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RESUMEN

En esta tesis estudiamos una técnica tomográfica que busca minimizar la infidelidad

entre el estado cuántico del sistema y una aproximación a dicho estado. Para ello, pro-

ponemos un método de optimización para funciones de variables complejas no-holomórficas,

basandonos en un método similar para funciones de variables reales. Demostramos la

validez de nuestra propuesta tanto teóricamente como comparandola con técnicas anteri-

ores mediante simulaciones computacionales.

ABSTRACT

In this thesis we study a tomographic technique that seeks to minimize the infidelity

between the quantum state of the system and an estimate of such state. For that, we propose

an optimization method for non-holomorphic functions with complex variables, based on a

similar method for functions with real variables. We prove the validity of our proposal both

theoretically and by comparing it to previous techniques using computational simulations.
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A physical system can be characterized by its state, a complete mathematical description

of the system [1]. If the state is known, the result of any measurement on the system can be

predicted. It is then of great interest to devise a technique for experimentally determining

the state of an unknown system.

Classically, such a procedure can always—theorically, if not practically—be designed.

However, in quantum mechanics this is not the case, as there are two important results that

prevent it. First, because of Heisenberg uncertainty principle [2], performing a measure-

ment to determine one property will make following measurents to give no information

on other properties. Second, the no-cloning theorem [3] states it is impossible to perfectly

copy the system without knowing its state.

On the other hand, it is possible to make an estimate of the state of a system if we pre-

pare many systems in the same state, and we perform different measurements on each one.

The problem of obtaining a good enough estimate is called quantum tomography, first pro-

posed by Fano in 1957 [4], but it was not experimentally realized until 1993 [5–7].

Because of the importance of characterizing quantum systems, the development of bet-

ter tomographic schemes is of great interest to many areas, like quantum computing [8,9],

quantum information [10], quantum metrology [11], quantum simulators [12], quantum

error correction [13], boson sampling [14, 15], and characterizing optical signals [16],

cavity fields [17] and trapped ions [18], among many other applications.

Most tomographic schemes collect a large quantity of experimental data and postprocess

it to estimate the state of the system. However, in 2014, Ferrie [19] proposed a quantum

tomography technique that aproaches the target state in real time, needing less computa-

tional resources.
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In this work, we will improve the perfomance of Ferrie’s method by adapting the stochatic

approximation algorithm used in the original article to perform directly on functions of

complex variables through Wirtinger calculus. As Ferrie’s method has already been com-

pared with standard tomographic schemes [20], it will only be necessary to compare our

results with those of Ferrie.

In chapter 2, we will introduce the mathematical and physical tools and concepts used

in this thesis.

In chapter 3, we will derive the adapted algorithm for functions of complex variables,

proving it satisfies under some basic requirements to be well behaved.

In chapter 4, we will apply the previously obtained algortihm in the problem of quantum

tomography and perform computational simulations to contrast our results with the origi-

nal technique.
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Fundamental concepts
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2.1 Introduction to Classical Statistics

Throughout this work we will make use of certain concepts of classical statistics that we

will present in this section. Quantum mechanics itself is built around statistical elements,

and conditional probabilities are vital for understanding the main results of this thesis.

2.1.1 Events, probabilities and conditional probabilities

The sample space Ω is the set of all possible outcomes ω for a given experiment such that

performing the experiment once makes it so that one and only one outcome in the sample

space occurs. The experiment may be any procedure: from the toss of a coin and the roll

of a die to the measuring of a physical property of a system. Depending on the experiment,

the sample space may be finite or infinite, and countable or uncountable.

We call subsets of the sample space events Ei. The n events in the set {Ei}n
i=1 are called

mutually exclusive if, for any two of them E j and Ek distinct, E j ∩Ek =∅. If an outcome

belonging to an event occurs, we say that event occurs.

The probability p of an event is a measure acting on a subset of the sample space Ω of

likely it is for that event to occur. Probability must satisfy the following conditions [21]:

1. p(E)≥ 0 for all events E,

2. If E = Ω, p(E) = 1,

3. If the events {Ei}n
i=1 are mutually exclusive, p(

⋃n
i=1 p(Ei)) = ∑

n
i=1 p(Ei).

If p(E) = 0, we say event E is impossible. It can be shown that probability satisfies other

properties, most importantly the following two

p(E) = 1− p(Ec), (2.1)

p(A∪B) = p(A)+ p(B)− p(A∩B), (2.2)
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where Ec is the complement of E, the set of all outcomes not in E. For simplicity, we will

define A,B = A∩B.

It may be the case that we are interested in the probability of a certain event A given that

another event B had already occurred. In this situation, the sample space Ω is replaced by

I, as only the outcomes in B can occur now. Given that p(B)> 0, we define the conditional

probability of A given B as p(A|B) = p(A,B)/p(B).

2.1.2 Probabilities on random variables

A random variable X is a function that, to each outcome ω in the sample space Ω, asigns

it a real number X(ω) = x. If the set of all possible values for X is countable we say X is

discrete, otherwise we say is continuous.

We can define the probability of obtaining x as the probability of the event of all ω such

that X(ω) = x. If X is discrete, we can express this as

p(X = x) = p({ω : X(ω) = x}). (2.3)

However, if X is continuous, it may be the case that {ω : X(ω) = x} has measure zero,

thus p(X = x) = 0. We can, nonetheless, obtain the probability for the random variable

obtaining a value within an interval. For the random variable X to be between the real

values a and b, a < b, the probability is

p(a < X ≤ b) = p({ω : a < X(ω)≤ b}). (2.4)

However, there is a better to express this probability. We define the probability density

f of X as a real-valued function that satisfies

1. f (x)≥ 0, ∀x ∈ R,
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2.
∫

∞

−∞

f (x)dx = 1,

3. p(a < X ≤ b) =
∫ b

a
f (x)dx.

The expected value of a random variable is the weighted mean of the values of the

random variable, using the probabilities of those values as weights. The expected value is

not necessarily a possible value for the random variable. For a discrete random variable

X , the expected value is

E(X) = ∑
x∈I

xp(X = x). (2.5)

where I is the set of all possible values for X . On the other hand, if X is continuous with

density probability f , its expected value will be

E(X) =
∫

∞

−∞

x f (x)dx. (2.6)

We say that two random variables X and Y are independent if

p(X = x,Y = y) = p(X = x)p(Y = y). (2.7)

From this, it can be proven that, if X and Y are independent random variables,

E(XY ) = E(X)E(Y ). (2.8)
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Indeed, let us consider the expectation value of a discrete random variable Z = XY

E(Z) = ∑
z

zp(Z = z) (2.9)

= ∑
z

∑
x,y:xy=z

xyp(X = x,Y = y) (2.10)

= ∑
x,y

xyp(X = x)p(Y = y) (2.11)

= ∑
x

xp(X = x)∑
y

yp(Y = y) (2.12)

= E(X)E(Y ). (2.13)

We can condition the probability of a random variable upon a fixed value of another

random variable. If both X and Y are discrete random variables, the conditional probability

of X given Y = y, with y fixed and p(Y = y)> 0, is

p(X = x|Y = y) =
p(X = x,Y = y)

p(Y = y)
. (2.14)

If, instead, X and Y are continuous random variables, we must consider the probability

densities f (x,y) of XY and fY (y) of Y . The conditional probability density of X given

Y = y, with y fixed and fY (y)> 0, is

fX(x|y) =
f (x,y)
fY (y)

. (2.15)

With conditional probabilities we can also condition the expected value of a random

variable upon another. The conditional expected value of X given Y = y is defined in the

case of X and Y discrete as

E(X |Y = y) = ∑
x

xp(X = x|Y = y). (2.16)

and in the case of X and Y continuous as

E(X |Y = y) =
∫

∞

−∞

x fX(x|y)dx. (2.17)
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2.2 Introduction to Quantum Mechanics

Quantum mechanics is a mathematical model useful for developing physical theories. It

doesn’t, by itself, provides us with the physical laws that rule a system, but instead creates

a framework where such laws can be formulated [22, 23]. This framework is built on four

postulates, which we will enunciate shortly.

2.2.1 Postulates of Quantum Mechanics

The first of these postulates makes reference to the manner used to describe a physical

system.

Postulate 1. A physical system is associated to a complex vector space with inner product

(called a Hilbert space). A state vector is a ray in said Hilbert space that completely

describes the system.

Following Dirac’s notation, we will represent a state vector by a ket, |ψ〉. The inner

products between two vectors, |ψ〉 and |φ〉, will be denoted as 〈φ |ψ〉 and 〈ψ|φ〉. Notice

that, due to the Hilbert space being complex, 〈φ |ψ〉 6= 〈ψ|φ〉; actually it is verified that

〈φ |ψ〉= 〈ψ|φ〉∗. State vectors are also normalized, that is to say, 〈ψ|ψ〉= 1.

A transformation Û is called unitary if it is invertible and its inverse is the self-adjoint

of Û , that is, ÛÛ† = Î, where Î is the identity transformation, that is, Î|ψ〉 = |ψ〉 for all

|ψ〉 in the Hilbert space.

The second postulate describes the change of a quantum system with time.
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Postulate 2. A closed quantum system evolves according to a unitary transformation Û.

For an initial time t0, at any later time t the relationship between the initial and final states

is given by:

|ψ(t)〉= Û(t, t0)|ψ(t0)〉. (2.18)

Postulate 2 describes the evolution of a closed quantum system, that is, a system that

does not interact with any other system. However, to perform a measurement on the

system we need to interact with it. The third postulate addresses this situation.

Postulate 3. A quantum measurement consists of a set {M̂m} of measurement operators

that act on the Hilbert space of the quantum system. The index m labels the outcome of

the measurement, and it ranges to include all posible results of said measurement. The

probability of obtaining the result m when the system is in the state |ψ〉 inmediately before

the measurement is

p(m) = 〈ψ|M̂†
mM̂m|ψ〉. (2.19)

After the measurement, the new state of the system is

|ψm〉=
M̂m|ψ〉√
〈ψ|M̂†

mM̂m|ψ〉
. (2.20)

The measurement operators must satisfy the completeness condition,

∑
m

M̂†
mM̂m = Î. (2.21)

In some cases, we may be interested in the state of a system composed by two or more

subsystems. The fourth and last postulate describes such a system in terms of the subsys-

tems.

Postulate 4. For a physical system composed of two or more distinct subsystems, its state

space is the tensor product of the state spaces of the subsystems. If the subsystems are
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numbered from 1 to n, with subsystem number i prepared in the state |ψi〉, then the state

of the system is |ψ1〉⊗ |ψ2〉⊗ · · ·⊗ |ψn〉.

It is important to remark that not all states in the composite space are of this form;

Postulate 4 tells us what the composite state is if we know the state for each subsystem,

not the other way round. When the composite state can be written as in Postulate 4 for

some choice of bases of the subsystem, we say that the system is prepared in a separable

state. Otherwise, we say it is entangled.

2.2.2 The Density Matrix

Let us consider a system whose state vector is unknown to us, but we know in which state

vectors the system may be, and with what probabilities. Let us call those states |ψi〉 and the

respective probabilities pi. The set of all this states with their corresponding probabilities,

{pi, |ψi〉} is called an ensemble of pure states. We can then characterize the state of the

system with a density operator, also called density matrix, defined by

ρ ≡∑
i

pi|ψi〉〈ψi|. (2.22)

From Postulates 2 and 3, it is possible to show how evolution and measurement works

with the density matrix representation of the system. Let us consider an ensemble in an

initial time t0, {pi, |ψi(t0)〉}. At a later time t, if the system was initially in the state

|ψi(t0)〉, it would now be in the state |ψi(t)〉 = Û(t, t0)|ψi(t0)〉, so the new ensemble is

{pi,Û(t, t0)|ψi(t0)〉}. The new density matrix is

ρ(t) = ∑
i

piÛ(t, t0)|ψi(t0)〉〈ψi(t0)|Û†(t, t0) = Û(t, t0)ρ(t0)Û†(t, t0). (2.23)
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For a measurement {M̂m} on the ensemble {pi, |ψi〉}, we have that the probability of

obtaining outcome m is

p(m) = ∑
i

p(m|i)pi (2.24)

= ∑
i

pi〈ψi|M̂†
mM̂m|ψi〉 (2.25)

= ∑
i

pitr(M̂†
mM̂m|ψi〉〈ψi|) (2.26)

= tr(M̂†
mM̂mρ). (2.27)

Also, if the system was in the state |ψi〉 before the measurement and outcome m was

obtained, after the measurement the system is in the state

|ψm
i 〉=

M̂m|ψi〉√
tr(M̂†

mM̂m|ψi〉〈ψi|)
. (2.28)

Therefore, the density matrix after the measurement is

ρm = ∑
i

p(i|m)|ψm
i 〉〈ψm

i |= ∑
i

p(i|m)
M̂m|ψi〉〈ψi|M̂†

m

tr(M̂†
mM̂m|ψi〉〈ψi|)

. (2.29)

Because p(m, i) = p(m|i)pi = p(i|m)p(m), we have

p(i|m) =
pi p(m|i)

p(m)
=

pitr(M̂†
mM̂m|ψi〉〈ψi|)

tr(M̂†
mM̂mρ)

. (2.30)

Then,

ρm = ∑
i

pi
M̂m|ψi〉〈ψi|M̂†

m

tr(M̂†
mM̂mρ)

=
M̂mρM̂†

m

tr(M̂†
mM̂mρ)

. (2.31)

We are interested in a way to characterize an operator as a density matrix. We will show

that an operator ρ is a density matrix if and only if it satisfies the following conditions:

1. tr(ρ) = 1,

2. ρ > 0 (ρ is a positive operator).
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Let us consider ρ a density matrix arising from the ensemble {pi, |ψi〉}, that is, ρ =

∑i pi|ψi〉〈ψi|. Then tr(ρ) = ∑i pitr(|ψi〉〈ψi|) = ∑i pi = 1. Also, for any |φ〉, 〈φ |ρ|φ〉 =

∑i pi〈φ |ψi〉〈ψi|φ〉= ∑i pi|〈φ |ψi〉|2 ≥ 0, so ρ > 0. To show that the equivalence goes both

ways, let us consider an operator ρ such that tr(ρ) = 1 and ρ > 0. Then we have that

ρ = ∑i ai|φi〉〈φi| with the |φi〉 orthonormal and the ai are real and non-negative, because

ρ > 0. Also, tr(ρ) = ∑i ai = 1, so we can consider the ai as probabilities and the operator

ρ as a density matrix arising from the ensemble {ai, |φi〉}.

