecK[x, y]

Uσ2 = SpecK[x−1y, x−1]

Uσ3 = SpecK[y−1, xy−1]

which, by setting x 7→ z1/z0 and y 7→ z2/z0, correspond to the standard affine charts of
P2. Indeed, it can be shown that XΣ

∼= P2.
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σ1

σ2

σ3

σ4

Figure 1.2: Fan of Hirzebruch surface (Source: own elaboration)

Example 1.1.10. Let r be a non-negative integer and consider the bidimensional fan de-
picted in Figure 1.2 with four bidimensional cones and four rays passing through (0,−1), (1, 0), (0, 1)
and (−1, r).

This induces a toric variety by gluing four toric affine varieties:

Uσ1 = SpecK[x, y]

Uσ2 = SpecK[x, y−1]

Uσ3 = SpecK[x−1, x−ry−1]

Uσ4 = SpecK[x−1, xry].

This toric variety is called the Hirzebruch surface Fr.

Having explained how to obtain a toric variety from a fan, we now explain the inverse
process, i.e. constructing a fan from a given toric variety.

Definition 1.1.11. A one-parameter subgroup of a torus is a group homomorphism λ : K∗ →
(K∗)n. A character is a group homomorphism χ : (K∗)n → K∗.

Proposition 1.1.12. [14, §16] All one-parameter subgroups of a torus T are of the form

ρ : K∗ → T, ρ(t) = (ta1 , . . . , tan) ,

where a1, . . . , an ∈ Z. Thus, there is a 1-1 correspondence{
One-parameter subgroups

of T

}
←→ Zn

Let X be a toric variety of dimension n and let U be the open subset that is isomorphic
to the torus T . Choose a point x0 ∈ U and for each one-parameter subgroup ρ of T we
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check if the orbit map K∗ → X, t 7→ ρ(t) · x0 can be extended to a map K → X. In this
case we define the limit

lim
t→0

ρ(t) · x0 := ρ(0) · x0,

where the righthand side is the extended map. By identifying a one-parameter subgroup
ρ with an element of Zn, we see that the set of all ρ′ ∈ Zn such that

lim
t→0

ρ′ · x0 = lim
t→0

ρ · x0

corresponds to the set of integer points of some cone σ in Qn. After constructing all possible
cones with this method, we obtain a fan on Qn that we denote by ΣX .

Example 1.1.13. We take the toric variety P2, whose torus action is

(s, t) · [x1 : x2 : x3] = [sx1 : tx2 : x3].

If we take

x0 = [1 : 1 : 1]

and a one-parameter subgroup ρ with its corresponding element (a, b) ∈ Z2, we have

lim
t→0

ρ(t) · x0 = lim
t→0

[ta : tb : 1] =



[0 : 0 : 1] if a > 0, b > 0

[0 : 1 : 0] if a > b, b < 0

[1 : 0 : 0] if a < 0, b > a

[1 : 0 : 1] if a = 0, b > 0

[0 : 1 : 1] if a > 0, b = 0

[1 : 1 : 0] if a = b, b < 0

[1 : 1 : 1] if a = b = 0

In this example, we see that the limit [0 : 0 : 1] is obtained by taking all integer points
(a, b) in the interior of cone((1, 0), (0, 1)) ⊂ Q2; the limit [0 : 1 : 0] is obtained by integer
points in the interior of cone((−1,−1), (1, 0)), and so on, with all of them forming a fan
ΣP2 . Note that this fan is exactly the same we saw in example 1.1.9.

Remark 1.1.14. Each fixed point of the toric variety is given by a limit of the form
lim
t→0

ρ(t) · x0 as above. From the construction of ΣX , we see that there is a one-to-one

correspondence

{Maximal cones of ΣX} ←→ {Fixed points of X}

More generally, we have the following.
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Proposition 1.1.15. [2, Prop 2.1.2.2] Let X be a toric variety with torus T and Σ its
corresponding fan. For each maximal cone σ ∈ Σ, denote by xσ the corresponding fixed
point of X.

There is a bijection

Σ→ {T−orbits of X}, σ 7→ T · xσ
Moreover, for any two σ1, σ2 ∈ Σ, we have σ1 � σ2 if and only if T · σ1 ⊇ T · σ2. For the
affine chart Xσ defined by σ ∈ Σ we have

Xσ =
⋃
τ�σ

T · xτ .

1.2 Cox rings

In this section we introduce Cox rings together with the Cox construction of a toric variety
as a good quotient of an affine space by a quasitorus action. Our main reference for this
section is [2].

1.2.1 Divisors

Let X be an irreducible normal variety defined over K. Denote by WDiv(X) the group of
Weil divisors of X, that is the free abelian group generated by the irreducible hypersurfaces
of X. An element D ∈ WDiv(X) is a finite sum

∑
i aiDi, where ai ∈ Z and Di is an

irreducible hypersurface of X for each i. In this case the union ∪iDi ⊆ X is the support
of the divisor D. Given a non-zero rational function f ∈ K(X)∗ and a prime hypersurface
D of X we define the order of f at D, denoted by ordD(f), as follows. If f belongs to the
local ring OD,X , (cf. [11, Ch. I, Ex 3.13]) then ordD(f) is the length of the OD,X -module
OD,X/〈f〉, and otherwise one writes f = g/h with g, h ∈ OD,X and defines the order of f
to be the difference of the orders of g and h. Denote by

div(f) :=
∑

D prime

ordD(f) ·D

the principal divisor defined by f . The map K(X)∗ → WDiv(X), f 7→ div(f) is a ho-
momorphism of groups and its image, denoted by PDiv(X), is called the subgroup of
principal divisors of X. Two divisors of X are linearly equivalent if their difference is a
principal divisor. Divisors which are locally principal are called Cartier divisors, denoted
by CDiv(X). Cartier divisors form a subgroup of the group of Weil divisors which clearly
contains the subgroup PDiv(X). The variety X is factorial if CDiv(X) equals WDiv(X)
and it is Q-factorial if CDiv(X) has finite index in WDiv(X). Denote by

Cl(X) :=
WDiv(X)

PDiv(X)
Pic(X) :=

CDiv(X)

PDiv(X)

the divisor class group and the Picard group of X respectively.
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1.2.2 Sheaves of divisorial algebras

A Weil divisor D =
∑

i aiDi is effective if ai ≥ 0 for any i. To any Weil divisor D one
associates a sheaf OX(D) of OX modules as follows: given an open subset U ⊆ X define

Γ(U,OX(D)) := {f ∈ K(X)∗ : (div(f) +D)|U ≥ 0} ∪ {0},

where the meaning of the above restriction to U is to remove all the prime divisors of the
support of div(f) + D which are contained in X \ U . To a subgroup K ⊆ WDiv(X) we
associate the sheaf of divisorial algebras:

S :=
⊕
D∈K

SD SD := OK(D).

The multiplication map is the multiplication of rational functions of X. Observe that
the sheaf S is graded by the abelian group K and its degree D part is the sheaf SD. We
recall [2, Remark 1.3.1.5] that if K has finite rank, for example s, then the algebra of global
sections Γ(X,S) is isomorphic to a K-graded subalgebra of the ring K(X)[T±1

1 , . . . , t±1
s ]

and in particular it is a domain. Whenever K is finitely generated and S is locally of finite
type we define the relative spectrum of the sheaf S:

X̃ := SpecXS

as the gluing of the spectra of algebras of sections of S over an affine open cover of X
(see [2, § 1.3.2]). The K-grading of S is equivalent to an action of H := SpecK[K] on
the variety X̃. There is a canonical surjective affine morphism p : X̃ → X that is invariant
under the H-action and the pullback p∗ : OX → (p∗OX̃)H is an isomorphism. This matches
the following definition.

Definition 1.2.1. Let G be an algebraic group acting on a variety U . A morphism of
varieties π : U → V is called a good quotient for the action if it is affine and G-invariant
and the pullback π∗ : OV → (π∗OU )G is an isomorphism.

The variety X is a good quotient of X̃ by the action of H, this means that there exists
an affine H-invariant surjective morphism p : X̃ → X such that the pullback p∗ : OX →
(p∗OX̃)H is an isomorphism.

Example 1.2.2. Let X = P1 be the projective line and let K := 〈D〉, where D := {∞}.
Let X0 = K and X1 = K∗ ∪ {∞} be the two affine charts. There are two isomorphisms

K[T±1
0 , T1]→ Γ(X0,S) K[T±1

0 , T1]n 3 f 7→ f(1, z) ∈ Γ(X0,SnD)

K[T0, T
±1
1 ]→ Γ(X1,S) K[T0, T

±1
1 ]n 3 f 7→ f(z, 1) ∈ Γ(X0,SnD)

Thus, both the corresponding spectra are isomorphic to K2, the gluing takes place along
(K∗)2 and gives X̃ = K2 \ {(0, 0)}.
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1.2.3 Cox sheaves

Our next aim is to define the Cox sheaf of a normal algebraic variety with finitely gener-
ated divisor class group Cl(X) and whose global invertible regular functions are just the
constants. As a module the Cox sheaf is the following

R =
⊕

[D]∈Cl(X)

OX(D)

where a representative divisor is chosen for each divisor class. If the divisor class group
is free abelian then any choice of a subgroup K ⊆ WDiv(X), such that the class map
K → Cl(X) is an isomorphism, gives a sheaf of divisorial algebras S which is isomorphic to
R. This provides a structure of algebra to R and it possible to show that the isomorphism
class of these sheaf of algebras does not vary with the choice of such a subgroup K. If
on the other hand the divisor class group is not free abelian, then the construction of the
Cox sheaf is more involved. We briefly recall it here. Let K ⊆ WDiv(X) be a finitely
generated subgroup such that the class map K → Cl(X) is surjective and let K0 be its
kernel. This means that each element of K0 is a principal divisor. Fix a homomorphism
of groups χ : K0 → K(X)∗ such that

div(χ(D)) = D for all D ∈ K0.

Such isomorphism can be easily given by fixing a basis of K0 (which, being the subgroup
of the free abelian group WDiv(X), is free abelian itself) and assigning to each element D
of this basis a rational function whose divisor is D itself. Let S be the divisorial algebra
defined by K and define the ideal sheaf I of S which is locally generated by elements of
the form 1− χ(D), for D ∈ K0. The Cox sheaf is the quotient R = S/I. It is graded by
the divisor class group Cl(X) since S, which is graded by K, admits a coarsening of the
grading given by the surjectionK → Cl(X) and the ideal sheaf I is generated by degree zero
homogeneous elements, with respect to the Cl(X)-grading. The effect of taking quotient
for I is that of identifying two graded parts SD and SD′ whenever D is linearly equivalent
to D′. In this way in the Cox sheaf survives exactly one addendum OX(D) for each class
[D] ∈ Cl(X). It is possible to show [2, Proposition 1.4.2.2] that the isomorphism class of
the Cox sheaf does not depend on the choice of the subgroup K ⊆ WDiv(X) or on the
choice of the character χ. Moreover for any open subset U ⊆ X one has an isomorphism
Γ(U,S)/Γ(U, I) ' Γ(U,S/I).

1.2.4 Cox rings

Let X be a normal algebraic variety with finitely generated divisor class group Cl(X) and
whose global invertible regular functions are just the constants. The Cox ring of X is the
ring of global sections of the Cox sheaf:

R(X) := Γ(X,R).
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It is possible to show that the Cox sheaf is locally of finite type if either the Cox ring R(X)
is finitely generated or X is Q-factorial. If this is the case then it is possible to show that
taking the relative spectrum gives an irreducible normal variety

X̂ := SpecX (R)

called the characteristic space of X. The Cl(X)-grading of the Cox sheaf is equivalent to
an action of the quasitorus HX := SpecK[Cl(X)] on the variety X̂. The corresponding
good quotient morphism is denoted by

pX : X̂ → X.

It is possible to show [2, Proposition 1.6.1.6] that the morphism pX is an étale HX -principal
bundle over the subset Xreg of smooth points of X. Moreover the preimage of a codimension

≥ 2 subset of X has codimension ≥ 2 in X̂.
In case the Cox ring is finitely generated its spectrum X is acted as well by the qua-

sitorus HX and there is an equivariant embedding X̂ ⊆ X induced by the sheaf defined by
R(X) to the sheaf R. It is possible to show that the Zariski closed subset X \X̂, called the
irrelevant locus, has codimension at least two. The defining ideal of the irrelevant locus is
the irrelevant ideal Jirr(X) ⊆ R(X).

1.2.5 Toric varieties

In this section we discuss Cox rings of toric varieties. Recall that for us by definition a
toric variety X = X(Σ) is a normal algebraic variety equipped with an effective action of
an algebraic torus T = (K∗)n of the same dimension of X. In order to define the Cox ring
of X we further require that the only global invertible functions of X are constants, this is
equivalent to ask the support of the defining fan Σ ⊆ NQ of X to be full-dimensional. The
divisor class group of X is always finitely generated as can be deduced by the following
diagram with exact rows and columns [2, Proposition 2.1.2.7]:

0 //M
P ∗ //

u7→div(χu)

��

E
Q //

e7→D(e)

��

K //

'
��

0

0 // PDivT (X) //WDivT (X) // Cl(X) // 0,

(1.2.1)

where PDivT (X), WDivT (X) are the T -invariant principal and Weil divisors of X respec-
tively, M ' Zn is the group of characters of the torus T and E ' Z|Σ(1)|, where Σ(1) are
the one-dimensional cones of the fan Σ. P is the matrix whose columns are the generators
of the one dimensional cones of Σ. The Cox sheaf of X can be constructed by forming
the E-graded sheaf of divisorial algebras S and the character χ : M → K(X)∗ defined by
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u 7→ χu. Let F = Hom(E,Z) be the dual of E and let δ be the positive orthant of the
rational vector space FQ. Define the fan Σ̂ ⊆ FQ as

Σ̂ := {σ̂ ⊆ δ : P (σ̂) ⊆ σ for some σ ∈ Σ}.

By [2, Theorem 2.1.3.2] the Cox ring of X is isomorphic to the K-graded polynomial ring

R(X) ' K[E ∩ δ∨].

