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Resumen

Sistema de Monitoreo No Invasivo de Variables Fisiológicas

Javier Chávez Cerda, MSc.

Universidad de Concepción, 2017

Esta tesis presenta un sistema de monitoreo no invasivo de variables fisiológicas.

El sistema utiliza sensores de presión montados en una silla, los cuales capturan

actividad card́ıaca y respiratoria.

A partir de las señales adquiridas, se desarrollaron algoritmos para calibrar el

sistema, calcular umbrales y ajustar la ganancia del sistema, algoritmos para estimar

la calidad de la señal card́ıaca y respiratoria adquirida, algoritmos para calcular la

frecuencia card́ıaca y frecuencia respiratoria a partir de las señales y algoritmos de

diagnóstico con el objetivo de monitorear y generar alarmas ante anomaĺıas.

Se midieron a 34 personas sanas en un ambiente de laboratorio, las cuales reali-

zaron una secuencia de instrucciones para determinar el efecto de la posición en el

sensor. También fueron medidos luego de realizar ejercicio f́ısico con el objetivo de

validar alarmas de frecuencia card́ıaca y los algoritmos de estimación de calidad de

la señal. Además, se midieron 24 personas que padećıan fibrilación auricular (AF)

en un hospital, con el objetivo de validar alarmas de ritmo card́ıaco. Finalmente se

simularon casos de actividad card́ıaca con diferentes niveles de ruido, en donde se

evaluó el error de estimación de frecuencia card́ıaca y el retardo en la generación de

alarmas y se compararon estos valores con lo indicado en el estándar ANSI/AAMI

para monitores de actividad card́ıaca.

Se procedió a validar, en forma off-line, los algoritmos de estimación de calidad

de las señales, la estimación de la frecuencia card́ıaca, la detección de apneas en la

señal respiratoria y las alarmas. Los resultados arrojaron que la mejor postura para
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monitorear las señales es la de estar sentado apoyado en el respaldo con un error de

estimación de frecuencia card́ıaca de -0.41 ± 3.76 BPM y con una medición efectiva

del 51 %. La estimación de calidad de la señal de balistocardiograma arrojó un 95 %

de sensibilidad para detectar ruido. En cuanto a la señal respiratoria, el algoritmo

para estimar una mala calidad de la señal arrojó un 87 % de sensibilidad.

En cuanto al diagnóstico de apneas se obtuvo un 86 % de sensibilidad y un 76 % de

especificidad. Con respecto al diagnóstico de arritmias, el algoritmo obtuvo un 89.7 %

de precisión en la condición de reposo, un 85.4 % de precisión después del ejercicio y

un 73 % en el diagnóstico de ritmo card́ıaco.

En cuanto a las simulaciones, se comprobó que el algoritmo de diagnóstico de

actividad card́ıaca es capaz de medir un rango de frecuencias de 30 a 300 bpm,

además de alertar dentro de los rangos de tiempo estándares para casos de aśıstole y

taquicardia.

Finalmente los algoritmos fueron probados en tiempo real en un computador de

placa única, los cuales cumplieron con los requerimientos de tiempo de ejecución, lo

que indica que los algoritmos pueden ser implementados en tiempo real utilizando

una Raspberry Pi 3, la cual se comunica por WiFi a un computador principal para

reportar las alarmas.

Se concluye que el algoritmo es capaz de generar alarmas a partir del uso de

sensores no invasivos a través de un monitoreo en tiempo real, sin afectar la comodidad

del paciente.
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Abstract

Non-Invasive Monitoring System of Physiological Variables

Javier Chávez Cerda, MSc.

Universidad de Concepción, 2017

This thesis presents a noninvasive monitoring system of physiological variables.

The system uses pressure sensors mounted on a chair, which capture cardiac and

respiratory activity.

From the acquired signals, algorithms were developed to calibrate the system,

calculate thresholds and adjust the gain of the system, algorithms to estimate the

quality of the acquired cardiac and respiratory signal, algorithms to calculate the

heart rate and respiratory rate from the signals and diagnostic algorithms with the

goal of monitoring and generating alarms against anomalies.

Thirty-four healthy subjects were measured in a laboratory environment, who

performed a sequence of instructions to determine the effects of posture on the sensor.

They were also measured after physical exercise in order to validate heart rate alarms

and quality estimation algorithms. In addition, 24 people who had atrial fibrillation

(AF) were measured in a hospital, in order to validate heart rhythm alarms. Finally,

cases of cardiac activity with different noise levels were simulated, where the heart

rate estimation error and the generation of alarms delay were evaluated and compared

with the ANSI/AAMI standard for activity monitors cardiac.

The algorithms of estimation of signal quality, estimation of heart rate, apneas

detection in respiratory signal and alarms were validated off-line. The results showed

that the best posture to monitor the signals is sitting on backrest with a heart rate

estimation error of -0.41 ± 3.76 BPM and an effective measurement of 51 %. The

quality estimation of the ballistocardiogram signal had a 95 % sensitivity to detect
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noise. As for the respiratory signal, the algorithm for estimating poor signal quality

had a 87 % sensitivity.

For the diagnosis of apneas, a 86 % sensitivity and 76 % specificity was obtained.

Regarding the diagnosis of arrhythmias, the algorithm obtained 89.7 % accuracy in

the rest condition, 85.4 % accuracy after exercise and 73 % in the heart rhythm

diagnosis.

For the simulations, the cardiac activity diagnostic algorithm is able to measure

a frequency range of 30 to 300 bpm. In addition to alerting within the standard time

ranges for cases of asystole and tachycardia.

Finally, the algorithms were tested in real time on a single-board computer, which

met the requirements of run time, indicating that they can be implemented in real

time using a Raspberry Pi 3.

The algorithm is capable of generating alarms from the use of non-invasive sensors

through a real-time monitoring, without affecting the comfort of the patient.
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1.2 Hipótesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Objetivo General . . . . . . . . . . . . . . . . . . . . . . . . . 3
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Chapter 1

Introducción

En este caṕıtulo se introduce el problema global que motiva el desarrollo de esta

tesis, la hipótesis de ésta y sus objetivos. Luego, se describe como está organizado el

trabajo en sus diferentes caṕıtulos.

1.1 Problemática Global

La enfermedad card́ıaca es la principal causa de muerte en todo el mundo y

está fuertemente relacionada con el envejecimiento de la población, la cual crece

rápidamente cada década. De hecho, para el año 2050 se espera que la población

mundial de adultos mayores se triplique [1].

En Chile, según la encuesta CASEN 2013, hay 2.885.157 adultos mayores que

representan el 16,7 % de la población chilena y el 6,7 % tienen una severa dependencia

funcional. Además, según estudios del Instituto Nacional de Estad́ısticas (INE) de

2007, la población de más edad alcanzará a la población de jóvenes menores de 15

años en el año 2025, lo que confirma el envejecimiento de la población chilena.

Eso significa que en el futuro, la población aumentará los controles y visitas a los

establecimientos de salud. El aumento de los adultos mayores con grave dependencia

funcional hace que la atención médica en el hogar sea necesaria.
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Uno de los principales problemas que existen en los hospitales chilenos es en las

salas de espera, donde los pacientes deben esperar largas horas para ser atendidos por

un especialista. Han existido casos en los que los pacientes han muerto en espera de

atención, donde no hubo advertencias de aquello [2–5].. Con respecto a las personas

con dependencia funcional, ”HomeCare” (HC) es una alternativa de salud en el hogar,

entregando un ambiente psicológico más humanizado. Sin embargo, los pacientes

tratados en el sistema de HC se caracterizan por la necesidad de atención permanente

y vigilancia activa por parte del personal a cargo o familiares.

Esto lleva a la necesidad de un sistema de monitoreo de variables fisiológicas como

la actividad card́ıaca y respiratoria, que alerte anomaĺıas para un cuidado oportuno.

Aunque existen métodos para medir estas variables como el electrocardiograma y

bandas respiratorias, éstas interfieren con la comodidad del paciente.

En las últimas décadas, investigaciones han desarrollado diferentes técnicas para

medir la actividad card́ıaca y respiratoria de manera no invasiva. Estas tienen la

ventaja de no incomodar al paciente y que son fáciles de utilizar, ya que el paciente

sólo necesita apoyarse en los sensores a ser monitoreado.

Esta tesis presenta un sistema de monitoreo, que emite alarmas a partir de señales

obtenidas por sensores no invasivos con el objetivo de resolver los problemas descritos.

1.2 Hipótesis

A partir de la información de latidos card́ıacos y movimientos respiratorios, obtenidos

mediante el uso de sensores no invasivos, es posible generar alarmas oportunas que

apoyen el cuidado del paciente.
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1.3 Objetivos

1.3.1 Objetivo General

Diseñar e implementar un sistema de alarmas oportunas ante anomaĺıas card́ıacas

y respiratorias obtenidas de sensores no invasivos de presión.

1.3.2 Objetivos Espećıficos

• Investigar e implementar criterios para la detección de anomaĺıas más comunes

de la actividad card́ıaca y respiratoria.

• Capturar señales card́ıacas con ajuste de ganancia automática para diferentes

personas.

• Implementar algoritmos de evaluación de la información card́ıaca y respiratoria

en tiempo real en un computador de placa única (SBC).