Our interest in the density matrix representation of the quantum state comes from the fact

that there are states that can be represented by a density matrix but not by a state vector.

It is easy to show that every vector is associated with a density matrix, in particular, to the

projector of such vector.

For a state represented by a density matrix ρ , if there exists a vector |ψ〉 such that

ρ = |ψ〉〈ψ|, then we say that the system is in a pure state. Otherwise, we say it is in a

mixed state and it can not be represented by a state vector.

A state ρ can be determined as pure or mixed by evaluating the trace of ρ2. Let us

express ρ as its spectral descomposition, ρ = ∑i pi|ψi〉〈ψi|, with the |ψi〉 orthonormal, so

ρ2 = ∑i p2
i |ψi〉〈ψi| and tr(ρ2) = ∑i p2

i ≤ 1. Because p2
i ≤ pi, equality will be achieved if

and only if one of the pi equals 1 and the rest are 0. This corresponds to the case of a pure

state, so a state ρ is pure if and only if tr(ρ2) = 1.

2.2.3 Quantum Measurement Operators

In postulate 3 we introduced the measurement operators {M̂m}. We will present some of

the most important classes of measurements.
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The simplest type of measurement is the projective measurement. A projective measure-

ment is associated to an hermitian operator called an observable. An observable Ô can

be spectrally decomposed as Ô = ∑m mπ̂m, with π̂m projectors onto the eigenstates of Ô,

|φm〉, and m their respectives eigenvalues. We call operator Ô an observable because the

possible outcomes of performing the measurement associated to {π̂m} are the eigenstates

m.

Considering that projectors are hermitian and idempotent, the probability to obtain out-

come m upon measuring the state vector |ψ〉 is, according to (2.19),

p(m) = 〈ψ|π̂m|ψ〉, (2.32)

and the state after the measurement is, by (2.20)

|ψm〉=
π̂m|ψ〉√
〈ψ|π̂m|ψ〉

. (2.33)

For a density matrix ρ , we have, from (2.27) and (2.31), the probability of outcome m

and the new state after measurement are

p(m) = tr(ρπ̂m), (2.34)

ρm =
π̂mρπ̂m

tr(ρπ̂m)
. (2.35)

Another, more general, choice of measurement is the Positive Operator-Valued Mea-

sure (or POVM). A POVM is a set {Êm} such that the operators Êm are all positive and

satisfy the relation ∑m Êm = Î. A POVM can indeed be used to describe a measurement;

because the Êm are positive, we can consider M̂m =
√

Êm such that M̂†
mM̂m = Êm. Then,

∑m Êm = ∑m M̂†
mM̂m = Î, satisfying the completeness condition (2.21), thus, {Mm} is a

measurement.
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It can be easily seen that the probability of obtaining outcome m when the system is in

state |ψ〉 is

p(m) = 〈ψ|Êm|ψ〉, , (2.36)

and when it is in state ρ is

p(m) = tr(ρÊm). (2.37)

A particular case of POVM we are interested in is the symetrically informatically com-

plete POVM (SIC-POVM). For a Hilbert space of dimension d, a SIC-POVM is a set of d2

operators Êm = π̂m/d, where the π̂m are projectors that satisfy

tr(π̂iπ̂ j) =
1

d +1
for all i 6= j. (2.38)

It is not known if SIC-POVMs exist in all dimensions, but it has been conjectured so

[24–27].

2.2.4 Mutually Unbiased Bases

For a Hilbert space of dimension d, let us consider two or more orthonormal bases of state

vectors {|αi〉}, where α labels each basis and i labels each element of a given basis. We

call those bases a set of mutually unbiased bases (MUBs) if and only if they satisfy the

condition [28]

|〈αi|β j〉|2 =
1
d
(1−δi, j)+δi, jδα,β . (2.39)

From this equation we have that, for α 6= β , i.e., different bases, |〈αi|β j〉|2 = 1/d

For the case where the dimension d is a prime power, the system can have a set of MUBs

with up to d + 1 bases [28–30]. For spaces with dimension not a prime power, it is not
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known how many MUBs the system allows.

2.3 Tomography of Quantum States via Postprocessed State
Estimation

These postulates provide us with the method for predicting the results of a measurement

on a system —if we know the state of the system. As shown in postulate 3, measurements

on the system give us a randomly chosen outcome, and each outcome transforms the state

of the system after the measurement. It is not possible to directly obtain the state of a

system experimentally.

What is, in fact, possible, is to obtain the probabilities for each outcome by performing a

convenient set measurements on multiple systems, all prepared in the same way, and with

this information attempt to reconstruct the density matrix of the system. This procedure is

known as quantum tomography and it is the main focus of this thesis.

We will present some common tomography schemes that postprocess the gathered data

to accurately estimate the state of the system.

2.3.1 Standard Quantum Tomography

For a d-dimensional system, we will call its state a qudit. The density matrix ρd of a qudit

has d2 coefficients, so we need a set of d2 operators, however, because tr(ρd) = 1, only

d2− 1 measurements will be necessary to reconstruct the state. We start by defining the

d-dimensional elementary matrices ei
j

(ei
j)µ,ν = δi,µδ j,ν , (2.40)

with 1 ≤ µ,ν ≤ d, µ,ν labeling the position within the matrix. Clearly, ei
j is the ma-

trix with a single 1 in the ith row, jth column, and 0s in every other position. Also,
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tr(ei
j) = ∑

d
µ=1(e

i
j)µ,µ = ∑

d
µ=1 δi,µδ j,µ = δi, j. The product of elementary matrices is given

by (ei
je

k
l )µ,ν = ∑

d
λ=1(e

i
j)µ,λ (ek

l )λ ,ν = ∑
d
λ=1 δi,µδ j,λ δk,λ δl,ν = δi,µδ j,kδl,ν = (ei

l)µ,νδ j,k,

thus

ei
je

k
l = ei

lδ j,k. (2.41)

From here, we can express the generators of the special unitary group of degree d (or

SU(d)), composed by all unitary d×d matrices of determinant 1, as [31]

Θ
i
j = ei

j + e j
i , (2.42)

β
i
j =−i(ei

j− e j
i ), (2.43)

η
k
k =

√
2

k(k+1)

k

∑
j=1

(e j
j− ek+1

k+1), (2.44)

with 1≤ i < j ≤ d and 1≤ k ≤ d−1. There are d(d−1) Θi
j matrices, as well as β i

j, and

d−1 ηk
k matrices. All of them are traceless. The ηk

k are diagonal matrices, while the Θi
j

and the β i
j have no diagonal elements.

We can label the generators of SU(d) using a single letter by

σ̂( j−1)2+2(i−1) = Θ
i
j, (2.45)

σ̂( j−1)2+2i−1 = β
i
j, (2.46)

σ̂ j2−1 = η
j−1
j−1 . (2.47)

We also define σ̂0 = Îd . We can then write the density matrix as

ρd =
1
d

d2−1

∑
j=0

r jσ̂ j, (2.48)

where r j ∈R. To find r0, we just need to trace (2.48), so 1= 1
d ∑

d2−1
j=0 r jtr(σ̂ j)=

1
d r0tr(σ̂0)=

r0. Obtaining the other r j is trickier. From (2.48), we have

tr(ρdσ̂k) =
1
d

d2−1

∑
j=0

r jtr(σ̂ jσ̂k). (2.49)
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To determine the value of tr(σ̂ jσ̂k), we will have to study each case individually.

• Both σ̂ j and σ̂k are Θ matrices:

tr(Θi
jΘ

k
l ) = tr(ei

lδ j,k + ei
kδ j,l + e j

kδi,l + e j
l δi,k) (2.50)

= 2δi,lδ j,k +2δi,kδ j,l. (2.51)

However, because i < j and k < l, if j = k it is impossible that i = l, therefore,

tr(Θi
jΘ

k
l ) = 2δi,kδ j,l. (2.52)

• Both σ̂ j and σ̂k are β matrices:

tr(β i
jβ

k
l ) =−tr(ei

lδ j,k− ei
kδ j,l + e j

kδi,l− e j
l δi,k) (2.53)

=−2δi,lδ j,k +2δi,kδ j,l. (2.54)

Again, if j = k then i 6= l, so

tr(β i
jβ

k
l ) = 2δi,kδ j,l. (2.55)

• Both σ̂ j and σ̂k are η matrices (we assume k ≤ l):

tr(ηk
k η

l
l ) =

2√
k(k+1)l(l +1)

×
k

∑
i=1

l

∑
j=1

tr(ei
jδi, j− ei

l+1δi,l+1− ek+1
j δk+1, j + ek+1

l+1 δk+1,l+1) (2.56)

=
2√

k(k+1)l(l +1)
(k− k(1−δk,l)+ klδk,l) (2.57)

=
2(kl + k)δk,l√
k(k+1)l(l +1)

(2.58)

=
2k(k+1)δk,l

k(k+1)
(2.59)

= 2δk,l. (2.60)
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• σ̂ j is a Θ matrix and σ̂k is a β matrix:

tr(Θi
jβ

k
l ) =−i · tr(ei

lδ j,k− ei
kδ j,l− e j

kδi,l + e j
l δi,k) (2.61)

= 0. (2.62)

• σ̂ j is a Θ matrix and σ̂k is a η matrix:

tr(Θi
jη

k
k ) =

√
2

k(k+1)

k

∑
l=1

tr(ei
lδ j,l− ei

k+1δ j,k+1− e j
k+1δi,k+1 + e j

l δi,l) (2.63)

=

√
2

k(k+1)

k

∑
l=1

(δi,lδ j,l−δi,k+1δ j,k+1−δ j,k+1δi,k+1 +δ j,lδi,l) (2.64)

. Because i 6= j:

tr(Θi
jη

k
k ) = 0. (2.65)

• σ̂ j is a β matrix and σ̂k is a η matrix:

tr(β i
jη

k
k ) =−i

√
2

k(k+1)

k

∑
l=1

tr(ei
lδ j,l− ei

k+1δ j,k+1 + e j
k+1δi,k+1− e j

l δi,l) (2.66)

=−i

√
2

k(k+1)

k

∑
l=1

(δi,lδ j,l−δi,k+1δ j,k+1 +δ j,k+1δi,k+1−δ j,lδi,l) (2.67)

= 0. (2.68)

We can conclude then that tr(σ̂ jσ̂k) 6= 0 if and only if σ̂ j = σ̂k and tr(σ̂2
j ) = 2. Therefore,

in (2.49), all terms in the sum with j 6= k vanish and we get, for 1≤ k ≤ d2−1

tr(ρdσ̂k) =
1
d

rktr(σ̂2
k ), (2.69)

rk =
d
2

tr(ρdσ̂k). (2.70)

We can obtain tr(ρdσ̂k) experimentally, so we can reconstruct the density matrix with this

procedure using d2−1 measurements.
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Let us study the case where d = 2. The generators of SU(2) are

σ̂1 = Θ
1
2 =

[
0 1
1 0

]
, (2.71)

σ̂2 = β
1
2 =

[
0 −i
i 0

]
, (2.72)

σ̂3 = η
1
1 =

[
1 0
0 −1

]
. (2.73)

We also have that rk = tr(ρ2σ̂k) for k = 1,2,3 amd r0 = 1. Therefore, we can express ρ2

as

ρ2 =
1
2

[
1+ tr(ρ2σ̂3) tr(ρ2σ̂1)− i · tr(ρ2σ̂2)

tr(ρ2σ̂1)+ i · tr(ρ2σ̂2) 1− tr(ρ2σ̂3)

]
. (2.74)

2.3.2 MUB Tomography

Let us consider a Hilbert space with dimension d a prime power, so the system allows for

a full set of MUBs {{|αi〉}d
i=1}

d+1
α=1. We denote the projector onto the state |αi〉 as Π̂α,i =

|αi〉〈αi| and the probability of obtaining the outcome associated to |αi〉 is pα,i = tr(ρΠ̂α,i).

