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Abstract

After Julia Robinson, following a technique by Vidaux and Videla, in order to show that a ring R
of totally real algebraic integers has undecidable first-order theory, one needs to characterize the
set of elements of R that belong, together with all its conjugates, to a certain fixed interval. In the
first part of this thesis, we obtain such characterizations for new families of such rings. The second
part is concerned with showing that some of the rings studied are monogeneous. Finally, the third
part is dedicated to the study of the ring of integers of the fields of fractions of these rings.
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Resumen

Después de Julia Robinson, siguiendo una técnica de Vidaux y Videla, para demostrar que un anillo
R de enteros algebraicos totalmente reales tiene su teoŕıa de primer orden indecidible, se requiere
caracterizar el conjunto de los elementos de R que están, junto con todos sus conjugados, dentro de
un cierto intervalo fijo. En la primera parte de esta tesis, obtenemos tales caracterizaciones para
nuevas familias de este tipo de anillo. En la segunda parte, se estudia la monogeneidad de dichos
anillos. Finalmente, la tercera parte está dedicada al estudio del anillo de enteros de sus campos
de fracciones.
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Introduction

This thesis deals with the general problem, going back to Tarski, of classifying subfields of an
algebraic closure Qalg of Q by the decidability of their first order theory, seen as field structures
(i.e. over the language L = {0, 1,+, ·}) — we invite the reader who is not familiar with the language
of mathematical logic to read Chapter 1 first. Alfred Tarski [Tarski31] proved that the theory of
Qalg and Qalg∩R are decidable. The next important steps were done by Julia Robinson. In order to
show undecidability of a given subfield K of Qalg, her strategy consists first of dividing the problem
into the two following:

1. Define in K its ring of integers OK .

2. Define the semi-ring N of natural numbers in OK .

If one manages this, then one gets immediately a definition of N in K, which implies that the (full
first-order) theory of K is undecidable, simply because the theory of the semi-ring N is known to be
undecidable (this is essentially a consequence of Gödel’s incompleteness theorem — see for instance
[Church36]). Following this strategy, she showed [Rob59] that the theory of any number field is
undecidable (so in particular the theory of the field Q of rational numbers is undecidable — this
was proven before in [Rob49]).

Building on a result by Rumely [Rum80], Lou van den Dries showed [Dries88] that the theory
of the ring of all algebraic integers is decidable. C. R. Videla [Videla99] solved Problem 1 for the
field of constructible numbers, and extended his method to pro-p Galois extensions of number fields
— see [Videla00b]. Using the latter, he could show [Videla00a] that the theory of any cyclotomic
tower Q(p∞) is undecidable (this field is obtained by adjoining to Q all p-th power roots of unity,
where p is a fixed prime). More recently, A. Shlapentokh proved [Sh14] that the first-order theory
of any abelian extension of Q with finitely many ramified rational primes is undecidable. See also
[Sh04, Sh09], and [Koe14] for a general survey.

We now turn our attention to the special case of subfields of the field Qtr of all totally real
algebraic numbers, that is, algebraic numbers whose conjugates are all real numbers. We will write
Ztr for the ring of integers of Qtr, and if K is any subfield of Qtr, we will write OK for its ring of
integers.

In [Rob62, p. 91-98], J. Robinson found a necessary and sufficient condition for N to have a
definition in any ring of totally real algebraic integers — indeed, she did it for rings OK , but we
will see in Chapter 1 that her proof extends easily to the general situation. If r is a totally real
algebraic integer and t is either a real number or +∞,

r � t

means that r and all its conjugates are strictly less than t. Vidaux and Videla [VV15] define the
JR number (“Julia Robinson number”) of a ring O of totally real algebraic integers as the infimum
of the set of t ∈ R ∪ {+∞} such that the set

O�t = {r ∈ O : 0� r � t}

1



2 INTRODUCTION

is infinite. Julia Robinson proved that whenever this infimum is a minimum (if it is +∞, we consider
that it is a minimum), the semi-ring of natural numbers is definable in O — this will be discussed
in Chapter 1. For example:

• Every order of a totally real number field (i. e. of a totally real finite extension of Q) has JR
number equal to +∞.

• In [Rob62, p. 91-98], J. Robinson proved that the JR number of the ring of integers of any
subfield of Q(

√
p; p is prime) is +∞.

• The JR number of Ztr is 4, and it is a minimum (it is a consequence of a theorem of Kronecker,
see [Rob62], or [JV08] for a more detailed account).

Hence all these rings have undecidable theory. The JR number of a ring is relevant for decision
problems in Logic, as discovered by Julia Robinson, and it is also connected to the Northcott
property of sets of algebraic numbers — see [VV16] and [Widmer16].

In view of the undecidability of Ztr, one may expect that the theory of Qtr is also undecidable,
but it is indeed decidable, as was shown by Fried, Haran and Völklein [FHV94]. More recently,
Vidaux and Videla proved [VV16] the following: If K denotes the compositum of all totally real
algebraic extensions of Q of a given degree, then the maximal abelian subextension of K has
undecidable first order theory. They achieve this by showing in particular that the ring of integers
of such fields has infinite JR number.

The following questions arise naturally from all these results:

Q1. Does there exist rings of totally real algebraic integers with JR number strictly between 4 and
+∞?

Q2. Is the JR number always a minimum?

In [VV15], Vidaux and Videla construct infinitely many rings of totally real algebraic integers
with JR number strictly between 4 and +∞, and for infinitely many of them, the JR number is not
a minimum. Nevertheless, it is not clear that any of the rings they consider is the ring of integers
of its fraction field, so both questions are still unanswered for rings OK . Question 2 for rings OK
was asked by J. Robinson [Rob62].

They consider the following rings of algebraic integers

Z(ν,x0) =
⋃
n≥0

Rn,

where R0 = Z and Rn = Rn−1[xn], for some fixed non-negative rational integers ν and x0 such
that xn =

√
ν + xn−1 and x1 6= x0. These rings are proven to be totally real exactly when,

• either ν > x2
0 − x0 and ν ≥ 2 — in which case the sequence (xn) is increasing —, or

• ν < x2
0 − x0 and xn0 ≤ ν2 − ν, where n0 is the largest integer n such that xn is a rational

integer for every n ≤ n0 — in which case the sequence (xn) is decreasing.

They say that O has the isolation property if its JR number is not a minimum and there exists a
positive real number M such that for every ε > 0, if ε < M , then the set

O�JR(O)+M\O�JR(O)+ε

is finite. They also adapt J. Robinson’s argument to show that the isolation property implies the
definability of N. Assuming that the tower Z(ν,x0) increases at each step (which happens infinitely
often in both the increasing and the decreasing cases — see below), they prove:
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• In the increasing case, except for ν = 3, the JR number is a minimum.

• In the decreasing case, for infinitely many pairs (ν, x0), the JR number satisfies the isolation
property.

In order for their proof to work, they need that the tower increases at each step, meaning that for
every n, the fraction field of Rn has degree 2 over the fraction field of Rn−1. They show that this
happens whenever ν + x0 is congruent to 2 or 3 modulo 4. We observe that if x0 = 0 and ν is
not a square, also the tower increases at each step — apply [Stoll92, Cor. 1.3] to the iterated of
f(t) = t2 − ν.

This thesis addresses the following problems:

1. Get rid of as many hypothesis as possible on ν and x0 in the theorem of Vidaux and Videla.

2. Find out whether any of the rings Z(ν,x0) is the ring of integers of its fraction field.

3. Find out whether the integral closure of any of the rings Z(ν,x0) has JR number strictly
between 4 and +∞.

4. Find out whether the JR number of the integral closure of any of the rings Z(ν,x0) is not a
minimum.

Chapter 2 is dedicated to Problem 1. We get rid of all the conditions on the pairs (ν, x0) in the
decreasing case (as long as ν is not 3), which were [VV15, Thm. 1.4]: x1 < bαc+ 1 and ν ≥ x1 + 1,
where α is the limit of the sequence (xn). In particular, we show that, as long as the tower increases
at each step, the ring has the isolation property, hence undecidable theory — see Theorem 2.1.1.
For that we follow the general strategy from [VV15], which consists of characterizing the complete
sets of conjugates that are included in a certain ad-hoc interval — see Theorem 2.1.3. Putting all
together, we obtain:

Theorem 1. Assume that Z(ν,x0) is totally real and that ν + x0 is congruent to 2 or 3 modulo 4
and is square-free, or x0 = 0 and ν is not a square. Assume ν > 3. The JR number of Z(ν,x0) is
either a minimum or has the isolation property, and it lies strictly between 4 and +∞.

The objective of Chapter 3 is to solve Problem 2. If we can do this, then we can calculate the
JR number precisely, answering Problem 3, and if O has the isolation property, then Problem 4 is
solved as well, answering J. Robinson’s question in the negative.

For example, the ring Z(2,0) is the ring of integers of its fraction field — this is a special case of
a theorem by Liang [Li76]. Nevertheless, this example does not answer any of the problems 3 or 4,
since the JR number of this ring is 4 and it is a minimum.

For each n, let Pn denote the minimal polynomial of xn. We prove the following result in
Chapter 3.

Theorem 2. Assume that Z(ν,x0) is totally real and that ν + x0 is congruent to 2 or 3 modulo 4
and is square-free. For each n ≥ 1, Z[xn] is the ring of integers of Q(xn) if and only if Pn(0) is
square-free.

We are unable to determine any pair other than (2,0) for which the above result applies. It
appears to be a very difficult problem. However, numerically we have established that for many
pairs (ν, x0) and values of n, the hypothesis holds, and therefore we are able to produce new
examples of monogenic number fields. It should be noted that the problem of determining whether
or not a number field is monogenic goes back to Dedekind, who showed that cyclotomic number
fields are monogenic. In Section 3.4.1, under the ABC-Conjecture, and assuming that x0 = 0, we
prove that for each n, there exist infinitely many values of ν for which Pn(0) is square-free.
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Chapter 4 is dedicated to Problems 3 and 4. For a ring of totally real integers O, let us define

A(O) = {t ∈ R ∪ {+∞} : O�t is infinite}.

Notice that A(O) is {+∞} or an interval. We will find infinitely many fields K whose ring of integers
OK is such that A(OK) is an interval different from [4,∞) and from {+∞} — see Theorem 4.1.1.



Introducción

Esta tesis aborda el problema general, volviendo al trabajo de Tarski, de clasificar subcampos de
una clausura algebraica Qalg de Q mediante la decidibilidad de su teoŕıa de primer orden, vistos con
estructura de campos (es decir, sobre el lenguaje L = {0, 1,+, ·}) — se invita al lector que no está
familiarizado con el lenguaje de la lógica matemática a leer primero el Caṕıtulo 1. Alfred Tarski
[Tarski31] demostró que la teoŕıa de Qalg y Qalg∩R son decidibles. Los siguientes pasos importantes
fueron dados por Julia Robinson. Con el fin de mostrar la indecidibilidad de un subcampo K de
Qalg, su estrategia consiste en primero dividir el problema en los dos problemas siguientes:

1. Definir en K su anillo de enteros OK .

2. Definir el semianillo N de los números naturales en OK .

Con esto tenemos inmediatamente una definición de N en K, lo cual implica que la teoŕıa (completa
de primer orden) de K es indecidible, simplemente porque sabemos que la teoŕıa del semi-anillo N
es indecidible (esta es esencialmente una consequencia de los teoremas de incompletitud de Gödel
— ver por ejemplo [Church36]). Siguiendo esta estrategia, ella muestra [Rob59] que la teoŕıa de
cualquier campo de números es indecidible (luego, en particular, la teoŕıa del campo Q de los
números racionales es indecidible — esto lo demostró antes en [Rob49]).

Trabajando sobre un resultado de Rumely [Rum80], Lou van den Dries mostró [Dries88] que la
toeŕıa del anillo de todos los enteros algebraicos es decidible. C. R. Videla [Videla99] resuelve el
Problema 1 para el campo de números constructibles, y extiende su método a extensiones de Galois
pro-p de campos de números — ver [Videla00b]. Usando esto último, pudo mostrar [Videla00a] que
la teoŕıa de cualquier torre ciclotómica Q(p∞) es indecidible (este campo se obtiene adjuntando
a Q todas las ráıces p-ésimas de la unidad, donde p es un primo fijo). Más recientemente, A.
Shlapentokh probó [Sh14] que la teoŕıa de primer orden de cualquier extensión abeliana de Q con
un número finito de primos racionales ramificados es indecidible. Ver también [Sh04, Sh09], y
[Koe14] para un estudio general.

Pondremos nuestra atención en el caso especial de subcampos del campo Qtr de todos los
números enteros algebraicos totalmente reales, esto es, números algebraicos cuyos conjugados son
todos números reales. Escribiremos Ztr para el anillo de enteros de Qtr, y siK es cualquier subcampo
de Qtr, escribiremos OK para su anillo de enteros.

En [Rob62, p. 91-98], J. Robinson encuentra una condición necesaria y suficiente para que N
sea definible en cualquier anillo de enteros algebraicos totalmente real — en realidad, ella lo hizo
para anillos OK , pero se puede ver en el Caṕıtulo 1 que su demostración se extiende facilmente al
caso general. Si r es un entero algebraico totalmente real y t es o bien un número real o +∞,

r � t

significa que r y todos sus conjugados son estrictamente menor que t. Vidaux y Videla [VV15] de-
finen el número JR (“Número de Julia Robinson”) de un anillo O de enteros algebraicos totalmente
reales como el ı́nfimo del conjunto de t ∈ R ∪ {+∞} tal que el conjunto

O�t = {r ∈ O : 0� r � t}

5



6 INTRODUCCIÓN

es infinito. Julia Robinson demostró que cuando este ı́nfimo es un mı́nimo (si éste es +∞, consid-
eramos que es un mı́nimo), el semi-anillo de los números naturales es definible en O — esto será
discutido en el Caṕıtulo 1. Por ejemplo:

• Todo orden de un campo de números totalmente real (es decir, de una extensión finita total-
mente real de Q) tiene numero JR igual a +∞.

