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FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
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Resumen

El objetivo principal de esta tesis doctoral es analizar y caracterizar la propiedad de dualidad fuerte
Lagrangiana para un problema escalar no convexo sujeto a una restricción, más allá de aquellos
resultados existentes en la literatura. Nuestros resultados son aplicados al caso cuadrático no convexo.
En particular, obtenemos una versión relajada del teorema de Dines, asociado al problema de minimización
cuadrática con una desigualdad, también del tipo cuadrática junto con varias igualdades del tipo af́ın.
En ese sentido, discutimos el caso cuando el valor óptimal no es finito. A continuación, establecemos
una caracterización del tipo geométrica de la propiedad de dualidad fuerte para el problema cuadrático
no convexo, sin necesidad de asumir hipótesis de Slater, de ah́ı obtener condiciones necesarias y
suficientes de optimalidad. Finalmente, a la luz de los resultados sobre no vacuidad del conjunto de
solución, obtenidos por Frank y Wolfe, nuestra versión considera conjuntos asintóticamente lineales.
En la segunda parte de esta tesis, establecemos una caracterización topológica y geométrica de la
propiedad de dualidad fuerte, para un problema general no convexo sujeto a una restricción del
tipo igualdad, junto con restricciones del tipo geométricas, de donde es revelada la convexidad de la
envoltura cónica asociada a la imagen conjunta determinada por las funciones del problema original.
Como aplicación, revisamos la validez de las condiciones de KKT sin asumir condición de regularidad
estándar. En la parte final de esta tesis, estudiamos en detalle el problema cuadrático estándar,
al sustituir al simplejo usual por un cono convexo, puntiagudo, no necesariamente poliédrico, que
admita una base compacta, por lo cual asociamos a este problema tres duales distintos, en cada caso,
caracterizamos la propiedad de dualidad fuerte en términos de la copositividad del Hessiano de la
función objetivo, junto con algunas condiciones de optimalidad. En ese sentido, para el caso de dos
diminsiones, caracterizamos cuando toda solución local es global.
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Abstract

The main objective of this doctoral thesis is to analyze and characterize the Lagrangian strong duality
property for a non-convex optimization scalar problem subject to a single constraint, beyond those
existing in the state of art. Our results are applied to the non-convex quadratic case. In particular, we
obtained a relaxed version of Dine’s theorem, associated to the quadratic minimization problem with
an inequality, also the quadratic type together with several similarities of an affine type. In that sense,
we discussed the case when the optimal value is not finite. Next, we established a characterization
of the geometric type of strong duality property for the non convex quadratic problem, without the
need to assume Slater’s hypothesis, hence obtaining necessary and sufficient conditions of optimality.
Finally, in light of the results on non-emptiness of the solution set, obtained by Frank Wolfe, our
version sets asymptotically linear sets. In part two of the study, we established a topological and
geometric characterization of the property of strong duality, for a general non-convex problem subject
to a constraint of the equality type, together with constraints of the geometric type, from which the
convexity of the conical envelope associated with the joint image determined by the functions of the
original problem. As an application, we checked the validity of KKT conditions without assuming
standard regularity condition. In the final part of this thesis, we study in detail the standard quadratic
problem, by replacing the usual simplex with a convex cone, pointed, not necessarily polyhedral, that
admits a compact base, for which we associate three different duals to this problem, in each case,
we characterize the property of strong duality in terms of the Hessian’s copositivity of the objective
function, along with some conditions of optimality. In this sense, for the case of two dimensions, we
characterized when every local solution is global.
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Chapter 1

Introduction

1.1 Spanish version

En optimización, el concepto de dualidad en general, consiste en asignar a un problema de minimización1,
el primal, un problema de maximización, conocido como el dual, de modo tal que haya una manifiesta
correspondencia entre los valores extremales, de manera directa o indirecta. Por ejemplo, el Teorema
de dualidad débil, que asegura que el valor ı́nfimo del problema original, no puede ser menor al
valor supremo del problema dual, tiene como consecuencia que el primal es infactible cuando el valor
optimal del dual es +∞, mientras que el dual es infactible cuando el valor optimal del primal es −∞.
El Teorema de Dualidad de Fenchel (ver por ejemplo Teorema 31.1 en [78]), ilustra también cómo se
manifiesta el concepto de dualidad en optimización.

Debido al fuerte rol que cumple tanto en la formulación de condiciones de optimalidad, como
también en optimización numérica, tiene que ver con la existencia de brechas entre los valores extremos
del primal y el dual. A la diferencia entre los valores extremales del primal y el dual se le conoce
como gap de dualidad. Dado que en general, dicha diferencia es no negativa, interesa determinar bajo
qué condiciones se cumple la igualdad, o bien, bajo qué condiciones el primal satisface la propiedad
de la brecha de dualidad cero (zero duality gap). Aśı, el gap de dualidad puede ser visto como la
medida que cuantifica con qué precisión es posible aproximar el valor optimal del primal, por medio
de estimadores inferiores obtenidos al resolver el problema dual. Asimismo, se dice que el problema
satisface la propiedad de dualidad fuerte (strong duality), cuando su dual alcanza su valor óptimo,
junto con satisfacer la propiedad de la brecha de dualidad cero.

De ah́ı que, al resolver un problema de optimización, se esta pensando en uno asociado que permita
entre otras cosas, resolver el primal de una manera más sencilla, aprovechando las propiedades que
el dual tiene, como por ejemplo, pasar de un problema con restricciones a uno sin restricciones. En
general, la adecuada construcción del problema dual, tiene efectos en:

• dar condiciones que garanticen la existencia de soluciones optimales en el problema original;

1Cualquier problema en optimización, puede ser formulado como el de minimizar una función escalar (o bien, a valores
en la recta real extendida) respecto a algún criterio determinado por el conjunto factible, cuyos elementos, las soluciones
factibles adquieren la categoria de solución optimal, cuando la función objetivo alcanza su valor mı́nimo o valor optimal
relativo al conjunto factible.
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CHAPTER 1. INTRODUCTION 2

• la construcción a través del dual, del valor optimal del problema original;

• caracterizar el mejor estimador inferior del valor optimal.

Tales objetivos, t́ıpicamente son formulados bajo supuestos de convexidad, ingrediente clave tanto
en el análisis como en la articulación de propiedades af́ınes en optimización, sólo por mencionar
algunas: Condiciones de Optimalidad, Existencia y Unicidad de Soluciones Optimales, Convergencia
de Algoŕıtmos y Optimización Paramétrica.

En el caso convexo2, la teoŕıa de dualidad naturalmente tiene una interpretación desde la teoŕıa de
funciones conjugadas3. En un espacio vectorial topológico localmente convexo, los conjuntos cerrados
y convexos son descritos como la intersección de todos los semiplanos cerrados que lo contienen. Aśı,
cada conjunto cerrado y convexo tiene una reprensentación dual en su cono polar (no negativo),
mientras que toda función semicontinua inferior y convexa, que cuenta con la propiedad de ser el
supremo puntual entre todas las funciones afines que están por debajo de ésta, encuentra en la función
polar o conjugada, su representante en el dual. De ah́ı que, lo fundamental en este caso subyace en
los resultados de Fenchel-Moreau y el Teorema bipolar (ver por ejemplo Teoremas 2.3.3 y 1.1.9 en
[94]), espećıficamente, en las hipótesis bajo las cuales una función coincide con su biconjugada, como
también un conjunto coincide con su cono bipolar.

Como consecuencia, esta teoŕıa puede ser adaptada a una amplia variedad de situaciones, generandose
un v́ınculo fruct́ıfero con otras ramas de la optimización. Por ejemplo, la teoŕıa de perturbación [28],
subyacente a la teoŕıa de dualidad, ha sido establecida en función de conectar propiedades entre
dualidad y estabilidad en optimización [6], de modo que para el caso convexo, la validez de la brecha
de dualidad cero, como también la propiedad de dualidad fuerte, dependen de la semicontinuidad
inferior y la subdiferenciabilidad de la función valor en cero respectivamente. De esta manera, la
relación entre dualidad y la cerradura del eṕıgrafo de la función valor, permite visualizar la brecha de
dualidad en términos de hiperplanos soportes del eṕıgrafo de la función valor. El desarrollo de esta
fruct́ıfera teoŕıa de dualidad, se debe a las contribuciones de autores entre los que destacan W. Fenchel
[29], J. J. Moreau y en especial a R. T. Rockafellar [78, 79].

En esta tesis doctoral, aplicamos el concepto de dualidad Lagrangiana. Mediante un proceso de
escalarización, el Lagrangiano se construye por medio de una combinación lineal entre la función
objetivo y las restricciones. Teniendo en cuenta esta estructura, la teoŕıa de dualidad Lagrangiana,
se basa en Teoremas del tipo alternativo, que junto a un adecuada condición de regularidad, son
validados por medio de Teoremas de separación entre conjuntos convexos, que involucran variables
auxiliares conocidas en la literatura como Multiplicadores de Lagrange.

En la práctica, interesa identificar aquellos casos que satisfacen la propiedad de dualidad fuerte,
ya que permite dotar al problema de una estructura cuya complejidad computacional, se hace más
tratable en el caso convexo. Por ejemplo, en modelos de programación matemática estándar4, bajo
la condición de factibilidad estricta o de Slater, la propiedad de dualidad fuerte se satisface cuando

2Se asume convexidad tanto para la función objetivo como también para el conjunto factible.
3La teoŕıa funciones conjugada, fue desarrollada en sus inicios por Fenchel para luego ser generalizada por Rockafellar

y Mourier.
4El conjunto factible es descrito a través de restricciones de desigualdad e igualdad. Se conoce como éstandar

convexo, cuando las funciones que definen las desiguladades son del tipo convexo, mientras que las funciones respecto a
las igualdades, son af́ınes.



CHAPTER 1. INTRODUCTION 3

el problema es del tipo convexo. De esta forma, hallar la solución del primal se reduce a resolver
localmente un sistema de ecuaciones, cuyas incógnitas, corresponden a las variables del primal y
el dual. Básicamente la idea detrás de métodos del tipo primal-dual [21]. Sin embargo, para puntos
regulares, la condición de optimalidad de primer orden es en general solo una condición necesaria, salvo
que se asuman ciertas hipótesis de convexidad, siendo inadecuado su uso como criterio de certificación
de mı́nimo. Por el contrario, chequear de manera directa la condición de punto de silla, dificulta su
uso como condición suficiente de optimalidad. Aśı, se presenta la dificultad de tratar con funciones
no lineales, debido a que en general, bajo supuestos de convexidad es posible garantizar condiciones
necesarias y suficientes, de optimalidad global, basadas en teoŕıa de dualidad Lagrangiana.

Si la función objetivo o el conjunto factible vistos como objetos matemáticos no son convexos,
el problema asociado es comúnmente identificado como del tipo no convexo, que a diferencia de su
homólogo convexo, presenta serios inconvenientes en la construcción de la solución óptimal. Por un
lado, resulta común detectar brechas de dualidad entre el problema (no convexo) y su dual. Mientras
que, muchos problemas reales que son formulados como un modelo de optimización y que en la
práctica resultan dif́ıciles de resolver, tienen en común la falta de convexidad. Aśı, por ejemplo,
ante una gran multiplicidad de mı́nimos locales, métodos de busqueda convencionales pierden eficacia
localizando mı́nimos globales, limitando la busqueda a soluciones locales, o bien, aquellas realizables
en la práctica para tamaños relativamente pequeños en las variables de entrada. Por tanto, de
aquellos problemas dif́ıciles de resolver, el énfasis esta en identificar condiciones de regularidad lo
suficientemente mejoradas que permitan garantizar la existencia de estimadores inferiores para el
valor óptimal. En ese sentido, nuestros resultados fueron aplicados al caso cuadrático5 no convexo.

Pertenciente a la familia de programación matemática no lineal, cuenta con varias aplicaciones
establecidas en términos de un problema cuadrático, que incluye al subproblema con una restricción
del tipo cuadrática: métodos de región de confianza [42, 82], con aplicación en optimización robusta
[64, 81] y problemas de mı́nimos cuadrados con restricción cuadrática [41], como también, los métodos
de región de confianza generalizada [66, 74, 83]. La falta de convexidad en la forma cuadrática,
se caracteriza por la presencia de valores propios negativos en la matriz Hessiana, convirtiendo al
problema cuadrático asociado, en uno NP-completo6, incluso, si las restricciones son del tipo af́ın
[71, 68].

La relevancia que tiene estudiar la propiedad de dualidad fuerte en este tipo de problemas, apunta al
desarrollo de métodos computacionales basados en condiciones de optimalidad, que permitan resolver
un amplio espectro de problemas de optimización adaptados a un modelo cuadrático.

Por una parte, los algoritmos en optimización son iterativos, esto quiere decir que comenzando en
un punto inicial, generan una sucesión de instancias, hasta que el algoritmo no pueda mejorar el valor
de la función objetivo. La información de la función objetivo se utiliza para formar un modelo, de modo
que cerca del punto actual, tenga en lo posible un comportamiento similar al de la función objetivo.
Como el modelo puede no ser una buena aproximación de dicho objetivo, cuando se consideran puntos
alejados del actual, se debe restringir la búsqueda de la solución a puntos pertencientes a una región

5En la versión general, las restricciones vienen representadas por medio de desigualdades del tipo cuadrático al igual
que la función objetivo.

6NP denota la colección de todos los problemas de decisión los cuales tienen algoritmos de solución no-determińıstico
en tiempo real. Si además de ser NP, un problema tiene la caracteŕıstica de reducir en tiempo polinomial todo problema
NP, se dice que es NP-completo.
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de confianza, esto es, un entorno de este, t́ıpicamente representadas por esferas centradas en el punto
actual, respecto de la norma usual. El modelo corresponde a uno del tipo cuadrático, cuando la
función objetivo es la aproximación de Taylor de segundo orden.

En cuanto a la complejidad del problema, a veces es posible construir la solución del problema a
través de un problema auxiliar o una relajación de este. Mediante técnicas de relajación semidefinida
[20, 86], el problema cuadrático asociado, es relajado a un problema de programación semidefinida
(SDP), cuyo objetivo es el de minimizar un funcional lineal, sobre el cono, convexo y cerrado, de todas
las matrices simétricas y semidefinida positivas, que satisfacen un número finito de restricciones del
tipo lineal, respecto al producto interno usual en el espacio de las matrices cuadradas, debido a esto,
el problema (SDP) es del tipo convexo y puede ser resuelto en tiempo polinomial, mediante técnicas
de punto interior [56, 93, 69]. En caso de que el problema (SDP) admita solución, por medio de un
proceso de descomposición en matrices de rango uno [84], es posible reconstruir la solución óptimal
del problema cuadrático propuesto, previo a esto, se debe garantizar que la relajación sea exacta,
esto quiere decir, asegurar el emjor estimador inferior del valor óptimal del problema cuadrático, lo
cual requieren de hipótesis adicionales, principalmente, condiciones que garanticen la validez de un
sistema de inecuaciones cuadráticas, si y solamente si, es imposible resolver el sistema asociado de
inecuaciones matriciales, obtenido en la etapa de relajación. Como el problema (SDP) se reformula
de manera equivalente al dual del problema cuadrático original, entonces la validez de la propiedad
de dualidad fuerte, garantiza que la relajación es exacta. Sin embargo, la falta de convexidad en
general, restringe el uso de Teoremas alternativos. Sin embargo, para el caso de una restricción del
tipo desigualdad, la validez del Teorema alternativo o más conocido como el S-Lemma7, depende de
la validez en la condición de Slater [88, 89], mientra que, en [87] dieron condiciones para garantizar la
validez del S-Lemma, versión restricción de igualdad.

En este trabajo, apuntamos a debilitar las hipótesis que permiten garantizar la validez de la
propiedad de dualidad fuerte, organizada como sigue. En el caṕıtulo 2, introducimos las definiciones
y notaciones que utilizaremos en los posteriores caṕıtulos.

El caṕıtulo 3 está estructurado de la siguiente manera. La sección 3.2.1 proporciona la formulación
del problema que vamos a discutir, junto con la caracterización del Teorema de separación, entre un
conjunto convexo y un cono abierto en términos de la convexidad de la envoltura cónica de conjuntos.
También, incluye una versión relajada del Teorema de Dines, cuando el valor óptimo es −∞. La
sección principal 3.3, presenta una versión relajada del Teorema de Dines, cuando el valor óptimo es
finito, junto con la caracterización geométrica de la propiedad de dualidad fuerte, para el problema de
minimización sujeto a restricciones del tipo af́ın y una restricción de desigualdad del tipo cuadrático,
sin asumir hipótesis de convexidad o supuestos de Slater. Esto permite obtener condiciones necesarias
y suficientes de optimalidad, sin necesidad de asumir la condición de Slater. Relaciones con las
condiciones empleadas en el Teorema de Finsler también son establecidas. La sección 3.4 presenta un
refinamiento al Teorema de Frank y Wolfe, para conjuntos asintóticamente lineales. Los resultados
contenidos en este caṕıtulo fueron publicados en el art́ıculo:

• Flores-Bazan, F.; Cárcamo, G., A geometric characterization of strong duality in nonconvex
quadratic programming with linear and noncovex quadratic contraints, Math. Programming,
Ser. A 145 (2014), 263–290.

7En [90], se discuten distintas versiones del S-Lemma, inicialmente propuesto en [30].
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El caṕıtulo 4 se divide en varias secciones. En la Sección 3, sin imponer ningún supuesto de
diferenciabilidad establecemos primero, una completa descripción de la convexidad del cono de la
imagen conjunta determinada por las funciones asociadas al problema (4.1). Posteriormente, establecemos
algunas caracterizaciones topológicas, o de naturaleza geométrica de la propiedad de dualidad fuerte
para el problema (4.1). En particular, bajo una condición del tipo Slater, probamos que una condición
necesaria y suficiente, para obtener dualidad fuerte, es la convexidad del cono de la imagen. En la
sección 4.4, bajo supuestos de diferenciabilidad, establecemos varias caracterizaciones de la validez de
las condiciones de optimalidad KKT, aplicando el resultado principal de la Sección 4.3. Finalmente,
en la sección 4.5 describe una aplicación concreta de nuestros resultados previos, a una generalización
del problema de programación cuadrática estándar, donde el octante positivo es sustituido por un
cono puntiagudo, cerrado y convexo. Los resultados contenidos en este caṕıtulo fueron publicados en
el art́ıculo:

• Cárcamo, G.; Flores-Bazan, F., Strong duality and KKT conditions in nonconvex optimization
with a single equality constraint and geometric constraint, Math. Programming, Ser. B 168
(2018), 369–400.

El caṕıtulo 5 esta organizado como sigue. A la luz de [34], revisamos en la Sección 5.2, el esquema
de dualidad Lagrangiana para el problema general con una restricción del tipo igualdad, en donde
establecemos nuevas condiciones secuenciales, de la propiedad de la brecha de dualidad cero. Nuestros
principales resultados, conectados con el problema (5.5), se presentan en la Sección 5.3. El interés
esta en la caracterización de la propiedad de dualidad fuerte, respecto a distintos problemas duales,
en términos de la copositividad del Hessiano de la función objetivo, revelando una convexidad oculta.
En la sección 5.4, se analiza en detalle algunas condiciones de optimalidad, para el problema (5.5),
mientras que, en la Sección 5.5 analizamos el caso n = 2. En particular, caracterizamos la copositividad
del Hessiano de la función objetivo, y cuando toda solución local es global. Los resultados contenidos
en este caṕıtulo fueron publicados en el art́ıculo:

• Flores-Bazan, F.; Cárcamo, G.; Caro, S., Extensions of the Standard Quadratic Optimization
Problem: Strong Duality, Optimality, Hidden Convexity and S-Lemma, Appl. Math. Optim.
(2018) https://doi.org/10.1007/s00245-018-9502-0.
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1.2 English version

In optimization, the concept of duality consists of assigning to a minimization problem8, the primal, a
maximization problem, known as the dual, in such a way that there is a clear correspondence between
their optimal values. For example, the weak duality theorem, which ensures that the minimum value of
the original problem cannot be less than the maximum value of the dual problem, has as a consequence
that the primal is infeasible when the optimal value of the dual is +∞, while dual is infeasible when
optimal value of the primal is −∞. The Fenchel Duality Theorem (see example Theorem 31.1 in [78])
also illustrates how this symmetry is shown in optimization.

Due to the strong role fulfilled by both in the formulation of optimality conditions, as well as
in numerical optimization, one has to do with the existence of gaps between the extreme values of
primal and dual. The difference between the extreme values of primal and dual problems is known
as the duality gap. Since, in general, this difference is non-negative, it is important to determine the
conditions under which the equality is met, or under what conditions the primal satisfies the property
of the zero-duality gap. Thus, the duality gap can be seen as the measure that quantifies with what
precision it is possible to approximate the optimal value of the primal, by means of inferior estimators
obtained by solving the dual problem. Likewise, it is said that the problem satisfies the property of
strong duality, when its dual reaches its optimal value, along with satisfying the property of the zero
duality gap.

Once the problem structure is known, studying its relationship with its dual facilitates a greater
understanding of the nature of the objects involved, which has advantages from the theoretical point
of view, as well as in the determination of numerical solutions.

Hence, when solving an optimization problem, is one that allows, among other things, to solve the
primal in a simpler way, taking advantage of the properties that a dual has, such as, to pass from a
restrictive problem to one without restrictions. Furthermore, the adequate construction of the dual
problem has effects on:

• provide conditions that guarantee the existence of optimal solutions to the original problem;

• the construction through the dual, the optimal value of the original problem;

• characterize the best inferior estimator of the optimal value.

These objectives are typically formulated under certain convexity assumptions, a key ingredient in
both analysis and the articulation of related properties in Optimization such as: optimality conditions,
existence and uniqueness of solutions, convergence of algorithms and parametric optimization.

In the convex9 case, the idea is to think of the convex sets in terms of hyperplanes supported,
naturally, by the theory of conjugated functions10. In a locally convex topological vector space, the

8Any problem in optimization, can be formulated as to minimize a scalar function (or, an extended real valued
function) with respect to some criterion determined by the feasible set, whose elements, the feasible solutions acquire
the category of optimal solution, when the objective function reaches its minimum value or optimal value relative to the
feasible set.

9Convexity is assumed for both the objective function and the feasible set.
10The conjugated functions theory, was developed in its beginnings by Fenchel to later be generalized by Rockafellar

and Moreau.
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closed and convex sets are described as the intersection of all closed half space that contain it. Thus,
each closed and convex set has a dual representation in its positive polar cone, while every convex lower
semicontinuous proper convex function, which has the property of being the supreme point among all
affine functions bellow it, it finds in the polar or conjugated function, its representative in the dual.
Hence, fundamentals lie in the results of Fenchel-Moreau and the bipolar Theorem (see for example
Theorems 2.3.3 and 1.1.9 in [94]), Specifically, in the hypotheses under which a function coincides with
its biconjugate as also in a set coincides with its bipolar cone.

As a consequence, this theory can be adapted to a wide variety of situations, generating a fruitful
link with other branches of optimization. For example, the perturbational theory [28], Underlying the
theory of duality, it has been established as a function of connecting properties between duality and
stability in optimization [6], So that for the convex case, the validity of the zero duality gap, as well as
the property of strong duality, depend on the lower-semicontinuity and the sub-differentiability of the
value function at zero, respectively. In this way, the relationship between duality and the closedness
of epigraph of value function allows to visualize the duality gap in terms of hyperplanes that support
the epigraph of the value function. In addition, it is worth mentioning that the development of this
fruitful theory of duality in convex optimization is due to the contributions of authors, among which
W. Fenchel [29], J.J Moreau and especially R.T. Rockafellar [78, 79].

In this doctoral thesis, we apply the concept of Lagrangian duality. Through a process of scalarization,
the Lagrangian is constructed by means of a linear combination between the objective function and the
constraints. Taking this structure into account, the Lagrangian duality theory is based on theorems
of the alternative type, which together with an adequate regularity condition, are validated by means
of separation theorems between convex sets, which involve auxiliary variables known in Literature as
Lagrange Multipliers.

In practice, it is interesting to identify those cases that satisfy the property of strong duality, since
it allows the problem to be provided with a structure whose computational complexity becomes more
treatable in the convex case. For example, in standard mathematical programming models11, under
the condition of strict feasibility or Slater, the strong duality property is satisfied when the problem
is of the convex type. In this way, finding the solution of the primal is reduced to solving locally
a system of equations, whose unknowns correspond to the variables of primal and dual. Basically
the idea behind methods of the primal-dual type [21]. However, for regular points, the first order
optimality condition is in general only a necessary condition, unless certain convexity hypothesis are
assumed, doing inadequate its use as a certification of the optimal solution.

On the contrary, directly checking the condition of saddle point, makes difficult its use as a sufficient
condition of optimality. Thus, the difficulty of dealing with non-linear functions is presented, because
in general, under convexity assumptions it is possible to guarantee necessary and sufficient conditions
of global optimality, based on Lagrangian duality theory.

If the objective function or the feasible set seen as mathematical objects are not convex, the
associated problem is commonly identified as non-convex type, which, unlike its convex counterpart,
presents serious drawbacks in the construction of the optimal solution. On the one hand, it is common
to detect duality gaps between the problem (non-convex) and its dual. While, many real problems
that are formulated as an optimization model and that in practice are difficult to solve, they have in

11The feasible set it is discribed by linear and non-linear constraint.
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common the lack of convexity. Thus, for example, in the face of a large multiplicity of local minimums,
conventional search methods lose efficiency by locating global minimums, limiting the search to local
solutions, or those that are feasible in practice for relatively small input sizes. Therefore, of those
problems that are difficult to solve, the emphasis is on identifying conditions of regularity that are
sufficiently improved to guarantee the existence of inferior estimators for the optimal value. In that
sense, our results were applied to the non-convex quadratic case12. Pertinent to the family of nonlinear
mathematical programming, it has several applications established in terms of a quadratic problem,
which includes the subproblem with a restriction of the quadratic type: methods of trusting region
[42, 82], with application in robust optimization [64, 81] and least squares problems with quadratic
restriction [41], as well as, generalized confidence region methods [66, 74, 83]. The lack of convexity
in the quadratic form is characterized by the presence of negative eigenvalues in the Hessian matrix,
converting the associated quadratic problem into an NP-complete13, even if the constraints are affine
[71, 68].

The relevance of studying the property of strong duality in this type of problems, points to the
development of computational methods based on optimality conditions, which allow solving a wide
spectrum of optimization problems adapted to a quadratic model. On the one hand, the algorithms
in optimization are iterative, this means that starting at an initial point, they generate a succession
of instances, until the algorithm can not improve the value of the objective function. The information
of the objective function is used to form a model, so that close to the current point, it has, as far
as possible, a behavior similar to that of the objective function. Since the model may not be a good
approximation of this objective, when considering points away from the current one, the search of
the solution must be restricted to points pertaining to a region of trust, that is, an environment of
this, typically represented by spheres centered on the current point, with respect to the usual norm.
The model corresponds to one of the quadratic type, when the objective function is the second order
Taylor approximation.

