

Universidad de Concepción Dirección de Postgrado Facultad de de Ciencias Naturales y Oceanográficas Programa de Doctorado en Ciencias Biológicas área Botánica

EVALUANDO LA RELACIÓN ENTRE LA ASIGNACIÓN DE DEFENSAS SOBRE LA SUPERFICIE FOLIAR Y EL PAPEL DE LAS MISMAS EN LA CAPACIDAD COMPETITIVA DE PLANTAS INVASORAS

Tesis para optar al grado de Doctor en Ciencias Biológicas área Botánica

GASTÓN JAVIER SOTES CARVALHOSA

CONCEPCIÓN-CHILE

2016

Tutor: Dr. Lohengrin Alexis Cavieres
Departamento de Botánica
Facultad de Ciencias Naturales y Oceanográficas
Universidad de Concepción

Co-Tutora: Dra. Susana Gómez González Centro de Ciencia del Clima y la Resiliencia Universidad de Chile

RESUMEN GENERAL

Los procesos adaptativos desempeñan un papel importante en la capacidad de inasión de las plantas alóctonas. La Hipótesis de la Evolución de la Capacidad Competitiva Incrementada (EICA: Evolution of Increased Competitive Ability) propone que por liberación de enemigos, habría una selección de aquellas plantas invasoras con una asignación menor a defensas y mayor a crecimiento y/o reproducción; lo que se traduciría en un incremento en la capacidad competitiva. En la región donde evolucionan conjuntamente herbívoros y plantas, estas desarrollan defensas cualitativas efectivas para los consumidores generalistas y cuantitativas para los especialistas. Dado esto, la Hipótesis del Intercambio de Defensas (SDH: Shifting Defence Hypothesis) redefine la hipótesis EICA señalando que las plantas invasoras se liberan de enemigos especialistas pero tiene que hacer frente a los generalistas locales. Por tanto, en las regiones invadidas habría selección de plantas con asignación alta de defensas cualitativas y baja de cuantitativas. Sin embargo, ambos tipos de defensas son funcionalmente versátiles y la expresión de estas podría estar asociada a diversas fuerzas de selección. Por un lado, las defensas cualitativas son metabolitos secundarios altamente tóxicos a bajas concentraciones que podrían actuar como agentes alelopáticos (ej. lactonas sesquiterpénicas). Se ha documentado que las plantas invasoras introducen nuevos y abundantes de estos químicos al ambiente, a los cuales las especies nativas no están adaptadas (Hipótesis de las Nuevas Armas, NWH: novel weapons hypothesis). En este contexto, la Hipótesis de la Ventaja Alelopática sobre Organismos Residentes (AARS: allelopathic advantages against resident) propone que individuos con cantidades crecientes de estos químicos podrían ser seleccionados, confiriéndoles a las plantas invasoras un incremento en la capacidad competitiva por interferencia química. Por otro lado, las defensas cuantitativas se encuentran en altas concentraciones en las plantas y su abundancia modifica las características físicas de esta (ej. densidad de tricomas). Los tricomas pueden presentan compuestos químicos potencialmente

alelopáticos, regular la absorbancia y reflectancia de la luz, la temperatura de la superficie foliar y la transpiración. Por lo tanto, una alta densidad de tricomas en plantas invasoras podría otorgarles una mayor capacidad competitiva frente a las plantas nativas mediante dos mecanismos; alelopatía y mayor eficiencia en el uso del agua. Adicionalmente, esta capacidad competitiva podría verse incrementada en el lugar invadido respecto a su origen, según indican las hipótesis evolutivas de invasión.

Considerando lo anterior, el objetivo general de esta tesis fue analizar la variación interregional en la asignación de defensas foliares y el papel de las mismas en la capacidad competitiva y el desempeño biológico de plantas invasoras. Los objetivos específicos fueron: 1a) determinar la asignación de defensas cualitativas y cuantitativas sobre la superficie foliar de *C. melitensis* y *C. solstitialis* en poblaciones procedentes del rango invadido y del rango originario; 1b) analizar la relación entre el desempeño biológico y la denisdad de tricomas sobre la superficie foliar de *C. melitensis*; 2a) evaluar si las plantas invasoras de *C. melitensis* poseen un incremento en su desempeño biológico, energético y competitivo (por interferencia y por recursos) en relación a las plantas de su rango originario; 2b) analizar la relación entre la capacidad competitiva y la denisdad de tricomas sobre la superficie foliar de *C. melitensis*.

En todas las regiones, los principales componentes químicos fueron lactonas sesquiterpénicas, se encontraron densidades similares de tricomas glandulares sésiles y un número variable de largos tricomas multicelulares. De acuerdo con la SDH, las plantas de regiones invadidas presentaron mayores concentraciones de las principales lactonas sesquiterpénicas (melitesin y repin) respecto a las regiones de origen, pero no se encontraron diferencias regionales con respecto a la densidad tricomas glandulares. En *C. melitensis* se encontró una correlación positiva entre la densidad de tricomas y el desempeño reproductivo y vegetativo, siendo esta correlación más intensa en Chile. No hubieron diferencias significativas la capacidad de

germinación de *C. melitensis* de ambas regiones y de *H. aromaticum*. La germinación de *H. aromaticum* se redujo significativamente en presencia de hojas de *C. melitensis*, sin importar el origen geográfico de la invasora. De igual manera, la biomasa de plantas adultas de *H. aromaticum* se redujo significativamente en presencia de adultos de *C. melitensis* procedentes tanto de España como de Chile.

Los resultados de esta tesis son un aporte al conocimiento biológico, ecológico y evolutivo de las especies invasoras *C. melitensis* y *C. solstitilis*. Se estima que la asignación de defensas sobre la superficie foliar podrían estar contribuyendo a la capacidad invasora de ambas especies. En Chile, *C. melitensis* podría estar desplazando competitivamente a las hierbas nativas alterando la composición vegetacional del matorral. Sin embargo, esto no estaría ocurriendo por medio de una capacidad competitiva incrementada adquirida post-invasión.