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ABSTRACT

Multi-Depot Multi-Trip Vehicle Routing Problem with Time Windows: A

Perishable Good Case Study.

Daniel Alfredo Neira González
January 2021

Thesis Supervisor: Doctor Carlos Contreras
Program: Magíster en Ingeniería Industrial

The Multi-Depot Multi-Trip Vehicle Routing Problem with Time Windows (MDMTVRPTW)

stems from the problem faced by a bakery. First, it is necessary to analyze one of its components,

namely, the vehicle routing problem with release dates. The vehicle routing problem with release

dates (VRP-Rd) is a variant of the classic vehicle routing problem in which each customers

order has a release date indicating the earliest time when the order is available at the depot for

delivery. Hence, customers orders are loaded into vehicles after their release dates, denoting

a quite common problem that arises in city logistics and last-mile distribution. In this work,

we present a novel two-index compact formulation and lifted inequalities for VRP-Rd. The

proposed formulation are compared, with and without lifted inequalities, against two existing

compact formulations and a state-of-the-art algorithm reported in the literature, over a set of

well-known benchmark instances. The results demonstrate that both variations of the proposed

model outperform existing formulations, and they are competitive in terms of solutions quality

with those obtained by the state-of-the-art algorithm. Additionally, a deep analysis is carried

out to accelerate the optimization and improvement schemes are tested. Finally, it is worthy

of highlighting that the resulting lifted formulation can be solved efficiently by commercial

software without complicated algorithmic implementations.

Key Words: Vehicle Routing Problem, Release Dates, MIP
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RESUMEN

Problema de ruteo de vehículos con múltiples depósitos, múltiples viajes y con

ventanas de tiempo: Un caso de estudio para alimentos perecederos.

Daniel Alfredo Neira González
Enero 2021

Profesor Guía: Doctor Carlos Contreras
Programa: Magíster en Ingeniería Industrial

El problema de ruteo de vehículos con múltiples depósitos, múltiples viajes y con ventanas de

tiempo (MDMTVRPTW, por sus siglas en inglés) nace del problema que enfrenta una panadería.

Primero, fue necesario analizar uno de sus componentes, el problema de ruteo con tiempos de

salida. El problema de ruteo con tiempos de salida (VRP-Rd, por sus siglas en inglés) es una

variante del clásico problema de las rutas de vehículos en el que el pedido de cada cliente tiene

una fecha de entrega que indica la hora más temprana en que este está disponible en el depósito

para su entrega. Por lo tanto, los pedidos de los clientes se cargan en los vehículos después de

sus fechas de liberación, lo que denota un problema bastante común que surge en la logística de

la ciudad y en la distribución de última milla. En esta investigación, se presenta una novedosa

formulación compacta de dos índices e inecuaciones ajustadas para el VRP-Rd. Utilizando un

conjunto de instancias de referencias conocidas, se comparan la formulación propuesta, con

y sin inecuaciones ajustadas, con dos formulaciones compactas existentes y un algoritmo del

estado de larte reportado en la literatura. Los resultados demuestran que ambas variaciones

propuestas superan a las formulaciones existentes, y son competitivas en términos de calidad de

la solución con las obtenidas por el algoritmo del estado del arte. Adicionalmente, se lleva a

cabo un profundo análisis para acelerar la optimización y esquemas de mejora. Por último, cabe

destacar que la formulación con inecuaciones ajustadas resultante puede resolverse eficazmente

utilizando solvers comerciales sin implementaciones algorítmicas complicadas.
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Chapter 1

Introduction and Objectives

1.1 Introduction

The vehicle routing problems (VRP) have been on the agenda for decades since their first appear-

ance in the seminal work of Dantzig and Ramser, 1959. The classical VRP involves minimizing

the total distance traveled by a fleet of vehicles to visit a set of costumers. Typically, VRPs as-

sumes that vehicles depart from and return to a single depot, each customer demand is satisfied

by a unique vehicle, and customer request are available at the depot for delivery at the begin-

ning of the planning period. Variants and applications of the VRP are presented in Braekers,

Ramaekers, and Van Nieuwenhuyse, 2016 and Mor and Maria Grazia Speranza, 2020.

VRPs and its variants have become especially important in the last two decades due to the rise

of e-commerce. Only in the US, as of April 2020, there online searches in categories such as

Books & Literature, Hobbies & Leisure, People & Society and Health have increased drastically

to 187.67%, 119.83%, 106.90% and 96.47%, respectively. This surge in consumption pressures

companies like Amazon, Ebay, Rakuten, Samsung, Walmart, Apple and Aliexpress to manage

this online traffic (Andrienko, 2020; Augusta, 2020), which ultimately become additional sales

(Dunn, Hood, and Driessen, 2020). Now, even though this dynamic environment has shaped

the industry over the last few decades, it has been suddenly accelerated this year (Ivanov, 2020).

Thereby, agile delivery and dynamic planning are paramount elements to maintain a competitive
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advantage.

Routing problems with release dates are extensions of the classical VRP in which each customer

order has a release date indicating the earliest time that the order is available at the depot for de-

livery. The VRP assumes that customers’ request are available at the depot for delivery at the

beginning of the planning period. However, in many practical applications, this is not the case.

These problems emerge in consolidation and distribution centers in city logistics. Goods to be

delivered arrive over the planning period while vehicles are distributing other items available for

delivery. The availability of new products for delivery forces the constant redrawing of delivery

routes. Related problems arise in same-day delivery problems in e-commerce environment in

which customer request arrive dynamically and must be delivered within the same day. Applica-

tions of routing problems with release dates include the pharmaceutical industry (Babagolzadeh

et al., 2019), last mile delivery (Arslan et al., 2019), same-day delivery in the online retail indus-

try (Voccia, Campbell, and Thomas, 2019) and food industry, adding value to online restaurants

(Yildiz and M. Savelsbergh, 2019).