Regarding the complexity of the problem, it is sometimes possible to construct a solution through
an auxiliary problem or a relaxation of it. By means of semi-definite relaxation techniques [20, 86], the
associated quadratic problem is relaxed to a semidefinite programming problem (SDP), whose objective
is to minimize a linear function, on the closed convex cone, of all the symmetric and semi-definite
positive matrices, which satisfy a finite number of constraints of the linear type, with respect to the
usual internal product in the space of the square matrices, due to this, the problem (SDP) is of the
convex type and can be solved in polynomial time, by means of internal point techniques [56, 93, 69].
In case the problem (SDP) admits solution, by means of a decomposition process in rank one matrices
[84], it is possible to reconstruct the optimal solution of the proposed quadratic problem, prior to this,
it must be guaranteed that the relaxation is exact, that is to say, assure the best inferior estimator of
the optimal value of the quadratic problem, which requires additional hypothesis, mainly, conditions
that guarantee the validity of a system of quadratic inequations, if and only if, it is impossible to
solve the associated system of matrix inequalities, obtained in the relaxation stage. Since the problem

12In the general version, constraints are represented by inequalities of the quadratic type as well as the objective
function.

13NP denotes the collection of all decision problems which have algorithms of non-deterministic solution in real time.
If in addition to being NP, a problem has the characteristic of reducing polynomial time to all NP problems, it is said
to be NP-complete.
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(SDP) is reformulated in an equivalent way to the dual of the original quadratic problem, then the
validity of the property of strong duality, guarantees that the relaxation is exact. However, the lack of
convexity in general, restricts the use of alternative theorems, and there are only few general results.
In the case of a single inequality constraint, the validity of the alternative Theorem or more known as
the S-Lemma14, depends on the validity of the Slater condition [88, 89], while in [87] gave conditions
to guarantee the validity of S-Lemma for the equality constraint version.

In this work, we aim to weaken the hypothesis that allows us to guarantee the validity of the
property of strong duality, organized as follows. In chapter 2, we introduce the definitions and notations
that we will use in the later chapters.

Chapter 3 is structured as follows. Section 3.2.1 provides the formulation of the problem that
we are going to discuss, together with the characterization of the separation theorem, between a
convex set and an open cone in terms of the convexity of the complex envelope of sets. Also, it
includes a relaxed version of Dines’ Theorem, when the optimal value is −∞. The main section ??
presents a relaxed version of Dines’ Theorem, when the optimum value is finite, together with the
geometric characterization of the strong duality property, for the minimization problem subject to
restrictions with finitely many linear equality and a single quadratic inequality constraint, without
assuming hypothesis of convexity or Slater assumptions. This allows obtaining necessary and sufficient
conditions of optimality, without having to assume the Slater condition. Relations with the conditions
used in Finsler’s Theorem are also established. Section 3.4 presents a refinement to Frank and Wolfe’s
Theorem, for asymptotically linear sets. The results contained in this chapter were published in the
article:

• Flores-Bazan, F.; Cárcamo, G., A geometric characterization of strong duality in nonconvex
quadratic programming with linear and noncovex quadratic contraints, Math. Programming,
Ser. A 145 (2014), 263-290.

Chapter 4 is divided into several sections. In Section 4.1, without imposing any assumption of
differentiability, we first establish a complete description of the convexity of the conic hull of the
joint-range of the pair of functions associated to problem (4.1). Subsequently, we establish some
topological characterizations, or geometric nature of the strong duality property for the problem (4.1).
In particular, under a Slater type condition, we prove that a necessary and sufficient condition, in order
to obtain strong duality, is the convexity of the cone of the image. In section 4.4, under assumptions of
differentiability, we establish several characterizations of the validity of the KKT optimality conditions,
applying the main result of Section 4.3. Finally, in section 4.5 we describe a concrete application of
our previous results, to a generalization of the standard quadratic programming problem, where the
positive orthant is replaced by a pointed, closed and convex cone. The results contained in this chapter
were published in the article:

• Cárcamo, G.; Flores-Bazan, F., Strong duality and KKT conditions in nonconvex optimization
with a single equality constraint and geometric constraint, Math. Programming, Ser. B 168
(2018), 369-400.

14Various versions of the S-Lemma, originally proposed in [30], are discussed in [90].
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Chapter 5 is organized as follows. In light of [34], we review in Section 5.2, the Lagrangian
duality scheme for the general problem with a constraint of the equality type, where we establish
new sequential conditions, of the property of the zero duality gap. Our main results, connected with
problem (5.5), are presented in Section 5.3. The interest is in the characterization of the property
of strong duality, with respect to different dual problems, in terms of the Hessian’s copositiveness of
the objective function, revealing a hidden convexity. In section 5.4, some optimality conditions are
analyzed in detail for problem (5.5), while in Section 5.5 we analyze the case n = 2. In particular,
we characterize the Hessian’s copositivity of the objective function, and when every local solution is
global. The results contained in this chapter were published in the article:

• Flores-Bazan, F.; Cárcamo, G.; Caro, S., Extensions of the Standard Quadratic Optimization
Problem: Strong Duality, Optimality, Hidden Convexity and S-Lemma, Appl. Math. Optim.
(2018) https://doi.org/10.1007/s00245-018-9502-0.



Chapter 2

Notations and Preliminaries

In this chapter we present the basic notations and the terminology that will be used throughout the
thesis. This is a concise review, we only discuss the topics at the level necessary to follow the rest of
the thesis.

2.1 Convex sets and cones

All the results in this section are presented in the context of the Euclidian vector space, although
these results can mostly be generalized to infinite dimensional spaces like Banach or Hausdorff spaces.

By 〈·, ·〉 we denote the inner or scalar product in R
n whose elements are considered column vectors.

Thus, 〈x, y〉 = x⊤y for all x, y ∈ R
n, where x⊤ means the transpose of the vector x. Given any set

M in R
n, its closure, topological interior, boundary are denoted, respectively, by M , int M , bd M .

Similarly, ri M denotes the relative interior of M , which is the interior with respect to the affine hull
of M , denoted by aff M .

We recall that the set M is convex if for every x, y ∈M and λ ∈ [0, 1],

λx+ (1− λ)y ∈M.

The convex hull set of M , denote by co M , is the smallest convex set containing M , i.e.,

co M
.
= {x ∈ R

n : x =
l∑

i=1

λixi,
l∑

i=1

λi = 1, 0 ≤ λi ≤ 1, xi ∈M}.

An important aspect of convexity in duality theory is related to separation and support of sets,
since they can be separated by an hyperplane. A hyperplane H ⊆ R

n is a set of the form

H(a, α)
.
= {y ∈ R

n : 〈a, y〉 = α} = H− ∩H+ (2.1)

11
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where a ∈ R
n \ {0}, α ∈ R, whereas H(a, α)−

.
= {y ∈ R

n : 〈a, y〉 ≤ α} and H(a, α)+
.
= {y ∈

R
n : 〈a, y〉 ≥ α} are closed half spaces in R

n. Thus a hyperplane H(a, α) is said to separate two
nonempty sets M1 and M2 if

〈a, x〉 ≤ α ≤ 〈a, y〉, ∀ x ∈M1, ∀ y ∈M2. (2.2)

The separation is said to be strict if

〈a, x〉 < α < 〈a, y〉, ∀ x ∈M1, ∀ y ∈M2. (2.3)

Whereas H(a, α) is said to support M at x̄ ∈ bd M if either

〈a, y − x̄〉 ≤ 0, ∀ y ∈M, (2.4)

or else,

〈a, y − x̄〉 ≥ 0, ∀ y ∈M.

A separation theorem deals with the existence of an hyperplane that separates two given sets.
The following theorem with the case when separates a point from a closed convex set which does not
contain the point.

Proposition 2.1.1. ([79, Theorem 11.4]) Let M ⊆ R
n be a closed convex cone such that x̄ /∈ M .

Then there exists a ∈ R
n \ {0} such that

〈a, x̄〉 < 0 ≤ 〈a, x〉, ∀ x ∈M

Cones play a key role in establishing the characterization of strong duality. A cone is a set in R
n

which is closed under nonnegative scalar multiplication. The smallest cone containing M is denoted
by

cone(M)
.
=
⋃

t≥0

tM.

Whereas cone(M) denotes the smallest closed cone containing M , i.e., cone(M) = cone(M).

Moreover cone+(M)
.
=
⋃

t>0

tM .

Also we say that a (not necessarily convex) cone M in R
n, is pointed if

co M ∩ (−co M) = {0}.
For boundary structure of a convex set the following notion is important.

We say the point x̄ ∈ bd M is an extreme point of M , if it is not an interior point of any line
segment from M . More precisely, if x̄ = λx+(1−λ)y for x, y ∈M, and λ ∈ (0, 1), we have x̄ = x = y.
If additionally M is a cone, then d̄ ∈ bd M \ {0} is an extreme direction of M , if it is not a positive
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combination of other directions d1 and d2 in M ; that is, if d̄ = λ1d1 + λ2d2 for λ1, λ2 > 0, then
d1, d2 ∈ R+d̄.

The positive polar cone of M is defined by

M∗ .
= {y∗ ∈ R

n : 〈y∗, y〉 ≥ 0, ∀ y ∈M}.
We denote by M∗∗ .

= (M∗)∗, the bipolar cone of M . Clearly if M is a linear subspace then
M∗ =M⊥, where M⊥ stands for the orthogonal subspace of M .

We immediately obtains some properties from its definition.

Proposition 2.1.2. ([9, Theorem 1.3]) Let M , N be any sets in R
n. Then

(a) M∗ is a closed convex set;

(b) M ⊂ N then N∗ ⊂M∗;

(c) M ⊂M∗∗;

(d) M∗ =M∗∗∗;

(e) M∗ = (M)∗ = (co M)∗ = (cone M)∗;

(f) M∗ ∩N∗ ⊂ (M +N)∗ and if 0 ∈M ∩N then (M +N)∗ ⊂M∗ ∩N∗;

(g) M∗ +N∗ ⊂ (M ∩N)∗.

The well-known bipolar theorem is derived from Proposition 2.1.2 and Theorem 2.1.1.

Proposition 2.1.3. ([9, Theorem 1.5]) Let M ⊆ R
n. Then M is a closed convex cone if and only if

M =M∗∗., that is,

x ∈M ⇐⇒ 〈x∗, x〉 ≥ 0, ∀ x∗ ∈M∗. (2.5)

Moreover, if int M 6= ∅ then

x ∈ int M ⇐⇒ 〈x∗, x〉 > 0, ∀ x∗ ∈M∗ \ {0}. (2.6)

We also need to introduce the following cones.

Assume that M ⊆ R
n is a nonempty set. Given x̄ ∈M , we say that the contingent cone of M (or

tangent cone of Bouligand) at x̄ is defined by

T (M ; x̄)
.
= {v ∈ R

n : ∃ (tk, xk) ∈ R++ ×M, xk −→ x̄, tk(xk − x̄) −→ v},
which is always a closed cone. Moreover from its definition, if M is convex then
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T (M ; x̄) = cone(M − x̄). (2.7)

Whereas, if M is convex, NM (x̄) stands for the normal cone to M at x̄, is the set NM (x̄)
.
=

{x∗ : 〈x∗, x− x̄〉 ≤ 0, ∀ x ∈M}. Thus

[T (M ; x̄)]∗ = −NM (x̄),

whenever x̄ ∈M .

The asymptotic cone of M is defined by

M∞ .
= {v ∈ R

n : ∃ (tk, xk) ∈ R+ ×M, tk ↓ 0, tkxk −→ v}.
It is not difficult to see that M∞ is always a closed cone. Additionally if M is a closed convex set,

then for each x̄ ∈M

M∞ = {v ∈ R
n : x̄+ tv ∈ K, ∀ t > 0}.

Lemma 2.1.1. ([79, Corollary 9.1.2.]) LetM1 and M2 be nonempty closed convex sets in R
n. Assume

that M∞
1 ∩ (−M∞

2 ) = {0}. Then

(a) M1 +M2 =M1 +M2;

(b) [M1 +M2]
∞ =M∞

1 +M∞
2 .

2.2 Convex and polar functions

We start in this section with the concept of convexity to functions taking values on the extended real
line. Let h : Rn −→ R ∪ {±∞} be an extended real valued function. The epigraph of h is defined by

epi h
.
= {(x, α) ∈ R

n × R : h(x) ≤ α}.
Whereas, the effective domain of h is the projection on R

n of the epigraph of h, i.e., a set of the
form

dom h = {x ∈ R
n : h(x) < +∞}.

A function h is said to be convex if its epigraph epi h is a convex set of Rn+1. If, furthermore,
dom h 6= ∅ and f(x) > −∞ for all x ∈ R

n, then h is a proper convex function. In case we know
additionally that h is proper we obtain that the function h is convex, if and only if dom h is convex
and for all x, y ∈M and λ ∈ [0, 1] we have

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y).

There are special functions, for instance the indicator function δM : Rn −→ {0,+∞} of M that is
defined by
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δM (x)
.
=

{
0, if x ∈M

+∞, if x /∈M
(2.8)

which is convex if, and only if M is convex.

A quadratic function defined by

h(x)
.
=

1

2
x⊤Ax+ a⊤x+ α, (2.9)

where A is a symmetric n × n matrix, a ∈ R
n and α ∈ R, is convex (see Theorem 4.5 in [79]),

if, and only if the matrix A is positive semi-definite, i.e., x⊤Ax ≥ 0 for all x ∈ R
n. The space of all

(n× n) symmetric matrices is denoted by Sn.

In addition, we need the following concepts of envelope representation of functions. We recall (see
for instance section 7 in [79]) that a function h : Rn −→ R ∪ {±∞} is called lower semicontinuous
(lsc) at x̄, if

h(x̄) ≤ lim inf
k→+∞

h(xk), for every sequence {xk}k∈N converging to x̄.

Whereas we said that h is (lsc) if it is (lsc) at every point x ∈ R
n. Just as the convexity

of the epigraph characterizes the convexity of a function h, its closedness characterizes the lower
semicontinuity of h, as shown by the next proposition.

Proposition 2.2.1. ([79, Theorem 7.1]) Let h : Rn −→ R∪{±∞} be an extended real valued function.
The following assertions are equivalent:

(a) h is (lsc);

(b) the epigraph epi h is a closed set in R
n+1;

(c) the level set Sh(λ)
.
= {x : h(x) ≤ λ} is closed for every λ ∈ R.

Given a function h : Rn −→ R ∪ {±∞}, we stand by h̄ for the greatest lower semicontinuous
function not larger than h (lsc hull h̄) is given by

h̄(x)
.
= sup

l∈Sh

l(x), (2.10)

where Sh
.
= {l : Rn −→ R ∪ {±∞} : l is l.s.c and l ≤ h}. It is easy to check that since −∞ ∈ Sh,

then Sh is a nonempty set. Moreover, h̄ ≤ h and since h̄ is the pointwise supremum of the familiy
of functions indexed by l ∈ Sh, the epigraph of h is the intersection of the sets epi l. By virtue of
Proposition 2.2.1, h̄ ∈ Sh. The following result provides and interpretation of the l.s.c. hull of a
function. See [79, 39].

Proposition 2.2.2. Let h be as above. Then
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(a)

h̄(x) =





inf{α : (x, α) ∈ epi h}, if [{x} × R ∩ epi h] 6= ∅

+∞, if [{x} × R ∩ epi h] = ∅

(b)
epi h̄ = epi h. (2.11)

The greatest convex and lower semicontinuous function not longer than h given by co h : Rn −→
R ∪ {±∞} is defined as the function for which

epi co h = co(epi h). (2.12)

The conjugate (or polar) of h is defined by

h∗(y)
.
= sup

x∈dom h

{〈y, x〉 − h(x)}. (2.13)

For instance the conjugate of indicator function defined by (2.8) is

δ∗M (y) = sup
x∈M

〈y, x〉.

In the case thatM be a cone then one gets from above that δ∗M (y) = 0 if y ∈ −M∗, δ∗(y) = +∞ in
other case, which implies that δ∗M is in fact the indicator function of −M∗: δ(−M)∗ , i.e., (δM )∗ = δ(−M)∗

The biconjugate (or bipolar) of h is the conjugate of h∗, that is

h∗∗(y) = sup
x∈dom h∗

{〈y, x〉 − h∗(x)}.

Moreover,
co h(y) > −∞ ∀ y ∈ R

m =⇒ co h(y) = h∗∗(y) ∀ y ∈ R
m, (2.14)



Chapter 3

Nonconvex quadratic and constraints

3.1 Introduction

Given a subset C of a finite dimensional space R
n, and functions f : Rn → R, g : Rn → R, let us

consider the following minimization problem:

µ
.
= inf{f(x) : g(x) ≤ 0, x ∈ C}. (3.1)

The Lagrangian dual problem associated to (3.1) is

ν
.
= sup

λ≥0
inf
x∈C

[f(x) + λg(x)]. (3.2)

In general ν ≤ µ. We say Problem (3.1) has a (Lagrangian) zero duality gap if the optimal values
of (3.1) and (3.2) coincide, that is, µ = ν. Problem (3.1) is said to have strong duality if it has a zero
duality gap and Problem (3.2) admits a solution.

Quadratic functions have proved to be very important in applications (e.g. in telecommunications,
robust control [64, 81], trust region problems [42, 82] among others) and enjoy very nice properties.
After the result (C = R

n) due to Gay [42] and Sorensen [82] concerning a characterization of solutions
for a special quadratic optimization problem without any convexity assumptions, several authors
extended such a result for general quadratic optimization with a single inequality constraint. In
particular, we mention the work by Moré [66] who considered the general case of a single equality
constraint and then used it to cover the single inequality constraint under the standard Slater condition.
Moré actually provided necessary and sufficient optimality conditions for a point to be optimal under
no convexity conditions. Certainly, this may be seen as a strong duality-type result.

More recently, when C = R
n with g being a quadratic function that is not identically zero, the

authors in [49] prove that, (3.1) has strong duality for each quadratic function f if, and only if there
exists x̄ ∈ R

n such that g(x̄) < 0, that is, the standard Slater condition holds. Unlike this result and
many others established in [48, 50, 52, 51, 53], our approach allows us to derive conditions on the pair,
f and g jointly, that ensure that (3.1) has strong duality without satisfying the Slater condition, and

17
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under no convexity assumptions on f or g. This is carried out by further developing the geometric
approach introduced in [31], where strong duality is characterized under a single inequality constraint
for any (not necessarily quadratic) functions f and g. We actually characterize completely the strong
duality in the presence of finitely many linear equality and a single quadratic inequality constraints
without convexity assumptions or Slater condition (Theorem 3.3.3), and derive necessary and sufficient
optimality conditions.

Among the main results showing some of the nice properties of quadratic functions we mention
two of them. The first one is due to Dines [24] (see also [76]) and it ensures the convexity of the set
{(f(x), g(x)) ∈ R

2 : x ∈ R
n} for any homogeneous quadratic functions f and g. For general quadratic

non homogeneous functions we provide a relaxed version of this result, see Theorem 3.3.1 when µ is
finite, and when µ = −∞ it is provided a condition under which a Dines-type result holds. A complete
characterization of convexity of the above set for any quadratic functions f and g is given in [36]. A
second result showing another nice property of these functions is that due to Frank and Wolfe [37],
which asserts that any quadratic function bounded from below on a nonempty (possibly unbounded)
polyhedral set attains its infimum value. We establish several equivalences (including that due to
Frank and Wolfe) for a larger family of sets than polyhedral, whose proof uses elementary analysis
and it is related to that by Blum and Oettli [12], being suitable for expository purposes; whereas the
original proof of Frank and Wolfe requires a decomposition theorem for convex polyhedra.

More precisely, in the present paper, we deal with the case where f and g are quadratic functions
and C = H−1(d) = {x ∈ R

n : Hx = d} where H is a real matrix of order m×n and d ∈ R
m, and the

regularized Lagrangian dual problem is considered. It means that instead of considering the standard
Lagrangian dual problem

sup
λ≥0,γ∈Rm

inf
x∈Rn

[f(x) + λg(x) + γ(Hx− d)], (3.3)

we choose the regularized Lagrangian dual problem

sup
λ≥0

inf
x∈H−1(d)

[f(x) + λg(x)], (3.4)

which is more suitable for our purpose since there are instances, specially in trust-region problems,
showing a non zero duality gap between (3.1) and (3.3) against with the zero duality gap between
(3.1) and (3.4), even if the Slater condition holds, as stated in [53].

Apart from these characterizations several sufficient conditions of the zero duality gap for convex
programs have been established in the literature, see [38, 3, 4, 94, 16, 18, 19, 85, 70].
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3.2 Formulation of the problem

This section will provide the formulation of the problem in the non quadratic situation.

3.2.1 The general case with finite optimal value

Given a subset C of a finite dimensional space R
n, and functions f : Rn → R, g : Rn → R, let us

consider the following minimization problem:

µ
.
= inf

g(x)≤0
x∈C

f(x). (3.5)

The Lagrangian dual problem associated to (3.1) is

ν
.
= sup

λ≥0
inf
x∈C

[f(x) + λg(x)], (3.6)

We associate with Problem (3.5) the usual linear Lagrangian

L(γ, λ, x)
.
= γf(x) + λg(x),

where γ ≥ 0 and λ ≥ 0 are called the Lagrange multipliers. By setting K
.
= {x ∈ C : g(x) ≤ 0}, we

obtain the trivial inequality

γ inf
x∈K

f(x) ≥ inf
x∈K

L(γ, λ, x) ≥ inf
x∈C

L(γ, λ, x), ∀ γ ≥ 0, ∀ λ ≥ 0. (3.7)

In order to get the equality, we need to find conditions under which the reverse inequality holds, that
is, we must have:

γ(f(x)− µ) + λg(x) ≥ 0 ∀ x ∈ C. (3.8)

This will imply strong duality once we get γ > 0, and by recalling that µ = inf
x∈K

f(x).

By setting F (x)
.
= (f(x), g(x)) and so F (C)

.
= {(f(x), g(x)) ∈ R

2 : x ∈ C} along with ρ
.
= (γ, λ), the

previous inequality can be written as

〈ρ, a〉 ≥ 0 ∀ a ∈ F (C)− µ(1, 0). (3.9)

The following result, which is important by itself, characterizes completely (3.9). Part of this result
was established in [32, Theorem 4.1].

Theorem 3.2.1. Let P ⊆ R
2 be a convex closed cone such that int P 6= ∅, and A ⊆ R

2 be nonempty
set. Then the following assertions are equivalent:

(a) ∃ λ ∈ P ∗ \ {0}, ∀ a ∈ A : 〈λ, a〉 ≥ 0;

(b) A ∩ (−int P ) = ∅ and cone(A+ P ) is convex;

(c) A ∩ (−int P ) = ∅ and cone+(A+ int P ) is convex;
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(d) A ∩ (−int P ) = ∅ and cone(A+ int P ) is convex;

(e) cone(A+ int P ) is pointed;

(f) co(A) ∩ (−int P ) = ∅.
Proof. Obviously (c) =⇒ (d) =⇒ (b).
(f) =⇒ (a) It follows from a simple use of a separation result of convex sets.
(a) =⇒ (b): Clearly 〈λ, x〉 ≥ 0 for all x ∈ cone(A + P ). Choose u ∈ int P . Let y, z ∈ A. Then
obviously

cone({y}) + cone({u}) = {sy + tu : s, t ≥ 0}
is a closed convex cone containing y and u and contained in cone(A + P ). The same is true for the
cone cone({z}) + cone({u}). The two cones have the line cone({u}) in common and their union is
contained in cone(A+ P ), thus it is contained in the halfspace

{
x ∈ R

2 : 〈λ, x〉 ≥ 0
}
. Hence, the set

B
.
= (cone({y}) + cone({u})) ∪ (cone({z}) + cone({u})) is a convex cone. Since y, z ∈ B we deduce

that [y, z] ⊆ B ⊆ cone(A+ P ). Thus co(A) ⊆ cone(A + P ), from which we infer that cone(A+ P ) is
convex since P ⊆ cone(A+ P ) holds as well.
(b) ⇐⇒ (c): Obviously (c) implies (b). If cone(A+ P ) is convex then ([38])

int(cone(A+ P )) = int(cone+(A) + P ) = cone+(A) + int P = cone+(A+ int P )

is convex as well.
(c) =⇒ (e): Let x,−x ∈ cone(A + int P ). Then x = t1(a1 + p1, −x = t2(a2 + p2) for some ti ≥ 0,
ai ∈ A, pi ∈ int P for i = 1, 2. Assuming ti > 0, for i = 1, 2, we have x,−x ∈ cone+(A + int P ). By
convexity, 0 = x+ (−x) ∈ cone+(A+ int P ), which implies that 0 ∈ A+ int P , contradicting the first
part of (c).
(e) =⇒ (f): Assume on the contrary that co(A)∩ (−int P ) 6= ∅. Then, there exist ai ∈ A, p0 ∈ int P ,
αi ≥ 0, satisfying

∑m
i=1 αi = 1 and 0 =

∑m
i=1 αiai + p0. Thus, 0 =

∑m
i=1 αi(ai + p0). By pointedness,

we get αi(ai + p0) = 0 for all i = 1, · · · ,m. Hence, 0 = aj + p0 ∈ A+ int P for some j, which implies
that cone+(A+ int P ) = R

2, contradicting (e).

By virtue of the preceding result and following the reasoning developed in [31], we need to split
the set cone(F (C) − µ(1, 0) + R

2
++). To that purpose, some notations are in order. By setting

K
.
= {x ∈ C : g(x) ≤ 0}, we get K = S−

g (0) ∪ S=
g (0), where

S−
g (0)

.
= {x ∈ C : g(x) < 0}, S=

g (0)
.
= {x ∈ C : g(x) = 0}, S+

g (0)
.
= {x ∈ C : g(x) > 0}.

Similarly, we define

S−
f (µ)

.
= {x ∈ C : f(x) < µ}, S+

f (µ)
.
= {x ∈ C : f(x) > µ},

S=
f (µ)

.
= {x ∈ C : f(x) = µ}.

Furthermore, whenever S−
g (0) ∩ S+

f (µ) 6= ∅ and S−
f (µ) 6= ∅, we set

r
.
= inf

x∈S+
f
(µ)∩S−

g (0)

g(x)

f(x)− µ
, s

.
= sup

x∈S−
f
(µ)

g(x)

f(x)− µ
.
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Evidently, −∞ ≤ r < 0, −∞ < s ≤ 0. Notice that

x ∈ S−
f (µ) =⇒ x ∈ S+

g (0).