• Implementar algoritmos de detección de señales de baja calidad en tiempo real,

para evitar generar falsas alarmas.

• Desarrollar e implementar un software en un computador principal que se comu-

nique con el SBC, el cuál actuará como servidor y recibirá las alarmas emitidas

por los clientes.

• Realizar simulaciones de señales, pruebas a voluntarios y a pacientes para probar

la efectividad del sistema.

1.4 Temario

Este trabajo está organizado en 7 caṕıtulos. El caṕıtulo 1 presenta la problemática

global que motiva este trabajo de investigación, la hipótesis de ésta y sus objetivos.
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En el caṕıtulo 2 se revisa el estado del arte del desarrollo de sistemas no invasivos,

los sensores utilizados, los algoritmos de preprocesamiento y análisis, detección de

ruido y el criterio de alarmas.

El caṕıtulo 3 describe el sistema de adquisición, donde se describen los sensores

seleccionados y el hardware para acondicionar y adquirir las señales. Luego se describe

como se energiza el sistema.

El caṕıtulo 4 detalla los algoritmos propuestos para el pre-procesamiento y ob-

tención de parámetros fisiológicos a partir de las señales adquiridas, y los crtierios

para realizar un diagnóstico con estos valores.

El caṕıtulo 5 describe la metodoloǵıa de las mediciones realizadas a sujetos de

prueba para validar el sistema y las simulaciones realizadas para comparar los resul-

tados con un estándar internacional.

El caṕıtulo 6 se muestran los resultados obtenidos.

El caṕıtulo 7 se realiza una discusión general del trabajo y se presentan las con-

clusiones.
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Chapter 2

Introduction

This chapter introduces the global problem that motivates the development of this

thesis, its hypothesis and its objectives. Then, it describes how this work is organized

in its different chapters.

2.1 Global Issues

Heart disease is the main cause of death worldwide and is strongly related to the

ageing population, which is growing rapidly every decade. In fact, by the year 2050

the worldwide population of older adults is expected to triple [1]. In Chile, according

to the CASEN 2013 survey, there are 2.885.157 older adults representing 16.7% of the

Chilean population and 6.7% have a severe functional dependency. Also, according

to 2007 studies by the National Institute of Statistics (INE) the older population

will reach the population of young people under 15 years old in 2025, confirming the

ageing of the Chilean population.

This means that in the future, population will increase controls and visits to

health facilities and the increase of older adults with severe functional dependence

makes medical care at home necessary.

One of the major problems that exists in Chilean hospitals is in waiting rooms,
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where patients must wait long hours to be seeing by a specialist. There have been cases

where patients have died waiting for care, where there were no warnings of that [2–5].

Regarding older people with functional dependency, ”HomeCare” (HC) is a health

care alternative at home, providing a more humanized psychological environment.

However, the patients treated with HC systems are characterized by the need for

permanent care and active surveillance by the staff in charge or their relatives.

This leads to the need for a monitoring system of physiological variables such as

cardiac and respiratory activity, that alarms anomalies for timely care. Although

there are methods to measure these variables, like electrocardiogram and respiratory

bands, but they interfere with the patient’s comfort.

In the last decades, research has developed different techniques for measuring

cardiac and respiratory activity in a non-invasive way, which are not uncomfortable

and are simple to use, since the patient only needs to lean on the sensors to be

monitored.

This thesis presents a monitoring system that emits alarms from signals obtained

by non-invasive sensors, with the aim of solving the problems described.

2.2 Hypothesis

It is possible to generate a timely alarm that supports patient care, from the

information of heartbeats and respiratory movements, obtained through the use of

non-invasive pressure sensors.

2.3 Goals

2.3.1 Main Goal

Design and implement a timely alarm system for cardiac and respiratory anomalies

obtained from non-invasive sensors.
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2.3.2 Specific Goals

• Investigate and implement criteria for the detection of more common anomalies

of cardiac and respiratory activity.

• Capture cardiac signals with automatic gain adjustments for different patient.

• Implement algorithms for evaluating cardiac and respiratory information in real

time on a single board computer (SBC).

• Implement a low quality signal detection algorithm, in real time, to avoid gen-

erating false alarms.

• Develop and implement a software on a main computer that communicates with

the SBC, which will act as server and receive the alarms issued by the clients.

• Perform simulations of signals, measure volunteers and patients to test the

effectiveness of the system.

2.4 Thesis Overview

This work is organized into 7 chapters. Chapter 1 presents the global problem

that motivates this research work, its hypothesis, and its objectives.

Chapter 2 reviews the state of the art in the development of non-invasive sys-

tems: sensors used, preprocessing and analysis algorithms, noise detection and alarm

criteria.

Chapter 3 describes the acquisition system, which shows the selected sensors and

the hardware for conditioning and acquiring the signals. It then describes how the

system is energized.

Chapter 4 details the proposed algorithms for the preprocessing and obtaining

of physiological parameters from the acquired signals, and the criteria for diagnosis

using these values.
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Chapter 5 describes the methodology of the measurements performed to test sub-

jects, in order to validate the system and the simulations performed to compare the

results with an international standard.

Chapter 6 shows the results obtained.

Chapter 7 conducts a general discussion of the work and presents the conclusions.
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Chapter 3

Background

In this chapter, a bibliographical review is made on the non-invasive sensors used

for measurement of cardiac and respiratory activity, and the hardware necessary for

its conditioning. Then, the algorithms that have been used for signal pre-processing,

algorithms for obtaining heart rate (HR) and respiratory rate (RR) from signals, and

the algorithms of noise detection are reviewed. The alarm criteria used are then

discussed. Finally, a general discussion of all these issues is made.

3.1 Unobtrusive Sensors and Signal Preprocessing

3.1.1 Unobtrusive sensors

In recent years several works have been made on unobtrusive pressure sensors

by measuring physiological signals such as breathing and cardiac activity. Preferred

sensors are resistive, capacitive and piezoelectric sensors.

Resistive sensors are reliable and simple to use. They modify their resistance by

applying force on them [6]. Force Sensing Resistor (FSR) has the characteristic that

pressure applied on it decreases its resistance. FSR has many applications and is used

in several works related with unobtrusive measurement. A system for polysomnog-
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raphy screening was implemented using 24 FSR, arranged in 3 rows and 8 columns,

positioned under a sheet, over a bed. This system captured the respiratory signal and

body movements during the night. These captured signals were processed to obtain

objective parameters of sleep quality. Also, the system can detect abnormalities like

sleep apneas [7]. Other work used FSR to measure the pressure distribution of the

subject on a wheelchair, in order to generate alarms when a pressure relief is needed.

This is focused on the care of people with multiple sclerosis to prevent bedsores [8] [9].

Many electrical interfaces are proposed to transduce forces, for example a volt-

age divider, current-to-voltage converter, variable force threshold switch, adjustable

buffers and many others [10]. The external circuit of the interface is also important

because it configures the sensitivity of the interface.

Resistive sensors can capture respiration signals and measure pressure, but they

do not have enough sensitivity to capture cardiac activity (besides the respiratory

activity). Capacitive and piezoelectric sensors are capable of capturing this kind of

signal.

One of the capacitive sensors is the electro-mechanical films (EMFi). EMFi sensors

are composed of small bubbles of gas that separate charges over to plates (Fig. 3.1a).

When a dynamic force is applied to this sensor, the separation of the electric charges

is modified, causing a variation of charges between the electrodes of the sensor.

A typical piezoelectric sensor is the polyvinyl (PVDF). PVDF sensors have ran-

domly oriented dipoles, which produce a zero internal net charge. When a force is

applied to the sensor, the dipoles change their orientation, generating a net charge

different from zero [11] (Fig. 3.1b).

Both sensors ,EMFi and PVDF, have different operating characteristics. They

were compared applying dynamic normal and sliding forces on them. The research

concluded that the EMFi sensors showed a high sensitivity to normal forces and a

poor sensitivity to sliding forces. In contrast, PVDF sensors had a high sensitivity

to slider forces and a lower sensitivity to normal forces. The EMFi has a normal



11

(a) Sensor EMFI

(b) Sensor PVDF

Figure 3.1: Simplified model structure of EMFi (a) and PVDF (b) sensors [11].

sensitivity approximately five times greater than the PVDF [12]. This characteristic

gives a clue of what sensor should be used to measure cardiac activity and respiration

movements.

Both sensors have enough sensitivity and precision to measure cardiac and res-

piratory activity [6]. Cardiac activity is related to the action-reaction force of the

body, caused by the heart when it pumps blood through the aorta. This acquired

signal is called ballistocardiogram (BCG), which is a graphic representation of this
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Figure 3.2: Electrocardiogram and Ballistocardiogram signals.

action-reaction force (Fig. 3.2). The most characteristic waveform of BCG is the

IJK wave, which occurs when the blood is ejected from the left ventricle. This is a

mechanical signal, and it has a phase shift with the electrocardiogram (ECG).

Breathing activity involves a series of movements of many muscles of the rib cage,

such as the diaphragm, intercostal muscles, abdomen, etc. These movements are

captured together with the BCG (Fig. 3.3).