Becuase the |αi〉 for a fixed α form a basis of the Hilbert space, it is verified that

d

∑
i=1

Π̂α,i = Î (2.75)

and
d

∑
i=1

pα,i = 1 (2.76)

for every α . Because of the dependence between the projectors on the same basis, it is

possible to write the density matrix as

ρ =
1
d

Î +
d+1

∑
β=1

d−1

∑
j=1

cβ , j

(
Π̂β , j−

1
d

Î
)
, (2.77)

for some parameters cβ , j. Following the proof in [28], we will show how to perform to-

mography with MUBs.
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Multiplying by Π̂α,i and applying the trace in (2.77), we have a new expression for the

probabilities

pα,i =
1
d

d+1

∑
β=1

+
d−1

∑
j=1

Mαi,β jcβ , j, (2.78)

with Mαi,β j = tr(Π̂α,iΠ̂β , j)− 1/d = δα,β (δi, j− 1/d). We can reduce the index αi as a

new one, k = (α − 1)(d− 1)+ i, k = 1, ...,d2− 1. Therefore, we can rewrite (2.78) as a

system of equations using the matrix M like this p1−1/d
...

pd2−1−1/d

= M

 c1
...

cd2−1

 , (2.79)

where M is, by definition of the individual Mαi,β j, equal to a (d2−1)× (d2−1) matrix

M =


M 0 · · · 0
0 M · · · 0
...

... . . . ...
0 0 · · · M

 , (2.80)

with the M being (d−1)× (d−1) submatrices

M =
1
d


d−1 −1 · · · −1
−1 d−1 · · · −1

...
... . . . ...

−1 −1 · · · d−1

 . (2.81)

It can be easily checked than its inverse matrix is

M−1 =


2 1 · · · 1
1 2 · · · 1
...

... . . . ...
1 1 · · · 2

 . (2.82)
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From this matrix and (2.79), we obtain

cα,i = 2pα,i−
2
d
+

d−1

∑
β 6=α

(
pβ , j−

1
d

)
(2.83)

= pα,i−
1
d
+

d−1

∑
β=1

(
pβ , j−

1
d

)
(2.84)

= pα,i−
1
d
+1− pβ ,d−

d−1
d

(2.85)

= pα,i− pβ ,d. (2.86)

Substituting in (2.77), we have

ρ =
1
d

Î +
d+1

∑
α=1

d−1

∑
i=1

(pα,i− pα,d)

(
Π̂α,i−

1
d

Î
)

(2.87)

=
1

d(d +1)

d+1

∑
α=1

d

∑
i=1

pα,iÎ +
d+1

∑
α=1

d−1

∑
i=1

(pα,i− pα,d)

(
Π̂α,i−

1
d

Î
)

(2.88)

=
1

d(d +1)

d+1

∑
α=1

pα,d Î +
d

∑
α=1

d−1

∑
i=1

pα,i

(
Π̂α,i−

1
d

Î +
1

d(d +1)
Î
)

−
d+1

∑
α=1

pα,d

d−1

∑
i=1

(
Π̂α,i−

1
d

Î
)

(2.89)

=
d+1

∑
α=1

d−1

∑
i=1

pα,i

(
Π̂α,i−

1
d +1

Î
)

−
d+1

∑
α=1

pα,d

(
Î− Π̂α,d−

(d−1)
d

Î− 1
d(d +1)Î

)
(2.90)

=
d+1

∑
α=1

d−1

∑
i=1

pα,i

(
Π̂α,i−

1
d +1

Î
)
−

d+1

∑
α=1

pα,d

(
1

d +1
Î− Π̂α,d

)
(2.91)

=
d+1

∑
α=1

d

∑
i=1

pα,i

(
Π̂α,i−

1
d +1

Î
)
. (2.92)

By estimating pα,i experimentally, it is then possible to reconstruct the density matrix ρ .

2.3.3 SIC-POVM Tomography

Let us consider a Hilbert space of dimension d and let us suppose that for d, there exists

a SIC-POVM {Êi}d2

i=1 = {π̂i/d}d2

i=1. Because the SIC-POVM contains d2 elements, it is
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enough to reconstruct the density matrix ρ as

ρ =
d2

∑
i=1

ciπ̂i, (2.93)

where the ci are real coefficients. From the trace of both sides of (2.93) we have that

∑
d2

i=1 ci = 1. If we apply π j on both sides of (2.93) and then we trace, we obtain

dtr(ρÊ j) =
d2

∑
i 6= j

ci

d +1
+ c j =

1− c j

d +1
+ c j, (2.94)

c j = (d +1)tr(ρÊ j)−
1
d
. (2.95)

And so

ρ =
d2

∑
i=1

[
(d +1)tr(ρÊi)−

1
d

]
π̂i. (2.96)

From here, it is possible to reconstruct the density matrix in a laboratory by estimating

tr(ρÊi).

2.3.4 Maximum Likelihood Estimation

We have seen that it is possible to reconstruct the density matrix using experimental data,

either the expectation values or probabilities for each outcome. However, it may be the

case that this result, the tomographic density matrix, is not actually a physical density

matrix. By construction, it’s trace equals one and it is hermitian, but it is not always a

positive operator. It is necessary to process the tomographic density matrix to derive a valid

physical density matrix. One technique useful for this task is the maximum likelihood

estimation [32].

To ensure that the physical density matrix ρp is positive, we will write it as

ρp(t) =
T̂ †(t)T̂ (t)

tr(T̂ †(t)T̂ (t))
, (2.97)
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where t = {ti}d2

i=1 is a set of real parameters and

T̂ (t) =


t1 0 · · · 0

tn+1 + itn+2 t2 · · · 0
...

... . . . ...
td2−1 + itd2 td2−3 + itd2−2 · · · td

 . (2.98)

The maximum likelihood estimation consists in the optimization problem of finding the

t that minimizes the function

L (t) =
d2

∑
j=1

(E[n j|ρp(t)]−n j)
2

2E[n j|ρp(t)]
, (2.99)

where n j is the number of times we obtain outcome j. As our initial guess, we will con-

sider the density matrix in (2.97) as our tomographic density matrix, thus determining t;

because the parameters obtained may be complex, we will only consider the real part of t.

2.4 Tomography of Quantum States via Optimization

It is possible to design a tomography scheme that has no need of postprocessing. Instead,

we define a distance in the Hilbert space, and we seek to minimize the function defined

as the distance to the state of the system. For this purpose, we will briefly introduce the

descent methods for minimizing a function.

2.4.1 Descent Methods

We are interested in finding x̃∈Rn, with n natural, such that, for f : Rn→R continuously

differentiable,

f (x̃) = min
x∈Rn

f (x). (2.100)

This implies that x̃ is a local minimum, so it must satisfy

∇ f (x̃) = 0. (2.101)
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Finding x̃ is usually impossible using analytic methods, so we will use a iterative algo-

rithm that provide us with a sequence x̂0, x̂1, ... such that f (x̂k+1) < f (x̂k). We make

the algorithm stop when ∇ f (x̂k) is close enough to zero, that is, ∇ f (x̂k) < ε for a given

ε > 0.

We will consider iterative algorithms of the form

x̂k+1 = x̂k + tkΛk, (2.102)

where Λk ∈ Rn is the step direction and tk ∈ R is the step size. A valid descent method

defines step directions and sizes such that f (x̂k+1)< f (x̂k) is verified.

The simplest choice of step direction is the gradient descent method, where we choose

Λk = −∇ f (x̂k). Some simple choices for the step size are constant step size (tk = t) and

diminishing step size (limk→∞ tk = 0 while ∑
∞
k=1 tk diverges).

2.4.2 Simultaneous Perturbation Stochastic Approximation

The simultaneous perturbation stochastic approximation (SPSA), presented in [33], is a

descent method that uses a diminishing step size and an approximation of the gradient as

its step direction. As stated previously, we are looking for x̃ ∈ Rn such that

g(x̃) = ∇ f (x̃) = 0. (2.103)

The iterative algorithm is of the form

x̂k+1 = x̂k +akĝk(x̂k), (2.104)

where ak is the step size and ĝk ∈ Rn is an estimate of g at the k-th iteration of the algo-

rithm, with ĝk,i(x̂k), the i-th term of ĝk(x̂k), given by

ĝk,i(x̂k) =
f (x̂k + ck∆k)+ εk,+− f (x̂k− ck∆k)− εk,−

2ck∆k,i
, (2.105)
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where ck is a positive parameter, ∆k ∈ Rn is a randomly generated vector whose compo-

nents are ∆k,i, and εk,+ and εk,− are noise terms that satisfy E(εk,+−εk,−|∆k,Fk) = 0, Fk

defined as the set of all estimates of x until the k-th iteration, {x̂1, ..., x̂k}.

We can identify two additional terms in the algorithm that will be of further interest. The

first is the bias in the estimator ĝk, defined as

bk(x̂k) = E(ĝk(x̂k)−g(x̂k)|x̂k). (2.106)

The other is the error term,

ek(x̂k) = ĝk(x̂k)−E(ĝk(x̂k)|x̂k). (2.107)

It is then possible to rewrite algorithm (2.104) as

x̂k+1 = x̂k−ak[g(x̂k)+ b̂k(x̂k)+ êk(x̂k)]. (2.108)

We will present two results in [33] relevant to this work: Lemma 1 and Proposition 1,

respectively

Theorem 1 (Bias in the estimator of the gradient). For α0, α1 and α2 positive real

constants and Ω = {ω} the sample space that generates the sequence x̂1, x̂2, ..., consider

all k ≥ K for some K < ∞, and suppose that for each such k the ∆k,i are independent

and identically distributed, and symetrically distributed about 0 (that is, E(∆k,i) = 0) with

|∆k,i| ≤ α0 almost surely1 and E(|∆−1
k,i |)≤ α1. For almost all x̂k (at each k ≥ K) suppose

that for all x in an open neighborhood of x̂k, that is not an function of k or ω , f ∈C 3(Rn)

with |∂xi∂x j∂xl f (x)| ≤ α2. Then for almost all ω ∈Ω

bk(x̂k) = O(c2
k). (2.109)

1A property is satisfied almost surely (a.s) if it is valid in all but a subset of zero measure of the sample
space
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Theorem 2 (Convergence of the SPSA algorithm). Let the conditions of theorem 1 and

the following assumptions hold:

A1: ak,ck > 0 ∀k; limk→∞(|ak|+ |ck|) = 0; ∑
∞
k=1 ak = ∞; ∑

∞
k=1(ak/ck)

2 < ∞,

A2: For some β0,β1,β2 > 0, ∀k, E(ε2
k,±)≤ α0, E([ f (x̂k±ck∆k)]

2)α1, and E(∆−2
k,i )≤ α2,

A3: ‖x̂k‖< ∞ a.s. ∀k,

A4: x(t) = x̃ is an asymptotically stable solution of the differential equation dx(t)/dt =

−g(x),

A5: Consider the domain of attraction D(x̃) = {x0 : limt→∞x(t|x0) = x̃} where x(t|x0)

denotes the solutions to the differential equation of A4 based on initial conditions

x(0) = x0. There exists a compact S ⊆ D(x̃) such that x̂k ∈ S infinitely often for

almost all sample points.

Then

lim
k→∞

x̂k = x̃. (2.110)

2.4.3 Self-Guided Quantum Tomography

Originally proposed in [19], self-guided quantum tomography (SGQT) is a tomography

technique quite different from those already mentioned, mainly because it has no need of

postprocessing the data using maximum likelihood estimation or another similar method.

Instead, SGQT uses SPSA to minimize the distance between the state of the system and

an estimate of it.

We consider the infidelity function between two pure states, m(ψ,φ) = 1−|〈ψ|φ〉|2. In

principle, any distance measure function between states can be used, but the infidelity of

two pure states is easier to determine experimentally. If we denote the state of the system
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as |ψ〉, we can define f (|φ〉k) = m(ψ,φk) and use the algorithm (2.104) with |φk〉 instead

of x̂k and using f (|φ〉k±ck∆k) in (2.105). Here, ∆k is a vector of the same dimension as

the Hilbert space of the quantum system, with all its terms randomly chosen as +1 or −1.