• En [Rob62, p. 91-98], J. Robinson demostró que el número JR del anillo de enteros de
cualquier subcampo de Q(

√
p; p es primo) es +∞.

• El número JR de Ztr es 4, y es un mı́nimo (esto es concecuencia de un teorema de Kronecker,
ver [Rob62], o [JV08] para más detalles).

Luego, todos estos anillos tienen teoŕıa indecidible. El número JR de un anillo es relevante para
los problemas de decisión en Lógica, como lo descubrió Julia Robinson, y está también conectado
con la propiedad de Northcott de conjuntos de números algebraicos — ver [VV16] y [Widmer16].

Viendo la indecidibilidad de Ztr, se podŕıa esperar que la teoŕıa de Qtr sea también indecidible,
pero es, de hecho, decidible, como fue demostrado por Fried, Haran y Völklein [FHV94]. Más
recientemente, Vidaux y Videla demuestran [VV16] lo siguiente: Si K denota la composición de
todas las extensiones algebraicas totalmente reales de Q de un grado fijo, entonces la subextensión
abeliana maximal de K tiene teoŕıa de primer orden indecidible. Lo que ellos muestran en particular
es que el anillo de enteros de estos campos tienen número JR infinito.

Las siguientes preguntas surgen naturalmente de estos resultados:

Q1. ¿Existen anillos de enteros algebraicos totalmente reales con número JR estrictamente entre 4
y +∞?

Q2. ¿Es el número JR siempre un mı́nimo?

En [VV15], Vidaux y Videla construyen un número infinito de anillos de enteros algebraicos
totalmente reales con número JR estrictamente entre 4 y +∞, y muestran que para un número
infinito de ellos, el número JR no es un mı́nimo. Sin embargo, no queda claro si alguno de los
anillos que consideran es el anillo de enteros de su campo de fracciones, por lo que ambas preguntas
quedan sin respuesta para anillos OK . La Pregunta 2 para anillos OK fue hecha por J. Robinson
[Rob62].

Vidaux y Videla consideran los siguientes anillos de enteros algebraicos

Z(ν,x0) =
⋃
n≥0

Rn,

donde R0 = Z y Rn = Rn−1[xn], para enteros racionales no negativos ν y x0 tales que xn =√
ν + xn−1 y x1 6= x0. Estos anillos son totalemente reales exactamente cuando,

• o bien ν > x2
0 − x0 y ν ≥ 2 — en cuyo caso la sucesión (xn) es creciente —, o bien

• ν < x2
0 − x0 y xn0

≤ ν2 − ν, donde n0 es el mayor entero n tal que xn es un entero racional
para todo n ≤ n0 — en cuyo caso la sucesión (xn) es decreciente.

Dicen que O tiene la propiedad de aislación (isolation property) si su número JR no es un mı́nimo
y existe un número real positivo M tal que para todo ε > 0, si ε < M , entonces el conjunto

O�JR(O)+M\O�JR(O)+ε

es finito. Ellos adaptan el argumento de J. Robinson para mostrar que la propiedad de aislación
implica la definibilidad de N. Assumiendo que la torre Z(ν,x0) crece en cada paso (lo cual sucede
en infinitos casos, tanto cuando la sucesión (xn) es creciente como cuando es decreciente — véase
más adelante), prueban lo siguiente:
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• En el caso creciente, excepto para ν = 3, el número JR es un mı́nimo.

• En el caso decreciente, para infinitos pares (ν, x0), el número JR satisface la propiedad de
aislación.

Para que su técnica de demostración funcione, necesitan que la torre crezca a cada paso, es decir,
que para cada n, el campo de fracciones de Rn tenga grado 2 sobre el campo de fracciones de Rn−1.
Muestran que esto sucede cuando ν + x0 es congruente con 2 o 3 módulo 4. Observamos que si
x0 = 0 y ν no es un cuadrado, también la torre crece a cada paso — aplicamos [Stoll92, Cor. 1.3]
a la iteración de f(t) = t2 − ν.

Esta tesis aborda los siguientes problemas:

1. Deshacerse de todas las hipótesis que sea posible sobre ν y x0 en el teorema de Vidaux y
Videla.

2. Averiguar si alguno de los anillos Z(ν,x0) es el anillo de enteros de su campo de fracciones.

3. Averiguar si la clausura entera de alguno de los anillos Z(ν,x0) tiene número JR extrictamente
entre 4 y +∞.

4. Averiguar si el número JR de la clausura entera de alguno de los anillos Z(ν,x0) no es un
mı́nimo.

El Caṕıtulo 2 está dedicado al Problema 1. Se eliminan todas las condiciones sobre los pares
(ν, x0) en el caso decreciente (siempre que ν no sea 3), las cuales eran [VV15, Thm. 1.4]: x1 < bαc+1
y ν ≥ x1 +1, donde α es el ĺımite de la sucesión (xn). En particular, se muestra que, siempre que la
torre crezca en cada paso, el anillo tiene la propiedad de aislación, luego tiene teoŕıa indecidible —
ver Teorema 2.1.1. Para esto se siguió la estrategia general de [VV15], que consiste en caracterizar
el conjunto completo de conjugados que están dentro de cierto intervalo conveniente — ver Teorema
2.1.3. Juntando todo esto se obtiene:

Teorema 1. Asumamos que Z(ν,x0) es totalmente real y que ν+x0 es congruente con 2 o 3 módulo
4 y es libre de cuadrados, o x0 = 0 y ν no es un cuadrado. Asumamos ν > 3. El número JR de
Z(ν,x0) o bien es un mı́nimo o bien tiene la propiedad de aislación , y está estrictamente entre 4 y
+∞.

El objetivo del Caṕıtulo 3 es resolver el Problema 2. Si podemos hacer esto, entonces podemos
calcular el número JR preciso, respondiendo al Problema 3, y si O tiene la propiedad de aislación,
entonces el Problema 4 queda resuelto también, respondiendo la pregunta de J. Robinson en forma
negativa.

Por ejemplo, el anillo Z(2,0) es el anillo de enteros de su campo de fracciones — este es un
caso especial de un teorema de Liang [Li76]. Sin embargo, este ejemplo no resuelve ninguno de los
problemas 3 o 4, porque el número JR de este anillo es 4 y es un mı́nimo.

Para cada n, denotamos por Pn al polinomio mı́nimo de xn. En el Caṕıtulo 3 se pueban los
siguientees resultados.

Teorema 2. Asumamos que Z(ν,x0) es totalmente real y que ν+x0 es congruente con 2 o 3 modulo
4 y es libre de cuadrados. Para cada n ≥ 1, Z[xn] es el anillo de enteros de Q(xn) si y sólo si Pn(0)
es libre de cuadrados.

No se ha podido determinar un par diferente de (2, 0) para el cual se aplique el resultado anterior.
Este parece ser un problema muy dificil. Sin embargo, numéricamente se ha establecido que para
muchos pares (ν, x0) y valores de n, la hipótesis se cumple, y por lo tanto, podemos producir nuevos
ejemplos de campos de números monógenos. Cabe señalar que el problema de determinar si un
campo de números es monógeno o no se remonta a Dedekind, quien mostró que los campos de
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números ciclotómicos son monógenos. En la Sección 3.4.1, bajo la Congetura ABC, y asumiendo
que x0 = 0, se prueba que para cada n, existen infinitos valores de ν para los cuales Pn(0) es libre
de cuadrados.

El Caṕıtulo 4 está dedicado a los Problemas 3 y 4. Para un anillo de enteros algebraicos
totalmente reales O, se define

A(O) = {t ∈ R ∪ {+∞} : O�t es infinito}.

Notamos que A(O) es {+∞} o un intervalo. Se encuentra una cantidad infinita de campos K
con anillo de enteros OK es tal que A(OK) es un intervalo diferente de [4,∞) y de {+∞} — ver
Teorema 4.1.1.



Chapter 1

Preliminaries

1.1 Logic

In our context, a sentence is a first-order closed formula in the ring language, which can be thought
of simply as a statement made of a disjunction of systems of polynomial equations and inequations
over Z, where all the variables (i. e. unknowns) are quantified by either an existential quantifier
or a universal quantifier. A formula is such a statement, but without the requirement that all the
variables are quantified. The variables which are not quantified are called free variables. So for
example,

∀x∃y∀z(x2 − 2y3 = y2 + z3 ∧ x 6= y)

is a sentence, whereas
∃y∀z(x2 − 2y3 = y2 + z3 ∧ x 6= y)

is a formula which is not a sentence. Note that a sentence may be true or false, depending in which
structure we consider it, while a formula will be true or false in a certain structure for certain
realizations of the free variables. So for instance, the sentence

∀x∃y(x = 2y)

is true in Q but not in Z, and the formula

∃y(x = 2y)

is true in Z precisely when x is even.
The theory of a ring R is the set of all sentences that are true in R. We say that the theory of

a ring R is decidable (or simply that R is decidable) if there exists an algorithm which, given an
arbitrary sentence, decides in finite time (i. e. in a finite number of steps) whether the sentence
belongs or not to the theory of R.

We say that a subset S of a ring R is definable if there exists a formula φ with just one free
variable such that the following is true:

r ∈ S if and only if φ(r) is true in R.

So for instance the set of even integers is definable in Z by the formula ∃y(x = 2y).
The definability is extremely useful to transfer undecidability results. Suppose for instance that

N can be defined in a ring R. If there were an algorithm to decide membership for the theory of
R, using the formula which defines N, we could test membership for the theory of N by imposing
that each variable appearing in a given sentence lies in N. Since we know that the theory of N
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is undecidable, this would be a contradiction. Hence, any ring in which N can be defined has
undecidable theory. For example, it is known that any natural number can be written as a sum of
four squares of integers (Lagrange’s Theorem), so the formula

φ(n) = ∃x∃y∃z∃w(n = x2 + y2 + z2 + w2)

defines the natural numbers in Z. Therefore, the theory of Z is undecidable.

1.2 Julia Robinson’s definability criterium

In [Rob62], Julia Robinson shows that N is definable in any ring R = OK of totally real integers
which satisfies some hypothesis. In this section, we give a precise statement and a sketch of proof
for the more general case where R is an arbitrary ring of totally real integers.

For an L-formula φ(x; ȳ) where ȳ = (y1, . . . , yk) and for r̄ = (r1, . . . , rk) ∈ Rk, we put

ϕr̄ = {s ∈ R : R |= φ(s, r̄)} .

Definition 1.2.1. A family F of sets of elements of R is said to be definable if there exists a
formula ϕ(x; ȳ) such that for each set A ∈ F , there exists r̄ ∈ Rk such that A = ϕr̄, and for every
r̄ ∈ Rk, ϕr̄ ∈ F .

We can now state the theorem:

Theorem 1.2.2 ([Rob62] Theorem 2). If there exists a definable family of subsets of R which
contains arbitrarily large finite sets, then N is definable in R.

The proof of this theorem goes through with no change for arbitrary R, except for [Rob62,
Lemma 1], for which we provide a proof.

Lemma 1.2.3. Let A = {a1, . . . , an} ⊂ R a set with n ≥ 1 non-zero elements. There exists g ∈ R
totally positive that can be taken arbitrarily large, so that the ideals Ii = (1 + aig) are pairwise
coprime, and for each i, 1 + aig is not zero and is not invertible.

Proof. Let M be a natural number. Put

g = M
∏
ai 6=aj

(ai − aj)2.

Clearly g is totally positive and becomes arbitrarily large as M increases. Since the set A is finite
and each ai is non-zero, we can take g large enough so that each 1 + aig and all its conjugates do
not belong to the closed real interval [−1, 1]. Hence, the norm of 1 + aig is in Z− {0,±1}, so that
the numbers 1 + aig are neither units nor zero.

We need to show that for each i 6= j, the ideal Ii + Ij is equal to R. We have

(ai − aj)g = (1 + aig)− (1 + ajg) ∈ Ii + Ij

for each i 6= j. By definition of g, there exists s ∈ R such that s(ai−aj) = g, hence s(ai−aj)g = g2

belongs to Ii + Ij . This implies that

1 + 2aig = (1 + aig)2 − a2
i g

2

belongs to Ii + Ij , hence
aig = −(1 + aig) + (1 + 2aig)

belongs to Ii + Ij . So finally 1 = (1 + aig)− aig belongs to Ii + Ij .
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J. Robinson proved the following corollary of Theorem 1.2.2 when the JR number is a minimum,
and this was adapted in [VV15] to the case of the isolation property. We give a proof for sake of
completeness.

Corollary 1.2.4. The semi-ring of natural numbers is definable in any ring of totally real algebraic
integers whose JR number is either a minimun or has the isolation property.

Proof. By a theorem of C. Siegel (1921), the relation x� y is definable in any ring of totally real
algebraic integers by the formula

(∃t∃u∃v∃w∃z)(t2(y − x) = u2 + v2 + w2 + z2 ∧ t 6= 0).

If the JR number is a minimum, then the family of sets defined by the following formula ϕ(x; y1, y2)

0� y1x� y2

contains arbitrarily large finite subsets of R. If the JR number has the isolation property, then the
following formula works:

ϕ(x; y1, y2) ∧ ¬ϕ(x; y3, y4).