In this work, the vehicle routing problem with release dates (VRP-Rd) (Mor and Maria Grazia

Speranza, 2020) is studied, which is defined as follows. Consider a direct graph G = (N,A),

where N = {0, 1, ..., n} is a set of nodes with 0 as the depot and n is set of customers, and

A = {(i, j) | i, j ∈ N} is a set of arcs. Each arc (i, j) ∈ A is defined by a travel time tij and

a distance dij . A fleet of R homogeneous vehicles with capacity Q is located at the depot, each

performing at most one route, and each customer i ∈ N has a request of qi units of a given

product available for delivery at the depot after time ri (release date). The goal is to create a set

of routes that minimize the total traveled time so that each vehicle starts and ends at the depot,

the demand of each customer is satisfied, each customer order is loaded into vehicles after its

release dates, and the vehicle capacity is never exceeded.

A new two-index compact formulations is presented and valid inequalities for VRP-Rd are pro-

posed. Results are compared with an existing three-index formulation (L. Liu, Kunpeng Li, and

Z. Liu, 2017), and an adapted two-index mathematical formulation reported for a variant of the

VRP-Rd (W. Li et al., 2020). Moreover, formulations are tested against algorithms proposed
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(L. Liu, Kunpeng Li, and Z. Liu, 2017) for the VRP-Rd in terms of quality. The proposed for-

mulation is tested over a set of 27 instances of the CVRPLib benchmark instances adapted to

VRP-Rd, containing up to 80 customers and up to 10 vehicles. Finally, we perform a sensitivity

analysis, by varying weights on the objective function; and we prove different improvements

schemes to obtain better outcomes.

In general, our results suggest that: i) our proposed models are effective and outperform both the

three and two-index formulation reported in the literature for the VRP-Rd, (ii) our lifted formula-

tion of the VRP-Rd is competitive (in terms of solution quality) when compared to the heuristic

proposed in ibid. on instances with up to 80 customers, (iii) our vanilla model is more suited

when the number of nodes is less than 56, then both of our formulations performs similarly; (iv)

our models outperform the existing one and the vanilla is able to find optimal solutions when

weighted in favor of the construction of circuits; and (v) when different improvement schemes

are tested, our vanilla formulation with an Initial Solution insertion and a guided local search

yields better solution and mean gaps, but the vanilla formulation version without Improvement

tends to obtain more best objective functions.

The main contribution of this research is providing a two-index compact model for the VRP-

Rd, which can be adapted for its extensions. Additionally, valid inequalities are presented,

lifted constraints that help prune the solution space and easy-to-follow improvement schemes.

Moreover, the proposed models are effective and can be used on any commercial solver without

requiring problem dependent implementations such column generation or cumbersome heuristic

procedures, which is a great contribution for practitioners.

1.2 Objectives

General Objectives

Study the problem of Vehicle Routing with release dates (VRP-Rd) from the perspective of

mathematical programming and propose a compact formulation for the problem.
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Specific Objectives

• Generate mathematical models for the VRP-Rd problem, then program and test them in

Gurobi using the Python programming language.

• Propose a solution method for VRP-Rd. Study its properties, such as response efficiency

in comparison with other possible models for the problem.

• Develop valid inequalities specific to the problem.

• Implement algorithms that generate initial solutions.

• Implement algorithms proposed in the literature to obtain points of comparison.

• Propose, characterize and analyze possible extensions for the VRP-Rd problem.

1.3 Outline

The remainder of this thesis is structured as follows. First, Chapter 2 presents a brief review

of VRP-Rd and existing formulations for this problem. Next, Chapter 3 presents mathematical

models for VRP-Rd and valid inequalities. Then, Chapter 4 reports computational results when

solving a large-set of benchmarks instances reported in the literature. Finally, this work con-

cludes and proposes possible further researches in Chapter 5. Additionally, some demonstration

can be found in Appendix A
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Chapter 2

Literature Review

Release dates have been widely studied in scheduling literature (Carlier, 1987; Kai Li and

Cheng, 2010). However, in the routing literature, release dates have received less attention.

These routing problems can be identified in two different areas: i) in city logistic problems

(Archetti, Feillet, Mor, and M Grazia Speranza, 2018; B. C. Shelbourne, Battarra, and Potts,

2017) and, ii) dynamic vehicle routing problems (Archetti, Feillet, Mor, and Maria Grazia Sper-

anza, 2020; Darvish, Coelho, and Laporte, 2020; Klapp, Erera, and Toriello, 2018a,b; Reyes,

Erera, and M. W. Savelsbergh, 2018; Yildiz and M. Savelsbergh, 2019).

2.1 City logistics problems with release dates

City logistics models intend to minimize the inconveniences associated with the transport of

goods in urban areas while promoting their economic and social development, which involves

the movement coordination of different kind of trucks between shippers and carriers (Crainic,

Ricciardi, and Storchi, 2009). These requirements impose different types of constraints, such

as time-dependency, multi-level and multi-trip organization of the distribution, dynamic in-

formation, among others. For a recent review in city logistics, see Cattaruzza, Absi, Feillet,

and González-Feliu, 2017. City logistics models reported in the literature involving release

dates include the traveling salesman problem (TSP), classical VRP (CVRP), multi-period VRP
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(MPVRP), VRP with order picking and multi-trip VRP.

