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Stellar activity mimics planetary signal in the habitable zone of Gliese 832

by Paula GORRINI

Exoplanets are planets located outside our Solar System. The search of these objects
have grown during the years due to the scientific interest and to the advances on
astronomical instrumentation. There are many methods used to detect exoplanets,
where one of the most efficient is the radial velocity (RV) method. But this technique
accounts false positives as stellar activity can produce RV variation with an ampli-
tude of the same order of the one induced by a planetary companion. In this thesis,
we study Gliese 832, an M dwarf located 4.96 pc away from us. Two planets orbiting
this star were found independently by the RV method: a gas-giant planet in a wide
orbit, and a super Earth or mini-Neptune located within the stellar habitable zone.
However, the orbital period of this latter planet is close to the stellar rotation period,
casting doubts on the planetary origin of this RV signal. This motivated us to per-
form a rigours analysis on stellar activity in order to determine if this phenomenon is
causing these RV variations. We re-calculated the period of the stellar rotation using
Gaussian process (GP) regression on the S-index activity indicator. This resulted in
a stellar rotation period of 35.76 +0.95

−0.26 days, in agreement with the reported value but
reducing the errors by 89.78%. By performing a 1-planet Keplerian model, the Gen-
eralised Lomb Scargle (GLS) periodogram displayed the strongest signal around the
reported planet in a wide orbit (planet b). The periodogram of the residuals showed
a significant (FAP < 1%) signal near 184, while the signal of the inner planet (planet
c) does not reach this level of confidence. By incorporating a GP trained on the
S-index, these signals were absorbed. We subsequently made 2-planets Keplerian
models including the signal of planet b plus the 35 and 184 days signal in different
models, and then added a GP (stellar activity) to each model. By comparing our
different models in a Bayesian framework, the favored model resulted to be 1-planet
plus stellar activity model, updating in this way the orbital solutions of the Gl 832
system. Since the 35 days signal is attributable to stellar rotation, we conclude planet
c is an artifact of stellar activity.
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Chapter 1

Context

A planet is an object that satisfies three conditions: it must orbit a star, be massive
enough to have a spherical shape and be gravitationally dominant in its orbit. Extra-
solar planets, commonly known as exoplanets, are planets that are located outside
our Solar System, i.e., they orbit different stars than the Sun. At the beginning, the
Solar System was the only planetary system known. But the idea of the existence of
exoplanets has raised great interest in humans beings since from remote times we
have questioned our origin and if we are alone in the Universe. Ancient philoso-
phers, such as Epicurus (341-270 BC) and modern philosophers such as Giordano
Bruno (1548-1600), expressed their belief of other worlds should exist, where this lat-
ter man was executed by burning during the Inquisition, as these ideas were against
the church and religion.

The bodies in our Solar system that were visible by naked eyed from the Earth
were contemplated by the first civilizations, who used the movements of Moon, the
Sun, Venus, Mercury, Mars, Jupiter and Saturn to develop calendars. With the inven-
tion of the telescope by Galileo Galilei in 1609, other "invisible" objects became a sub-
ject of study. Galileo found four satellites orbiting Jupiter, and he looked and stud-
ied Saturn’s rings, the phases of Venus, the Sun’s spots and the unsmooth surface
of the Moon. His observations, alongside the study of elliptical orbit performed by
Johannes Kepler, gave strong evidence to the Heliocentric model of Nicolaus Coper-
nicus. After Galileo stated that the Heliocentric model was correct, he was accused
by the church of being a heretic, being sentenced to life imprisonment. Despite of
this, his discoveries inspired next generations of scientists and philosophers.

Later on, Uranus, Neptune, Pluto, orbiting satellites, comets and asteroids were
found. By the beginning of the 20th century, there was still no technology capa-
ble of detecting exoplanets, and no one knew for certain whether our Solar System
was typical or singular. And due to the lack of evidence, many astronomers were
unenthusiastic about the search of exoplanets, and those who were interested were
viewed as "dreamers". But with the advance of technology, it was later possible to
detect low-mass stars and brown dwarfs, allowing the discovery of exoplanets to be
more achievable.
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FIGURE 1.1: Cumulative histogram of exoplanets discovered as a
function of time (taken from The Extrasolar Planets Encyclopaedia).

The search of these extrasolar systems has become one the most attractive subject
for research, which has begun at the end of the last century. The first exoplanet dis-
covery was made by Wolszczan and Frail (1992), detecting a planet orbiting around a
pulsar. A few years later, 51 Pegabsi b, an exoplanet around a Sun-like star, was dis-
covered in 1995 by Mayor et al. (1995), obtaining the Nobel Prize in physics 24 years
later. Its discovery was remarkable as it marked the beginning of the exoplanetary
hunt and it demonstrated the capability and precision of the instrument behind the
discovery.

This Jupiter-like planet was found to be orbiting its star in a close-orbit, being
different from the planets in our Solar System. In this sense, the study of exoplanets
allows us to understand our own Solar System, being essential in the development
of planetary formation and evolution theories. Theories of planetary formation in-
dicate that planets are formed in protoplanetary discs, which are regions of dust
and gas around young stars, where accretion of grain particles end up forming a
planet. Giants planets are believed to form far from its host star but slowly spiralled
inwards over time. This is known as orbital migration and it explains why some
gaseous giants planets have close orbits, such as 51 Pegasi b.

To date (June 2020), there are 4270 exoplanets confirmed, with this number in-
creasing in time due to the great scientific interest and the advances on astronomical
instrumentation which allow these planets to be detected. In Fig. 1.1 we observe a
cumulative histogram displaying the confirmed exoplanets that has been detected
since the early 90’s by different techniques.

http://exoplanet.eu/
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FIGURE 1.2: RV measurments of 51 Pegasi b (taken from Fig. 4 -
Mayor et al., 1995).

As we will see in Section 2.1, there are a variety of methods to detect exoplanets,
where the most commonly used are the transit and radial velocity (RV) methods.
The former consist in the planetary transit, where a planet passes in front of the star
causing a decrease in the stellar flux. Since planets orbit periodically their host star,
this decrease in flux also occurs periodically, indicating that the star could have a
planetary companion. As for the RV method, it is based on the Doppler Effect: due
to the presence of a planet the star orbits the center of mass of the system, caus-
ing the star to move towards or away from us, generating a blueshift and redshift,
respectively, of the stellar spectral lines. These doppler shifts induce periodically
variations in the radial velocity of the star, providing us with evidence of the possi-
ble presence of a planet in the system. In Fig. 1.2 we observe how 51 Pegasi b was
found with this latter method.

Both methods have their advantages and disadvantages. The advantage of the
transit method is that it can determine the size of the planet directly, whereas the
RV method provides us with the eccentricity of the planetary orbit. Combining both
methods, the mass of the planet can be calculated. But these methods have the disad-
vantage of only working when the planetary system is in our line of sight, reducing
the quantity of the planetary system that can be found by these techniques. Still, the-
ses methods have been the most efficient for the detection of exoplanets, especially
when used simultaneously.

The detection of planets through the RV method is possible using the avail-
able instrumentation nowadays, such as the "High Accuracy Radial Velocity Planet
Searcher" (HARPS), an echelle spectrograph that reaches a precision up to 0.97 ms−1,
being one of the only instruments with such precision over the world. It is mounted
in the 3.6m ESO telescope located in La Silla Observatory. This instrument can de-
tect easily planets orbiting around low mass stars, such as M dwarfs, which make up
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about 70% of the stars near the Sun. Their masses ranges from 0.07 to 0.6 M�, mak-
ing them ideal to search for Earth-mass planets either by the transit or RV method.
In M dwarfs, the habitable zone (HZ), which is defined as the range of distances from
the host star where a planet could maintain liquid water on its surface, tends to be
closer to the star (between 0.03 and 0.4 AU; Kasting, Whitmire, and Reynolds, 1993)
as their luminosites are lower compared to Sun-like stars.

But as we will see in Chapter 4, these stars tend to be magnetically active (e.g.
Reiners, Joshi, and Goldman, 2012), being able to mimic the effect of a planet. The
presence of a planet induces periodic variations on the stellar RV, but quasi-periodic
RV variations can also be produced by the activity of the star. These RV variations
can be generated by stellar oscillations, granulation, spots, plages, and long activ-
ity cycles. Of all of these signatures, one of the most complicated to mitigate their
effected are stellar spots. As they rotate within the star, they appear and disappear
of the stellar surface, causing an imbalance between the blue and redshifted parts of
the stellar surface.

This alters the shape of the spectral lines, leading to RV variations of the order of
a few ms−1. Therefore, this phenomena can cause RV variations of the same order
that a planetary companion does, leading to false planet detections (e.g. Queloz et
al., 2001; Desidera et al., 2004; Bonfils et al., 2007; Huélamo et al., 2008; Santos et
al., 2014; Robertson et al., 2014), demonstrating the importance of comprehending
and treating the presence of activity signals in the search of exoplanets. In the Gl
832 system, a Jupiter-like planet in a wide orbit (Bailey et al., 2009), and a super
Earth or mini-Neptune orbiting within the stellar habitable zone (Wittenmyer et al.,
2014) have been detected using the RV methods. The inner planets has a minimum
mass of 5.4 Earth-masses ±1.0 and an orbital period of 35.68 ±0.03 days. A recent
investigation performed by Suárez Mascareño et al. (2015) shows that the stellar
rotation period (45.7 ± 9.3 days) is close to the planetary orbital period, for which is
necessary to perform a rigorous analysis in order to determine if the observed signal
is indeed produced by the planetary companion or by stellar magnetic activity.

In this thesis we investigate in depth the RV of Gl 832 and magnetic activity
tracers, using spectroscopic high resolution data obtained by HARPS between 2002
and 2018. We also used archival RV data from PFS and UCLES spectograph. The
aim of this thesis is to either to confirm the presence of the inner planet or to discard
it due to the activity of the star.

This study is structured as follows. In Chapter 2 we introduce the detection
methods of exoplanets and give a detail description of the RV method. In Chapter
4 we describe the stellar magnetic activity present in Sun-like stars and M dwarfs,
its manifestations and how they can mimic planetary signals. We also describe a
Bayesian approach that is used to model stellar activity. In Chapter 5 we explain our
study of Gl 832 system and in Chapter 6 we report the main conclusion of this thesis.
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Chapter 2

Introduction to Exoplanets

2.1 Detection Methods

A variety of methods are used in order to discover exoplanets. These can be divided
into two categories: direct and indirect techniques. The former consist on the de-
tection of the planet itself, while the latter resides on the study of the stellar signal
that it is influenced by a planetary companion. Within these categories, the direct
imaging (direct method) and the transit, astrometry, microlensing, and radial veloc-
ity (indirect methods) are the most-known and used, which are described in this
section.

2.1.1 Direct Imaging

We can say that this technique is unique; it allows us to detect the planet directly.
Despite their difficulties, as the planet is much fainter than the star, it is possible to
observe them. This is done by performing observations in visible wavelength where
the reflecting light from their star can be detected, or in the infrared (IR) where the
thermal emission of the planet is observable. The planet then must be massive and
hot enough to emit in the IR and should be far away from its host star (a > 5 AU) so
it does not outshine the emission of the planet. Coronographs are usually used in
this technique to block the light from the star.

  

Planet Detection Methods

Direct                                                      Indirect                             
                                                 

Direct Imaging

Effect on light                       Dynamical Effect

Microlensing     Transit            Astrometry       Radial Velocity
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FIGURE 2.1: Infrared images of the planet β Pictoris b obtained by
direct imaging in (a) 2003, (b) 2009 and (c) 2010 (taken from Fig. 1 -

Barman, 2014).

Direct imagining measures the photons coming from the planet, allowing to
perform photometric and spectroscopic studies, obtaining in this way information
about the planet such as atmospheric composition of the planet and effective tem-
perature. As it reveals images of planets, this technique can also reveal debris disk.
In this sense, this is the only method that allows us to observe the planet directly,
obtaining one of the first images of an exoplanet in 2004, in which 2M1207b was de-
tected around a brown dwarf. Fig. 2.1 shows an IR image of the planet β Pictoris b
obtained in different epochs.

However, it is very difficult to perform this technique. For instance, if we ob-
served our Solar System from 10 pc away, Jupiter would look 10−9 fainter than the
Sun with an angular separation of 0.5 arcsec. Also, diffraction, scattering and planet-
star contrast are some of the obstacles of this method. Therefore a high quality in-
strumentation is required to discover exoplanets through direct imaging. For good
results, large telescopes are required in order to resolve small angular separation, as

Θ ∝
λ

D
(2.1)

where Θ is the angular separation, λ the observation wavelength and D the di-
ameter of the telescope. An extraordinary planetary detection was made by Macin-
tosh et al. (2015) with this technique, in which the angular separation of the instru-
ment was able to resolve less than 0.5 arcsec between the planet and it host star.

2.1.2 Microlensing

Microlensing is based on the event of a lens produced by the gravitational field of
a star that is aligned to another background star, magnifying the light of the latter.
In order for this to happen, the stars alignment must be in the observer’s line of
sight. As seen in Fig. 2.2, the star acting as a lens (located at a distance DL from
the observer) bends the light of the source star (located at a distance DS from the
observer), producing an image visible to the observer.

Microlensing events are based on the Einstein radius, which describes how the
light is bend from the perfectly alignment of the source, lens, and observer, due to
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FIGURE 2.2: Representation of the geometry of a microlensing event.

the gravitational effect. If the light of the source passes at at distance r from an object
of mass M, the light will be bent by an angle of:

θE =

√
4GM

c2
DS − DL

DSDL
(2.2)

and therefore the Einstein radius is given as:

rE = θEDL =

√
4GM

c2
DS − DL

DS
(2.3)

with a magnification of:

A(u) =
u2 + 2

u
√

u2 + 4
(2.4)

where u is the angular separation, in units of the Einstein radius, between the source
and the lens. In the case of a perfect alignment, u = 0 and therefore the magnifica-
tion is infinite, known as caustic. For caustic perturbations produced by a planetary
companion, the planet will detected by the presence of a "bump" in the transient
light curve of the background star, as seen in Fig. 2.3.