Moreover, the characteristic space is the toric morphism pX : X(Σ̂) → X(Σ) induced by
the natural fan map Σ̂→ Σ. A basic example of Cox ring of a toric variety is provided by
the construction of the projective space Pn. In this case M ' Zn, E ' Zn+1 and K ' Z.
The characteristic space is the toric morphism Kn+1 \ {0} → Pn defined by x 7→ [x].

1.3 Subvarieties of toric varieties

Using the language of Cox rings we have the following lemma.

Proposition 1.3.1. Let Z be a toric variety with Cox ring R(Z) = K[δ∨ ∩ E] and fan
Σ. Let X be a subvariety of Z defined by a homogeneous binomial g ∈ R(Z), let v ∈ E
be the difference of the exponents of the two monomials of g and let u ∈ M be such that
P ∗(u) = v. Then X is a toric variety with fan u⊥ ∩ Σ.

Proof. Let Z be a toric variety with characteristic space p : Ẑ → Z and total coordinate
space Z = Ar. Recall that the characteristic space is a good quotient with respect to
the action of the torus HX := SpecK[Cl(Z)]. A subvariety of Z defined by an HX -
invariant binomial g ∈ K[T1, . . . , Tr] defines a toric subvariety X of Z which is the image
of X̂ = V (g) ∩ Ẑ via p, as shown in the following commutative diagram

X̂ //

p

��

Ẑ

p

��
X // Z

We explain how to construct the fan of X. The difference v of the exponents of the binomial
g is an element of the character lattice E of the torus Tr ⊆ Z. The quotient lattice E/〈v〉
is the character lattice of the toric variety V (g) ⊆ Z. Since g is HX -invariant, the vector
v ∈ E is in the kernel of the grading map Q : E → Cl(Z) and thus we get the following
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commutative diagram
Cl(Z) Cl(Z)

E //

Q

OO

E/〈v〉

Qv

OO

M //

P∗

OO

M/〈u〉

P ∗v

OO

where the left column is the dual of the Cox construction for Z and u ∈ M is such that
P ∗(u) = v. The image of the positive orthant δ∨ of EQ is the cone σ∨ ⊆ (E/〈v〉)Q which
defines the affine toric variety V (g), that is Γ(V (g),O) ∼= K[σ∨ ∩E/〈v〉]. Dualizing we get
the following commutative diagram

v⊥ //

Pv
��

F

P

��
u⊥ // N

The dual cone σ of σ∨ equals the intersection v⊥ ∩ (FQ)≥0.



Chapter 2

T-varieties and polyhedral data

Recall from the previos chapter that the algebraic group T := (K∗)m, with component-wise
multiplication, is called the m-dimensional torus. A group action of T on a set X is called
effective if the identity is the only element t ∈ T for which t · x = x holds for all x ∈ X. In
this chapter we will be looking at the following type of variety

Definition 2.0.2. A T -variety is a normal algebraic variety X of dimension n coming with
an effective group action of an m-dimensional torus T . The complexity of the T -variety is
defined as n−m.

These varieties serve as a generalization of toric varieties, since a toric variety is simply
a T-variety of complexity 0. T-varieties also admit a polyhedral description, which was
given by K. Altmann and J. Hausen for the affine case in [3] and later, together with H.
Suß, in [4] for the non-affine case. The purpose of this chapter is to serve as a summary
of their main definitions and theorems, which will be needed for the later sections of this
work. We will also recall a consturcion by N. Ilten and H. Suß in [19] that helps to simplify
notation in the case of complexity one. As a final addition, we will treat the particular
case of two-dimensional T -varieties.

2.1 Polyhedral data for affine T-varieties

In this section we explain how a set of polyhedra defines an affine T-variety. The main
reference is [3].

2.1.1 Polyhedral divisors

Let N be a lattice of rank n, and M = Hom (N,Z) its dual. We denote by 〈−,−〉 : M×N →
Z the perfect pairing defined by (u, v) 7→ 〈u, v〉 := u(v) and by NQ := N ⊗Z Q, MQ :=
M ⊗Z Q the corresponding rational vector spaces. A polyhedron in NQ is an intersection

15
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of finitely many affine half spaces in NQ. If we require the supporting hyperplane of any
half space to be a linear subspace, the polyhedron is called a cone. This is consistent with
our previous definition of cone in 1.1.4.

Let ∆ ⊆ NQ be a polyhedron. The set

tail(∆) := {v ∈ NQ : tv + ∆ ⊆ ∆, ∀t ∈ Q}

is a cone called the tailcone of ∆. If tail(∆) = σ, ∆ is called a σ-polyhedron.

Given two polyhedrons ∆, ∆′, we define their Minkowski sum as the polyhedron

∆ + ∆′ = {v + v′ : v ∈ ∆, v′ ∈ ∆′}.

For any cone σ, we consider the empty set as a σ-polyhedron, with the rule

∆ + ∅ = ∅+ ∆ = ∅

for all polyhedrons ∆.

Definition 2.1.1. Let Y be a normal variety and σ a cone. A polyhedral divisor on Y is
a formal sum

D :=
∑
P

∆P ⊗ P,

where P runs over all prime divisors of Y and the ∆P are all σ-polyhedrons such that
∆P = σ for all but finitely many P .

The sum of two polyhedral divisors D :=
∑

∆P ⊗ P , D′ :=
∑

∆′P ⊗ P is defined
naturally as

D +D′ :=
∑

(∆P + ∆′P )⊗ P.

Let D :=
∑

∆P ⊗ P be a polyhedral divisor on Y , with tailcone σ. For every u ∈ σ∨
we define the evaluation

D(u) :=
∑
P⊂Y
∆P 6=∅

min
v∈∆P

〈u, v〉P ∈WDivQ(LocD)

where LocD := Y \ (∪∆P=∅P ) is the locus of D.
We will now give the definition of a special type of polyhedral divisor.

Definition 2.1.2. Let Y be a normal variety. A proper polyhedral divisor, also called a
pp-divisor is a polyhedral divisor D on Y , such that

(i) D(u) is Cartier and semiample for every u ∈ σ∨ ∩M .
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(ii) D(u) is big for every u ∈ (relintσ∨) ∩M .

Now, let D be a polyhedral divisor on a semiprojective (i.e. projective over some affine
variety) variety Y , and D having tailcone σ ⊆ NQ. This defines an M -graded algebra

A(D) :=
⊕

u∈σ∨∩M
Γ(LocD,O(D(u))).

The affine scheme X(D) := SpecA(D) comes with a natural action of SpecK[M ]. If D is
a proper polyhedral divisor, then the following result holds.

Theorem 2.1.3. [3, Theorem 3.1 and Theorem 3.4]. Let D be a pp-divisor on a normal
variety Y . Then X(D) is an affine T-variety of complexity equal to dimY . Moreover,
every affine T -variety arises like this.

Example 2.1.4. To make it a bit more clear that the fact that D is proper cannot be
ovelooked, consider the following situation. Let N be a two dimensional lattice and σ ⊂ NQ
be the cone generated by the rays passing through (1, 0) and (1, 1). Let L ⊂ NQ be the
line segment from (1, 0) to (1, 1) and take ∆ as the σ-polyhedron L+ σ.

σ ∆

Figure 2.1: The cone σ and the σ-polyhedron ∆
(Source: own elaboration)

Consider the polyhedral divisor over P1

D = ∆⊗ V (x),

where x is the standard coordinate of P1. The dual cone σ∨ is generated by the vec-
tors (0, 1) and (1,−1). The subcones where the evaluation minv∈∆〈−, v〉 is linear are
cone〈(1, 0), (0, 1)〉 and cone〈(1,−1), (1, 0)〉. Thus

A(D) =
⊕

u∈σ∨∩M
Γ(P1,O(D(u))) = K

[
1
xχ

(1,0), χ(0,1), χ(1,−1)
]
.
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Therefore, the corresponding T-variety X(D) is A3 with an action of the 2-dimensional
torus given by

(t, s) · (x, y, z) = (tx, sy, ts−1z).

Consider now ∆′ := L′ + σ, where L′ is the segment joining (0, 0) and (0, 1). The
polyhedral divisor D′ := ∆′⊗V (x) is not proper, because by taking u0 := (1,−1) ∈ σ∨∩M ,
we have D′(u0) = −V (x), which is not a big divisor on P1. In this case we get

A(D′) = K[χ(1,0), χ(0,1)],

so X(D′) is 2-dimensional with an action of the 2-dimensional torus and thus the statement
of Theorem 2.1.3 does not hold for such a D.

2.2 The non-affine case

We now study non-affine T -varieties by taking sets of polyhedral divisros as shown in [4],
much like we did with fans of cones for toric varieties.

2.2.1 Divisorial fans

Non-affine T -varieties are obtained by gluing affine T -varieties coming from pp-divisors in
a combinatorial way that we will briefly recall in this subsection.

Consider two polyhedral divisors D =
∑

∆P ⊗ P and D′ =
∑

∆′P ⊗ P on Y , with
tailcones σ and σ′ respectively and such that ∆P ⊆ ∆′P for every P . We then have an
inclusion ⊕

u∈σ′∨∩M
Γ(LocD,O(D′(u))) ⊆

⊕
u∈σ∨∩M

Γ(LocD,O(D(u))),

which induces a morphism X(D) → X(D′). We say that D is a face of D′, denoted by
D ≺ D′, if this morphism is an open embedding.

Definition 2.2.1. A divisorial fan on Y is a finite set S of pp-divisors on Y such that for
every pair of divisors D =

∑
∆P ⊗ P and D′ =

∑
∆′P ⊗ P in S, we have D ∩ D′ ∈ S and

D � D ∩D′ ≺ D′, where D ∩D′ :=
∑

(∆P ∩∆′P )⊗ P .

This definition allows us to glue affine T -varieties via

X(D)←− X(D ∩D′) −→ X(D′),

thus resulting in a scheme X(S). For the following theorem see [4, Theorem 5.3 and
Theorem 5.6].

Theorem 2.2.2. The scheme X(S) constructed above is a T -variety of complexity equal
to dimY . Every T -variety can be constructed like this.
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2.2.2 Constructing divisorial fans

Given a toric variety X with fan Σ, denote by T the torus acting on it. Taking a subtorus
action, i.e an injective map T ′ ↪→ T , we can see X as a T ′-variety of positive complexity.
There is a simple method for constructing a divisorial fan for X from Σ, first shown
in [3, §11].

Let P be the cokernel of the map N ′ → N associated to the subtorus injection. We
have the exact sequence of lattices

0 −→ N ′ −→←−
s

N
P−→ N ′′ −→ 0,

where s is some projection. Also note that N ′′ is torsion-free because T ′ acts effectively.
Let Σ′ ⊂ N ′′Q be the coarsest fan refining the images by P of all the cones in Σ. Define the
toric variety Y := YΣ′ . For each cone σ ∈ Σ, consider the polyhedral divisor on Y

Dσ :=
∑

ρ∈Σ′(1)

s(P−1(ρ) ∩ σ)⊗Dρ,

where Dρ is the invariant prime divisor on Y corresponding to ρ. The set {Dσ}σ∈Σ con-
stitutes a divisorial fan for X with an effective action of T ′.

Example 2.2.3. Note that for any toric fan Σ corresponding to a complete toric surface,
the method described above gives Y = P1 and the slices of the resulting divisorial fan
S = {Dσ}σ∈Σ can easily be obtained by tracing two lines parallel to the direction of the
subtorus action.

Consider, for example, the fan of P2 with a subtorus action given by (1, 0), as shown
in the image below.

σ1
σ2

σ3

V (x)

V (x−1)

Figure 2.2: The fan of P2 with a subtorus action
(Source: own elaboration)
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We can easily see that the corresponding divisorial fan has only one non-trivial slice.
More specifically, we can list the pp-divisors that make it up. Namely,

D1 = ∅ ⊗ V (x−1)

D2 = (−∞,−1]⊗ V (x−1)

D3 = ∅ ⊗ V (x) + [−1,∞)⊗ V (x−1)

and their intersections.

2.2.3 Marked fansy divisors on curves

Let Y be a projective variety. Let D =
∑

P ∆P ⊗ P be a pp-divisor on Y , and let y ∈ Y ,
set

Dy :=
∑
P3y

∆P .

Then for a divisorial fan S on Y , we define the slice of S at y as {Dy : D ∈ S}.
Consider the following example.

Example 2.2.4. Let y be the variable on P1. Take the divisorial fan S1 over P1 generated
by

D1 = [1,∞)⊗ V (y) + ∅ ⊗ V (y−1)

D′1 = ∅ ⊗ V (y) + [1,∞)⊗ V (y−1)

And let S2 be the divisorial fan on P1 generated by

D2 = [1,∞)⊗ V (y) + [1,∞)⊗ V (y−1).

We can easily see that for every y ∈ P1, the slices of S1 and S2 on y agree. However, X(S2)
is an affine T-variety, whereas X(S1) is not affine.

This example illustrates the fact that the slices of a divisorial fan do not give enough
information about the corresponding T -variety. Two divisorial fans S and S ′ can have
the same slices, yet X(S) 6= X(S ′). In [19], this issue is fixed for the case of complete
complexity-one T -varieties with the following definition.

Definition 2.2.5. A marked fansy divisor on a curve Y is a formal sum Ξ =
∑

P∈Y ΞP ⊗P
together with a fan Σ and a subset C ⊆ Σ, such that

(i) ΞP is a complete polyhedral subdivision of NQ, and tail (ΞP ) = Σ for all P ∈ Y .

(ii) For σ ∈ C of full dimension,
∑

∆σ
P ⊗ P is a pp-divisor, where ∆σ

P is the only σ-
polyhedron of ΞP .
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(iii) For σ ∈ C of full dimension and τ ≺ σ, we have τ ∈ C if and only if (
∑

P ∆σ
P )∩τ 6= ∅.

(iv) If τ ≺ σ and τ ∈ C, then σ ∈ C.

We say that the cones in C are marked.

Given a complete divisorial fan S on a curve Y , we can define the marked fansy divisor
Ξ =

∑
P SP ⊗ P with marks on all the tailcones of divisors D ∈ S having complete locus.