Different types of current-voltage transducers as charge amplifier [13] or use the

non-inverting voltage amplifier [11] is suggested for the acquisition of the signals

coming from sensors, so that it can be digitized by a digital-analog converter.
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Figure 3.3: BCG signal with respiration baseline.

3.1.2 Signal Preprocessing

The preprocessing of the captured signals is important because sensors can acquire

overlapping respiration and BCG signals. They must be separated in order to analyse

them independently. Different ways to separate signals have been implemented. One

technique is using analog or digital filters, taking advantage of the fact that the

signals have different spectral band frequencies. Respiration signal has a frequency

band between 0.1 and 0.5 Hz, and the BCG, between 1 and 20 Hz [11].

Statistic methods also are used to separate signals, such as independent component

analysis. This method decomposes a signal into statistically independent components

(ICA) [14]. Other methods are based on linear algebra to form orthonormal compo-

nents and thus are linearly independent. This method is called principal component

analysis (PCA) [15].

One of the most widely used methods for separating signals is the wavelet trans-
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form [16–19], which has had many applications in the field of biomedical signals [20].

The wavelet transform consists on decomposing signals into different levels of details

using a special filter banks. By choosing the proper details levels, the BCG and

respiration can be rebuilt separately, using a reconstruction algorithm. Another pop-

ular method is the empirical mode decomposition (EMD) [21]. It uses a recursive

algorithm that computes the upper and lower envelope of the signal, and then, sub-

tract the mean of those signals from the original signal to obtain the intrinsic mode

function. Next, a residual signal is obtained, subtracting the current signal with the

function obtained. Later, with the residual signal, the algorithm is again applied, and

so on.

Once the signals are separated, different algorithms can be used to analyse them

independently.

3.2 Algorithms

3.2.1 Heartbeats Detection

Different algorithms have been developed in order to detect hearts beats from the

BCG and calculate the heart rate. Some algorithms work with the raw signal, like

using peak detector to find the J wave of the heart beats [22]. Other works extract

the main characteristic of BCG beats in a training phase, obtaining a pattern and

then comparing this pattern with the characteristics of the following BCG beats [23].

Another work focuses on the shape of the BCG beat, assuming that the beats have

an “M” shape, and using a clustering method to discard the noise from the BCG

beats [24]. Another approach is to calculate the similarity of the beats with a template

beat, using correlation. The peak values of correlation are considered beats [25].

Other works focus on applying different transformations on the signal in order to

facilitate the beat detection. Some works calculate the energy of the signal and use
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a peak detector to find the maximum points of energy [8] [26]. The length transform

has also been applied, based on the assumption that the largest part of the BCG beat

is the IJK wave, and then apply a local peak detector [27] [28]. Other work proposes

to use a sliding window and obtain the fast Fourier transform to obtain the spectral

power, which indicates the periodicity of the signal [29].

3.2.2 Respiratory Cycles Detection

Respiration signal is easier to analyse compared with the BCG signal. It has a

lower frequency content, and the signal is similar to a pure harmonic.

Some studies are focused on detecting respiration cycles using a filtered respiration

signal, in order to detect semi-cycles (inspiration and expiration). A semi-automatic

algorithm uses a moving mean window to filter the respiration signal. First, the wave-

form is separated into breath cycles by identifying intercepts of a moving average curve

with the respiration signal. Peaks and valleys were then defined as the maximum and

minimum respectively. Finally, automatic corrections and manual user interventions

were employed [30]. A noise-robust respiratory cycle detection algorithm is proposed,

with the same principle of filtering the respiration signal in order to detect breath

cycles. The analysis is made under the assumption is that only breaths of ’typical

sizes’ are real respiratory efforts, and the deviation from a typical-size breath leads to

poor data quality. The algorithm identifies typical breaths by dynamically adjusting

its breath identification criteria, based on the initially identified breaths [31]. The

width, area and height of the breath cycle are calculated in order to determine if it

is noise or a real breath.

Unlike to two algorithms previously mentioned, other work detect breath cycles

using 2 points (P1 and P2) of the signal. Those points have a distance of N samples.

In every iteration the points are moved in 1 sample. If the difference between P2

and P1 is positive and in the next iteration the difference is negative, the algorithm

find the max value between the points. If the difference in negative and in the next
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iteration is positive, the algorithm find the minimum value. Then, the amplitude of

breath cycle is calculated using the maximum and minimum values obtained. If the

amplitude is greater than a fixed threshold, it is considered as a valid respiration.

Otherwise it is considered noise.

3.2.3 Noise Detection

The use of pressure sensors allows the extraction of physiological signals in a non-

invasive way. However, the disadvantage is that they are sensitive to motion artifact,

like moving the arms or legs, or even talking. That disrupt BCG and respiration

signal, causing the algorithm to fail in estimating the HR and RR properly. It is

necessary to have an algorithm capable of detecting unwanted noise, in order to avoid

false estimation. Also, the disadvantage of a non-obtrusive pressure sensor is the force

distribution sensitivity. Research show that even the different position of the subjects

over the sensors have an effect on the amplitude and quality of the signal [32] [33].

Several works detect noise artifact using a high order statistic indexes like standard

deviation (SD) or kurtosis [28] [34] [35]. Other works use an auxiliary sensor to detect

vibration [8], like an accelerometer. In order to stablish if the subject was in motion,

the RMS value is calculated, and compared to a fixed threshold [35].

Other work proposed the use of a vibration sensor, which detects vibrations in the

ground and it is used as a reference, in order to make a noise cancellation thechniques

[36].

3.3 Alarms Criteria

For the detection of cardiac abnormalities, 2 methods have been developed. One

method analyses the evolution of the instantaneous heart rate [37], and the second one

analyses the mean heart rate by epochs [38] [39]. Those criteria are also applicable

to the respiratory signal.
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A HR is considered normal when its value is between 60 and 100 beats per minute.

Bradycardia is reported when the HR is less than 60 beats per minute and tachycardia,

when the HR is greater than 100 beats per minute [40]. On the other hand, when

there are no QRS complexes for more than 4 seconds, it is considered asystole [38].

For respiratory activity, a normal RR is considered when it is between 12 and

20 breaths per minute. Bradypnea is considered when RR is below 12 breaths per

minute and tachypnea when RR is above 20 breaths per minute [41].

3.4 Discussion

The development of non-invasive systems for the measurement of respiratory and

cardiac activity is oriented to the patient, so that the system is comfortable and

simple to use, thus avoiding the supervision of a specialist when in use. Therefore,

pressure sensors meet with the non-invasive definition, and make them the best option

to develop a measurement system.

However, depending on the application, the correct sensor must be chosen. For

example, the EMFi and PVDF are sensitive to the vibrations generated by the heart

pulse, so they can be used to capture cardiac and respiration activity. But, for the

same reason, they are sensitive to body movements, which distort those signals. In

addition, they do not detect static forces, so there is no way to know if a subject is

positioned over the sensor. On the other hand, resistive sensors are able to detect

static forces but do not have enough sensitivity to detect cardiac activity. One solution

would be to integrate sensors to detect both kind of forces and have better information

on the patient’s condition, although the system is more complex when more sensors

are included.

Regarding the pre-processing of signals, all separation methods have delay asso-

ciated depending on their complexity. This issue is important to consider in order to

implement algorithms in real time. The use of analog or digital filters is the simplest
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alternative. The use of analog filters avoids extra digital processing but increases the

hardware size. Digital filters are another option. Infinite Impulse Response (IIR)

filter type is an option to process the signal with a low numbers of coefficients (low

processing).

The wavelet transform is a useful method to separate signals, but it takes more

processing to obtain the different levels of details, in order to rebuild signals of interest.

Also, the quality of the rebuilt signal depends on the filter bank order used. Lower

orders of the filter causes worst reconstructions of the details, and greater order of

the filter make a better rebuilds, but longer processing time will be needed.

The correlation method is a viable alternative for the detection of beats, but a

reference BCG heartbeat is required for each particular person. Applying transfor-

mations to BCG signal makes it less complex and easier to analyse.

For RR estimation, the size of the window to analyse the signal is fundamental.

Respiratory signal varies its duration depending on if there are fast or slow breaths.

It is necessary to consider a suitable window size to be able to detect all ranges of

the respiratory rates.

Proposed noise detection methods have a disadvantage. They consider a noisy

signal when its amplitude or its variability increases caused by body movements.

But, bad quality signal does not imply a body movement that distorts the signal. It

could also be caused by the limitation of sensors to capture force distribution, which

alters the accuracy of the algorithms previously described. In this case, a better noise

detection algorithms would be needed, independent of the amplitude of the signal.

The instantaneous HR analysis offers better monitoring of HR evolution. How-

ever, in case of any false negative or false positive, it produces a false datum. For

epoch analysis, an average of the instantaneous frequencies is calculated, filtering the

extreme values, making it more robust to false alarms, but this implies an associated

delay when the alarm is triggered.
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Chapter 4

System Description

In this chapter the complete system is described at each stage, and how the system

is energized.

4.1 System Stages

The acquisition system was set on a chair with cushions for the comfort of the

subjects. The system captures the data from the sensors while the subject is sitting.

The acquisition system is divided into 5 stages: 1) Unobtrusive sensors, 2) Analog

circuit, 3) Analog to Digital conversion (ADC), 4) Single Board Computer (SBC) and

5) Wireless communication. An overview of the implemented system is presented in

Fig. 4.1.