The TSP with release dates has been studied in Archetti, Feillet, Mor, and M Grazia Speranza,

2018; Archetti, Feillet, and M Grazia Speranza, 2015. Archetti, Feillet, and M Grazia Sper-

anza, 2015 demonstrates that for underlying network structures, the problem can be solved in

polynomial time. They study the uncapacitated VRP-Rd under two possible conditions: i) when

a limit time for completing the distribution is set, and the total distance is the function to be

minimized, and ii) when no delivery limits are set and delivery completion time is minimized.

Archetti, Feillet, Mor, and M Grazia Speranza, 2018 seeks to minimize the completion time of

the uncapacitated TSP with release dates. Additionally, they assume that the vehicles can per-

form multiple routes with the aim to minimize the total time needed to serve all customers. The

proposes MIP formulation and iterated local search to solve the problem.

Variants of the CVRP with release dates are also reported in the literature. L. Liu, Kunpeng

Li, and Z. Liu, 2017 introduces a variant of the CVRP, in which release time is considered

(problem observed in the e-commerce industry), and proposes a tabu search algorithm (TS). B.

Shelbourne, 2016 and B. C. Shelbourne, Battarra, and Potts, 2017 extend the vehicle routing

and scheduling problem, by including a release date to each customer and a due date to each

order. They evaluate MIP formulations, efficient heuristics, and a Dantzig-Wolfe decomposition.

Finally, Jaikishan and Patil, 2019 studies the VRP with release dates and due dates, and presents

reactive GRASP heuristics to tackle the problem.

The multi-period VRP (MPVRP) with release dates is studied in Archetti, Jabali, and M Grazia

Speranza, 2015. They consider the case in which a release and a due date characterize each

customer, that must be served at the first and last period, respectively. They develop several

four-index formulations, which are solved with a branch-and-cut algorithm.

VRP with release dates have also been addressed when considering routing jointly with or-

der picking (OPVRP). Schubert, Scholz, and Wäscher, 2018 studies the order assignment and

sequencing, and the vehicle routing problem with due dates of a supermarket chain where de-

liveries for supermarkets are picked in a central warehouse. An iterated local search algorithm

solves the two subproblems simultaneously. Then Moons et al., 2018 integrates the order pick-

Daniel Neira MDMTVRPTW: A Perishable Good Case Study 7



ing and vehicle routing in a B2C e-commerce context, and solve this problem by a mixed-integer

linear programming formulation. Their results show how considering the two problems together

results in an average cost saving of 14%.

The VRP assumes that a vehicle can perform at most one trip or route during the routing planning

horizon; however, this is not the case in practical situations. The multi-trip VRP with release

dates (MTVRP-rd) assumes that vehicles can perform multiple trips and orders have release

dates. Cattaruzza, Absi, and Feillet, 2016 considers the MTVRP-rd in the context of delivery

systems involving city distribution centers. They solve it using a population-based metaheuristic

algorithm. Campelo et al., 2019 tackles a VRP that considers customers with multiple daily

deliveries, time windows and release dates, which is solved using an instance size reduction

algorithm and a mathematical-programming-based decomposition. Finally, W. Li et al., 2020

revisits the problem studied in Cattaruzza, Absi, and Feillet, 2016, but they focus the problem

on last-mile delivery for e-commerce. They formulate a MILP and solve it using an adaptive

large neighborhood search algorithm combined with a labelling procedure (ALNS-L).

Table 2.1 presents a summary of the main city logistics models reported in the literature. The

first column denotes the authors, while columns 2-4 indicate the version studied: TSP, CVRP,

MPVRP, OPVRP and MTVRP . Columns 5-7 display the type of mathematical formulation

reported (if any reported). To the best of our knowledge, a two-index formulation for VRP-Rd

has not been reported in the literature. However, W. Li et al., 2020 have developed a two-index

formulation for the MTVRP with release dates, based on a non-overlapping trip packing of

customers to vehicles, which we will adapt to VRP-Rd and then use it to compare our results in

Chapter 4.

2.2 Dynamic vehicle routing problems with release dates

The dynamic vehicle routing problem (DVRP) can be defined as variants of the VRP where: i)

Not all important information is known at the beginning of the route planning and ii) the relevant

information may change throughout the routing process (Psaraftis, Wen, and Kontovas, 2016).
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Table 2.1: Summary of City logistics literature.

Problem Mathematical formulation

References TSP CVRP MPVRP OPVRP MTVRP 4-index 3-index 2-index

Archetti, Feillet, and M Grazia Speranza, 2015 3
Archetti, Jabali, and M Grazia Speranza, 2015 3 3
Cattaruzza, Absi, and Feillet, 2016 3
B. C. Shelbourne, Battarra, and Potts, 2017 3 3
L. Liu, Kunpeng Li, and Z. Liu, 2017 3 3
Schubert, Scholz, and Wäscher, 2018 3 3
Moons et al., 2018 3 3
Archetti, Feillet, Mor, and M Grazia Speranza, 2018 3 3
Jaikishan and Patil, 2019 3 3
Campelo et al., 2019 3 3
W. Li et al., 2020 3 3
Our Models 3 3

One of the common characteristics found in this type of problems is the difficulty of forecasting

the precise moment when orders or goods are ready for delivery; otherwise, the company incurs

in unnecessary holding costs and loss of quality. Hence, knowing the release time is key when

managing delivery. Among DVRP problems, release time can be found on same-day delivery

systems (Klapp, Erera, and Toriello, 2018a,b; Ulmer, Thomas, Campbell, et al., 2020; Ulmer,

Thomas, and Mattfeld, 2019; Voccia, Campbell, and Thomas, 2019) and other applications.