We denote it by Ξ(S). The following is proved in [19, Proposition 1.6].

Proposition 2.2.6. For any marked fansy divisor Ξ, there exists a complete divisorial fan
S with Ξ(S) = Ξ. If two divisorial fans S, S ′ satisfy Ξ(S) = Ξ(S ′), then X(S) = X(S ′).

2.2.4 Cox ring from a divisorial fan

Definition 2.2.7. Lef Ξ be a fansy divisor over Y and Z ⊂ Y be a prime divisor. Denote
by ΞZ the fan of all tailcones of Ξ.

1. The index of a vertex v ∈ ΞZ is the minimal positive integer µ(v) such that µ(v)v ∈ N .

2. A vertex v ∈ ΞZ is called extremal if there is a D ∈ Ξ with v ∈ DZ such that
O(D(u)) is big on Z for any u ∈ ((DZ − v)∨)◦. The set of all extremal vertices
v ∈ ΞZ is denoted by Ξ×Z .

3. We call a ray % ∈ ΞY extremal if there is a D ∈ Ξ with % ∈ DY such that O(D(u)) is
big on Y for any u ∈ ((%⊥ ∩ω)∨)◦. The set of all extremal rays % ∈ ΞY is denoted by
Ξ×Y .

4. We say that the prime divisor Z is irrelevant if Ξ×Z is empty, and we denote by
Y ◦ ⊂ ∪D∈ΞLoc (D) the open subset obtained by removing all irrelevant Z.

Theorem 2.2.8. [12, Theorem 4.8] Let Ξ be a fansy divisor on Y = P1 having non trivial
slices Ξa0 , . . . ,Ξar . Then the cox ring of X = X(Ξ) is given by

K[S%, Tv; % ∈ Ξ×Y , v ∈ Ξ×a0∪̇ . . . ∪̇Ξar ]
/〈 r∑

i=0

βiT
µi ; β ∈ Rel(ã0, . . . ãr)

〉

where ãi ∈ K2 represents ai ∈ P1, we set Tµi :=
∏
v∈Ξ×ai

T
µ(v)
v and Rel(ã0, . . . , ãr) is a basis

for the space of linear relations among ã0, . . . , ãr.
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2.3 K∗-surfaces

We now look at the case of a T -variety of dimension two and complexity one. We call this
type of variety a K∗-surface.

Definition 2.3.1. Let X be a K∗-surface and let x ∈ X be a fixed point for the torus
action. We say that the fixed point x is:

• elliptic if there is an invariant open neighborhood U of x such that this point lies in
the closure of every orbit of U ,

• parabolic if x lies on a curve made entirely of fixed points,

• hyperbolic otherwise.

Before proceeding recall that a categorical quotient is a morphism π : X → Y , where
X is a T -variety, which is invariant with respect to the T -action and satisfies the following
universal property: any other T -invariant morphism X0 → Y where X0 is a T -variety
factors uniquely through π.

Let π : X → Y be a morphism of T -varieties and {Ui}i an invariant affine cover for X.
If π|Ui is a good quotient for all i, then π is a categorical quotient.

Proposition 2.3.2. Let X be a complete K∗-surface. The following statements are equiv-
alent.

(i) There exists a morphism X → Y onto a smooth projective curve Y that is a categorical
quotient for the K∗-action.

(ii) X has no elliptic fixed points.

(iii) X is given by a marked fansy divisor without marks.

Proof. We prove three implications.
(i) ⇒ (ii). Let x ∈ X be an elliptic fixed point. There is an open neighborhood

x ∈ U such that x lies in the closure of every orbit in U . Therefore, there cannot be a
categorical quotient X → Y because the open set U would be mapped to a single point; a
contradiction.

(ii) ⇒ (iii). Assume that the marked fansy divisor defining X has a mark. There is
then an open affine chart of X given by a pp-divisor D with complete locus Y . The zero-
degree component of A(D) is Γ(Y,O) ∼= K, meaning that the degrees of the generators of
A(D) as an algebra are either all positive (if tailD = Q≥0) or all negative (if tailD = Q≤0).
In either case, we can take local coordinates such that the origin x0 lies in the closure of
every orbit, i.e. x0 is an elliptic fixed point.

(iii) ⇒ (i). Let S be a divisorial fan on a smooth projective curve Y such that
the marked fansy divisor for X is Ξ(S) . Since there are no marks, each D ∈ S has
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an affine locus, so there is a morphism πD : X(D) → LocD coming from the inclusion
A(D)0 := Γ(LocD,O) ⊆ A(D). These maps glue together to create a morphism π : X → Y
because the completeness of X implies that {LocD : D ∈ S} is an affine open covering of
Y . Each πD is a good quotient because A(D)0 is precisely the subalgebra of invariants of
A(D). Thus π is a categorical quotient.

Let X be a complete K∗-surface. There exist two invariant subsets F− ⊆ X and
F+ ⊆ X, called sink and source respectively, such that there is an open set U ⊆ X where
the closure in X of every orbit in U intersects both F− and F+. There are finitely many
orbits outside of U ∪F− ∪F+, that are called the special orbits. The source can be either
an elliptic point or an irreducible curve of parabolic points; the same holds true for the
sink. Every fixed point outside of F+ ∪ F− is hyperbolic.

Now, consider a complete smooth K∗-surface having no elliptic points. Denote by
E1, . . . , Er the closures of the special orbits. F. Orlik and P. Wagreich (cf. [25]) construct
a graph having vertex set {E1, . . . , Er, F

+, F−} and two vertices are joined by an edge if
and only if the two corresponding curves intersect. Each vertex carries a weight equal to
the self-intersection number of the curve that it represents. This graph takes the following
form.

−c− −c+

−d1,1 −d1,s1

...
...

−dm,1 −dm,sm

Figure 2.3: The graph of the K∗-surface (Source: own elaboration)

The di,j ’s are all positive and satisfy that the Hirzebruch-Jung continued fraction
[di,1, di,2, . . . , di,si ] equals 0 for every 1 ≤ i ≤ m. On the other hand, our surface is given
by a marked fansy divisor, without marks, on a smooth projective curve Y .

p1

pm

| |

| |

a1,1/b1,1 a1,s1/b1,s1

am,1/bm,1 am,sm/bm,sm

...

· · ·

· · ·

Figure 2.4: Marked fansy divisor without marks (Source: own elaboration)

Where the smoothness of the surface implies that bi,jai,j+1 − ai,jbi,j+1 = 1 for every
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1 ≤ i ≤ m, 1 ≤ j < si, as well as bi,1 = bi,si = 1, as shown in [30, Theorem 3.3]. It
turns out, as well, that each bi,j with j > 1 equals the Hirzebruch-Jung continued fraction
[di1 , di,2, . . . , di,j−1].



Chapter 3

Euler sequence for T-varieties

In [11, V.8.13], we are presented with an exact sequence, namely

0 −→ ΩPn −→ OPn(−1)n+1 −→ OPn −→ 0,

which allows the author to make several computations regarding differentials. This se-
quence is named Euler sequence and in [8] it is generalized to any smooth toric variety X
coming from a fan Σ whose rays span the whole ambient lattice. The exact sequence in
question is

0 −→ ΩX −→
⊕
ρ∈Σ(1)

OPn(−Dρ) −→ Pic(X)⊗Z OX −→ 0, (3.0.1)

where Dρ is the invariant divisor associated to the ray ρ.

In this section we attempt to obtain a similar result in the case of K∗-surfaces. We
briefly recall that a K∗-surface X without elliptic points (see Definition 2.3.1) is equipped
with an equivariant morphism π : X → Y , onto a smooth projective curve Y , which admits
two distinguished sections called the source F+ and the sink F− of X. This allows us
to form a divisor ES , which is numerically equivalent to mF −

∑
i∈I Ei, where m is the

number of reducible fibers of π and {Ei : i ∈ I} is the set of the prime components of such
fibers (see Definition 3.2.1). This chapter’s main results are Theorem 1 where we construct
a Euler-type exact sequence for the cotangent sheaf of a K∗-surface and Theorem 2, where
we show that the only rigid rational K∗-surfaces without elliptic points are Fano. This is
a partial generalization of [17, Corollary 2.8] where the case of toric surfaces is considered.

The results of this chapter are contained in the paper [22].

3.1 Generalities about deformations

We will go over some basic definition about deformations. We are especially interested in
the importance of the first cohomology group of the tangent sheaf.

25
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3.1.1 Basic concepts in deformation theory

Definition 3.1.1. Let f : X → S be a morphism of schemes. Let s ∈ S be a point. In the
following fibre product diagram

X (s) = Spec(K(s))×S X

��

// X

��
Spec(K(s)) // S

the scheme X (s) is called the scheme-theoretic fiber of f over s.

Example 3.1.2. In the following morphism of schemes

f : X := Spec
(
K[t, x, y]/〈y2 − x3 − x− t〉

)
−→ S := Spec (K[t]) ,

if a ∈ K, let sa ∈ S be the closed point corresponding to the maximal ideal 〈t− a〉 ⊂ K[t].
Then the fiber of f over sa is the curve X (sa) = Spec

(
K[x, y]/〈y2 − x3 − x− a〉

)
.

Definition 3.1.3. Let X be a scheme over K. A deformation of X over a scheme S is a
flat surjective morphism of schemes π : X → S that fits in a cartesian diagram

X = Spec(K)×S X

��

// X
π
��

Spec(K)
s // S

If S is algebraic, then for each rational point t ∈ S, the scheme-theoretic fiber X (t) is
also called a deformation of X.

The deformation is called local if S = Spec(A) where A is a local K-algebra with residue
field K and s ∈ S is the closed point. A local deformation is infinitesimal if A is artinian.
It is a first-order deformation if A = K[t]/〈t2〉

Definition 3.1.4. If π : X → S and π′ : X ′ → S are two deformations of X, we say that
π and π′ are isomorphic if there is a morphism φ : X → X ′ inducing the identity over X
and such that the diagram

X
π

��

φ
!!

X //

��

99

X ′

π′

��

S

Spec(K) //

99

S

is commutative.
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Example 3.1.5. Let C = {(x, y) ∈ A2 : xy − 1 = 0} and W = {(x, y, t) ∈ A3 : xy − t =
0, t 6= 0}. Let π and π′ be the projections of W and C × (A − {0}) respectively over the
first coordinate. Then the deformations

C

��

//W

π

��
Spec(K)

1 // A1 − {0}

C

��

// C × (A− {0})

π′

��
Spec(K)

1 // A1 − {0}

of C over A1 − {0}, are clearly isomorphic by taking

φ : W → C × (A− {0}), (x, y, t) 7→ ((x, y), t) .

By DefX(S), we denote the set of isomorphism classes of deformations of X over S.
When X is a T-variety, a deformation π : X → S is called T-invariant if the torus action
of X extends over the whole π-diagram, such that it acts trivially on S and such that all
maps are equivariant.

Theorem 3.1.6. [28, Theorem 2.4.1] If X is a smooth scheme, there is an isomorphism
of vector spaces

κ : DefX(K[t]/(t2))
∼−→ H1(X,TX),

where TX is the tangent sheaf of X.

Let X be a smooth algebraic variety and consider a deformation π : X → S of X.
Giving ϕ ∈ TS,s is equivalent to giving a morphism ϕ : Spec

(
K[t]/〈t2〉

)
→ S with image s.

Pulling back the deformation by ϕ, we obtain a deformation

X

��

// X ×S Spec
(
K[t]/〈t2〉

)
π′
��

Spec(K)
s // Spec

(
K[t]/〈t2〉

)
which, by Theorem 3.1.6, corresponds to an element of H1(X,TX).

Definition 3.1.7. The above construction gives a map

TS,s → H1(X,TX)

called the Kodaira-Spencer map of the deformation π.

Note that in the case S = SpecK[x], the morphism ϕ above is uniquely defined up to
scalar multiplication, so the image of the Kodaira-Spencer map is determined by a single
element in H1(X,TX).
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3.2 Euler sequence for K∗-surfaces

3.2.1 Constructing the sequence

Let X be a complete smooth K∗-surface having no elliptic points given by a marked fansy
divisor Ξ with no marks, like the one depicted in Figure 2.4. Each fraction ai,j/bi,j in the
figure corresponds to a divisor Ei,j which is the closure of a special orbit of X.

Definition 3.2.1. The multiplicity of the divisor Ei,j is the non-negative integer

µ(Ei,j) := bi,j − 1.

According to the definition of the divisor ES given in the introduction of the chapter, the
equality ES :=

∑
i,j µ(Ei,j) · Ei,j holds, where 1 ≤ i ≤ m and 1 ≤ j ≤ si.

Let ΩX and ΩY be the cotangent sheaves of X and Y respectively, where Y is defined
as in Proposition 2.3.2. As in Section 2.3, let F− and F+ denote the source and sink of
X. Let Z ⊆ X be the set of hyperbolic fixed points of X. In what follows we will call FX
the sheaf OF− ⊕OF+ ⊕OZ .

Lemma 3.2.2. Let X be a complete smooth K∗-surface without elliptic points. There is
an exact sequence of OX-modules

0 // π∗ΩY ⊗OX OX(ES)
ı // ΩX

α // OX // FX // 0

where α is defined by fdz 7→ deg(z)fz, for any homogeneous local coordinate z with respect
to the Z-grading of OX induced by the K∗-action and ı is defined by dt ⊗ f 7→ fdt, where
t is the pull-back of a local coordinate on Y .

Proof. Let Ξ be a fansy divisor describing X. Each affine chart of X, or an intersection
of them, is given by a polyhedron ∆ on some slice of Ξ. In other words, it is given by the
pp-divisor

D = ∆⊗ p+
∑
P−{p}

∅ ⊗ p,

where P is the set of points of Y with non-trivial slices. We analyze each possible ∆
separately.