The parameters ak and ck are defined as

ak =
A

(k+1+B)s , (2.111)

ck =
C

(k+1)r , (2.112)

where A, B, C, s and r are chosen numerically and depend on the target function, consid-

ering they must satisfy assumption A1 of theorem 2. According to [19, 34], good choices

for these values are A = 3, B = 0, C = 0.1, s = 0.602 and r = 0.101.

It has been shown [19, 20] that SGQT can provide better aproximations of the quan-

tum state of the system than standard quantum tomography using the same number of

resources. Therefore, SGQT not only ends with the estimator for the state, thus making no

use of postprocessing; it is a very robust tomography scheme as well. However, it needs to

use more measurement bases compared with standard methods, specially at lower dimen-

sions.

2.5 Wirtinger calculus

We define the sets Rn = {(x,y) :x,y ∈Rn}, Cn = {(z,z∗) : z ∈Cn} and C∗n = {(z∗,z) :

z ∈Cn}. Every z ∈Cn can be represented with a single element in Rn, Cn and C∗n. For Cn

and C∗n, this representation is trivial; for Rn, we just need to see thatχ= (Re(z), Im(z))∈

Rn. We can also find an isomorphism between Rn and Cn. Indeed, consider the matrix

J =

[
I iI
I −iI

]
. (2.113)
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It is clear thatµ= (z,z∗) = Jχ. In a similar manner, we can find an isomorphism between

Cn and C∗n using the matrix

S =

[
0 I
I 0

]
, (2.114)

such that µ= Sµ∗

Using this notation it is possible to define cogradient operator as

∂

∂z
= ∂z =

1
2


∂

∂x1
− i

∂

∂y1
...

∂

∂xn
− i

∂

∂yn

 , (2.115)

and the conjugate cogradient operator

∂

∂z∗
= ∂z∗ =

1
2


∂

∂x1
+ i

∂

∂y1
...

∂

∂xn
+ i

∂

∂yn

 , (2.116)

where x= Re(z) and y = Im(z). From here we define the complex gradient operator as

∂

∂µ
= ∂µ = (∂z,∂z∗). (2.117)

Expressing the real gradient operator as ∂χ = (∂x,∂y), we can see that the two gradients

are related by

∂χ = JT
∂µ. (2.118)

The framework presented above constitutes the fundamentals of Wirtinger calculus [35–

37]. Wirtinger calculus arose as a mean to determine the gradient of a non-holomorphic

function, in particular, of a real-valued function with complex variables. For a function
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to be holomorphic it must satisfy the Cauchy-Riemann conditions: considering f (z) =

u(x,y)+ iv(x,y), then f is holomorphic if and only if

∂u
∂x

=
∂v
∂y

, (2.119)

and
∂v
∂x

=−∂u
∂y

. (2.120)

Clearly, if f is real, v = 0 and the Cauchy-Riemann conditions are only satisfied if u is a

constant function.

For an holomorphic function f (z) = u(x,y)+ iv(x,y), its complex derivative is defined

as
d f
dz

=
∂u
∂x

+ i
∂v
∂x

=
∂v
∂y
− i

∂u
∂y

. (2.121)

According to Wirtinger calculus, its cogradient is

∂ f
∂ z

=
1
2

(
∂u
∂x

+ i
∂v
∂x
− i

∂u
∂y

+
∂v
∂y

)
=

d f
dz

, (2.122)

while its conjugate cogradient is

∂ f
∂ z∗

=
1
2

(
∂u
∂x

+ i
∂v
∂x

+ i
∂u
∂y
− ∂v

∂y

)
= 0. (2.123)

We can see that, for holomorphic functions, Wirtinger calculus is equivalent to complex

calculus, and the Cauchy-Riemann conditions are equivalent to ∂z∗ f = 0.

Let us consider a non-holomorphic function, for example, f (z) = |z|2 = zz∗ = x2 + y2.

Because f is a real function, it does not satisfy the Cauchy-Riemann conditions and it

does not have a complex derivative. However, the cogradient and conjugate cogradient

are, respectively, ∂z f = x− iy = z∗ and ∂z∗ f = x+ iy = z. Indeed, the cogradient can be

regarded as partial derivative with respect to z with z∗ behaving as if it were a variable

independent of z; similarly for the conjugate cogradient.
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SGQT, as presented in [19], has two important problems. First, the method on which

SGQT is based, SPSA, is designed for real-valued functions of real variables. SGQT, how-

ever, aims to minimize the infidelity between two quantum states. Because the quantum

states are complex vectors, the infidelity is a real-valued function of complex variables,

thus, SPSA is not directly applicable. As for the second problem, in [19] the perfomance

of SGQT is evaluated through the median. However, theorems 1 and 2 for SPSA make no

reference to the median whatsoever; they state that the expected value is well-behaved.

In this section, we will address the first of these problems. For that purpose, we will de-

velop a new method, the complex simultaneous perturbation stochastic approximation (or

CSPSA). CSPSA is quite similar to SPSA, but it works for functions of complex variables.

To show that CSPSA works just as well as SPSA, we will prove theorems similar to 1 and

2.

3.1 CSPSA algortihm

Let us consider f : Dom( f )⊆ Cn→ R. We are looking for µ̃= (z̃, z̃∗) ∈ Cn such that

f (µ̃) = min
µ∈Dom( f )

f (µ). (3.1)

Therefore, µ̃ satisfies
∂ f
∂µ

(µ̃) = 0. (3.2)

This is equivalent to say

g(µ̃) =
∂ f
∂z

(µ̃) = 0. (3.3)

The iterative of the algorithm is of the form

ẑk+1 = ẑk−akĝk(µ̂k), (3.4)
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where µ̂k = (ẑk, ẑ
∗
k ) is an estimate of µ̃ at the k-th iteration, ĝk is an estimate of g at the

k-th iteration and the ak are real parameters. We will define the terms of the estimator ĝk

as

ĝk,i(µ̂k) =
f (µ̂k + ckΛk)+ εk,+− f (µ̂k− ckΛk)− εk,−

2ck∆∗k,i
, (3.5)

with i = 1, ...,n, ck real parameter, Λk = (∆k,∆∗k) ∈ Cn a randomly generated vector,

components of ∆k are ∆k,i, and εk,± are noise terms.

We can also define the bias and the error term in CSPSA as

bk(µ̂k) = E(ĝk(µ̂k)−g(µ̂k)|µ̂k), (3.6)

ek(µ̂k) = ĝk(µ̂k)−E(ĝk(µ̂k)|µ̂k). (3.7)

So, just like before with SPSA, we can rewrite (3.4) as

ẑk+1 = ẑk−ak[g(µ̂k)+ b̂k(µ̂k)+ êk(µ̂k)]. (3.8)

So far, CSPSA is quite similar to SPSA. It is to be expected, then, that results similar to

theorems 1 and 2 can be derived for CSPSA. These results will be now be obtained.

3.2 Bias in the estimator of the gradient in CSPSA

In SPSA, according to theorem 1, the bias in the estimator of the gradient is of the order

of ck. Later, as part of the hypothesis of theorem 2, we assumed that limk→∞ ck = 0,

so the bias also tends to vanish after a great number of iterations of the algorithm. We

are interested in deducing a similar theorem for CSPSA. For that purpose we will need

a previous result that describes the series expansion of functions with multiple complex

variables.
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3.2.1 Series expansion of functions with multiple real variables

Let V and W be finite-dimensional vector spaces on R, with U ⊆ V an open subset. Let

f : U→W such that f ∈C K , K≥ 1. Let us choose x0 ∈U and r > 0 such that Br(x0)⊂U ,

with Br(x0) the ball centered in x0 and radius r for a choice of norm in V . Let us choose

κ ∈ V such that ‖κ‖ < r. Then, according to Eq. (7) in [38], for positive integers j < K

we have that the differential operator D j
κ over f is

D j
κ f (x0) = ∑

i1,...,i j

κi1 · ... ·κi j

∂ j f
∂xi1...∂xi j

(x0). (3.9)

With will need the following result, presented as theorem 5.1 in [38]:

Theorem 3 (Taylor’s series expansion for functions with multiple real variables). With

notation as above,

f (x0 +κ) =
p

∑
j=0

1
j!
(D( j)
κ f )(x0)+Pp,κ(x0), (3.10)

where

Pp,κ(x0) =
∫ 1

0

(1− t)p−1

(p−1)!
[(D(p)

κ f )(x0 + tκ)− (D(p)
κ f )(x0)]. (3.11)

Let us consider an example. The series expansion up to the second power for function f

is

f (x0 +κ) = (D(0)
κ f )(x0)+(D(1)

κ f )(x0)+
1
2
(D(2)
κ f )(x0)+P2,κ(x0), (3.12)

with

P2,κ(x0) =
∫ 1

0
(1− t)[(D(2)

κ f )(x0 + tκ)− (D(2)
κ f )(x0)], (3.13)

and the derivatives of f are

(D(0)
κ f )(x0) = f (x0), (3.14)
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(D(1)
κ f )(x0) = ∑

i
κi

∂ f
∂xi

(x0), (3.15)

(D(2)
κ f )(x0) = ∑

i, j
κiκ j

∂ 2 f
∂xi∂x j

(x0). (3.16)

If x= (x,y), we have

(D(1)
κ f )(x0) = κx

∂ f
∂x

(x0)+κy
∂ f
∂y

(x0), (3.17)

(D(2)
κ f )(x0) = κ

2
x

∂ 2 f
∂x2 (x0)+κ

2
y

∂ 2 f
∂y2 (x0)+2κxκy

∂ 2 f
∂x∂y

(x0). (3.18)

Instead, if x= (x,y,z), we have

(D(1)
κ f )(x0) = κx

∂ f
∂x

(x0)+κy
∂ f
∂y

(x0)+κz
∂ f
∂ z

(x0), (3.19)

(D(2)
κ f )(x0) = κ

2
x

∂ 2 f
∂x2 (x0)+κ

2
y

∂ 2 f
∂y2 (x0)+κ

2
z

∂ 2 f
∂ z2 (x0)

+2κxκy
∂ 2 f

∂x∂y
(x0)+2κzκx

∂ 2 f
∂ z∂x

(x0)+2κyκz
∂ 2 f
∂y∂ z

(x0). (3.20)

3.2.2 Series expansion of functions with multiple complex variables

Let W be a vector space on R, and U ⊆ Cn an open subset. Let f : U →W such that

f ∈ C K , K ≥ 1. Let us choose µ0 ∈U and r > 0 such that Br(µ0) ⊂U . Let us choose

h ∈ Cn such that ‖h‖< r. For positive integers j < K, we define the differential operator

D
( j)
h over f as

(D
( j)
h f )(µ0) = ∑

i1,...,i j

h1 · ... ·h j
∂ j f

∂ µi1...∂ µi j

(µ0). (3.21)

It is important to remark that µ = (z,z∗). For example, if n = 2, µ = (z1,z2,z∗1,z
∗
2), that

is, µ1 = z1, µ2 = z2, µ3 = z∗1 and µ4 = z∗2.
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Theorem 4. With notation as above, for

f (µ0 +h) =
2

∑
j=0

1
j!
(D

( j)
h f )(µ0)+R2,h(µ0), (3.22)

where

R2,h(µ0) =
∫ 1

0
(1− t)[(D (2)

h f )(µ0 + th)− (D
(2)
h f )(µ0)]dt, (3.23)

Proof. Let us consider χ0 = (Re(z0), Im(z0)), such that µ0 = Jχ0. Becuase of the iso-

morphism between Rn and Cn, we can define a function f ′ over a subset of Rn such that

f ′(χ) = f ′(J−1µ) = f (µ). Let us choose κ= J−1h. Then, by theorem 3, we have that

f ′(χ0 +κ) =
2

∑
j=0

1
j!
(D( j)
κ f ′)(χ0)+P2,κ(χ0) (3.24)

= f ′(χ0)+∑
i

κi
∂ f ′

∂ χi
(χ0)+

1
2 ∑

i, j
κiκ j

∂ 2 f ′

∂ χi∂ χ j
(χ0)+P2,κ(χ0) (3.25)

= f ′(χ0)+κ
T ∂ f ′

∂χ
(χ0)+

1
2
κT ∂ 2 f ′

∂χ∂χT (χ0)κ+P2,κ(χ0) (3.26)

= f (µ0)+(hT (J−1)T )JT ∂ f
∂µ

(µ0)

+
1
2
(hT (J−1)T )JT ∂ 2 f

∂µ∂µT (µ0)J(J−1h)+P2,κ(χ0) (3.27)

= f (µ0)+h
T ∂ f

∂µ
(µ0)+

1
2
hT ∂ 2 f

∂µ∂µT (µ0)h+P2,κ(χ0) (3.28)