Same-day delivery systems (SDD), can be described as a problem in which delivery requests ar-

rive dynamically throughout a service day and must be delivered on the same day. Klapp, Erera,

and Toriello, 2018b presents two variants of this problem: i) a deterministic case, solved using

dynamic programming to determine an a-priori policy for predetermined routes, and ii) fully dy-

namic policies, for which the authors proposed a heuristic procedure and compute dual bounds.

Klapp, Erera, and Toriello, 2018a extends their previous work by formulating the Dynamic

Dispatch Waves Problem (DDWP), where at each decision wave (epoch), the systems operator

decides whether or not to dispatch a single-vehicle loaded with orders ready for service in order

to minimize vehicle travel costs and penalties for unnerved requests. Reyes, Erera, and M. W.

Savelsbergh, 2018 proposes a generalization of the work presented in Archetti, Feillet, and M

Grazia Speranza, 2015, accomplishing polynomial time complexity proofs for the same-day de-

livery optimization problem, testing both single and multiple vehicle variations, and assuming

that customers are located on a half-line. Furthermore, Voccia, Campbell, and Thomas, 2019
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extends the study to a multi-vehicle dynamic pickup and delivery problem with time constraints

associated with same-day delivery logistics. Ulmer, Thomas, and Mattfeld, 2019 considers an

SDD where vehicles are allowed to return to the depot before having completed their distri-

bution to load the parcels of new customers. A probability distribution characterizes unknown

customers. They solve this problem by utilizing approximate dynamic programming. Ulmer,

Thomas, Campbell, et al., 2020 combines the dynamic pickup and delivery problem (DPD)

and SDD with characteristics such as postponement, scalability and anticipation; in context of

restaurant meal delivery, similar to today’s mobile applications. The probability distributions on

the time and location of meal requests are known. Before the delivery, the selected vehicle has

to pick up the meal at the restaurant. The meal preparation time is random, and therefore, the

vehicle may wait at the restaurant to pick up the meal. To address these challenges, they present

an anticipatory customer assignment (ACA) policy, which deals with stochastic by postponing

the assignment decisions for selected customers, allowing flexible assignments.

Others DVRP with release dates has also been reported in the literature. Archetti, Feillet,

Mor, and Maria Grazia Speranza, 2020 adresses the dynamic traveling salesman problem with

stochastic release dates (DTSP-srd). In the DTSP-srd release dates are stochastic and dynami-

cally updated as distribution occurs. The goal is to minimize the total time needed to serve all

customers, which is the sum of the traveling time and the waiting time at the depot. They rep-

resent the problem as a Markov decision process and solve it using a reoptimization approach

comprised of two models. The first is a stochastic model that estimates release dates, where the

second is deterministic and uses the release date estimations as an input. Yildiz and M. Savels-

bergh, 2019 presents the meal delivery routing problem (MDRP) in last-mile logistics. An order

is expected to be delivered as quickly as possible and within minutes of the food becoming ready.

They introduce a formulation for the MDRP, where perfect information about order arrivals is

assumed. Then, they develop a simultaneous column- and row-generation method. Finally,

Darvish, Coelho, and Laporte, 2020 tackles a variant of the multi-period routing problem in

which deliveries may occur between release and due dates. The release date of each product

is stochastic, and customer orders arrive dynamically over a planning horizon. They provide
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a model that at the beginning of the planning horizon, solves the planning of incoming orders.

Then, when a distribution interruption occurs, a new resource model is solved in an iterative way

over the remaining time. Both models are solved by means of a branch-and-cut.

Table 2.2 presents a summary of the main DVRP extensions involving release dates reported in

the literature. The first column contains the authors, while columns 2-5 indicate the extensions

studied: SDD (same-day delivery), DTSP (dynamic TSP), MDRP (meal delivery problem),

and others. Finally, columns 6-8 indicates the type of compact formulation reported (if any

reported). As far as we know, a two-index formulation for any DVRP with release dates (related

to VRP-Rd) has not been reported.

Table 2.2: Summary of DVRP literature.

Problem Mathematical formulation

References SDD DTSP MDRP Other 4-index 3-index 2-index

Klapp, Erera, and Toriello, 2018b 3
Klapp, Erera, and Toriello, 2018a 3 3
Reyes, Erera, and M. W. Savelsbergh, 2018 3
Voccia, Campbell, and Thomas, 2019 3
Ulmer, Thomas, and Mattfeld, 2019 3
Ulmer, Thomas, Campbell, et al., 2020 3
Yildiz and M. Savelsbergh, 2019 3
Darvish, Coelho, and Laporte, 2020 3 3
Archetti, Feillet, Mor, and Maria Grazia Speranza, 2020 3 3
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Chapter 3

Mathematical formulation

The objective of the VRP-Rd is to plan a set of vehicle journeys minimizing the total traveled

time by a fleet subject to the following constraints:

1. Each vehicle journey starts and ends at the depot;

2. Each customer’s request is loaded into vehicles after ri and delivered;

3. In each journey, the vehicle capacity (Q) cannot be exceed.

To help the reader to understand our formulation, we present a solution to an instance of VRP-

Rd. We use the problem A-n33-k6 from the CVRP benchmark consisting of 33 nodes (one

depot and 32 customers), and a fleet of six homogeneous vehicles. The locations of the depot

and customers are depicted in Figure 3.1(a), while a feasible solution for this problem is shown

in Figure 3.1(b) in which six routes, one for each vehicle, have been created. Figure 3.2 display

the impact of release dates on the vehicles departing time from depots. For each vehicle, the x-

axis display time and the y-axis depicts the nodes visited by the vehicle, from top to bottom, with

v0 being the depot and v1 - v32 the customers. Besides, the customer’s release dates are shown

as a bracket and the departing time for each vehicle from the depot is marked by a vertical gray

dotted line. This last figure helps to visualize how the vehicles starts their routes after the largest

release date on the visited customers.
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(a) Instance A-n33-k6
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(b) Feasible solution for A-n33-k6

Figure 3.1: Example of problem instance and solution A-n33-k6.