The advantage of this method is that is sensitive to detect Earth-sized planets and
also is able to detect planets from other galaxies. But this event is temporary. This
is because the observer, lens and source are all in relative motion and their angular
separation with respect of another is dependent of time. Thus, a microlensing event
is also a function of time. This is the main disadvantage of this method.
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FIGURE 2.3: (Left) Acting as a lens, the foreground star magnifies the
brightness of the background star. (Right) If the foreground star has
a planetary companion, this will also act as a gravitational lens for a
short period of time, producing a perturbation in the transient light

curve of the background star.

2.1.3 Transit

When a planet passes in front of a star, it blocks part of the stellar light if the system
is in the observer’s line of sight. As the planet is orbiting around it host star, it will
also hide behind it. This produces a periodic drop of flux in the stellar light curve,
as seen in Fig 2.4. This means that the star has a companion, discovering in this way
exoplanets through this method. The main observables of a this technique are the
orbital period and the duration and depth of the transit. Planetary transit allows us
to calculate the radius of the planet, as

∆F
F

=

(
Rp

Rs

)2

(2.5)

where F is the total stellar flux, Rs and Rp the radius of the star and the planet, re-
spectively. This technique has been one of the best on the exoplanetary hunt, but as
every technique, it has its disadvantages. As planets through this method can only
be detected if the system is in the observer’s line of sight, it limits enormously the ex-
oplanet discoveries as not all planetary system are aligned following that geometry.
The probability of a transit to be observable is given by:

P ≈ Rs

a
(2.6)

Therefore, in order to ensure its effectiveness, several surveys have been carried
out, such as CoRoT (Barge et al., 2008), TESS (Ricker et al., 2009) and the Kepler
mission (Borucki et al., 2010).
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FIGURE 2.4: Diagram of the transit.

2.1.4 Astrometry

Astrometry measures the position and motion of a star with respect to the position of
its background stars. This change in position is due to the gravitational influence of
a companion. In a star-planet system, they both the center of mass. So by performing
precise measurements of the position of the star, the planetary companion would be
discovered.

The main advantage consists of being the only technique that allows to deter-
mine all the orbital parameters, including the planetary mass (if the stellar mass is
calculated independently). Also, this technique is not affected by stellar activity (see
Chapter 4), being less prone to false positives.

The astrometric motion θ of a planet of mass Mp that orbits in a circular orbit
around its host star of mass Ms at a distance d with a semi major axis a is given by

θ =
Mp

Ms

a
d

(2.7)

θ′′ =

(
Mp

Ms

)(
a

AU

)(
pc
d

)
(2.8)

We note that astrometry is directy proportional to the mass of the planet and the
semi major axis, being sensitive in detecting large mass planet in wide orbits. It is
also sensitive to low-mass stars and planetaty system close to Earth. This latter is a
disadvantage since this method cannot be used for system located far away. Also, it
requires an extremely high precision, requiring high-quality instrumentation. As the
turbulence in the atmosphere of the Earth can be a main difficult, space astrometry
is more efficient.

The GAIA mission (Lindegren et al., 2008), which has been operating since 2014,
is space mission designed to perform astrometric observations and is promising in
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Earth

Host star

Exoplanet

FIGURE 2.5: Radial velocity illustration described by the doppler
shifted light of a star with a planetary companion.

the detection of exoplanets through this technique.

2.1.5 Radial Velocity

As the planetary system orbit their common center of mass, it is possible to detect a
planet by measuring the stellar "wobble" produced by the gravitational influence of
the planetary companion. This is produced by the Doppler effect, which is given by

k · v∗ = c
λB − λ0

λ0
(2.9)

where k is the unit vector pointing to source from the observer in the rest frame
of the observer, v∗ is the source velocity, c is the speed of light in the vacuum, λ0

is the wavelength of the emitted photon in the rest frame of the source, and λB is
the wavelenght that would be measured by the observer considering barycentric
correction.

The sign of this equation tell us how the object is moving with respect of the
observer. A positive sign indicates that the object is moving away from us, produc-
ing an increase in wavelength and therefore there is redshift of the spectral lines.
A negative sign implies that the object is moving towards us, causing a decrease in
wavelength and thus producing a blueshift in the spectral lines. In this manner, if
a star located in our line of sight presents periodic radial velocity (RV) variation, it
implies that one or more planets are orbiting the host star, as seen in Fig 2.5.

From this RV variation, the orbital period, eccentricity and semi-major axis can
be determined (see Section 3). With these observables, if the stellar mass is known
or calculated independently, the minimum planetary mass (Mp sin i) can be inferred
as the orbital inclination cannot be determined.

The first planet detected with this method was Pegasi 51 b (Mayor et al., 1995),
the first exoplanet found orbtiting a main sequence star. This planet corresponds to
a Hot-Jupiter planet, as this method was biased to Jupiter-like planets since they are
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easier to detect due to the greater gravitational influence on their host star. But as
high precision instruments have been developed, with this technique it is now pos-
sible to detect Earth-mass planets around low-mass stars. Some high precision spec-
trograph are CORALIE (Queloz et al., 2000) installed at the 1.2-metre Leonhard Eu-
ler Telescope in La Silla Observatory with a precision of 3.05 ms−1, HARPS (Mayor
et al., 2003) mounted in the 3.6m telescope in La Silla Observatory with precision
up to 0.97 ms−1, ESPRESSO (Pepe et al., 2010) installed in VLT at Paranal observa-
tory which precision goes up tp 0.1 ms−1, CARMENES (Quirrenbach et al., 2010)
mounted in 3.5m telescope at the Calar Alto Observatory reaching a precision of 1
ms−1.

2.1.6 Methods sensitivities

As we have seen, each of the previously described technique has its detection ten-
dency. We can see this in Fig. 2.6, which shows the planetary mass as a function of
the semi-major axis. The RV and transit method tend to detect bigger mass planets
in close orbits, whereas direct imaging, microlensing and astrometry tend to detect
planets in wider orbits. From the data points, we observe that more planets have
been discovered by the transit method, beating the RV method which was the most
efficient technique to find planets. But as seen in Section 2.1.5, the RV method is
being more sensitive to detect Earth-mass planet as new instruments are being de-
veloped, being promising in the planetary hunt. This latter method is described in
detail in Chapter 3, but we first need to understand the mathematics and physics
beyond the planetary orbits, which is shown in the following section.
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FIGURE 2.6: Planetary mass vs. semi-axis major for different detec-
tion methods.
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2.2 Keplerian Orbits

Johannes Kepler took a big step in our understanding of planetary motion. His
laws and implications allows us to model planetary systems. In this section, we
will derive Kepler’s laws of motion and solve the two-body problem and the Kepler
problem. For the most part we follow Murray and Correia (2010).

2.2.1 Kepler’s law of planetary motion

Kepler was delighted by the sky since his early years. This fascination led him to
study the motion of the objects of our Solar System. From observational data ob-
tained by Tycho Brahe, Kepler was able to derive in 1609 the first two laws of plane-
tary motion, whereas the third law was deduced a decade later, in 1619. These laws
state that:

1. Planets orbit the Sun in elliptical paths, where the Sun is located in one of the
focus.

2. A radius vector joining the Sun to a planet sweeps outs equal areas in equal
lengths of time.

3. The square of the orbital period of a planet is directly proportional to the cube
of its semi-major axis.

Although Kepler derived these laws, he did not understand the physical phenomena
behind it. Years later, in 1687, Kepler’s laws motivated Isaac Newton, who showed
that these laws where a natural consequence of an inverse square law of force acting
between the Sun and a planet. In his Principia Newton proposed that:

1. A body will persist in its state of rest or uniform motion in a straight line unless
a force acts upon it.

2. Force is equal to the change in momentum per change in time.

3. For every action, there is an equal and opposite reaction.

He also formulated the universal law of gravitation, revolutionizing science. In the
context of the two-body problem, he was able to derived Kepler’s laws of planetary
motion. This is what we will carry out through these pages.
From Newton’s universal law of gravitation, we have that

F = G
m1m2

r2 (2.10)

where F is the magnitude of the force between masses m1 and m2 separated
by a distance r and G is the universal gravitational constant (G= 6.67250 ×10−11

Nm2kg−2). Considering a star with mass m1 and position vector r1 and a planet
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FIGURE 2.7: Diagram showing the forces (not to scale) acting on
masses m1 and m2, with their postition vector r1 and r2 respectively.

with mass m2 with a postion vector r2 with respect to an origin O (Figure 2.7), the
gravitation forces acting on each other are given by

F1 = m1r̈1 = +G
m1m2

r3 r (2.11)

F2 = m2r̈2 = −G
m1m2

r3 r (2.12)

where r = r2 − r1 is the relative motion of the planet with respect to the star.
Dividing by their respective masses we have, for F1

��m1 r̈1

��m1
= +G�

�m1 m2

��m1 r3 r

⇒ r̈1 = +G
m2

r3 r (2.13)

and for F2

��m2 r̈2

��m2
= −G

m1m2

��m2 r3 r

⇒ r̈2 = −G
m1

r3 r (2.14)

From subtracting Eq. (2.13) from Eq. (2.14) we get

r̈2 − r̈1 = −G
m1

r3 r− G
m2

r3 r

= −G
1
r3 r(m1 + m2)

Using r̈ = r̈2 − r̈1 we obtain
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FIGURE 2.8: Illustration of the orbital plane (gray ellipse) and how
the angular momentum vector h is always perpendicular to it.

r̈ + G
m1 + m2

r3 r = 0 (2.15)

Since r× r = 0, then r× r̈ = 0 , which integrated yields to

r× ṙ = h (2.16)

where h is a constant vector perpendicular to both r and r̈. Thus, the motion of
both bodies lies in a plane, known as the orbit plane, which is illustrated in Figure
2.8. Now we perform a transformation into polar coordinates.

The position vector r in cartesian coordinates is given by r = xî + yĵ. Using the
transformation

x = r cos θ

y = r sin θ

We have

r = r cos θ î + r sin θ ĵ

The unit vectors are defined as

r̂ =
∂r/∂r
|∂r/∂r| = cos θ î + sin θ ĵ

θ̂ =
∂r/∂θ

|∂r/∂θ| = − sin θ î + cos θ ĵ

Thus,
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r = r cos θ î + r sin θ ĵ

= r(cos θ î + sin θ ĵ)

= rr̂

And the velocity and acceleration vector are given by

ṙ = ṙ(cos θ î + sin θ ĵ) + rθ̇(− sin θ î + cos θ ĵ)

= ṙr̂ + rθ̇θ̂

r̈ = r̈(cos θ î + sin θ ĵ) + ṙθ̇(− sin θ î + cos θ ĵ) + ṙθ̇(− sin θ î + cos θ ĵ) + rθ̈(− sin θ î + cos θ ĵ)

− rθ̇2(cos θ î + sin θ ĵ)

= r̈r̂ + 2ṙθ̇θ̂ + rθ̈θ̂ − rθ̇2r̂

= (r̈− rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂

= (r̈− rθ̇2)r̂ +

(
1
r

d
dt
(r2θ̇)

)
θ̂

Summarizing we have

r = rr̂ (2.17)

ṙ = ṙr̂ + rθ̇θ̂ (2.18)

r̈ = (r̈− rθ̇2)r̂ +

(
1
r

d
dt
(r2θ̇)

)
θ̂ (2.19)

Substituting the velocity vector onto Eq. (2.16) we get

(rr̂)× (ṙr̂ + rθ̇θ̂) = h

rr̂× rθ̇θ̂ = h

r2θ̇ẑ = h

where ẑ is a unit vector perpendicular to both r̂ and θ̂. The magnitude of this
vector is therefore

h = r2θ̇ (2.20)

which tell us that the quantity r2θ̇ remains constant when the planet orbits the
star. The area element swept out by the radius vector of the star and planet is given
by
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dA =
∫ r

0
rdrdθ =

1
2

r2dθ

Hence

Ȧ =
1
2

r2θ̇ (2.21)

=
1
2

h (2.22)

which means that

Ȧ = constant (2.23)

This is equivalent to the second law of Kepler of planetary motion, stating that the
line between the star and the planet sweeps equal areas in equal times.
Recalling Eq. (2.15) and substituting the r̂ components of Eq. (2.17) and Eq. (2.19)
yields to

r̈− rθ̇2 = −G(m1 + m2)

r2 (2.24)

But we can write r as a function of θ. Using the chain rule we obtain

ṙ =
d
dt

(
r(θ(t))

)
=

dr
dθ

dθ

dt
=

dr
dθ

θ̇

Making the substitution u = 1/r, we have that du = − 1
r2 dr, which implies that

dr = −r2du, thus

ṙ = −r2 du
dθ

θ̇ = − 1
u2

du
dθ

θ̇

But from equation 2.20 we have that θ̇ = h
r2 , thus

ṙ = −h
du
dθ

And in this manner r̈ is given by

r̈ = −h
d2u
dθ2 θ̇

= −h2u2 d2u
dθ2

Replacing this result into equation 2.24 and using again equation 2.20 we have
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−h2u2 d2u
dθ2 − r

h2

r4 = −G(m1 + m1)u2

d2u
dθ2 +

1
r3u2 =

G(m1 + m2)

h2

d2u
dθ2 +

u3

u2 =
G(m1 + m2)

h2

d2u
dθ2 + u =

G(m1 + m2)

h2

This second order linear differential equation it is known as Binet’s equation, which
general solution is given by

u =
G(m1 + m2)

h2 [1 + e cos (θ −ω)]

where e, which corresponds to an amplitude, and ω, which corresponds to a
phase, are two constants of integration.