Case 1. ∆ = [a1/b1, a2/b2] with b1b2 6= 0. In this case D defines an open affine subset
XD of X which is the spectrum of the algebra⊕

u∈Z
Γ(loc(D),O(D(u))) = S−1K[xa2χ−b2 , x−a1χb1 ] ∼= S−1K[z, w] =: R,
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where x is a regular function of loc(D) which has a simple zero at p and is non-zero at
loc(D) − {p} and S ⊆ K[xa2χ−b2 , x−a1χb1 ] is the multiplicative system defined by degree
zero homogeneous polynomials which do not vanish on loc(D). We have an exact sequence

Rdz ⊕Rdw ∼= ΩR
α // R // R/I // 0

where I ⊆ R is the ideal 〈deg(z)z, deg(w)w〉. The restriction of the quotient map π : X → Y
to the open subset XD is defined by the inclusion K[x] ⊆ R. Since x = zdeg(w)wdeg(z) =
zb1wb2 , the curve π−1(p) ∩ XD has two irreducible components which are vertical curves
intersecting at the fixed point q ∈ Z of local coordinates z = w = 0. Thus R/I defines
the skyscraper sheaf Oq and we get the first exact sequence from F|XD ∼= Oq. The sheaf
π∗ΩY is locally generated by dx = zb1−1wb2−1(b1wdz + b2zdw), thus we have the desired
isomorphism

π∗ΩY ⊗OX OX((b1 − 1)E1 + (b2 − 1)E2)|XD → ker(α)|XD ,

where for i = 1, 2, the divisor Ei is the one associated to the fraction ai/bi, as explained
in the beginning of this section.

Case 2. ∆ = [a1,∞). In this case D defines an open affine subset XD of X which is
the spectrum of the algebra⊕

u∈Z≥0

Γ(loc(D),O(D(u))) = S−1K[x, x−a1χ] ∼= S−1K[z, w] =: R,

where x and S are defined in a similar way as in the first case. Since x = z, the curve
π−1(p)∩XD has one irreducible component which is a vertical curve intersecting F+ at one
point. Again we got an exact sequence as above and observe that now I = 〈w〉. In this case
R/I defines the sheaf OF+ |XD and we get the first exact sequence from F|XD ∼= OF+ |XD .
The sheaf π∗ΩY is locally generated by dx = dz, thus we have an isomorphism

π∗ΩY |XD → ker(α)|XD .

Case 3. ∆ = (−∞, a2]. This is similar to the previous case and we omit the details.
Case 4. ∆ = {a/b}. In this case D defines an open affine subset XD of X which is the

spectrum of the algebra⊕
u∈Z

Γ(loc(D),O(D(u))) = S−1K[xkχ−l, (x−aχb)±1] ∼= S−1K[z, w±1] =: R,

where x and S are defined in a similar way as in the first case and c, d are integers such
that bk− la = 1. Since x = zdeg(w)wdeg(z) = zbwl, the curve π−1(p)∩XD has an irreducible
component which is a vertical curve which has empty intersection with F+∪F−∪Z. Again
we get an exact sequence as in the first case with I = 〈z, w±1〉 = R. In this case R/I = 0
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and we get the first exact sequence from F|XD = 0. The sheaf π∗ΩY is locally generated
by dx = zb−1wl−1(bwdz + lzdw), thus we have an isomorphism (since w is a unit in this
chart)

π∗ΩY ⊗OX OX((b− 1)E)|XD → ker(α)|XD ,

where E is the divisor associated to the fraction a/b.

We define the sheaf Qα := ΩX/ ker(α). Now, maintaining the same hypothesis and
notation as above, we prove the following.

Lemma 3.2.3. There is a short exact sequence of OX-modules

0 −→ Qα −→ G −→ Zr+1 ⊗OX −→ 0,

where

G = O(−F−)⊕O(−F+)⊕
(

(⊕i,jO(−Ei,j))
/

(⊕mi=1 ⊕
si
j=1 O(−Ei,j − Ei,j+1))

)
.

Proof. Let us consider the diagram

0

��

0

��

0

��
0 // Qα //

��

OX //

��

FX // 0

0 // G //

��

Zr+2 ⊗OX //

��

FX //

��

0

0 // Zr+1 ⊗OX

��

Zr+1 ⊗OX //

��

0

0 0

where the top row comes from Lemma 3.2.2. The middle row is the direct sum of the
fundamental short exact sequences

0 −→ O(−F±) −→ OX −→ OF± −→ 0

together with the following exact sequences (cf. [6]) for each Ei ∩ Ej = p ∈ Z

0 −→ O(−Ei − Ej) −→ O(−Ei)⊕O(−Ej) −→ OX −→ Op −→ 0
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where we replace the first two sheaves with their quotient to obtain short sequences.
The middle column is simply the exact sequence of modules

0 // Z
(1,...,1)// Zr+2 // Zr+1 // 0

after tensoring by OX . The exactness of the sequences, together with the commutativity
of both squares (easy to check), ensures the existence of an exact sequence on the left
column.

We can now prove the first theorem stated in the introduction.

Proof of Theorem 1. It is direct from Lemmas 3.2.2 and 3.2.3 since im(α) in OX is isomor-
phic to Qα.

Proposition 3.2.4. The following holds: Ext1(Qα,OX) ∼= OZ .

Proof. By the definition of Qα, Lemma 3.2.2 and the long exact sequence for ext sheaves
we have Ext1(Qα,OX) ∼= Ext2(F ,OX). Since the functor Exti commutes with finite direct
sums, it is enough to show that Ext2(OF± ,OX) = 0 and Ext2(Opi ,OX) ∼= Op for any
p ∈ Z. Taking the long exact Ext-sequence of the exact sequence of sheaves

0 // OX(−F±) // OX // OF± // 0

and using the fact that Exti(OX ,OX) = 0 for any i > 0, by [11, Pro. III.6.3(b)], we get
Ext1(OX(−F±),OX) ∼= Ext2(OF± ,OX). By [11, Pro. III.6.7] we conclude that the these
sheaves are the zero sheaf, proving the first vanishing. To prove the second isomorphism
observe that for each p ∈ Z lying in the intersection Ei ∩ Ej we have the following exact
sequence of sheaves (cf. [6])

0 //OX(−Ei − Ej) //OX(−Ei)⊕OX(−Ej)
ϕ //OX //Op //0.

Denoting byN the quotient sheafOX(−Ei)⊕OX(−Ej)/OX(−Ei−Ej) we deduce Ext1(N ,OX) ∼=
Ext2(Op,OX) and the fact that Ext1(N ,OX) is the cokernel of the mapOX(Ei)⊕OX(Ej)→
OX(Ei+Ej) induced by ϕ taking tensor product with OX(Ei+Ej). This proves the state-
ment.

3.3 Applications

We present some applications of Theorem 1 to the study of H1(X,TX).
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3.3.1 Results on H1(X,TX)

Lemma 3.3.1. Let ϕ : X̃ → X be the blow-up of a smooth projective variety at a point
p ∈ X. Then h1(X̃, TX̃) ≥ h1(X,TX).

Proof. Since ϕ is a blow-up it follows that Riϕ∗TX̃ vanishes for any i > 0. Thus the

equality hi(X̃, TX̃) = hi(X,ϕ∗TX̃) holds for any i by [11, Exercise III.8.1] and we conclude
by the following exact sequence of sheaves

0 //ϕ∗TX̃
//TX //Tp //0.

Proof of Theorem 2. We begin by showing (1) ⇒ (2). Consider the good quotient map
π : X → Y . Assume first that the curve Y has positive genus. If π has only irreducible
fibers, X is a ruled surface so by [27, Theorem 4] we have h1(X,TX) > 0. This still holds
if there are reducible fibers, by Lemma 3.3.1, because X would be a blow-up of one of such
ruled surfaces. Thus, Y must necessarily be rational.

We show now that X contains no invariant rational curves C with C2 = −n ≤ −2.
Suppose such a curve exists. From Lemma 3.2.2, after tensoring by O(KX + C), we have
an exact sequence

0→ π∗(ΩP1)⊗O(ES +KX + C)→ ΩX(KX + C)→ im(α)⊗O(KX + C)→ 0.

Let us compute some cohomology groups for these sheaves. Assume that KX+C is linearly
equivalent to an effective divisor. From the genus formula we have

(KX + C) · C = 2g(C)− 2 = −2 < 0,

so by applying [2, Proposition V.1.1.2] we see that C must be in the base locus of |KX +C|,
meaning KX + C ∼ C + E′ for some effective divisor E′. This would imply that KX is
linearly equivalent to an effective divisor, a contradiction because X is rational and smooth.
Thus h0(X,KX + C) = 0. Since im(α)⊗O(C +K) injects into O(C +K), then also

h0(X, im(α)⊗O(C +K)) = 0.

If F is a general fiber of π, the genus formula yields F ·KX = −2. The product F · C
equals at most 1 (where the equality holds if C is the source or sink curve), so

F · (−2F + ES +KX + C) = F ·KX + F · C < 0.

Then h0(X,π∗(ΩP1)⊗O(ES+KX +C)) = h0(X,−2F +ES+KX +C) = 0. Going back to
the exact sequence, we can now deduce that h0(X,ΩX(KX + C)) = 0, and due to Serre’s
duality we conclude h2(X,TX(−C)) = 0.
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Consider now the exact sequence of sheaves

0 −→ OX(−C) −→ OX −→ OC −→ 0.

Tensoring by TX gives a new exact sequence

0 −→ TX(−C) −→ TX −→ TX |C −→ 0.

From the vanishing at H2 shown above, there is a surjection H1(X,TX) → H1(X,TX |C),
so it suffices to show that h1(X,TX |C) 6= 0 to prove the non-existence of this curve C, but
this comes directly from the exact sequence

0 −→ TC −→ TX |C −→ NC|X −→ 0

and the fact that h1(X,TC) = h2(X,TC) = 0 and h1(X,NC|X) = n− 1.
We showed that any invariant rational curve of X has self-intersection ≥ −1. Since

the classes of these curves generate the Mori cone of X (see [2]) we conclude that −KX is
ample and thus X is del Pezzo. Moreover by [13, Proposition 5.9] del Pezzo K∗-surfaces
without elliptic fixed points are toric.

The proof of (2)⇒ (1) is a consequence of [17, Corollary 2.8].



Chapter 4

Deformations of smooth toric
varieties

The topic of deformations of toric varieties has been studied by K. Altmann in [5] and A.
Mavlyutov in [24]. In the affine case they describe toric deformations in a combinatorial
way via polyhedral decompositions of linear sections of the defining cone of the toric variety.
The theory of polyhedral divisors is later developed in [3] and [4] as a generalization of
toric varieties to T-varieties, i.e. varieties coming with a torus action. N. Ilten and R.
Vollmert make use of the language of polyhedral divisors in [20] to describe deformations
of T-varieties of complexity one. Their method involves decomposing the polyhedral data
of the varieties, similar to what Altmann did for the affine case. Moreover, in the case of
smooth toric varieties they also prove that such deformations are in correspondence with a
generating set of the space of infinitesimal deformations of the starting variety. In [12], we
are presented with an explicit way to compute the Cox ring of a T-variety, starting from
its polyhedral representation. This serves as the main connection between the work of N.
Ilten and R. Vollmert and the work shown in this chapter.

This chapter is devoted to the study of deformations of smooth toric varieties from the
point of view of Cox rings, in a similar spirit of [24]. Starting from a toric variety X and
some extra combinatorial data, we describe the Cox ring of a complexity one variety X
which fits into to a one-parameter deformation X → A1 of X, as shown in Theorem 4.2.1.
After that, we proceed to study the corresponding Kodaira-Spencer map in Theorem 4.2.3.

We show that the variety X matches the variety introduced in [20] which was described
with the language of polyhedral divisors. Moreover, and much like what was done for
polyhedral divisors, we show that the deformations we describe generate the space of
infinitesimal deformations of X. As applications of this theory we study deformations of
scrolls and deformations of hypersurfaces of smooth toric varieties.

The results of this chapter are contained in the paper [23].

34
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4.1 Preliminaries

We fix some of the notations that we will be using for the rest of the chapter.

4.1.1 The tangent sheaf of a toric variety

Let X be a smooth complete toric variety with defining fan Σ ⊆ NQ and character group
M . By the Euler exact sequence that we saw in (3.0.1), the cohomology group of TX are
graded by M . In particular

H1(X,TX) =
⊕
m∈M

H1(X,TX)m.

Definition 4.1.1. (cf. [18, §2.1]) Let m ∈ M be such that there exists % ∈ Σ(1) with
m(%) = −1, where with abuse of notation we identify the one dimensional cone % with its
primitive generator. Define the graph Γ%(m) whose set of vertices is

Vertices(Γ%(m)) := {%′ ∈ Σ(1) \ {%} : m(%′) < 0},

and two vertices are joined by an edge if and only if they are rays of a common cone of Σ.
If C is a proper component of Γ%(m) we say that the triple (m, %,C) is admissible.

To any admissible triple (m, %,C) one can associate a cocycle of H1(X,TX)m in the
following way. Define a derivation ∂m,% ∈ Der(K[M ],K[M ]) by

∂m,% : K[M ]→ K[M ] χu 7→ u(%)χu+m.

The announced cocycle is

ξ(m, %,C) = {α(σ, τ) · ∂m,% : σ, τ ∈ Σ(n)} ∈ H1(X,TX)m (4.1.1)

where α(σ, τ) equals 1 if σ(1) ∩ C is non-empty and τ(1) ∩ C is empty, it equals −1 if the
roles of σ and τ are exchanged and it equals 0 otherwise.

Proposition 4.1.2. [20, Thm 6.5] The cocycles ξ(m, %,C) span the vector space H1(X,TX).