= f (µ0)+∑
i

hi
∂ f
∂ µi

(µ0)+
1
2 ∑

i, j
hih j

∂ 2 f
∂ µi∂ µ j

(µ0)+P2,κ(χ0) (3.29)

=
2

∑
j=0

1
j!
(D

( j)
h f )(µ0)+P2,κ(χ0). (3.30)
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Meanwhile, we also have that

P2,κ(χ0) =
∫ 1

0
(1− t)((D(2)

κ f ′)(χ0 + tκ)− (D(2)
κ f ′)(χ0))dt (3.31)

=
∫ 1

0
(1− t)∑

i, j
κiκ j

[
∂ 2 f ′

∂ χi∂ χ j
(χ0 + tκ)− ∂ 2 f ′

∂ χi∂ χ j
(χ0)

]
(3.32)

=
∫ 1

0
(1− t)κT

[
∂ 2 f ′

∂χ∂χT (χ0 + tκ)− ∂ 2 f ′

∂χ∂χT (χ0)

]
κdt (3.33)

=
∫ 1

0
(1− t)(hT (J−1)T )JT

·
[

∂ 2 f
∂µ∂µT (µ0 + th)− ∂ 2 f

∂µ∂µT (µ0)

]
J(J−1h)dt (3.34)

=
∫ 1

0
(1− t)hT

[
∂ 2 f

∂µ∂µT (µ0 + th)− ∂ 2 f
∂µ∂µT (µ0)

]
hdt (3.35)

=
∫ 1

0
(1− t)∑

i, j
hih j

[
∂ 2 f

∂ µi∂ µ j
(µ0 + th)− ∂ 2 f

∂ µi∂ µ j
(µ0)

]
dt (3.36)

=
∫ 1

0
(1− t)((D (2)

h f )(µ0 + th)− (D
(2)
h f )(µ0))dt (3.37)

= R2,h(µ0). (3.38)

And so,

f ′(χ0 +κ) =
2

∑
j=0

1
j!
(D

( j)
h f )(µ0)+R2,h(µ0). (3.39)

Clearly, f ′(χ0 +κ) = f ′(J−1(µ0 +h)) = f (µ0 +h), therefore,

f (µ0 +h) =
2

∑
j=0

1
j!
(D

( j)
h f )(µ0)+R2,h(µ0). (3.40)

3.2.3 Theorem for the bias in the estimator

Theorem 5. For α0, α1 and α2 positive real constants and Ω = {ω} the sample space that

generates the sequence ẑ1, ẑ2, ..., consider all k ≥ K for some K < ∞, and suppose that

for each such k the ∆k,i are independent and identically distributed, and symetrically dis-

tributed about 0 (that is, E(∆k,i) = 0) with |∆k,i| ≤α0 a.s., E(|∆−1
k,i |)≤α1 and E[e2iφk,i] = 0,
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where φk,i is the phase of ∆k,i in its polar decomposition. For almost all µ̂k (at each k≥K)

suppose that for all µ in an open neighborhood of µ̂k, that is not an function of k or ω ,

f ∈ C 2(Cn) with |∂µi∂µ j f (µ)| ≤ α2. Then for almost all ω ∈Ω

bk(µ̂k) = O(ck). (3.41)

Proof. By definition of bias, we have, for all l ∈ {1, ...,n},

bk,l(µ̂k) = E
(
ĝk,l (µ̂k)−gl (µ̂k) |µ̂k

)
(3.42)

= E

([
f (µ̂k + ckΛk)− f (µ̂k− ckΛk)

2ck∆∗k,l
− ∂ f

∂ z∗l
(µ̂k)

]∣∣∣∣∣ µ̂k

)
. (3.43)
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Because |∂µi∂µ j f (µ)| is bounded, E(|∂µi∂µ j f (µ)|) is well defined. From theorem 4 we

can expand f (µ̂k± ck∆k), so

bk,l(µ̂k) = E

([
1

2ck∆∗k,l

{
f (µ̂k)+

2n

∑
i=1

ckΛk,i
∂ f
∂ µi

(µ̂k)

+
1
2

2n

∑
i, j=1

ckΛk,ickΛk, j
∂ 2 f

∂ µi∂ µ j
(µ̂k)+R2,ckΛk(µ̂k)− f (µ̂k)

+
2n

∑
i=1

ckΛk,i
∂ f
∂ µi

(µ̂k)−
1
2

2n

∑
i, j=1

ckΛk,ickΛk, j
∂ 2 f

∂ µi∂ µ j
(µ̂k)

−R2,−ckΛk(µ̂k)
}
− ∂ f

∂ z∗l
(µ̂k)

]∣∣∣∣ µ̂k

)
(3.44)

= E

([
2n

∑
i=1

Λk,i

∆∗k,l

∂ f
∂ µi

(µ̂k)−
∂ f
∂ z∗l

(µ̂k)

+
R2,ckΛk(µ̂k)−R2,−ckΛk(µ̂k)

2ck∆∗k,l

]∣∣∣∣∣ µ̂k

)
(3.45)

= E

([
n

∑
i=1

∆k,i

∆∗k,l

∂ f
∂ zi

(µ̂k)+
n

∑
i=1

∆∗k,i
∆∗k,l

∂ f
∂ z∗i

(µ̂k)−
∂ f
∂ z∗l

(µ̂k)

+
R2,ckΛk(µ̂k)−R2,−ckΛk(µ̂k)

2ck∆∗k,l
− ∂ f

∂ z∗l
(µ̂k)

]∣∣∣∣∣ µ̂k

)
(3.46)

= E

([
n

∑
i=1

∆k,i

∆∗k,l

∂ f
∂ zi

(µ̂k)+
n

∑
i6=l

∆∗k,i
∆∗k,l

∂ f
∂ z∗i

(µ̂k)

+
R2,ckΛk(µ̂k)−R2,−ckΛk(µ̂k)

2ck∆∗k,l

]∣∣∣∣∣ µ̂k

)
. (3.47)

Becuase ∂zi f (µ̂k) is completely determined by µ̂k,

E

(
n

∑
i6=l

∆∗k,i
∆∗k,l

∂ f
∂ z∗i

(µ̂k)

∣∣∣∣∣ µ̂k

)
=

n

∑
i6=l

E

(
∆∗k,i
∆∗k,l

∣∣∣∣∣ µ̂k

)
∂ f
∂ z∗i

(µ̂k) (3.48)

and

E

(
n

∑
i=1

∆k,i

∆∗k,l

∂ f
∂ zi

(µ̂k)

∣∣∣∣∣ µ̂k

)
=

n

∑
i=1

E

(
∆k,i

∆∗k,l

∣∣∣∣∣ µ̂k

)
∂ f
∂ zi

(µ̂k). (3.49)
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Besides, the {∆k,i} are independently distributed, and are independent of µ̂k, so

E

(
∆∗k,i
∆∗k,l

∣∣∣∣∣ µ̂k

)
= E((∆∗k,l)

−1)E(∆∗k,i) (3.50)

and

E

(
∆k,i

∆∗k,l

∣∣∣∣∣ µ̂k

)
= E

(
∆k,i

∆∗k,l

)
. (3.51)

If i 6= l we also have that

E

(
∆k,i

∆∗k,l

)
= E((∆∗k,l)

−1)E(∆k,i). (3.52)

Then

|bk,l(µ̂k)| ≤

∣∣∣∣∣E
(

∆k,l

∆∗k,l

)
∂ f
∂zl

(µ̂k)

∣∣∣∣∣
+

∣∣∣∣∣E((∆∗k,l)−1)
n

∑
i 6=l

(
E(∆k,i)

∂ f
∂ zi

(µ̂k)+E(∆∗k,i)
∂ f
∂ z∗i

(µ̂k)

)∣∣∣∣∣
+

∣∣∣∣∣E
(

R2,ckΛk(µ̂k)−R2,−ckΛk(µ̂k)

2ck∆∗k,l

∣∣∣∣∣ µ̂k

)∣∣∣∣∣ . (3.53)

Because ∆k,i = |∆k,i|eiφk,l ,
∆k,l

∆∗k,l
= e2iφk,l . From hypothesis, E(∆[C]ik) = E(∆∗[C]ik) = 0, so

|bk,l(µ̂k)| ≤
∣∣∣∣E(e2iφkl)

∂ f
∂zl

(µ̂k)

∣∣∣∣
+E

 ∣∣R2,ckΛk(µ̂k)−R2,−ckΛk(µ̂k)
∣∣∣∣∣2ck∆∗k,l

∣∣∣
∣∣∣∣∣∣ µ̂k

 . (3.54)

We assumed E(e2iφkl) = 0. From (3.23), we have that

|bk,l(µ̂k)| ≤ E

(∣∣∣∣∣
∫ 1

0

1− t
2ck∆∗k,l

[
(D

(2)
ckΛk

f )(µ̂k + tckΛk)

− (D
(2)
ckΛk

f )(µ̂k)− (D
(2)
−ckΛk

f )(µ̂k− tckΛk)

+ (D
(2)
−ckΛk

f )(µ̂k)
]

dt
∣∣∣ |µ̂k

)
. (3.55)
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We can see that (D (2)
−ckΛk

f )(µ̂k) = ∑
2n
i, j=1 c2

kΛk,iΛk, j∂µi∂µ j f (µ̂k) = (D
(2)
ckΛk

f )(µ̂k), and by

the same reason, (D (2)
−ckΛk

f )(µ̂k− tckΛk) = (D
(2)
ckΛk

f )(µ̂k− tckΛk). Therefore,

|bk,l(µ̂k)| ≤ E

(∣∣∣∣∣
∫ 1

0

1− t
2ck∆∗k,l

[
(D

(2)
ckΛk

f )(µ̂k + tckΛk)

−(D (2)
ckΛk

f )(µ̂k− tckΛk)
]

dt
∣∣∣ |µ̂k

)
. (3.56)

Considering (D
(2)
ckΛk

f )(µ̂k± tckΛk) = ∑
n
i, j c2

kΛk,iΛk, j∂µi∂µ j f (µ̂k± tckΛk),

|bk,l(µ̂k)| ≤ E

(∣∣∣∣∣
∫ 1

0

1− t
2ck∆∗k,l

2n

∑
i, j

c2
kΛk,iΛk, j

· ∂ 2

∂ µi∂ µ j
[ f (µ̂k + tckΛk)− f (µ̂k− tckΛk)]dt

∣∣∣∣ |µ̂k

)
(3.57)

≤ E

(∫ 1

0

1− t
2ck|∆∗k,l|

2n

∑
i, j

c2
k |Λk,i||Λk, j|

·
[∣∣∣∣ ∂ 2 f

∂ µi∂ µ j
(µ̂k + tckΛk)

∣∣∣∣+ ∣∣∣∣ ∂ 2 f
∂ µi∂ µ j

(µ̂k− tckΛk)

∣∣∣∣]dt
∣∣∣∣ µ̂k

)
. (3.58)

From hypothesis, we have that |∆k,i| ≤ α0, so |Λk,i| ≤ α0, and |∂µi∂µ j f (µ)| ≤ α2, so

|bk,l(µ̂k)| ≤ E

(∫ 1

0

1− t
2ck|∆∗k,l|

2n

∑
i, j

2c2
kα

2
0 α2dt

∣∣∣∣∣ µ̂k

)
(3.59)

= 4n2ckα
2
0 α2E

(
|∆−1

k,i |
∣∣∣ µ̂k

)∫ 1

0
(1− t)dt (3.60)

= 2n2ckα
2
0 α2E

(
|∆−1

k,i |
∣∣∣ µ̂k

)
. (3.61)

Because ∆k,i is independent of µ̂k, E
(
|∆−1

k,i |
∣∣∣ µ̂k

)
= E

(
|∆−1

k,i |
)

, and from hypothesis,

E
(
|∆−1

k,i |
)
≤ α1. Then,

|bk,l(µ̂k)| ≤ 2n2ckα
2
0 α1α2. (3.62)

Therefore,

bk(µ̂k) = O(ck). (3.63)
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3.3 Convergence of the CSPSA algorithm

Lemma 1. Let the conditions of theorem 5 and the following assumptions hold:

Å1: ak,ck > 0 ∀k; limk→∞(|ak|+ |ck|) = 0; ∑
∞
k=1 ak = ∞; ∑

∞
k=1(ak/ck)

2 < ∞,

Å2: For some β0,β1,β2 > 0, ∀k, E(ε2
k,±) ≤ β0, E([ f (µ̂k± ckΛk)]

2) ≤ β1, and E(∆−2
k,i ) ≤

β2,

Å3: ‖µ̂k‖< ∞ for almost all k,

Å4: z(t) = z̃ is an asymptotically stable solution of the differential equation dz(t)/dt =

−g(µ),

Å5: Consider the domain of attraction D(z̃) = {z0 : limt→∞z(t|z0) = z̃} where z(t|z0)

denotes the solutions to the differential equation of Å4 based on initial conditions

z(0) = z0. There exists a closed set S ⊆ D(z̃) such that ẑk ∈ S infinitely often for

almost all sample points,

Then the following are true

S1: ‖bk(µ̂k)‖< ∞ and limk→∞ ‖bk(µ̂k)‖= 0 almost surely,

S2: limk→∞ P
(
supm≥k

∥∥∑
m
i=k aiei(µ̂i)

∥∥≥ η
)
= 0 for all η > 0.