The latter and other basic facts about the previous sets are collected in the next proposition.

Proposition 3.2.1. Let µ ∈ R, we have the following:

(a) C = K ⇐⇒ S+
g (0) = ∅;

(b) [argmin
K

f ∩ S−
g (0) = ∅ and S+

f (µ) ∩ S−
g (0) = ∅] ⇐⇒ S−

g (0) = ∅;

(c) S+
f (µ) ∩ S−

g (0) = ∅ ⇐⇒ S−
g (0) ⊆ argmin

K

f ;

(d) S−
f (µ) = ∅ ⇐⇒ µ = inf

x∈C
f(x).

Proof. (a) and (c) are straightforward.
(b): Suppose on the contrary that S−

g (0) 6= ∅. Then, by assumption every x ∈ C such that g(x) < 0
satisfies f(x) ≤ µ. Thus f(x) = µ yielding a contradiction. The other implication is obvious.
(d): It follows by noticing that S−

f (µ) = ∅ if and only if f(x) ≥ µ for all x ∈ C.

We now proceed to split the set cone[F (C) − µ(1, 0) + R
2
++] by writing F (C) − µ(1, 0) + R

2
++ =

Ω1 ∪ Ω2 ∪ Ω3. This gives

cone(F (C)− µ(1, 0) + R
2
++) = cone(Ω1) ∪ cone(Ω2) ∪ cone(Ω3), (3.10)

where
Ω1

.
= R

2
++ ∪

⋃

x∈argmin
K

f∩S−
g (0)

[(0, g(x)) + R
2
++];

Ω2
.
=

⋃

x∈S+
f
(µ)∩S−

g (0)

[(f(x)− µ, g(x)) + R
2
++] ∪

⋃

x∈S+
f
(µ)∩S=

g (0)

[(f(x)− µ, 0) + R
2
++];

Ω3
.
=

⋃

x∈S−
f
(µ)

[(f(x)− µ, g(x)) + R
2
++] ∪

⋃

x∈S=
f
(µ)∩S+

g (0)

[(0, g(x)) + R
2
++]∪

∪
⋃

x∈S+
f
(µ)∩S+

g (0)

[(f(x)− µ, g(x)) + R
2
++].

This decomposition will be used in Section 3.3.
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3.2.2 The general case with unbounded optimal value

We continue by considering real-valued functions defined in a Hausdorff topological space X.
The case µ = −∞ deserves a special attention and it will be discussed in this subsection. First of all,
it is not difficult to check that

µ = −∞ ⇐⇒ (F (C) + R
2
+) ∩ [(ρ, 0) − (R++ × {0})] 6= ∅, ∀ ρ ∈ R. (3.11)

We set

γ
.
= inf

x∈S−
g (0)

g(x)

f(x)
,

whenever S−
g (0) 6= ∅. Furthermore, set

W
.
= {(u, v) ∈ R

2 : v > γu, v ≤ 0}, if γ ∈ R.

The following theorem establishes the geometric structure of the set cone[F (C)+R
2
++] in case µ = −∞.

Theorem 3.2.2. Let µ = −∞. Then

R× R+ ⊆ F (C) + R
2
+. (3.12)

Furthermore,

(a) If S−
g (0) = ∅ then F (C) + R

2
+ = R× R+.

(b) If S−
g (0) ∩ S−

f (0) 6= ∅ then cone+[F (C) +R
2
+] = R

2.

(c) If S−
g (0) 6= ∅ and S−

g (0) ∩ S−
f (0) = ∅ then −∞ = inf

g(x)=0
x∈C

f(x), −∞ ≤ γ < 0 and

(c1) cone+[F (C) + R
2
++] = (R × R++) ∪W if −∞ < γ < 0;

(c2) cone+[F (C) + R
2
++] = (R × R++) ∪ (R++ ×R) if γ = −∞.

Proof. Let us prove (3.12). Take any (ξ1, ξ2) ∈ R × R+; by (3.11), there exist x ∈ C, p ≥ 0, q ≥ 0,
r > 0, such that f(x) + p = ξ1 − r and g(x) + q = 0. It follows that

(ξ1, ξ2) = (f(x), g(x)) + (p+ r, q + ξ2) ∈ F (C) + R
2
+.

(a): Since g(x) ≥ 0 for all x ∈ C, we obtain

F (C) + R
2
+ ⊆ [f(C)× g(C)] + R

2
+ ⊆ (R× R+) + R

2
+ = R× R+.

(b): By assumption, there exists x0 ∈ C satisfying g(x0) < 0 and f(x0) < 0. This implies that
(0, 0) ∈ F (x0) + R

2
++, which gives cone+(F (x0) +R

2
++) = R

2 and therefore the conclusion follows.
(c): By assumption, f(x) ≥ 0 for all x ∈ S−

g (0), which implies that −∞ = inf
g(x)=0
x∈C

f(x) and −∞ ≤ γ < 0.

(c1): Let (u0, v0) ∈W . Then, u0 > 0 and there exists x0 ∈ C satisfying g(x0) < 0 and

γ ≤ g(x0)

f(x0)
<
v0
u0
.
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We choose ε > 0 satisfying v0f(x0) = u0g(x0) + ε(u0 − v0) and write

u0 =
u0

f(x0) + ε
(f(x0) + ε), v0 =

u0
f(x0) + ε

(g(x0) + ε).

This proves that (u0, v0) ∈ cone+[F (C) + R
2
++]. This result along with (3.12) prove one inclusion in

(c1).
For the other inclusion we reason as follows. Take any (u0, v0) ∈ cone+[F (C) +R

2
++]. Then, for some

(p, q) ∈ R
2
++, t0 > 0, x0 ∈ C, we have u0 = t0(f(x0)+ p) and v0 = t0(g(x0)+ q). If (u0, v0) 6∈ R×R++

then v0 ≤ 0. This implies that g(x0) < g(x0) + q ≤ 0, and therefore, by assumption, f(x0) ≥ 0.

Clearly f(x0) > 0 since otherwise γ = −∞. Hence γ ≤ g(x0)

f(x0)
, and so

γu0 = γt0(f(x0) + p) ≤ t0g(x0) + γt0p < t0g(x0) < t0(g(x0) + q) = v0,

showing that (u0, v0) ∈W . Hence, the proof of (c1) is completed.
(c2): It is similar to (c1).

3.3 The case with linear and quadratic constraints

In this section, we consider the case of quadratic functions defined in a finite dimensional space R
n.

Various problems arising in telecommunications, robust control [64, 81], trust region [42, 82], are
modeled via quadratic non-homogeneous functions.
Consider the following quadratic optimization problem:

µ
.
= inf

{1
2
x⊤Ax+ a⊤x+ α :

1

2
x⊤Bx+ b⊤x+ β ≤ 0, Hx = d

}
, (3.13)

where A,B are symmetric matrices of order n; a, b ∈ R
n; d ∈ R

m; α, β ∈ R, and H is a real matrix
of order m× n.
Setting, C

.
= H−1(d)

.
= {x ∈ R

n : Hx = d}, it is known that

C = x0 + ker H, ∀ x0 ∈ C.

Let

f(x) =
1

2
x⊤Ax+ a⊤x+ α, g(x) =

1

2
x⊤Bx+ b⊤x+ β.

One of the most important results concerning quadratic functions refers to Dine’s theorem [24]
(motivated by Finsler’s theorem [30]), which ensures that

{
(x⊤Ax, x⊤Bx) : x ∈ R

n
}

is convex.

This result does not hold in the non-homogeneous case as the next example shows.
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Example 3.3.1. Take f(x, y) = x + y − x2 − y2 − 2xy, g(x, y) = x2 + y2 + 2xy − 1, and consider
the set M

.
= {(f(x, y), g(x, y)) ∈ R

2 : (x, y) ∈ R
2}. Clearly (0, 0) = (f(0, 1), g(0, 1)) ∈ M and

(−2, 0) = (f(−1, 0), g(−1, 0)) ∈ M . We claim that (−1, 0) = 1
2(0, 0) +

1
2(−2, 0) /∈ F (R2). Indeed,

if −1 = f(x, y) and 0 = g(x, y), then |x + y| = 1 and x + y = 0, reaching a contradiction. Hence,
(−1, 0) ∈ co F (R2) \ F (R2), showing that F (R2) is nonconvex. More precisely, one can check that

F (R2) = {(t− t2, t2 − 1) : t ∈ R}.

Let us consider the minimization problem

µ
.
= inf

g(x,y)≤0

(x,y)∈R2

f(x, y)

We claim that µ = −2. Indeed,

f(x, y) + 2 +
3

2
g(x, y) = x+ y − (x+ y)2 + 2 +

3

2
((x+ y)2 − 1)

= 2(x+ y + 1)2 ≥ 0, ∀ (x, y) ∈ R
2.

In particular, if (x, y) is such that g(x, y) ≤ 0, we obtain f(x, y) ≥ −2 = f(−1, 0), proving our claim.
We actually have argmin

K

f = {(x, y) ∈ R
2 : x + y = −1} and λ = 3

2 is a Lagrange multiplier.

Furthermore, S+
f (µ) ∩ S−

g (0) = {(x, y) ∈ R
2 : |x + y| < 1} and S−

f (µ) = {(x, y) ∈ R
2 : x + y <

−1} ∪ {(x, y) ∈ R
2 : 2 < x+ y}. Therefore

r = inf
|x+y|<1

(x+ y)2 − 1

x+ y − (x+ y)2 + 2
= inf

|t|<1

t2 − 1

t− t2 + 2
= inf

|t|<1
− t− 1

t− 2
= −2

3
;

s = sup
(x,y)∈S−

f
(µ)

(x+ y)2 − 1

x+ y − (x+ y)2 + 2
= −2

3
.

However, we can prove a relaxed version of Dine’s theorem. To that purpose the next result, valid
for quadratic functions, will play an important role.

Proposition 3.3.2. [51, Theorem 3.6] Let f, g : R
n → R be quadratic functions not necessarily

homogeneous, let x0 ∈ R
n, and let S0 be a subspace of Rn. Then exactly one of the following statements

holds:

(a) ∃ x ∈ x0 + S0, f(x) < 0, g(x) < 0;

(b) ∃ (λ1, λ2) ∈ R
2
+ \ {(0, 0)}, λ1f(x) + λ2g(x) ≥ 0, ∀ x ∈ x0 + S0.

On combining the preceding result and Theorem 3.2.1, we obtain the following theorem which may
be considered as a relaxed version of the Dines theorem and, according to the author’s knowledge, it
is new in the literature. Obviously our result is weaker than that provided by Dines when f and g are
homogeneous quadratic functions (for the case µ = −∞ we refer Theorem 3.2.2).
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Theorem 3.3.1. (Relaxed Dine’s theorem) Let f : Rn → R, g : Rn → R be quadratic functions as
above. If µ ∈ R, then

cone(F (C)− ρ(1, 0) + R
2
++) is convex for all ρ ≤ µ.

Proof. Since there is no x satisfying g(x) < 0, Hx = d and f(x) − ρ < 0, by Proposition 3.3.2 we
obtain the existence of (γ, λ) ∈ R

2
+ \ {(0, 0)} such that

γ(f(x)− ρ) + λg(x) ≥ 0 ∀ x ∈ x0 + ker H = C. (3.14)

The desired result is a consequence of Theorem 3.2.1.

In case µ = −∞ Theorem 3.2.2 provides a complete description of cone+(F (C)+R
2
+); in particular,

it establishes conditions under which cone+(F (C) + R
2
+) is convex.

We next present an application of the previous theorem to derive the S-lemma for any (not
necessarily homogeneous) quadratic functions already appeared in [75, Theorem 2.2]; [51, Corollary 3.7]).
Some variants of the S-lemma may be found in [23].

Theorem 3.3.2. (The S-lemma) Let f, g : Rn → R be quadratic functions and assume that there is
x̄ ∈ C such that g(x̄) < 0. Then, (a) and (b) are equivalent:

(a) There is no x ∈ C such that
f(x) < 0, g(x) ≤ 0.

(b) There is λ ≥ 0 such that
f(x) + λg(x) ≥ 0, ∀ x ∈ C.

Proof. Obviously (b) =⇒ (a) always holds. Assume therefore that (a) is satisfied. This means that
x ∈ C, g(x) ≤ 0 implies f(x) ≥ 0, that is, 0 ≤ µ

.
= inf

x∈K
f(x). It follows that

cone[F (C)− µ(1, 0) + R
2
++] ∩H = ∅,

H .
= {(u, v) ∈ R

2 : u < 0, v ≤ 0}. By the previous theorem cone[F (C)−µ(1, 0) +R
2
++] is convex, and

so by a separation theorem, there exist (γ, λ) ∈ R
2
+ \ {(0, 0)} and α ∈ R such that

γ(f(x)− µ+ p) + λ(g(x) + q) ≥ α ≥ γu+ λv, ∀ x ∈ C, ∀ (p, q) ∈ R
2
++, ∀ u < 0, ∀ v ≤ 0.

This implies α ≥ 0, γ ≥ 0 and λ ≥ 0. Thus

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C,

that is, γf(x) + λg(x) ≥ γµ ≥ 0, ∀ x ∈ C. The Slater condition yields γ > 0, completing the proof
of the theorem.
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The important case, when f and g are quadratic, with C = R
n, was studied by Yakubovich [88, 89],

see the survey by Pólik and Terlaky in [75, Theorem 2.2]. Its proof uses the Dines theorem which
asserts the convexity of the set {(f(x), g(x)) ∈ R

2 : x ∈ R
n} when f and g are homogeneous quadratic

functions.

We observe that (3.14) for ρ = µ amounts to writing that

(γ, λ) ∈ [cone(F (C)− µ(1, 0) + R
2
++)]

∗, (3.15)

and we also get

cone(F (C)− µ(1, 0) + R
2
++) = cone+(F (C)− µ(1, 0) +R

2
++) ∪ {(0, 0)}.

The slightly dark region in Figures 3.1 and 3.2 represents cone+(F (C)− µ(1, 0) + R
2
++).

Taking into account the splitting (3.10) introduced in Subsection 3.2.1, we establish the main
theorem in this section which is new in the literature and describes all the situations that may happen
when considering quadratic minimization problems with finitely many linear equality and a single
quadratic inequality constraints. It provides also the solution set of the regularized Lagrangian dual
(3.4).

Theorem 3.3.3. Let f : Rn → R, g : Rn → R be the quadratic functions, and C as above, (γ, λ) ∈
R
2
+ \ {(0, 0)} and µ be finite. Then, exactly one of the following assertions holds:

(a1) If either argmin
K

f ∩ S−
g (0) 6= ∅ or [S+

f (µ) ∩ S−
g (0) 6= ∅ with r = −∞], then S−

f (µ) = ∅ and

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : u > 0}.

Hence,
γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ > 0, λ = 0.

(a2) If argmin
K

f ∩ S−
g (0) = ∅, S+

f (µ) ∩ S−
g (0) = ∅ = S−

f (µ), then

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : u > 0, v > 0}.

Hence
γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ (γ, λ) ∈ R

2
+ \ {(0, 0)}.

(a3) If S+
f (µ) ∩ S−

g (0) 6= ∅ with −∞ < r < 0 and S−
f (µ) 6= ∅, then argmin

K

f ∩ S−
g (0) = ∅, s ≤ r and

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : v > ru, v > su}.

Hence,

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ > 0, −1

s
γ ≤ λ ≤ −1

r
γ.
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(a4) If S+
f (µ) ∩ S−

g (0) = ∅, S−
f (µ) 6= ∅ with −∞ < s < 0, then argmin

K

f ∩ S−
g (0) = ∅ and

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : v > su, v > 0}.

Hence

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ ≥ 0, λ ≥ −1

s
γ, λ 6= 0.

(a5) If argmin
K

f ∩ S−
g (0) = ∅, S+

f (µ) ∩ S−
g (0) 6= ∅ with −∞ < r < 0 and S−

f (µ) = ∅, then

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : v > ru, u > 0}.

Hence,

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ > 0, 0 ≤ λ ≤ −1

r
γ.

(a6) If S−
f (µ) 6= ∅, s = 0, then argmin

K

f ∩ S−
g (0) = ∅ and

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : v > 0}.

Hence
γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ = 0, λ > 0.

Proof. Since the proof uses a frequent application of the convexity of cone+(F (C) − µ(1, 0) + R
2
++),

the splitting (3.10) and (3.15) along with Figures 3.1, 3.2, we simply prove (a1) and (a2) just to give
an idea of the reasoning to be employed.
(a1): By assumptions and due to the convexity of cone+(F (C) − µ(1, 0) + R

2
++), looking at Figure

3.1(a1), we immediately get that S−
f (µ) = ∅, and so

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : u > 0}.

From this, the equivalence follows in view of (3.15).

(a2): It is a consequence of the splitting (3.10) and (3.15)

As mentioned above all other assertions follow in similar way by taking into account the convexity
of cone(F (C)− µ(1, 0) + R

2
++), (3.10) and (3.15), see Figures 3.1, 3.2.

One can check that Example 3.3.1 satisfies (a3), since

(0,−2) ∈ S−
f (µ) and argmin

K

f ∩ S−
g (0) = ∅.
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•
0

u

v

(γ∗, 0)
•

0
u

v
(γ, λ)

•
0 v = ru

v = su

u

v

(a1) (a2) (a3)

(γ, λ)

Figure 3.1: Theorem 3.3.3: (a1), (a2), (a3) (figure produced by author)

•
0

v = su

u

v
(γ, λ)

•
0
v = ru

u

v

(γ, λ)

(0, λ)

•
0

u

v

(a4) (a5) (a6)

Figure 3.2: Theorem 3.3.3: (a4), (a5), (a6) (figure produced by author)

We also obtain r = s = −2

3
; therefore λ =

2

3
γ.

Before providing a characterization of strong duality, some preliminaries are necessary for linking
the behaviour of the Hessians of f and g and the number r and s. We first provide a necessary
condition to have µ ∈ R.

Proposition 3.3.3. Assume that µ is finite. Then,

0 6= v ∈ ker H, v⊤Bv ≤ 0 =⇒ v⊤Av ≥ 0. (3.16)

Proof. Let v ∈ ker H, v 6= 0, we distinguish the discussion into two cases: v⊤Bv < 0 and v⊤Bv = 0.

In the first case, given x ∈ H−1(d), we obtain g(x + tv) = g(x) + t∇g(x)⊤v + t2

2 v
⊤Bv → −∞ as

|t| → +∞ since v⊤Bv < 0. Thus, there exists t1 > 0 such that x+ tv ∈ S−
g (0) for all |t| ≥ t1, which

gives f(x) + t∇f(x)⊤v + t2

2 v
⊤Av = f(x+ tv) ≥ µ for all |t| ≥ t1 since x+ tv ∈ H−1(d). On dividing

by t2 and letting t→ +∞, we get v⊤Av ≥ 0.

Now assume that v⊤Bv = 0, and suppose on the contrary that v⊤Av < 0. This yields, given any
x ∈ H−1(d), f(x + tv) → −∞ for all |t| → +∞. Then g(x + tv) = g(x) + t∇g(x)⊤v > 0 for all |t|
sufficiently large, which implies that ∇g(x)⊤v = 0, and therefore g(x) = g(x + tv) > 0 for all t ∈ R

and all x ∈ H−1(d). This cannot happen if we choose x satisfying in addition g(x) ≤ 0.

The necessary condition (3.16) given in the previous proposition is stronger than the condition

0 6= v ∈ ker H, v⊤Bv = 0 =⇒ v⊤Av ≥ 0. (3.17)

This is related to a relaxed version of Finsler’s theorem due to Moré [66, Theorem 2.3] and independently
to Hamburger [45]: assume that B be indefinite, then (i) and (ii) below are equivalent:
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(i) v ∈ ker H, v⊤Bv = 0 =⇒ v⊤Av ≥ 0.

(ii) ∃ t ∈ R such that A+ tB is positive semidefinite on ker H.

Proposition 3.3.4. Let v ∈ ker H, v⊤Av = 0 and v⊤Bv < 0, and assume that µ is finite. Then,

(a) ∃ t1 > 0 such that x+ tv ∈ S−
g (0), ∀ x ∈ H−1(d) and ∀ |t| ≥ t1;

(b) ∇f(x)⊤v = 0, ∀ x ∈ H−1(d), or equivalently, f(x+ tv) = f(x) ∀ x ∈ H−1(d) and ∀ t ∈ R, or
equivalently, ∃ y ∈ R

m such that Av = H⊤y and d⊤y + a⊤v = 0;

(c) S−
f (µ) = ∅, and therefore µ = inf

x∈H−1(d)
f(x) with argmin

H−1(d)

f 6= ∅;

(d) S+
f (µ) 6= ∅ =⇒ r = −∞.

Proof. (a): Let x ∈ H−1(d). Then, g(x+ tv) = g(x)+ t∇g(x)⊤v+ t2

2 v
⊤Bv → −∞ as |t| → +∞ since

v⊤Bv < 0. Thus, there exists t1 > 0 such that x+ tv ∈ S−
g (0) for all |t| ≥ t1.

(b): For the first equivalence; from (a), f(x+ tv) ≥ µ for all |t| ≥ t1 because of x+ tv ∈ H−1(d)
and g(x + tv) < 0. By writting µ ≤ f(x + tv) = f(x) + t∇f(x)⊤v, we conclude that ∇f(x)⊤v = 0,
and therefore f(x+ tv) = f(x) for all t ∈ R.

One implication for the second equivalence is as follows. By noticing that H−1(d) = x0 + ker H
for all x0 ∈ H−1(d), the equality (Ax + a)⊤v = 0 for all x ∈ H−1(d) implies that Av ∈ (ker H)⊥ =
H⊤(Rm). Thus, there exists y ∈ R

m such that Av = H⊤y and therefore

0 = x⊤Av + a⊤v = x⊤H⊤y + a⊤v = d⊤y + a⊤v.

The remaining implication is obvious.

(c): It follows from (a) and (b), along with Proposition 3.2.1 and Corollary 3.4.2.

(d): Take any x0 ∈ S+
f (µ). Then, from (b) it follows that f(x0 + tv) = f(x0) > µ for all |t| ≥ t1.

For such t, (a) implies that x0 + tv ∈ S+
f (µ) ∩ S−

g (0). Hence, since

r ≤ g(x0) + t∇g(x0)⊤v + t2

2 v
⊤Bv

f(x0)− µ
, ∀ |t| ≥ t1,

we infer that r = −∞.

Proposition 3.3.5. Let f, g : Rn → R be quadratic functions as above with µ finite. Then,

(a) r = −∞ =⇒





argmin
K

f 6= ∅, or;

µ = inf
x∈H−1(d)

f(x) with argmin
H−1(d)

f 6= ∅, or;

∃ xk ∈ S+
f (µ) ∩ S−

g (0) : ‖xk‖ → +∞, xk

‖xk‖
→ v ∈ ker H, and

v⊤Av = 0, v⊤Bv = 0.



CHAPTER 3. NONCONVEX QUADRATIC AND CONSTRAINTS 30

(b) s = 0 =⇒





argmin
K

f ∩ S=
g (0) 6= ∅, or;

∃ xk ∈ S−
f (µ) : ‖xk‖ → +∞, xk

‖xk‖
→ v ∈ ker H, and

v⊤Av = 0, v⊤Bv = 0.

Proof. (a): By assumption, there exists a sequence xk ∈ S+
f (µ) ∩ S−

g (0) such that

lim
k→+∞

g(xk)

f(xk)− µ
= −∞.

We distinguish two cases.

Case 1. sup
k∈N

‖xk‖ < +∞. Up to a subsequence we may assume that xk → x0 as k → +∞.

Thus, g(x0) ≤ 0 and f(x0) ≥ µ. The case g(x0) = 0, f(x0) = µ (resp. g(x0) < 0, f(x0) = µ) yields
argmin

K

f ∩ S=
g (0) 6= ∅ (resp. argmin

K

f ∩ S−
g (0) 6= ∅). The other situations cannot occur since

lim
k→+∞

g(xk)

f(xk)− µ
=





g(x0)

f(x0)− µ
6= −∞ , if g(x0) < 0, f(x0) > µ;

0 , if g(x0) = 0, f(x0) > µ.

Case 2. sup
k∈N

‖xk‖ = +∞. Then, we can assume that

‖xk‖ → +∞,
xk
‖xk‖

→ v, as k → +∞, (3.18)

and therefore v ∈ ker H, v⊤Av ≥ 0 and v⊤Bv ≤ 0. Moreover, we obtain, as in Case 1,

lim
k→+∞

g(xk)

f(xk)− µ
=





v⊤Bv

v⊤Av
6= −∞ , if v⊤Av > 0, v⊤Bv < 0;

0 , if v⊤Av > 0, v⊤Bv = 0.

Hence, we must have v⊤Av = 0 and v⊤Bv ≤ 0. In case v⊤Av = 0 and v⊤Bv < 0, we apply Proposition
3.3.4(c) to get the second posibility of (a).

(b): We have the existence of a sequence xk ∈ S−
f (µ) such that

lim
k→+∞

g(xk)

f(xk)− µ
= 0.

We likewise distinguish two cases.
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Case 1. sup
k∈N

‖xk‖ < +∞. Up to a subsequence, we obtain xk → x0 ∈ H−1(d), g(x0) ≥ 0 and

f(x0) ≤ µ. Since g(x0) = 0 and f(x0) < µ is impossible, and because of

lim
k→+∞

g(xk)

f(xk)− µ
=





g(x0)

f(x0)− µ
6= 0 , if g(x0) > 0, f(x0) < µ;

−∞ , if g(x0) > 0, f(x0) = µ,

we must have g(x0) = 0 and f(x0) = µ.

Case 2. sup
k∈N

‖xk‖ = +∞. Passing to a subsequence, if necessary, we have (3.18), and therefore

v ∈ ker H, v⊤Av ≤ 0 and v⊤Bv ≥ 0. As in (a), we get necessarily v⊤Av ≤ 0 and v⊤Bv = 0. The
conclusion follows after noticing that v⊤Av < 0 and v⊤Bv = 0 cannot occur by Proposition 3.3.3.

In view of Propositions 3.3.4, 3.3.3 and 3.3.5, the following conditions arise:

• [0 6= v ∈ ker H, v⊤Bv ≤ 0] =⇒ v⊤Av > 0; (3.19)

• [0 6= v ∈ ker H, v⊤Bv = 0] =⇒ v⊤Av > 0; (3.20)

• [v ∈ ker H, v⊤Av = 0 = v⊤Bv] =⇒ v = 0; (3.21)

• [0 6= v ∈ ker H, v⊤Bv = 0] =⇒ v⊤Av 6= 0; (3.22)

• 0 6= v ∈ ker H =⇒ [v⊤Av 6= 0 or v⊤Bv 6= 0]. (3.23)

Clearly,

(3.19) =⇒ (3.20) =⇒ (3.21) ⇐⇒ (3.22) ⇐⇒ (3.23).