3.1 Mathematical formulation

This work presents a two-index MIP formulation for VRP-Rd. Let us first introduce the follow-

ing notation. Let D = {0, ..., R − 1} be the set of depot copies representing the starting point

of R vehicles. We make a copy of the depot for each vehicle so each their departing times from

the depot can be captured. A last copy of the depot determines the final return, which is shared

for all vehicles and is defined as f = R. Additionally, let C = {R + 1, ..., R + n} be the set of

customers, N = {D ∪ {f} ∪ C} be the complete set of nodes.

The decision variables are as follows. xij is binary variable equal to 1 if i precedes j and 0,

otherwise, ∀i, j ∈ N ; yij represent the flow of product in arc (i, j), ∀i, j ∈ N ; ui is a continuous

variable capturing the arrival time to node i (relative to the start of the journey), i ∈ N ; and hi

is a continuous variable capturing the journey starting time that visit node i, ∀i ∈ C.

VRP-Rd: minimize
∑

(i,j)∈A,i 6=j

tijxij +
∑
d∈D

ud (3.1)

subject to:

(Assignment constraints)
∑
j∈C

xdj = 1, ∀d ∈ D (3.2)
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Figure 3.2: Packing of customer in VRP-Rd.

∑
j∈C

xjf = R (3.3)∑
j∈C∪{f},i 6=j

xij = 1, ∀i ∈ C (3.4)

∑
j∈D∪C,i 6=j

xji = 1, ∀i ∈ C (3.5)

(Demand & capacity constraints) yij ≤ Qxij, ∀(i, j) ∈ A, i 6= j (3.6)∑
j∈C∪{f},j 6=i

yij −
∑

j∈D∪C,j 6=i

yji = di, ∀i ∈ C (3.7)

(Journey duration constraints) ui + tij − uj ≤ M1(1− xij), ∀(i, j) ∈ A, i 6= j(3.8)

(Release date constraints) ud ≥ hi −M2(1− xdi), ∀d ∈ D, ∀i ∈ C (3.9)

hj ≥ hi −M3(1− xij), ∀i, j ∈ C, i 6= j (3.10)

hi ≥ hj −M4(1− xij), ∀i, j ∈ C, i 6= j (3.11)

hi ≥ ri, ∀i ∈ C (3.12)
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(Symmetry breaking constraints) ud ≤ ud+1, ∀r ∈ D (3.13)

(Variable nature constraints) xij ∈ {0, 1}, ∀i, j ∈ N , i 6= j (3.14)

yij ≥ 0, ∀i, j ∈ N , i 6= j (3.15)

ui ≥ 0, ∀i ∈ N (3.16)

hi ≥ 0, ∀i ∈ C. (3.17)

The objective function (3.1) minimizes the total traveled time by all vehicles and the release time

of each vehicle. Constraints (3.2) to (3.5) are typical VRP assignment constraints guaranteeing

vehicle flow conservation. Constraints (3.2) and (3.3) force that each vehicle departs from its

depot and returns to the final depot exactly once. Constraints (3.4) and (3.5) force that each

customer is visited exactly once. Constraints (3.6) to (3.7) meet customer demand requirements

and satisfy vehicle maximum capacity. Due to Constraints (3.6) only arcs that are in used can

carry flows of goods. The arrival times are calculated using constraints (3.8), which also prohibit

subtours. Constraints (3.9) to (3.12) impose the release date on customer’s requests. Constraints

(3.9) compute the trip’s starting time which has to be greater than hi if i is the first customer

visited from the depot, while constraints (3.10) and (3.11) make the trip’s starting time identical

to all customer on a given trip. Constraints (3.12) impose that the trip’s starting time must be

greater than the customer’s release dates. Constraints (3.13) help to break symmetries forcing

journey’s starting times to be ordered from lowest to highest Finally, Constraints (3.14) to (3.17)

set the nature of all decision variables.

In Table 3.11, for each constraint, we present the structural parameter value (or big-M parameter)

derived from the problem parameters (See A.1 for a formal mathematical derivation).

3.2 Lifting some constraints for VRP-Rd

In the same fashion followed on in Desrochers and Laporte, 1991 and corrected in Kara, Laporte,

and Bektas, 2004, we propose a lifted restriction for constraints (3.8) as follows:

1The value maxuf can be set to |N | max
i,j∈C,i 6=j

tij , a further research is undergone in Apendix A.2
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Table 3.1: Structural parameters for parameters for our Formulations

Constraints Group M value
(3.8) Journeys duration constraints M1 = max uf + max

i,j∈C,i 6=j
tij −min

i∈C
ri − min

d∈D,j∈C
tdj

(3.9) Release date constraints M2 = max
i∈C

ri −min
i∈C

ri

(3.10) Release date constraints M3 = max
i∈C

ri −min
i∈C

ri

(3.11) Release date constraints M4 = max
i∈C

ri −min
i∈C

ri

Proposition 3.2.1 The constraints

ui + tij − uj + (M1 − tij +min
j∈C

rj +mind∈D,j∈Ctdj −maxuf +min
i∈C

tif ) xji

≤ M1(1− xij), ∀i, j ∈ C, i 6= j (3.18)

are valid inequalities for the VRP-Rd.