Substituting back for r we get

r =
h2

G(m1 + m2)
· 1
[1 + e cos (θ −ω)]

Making

p =
h2

G(m1 + m2)
(2.25)

We get

r =
p

1 + e cos (θ −ω)
(2.26)

This corresponds to the general solution in polar coordinates of a conic. For a given
conic, the values of e and p are shown in the following table.

conic e p
circle = 0 = a

ellipse 0 < e < 1 = a(1− e2)

parabola = 1 = 2q
hyperbola e > 1 = a(e2 − 1)

where q is the shortest distance to the central mass and where a is called the semi-
major axis. Considering an elliptical motion and substituting the value of p into 2.27
we have

r =
a(1− e2)

1 + e cos (θ −ω)
(2.27)
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FIGURE 2.9: Representation of the geometry of the ellipse.

This represents the first law of Kepler of planetary motion, stating that the orbit of
a planet around the stars is an ellipse, in which the star is located in one of the fo-
cus. In Figure 2.9 the geometry and parts of the ellipse are shown. The angle θ is
called true longitude and the angle ω is knows as the longitude of periastron, where
the periastron is the closest star-planet distance r, while the apastron is the maximun
distance. Thus, the longitude of periastron is the angular location of the periastron
with respect to the reference direction.

Defining the angle ν = θ −ω, known as true anomaly, then

r =
a(1− e2)

1 + e cos ν
(2.28)

Now we just need to derive the third law of Kepler. We saw that the orbital trajectory
of a planet around a star is an ellipse, with an area of A = πab (where b is the semi-
minor axis of the ellipse), which is traveled by the planet in a time P. But from Eq.
(2.22) we have that

Ȧ =
1
2

h

⇒ A =
1
2

hP

Thus, we have the following equality
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1
2

hP = πab

P =
2πab

h

P2 = 4π2 ·
(

ab
h

)2

But we know from Eq. (2.25) that

h2 = p · G(m1 + m2)

Then, we have that

P2 = 4π2 a2b2

p · G(m1 + m2)

But the quantities a and b are related by

b2 = a2(1− e2) (2.29)

Replacing this and knowing that p = a(1− e2), we obtain

P2 =
4π2

G(m1 + m2)

a2 · a2(1− e2)

a(1− e2)

P2 =
4π2

G(m1 + m2)
a3 (2.30)

which corresponds to the third law of Kepler of planetary motion.

2.2.2 Solution of the two-body problem

So far, we have derived the three laws of kepler of planetary motion. Since the two-
body problem consists of calculating the trajectory of two bodies of known masses
and initial velocities, we will now find the relation between the velocity of the planet
v with the distance r.

Taking the scalar product of ṙ with Eq. (2.15) yields to

ṙ · r̈ + G(m1 + m2)ṙ · r = 0

Replacing Eq. (2.17) and Eq. (2.19) we get
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ṙ · r̈ + G(m1 + m2)(ṙr̂ · rr̂) = 0

ṙ · r̈ + G(m1 + m2)
ṙ
r2 = 0

Integrating this yields to

1
2

ṙ · ṙ− G(m1 + m2)

r
= C (2.31)

where C is a constant of the motion. Since ν = θ −ω, then

θ = ν + ω

⇒ θ̇ =
d(ν + ω)

dt

And since ω is fixed,

θ̇ = ν̇ (2.32)

Replacing this into Eq. (2.18), we calculate the scalar product of ṙ · ṙ

ṙ · ṙ = ṙ2 + r2θ̇2 (2.33)

= ṙ2 + r2ν̇2 (2.34)

Now we need to find the values of ṙ2 and r2ν̇2. First, we differentiate Eq. (2.28)

ṙ =
a(1− e2)

(1 + e cos ν)

e sin ν

(1 + e cos ν)
ν̇

= rν̇
e sin ν

(1 + e cos ν)
(2.35)

But from Eq. (2.20) and Eq. (2.32) we have that

h = r2θ̇ = r2ν̇ (2.36)

Defining the mean motion of the planet’s motion as

n =
2π

P
Then from the third law of Kepler we have that
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��4π2

n2 =
��4π2

G(m1 + m2)
a3 (2.37)

⇒ G(m1 + m2) = n2a3 (2.38)

And from Eq. (2.25) we have that

h =
√

a(1− e2)G(m1 + m2) (2.39)

=
√

a(1− e2)n2a3 (2.40)

= na2
√

1− e2 (2.41)

Replacing this into Eq. (2.36), yields to

h = r2ν̇ = na2
√

1− e2

⇒ rν̇ =
na2
√

1− e2

r

Replacing Eq. (2.28)

rν̇ = na�2
√

1− e2 · (1 + e cos ν)

�a(1− e2)

=
na√

1− e2
(1 + e cos ν) (2.42)

Replacing this into Eq. (2.35) we get

ṙ =
na√

1− e2
·(((((

(
(1 + e cos ν) · e sin ν

(((
((((1 + e cos ν)

(2.43)

=
na√

1− e2
· e sin ν (2.44)

Now we can replace Eq. (2.44) and Eq. (2.42) into Eq. (2.34)

ṙ · ṙ = ṙ2 + r2ν̇2

=

(
na√

1− e2
· e sin ν

)2

+

(
na√

1− e2
(1 + e cos ν)

)2

=
n2a2

(1− e2)
[e2 sin2 ν + (1 + e cos ν)2]
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=
n2a2

(1− e2)
[e2 sin2 ν + 1 + 2e cos ν + e2 cos2 ν]

=
n2a2

(1− e2)
[1 + 2e cos ν + e2(sin2 ν + cos2 ν)]

=
n2a2

(1− e2)
[1 + 2e cos ν + e2] (2.45)

But from Eq. (2.28) we have that

e cos ν =
a(1− e2)

r
− 1 (2.46)

Thus,

ṙ · ṙ = n2a2

(1− e2)
(1 + 2

[
a(1− e2)

r
− 1

]
+ e2)

=
n2a2

(1− e2)

[
2a(1− e2)

r
− 1 + e2

]

=
n2a2

(1− e2)

[
2a(1− e2)

r
− (1− e2)

]

= n2a2

[
2a
r
− 1

]

= n2a2 · a
[

2
r
− 1

a

]

= n2a3

[
2
r
− 1

a

]
(2.47)

And replacing Eq. (2.38) we obtain

v2 = ṙ · ṙ = G(m1 + m2)

[
2
r
− 1

a

]
(2.48)

where v2 = ṙ · ṙ is the square of the velocity. This relation shows the dependence
of v on r. Comparing Eq. (2.31) with Eq. (2.48) we find that the energy constant is
given by

C = −G(m1 + m2)

2a
(2.49)
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2.2.3 Solution to the Kepler problem

Now we must find r as a function of time. This is often known as the Kepler problem.
To find a relation between ṙ and r, we recall Eq. (2.34) and Eq. (2.47)

ṙ · ṙ = ṙ2 + r2ν̇2

= n2a3

[
2
r
− 1

a

]

From here we have that

ṙ2 + r2ν̇2 = n2a3

[
2
r
− 1

a

]

⇒ ṙ2 = n2a3

[
2
r
− 1

a

]
− r2ν̇2

Replacing Eq. (2.42) and Eq. (2.46) we obtain

ṙ2 = n2a3

[
2
r
− 1

a

]
− n2a2

1− e2 (1 + e cos ν)2

= n2a3

[
2
r
− 1

a

]
− n2a2

1− e2

[
a(1− e2)

r

]2

= n2a3

[
2
r
− 1

a

]
− n2a4(1− e2)

r2 (2.50)

Which means that

ṙ =

√√√√n2a3

[
2
r
− 1

a

]
− n2a4(1− e2)

r2

=

√
2n2a3

r
− n2a2 − n2a4

r2 +
n2a4e2

r2

=

√√√√n2a2

r2

[
2ra− r2 − a2 + a2e2

]

=
na
r

√
a2e2 − (r− a)2 (2.51)

Introducing a new variable E, called the eccentric anomaly, as

r = a(1− e cos E) (2.52)
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Then

ṙ = ae sin EĖ (2.53)

The differential equation transforms to

Ė =
n

1− e cos E
(2.54)

Where the solution can be solved by considering a constant of integration T0 and use
the boundary condition E = 0 when t = T0. Therefore, the solution is given by

n(t− t0) = E− e sin E (2.55)

Now we define a new quantity as the mean anomaly M, expressed as

M = n(t− T0) (2.56)

where T0 is known as the time of periastron passage. When t = T0 or t = T0 + P
(periapse passage), then M = ν = 0. When t = T0 + P/2 then M = ν = π.
The mean anomaly can be written as

M = E−−e sin E (2.57)

Which is known as Kepler’s equation. Solving this equation allows to find the orbital
position at a given time. The following steps can be done in order to characterize and
orbit.

1. Find M (Eq. 2.56)

2. Find E from Kepler’s equation (Eq. 2.57)

3. Find r (Eq. 2.52)

4. Find ν (Eq. 2.28)

As we will see in the following Chapter, these parameters are essential in the RV
method. They are used to solve the radial velocity equation, which allows to perform
fits over the RV data and therefore obtain orbital parameters from planetary systems.
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Chapter 3

The Radial Velocity Method

As this thesis is based on the RV method, we will focus on it for a better understand-
ing. Even thought we mentioned the main basis of this technique in Section 2.1.5,
here we will review in detail the orbital elements and parameters, the RV equation,
its signal analysis and how to obtain RV measurements from stellar spectra.

3.1 Orbital elements and parameters

As seen in Fig. 3.1, a Keplerian orbit in 3-dimensions has its orbital elements that
defines its geometry. These elements are the following. The inclination i is the an-
gle between the sky plane (perpendicular to the line-of-sight toward the star) and
orbital plane. The ascending node Ψ corresponds to the point where the star recedes
from the observer when it crosses the sky plane. The stellar periastron p defines the
stellar closest approach to the center of mass CM of the system. The position vector
~r illustrates the connection of the centre of mass and the position of the star with re-
spect of time. The true anomaly ν indicates the angle between the periastron and~r.
As the vector~r changes in time, this angle is also time dependent. The line of nodes
illustrates the orbital and sky plane intersection through the centre of mass. The an-
gle of the ascending node Ω defines the orientation of the node line. The longitude
of periastron ω is the angle between the periastron and the line of nodes.
In order to define completely the orbit, we need to describe the orbital parameters.
These seven parameters are the following. The orbital period P, which is the time
the planet takes to orbit its host star. The eccentricity e measures how much the
ellipse deviates from being circular, with values going from 0 to 1 (the eccentricity
of a circle is zero). The semi-major axis a corresponds to the orbital distance. The
passage of periastron T0 is the time at which the orbit of a planet goes through its
periastron. And the orbital elements described above: the longitude of periastron ω,
the longitude of the ascending node Ω and the orbital inclination i.

All of these elements describes the shape, size and orientation of the orbit, allow-
ing us to describe the physics of the orbiting bodies.
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FIGURE 3.1: Schematized representation of a Keplerian orbit in 3-
dimensions.

3.2 The radial velocity curve

The mathematical details of this part is described in Section 2.2. As we know from
the two-body problem, each body orbits in an elliptical orbit around the common
center of mass, which is the focus of the ellipse. For a star-planet system each of
their semi-major axis are given by

as =
Mp

Mp + Ms
· a (3.1)

ap =
Ms

Mp + Ms
· a (3.2)

where Mp is the mass of the planet and Ms is the stellar mass. From the first
law of Kepler of planetary motion, we know that the ellipse is described in polar
coordinates by (Eq. 2.27)

r =
a(1− e2)

1 + e cos ν

From trigonometry (see Fig. 3.1), we know that the ẑ coordinate (the observer’s line
of sight) of the star is given by

z = r(t) cos (ν(t) + ω) sin i (3.3)

Deriving z with respect of time we get
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vr =
dz
dt

=
dr
dt

sin (ν + ω) sin i + r
dν

dt
cos (ν + ω) sin i (3.4)

From Eq. (2.42) we have that

r
dν

dt
=

nas(1 + e cos ν)√
1− e2

=
2πas(1 + e cos ν)

P
√

1− e2
(3.5)

as n = 2π/P. Now, from the ellipse equation we have that

dr
dt

=
a(1− e2)e sin ν

(1 + e cos ν)2
dν

dt

=
e sin ν

(1 + e cos ν)
r

dν

dt

=
2πase sin ν

P
√

1− e2
(3.6)

Thus, replacing Eq. (3.6) and Eq. (3.5) into Eq. (3.4) we get

vr =
2πas

P
√

1− e2
sin i

[
e sin ν sin (ν + w) + (1 + e cos ν) cos (ν + w)

]
=

2πas

P
√

1− e2
sin i

[
e sin ν

(
sin ν cos w + cos ν sin w

)
+ (1 + e cos ν)

(
cos ν cos w− sin ν sin w

)]
=

2πas

P
√

1− e2
sin i

[
e cos w + cos ν cos w− sin ν sin w

]
=

2πas

P
√

1− e2
sin i

[
e cos w + cos (ν + w)

]
(3.7)

Now, replacing Eq. (3.1) in the latter expression we obtain

vr =
2πa sin i
P
√

1− e2

Mp

Ms + Mp

[
e cos w + cos (ν + w)

]
And replacing the semi-major axis a from Kepler’s third law (Eq. 2.30) we have

vr =

(
2πG

P

)1/3
1√

1− e2

Mp sin i
(Ms + Mp)2/3

[
e cos w + cos (ν + w)

]
(3.8)

Defining the radial velocity semi-amplitude as

K =

(
2πG

P

)1/3
1√

1− e2

Mp sin i
(Mp + Ms)2/3 (3.9)
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FIGURE 3.2: Illustration of an hypothetical RV curve indicating the
parameters P and K.