By Finsler’s theorem [30] (see also [45]), condition (3.20) is equivalent to:

∃ t ∈ R, such that A+ tB is positive definite on ker H. (3.24)

When this condition is satisfied it is said that the Simultaneous Diagonalization Property holds,
since it implies the existence of a nonsingular matrix C such that both C⊤AC and C⊤BC are diagonal
[46, Theorem 7.6.4]. Such an assumption allowed the authors in [8] to re-write the original problem
in a more tractable one.

In [90] whenH = 0 and d = 0, some relationships between (3.17), (3.20), (3.21) and the Yakuvobich
S-lemma (with quadratic homogeneous functions) are established. They are related with the non-strict
Finsler’s, strict Finsler’s and Finsler-Calabi’s theorem, respectively.

Under assumption (3.22), (b) of Proposition 3.3.5, implies the following corollary

Corollary 3.3.6. Assume that f , g are as above with C = H−1(d) and µ ∈ R. If s = 0 and (3.22) is
satisfied then argmin

K

f ∩ S=
g (0) 6= ∅ and strong duality does not hold.
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Proof. If s = 0 then by (b) of Proposition 3.3.5 we obtain that either argmin
K

f ∩ S=
g (0) 6= ∅ or there

exists 0 6= v ∈ ker H satisfying v⊤Av = 0 and v⊤Bv = 0. By assumption the second situation is
not possible, and therefore the first holds proving the desired result. The lack of strong duality is a
consequence of (a6) in Theorem 3.3.3.

In contrast to a similar result due to Moré [66] where condition (3.19) (stronger than (3.22)) is
imposed, our corollary applies to situations where Theorem 3.3 in [66] does not.

Corollary 3.3.7. Assume that f , g are as above with C = H−1(d) and µ ∈ R. If r = −∞ and (3.22)
is satisfied then strong duality holds and either argmin

K

f 6= ∅ or µ = inf
x∈H−1(d)

f(x) with argmin
H−1(d)

f 6= ∅.

Proof. It is a direct consequence of (a) in Proposition 3.3.5.

Next result, which is new, on one hand characterizes the regularized strong duality without
requiring the nonemptiness of argmin

K

f , and where the Slater condition may fail, and on the other,

gives a sufficient or necessary condition in terms of inequality systems.

Theorem 3.3.4. Let µ be finite with C = H−1(d). Let us consider the following assertions:

(a) argmin
K

f ∩ S=
g (0) = ∅ and (3.23) holds;

(b) strong duality holds;

(c) either S−
f (µ) = ∅ or [S−

f (µ) 6= ∅ with s < 0] holds;

(d) either inf
x∈C

f(x) = µ or [v ∈ ker H, v⊤Av ≤ 0 =⇒ v⊤Bv ≥ 0] holds.

Then, we have the following relationships:

(a) =⇒ (b) ⇐⇒ (c) =⇒ (d).

Proof. (a) =⇒ (c): We have to check that s < 0. If on the contrary, s = 0, by using Proposition
3.3.5(b) we get a contradiction.
(b) =⇒ (c): Suppose that S−

f (µ) 6= ∅. Strong duality implies the existence of λ0 ≥ 0 such that
f(x) + λ0g(x) ≥ µ for all x ∈ C, which yields λ0 > 0. Indeed, if λ0 = 0, the previous inequality gives
f(x)− µ ≥ 0 for all x ∈ C, which is impossible if S−

f (µ) 6= ∅.
Now, suppose that s = 0. Then, there exists x̄ ∈ S−

f (µ) 6= ∅ such that

g(x̄)

f(x̄)− µ
> − 1

λ0
.

It follows that f(x̄) + λ0g(x̄) < µ, giving a contradiction; this proves that s > 0.
(c) =⇒ (b): It is simply a consequence of Theorem 3.3.3 by looking at those items where γ∗ > 0 is
possible.
(c) =⇒ (d) : If S−

f (µ) = ∅ then f(x) ≥ µ for all x ∈ C by Proposition 3.3.2. Assume now that S−
f (µ) 6=
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∅ and s < 0. Due to the convexity of cone(F (C)−µ(1, 0)+R
2
++), we obtain argmin

K

f ∩S−
g (0) = ∅. We

consider two cases: S−
g (0) = ∅ or S−

g (0) 6= ∅. Obviously in the first case, the implication in (d) holds

vacuously. If S−
g (0) 6= ∅, it follows that S+

f (µ) ∩ S−
g (0) 6= ∅ since otherwise S−

g (0) = ∅ by Proposition

3.2.1(b). Thus, we must have −∞ < s ≤ r < 0 again by the convexity of cone(F (C)−µ(1, 0) +R
2
++).

From Proposition 3.3.4(d) it follows that v ∈ ker H, v⊤Bv < 0 =⇒ v⊤Av 6= 0, which together with
(3.16) yields the desired implication.

Example 3.3.1 shows that the implication (c) =⇒ (a) may be false, and the next instance shows
the second part of (d) does not necessarily imply the second part of (c).

Example 3.3.8. Let C = R
n, f(x1, x2) = x1 + x2 and g(x1, x2) = (x1 + x2)

2. Clearly it satisfies the
second part of (d), but it holds S−

f (µ) 6= ∅ with s = 0. Indeed, K = {(0, 0)} and

S−
f (µ) = {(x1, x2) ∈ R

2 : x1 + x2 < 0}.

Hence,

s = sup
x1+x2<0

(x1 + x2)
2

x1 + x2
= 0,

and the strong duality does not hold, since for any λ > 0, the inequality

x1 + x2 + λ(x1 + x2)
2 ≥ 0, ∀ (x1, x2) ∈ R

2

yields a contradiction. This agrees with (a6) of Theorem 3.3.3.

Next example illustrates a situation where our main Theorem 3.3.3 applies, exhibiting that strong
duality holds without satisfying the Slater condition: there exists x0 ∈ H−1(d) such that g(x0) < 0.

Example 3.3.9. Take H(x1, x2) = x1 − x2, d = 0, f(x1, x2) = 2x21 − x22, g(x1, x2) = x21 − x22. Here,
K = {(x1, x2) ∈ R

2 : x1 = x2, x
2
1 − x22 ≤ 0} = {(t, t) ∈ R

2 : t ∈ R}. Clearly, S−
g (0) = ∅ = S−

f (µ) and
µ = 0 with argmin

K

f = {(0, 0)}. According to (a2) of Theorem 3.3.3, we conclude that strong duality

holds by choosing any λ∗ ≥ 0.

The next theorem, which is new in the literature, considers non-convex situations.

Theorem 3.3.5. Let f and g be quadratic functions as above, µ finite and x̄ be feasible for (3.13).
Set C = H−1(d). The following assertions are equivalent:

(a) x̄ is a solution to (3.13) and either S−
f (µ) = ∅ or [S−

f (µ) 6= ∅ with s < 0] holds;

(b) ∃ λ ≥ 0 ∃ y ∈ R
m such that ∇f(x̄) + λ∇g(x̄) + H⊤y = 0, λg(x̄) = 0, A + λB is positive

semidefinite on ker H.



CHAPTER 3. NONCONVEX QUADRATIC AND CONSTRAINTS 34

Proof. (a) =⇒ (b): By Theorem 3.3.4, strong duality holds, thus, there exists λ ≥ 0 such that

f(x̄) + λg(x̄) ≤ f(x̄) = inf
x∈C

(f(x) + λg(x)).

This implies that λg(x̄) = 0 and x̄ is a minimum for L(x) = f(x) + λg(x) on C. The necessary
optimality condition yields

〈∇f(x̄) + λ∇g(x̄), x− x̄〉 ≥ 0 ∀ x ∈ C.

Since x−x̄ ∈ kerH for all x ∈ C, we obtain ∇f(x̄)+λ∇g(x̄) ∈ (ker H)⊥ = H⊤(Rm). Thus, there exists
y ∈ R

m such that ∇f(x̄) + λ∇g(x̄) +H⊤y = 0. On the other hand, we also have f(x) + λg(x) ≥ f(x̄)
for all x ∈ C, which gives λg(x̄) = 0 and v⊤(A+ λB)v ≥ 0 for all v ∈ ker H, i.e., A+ λB is positive
semidefinite on ker H.
(b) =⇒ (a): Setting L(x) = f(x) + λg(x), x ∈ C, we write

L(x)− L(x̄) = 〈∇f(x̄) + λ∗∇g(x̄), x− x̄〉+ 1

2
〈(A+ λB)(x− x̄), x− x̄〉.

By taking into account that x − x̄ ∈ ker H for all x ∈ C and the assumptions, the previous equality
implies that

f(x) ≥ L(x) ≥ L(x̄) = f(x̄) + λg(x̄) = f(x̄), ∀ x ∈ C, g(x) ≤ 0,

which yields f(x) ≥ f(x̄), proving that x̄ is a solution to (3.13).

By applying Theorem 3.3.1, we re-obtain Theorem 3.8 in [51] which generalizes the Moré theorem
[66, Theorem 3.4].

Corollary 3.3.10. [51, Theorem 3.8] (Under Slater condition) Let f , g be quadratic functions with
µ ∈ R. Assume that Hx0 = d and g(x0) < 0 for some x0 ∈ R

n, and let x̄ ∈ K (feasible for problem
(3.13)). Then, the following assertions are equivalent:

(a) x̄ ∈ argmin
K

f ;

(b) ∃ λ ≥ 0 ∃ y ∈ R
m such that ∇f(x̄) + λ∇g(x̄) + H⊤y = 0, λg(x̄) = 0 and A + λB is positive

semidefinite on ker H.

Proof. In case S−
f (µ) = ∅ the result is a consequence of Theorem 3.3.5. If S−

f (µ) 6= ∅ we need to check
that s < 0 and the result again is a consequence of Theorem 3.3.5. Suppose on the contrary that
s = 0. Then, by the convexity of cone(F (Rn)−µ(1, 0) +R++) (see Theorem 3.3.1 or (a6) of Theorem
3.3.3), we must have

S+
f (µ) ∩ S−

g (0) = ∅ and argmin
K

f ∩ S−
g (0) = ∅.

This implies that S−
g (0) = ∅ by Proposition 3.2.1, contradicting the Slater condition. Therefore, s < 0,

and the conclusion follows.
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For completeness we establish a characterization of solutions when Slater condition fails, that is,

g(x) ≥ 0, ∀ x ∈ H−1(d). (3.25)

Under this assumption,
K = {x ∈ H−1(d) : g(x) = 0} = argmin

H−1(d)

g, (3.26)

provided K 6= ∅. By Corollary 3.4.2, for x̄ ∈ H−1(d),

x̄ ∈ argmin
H−1(d)

g ⇐⇒
{
B is positive semidefinite on ker H and

∃ y ∈ R
m, Bx̄+ b+H⊤y = 0.

(3.27)

Therefore, if B is positive semidefinite on ker H, then

x̄ ∈ argmin
K

f ⇐⇒ ∃ y ∈ R
m, (x̄, y) ∈ argmin

K̃

f̃ , (3.28)

where

K̃ =
{
(x, y) ∈ R

n × R
m :

(
B H⊤

H 0

)(
x
y

)
=

(
−b
d

)}
and

f̃(x, y) =
1

2
(x y)

(
A 0
0 0

)(
x
y

)
+ (a 0)

(
x
y

)
+ α = f(x).

Hence, an application of Corollary 3.4.2 to f̃ and K̃ instead of f and K, respectively, leads to the
following corollary.

Corollary 3.3.11. (Slater condition fails) Let f , g be quadratic functions with µ ∈ R and x̄ ∈ K.
Assume that (3.25) holds. Then the following statements are equivalent:

(a) x̄ ∈ argmin
K

f ;

(b) B is positive semidefinite on ker H, A is positive semidefinite on ker H ∩ B−1[(ker H)⊥], and
∃ v ∈ ker H and ∃ (y, z) ∈ R

m × R
m such that

Ax̄+ a+Bv +H⊤z = 0 and Bx̄+ b+H⊤y = 0.

3.4 The Frank-Wolfe and Eaves theorems revisited

In this section motivated by the form of the Lagrangian introduced in the previous section, we review
the Frank Wolfe theorem [37], by providing several equivalences to the nonemptiness of the solution
set, in contrast to the only equivalence between (a) and (d) (of Theorem 3.4.1) established by Frank
Wolfe, or Blum Oettli (the latter authors use elementary analysis in their proof). We believe that
our proof is still shorter than that by Blum Oettli [12], and it is suitable for expository purposes.
The original proof of Frank Wolfe theorem requires a decomposition theorem for convex polyhedra.
Furthermore, it is said that a subset K ⊆ R

n is asymptotically linear [4, Definition 2.3.1] if for all
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ρ > 0 and all sequence xk ∈ K, satisfying ‖xk‖ → +∞,
xk
‖xk‖

→ v ∈ K∞, there exists k0 ∈ N, such

that xk − ρv ∈ K for all k ≥ k0. Here, K
∞ is the asymptotic cone of K defined as in Section 3.2.

Observe that polyhedral sets are asymptotically linear, but there are asymptotically linear sets
that are not polyhedral, see after Definition 2.3.2 in [4]. For instance, convex sets without lines (see
[4]).

The next theorem is a refinement of the FrankWolfe theorem when the constraints set is asymptotically
linear, and likewise it improves some of the main results of Section 3 in [26].
Other extensions in different directions of the Frank-Wolfe theorem may be found in [77, 7].

Theorem 3.4.1. Let K ⊆ R
n be closed, convex and asymptotically linear; h(x) = 1

2x
⊤Ax+ a⊤x+ α

with A ∈ Sn, a ∈ R
n, α ∈ R. The assertions (a)−−(d) are equivalent, where

(a) −∞ < ν
.
= inf

x∈K
h(x);

(b) A is copositive on K∞ and [v⊤Av = 0, v ∈ K∞ =⇒ (Ax+ a)⊤v ≥ 0 ∀ x ∈ K];

(c) A is copositive on K∞ and [v⊤Av = 0, v ∈ K∞, (Ax+ a)⊤v ≤ 0, x ∈ K =⇒ (Ax+ a)⊤v = 0];

(d) argmin
K

h 6= ∅.

Furthermore, we have (e) =⇒ (f) =⇒ (g) =⇒ (h), where

(e) h is coercive, i.e., lim
‖x‖→+∞

x∈K

h(x) = +∞;

(f) A is copositive on K∞ and [v⊤Av = 0, v ∈ K∞, (Ax+ a)⊤v ≤ 0, x ∈ K =⇒ v = 0].

(g) argmin
K

h is nonempty and bounded;

(h) A is copositive on K∞ and [v⊤Av = 0, v ∈ K∞, (Ax+ a)⊤v ≤ 0, ∀ x ∈ K =⇒ v = 0].

It is worth noticing that under convexity on h, i.e., positive semidefiniteness of A (which infers
that: v⊤Av = 0 if and only if v ∈ ker A), one obtains (h) =⇒ (e), and therefore all of them are
equivalent. In general, (h) does not imply (e) as Example 3.4.1 shows.

Proof. (a) =⇒ (b): Let us prove first that A is copositive on K∞. For x0 ∈ K and v ∈ K∞, we obtain
by assumption,

h(x0 + tv) = h(x0) + t〈∇h(x0), v〉+
1

2
t2v⊤Av ≥ ν ∀ t ∈ R. (3.29)

Thus,
1

t2
h(x0) +

1

t
〈∇h(x0), v〉+

1

2
v⊤Av ≥ ν

t2
∀ t ∈ R, t 6= 0.
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Letting t→ +∞, we get v⊤Av ≥ 0 for all v ∈ K∞, proving that A is copositive on K∞. Take v ∈ K∞

such that v⊤Av = 0, then from (3.29) we obtain, (Ax0 + a)⊤v ≥ 0, concluding that (b) holds.
(b) =⇒ (c): It is straightforward.
(b) =⇒ (d): For every k ∈ N, setting Bk

.
= {x ∈ K : ‖x‖ ≤ k}, we may assume that Bk 6= ∅ for all

k ∈ N. Let us consider the problem

inf
x∈Bk

h(x), (3.30)

which always has solution. Let xk be such that

‖xk‖ = min{‖x‖ : x ∈ argmin
Bk

h}.

Case 1. sup
k∈N

‖xk‖ <∞. One can check that any limit point of (xk) belongs to argmin
K

h.

Case 2. sup
k∈N

‖xk‖ = +∞. We can assume that ‖xk‖ → +∞ and
xk
‖xk‖

→ v as k → +∞, thus v ∈ K∞.

Since K is asymptotically linear given ρ > 0 there exists k0 such that xk − ρv ∈ K for all k ≥ k0. We

can also assume that

∥∥∥∥
xk

‖xk‖
− v

∥∥∥∥ < 1 and
ρ

‖xk‖
< 1 for all k ≥ k0. Then, by writing

xk − ρv =
(
1− ρ

‖xk‖
)
xk +

ρ

‖xk‖
(
xk − ‖xk‖v

)
, (3.31)

we get ‖xk − ρv‖ < ‖xk‖. On the other hand, given any x ∈ K, there exists k1 ∈ N such that

h(xk) =
1

2
x⊤k Axk + a⊤xk + α ≤ h(x), ∀ k ≥ k1.

It follows that v⊤Av ≤ 0 and so by the copositive assumption v⊤Av = 0. Again by assumption we
have (Ax+ a)⊤v ≥ 0 for all x ∈ K.
Set uk

.
= xk − ρv. Then, for all k ≥ k0, uk ∈ K, ‖uk‖ < ‖xk‖ and

h(uk) = h(xk − ρv) = h(xk)− ρ(Axk + a)⊤v + ρ2v⊤Av ≤ h(xk).

This means that uk ∈ argmin
Bk

h for all k sufficiently large, contradicting the choice of xk.

Consequently, Case 2 cannot happen, and hence argmin
K

h 6= ∅.
(d) =⇒ (a): It is straightforward.
(e) =⇒ (f): Evidently the coercive property of h implies the first part of (f), and the second part
easily follows as well.
(f) =⇒ (g): That argmin

K

h 6= ∅ follows from (c) implies (d). Suppose there exists a sequence of

minimizers xk such that ‖xk‖ → +∞. Up to a subsequence we may assume that
xk
‖xk‖

→ v ∈ K∞\{0}.
From the equality h(xk) = ν it follows that v⊤Av = 0. On the other hand, by the classical optimality
condition, ∇h(xk)⊤(x − xk) ≥ 0 for all x ∈ K. Given ρ > 0, as above, we choose k sufficiently
large such that xk − ρv ∈ K. Thus (Axk + a)⊤v ≤ 0, which by assumption yields v = 0, giving a
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contradiction.
(g) =⇒ (h): The first part of (h) is a consequence of (a) implies (b). Take v ∈ K∞ satisfying v⊤Av = 0
and (Ax + a)⊤v ≤ 0 for all x ∈ K. We suppose on the contrary that v 6= 0. From the equality in
(3.29) for x0 to be a minimizer, we deduce that h(x0 + tv) ≤ h(x0) for all t > 0, which says that
x0 + tv ∈ argmin

K

h for all t > 0, which is not possible if argmin
K

h is bounded and v 6= 0.

The following example show that the reverse implications in the preceding theorem need not to be
true in general.

Example 3.4.1. This example shows, that in general (h) does not imply (g). Take h1(x1, x2) = x21−x22,
K1 = {(x1, x2) ∈ R

2 : |x1 − x2| ≤ 1}. Thus K∞
1 = {(x, x) ∈ R

2 : x ∈ R}. One can easily check that
(h) holds but argmin

K1

h1 = ∅.

The case K = H−1(d) deserves a special attention, and it is in connection with the Lagrangian
appeared in Section 3.3.

Corollary 3.4.2. Let h be as above. The following assertions are equivalent:

(a) −∞ < ν
.
= inf

x∈H−1(d)
h(x);

(b) A is positive semidefinite on ker H and [v⊤Av = 0, v ∈ ker H =⇒ (Ax + a)⊤v = 0 ∀ x ∈
H−1(d)];

(c) A is positive semidefinite on ker H and [v⊤Av = 0, v ∈ ker H =⇒ ∃ y ∈ R
m : Av =

H⊤y and d⊤y + a⊤v = 0];

(d) argmin
H−1(d)

h 6= ∅;

(e) A is positive semidefinite on ker H and there exist x̄ ∈ H−1(d), y ∈ R
m such that Ax̄+a+H⊤y =

0.

Proof. By virtue of the previous theorem we need only to check (b) ⇐⇒ (c) and (d) =⇒ (e) =⇒ (a).
The equivalence between (b) and (c) follows as in (b) of Proposition 3.3.4.
(d) =⇒ (e): Let x̄ ∈ argmin

H−1(d)

h. Then by the usual necessary optimality condition, we have 〈∇h(x̄), x−

x̄〉 ≥ 0 for all x ∈ H−1(d). Since x − x̄ ∈ ker H for all x ∈ H−1(d), we get Ax̄ + a = ∇h(x̄) ∈
(ker H)⊥ = H⊤(Rm). Hence there exists y ∈ R

m such that Ax̄ + a +H⊤y = 0, which is the desired
result.
(e) =⇒ (a): it is straightforward, once we notice that H−1(d) = x̄+ ker H and

h(x+ x̄) = h(x̄) + 〈∇h(x̄), x〉+ 1

2
x⊤Ax, x ∈ ker H.
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When H is the null matrix and d = 0, the previous result admits a more precise formulation as
expressed in the following corollary. Recall that when A is positive semidefinite (A < 0), we have

v⊤Av = 0 ⇐⇒ v ∈ ker A.

Corollary 3.4.3. Let h be as above. The following assertions are equivalent:

(a) −∞ < ν
.
= inf

x∈Rn
h(x);

(b) A < 0 and [v ∈ ker A =⇒ a⊤v = 0];

(c) argmin
Rn

h 6= ∅;

(d) A < 0 and there exists x̄ ∈ R
n such that Ax̄+ a = 0.



Chapter 4

Single equality and geometric

constraints

4.1 Introduction

Let X be a real Hausdorff topological space and C be nonempty subset of X. Given two functions
f : X → R ∪ {+∞} and g : X → R, with C being a subset of the effective domain of f , dom f , let us
consider the following minimization problem with a single equality and geometric constraints:

µ
.
= inf{f(x) : g(x) = 0, x ∈ C}, (4.1)

and its (Lagrangian) dual problem

ν
.
= sup

λ∈R
inf
x∈C

{f(x) + λg(x)}. (4.2)

We assume that the feasible set K
.
= {x ∈ C : g(x) = 0} is nonempty. It is known that

several important models in real-life problems can be formulated as (4.1), and there are some devices
allowing us to re-write problems with a finite number of inequality constraints (or more generally a
cone constrained minimization problem) into one with a single inequality constraint. Observe that the
latter problem may be considered as a specialization of one with a single equality constraint, and that
problem (4.1) encompasses that of trust-region subproblems well-known in quadratic programming,
in addition to the Portfolio problem.

To be more precise, we will discuss the validity of the zero duality gap and strong duality properties,
where by zero duality gap, we mean µ = ν; whereas strong duality means that problem (4.2) admits
solution and µ = ν.

One of our main tasks is to characterize the strong duality property without convexity assumptions,
from geometrical and topological points of view.

40
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Since
inf
x∈C

{f(x) + λg(x)} ≤ µ, ∀ λ ∈ R, (4.3)

in case µ = −∞, there is no duality gap because of ν = −∞ as well; and from (4.3), we conclude
that any real number is a solution for the problem (4.2), and therefore, strong duality always holds
for (4.1) whenever µ = −∞. Thus, we assume throughout that µ is finite.

When our approach applies to a quadratic programming problem under a single inequality constraint,
that is, f and g are quadratic functions (setting C = R

n), it provides new results without using the
semidefinite programming approach to the dual (4.2), which is based on a Schur complement, see [21,
Appendix B], [84, 55, 95]. For instance, under a Slater-type condition, and for general f , g and C,
we establish that strong duality is valid if and only if the conic hull of (f, g)(C) − µ(1, 0) + R+(1, 0)
is convex, a first characterization of this kind, see Corollary 4.3.8.

Once the characterization of strong duality is established in a general context, it will be applied
to find equivalent formulations to the validity of KKT optimality conditions for the same problem,
since such a validity is characterized in terms of strong duality for a suitable linear approximation of
the given problem. Thus, our results will be useful to deal with models where some theorems based
on exact penalization techniques ([91, 65]) cannot be applied, see Example 4.4.3; or where classical
constraint qualifications fail (see Example 4.4.4), which occurs, for instance, in structural optimization
[2].

Just to point out one concrete application, let us consider one of the simplest but important
problems (with a single equality constraint), which is well-known as the standard quadratic problem

min
x∈∆

1

2
x⊤Ax, (4.4)

where, ∆ is the simplex {x ∈ R
n : 1l⊤x = 1, x ≥ 0} with A being any real symmetric matrix with

positive entries and 1l⊤
.
= (1, . . . , 1) ∈ R

n is the vector with components equal to one. Such a problem
retains, as asserted in [14], most of the complexity of the general quadratic case having a polyhedron
as a feasible set. As applications of (4.4), we mention quadratic allocation problems [47], portfolio
optimization problems [61, 62], the maximum weight clique problem [67, 43], among others. In Section
4.5, our results will apply to a more general problem than (4.4) where ∆ is substituted by a convex
and compact base of any pointed, closed, convex (possibly non polyhedral) cone C. In particular, we
will prove the validity of strong duality and provide further qualitative and quantitative information,
in addition to the uniqueness of the KKT multiplier in our sense.

Our line of reasoning follows previous ones and is based on a careful analysis of the structure of
the problem. Nevertheless, the method employed in [31] (for a single inequality constraint) cannot
be applied to our problem (4.1), since equality constraints are more difficult to handle. We actually
explore the hidden convexity of the underlying problem under the presence of strong duality. Thus,
unlike some of the results appeared elsewhere, which involve conditions on g and C that guarantee
(4.1) has strong duality for every f in a certain class of functions, our approach allows us to derive
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conditions on f , g and C, jointly, that ensure (4.1) has strong duality under no convexity assumption.
Thus, we provide results where none of those in [38, 16, 50, 48, 17, 18, 19, 51, 49, 52] is applicable.

Various sufficient conditions for the zero duality gap have been also established in the literature, see
[38, 3, 4, 94, 16, 18, 19, 85, 27]. By using a Shor’ scheme and the semidefinite programming relaxation
a characterization of zero duality gap in quadratic programming under inequality constraints may be
found in [95]. A different approach is applied in [55] to establish conditions ensuring zero duality gap.