4.1.1 Unobtrusive sensors

The system uses 3 types of sensors: an Electromechanical Film (EMFi), Polyvinyli-

dene Difluoride (PVDF) and Force Sensing Resistors (FSR).

One EMFi L-Series of 30x29 cm sensors was used and placed on the seat of the

chair. This sensor is responsible for measuring cardiac activity. Two PVDF of
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Figure 4.1: General System Diagram.

152mmx76mmx0.06mm are set on the backrest. They are responsible for measur-

ing respiration activity. Finally, 2 FSR are set on the chair, one on the seat, and

one on the backrest. They are responsible for detecting presence of the subject and

trigger the calibration stage and the respiration and cardiac signals algorithms (Fig.

4.2).

4.1.2 Analog Circuit

The analog circuit was first implemented on a protoboard. Then, for the final

design it was printed on a circuit board, designed with EAGLE CadSoft software. A

charge amplifier is used to amplify the charge variation from the EMFi and transduce

it to a variation of voltage. The circuit also has a digital potentiometer, configurable

using the I2C communication protocol, allowing 256 steps of resistance. This re-

sistance value is configured during the calibration stage in order to set the gain of

the circuit. The same charge amplifier is used for the PVDF sensors, but its gain

resistance is fixed (Fig. 4.3).

The amplified signal from EMFi is filtered using a second order low pass Sallen-
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PVDFFSR

FSR EMFi

BACKREST

SEAT

Figure 4.2: Sensors on a chair. Sensors setted on a common chair. EMFi is placed on

the seat to capture BCG and 2 PVDF sensor are placed on the backrest to capture

respiration. FSR sensors are placed on seat and backrest in order to detect the

presence of subjects.

Key filter with 20 Hz cutoff frequency. The 2 signals coming from the PVDF sensors

are filtered using the same type of analog filter, but the cutoff frequency is 0.5 Hz.

Finally, these three signals are acquired through the analog-digital converter.

For the FSR, the system uses a voltage divisor and both outputs are connected

directly to two digital inputs of the SBC (Fig. 4.4). When a subject is setting over the

sensor, the output voltage is near to 3.3V, representing a high logic voltage and when

there is no forces applied on the sensor, the output voltage is near to 0V, representing

a low logic voltage.

4.1.3 Analog to Digital Conversion (ADC)

An Analog-Digital Converter ADS7828 is used for digitalizing the signals coming

from the EMFi and PVDFs sensors. It has 12 bits of resolution, and communicates
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Figure 4.3: Charge Amplifier. This circuit transduces the variation of charge of sensor

into variation of voltage. A digital potentiometer is used to adjust de gain for EMFi,

for PVDF a fixed resistance is used.

with the SBC using I2C protocol to send the acquired signals at 100 S/s.

4.1.4 Single Board Computer (SBC)

The SBC is a useful alternative to a micro-controller for embedded applications

as a micro-controller, and have enough resources to make complex processing as a

modern computer. A Raspberry Pi 3 was used to implement the system (Fig. 4.5).

Table 4.1 shows the characteristic of the SBC.

Python language and the MRAA library are used to implement the I/O control.

Through the I2C bus pins, the software controls the ADC, the digital potentiometer

and the digital input from the FSR circuit. The digital inputs are read at 100 S/s.
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Figure 4.4: FSR circuit. A: Voltage divider circuit B: When a force is applied to the

FSR, its resistance becomes low, and the output voltage is a high level logic. On the

other hand, if there is no forces applied on it, the output voltage is a low level logic.

4.1.5 Wireless Communications

The Raspberry Pi send the diagnosis of respiratory and cardiac activity using the

WiFi module. A TCP/IP communication was implemented using the Socket library

from Python.

Table 4.1: Raspberry Pi 3 Features

CPU
ARM Cortex-A53

Quad Core Processor SoC running @ 1.2GHz
RAM 1 GB RAM
USB 4 USB 2.0

Storage microSD
Network BCM43143 WiFi, 10/100 Ethernet (RJ45)

Low-Level Peripherals
27 x GPIO, UART, I2C bus,

SPI bus, +3.3V, +5V, Ground
Power Requirements 5V @ 2.4 A via microUSB power source

Operative System Supported Raspbian, Windows 10 IoT Core
Dimensions 85mm x 56mm x 17mm
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Figure 4.5: Raspberry Pi 3.

4.2 Power Supply

The Raspberry Pi 3 is powered with a µ USB charger of 5V, with a maximum

current of 2 Amps. It has a 3.3 V output peripheral, used for powering the analog

circuit and the ADC. The analog circuit has a dual supply operational amplifiers, and

the negative voltage supply (-3.3 V) is given by a charge pump circuit ADM8660, that

inverts the positive voltage.

The analog system and the ADC in idle mode, i.e. without a person on the chair

and without acquiring data, needs a current of 3 mA. With a person on the chair and

acquiring data, the systems needs 6 mA. The maximum permitted current draw from

the 3.3 V Raspberry pin is 16 mA, therefore the system meets these requirements.

The current needed for Raspberry Pi in order to run the algorithms is analysed

in the Results chapter.
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Chapter 5

Algorithms and Signal Processing

This chapter describes the calibration stage, the BCG and respiration signal pro-

cessing and their diagnosis. These algorithms were implemented in Python.

5.1 Calibration Stage

This processing is necessary to calculate the variability thresholds and amplitudes

for the analysis of the respiratory signal (r1 and r2), and to define a minimum gain

and a threshold of minimum variability for the BCG signal. Both FSR sensors must

be active to start the calibration.

The algorithm set 10 different gains (steps of resistance), sorted from lowest to

highest. When the calibration starts, the lowest gain is configured in the digital

potentiometer. Every 5 seconds, the last 500 acquired samples of each signals is

analysed. The standard deviation of the BCG signal is calculated. If it is less than

200, the next value of gain is configured in the digital potentiometer, if it is between

200 and 300, the gain is kept constant, and if it is greater than 300, it is considered

noise. For the respiratory signal, the range and the standard deviation is calculated

every 5 seconds. When there is noise in the BCG signal, respiration signal is also

considered as noise.
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Figure 5.1: Calibration Flow Chart.

When the gain is maintained for 3 consecutive iterations, the calibration is com-

pleted, and thresholds are calculated (Fig. 5.1).
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5.2 BCG signal processing

The algorithm analyses segments of 15 seconds of BCG, with an overlap of 10

seconds. A band-pass 2-20 Hz butterworth digital filter was used to filter the incoming

BCG signal.

5.2.1 Peak Detection

The algorithm for estimating the HR was already described in [42] [28]. It includes

the following steps:

• Signal separation: Wavelet Transform was used to separate the BCG signal from

Respiration signal. Using the mother wavelet ’Deabuchie 6’, the raw signal was

separated. Then, using details 4 to 7 the clean BCG signal was rebuilt.

• Length Transform: Since IJK wave is the largest wave, the length transform

(LT) is calculated using a moving window of 60 samples. Then the LT is

smoothed (SLT) using a moving average filter of 60 samples.

• Peak detection: Peaks are detected finding local maxima in a neighbourhood of

± 30 samples in the SLT signal.

Wavelet transform offers good signal decomposition without phase or amplitude

distortion, but it requires complex computing to obtain details and approximation

coefficients to rebuild the filtered BCG signal. In order to make a fast signal process-

ing, wavelet transform was replaced using a 5th order band pass 2-20 Hz digital IIR

filter.

Calculating the LT (Eq. 5.1) is computationally expensive, so an approximation

was performed (Eq. 5.2). Finally, the SLT is calculated (Eq. 5.3), with L as the

window size.
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LT [k] =
k∑

i=k−L

√
(S[i]− S[i− 1])2 + 1 (5.1)

LT [k] =
k∑

i=k−L

|S[i]− S[i− 1]| (5.2)

SLT [k] =
1

L

k∑
i=k−L

LT [i] (5.3)

Usually, the window length to find the peaks is fixed, meaning that it would

have problems calculating higher or lower frequencies than a ‘normal’ HR. At high

frequencies, the windows would include more than one beat. At low frequencies, the

windows can show a BCG rebound signal as a beat.

The solution to this problem is the proposed adaptive length neighborhood based

on the variability of multiple SLT.

Multiple Smoothed Length Transform

To avoid having one fixed window size, we propose to use multiple STL of the

BCG signal, using 4 fixed size windows of 80 (SLT80), 40 (SLT40), 20 (SLT20) and

10 (SLT10) samples samples in order to determine the best neighborhood length for

peak detection (Fig. 5.2). Also, another STL of 5 samples (SLT5) was calculated for

the peak detection. Then, a phase shift correction is applied to the SLT to realign

with the original signal.

Larger windows avoid detecting false beats from bounces, but do not respond well

to high frequencies, because the heart beat period is smaller than half of window size.

On the other hand, smaller windows detect heart beats at a high frequency, however,

they are sensitive to rebound and detect false positives at low frequencies.
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Figure 5.2: Multiple Smoothed Length Transform. A: BCG signal, B: Multiple

Smoothed Length Transform.