Chapter 2

Characterizing intervals containing
complete sets of conjugates in a
family of totally real towers of
nested square roots

2.1 Introduction

The objective of this Chapter is to prove the following theorem, which together with [VV15, Thm.
1.4] gives Theorem 1.

Theorem 2.1.1. Let ν and x0 be non-negative rational integers with ν 6= 3 such that the fraction
field of Rn+1 has degree 2 over the fraction field of Rn for each n ≥ 0 and the sequence (xn) is
decreasing. Let α be the limit of the sequence (xn) as n tends to infinity. The ring Z(ν,x0) has JR
number bαc+α+1, where bαc denotes the largest integer smaller than or equal to α, and it satisfies
the isolation property. In particular, its first order theory is undecidable.

Following the strategy in [VV15], in order to prove the theorem one needs to completely deter-
mine a set of the form

O�t = {r ∈ O : 0� r � t} .

The first difficulty is to guess for which t this can be achieved (in our case, it turns out that one
can always take t = 2bαc+ 2), the main difficulty being then to guess which r should be in the set,
so that one can proceed by induction.

Before we can state our main technical result, we need to introduce some notation.

Notation 2.1.2. Let m = m(ν, x0) be the smallest index n such that xn < bαc + 1 (such an m
exists because (xn) is decreasing and tends to α).

We will have to consider four exceptional cases, namely when

(ν, x0) ∈ E = {(4, 11), (6, 29), (8, 55), (12, 131)}.

In the generic situation, we put X = X(ν,x0) =
⋃
n≥0Xn, where

X0 = · · · = Xm−1 = {1, 2, . . . , 2bαc+ 1}
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and
Xn = Xn−1 ∪ {bαc+ 1± xk : m ≤ k ≤ n},

for any n ≥ m. When (ν, x0) ∈ E, one can easily verify that m = 2. In that case, X2 is changed
into

X1 ∪ {bαc+ 1± x2} ∪ {bαc+ 1± (y − x1)x2 : y ∈ {ν − 1, ν}}

when (ν, x0) /∈ {(6, 29)}, and into

X1 ∪ {bαc+ 1± x2} ∪ {bαc+ 1± (y − x1)x2 : y ∈ {ν − 1, ν, ν + 1}}

in the remaining case.
It is easy to verify that for any x ∈ X we have 0� x� 2bαc+ 2. We prove:

Theorem 2.1.3. Let ν and x0 be non-negative rational integers with ν 6= 3 such that the fraction
field of Rn+1 has degree 2 over the fraction field of Rn for each n ≥ 0 and the sequence (xn) is
decreasing. We have

Z(ν,x0)
�2bαc+2 = X.

The Main Theorem follows in the same manner as in [VV15]. The proof of theorem 2.1.3 comes
from the fact that ν − xn > 1 for some n ≥ 1. In case ν = 3 we have ν − α < 1, hence when xn is
decreasing we have ν − xn < 1 for all n ≥ 1 (for this reason we do not consider the case ν = 3 in
the Main Theorem).

2.2 Technical lemmas

From now on, σ will denote any of the embeddings of Q(xn) into R which fixes Q. We assume that
ν and x0 are non-negative rational integers with ν 6= 3 and that the sequence (xn) is decreasing
— hence in particular we have ν < x2

0 − x0. Without loss of generality, we assume moreover that
n0 = 0, namely, xn is a rational integer only for n = 0 (this corresponds to Assumption 2.8 in
[VV15] — see also the paragraph just before it). Note that since (xn) is decreasing and the tower
is totally real, we have x0 ≤ ν2 − ν, and xn < ν2 − ν for every n ≥ 1. Finally, we will write O
instead of Z(ν,x0).

Remark 2.2.1. The conditions x0 ≤ ν2− ν and ν < x2
0− x0 together imply ν ≥ 3. Hence, we will

assume ν ≥ 4 for the rest of this work.

We start by stating a general lemma — see [VV15, Lemmas 2.3, 2.10 and 2.19].

Lemma 2.2.2. 1. The sequence (xn) is convergent with limit α = 1+
√

1+4ν
2 .

2. We have x0 ≥ 3 and α > 2.

3. Let r be a real number, n ≥ 1, and a, b ∈ Rn−1. For n = 1, if 0� a+ bx1 � 2r, then a, b ∈ Z
satisfy 0 < a < 2r and |b| < r

x1
. For n ≥ 2, if 0� a+ bxn � 2r, then 0� a� 2r and

|bσ| < r√
ν − xn−1

,

for all σ.

We start by proving some lemmas that give a lower bound for the sequence (ν − xn)n.

Lemma 2.2.3. For all n ≥ 0, we have ν − xn+2 > 1.
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Proof. Since ν ≥ 4, we have ν > 2 +
√

3, hence ν2− 4ν+ 1 > 0, hence ν2− 2ν+ 1 > 2ν, and finally
ν − 1 >

√
2ν. Therefore, we have

ν − xn+2 = ν −
√
ν +
√
ν + xn ≥ ν −

√
ν +

√
ν + ν2 − ν = ν −

√
2ν > 1.

where the first inequality comes from the fact that xn ≤ ν2 − ν (by general hypothesis).

Lemma 2.2.4. For all n ≥ 1, if xn < bαc+ 1, then ν − xn > 1.

Proof. Since xn < bαc + 1, we have ν − xn > ν − bαc − 1. When ν = 4, ν − bαc − 1 is equal to

1, so we may assume ν ≥ 5. Recalling that α = 1+
√

1+4ν
2 , we have ν − α − 1 > 1 if and only if

ν − α > 2, if and only if 2ν − (1 +
√

1 + 4ν) > 4, if and only if 2ν − 5 >
√

1 + 4ν, if and only if
4ν2 − 20ν + 25 > 1 + 4ν, if and only if 4ν2 − 24ν + 24 > 0, which is true since ν ≥ 5. So we have
ν − α− 1 > 1, hence also ν − bαc − 1 > 1.

In particular, the conclusion of Lemma 2.2.4 is precisely Assumption 3.1 in [VV15].
We now turn to a sequence of technical lemmas that will lead us eventually towards a charac-

terization of the sets Xn (in the next Section).

Lemma 2.2.5. Suppose that x1 > bαc + 1. Let a, b ∈ Z be such that a + bx1 ∈ R1 satisfies
0� a+ bx1 � 2bαc+ 2. We have a ∈ {1, . . . , 2bαc+ 1} and b = 0.

Proof. If 0� a+ bx1 � 2bαc+ 2, then by Lemma 2.2.2 we have 0 < a < 2bαc+ 2 and

|b| < bαc+ 1

x1
.

Since x1 > bαc+ 1 and b is an integer, we deduce that b is zero.

Lemma 2.2.6. Let n ≥ 1 and let a+ bxn ∈ Rn, where a, b ∈ Rn−1. Suppose that 0� a+ bxn �
2bαc+ 2 and xn ≥ bαc+ 1. If a ∈ {1, . . . , 2bαc+ 1} then |b| < 1.

Proof. For the sake of contradiction, we assume |b| ≥ 1.
Assume first a ∈ {1, . . . , bαc}. We can choose σ such that (a+ bxn)σ = a− |b|xn. We have

(a+ bxn)σ = a− |b|xn ≤ bαc − xn ≤ bαc − bαc − 1 = −1,

which contradicts the hypothesis 0� a+ bxn.
If a ∈ {bαc+ 1, . . . , 2bαc+ 1}, we can choose σ such that (a+ bxn)σ = a+ |b|xn. We have

(a+ bxn)σ = a+ |b|xn ≥ bαc+ 1 + xn ≥ bαc+ 1 + bαc+ 1 = 2bαc+ 2,

which contradicts the hypothesis a+ bxn � 2bαc+ 2.

When we will characterize the elements of X, we will have to show that certain families of
algebraic numbers do not belong to it. The following lemma will be used often for this purpose in
Lemma 2.3.10.

Lemma 2.2.7. Let b1, b2 ∈ Z and a ∈ {1, . . . , 2bαc+ 1}. Let

x = a+ (b1 + b2x1)x2 ∈ R2

be such that 0� x� 2bαc+ 2. Suppose that m = 2 (see Not. 2.1.2).

1. If b1 = 0, then b2 = 0.
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2. If b2 = 0, then either b1 = 0, or a = bαc+ 1 and b1 ∈ {0,±1}.

Proof. Assume b1 = 0 and |b2| ≥ 1. For any a ∈ {1, . . . , 2bαc+ 1}, there exists σ which fixes R1

such that xσ = a+ |b2|x1x2. Therefore, we have

xσ > 1 + (bαc+ 1)x2 ≥ 1 + bαc+ bαc2 > 2bαc+ 2,

because bαc ≥ 2 by Lemma 2.2.2. This contradicts our hypothesis on x, so we have b2 = 0.
Assume b2 = 0 and |b1| ≥ 1. For a ∈ {1, . . . , bαc}, choose σ such that xσ = a− |b1|x2, so that

xσ = a− |b1|x2 ≤ bαc − x2 < bαc − α ≤ 0.

If a ∈ {bαc+ 2, . . . , 2bαc+ 1}, choose σ such that xσ = a+ |b1|x2, so that

xσ = a+ |b1|x2 ≥ bαc+ 2 + x2 > bαc+ 2 + α ≥ 2bαc+ 2.

Hence, we have b1 = 0 unless a = bαc+ 1.
Assume a = bαc+ 1 and |b1| ≥ 2. There exists σ such that

xσ = a+ |b1|x2 ≥ bαc+ 1 + 2x2 > bαc+ 1 + 2α > 2bαc+ 2,

so that |b1| < 2.

Lemma 2.2.8. Let a, b1, b2 ∈ Z and x = a+(b1 + b2x1)x2 be such that 0� x� 2bαc+2. Suppose
that x1 > bαc+ 1. If a ∈ {1, . . . , 2bαc+ 1} and b1b2 6= 0, then b1b2 < 0.

Proof. Since b1b2 6= 0, we have |b1| ≥ 1 and |b2| ≥ 1. For the sake of contradiction, assume that b1
and b2 have the same sign, so that there exists σ fixing R1 such that

xσ = a+ |b1|x2 + |b2|x1x2.

Hence we have
xσ ≥ 1 + x2 + x1x2

> 1 + bαc+ (bαc+ 1)bαc
= (1 + bαc)2

> 2bαc+ 2,

because bαc ≥ 2.

Lemma 2.2.9. Assume that xn < bαc + 1 for all n ≥ 3. Suppose that for all x ∈ R2 such that
0� x� 2bαc+ 2 we have

x ∈ {1, . . . , 2bαc+ 1} ∪ {bαc+ 1± x2}.

For all n ≥ 2, if x ∈ Rn satisfies 0� x� 2bαc+ 2, then

x ∈ {1, . . . , 2bαc+ 1} ∪ {bαc+ 1± xk : k = 2, . . . , n} .

Proof. The proof is part of the proof of Lemma 3.2 of [VV15] (Facts 2.1 up to 2.5). We include it
here for the convenience of the reader, as we will use some of our lemmas instead of assumptions
that were made in [VV15].

We prove the Lemma by induction on n. For n = 2 there is nothing to prove. Assume that this
is true up to n−1 ≥ 2. Let a, b ∈ Rn−1 and x = a+bxn ∈ Rn. By Lemma 2.2.2, if 0� x� 2bαc+2
then

0� a� 2bαc+ 2
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and for all σ

|bσ| < bαc+ 1√
ν − xn−1

.

Since n ≥ 3, by Lemma 2.2.3 we have
√
ν − xn−1 > 1, hence |bσ| < bαc+1, that is, 0� b+bαc+1�

2bαc+ 2. By induction hypothesis

a ∈ {1, . . . , 2bαc+ 1} ∪ {bαc+ 1± xk : k = 2, . . . , n− 1}

and
b ∈ {−bαc, . . . , bαc} ∪ {±xk : k = 2, . . . , n− 1} .

Fact 1. If a ∈ {1, . . . , bαc}, then b = 0.
Assume a ∈ {1, . . . , bαc} and b 6= 0. Either b ∈ Z and |b| ≥ 1, or |b| = xj > α for some 2 ≤ j ≤ n−1.
In both cases we have |b| ≥ 1. We can consider an embedding σ that fixes Rn−1 and such that
xσ = a− |b|xn, we obtain

xσ ≤ bαc − xn ≤ α− xn < 0.

Fact 2. If a ∈ {bαc+ 2, . . . , 2bαc+ 1}, then b = 0.
As in Fact 1, suppose that |b| ≥ 1. By choosing σ such that xσ = a+ |b|xn, we obtain

xσ ≥ bαc+ 2 + xn > bαc+ 2 + α ≥ 2bαc+ 2.

Fact 3. If a = bαc+ 1 then b is a rational integer and |b| ≤ 1.
Suppose that |b| ≥ 2. Choose σ fixing Rn−1 such that xσ = a+ |b|xn. We have

xσ > bαc+ 1 + 2xn > bαc+ 1 + 2α > 2bαc+ 2.

This contradiction implies |b| ≤ 1, and in particular it is a rational integer (because we already
know that either b ∈ Z or |b| = xk > α ≥ 2 by Lemma 2.2.2).

Fact 4. If a = bαc+ 1 + xk for some 2 ≤ k ≤ n− 1, then b = 0.
Otherwise |b| ≥ 1, and by choosing σ such that xσ = bαc+ 1 + xk + |b|xn, we would obtain

xσ = bαc+ 1 + xk + |b|xn > bαc+ 1 + 2α ≥ 2bαc+ 2.