4.2 Some preliminaries

Denote F
.
= (f, g). Assuming that µ ∈ R, we obtain

(F (C)− µ(1, 0)) ∩ −(R++ × {0}) = ∅, (4.5)

which amounts to writing

(F (C) + R+(1, 0) − µ(1, 0)) ∩ −(R++ × {0}) = ∅, (4.6)

or, equivalently,
cone(F (C) + R+(1, 0) − µ(1, 0)) ∩ −(R++ × {0}) = ∅. (4.7)

Consequently, cone(F (C) + R+(1, 0) − µ(1, 0)) 6= R
2.

The following result, is a particular case of Theorem 3.2 in [35]

Proposition 4.2.1. Assume that µ is finite. The following assertions are equivalent

(a) Strong duality holds for (4.1), that is

∃λ∗ ∈ R : f(x) + λ∗g(x) ≥ µ;

(b) cone co(F (C) + R+(1, 0) − µ(1, 0)) ∩ (−R++ × {0}) = ∅.

We first recall a bidimensional optimal alternative theorem valid for convex cones possibly with
empty interior proved in [33].

Theorem 4.2.1. ([33, Theorem 2.4] Let P ⊆ R
2 be a convex cone and A ⊆ R

2 be such that int(cone+(A+
P )) 6= ∅. The following assertions are equivalent:

(a) 0 6∈ int(cone(A+ P )) and cone(A+ P ) is convex;

(b) ∃ p∗ ∈ P ∗ \ {0} such that 〈p∗, a〉 ≥ 0 ∀ a ∈ A.

A remark is in order when we particularize to our minimization problem (4.1).
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Remark 4.2.2. Let us analyze the assumption of the previous theorem when it is applied to problem
(4.1), that is, A = F (C)− µ(1, 0) and P = R+(1, 0). It is easy to see that

int[cone+(F (C)− µ(1, 0) + R+(1, 0))] = ∅ ⇐⇒ F (C)− µ(1, 0) ⊆ R+(1, 0)

⇐⇒ g(x) = 0 ∀ x ∈ C

⇐⇒ K = C.

Hence, Theorem 4.2.1 is applicable to problem (4.1) when K 6= C.

4.3 Strong duality: Geometric and topological characterization

We first describe the Lagrangian duality approach for the minimization problem (4.1) under one single
equality and geometric constraints in a general setting, and then it will be particularized to quadratic
nonconvex programming.

We associate to problem (4.1) the usual linear Lagrangian

L(γ, λ, x)
.
= γf(x) + λg(x),

with γ ≥ 0 and λ ∈ R.

We obtain the trivial inequality

inf
x∈C

L(γ, λ, x) ≤ inf
x∈K

L(γ, λ, x) = γ inf
x∈K

f(x), ∀ γ ≥ 0, ∀ λ ∈ R. (4.8)

In order to get the equality, we need to find conditions under which the reverse inequality holds,
that is, we must have:

γ(f(x)− µ) + λg(x) ≥ 0 ∀ x ∈ C. (4.9)

This will imply strong duality once we get γ > 0.

The sets
F .

= F (C) +R+(1, 0), Fµ
.
= F − µ(1, 0), (4.10)

will play an important role in our analysis.

Set ρ
.
= (γ, λ). Then, (4.9) can be written equivalently as

〈ρ, a〉 ≥ 0 ∀ a ∈ Fµ,

which means by virtue of Theorem 2.1.2 (e),

(γ, λ) ∈ [cone Fµ]
∗. (4.11)
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Set

LSD
.
=
{
λ ∈ R : (1, λ) ∈ [cone Fµ]

∗
}
. (4.12)

Then, (4.1) has the strong duality property if, and only if LSD 6= ∅. Hence

LSD ⊆ SD, (4.13)

where SD is the solution set to the dual problem (4.2). Notice that LSD = SD, whenever LSD 6= ∅.

We will split the set cone Fµ in order to describe its convexity. To that purpose some notation in
Section 3.4 is needed, i.e., S−

g (0), S
=
g (0), S

+
g (0), S

−
f (µ), S

=
f (µ) and S

+
f (µ).

We notice that

C = argmin
K

f ∪ (K \ argmin
K

f) ∪ (C \K).

Obviously

K \ argmin
K

f = S+
f (µ) ∩ S=

g (0);

and

C \K =
(
S−
f (µ) ∩ S−

g (0)
)
∪
(
S−
f (µ) ∩ S+

g (0)
)
∪
(
S=
f (µ) ∩ S−

g (0)
)

∪
(
S=
f (µ) ∩ S+

g (0)
)
∪
(
S+
f (µ) ∩ S−

g (0)
)
∪
(
S+
f (µ) ∩ S+

g (0)
)
.

We set

Ω−
−
.
= S−

f (µ) ∩ S−
g (0); Ω−

+
.
= S−

f (µ) ∩ S+
g (0); Ω=

−
.
= S=

f (µ) ∩ S−
g (0).

Similarly for Ω=
+, Ω

+
−, Ω

+
+. Thus, F (C)− µ(1, 0) + R+(1, 0) = Ω1 ∪ Ω2 ∪ Ω3, where

Ω1 = F (argmin f
K

)− µ(1, 0) +R+(1, 0) = R+(1, 0), provided argminK f 6= ∅;

Ω2 = F (Ω+
=)− µ(1, 0) + R+(1, 0);

Ω3 = [F (Ω−
−)− µ(1, 0) + R+(1, 0)] ∪ [F (Ω−

+)− µ(1, 0) + R+(1, 0)]

∪ [F (Ω=
−)− µ(1, 0) + R+(1, 0)] ∪ [F (Ω=

+)− µ(1, 0) + R+(1, 0)] (4.14)

∪ [F (Ω+
−)− µ(1, 0) + R+(1, 0)] ∪ [F (Ω+

+)− µ(1, 0) + R+(1, 0)].

Evidently
cone(Fµ) = cone(Ω1) ∪ cone(Ω2) ∪ cone(Ω3),

and
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cone(Ω1) ∪ cone(Ω2) = R+(1, 0).

Thus,
cone(Fµ) = cone(Ω3) ∪ R+(1, 0). (4.15)

The next result provides simple expressions for cone(Fµ), and will be exploited along the proof of
our main theorem in this section.

Proposition 4.3.1. Let f, g be as above with µ being finite. The following hold:

(a) if C 6= K then cone(Fµ) = cone(Ω3);

(b) if C = K then F (C)− µ(1, 0) + R++(1, 0) = R++(1, 0), and so

cone(Fµ) = R+(1, 0).

Proof. (a): Notice that (see (g) of Proposition 2.1 in [33])

R+(1, 0) ⊆ cone(F (C \K)− µ(1, 0) + R+(1, 0)),

since every z ∈ R+(1, 0) is the limit of
1

k
(a + kz) for fixed a ∈ F (C \K) − µ(1, 0). But cone(F (C \

K)− µ(1, 0) + R+(1, 0)) = cone(Ω3). Thus cone(Fµ) = cone(Ω3) by (4.15).

(b): In case C = K, by Remark 4.2.2,

F (C)− µ(1, 0) + R++(1, 0) ⊆ R++(1, 0).

Let (u, v) ∈ R++ × {0}. Then, there exists x0 ∈ C satisfying f(x0) < µ + u. Thus, (u, v) ∈
F (x0)− µ(1, 0) + R++(1, 0) ⊆ F (C)− µ(1, 0) + R++(1, 0), and the conclusion follows.

Furthermore, we need the following numbers:
• if Ω−

+ 6= ∅,
s
.
= sup

x∈Ω−
+

g(x)

f(x)− µ
∈ ]−∞, 0];

• if Ω+
− 6= ∅,

r
.
= inf

x∈Ω+
−

g(x)

f(x)− µ
∈ [−∞, 0[;

• if Ω−
− 6= ∅,

l
.
= inf

x∈Ω−
−

g(x)

f(x)− µ
∈ [0,+∞[;
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• if Ω+
+ 6= ∅,

m
.
= sup

x∈Ω+
+

g(x)

f(x)− µ
∈ ]0,+∞].

Observe that, if ν ∈ R and λ∗ ∈ SD, then

ν − f(x)

|g(x)| ≤ |λ∗| ∀ x ∈ C, g(x) 6= 0. (4.16)

Thus, if µ = ν, one gets

max{s,−l} ≤ − 1

|λ∗| ∀ λ∗ ∈ SD, λ
∗ 6= 0. (4.17)

We will see that under further assumptions (see Remark 4.3.7) exactly one of the sets Ω−
+ or Ω−

−

is nonempty.

The following proposition, whose proof is straightforward, collects some easy useful facts to be
used in what follows.

Proposition 4.3.2. For the above data with µ being finite, we have:

(a) if S−
f (µ) = ∅ then Fµ ⊆ R+ × R, and so Ω−

− = ∅ = Ω−
+;

(b) if m = +∞ then cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)) = R

2
+;

(c) if r = −∞ then cone(F (Ω+
−)− µ(1, 0) + R+(1, 0)) = R+ × R−;

(d) if Ω=
− 6= ∅ 6= Ω=

+ then,

(d1) cone(F (Ω=
−)− µ(1, 0) + R+(1, 0)) = (R+ × R−−) ∪ {(0, 0)};

(d2) cone(F (Ω=
+)− µ(1, 0) + R+(1, 0)) = (R+ × R++) ∪ {(0, 0)}.

The next result, is important for the main theorem of this section.

Proposition 4.3.3. For the above data with µ being finite, we have:

(a) if the sets Ω−
−, Ω

=
− and Ω+

− are nonempty, then,

(a1) F (Ω+
−)− µ(1, 0) + R+(1, 0) ⊆ cone(F (Ω=

−)− µ(1, 0) + R+(1, 0));

(a2) F (Ω=
−)− µ(1, 0) + R+(1, 0) ⊆ cone(F (Ω−

−)− µ(1, 0) + R+(1, 0)).

(b) if the sets Ω−
+, Ω

=
+ and Ω+

+ are nonempty, then,

(b1) F (Ω+
+)− µ(1, 0) + R+(1, 0) ⊆ cone(F (Ω=

+)− µ(1, 0) + R+(1, 0));

(b2) F (Ω=
+)− µ(1, 0) + R+(1, 0) ⊆ cone(F (Ω−

+)− µ(1, 0) + R+(1, 0)).
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Proof. (a): For the first inclusion let (u, v) ∈ F (Ω+
−)− µ(1, 0) + R+(1, 0). Then, there exist x0 ∈ Ω+

−

and p0 ≥ 0, such that u = f(x0)− µ+ p0, v = g(x0). On the other hand, given any x1 ∈ Ω=
−, one may

find t1 > 0 satisfying g(x0) = t1g(x1); thus,

u = t1[(f(x1)− µ) +
1

t1
(f(x0)− µ+ p0)], v = t1g(x1),

showing the first inclusion. For the second one, take (u, v) ∈ F (Ω=
−)− µ(1, 0) +R+(1, 0). Then, there

exist x0 ∈ Ω=
− and p0 ≥ 0, such that u = p0, v = g(x0). Since for any x1 ∈ Ω−

−, g(x0) = t1g(x1) for
some t1 > 0, we can express

u = t1[(f(x1)− µ) +
p0
t1

− (f(x1)− µ)], v = t1g(x1),

proving the second inclusion.
(b): The first inclusion is a consequence of the following reasoning. Take any (u, v) ∈ F (Ω+

+)−µ(1, 0)+
R+(1, 0), then there exist x0 ∈ Ω+

+ and p0 ≥ 0 such that u = f(x0)− µ+ p0, v = g(x0). On the other
hand, every x1 ∈ Ω=

+ yields g(x0) = t1g(x1) for some t1 > 0. Thus,

u = t1[(f(x1)− µ) +
1

t1
(f(x0)− µ+ p0)], v = t1g(x1),

showing the first inclusion. For the second inclusion we follow a similar reasoning. In fact, take any
(u, v) ∈ F (Ω=

+)−µ(1, 0)+R+(1, 0). Then, there exist x0 ∈ Ω=
+ and p0 > 0, such that u = p0, v = g(x0).

Moreover, for any x1 ∈ Ω−
+, we can find t1 > 0 satisfying g(x0) = t1g(x1); thus

u = t1[(f(x1)− µ) +
p0
t1

− (f(x1)− µ)], v = t1g(x1).

This proves (u, v) ∈ cone(F (Ω−
+)− µ(1, 0) +R+(1, 0)).

Proposition 4.3.4. For the above data with µ being finite, we have:

(a) if −∞ < r < 0 then

cone(F (Ω+
−)− µ(1, 0) + R+(1, 0)) = {(u, v) ∈ R

2 : ru ≤ v ≤ 0, u ≥ 0}; (4.18)

(b) if 0 < m < +∞, then

cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)) = {(u, v) ∈ R

2
+ : v ≤ mu, }; (4.19)

(c) if 0 < l < +∞ then

cone(F (Ω−
−)− µ(1, 0) + R+(1, 0)) = {(u, v) ∈ R

2 : v ≤ lu, v ≤ 0}; (4.20)

(d) if −∞ < s < 0 then

cone(F (Ω−
+)− µ(1, 0) + R+(1, 0)) = {(u, v) ∈ R

2 : v ≥ su, v ≥ 0}. (4.21)
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Proof. We will prove only (a) and (b), being the others entirely similar.
(a): Obviously

F (Ω+
−)− µ(1, 0) ⊆ {(u, v) ∈ R

2 : ru ≤ v ≤ 0, u ≥ 0},
implying one inclusion. For the other inclusion, let (u, v) be in the set on the right-hand side of (4.18).

There exists a sequence xk ∈ Ω+
− such that

g(xk)

f(xk)− µ
→ r. Then,

1

f(xk)− µ
(f(xk)−µ, g(xk)) → (1, r),

which implies
(1, r) ∈ cone(F (Ω+

−)− µ(1, 0) + R+(1, 0)).

Consequently,

(
v

r
, v) ∈ cone(F (Ω+

−)− µ(1, 0) + R+(1, 0)).

It follows that

(u, v) = (
v

r
, v) + (u− v

r
, 0) ∈ cone(F (Ω+

−)− µ(1, 0) +R+(1, 0)) + R+(1, 0)

⊆ cone(F (Ω+
−)− µ(1, 0) +R+(1, 0)).

(b): Similarly as above, it is obvious that

F (Ω+
+)− µ(1, 0) ⊆ {(u, v) ∈ R

2
+ : v ≤ mu }.

For the other inclusion, take any (u, v) in the set on the right-hand side of (4.19). Then, there exists

xk ∈ Ω+
+ such that

g(xk)

f(xk)− µ
→ m. Thus

1

f(xk)− µ
(f(xk)− µ, g(xk)) → (1,m),

which implies (1,m) ∈ cone(F (Ω+
+)− µ(1, 0) +R+(1, 0)). Hence

(
v

m
, v) ∈ cone(F (Ω+

+)− µ(1, 0) + R+(1, 0)).

By the choice of (u, v), we get

(u, v) = (
v

m
, v) + (u− v

m
, 0) ∈ cone(F (Ω+

+)− µ(1, 0) + R+(1, 0)) + R+(1, 0)

⊆ cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)).

Before establishing our complete description of the convexity of cone Fµ, we need some additional
preliminary results.

Proposition 4.3.5. Let us consider problem (4.1) with µ ∈ R and cone(Fµ) being convex.

(a) Assume that Ω−
+ 6= ∅ and s < 0. Then,
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(a1) Ω−
− = Ω=

− = ∅;
(a2) if additionaly Ω+

− 6= ∅ one has s ≤ r.

(b) Assume that Ω−
− 6= ∅ and l > 0. Then,

(b1) Ω−
+ = Ω=

+ = ∅;
(b2) if additionaly Ω+

+ 6= ∅ one has l ≤ m.

Proof. We will prove only (a), since (b) is similar. By (d) of Proposition 4.3.4,

{(u, v) ∈ R
2 : v ≥ su, v ≥ 0} ⊆ cone(Fµ).

Thus, if cone(Fµ) is convex then immediately Ω−
+ = Ω=

+ = ∅, proving (a1). In case Ω+
− 6= ∅, one gets

s ≤ r due to convexity again.

We now proceed to describe all the situations that may occur under which cone Fµ is convex. In
what follows the slightly dark regions in Figures 4.1 to 4.5, represent cone(Fµ), and its polar cone is
the darker part. Recall that LSD = {λ ∈ R : (1, λ) ∈ [cone Fµ]

∗}.

Theorem 4.3.1. Let us consider problem (4.1) with µ ∈ R. Assume that cone Fµ 6= R
2. Then,

cone Fµ is convex if, and only if exactly one of the following assertions holds:

(a1) C = K. In which case F (C)− µ(1, 0) + R++(1, 0) = R++(1, 0). Hence

[cone Fµ]
∗ = R+ × R,

and LSD = SD = R.

(a2) S−
f (µ) = ∅ and either Ω=

− 6= ∅ or [Ω+
− 6= ∅, r = −∞] and either [Ω+

+ 6= ∅, m = +∞] or Ω=
+ 6= ∅.

In which case cone(Fµ) = R+ × R. Hence

[cone Fµ]
∗ = R+ × {0},

and LSD = SD = {0}.

(a3) S−
f (µ) = Ω=

− = ∅, Ω+
− 6= ∅, −∞ < r < 0 and either [Ω+

+ 6= ∅, m = +∞] or Ω=
+ 6= ∅. In which

case S−
g (0) = Ω+

− and cone(Fµ) = {(u, v) ∈ R
2 : v ≥ ru, u ≥ 0}. Hence

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, 0 ≤ λ ≤ −1

r
},

and LSD = SD = {λ ∈ R : 0 ≤ λ ≤ −1

r
}.
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Figure 4.1: Theorem 4.3.1: (a1), (a2), (a3) (figure produced by author)

(a4) S−
f (µ) = Ω=

+ = ∅, Ω+
+ 6= ∅, 0 < m < +∞ and either [Ω+

− 6= ∅, r = −∞] or Ω=
− 6= ∅. In which

case S+
g (0) = Ω+

+ and cone(Fµ) = {(u, v) ∈ R
2 : v ≤ mu, u ≥ 0}. Hence,

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, − 1

m
≤ λ ≤ 0},

and LSD = SD = {λ ∈ R : − 1

m
≤ λ ≤ 0}.

(a5) S−
f (µ) = Ω=

+ = Ω=
− = ∅, Ω+

+ 6= ∅, 0 < m < +∞, Ω+
− 6= ∅, −∞ < r < 0. In which case

S−
g (0) = Ω+

−, S
+
g (0) = Ω+

+ and cone(Fµ) = {(u, v) ∈ R
2 : ru ≤ v ≤ mu, u ≥ 0}. Hence,

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, − 1

m
γ ≤ λ ≤ −1

r
γ},

and LSD = SD = {λ ∈ R : − 1

m
≤ λ ≤ −1

r
}.

(a6) S−
g (0) = S−

f (µ) = ∅ and either Ω=
+ 6= ∅ or [Ω+

+ 6= ∅, m = +∞]. In which case cone(Fµ) = R
2
+.

Hence,
[cone Fµ]

∗ = R
2
+,

and LSD = SD = {λ ∈ R : 0 ≤ λ}.
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Figure 4.2: Theorem 4.3.1: (a4), (a5), (a6) (figure produced by author)

(a7) Si S−
g (0) = S−

f (µ) = Ω=
+ = ∅, Ω+

+ 6= ∅, 0 < m < +∞. In which case S+
g (0) = Ω+

+ and

cone(Fµ) = {(u, v) ∈ R
2 : 0 ≤ v ≤ mu}. Hence

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, − 1

m
γ ≤ λ ≤ mγ},

and LSD = SD = {λ ∈ R : − 1

m
≤ λ ≤ m}.

(a8) Ω=
+ = Ω−

+ = ∅, Ω+
+ 6= ∅, Ω−

− 6= ∅, m ≤ l. In which case S+
g (0) = Ω+

+ and cone(Fµ) = {(u, v) ∈
R
2 : v ≤ mu, v ≤ lu}. Hence,

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, − 1

m
γ ≤ λ ≤ −1

l
γ},

and LSD = SD = {λ ∈ R : − 1

m
≤ λ ≤ −1

l
}.

(a9) Ω=
− = Ω−

− = ∅, Ω+
− 6= ∅, Ω−

+ 6= ∅, s ≤ r. In which case S−
g (0) = Ω+

− and cone(Fµ) = {(u, v) ∈
R
2 : v ≥ su, v ≥ ru}. Hence,

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, −1

s
γ ≤ λ ≤ −1

r
γ},

and LSD = SD = {λ ∈ R : −1

s
≤ λ ≤ −1

r
}.
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Figure 4.3: Theorem 4.3.1: (a7), (a8), (a9) (figure produced by author)

(a10) S−
g (0) = ∅, Ω−

+ 6= ∅, −∞ < s < 0. In which case cone(Fµ) = {(u, v) ∈ R
2 : v ≥ su, v ≥ 0}.

Hence

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, −1

s
γ ≤ λ},

and LSD = SD = {λ ∈ R : −1

s
≤ λ}.

(a11) S−
g (0) = ∅, Ω−

+ 6= ∅, s = 0. In which case cone(Fµ) = {(u, v) ∈ R
2 : v ≥ 0}. Hence,

[cone Fµ]
∗ = {0} × R+,

and so LSD = ∅.

(a12) S+
g (0) = ∅, Ω−

− 6= ∅, 0 < l < +∞. In which case cone(Fµ) = {(u, v) ∈ R
2 : v ≥ lu, v ≤ 0}.

Hence

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, λ ≤ −1

l
γ},

and LSD = SD = {λ ∈ R : λ ≤ −1

l
}.
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Figure 4.4: Theorem 4.3.1: (a10), (a11), (a12) (figure produced by author)

(a13) S+
g (0) = ∅, Ω−

− 6= ∅, l = 0. In which case cone(Fµ) = {(u, v) ∈ R
2 : v ≤ 0}. Hence

[cone Fµ]
∗ = {0} × R−,

and so LSD = ∅.

(a14) S+
g (0) = S−

f (µ) = ∅ and either [Ω+
− 6= ∅, r = −∞] or Ω=

− 6= ∅. In which case cone(Fµ) =
R+ × R−. Hence,

[cone Fµ]
∗ = R+ × R−,

and LSD = SD = {λ ∈ R : λ ≤ 0}.

(a15) S+
g (0) = S−

f (µ) = ∅, Ω=
− = ∅, Ω+

− 6= ∅, −∞ < r < 0. In which case S−
g (0) = Ω+

− and

cone(Fµ) = {(u, v) ∈ R
2 : ru ≤ v ≤ 0}. Hence,

[cone Fµ]
∗ = {(γ, λ) ∈ R

2 : γ ≥ 0, rγ ≤ λ ≤ −1

r
γ},

and LSD = SD = {λ ∈ R : r ≤ λ ≤ −1

r
}.
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Figure 4.5: Theorem 4.3.1: (a13), (a14), (a15) (figure produced by author)

Proof. The proof consists of two parts: the first part is devoted to find the precise expression for
cone Fµ, and the second part will prove the “only if” issue.
1st Part:
(a1): See Proposition 4.3.1.
(a2) : It follows from Proposition 4.3.2.
(a3) : By Proposition 4.3.2, cone(F (Ω=

+)− µ(1, 0) + R+(1, 0)) = R
2
+, and if m = +∞ then

cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)) = R

2
+.

Both results along with the equalities S−
f (µ) = Ω=

− = ∅ give (see Proposition 4.3.1)

cone(Fµ) = cone(Ω3) = cone(F (Ω+
−)− µ(1, 0) + R+(1, 0)) ∪ R

2
+.

Then, the result follows from (a) of Proposition 4.3.4.
(a4) By Proposition 4.3.4, Ω=

− 6= ∅ and r = −∞ imply

cone(F (Ω=
−)− µ(1, 0) + R+(1, 0)) = cone(F (Ω+

−)− µ(1, 0) + R+(1, 0)) = R+ × R−.

Both results along with S−
f (µ) = Ω=

+ = ∅, allow us to infer that (see Proposition 4.3.1)

cone(Fµ) = cone(Ω3) = cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)) ∪ R+ × R−.

Thus, the conclusion follows from (b) of Proposition 4.3.4.
(a5): Since S−

f (µ) = Ω=
+ = Ω=

− = ∅, one obtains (see Proposition 4.3.1)

cone(Fµ) = cone(Ω3) = cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω+

−)− µ(1, 0) + R+(1, 0)).

Thus, the conclusion follows from (a) and (b) of Proposition 4.3.4.
(a6): Since S−

f (µ) = S−
g (0) = ∅, we get (Proposition 4.3.1)

cone(Fµ) = cone(Ω3) = cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω=

+)− µ(1, 0) + R+(1, 0)) = R
2
+,
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where the last equality is obtained by Propositions 4.3.2 and 4.3.4.
(a7): The conclusion of the first part follows since S−

f (µ) = S−
g (0) = Ω=

+ = ∅ yield (Proposition 4.3.1)

cone(Fµ) = cone(Ω3) = cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)) = {(u, v) ∈ R

2
+ : v ≤ mu },

because of Proposition 4.3.4.
(a8): Taking into account (a) of Proposition 4.3.3, we get, as above,

cone(Fµ) = cone(Ω3) = cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω−

−)− µ(1, 0) + R+(1, 0)).

So, the conclusion follows as a consequence of Proposition 4.3.4.
(a9): It is analogous to (a8). Taking into account (b) of Proposition 4.3.3, we obtain

cone(Fµ) = cone(Ω3)

= cone(F (Ω−
+)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω+

−)− µ(1, 0) + R+(1, 0)).

(a10): As above, we get

cone(Fµ) = cone(F (Ω−
+)− µ(1, 0) + R+(1, 0)) = {(u, v) ∈ R

2 : v ≥ su, v ≥ 0}.

(a11): It is similar to (a10).
(a12): In this case, we get

cone(Fµ) = cone(F (Ω−
−)− µ(1, 0) +R+(1, 0)) = {(u, v) ∈ R

2 : v ≤ lu, v ≤ 0}.

(a13): It is similar to (a12).
(a14): As above, we obtain

cone(Fµ) = cone(Ω3)

= cone(F (Ω+
−)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω=

−)− µ(1, 0) + R+(1, 0))

= R+ × R−.

(a15): Finally, as above, we get

cone(Fµ) = cone(Ω3) = cone(F (Ω+
−)− µ(1, 0) + R+(1, 0))

= {(u, v) ∈ R
2 : ru ≤ v ≤ 0, u ≥ 0}.

2nd Part: Let us check that the convexity of cone(Fµ) implies exactly one of the fifteen cases (ai),
i = 1, 2, . . . , 15. First of all, when C = K, it follows that cone(Fµ) = R+(1, 0) by Proposition 4.3.1,
and so (a1) holds. All the situations occur when C 6= K. Notice also that from (4.7), cone(Fµ) 6= R

2.