Neighbourhood’s Length estimation and peak detection

Neighbourhood’s Length (NL) depends on the parameter L, which varies depend-

ing on the variability of the last N samples of the SLT signals, and a constant f

(Eq. 5.4). These variabilities are ordered from highest to lowest. If V ARSTL80 >=

V ARSTL40 >= V ARSTL20 >= V ARSTL10 , L will be equal to 80. Else if V ARSTL40 >=

V ARSTL20 >= V ARSTL10 , L will be equal to 40. Else if V ARSTL20 >= V ARSTL10 ,

L will be equal to 20. Otherwise, L will be equal to 10. N and f are experimental

values that in the algorithm performs best for N = 50 and f = 0.5.

LN = 2 · L · (1 + f) (5.4)

When the peak detection algorithm starts on the SLT5, the NL is estimated point

by point and if the actual point value, located in ”i”, is the maximum value on a
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Figure 5.3: Neighbourhood Length Estimation. A: Variance of SLT, B: Peak detec-

tion using Neighbourhood Length estimated.

neighborhood of i- NL=2 : i + NL=2, a peak is detected. (Fig. 5.3)

5.2.2 Noise Estimation

One of the main problems of unobtrusive measurement is noise. Noise has different

sources, for example, muscle movements, breathing, talking or even walk near the

sensors. To differentiate noise signal from clean BCG, the signal quality is assessed.

A new approach was developed in this work to detect noisy BCG segments using

correlation [43] and HR variability.

The correlation criteria is based on the assumption is that two clean beats are

similar, hence with a high correlation (Fig. 5.4), but if there is a poor signal quality

or if there is a false peak detected, the correlation between two extracted segments

would be low (Fig. 5.5).



31

Figure 5.4: Good Quality Signal. Good quality if BCG. The correlation between

beats is high.

The variability of the HR is an indicator of regular or irregular heart rate. Previous

works mention different methods to estimate the heart rate variability using frequency

domain techniques [44] [45], time domain techniques [46] and geometrical methods

like Poincaré Plot [47]. In this work, time-domain techniques were used, calculating

the standard deviation of 5 consecutive periods. Physiologically speaking, the HR

has a normal variability that is constrained. When this variability is exceeded, the

analyzed segment is considered noisy. Estimated HR variability indicates if there is

a problem with the signal quality or if there is a problem with the algorithm (Fig.

5.7).

Correlation threshold

From the detected peaks, the beats are extracted using a neighborhood of pm 15

samples. Pearson’s correlation coefficient between 2 consecutive beats is calculated
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(Fig. 3). If the correlation between beats is low than a fixed value, the period between

beats is discarded, otherwise is considered for HR and HRV calculations.

HR variability thresholds

A fixed variability threshold (VThr) of 0.25 s was selected to analyze the SD of

5 consecutive periods. If the SD value is over VThr, periods are considered noisy,

otherwise the periods are considered reliable. This VThr is selected empirically from

the MIT-BIH Normal Sinus Rhythm (NSR) [48] and the MIT-BIH Atrial Fibrillation

(AF) [49] databases from Physionet (Fig. 5.6).

5.2.3 BCG Diagnosis Algorithm

A decision-tree algorithm was developed for the diagnosis. The tree is divided

into 5 main components: 1) Presence detection, 2) Variability of BCG, 3) Peak

Figure 5.5: Bad Quality Signal. Bad quality of BCG. The correlation between beats

is low
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Figure 5.6: Histogram of periods SD in case of normal rate and atrial fibrillation.

A fixed threshold of 0.1 s is selected to discriminate the regular from the irregular

periods. A SD over 0.25 s is used for noise detection.

detection and Correlation filter, 4) Variability of periods and 5) Report (Fig. 5.8).

The algorithm analyzes BCG segments of 15 seconds, with an overlap of 10 seconds.

When the algorithm ends, it waits for the next segment of 15 seconds.

Presence detection

The FSR sensor placed on the seat is used to detect when a person is sitting on

the chair. If over 80% of the segment time the level is high, the algorithm assumes

a presence and goes to the next node. Otherwise, the algorithm waits for the next

segment.
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Figure 5.7: Heart Rate Variability by Motion Artifact. A: Raw BCG signal, B:

Calculated HR. When a motion artifact occurs, the heart rate variability increases

due to false detection of beats.

Variability of BCG

A low variability of the signal is also important to analyse, because it indicates

that the cardiac output is decreasing or the heart is in asystole. If the variability

of the last 3 seconds of BCG segment lower than 0.2 times the variability threshold

obtained during calibration (SDC), an asystole is reported. Otherwise, the algorithm

continues to the next node.

Peak detection and Correlation filter

The algorithm detects every possible beat using the adaptive neighborhood for

peak detection. A fixed threshold of 0.9 is used to filter the correlations. If a peak
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Figure 5.8: Flow Chart BCG Diagnosis Algorithm.
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candidate has a correlation value lower than 0.9 with its predecessor, the beat peri-

ods delimited by those peaks is discarded. If there are less than 5 periods left, the

algorithm does not continue the analysis because there is not enough information for

the diagnosis.

Periods Variability

Using a moving window of five samples, we calculate the standard deviation of the

surviving periods. Then, two fixed thresholds are used in order to classify the vari-

ability of each segment in normal rhythm, irregular rhythm or noise. The variability

must be lower than 0.1 to be classified as normal rhythm, between 0.1 and 0.25 to

be classified as irregular rhythm, and higher than 0.25 to be classified as noise. If

the number of noisy periods (NNP) is greater than the number of regular periods

(NRP) or number of irregular periods (NIP), the segment is considered as noise and

the analysis is stopped.

Report

The algorithm reports an irregular rhythm if NIP is greater than NRP, otherwise

the algorithm reports a regular rhythm. On the other hand, the algorithm calculates

the mean heart rate of the entire segment of 15 s (HR15), and calculates the mean

heart rate of the last 5 s (HR5) in order to report HR alarms. If (HR15) or (HR5)

is greater than 100 BPM the algorithm reports tachycardia. If (HR15) or (HR5) is

lower than 60 BPM, the algorithm reports bradycardia. If both (HR15) and (HR5)

are between 60 and 100 BPM, the algorithm reports a normal HR condition. Asystole

is reported according to BCG variability, as previously explained. Table 5.1 describes

the different diagnoses and the conditions that trigger them.
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Table 5.1: Different Reports on Diagnoses Algorithm

Conditions

Heart Rate

Tachycardia HR15>100 or HR5>100
Bradycardia HR15 <60 or HR5<60

Normal
60 <HR15<100 and

60 <HR5 <100
Asystole SD(BCGSegment10) <0.2* SD Calibration

Heart Rate
Variability

Regular majority variability periods <0.1
Irregular 0.1 <majority variability periods <0.25

5.3 Respiration Signal Processing

The algorithm analyses segments of 30 seconds of respiration signal, with an over-

lap of 20 seconds. It was implemented in [8], based on [30] [31]. The noise estimation

algorithm was developed in the present work.

5.3.1 Respiration Cycle detection

It consists on recognizing each respiration cycle, detecting its positive semi-cycle

(inspiration) and its negative semi-cycle (expiration). Then, a symmetry and am-

plitude criteria were applied to pair semi-cycles, in order to recognize a respiration

cycle or discard it as noise. Using a mean moving window of 500 samples, the respira-

tion signal (RS) is filtered, obtaining its baseline (B). With this baseline signal, both

positive and negative semi-cycles are detected. Where the baseline is lower than the

respiration signal, there are positive semi-cycles or inspirations. Where the baseline

is higher than respiration signal, there are negative semi-cycles or expirations.

Every positive semi-cycle is continued by a negative semi-cycle, and their features

are extracted: width (N), area (A) and amplitude (Fig. 5.9). The width is the number

of samples of the semi-cycle (N). The area is calculated using eq. 5.5.

A =
k+N∑
i=k

|RS[i]−B[i]| (5.5)
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Figure 5.9: Respiration algorithm criteria.

The amplitude is the maximum value of the positive semi-cycle minus the min-

imum value of the negative semi-cycle. Then, a decision stage consists on three

conditions:

• The ratio of N+ to N- is greater than 0.3 and less than 1.3.

• The ratio of A+ to A- is greater than 0.4 and less than 2.5.

• The absolute amplitude of the current respiratory cycle should be greater than

50% and lower than 200% the amplitude of the previous respiratory cycle.

5.3.2 Noise Signal Detection

The respiratory signal can be distorted by the subject activity, like body move-

ments and talking. Kurtosis was chosen to measure the respiration signal quality

(Fig. 5.10). When the kurtosis of the signal is lower than a fixed threshold of 2.7,
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the signal is classified as clean signal. Otherwise, it is considered noise.

5.3.3 Respiration Diagnosis Algorithm

A decision-tree algorithm was developed for the diagnosis (Fig. 5.11).

Presence detection

The FSR sensor placed on backrest detects if the subject is supported on it. If

during 80 % of the time segment the level was high, the algorithm will go to the next

node, otherwise, the algorithm waits for the next segment.

Figure 5.10: Respiration quality. A: High quality respiration signal, B: Histogram

of high quality respiration signal,C: Poor quality respiration signal,D: Histogram of

poor quality respiration signal.
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Choose the best respiration signal

There are 2 PVDF sensors capturing the respiration signal from the backrest.