Fact 5. If a = bαc+ 1− xk for some 2 ≤ k ≤ n− 1, then b = 0.
As in Fact 4, by choosing σ such that xσ = bαc+ 1− xk − |b|xn, we would obtain

xσ < bαc+ 1− 2α < 0.

2.3 Proof of Theorem 2.1.3

Recall that m is the smallest index n such that xn < bαc+1. When (ν, x0) is not in the exceptional
set E, we will consider four cases separately:

• m 6= 2,

• m = 2 and ν − x1 > 1, and

• m = 2 and ν − x1 < 1.

Note that when (ν, x0) ∈ E, we have m = 2 and ν − x1 < 1.
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2.3.1 Case m 6= 2.

The following Lemma proves Theorem 2.1.3 when m ≤ 1.

Lemma 2.3.1. Assume that m ≤ 1. If x ∈ O satisfies 0� x� 2bαc+ 2, then x ∈ X.

Proof. By definition of m, since m ≤ 1, we have x1 < bαc + 1, so Assumption 2.17 of [VV15] is
satisfied. We have

√
ν − x1 > 1 by Lemma 2.2.4, so Assumption 3.1 in [VV15] is also satisfied.

Hence Lemma 3.2 from [VV15] is now true with no extra hypothesis.

Lemmas 2.3.2 and 2.3.3 below deal with the case m ≥ 3.

Lemma 2.3.2. Assume m ≥ 3. For all n = 1, . . . ,m − 1, if x ∈ Rn satisfies 0 � x � 2bαc + 2,
then x ∈ {1, . . . , 2bαc+ 1}.

Proof. We prove it by induction on n. For n = 1, this is Lemma 2.2.5, since we have x1 > bαc+ 1
by definition of m. Let x = a+ bxn ∈ Rn for some 2 ≤ n ≤ m− 1, where a, b ∈ Rn−1, and assume
that the lemma is true for n− 1. If 0� a+ bxn � 2bαc+ 2, then by Lemma 2.2.2 we have

0� a� 2bαc+ 2

and

|bσ| < bαc+ 1√
ν − xn−1

.

By induction hypothesis, we have a ∈ {1, . . . , 2bαc+ 1}. Since xn−1 > bαc + 1, by Lemma 2.2.4
we have

√
ν − xn−1 > 1, hence |bσ| < bαc + 1. This implies 0 � b + bαc + 1 � 2bαc + 2, and by

induction hypothesis we have b ∈ {−bαc, . . . , bαc}. Finally, by Lemma 2.2.6 we have b = 0.

Lemma 2.3.3. Assume m ≥ 3. For all n ≥ m, if x ∈ Rn is such that 0 � x � 2bαc + 2, then
x ∈ {1, . . . , 2bαc+ 1} ∪ {bαc+ 1± xk : k = m, . . . , n}.

Proof. In the proof of Lemma 3.2 in [VV15], replace x1 by xm, O1 by Rm and so on. The assumption
there that x1 is less than bαc + 1 is now replaced by the fact that xm < bαc + 1 (by definition of
m). They use x1 > 1 (in the first step of the induction) and

√
ν − x1 ≥ 1 (their Assumption 3.1),

which are now replaced by the only fact that
√
ν − xm−1 > 1 (which comes from Lemma 2.2.3,

because m ≥ 3).

From Lemmas 2.3.2 and 2.3.3 we deduce the following corollary.

Corollary 2.3.4. Assume m ≥ 3. Let x ∈ O. If 0� x� 2bαc+ 2, then x ∈ X.

2.3.2 Case m = 2 and ν − x1 > 1.

In this subsection, we assume ν − x1 > 1 and m = 2, so in particular we have x1 > bαc + 1 and
x2 < bαc+ 1.

Lemma 2.3.5. Let x = a + bx2 ∈ R2, with a, b ∈ R1, satisfying 0 � x � 2bαc + 2. We have
a ∈ {1, . . . , 2bαc+ 1} and b ∈ {0,±1}. Moreover, if a 6= bαc+ 1, then b = 0.

Proof. By Lemma 2.2.2, we have
0� a� 2bαc+ 2

and

|bσ| < bαc+ 1√
ν − x1

< bαc+ 1.
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Note that by Lemma 2.2.5 we have a ∈ {1, . . . , 2bαc + 1}. Write b = b1 + b2x1, with b1, b2 ∈ Z.
Since |bσ| < bαc+ 1, we have

0� b1 + b2x1 + bαc+ 1� 2bαc+ 2.

From Lemma 2.2.5 again, we deduce b1 ∈ {−bαc, . . . , bαc} and b2 = 0, that is b ∈ {−bαc, . . . , bαc}.

• Fact 1. If a ∈ {1, . . . , bαc}, then b = 0.
Suppose that |b| ≥ 1. We can choose the embedding σ such that xσ = a− |b|x2. We have

xσ ≤ bαc − x2 < bαc − α ≤ 0,

which contradicts the hypothesis on x.

• Fact 2. If a ∈ {bαc+ 2, . . . , 2bαc+ 1}, then b = 0.
Suppose that |b| ≥ 1. By choosing σ such that xσ = a+ |b|x2 we have

xσ ≥ bαc+ 2 + x2 > bαc+ 2 + α ≥ 2bαc+ 2.

which contradicts the hypothesis on x.

• Fact 3. If a = bαc+ 1, then b ∈ {−1, 0, 1}.
Assume |b| ≥ 2. By choosing σ such that xσ = a+ |b|x2 we have

xσ ≥ bαc+ 1 + 2x2 > bαc+ 1 + 2α > 2bαc+ 2

since α > 1 by Lemma 2.2.2.

We finally obtain:

Corollary 2.3.6. Assume m = 2 and ν − x1 > 1. Let x ∈ O. If 0� x� 2bαc+ 2, then x ∈ X.

Proof. It is clear that if x ∈ R0 = Z, then x ∈ X0. By Lemma 2.2.5, if x ∈ R1, then x ∈ X0 = X1.
By Lemma 2.3.5, if x ∈ R2, then x ∈ X2. By Lemma 2.2.9, for all n ≥ 3, if x ∈ Rn, then
x ∈ Xn.

2.3.3 Case m = 2 and ν − x1 < 1

For all this section, we assume m = 2 and ν−x1 < 1. First we will characterize which pairs (ν, x0)
are involved. Then, in order to prove Theorem 2.1.3, we will have to consider separately a small
set of exceptional pairs.

Characterization of the pairs (ν, x0) involved.

Remark 2.3.7. In case x0 = ν2 − ν we have x1 = ν, hence the tower Z(ν,ν2−ν) is equivalent, in
general, to the tower Z(ν,ν).

By above remark, in the following lemma we will not consider the case x0 = ν2 − ν.

Lemma 2.3.8. The pairs (ν, x0) that satisfy ν < x2
0 − x0, x0 < ν2 − ν, m = 2 and ν − x1 < 1 are

such that ν ∈ {4, 6, 7, 8, 12} and, given any such ν, x0 ranges in {ν2 − 3ν + 2, . . . , ν2 − ν − 1}.
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Proof. The conditions x2 < bαc+1 (coming from the hypothesis m = 2) and ν−x1 < 1 imply that

ν − 1 < x1 < (bαc+ 1)2 − ν ≤ (α+ 1)2 − ν.

Consider the functions f(ν) = ν − 1 and g(ν) = (α+ 1)2 − ν. We first characterize the values of ν
for which g(ν) > f(ν). We have

g(ν) > f(ν)⇔ (α+ 1)2 − ν > ν − 1

⇔
(

1 +
√

1 + 4ν

2
+ 1

)2

− ν > ν − 1

⇔ 1

4

(
3 +
√

1 + 4ν
)2 − ν > ν − 1

⇔ 5

2
+

3

2

√
1 + 4ν > ν − 1

⇔ 3

2

√
1 + 4ν > ν − 7

2

⇔ 3
√

1 + 4ν > 2ν − 7

⇔ 9(1 + 4ν) > 4ν2 − 28ν + 49

⇔ 0 > ν2 − 16ν + 10

⇔ 0 >
(
ν −

(
8− 3

√
6
))(

ν −
(

8 + 3
√

6
))

⇔ 8− 3
√

6 < ν < 8 + 3
√

6 ≈ 13.34.

So we have g(ν) > f(ν) if and only if 4 ≤ ν ≤ 13. In particular, recalling that x0 ≤ ν2 − ν, we
have x0 ≤ 132 − 13 = 156. So we are left with finitely many pairs to check. In the following table
we put the pairs (ν, x0) and why it does not satisfy the hypothesis.

ν x0 Satisfy ν x0 Satisfy

4 0, . . . , 5 ν − x1 ≥ 1 9 0, . . . , 55 ν − x1 ≥ 1
12, . . . x0 ≥ ν2 − ν 56, . . . , 71 m ≥ 3

72, . . . x0 ≥ ν2 − ν
5 0, . . . , 11 ν − x1 ≥ 1 10 0, . . . , 70 ν − x1 ≥ 1

12, . . . , 19 m ≥ 3 71, . . . , 90 m ≥ 3
20, . . . x0 ≥ ν2 − ν 91, . . . x0 ≥ ν2 − ν

6 0, . . . , 19 ν − x1 ≥ 1 11 0, . . . , 88 ν − x1 ≥ 1
30, . . . x0 ≥ ν2 − ν 89, . . . , 110 m ≥ 3

111, . . . x0 ≥ ν2 − ν
7 0, . . . , 29 ν − x1 ≥ 1 12 0, . . . , 109 ν − x1 ≥ 1

42, . . . x0 ≥ ν2 − ν 132, . . . x0 ≥ ν2 − ν
8 0, . . . , 41 ν − x1 ≥ 1 13 0, . . . , 130 ν − x1 ≥ 1

56, . . . x0 ≥ ν2 − ν 131, . . . , 156 m ≥ 3
157, . . . x0 ≥ ν2 − ν

Table 2.1: Why the pairs (ν, x0) do not satisfy the hypothesis of Lemma 2.3.8. Source: Own
elaboration.

One easily verifies that the remaining pairs (ν, x0) satisfy the hypothesis. They correspond to pairs
such that ν ∈ {4, 6, 7, 8, 12} and, given any such ν, x0 ranges in {ν2 − 3ν + 2, . . . , ν2 − ν − 1}. In
particular, there is no pair left with ν ∈ {5, 9, 10, 11, 13}.
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We will need to consider two cases:

• Generic Case: either ν ∈ {4, 6, 7, 8, 12} and, for each given ν,

x0 ∈ {ν2 − 3ν + 2, . . . , ν2 − ν − 2};

• Exceptional Case: ν ∈ {4, 6, 8, 12} and, for each given ν, x0 = ν2 − ν − 1 (we do not consider
the pair (7, 41) because the tower does not increase — we have indeed R1 = R2 in that case).

Generic case.

Assume that (ν, x0) satisfy the condition of the Generic Case.

Remark 2.3.9. Note that for any A and B positive real numbers, we have

A ≤ x0 ≤ B ⇔
√
ν −
√
ν +B ≤

√
ν − x1 ≤

√
ν −
√
ν +A.

Lemma 2.3.10. If x ∈ R2 satisfies 0� x� 2bαc+ 2, then

x ∈ {1, . . . , 2bαc+ 1} ∪ {bαc+ 1± x2} .

Proof. Let x = a+ bx2 ∈ R2, where a, b ∈ R1. If 0� a+ bx2 � 2bαc+ 2, then by Lemma 2.2.2 we
have

0� a� 2bαc+ 2

and

|bσ| < bαc+ 1√
ν − x1

.

By Lemma 2.2.5, we have a ∈ {1, . . . , 2bαc+ 1}. Write b = b1 + b2x1, with b1, b2 ∈ Z. By Lemma
2.2.8, b1 and b2 have opposite sign.

Case 1: Assume x0 ∈ {ν2 − 3ν + 2, . . . , ν2 − ν − 3}, or ν = 4 and x0 = ν2 − ν − 2 = 10.
Suppose that |b1| ≥ 1 and |b2| ≥ 1. In both cases, we will use Lemma 2.2.7 in order to conclude
that b1 = b2 = 0 if a 6= bαc+ 1, and that b2 = 0 and b1 ∈ {0,±1} if not.

Case 1a: Assume a ∈ {1, . . . , bαc}. If b1 < 0, choose σ such that x1 7→ −x1, so that we have

xσ = a+ (b1 + b2x
σ
1 )
√
ν + x1

σ
= a+ (b1 − b2x1)

√
ν − x1.

If b1 > 0, choose σ so that σ(x1) = −x1, and σ(x2) = −
√
ν − x1. In that case, we have

xσ = a+ (b1 + b2x
σ
1 )
√
ν + x1

σ
= a− (b1 − b2x1)

√
ν − x1.

Therefore, in both cases, there exists σ such that:

xσ = a− (|b1|+ |b2|x1)
√
ν − x1.

If (ν, x0) = (4, 10), then we have

xσ = a− (|b1|+ |b2|x1)
√
ν − x1 ≤ bαc − (1 + x1)

√
ν − x1,

and the latter can be checked to be negative, and otherwise, using Remark 2.3.9, we have

xσ = a− (|b1|+ |b2|x1)
√
ν − x1

≤ bαc − (1 + x1)
√
ν − x1

≤ bαc − (1 +
√
ν2 − 2ν + 2)

√
ν −

√
ν2 − 3,
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and again one can check that the latter is negative. So in both cases we have b1 = b2 = 0 by Lemma
2.2.7.

Case 1b: Assume a ∈ {bαc+ 2, . . . , 2bαc+ 1}. We proceed in a way similar to Case 1a, choosing
σ such that

xσ = a+ (|b1|+ |b2|x1)
√
ν − x1.