From C \K = S−
g (0) ∪ S+

g (0), we identify all the remaining fourteen cases.
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1⌋ S−
g (0) 6= ∅, S+

g (0) = ∅: from (4.14), one gets,

cone(Ω3) = cone(F (Ω−
−)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω=

−)− µ(1, 0) + R+(1, 0))

∪ cone(F (Ω+
−)− µ(1, 0) + R+(1, 0)).

Then, depending if either Ω−
− or Ω=

− or Ω+
− is nonempty, we obtain any of the cases (a12) −−(a15).

2⌋ S−
g (0) = ∅, S+

g (0) 6= ∅: again from (4.14) one gets

cone(Ω3) = cone(F (Ω−
+)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω=

+)− µ(1, 0) + R+(1, 0))

∪ cone(F (Ω+
+)− µ(1, 0) + R+(1, 0)),

obtaining any of the cases (a6), (a7), (a10), (a11).

3⌋ S−
g (0) 6= ∅, S+

g (0) 6= ∅, Ω−
+ 6= ∅: First, assume that s = 0. Then

R× R+ ⊆ cone(Fµ),

which, along with the convexity, yields S−
g (0) = ∅, giving a contradiction. Hence −∞ < s < 0. Thus,

by (a1) of Proposition 4.3.5, Ω−
− = ∅ = Ω=

−. It follows that ∅ 6= S−
g (0) = Ω+

−. Using (a2) of Proposition
4.3.5 again, one obtains s ≤ r. Hence (a9) holds.

4⌋ S−
g (0) 6= ∅, S+

g (0) 6= ∅, Ω−
− 6= ∅: This case is analogous to 3⌋, so we conclude that (a8) holds.

5⌋ S−
g (0) 6= ∅, S+

g (0) 6= ∅, Ω−
+ = Ω−

− = ∅: Since S−
f (µ) = Ω−

− ∪Ω−
+ ∪ Ω−

= = ∅, one obtains

cone(Ω3) = cone(F (Ω=
−)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω=

+)− µ(1, 0) + R+(1, 0))

∪ cone(F (Ω=
+)− µ(1, 0) + R+(1, 0)) ∪ cone(F (Ω+

+)− µ(1, 0) + R+(1, 0)).

Thus each of the cases (a2)−−(a5), is obtained.

6⌋ The remaining case S−
g (0) 6= ∅, S+

g (0) 6= ∅, Ω−
+ 6= ∅, Ω−

− 6= ∅ is not possible since cone(Fµ) 6= R
2.

Now, we establish our geometric and topological characterizations of strong duality.

Theorem 4.3.2. Let us consider problem (4.1) with µ ∈ R. Then, the following are equivalent:

(a) Strong Duality holds for (4.1), that is

∃ λ∗ ∈ R : f(x) + λ∗g(x) ≥ µ, ∀ x ∈ C; (4.22)

(b) cone(Fµ) ∩ (−R++ × {0}) = ∅ and cone(Fµ) is convex;



CHAPTER 4. SINGLE EQUALITY AND GEOMETRIC CONSTRAINTS 57

(c) cone(Fµ) is convex and exactly one of the following assertions holds:

(c1) S−
f (µ) = ∅, in which case 0 ∈ LSD;

(c2) Ω−
+ 6= ∅, s < 0, in which case minLSD = −1

s
;

(c3) Ω−
− 6= ∅, l > 0, in which case maxLSD = −1

l
.

Consequently, under condition (a), one obtains: LSD = SD;

inf
x∈K

f(x) = inf
λ∗g(x)≤0

x∈C

f(x); (4.23)

x̄ is a solution to (4.1) ⇐⇒





x̄ ∈ C, g(x̄) = 0,

f(x̄) = inf
x∈C

[f(x) + λ∗g(x)].
(4.24)

Proof. (b) ⇔ (a) By applying Theorem 3.2 in [35], it remains only to check that (a) implies the
convexity of cone(Fµ). This is a consequence of Theorem 2.4 in [33] because of (4.22).
(a) ⇒ (c) As shown above, (a) yields the convexity of cone(Fµ). Assume that S−

f (µ) 6= ∅. Then λ∗ 6= 0,

C 6= K, and at least one of the sets Ω−
−, Ω

−
+ is nonempty. We claim that exactly one of such sets is

nonempty. Indeed, if there exist x1 ∈ Ω−
+ and x2 ∈ Ω−

−, we get (f(x1)−µ, g(x1)), (f(x2)−µ, g(x2)) ∈
F (C)− µ(1, 0) + R+(1, 0) ⊆ cone(Fµ). Setting t0

.
=

−g(x2)
g(x1)− g(x2)

∈ ]0, 1[, we get by convexity

t0(f(x1)− µ, g(x1)) + (1− t0)(f(x2)− µ, g(x2))

= (t0(f(x1)− µ) + (1− t0)(f(x2)− µ), 0) ∈ cone(Fµ) ∩ −R++ × {0},
which contradicts (b).
Consider the case Ω−

+ 6= ∅. Let us prove that s < 0. We first check that λ∗ > 0. If λ∗ < 0 then (4.22)
implies

g(x) ≤ −(f(x)− µ)

λ∗
< 0, ∀ x ∈ S−

f (µ),

showing that Ω−
− 6= ∅, which is impossible. Hence λ∗ > 0, and by (4.22), we get

g(x)

f(x)− µ
≤ − 1

λ∗
< 0, ∀ x ∈ Ω−

+,

proving that s ≤ − 1

λ∗
< 0, and so λ∗ ≥ −1

s
.

The case Ω−
− 6= ∅ is treated similarly, concluding that Ω−

+ = ∅ and λ∗ < 0. Thus, from (4.22), we
obtain

0 < − 1

λ∗
≤ g(x)

f(x)− µ
, ∀ x ∈ Ω−

−,

implying that 0 < − 1

λ∗
≤ l, and so λ∗ ≤ −1

l
.

Then, from Theorem 4.3.1, we conclude that cone Fµ is convex.
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(c1) ⇒ (a) In this case we obtain that f(x)−µ ≥ 0, ∀ x ∈ C. Thus, by choosing λ∗ = 0, (4.22) holds.
(c2) ⇒ (a) From Ω−

+ 6= ∅, s < 0, it follows that

f(x)− µ+

(
−1

s

)
g(x) ≥ 0, ∀ x ∈ Ω−

+. (4.25)

We claim the inequality in (4.25) holds for all x ∈ C. In fact, since C = (argminKf)∪(K\argminKf)∪
(C \K), we obtain:
if x ∈ argminKf then 0 = f(x)− µ = f(x)− µ+

(
−1

s

)
g(x);

if x ∈ K \ argminKf = Ω+
= then 0 < f(x)− µ = f(x)− µ+

(
−1

s

)
g(x);

finally, assume that x ∈ C \ K = S+
g (0) ∪ S−

g (0). The case x ∈ S+
g (0), which may be splitted as

Ω=
+ ∪ Ω+

+ ∪ Ω−
+, allows us to prove that (4.22) holds from (4.25) directly. The case x ∈ S−

g (0) =

Ω=
− ∪ Ω+

− ∪ Ω−
−, allows us to prove that (4.22) holds by assumption and (a1) of Proposition 4.3.5. In

fact, Ω−
− = Ω=

− = ∅, and if x ∈ Ω+
− then f(x) − µ +

(
−1

s

)
g(x) ≥ 0, since otherwise, s > g(x)

f(x)−µ
≥ r,

contradicting (a2) of Proposition 4.3.5.
(c3) ⇒ (a) We apply (b) of Proposition 4.3.5 in a similar way as in the previous case to conclude with
the expected result f(x)− µ+

(
−1

l

)
g(x) ≥ 0 for all x ∈ C.

Assertions (4.23) and (4.24) are straightforward.

We immediately point out that the convexity of cone(Fµ) does not imply the convexity of cone(Fµ)
without any additional assumption. This is illustrated by Example 4.3.6. However, under strong
duality that implication holds, as shown by the previous theorem.

Example 4.3.6. Let f(x1, x2) = 2x1x2, g(x1, x2) = x1 and C = R
2. Then, µ = 0, F (R2) =

{(0, 0)} ∪ (R2 \ R× {0}), and so

cone(F (R2)− µ(1, 0) + R+(1, 0)) = R
2 \ (−R++ × {0}),

which is nonconvex, but cone(Fµ) = R
2. It is easy to check that strong duality does not hold.

Remark 4.3.7. From the proof of (a) ⇒ (c) of Theorem 4.3.2 we conclude that if strong duality holds
and S−

f (µ) 6= ∅, then exactly one of the sets Ω−
+ or Ω−

− is nonempty.

The following result, which is new in the literature, provides a characterization of strong duality
under a Slater-type condition.

Corollary 4.3.8. Let µ ∈ R and assume that there exist x1, x2 ∈ C such that g(x1) < 0 < g(x2).
Then, cone(Fµ) is convex if and only if strong duality holds for (4.1).

Proof. Since cone(Fµ) ∩ −(R++ × {0}) = ∅ (see (4.7)), a standard convex separation theorem yields
the existence of γ, λ ∈ R such that

γ(f(x)− µ+ r) + λg(x) ≥ 0, ∀ x ∈ C, r ≥ 0.

Then γ ≥ 0, and the Slater-type condition gives γ > 0, which ensures that strong duality holds. The
other implication follows from Theorem 4.3.2.
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Remark 4.3.9. (The quadratic case) When f and g are quadratic functions, it is proven in [36]
that, under the same Slater condition imposed in Corollary 4.3.8, strong duality holds if, and only
if F (Rn) + R+(1, 0) is convex. Necessary and sufficient conditions for the convexity are provided in
Theorem 4.12 of [36]. Such a characterization encompasses the case when the Hessian of g is not the
zero matrix, or when g is strictly concave (or strictly convex).

Next example shows that a Slater-type condition: g(x1) < 0 < g(x2) for some x1, x2 ∈ C, is
needed.

Example 4.3.10. Let us consider f(x1, x2) = x1 + x2, g(x1, x2) = (x1 + x2)
2 and C = R

2. One
can deduce that µ = 0, argminKf = {(x1, x2) : x1 + x2 = 0} and there is no duality gap. Moreover,
F (R2) = {(u, v) ∈ R

2 : v = u2}, S−
g (0) = ∅ and Ω−

+ = S−
f (µ) = {(x1, x2) ∈ R

2 : x1 + x2 < 0}, and
therefore cone Fµ is convex ((a11) of Theorem 4.3.1 holds) and

s = sup
x1+x2<0

(x1 + x2)
2

x1 + x2
= 0.

Hence, by virtue of (c) of Theorem 4.3.2, strong duality does not hold, which may be checked directly.

Now we exhibit an example illustrating a situation where our main Theorem 4.3.2 applies: strong
duality is present without satisfying the Slater-type condition.

Example 4.3.11. Take f(x1, x2) = 2x21 − x22, g(x1, x2) = x21 + x22 and C = R
2. Here, K = {(0, 0)},

µ = 0, S−
g (0) = ∅. One gets s = −1, and according to (a10) of Theorem 4.3.1 the convexity of cone Fµ

follows (which is also a consequence of Dine’s theorem). Thus, by (c2) of Theorem 4.3.2 strong duality
holds, with LSD = [1,+∞[.

4.4 Characterizing KKT optimality conditions

This section deals with some characterizations of the validity of the KKT optimality conditions for
problem (4.1), see [57, 58]. For simplicity, take X to be R

n, and f and g to be differentiable on R
n.

Such characterizations will be derived as a consequence of Theorem 4.3.2 applied to the linearized
approximation problem defined, given x̄ ∈ C, by

µL
.
= inf{∇f(x̄)⊤v : v ∈ G′(x̄)}, (4.26)

where
G′(x̄)

.
=
{
v ∈ T (C; x̄) : ∇g(x̄)⊤v = 0

}
.

Set FL(v)
.
= (∇f(x̄)⊤v,∇g(x̄)⊤v). Since G′(x̄) is a cone, then µL ≤ 0. Thus, if µL < 0, then there

exist v0 ∈ G′(x̄) such that ∇f(x̄)⊤v0 < 0. Then, we obtain for all t > 0:

µL < t∇f(x̄)⊤v0 −→ −∞, as t→ +∞.

That is, µL ∈ {−∞, 0}. Additionally
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µL = 0 ⇐⇒ [v ∈ T (C; x̄), ∇f(x̄)⊤v < 0 =⇒ ∇g(x̄)⊤v 6= 0]

⇐⇒ FL(T (C; x̄)) ∩ −(R++ × {0}) = ∅
⇐⇒ [FL(T (C; x̄)) + R+(1, 0)] ∩ (−R++ × {0}) = ∅. (4.27)

In view of Theorem 4.3.2, we introduce the following sets:

Ŝ−
f (0)

.
= {v ∈ T (C; x̄) : ∇f(x̄)⊤v < 0}, Ŝ+

g (0)
.
= {v ∈ T (C; x̄) : ∇g(x̄)⊤v > 0},

Ω̂−
+
.
= Ŝ−

f (0) ∩ Ŝ+
g (0), Ω̂−

−
.
= Ŝ−

f (0) ∩ Ŝ−
g (0).

Furthermore, whenever Ω̂−
+ 6= ∅ 6= Ω̂−

−, we put

ŝ
.
= sup

v∈Ω̂−
+

∇g(x̄)⊤v
∇f(x̄)⊤v , l̂

.
= inf

v∈Ω̂−
−

∇g(x̄)⊤v
∇f(x̄)⊤v .

We denote by L(x̄) the set of Lagrange multipliers to problem (4.1) associated to a (not necessarily
feasible) point x̄ ∈ C, i.e., the set of λ∗ ∈ R satisfying (4.29). It obvious that

λ∗ ∈ L(x̄) ⇐⇒ (1, λ∗) ∈ [FL(T (C; x̄)) + R+(1, 0)]
∗. (4.28)

When L(x̄) 6= ∅, we say that x̄ is a KKT point.

Next remark describes the case ∇g(x̄) = 0.

Remark 4.4.1. Assume that x̄ ∈ C and ∇g(x̄) = 0. Observe that, if ∇g(x̄) = 0, then G′(x̄) = T (C; x̄)
and

µL = inf{∇f(x̄)⊤v : v ∈ T (C; x̄)}.
Thus, if L(x̄) 6= ∅, one gets from (4.28) for some λ∗ ∈ R that

〈
(1, λ∗), (∇f(x̄)⊤v + u, 0)

〉
= ∇f(x̄)⊤v + u ≥ 0, ∀ v ∈ T (C; x̄), ∀ u ≥ 0.

Then, it is not difficult to check that:

• µL = 0 if and only if L(x̄) = R.

• µL = −∞ if and only if L(x̄) = ∅.

We are now ready to describe some equivalent formulations of the validity of the KKT optimality
conditions when ∇g(x̄) 6= 0.

Theorem 4.4.1. Assume that x̄ ∈ C. The following assertions are equivalent:
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(a) ∃ λ∗ ∈ R such that
∇f(x̄) + λ∗∇g(x̄) ∈ [T (C; x̄)]∗. (4.29)

(b) µL = 0 and strong duality holds for the problem (4.26).

(c) FL(T (C; x̄)) + R+(1, 0) is convex and

[FL(T (C; x̄)) +R+(1, 0)] ∩ (−R++ × {0}) = ∅. (4.30)

(d) FL(T (C; x̄)) + R+(1, 0) is convex and exactly one of the following assertions holds:

(d1) Ŝ−
f (0) = ∅, in which case 0 ∈ L(x̄);

(d2) Ω̂−
+ 6= ∅, ŝ < 0, in which case minL(x̄) = −1

ŝ
;

(d3) Ω̂−
− 6= ∅, l̂ > 0, in which case maxL(x̄) = −1

l̂
.

(e) FL(T (C; x̄)) + R+(1, 0) is convex, µL = 0 and

vk ∈ T (C; x̄), ‖vk‖ → +∞,
∇g(x̄)⊤vk → 0,∇f(x̄)⊤vk < 0

}
=⇒ lim sup

k

∇f(x̄)⊤vk = 0. (4.31)

Proof. It is not difficult to check that (a) is equivalent to (b). The equivalence between (c) and (d)
follows from Theorem 4.3.2.

(c) ⇐⇒ (e): We now prove that (4.30) is equivalent to µL = 0 and (4.31). Assume that (4.30)
holds. Then, (4.27) implies immediately that µL = 0. Take any vk ∈ T (C; x̄), lim

k
∇g(x̄)⊤vk = 0,

∇f(x̄)⊤vk < 0. Suppose, on the contrary, that lim sup
k

∇f(x̄)⊤vk = ξ < 0. Up to a subsequence,

∇f(x̄)⊤vk → ξ ∈ [−∞, 0[, which says that ∇f(x̄)⊤vk < 0 for all k sufficiently large. Due to linearity
(
∇f(x̄)⊤
∇g(x̄)⊤

)
v′k ∈ FL(T (C; x̄)) + R+(1, 0),

where v′k = − vk
∇f(x̄)⊤vk

. Thus

(−1, 0) ∈ [FL(T (C; x̄)) + R+(1, 0)] ∩ −(R++ × {0}),
yielding a contradiction, which proves one implication.
Assume that (4.31) and µL = 0 hold. Take (a, 0) ∈ FL(T (C; x̄)) + R+(1, 0), and suppose that
a < 0. Then, there exist vk ∈ T (C; x̄), rk ≥ 0 such that ∇f(x̄)⊤vk + rk → a. Assume first that
supk ‖vk‖ < +∞. Up to a subsequence, we get vk → v ∈ T (C; x̄). Thus rk → a−∇f(x̄)⊤v ≥ 0, which
implies that 0 > a ≥ ∇f(x̄)⊤v yielding a contradiction since ∇g(x̄)⊤v = 0 and µL = 0.
Assume now that supk ‖vk‖ = +∞. Up to a subsequence, we have ‖vk‖ → +∞. Clearly ∇f(x̄)⊤vk <
0 for all k sufficiently large. Thus, by applying (4.31), we obtain a subsequence vkl such that
∇f(x̄)⊤vkl → 0 as l → +∞. It means that rkl → a, yielding a contradiction, since a < 0.
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A simple sufficient condition for a minimum to be a KKT point under strong duality is expressed
in the following result, which is important by itself. Its importance lies on the fact that it may be
applied to situations where results based either on exact penalization techniques or where Abadie’s
constraint qualification fails.

Proposition 4.4.2. Assume that strong duality holds for (4.1). Then, every solution to (4.1) is a
KKT point, that is, LSD ⊆ L(x̄) for all x̄ ∈ argmin

K

f .

Proof. Let x̄ be a solution to (??). By (4.24), x̄ is a minimum for f + λ∗g on C for some λ∗ ∈ R.
Thus, the standard optimality condition yields ∇f(x̄)+λ∗∇g(x̄) = ∇(f +λ∗g)(x̄) ∈ [T (C; x̄)]∗, which
is the desired result.

The previous proposition has its own merit. First of all, there are instances (see Example 4.3.10)
where no minimizer is a KKT point, if strong duality is not satisfied. On the other hand, as we already
pointed out, such a proposition applies to situations where, for instance, Theorem 3.1 from [91] based
on exact penalization techniques cannot be applied. This is shown by the following example.

Example 4.4.3. Take

0 = µ
.
= min{f(x1, x2) .= x2 : g(x1, x2)

.
= x2 − x21 = 0, (x1, x2) ∈ R

2}.

Clearly, here C = R
2, argminKf = {x̄ = (0, 0)} is a solution to that minimization problem, Fµ is

convex (see (a8) of Theorem 4.3.1) and (c3) of Theorem 4.3.2 is satisfied (l = 1 = m). Thus, strong
duality holds, and by Proposition 4.4.2, x̄ is a KKT point, actually LSD = L(x̄) = {−1}, and therefore
Theorem 3.1 in [91] is not applicable, since such a result yields KKT multipliers which are nonnegative.
Notice that g∞(x̄;u) = −u21 and C(x̄) = {(u1, 0) : u1 ∈ R}, and so the assumptions of Theorem 3.1
in [91] are not verified. Moreover, our result also applies to the problem with the same f but with −g
instead of g, yielding positive KKT multipliers: in such a case, s = r = −1.

We now exhibit an instance where Abadie’s constraint qualification fails but still our Proposition
4.4.2 applies.

Example 4.4.4. (without Abadie’s CQ) Take f(x1, x2) = x2, g(x1, x2) = (x1 − 1)2 + (x2 − 1)2 − 1
and C

.
= {(x1, x2) ∈ R

2 : g0(x1, x2) ≤ 0} with g0(x1, x2)
.
= (x1 − 1)2 + (x2 + 1)2 − 1, and consider

0 = µ
.
= min{f(x1, x2) : g(x1, x2) = 0, (x1, x2) ∈ C}.

Clearly the feasible set reduces to K = {x̄ .
= (1, 0)}, and since −2 ≤ x2 ≤ 0 for all (x1, x2) ∈ C, we

get f(x) + λg(x) ≥ 0 for all x ∈ C, and all λ ≥ 1

2
. We actually get LSD = [

1

2
,+∞[ since s = −2,

so (a10) of Theorem 4.3.1 is satisfied. This implies that strong duality holds. Then, by Proposition
4.4.2, there exists λ ∈ R such that

∇f(x̄) + λ∇g(x̄) ∈ [T (C; x̄)]∗ = R+(0,−1),
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which finally yields the existence of λ ∈ R, λ0 ≥ 0 satisfying

∇f(x̄) + λ∇g(x̄) + λ0∇g0(x̄) = 0,

which says that x̄ is a standard KKT point. However, we will see that Abadie’s constraint qualification
condition fails. Indeed, T (K; x̄) = {(0, 0)}, whereas

G′(x̄)
.
= {v = (v1, v2) ∈ R

2 : ∇g0(x̄)⊤v ≤ 0} = {(v1, v2) : v2 ≤ 0},

H0(x̄)
.
= {v = (v1, v2) ∈ R

2 : ∇g(x̄)⊤v = 0} = {(v1, v2) : v2 = 0}.
Thus, T (K; x̄) 6= G′(x̄) ∩H0(x̄), and therefore Theorem 5.3.1 of [5] is not applicable.

We now show a situation where strong duality is not satisfied (so Proposition 4.4.2 is not applicable),
but our Theorem 4.4.1 applies.

Example 4.4.5. (without strong duality where every minimizer is a KKT point) Let us revise Example
4.3.6. Consider

0 = µ
.
= min{f(x1, x2) .= 2x1x2 : g(x1, x2)

.
= x1 = 0, (x1, x2) ∈ R

2}.

Clearly, here C = R
2, K = argminKf = {(0, x2) : x2 ∈ R}. By virtue of Remark 4.3.7, strong

duality does not hold, since S−
f (0) = {(x1, x2) : x1x2 < 0}, S−

g (0) = {(x1, x2) : x1 < 0}, S+
g (0) =

{(x1, x2) : x1 > 0}, and therefore

Ω−
+ = R++ × (−R++), Ω−

− = (−R++)× R++.

On the other hand, given any x̄ = (0, x̄2), x̄2 ∈ R, one gets ∇g(x̄) = (1, 0), ∇f(x̄) = 2x̄2∇g(x̄) =
2x̄2(1, 0). Let us check that x̄ is a KKT point. To that purpose we apply (d) of Theorem 4.4.1.
Obviously FL(R

2) is convex. We distinguish three cases: if x̄2 = 0, Ŝ−
f (0) = ∅ and so L(x̄ = 0) = {0};

if x̄2 < 0, then

Ω̂−
+ = R++ × R, Ω̂+

− = −Ω̂−
+, ŝ = r̂ =

1

2x̄2
, Ω̂−

− = ∅;

in case x̄2 > 0, then

Ω̂−
− = (−R++)× R, Ω̂+

+ = −Ω̂−
−, l̂ = m̂ =

1

2x̄2
, Ω̂−

+ = ∅.

To be more precise, by applying (a9) of Theorem 4.3.1, we conclude that L(x̄) = {−2x̄2}, that is, there
is uniqueness of multipliers at x̄ = (0, x̄2) for all x̄2 ∈ R.

The next result provides a sufficient condition for a KKT point to be a strict local minimum.
Recall that K

.
= {x ∈ C : g(x) = 0}.

Proposition 4.4.6. Assume that x̄ ∈ C, g(x̄) = 0, satisfies (4.29) for some λ∗ ∈ R, and

[v ∈ T (C; x̄),∇g(x̄)⊤v = ∇f(x̄)⊤v = 0] =⇒ v = 0. (4.32)

Then x̄ is a strict local solution to problem (4.1).
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Proof. By the choice of λ∗, we obtain

∇f(x̄)⊤v ≥ −λ∗∇g(x̄)⊤v, ∀ v ∈ T (C; x̄).

Since
T (K; x̄) ⊆ {v ∈ T (C; x̄) : ∇g(x̄)⊤v = 0},

we get ∇f(x̄)⊤v ≥ 0, for all v ∈ T (K; x̄). By (4.32), it follows that

∇f(x̄)⊤v > 0, ∀ v ∈ T (K; x̄) \ {0},

which implies that x̄ is a strict local solution to (4.1).

Next instance shows that the previous proposition may be applied to non-pseudoconvex objective
functions.

Example 4.4.7. Let us consider f(x1, x2) = sinx1, g(x1, x2) = x2 − x1, C
.
= {(x1, 0) ∈ R

2 : x1 ≥
0}∪{(x1, x2) ∈ R

2
+ : x1 = x2} and x̄ = (0, 0). Clearly f is not pseudoconvex, T (C; x̄) = C and (4.32)

holds. Furthermore, (4.29) is satisfied for λ∗ = 1, µ = −1 and argminKf =
{4k − 1

2
π(1, 1) : k ∈ N

}
.

By Proposition 4.4.6, x̄ = (0, 0) is a strict local solution (in any open ball with positive radius δ < π)
but not global. Note that K 6= C and S−

f (µ) = ∅ and clearly S+
g (0) = {(x1, x2) ∈ C : x2−x1 > 0} = ∅.

On the other hand,

S+
f (µ) =

⋃

k∈N

{
(x1, 0) : x1 > 0, x1 6=

4k − 1

2
π
}
∪
{
(x1, x1) : x1 ≥ 0, x1 6=

4k − 1

2
π
}
,

and S−
g (0) = {(x1, 0) : x1 > 0}. Thus Ω+

− = {(x1, 0) : x1 > 0, x1 6= 4k − 1

2
π, k ∈ N}. Moreover,

xk
.
= (k, 0) ∈ Ω+

− for all k ∈ N, and

g(xk)

f(xk)− µ
=

−k
sin k + 1

=
−1

1
k
(sin k + 1)

−→ −∞, as k → +∞.