The respiration signal with a lower kurtosis is selected to extract the RR. Then, the
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Figure 5.11: Flow Chart Respiration Diagnosis.



41

Table 5.2: Respiration Diagnosis

Condition
Normal RR 12 < RR < 20
Taquipnea RR > 20
Bradipnea RR < 12

Apnea SD(signal10) < thr. Var

algorithm goes to the next node.

Respiration Signal’s Variability

If there are no respiration cycles, the signal variability decreases. In order to

detect when the respiration stops, a variability threshold calculated from calibration

was implemented for detecting this event. If the SD of the last 10 seconds of the

segment is lower than the fixed variability threshold, an apnea is reported. Otherwise

the algorithm goes to the next node.

Noise Detection

If the respiration signal has a kurtosis higher or equal to 2.7, the segment is

classified as a noisy segment, and there is no report. Otherwise, cycle respirations are

detected from the respiration signal.

Reports

The algorithm calculates the mean RR of 30 second segment. If the RR is higher

than 20, a taquipnea is reported. If the RR is lower than 12, a bradipnea is reported.

If RR is between 12 and 20, a normal RR is reported. Table 5.2 describes different

conditions for the diagnosis to be reported.
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Chapter 6

Measurements and Simulations

This chapter describes the methodology for the measurements to validate the

diagnosis algorithms, and the simulation performed.

6.1 Measurements

The measurements were divided into two groups: in a laboratory, with healthy

subjects and in a hospital, with subjects with atrial fibrillation (AF). In both cases,

the ECG , BCG signal and respiration signal were measured in parallel using a

BIOPAC system acquisition, with a sampling frequency of 100 S/s. These were

used to validate the diagnosis algorithm using as references peaks from the ECG [50].

Laboratory measurements were used to validate heart rate alarms and hospital mea-

surements were used to validate irregular rhythms alarms. This test protocol was

approved by the hospital’s ethics and scientific committee of institutional review

board (IRB).

6.1.1 Laboratory Measurements

In the lab environment, 34 subjects were measured. Each measurement was di-

vided into two parts:



43

Figure 6.1: Different positions for measurements: A) Resting on backrest, B) Rest

without the backrest and C) Resting on thighs.

1. Resting state: the subject was measured in 3 different positions on the chair:

1) Leaning on backrest, 2) Sitting without backrest support and 3) Resting on

thighs (Fig. 6.1). For each position they were asked to perform the following

sequence: 1) Stay quiet, 2) Talk (Read a text aloud), 3) Talk with gesticulation,

4) Move legs 5) Move head from side to side and up and down and 6) Write a

message on a mobile phone. This sequence was designed to observe the quality

of BCG and respiration signals during different activities while seated. This

sequence was repeated for each position.

2. After physical activity: the subject performed physical exercise for 1 minute.

Then, the subject sits on the chair leaning back, and was measured during 3

minutes. After that, the subjects were asked to stop breathing for 20 second to

simulate apneas (Fig. 6.2). This was done 3 times, breathing normally between

these events.
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Figure 6.2: Apneas Simulation.

6.1.2 Hospital Measurements

24 subjects presenting atrial fibrilation (AF) were measured. All volunteers were

informed about the study and asked to sign an informed consent. The patients were

asked to remain as quiet as possible for 3 minutes. No patient showed discomfort

when using the system.

6.2 Signals Simulations

In order to evaluate the diagnosis algorithm, this work considers the standard

alarm criteria and delays described by ANSI/AAMI EC13: 2002 of cardiac moni-

tors [51]. In order to simulate the cases mentioned in the ANSI/AAMI Standard, a

synthetic signal was generated to test all possible scenarios.
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6.2.1 ANSI/AAMI EC13:2002

Heart Rate error estimation

The standard establishes that the maximum error of the heart rate estimation

must be ± 5bpm or ± 10% of the original heart rate. Also, the heart rate range must

be between 30 bpm and 200 bpm for adults.

Delay on Alarms

The standard states that the maximum delay to alert tachycardia and bradycardia

is 10 seconds. For the delay time of the diagnosis algorithm, it is necessary to simulate

a heart rate of 80 bpm (Normal Sinus Rythm) and suddenly change the heart rate

to 120 bpm, in the case of tachycardia. For bradycardia it is necessary to simulate

a heart rate of 80 bpm and abruptly change it to 40 bpm. Finally, in the case of

asystole, from the heart rate of 80 bpm the heart must suddenly stop. The delay

time is calculated subtracting the time when the alarms activate and the time when

the anomaly occurs. This experiment needs to be repeated 5 times. The mean delay

has to be lower than 10 seconds and each experiment must not exceed 13 seconds.

6.2.2 Synthetic Signals

Generation

The algorithm is based on [52] and [53] synthetic signal generation. Using a BCG

beat reference, on entire BCG signal is created. The distance between J waves of the

beats depends on the HR to be simulated. To avoid discontinuities of the signal, the

latest 20 samples of the synthetic signal and the first 20 samples of BCG beat are

summed with inverse weightings. Synthetic signals with HR of 30 to 300 BPM and

the asystole case were created.
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Figure 6.3: Noisy BCG Simulation. Synthetic clean BCG signal and the synthetic

signal with rebound noise.

Noise Simulation

In order to make a more realistic signal, two type of noise are added to the signal:

respiration noise and rebound noise.

• Respiration Noise: It causes two effects: 1) A variation of the baseline of the

BCG because the respiratory movements are detected by the sensors as changes

in pressure. 2) The variation of amplitude of BCG beats, due to inspiration

and expiration effects on the cardiac output.

• Rebound Noise: Is generated after the beat occurs due to its mechanical

nature. Sometimes the amplitude of the rebound disrupts the signal and could

be confused as heartbeat. Also, between beats, there is always some mechanical

activity. To add this noise to the signal, each beat is multiplied with a Gaussian

distribution window with a random skew, that can amplify the IJK wave or
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amplify the rebound. Also, a mechanical noise, extracted from real signals is

added to the baseline of the synthetic signal (Fig. 6.3).

Signals with these noises were simulated with different BCG-Respiration Ratio

(16,8,4,0 and -4) and different BCG-Rebound Ratio (48,36,24,12,0 and -12) in order

to calculate the robustness of the algorithm based on the standard (Eq. 6.1).

BCG−Noise Ratio = 20 · log(
RMS(BCG)

RMS(Noise)
) (6.1)
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Chapter 7

Results

This chapter shows the results obtained from the diagnosis algorithm of cardiac

activity, respiration activity and the SBC performance.

7.1 Cardiac Activity

7.1.1 Position Accuracy

The subjects took 3 different postures, in order to evaluate the algorithm response.

Two parameters were obtained: 1) the effective measure segments, which is the per-

centage of 15 seconds segment that was classified as clean over the total number of

segments and 2) the HR error estimation, by calculating the mean error and SD error

in 15 s windows from the BCG and the simultaneous ECG acquisition.

The algorithm has a lower HR error estimation when a subject is leaning on the

backrest. Also, this leads to a lower number of discarded segments.

On a backrest posture, 51 % of effective measure segments was obtained, 26 % for

sitting without backrest and 5.7 % when resting on thighs (Table 7.1).
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Table 7.1: Number of discarded segments and HR error estimation for each position.

Positions
Total

Segments

Segments discarded
due to

Valid
segments

HR error
estimation

Correlation Period SD Mean SD
Seat on
backrest

1162 487 71 604 -0.41 1.88

Seat without
backrest

1144 734 104 306 -0.05 2.82

Seat on
thighs

1138 1057 15 66 1.21 5.07

Table 7.2: Noise Detection Accuracy

Total Noise Segment
Detected

AccuracySD Periods Correlations
1725 36 1603 0.95

7.1.2 Noise Detection Accuracy

Noisy segments of 15 seconds were extracted from the activity sequence performed

by the subjects (talking, movements of legs, head and arms). The total number of

noisy segments was 1725, and 1639 were classified as noise by the diagnosis algorithm,

which results in an accuracy of 0.95 (Table 7.2).

7.1.3 Diagnosis Accuracy

For relaxed and after exercise conditions, every clean BCG segment of 15 seconds

was classified as a tachycardia, bradycardia, normal HR or asystole event. Also, each

segment of 15 s of ECG is classified using the same criteria, in order to compare the

diagnosis results between BCG and ECG. Using the ECG diagnoses as gold standard,

the sensitivity (Se) and positive predictive value (+P ) for each event is obtained. In a

relaxed condition, the algorithm has a Se of 0.9 for tachycardia, 0.94 for bradycardia

and 0.89 for normal HR. Also the +P value for tachycardia is 0.31, for bradycardia

0.82 and for normal HR 0.99, giving a general accuracy of 89.7% (Table 7.3).
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Table 7.3: Diagnosis Accuracy: Resting Condition

TBCG BBCG NBCG ABCG Total Se
TECG 19 0 2 0 21 0.90
BECG 0 61 4 0 65 0.94
NECG 43 13 462 0 518 0.89
AECG 0 0 0 0 0 —
Total 62 74 468 0 604
P+ 0.31 0.82 0.99 —

Table 7.4: Diagnosis Accuracy: After Exercise Condition

TBCG BBCG NBCG ABCG Total Se
TECG 104 0 12 0 116 0.90
BECG 1 24 5 0 30 0.80
NECG 27 9 188 0 224 0.84
AECG 0 0 0 0 0 —
Total 132 33 205 0 370
P+ 0.79 0.73 0.92 —

For after exercise conditions, the Se to detect tachycardia is 0.9, for bradycardia

0.8 and for normal HR 0.84. The +P value is 0.79 for tachycardia, 0.73 for bradycardia

and 0.92 for normal HR, giving a general accuracy of 85.4% (Table 7.4). No cases of

asystole are recorded.