4.2 Deformations of smooth toric varieties

In what follows, X is a smooth toric variety. Our aim now is to show how to associate to
any admissible triple a one parameter deformation π : X → A1 such that the image of the
Kodaira-Spencer map TA1 → H1(X,TX) associated to π is the original admissible triple.
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4.2.1 The deformation space

Let X be a smooth toric variety and let (m, %,C) be an admissible triple. The element
m ∈ Hom(N,Z) is a homomorphism N → Z with kernel K. We let γ : Z → N be the
section of m defined by γ(−1) = v% and let π : N → K be the corresponding projection.
The above maps are encoded in the following exact sequence:

0 // K // N
m //

π
jj Z //

γ
jj 0. (4.2.1)

Let Ñ = Z2 ⊕K ⊕ Z and M̃ its dual. We define the map

ı : N → Ñ v 7→ [m(v),m(v), π(v), 0]. (4.2.2)

Let %1, . . . , %r be the primitive generators of the one-dimensional cones of the fan Σ, let
ai = m(%i) for any i and let

U1 = {(1, i) : ai > 0} U2 = {(2, i) : ai < 0 and %i ∈ C ∪ {%}}
U4 = {(4, i) : ai = 0} U3 = {(3, i) : ai < 0 and %i /∈ C}

and let U be the union U1 ∪ U2 ∪ U3 ∪ U4. For any (j, i) ∈ U we define the row vector
vj = [ai : (j, i) ∈ Uj ]. Define the matrix Aj = [π(%i) : (j, i) ∈ Uj ] whose columns are the
vectors π(%j). Finally we define the following block matrix

P (m, %,C) :=


1 v1 v2 0 0
1 v1 0 v3 0
0 A1 A2 A3 A4

1 0 0 0 0

 , (4.2.3)

where a 0 represents a zero matrix of adequate dimensions, whereas a 1 is simply the
number one (1× 1 matrix).

From here on, given a one dimensional ray %s we denote by i(%s) its index s and by
k(%s) ∈ {1, 2, 3, 4} the index of the set Uk corresponding to the sign of as. Given a maximal
cone σ ∈ ΣX , we will now define the cone indices of a new cone σ̃ in such a way that the
cones {σ̃}σ∈Σ form the fan of the ambient toric variety in which X is embedded. The
indices are defined as follows: For every %i ∈ σ(1) we add every possible (k, i) ∈ U as a
cone index for σ̃. We also add, if it is not added already, the index (2, i(%)) if σ(1)∩C = ∅
or the index (3, i(%)) if σ(1) ∩ C 6= ∅. Lastly, we always add 1 as an index for σ̃. All this
can be summarized as follows:

• if σ(1) ∩ C is empty then the cone indices for σ̃ are:

{1, (2, i(%))} ∪ {(1, s) : %s ∈ σ(1) y as > 0}
∪{(4, s) : %s ∈ σ(1) y as = 0} ∪ {(3, s) : %s ∈ σ(1) y as < 0}
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• if σ(1) ∩ C is non-empty then the cone indices for σ̃ are:

{1, (3, i(%))} ∪ {(1, s) : %s ∈ σ(1) y as > 0}
∪{(4, s) : %s ∈ σ(1) y as = 0} ∪ {(2, s) : %s ∈ σ(1) y as < 0}.

Denote by X̃ the toric variety whose fan ΣX̃ , defined on Ñ , is given by the cones σ̃
for every σ ∈ ΣX . We then define X = X (m, %,C) as the T -variety of complexity one
embedded in X̃ whose equation in Cox coordinates T1, Tij with (i, j) ∈ U , is the following
trinomial

T1

∏
(1,j)∈U1

T
aj
1j −

∏
(2,j)∈U2

T
−aj
2j +

∏
(3,j)∈U3

T
−aj
3j . (4.2.4)

Recall from subsection 1.2.4 that we denote by X̄ the affine subvariety defined by this
trinomial equation in Cox coordinates.

Theorem 4.2.1. Let (m, %,C) be an admissible triple and let X = X (m, %,C) be the
T -variety defined above. The inclusion K[T1] → K[X̄ ] defines a T -equivariant morphism
π : X → A1 which is a one-parameter deformation of X, i.e. X is isomorphic to the fiber
of π over 0 ∈ A1.

Proof. To see that π is indeed a morphism, recall that X is embedded in a toric variety X̃
whose toric fan ΣX̃ has the columns of P as ray generators and maximal cones given by
{σ̃}σ∈Σ(n). By taking the projection onto the last coordinate, we map every ray of ΣX̃ to
0, except for the one corresponding to T1, which is mapped onto Q≥0. Thus, we have a
morphism of toric varieties

X → A1.

Let X0 be the fiber of π resulting by setting T1 = 0. The trinomial in (4.2.4) becomes a
binomial χv1−χv2 , with v1, v2 ∈ Ñ . Let v = v1−v2 and let u ∈ M̃ be such that P ∗(u) = v.
Now, X0 admits an action of the subtorus defined by u⊥. Recall that T1 = 0, so for the
action to be effective we must take the subtorus N0 := u⊥ ∩ (e∗n+2)⊥. Since N0 has the
same dimension as X0, this fiber can be seen as a toric variety having

ΣX0 := ΣX̃ ∩N0

as fan. It can be shown that ı(N) = N0: Indeed, a vector [a, b] ⊕ w ⊕ [d] ∈ Ñ belongs to
N0 if and only if a = b and d = 0, so it is clear that ı(N) ⊆ N0. Conversely, if the vetor
is of the form [a, a]⊕ w ⊕ [0] ∈ Ñ , then it is equal to ı (w + γ(a)). We now wish to prove
that the following equality holds

ΣX = ΣX0 .

Take a cone σ ∈ ΣX and a ray τ ∈ σ(1) and let vτ be its primitive generator. If τ ∈ U1

or τ ∈ U4, then ı(v) ∈ σ̃ because it is a column of P (m, %,C). Otherwise, ı(v) is a linear
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combination of columns of P (m, %,C), one of index (j1, i(τ)) and one of index (j2, i(%))
with {j1, j2} = {2, 3}, thus we still have ı(v) ∈ σ̃ in this case. We conclude that ı(v) ∈
σ̃∩ ı(N) = σ̃∩N0. Due to the completeness of the fans, the fact that ı(σ) ⊂ σ̃∩N0 implies
that ΣX = ΣX0 as claimed.

4.2.2 The central fiber

We now describe the embedding X → X at the level of Cox rings. We define the following
homomorphism of polynomial rings

η : K[Tij : (i, j) ∈ U ]→ K[S1, . . . , Sr] Tij 7→


∏

(3,j)∈U2
S
−aj

j if i = 2 and %j = %∏
(2,j)∈U3

S
−aj

j if i = 3 and %j = %

Sj otherwise

and T1 7→ 0. Observe that the variable T1 is the variable which gives the coordinate on
the base A1 of the deformation.

Proposition 4.2.2. The homomorphism of polynomial rings η induces an isomorphism
η′ : K[X̄ ]/〈T1〉 → R(X) which induces the inclusion X → X in Cox coordinates.

Proof. First of all we observe that the binomal
∏

(2,j)∈S2
T
−aj
2j −

∏
(3,j)∈S3

T
−aj
3j is con-

tained in the kernel of η. Moreover since the kernel is a prime principal ideal we conclude
that it is generated by the above binomial. Thus, after identifying K[Tij : (i, j) ∈ U ]
with K[X̄ ]/〈T1〉, the homomorphism η induces an isomorphism η′ : K[X̄ ]/〈T1〉 → R(X) as
claimed. Observe that η′ is a graded map with respect to the Cl(X )-grading on the domain
and the Cl(X)-grading on the codomain. Denote by

P0 :=

 v1 v2 0 0
v1 0 v3 0
A1 A2 A3 A4

 .
the matrix obtained by removing the first column and the first row from P (m, %,C). Define
the homomorphism

ψ : Zr → Zr+1 ej 7→


e(1,j) if aj > 0

e(2,j) − aje(3,%) if %j ∈ C ∪ {%}
e(3,j) − aje(2,%) if %j ∈ (Γ%(m) \ C) ∪ {%}
e(4,j) if aj = 0

. (4.2.5)

Observe that ψ fits in the following commutative diagram

Zr −ψ //

PX
��

Zr+1

P0

��
Zn

(a1,...,an) 7→(−an,−an,a1,...,an−1) // Zn+1

(4.2.6)
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where PX is the P -matrix of the Cox construction of X (see (1.2.1)). Moreover ψ maps
the positive orthant of Zr into the positive orthant of Zr+1, it maps cones of X into cones
of X and it induces η′. The statement follows.

4.2.3 The Kodaira Spencer map

Theorem 4.2.3. Let (m, %,C) be an admissible triple and let π : X → A1 be the corre-
sponding one-parameter family. The image of π via the Kodaira-Spencer map is the cocycle
ξ(m, %,C) ∈ H1(X,TX)m defined in (4.1.1).

Proof. The complexity one variety X is canonically embedded into the toric variety X̃ and
the morphism π : X → A1 is induced by a toric morphism X̃ → A1. Let Σ be the fan of
the toric variety X. We denote by Σ̃ ⊆ ÑQ the fan of Z̃. Given a cone σ ∈ Σ we denote by
σ̃ the corresponding cone of Σ̃, that is σ̃ ∩ ı(N) = σ, where the map ı is the one defined
in (4.2.2). Let M̃ be the dual of Ñ . The trinomial (4.2.4) is locally described in K[σ̃∨∩M̃ ]
by a polynomial of the form

χu4+u1 − χu2 + χu3 ,

where u4 = [0, . . . , 0, 1], so that ε = χu4 . We denote by %σ the primitive generator of the
extremal ray of the cone σ̃ which is one of the column of the matrix P (m, %,C) whose
index is (2, i(%)) if σ ∩ C is non-empty and it is (3, i(%)) otherwise. Assume we are in the
first case then the following equation holds

P (m, %,C)∗(u2) = v2,

where T v2 is the monomial in Cox coordinates which corresponds to the character χu2 .
The monomial T v2 does not contain any variable T(k,i) such that %i ∈ σ(1) with the only
exception of the variable T(2,i(%)) which appears with exponent 1. This implies that u2 has
scalar product 0 with each column of the P (m, %,C) of index (k, i) when %i ∈ σ(1) \ {%}
and it has scalar product 1 with the column of index (2, i(%)). In particular u2 generates
an extremal ray of the smooth cone σ̃ and then χu2 is a variable of the polynomial ring
K[σ̃∨∩M̃ ]. Analogously, if σ∩C is empty, the character χu3 is a variable of the ring. Both
cases establish an isomorphism

K[σ̃∨ ∩ M̃ ]

〈χu4+u1 − χu2 + χu3〉
→ K[σ̃∨ ∩ M̃ ∩ %⊥σ ].

For the rest of this proof, we fix two cones σ, τ ∈ Σ. The isomorphism above leads to the
following diagram
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K[(σ̃ ∩ τ̃)∨ ∩ M̃ ]

〈χ2u4 , χu4+u1 − χu2 + χu3〉

'
��

K[(σ̃ ∩ τ̃)∨ ∩ M̃ ]

〈χ2u4 , χu4+u′1 − χu′2 + χu
′
3〉

'
��

K[(σ̃ ∩ τ̃)∨ ∩ M̃ ∩ %⊥σ ]

〈χ2u4〉

'β

��

K[(σ̃ ∩ τ̃)∨ ∩ M̃ ∩ %⊥τ ]

〈χ2u4〉

'
��

K[(σ ∩ τ)∨ ∩M ]⊗K K[ε] K[(σ ∩ τ)∨ ∩M ]⊗K K[ε]

where the map β is defined by the composition β∗ : M ∩%⊥σ →M →M/〈u〉 of the inclusion
with the projection and observing that β∗(σ̃) = σ and β∗(τ̃) = τ . Moreover β∗ is an
isomorphism being u(%σ) = ±1. We have thus constructed an isomorphism

ϕ : K[(σ ∩ τ)∨ ∩M ]⊗K K[ε]→ K[(σ ∩ τ)∨ ∩M ]⊗K K[ε].

Let a ∈ (σ̃ ∩ τ̃)∨ ∩M . We will assume that χu2 is a variable in K[σ̃∨ ∩ M̃ ] and χu
′
3

is a variable in K[τ̃∨ ∩ M̃ ]. The other cases work similarly so analyzing only this case is
enough. Since τ∨ is smooth, we can write a = v+ a(%τ )u′3 where v is a linear combination
of the rays of τ∨ different from u′3. Hence the following hold

β(χa) = β(χvχa(%τ )u′3)

= β(χv(εχu
′
1 + χu

′
3)n)

= χı
∗(a) + a(%τ )εχı

∗(a)+ı∗(u′1−u′3)

where the last equality is due to the fact that the argument of β does not contain χu
′
2 .

Now, observe that χu1−u3 is the monomial Tw where w is the difference between the
second and last row of P (m, %,C). This means u1 − u3 = [0, 1, 0, . . . , 0,−1] and therefore
ı∗(u1 − u3) = m. By setting u = ı∗(a), this shows that ϕ is defined as

ϕ(χu) = a(%τ )χu+m.

The only thing left to prove is that a(%τ ) = u(%). Simply notice that a(%σ) = 0, so

a(%τ ) = a(%τ + %σ) = a (ı(%)) = ı∗(a) (%) = u(%).

The coefficient α(σ, τ) from (4.1.1) equals 1 in this case and is easily seen to appear when
checking the other cases.
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4.3 Polyhedral description

In this section we describe deformations of toric varieties as shown in [20]. Their results
are very closely related to the ones found in Section 4.2, but they use a completely different
language. Namely, the language of polyhedral divisors, which we summarize here.

4.3.1 Deformations via polyhedral decompositions

In [20, §6], Ilten and Vollmert define one-parameter deformations of smooth toric varieties
denoted by π = π(m, %,C), where m is a lattice vector, % is a ray in a fan and C is a
connected component of some graph. The construction is as follows.

Let Σ be a smooth complete fan giving rise to a toric variety X = XΣ. By choosing a
m ∈ M and intersecting the hyperplanes {v ∈ N : m(v) = −1} and {v ∈ N : m(v) = 1}
with Σ we get two polyheral subdivisions corresponding to the slices S0 and S∞ of a
divisorial fan S on P1, describing X as a variety of complexity one. Now, choose % ∈ Σ(1)
such that m(%) = −1 and recall Definition 4.1.1 of the graph Γ%(m), whose set of vertices
is

{τ ∈ Σ(1) : τ 6= %,m(τ) < 0}

and whose edges join two vertices whose corresponding one-dimensional rays lie in a com-
mon cone. Assume Γ%(m) has at least two connected components, and let C be one of
them. This choice induces a one parameter deformation on X as follows.