Proof 1 Consider the following general constraints:

ui + tij − uj + (M1 − tij + αji) xji ≤ M1(1− xij), ∀i, j ∈ C, i 6= j (3.19)

Where we want to find the largest value for the given αji, being constraints (3.19) valid. It can

be seen that when xji = 0:

ui + tij − uj ≤ M1(1− xij), ∀i, j ∈ C, i 6= j (3.20)

it holds regardless of the value of αji. Whereas, when xji = 1 (customer i is visited right after

visiting customer j, then xij = 0, constraints (3.19) become:

ui + tij − uj +M1 − tij + αji ≤ M1

=⇒ ui − uj + αji ≤ 0

=⇒ αji ≤ uj − ui, ∀i, j ∈ C, i 6= j (3.21)

Thus, to find the largest valid value for αji, the lesser value uj for node j will be met when the

Daniel Neira MDMTVRPTW: A Perishable Good Case Study 16



current vehicle have leaved the depot, therefore, xdj = 1 and from constraints (3.9), we have

ud ≥ hj , and given (3.12) =⇒ ud ≥ rj ≥ minj∈C rj , considering (3.8) =⇒ ud + tdj ≤ uj;

then uj ≥ minj∈C rj + mind∈D,j∈Ctdj . On the other hand, the biggest condition for node

i will be met when it precedes the return to the depot, therefore, xif = 1, then given (3.8)

=⇒ ui+tif ≤ uf =⇒ ui ≤ uf−tif which could be tightened =⇒ ui ≤ maxuf−mini∈C tif ,

where how to calculate maxuf is further discuss in Appendix A.2. Then the largest value for α,

in order to constraints (3.21) be valid, can be calculated as:

αji = min
j∈C

rj +mind∈D,j∈Ctdj − (maxuf −min
i∈C

tif ), ∀i, j ∈ C, i 6= j (3.22)

Proposition 3.2.2 The constraints

ui + tij − uj + (M1 − tij − tji) xji ≤ M1(1− xij), ∀i, j ∈ C, i 6= j (3.23)

are super valid inequalities (Israeli and Wood, 2002) for the VRP-Rd.

Proof 2 Consider the following general constraints: We seek to determine the largest value for

the given αji such that constraints (3.19) are valid. It can be seen that when xji = 0: it holds

regardless of the value of αji. Whereas, when xji = 1 (customer i is visited right after visiting

customer j, then xij = 0, constraints (3.19) become: From constraints (3.8) for xji = 1, we

obtain: uj − ui ≤ −tij

Hence, αji ≤ uj − ui ≤ −tij , and we set

αji = −tij

Proposition 3.2.3 The constraints

hj −M3 xji ≥ hi −M3(1− xij), ∀i, j ∈ C, i 6= j (3.24)

hi −M4 xji ≥ hj −M4(1− xij), ∀i, j ∈ C, i 6= j (3.25)
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are valid inequalities for the VRP-Rd.

Proof 3 Consider the following general constraints:

hj − (M3 + αji) xji ≥ hi −M3(1− xij), ∀i, j ∈ C, i 6= j

We seek a valid for αji such that constraints (3.26) are valid. Two cases may be considered. In

the first case, xji = 0 =⇒ hj ≥ hi −M3(1− xij), ∀i, j ∈ C, i 6= j, which holds regardless

of the value of αji.

In the second case, xji = 1 and thus xij = 0, we obtain:

hj −M3 + αji ≥ hi −M3

=⇒ hj + αji ≥ hi =⇒ αji ≥ hi − hj, ∀i, j ∈ C, i 6= j

And because, as the problem VRP-Rd is defined, when two customers, in this case j and i, are

in the same journey, both take the same value of h that defines the release time of the current

vehicle, and therefore the shortest value that takes αji = 0. Thus we obtained constraint (3.24).

Constraint (3.25) can be demonstrated following the same ideas.

Additionally, we lift the capacity constraints (3.6) as follows (Gavish and Graves, 1978):

yij ≤ (Q− qj) xij, ∀(i, j) ∈ A, i 6= j (3.26)

and add the following constraints:

yij ≥ qixij, ∀(i, j) ∈ A, i 6= j (3.27)
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Chapter 4

Computational Experiments

In this section, we present the results obtained by the proposed formulation in different bench-

marks instances. All models were programmed in python and solved via Gurobi version

9, with default parameters. Additionally, the runs were distributed to a cluster of 30 com-

puter nodes, each with an Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz and 64

GB of RAM running Ubuntu 18.04.2 LTS. Moreover, we set a time limit of three hours

(10,800 seconds) per instance and allowed each instance to be optimized using 8 Gbs of

RAM.

We test the following models:

Model 1: Our original model consisting of constraints (3.1)- (3.17).