If (ν, x0) = (4, 10), then
xσ ≥ bαc+ 2 + (1 + x1)

√
ν − x1,

which can be checked to be greater than 2bαc+ 2. Otherwise, using Remark 2.3.9, we obtain

xσ = a+ (|b1|+ |b2|x1)
√
ν − x1

≥ bαc+ 2 + (1 + x1)
√
ν − x1

≥ bαc+ 2 + (1 +
√
ν2 − 2ν + 2)

√
ν −

√
ν2 − 3,

which is again greater than 2bαc+ 2. Hence b1 = b2 = 0 by Lemma 2.2.7.
Case 1c: Assume a = bαc+1. As before, choose σ such that xσ = bαc+1−(|b1|+|b2|x1)

√
ν − x1.

So we have
xσ = a− (|b1|+ |b2|x1)

√
ν − x1 ≤ bαc+ 1− (1 + x1)

√
ν − x1.

This is negative in the following cases:

• ν = 4 and x0 ∈ {6, 7, 8},

• ν = 6 and x0 ∈ {20, . . . , 26},

• ν = 7 and x0 ∈ {30, . . . , 38},

• ν = 8 and x0 ∈ {42, . . . , 52} or

• ν = 12 and x0 ∈ {110, . . . , 128},

so in these cases, we have b1 = b2 = 0. For the remaining cases, some conjugates are outside the
interval.

• When ν = 4 and x0 = 9 we have a = bαc+ 1 = 3. By Lemma 2.2.2 we have

|bσ| ≤ bαc+ 1√
ν − x1

≈ 4.78 < 5,

hence 0� b+ 5� 10. Write b = b1 + b2x1, with b1, b2 ∈ Z. By Lemma 2.2.2 we have

b1 ∈ {−4, . . . , 4}

and

|b2| ≤
5

x1
≈ 1.38,

and since b2 ∈ Z we deduce b2 ∈ {−1, 0, 1}.

Using Lemma 2.2.2 in the same way, we obtain the following for some of the other pairs (ν, x0).
Next, we need to do a case by case analysis. We consider x = bαc + 1 + (b1 + b2x1)x2, where

b1, b2 ∈ Z and the following embeddings:

σ1(x) = bαc+ 1 + (b1 + b2x1)x2

σ2(x) = bαc+ 1 + (b1 − b2x1)
√
ν − x1

σ3(x) = bαc+ 1− (b1 + b2x1)x2

σ4(x) = bαc+ 1− (b1 − b2x1)
√
ν − x1
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(ν, x0) a = bαc+ 1 b1 b2
(4, 10) 3 −5, . . . , 5 −1, 0, 1
(6, 27) 4 −7, . . . , 7 −1, 0, 1
(7, 39) 4 −8, . . . , 8 −1, 0, 1
(8, 53) 4 −9, . . . , 9 −1, 0, 1

(12, 129) 5 −14, . . . , 14 −1, 0, 1

Table 2.2: Possible values of b1 and b2 in Case 1c, proof of Lemma 2.3.10. Source: Own elaboration.

b2 b1 σi < 0 b2 b1 σi < 0 b2 b1 σi < 0
ν = 4, x0 = 9 ν = 4, x0 = 10 ν = 6, x0 = 27

−1 ≤ 2 σ1 −1 ≤ 2 σ1 −1 ≤ 4 σ1

−1 ≥ 3 σ4 −1 ≥ 3 σ4 −1 ≥ 5 σ4

0 ≤ −2 σ1 0 ≤ −2 σ1 0 ≤ −2 σ1

0 ≥ 2 σ3 0 ≥ 2 σ3 0 ≥ 2 σ3

1 ≤ −2 σ2 1 ≤ −3 σ2 1 ≤ −3 σ2

1 ≥ −1 σ3 1 ≥ −2 σ3 1 ≥ −2 σ3

ν = 7, x0 = 39 ν = 8, x0 = 53 ν = 12, x0 = 129
−1 ≤ 5 σ1 −1 ≤ 6 σ1 −1 ≤ 10 σ1

−1 ≥ 6 σ4 −1 ≥ 7 σ4 −1 ≥ 11 σ4

0 ≤ −2 σ1 0 ≤ −2 σ1 0 ≤ −2 σ1

0 ≥ 2 σ3 0 ≥ 2 σ3 0 ≥ 2 σ3

1 ≤ −2 σ2 1 ≤ −2 σ2 1 ≤ −3 σ2

1 ≥ −1 σ3 1 ≥ −1 σ3 1 ≥ −2 σ3

Table 2.3: An embedding σ such that σ(x) ≤ 0 in Case 1c, proof of Lemma 2.3.10. Source: Own
elaboration.

In all cases there exists an embedding σ such that σ(x) ≤ 0 or σ(x) ≥ 2bαc+ 2. For example, the
following table shows, for each pair (ν, x0), an embedding σ such that σ(x) ≤ 0.

Case 2: Assume x0 = ν2 − ν − 2 and ν ∈ {6, 7, 8, 12}. Proceeding as before, by Lemma 2.2.2
we have:

(ν, x0) a b1 b2
(6, 28) 1, . . . , 7 −9, . . . , 9 −1, 0, 1
(7, 40) 1, . . . , 7 −10, . . . , 10 −1, 0, 1
(8, 54) 1, . . . , 7 −11, . . . , 11 −1, 0, 1

(12, 130) 1, . . . , 9 −17, . . . , 17 −1, 0, 1

Table 2.4: Possible values of b1 and b2 in Case 2, proof of Lemma 2.3.10. Source: Own elaboration.

In all cases there exists an embedding σ such that σ(x) ≤ 0 or σ(x) ≥ 2bαc+ 2. For example, when
ν = 6 and x0 = 28, the following table shows the embeddings σi such that σ(x) ≤ 0 for the values
of a, b1 and b2 that are indicated.

Similarly, for a ≥ 5, the following table shows the embedding σ such that σ(x) ≥ 2bαc+ 2.

We leave to the reader checking what happens with the other values of ν and x0: the verifications
are tedious, but easily done using any computer algebra system (more or less the same program
may be used to various situations below).
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a b2 b1 σi a b2 b1 σi
1 −1 ≤ 5 σ1 2 −1 ≤ 5 σ1

1 −1 ≥ 6 σ4 2 −1 ≥ 6 σ4

1 0 ≤ −1 σ1 2 0 ≤ −1 σ1

1 0 ≥ 1 σ3 2 0 ≥ 1 σ3

1 1 ≤ 3 σ2 2 1 ≤ 0 σ2

1 1 ≥ 4 σ3 2 1 ≥ 1 σ3

3 −1 ≤ 4 σ1 4 −1 ≤ 4 σ1

3 −1 ≥ 5 σ4 4 −1 ≥ 5 σ4

3 0 ≤ −1 σ1 4 0 ≤ −2 σ1

3 0 ≥ 1 σ3 4 0 ≥ 2 σ3

3 1 ≤ −2 σ2 4 1 ≤ −4 σ2

3 1 ≥ −1 σ3 4 1 ≥ −3 σ3

Table 2.5: Embeddings σi such that σi(x) ≤ 0 in Case 2, proof of Lemma 2.3.10. Source: Own
elaboration.

a b2 b1 σi a b2 b1 σi a b2 b1 σi
5 −1 ≤ 4 σ3 6 −1 ≤ 5 σ3 7 −1 ≤ 5 σ3

5 −1 ≥ 5 σ2 6 −1 ≥ 6 σ2 7 −1 ≥ 6 σ2

5 0 ≤ −1 σ3 6 0 ≤ −1 σ3 7 0 ≤ −1 σ3

5 0 ≥ 1 σ1 6 0 ≥ 1 σ1 7 0 ≥ 1 σ1

5 1 ≤ −2 σ4 6 1 ≤ 0 σ4 7 1 ≤ 3 σ4

5 1 ≥ −1 σ1 6 1 ≥ 1 σ1 7 1 ≥ 4 σ1

Table 2.6: Embeddings σ such that σ(x) ≥ 2bαc + 2 in Case 2, proof of Lemma 2.3.10. Source:
Own elaboration.

Lemma 2.3.11. If x ∈ O satisfies 0� x� 2bαc+ 2, then x ∈ X.

Proof. Let x ∈ O be such that 0� x� 2bαc+ 2. If x ∈ R0 = Z, then it is clear that x ∈ X0. By
Lemma 2.2.5, if x ∈ R1, then x ∈ X1. By Lemma 2.3.10, if x ∈ R2, then x ∈ X2. By Lemma 2.2.9,
for all n ≥ 3, if x ∈ Rn, then x ∈ Xn.

Exceptional cases.

Assume (ν, x0) ∈ C = {(ν, ν2 − ν − 1) : ν = 4, 6, 8, 12}. In this case, we have m = 2 and
ν − x1 < 1.

Lemma 2.3.12. If x ∈ R2 satisfies 0� x� 2bαc+ 2, then x ∈ X2.

Proof. Let x = a + bx2 ∈ R2, where a, b ∈ R1. As before, if 0 � a + bx2 � 2bαc + 2, then by
Lemma 2.2.2 we have

0� a� 2bαc+ 2

and

|bσ| < bαc+ 1√
ν − x1

.

By Lemma 2.2.5, we have a ∈ {1, . . . , 2bαc+ 1}. Write b = b1 + b2x1, with b1, b2 ∈ Z. As in the
previous section, the following table summarizes the possible values of b1 and b2.
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(ν, x0) a b1 b2
(4, 11) 1, . . . , 5 −8, . . . , 8 −2, . . . , 2
(6, 29) 1, . . . , 7 −13, . . . , 13 −2, . . . , 2
(8, 55) 1, . . . , 7 −15, . . . , 15 −2, . . . , 2

(12, 131) 1, . . . , 9 −24, . . . , 24 −2, . . . , 2

Table 2.7: Possible values of b1 and b2 in the proof of Lemma 2.3.12. Source: Own elaboration.

We leave to the reader to finish the proof of the lemma, as again it is an easy but lengthy case by
case analysis.

For proving Lemmas 2.3.13 and 2.3.14, we need the approximate values of

1. |ν − 1− x1|x2α,

2. |ν + 1− x1|x2α,

3. |ν + x1|
√
ν − x1

√
ν +
√
ν − x1,

4. bαc+ 1 + (ν + x1)
√
ν − x1 +

√
ν −
√
ν − x1,

5. bαc+ 1 + (ν + x1)
√
ν − x1 +

√
ν +
√
ν − x1 and

6. bαc+ 1− (ν − x1)x2 + α2.

7. bαc+ 1 + (ν − x1)x2 + α2

These aproximate values are in the following table:

(ν, x0) 2bαc+ 2 (1) (2) (3) (4) (5) (6) (7)
(4, 11) 6 6.27 8.10 5.86 7.71 7.89 9.21 9.91
(6, 29) 8 9.49 11.22 8.66 9.84 9.96 12.71 13.29
(8, 55) 8 12.62 14.30 11.47 10.78 10.86 15.12 15.62

(12, 131) 10 18.76 20.39 17.10 13.33 13.39 20.80 21.20

Table 2.8: Approximate values of certain expressions used in the proof of Lemma 2.3.13. Source:
Own elaboration.

Lemma 2.3.13. If x ∈ R3 satisfies 0� x� 2bαc+ 2, then x ∈ X2 ∪ {bαc+ 1± x3}.

Proof. Let x = a + bx3 where a, b ∈ R2. By Lemma 2.2.2, since 0 � x � 2bαc + 2, we have

0� a� 2bαc+ 2 and |bσ| < bαc+1√
ν−x2

< bαc+ 1 (because
√
ν − x2 > 1), that is 0� b+ bαc+ 1�

2bαc+ 2. By Lemma 2.3.12 we have

a ∈ {1, . . . , 2bαc+ 1} ∪ {bαc+ 1± x2} ∪ {bαc+ 1± (β − x1)x2 : β ∈ B}

and
b ∈ {−bαc, . . . , bαc} ∪ {±x2} ∪ {±(β − x1)x2 : β ∈ B},

where

B =

{
{ν − 1, ν}, if ν ∈ {4, 8, 12}
{5, 6, 7}, if ν = 6.
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Fact 1. We have b /∈ {±(β − x1)x2 : β ∈ B}.
Suppose that b ∈ A = {(ν ± 1 − x1)x2,−(ν ± 1 − x1)x2}. There exists σ such that xσ1 = x1,

xσ2 = x2 and

xσ3 =

{
x3 if b > 0

−x3 if b < 0.

Hence
xσ = a+ |ν ± 1− x1|x2x3.

Since x3 > α, by Table 2.8 we have |ν±1−x1|x2x3 > 2bαc+2. Since a > 0, we have xσ > 2bαc+2,
so that b /∈ A.

Suppose that b = ±(ν − x1)x2 and consider σ such that xσ1 = −x1, xσ2 =
√
ν − x1 and

xσ3 =

{√
ν +
√
ν − x1 if b = (ν − x1)x2

−
√
ν +
√
ν − x1 if b = −(ν − x1)x2.

So

(bx3)σ = (ν + x1)
√
ν − x1

√
ν +
√
ν − x1.

When ν = 4 and x0 = 11 we have that (bx3)σ is > 5.8. Moreover, if a ∈ {1, 2, 3, 4, 5} ∪ {3± x2, 3±
(3− x1)x2, 3± (4− x1)x2}, then aσ ≥ 1, hence

(a+ bx3)σ > 1 + 5.8 > 2bαc+ 2.