And adding the stellar systemic velocity γ we finally obtain the radial velocity curve
given by

vr = K
[

cos (ν + ω) + e cos (ω)
]
+ γ (3.10)

The value of K gives us the amplitude of the signal while the terms in the brackets
are responsible for the shape of the curve. By making a fit to the data using the RV
equation we are performing a Keplerian fit. This allows us to derive planetary pa-
rameters from the RV data. As seen in Fig. 3.2 we can visualize the parameters P
and K on the velocity curve, and in Fig. 3.3 we see how the shape of the RV curve
depends on e and ω.

Since the parameters described in the RV curve are not lineal, they cannot be adjust
analytically and they must be found through an algorithmic search. One way to do
this is to analyze the periodograms to identify the periods of the potential planets,
where all the highest significant peaks can be used as starting guesses for the fit-
ting algorithm. The Generalized Lomb-Scargle periodogram (GLS; Zechmeister and
Kürster, 2009) is an efficient tool to analyze periodic and stable RV signals in order
to identify possible planets. This algorithm is described in the following section.

3.3 Generalized Lomb-Scargle periodogram

To understand the GLS periodogram we first need to be familiarized with the Lomb-
Scargle periodogram (Lomb, 1976; Scargle, 1982), which allows to detect periodici-
ties of uneven time series data. This periodogram is based on the following equation
(Barning, 1963; Lomb, 1976; Scargle, 1982)

p̂(ω) =
1

ŶY

[
ŶC2

τ̂

ĈCτ̂

+
ŶS2

τ̂

ŜSτ̂

]
(3.11)

=
1

∑i y2
i

[
[∑i yi cos w(ti − τ̂)]2

∑i cos2 w(ti − τ̂)
+

[∑i yi sin w(ti − τ̂)]2

∑i sin2 w(ti − τ̂)

]
(3.12)
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FIGURE 3.3: The effects that different values of e and ω have on RV
curves. These RV curves have the same value of K, P and T0. Each
column shows fixed values of e and each row shows fixed values of

ω (taken from Fig. 3 - Wright and Gaudi, 2013).

where τ is derived from the following expression

tan 2wτ =
∑i sin 2wti

∑i cos 2wti
(3.13)

The disadvantage that it has is that it does not take into account measurement errors
and assumes that the mean of the data is the same to the mean of the fitted periodic
function.

In order to take into consideration these deficiencies, an incorporation of mod-
ifications was performed by Zechmeister and Kürster (2009), introducing the gen-
eralised Lomb-Scargle (GLS) periodogram. This method considers an offset in the
periodic sine wave (y = a cos ωt + b sin ωt + c) and also considers measurement er-
rors. The equation describing the power of a frequency in the GLS periodogram is
given by

p(ω) =
1

YY

[
YC2

τ̂

CCτ̂
+

YS2
τ

SSτ

]
(3.14)

=
1

∑i wi(yi − ȳ)2

[
[∑i wi(yi − ȳ) cos w(ti − τ)]2

∑i w2
i cos2 w(ti − τ)

+
[∑i wi(yi − ȳ) sin w(ti − τ)]2

∑i w2
i sin2 w(ti − τ)

]
(3.15)

with
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FIGURE 3.4: GLS periodogram of HD 85390 derived from RV obser-
vations. The horizontal lines indicate the power required for a FAP
of 0.1, 1 and 10% from top to bottom (taken from Fig. 1 - Mordasini

et al., 2011).

tan 2wτ =
∑ wi sin 2wti − 2 ∑ wi cos wti ∑ wi sin wti

∑ wi cos 2wti − [(∑ wi cos wti)2 − (∑ wi sin wti)2]
(3.16)

We note that this equation has the same form as the Lomb-Scargle periodogram
equation (Eq. 3.12), but in the GLS periodgoram the weights of the errors wi are
considered. This generalization of the Lomb-Scargle periodogram is more efficient
since it provides more precise frequencies, determining better the spectral intensity,
in addition to not being susceptible to aliases.

With this tool we can look for signals of potential planets and perform Keplerian
fits in order to obtain orbital parameters of planetary system. As we are aware of its
efficiency, we performed GLS periodogram analysis in this thesis.

False alarm probability

In order to evaluate how significant a peak is in the GLS periodogram, the following
things need to be considered. Noise can generate a higher peak than the data, which
is known as false alarm probability (FAP). If in the data there is a periodic signal
which is known, it is important to know the value of the FAP in that frequency. The
FAP for a peak of a certain power is given by

FAP = 1− [1− e−z]M (3.17)

where z is the power of the peak in the GLS periodogram and M is the number of
independent frequencies. In order to consider a signal to be significant its confidence
level should be at a level of FAP ≤ 1%. In Fig. 3.4 we show an example of a GLS
periodogram of RV data where the FAP levels are indicated. A significant signal is
found near 800 days, which could be a promising planetary companion.
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Another possibility to access M and the FAP are Monte Carlo or bootstrap sim-
ulations in order to determine how often a certain power level is exceeded just by
chance (Zechmeister and Kürster, 2009).

3.4 Deriving radial velocities from stellar spectra

3.4.1 Cross-correlation function

The radial velocity from a star are obtained through their spectra. The absorption
lines are shifted due to the Doppler effect by

λ = λ0

(
1 +

vr
c

)
(3.18)

where λ is the wavelength measured by the observer (considering barycentric
correction), λ0 is the wavelength emitted in the rest frame of the star, c is the speed
of light and vr is the radial velocity.

So measuring this spectrum shift can give us the radial velocity of the star. In
practice, this is done by cross-correlating. Once the stellar spectrum has been nor-
malized and correlated with respect of template mask, the lines of the spectrum are
combined into one single mean line profile, known as the cross-correlation function
(CCF). A Gaussian fit is performed to the peak of the CCF in order to determine the
best spectral shift. Therefore, the radial velocity of the star can be obtained when
measuring the centre of the Gaussian fit over the CCF, as seen in Fig. 3.5. This tech-
nique is widely used and has been incorporated into the pipelines of HARPS and
SOPHIE.
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FIGURE 3.5: Representation of the CCF of a ten order spectrum with
S/N ∼ 1 (taken from Fig. 2 - Queloz, 1995).
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FIGURE 3.6: Sketch of a CCF (black dots) with the best Gaussian fit
(red dashed lines). The parameters FHWM, BIS and contrast are also

illustrated (taken from Fig. 4 - Lafarga et al., 2020).

The CCF is derived from

C(ε) =
R(ε)
R(∞)

(3.19)

R(ε) =
∫ +∞

−∞
S(ν)M(ν− ε)dν (3.20)

where C corresponds to the cross-correlation function, S to the stellar spectrum,
M to the template spectrum, both expressed in velocity space ν. The aim is to mini-
mizes the value of ε in C.

In Fig. 3.6 we display some of the parameters of the CCF. The full width at half-
maximum (FWHM) of the CCF is determined by the stellar rotation. The bisector
(BIS) measures the symmetry of the CCF. As the CCF contains the spectrum lines,
the shape and symmetry of the CCF depends on the shape and symmetry of the
spectrum lines. The contrast corresponds to the relative depth of the CCF at its
central point.

3.4.2 χ2-minimisation

In this thesis we used NAIRA pipeline developed by Astudillo-Defru (2015), which
consists of a χ2 minimisation method instead of the CCF method. The binary mask
used in the CCF method does not take into consideration all the spectral features in
the case of cool stars. However, NAIRA is an adequate pipeline when deriving radial
velocities of M dwarfs as the stellar template consists of a true spectrum of a star of
this spectral type, rather than a synthetic one. It consists in a high signal-to-noise
spectrum obtained from the median of the entire set of data. It also incorporates a
true telluric template in order to account for telluric lines correction.
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FIGURE 3.7: (Left panels): An observed spectrum, a stellar template
and a telluric template (from top to bottom). The stellar template is
shifted at different velocities and the telluric template is used to dis-
card telluric zones. (Right panels): Illustration of the χ2-minimisation

approach (taken from Fig. 4.2 - Astudillo-Defru, 2015)

In Fig. 3.7 we show a representation of the χ2-minimisation process, which is
computed by the following equation

χ2i
s =

1
df
·∑

(
Ni − Ti

s,Bl,Scl

σi

)2

(3.21)

σi =
√

Ti
s,Bl,Scl + σ2i

ro (3.22)

where df refers to the degrees of freedom given by df = no · n− 2, Ni is the ob-
served flux, Ti

s,Bl,Scl is the template flux, σi is the photon error, and σi
ro is the CCD

read-out-noise. This approach considers at once the entire spectral range (except for
rejected zones, such as tellurics). The residuals scaled by photon errors are stored
for every order, the squared sum is performed, and the degrees-of-freedom are nor-
malized.

For a detailed description of this procedure please refer to Astudillo-Defru (2015).
His pipeline has demonstrated to work efficiently as it has been compared to the
CCF method by computing RV for many stars. Its RV errors are smaller compared
to other CCF methods, such as the official HARPS pipeline. Therefore, due to its
successful performance on M dwarfs, we use it in our work in order to obtain more
adequate and precise RV for Gl 832, an M dwarf which is the subject of our study.
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Chapter 4

Stellar Activity

Stellar activity is a term referred to the stellar phenomena produced by the magnetic
fields in cool stars. In this section we will review how activity works in our Sun and
low-mass stars, how it can be measured, it effects on the detection of exoplanets by
the RV method and its modelling.

4.1 Magnetic activity in the Sun

Our own Sun has been a subject of study since remote times and its understanding
allows us to comprehend the physics of other stars. Spots on the Sun’s surface have
been observed since the epoch of Galileo, which led to the posterior calculation of the
solar activity cycle period. This activity is quasi-periodic as the activity level is not
constant over time, lasting approximately 11 years. It is measured by the observed
sunspots on the stellar surface, as they variate in quantity, increasing over time but
reaching a minimum at the end of the cycle. This is followed by a flip of the magnetic
field, switching the places of the north and south poles.

In order to understand how magnetism works in the Sun, we must first be famil-
iar with its structure. In Fig. 4.1 we observe the layers found in the interior of the
Sun. At the center is the core, making up about 25% of the solar interior (in radius).
On top, we find the radiative zone and just above it we find the convective zone,
which makes about 30% of the interior. We then have the photosphere, chromo-
sphere and the corona, which extends into outer space through solar wind. Stellar
activity appears in these latter layers.

Energy is generated in the core by nuclear fusion and is transported outwards by
photons through the radiative zone, heating the bottom part of the convective zone.
This produces the plasma to move towards the surface and sinking back down as it
cools down (see the red arrows in Fig. 4.1). Between the radiative and convective
zone there is a thin layer known as tachocline (Spiegel and Zahn, 1992), where strong
shear forces are produced due to the different rotations of the adjacent zones. Since
the Sun is not a solid body, it does not rotates as one, it rather rotates deferentially as
the the Sun’s equatorial regions rotate faster (about 24 days) than the polar regions
(rotating once in more than 30 days). In the interior, the radiative zone rotates uni-
formly whereas the convective zone has a differential rotation, as seen in Fig. 4.2.
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FIGURE 4.1: Schematized representation of the solar interior with its
corresponding layers. The red arrows illustrates the energy transport
in the radiative and convective zone (taken by ESO; Copyright 1999

John Wiley and Sons, Inc.).

The shear forces produced in the tachocline are responsible for the generation of the
magnetic field explained by the dynamo theory (e.g. Parker, 1955), being therefore
responsible for stellar activity.

4.2 Magnetic activity in cool low-mass stars

The above description occurs for stars with masses ranging from 0.35 to 1.5 solar
masses. In low-mass stars (M<0.35 M�) the main mechanism of energy transport is
convection as the convective layer is bigger than the radiative layer (if present at all).
If there is no radiative zone, then the star is fully convective and therefore there is no
tachocline present. These stars present a different dynamo mechanism (e.g. Morin
et al., 2008; Chabrier and Küker, 2006). Low-mass stars are magnetically active and
their activity level depends on many factors, such as age, rotation period, mass and
spectral type.

As for M dwarfs, a large fraction of them tend to have strong magnetic fields (e.g.
Shulyak et al., 2019, and references therein). More massive M dwarfs have magnetic
fields with a strong toroidal component and lowest mass M dwarfs present poloidal
magnetic fields (e.g. Donati et al., 2008). This transition occurs in the full-convection
threshold (M>0.35 M�), giving a strong evidence that the dynamo process mainly
depends on the presence of the tachocline.
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FIGURE 4.2: A section of the Sun’s interiors showing its different ro-
tation (taken from Fig. 1 - Howe, 2009).

4.3 Stellar magnetic activity manifestations

Stellar magnetic activity manifestations have a great impact on RV measurements,
for which is necessary to comprehend them in order to mitigate their effects on the
data. The main manifestation of activity in Sun-like and cool low-mass stars are
presented below.

4.3.1 Oscillations

Acoustic oscillations, commonly known as p-modes, are generated in the interior of
stars due to pressure fluctuations and produce ripples on the surface of the star. Os-
cillations in the Sun were detected in the early 1960s (Leighton, Noyes, and Simon,
1962), and approximately after a decade it was realized that oscillations could be
used to study the Sun’s interior. Therefore, the study of stellar oscillations allows us
to comprehend the internal structure and dynamics of stars, with the combination
of theory and observations performed thanks to the great advancement in technol-
ogy. But this phenomenon can be a difficulty in RV measurements, specially when
looking for planetary signals.

In Fig. 4.3 we observe stellar oscillation present in RV data of Aldebaran, the
brightest star in the constellation Taurus. A planet was found orbiting around this
star but they also noticed oscillation phenomenon present in the RV data. Stellar
oscillations have timescales of minutes and produce RV variations of the order of
tens of cms−1 (Schrijver and Zwaan, 2000). In order to mitigate stellar oscillation
effect on RV data some observational strategies can be performed, such as making
observations of at least 15 minutes per night (Dumusque et al., 2011).
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FIGURE 4.3: Aldebaran RV measurements. The presence of oscilla-
tions can be observed (taken from Fig. 3 - Farr et al., 2018).