Proof. Obtaining S1 is very straightfoward: from theorem 5 and (3.62), we have that

‖bk(µ̂k)‖ ≤
√

2n3ckα2
0 α1α2 < ∞. (3.64)

Also, from Å1, limk→∞ ck = 0, so

lim
k→∞
‖bk(µ̂k)‖= 0. (3.65)
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To prove S2, we will first show that {∑m
i=k aiei(µ̂i)}m≥k is a martingale with respect to

{µ̂m}1. Indeed,

E

(
m+1

∑
i=k

aiei(µ̂i)−
m

∑
i=k

aiei(µ̂i)

∣∣∣∣∣{µ̂i}m
i=1

)
= E(am+1em+1(µ̂m+1)|µ̂m) (3.66)

= am+1[(E(ĝm+1(µ̂m+1)|{µ̂i}m
i=1)

−E(E(ĝm+1(µ̂m+1)|µ̂m+1)|{µ̂i}m
i=1))].

(3.67)

Because ∆k is independent of {µ̂i}k
i=1,

E(ĝk(µ̂k)|µ̂k) = E(ĝk(µ̂k)|{µ̂i}k
i=1). (3.68)

In particular,

E(E(ĝm+1(µ̂m+1)|µ̂m+1)|{µ̂i}m
i=1)) = E(E(ĝm+1(µ̂m+1)|{µ̂i}m+1

i=1 )|{µ̂i}m
i=1)). (3.69)

Additionally, because {µ̂i}m
i=1 ⊂ {µ̂i}m+1

i=1 ,

E(E(ĝm+1(µ̂m+1)|µ̂m+1)|{µ̂i}m
i=1)) = E(ĝm+1(µ̂m+1)|{µ̂i}m+1

i=1 ). (3.70)

Therefore,

E

(
m+1

∑
i=k

aiei(µ̂i)−
m

∑
i=k

aiei(µ̂i)

∣∣∣∣∣{µ̂i}m
i=1

)
= 0. (3.71)

Because {∑m
i=k aiei(µ̂i)} is a martingale, |∑m

i=k aiei(µ̂i)| is a submartingale, thus it satisfies

Doob’s inequality [39]: for all η > 0

P

(
sup
m≥k

∥∥∥∥∥ m

∑
i=k

aiei(µ̂i)

∥∥∥∥∥≥ η

)
≤ η

−2E

∥∥∥∥∥ ∞

∑
i=k

aiei(µ̂i)

∥∥∥∥∥
2
 . (3.72)

1A martingale with respect to {Yi} is a sequence {Xi} that satisfies E(Xn+1−Xn|{Yi}n
i=1) = 0 for every n
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Because E(eT
i (µ̂i)e j(µ̂ j)) = E(eT

i (µ̂i)E(e j(µ̂ j)|µ̂i)) = 0 when i < j we have

P

(
sup
m≥k

∥∥∥∥∥ m

∑
i=k

aiei(µ̂i)

∥∥∥∥∥≥ η

)
≤ η

−2
∞

∑
i=k

a2
i E
(
‖ei(µ̂i)‖2

)
. (3.73)

We can see that

E(|ĝk,l(µ̂k)|2) =
1
4
E[E(|(ck∆

∗
k,l)
−1( f (µk + ckΛk)

− f (µk− ckΛk)+ εk,+− εk,−)|2|µk,Λk)] (3.74)

=
1
4
E[|ck∆

∗
k,l|−2E(| f (µk + ckΛk)

− f (µk− ckΛk)+ εk,+− εk,−|2|µk,Λk)] (3.75)

≤ 1
2
E[|ck∆

∗
k,l|−2E(| f (µk + ckΛk)

− f (µk− ckΛk)|2 + |εk,+− εk,−|2|µk,Λk)]. (3.76)

From Å2, E(εk±)
2 ≤ β0 and E([ f (µk± ckΛk)]

2)≤ β1, so

E(|ĝk,l(µ̂k)|2)≤ 2E(|ck∆k,l|−2(β0 +β1)). (3.77)

We also assumed that E(|∆k,l|−2)≤ β2, thus

E(|ĝk,l(µ̂k)|2)≤ 2(β0 +β1)β2c−2
k ; (3.78)

E(‖ek(µ̂k))‖2) = E(‖ĝk(µ̂k)−E(ĝk(µ̂k)|µ̂k))‖2) (3.79)

≤ E(‖ĝk(µ̂k)‖+‖E(ĝk(µ̂k)|µ̂k)‖)2 (3.80)

≤ 2E(‖ĝk(µ̂k)‖2)+2E(‖E(ĝk(µ̂k)|µ̂k)‖2) (3.81)

≤ 2E(‖ĝk(µ̂k)‖2)+2E(‖ĝk(µ̂k)‖2) (3.82)

= 4E(‖ĝk(µ̂k)‖2) (3.83)

= 4
n

∑
l=1

E(|ĝk,l(µ̂k)|2) (3.84)

≤ 8n(β0 +β1)β2c−2
k . (3.85)
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Substituting in (3.73), we obtain

P

(
sup
m≥k

∥∥∥∥∥ m

∑
i=k

aiei(µ̂i)

∥∥∥∥∥≥ η

)
≤ 8n

η2 (β0 +β1)β2

∞

∑
i=k

(
ai

ci

)2

. (3.86)

According to Å1, ∑
∞
i=0

(
ai

ci

)2

< ∞, so limk→∞ ∑
∞
i=k

(
ai

ci

)2

= 0. Therefore, S2 holds.

For a pair of sequences {xn} and {tn}, with tn > 0 for all n and limn→∞ tn = +∞, we

define the linear interpolation l · i((ti,xi), t) as a function of t > 0 given by

l · i((ti,xi), t) =
(t− tn)xn+1 +(tn+1− t)xn

tn+1− tn
, (3.87)

wtih n such that tn ≤ t ≤ tn+1. Clearly, l · i((ti,xi), tn) = tn. We also define the right

continuous step interpolation s · i((ti,xi), t) as a function of t > 0 given by

s · i((ti,xi), t) = xn, (3.88)

with n such that that tn ≤ t < tn+1.

We can choose the sequence {tn} as

tn =
n−1

∑
i=0

ai, (3.89)

because, by Å1, an > 0 for all n and limn→∞ ∑
n
i=1 ai = ∞. In this case, t1 = 0. We define

ẑ0(t) = l · i((ti, ẑi), t), (3.90)

B0(t) = l · i

((
ti,

i−1

∑
j=0

a jb j(µ̂ j)

)
, t

)
, (3.91)

M0(t) = l · i

((
ti,

i−1

∑
j=0

a je j(µ̂ j)

)
, t

)
, (3.92)

U0(t) = B0(t)+M0(t), (3.93)
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µ̄0 = s · i((ti, µ̂i), t). (3.94)

It is worth noticing that ∑
n−1
j=0 a jb j(µ̂ j) = B0(tn) and ∑

n−1
j=0 a je j(µ̂ j) = M0(tn).

From (3.8), we have that

n−1

∑
i=0
ẑi+1 =

n−1

∑
i=0
ẑi−

n−1

∑
i=0

ai[g(µ̂i)+ b̂i(µ̂i)+ êi(µ̂i)]. (3.95)

Because ẑn = ẑ
0(tn) and t1 = 0,

ẑ0(tn) = ẑ0(0)−
n−1

∑
i=0

aig(µ̂i)−B0(tn)−M0(tn), (3.96)

or equivalently,

ẑ0(tn) = ẑ0(0)−
n−1

∑
i=0

aig(µ̂i)−U0(tn). (3.97)

We can now linearly interpolate the sequence described by both sides of (3.97). For ẑ0(tn)

and U0(tn) we already now their interpolations are ẑ0(t) and U0(t). ẑ0(0) is a constant,

and it can be immediately seen that a constant remains the same under interpolation. For

the sum, we can see the following: from our choice of tn it follows that an = tn− tn−1, thus

∑
n−1
i=0 aig(µ̂i) = ∑

n−1
i=0 (ti− ti−1)g(µ̂i). Additionally, because µ̄0(t) = µ̂i for ti ≤ t < ti+1,

so
n−1

∑
i=0

(ti− ti−1)g(µ̂i) =
∫ tn

0
g(µ̄0(s))ds. (3.98)
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We can then linearly interpolate the integral as

l · i
((

ti,
∫ ti

0
g(µ̄0(s))ds

)
, t
)
=

(tn+1− t)
∫ tn

0 g(µ̄
0(s))ds

tn+1− tn

+
(t− tn)

∫ tn+1
0 g(µ̄0(s))ds

tn+1− tn
(3.99)

=
tn+1

∫ tn
0 g(µ̄

0(s))ds− tn
∫ tn+1

0 g(µ̄0(s))ds
tn+1− tn

+
t
∫ tn+1

tn g(µ̄0(s))ds
tn+1− tn

(3.100)

=
(tn+1− tn)

∫ tn
0 g(µ̄

0(s))ds
tn+1− tn

+
(t− tn)

∫ tn+1
tn g(µ̄0(s))ds

tn+1− tn
(3.101)

=
∫ tn

0
g(µ̄0(s))ds+

(t− tn)(tn+1− tn)g(µ̂n)

tn+1− tn
(3.102)

=
∫ tn

0
g(µ̄0(s))ds+

∫ t

tn
g(µ̄0(s))ds (3.103)

=
∫ t

0
g(µ̄0(s))ds. (3.104)

Therefore, linearly interpolating both sides of (3.97) gives us

ẑ0(t) = ẑ0(0)−
∫ t

0
g(µ̄0(s))ds−U0(t). (3.105)

Now we will define the following:

ẑn(t) =

{
ẑ0(t + tn) if t ≥−tn
ẑ0(0) if t ≤−tn

, (3.106)

Bn(t) =

{
B0(t + tn)−B0(tn) if t ≥−tn
−B0(tn) if t ≤−tn

, (3.107)

Mn(t) =

{
M0(t + tn)−M0(tn) if t ≥−tn
−M0(tn) if t ≤−tn

, (3.108)

Un(t) = Bn(t)+Mn(t). (3.109)
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We can see that ẑn(0) = ẑ0(tn) = ẑn. If we evaluate (3.105) in t = tn + t ′ and t = tn, with

t ′ ≥−tn, the difference between the two results is

ẑ0(t ′+ tn)− ẑ0(tn) =−
∫ tn+t ′

tn
g(µ̄0(s))ds−Un(t ′), (3.110)

or equivalently, replacing t ′ with t, and t ≥−tn,

ẑn(t) = ẑn(0)−
∫ t

0
g(µ̄0(tn + s))ds−Un(t). (3.111)

For t ≥−tn we have that

Bn(t) =
(t + tn− tm)B0(tm+1)+(tm+1− t− tn)B0(tm)

tm+1− tm
−B0(tn) (3.112)

=
tm+1B0(tm)− tmB0(tm+1)+(t + tn)(B0(tm+1)−B0(tm))

tm+1− tm
−B0(tn) (3.113)

=
(tm+1− tm)B0(tm)− tmambm(µ̂m)+(t + tn)ambm(µ̂m)

tm+1− tm
−B0(tn) (3.114)

=
(t + tn− tm)(tm+1− tm)bm(µ̂m)

tm+1− tm
−B0(tn)+B0(tm) (3.115)

= (t + tn− tm)bm(µ̂m)+
m−1

∑
i=n

aibi(µ̂i), (3.116)

where m is such that tm ≤ t + tn ≤ tm+1. The index m can also be defined as m(n, t) =

max{k : tk− tn ≤ t}.