Each polyhedron ∆ ∈ S0 will be decomposed as ∆ = ∆0 + ∆1. If ∆ contains a vertex
coming from a ray in C, take ∆0 = tail ∆ and ∆1 = ∆. If ∆ contains no such vertex,
take ∆0 = ∆ and ∆1 = tail ∆. The sets {∆0}∆∈S0 and {∆1}∆∈S0 define new polyhedral
subdivisions S0

0 and S1
0 such that S = S0

0 +S1
0 . Let S̃ be the divisorial fan on A1×P1 whose

only non-trivial slices are S0
0 at V (y), S1

0 at V (y − x) and S∞ at V (y−1), where we are
using coordinates (x, y) ∈ A1 × P1. Then X := X(S̃) comes with a morphism π : X → A1

which is a one-parameter deformation of X. This deformation is called π(m, %,C).

Proposition 4.3.1. The deformation π(m, %,C) is the same as the one described in The-
orem 4.2.1.

Proof. We consider the K∗-action on A1 × P1 given by t · (x, y) = (tx, ty). This allows us
to describe this surface with a divisorial fan Z on P1 whose tailfan is given by a single ray
on the positive axis and whose only non-trivial slice has vertices in 0 and 1. By applying
[21, Prop 2.1], we describe X with a new divisorial fan S ′ on P1, having three non-trivial
slices. One non-trivial slice of S ′ contains S0

0 at height 0 and a single vertex at height
1, whereas the other two non-trivial slice of S ′ are simply S1

0 and S∞ embedded in the
corresponding higher dimensional space. Thus, by [12, Corollary 4.9] we see that the cox
ring of X is given precisely by (4.2.4). The matrix P (m, %,C) can be obtained from [12, Pop
4.7].
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4.4 Applications

We use the language developed in subsection 4.1.1 and in section 4.2 to study deformations
of scrolls (see also [29]) and deformations of hypersurfaces of smooth toric varieties (see
also [16]).

4.4.1 Deformations of scrolls

Let n > 1 be an integer and let a1, . . . , an be integers. We denote by F(a1, . . . , an) the
Pn−1-bundle (i.e. a scroll) over P1 associated to the sheaf OP1(a1) + . . .+OP1(an). It can
be defined as the quotient of the space (A2\0)× (An\0) by the following (K∗)2-action.

(λ, 1) · (t1, t2, x1, . . . , xn) = (λt1, λt2, λ
−a1x1, . . . , λ

−anxn)

(1, µ) · (t1, t2, x1, . . . xn) = (t1, t2, µx1, . . . , µxn).

The action on the fist two coordinates gives F(a1, . . . , an) a morphism over P1 by projecting
on the first factor

(A2\0)× (An\0) //

��

F(a1, . . . , an)

��
(A2\0) // P1

Remark 4.4.1. It can be shown (cf. [26, Ch. 2]) that F(a1, . . . , an) ∼= F(b1, . . . , bn) if
and only if there exists c ∈ Z and a permutation σ ∈ Sn such that for every i we have
ai = bσ(i) + c.

Proposition 4.4.2.

(a) A scroll over P1 is rigid if and only if it is isomorphic to F(a1, . . . , an) where {ai}ni=1 ⊆
{0, 1}.

(b) Let X = F(a1, . . . , an), such that d := a1−a2 > 2. For any d′ < d, the scroll X admits
a deformation to F(a1 − d′, a2 + d′, a3, . . . , an).

Proof. If n = 2, we have a Hirzebruch surface and these results are well known. They can
be found for example in [18, §3]. Therefore, we will assume n ≥ 3. The degree matrix of
F(a1, . . . , an) is

Q =

[
1 1 −a1 · · · −an
0 0 1 · · · 1

]
.

Since the components of the irrelevant ideal are (1, 2) and (3, . . . , n + 2) and n ≥ 3, it is
clear that (%1, %2) is the only pair of rays in Σ that are not in a common cone. Thus, if we
choose an admissible triple (m, %,C) we must have that
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• m(%1) < 0 and m(%2) < 0.

• m(%k) = −1 for some 3 ≤ k ≤ n+ 2. This %k will be %.

• m(%i) ≥ 0 for every i = 3, . . . , n+ 2, i 6= k.

since this conditions are the only way to ensure that Γ%(m) has at least two connected
components. Now, define ui := m(%i) and form the column vector

u := (u1, . . . , un+2)t.

The conditions above become

u1, u2 < 0; uk = −1; ui ≥ 0, i /∈ {1, 2, k}. (4.4.1)

From (1.2.1) we see that Q(u) = 0, which when written as a system of equations is equiv-
alent to


u1 + u2 −

n+2∑
i=3

uiai−2 = 0 (4.4.2)

n+2∑
i=3

ui = 0 (4.4.3)

From (4.4.1) and (4.4.3) we deduce there exists 3 ≤ ` ≤ n+ 2, with ` 6= k, such that

u` = 1 and ui = 0 for i /∈ {1, 2, k, `}. (4.4.4)

Aditionally, by (4.4.2),

ak−2 − a`−2 = −u1 − u2 ≥ 2. (4.4.5)

Thus, F(a1, . . . , an) has an admissible triple if and only if two of the ai have distance
at least 2, proving part (a).

Assume now that we are in the case where the admissible triple (m, %,C) exists. We
will set C := {%1} From now on, to simplify notation without loss of generality, let k = 3
and ` = 4. Recall that ui = m(%i). Therefore, (4.4.1) and (4.4.4) imply that the trinomial
of the Cox ring of the total deformation space X is

T1T(1,4) − T(2,3)T
−u1
(2,1) + T(3,3)T

−u2
(3,2) (4.4.6)

The irrelevant ideal I of X is given by the following components

I1 =
〈
T(2,1), T(3,2)

〉
I2 =

〈
T(2,1), T(2,3), T(1,4)

〉
+
〈
T(4,5), T(4,6), . . . , T(4,n+2)

〉
I3 =

〈
T(3,2), T(3,3), T(1,4)

〉
+
〈
T(4,5), T(4,6), . . . , T(4,n+2)

〉
I4 =

〈
T(2,3), T(3,3), T(1,4)

〉
+
〈
T(4,5), T(4,6), . . . , T(4,n+2)

〉
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In the general fiber of the deformation we have T1 = t ∈ K∗, so by (4.4.6), the variable
T(1,4) can be replaced by the other variables. This reduces I to

〈T(2,1), T(3,2)〉 ,
〈
T(2,3), T(3,3)

〉
+
〈
T(4,5), T(4,6), . . . , T(4,n+2)

〉
.

By Proposition 4.2.2, and using the same notation, we have

deg
(
T(2,3)

)
= deg

(
S−u22 S3

)
; deg

(
T(3,3)

)
= deg

(
S−u11 S3

)
.

This means that both the irrelevant ideal and the degree matrix of the general fiber of the
deformation match that of F(a1 + u1, a1 + u2, a3, . . . , an). Then (b) follows after noticing
that (4.4.5) implies a1 + u2 = a2 − u1.

Proposition 4.4.3. The scroll F(a1, . . . , an) can be deformed to

F(1, 1, . . . , 1︸ ︷︷ ︸
r

, 0, 0 . . . , 0︸ ︷︷ ︸
n−r

)

where

r ≡
n∑
i=1

ai (mod n).

Proof. By Remark 4.4.1, we can assume that the sequence a1, . . . , an is decreasing and
non-negative, with an = 0. We proceed by induction over a1. The cases a1 = 0 and a1 = 1
are trivial. Assume now that a1 ≥ 2. Let

M = #{i : ai = a1}, m = #{i : ai = 0}.

If M < m, then by Proposition 4.4.2 the scroll can be deformed by subtracting 1 from each
a1, . . . , aM and adding 1 to M of the ai that equal 0.

If M ≥ m, the scroll can be deformed by subtracting 1 from each a1, . . . , am and adding
1 to every ai that equals 0. Then we subtract 1 from every ai (recall that this does not
change the variety).

Note that in both cases, and after just a permutation of indices, we have deformed the
original scroll to F(b1, . . . , bn) where bi ≥ bi+1 for every i, the bi are all non-negative and
bn = 0. Furthermore

∑
ai ≡

∑
bi (mod n) and b1 < a1 so the induction is complete.

4.4.2 Deformation of hypersurfaces

Let X be a toric variety and let X → A1 be a one-parameter deformation of X. In this
subsection we study how a hypersurface of X deforms in X (see also [16] for the deformation
of the Picard group of X).

By subsection 1.2.5, the Cox ring of X is a polynomial ring K[S1, . . . , Sr]. Choose an
admissible triple (m, %,C) and construct the corresponding deformation as explained in
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section 4.2.1. The map η given in section 4.2.2 is defined by a semigroup homomorphism
ν+ : Zr+1

≥0 → Zr≥0 which can be naturally extended to a group homomorphism ν : Zr+1 →
Zr. Notice that ν is the transpose of ψ defined in (4.2.5). A homogeneous polynomial
f ∈ K[S1, . . . , Sr] can be written as a sum

f = c1m1 + . . .+ ckmk

where ci ∈ K and mi is a monomial for all i. A homogeneous polynomial f̃ ∈ K[T1, Ti,j ]
such that f = η(f̃) will exist if and only if the exponent vector of each mi is in the image of
ν+. In this case, if we let g ∈ K[T1, Tij ] be the trinomial (4.2.4) corresponding to (m, %,C),
the subvariety

V (f̃ , g) ⊂ X̃

defines a one-parameter deformation of X. Observe that if f̃ ′ ∈ K[T1, Tij ] is another lifting
of f , i.e. η(f̃ ′) = f , then f̃ ′ − f̃ ∈ 〈g, T1〉 so that the equality V (f̃ , g, T1) = V (f̃ ′, g, T1)
holds.

Let QX : Zr → Cl(X) be the grading map of the toric variety X, i.e QX maps e ∈ Zr to
the class of the divisor

∑r
i=1 eiDi, where Di is the i-th invariant prime divisor of X. Given

a class w ∈ Cl(X) and an equivariant divisor D of X such that [D] = w, a monomial basis
of the Riemann-Roch space of D is in bijection with the set

Q−1
X (w) ∩ Zr≥0.

The subset of monomials that can be lifted to monomials of K[T1, Tij ] via η is in bijection
with

im(ν+) ∩Q−1
X (w) ∩ Zr≥0.

Proposition 4.4.4. The set im(ν+) is the Hilbert basis of the rational polyhedral cone that
it generates.

Proof. Let Aν be the matrix associated to the map ν and let j% be the index such that Sj%
corresponds to the ray % in ΣX . Due to the way η is defined, it is clear that by removing
the (2, j%)-th column from Aν , and after an adequate rearrangement of its columns, we
obtain a matrix with the following properties:

• All the entries in the diagonal are 1.

• Only one column has non-zero entries outside of the diagonal.

It is easy to see that such a matrix has determinant equal to 1.
Similarly, we can remove the (3, j%)-th column from Aν to get a matrix with determinant

1. This shows that the cone generated by the columns of Aν is the union of two smooth
cones (in the sense of toric geometry), which proves the statement.
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Let PX be the matrix whose columns are the generators of the rays of ΣX . Let P0

be the minor of P (m, %,C) resulting from removing the leftmost column and bottom row.
Let Q̃ be the cokernel of P ∗0 , i.e. the grading matrix of X̃ after removing the null vector
column corresponding to T1. From the Cox construction seen in (1.2.1), we get the following
commutative diagram of group homomorphisms with exact rows

0 // M̃
P ∗0 //

ξ

��

Zr+1 Q̃ //

ν

��

Cl(X̃)

ν̄

��

// 0

0 //M
P ∗X // Zr QX // Cl(X) // 0

where the square on the left is the dual of (4.2.6) and ν̄ is uniquely defined by ν. Denote
the exponent vector of a monomial m by v(m). Then we have

ker ν = v
(∏

(2,j)∈U2
T
−aj
2j

)
− v

(∏
(3,j)∈U3

T
−aj
3j

)
⊆ ker Q̃,

which together with the surjectivity of ξ and ν, imply that ν̄ is an isomorphism.

Example 4.4.5. We now turn our attention to the case of Hirzebruch surfaces, i.e. X =
Fn. The fan ΣX has four rays ρ1, ρ2, ρ3, ρ4, generated respectively by

v1 = (1, 0), v2 = (0, 1), v3 = (−1, n), v4 = (0,−1).

LetD1, D2, D3, D4 be the corresponding invariant divisors. In this case we have Cl(X) ∼= Z2

generated by [D1] and [D2], along with

PX =

[
1 0 −1 1
0 1 n −1

]
, QX =

[
1 0 1 n
0 1 0 1

]
,

plus a section s for Q and a projection π for P ∗ given by

s =


1 0
0 1
0 0
0 0

 , π =

[
0 0 −1 0
0 0 0 −1

]
.

We choose ω = (a, b) ∈ Cl(X), corresponding to the class a[D1] + b[D2], with a > bn > 0
to guarantee ampleness. Then, by [8, §9.1], the polyhedron π(Q−1

X (ω)∩Zr≥0) is a trapezoid
with vertices (in counterclockwise order)

(0, 0), (−a, 0), (−a,−b), (−nb,−b).

Applying P ∗ + (a, b, 0, 0) to it, we obtain the trapezoid Q−1
X (ω) ∩ Zr≥0, whose vertices are

(a, b, 0, 0), (0, b, a, 0), (0, 0, a− bn, b), (a− bn, 0, 0, b).
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If we now consider the deformation given by the admissible triple (m, %,C) where m =
[−α,−1], % = ρ2, C = {ρ1} and 0 < α < n, we get

P0 =

 1 −α −1 0 0
1 0 0 −1 α−n
0 1 0 0 −1

 , ν =


0 1 0 α 0
0 0 1 1 0
0 0 n−α 0 1
1 0 0 0 0

 .
Notice that the vertices of Q−1

X (ω) ∩ Zr≥0 can now be written as

ν(0, a− bα, 0, b, 0), ν(0, 0, b, 0, a− bn+ bα), ν(b, 0, 0, 0, a− bn), ν(b, a− nb, 0, 0, 0),

which shows that the trapezoid is contained in im(ν+). This means that when we deform
Hirzebruch surfaces, every function in the Riemann-Roch space of the class ω can be lifted
via η.