4.3.2 Granulation

Granulation is the process of the formation of granules in the stellar photosphere,
just above the convection zone. In the latter layer, energy transport by convection
takes place, producing convection cells in the stellar surface, as illustrated in Fig. 4.4.
They are brighter in the center due to the hotter rising plasma which when cooling
down they descend forming the darker edges. This results in blueshift and redshift
due to their ascending and descending motions, respectively. In this manner, gran-
ulation produces RV variations as there is a larger portion of hot ascending plasma
in the surface, resulting in a net blueshift.

The time-scale of granulation ranges from 5 minutes to 30 minutes (Bray, Lough-
head, and Durrant, 1984; Hirzberger et al., 1999) causing RV variations of the order
of meters per second (Lindegren and Dravins, 2003). They can be organized into
larger assemblies, which can remain in the surface from 30 minutes to 6 hours for
mesogranules (Del Moro, 2004) and 20 hours for supergranules (Rast, 2003).

FIGURE 4.4: Representation of a section of the Sun with granulation.
The black arrows represent the convective motion produced in the

convection zone (taken from Coe College).

https://www.coe.edu/faculty-staff/james-wetzel/astronomy/sun
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FIGURE 4.5: Illustration of how spots modulated by the rotation of
the star can induce RV variation as they produce asymmetries in the

spectral lines (taken by Fig. 1.4 - Haywood, 2015).

In order to suppress their effect on RV data, observational approaches can be
performed, such as the one proposed in Dumusque et al. (2011) in which they state
that the important factor is the number of measurements instead of the time total
observational time.

4.3.3 Spots, faculae and plages

Spots, faculae and plages are modulated by the stellar rotational period, making
them a challenge to deal with as they cause significant RV variations that can inter-
fere with exoplanet detection and characterization.

Spots are produced by magnetic fields that inhibit part of the outgoing hot and
bright plasma, producing dark areas of lower temperature and brightness compared
to their surrounding. Spots on the Sun have been studied since last century (Hale,
1908) and they have helped us to understand spot in other stars. As seen in Fig.4.5,
as the star rotates spots move in and out of view, altering the shape of spectral lines
and leading to RV variations. The suppression of convective blueshift also induces
RV variations.

The strength of the RV variations produced by spots depends on the rotation
and activity levels of the surface of the star, reaching quasi-periodic RV variations
up to tens of meters per second (Saar and Donahue, 1997). Their time-scales are also
associated to the rotation of the star, which can last from hours, days or weeks.

Faculae are "bright spots". Similar to spots, they are produced by strong mag-
netic fields and are formed in the stellar photosphere. They can also remain in the
stellar surface for days and weeks and can cause RV of up to 10 ms−1 (Haywood,
2015). In Fig. 4.6 we can observe solar facuale which correspond to the bright sec-
tion of the solar photosphere, which can be grouped together into larger assembles
or surrounding dark sunspots.
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FIGURE 4.6: Section of the stellar disk with sunspots and facuale on
its surface (taken from NASA).

Plages are bright regions but unlike faculae they are formed in the chromosphere
instead of the photosphere. These characteristic has a great impact as spectral lines
produced in the chromosphere such as Ca II H & K and Hα (see Section 4.4) can be
used to study the level of activity in a star.

All these phenomenon have an effect on RV measurements as they induce vari-
ations in spectral lines by moving in and out out view of the stellar surface as well
as inhibiting convection that causes blueshift distortion of spectrum lines. They are
very significant in planetary detection as these RV variations can be of the same or-
der as a planetary companion, leading to false positives (e.g. Queloz et al., 2001;
Desidera et al., 2004; Udry et al., 2007; Bonfils et al., 2007; Huélamo et al., 2008;
Santos et al., 2014; Haywood et al., 2014; Johnson et al., 2016). Of all the activity
manifestations, they are the most complicated to treat, but there are ways to disen-
tangle their effect, as seen in Section 4.5.

4.3.4 Magnetic cycles

As we have seen in Section 4.1, our Sun has a long term magnetic cycle. In Fig. 4.7
we observe the sunspots migration related with the quasi-periodic solar cycle. This
is known as the "butterfly diagram" and it shows that as the cycle begins, sunspots
are located at mid latitude (± 30◦) and they start to move towards the equator until
there is a decrease of solar activity and the cycle starts again.

According to a survey performed by Baliunas et al. (1998) with the aim to study
activity in stars, about 60% of the stars in the study were found to have periodic
variations with cycles ranging from 7 to 30 years. Stars with long-term magnetic
cycles can induce RV variations up to tens of meters per second for a lifetime of
many years (Gomes da Silva et al., 2012). In this manner, long-term magnetic cycles
can be a difficulty in planetary detection when dealing with promising planets with
long periods as the RV measurements can be contaminated with stellar noise.

https://svs.gsfc.nasa.gov/2656
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FIGURE 4.7: Solar butterfly diagram displaying sunspots migration
towards the equator and the area they are occupying in the surface of
the Sun as the cycle progresses (taken from Fig. 8 - Hathaway, 2010).

We have seen that due to the magnetic activity of a star, a series of phenomenon
can be produced in the stellar surface which produces RV variations. These has
a great impact on the signal analysis as they contribute to noise. Oscillations and
granulation can be treated by an observation strategy, while long-term magnetic cy-
cle have to be considered when dealing with long observations and studying long
periodic promising signals. This leaves us only with rotational modulated phenom-
ena, which are the hardest to treat in RV data. In the following section we will review
spectroscopic analysis that allows us to quantify activity in stars.

4.4 Spectroscopic stellar activity indicators

Stellar activity indices are tracers of stellar magnetic activity. In this section we will
review the main stellar indicators derived from stellar spectra that are used in the
analysis of stellar activity. They are affected mainly by magnetic activity, meaning
that they do not provide information of planetary companions, making them ideal
to disentangle planetary signal from stellar noise.

For active stars, such as M stars, the Ca II H & K, Hα and Na I D lines are dom-
inated by the chromospheric component, causing the appearance of these lines in
emission. Magnetic activity arises from H and Ca II atoms which are excited by col-
lision of free electrons produced by the photoionization due to high temperatures.
The atoms excited by collision of free electron emit radiation and therefore are used
as magnetic activity tracers in the chromosphere.
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FIGURE 4.8: Median HARPS rest-frame spectrum of a Gl 699 showing
the pass-bands matching th Mount Wilson Ca II H & K pass-band

(taken from Fig. 1 - Astudillo-Defru et al., 2017).

4.4.1 S-index

The S-index, defined from the emission lines of Ca II H & K, was first used by
Vaughan, Preston, and Wilson (1978) in the Mount Wilson Observatory. During
the program, they made a stellar activity monitoring, observing approximately sixty
stars of solar type in order to quantify stellar activity through the S-index. This index
can be expressed as

S = α
FH + FK

FV + FR
(4.1)

where FH y FK represent the flux in pass-bands centered in the H and K lines and
FV and FR indicate the flux in pass-bands in the violet and red part of the H and K
lines. The value α is a normalization factor. The flux measured in the pass-bands
depend on the stellar spectral type and on the instrument used. In this thesis, we
used S-index derived from HARPS data, where for FH and FK triangular pass-bands
of FWHM 1.09 Å centered in the H and K lines are used. While for FV and FR square
pass-bands of width of 20 Å in the violet part (centered at 3901 Å) and red (centered
at 4001 Å) part of the H and K lines are used (Suárez Mascareño et al., 2015). This
can be visualized in the Fig. 4.8. The constant α ∼ 1 (Astudillo-Defru et al., 2017).

4.4.2 Hα

Another activity index used is Hα, which is defined as

HαIndex =
Hα

HαL + HαR
(4.2)

where Hα refers to the Hα spectral line while HαL is the left continuum and Hα

the right continuum. Considering HARPS instrument, a rectangular pass-band with
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FIGURE 4.9: Spectrum of GJ176 illustrating the pass-bands of the Hα
index (taken from Fig. 3 - Suárez Mascareño et al., 2018).

a width of 1.6 Å centred at 6562.808 Å is used in the Hα line, whereas the continuum
bands consists of pass-bands of width of 10.75 Å and a 8.75 Å centred at 6550.87 Å
and 6580.31 Å, for HαL and HαR, respectively (Gomes da Silva et al., 2011). This is
illustrated in Fig. 4.9

Other Balmer lines indices are used to study magnetic activity, such as the Hβ

index (λ=4861.3 Å) and Hγ index (λ= 4340.4 Å) are but are not commonly used
as the Hα index. This is due to the fact that these lines are less strong compared
to Hα since the Hα transition has more probability to occur compared to the other
transitions, causing the Hα transition to occur with more frequency in comparison
to the other Balmer series lines. In fact, as we move forward in the Balmer series,
they decrease their significance as activity indicators since the transitions are less
probable than the previous one. These tracers are defined in the same way was the
other indicators described above: the ratio between the flux of the line and the sum
oh the continuum flux on both side of the line.

4.4.3 Na I D

A different activity tracer is the Na I D index, which lines are centered in λ= 5895.9
Å and λ= 5889.9 Å. On M dwarfs, the sodium lines give information about the con-
ditions on lower and medium parts of the chromosphere (Mauas, 2000). As Hα and
Ca II H & K are emitted from the upper and lower chromosphere, respectively, the
use of all of these indices allows us to have a complete study of magnetic activ-
ity. Following the definition of Gomes da Silva et al. (2011), the Na I D index from
HARPS is calculated from the average flux centered in both lines using pass-bands
of width of 0.5 Å for each one. This average flux is later divided by the average
of two references bands with windows of 10 and 20 Å centered in 5805.0 y 6090.0
Å, respectively. Nevertheless, it is important to mention that these lines are usu-
ally contaminated by emission lines coming from sodium telluric lines (Hanuschik,
2003), for which a careful treatment must be performed.
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In this sense, the S, Hα and Na I D indices are efficient tracers that are used in
the study of magnetic activity in M-dwarfs (Gomes da Silva et al., 2011). These indi-
cators can be modelled in order to disentangle planetary signal form stellar activity
signal, as we will see later.

4.5 Modelling stellar activity with Gaussian Processes

In this thesis we use Gaussian Process (GP) regression to analyze stellar activity as
they are useful tool to model correlated noise (e.g. Rasmussen and Williams, 2006;
Roberts et al., 2012). GP are used to model stochastic processes with some known
properties. They can describe signals of stellar activity because although there are
many unknown parameters, we know that they are (quasi-) periodic since they are
modulated by the stellar rotation.

GP is based on Bayesian framework as it is a non-parametric model, in which
the form of the model is not imposed previously. The correlation of the data points
is what needs to be determined formerly, for which the covariance matrix K is used,
where its elements are determined by a covariance function k(ti, tj; φ) given by

Ki,j = k(ti, tj; φ) (4.3)

The covariance function k with hyperparameters φ provides the covariance ele-
ment between any two times ti and tj. In exoplanet literature, a quasi-periodic ker-
nel is commonly used to model stellar magnetic activity (e.g. Haywood et al., 2014;
Grunblatt, Howard, and Haywood, 2015; Rajpaul et al., 2015; Faria et al., 2016), with
its covariance function defined as

∑
ij

= η2
1 exp

[
−
|ti − tj|2

η2
2
−

sin2(
π|ti−tj|

η2
3

)

2η2
4

]
. (4.4)

where η1 corresponds to the amplitude of correlations, η2 is the aperiodic timescale
decay of correlations , η3 is the periodic component and η4 is the periodic timescale.
These corresponds to the hyperparameters. When modelling stellar magnetic activ-
ity, η3 can be interpreted as the stellar rotation and η2 as the timescale decay of an
active zone. Determining the best hyperparameters to use is a procedure known as
"training the GP".

Accounting for the orbital parameters γ and the hyperparameters φ, these can
be varied in order to maximize the marginal likelihood function (Gibson et al., 2012)
which is described by the probability density function (PDF) defined by Bayes’s The-
orem as

p
(

θ(γ, φ)|D
)

∝ lnL
(
D|θ(γ, φ)

)
(4.5)
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FIGURE 4.10: RV residuals of Proxima b. The blue line with grey
1σ region represents the GP best-fit model for the stellar noise. The
bottom panels are a close up zoom in order to visualize the efficient

fit (taken from Fig. 5 - Damasso and Del Sordo, 2017).

with θ (which includes γ and φ) being the priors and D the data set. The likeli-
hood function is given by

lnL
(
D|θ(γ, φ)

)
= −0.5rTK−1rT − 0.5 ln [det](K)− 0.5N ln (2π) (4.6)

where N is the number of data points, and r the vector of residuals of the data.
In the GP framework, this function is maximized by the Markov chain Monte Carlo
(MCMC). This refines lousy distributions over many different functions, which shapes
are controlled by γ and φ, and precisely defines distributions that better fit the data.

In Fig. 4.10 we show how stellar noise of the residuals of Proxima b was modelled
with GP, noticing the agreement between the model and the data. Therefore, in the
RV models that accounts for both the Keplerian K (with its orbital parameters γ) and
stellar activity (included in the GP with its hyperparameters φ), the total RV model
is given by

RVmodel = K(γ) + GP(ti, tj; φ) (4.7)

GP has been used in stellar activity analysis in order to mitigate their effect of
exoplanetary detection, being an elegant and efficient way already proven to work
accurately. In our study, we used RADVEL (Fulton et al., 2018) to model planetary
signals (Keplerians) and stellar activity (see Chapter 5). This python package is easy
to use and is suited for our study as it incorporates GP modelling. It contains a va-
riety of priors to constrain the hyper-parameters (e.g. Jeffreys, HardBounds, Gaus-
sian) and estimates their uncertainties through MCMC exploration of the posterior
probability, determining the size and shape of the posterior probability density.
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Chapter 5

A detailed re-analysis of the
planetary system around Gl 832

This chapter contains the main study of this thesis. The research consist of a spectro-
scopic study of the RV and activity tracers of the Gl 832 system in order to determine
if the inner planet exists or if its signal was mimicked by the activity of the star. This
study is in process of publication.