Model 2: Our lifted model, which is generated by changing constraints (3.6) for con-

straints (3.26); replacing in our original model constraints (3.8), (3.10) and (3.11) for

their lifted version (3.23), (3.24) and (3.25) , respectively; and adding constraints (3.27).
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4.1 Instances

We use the modified VRP-Rd benchmark instances used in L. Liu, Kunpeng Li, and Z. Liu,

2017. These instances are derived from the well-known CVRP benchmark1 and modified as

presented in the paper mentioned above. The dataset provides three series A, B and P, which

adds up to 72 instances. We solve series A consisting of 27 instances with a range of nodes from

23 to 80 having from 5 to 10 vehicles. The instances are identified by the notation A-n32-k5,

where the first, second, and third terms indicate, the series of the chosen instance, the number

of nodes, and the available number of vehicles, respectively. Additionally, for each customer in

each instance, the release times are generated randomly from the range [1/8, 1/4] ∗ T/R, where

T represents the travel time of the grand route which visits all customers from index 1 to n, and

R is the number of vehicles.

4.2 Comparison with existing formulations

We start by comparing our MIP models (Modesl 1 and 2) against the ones reported in ibid.

(three-index formulation) and W. Li et al., 2020 (two-index formulation), the latter modified to

our problem. We present results obtained for the 27 instances explained above in Table 4.1. The

first column indicates the instance name; and then, we display for each formulation: the best

integer solution found (Zip); the required time to solve the instance (T ); and the optimality gap

reported by Gurobi (Gap). We report “Not” in the Gap column when the model is unable to

obtain a feasible solution. For each instance, we highlight in bold the minimum values in Zip

and Gap. We present in the last two rows a summary of the results obtained. “Mean” denotes the

average value for each column; while “Best” indicates the number of times that the formulation

obtains minimum Zip value among all formulations.

First, we compare the results obtained by the models described in L. Liu, Kunpeng Li, and Z.

Liu, 2017 and W. Li et al., 2020 (see Table 4.1). The latter outperforms the former by reaching

1CVRP benchmark instances are available on the website https://neo.lcc.uma.es/vrp/
vrp-instances/capacitated-vrp-instances/
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the minimum Zip value in 24 out of 27 instances. However, despite this behaviour, the big

drawback of the model reported in W. Li et al., 2020 when compared to L. Liu, Kunpeng Li,

and Z. Liu, 2017 is in finding lower bounds (Gap), which obtain minimum Gap values in only

one instance. Hence, we will use the two-index formulation reported in W. Li et al., 2020 for

comparison with the proposed formulations.

Now, we analyze the performance of our first proposed formulation, Model 1, with the two-

index formulation reported in ibid. Model 1 obtain minimum Zip value in 25 out of 27 instances

and reaches an average Gap of 15.80%, while the model presented in ibid. obtain an average

Gap of 52.86%. Hence, Model 1 outperforms the formulations reported in L. Liu, Kunpeng Li,

and Z. Liu, 2017 and W. Li et al., 2020; however, it is unable to obtain a feasible solution to

instance A-n61-k9.

Knowing that Model 1 outperforms the existing formulations, we compare it with our improved

formulation, Model 2, including lifted constraints derived in Chapter 3. Model 2 surpasses

Model 1 by obtaining minimum Zip value in 17 out of 27 instances, and by reaching feasible

solutions to all cases. The average Gap on the instances solved by both formulations by Models

1 and 2 are 15.80% and 15.64%, respectively. Thus, Model 2 dominates both Model 1 and all

formations reported in the literature.
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We further compare Model 2 and the MIPs available in literature (W. Li et al., 2020; L. Liu, Kun-

peng Li, and Z. Liu, 2017) according to the relative distance to CV RP optimal solution, which

is shown in Table 4.2. The first column presents the instance name, then for each formulation

the relative distance to lower bound computed in column LB_CV RP . Column LB_CV RP in-

dicates the objective function of a feasible solution for VRP-Rd created from the optimal CVRP

solution, when reported in the literature, by adding the corresponding release date to each cus-

tomer and letting each vehicle to depart from the depot after the largest release date among all

the customer visited on each route. The distance is computed as (Zip−LB_CV RP )/Zip%, thus,

this value denotes the Gap from the optimal CVRP solution. A sign “-” in columns LB_CV RP

and LR represents that the model was either unable to obtain a feasible solution or the given

value is not reported.

As shown in Table 4.2, Model 2 outperforms the two other models in all instances where a

CVRP solution configuration is available (19 out of 19). This emphasizes that our Model 2 finds

better quality solutions than the other formulations.

Table 4.2: Relative distance to CV RP on VRP-Rd for our both models vs formulation from L.
Liu, Kunpeng Li, and Z. Liu, 2017 and W. Li et al., 2020

Instance Model 2
Three-index formulation Two-index formulation

LB_CV RP
(L. Liu, Kunpeng Li, and Z. Liu, 2017) (W. Li et al., 2020)

A-n32-k5 -0.85% 7.60% 3.14% 1225.00

A-n33-k5 -2.36% 1.73% 4.12% 1064.32

A-n33-k6 -1.09% -0.94% 7.56% 1060.35

A-n34-k5 -0.33% 7.89% 3.93% 1206.11

A-n36-k5 -0.05% 12.49% 7.03% 1207.76

A-n37-k5 -1.28% 12.67% 9.68% 1028.96

A-n37-k6 -1.00% 12.43% 5.78% 1354.93

A-n38-k5 -0.71% 9.29% 6.94% 1228.49

A-n39-k5 -1.21% 11.21% 6.47% 1316.19

A-n39-k6 -0.82% 12.50% 11.90% 1349.91
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Table 4.2: Relative distance to CV RP on VRP-Rd for our both models vs formulation from L.
Liu, Kunpeng Li, and Z. Liu, 2017 and W. Li et al., 2020 (Cont.)