Hence r = −∞, and by Theorem 4.3.1, part (a14), we obtain cone(Fµ) = R+×R−, which implies that
LSD = ]−∞, 0]. Notice that L(x̄) = ]−∞, 1] and that the Hessain of f + λ∗g is the null matrix.

The next proposition shows that under suitable assumptions, and starting from an infeasible
sequence, one may obtain either an optimal solution or an infeasible KKT-point, as one of its limit
points (parts (a1) or (b1) in the first case, and (a2) or (b2) in the second one). This result is in
connection to enhanced KKT conditions as described, for instance, in [10, 92]. Although the cases
l > 0 and s < 0 are considered, similar expressions can be obtained for m > 0 and r < 0.

Proposition 4.4.8. Let f, g be differentiable with µ ∈ R and C be closed.

(a) Let l > 0 and xk ∈ Ω−
− such that xk → x̄,

g(xk)

f(xk)− µ
→ l and

xk − x̄

‖xk − x̄‖ → v, (v ∈ T (C; x̄)).

Then, at least one of the following assertions hold:
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(a1) x̄ ∈ argmin
K

f and either v ∈ Ω̂−
− (so L(x̄) ⊆ ] −∞, 0[) and l =

∇g(x̄)⊤v
∇f(x̄)⊤v (so l ≥ l̂), or

∇f(x̄)⊤v = 0 = ∇g(x̄)⊤v;

(a2) x̄ ∈ Ω−
− and l =

g(x̄)

f(x̄)− µ
> 0; in which case,

∇f(x̄)− 1

l
∇g(x̄) ∈ [T (C; x̄)]∗. (4.33)

Consequently FL(T (C; x̄)) + R+(1, 0) is convex. Hence, if Ω̂−
− 6= ∅ then l ≤ l̂.

(b) Let s < 0 and xk ∈ Ω−
+ such that xk → x̄,

g(xk)

f(xk)− µ
→ s and

xk − x̄

‖xk − x̄‖ → v. Then, at least one

of the following assertions hold:

(b1) x̄ ∈ argmin
K

f and either v ∈ Ω̂−
+ (so L(x̄) ⊆ ]0,+∞[) and s =

∇g(x̄)⊤v
∇f(x̄)⊤v (so s ≤ ŝ), or

∇f(x̄)⊤v = 0 = ∇g(x̄)⊤v;

(b2) x̄ ∈ Ω−
+ and s =

g(x̄)

f(x̄)− µ
< 0; in which case,

∇f(x̄)− 1

s
∇g(x̄) ∈ [T (C; x̄)]∗. (4.34)

Consequently FL(T (C; x̄)) + R+(1, 0) is convex. Hence, if Ω̂−
+ 6= ∅ then s ≥ ŝ.

Proof. We only check (a), since the other are entirely similar. Obviously x̄ ∈ C, g(x̄) ≤ 0 and f(x̄) ≤ µ.
Certainly, none of the conditions: f(x̄) < µ, g(x̄) = 0, or f(x̄) = µ, g(x̄) < 0 are possible.
Assume first that f(x̄) = µ and g(x̄) = 0. Then x̄ ∈ argmin

K

f . Since 0 > f(xk)− µ = f(xk)− f(x̄) =

∇f(x̄)⊤(xk − x̄) + o(‖xk − x̄‖) with o(t)/t → 0 as t ↓ 0, we obtain ∇f(x̄)⊤v ≤ 0; similarly for g,
∇g(x̄)⊤v ≤ 0. Since

g(xk)

f(xk)− µ
=

[g(x̄) +∇g(x̄)⊤(xk − x̄) + o(‖xk − x̄‖)]/‖xk − x̄‖
[∇f(x̄)⊤(xk − x̄) + o(‖xk − x̄‖)]/‖xk − x̄‖ → l,

one concludes that, in fact, either ∇f(x̄)⊤v < 0 and ∇g(x̄)⊤v < 0 or ∇f(x̄)⊤v = 0 = ∇g(x̄)⊤v = 0.

In the first case, v ∈ Ω̂−
− and l =

∇g(x̄)⊤v
∇f(x̄)⊤v . This completes the proof of (a1).

Assume now that f(x̄) < µ and g(x̄) < 0, that is, x̄ ∈ Ω−
−, and therefore l =

g(x̄)

f(x̄)− µ
> 0. It remains

to check (4.33). By the first order necessary optimality condition

∇
(

g

f − µ

)
(x̄) ∈ [T (Ω−

+; x̄)]
∗.

Since T (Ω−
−; x̄) = T (C; x̄), the last expression reduces to (4.33), and so the proof of (a2) is completed.
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The previous proposition has important consequences related to the KKT optimality conditions.
In that direction some remarks are in order.

Remark 4.4.9. (i) Notice that, in the situation (a1), i.e., x̄ ∈ argmin
K

f , if one additionally assumes

the convexity of cone(Fµ), then strong duality for problem (4.1) holds and LSD = SD. This implies
∇f(x̄) + λ0∇g(x̄) ∈ [T (C; x̄)]∗ for all λ0 ∈ LSD (so LSD ⊆ L(x̄)), because of (4.24). A similar
reasoning applies in case of (b1).

(ii) Assume the convexity of FL(T (C; x̄)) + R+(1, 0). Under (a), if x̄ ∈ argmin
K

f and l = l̂, then

−1

l̂
∈ L(x̄), i. e., x̄ is a KKT point; in case l > l̂, −1

l
6∈ L(x̄); and in case l̂ = 0, we have L(x̄) = ∅,

i. e., x̄ is not a KKT point, as a consequence of Theorem 4.4.1.

Next, the critical values l = 0 and s = 0, under which strong duality is not satisfied, are considered.

Proposition 4.4.10. Let f, g be differentiable with µ ∈ R and C be closed.

(a) Let l = 0 and xk ∈ Ω−
− such that xk → x̄,

g(xk)

f(xk)− µ
→ 0 and

xk − x̄

‖xk − x̄‖ → v, (v ∈ T (C; x̄)).

Then, x̄ ∈ argmin
K

f and either ∇f(x̄)⊤v < 0 = ∇g(x̄)⊤v (so L(x̄) = ∅), or ∇f(x̄)⊤v = 0 =

∇g(x̄)⊤v.

(b) Let s = 0 and xk ∈ Ω−
+ such that xk → x̄,

g(xk)

f(xk)− µ
→ 0 and

xk − x̄

‖xk − x̄‖ → v, (v ∈ T (C; x̄)).

Then, x̄ ∈ argmin
K

f and either ∇f(x̄)⊤v < 0 = ∇g(x̄)⊤v (so L(x̄) = ∅), or ∇f(x̄)⊤v = 0 =

∇g(x̄)⊤v.

Proof. The proof follows the same line of reasoning of the preceding proposition.

Now let us go back to Example 4.3.10, which satisfies s = 0. With the same data, consider

x̄ = (x̄1, x̄2) ∈ argmin
K

f = {(x1, x2) ∈ R
2 : x1 + x2 = 0}, xk = (x1k, x2k) = (x̄1, x̄2 −

1

k
).

Then, xk satisfies the conditions in (b) of Proposition 4.4.10 with v = (0,−1). We see that

∇f(x̄)⊤v = −1 < 0, ∇g(x̄) = 0.

Hence, it is possible to have a solution without being a KKT-point when strong duality fails.
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4.5 The non-polyhedral standard quadratic optimization problem

Let us consider the standard quadratic problem:

min
x∈∆

1

2
x⊤Ax, (4.35)

where A = (aij) is a real symmetric matrix with positive entries aij > 0, and ∆ = {x ∈ R
n
+ : 1l⊤x = 1}.

Although this model is very special, it retains, as asserted in [14], most of the complexity of the
general quadratic case, where a polyhedron P , instead of ∆, is considered. As applications of (4.35), we
mention quadratic allocation problems [47], portfolio optimization problems [61, 62], the maximum
weight clique problem [67, 43], among others. Due to the structure of ∆, any quadratic objective
function may be reduced to an homogeneous one.

It was established in [14, Theorem 4], via the existence theorem due to Frank Wolfe and Theorem
5 in [13], that strong duality holds for (4.35).

We will prove the validity of strong duality by applying our Theorem 4.3.1, providing further
qualitative and quantitative information for the more general problem where ∆ is substituted by a
convex and compact base of any pointed, closed, convex (possibly ice-cream, or more general circular)
cone C (so, the Frank-Wolfe theorem is not applicable in this case):

µq
.
= min{1

2
x⊤Ax : e⊤x = 1, x ∈ C}, (4.36)

where C ⊆ R
n is as above with e ∈ int C∗, and A is a symmetric copositive matrix on C, i. e.,

x⊤Ax ≥ 0 for all x ∈ C, satisfying

µq > 0(= min
x∈C

1

2
x⊤Ax). (4.37)

This requirement holds, for instance, if A is strictly copositive on C, i. e., x⊤Ax > 0 for all x ∈ C,
x 6= 0. Thus, the dual to (4.36) is

sup
λ∈R

inf
x∈C

L(λ, x)
.
=

1

2
x⊤Ax+ λ(e⊤x− 1), (4.38)

whose solution set is SD = {−2µq} as we shall see next. Setting

f(x)
.
=

1

2
x⊤Ax, g(x)

.
= e⊤x− 1, K

.
= {x ∈ C : g(x) = 0},

the following proposition collects all the properties satisfied by problem (4.36). In particular, Part
(f) shows that every infeasible sequence admits limit points which are either optimal solutions and
KKT-points, or infeasible but still KKT points.

Notice that, because of the choice of e, C = cone K, i. e., K is a convex and compact base of C.
We point out that next result improves and extends that in [14, Theorem 4] (valid only for polyhedra)
to non-polyhedral cones C, and in this context, the result is new. We will use the notations of Sections
4.3 and 4.4.
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Proposition 4.5.1. Assume that (4.37) is satisfied. For the problem (4.36) with the data as above,
we have that argmin

K

f is nonempty and compact. Furthermore the following is true:

(a) Ω−
+ = ∅ = Ω=

+, and so S+
g (0) = Ω+

+ 6= ∅, ∅ 6= S−
f (µq) = Ω−

−;

(b) m = l =
1

2µq
, so l > 0 and LSD = SD = {−2µq}, and so

cone(F (C) + R+(1, 0) − µq(1, 0)) = {(u, v) ∈ R
2 : v ≤ 1

2µq
u};

(c) strong duality holds for (4.36);

(d) L(x̄) = {−2µq} for all x̄ ∈ argmin
K

f ;

(e) Let xk ∈ S−
f (µq),

g(xk)

f(xk)− µq
→ l =

1

2µq
. Then, there exists a subsequence (still indexed by k)

and x̄ such that xk → x̄,
xk − x̄

‖xk − x̄‖ → v ∈ T (C; x̄), and at least one of the following assertions

holds:

(e1) x̄ ∈ argmin
K

f (so −2µq ∈ L(x̄)) and either [v ∈ Ω̂−
− and

1

2µq
=

e⊤v

(Ax̄)⊤v
] or e⊤v = 0 =

(Ax̄)⊤v.

(e2) x̄ ∈ S−
f (µq) and

1

2µq
=

g(x̄)

f(x̄)− µq
> 0, in which case, −2µq ∈ L(x̄).

Proof. (a): Take any y ∈ Ω−
+; then there exists t > 0, x ∈ C such that y = tx and g(x) = 0. Then

0 < g(y) = e⊤y − 1 = t − 1 and 0 > f(y) − µq ≥ µq(t
2 − 1), implying that µq < 0, yielding a

contradiction. This proves that Ω−
+ = ∅. The same argument also shows Ω=

+ = ∅. From (4.37), we get
S−
f (µq) 6= ∅, and so the last equality follows from (a).

(b): We claim that any x ∈ Ω+
+ satisfies

g(x)

f(x)− µq
≤ 1

2µq
. Indeed, writting x = ty for some 0 < t < 1

and y ∈ K, one obtains

µq(2t− 1) ≤ t2µq ≤ t2
1

2
y⊤Ay.

From which the claim is proved, implying m ≤ 1

2µq
. A similar argument also shows

1

2µq
≤ l.

On the other hand, take any x ∈ argminKf and consider the sequences in C, xk
.
= (1+

1

k
)x and yk

.
=

(1− 1

k
)x. Then, for all k ∈ N, g(xk) = e⊤xk−1 =

1

k
> 0 and f(yk) =

1

2
y⊤k Ayk = (1− 1

k
)2
1

2
x⊤Ax < µq,

which proves that xk ∈ S+
g (0) and yk ∈ S−

f (µq). Thus, by (a), we get xk ∈ Ω+
+ and yk ∈ Ω−

−. Hence,
for all k ∈ N,

g(xk)

f(xk)− µq
=

1/k

(1 +
1

k
)2µq − µq

=
1/k

[(1 +
1

k
)2 − 1]µq

=
1/k

1

k
(2 +

1

k
)µq

=
1

(2 +
1

k
)µq

.
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This implies that m ≥ 1

2µq
and so m =

1

2µq
. Similarly, by using the sequence yk, one concludes that

l ≤ 1

2µq
, and so l =

1

2µq
, proving the first part. This means that (a8) in Theorem 4.3.1 is satisfied,

obtaining the expression for the set cone(F (C) +R+(1, 0) − µq(1, 0)).
(c): By (c) and Theorem 4.3.2, it follows that strong duality holds.
(d): By (b) and Proposition 4.4.2 one has −2µq ∈ L(x̄), and so, by Theorem 4.4.1 the cone

FL(T (C; x̄)) + R+(1, 0) = {(x, y) ∈ R
2 : y ≤ m̂x, y ≤ l̂x}

is convex. This means that m̂ ≤ l̂. On the other hand, by taking xk
.
= (1 − 1

k
)x̄ or xk

.
= (1 +

1

k
)x̄,

one shows, respectively, that −x̄ ∈ T (C; x̄) and x̄ ∈ T (C; x̄). Thus −x̄ ∈ Ω̂−
− and x̄ ∈ Ω̂+

+. It follows

that l̂ ≤ 1

2µq
and m̂ ≥ 1

2µq
, which, along with a previous inequality, allows us to conclude that

l̂ = m̂ =
1

2µq
. Hence L(x̄) = {−2µq}, since, by (4.28), one gets

γ ∈ L(x̄) ⇐⇒ (1, γ) ∈ [FL(T (C; x̄)) + R+(1, 0)]
∗ = R+(1,−2µq).

(e): This follows from (a) of Proposition 4.4.8.

We emphasize that when C = R
n
+ and e = (1, . . . , 1), every feasible KKT point, to (4.35), x̄, is

characterized by the existence of λ ∈ R and y ∈ R
n
+ such that

∇f(x̄) + λe− y = 0, y⊤x̄ = 0.

In other words, every feasible KKT point is a KKT point in the usual sense. However, the strong
duality property associated to the Lagrangian

L(x, λ, y)
.
= f(x) + λg(x) − y⊤x, λ ∈ R, y ∈ R

n
+,

holds if and only if A is positive semidefinite as was observed in [14, Section 3].



Chapter 5

Strong duality reveals hidden convexity

5.1 Introduction

The standard quadratic optimization problem:

min
x∈∆

1

2
x⊤Ax, (5.1)

where, ∆ is the simplex {x ∈ R
n : 1l⊤x = 1, x ≥ 0} with A being any real symmetric matrix having

positive entries.
In connection to (5.1) three main dual problems may be considered:

sup
λ0∈R

inf
x∈Rn

+

{1
2
x⊤Ax+ λ0(1l

⊤x− 1)
}
; (5.2)

sup
λ∈Rn

+

inf
x∈X

{1
2
x⊤Ax− λ⊤x

}
, X

.
= {x ∈ R

n : 1l⊤x = 1}; (5.3)

sup
(λ0,λ)∈R×Rn

+

inf
x∈Rn

{1
2
x⊤Ax− λ0(1l

⊤x− 1)− λ⊤x
}
. (5.4)

Because of many real concrete applications, for instance in allocation problems, A is simply
copositive on R

n
+. Thus, one cannot expect that strong duality with respect to (5.4) (resp. with respect

to (5.3)) holds, as stated partly in [14], since this property requires the positive semidefiniteness of A
(resp. copositivity of A on the orthogonal subspace to 1l.

Motivated by the previous considerations, we propose to analyze the same issues, and beyond, for
the generalized standard quadratic optimization problem, where ∆ is substituted by a convex and
compact base of any pointed, closed, convex (possibly circular) cone C ⊆ R

n. More precisely, we will
deal with the following problem

µq
.
= min

{1
2
x⊤Ax : e⊤x = 1, x ∈ C

}
, (5.5)

70
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where A is a real symmetric matrix, e ∈ int C∗, and C ⊆ R
n is a pointed, closed, convex cone

having non-empty interior. The feasible set to (5.5), that is, K
.
= {x ∈ C : e⊤x = 1}, becomes a

convex and compact base of C. We analyze the cases µq = 0 and µq > 0.
In order to discuss the validity of strong duality of (5.5) with respect to the dual problems analogous

to (5.3) and (5.4), we formulate (5.5) as a semi-infinite optimization problem, and will apply some
of the main results from [25]. To be more precise, we will establish that strong duality with respect
to (5.2) (respectively, (5.3) and (5.4)) holds if and only if A is copositive on R

n
+ (respectively, A is

copositive on 1l⊥, A is positive semidefinite), see Section 5.3.

5.2 The general case with one single equality and geometric constraints

We now deal with the abstract minimization problem under one single equality and a geometric
constraints. Let f, g : C ⊆ X → R be any finite-valued functions, with X to be a normed vector
space. Let us consider the problem

µ
.
= inf{f(x) : g(x) = 0, x ∈ C}, (5.6)

whose (Lagrangian) dual problem is defined by

ν
.
= sup

λ∈R
inf
x∈C

[f(x) + λg(x)]. (5.7)

Set F (x)
.
= (g(x), f(x)). Assuming that µ ∈ R, we obtain

(F (C)− µ(0, 1)) ∩ −({0} × R++) = ∅, (5.8)

which amounts to writing

(F (C) + {0} × −µ(0, 1)) ∩ −({0} × R++) = ∅, (5.9)

or, equivalently,
cone(F (C) + R+(0, 1) − µ(0, 1)) ∩ −({0} × R++) = ∅. (5.10)

We will show, next, that the zero duality gap and strong duality can be characterized by reinforcing
(5.10).

The optimal value function ψ : R → R ∪ {±∞} to problem (5.6) is defined by

ψ(a) =

{
inf{f(x) : x ∈ K(a)} if K(a) 6= ∅;
+∞ otherwise,

where
K(a)

.
= {x ∈ C : g(x) = a}. (5.11)

Notice that K = K(0), and K(a) 6= ∅ if and only if a ∈ g(C), that is,

dom ψ
.
= {a ∈ R : ψ(a) < +∞} = g(C).
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The sets
F .

= F (C) + R+(0, 1), Eρ .
= F − ρ(0, 1), ρ ∈ R. (5.12)

will play an important role in our analysis.
Some topological and geometrical properties of ψ are shown in the following theorem, which is a

particular case of Theorem 3.2 in [34].

Proposition 5.2.1. Let f, g, F be as above. The following assertions hold.

(a) (a, r) ∈ epi ψ ⇐⇒ (a, r +
1

k
) ∈ F (C) +R+(0, 1), ∀ k ∈ N.

As a consequence, if F (C) + R+(0, 1) is convex then ψ is convex.

(b) F (C) + R+(0, 1) ⊆ epi ψ ⊆ F (C) + R+(0, 1).
Consequently,

Eµ = epi ψ − µ(0, 1) = epi ψ − µ(0, 1); co Eµ = co(epi ψ)− µ(0, 1) = epi(co ψ)− µ(0, 1).

Recall that (see for instance [34, Theorem 3.1]) if µ = ψ(0) ∈ R then,

ν = ψ∗∗(0) (5.13)

Proposition 5.2.1 leads to the following characterization of lower semicontinuity of ψ at 0 and to
zero duality gap. Similar results may be found in Lemma 3.1 and Theorem 4.1 of [63]. Notice that
(5.14) reinforces (5.10).

Theorem 5.2.1. Assume that µ = ψ(0) is finite. Then,

(a) ψ(0) = ψ(0) if and only if
Eµ ∩ (−{0} × R++) = ∅. (5.14)

(b) ν = co ψ(0).

Proof. (a): Since µ = ψ(0), Theorem 5.2.1 asserts that (5.14) implies ψ(0) ≥ ψ(0), which along with

ψ(a) ≤ ψ(a), ∀ a ∈ R, (5.15)

yield ψ(0) = ψ(0). Conversely, from (5.15) and Theorem 5.2.1, we immediately obtain that ψ(0) =
ψ(0) implies (5.14).
(b) By virtue of (5.13), we must check that ψ∗∗(0) = co ψ(0). If co ψ(0) = −∞ then ψ∗∗(0) = −∞
since ψ∗∗ ≤ co ψ. In case co ψ(0) ∈ R, we get co ψ never takes the value −∞, since co ψ is convex
and lsc, and so co ψ = ψ∗∗ by (2.14) (see Chapter 2).

We now characterize the zero duality gap for problem (5.6), which reduces to the lower semicontinuity
of ψ at 0, under convexity of Eµ. Under this latter assumption, a similar results was obtained in [54]
for a semi-infinite optimization problem.
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Proposition 5.2.2. Assume that µ = ψ(0) is finite. Then,
µ = ν if and only if

co Eµ ∩ (−{0} × R++) = ∅. (5.16)

Proof. By using the last part of Proposition 5.2.1 we infer from (5.16) that co ψ(0) ≥ µ = ψ(0). Since
co ψ ≤ ψ always holds, we obtain co ψ(0) = ψ(0). Conversely, again from Proposition 5.2.1 it follows
that co ψ(0) = ψ(0) implies (5.16).

5.3 The circular standard quadratic optimization problem

Let us go back to our problem

µq
.
= min

{1
2
x⊤Ax : e⊤x = 1, x ∈ C

}
, (5.17)

where C ⊆ R
n is a pointed, closed, convex cone having non-empty interior. Obviously the feasible

set to (5.17) is K
.
= {x ∈ C : e⊤x = 1}, which becomes a convex and compact base of C provided

e ∈ int C∗ (it is non empty since C is pointed); A is a real symmetric matrix. We say that A is strictly
copositive on P if x⊤Ax > 0 for all x ∈ P , x 6= 0. We discuss the cases µq = 0 and µq > 0.

It is easy to check that

• µq = 0 ⇐⇒ A is copositive but not strictly copositive on C;

• µq > 0 ⇐⇒ A is strictly copositive on C.

The specialization C = R
n
+; A having positive entries; e = (1, 1, . . . , 1) ∈ R

n, discussed at the
introduction, is termed the standard quadratic optimization problem and was studied in many papers,
and models quadratic allocation problems, portfolio optimization problems, the maximum weight
clique problem, among others.

We will describe the three main dual problems associated to (5.17). To that end, we formulate
problem (5.17) as a semi-infinite optimization problem:

µq
.
= min{f(x) : x ∈ X, gi(x) ≤ 0, ∀ i ∈ I}, (5.18)

where

I
.
= −C∗, f(x)

.
=

1

2
x⊤Ax, g0(x)

.
= e⊤x− 1, gi(x)

.
= i⊤x, i ∈ I,

and X
.
= {x ∈ R

n : e⊤x = 1}. Thus, we consider the following three dual problems:

ν0
.
= sup

λ∈R
inf
x∈C

{
f(x) + λg0(x)

}
; (5.19)

ν1
.
= sup

λ∈R
(I)
+

inf
x∈X

{
f(x) +

∑

i∈I

λigi(x)
}
; (5.20)

ν2
.
= sup

(λ0,λ)∈R×R
(I)
+

inf
x∈Rn

{
f(x) + λ0g0(x) +

∑

i∈I

λigi(x)
}
, (5.21)
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analogous to (5.2), (5.3) and (5.4) respectively. Here, R(I) is the topological dual of RI (it stands for
the set of real-valued functions defined on I, endowed with the usual product topology), which is the
space of generalized sequences λ = (λi)i∈I such that λi ∈ R, for each i ∈ I, and with only finitely
many λi different from zero. The supporting set of λ is supp λ

.
= {i ∈ I : λi 6= 0}. Thus

〈λ, z〉 = λ(z) =
∑

i∈I

λizi
.
=

∑

i∈supp λ

λizi, ∀ z ∈ R
I , ∀ λ ∈ R

(I).

If λ = 0 then supp λ = ∅, and so we have
∑

∅ = 0. In addition, R
(I)
+ denotes the non-negative cone in

R
(I).
We will discuss first the validity of strong duality for (5.17) with respect to the duals (5.20) and

(5.21), and we will see that strong duality with respect to (5.19) is suitable, since in most applications
the positive semidefiniteness of A fails. To that purpose, we need some preliminaries.

Set

M
.
= cone co

(
⋃

i∈I

epi g∗i ∪ epi δ∗X

)
.

Here, g∗i (resp. δ∗X), denotes the conjugate function of gi (resp. δX). For a problem formulated as in
(5.18) for general f , gi and X, with optimal value µ instead of µq, the following two conditions arise:

M is closed; (5.22)

epi f∗ +M is closed. (5.23)

Notice that

M = cone co

(
⋃

i∈I

epi g∗i

)
+ epi δ∗X .

It is proved, in Theorem 5 of [25], that, given any proper lsc and convex functions f and gi (i ∈ I), X
a non-empty convex closed set, under (5.22) and (5.23) and assuming µ finite, one gets

∃ λ∗ ∈ R
(I)
+ : f(x) +

∑

i∈I

λ∗i gi(x) ≥ µ, ∀ x ∈ X, (5.24)

or, equivalently, there exists λ∗ ∈ R
(I)
+ such that

µ = sup
x∈X

{f(x) +
∑

i∈I

λ∗i gi(x)}. (5.25)

Remark 5.3.1. Theorem 1 in [25] asserts that if f is either linear or continuous at some point of the
feasible set of (5.18), K, then, the fulfillment of (5.22) implies that (5.23) is also satisfied.
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5.3.1 Characterizing strong duality with respect to (5.21)

We are ready to apply Theorem 5 in [25] to our model (5.17). The following theorem establishes
that standard strong duality for problem (5.18) or equivalently, (5.17), with respect to (5.20) holds
if, and only if A is positive semidefinite. So, this dual is not suitable when considering the porfolio
optimization problem since A is only copositive.

Theorem 5.3.1. Let us consider problem (5.17) with C being any pointed closed convex cone with
nonempty interior, and e ∈ int C∗. The following assertions are equivalent:

(a) A < 0;

(b) A < 0 and there exists λ∗ ∈ R
(I)
+ such that

f(x) +
∑

i∈I

λ∗i gi(x) ≥ µq, ∀ x ∈ X; (5.26)

(c) there exist (λ∗0, λ
∗) ∈ R× R

(I)
+ such that

f(x) + λ∗0g0(x) +
∑

i∈I

λ∗i gi(x) ≥ µq, ∀ x ∈ R
n, (5.27)

or, equivalently,

µq = inf
x∈Rn

{
f(x) + λ∗0g0(x) +

∑

i∈I

λ∗i gi(x)
}
.