5.1 Introduction

Gliese 832 (Gl 832) is an M2V star located in the constellation of Grus (RA: 21h 33m
33.9s, DEC: 49°00’32.4”). In Table 5.1 we show its stellar parameters, noticing that
it consist of an M dwarf located only 4.95 pc away from us with a mass of 0.45
M�. In this very close system, a gas-giant planet in a wide orbit was discovered
(Bailey et al., 2009) and also an inner planet orbiting within the stellar habitable zone
(Wittenmyer et al., 2014), corresponding to a super Earth or mini-Neptune. They
both were discovered by the RV method. But the inner planet has a orbital period of
35.68 ±0.03 days, being close to the stellar rotational period 45.7 ±9.3 days (Suárez
Mascareño et al., 2015). In this sense, our aim is to determine if this the 35 RV signal
is modulated by stellar activity, causing a false positive, or if in fact corresponds to
the inner reported planet.

TABLE 5.1: Stellar parameters of Gl 832.

Parameter Value Reference
RA (J2000) 21h33m33.97s Gaia Collaboration (2018)
Dec (J2000) -49◦00′32.40′ ′ Gaia Collaboration (2018)
Parallax (mas) 201.4073 ± 0.0429 Gaia Collaboration (2018)
Distance (pc) 4.965 ± -0.001 Gaia Collaboration (2018)
Spectral Type M2V Suárez Mascareño et al. (2015)
Luminosity (L�) 0.020 Boyajian et al. (2012)
Mass (M�) 0.45 Bonfils et al. (2013)
Teff(K) 3522 Gaidos et al. (2014)
Fe/H -0.19 Santos et al. (2013)
log R’HK -5.10 Jenkins et al. (2006)
log g 4.83 Gaidos et al. (2014)
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FIGURE 5.1: RV timeseries of Gl 832. Data from HARPS before (blue)
and after (purple) the upgrade is shown, as well as UCLES (green)

and PFS (magenta) data (Gorrini et al. in prep.).

Our data used in this study is described below.

HARPS: From the High Accuracy Radial Velocity Planet Searcher (HARPS) we used
54 published data. As for new data, we included 62 new obtained spectra. As
HARPS underwent through a fiber change (Lo Curto et al., 2015), 54 of our new
spectra were obtained after this upgrade and the resting 8 before it. This makes a
total of 116 HARPS data, which are displayed in the Appendix, in Tables 6.1 and
6.2, corresponding to the data before and after the fiber change, respectively. The
time-span corresponds to 5325 days with an average RV precision of 0.59 ms−1 and
an average signal-to-noise ratio at order 60 of 114.014.
PFS: From the Planet Finding Spectrograph (PFS) we incorporated a total of 16
archival measurements with 818 days span and an average RV uncertainty of 0.9
ms−1. The PFS data is displayed in Table 6.3.
UCLES: From the University College London Echelle Spectrograph (UCLES) we
have used in our study a total of 39 archival data with a 5465 days span and mean
RV error of 2.59 ms−1. This data is listed in Table 6.4.

In Fig. 5.1 we show the RV timeseries of Gl 832 using data set mentioned above,
denoting with a plus sign "+" the HARPS data after the fiber upgrade. We observe a
clear RV variation with a dispersion of 40 ms−1 and a mean error 1.08 ms−1.
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FIGURE 5.2: Generalized Lomb-Scargle (GLS) periodogram of Gl 832.
The dashed red lines corresponds to the 1% FAP threshold. The high-

est significant peak is around 3800 days (Gorrini et al. in prep.).

5.2 Analysis

5.2.1 Periodograms

We begin our study by making a signal analysis, computing the Generalized Lomb-
Scargle Periodogram (GLS; Zechmeister and Kürster, 2009) for our whole set of data,
as shown in Fig 5.2. We clearly see that near 3800 days the highest peak is located,
with a significance above the 1% FAP threshold. This peak agrees with the orbital
period reported as planet b. Accounting for this signal we perform a Keplerian fit
using RADVEL (Fulton et al., 2018), which is a python package that models RV time
series by fitting the radial velocity curve given by

vr = K[cos (ν + ω) + e cos (w)] (5.1)

with

M = E− e sin E (5.2)

ν = 2 tan−1
(√

1 + e√
1− e

tan
E
2

)
(5.3)

This Keplerian model resulted in the orbital solutions listed in Table 5.6 (1-Keplerian
model). After subtracting this Keplerian solution, we computed the GLS periodogram
of the residuals, displayed in Fig. 5.3. We observe that the only signal above the level
of confidence is near 184 days. Therefore, the 35 days RV signal, reported as planet
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FIGURE 5.3: GLS periodograms of the residuals. The red dashed lines
represent the 1% FAP threshold. The only signal above this level of

confidence is near 184 days (Gorrini et al. in prep.).

c, does not reach the level of confidence. This motivates us to study its origin, as
well as the dominant 184 signal in the residuals.

5.2.2 Stellar rotational period

As we have mentioned, the stellar rotational period of Gl 832 is very close to the
orbital period of the reported inner planet. This, combined with the fact that the
signal of this planet does not reach the 1% FAP threshold, encourage us to study
its precedence. First, we calculate the stellar rotational period to see if there is an
agreement with 45.7 ± 9.3 days reported by Suárez Mascareño et al. (2015).

We do this by calculating the S-index, an activity tracer (see Section 4.4) follow-
ing Astudillo-Defru (2015). As activity tracers are affected by stellar activity, they
can be modulated by the rotational period of the star. In this sense, we can calcu-
late the rotational period from activity tracers (e.g. Suárez Mascareño et al., 2015).
Since we only have the stellar spectra from HARPS, we were only able to compute
the S-index from this instrument. After obtaining these values, we modelled this in-
dex using RADVEL performing Gaussian process regression using a quasi-periodic
kernel, given by (see Section 4.5)

∑
ij

= η2
1 exp

[
−
|ti − tj|2

η2
2
−

sin2(
π|ti−tj|

η2
3

)

2η2
4

]
. (5.4)

We first model each set of data set (before and after the fiber upgrade) separately,
in order to constrain the amplitude. The resulting models are shown in Fig. 5.4,
noticing that the S-index calculated from the HARPS data reaches an amplitude of
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Stellar activity mimics planetary signal in the habitable zone of Gliese 832

Figure 21: Caption

27

FIGURE 5.4: S-index modelled with GP for the values calculated by
HARPS data before (upper) and after (bottom) the fiber change.

0.20 whereas for HARPS+ it reaches an amplitude of 0.9. In this manner, we con-
strained the amplitude η1 as a bounded prior going from 0 up to 1.0, as seen in Table
5.2. We also used a bounded prior for the periodicity parameter η3, going from 1.0
to 100 days. The resulting model is displayed in Fig. 5.5.

The posterior distributions from this model are shown in Figure 5.6, observing
that the periodic component has a value of 35.7 +0.95

−0.26 days, improving this parameter
by 89.78% with respect of the reported value. This value is extremely similar to the
orbital period of the reported planet c (35.68 ± 0.03 days).

So far we have found that the 35-days signal, reported as planet c, does not ap-
pear as a significant signal in the residual periodogram. Moreover, the rotational
period of Gl 832 resulted to be coincide with the orbital period of this inner planet.
Therefore, it is probable that this planet could be an artifact of stellar activity, but in
order to be certain about this we need to make a rigorous analysis. This is why we
need to model the planets around this system alongside stellar activity.
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TABLE 5.2: Priors used in the S-index modelling with GP.

Bounded prior: −1000.0 < γharps < 1000.0
Bounded prior: −1000.0 < γharps+ < 1000.0
Bounded prior: 0.0 < σharps < 0.1
Bounded prior: 0.0 < σharps+ < 0.1
Bounded prior: 0.0 < η1,harps < 1.0
Bounded prior: 0.0 < η2 < 4000.0
Bounded prior: 1.0 < η3 < 100.0
Bounded prior: 0.0 < η4 < 7.0
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FIGURE 5.5: Top panel: S-index modelled with GP. HARPS data be-
fore (red squares) and after (yellow circles) the upgrade are displayed.
The blue line corresponds to the fit of the data and the shaded regions
indicate the confidence interval. Bottom panel: residuals of the GP fit

(Gorrini et al. in prep.).

5.2.3 One-Keplerian model plus Gaussian Process

In this context, we performed a 1-Keplerian model with stellar activity, i.e. with GP
based on the S-index modelling. This means that the priors for this model corre-
sponds to Gaussian hyperparameters (η2, η3, and η4) whose center and width corre-
spond the posteriors of the S-index model, as seen in Table. 5.3.

The resulting fit is shown in Fig. 5.7, where the RV time series is fitted alongside
the maximum-a-posteriori model. The list of posteriors, the corner plots for the
derived and free parameters for this model can be found in Table 5.4, Fig. 5.8, and
Fig. 5.9, respectively. We notice that the main orbital solutions agree with the ones
reported as planet b, as seen in Table 5.5. After subtracting this Keplerian fit from
the RV, we computed the GLS periodogram of the residuals, as seen in Fig. 5.10. We
observe that this time, all the signals do not reach the 1% FAP threshold. Therefore,
the 35-days and 184-days signals are absorbed by the GP.
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FIGURE 5.6: Marginalized posterior distribution of the GP parame-
ters for the S-index. The parameter η3, i.e., the stellar rotational pe-
riod, has a value of approximately 35.76 days (Gorrini et al. in prep.).

TABLE 5.3: Summary of priors of the 1-planet Keplerian fit with GP.

K constrained to be > 0
eb constrained to be < 0.99
Bounded prior: 1000 < Pb < 10000
Bounded prior: 2454365.2 < Tconjb < 2458365.2
Bounded prior: 0.0 < σharps < 10.0
Bounded prior: 0.0 < σharps+ < 10.0
Bounded prior: 0.0 < σucles < 20.0
Bounded prior: 0.0 < σpfs < 10.0
Bounded prior: 0.0 < η1,harps < 10.0
Bounded prior: 0.0 < η1,ucles < 20.0
Bounded prior: 0.0 < η1,pfs < 20.0
Gaussian prior on η2: 771± 8832
Gaussian prior on η4: 1.42± 1.31
Gaussian prior on η3: 35.76± 0.95
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FIGURE 5.7: Best-fit of the 1-planet Keplerian orbital model plus GP
for Gl 832 using our entire set of data. The thin blue line is the best
fit 1-planet model. We add in quadrature the RV jitter terms with
the measurement uncertainties for all RVs. b) Residuals to the best
fit 1-planet model. c) RVs phase-folded to the ephemeris of planet b.
The small point colors and symbols are the same as in panel a. Red
circles are the same velocities binned in 0.08 units of orbital phase.
The phase-folded model for planet b is shown as the blue line (Gorrini

et al. in prep.).
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TABLE 5.4: MCMC posteriors of the Keplerian-1-planet fit with GP.

Parameter Credible Interval Maximum Likelihood Units
Modified MCMC Step Parameters
Pb 3805+16

−18 3854 days
Tconjb 2456318+15

−12 2456387 JD
eb 0.044+0.021

−0.02 0.042
ωb −0.69+0.75

−0.47 −1.38 radians
Kb 16.57+0.59

−0.62 16.8 m s−1

Orbital Parameters
Pb 3805+16

−18 3854 days
Tconjb 2456318+15

−12 2456387 JD
eb 0.044+0.021

−0.02 0.042
ωb −0.69+0.75

−0.47 −1.38 radians
Kb 16.57+0.59

−0.62 16.8 m s−1

Other Parameters
γucles 3.4± 1.1 3.5 m s−1
γpfs −11± 1 −12 m s−1
γharps+ 13355.3+1.0

−1.1 13357.0 m s−1
γharps 13356.25+0.48

−0.49 13356.43 m s−1
γ̇ ≡ 0.0 ≡ 0.0 m s−1 d−1

γ̈ ≡ 0.0 ≡ 0.0 m s−1 d−2

σucles 5.37+1.1
−0.85 5.12 m s−1

σpfs 2.2e− 08+2.4e−08
−1.4e−08 8.9e− 08 m s−1

σharps+ 0.86± 0.23 0.69 m s−1

σharps 0.61+0.24
−0.21 0.5 m s−1

1200000 links saved
Reference epoch for γ,γ̇,γ̈: 2454704.703772

Mbsini [MJup] = 0.75+0.06
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FIGURE 5.8: Posterior distributions for the derived parameter from
the Keplerian fit with GP (Gorrini et al. in prep.).
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FIGURE 5.9: Posterior distributions for all free parameters derived for
the 1-planet model with GP included (Gorrini et al. in prep.).

TABLE 5.5: Model comparison table between our 1-Keplerian + GP
model and the reported solutions for planet b.

Parameters 1-Keplerian + GP Solutions by
model solutions Bailey et al. (2009)

Orbital period (days) 3805 ± 17 3416 ± 131
RV semi-amplitude (ms−1) 16.6 ± 0.6 14.9 ± 1.3

Eccentricity 0.044 ± 0.021 0.12 ± 0.11
Minimum mass (MJUP) 0.75 ± 0.06 0.64 ± 0.06
Semi-major axis (AU) 3.66 ± 0.15 3.4 ± 0.4
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FIGURE 5.10: GLS periodogram of the residuals from the Keplerian
model with GP. The dashed red lines corresponds to the 1% FAP
threshold, noticing that all the signals are below it. There is no re-

maining significant signal left (Gorrini et al. in prep.).