For ν ∈ {6, 8, 12} we have (bx3)σ > 2bαc+ 2 (see Table 2.8), so that b 6= ±(ν − x1)x2.

Fact 2. If a ∈ {1, . . . , bαc} ∪ {bαc+ 1− x2} ∪ {bαc+ 1± (ν ∓ 1− x1)x2}, then b = 0.
In this case we have a ≤ bαc. When b ∈ {−bαc, . . . , bαc} ∪ {±x2} we have |b| ≥ 1. We can

choose σ such that (a+ bx3)σ = a− |b|x3. Since x3 > α, we have

(a+ bx3)σ = a− |b|x3 ≤ bαc − α < 0.

This is a contradiction, so that b = 0.

Fact 3. If a ∈ {bαc+ 2, . . . , 2bαc+ 1}∪ {bαc+ 1 + x2}∪ {bαc+ 1± (ν ± 1− x1)x2}, then b = 0.
In this case a ≥ bαc+ 2. When b ∈ {−bαc, . . . , bαc} ∪ {±x2} we have |b| ≥ 1. We can choose σ

such that (a+ bx3)σ = a+ |b|x3. Since x3 > α, we have

(a+ bx3)σ = a+ |b|x3 ≥ bαc+ 2 + x3 > 2bαc+ 2.

This is a contradiction, so that b = 0.

Fact 4. If a = bαc+ 1± (ν − x1)x2, then b = 0.
If b ∈ {−bαc, . . . , bαc}, then assuming b 6= 0, we have b ≥ 1. We can choose σ such that

(bαc+ 1± (ν − x1)x2 + bx3)σ = bαc+ 1 + (ν + x1)
√
ν − x1 + |b|

√
ν ±
√
ν − x1,

that is greater than 2bαc+ 2 by Table 2.8. So that b = 0.
If b ∈ {±x2}, then we can choose σ such that

(bαc+ 1± (ν − x1)x2 + bx3)σ = bαc+ 1± (ν − x1)x2 + x2x3 > bαc+ 1± (ν − x1)x2 + α2
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and the latter is greater than 2bαc+ 2 in all cases (see Table 2.8), so that b = 0.

Fact 5. If a = bαc+ 1, then b ∈ {−1, 0, 1}.
Suppose that |b| ≥ 2 (note that x2 > 2), there exists σ such that

(bαc+ 1 + bx3)σ = bαc+ 1 + |b|x3 > bαc+ 1 + 2α ≥ 2bαc+ 2,

so that b ∈ {−1, 0, 1}

Lemma 2.3.14. For n ≥ 3, if x ∈ Rn satisfies 0� x� 2bαc+ 2, then x ∈ X.

Proof. The proof is by induction on n. The case n = 3 holds by Lemma 2.3.13. Assume n ≥ 4 and
suppose that for all x ∈ Rn, if 0� x� 2bαc+ 2, then

x ∈ X2 ∪ {bαc+ 1± xk : k = 3, . . . , n}.

Let x ∈ Rn+1 be such that 0 � x � 2bαc + 2. Write x = a + bxn+1, with a, b ∈ Rn. By Lemma
2.2.2 and by induction hypothesis we have: a ∈ Xn and b+ bαc+ 1 ∈ Xn, that is

a ∈ {1, . . . , 2bαc+ 1} ∪ {bαc ± xk : k = 2, . . . , n} ∪ {bαc+ 1± (β − x1)x2 : β ∈ B}

and
b ∈ {−bαc, . . . , bαc} ∪ {±xk : k = 2, . . . , n} ∪ {±(β − x1)x2 : β ∈ B},

where

B =

{
{ν − 1, ν} , if ν ∈ {4, 8, 12}
{5, 6, 7} , if ν = 6.

Fact 1. We have b /∈ {±(β − x1)x2 : β ∈ B}. Suppose that b ∈ A = {(ν ± 1− x1)x2,−(ν ± 1−
x1)x2}. There exists σ such that xσj = xj for j = 1, . . . , n and

xσn+1 =

{
xn+1 if b > 0

−xn+1 if b < 0.

Hence
xσ = aσ + |ν ± 1− x1|x2xn+1 > aσ + |ν ± 1− x1|x2α.

By Table 2.8 we have |ν ± 1 − x1|x2α > 2bαc + 2. Since aσ > 0, we have xσ > 2bαc + 2, so that
b /∈ A.

Suppose that b = ±(ν − x1)x2 and consider σ such that xσ1 = −x1, xσ2 =
√
ν − x1 and

xσn+1 =


√
ν +

√
ν + . . .

√
ν − x1 if b = (ν − x1)x2

−
√
ν +

√
ν + . . .

√
ν − x1 if b = −(ν − x1)x2

(the choice for xσj , for j = 3, . . . , n, is not relevant). So

xσ = aσ + (ν + x1)
√
ν − x1

√
ν +

√
ν + · · ·+

√
ν − x1

> aσ + (ν + x1)
√
ν − x1

√
ν +
√
ν − x1,

that is greater than 2bαc+ 2 by the proof of Fact 1 of Lemma 2.3.13, so that b 6= ±(ν − x1)x2.
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Fact 2. If a ∈ {1, . . . , bαc} ∪ {bαc + 1 − xk : k = 2, . . . , n} ∪ {bαc + 1 ± (ν ∓ 1 − x1)x2}, then
b = 0.

In this case we have a ≤ bαc. When b ∈ {−bαc, . . . , bαc}∪{±xk : 2, . . . , n} we have |b| ≥ 1. We
can choose σ such that (a+ bxn+1)σ = a− |b|xn+1. Since xn+1 > α, we have

(a+ bxn+1)σ = a− |b|xn+1 ≤ bαc − α < 0.

This is a contradiction, so that b = 0.

Fact 3. If a ∈ {bαc+2, . . . , 2bαc+1}∪{bαc+1+xk : k = 2, . . . , n}∪{bαc+1± (ν±1−x1)x2},
then b = 0.

In this case a ≥ bαc + 2. When b ∈ {−2bαc − 1, . . . , 2bαc + 1} ∪ {±xk : k = 2, . . . , n} we have
|b| ≥ 1. We can choose σ such that (a+ bxn+1)σ = a+ |b|xn+1. Since xn+1 > α, we have

(a+ bxn+1)σ = a+ |b|xn+1 ≥ bαc+ 2 + xn+1 > 2bαc+ 2.

This is a contradiction, so that b = 0.

Fact 4. If a = bαc+ 1± (ν − x1)x2, then b = 0.
If b ∈ {−bαc, . . . , bαc}, then bσ ≥ 1. We can choose σ such that

(bαc+ 1± (ν − x1)x2 + bxn+1)σ =

bαc+ 1 + (ν + x1)
√
ν − x1 + |b|

√
ν + . . .

√
ν +

√
ν ±
√
ν − x1

≥ bαc+ 1 + (ν + x1)
√
ν − x1 +

√
ν ±
√
ν − x1,

that is greater than 2bαc+ 2 by Table 2.8, so that b = 0.
If b ∈ {±xk : k = 2, . . . , n}, then we can choose σ such that

(bαc+ 1± (ν − x1)x2 + bxn+1)σ = bαc+ 1± (ν − x1)x2 + xkxn+1

> bαc+ 1± (ν − x1)x2 + α2

and the latter is greater than 2bαc+ 2 in all cases (see Table 2.8), so that b = 0.

Fact 5. If a = bαc+ 1, then b ∈ {−1, 0, 1}.
Suppose that |b| ≥ 2 (note that x2 > 2), there exists σ such that

(bαc+ 1 + bxn+1)σ = bαc+ 1 + |b|xn+1 > bαc+ 1 + 2α ≥ 2bαc+ 2,

so that b ∈ {−1, 0, 1}

Let us conclude with a question that we were not able to answer:

Question 2.3.15. Given x0 ∈ {0, 2, 3, 4}, what is the JR-number of Z(3,x0)?



Chapter 3

Monogenity

3.1 Introduction

In this chapter, for each n ≥ 0, Pn will denote the minimal polynomial of xn over Q.
We will prove in Section 3.3 the following theorem.

Theorem 3.1.1 (Main Theorem 2). Assume that ν + x0 is congruent to 2 or 3 modulo 4 and
is square-free. The ring Z(ν,x0) is the ring of integers of its fraction field if and only if Pn(0) is
square-free for all n ≥ 1.

As we will see, the condition on ν + x0 cannot be dropped, because it is well known that for
square-free ν+x0, Z[x1] = OQ(x1) if and only if ν+x0 is congruent to 2 or 3 modulo 4, and because
of the following proposition, which will be proven at the end of Section 3.3.

Proposition 3.1.2. If Z[xn] = OQ(xn) for some n ≥ 2, then also Z[xn−1] = OQ(xn−1).

Hence for all this chapter we assume the following:

Assumption 3.1.3. The integer ν + x0 is square-free and congruent to 2 or 3 modulo 4.

For example, when (ν, x0) = (2, 0), we have Pn(0) = 2 for all n ≥ 1 (hence, Pn(0) is square-free
for all n ≥ 1). By Theorem 3.1.1, the infinite tower

Z ⊂ Z
[√

2
]
⊂ Z

[√
2 +
√

2

]
⊂ . . .

is the ring of integers of its fraction field — this is a special case of a theorem by Liang [Li76].
Assuming x0 = 0, we computed Pn(0) for n from 1 to 6 and for ν up to 100. Considering only

the values of ν which are square-free and congruent to 2 or 3 modulo 4, in the following table, an
X in the cell (ν, n) means that Pk(0) is square-free for k up to n.

Assuming x0 = 0, we show in Section 3.4.1 that under the ABC-Conjecture, there are infinitely
many ν for which Pn(0) is square-free for every n ≥ 1.

3.2 Discriminant of xn.

In this section, we will prove the following result.

Proposition 3.2.1. Assume that Q(xn) has degree 2n over Q. We have

disc (x0) = 1 and disc (x1) = 22(ν + x0),

28
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ν n = 1 n = 2 n = 6 ν n = 1 n = 2 n = 6

3 X 47 X
6 X 51 X
7 X 55 X
10 X 58 X
11 X 59 X
14 X 62 X
15 X 66 X
19 X 67 X
21 X 70 X
22 X 71 X
23 X 74 X
26 X 78 X
30 X 79 X
31 X 82 X
34 X 83 X
35 X 86 X
38 X 87 X
39 X 91 X
42 X 94 X
43 X 95 X
46 X

Table 3.1: Values of n such that Pk(0) is square-free for k up to n. Source: Own elaboration.

and for n ≥ 2 we have

disc (xn) = (disc (xn−1))2 · 22n

Pn(0).

In our situation, the assumption that Q(xn) has degree 2n over Q will be fulfilled for instance
when ν + x0 is congruent to 2 or 3 modulo 4 — see [VV15, Prop. 2.15]. Under this assumption,
Q(xn) has basis

Bn := {1, xn, x2
n, . . . , x

2n−1
n }

over Q. Note that the field extension Q(xn)/Q(xm) has degree 2n−m. We will denote by disc nn−1(xn)
the discriminant of xn from Q(xn) to Q(xn−1). Hence, for n ≥ 1, we have

disc nn−1(xn) =

∣∣∣∣ 1 xn
1 −xn

∣∣∣∣2 = 4(xn)2 = 4(ν + xn−1).

Notation 3.2.2. For n ≥ 1, we denote by Nn the norm from Q(xn) to Q of disc n+1
n (xn+1), and

by N0 the discriminant of x1 from Q(x1) to Q.

Proposition 3.2.3. We have

1. N0 = 22(ν + x0), and

2. Nn = 22n+1

Pn+1(0) for any n ≥ 1.

Proof. Item 1 is immediate from our above computation, so we prove item 2. Let `1 = ν2 and
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`n = ((`n−1)− ν)2 for n ≥ 2. Let n ≥ 1. We have

Nn = Norm
Q(xn)
Q

(
disc n+1

n (xn+1)
)

= Norm
Q(xn)
Q (4(ν + xn))

= (22)2n

Norm
Q(xn)
Q (ν + xn)

= 22n+1
2n∏
i=1

(ν + x
σn
i
n ),

where the σni are the 2n embeddings from Q(xn) to C.
Fact. For all t ∈ {0, . . . , n} we have

2n∏
i=1

(
ν + x

σn−1
i
n

)
=

2n−t∏
i=1

(
`t − (ν + xn−t)

σn−t
i

)
.

We prove the fact by induction on t. Assume it is true for t− 1, namely,

2n∏
i=1

(
ν + x

σn−1
i
n

)
=

2n−(t−1)∏
i=1

(
`t−1 − (ν − xn−(t−1))

σ
n−(t−1)
i

)
,

we have
2n∏
i=1

(
ν + x

σn−1
i
n

)
=

2n−t+1∏
i=1

(
`t−1 − (ν − xn−t+1))

σn−t+1
i

)

=

2n−t+1∏
i=1

(
(`t−1 − ν) + x

σn−t+1
i
n−t+1

)

=

2n−t∏
i=1

(
(`t−1 − ν)− xσ

n−t
i
n−t+1

)(
(`t−1 − ν) + x

σn−t
i
n−t+1

)

=

2n−t∏
i=1

(
(`t−1 − ν)

2 − (x2
n−t+1)σ

n−t
i

)

=

2n−t∏
i=1

(
`t − (ν + xn−t)

σn−t
i

)
.

This proves the fact.
Hence, taking t = n in the Fact above, we obtain

2n∏
i=1

(
ν + x

σn−1
i
n

)
= (`n − (ν + x0)) = Pn+1(0).

We need the following proposition — see [Marcus77, Chap. 2, Exercise 23, p. 43].