Chapter 5

Resolutions of triple points

A triple point is a rational singularity of multiplicity 3 in a surface. In [1], M. Artin
classifies the dual resolution graphs of triple points into 9 cases (see Section 5.2). He also
proves every triple point can be embedded in C4. Our motivation for this chapter is to
study these singularities using Cox coordinates and finding deformations of triple points.
For this end, we start the chapter by explaining a description found in [2] which associates
every K∗-surface to a pair of matrices A and P , with P being the matrix that fits in (1.2.1).
We also explain how to use this data to find resolutions of singularities in K∗-surfaces (cf.
[2, §5.4.3]). We make use of these methods to construct a surface for each triple point that
contains it. Our main result in this section is Theorem 3.

5.1 Combinatorial data for K∗-surfaces

We begin by recalling the combinatorial description of complete K∗-surfaces given in [2,
§5.4]. We begin with the construction of a graded algebra which will be the Cox ring of
the K∗-surface.

Construction 5.1.1. Let r and n0, . . . , nr be positive integers. Consider vectors
li := (li1, . . . , lini) ∈ Zni≥1 and di := (di1, . . . , dini) ∈ Zni satisfying

di1
li1

< . . . <
dini
lini

for all i, gcd(lij , dij) for all i, j.

With this data, define the following block matrices

L :=

 −l0 l1 · · · 0
...

. . .
...

−l0 0 · · · lr

 , d :=
[
d0 d1 · · · dr

]
.

48
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Set n := n1 + . . .+ nr. Then we define four types of (r + 1)× (n+m) matrices P , where
m = 0, 1, 2 according to the following cases:

Type (e-e) Type (p-e) Type (e-p) Type (p-p)

P =

[
L
d

]
P =

[
L 0
d 1

]
P =

[
L 0
d −1

]
P =

[
L 0 0
d 1 −1

]
and require that the columns of P generate Qr+1 as a cone. Choose also a matrix A =
[a0, . . . , ar] with pairwise linearly independent columns a0, . . . , ar ∈ K2.
We define the K-algebra

R(A,P ) := K[Tij , Sk : 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m]/〈gI : I ∈ J〉

where J is the set of all triples I = (i1, i2, i3), with 0 ≤ i1 ≤ i2 ≤ i3 ≤ r, and

gI := gi1,i2,i3 := det

[
T
li1
i1

T
li2
i2

T
li3
i3

ai1 ai2 ai3

]
, T lii := T li1i1 · · ·T

lini
ini

.

Theorem 5.1.2. The K-algebra R(A,P ) is the Cox ring of a Q-factorial projective K∗-
surface X(A,P ), which is uniquely determined, up to isomorphism, by A and P . Moreover,
every rational normal complete K∗-surface is isomorphic to some X(A,P ).

Proposition 5.1.3. Let X = X(A,P ) be a K∗-surface as constructed above. For each of
the four types of P we have the following

(e-e) Both the source and the sink are elliptic fixed points.

(p-e) The source is a smooth rational curve and the sink is an elliptic fixed point.

(e-p) The source is an elliptic fixed point and the sink is a smooth rational curve.

(p-p) Both the source and the sink are smooth rational curves.

This description of K∗-surfaces by matrices allows for a simple method of resolving
singularities. The procedure consist of two steps.

Construction 5.1.4. Let X = X(A,P ) be a K∗-surface. We recall the procedure given
in [2, Construction 5.4.3.2] to desingularize X in an equivariant way.

Tropical Step. Enlarge P to a matrix P ′ by adding the columns [0, . . . , 0, 1] and
[0, . . . , 0,−1] if not already present, so that P ′ is a matrix of type (p-p). This step is
represented by the following picture (taken from [2]).

Observe that in this way the new surface is of type (e-e).
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Figure 5.1: Tropical step (Source: [2])

Toric Step. Enlarge P ′ to a matrix P ′′, which will have columns equal to the primitive
generators of the cones generated by the following pairs of vectors (where, if subindices
appear, every possible pair must be considered):

(i) The column [0, . . . , 0, 1] and the column containing li1

(ii) The column [0, . . . , 0,−1] and the column containing lini

(iii) The column containing lij and the one containing li(j+1)

The columns in P ′′ are ordered according to the requirements set in Construc-
tion 5.1.1. This step is represented by the following picture (taken from [2]).

Figure 5.2: Toric step (Source: [2])

Observe that in this way the new surface is of type (e-e) and it is smooth.

The resulting surface X ′′ = X(A,P ′′) is then a (canonical) resolution of singularities of X.

Remark 5.1.5. Observe that, as shown in the picture, the toric step is a toric resolution of
singularities on each “leaf” above the tropical P1. As a consequence, given three primitive
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generators vi−1, vi, vi+1 of three consecutive one dimensional rays on the same leaf the
following integer relation holds:

−bivi = vi−1 + vi+1,

where bi is the self-intersection number of the prime invariant curve which corresponds to
vi.

5.2 Resolution of triple points

We recall Artin’s classification of triple points, according to their resolution dual graphs.
We use a white circle to represent a curve of self-intersection −2 and a black circle to
represents a curve of self-intersection −3. There are 9 cases.

An,m,p
︷ ︸︸ ︷m ︷ ︸︸ ︷p

︷ ︸︸ ︷n

Bm,n
︷ ︸︸ ︷m ︷ ︸︸ ︷n

Cm,n
︷ ︸︸ ︷n ︷ ︸︸ ︷m

Dn,5

︷ ︸︸ ︷n

E6,0

E7,0

E0,7

Fn,6
︷ ︸︸ ︷n

Gn,0
︷ ︸︸ ︷n

We will treat each triple point separately, leaving Am,n,p for the end as the calculations
involved with this case proved to be slightly more complicated than the rest.

5.2.1 The case Bm,n

Take the triple point Bm,n. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.

Let PY be the matrix corresponding to Y . We know, according to Construction 5.1.1,
that PY is constructed from six vectors l0, l1, l2, d0, d1, d2 in the following way

PY =

 −l0 l1 0 0 0
−l0 0 l2 0 0
d0 d1 d2 1 −1

 . (5.2.1)
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−2

−3 −2 −2

−2

−2 −2

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

Figure 5.3: The case Bm,n (Source: own elaboration)

We begin by showing that for all i the following hold:

li1 = lini = 1. (5.2.2)

Indeed, let bi1, . . . , bisi be the self-intersection numbers of one of the three horizontal
branches of the above intersection graph (excluding the nodes of valency three). The
smoothness of Y implies that the Hirzebruch-Jung continued fraction [bi1, . . . , bisi ] equals
0 or equivalently the following equality

bi1 −
1

[bi2, . . . , bini ]
= 0.

Since bi1 is integer we deduce that the numerator of [bi2, . . . , bini ] equals 1. Recalling that
the vector li = (li1, . . . , lini) consists of the numerators of the subsequent convergents of
the continued fraction [bi1, . . . , bini ] we deduce li1 = 1. The equality lini = 1 is obtained in
a similar way as a consequence of the equality [bini , . . . , bi1] = 0. On the other hand, let
D−Y be the (−2)-curve which is represented by the left point of valency three in the above
graph. According to [2, Corollary 5.4.2.2] the first of the following equalities holds

d01

l01
+
d11

l11
+
d21

l21
= (D−Y )2 = −2,

which reduces to

d01 + d11 + d21 = −2

by the above observation. By appying suitable elementary row operations to the matrix
PY we can assume without loss of generality that

d01 = −1, d11 = 0, d21 = −1. (5.2.3)

Now, according to Remark 5.1.5, we see that the self-intersection numbers −bij must
fit in the equations
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bij

[
lij
dij

]
=

[
li(j−1)

di(j−1)

]
+

[
li(j+1)

di(j+1)

]
(5.2.4)

where we are considering li0 = 0 and di0 = −1 for all i, because these correspond to the
column (0, 0,−1) of PY . This allows us to inductively compute the entries of li and di up
to the ki− 1-th coordinate, where ki− 2 is the number of nodes of valency two on the i-th
branch of the graph of Bm,n. We deduce the following

l0 = (1, 3, 5, . . . , 2m+ 3, l0k0 , . . . , l0n0)

l1 = (1, 2, l1k1 , . . . , l1n1)

l2 = (1, 2, 3, . . . , n+ 1, l2k2 , . . . , l2n2)

d0 = (−1,−2,−3, . . . ,−(m+ 2), d0k0 , . . . , d0n0)

d1 = (0, 1, d1k1 , . . . , d1n1)

d2 = (−1,−1, . . . ,−1︸ ︷︷ ︸
n+1 times

, d2k2 , . . . , d2n2).

Then, since for all i we see that (bi0, di0) = (0,−1) and (bi1, di1) equals either (1, 0) or
(1,−1) we have that these two vectos span Z2. Using (5.2.4) and induction it is easy to see
that the vectors (bij , dij) and (bi(j+1), di(j+1)) also span Z2, meaning that they generate a
smooth cone. This shows that, for all i, the vectors

(bi0, di0), (di1, di1), . . . , (biki−1, diki−1)

form a Hilbert basis of
Cone ((0,−1) , (biki−1, diki−1))

because none of the curves in the dual graph of a triple point have a self-intersection less
than−2 or less. Observe that the unknown entries in the matrix PY can be reconstructed by
producing the Hilbert basis of Cone ((biki−1, diki−1) (0, 1)) for each i. Let us now construct
the following matrices

P :=

 −l0k0 l1k1 0 0
−l0k0 0 l2k2 0
d0k0 d1k1 d2k2 1

 , A :=

[
1 0 −1
0 1 −1

]
(5.2.5)

and let X = X(P,A) be the complete K∗-surface associated to them as in Theorem 5.1.2.
We can construct a resolution of X using the Construction 5.1.4, which will restore the
vectors li and di described above. This shows that Y → X is an equivariant resolution of
singularities and thus X contains a singular point whose dual graph is the same as the one
we started with, and therefore the triple point in question is in X. In the present case of
the point Bm,n, we have

P :=

 −(2m+ 3) 2 0 0
−(2m+ 3) 0 n+ 1 0
−(m+ 2) 1 −1 1

 .
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The affine open invariant subset U ⊆ X obtained by removing the invariant divisor which
corresponds to the last column of the above matrix is an affine K∗-surface which has a
unique singular point and the singularity type of this point is Bm,n. By [15] the surface U
is described as well by means of a matrix which is obtained by removing the last column
of the above matrix P . The corresponding Cox ring together with its grading matrix and
divisor class group are:

R(U) =
K[T1, T2, T3]

〈T 2m+3
1 − T 2

2 + Tn+1
3 〉

[
4m + n + 5 2m + n + 4 1

]
Z/(4m + n + 7)Z

5.2.2 The case Cm,n

Take the triple point Cm,n. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.

−2

−2 −2 −3 −2 −2

−2

−2

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

Figure 5.4: The case Cm,n (Source: own elaboration)

We denote by PY the matrix constructed as in (5.2.1). Reasoning as in the case Bm,n
we deduce the equalities (5.2.2) and (5.2.3). This allows us to inductively compute the
entries of li and di up to the ki − 1-th coordinate, where ki − 2 is the number of nodes of
valency two on the i-th branch of the graph of Cm,n. We deduce the following

l0 = (1, 2, 3, . . . ,m,m+ 1, 2m+ 3, 3m+ 5, . . . , (n+ 2)m+ 2n+ 3, l0k0 , . . . , l0n0)

l1 = (1, 2, l1k1 , . . . , l1n1)

l2 = (1, 2, l2k2 , . . . , l2n2)

d0 = (−1, . . . ,−1,−2,−3, . . . ,−(n+ 2), d0k0 , . . . , d0n0)

d1 = (0, 1, d1k1 , . . . , d1n1)

d2 = (−1,−1, d2k2 , . . . , d2n2).
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By the above we deduce that the matrix P given in (5.2.5) is the following

P =

 −α 2 0 0
−α 0 2 0

−(n+ 2) 1 −1 1


where α = (n+ 2)m+ 2n+ 3. Let X = X(P,A) be the complete K∗-surface defined by the
above matrix and the matrix A given in (5.2.5). The affine open invariant subset U ⊆ X
obtained by removing the invariant divisor which corresponds to the last column of the
above matrix is an affine K∗-surface which has a unique singular point and the singularity
type of this point is Cm,n. By [15] the surface U is described as well by means of a matrix
which is obtained by removing the last column of the above matrix P . The corresponding
Cox ring is:

R(U) =
K[T1, T2, T3]

〈Tα1 − T 2
2 + T 2

3 〉
The grading matrix and divisor class group are

if 2|m :
[
4n + 6 2n + 5 1

]
Z/(4n + 8)Z

if 2 6 |m, 2|n :
[
2n + 2 2n + 5 1

]
Z/(4n + 8)Z

if 2 6 |m, 2 6 |n :

[
1 1 0
n n + 3 1

]
(Z/2Z)× (Z/(2n + 4)Z)

5.2.3 The case Dn,5

Take the triple point Dn,5. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.

−2

−2 −3 −2 −2

−2

−2 −2

︸ ︷︷ ︸
n

Figure 5.5: The case Dn,5 (Source: own elaboration)

We denote by PY the matrix constructed as in (5.2.1). Reasoning as in the case Bm,n
we deduce the equalities (5.2.2) and (5.2.3). This allows us to inductively compute the



56 CHAPTER 5. RESOLUTIONS OF TRIPLE POINTS

entries of li and di up to the ki − 1-th coordinate, where ki − 2 is the number of nodes of
valency two on the i-th branch of the graph of Dn,5. We deduce the following

l0 = (1, 2, 5, 8, 11, . . . , 3n+ 5, l0k0 , . . . , ll0n0 )

l1 = (1, 2, l1k1 , . . . , l1n1)

l2 = (1, 2, 3, l2k2 , . . . , l2n2)

d0 = (−1,−1,−2,−3,−4, . . . ,−(n+ 2), d0k0 , . . . , d0n0)

d1 = (0, 1, d1k1 . . . , d1n1)

d2 = (−1,−1,−1, d2k2 , . . . , d2n2)

By the above we deduce that the matrix P given in (5.2.5) is the following

P =

 −(3n+ 5) 2 0 0
−(3n+ 5) 0 3 0
−(n+ 2) 1 −1 1


Let X = X(P,A) be the complete K∗-surface defined by the above matrix and the matrix
A given in (5.2.5). The affine open invariant subset U ⊆ X obtained by removing the
invariant divisor which corresponds to the last column of the above matrix is an affine
K∗-surface which has a unique singular point and the singularity type of this point is Dn,5.
By [15] the surface U is described as well by means of a matrix which is obtained by
removing the last column of the above matrix P . The corresponding Cox ring together
with its grading matrix and divisor class group are:

R(U) =
K[T1, T2, T3]

〈T 3n+5
1 − T 2

2 + T 3
3 〉

[
1 3n + 6 2n + 4

]
Z/(3n + 7)Z

5.2.4 The case E6,0

Take the triple point E6,0. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.