5.2.4 Two Keplerian model

So far, the 1-Keplerian model with GP agrees with the solution reported for planet
b. But the residuals periodogram absorbs the signals of interests of study: the 35-
days and 184-days signal, where the former is reported as planet c and it coincides
with the stellar rotational period, and the latter appeared in the GLS periodogram of
the residuals in the Keplerian model without GP, i.e. without accounting for stellar
activity.

In this sense, this lead us to consider that both of these signals might not have
planetary origin. But it is necessary to add these signals in the Keplerian model
in order to study them. In this manner, we perform a 2-planet Keplerian fit that
includes the 35 and 184 RV signals in different models. One Keplerian to account
for the planet b, and another Keplerian accounting for a planet with 35-days or 184-
days periodicity, as illustrated below. This can be done as the RV dispersion of the
residuals, which corresponds 24 ms−1, are still significantly larger than the internal
errors, meaning that the RV variation is not coming from internal errors and could
be produced for another physical phenomenon.

                                      Planet b + 35-days signal
2-Keplerian model 
                                      Planet b + 184-days signal 



56 Chapter 5. A detailed re-analysis of the planetary system around Gl 832

Planet b + 35-days signal model

For this model we constrained the radial velocity semi-amplitude K to be greater
than zero, and for the eccentricities of both Keplerians to be less than 0.99. As for
the orbital periods, we used a Bounded prior ranging from 1000 to 10000 days for
planet b, and from 35 to 36 days for the other signal.

This fit is shown in Fig. 5.11. The orbital period for the outer planet resulted in
Pb= 3790 ± 12 days. The RV semi-amplitude resulted in Kb= 16.81 ± 0.47 ms−1. The
eccentricity resulted in eb= 0.058 ± 0.014. For the inner planet the resulting orbital
parameters are given by Pc= 35.249 ± 0.021 days; Kc= 0.94 ± 0.42 ms−1; ec=0.76 ±
0.13.
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FIGURE 5.11: RV fit accounting for two Keplerians (planet b signal
and 35-days signal).
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Planet b + 184-days signal model

Just like as the previous model (planet b + 35-days signal), we constrained K to be
positive, both eccentricities to be less than 0.99 and the orbital period for planet b as
a Bounded prior ranging from 1000 until 10000 days. Since we are accounting for the
184-days signal, we used a Bounded prior ranging from 150 to 195 days to account
for the 184-days periodicity. The resulting model is displayed in Fig. 5.12, with the
following orbital parameters for the outer planet: Pb= 3773 ± 21 days; Kb= 16.65
± 0.37 ms−1; eb =0.027 ± 0.014. As for the other Keplerian, the orbital parameters
resulted in Pc= 183.35 ± 0.22 days; Kc= 1.86 ± 0.45 ms−1; ec =0.67 ± 0.14.
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FIGURE 5.12: RV fit accounting for two Keplerians (planet b signal
and 184-days signal).
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FIGURE 5.13: Same as Fig. 5.3 but without considering the data after
the HARPS fiber upgrade. The 184-days signal vanished and all the

remaining signals fall under the 1% FAP threshold.

We observe in Fig. 5.12 that this model shows an unsmooth fit to the RV data,
as seen in panel a). Moreover, we notice in panel d) that the fit seems to follow
HARPS+ data (after the fiber upgrade from HARPS). This signal is not likely to have
a telluric origin, since these lines are taking into account in NAIRA pipeline created
by Astudillo-Defru (2015) (see Section 3.4.2), and therefore they have been corrected
in our analysis. In order to be certain if the HARPS+ data generated the 184-days
signal, we re-compute the GLS periodogram of the residuals shown in Fig. 5.3 but
without this data set.

In this manner, for our set of data without considering HARPS+ data, we re-make
the analysis performed in Section 5.2.1. That is, we make a 1-Keplerian fit (without
GP) and we subtract it to the RV, computing in this way the GLS periodograms of the
residuals, as shown in Fig. 5.13. We notice that without this data, the 184 days signal
vanished, just like it did when incorporating a GP in the Keplerian fit considering
this data. Therefore, is seems that the HARPS data after the fiber change generated
this signal. In this periodogram, the 35-days signal is the highest, but as all the other
signal, they do not reach the confidence level of 1% FAP threshold.

5.2.5 Two Keplerian model plus Gaussian Process

Now we proceed to account for stellar activity. In this manner, we add to the 2-
Keplerian model a GP regression for each model. The GP priors used are the same
as for the 1-Keplerian plus GP model (Section 5.2.3).
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Planet b + 35-days signal + GP model

For this model we used the same priors as the 1-Keplerian model plus GP, listed in
Table 5.3, but we incorporated the parameters for the second planet. For this, we
used constrained the eccentricity to be less than 0.99 and used Bounded priors for
the orbital period, ranging from 35 to 36 days. The resulting fit is displayed in Fig.
5.14. The orbital period for the inner planet resulted in Pc= 35.4282 ± 0.0097 days,
whereas the RV semi-amplitude resulted in Kc= 1.55± 0.52 ms−1 and an eccentricity
of ec=0.76± 0.13. We observe that, curiously, the resulting orbital period is extremely
close to the rotational period of the star (∼ 35.76 days).
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FIGURE 5.14: RV fit accounting for two Keplerians (planet b signal
and 35-days signal) plus GP.
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Planet b + 184-days signal + GP model

In this model we considered the resulting posteriors in the 2-Keplerian model (planet
b + 184-days signal). In this manner, we constrained K to be positive and both eccen-
tricities to be less than 0.99. We used Gaussian priors on the period of both signals
(Pb= 3773 ± 23 and Pc= 183.35 ± 0.26). We also added the Gaussian hyperparame-
ters resulting in the S-index model, which were later used in the 1-Keplerian model
plus GP and in the 2-Keplerian model plus GP (planet b + 35-days signal + GP). The
resulting model is shown in Fig. 5.15. The orbital values for the 184-days signal
resulted in Pc= 183.393 ± 0.051 days for its orbital period, Kc= 2.4 ± 0.8 ms−1 for its
RV semi-amplitude and ec= 0.85 ± 0.053 for its eccentricity.
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FIGURE 5.15: RV fit accounting for two Keplerians (planet b signal
and 184-days signal) plus GP.
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5.3 Summary and results

In this study, we began plotting the RV of Gl 832 and noticed clear RV dispersion
compared to the internal errors. The GLS periodogram showed a dominant signal
around 3800 days, which is reported as planet b (Bailey et al., 2009). After perform-
ing a Keplerian fit on the RV time series, we computed the GLS periodogram of the
residuals, which displayed a single dominant signal on top of the 1% FAP threshold,
corresponding to 184 days. The 35-days signal, reported as planet c (Wittenmyer et
al., 2014), was under this level of confidence. This motivated us to study the origin
of both signals.

We then re-calculated the rotational period of Gl 832 by modelling the S-index
time series using GP regression, resulting in a period of 35.76 +0.95

−0.26 days. We then
used the posteriors distribution of the hyperparameters as priors for our subsequent
GP models for account for stellar activity. First, we performed a 1-Keplerian model
accounting for the 3800 days signal (planet b) plus a GP. After substracting this Ke-
plerian model from the RV, we calculated the GLS periodogram of the residuals,
where all the remaining signals were under the 1% FAP threshold, absorbing the 35
days and 184 days signals.

Subsequently we made a 2-Keplerian model accounting for planet b and for a
planet with 35 or 184 days periodicity and afterwards we included GP in these mod-
els. For the models of planet b plus the 35 days signal, the orbital period of the
planet resulted in a very close value of the stellar rotation period. As for the mod-
els of planet b plus the 184 days signal, the fit resulted in a very unsmooth fit and it
seemed that HARPS+ (HARPS data after the fiber upgrade) data was generating this
signal. Hence, the signal is not stable over time, contrary to a planetary signature.
We then discarded HARPS+ data and re-did the 1-Keplerian fit (without GP). After
subtracting this model, we generated the GLS periodograms of the residuals and the
184 days signal was no longer present.

The results of our models are summarized in Table 5.6, where we can statically
compare our models. Below, the parameters of this table are described.

P: Orbital period (in days)
K: RV semi-amplitude (in ms−1)
e: Orbital eccentricity
RMS: Root mean square of the residuals (in ms−1). It is used to measure the differ-
ences between the model and the data.
BIC: Bayesian information criterion. It estimates, under a Bayesian framework, the
function of the posterior probability of a model from being true. Therefore, it used
to select a model among a finite set of models. The model with the lowest BIC is the
favoured one.
AIC: Akaike information criterion. It estimates the relative distance between the fit-
ted and the realistic likelihood function of a model. A lower AIC value means that a
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TABLE 5.6: Summary table of the models performed.

Models P K e RMS BIC AIC ∆ AIC
(days) (ms−1) (ms−1)

1-Keplerian Pb= 3964 Kb= 17.09 eb= 0.061 3.37 847.80 809.27 0.0
± 13 ± 0.41 ± 0.023

1-Keplerian Pb= 3805 Kb= 16.6 eb= 0.044 2.87 813.52 764.11 0.0
+ GP ± 17 ± 0.6 ± 0.021

2-Keplerians Pb= 3790 Kb= 16.81 eb=0.058 3.26 848.90 802.16 0.0
(Planet b + 35) ± 12 ± 0.47 ± 0.014

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Pc= 35.349 Kc= 0.94 ec= 0.42
± 0.021 ± 0.42 ± 0.34

2-Keplerians Pb= 3773 Kb= 16.65 ec= 0.027 3.23 822.10 775.37 0.0
(Planet b + 184) ± 21 ± 0.37 ± 0.014

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Pc= 183.35 Kc= 1.86 ec= 0.67
± 0.22 ± 0.45 ± 0.14

2-Keplerians Pb= 3844 Kb= 16.88 eb= 0.033 2.90 817.81 755.54 0.0
+ GP ± 5 ± 0.59 ± 0.018

(Planet b + 35) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Pc= 35.4282 Kc= 1.55 ec= 0.76
± 0.0097 ± 0.52 ± 0.13

2-Keplerians Pb= 3776.4 Kb =16.6 eb=0.025 2.98 820.84 756.09 0.0
+ GP ± 1.0 ± 0.5 ± 0.018

(Planet b + 184) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Pc= 183.393 Kc= 2.4 ec= 0.85
± 0.051 ± 0.8 ± 0.053

model is considered to be closer to the truth.

In this manner, we notice that the most favoured model is the one with one planet
plus GP (stellar activity), with a BIC value of 813.52. Therefore, only planet b is
orbiting Gl 832. As the 184 days signal is not considered in the most probable model,
and since this signal is not stable over time, we discard it to have a planetary origin.

Since the best model (1-Keplerian + GP) accounts for stellar activity, with a ro-
tational period equivalent to the 35-days signal, we conclude that this signal is an
artifact of stellar activity. This can be seen in Fig. 5.16, where we see that the peri-
odic component of the quasi-periodic kernel is attributable to the rotational period
of the star. In this manner, we conclude that this signal comes from stellar activity
and not from a planetary companion, discarding in this way the existence of planet
c.

In this sense, we listed the best model solutions in Table 5.7, corresponding to
the updated orbital solutions of the Gl 832 planetary system.
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FIGURE 5.16: Histogram of the periodic component of the quasi-
periodic kernel η3, equivalent to the stellar rotation period. The verti-
cal dashed line represents our measured value, while the dotted ver-
tical line depicts the orbital period reported from planet c (Gorrini et

al. in prep.).

TABLE 5.7: Updated orbital solutions of Gl 832.

Parameter Value
Stellar Rotational Period (days) 35.76 +0.95

−0.26

Orbital Period Pb (days) 3805 ± 17
Velocity semiamplitude K (ms−1) 16.6 ±0.6
Eccentricity e 0.044 ± 0.021
Semi major axis a (AU) 3.66 ± 0.15
Periastron date (Julian Date) 2456318 ± 15
ω (radians) -0.69 ± 0.75
m sin i (MJUP) 0.75 ± 0.06
Nobs 171
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Chapter 6

Conclusions

In this study we have seen the main methods of detecting exoplanets, focusing in
the RV method as we use it in our analysis. We have also described stellar magnetic
activity, as this phenomenon is the main cause of false positives in RV data. We
explained its manifestations, how to study them with spectroscopic indicators and
how to model them with Gaussian Process regression (GP).

This provided the context of this thesis, as the main goal was to determine if
Gl832c corresponded to a planet or by stellar activity. This planet was reported by
Wittenmyer et al. (2014) but a study of rotational period of cool star performed by
Suárez Mascareño et al. (2015) reported the stellar rotational period to be close to the
orbital period of this inner planet.

In this research we showed that Gl 832 has only one planetary companion, planet
b discovered by Bailey et al. (2009). We updated the orbital solutions for this plane-
tary system. This was done by performing a variety of Keplerian models accounting
for stellar activity by GP. Through a comparison of models by BIC value, the most
likely model resulted in planet b plus stellar activity. Also, we updated the stellar
rotational period, which was calculated by performing a GP over the S-index ac-
tivity tracer, resulting in a value of 35.76 +0.95

−0.26 days. Since this value resulted to be
attributable to the 35 days signal, reported as planet c, we discarded the existence of
this planet and concluded that this signal is an artifact of stellar activity.

This shows how GP performs an exceptional task when modelling stellar activ-
ity. As we have seen, stellar activity has a great impact on planetary detection, for
which is necessary to take it into consideration when analysing RV data. This phe-
nomenon, combined with the stellar rotation, can mimic planetary companion, just
like it did with Gl 832 c and many other planets (e.g. Queloz et al., 2001; Desidera
et al., 2004; Udry et al., 2007; Bonfils et al., 2007; Huélamo et al., 2008; Santos et al.,
2014; Robertson et al., 2014; Haywood et al., 2014; Johnson et al., 2016). In this sense,
it is of great importance to study planetary systems that have planetary orbital peri-
ods close to the rotational period of its host star, as they can be produced by stellar
activity.