Proof. (c) ⇒ (a): It is immediate.
(a) ⇒ (b): By virtue of Remark 5.3.1, we need to check only that condition (5.22) holds. Since

g∗i (u) = sup
x∈Rn

{u⊤x− i⊤x} = δ{i}(u), (5.28)

one obtains epi g∗i = {i} × R+, and so

co

(
⋃

i∈I

epi g∗i

)
= co[(−C∗)× R+] = (−C∗)× R+.

Hence

cone co

(
⋃

i∈I

epi g∗i

)
= (−C∗)× R+.

On the other hand, by writing X = e⊥ + x̄ with x̄ ∈ X, we get

δ∗X(u) = sup
x∈Rn

{u⊤x− δX(x)} = sup
x∈X

u⊤x = sup
v∈e⊥

u⊤v + u⊤x̄ = δRe(u) + u⊤x̄.

Thus,
epi δ∗X = R(e, 1) + R+(0, 1).
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Consequently,

M = cone co

(
⋃

i∈I

epi g∗i ∪ epi δ∗X

)
= cone co

(
⋃

i∈I

epi g∗i

)
+ epi δ∗X (5.29)

= (−C∗)× R+ + R(e, 1) + R+(0, 1) = (−C∗)× R+ + R(e, 1), (5.30)

which is closed, i. e., (5.22) is satisfied. Here we use the result: given two closed setsM and N ,M−N
is closed provided M∞ ∩N∞ = {0}. Then, (5.24) holds, and so (5.25) holds as well, proving (b).

(b) ⇒ (c): By setting ϕ(x) = f(x)+
∑

i∈I

λ∗i gi(x), it is not difficult to check that: (ϕ, g0)(R
n)+R+(1, 0) is

convex (since ϕ is convex and g0 is affine), and there exist x0, x1 ∈ R
n satisfying g0(x1) < 0 < g0(x1).

Thus, strong duality holds for problem (5.25) (a usual application of a convex separation theorem
yields the conclusion), that is, there exists λ∗0 ∈ R such that

ϕ(x) + λ∗0g0(x) ≥ µq, ∀ x ∈ R
n,

which is nothing else than (5.27).

Remark 5.3.2. One can check easily that if (5.26) holds for some λ∗ ∈ R
(I)
+ , then A is copositive on

the hyperplane e⊥. Such a notion arises naturally in the next subsection.

5.3.2 Characterizing strong duality with respect to (5.20)

In this subsection, we deal with the second dual problem (5.20).

Theorem 5.3.2. Let us consider problem (5.17) with C being any pointed closed convex cone with
nonempty interior, and e ∈ int C∗. The following assertions are equivalent:

(a) A is copositive on e⊥;

(b) there exists λ∗ ∈ R
(I)
+ such that

f(x) +
∑

i∈I

λ∗i gi(x) ≥ µq, ∀ x ∈ X, (5.31)

or, equivalently,

µq = inf
x∈X

{
f(x) +

∑

i∈I

λ∗i gi(x)
}
.

(c) f is convex on X.

(d) f is convex on K.

Hence, under any of the conditions (a)−−(d), every local solution to problem (5.17) is global.
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Proof. (b) ⇒ (a): It is straightforward.
(a) ⇒ (b): Take any x̄ ∈ argmin

K

f . By writing X = x̄+ e⊥, one obtains for all x ∈ X,

x⊤Ax = (x− x̄)⊤A(x− x̄) + 2x̄⊤Ax− x̄⊤Ax̄ (5.32)

≥ 2x̄⊤Ax− x̄⊤Ax̄, (5.33)

where the inequality was obtained by copositivity of A on e⊥. Thus,

1

2
x⊤Ax ≥ x̄⊤Ax− 1

2
x̄⊤Ax̄, ∀ x ∈ X. (5.34)

Let us consider the convex problem:

µ′
.
= min

{
x̄⊤Ax : gi(x) ≤ 0, i ∈ I, x ∈ X

}
. (5.35)

It is easy to check that µ′ = 2µq. Indeed, obviously µ
′ ≤ x̄⊤Ax̄ = 2µq. On the other hand, by the first

order optimality condition,
(Ax̄)⊤(x− x̄) ≥ 0, ∀ x ∈ K,

that is, µ′ ≥ 2µ, proving the claim.
We now check that strong duality holds for (5.35) with respect to the dual

sup
λ∈R

(I)
+

inf
x∈X

{
x̄⊤Ax+

∑

i∈I

λigi(x)
}
. (5.36)

It will be a consequence, as before, of Theorem 5 of [25], with objective function given by x̄⊤Ax. In
fact, such a theorem is applicable since the assumptions are verified, see also Remark 5.3.1. Hence,

there exists λ∗ = (λ∗i ) ∈ R
(I)
+ such that

x̄⊤Ax+
∑

i∈J

λ∗i gi(x) ≥ 2µq, ∀ x ∈ X.

This along with inequality (5.34) yield that

f(x) +
∑

i∈J

λ∗i gi(x) ≥ (Ax̄)⊤x+
∑

i∈J

λ∗i gi(x)− µq ≥ 2µq − µq = µq, ∀ x ∈ X.

(a) ⇔ (c): First observe that A is copositive on e⊥ if, and only if (x−y)⊤A(x−y) ≥ 0 for all x, y ∈ X.
Given t ∈ ]0, 1[, and x, y ∈ X, on combining the two identities:

f(x) = f(y) +∇f(y)⊤(x− y) +
1

2
(x− y)⊤A(x− y);

f(y + t(x− y)) = f(y) + t∇f(y)⊤(x− y) +
t2

2
(x− y)⊤A(x− y),

one obtains

f(y + t(x− y)) = f(y) + t(f(x)− f(y))− t

2
(1− t)(x− y)⊤A(x− y).
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From which the desired inequality follows.
(c) ⇔ (d): It follows from the same arguments as in (a) ⇔ (c).

Remark 5.3.3. In case C = R
n
+ and e = 1l, (d) is equivalent to ([14, Lemma 6])

P⊤
x̄ APx̄ < 0 for any x̄ ∈ X, with Px̄

.
= Id− x̄1l⊤, (5.37)

where Id is the identity matrix of order n.

5.3.3 Characterizing strong duality with respect to (5.19)

We now analize the strong duality property in connection to (5.19). It will be suitable for the portfolio
optimization problem, since copositivity of A on C arises naturally in such a problem. Denote, given
a ∈ R,

K(a)
.
= {x ∈ C : g0(x) = a}.

The following proposition, whose proof is straightforward, collects some basic facts on the perturbed
problem

min
x∈K(a)

f(x).

Proposition 5.3.4. Let A be a real symmetric matrix; C be a pointed closed convex cone with
nonempty interior, and e ∈ int C∗. The following assertions hold.

(a) K(a) 6= ∅ if and only if a ≥ −1; K(−1) = {0}.

(b) Let a > −1. Then, x ∈ K(a) if and only if
1

1 + a
x ∈ K. Hence

min
x∈K(a)

f(x) = µq(1 + a)2, ∀ a ≥ −1.

(c) Let µq > 0. Then, f(x) > µq for all x ∈ K(a) and all a > 0.

Now, denote the objective function of the dual problem (5.19) by

θ(λ)
.
= inf

x∈C
L(λ, x)

.
= f(x) + λg0(x).

We now describe the main properties shared by this problem, which appear here for the first time
about non-polyhedral cones C. In particular, it reveals a hidden convexity of the general standard
quadratic optimization problem.

Notice that for problem (5.1), (c1) below was obtained in [14, Theorem 4] by using the Frank-Wolfe
theorem, which is not applicable here (see also [13]).

Theorem 5.3.3. Let A, C and e be as in the preceding proposition. Then,
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(a) the optimal value function is given by

ψ(a) =

{
µq(1 + a)2 if a ≥ −1;

+∞ if a < −1.

So it is strictly convex if µq > 0.

(b) F (C) and F (C) + R+(0, 1) are closed, so epi ψ = F (C) + R+(0, 1).

(c) Let µq > 0. Then,

(c1) The objective function θ is given by

θ(λ) =




− λ2

4µq
− λ if λ < 0;

−λ if λ ≥ 0.

Hence SD = {−2µq}.
(c2) One obtains

cone(F (C) + R+(0, 1) − µq(0, 1)) =
{
(u, v) ∈ R

2 : 2µqu ≤ v
}
.

Hence, strong duality holds for (5.17) and (5.19).

(d) Let µq = 0. Then,

(d1) The objective function θ is given by

θ(λ) =

{
−∞ if λ < 0;

−λ if λ ≥ 0.

Hence SD = {0}.
(d2) One obtains

cone(F (C) + R+(0, 1)) =
{
(u, v) ∈ R

2 : v ≥ 0
}
.

Hence, strong duality holds for (5.17) with respect to (5.19).

Proof. (a) is a consequence of the previous proposition.
(b):By virtue of (b) of Proposition 5.2.1, we need only to check the closedness of F (C) + R+(0, 1).
The same argument also shows that F (C) is closed. Let (a, r) ∈ F (C) + R+(0, 1). Then, there
exist sequences xk ∈ C, qk ≥ 0 satisfying f(xk) + qk → r and g0(xk) → a. From the second
relation, we deduce that ‖xk‖ is bounded. Thus, up to a subsequence, xk → x̄ ∈ C, implying that
qk = f(xk)+qk−f(xk) → r−f(x̄). Setting q .

= r−f(x̄), we get q ≥ 0, and so (r, a) = (g0(x̄), f(x̄)+q) ∈
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F (C) + R+(0, 1).
(c1): From the inequality (x⊤Ax+ λe⊤x)2 ≥ 0, one obtains

L(λ, x) ≥ −λ
2(e⊤x)2

2x⊤Ax
− λ, ∀ x ∈ C, x 6= 0.

Since K is a base for C, we conclude

(e⊤x)2

2x⊤Ax
≤ 1

4µq
, ∀ x ∈ C, x 6= 0.

Hence

L(λ, x) ≥ − λ2

4µq
− λ, ∀ x ∈ C. (5.38)

In case λ ≥ 0, it is easy to see that

θ(λ) = min
x∈C

L(λ, x) = L(λ, 0) = −λ.

If λ < 0 and x̄ ∈ argminKf , then by taking x0 = − λ

2µq
x̄ ∈ C, we get

L(λ, x0) = − λ2

4µq
− λ.

Thus, from (5.38),

θ(λ) = − λ2

4µq
− λ.

(c2): The first part follows from (a), and strong duality for (5.17) with respect to (5.19) is a
consequence of the fact that

cone (Eµ) ∩ − ({0} × R++) = cone(F (C) + R+(0, 1) − µq(0, 1)) ∩ − ({0} × R++) = ∅.

(d1): We consider only the case λ < 0 (if λ ≥ 0 is exactly as in (c1)), and check that

inf
{
L(λ, x) : x ∈ C, x⊤Ax = 0

}
= −∞.

Indeed, since there exists x0 ∈ C, x0 6= 0, such that x⊤0 Ax0 = 0 by assumption, we obtain

inf
{
L(λ, x) : x ∈ C, x⊤Ax = 0

}
= inf

{
λ(e⊤x− 1) : x ∈ C, x⊤Ax = 0

}

≤ inf
t>0

λ(te⊤x0 − 1) = −∞.

Thus, θ(λ) = −∞ in case λ < 0.
(d2): The proof is as (c2).
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From the previous theorem, one characterizes the copositivity of A on C by means of the convexity
of F (C) + R+(0, 1). This result is new and corresponds to the nice challenge of proving convexity of
joint-range for a pair of quadratic functions.

The equivalence between (a) and (c) is a consequence of (a) and (b) of Theorem 5.3.3.

Theorem 5.3.4. Let us consider problem (5.17) C, e as above. The following assertions are equivalent:

(a) A is copositive on C;

(b) there exists λ∗0 ∈ R such that

f(x) + λ∗0g0(x) ≥ µq, ∀ x ∈ C, (5.39)

or, equivalently,

µq = inf
x∈C

{
f(x) + λ∗0g0(x)

}
.

(c) F (C) + R+(1, 0) is convex.

5.4 Local vs global optimality

Very recently, second-order necessary and sufficient conditions for local (resp. global) optimality for a
quadratic optimization problem on a polyhedron were established in Theorem 1.2 (resp. Theorem 2.3)
of [15]. In this section, due to the special structure of the circular standard quadratic programming
problem (5.17), we derive second-order sufficient and/or necessary conditions for local or global
optimality. We refer to [11] for a method locating some particular local minima.

Set, as before, f(x)
.
=

1

2
x⊤Ax.

Due to the assumptions on C and C∗, we can write

C∗ \ {0} = co(extrd C∗),

where extrd C∗ stands for the extremal directions of C∗. Recall that d ∈ extrd C∗ if and only if
d ∈ C∗ \ {0} and for all d1, d2 ∈ C∗ such that d = d1 + d2, we have d1, d2 ∈ R+d. Thus, for every
λ ∈ C∗ \ {0}, one has

λ =

k∑

i=1

λidi, λi > 0, di ∈ extrd C∗, i = 1, 2, . . . , k. (5.40)

Firstly, we establish first and second-order necessary conditions for local optimality some of the
main consequences of local optimality to problem (5.17).

Theorem 5.4.1. Let A be any real symmetric matrix, and C, e be as before. Let x̄ be any local solution
to problem (5.17) with µ̄

.
= f(x̄). Then

(a) λ
.
= Ax̄− 2µ̄e ∈ bd C∗ and so also Ax̄− 2µqe ∈ C∗.
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(b) If λ = 0 in (a), then A is copositive on T (K; x̄) and so x̄ is a global solution to (5.17).

(c) If λ 6= 0, then x̄ ∈ bd C.

Proof. (a): Let x̄ 6= 0 be a local solution to problem (5.17), i. e., x̄ ∈ argmin
K∩U0

f for some open

neighborhood of x̄, U0. Clearly µ̄ ≥ µq. By the first order optimality condition, ∇f(x̄)⊤v ≥ 0 for all
v ∈ T (K ∩ U0; x̄) = T (K; x̄). In other words,

∇f(x̄) ∈ [T (X ∩ C; x̄)]∗ = [T (X; x̄) ∩ T (C; x̄)]∗ = [T (X; x̄)]∗ + [T (C; x̄)]∗

= [T (X; x̄)]∗ + [T (C; x̄)]∗

= Re+ (C + Rx̄)∗ = Re+ (x̄⊥ ∩ C∗),

where the first equality follows from Table 4.3 in [1] (since 0 ∈ int(X − C)) and the second one is
a consequence of Corollary 16.4.2 in [79] (since ri(e⊥) ∩ ri(C + Rx̄) 6= ∅). Thus there exists λ ∈ R

satisfying Ax̄− λe ∈ x̄⊥ ∩C∗. It follows that λ = 2µ̄ and so Ax̄− 2µ̄e ∈ C∗. This implies that

Ax̄− 2µqe = Ax̄− 2µ̄+ 2(µ̄ − µq)e ∈ C∗ + C∗ = C∗.

(b): Let v ∈ T (K; x̄). Then, there exist tk > 0, xk ∈ K, xk → x̄ such that tk(xk − x̄) → v. Thus for
all k sufficiently large,

0 ≤ f(xk)− 2µ̄e⊤x− f(x̄) + 2µ̄e⊤x̄ = (∇f(x̄)− 2µ̄e)⊤(xk − x̄) +
1

2
(xk − x̄)⊤A(xk − x̄)

=
1

2
(xk − x̄)⊤A(xk − x̄).

Hence v⊤Av ≥ 0, proving the copositivity on T (K; x̄). Therefore, given any x ∈ K, the equality

f(x)− f(x̄) = f(x)− 2µqg0(x)− f(x̄) + 2µqg0(x̄)

= (Ax̄− 2µqe)
⊤(x− x̄) +

1

2
(x− x̄)⊤A(x− x̄),

yields the desired result, since K − x̄ ⊆ T (K; x̄).
(c): It is obvious.

Next, we derive a sufficient condition for global optimality.

Proposition 5.4.1. Let C, e be as above. If x̄ feasible for (5.17), A is copositive on C − x̄ or
equivalently on T (C; x̄), and Ax̄− 2µ̄e ∈ C∗ holds with µ = f(x̄), then x̄ ∈ argmin

K

f .

Proof. For all x ∈ K, one obtains

f(x)− f(x̄) = f(x)− 2µ̄g0(x)− f(x̄) + 2µ̄g0(x̄)

= (Ax̄− 2µ̄e)⊤(x− x̄) +
1

2
(x− x̄)⊤A(x− x̄),

from which the result follows.
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We now deal with the standard quadratic optimization problem, that is, when C = R
n
+ and e = 1l.

Denote, given x̄ ∈ K,
I(x̄)

.
= {i : x̄i = 0}, I+ .

= {i ∈ I(x̄) : λi > 0}.

Z(x̄)
.
=
{
v ∈ R

n : vi = 0, i ∈ I+; vi ≥ 0, i ∈ I(x̄) \ I+;
∑

i∈I(x̄)\I+

vi +
∑

i 6∈I(x̄)

vi = 0
}
.

It is not difficult to check that

T (K; x̄) =
{
v ∈ R

n : vi ≥ 0, i ∈ I(x̄);
n∑

i=1

vi = 0
}
.

Hence, if I+ = ∅, then Z(x̄) = T (K; x̄). The following result is a consequence of Theorem 4.4.3 in [5]
and the above remark.

Theorem 5.4.2. Let A, C, e be as just mentioned. Let x̄ be any local solution to problem (5.1) with
µ̄
.
= f(x̄). Then

(a) x̄ is a KKT point:
Ax̄− 2µ̄1l− λ = 0, λ ≥ 0, λix̄i = 0, i = 1, . . . , n,

and A is copositive on Z(x̄).

(b) If additionally I+ = ∅, then x̄ is a global solution.

Example 5.4.2. Take the matrix

A =



1 1 0
1 0 1
0 1 0


 .

By computing, one obtains (x = (x1, x2, x3)),

x⊤Ax = x21 + 2x1x2 + 2x2x3, f(x1, x2, 1− x1 − x2) =
1

2
x⊤Ax =

1

2
(x21 − 2x22 + 2x2).

Then: µq = 0, that is, A is copositive on R
n
+; A is not copositive on 1l⊥ since f(−1, 1, 0) = −1

2
.

Moreover, the associated StQOP has two solutions, namely argminKf = {x̄1 .
= (0, 0, 1), x̄2

.
= (0, 1, 0)}.

One can also check that no local-nonglobal solution exists. Moreover, λ̄1 = Ax̄1 = (0, 1, 0), λ̄2 = Ax̄2 =
(1, 0, 1), so (b) of Theorem 5.4.2 is not satisfied at x̄1 or x̄2. Notice that

Z(x̄1) = {t(1, 0,−1) : t ≥ 0}, T (K; x̄1) = {t(1, 0,−1) + s(0, 1,−1) : t ≥ 0, s ≥ 0},

and
Z(x̄2) = {(0, 0, 0)}, T (K; x̄2) = {t(1,−1, 0) + s(0,−1, 1) : t ≥ 0, s ≥ 0}.



CHAPTER 5. STRONG DUALITY REVEALS HIDDEN CONVEXITY 84

5.5 The bidimensional case

Just for illustration, let us consider n = 2, 1l = (1, 1) and A = A⊤ ∈ R
2×2 with

A =

(
a b
b c

)
.

The following proposition is easily obtained, see also [44, 73], and from it, one infers that there is no
relationship between copositivity on 1l⊥ and on R

2
+.

Proposition 5.5.1. Let A be as above. Then

(a) A is positive semidefinite if and only if a ≥ 0, ac ≥ b2.

(b) A is copositive on 1l⊥ if and only if a− 2b+ c ≥ 0.

(c) A is copositive on R
2
+ if and only if a ≥ 0, c ≥ 0, b ≥ −√

ac.

(d) Let A be any real symmetric matrix with real entries. Then, every local solution to

min{f(x1, x2) .=
1

2
x⊤Ax : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}, (5.41)

is global if and only if any of the following assertions holds:

(d1) a+ c ≥ 2b;

(d2) a+ c < 2b, a ≥ b;

(d3) a+ c < 2b, b ≤ c;

(d4) a+ c < 2b, a = c.

Proof. We have x⊤Ax = ax21 + 2bx1x2 + cx22.
(a): This is a consequence of the fact that A is positive semidefinite if and only if all the principal
minors are nonnegative.
(b): Let x ∈ 1l⊥. Then, x⊤Ax = (a− 2b+ c)x21, and so the result follows.
(c): The condition x⊤Ax ≥ 0 for all x ∈ R

2
+, implies a ≥ 0 and c ≥ 0. Thus

x⊤Ax = (
√
ax1 −

√
cx2)

2 + 2(
√
ac+ b)x1x2, (5.42)

which is nonnegative if b ≥ 0. In case b < 0 and a > 0, c > 0, we require b ≥ −√
ac, since otherwise,

by choosing x1 =

√
c√
a
x2, x2 > 0, in (5.42), one gets x⊤Ax < 0.

(d): It follows from the equivalent formulation to (5.41)

min
{
f(x1, 1− x1) =

1

2
x21(a− 2b+ c) + x1(b− c) +

c

2
: 0 ≤ x1 ≤ 1

}
, (5.43)

and by noticing that the function ϕ(x1)
.
= f(x1, 1− x1) satisfies

ϕ′(0) = b− c, ϕ′(1) = a− b, ϕ(0) =
c

2
, ϕ(1) =

a

2
.
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It worth noticing that, from the previous result, there are bi-dimensional quadratic problems with
A being non-copositive on R

2
+, having local solutions without being global, for instance a = −1, b = 1,

c = 1.



Chapter 6

Conclusions

6.1 Spanish version

En esta tesis se propuso establecer condiciones necesarias y suficientes que garantizan la validez de
la propiedad de dualidad fuerte para un problema no convexo con una restricción, junto con estudiar
conexiones con otras propieades afines. Obtuvimos condiciones del tipo geométricas y topológicas de
la envoltura cónica del conjunto imagen {(f(x), g(x)) : x ∈ C} asociada al problema original. A
continuación, presentamos las principales conclusiones en este trabajo.

En el Capitulo 3 se estudió el problema cuadrático no convexo con una restricción cuadrática del
tipo desigualdad y junto a varias restricciones lineales del tipo igualdad, es decir, el conjunto C viene

dado por un subespacio af́ın y f(x) =
1

2
x⊤Ax+ a⊤x+ α, g(x) =

1

2
x⊤Bx+ b⊤x+ β, C = H−1(d). El

resultado principal dado por el Teorema 3.3.4, caracteriza la validez de la dualidad fuerte, que depende
de las matrices Hessianas de las funciones f y g, sin hipótesis de regularidad como la condición de Slater.
En cambio, bajo la condición de Slater el Teorema 3.3.2 permite derivar condiciones de optimalidad
necesarias y suficientes sin supuesto alguno de convexidad. Finalmente, obtuvimos una caracterización
en el Teorema 3.4.1 de la no vacuidad del conjunto solución para el problema de minimizar una forma
cuadrática no necesariamente convexa, sobre un conjunto convexo, cerrado y asintóticamente lineal.

En el Capitulo 4, estudiamos el caso general de un restricción de igualdad estableciendo una
completa caracterización, en virtud del Teorema 4.3.2. De acuerdo al Colorario 4.3.8 la convexidad de
la envoltura cónica del conjunto imagen {(f(x), g(x)) : x ∈ C} es condición necesaria y suficiente para
la validez de la propiedad de dualidad fuerte, bajo una condición del tipo Slater. Nuestros resultados
permiten asegurar que bajo la propiedad de dualidad fuerte, toda solución del problema original (4.1)
es un punto KKT, sin imponer hipótesis de convexidad.

En el Capitulo 5, el enfoque estuvo en el problema cuadrático estándar no-poliédrico. En particular,
para cada cono no vaćıo, convexo y puntiagudo, con interior no vaćıo C ⊆ R

n, f(x) = 1
2x

⊤Ax
y g(x) = e⊤x − 1, establecimos un nuevo resultado que caracteriza la validez de la propiedad de
dualidad fuerte para el problema (5.17) es equivalente a la copositividad en el cono, cerrado, convexo
y puntiagudo C de interior topológico no vaćıo. A ráız de lo cual establecemos un nuevo resultado
que caracteriza que la copositividad de una matriz con respecto a C, es equivalente a la convexidad
del conjunto imagen {(f(x), g(x)) : x ∈ C}.
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6.2 English version

In this thesis it was proposed to establish necessary and sufficient conditions to guarantee the validity of
the property of strong duality for a non-convex problem with a single restriction, along with the study
of connections with other related properties. We obtained conditions of geometrical and topological
type on the conic hull of {(f(x), g(x)) : x ∈ C} associated with the original problem. Next, we present
the main conclusions of this work.

In Chapter 3 the non-convex quadratic problem was studied with a quadratic inequality constraint
type and with various linear type restrictions, namely the set C is given by an affine sub-space, and,

f(x) =
1

2
x⊤Ax + a⊤x + α, g(x) =

1

2
x⊤Bx + b⊤x + β, C = H−1(d). The main result given by

Theorem 3.3.4, characterizes the validity of the strong duality in terms of the Hessian matrices of the
functions f and g, without any regularity condition as the Slater condition. On the other hand, under
the condition of Slater, Theorem 3.3.2 allows to derive necessary and sufficient optimality conditions
without any assumption of convexity. Finally, we obtained a characterization in Theorem 3.4.1 of
the non-emptiness of the solution set for the problem of minimizing a quadratic form not necessarily
convex, on a convex, closed and asymptotically linear set.

In Chapter 4, we study the general case of an equality constraint establishing a complete characterization,
by virtue of Theorem 4.3.2. According to Corollary 4.3.8 the convexity of the conical envelope of the
image set {(f(x), g(x)) : x ∈ C} is a necessary and sufficient condition for the validity of the property
of strong duality, under a Slater type condition. Our results allow us assuring that under the property
of strong duality, every solution of the original problem (4.1) is a KKT point, without imposing
convexity hypothesis.

Chapter 5 was focused on the standard non-polyhedral quadratic problem. In particular, for
any non-empty subset C ⊂ R

n being a closed, convex and pointed cone having non-empty interior,

f(x) =
1

2
x⊤Ax and g(x) = e⊤x− 1, we establish a new result that characterizes the copositivity of a

matrix with respect to C, it is equivalent to the convexity of the image set {(f(x), g(x)) : x ∈ C}.
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