For the hospital measurements, the accuracy of the algorithm to detect heart rate

abnormalities is calculated. Each 15 s segment of BCG and ECG is classified as an

irregular (I) or regular (R) heart rate variability event. The Se for regular rhythm is

0.67 and for irregular rhythm is 0.78. The +P value for regular rhythm is 0.68 and

for irregular rhythm is 0.77, giving a general accuracy of 73% (Table 7.5).
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Table 7.5: Diagnosis Accuracy: Atrial Fibrillation

RBCG IBCG Total Se
RECG 34 17 51 0.67
IECG 16 56 72 0.78
Total 50 73 123
P+ 0.68 0.77

7.1.4 Simulations Results

HR error estimation

With BCG-Respiration Ratio value of -4 and BCG-Rebound Ratio value of 48, the

algorithm obtains a maximum estimation error of -1.016 BPM at 160 BPM (Table

7.6) which meets the standard. In general, HR error estimation for all range of

frequencies with the worst case of BCG-Respiration Ratio (-4), the algorithm starts

to increase the error estimation from BCG-Rebound ratio of 12, being -12 the worst

case, classifying all segments as noise (Table 7.7).

Delay

Using the worst case of BCG-Respiration ratio (-4 dB), and the BCG-Rebound

ratios of 48, 36, 24, 12, 0 and -12 dB, the delay alarm is calculated for the following

cases: normal HR to tachycardia (N-T), normal HR to bradycardia (N-B) and normal

HR to asystole (N-A).

The results show that the algorithm satisfies the standard alarm delay in all cases

of noise for N-A. For N-B case, the algorithm reports alarms out of the allowed time

range, and for BCG-Rebound ratio of 0 and -12 dB, it does not report any alarms at

all. For N-T, the algorithm reports good results from BCG-Rebound ratios of 48 to

12 dB. Then, it reports alarms out of the allowed time range for 0 dB, and for -12

dB it does not report any alarm (Table 7.8).
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Table 7.6: HR error of each frequency. HR error estimation of each frequency in the

best case of noise.

BPM Mean Error SD Error
30 0.0011 0.011
40 0.0099 0.13
60 -0.0011 0.019
80 -0.0013 0.03
100 -0.0026 0.045
120 0.0013 0.039
140 0.0034 0.053
160 -0.0992 0.42
180 0.0052 0.052
200 -0.0056 0.077
220 0.0069 0.074
240 -0.022 0.083
260 -0.003 0.062
280 -0.058 0.083
300 -0.037 0.088

Table 7.7: General HR error estimation. For the worst case of BCG-Respiration ratio

(-4) and for different levels of BCG-Rebound Ratio the error was calculated.

HR estimation
error

Mean SD

BCG-Rebound
Ratio

48 -0.0068 0.0637
36 -0.0616 0.2971
24 -0.1621 0.4994
12 -3.3421 4.8258
0 -21.4769 14.8927

-12 — —

7.2 Respiration Activity

7.2.1 Noise Detection Results

Similar to the BCG measurements, the respiration measurements of the lab were

divided in two groups: 1) the clean respiration signals coming from resting activity,
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Figure 7.1: ROC curve of noisy respiration detection using different values of kurtosis

and 2) the noisy respirations signal coming from the sequence activity. Each group

has segments of 30 seconds.

Different levels of kurtosis were used for classifying the segments in clean or noisy

signal respiration. A Receiver Operating Characteristic or ROC curve was used to

Table 7.8: Delay simulation [sec.] for three cases: Normal HR to asystole, normal HR

to bradycardia and normal HR to tachycardia for different levels of rebound noise.

Normal HR
to asystole

Normal HR
to bradycardia

Normal HR
to tachycardia

Mean Max Mean Max Mean Max

BCG-Rebound
Ratio

48 6.24 9.68 16.50 22.33 8.49 10.45
36 7.40 9.63 15.65 21.24 8.19 11.00
24 7.60 10.00 14.22 18.96 7.98 10.99
12 7.53 9.69 20.12 22.26 8.29 10.44
0 8.27 10.53 — — 44.16 46.94

-12 8.19 10.71 — — — —
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Figure 7.2: Timing Analysis of periods samples. It is not constant because is not a

dedicated system. The rate of correct period sample is 99.9%.

analyse the performance of this classifier (Fig. 7.1). A kurtosis value of 2.7 has the

best results, with a sensitivity of 0.875 and a specificity of 0.716.

7.2.2 Apnea Detection

The respiration diagnosis algorithm has a sensitivity of 0.86 and a positive pre-

dictive value of 0.76 for detecting stopped breathing.

7.3 Raspberry Performance

The real-time algorithms were run in a Raspberry Pi 3. Several performance

indicators were measured to confirm that the system is able to process the data, such

as: % CPU usage, % Memory usage, temperature and power requirements.
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Figure 7.3: Raspberry Resources. A: Temperature, B: % CPU usage and C: %

Memory usage.

7.3.1 Timing analysis

The BCG and respiratory algorithm needs less than 5 seconds for analysing seg-

ments. This means that it is possible to analyse signals with an overlap of 5 and 10

seconds respectively. Regarding the sampling frequency, it has variations because the

SBC is not a dedicated system (Fig. 7.2).

7.3.2 Temperature

The maximum temperature reported was 77.4 ◦C using a heat sink. And the

minimum temperature (in idle mode) was 45.6 ◦C (Fig. 7.3-A). A heat sink was used

because the Raspberry Pi 3 reports a heating alarm during the analysis stage.
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7.3.3 CPU usage

The complete algorithm is composed by 5 different processes: 1) Acquisition and

calibration process, 2) WiFi communication process, 3) BCG signal algorithm process,

4) Respiration algorithm process and 5) Variable Manager process.

During the calibration mode, the main CPU usage is 47.85% with a peak value

of 53.08%. After calibration, the main CPU usage is 74.08% with a peak value of

98.35%. The use of the 4 cores corresponds to 100% (Fig. 7.3 - B).

7.3.4 Memory usage

Signals acquired are stored temporally in RAM, with other static variables, func-

tions and libraries from the different processes during their execution. The maximum

amount of physical RAM used is 20.8 % of 1GByte RAM Memory. The algorithm

was programmed to free the oldest data while new data are coming, in order to use

Figure 7.4: Raspberry current demand during algorithm execution.
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the RAM efficiently. This is demonstrated by observing that the RAM usage remains

constant (Fig. 7.3 - C).

7.3.5 Power Requirements

Raspberry consumes a mean current of 0.27 A in idle mode (all processes are

turn off). With WiFi on, the mean demand of current increases to 0.3 A. During

calibration stage the mean current increases to 0.63 A. Finally, during the analysis

stage the mean increases to 0.78 A. All this calculations include the current needed

to supply the analog circuit (Fig. 7.4).
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Chapter 8

General Discussion and

Conclusions

8.1 Discussion

The proposed system is able to measure cardiac and respiratory activity in a non-

invasive way and to process them to obtain HR, HRV and RR to trigger alarms using

the diagnostic algorithms.

One of the main limitations are the sensors themselves that capture the cardiac and

respiratory signals. They do not respond equally to different pressure distributions.

In light of this limitation, algorithms were developed to estimate the signals quality

using correlation, the variability thresholds of the heart periods for the BCG, and

the use of kurtosis for the respiratory signals. The advantage of these methods is

that they are independent of the signal amplitude. This makes them respond better

to changes in the signal amplitude, which does not necessarily imply noise, but an

increased cardiac output or breathing deeper. The correlation method showed a good

performance of 95% for noise detection, however, it also discards more than half of

the clean segments due to its high sensitivity.

For different postures on the chair, the noise algorithm discarded different amounts
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of segments. The best posture was being seated leaning on the backrest, because it

has greater effective time of measurement, and it has an smallest average HR error.

For this reason, this posture is recommended for measurements and monitoring.

Another important point is that the effectiveness of the algorithms depends on the

calibration that has been done. From this stage, thresholds values to the respiration

and BCG algorithms are obtained. It is recommended to instruct the subject to stay

still (while monitored), in order to make a good calibration. Considering that a sitting

person changes position many times, the effective measurement time would decrease.

Regarding the acquisition system, the SCB is not a dedicated hardware since it

must carry out multiple processes in parallel, that may cause problems during signal

acquisition. This issue affects the sampling frequency, leading problems to for the

digital filters, that are configured at a fixed sampling frequency. Real-time operating

systems have been developed for these devices, which could solve this problem.

The presence of false positives or false negatives is compensated by the mean in

the BCG segments. However, for the last 5 seconds of the segment, the presence of

false detections may not be compensated because the lower number of cardiac periods,

giving false alarms due this criterion.