Proposition 3.2.4. Let K ⊂ L ⊂ M be number fields, [L : K] = n, [M : L] = m, and let
{α1, . . . , αn} and {β1, . . . , βm} be bases for L over K and M over L, respectively. We have

disc MK (α1β1, . . . , αnβm) =
(

disc LK(α1 . . . , αn)
)m
·NormL

K

(
disc ML (β1 . . . , βm)

)
.
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Proposition 3.2.1 follows from Propositions 3.2.3 and 3.2.4 in the following way. Take

K = Q, L = Q(xn−1) and M = Q(xn).

The degree of L over K is 2n−1 and L has basis{
1, xn−1, x

2
n−1, . . . , x

2n−1−1
n−1

}
over K, while the degree of M over L is 2 and M has basis {1, xn} over L. The set {α1β1, . . . , αnβm}
in Proposition 3.2.4 corresponds to the set

B′ =
{

1, xn−1, x
2
n−1, . . . , x

2n−1−1
n−1 , xn, xn−1xn, x

2
n−1xn, . . . , x

2n−1−1
n−1 xn

}
.

This set B′ is a basis for M over K. Indeed, we have

|B′| = 2
(
2n−1 − 1

)
+ 2 = 2n = |Bn|,

and since x2
n = ν + xn−1, each element of Bn can be written as a Z-linear combination of elements

of B′. Similarly, each element of B′ is a Z-linear combination of elements of Bn. Since the base
change matrices from Bn to B′ and from B′ to Bn have an integral determinant and because the
discriminants are also integers, we deduce

disc MK (B′) = disc MK (Bn) = disc MK (xn).

One obtains the formula in Proposition 3.2.1 by using in Proposition 3.2.4 the formulas from
Proposition 3.2.3.

3.3 Proof of Theorem 3.1.1 and Proposition 3.1.2

We need the following result from K. Uchida (we will apply for R = Z and θ = xn).

Theorem 3.3.1 ([U77]). Let R be a Dedeking ring. Let θ be an element of some integral domain
which contains R and assume that θ is integral over R. Then R[θ] is a Dedekind ring if and only if
the defining polynomial f(t) of θ is not contained in m2 for any maximal ideal m of the polynomial
ring R[t].

Before we go to the proof of the theorem, we need to recall a few facts.

Proposition 3.3.2 (Prop. 2.13, [Nark04]). Let θ be an algebraic integer. We have

disc (θ) = m2disc (Q(θ)),

where m is the index in OQ(θ) of the Z-module Z[θ].

Definition 3.3.3. We say that a monic polynomial

xn + an−1x
n−1 + · · ·+ a1x+ a0

with coefficients in Z is p-Eisenstein with respect to the prime number p, if a0, a1, . . . , an−1 are
divisible by p, and p2 does not divide a0.

Lemma 3.3.4 (Lemma 2.17, [Nark04]). Let θ be an algebraic integer and p be a prime number. If
the minimal polynomial of θ over Q is p-Eisenstein, then the index of Z[θ] in OQ(θ) is not divisible
by p.
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In the proof of Proposition 2.15 in [VV15], Vidaux and Videla proved the following result.

Proposition 3.3.5 ([VV15]). For each n ≥ 1, let Pn be the minimal polynomial of xn. Suppose
that ν + x0 is congruent to 2 or 3 modulo 4. We have:

1. if n is odd, then Pn(t+ a) is 2-Eisenstein, where a =

{
0 if ν + x0 ≡ 2 mod 4

1 if ν + x0 ≡ 3 mod 4
, and

2. if n is even, then Pn(t+ x0) is 2-Eisenstein.

Moreover, writing f(t) = t2 − ν, we have Pn(t) = f◦n(t) − x0, hence in particular Pn has no
monomial of odd degree.

Proposition 3.3.6. For all n ≥ 1, if ν + x0 is congruent to 2 or 3 modulo 4, then the index in
OQ(xn) of the Z module Z[xn] is not divisible by 2.

Proof. It is an immediate consequence of Proposition 3.3.5 and Lemma 3.3.4, since for any rational
integer c, Pn(t+c) is the minimal polynomial of xn−c, Z[xn−c] = Z[xn], and Q(xn−c) = Q(xn).

Proof of Theorem 3.1.1. Assume first that there exists n ≥ 1 such that Pn(0) is not square-free.
Let p be a prime such that p2 divides Pn(0) and write Pn(0) = p2s, where s ∈ Z − {0}. Since Pn
has only monomials of even degree, we have

Pn(t) = p2s+ pt · 0 + t2g(t),

for some g(t) ∈ Z[t]. Hence Pn(t) ∈ (p, t)2 ⊆ Z[t]. The ideal (p, t) is maximal, hence Z[xn] 6= OQ(xn)

by Theorem 3.3.1.
We show the other direction by induction on n. Let mn be the index in OQ(xn) of the Z-module

Z[xn], so we have
disc (xn) = m2

ndisc Q(xn)

by Proposition 3.3.2.
On the one hand, we have

disc (x1) = disc (
√
ν + x0) =

∣∣∣∣ 1
√
ν + x0

1 −
√
ν + x0

∣∣∣∣2 = 4(ν + x0),

and on the other hand, it is well known that for ν + x0 ≡ 2, 3 (mod 4), we have disc Q(x1) =
disc (Q(

√
ν + x0)) = 4(ν + x0), so in particular we have m1 = 1.

For n ≥ 2, suppose that mn−1 = 1, that is disc (xn−1) = disc Q(xn−1). By Proposition 3.2.1 we
have

disc (xn) = (disc (xn−1))2 · 22n

Pn(0),

and by induction hypothesis we have

disc (xn) = (disc Q(xn−1))2 · 22n

Pn(0),

so
(disc Q(xn−1))2 · 22n

Pn(0) = m2
ndisc Q(xn).

On the one hand, by Proposition 3.3.6 we have that 2 does not divide mn, and on the other hand,
by [Nark04, Cor. 1 of Prop. 4.15], the discriminant of Q(xn) is divisible by

(disc Q(xn−1))[Q(xn):Q(xn−1)] = (disc Q(xn−1))2.

Hence, Pn(0) = m2
n` for some ` ∈ Z. We deduce that mn = 1 because Pn(0) is assumed to be

square-free.
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Proof of Proposition 3.1.2. Let n ≥ 2 be such that Z[xn] = OQ(xn). Let α ∈ OQ(xn−1). By
hypothesis, we have

α = a0 + a1xn + a2x
2
n + · · ·+ a2n−1x

2n−1
n

for some ai ∈ Z. Separating even and odd powers of xn, since x2
n = ν + xn−1, we have

α = a+ bxn,

for some a, b ∈ Z[xn−1]. Since xn /∈ Q(xn−1) by assumption, we deduce that b is 0.

3.4 Computational evidence (under ABC)

Given an integer r ≥ 2 and a polynomial h ∈ Z[X] of degree r, we consider

Nh(x) = # {n ≤ x : h(n) is square-free} ,

and

Gh = gcd{h(n) : n ≥ 1}.

Theorem 3.4.1 ([G98], Th 1). Assume the ABC-Conjecture. Let h ∈ Z[t] be a polynomial with
integer coefficients, of degree at least 2, without repeated factors. If Gh is square-free, then

Nh(x) ∼ chx,

for some ch > 0.

Assume x0 = 0. Recall that in this case, we have Pn(t) = f◦n(t), where f(t) = t2 − ν. We
define the polynomials gn(t) ∈ Z[t] by induction on n:

• g1(t) = −t, and

• gn+1(t) = (gn(t))2 − t, for each n ≥ 2.

So in particular we have P1(0) = −ν = g1(ν), and if Pn(0) = gn(ν), then

Pn+1(0) = (f ◦ f◦n)(0) = (f◦n(0))2 − ν = Pn(0)2 − ν = gn(ν)2 − ν = gn+1(ν).

Therefore, for each n ≥ 1, we have

Pn(0) = gn(ν).

Given ` ≥ 1, we consider

h`(t) = lcm{gn(t) : 1 ≤ n ≤ `}.

Lemma 3.4.2. For every ` ≥ 1, Gh`
is square-free.

Proof. Since 22−2 = 2, for all n ≥ 1 we have gn(2) = ±2. Also, it is immediate from the definition
of g that there exists a polynomial qn(t) in Z[t] such that gn(t) = tqn(t). Hence for each n ≥ 1
we have qn(2) = ±1, and for each polynomial p(t) in Z[t] which divides qn(t), we have p(2) = ±1.
Hence for each ` ≥ 1, we have h`(2) = ±2. Since g2(t) = t(t− 1), the product t(t− 1) divides h`(t)
for each ` ≥ 2, so 2 divides h`(j) for any j ≥ 2 and for each ` ≥ 2, hence for each ` ≥ 1. We have
h`(1) = −1 for odd `, in which case Gh`

= 1, and h`(1) = 0 for even `, in which case Gh`
= ±2.

Lemma 3.4.3. For every ` ≥ 1, the polynomial h` ∈ Z[t] has degree ≥ 2 and no repeated factors.
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Proof. The fact that h` has degree ≥ 2 is immediate from its definition. It is enough to show that
each gn has no repeated factor. The derivative of gn(t) is

g′n(t) = 2(gn−1(t)) · ((gn−1)′(t))− 1.

Hence the reduction modulo 2 of g′n(t) is equal to 1. If there were a root α in common between gn(t)
and g′n(t), then g′n(t) would have the form A(t)B(t), with A(t) the minimal polynomial of α. Since
gn(t) is monic with integral coefficients, α would be an algebraic integer, hence A(t) also would be
a monic polynomial with integral coefficients. By Gauss’ Lemma, B(t) also has integer coefficients.
Reducing modulo 2, we get A(t)B(t) ≡ 1, hence in particular A(t) ≡ 1, which contradicts the fact
that it is monic and non-constant.

Corollary 3.4.4. Assume x0 = 0 and fix an integer ` ≥ 2. Under the ABC Conjecture, there exist
infinitely many values of ν such that, for all 1 ≤ n ≤ `, Pn(0) is square-free. Moreover, all these ν
are congruent to 2 or 3 modulo 4.

Proof. By Theorem 3.4.1 and Lemmas 3.4.2 and 3.4.3, we know that h`(ν) is square-free for infinitely
many ν. For each of those ν, given 1 ≤ n ≤ `, since gn divides h` in Z[t], also gn(ν) = Pn(0) is
square-free. Let ν be such that Pn(0) is square-free for each 1 ≤ n ≤ `. In particular, P1(0) = −ν
and P2(0) = ν2 − ν are square-free, so ν cannot be congruent to 0 or 1 modulo 4.



Chapter 4

Fields K with A(OK) distinct from
[4,∞)

4.1 Introduction

The objective of this chapter is to find some pairs (ν, x0) such that the JR number of the ring of
integers of the fraction field of Z(ν,x0) is strictly between 4 and +∞, or is 4 and it is not a minimum.

Let OQ(xn) be the ring of integers of Q(xn) and let

O(ν,x0) = ∪OQ(xn),

so that O(ν,x0) is the ring of integers of the fraction field of Z(ν,x0). If m is an integer, we write ζm
for a primitive m-th root of unity.

The JR number of O(ν,x0) is 4 and is a minimum if and only if, in O(ν,x0) there exist infinitely
many numbers of the form

ζjm + ζ−jm = 2 cos

(
2πj

m

)
,

with j = 1, . . . ,m− 1, if and only if in O(ν,x0) there exist infinitely many numbers of the form

ζm + ζ−1
m = 2 cos

(
2π

m

)
.

The first equivalence is a consequence of theorem of Kronecker, see [Nark04, Thm. 2.5].
Since the fraction field of O(ν,x0) is a 2-tower, for each m, ζm+ζ−1

m is constructible with ruler and
compass, and we have the following equivalence: ζm + ζ−1

m is constructible with ruler and compass,
if and only if m = 2dp1 . . . pk, where d ≥ 0 and pi are distinct Fermat Primes (by Gauss-Wantzel
Theorem). Thus, the strategy consists in finding a pair (ν, x0) such that O(ν,x0) has only finitely
many numbers ζm + ζ−1

m with m of the form 2dp1 . . . pk.
We prove the following.

Theorem 4.1.1. The JR number of O(22mµ,0), with m ≥ 1, µ ≥ 3 odd and not a quadratic residue
modulo any Fermat prime greater than 3, is either strictly between 4 and +∞, or it is 4 and it is
not a minimum.

The fact that the JR number is not {+∞} is an immediate consequence of the fact that O(ν,0)

has a subring with JR number not {+∞} — the subring in question is Z(ν,0) and its JR number is
dαe+ α, where α = (1 +

√
1 + 4ν)/2. This is proven in [VV15, Thm. 1.4]. The hypothesis of this

35
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theorem that ν + x0 must be congruent to 2 or 3 modulo 4 is not satisfied for our choice of (ν, x0),
but this hypothesis was only there to ensure that the tower increases at each step. In our case, the
tower is ensured to increase by a theorem by Stoll — see Theorem 4.4.1 below.

In Section 4.3 we prove that 3 and 7 are non-squares modulo any Fermat prime greater than
3. So for example, when x0 = 0, for any odd integer k and for any m ≥ 1, ν = 22mk2 · 3 and
ν = 22mk2 · 7 satisfy the hypothesis of Theorem 4.1.1.

The proof is done in two steps. In Section 4.2, we will prove the following proposition.

Proposition 4.1.2. Assume that Q(xn) has degree 2n over Q. Suppose that

1. for every Fermat prime p > 3, ν + x0 is not a square modulo p, and

2.
√

2 is not in O(ν,x0).