As spectrographs are becoming more precise, detecting RV less than 1.0 ms−1,
such as HARPS and ESPRESSO, the RV variations caused by stellar noise will be
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detected. Therefore, with the advanced technology we have nowadays, an inspec-
tion of stellar activity should always be in consideration, specially on M dwarfs as a
large number of them tend to be magnetically active. These type of stars are ideal to
search for exoplanets and study their magnetism will help to develop new dynamo
theories for these type of stars.
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Appendix

TABLE 6.1: Gl 832 HARPS data (before the fiber change)

JD-2400000 RV Uncertainty FWHM Contrast BIS S-index
(kms−1) (kms−1) (kms−1) (kms−1)

52985.519752 13.34107 0.00153 4.09968 24.20910 -0.01290 0.778938
53158.906185 13.34178 0.00064 4.04921 23.38003 -0.01698 0.590570
53205.745328 13.34116 0.00111 4.10269 24.02540 -0.01574 0.769082
53217.743898 13.33777 0.00049 4.08992 24.09481 -0.01286 0.706211
53218.707451 13.33650 0.00054 4.08924 24.03470 -0.01309 0.721721
53229.724109 13.34003 0.00049 4.09819 24.12384 -0.01305 0.723452
53342.543486 13.33722 0.00070 4.09766 24.08259 -0.01293 0.852954
53490.927221 13.33457 0.00120 4.09631 24.12619 -0.01022 0.778714
53491.913518 13.33787 0.00173 4.10742 24.02743 -0.01102 0.823226
53492.929436 13.33588 0.00125 4.09731 24.13395 -0.01276 0.729821
53551.853580 13.33874 0.00048 4.10191 24.31145 -0.01441 0.780834
53573.800209 13.33498 0.00047 4.10332 24.21516 -0.01653 0.664657
53574.733125 13.33442 0.00037 4.10304 24.27860 -0.01554 0.689627
53575.736342 13.33610 0.00042 4.10246 24.26739 -0.01502 0.673786
53576.783817 13.33554 0.00043 4.10330 24.25378 -0.01413 0.659157
53577.791707 13.33591 0.00040 4.09900 24.28294 -0.01349 0.646026
53578.746840 13.33544 0.00053 04.09939 24.25442 -0.01280 0.643162
53579.729750 13.33561 0.00049 4.10193 24.33493 -0.01334 0.661368
53580.765460 13.33615 0.00042 4.09680 24.35558 -0.01440 0.658171
53950.811870 13.33710 0.00047 4.11144 24.19916 -0.01505 0.726920
53974.635082 13.34076 0.00051 4.10318 24.20157 -0.01587 0.666015
54055.522594 13.34278 0.00071 4.10069 24.12344 -0.01618 0.813424
54227.912029 13.34534 0.00056 4.10887 24.12286 -0.01321 0.869652
54228.912771 13.34444 0.00057 4.11154 24.09726 -0.01369 0.859054
54230.881775 13.34563 0.00053 4.11308 24.04696 -0.01482 0.948125
54233.929164 13.34576 0.00086 4.10775 24.07475 -0.01006 0.901846
54234.923827 13.34558 0.00047 4.11356 24.11973 -0.01380 0.846716
54255.843190 13.34742 0.00051 4.11103 24.08475 -0.01672 0.779617
54257.882957 13.34806 0.00065 4.11495 24.11958 -0.01534 0.786320
54258.918488 13.34660 0.00058 4.11407 24.04563 -0.01331 0.930125
54291.817850 13.35022 0.00066 4.10714 23.99735 -0.01551 0.727675
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54293.781529 13.35047 0.00048 4.10314 24.06831 -0.01760 0.735697
54295.829509 13.35158 0.00041 4.10244 24.04360 -0.01461 0.766577
54299.835208 13.35370 0.00087 4.09939 23.93778 -0.01360 0.822307
54314.772823 13.34807 0.00059 4.10537 24.04407 -0.01354 0.736729
54316.604519 13.34727 0.00052 4.10456 24.10723 -0.01362 0.740688
54319.803791 13.34652 0.00050 4.10939 24.00040 -0.01717 0.725643
54339.648286 13.35254 0.00044 4.11561 23.97447 -0.01446 0.875083
54341.762698 13.35330 0.00055 4.10693 23.98215 -0.01286 0.892481
54342.670950 13.35043 0.00040 4.11295 24.04283 -0.01528 0.850560
54347.714531 13.34733 0.00038 4.10457 24.08693 -0.01316 0.750386
54349.729205 13.34859 0.00048 4.09811 24.04127 -0.01532 0.709234
54387.614986 13.35073 0.00038 4.10339 24.11437 -0.01361 0.757193
54393.604498 13.35039 0.00047 4.09843 24.33937 -0.01450 0.728781
54420.517975 13.34933 0.00032 4.09885 24.19178 -0.01334 1.096864
54426.517596 13.35076 0.00038 4.10184 24.16476 -0.01311 0.851506
54446.537861 13.35585 0.00050 4.10591 24.01077 -0.01624 0.816045
54451.530992 13.35654 0.00052 4.09884 23.92503 -0.01598 1.027954
54453.534279 13.35413 0.00043 4.10197 24.01523 -0.01392 0.822759
54464.538436 13.35303 0.00061 4.10250 23.97443 -0.01486 0.787767
54639.915522 13.35632 0.00047 4.09933 24.06675 -0.01481 0.710086
54658.874838 13.36249 0.00092 4.11834 24.00008 -0.01672 0.788528
54662.869727 13.36140 0.00057 4.11409 23.96877 -0.01641 0.809303
54704.703772 13.35955 0.00051 4.10277 24.15029 -0.01455 0.774324
55000.898501 13.36792 0.00075 4.10550 24.14237 -0.01570 0.763663
55041.715207 13.36938 0.00048 4.11088 24.03071 -0.01558 0.799963
55122.650028 13.36916 0.00057 4.12056 23.88694 -0.01311 0.849070
55392.785353 13.37303 0.00055 4.11205 24.03731 -0.01557 0.777894
55409.842530 13.37083 0.00061 4.10463 23.75207 -0.01476 0.759902
55770.633271 13.36869 0.00051 4.10275 23.99944 -0.01579 0.632105
55801.739503 13.36706 0.00058 4.10480 23.97652 -0.01465 0.596216
56119.858748 13.35973 0.00060 4.10929 23.95731 -0.01480 0.622958
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TABLE 6.2: Gl 832 HARPS data (after the fiber change)

JD-2400000 RV Uncertainty FWHM Contrast BIS S-index
(kms−1) (kms−1) (kms−1) (kms−1)

57683.619277 13.33972 0.00086 4.13945 23.75046 0.00672 0.630911
57949.799266 13.34643 0.00103 4.15478 23.75612 0.00265 0.744521
57951.818799 13.34674 0.00081 4.15198 23.70875 0.00565 0.714882
57952.793308 13.34546 0.00057 4.14913 23.65948 0.00533 0.676372
57954.801386 13.34557 0.00053 4.15658 23.80805 0.00606 0.671237
57956.809736 13.34875 0.00053 4.15609 23.78312 0.00278 0.667328
57957.926347 13.34780 0.00079 4.15006 23.66432 0.00661 0.670867
57959.849584 13.34748 0.00055 4.14350 23.52298 0.00608 0.698532
57961.799922 13.34448 0.00060 4.14239 23.56949 0.00863 0.665392
57965.767734 13.34493 0.00082 4.15208 23.70713 0.00773 0.689149
57967.666320 13.34593 0.00090 4.15606 23.81222 0.00490 0.686005
57968.665113 13.34688 0.00062 4.15381 23.71546 0.00571 0.672592
57969.722261 13.34611 0.00083 4.14714 23.77195 0.00725 0.652290
57970.625242 13.34483 0.00054 4.15047 23.71987 0.00467 0.673192
57972.725260 13.34169 0.00050 4.14850 23.65182 0.00477 0.667389
57973.771407 13.34392 0.00063 4.14809 23.63687 0.00744 0.658560
57979.769360 13.34582 0.00050 4.14583 23.54671 0.00496 0.682896
57980.810127 13.34516 0.00054 4.14822 23.58886 0.00702 0.674189
57981.796992 13.34631 0.00056 4.14848 23.52290 0.00565 0.686809
58008.702254 13.34802 0.00089 4.15653 23.69043 0.00361 0.658323
58010.723216 13.34529 0.00058 4.13967 23.55485 0.00750 0.665487
58012.711271 13.34544 0.00072 4.14571 23.58195 0.00247 0.685649
58013.723942 13.34664 0.00071 4.14941 23.63280 0.00679 0.674079
58019.583628 13.34294 0.00047 4.15203 23.70121 0.00695 0.695348
58019.594970 13.34336 0.00045 4.15020 23.73355 0.00565 0.705989
58020.562532 13.34361 0.00057 4.15977 23.95944 0.00594 0.708174
58020.703194 13.34296 0.00050 4.14657 23.58017 0.00541 0.709220
58040.509625 13.34225 0.00036 4.15225 23.78077 0.00545 0.657217
58043.657194 13.34466 0.00047 4.13300 23.43135 0.00549 0.645712
58052.713317 13.34239 0.00071 4.13800 23.38341 0.00518 0.714325
58053.625682 13.34317 0.00047 4.13832 23.39911 0.00455 0.665564
58057.551844 13.34349 0.00036 4.13986 23.47777 0.00676 0.658691
58073.581512 13.34419 0.00043 4.12928 23.32211 0.00598 0.687914
58078.508985 13.34369 0.00045 4.13727 23.55402 0.00385 0.636125
58081.509362 13.34665 0.00038 4.13335 23.49838 0.00221 0.603707
58088.509887 13.34626 0.00061 4.13882 23.49049 0.00505 0.658480
58092.516267 13.34486 0.00060 4.14326 23.51556 0.00492 0.685674
58257.823110 13.34927 0.00056 4.15004 23.78038 0.00647 0.594954
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58258.787502 13.34863 0.00042 4.15249 23.76986 0.00714 0.608255
58259.814041 13.34982 0.00047 4.15489 23.77319 0.00743 0.616551
58260.786176 13.34996 0.00047 4.15319 23.80361 0.00800 0.625607
58271.766034 13.35205 0.00073 4.15061 23.71436 0.00531 0.677293
58272.807692 13.35202 0.00049 4.15572 23.75906 0.00638 0.671367
58273.919551 13.35208 0.00052 4.15124 23.72114 0.00534 0.651597
58274.787272 13.35274 0.00049 4.15265 23.73754 0.00512 0.663489
58275.906328 13.35329 0.00087 4.16342 24.03518 0.00650 0.655012
58288.839357 13.35205 0.00048 4.16083 23.84696 0.00742 0.643797
58290.756183 13.35358 0.00041 4.15789 23.82300 0.00630 0.658918
58292.746354 13.35176 0.00046 4.15062 23.77635 0.00570 0.605126
58293.764194 13.35355 0.00072 4.14734 23.77316 0.00817 0.614805
58294.827451 13.35372 0.00069 4.14888 23.65300 0.00423 0.593206
58295.760238 13.35323 0.00045 4.15876 23.83827 0.00529 0.640370
58299.797697 13.35304 0.00072 4.15286 23.77265 0.00623 0.596563
58310.880989 13.35297 0.00047 4.15063 23.57400 0.00440 0.657555

TABLE 6.3: Gl 832 PFS data

JD-2400000 RV Uncertainty
(ms−1) (ms−1)

55785.64157 0.0000 0.900
55787.61821 0.0000 0.800
55790.61508 0.3000 0.800
55793.63258 0.8000 0.900
55795.70095 1.2000 0.800
55796.71462 2.5000 0.900
55804.66221 0.2000 0.900
55844.60440 3.1000 0.900
55851.62322 -0.500 0.900
56085.87962 -1.400 0.900
56141.67188 -7.300 0.800
56504.79755 -12.10 1.100
56506.76826 -13.70 1.000
56550.60574 -14.80 0.900
56556.65127 -18.30 1.000
56603.55010 -18.70 0.900
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TABLE 6.4: Gl 832 UCLES data

JD-2400000 RV Uncertainty
(ms−1) (ms−1)

51034.08733 7.5 2.2
51119.01595 14.6 6.0
51411.12220 11.4 3.3
51683.26276 18.0 2.8
51743.14564 19.0 2.7
51767.08125 25.0 2.3
52062.24434 19.8 2.2
52092.16771 9.0 2.5
52128.12730 2.2 4.0
52455.23394 0.5 1.6
52477.14549 10.0 2.6
52859.08771 -4.1 2.1
52943.03605 -5.4 2.7
52946.97093 0.5 1.9
53214.20683 -9.5 2.5
53217.21195 -13.9 2.4
53243.05806 -2.1 2.4
53245.15092 -15.4 2.5
53281.04691 -17.3 2.0
53485.30090 -13.1 2.0
53523.30055 -4.9 1.6
53576.14194 -11.5 1.6
53628.06985 -0.4 5.2
53629.05458 -15.2 2.1
53943.10723 -6.3 1.3
54009.03770 -10.4 1.6
54036.95562 -7.2 1.5
54254.19997 3.2 1.8
54371.06683 0.2 1.6
54375.04476 2.5 1.7
54552.29135 8.7 4.0
54553.30430 17.0 2.8
55102.99894 6.4 2.6
55376.26506 9.2 2.5
55430.16511 15.4 2.5
56087.23879 16.1 2.4
56139.24349 14.5 4.6
56467.24320 1.6 3.0
56499.09217 -6.3 4.0
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