Regarding the simulations, the system is able to measure a HR range between

30 and 300 bpm. Even if they are not real cases, it is a good tool for observing

how the algorithm responds. Other works have a limited HR range, not meeting the

standard [54] [52] and they do not mention what happens when the signal is out of

range.

With respect to the computational resources used to execute the algorithms, the

Raspberry Pi 3 is able to perform the monitoring in real time. However, its current

demand increases when the algorithm processes are active, increasing the CPU tem-

perature. This can affect the CPU performance, so a ventilation system is needed to

solve this problem.

This work is oriented to be economically accessible to the hospitals and homes.
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Table 8.1: Material Costs

Components
Unit Price

$USD
Quantity Enterprice

Total
Value $USD

Sensors
EMFi $100 1 EMFIT $100
PVDF $42.5 2 Images SI $85
FSR $20.95 2 Sparkfun $41.9

Analog
Circuit

PCB $16.61 1 OSH-Park $16.61
ADC $6.61 1 RS-UK $6.61

Digital Pot. $2.29 1 RS-UK $2.29
Op. Amplifier $0.98 6 RS-UK $5.88
Charge Pump $3 1 RS-UK $3

RC Components $0.02 50 RS-UK $1
Connectors $15 1 Victronics $15

SBC
Raspberry Pi 3 $39.95 1 Sparkfun $39.95
uSD Kingstone $8.95 1 Sparkfun $8.95

TOTAL $326.19

An estimate of the material cost to manufacture the system was calculated. The total

cost is USD $326.19 (Table 8.1). In addition, the place where it will be used must

have access to a WiFi network in order to send the reports, which increases the cost.

A market study would be needed to estimate the total cost and assess whether it is

affordable.

8.2 Conclusions

The proposed monitoring system is capable of generating alarms from signals

obtained using non-invasive sensors.

The proposed algorithm calculates heart rate with high accuracy and precision,

however, it may be refined to achieve a longer effective measurement time.

Heart rate (tachycardia and bradycardia) alarms show better results than heart

rate irregularity alarms.

The noise detection criteria for the BCG and respiration signals have good per-

formance and are independent of signal amplitude, but should be improved with the
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aim of reducing false alarms.

The Raspberry Pi SCB meets the requirements for real-time signal analysis and

is a low-cost alternative for system development.
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Chapter 9

Discusión General y Conclusiones

9.1 Discusión

El sistema propuesto es capaz de medir la actividad card́ıaca y respiratoria de

manera no invasiva y de procesarlas para obtener HR, HRV y RR para generar alarmas

con los algoritmos de diagnóstico descritos.

Una de las principales limitaciones son los propios sensores que capturan las señales

card́ıaca y respiratoria, ya que estos no responden igualmente a diferentes distribu-

ciones de presión. En vista a esta limitación, se desarrollaron algoritmos para estimar

la calidad de las señales utilizando la correlación y los umbrales de variabilidad de

los peŕıodos card́ıacos, para el caso del BCG y el uso de kurtosis para las señales

respiratorias. La ventaja de estos métodos es que son independientes de la amplitud

de la señal, lo que los hace responder mejor a los cambios en la amplitud de la señal,

la que no necesariamente implican ruido, como el aumento del gasto card́ıaco o una

respiración más profunda. El método de correlación mostró un buen rendimiento de

95 % para la detección de ruido, sin embargo, también descarta más de la mitad de

los segmentos limpios debido a su alta sensibilidad.

Para diferentes posturas en la silla, el algoritmo de ruido descartó diferentes canti-

dades de segmentos. La mejor postura fue la de estar sentado apoyado en el respaldo,
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ya que obtuvo un mayor tiempo efectivo de medición y un error medio de HR menor

que las otras posturas. Por esta razón, esta postura se recomienda para mediciones

y monitoreo.

Otro punto importante es que la eficacia de los algoritmos depende de la cali-

bración que se haya hecho, debido a que a partir de esta etapa se estiman los valores

umbrales de los algoritmos de respiración y BCG. Seŕıa recomendable instruir al su-

jeto a quedarse quieto (mientras es monitoreado) para realizar una buena calibración.

Teniendo en cuenta que una persona sentada cambia de posición muchas veces, el

tiempo de medición efectiva disminuiŕıa.

Con respecto al sistema de adquisición, el SCB no es un hardware dedicado, ya que

debe llevar a cabo múltiples procesos en paralelo, lo que podŕıa provocar problemas

durante la adquisición de señales. Por esto es que la frecuencia de muestreo se ve

afectada, lo que a su vez afecta el uso de filtros digitales, que se configuran a una

frecuencia de muestreo fija. Se han desarrollado sistemas operativos en tiempo real

para estos dispositivos, lo que podŕıa resolver este problema.

La presencia de falsos positivos o falsos negativos se compensa con la media en

los segmentos BCG. Sin embargo, durante los últimos 5 segundos del segmento la

presencia de falsas detecciones puede no ser compensada por el menor número de

peŕıodos cardiacos, dando falsas alarmas debido a este criterio.

Con respecto a las simulaciones, el sistema es capaz de medir un rango de HR

entre 30 y 300 bpm. Si bien no son casos reales, es una buena herramienta para

observar cómo responde el algoritmo. Otros algoritmos propuestos tienen rango de

HR limitado y no cumplen con el estándar [54] [52]. Además, no mencionan lo que

sucede cuando el HR de la señal está fuera de rango que pueden medir.

Con respecto a los recursos computacionales utilizados para ejecutar los algorit-

mos, el Raspberry Pi 3 es capaz de realizar el monitoreo en tiempo real. Sin embargo,

su demanda de corriente aumenta cuando los procesos del algoritmo están activos,

aumentando la temperatura de la CPU. Esto puede afectar el rendimiento de ésta,
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Table 9.1: Costos de los materiales

Componentes
Precio Unitario

$USD
Cantidad Empresa

Valor
Total $USD

Sensores
EMFi $100 1 EMFIT $100
PVDF $42.5 2 Images SI $85
FSR $20.95 2 Sparkfun $41.9

Circuito
Analógico

PCB $16.61 1 OSH-Park $16.61
ADC $6.61 1 RS-UK $6.61

Pot. Digital $2.29 1 RS-UK $2.29
Amplificador $0.98 6 RS-UK $5.88
Bomba Carga $3 1 RS-UK $3

Componentes RC $0.02 50 RS-UK $1
Conectores $15 1 Victronics $15

SBC
Raspberry Pi 3 $39.95 1 Sparkfun $39.95
uSD Kingstone $8.95 1 Sparkfun $8.95

TOTAL $326.19

por lo que se necesita un sistema de ventilación para resolver este problema.

Este trabajo está orientado a ser económicamente accesible a los hospitales y

hogares. Para ello, se calculó una estimación del costo material para fabricar el

sistema. El costo total es USD $326.19 (Tabla 9.1). Además, el lugar donde se va a

utilizar debe tener acceso a una red WiFi para enviar los reportes, lo que aumenta el

costo. Un estudio de mercado seŕıa necesario para estimar el costo total y evaluar si

es asequible.

9.2 Conclusiones

El sistema de monitoreo propuesto es capaz de generar alarmas a partir de señales

obtenidas utilizando sensores no invasivos.

El algoritmo propuesto calcula la frecuencia card́ıaca con alta exactitud y pre-

cisión, sin embargo, podŕıa ser mejorada para lograr un mayor tiempo de medición

efectivo.

Las alarmas de frecuencia card́ıaca (taquicardia y bradicardia) muestran mejores
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resultados que las alarmas de irregularidad card́ıaca.

Los criterios de detección de ruido para las señales BCG y de respiración tienen

un buen rendimiento y son independientes de la amplitud de la señal, pero deben

mejorarse con el objetivo de reducir las falsas alarmas.

El SCB Raspberry Pi cumple con los requisitos para el análisis de señales en

tiempo real y es una alternativa de bajo costo para el desarrollo del sistema.
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Chapter 10

Publications

10.1 ISI Paper Submitted

Javier A.P. Chávez, Esteban J. Pino, Eduardo Lecannelier, Pablo Aqueveque,

“Non-Obtrusive System for Monitoring Cardiac Activity”, Submitted to the Journal

of IEEE Transactions on Biomedical Engineering. March 2017.

10.2 Conferences

• Esteban J. Pino, Constanza Larsen, Javier Chávez and Pablo Aqueveque,

“Non-Invasive BCG Monitoring for Non-Traditional Settings”, 38th Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology Soci-

ety, Orlando 2016.

• Esteban J. Pino, Javier A.P. Chávez, Pablo Aqueveque, “Noninvasive Am-

bulatory Measurement System of Cardiac Activity”, 37th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, Milán

2015.

• Esteban J. Pino, Javier A.P. Chávez, Constanza Larsen, Carlos Villagrán,
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Pablo Aqueveque, “Non-Invasive System for Ubiquitous Physiological Home

Monitoring”, Mobile and Information Technologies in Medicine and Health Mo-

bileMed, 2014.

• Javier A.P. Chávez, Esteban J. Pino, “Non-Invasive System Proposal for Am-

bulatory Measurement during Sleep”, International Student Conference Chile /

7th Biomedical Engineering Conference Universidad de Concepción, 2014.
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