Lemma 2. Let the hypotheses of lemma 1 hold. Then, for all T > 0,

lim
n→∞

sup
t≤T
|Un(t)|= 0. (3.117)

Proof. From (3.116), we have that

‖Bn(t)‖ ≤ ‖(t + tn− tm(n,t))bm(n,t)(µ̂m(n,t))‖+

∥∥∥∥∥m(n,t)−1

∑
i=n

aibi(µ̂i)

∥∥∥∥∥ (3.118)

≤ ‖(t + tn− tm(n,t))bm(n,t)(µ̂m(n,t))‖+max
k≥n
‖bk(µ̂k)‖

m(n,t)−1

∑
i=n

ai. (3.119)
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Because tm(n,t)− tn ≤ t, and tm = ∑
m(n,t)−1
i=0 ai,

‖Bn(t)‖ ≤ t‖bm(n,t)(µ̂m(n,t))‖+max
k≥n
‖bk(µ̂k)‖(tm− tn) (3.120)

≤ t‖bm(n,t)(µ̂m(n,t))‖+ t max
k≥n
‖bk(µ̂k)‖. (3.121)

Therefore,

sup
t≤T
‖Bn(t)‖ ≤ T sup

t≤T
‖bm(n,t)(µ̂m(n,t))‖+T max

k≥n
‖bk(µ̂k)‖. (3.122)

Let t ′ ≤ T be such that supt≤T ‖bm(n,t)(µ̂m(n,t))‖ = ‖bm(n,t ′)(µ̂m(n,t ′))‖ and k′ ≥ n be such

that maxk≥n ‖bk(µ̂k)‖= ‖bk′(µ̂k′)‖. Then,

sup
t≤T
‖Bn(t)‖ ≤ T (‖bm(n,t ′)(µ̂m(n,t ′))‖+‖bk′(µ̂k′)‖). (3.123)

m(n, t) increases as n does, so, because S1 in lemma 1, we have

lim
n→∞
‖bm(n,t ′)(µ̂m(n,t ′))‖= 0. (3.124)

Similarly, because k′ ≥ n,

lim
n→∞
‖bk′(µ̂k′)‖= 0. (3.125)

Therefore,

lim
n→∞

sup
t≤T
‖Bn(t)‖= 0. (3.126)

On the other hand, from S2 in lemma 1, for η > 0

lim
k→∞

P

(
sup
m≥k

∥∥(M0(tm+1)−M0(tk))−
∥∥≥ η

)
= 0, (3.127)

or equivalently,

lim
k→∞

P

(
sup
m≥k

∥∥∥Mk(tm+1− tk)
∥∥∥≥ η

)
= 0. (3.128)
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Therefore, for T > 0,

lim
k→∞

sup
t≤T

∥∥∥Mk(t)
∥∥∥= 0. (3.129)

From (3.126) and (3.129), for T > 0

lim
k→∞

sup
t≤T

(∥∥∥Bk(t)
∥∥∥+∥∥∥Mk(t)

∥∥∥)= 0. (3.130)

And because ‖Bk(t)‖+‖Mk(t)‖ ≤ ‖Bk(t)+Mk(t)‖,

lim
k→∞

sup
t≤T

∥∥∥Uk(t)
∥∥∥= 0. (3.131)

Theorem 6. Let the hypotheses of lemma 1 hold. Then

lim
k→∞

ẑk = z̃ (3.132)

for almost all ω ∈Ω.

Proof. This proof was obtained thanks to [40] and follows the spirit of the proof for theo-

rem 2.3.1 in [41]. First, let us see that {ẑn(t)}n is bounded and equicontinuous2.

From lemma 2, we can see that {Un(t)}n is bounded in finite intervals. Also from lemma

2, we can fix τ > 0, so

lim
k→∞

sup
t≤τ+1

∥∥∥Uk(t)
∥∥∥= 0. (3.133)

Then, for every ε > 0, there exists K ∈ N such that for k ≥ K,

sup
t≤τ+1

∥∥∥Uk(t)
∥∥∥≤ ε

2
. (3.134)

2A family of functions { fn : X → Y} is equicontinuous if, for every ε > 0 and for each x ∈ X , there is a
δ > 0 such that if dX (x,y)< δ , with y∈ X and dX (·, ·) a given distance measure in X , then dY ( fn(x), fn(y))<
ε for all fn, with dY (·, ·) a given distance measure in Y .
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In particular, this holds for t = τ . Therefore, for t ≤ τ +1,∥∥∥Uk(t)
∥∥∥+∥∥∥Uk(τ)

∥∥∥≤ ε. (3.135)

And from here we get ∥∥∥Uk(t)−Uk(τ)
∥∥∥≤ ε. (3.136)

On the other hand, because the Uk(t) are continuous, for every ε > 0 and for each k <

K there exists δk > 0 such that, if |t − τ| < δn, ‖Uk(t)−Uk(τ)‖ < ε . Therefore, fore

every ε for each t we can choose δ = min{δ1, ...,δN−1,1} such that if |t− τ| < δ , then

‖Uk(t)−Uk(τ)‖< ε , that is, the family of Uk(t) is equicontinuous.

From the hypotheses of theorem 5, f ∈ C (Cn), so g is continuous. Also, from Å3, the

µ̂n are bounded, while µ̄0(t) always has values taken from the set of all µ̂n, so µ̄0(t)

is bounded too, and in turn, g(µ̄0(t)) is also bounded. We define M = max{g(µ̄0(t))}.

Then, ∫ t

0
g(µ̄0(tn + s))ds≤

∫ t

0
Mds = Mt. (3.137)

For every ε > 0, we can see that, for δ = ε/M, if |t1− t2|< δ , then

ε > M|t1− t2| (3.138)

=

∣∣∣∣∫ t2

t1
Mds

∣∣∣∣ (3.139)

≥
∣∣∣∣∫ t2

t1
g(µ̄0(tn + s))ds

∣∣∣∣ (3.140)

=

∣∣∣∣∫ t2

0
g(µ̄0(tn + s))ds+

∫ 0

t1
g(µ̄0(tn + s))ds

∣∣∣∣ (3.141)

=

∣∣∣∣∫ t2

0
g(µ̄0(tn + s))ds−

∫ t1

0
g(µ̄0(tn + s))ds

∣∣∣∣ (3.142)

Therefore, {
∫ t

0 g(µ̄
0(tn + s))ds}n is bounded and equicontinuous. From (3.111), this

means that {ẑn(t)}n is bounded and equicontinuous too.
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Let us define the term ξ n(t) as

ξ
n(t) =

∫ t

0
g(µ̄0(tn + s))ds−

∫ t

0
g(µ̂n(s))ds. (3.143)

Then, we can rewrite (3.111) as

ẑn(t) = ẑn(0)−
∫ t

0
g(µ̂n(s))ds+ξ

n(t)−Un(t). (3.144)

We can see that µ̄0(tn + s) is equal to µ̄0(s) displaced by tn to the left, just like µ̂n(s)

in the interval (0, t) is equal to µ̂0(s) displaced by tn to the left. Also,
∫ t

0 g(µ̄
0(tn + s))ds

behaves as a left Riemann sum, while
∫ t

0 g(µ̂
n(s))ds corresponds to a trapezoidal Riemann

sum. Because limn→∞ an = limn→∞(tn− tn−1) = 0, as n increases the size of the intervals

of partition for the Riemann sums decrease and both integrals approach the same value.

Therefore,

lim
n→∞

ξ
n(t) = lim

n→∞

(∫ t

0
g(µ̄0(tn + s))ds−

∫ t

0
g(µ̂n(s))ds

)
= 0. (3.145)

According to Ascoli’s theorem [42], an infinite, bounded and equicontinuous family of

functions has a subsequence that converges to a continuous funtion, with the convergence

being uniform in a compact set. Then, we can pick a convergent subsequence of {ẑn(t)}

and index it by ni, with z(t) = limni→∞ ẑ
ni(t) and, from lemma 2 and (3.145), we have

z(t) = z(0)−
∫ t

0
g(µ(s))ds. (3.146)

Then, z(t) is a solution of the ODE of Å4.

We can fix ε > 0 such that there exists a δ > 0 that satisfies δ < ε , Bδ (z̃)⊆ S and, form

the stability condition in Å4, for a solution z(t) of the ODE in Å4, if |z(0)− z̃| ≤ δ , then

for any t ≥ 0, |z(t)− z̃|< ε .
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Becuase there are infinite ẑk in S, there is an infinite set N0 ⊆ N such that, for all i ∈ N0,

ẑi(t) ∈ S and {ẑi(t)}i∈N0 converges to a function z(t) that is a solution of the ODE in

Å4.Because ẑi(0) ∈ S ∈ D(z̃), and S is closed, z(0) ∈ S ∈ D(z̃), that is , the domain of

attraction of z̃, so

lim
t→∞

z(t) = lim
t→∞

(
lim

i→∞,i∈N0
ẑi(t)

)
= z̃. (3.147)

Therefore, there is a T > 0 such that, for any t > T ,∣∣∣∣ lim
i→∞,i∈N0

ẑi(t)− z̃
∣∣∣∣< δ

2
. (3.148)

Because limi→∞ ai = 0, we can choose Amax such that ai = ti− ti−1 < Amax for every i.

Then, for all t ∈ [T +1,T +Amax +1], there exists J > 0, such that for j > J, with j ∈ N0,∣∣∣∣ẑ j(t)− lim
i→∞,i∈N0

ẑi(t)
∣∣∣∣< δ

2
. (3.149)

Therefore, adding (3.148) with (3.149), we obtain

∣∣ẑ j(t)− z̃
∣∣= ∣∣ẑ0(t j + t)− z̃

∣∣< δ . (3.150)

Because the difference between consecutive ti is at most Amax, there is at least one t ∈

[T +1,T +Amax +1] such that there exists a tn = t + t j. Then

∣∣ẑ0(tn)− z̃
∣∣= |ẑn− z̃|< δ . (3.151)

This is satisfied for every j > J, j ∈ N0, so we have that there are infinitely many ẑn in

Bδ (z̃).

Now, let us suppose there are infinitely many ẑn outside Bε(z̃). We can find sequences

{li}i and {ri}i, both in N such that li < ri < li+1 and ẑli ∈ Bδ (z̃), ẑri /∈ Bε(z̃) and for every

integer n such that li < n < ri, ẑn /∈ Bδ (z̃).
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Let us consider the following case: there exists H ∈ R such that, for infinitely many i,

ri− li < H. Then for infinitely many i, tri − tli < AmaxH. Let us choose a subsequence

{i j} j such that lim j→∞ ẑ
li j (t) = z(t) for all t ∈ [0,AmaxH], with z(t) a solution of the ODE

in Å4. Because all ẑli j (0) = ẑli j
∈ Bδ (z̃), and the subsequence converges in a closed

set, |z(0)− z̃| ≤ δ . Therefore, because of the stability condition, |z(t)− z̃|< ε for t ≥ 0.

Then, for t ∈ [0,AmaxH], there exists µ < ε such that |z(t)− z̃| ≤ µ . Because the {ẑli j (t)} j

converge uniformly to z(t) for t ∈ [0,AmaxH], we have that for all ν with µ < ν < ε ,

there exists J > 0 such that for every j > J, |ẑli j (t)− z̃| < ν for every t ∈ [0,AmaxH].

Also, because tri − tli < AmaxH, in [0,AmaxH] there must exist t ′ ∈ [0,AmaxH] such that

t ′+ tli j
= tri j

, so ẑli j (t ′) = ẑ0(t ′+ tli j
) = ẑ0(tri j

) = ẑri j
. Then, |ẑri j

− z̃|< ν . However, we

have said that ẑri j
/∈ Bε(z̃), so |ẑri j

− z̃| ≥ ε . Therefore, we arrive to a contradiction.

On the other hand, let us consider what happens if there is no such H, that is, the quan-

tity ri− li diverges as i grows. Just like before, we choose a subsequence i j such that

lim j→∞ ẑ
li j (t) = z(t) for all t ≥ 0, with z(t) a solution of the ODE in Å4. Because all

ẑ
li j (0) = ẑli j

∈ Bδ (z̃), |z(0)− z̃| ≤ δ . Therefore, from the asymptotic stability condi-

tion, limt→∞z(t) = z̃, that is, for every µ > 0 there is a T > 0 such that, for every t > T ,

|z(t)− z̃| < µ . In particular, this holds for µ = δ . Then, in the compact [T,T +A], the

{ẑli j (t)} j converge uniformly to z(t), so for all δ > 0 there exists J > 0 such that for all

j > J, |ẑli j (t)− z̃|< δ for all t ∈ [T,T +A]. Because ri j− li j diverges, between tli j
and tri j

there is an increasing number of elements of {ti}, so almost surely there exists t ∈ [T,T +A]

that satisfies t ′ + tli j
= tn for some tn. Then, ẑli j (t ′) = ẑ0(t ′ + tn) = ẑ0(tn) = ẑn, and

|ẑn− z̃| < δ . However, we have said that ẑn /∈ Bδ (z̃), as li j < n < ri j , so |ẑn− z̃| ≥ δ .

Therefore, we arrive to another contradiction.



55

We can conclude it is impossible for infinitely many ẑn to be outside Bε(z̃). Because

this is valid for all ε > 0, we can conclude that limn→∞ ẑn = z̃.



Chapter 4

Tomography of Quantum States using
CSPSA

56



57

Just like it was possible for SGQT to make use of SPSA to minimize the distance to the

state of the system, we are interested a tomographic method using CSPSA to minimize

the same distance, but this time considering it as a function of complex variables. We will

call this method Complex Self-Guided Quantum Tomography (CSGQT).