We denote by PY the matrix constructed as in (5.2.1). Reasoning as in the case Bm,n
we deduce the equalities (5.2.2) and (5.2.3). This allows us to inductively compute the
entries of li and di up to the ki − 1-th coordinate, where ki − 2 is the number of nodes of
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−2

−2 −2 −2

−2

−2 −3

Figure 5.6: The case E6,0 (Source: own elaboration)

valency two on the i-th branch of the graph of E6,0. We deduce the following

l0 = (1, 2, 3, 4, l0k0 , . . . , ll0n0 )

l1 = (1, 2, l1k1 , . . . , l1n1)

l2 = (1, 2, 5, l2k2 , . . . , l2n2)

d0 = (−1,−1,−1,−1, d0k0 , . . . , d0n0)

d1 = (0, 1, d1k1 . . . , d1n1)

d2 = (−1,−1,−2, d2k2 , . . . , d2n2)

By the above we deduce that the matrix P given in (5.2.5) is the following

P =

 −4 2 0 0
−4 0 5 0
−1 1 −2 1


Let X = X(P,A) be the complete K∗-surface defined by the above matrix and the

matrix A given in (5.2.5). The affine open invariant subset U ⊆ X obtained by removing
the invariant divisor which corresponds to the last column of the above matrix is an affine
K∗-surface which has a unique singular point and the singularity type of this point is E6,0.
By [15] the surface U is described as well by means of a matrix which is obtained by
removing the last column of the above matrix P . The corresponding Cox ring together
with its grading matrix and divisor class group are:

R(U) =
K[T1, T2, T3]

〈T 4
1 − T 2

2 + T 5
3 〉

[
1 5 2

]
Z/6Z

5.2.5 The case E7,0

Take the triple point E7,0. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.
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−2

−2 −2 −2 −2

−2

−2 −3

Figure 5.7: The case E7,0 (Source: own elaboration)

We denote by PY the matrix constructed as in (5.2.1). Reasoning as in the case Bm,n
we deduce the equalities (5.2.2) and (5.2.3). This allows us to inductively compute the
entries of li and di up to the ki − 1-th coordinate, where ki − 2 is the number of nodes of
valency two on the i-th branch of the graph of E7,0. We deduce the following

l0 = (1, 2, 3, 4, 5, l0k0 , . . . , ll0n0 )

l1 = (1, 2, l1k1 , . . . , l1n1)

l2 = (1, 2, 5, l2k2 , . . . , l2n2)

d0 = (−1,−1,−1,−1,−1, d0k0 , . . . , d0n0)

d1 = (0, 1, d1k1 . . . , d1n1)

d2 = (−1,−1,−2, d2k2 , . . . , d2n2)

By the above we deduce that the matrix P given in (5.2.5) is the following

P =

 −5 2 0 0
−5 0 5 0
−1 1 −2 1


Let X = X(P,A) be the complete K∗-surface defined by the above matrix and the matrix
A given in (5.2.5). The affine open invariant subset U ⊆ X obtained by removing the
invariant divisor which corresponds to the last column of the above matrix is an affine
K∗-surface which has a unique singular point and the singularity type of this point is E7,0.
By [15] the surface U is described as well by means of a matrix which is obtained by
removing the last column of the above matrix P . The corresponding Cox ring together
with its grading matrix and divisor class group are:

R(U) =
K[T1, T2, T3]

〈T 5
1 − T 2

2 + T 5
3 〉

[
3 0 1

]
Z/5Z
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5.2.6 The case E0,7

Take the triple point E0,7. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.
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−2 −2 −2 −3

Figure 5.8: The case E0,7 (Source: own elaboration)

We denote by PY the matrix constructed as in (5.2.1). Reasoning as in the case Bm,n
we deduce the equalities (5.2.2) and (5.2.3). This allows us to inductively compute the
entries of li and di up to the ki − 1-th coordinate, where ki − 2 is the number of nodes of
valency two on the i-th branch of the graph of E0,7. We deduce the following

l0 = (1, 2, 3, l0k0 , . . . , ll0n0 )

l1 = (1, 2, l1k1 , . . . , l1n1)

l2 = (1, 2, 3, 4, 9, l2k2 , . . . , l2n2)

d0 = (−1,−1,−1, d0k0 , . . . , d0n0)

d1 = (0, 1, d1k1 . . . , d1n1)

d2 = (−1,−1,−1,−1,−2, d2k2 , . . . , d2n2)

By the above we deduce that the matrix P given in (5.2.5) is the following

P =

 −3 2 0 0
−3 0 9 0
−1 1 −2 1


Let X = X(P,A) be the complete K∗-surface defined by the above matrix and the matrix
A given in (5.2.5). The affine open invariant subset U ⊆ X obtained by removing the
invariant divisor which corresponds to the last column of the above matrix is an affine
K∗-surface which has a unique singular point and the singularity type of this point is E0,7.
By [15] the surface U is described as well by means of a matrix which is obtained by
removing the last column of the above matrix P . The corresponding Cox ring together
with its grading matrix and divisor class group are:
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R(U) =
K[T1, T2, T3]

〈T 3
1 − T 2

2 + T 9
3 〉

[
1 0 1

]
Z/3Z

5.2.7 The case Fn,6

Take the triple point Fn,6. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.
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n

Figure 5.9: The case Fn,6 (Source: own elaboration)

We denote by PY the matrix constructed as in (5.2.1). Reasoning as in the case Bm,n
we deduce the equalities (5.2.2) and (5.2.3). This allows us to inductively compute the
entries of li and di up to the ki − 1-th coordinate, where ki − 2 is the number of nodes of
valency two on the i-th branch of the graph of Fn,6. We deduce the following

l0 = (1, 2, 3, 7, 11, 15, . . . , 4n+ 7, l0k0 , . . . , ll0n0 )

l1 = (1, 2, l1k1 , . . . , l1n1)

l2 = (1, 2, 3, l2k2 , . . . , l2n2)

d0 = (−1,−1,−1,−2,−3,−4, . . . ,−(n+ 2), d0k0 , . . . , d0n0)

d1 = (0, 1, d1k1 . . . , d1n1)

d2 = (−1,−1,−1, d2k2 , . . . , d2n2)

By the above we deduce that the matrix P given in (5.2.5) is the following

P =

 −(4n+ 7) 2 0 0
−(4n+ 7) 0 3 0
−(n+ 2) 1 −1 1


Let X = X(P,A) be the complete K∗-surface defined by the above matrix and the matrix
A given in (5.2.5). The affine open invariant subset U ⊆ X obtained by removing the
invariant divisor which corresponds to the last column of the above matrix is an affine
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K∗-surface which has a unique singular point and the singularity type of this point is Fn,6.
By [15] the surface U is described as well by means of a matrix which is obtained by
removing the last column of the above matrix P . The corresponding Cox ring together
with its grading matrix and divisor class group are:

R(U) =
K[T1, T2, T3]

〈T 4n+7
1 − T 2

2 + T 3
3 〉

[
2n + 4 n + 4 1

]
Z/(2n + 5)Z

5.2.8 The case Gn,0

Take the triple point Gn,0. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.
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n

Figure 5.10: The case Gn,0 (Source: own elaboration)

We denote by PY the matrix constructed as in (5.2.1). Reasoning as in the case Bm,n
we deduce the equalities (5.2.2) and (5.2.3). This allows us to inductively compute the
entries of li and di up to the ki − 1-th coordinate, where ki − 2 is the number of nodes of
valency two on the i-th branch of the graph of Gn,0. We deduce the following

l0 = (1, 2, 3, . . . , n+ 1, l0k0 , . . . , ll0n0 )

l1 = (1, 3, l1k1 , . . . , l1n1)

l2 = (1, 2, 3, l2k2 , . . . , l2n2)

d0 = (−1, . . . ,−1︸ ︷︷ ︸
n+1 times

, d0k0 , . . . , d0n0)

d1 = (0, 1, d1k1 . . . , d1n1)

d2 = (−1,−1,−1, d2k2 , . . . , d2n2)

By the above we deduce that the matrix P given in (5.2.5) is the following

P =

 −(n+ 1) 3 0 0
−(n+ 1) 0 3 0

−1 1 −1 1


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Let X = X(P,A) be the complete K∗-surface defined by the above matrix and the matrix
A given in (5.2.5). The affine open invariant subset U ⊆ X obtained by removing the
invariant divisor which corresponds to the last column of the above matrix is an affine
K∗-surface which has a unique singular point and the singularity type of this point is Gn,0.
By [15] the surface U is described as well by means of a matrix which is obtained by
removing the last column of the above matrix P . The corresponding Cox ring is:

R(U) =
K[T1, T2, T3]

〈Tn+1
1 − T 3

2 + T 3
3 〉

its grading matrix and divisor class group are

for n ≡ 0 (mod 3) :
[
3 4 1

]
, Z/9Z

for n ≡ 1 (mod 3) :
[
6 7 1

]
, Z/9Z

for n ≡ 2 (mod 3) :

[
1 1 0
2 0 1

]
, (Z/3Z)× (Z/3Z)

5.2.9 The case Am,n,p

Take the triple point Am,n,p. We will construct a complete K∗-surface Y such that the
intersection graph of its prime invariant curves contains the intersection graph of the triple
point. The situation is displayed in the following picture.

−3

−2 −2

−2 −2

−2 −2

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n
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Figure 5.11: The case Am,n,p (Source: own elaboration)

We denote by PY the matrix constructed as in (5.2.1). Reasoning as in the case Bm,n
we deduce the equality (5.2.2). According to [2, Corollary 5.4.2.2] the first of the following
equalities holds

d01

l01
+
d11

l11
+
d21

l21
= (D−Y )2 = −3,

which reduces to
d01 + d11 + d21 = −3.
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By appying suitable elementary row operations to the matrix PY we can assume without
loss of generality that

d01 = d11 = d21 = −1.

This allows us to inductively compute the entries of li and di up to the ki−1-th coordinate,
where ki−2 is the number of nodes of valency two on the i-th branch of the graph of Am,n,p.
We deduce the following

l0 = (1, 2, 3, . . . ,m+ 1, l0k0 , . . . , ll0n0 )

l1 = (1, 2, 3, . . . , n+ 1, l1k1 , . . . , l1n1)

l2 = (1, 2, 3, . . . , p+ 1, l2k2 , . . . , l2n2)

d0 = (−1, . . . ,−1︸ ︷︷ ︸
n+1 times

, d0k0 , . . . , d0n0)

d1 = (−1, . . . ,−1︸ ︷︷ ︸
m+1 times

, d1k1 . . . , d1n1)

d2 = (−1, . . . ,−1︸ ︷︷ ︸
p+1 times

, d2k2 , . . . , d2n2)

By the above we deduce that the matrix P given in (5.2.5) is the following

P =

 −(n+ 1) m+ 1 0 0
−(n+ 1) 0 p+ 1 0

−1 −1 −1 1


Let X = X(P,A) be the complete K∗-surface defined by the above matrix and the matrix
A given in (5.2.5). The affine open invariant subset U ⊆ X obtained by removing the
invariant divisor which corresponds to the last column of the above matrix is an affine K∗-
surface which has a unique singular point and the singularity type of this point is Am,n,p.
By [15] the surface U is described as well by means of a matrix which is obtained by
removing the last column of the above matrix P . Computing the grading of the Cox ring
for this case is still a work in progress. However, we can give the class group of X by the
following rule: let

A := mn+mp+ np+ 2m+ 2n+ 2p+ 3

and let B be the greatest common divisor of m+1, n+1 and p+1. Using now the fact that
m ≡ n ≡ p ≡ −1 modulo B, it is easy to check that A is divisible by B. Let C = A/B,
then

Cl(X) ∼=
Z
BZ
× Z
CZ

.



Conclusion

The main objective of this thesis was to study deformations of T -varieties of complexity
at most 1. We have done this mainly in two different ways.

Firstly, for the case of a bidimensional, smooth, complexity-one T -variety we have
managed to construct an Euler-type sequence (Theorem 1) which helps in studying the
cohomology group H1(X,TX). Recall that this group parametrizes infinitesimal deforma-
tions of X and as such it is directly related to our initial goal. Using this sequence, we
were also able to answer the question of whether a smooth complexity-one T -surface is
infinitesimally rigid (Theorem 2).

Secondly, we used the language of Cox rings to give a combinatorial method to construct
one-parameter deformations of smooth toric varieties (Theorem 4.2.1) and to compute their
image under the Kodaira-Spencer map (Theorem 4.2.3). We then used this construction
to understand when a scroll over P1 is rigid and whether it can deform to another scroll.
We have also used our construction to study deformations of hypersurfaces.

For future projects, we plan to get a deeper understanding of how closely related are
M. Mavlyutov’s method [24] and N. Ilten, R. Vollmert’s method [20] for constructing
deformations of toric varieties. More precisely, we would like to prove that these two
methods are equivalent by using our results from Chapter 4. Afterwards, we will attempt to
generalize Theorem 4.2.1 to the case of singular K∗-surfaces, with the intent of applying it to
the surfaces found in Chapter 5 and thus obtaining deformations of K∗-surfaces containing
rational triple points as singularities.
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