The JR number of O(ν,x0) is either strictly between 4 and +∞, or it is 4 and it is not a minimum.

In Section 4.4 we prove that if x0 = 0 and ν = 22mµ, with m ≥ 1 and µ ≥ 3 odd and square-free,
then

√
2 is not in O(ν,x0).

Putting everything together, this proves Theorem 4.1.1. Note that if there are only finitely
many Fermat primes, then item 1 of Proposition 4.1.2 is not relevant for our purposes, because
they would contribute only to finitely many elements of the form ζm + ζ−1

m .

4.2 Proof of Proposition 4.1.2

The following remark shows that it is sufficient to consider ζm + ζ−1
m where m ∈ {2d : d ≥ 2} ∪

{p : p is a Fermat prime}.

Remark 4.2.1. Let m1 and m2 be positive coprime integers, and write m = m1m2. The field
Q(ζm1m2

) is the compositum of Q(ζm1
) and Q(ζm2

).

We need the following result.

Proposition 4.2.2. 1. ([Wash82], p. 15) The field Q(ζm + ζ−1
m ) is the maximal totally real

subfield of Q(ζm). The extension Q(ζm)/Q(ζm + ζ−1
m ) is of degree 2.

2. ([Wash82], Ex. 2.1, p. 17) Let p be a prime number. The field Q(ζp) contains the field Q(
√
p)

if p ≡ 1 (mod 4) and contains Q(
√
−p) if p ≡ 3 (mod 4).

3. Let K be a number field. The number p is ramified in K if and only if p divides discK.

We prove the following proposition.

Proposition 4.2.3. Let p > 3 be a Fermat prime. If ζp + ζ−1
p ∈ O(ν,x0), then there exists n ≥ 1

such that p divides disc Q(xn).

Proof. Let p = 22m

+ 1 > 3 be a Fermat prime. Note that, since m ≥ 1, p is congruent to 1 modulo
4. Hence, by Proposition 4.2.2, we have

Q(
√
p) ⊂ Q(ζp + ζ−1

p ),

hence
√
p ∈ O(ν,x0) by hypothesis, so in particular

√
p lies in Q(xn) for some n ≥ 1. Therefore,

p = (
√
p)2 is ramified in Q(xn), so p divides disc Q(xn) by Proposition 4.2.2.

Lemma 4.2.4. Let p be an odd prime. If p divides disc (xn), then p divides the product P1(0) . . . Pn(0).
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Proof. By induction on n. For n = 1 we have disc (x1) = 4(ν + x0) = −4P1(0).
If it is true for n, then it is true for n+ 1 by Proposition 3.2.1, since we have

disc (xn+1) = (disc (xn))2 · 22n+1

Pn+1(0).

Corollary 4.2.5. Let p be an odd prime. If p divides disc (Q(xn)) for some n ≥ 1, then p divides
the product P1(0) . . . Pn(0).

Proof. This is an immediate consequence of Lemma 4.2.4, because we know by Proposition 3.3.2
that the discriminant of Q(xn) divides the discriminant of xn.

Proposition 4.2.6. Let p > 3 be a Fermat prime. If ν + x0 is not a square modulo p (so in
particular p does not divide ν + x0), then for each n ≥ 1, p does not divide disc Q(xn).

Proof. We prove by induction on n. For n = 1 we have that

disc Q(x1) =

{
ν + x0, if ν + x0 ≡ 1 mod 4

4(ν + x0), if ν + x0 ≡ 2, 3 mod 4

In both cases, since p does not divide ν + x0, we have that p does not divide disc Q(x1).
Assume by contradiction that p divides the discriminant of Q(xn), so that p divides Pj(0) for

some j ∈ {1, . . . , n} by Corollary 4.2.5. If j = 1, then p divides ν + x0, which contradicts our
hypothesis. Assume j > 1. Recall that Pn(t) = f◦n(t) − x0, where f(t) = t2 − ν. Therefore, we
have

Pj(0) = (Pj−1(0) + x0)2 − (ν + x0),

which contradicts the hypothesis that ν + x0 is not a square modulo p.

Proof of Proposition 4.1.2. We follow the strategy described in the introduction. Let p be a Fermat
Prime greater than 3. By Proposition 4.2.6, if ν + x0 is not a square modulo p, then p does not
divide disc Q(xn), so ζp + ζ−1

p does not lie in O(ν,x0) by Proposition 4.2.3.

Let s1 =
√

2 and sn =
√

2 + sn−1. Since

ζ2d + ζ−1
2d =

{
−2 if d = 1

sd−1 if d ≥ 2,

and
√

2 is not in O(ν,x0) by hypothesis, ζ2d + ζ−1
2d does not lie in O(ν,x0) for any d ≥ 2. Remark

4.2.1 allows us to conclude.

4.3 Some non-squares modulo all Fermat primes greater than
3

Lemma 4.3.1. For all n ≥ 1, we have

22n

+ 1 ≡

{
3 (mod 7) if n is even

5 (mod 7), if n is odd,

and
22n

+ 1 ≡ 2 (mod 3).
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Proof. Since 2n is congruent to (−1)n modulo 3, we have 2n = 1 + 3k for some odd k when n is
even, and 2n = 2 + 3k for some even k when n is odd. Therefore, we have

22n

=

{
21+3k = 2 · 8k ≡ 2 (mod 7) if n is even

22+3k = 4 · 8k ≡ 4 (mod 7) if n is odd.

and

22n

=

{
21+3k ≡ 2 · (−1)k ≡ 1 (mod 3) if n is even

22+3k ≡ 4 · (−1)k ≡ 1 (mod 3) if n is odd.

Proposition 4.3.2. The numbers 3 and 7 are not squares modulo all Fermat primes greater than
3.

Proof. Let p = 22n

+ 1 be a Fermat prime greater than 3. By the quadratic reciprocity law, since
p 6= 7, we have (

7

p

)(
p

7

)
= (−1)

22
n

·6
4

= (−1)22n−1·3

= 1,

hence, 7 is a square modulo p if and only if p is a square modulo 7. Since the set of squares modulo
7 is {0, 1, 2, 4}, we deduce by Lemma 4.3.1 that p is not a square modulo 7.

Similarly, we have
(

3
p

)(
p
3

)
= 1, so we can proceed as before.

4.4 Galois Group of Q(xn).

In this section, we assume that x0 = 0 and that ν is not a square. By [Stoll92, Cor. 1.3], each
polynomial Pn is the minimal polynomial of xn.

Let C2 be the cyclic group of order 2, and denote by [C2]n the n-fold wreath product of C2 —
for basic facts about the wreath product, we refer the reader to [Rot95].

Let Ln be the Galois closure of Q(xn), and Gal(Ln) be its Galois group. The following is a
particular case of a theorem by M. Stoll [Stoll92, Section 3, p. 243].

Theorem 4.4.1. If ν is a multiple of 4, then Gal(Ln) ∼= [C2]n.

In order to show that
√

2 is not in Q(xn), we will show that it is not in Ln. For this we will use
a counting argument. First we will show that there are exactly 2n − 1 quadratic subfields of Ln.
Then we will construct 2n − 1 quadratic subfields, none of which is Q(

√
2).

Lemma 4.4.2. There are 2n − 1 quadratic subfields of Ln.

Proof. We will give two different proofs. By the Galois correspondence, we need to count how many
subgroups H of [C2]n are such that the quotient [C2]n/H is isomorphic to C2.

Proof 1. We prove that [C2]n has 2n − 1 subgroups of index 2 (they are maximal subgroups).
Let M be the set of maximal subgroups of [C2]n. Since [C2]n has order 22n−1, it is a 2-group. The
groups in M have index 2, so they are normal. The intersection of all the maximal subgroups of
[C2]n is called the Frattini subgroup of [C2]n and is denoted by φ([C2]n). By [Rot95, Thm 5.48],
the group φ = φ([C2]n) is normal, and the quotient [C2]n/φ is an F2-vector space. Let d be the
dimension of this vector space.

For every H ∈ M , since φ ≤ H ≤ [C2]n, the quotient H/φ is a subspace of [C2]n/φ, and every
subspace of [C2]n/φ corresponds to a maximal subgroup H. It is easy to see that the number of
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non-trivial subspaces of a vector space of dimension d over F2 is 2d− 1. So we have 2d− 1 maximal
subgroups.

On the other hand, by Burnside’s basis Theorem [Rot95, Thm. 5.50], all minimal systems of
generators of [C2]n have the same cardinal, and this cardinal is d. However, the cardinal of a
minimal set of generators for wreath products of cyclic groups has been computed by Woryna —
see the comments after Theorem 1.1 in [Woryna11]. In our case, we get d = n.

Proof 2. We use the following well-known results from Group theory. Let G be a group and
D(G) the commutator subgroup of G. Let H be any subgroup of G. The following are true:

1. D(G) is contained in H if and only if H is a normal subgroup of G and G/H is abelian.

2. If D(G) is contained in H, then (G/D(G))/(H/D(G)) is isomorphic to G/H.

Moreover, we need the fact that the quotient [C2]n/D([C2]n) is isomorphic to Cn2 — see [Stoll92,
Proof of Lemma 1.5].

Suppose that H is a subgroup of [C2]n with [C2]n/H isomorphic to C2. By item 1 above, we
deduce that D([C2]n) is contained in H. By item 2 and by Lagrange theorem, we have

|H/D([C2]n)| = 2n

2
= 2n−1.

Furthermore, the subgroups containingD([C2]n) correspond bijectively to subgroups of [C2]n/D([C2]n).
As in the first proof, the group Cn2 is a vector space of dimension n over F2, and every subgroup of
order 2n−1 corresponds bijectively to a subspace of dimension n − 1. This number is well known
to be 2n − 1.

For n ≥ q, let cn = Pn(0) be the constant term of the minimal polynomial of xn, and let
c1 = ν = −P1(0).

Lemma 4.4.3. Let p be a prime that divides some cn. Let m = min{n ≥ 1: p divides cn} and e be
the order of cm at p. For every n, p divides cn if and only if pe divides cn if and only if m divides
n.

Proof. This is an easy consequence of a theorem by Rice [Rice07, Prop. 3.1 and 3.2]. There is
also a simple proof in [Stoll92, proof of Lemma 1.1], inspired by Odoni [Odo85]. We give a very
elemental proof for the sake of completeness.

Recall that Pn(t) = f◦n(t), where f(t) = t2 − ν. If n = ` + m for some integer ` > 0, then we
have

cn = f◦`(f◦m(0)) = f◦`(cm) ≡ c` (mod c2m),

hence, if n is a multiple of m, then cn has the same order at p as cm. Conversely, write n = qm+ r,
with 0 ≤ r < m. We have

cn = f◦r(f◦qm(0)) ≡ cr (mod c2qm),

hence cn is congruent to cr modulo p. So, if p divides cn, then it divides cr with r < m, which is a
contradiction unless r = 0.

We recall that non-zero rational numbers a1, . . . , an are 2-independent if their residue classes in
the F2-vector space Q∗/(Q∗)2 are linearly independent. In [Stoll92, Section 1, p. 16], Stoll proves
the following theorem.

Theorem 4.4.4. The group Gal(Ln) is isomorphic to [C2]n if and only if c1, . . . , cn are 2-
independent.

We also need the following simple observation:
√
c1, . . . ,

√
cn all lie in Ln.

We can now prove our theorem.
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Theorem 4.4.5. Suppose the ν = 22mµ, with µ ≥ 3 odd and square-free and m ≥ 1. The field
L =

⋃
n Ln does not contain

√
2 — so in particular O(ν,0) does not contain

√
2.

Proof. From Theorem 4.4.1 and Theorem 4.4.4 the number c1, . . . , cn are 2-independent. There
are (

n

1

)
+ · · ·+

(
n

n

)
= 2n − 1

distinct possible products
√
ci1 . . .

√
cik . By the observation above, each product corresponds to a

distinct quadratic extensions in Ln. We conclude with Lemma 4.4.2 that there are no more.
Since c1 = ν, by Lemma 4.4.3, 22m is the highest power of 2 which divides cn for each n ≥ 1.

Hence, in every product of the
√
ci, an even power of 2 comes out of the square root, and we deduce

that
√

2 does not appear in any of the quadratic extensions that we found.

Here is an example. For ν = 12, we have L1 = Q(
√

12) = Q(
√

3), and

L2 = L1

(√
12 +

√
12,

√
12−

√
12

)
= Q

(√
3,

√
12 +

√
12,

√
12−

√
12

)
.

We have √
12 +

√
12

√
12−

√
12 =

√
122 − 12 =

√
12 · 11 = 2

√
33 =

√
c2.

Hence, in L2, we have the three following square roots:
√

3,
√

33 and
√

11.
It is still an open problem to characterize the ν for which Gal(Ln) is [C2]n for every n. Note

that for ν = 3, the above does not work since
√

2 appears immediately in the tower. Nevertheless,
for ν = 7,

√
2 does not appear in the first levels of the tower. This leads to the following question.

Question 4.4.6. Is Gal(Ln) equal to [C2]n when ν = 7?



Chapter 5

Conclusion

As a conclusion, we list some of the obvious problems that come naturally from our work. For what
has been achieved, we send the reader to the introduction.

1. About Chapter 2: Complete the general picture of the situation by finding the interval and
the JR number in the limit case ν = 3.

2. About Chapter 3: Find at least one non-trivial example for which our criterium applies, or
show that it never applies.

3. About Chapter 4: Decide, at least for some of the rings, in which case we actually are: the
JR number is 4 and is not a minimum, or it is strictly greater than 4.
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