4.1 CSGQT procedure

Let us consider a quantum system in the state ρ . We are interested in finding the state σ̃

such that, for a given distance measure m on the Hilbert space H associated to the system,

m(ρ, σ̃) = min
σ∈H

m(ρ,σ). (4.1)

For pure states ρ = |ψ〉〈ψ| and σ = |φ〉〈φ |, we can consider m to be the infidelity between

two pure states, I, defined as

I(|ψ〉, |φ〉) = 1−|〈ψ|φ〉|2. (4.2)

Because the state |ψ〉 is fixed, we can define the function fψ(φ) = I(|ψ〉, |φ〉). The infi-

delity can be then be obtained experimentally when performing a measurment onto a basis

that contains |φ〉〈φ | as

fψ(φ) = 1− n(φ)
N

, (4.3)

where N is the total numbers of detections made in the experiment, and n(φ) is the number

of detections of |φ〉.

We can use CSPSA to find |φ̃〉 ∈H , dimH = n, such that

fψ(φ̃) = min
|φ〉∈H

fψ(φ). (4.4)

This is achieved using algorithm (3.4),

|φ̂k+1〉=
|φ̂k〉−akĝ(φ̂k)

‖|φ̂k〉−akĝ(φ̂k)‖
, (4.5)
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where |φ̂k〉 is an estimate of |φ̃〉 at the k-th iteration, the ak are real parameters and ĝ(φ̂k)∈

H is an estimate of the gradient of fψ at the k-th iteration, whose components are defined

as

ĝk,i(φ̂i) =
fψ(φ̂k + ck∆k)+ εk,+− fψ(φ̂k− ck∆k)− εk,−

2ck∆∗k,i
, (4.6)

with i = 1, ...,n, ck a real parameter, ∆k ∈H a randomly generated vector and εk,± are

noise terms. In (4.5) we normalize the state obtained by the algorithm of CSPSA.

According to the hypotheses of theorem 5, E(|∆−1
k,i |)≤ α1, with α1 > 0. Therefore, none

of the ∆k,i can be equal to zero. For CSGQT, we will choose ∆k,i as a random pick between

1, −1, i or −i, all with the same probability. Here lies one of the main differences with

SGQT.

In SGQT, it was necessary to represent the quantum state through its real and imaginary

parts. Our choice for ∆k,i is either +1 or −1. Because the ∆k,i also correspond to real

and imaginary parts of complex numbers, those numbers are 1+ i, 1− i, −1+ i or −1− i,

randomly chosen. The values we chose for ∆k,i in CSGQT are impossible to obtain in

SGQT, as that would require that either the real or the imaginary part is zero, which is not

permitted by E(|∆−1
k,i |)≤ α1.

The values for parameters ak and ck are defined, just like in SPSA, as

ak =
A

(k+1+B)s , (4.7)

ck =
C

(k+1)r , (4.8)

with a, B, C, s and r chosen, as before, as A = 3, B = 0 and C = 0.1, but thise time, s = 1

and r = 1/6.
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4.2 Simulation of CSGQT

We performed computational simulations of CSGQT in order to study its efficacy. Our

program was made following algorithm 1 for obtaining the infidelity in f between the

quantum state ψ of the system and the estimate φ0 at each of K iterations

The function FID estimates the fidelity Fid, as it would be measured in a laboratory,

between states ψ1 and ψ2 using N detections.

The results obtained through this procedure will be shown in the next section.

4.3 Comparison between the perfomances of SGQT and
CSGQT

Figures 4.1 to 4.4 compare the mean infidelity Ī over 104 randomly chosen pairs of qubits

|ψ〉 and |φ̂0〉, by using SGQT (blue, dashed line) and CSGQT (red, continuous line)

through 100 iterations of the algorithm, simulating an experiment of 10, 100, 1000 and

104 total detections, respectively. The shaded regions correspond to the variance around

the mean infidelity.

It can be seen that CSGQT achieves lower mean infidelities than SGQT. After 100 itera-

tions, the improvement goes from around one order of magnitude to nearly three, increas-

ing as we get more detections per experiment. The variance also decreases as we perform

more iterations.
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Algorithm 1 CSPSA algorithm
procedure CSPSA(ψ,φ0,K,N)

A← 3, s← 1, B← 0, C← 0.1, r← 1/6
p← dimψ

for k← 1,K do

ak←
A

(k+B)s

ck←
C
kt

∆← a vector of dimension p whose components are randomly chosen from the
set {+1,−1,+i,−i}

φ+← φ0 + ck∆

φ+←
φ+

‖φ+‖
in f+← 1−Fid(ψ,φ+,N)
φ−← φ0− ck∆

φ−←
φ−
‖φ−‖

in f−← 1−Fid(ψ,φ−,N)

ĝ← in f+− in f−
2ck

∆

φ0← φ0−akĝ

φ0←
φ0

‖φ0‖
in f (k)← 1−|ψ ·φ0|2

end for
return in f

end procedure

function FID(ψ1,ψ2,N)
for i← 1,N do

var← a random number between 0 and 1

x(i)←

{
1 if var ≤ |ψ1 ·ψ2|2

0 if var > |ψ1 ·ψ2|2
end for

Fid← ∑
N
i=1 x(i)

N
return Fid

end function



61

Figure 4.1: Mean infidelity obtained by SGQT (blue) and CSGQT (red) by simulating
experiments using 10 detections. Source: Made by the author.

Figure 4.2: Mean infidelity obtained by SGQT (blue) and CSGQT (red) by simulating
experiments using 100 detections. Source: Made by the author.
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Figure 4.3: Mean infidelity obtained by SGQT (blue) and CSGQT (red) by simulating
experiments using 1000 detections. Source: Made by the author.

Figure 4.4: Mean infidelity obtained by SGQT (blue) and CSGQT (red) by simulating
experiments using 104 detections. Source: Made by the author.
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Figure 4.5 shows the mean infidelity Ī over 104 randomly chosen pair of states |ψ〉 and

|φ̂0〉 versus the dimension d of the Hilbert space of the system, by simulating experi-

ments of 10 (blue), 100 (green) and 1000 (red) detections, using SGQT (dashed lines) and

CSGQT (continuous lines).

Figure 4.5: Mean infidelity obtained by SGQT (dashed) and CSGQT (continuous) by
simulating experiments using 10 (blue), 100 (green) and 1000 (red) detections for states
of dimension d. Source: Made by the author.

Even if we increase the dimension, we will obtain a better estimation with CSGQT than

with SGQT, in spite of the low performance for high dimensions for both methods.

Figures 4.6 to 4.9 show histograms for the distributions of infidelities after 100 itera-

tions of the algortihm over 106 randomly chosen pairs of qubits |ψ〉 and |φ̂0〉. The blue

histograms to the left correspond to the results obtained with SGQT, while the red his-

tograms to the right were done using CSGQT.

These distributions give us mixed results: for 10 detections, CSGQT is less disperse and

has a higher frequency of minimum infidelities than SGQT. However, for 100 and 1000
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Figure 4.6: Distribution of the infidelities over 106 repetitions of the simulation of SGQT
(left) and CSGQT (right) for experiments with 10 detections. Source: Made by the author.

Figure 4.7: Distribution of the infidelities over 106 repetitions of the simulation of SGQT
(left) and CSGQT (right) for experiments with 100 detections. Source: Made by the
author.

detections, the opposite is true, with SGQT showing a smaller deviation than CSGQT. For

104 both techniques have a quite similar distribution. It is worth mentioning, though, that

in all these cases CSGQT still achieves lower infidelities than SGQT.
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Figure 4.8: Distribution of the infidelities over 106 repetitions of the simulation of SGQT
(left) and CSGQT (right) for experiments with 1000 detections. Source: Made by the
author.

Figure 4.9: Distribution of the infidelities over 106 repetitions of the simulation of SGQT
(left) and CSGQT (right) for experiments with 104 detections. Source: Made by the au-
thor.
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We have designed a new method for quantum tomography, that unlike The method pro-

posed by Ferrie, does not need to represent the quantum state i its real and imaginary

parts, instead working with it in a complex vector space. Additionally, we have shown

that our method performs even better than Ferrie’s, which already was an improvement

over traditional tomographic techniques.

It should be remembered, however, that our results considered only pure states. For

density matrices, it is unknown how to experimentally measure the infidelity between

two states. Therefore, another distance measure should be needed for the case of mixed

states. It is also sensible to use the CSPSA algorithm in an attempt to find the minimum

(and maximum) eigenvalues of a density matrix, providing us with another scheme for

tomography.

In fact, CSPSA could be used for other physical problems, not necessarily related with

quantum tomography, that involves minimizing or maximizing a function. Examples of

this would be minimizing the expectation value of energy to obtain the ground state energy

of a quantum system, or even in quantum tomography via postprocessed state estimation,

as CSPSA can be used during the maximum likelihood estimation.



Bibliography

[1] G. Mauro D’Ariano, Matteo G. A. Paris and Massimiliano F. Sacchi, Quantum to-

mography. http://qinf.fisica.unimi.it/~paris/PDF/revtomo.pdf.

[2] W. Heisenberg, Zeit. für Physik 43 (1927). http://dx.doi.org/10.1007/

BF01397280.

[3] W. K. Wooters and W. H. Zurek, Nature 299 (1982). http://dx.doi.org/10.

1038/299802a0.

[4] U. Fano, Rev. Mod. Phys 29 (1957). https://doi.org/10.1103/RevModPhys.

29.74.

[5] D. T. Smithey, M. Beck, M. G. Raymer and A. Faridani, Phys. Rev. Lett. 70 (1993).

https://doi.org/10.1103/PhysRevLett.70.1244.

[6] D. T. Smithey, M. Beck, J. Cooper, and M. G. Raymer, Phys. Rev. A 48 (1993).

https://doi.org/10.1103/PhysRevA.48.3159.

[7] M. G. Raymer, M. Beck and D. McAlister, Phys. Rev. Lett. 72 (1994). https://

doi.org/10.1103/PhysRevLett.72.1137.

[8] T. D. Ladd, Nature 464 (2010). https://doi.org/10.1038/nature08812.

68

http://qinf.fisica.unimi.it/~paris/PDF/revtomo.pdf
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1038/299802a0
https://doi.org/10.1103/RevModPhys.29.74
https://doi.org/10.1103/RevModPhys.29.74
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevA.48.3159
https://doi.org/10.1103/PhysRevLett.72.1137
https://doi.org/10.1103/PhysRevLett.72.1137
https://doi.org/10.1038/nature08812


69

[9] R. Blume-Kohout, New J. Phys. 12 (2010). http://dx.doi.org/10.1088/

1367-2630/12/4/043034.

[10] A. I. Lvovsky and M. G. Raymert, Rev. Mod. Phys. 81 (2009). https://doi.org/

10.1103/RevModPhys.81.299.

[11] V. Giovannetti, S. Lloyd and L. Maccone, Nature Photonics 5 (2011). https://doi.

org/10.1038/nphoton.2011.35.

[12] S. Lloyd, Science 273 (1996). https://doi.org/10.1126/science.273.5278.

1073.

[13] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A.

Martin-Delgado and R. Blatt, Science 345 (2014). https://doi.org/10.1126/

science.1253742.

[14] Matthew A. Broome, Alessandro Fedrizzi, Saleh Rahimi-Keshari, Justin Dove, Scott

Aaronson, Timothy C. Ralph and Andrew G. White, Science 339 (2013). https:

//doi.org/10.1126/science.1231440.

[15] Justin B. Spring, Benjamin J. Metcalf, Peter C. Humphreys, W. Steven Koltham-

mer, Xian-Min Jin, Marco Barbieri, Animesh Datta, Nicholas Thomas-Peter, Nathan

K. Langford, Dmytro Kundys, James C. Gates, Brian J. Smith, Peter G. R. Smith

and Ian A. Walmsley, Science 339 (2013). https://doi.org/10.1126/science.

1231692.

[16] G. Mauro D’Ariano, Martina De Laurentis, Matteo G. A. Paris, Alberto Porzio and

Salvatore Solimeno, J. Opt. B: Quantum Semiclass. Opt 4 (2002). http://dx.doi.

org/10.1088/1464-4266/4/3/366.

http://dx.doi.org/10.1088/1367-2630/12/4/043034
http://dx.doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.1253742
https://doi.org/10.1126/science.1253742
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
http://dx.doi.org/10.1088/1464-4266/4/3/366
http://dx.doi.org/10.1088/1464-4266/4/3/366


70

[17] C Sayrin, I Dotsenko, S Gleyzes, M Brune, J M Raimond and S Haroche, New J.

Phys. 14 (2012). http://dx.doi.org/10.1088/1367-2630/14/11/115007.
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