Instance Model 2
Three-index formulation Two-index formulation

LB_CV RP
(L. Liu, Kunpeng Li, and Z. Liu, 2017) (W. Li et al., 2020)

A-n44-k7 - - - -

A-n45-k6 -1.10% 24.68% 19.23% 1565.27

A-n45-k7 1.57% 16.65% 10.24% 1668.20

A-n46-k7 -1.71% 19.25% 16.38% 1479.14

A-n48-k7 0.49% 15.72% 13.89% 1664.58

A-n53-k7 -0.48% 30.09% 20.80% 1683.99

A-n54-k7 0.81% 19.02% 13.53% 1901.92

A-n55-k9 -1.54% 26.35% 11.30% 1717.97

A-n60-k9 - - - -

A-n61-k9 24.42% 30.76% 25.04% 1709.34

A-n62-k8 - - - -

A-n63-k10 - - - -

A-n63-k9 - - - -

A-n64-k9 - - - -

A-n65-k9 3.37% 35.68% 28.62% 1942.09

A-n69-k9 - - - -

A-n80-k10 - - - -

mean 0.85% 16.06% 11.87% 1440.76

Best 19 0 0 -

4.3 Quality of the solutions

In the previous section, we show that the proposed formulation surpass the model reported

in the literature, now we shall investigate its performance in terms of the quality of solutions
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generated against a state-of-the-art algorithm reported in the literature. We compare the results

obtained by Model 2, and the ones reported in L. Liu, Kunpeng Li, and Z. Liu, 2017 using

GTS (Granular Tabu Search). Since neither the proposed algorithm nor the instances used are

publicity available, we make a comparison using the mean. ibid. uses instances generated from

well-known CVRP benchmark instances. Still, the release times are generated randomly, as

described in Section 4.1. Thus, the generation of the release dates follows a stochastic generation

process; thereby, the results presented in ibid. are just a random sample of the process mentioned

above. If we draw a large number of samples (generation of release dates), say 30, of the same

benchmark, we can obtain appropriate metrics such as the mean, but we could also compute

confidence intervals. Having that in mind, we decided to contrast our mean results with the

sample reported in ibid.

Table 4.3 compares the results obtained by Model 2 with those reported in ibid. on the same

instances. The first column of this table indicates the instance name, columns 2 - 7 deliver the

average results, over 30 replicas, for each benchmark instance using Model 2, while columns

8 - 9 show the reported solutions for the instance solved using GTS as presented in ibid. For

our model, columns Zip, T and Gap display the mean of i) the best integer solutions found, ii)

the time in seconds required to solve each replica to optimality, and iii) the Gap, respectively.

Additionally, we add columns: Min which shows the minimum integer solution found; also

we add the upper and lower bounds of the 95% confidence interval (CI), on columns Low and

Upper, respectively.

For ibid.’s algorithm, we present the best objective function reported and time in seconds to

reach that value on columns Zip and T . Moreover, the penultimate row shows the average of

each column and the last row Best tallies the number of times each model outperformed the

other when comparing for columns Zip and Gap. A sign “-” in the last row indicates that the

given value is not reported. Bold characters in the Zip, Gap columns mean that, when compared

with to other the models, the corresponding instance/mean solution is better. Only A-n61-k9*

could not yield a feasible solution in every replica; the model obtains solutions in 29 out of 30

replicas.
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According to the above table, it is noteworthy that in most instances, our model yield better

means solutions than the GTS algorithm presented in L. Liu, Kunpeng Li, and Z. Liu, 2017.

We outperform the GTS algorithm in 15 out of 27 instances. Furthermore, it is noticeable that

in 25 out of 27, the minimum objective value found among all replicas outperforms the other

approach. Additionally, we can observe that in 7 out of the 27 replicas the solution obtain

by GTS fall inside our confidence interval; more specifically, eleven times GTS is above the

interval and in nine is below. This information is also depicted in Figure 4.1, where the x-axis

contains the name of the instance, while the y-axis shows the value of the objective function.

Here, except for two cases, the value reported in GTS is within the CI of the 30 runs. This

finding reaffirms that our straightforward implementation is equivalent to the cumbersome GTS

algorithm. However, our average results are more robust than the sample reported by ibid.
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Figure 4.1: Comparison Boxplot between 30 replicas and algorithms presented in L. Liu, Kun-
peng Li, and Z. Liu, 2017
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Table 4.3: Results of Model 2 with 30 replicas against GTS algorithm presented in L. Liu,
Kunpeng Li, and Z. Liu, 2017

Instance
Model 2 GTS

Z_ip T Gap Min Low Upper Zip T

A-n32-k5 1209.71 10800.02 10.09% 1160.86 1203.42 1216.00 1233.00 3.00

A-n33-k5 1038.16 10800.02 11.94% 994.82 1032.58 1043.74 862.00 3.00

A-n33-k6 1032.17 10800.02 9.08% 1002.32 1027.79 1036.55 1344.00 3.00

A-n34-k5 1190.04 10800.02 12.35% 1146.15 1185.06 1195.01 1202.00 3.00

A-n36-k5 1191.84 10800.02 11.42% 1162.98 1187.52 1196.16 1220.00 3.00

A-n37-k5 998.00 10800.02 9.83% 968.38 993.77 1002.24 1017.00 3.00

A-n37-k6 1352.85 10800.02 12.94% 1297.12 1346.69 1359.01 1359.00 3.00

A-n38-k5 1212.07 10800.02 15.23% 1175.45 1207.00 1217.14 1226.00 3.00

A-n39-k5 1298.13 10800.02 15.44% 1256.89 1292.48 1303.79 1334.00 4.00

A-n39-k6 1327.29 10800.02 14.42% 1278.90 1320.61 1333.97 1329.00 4.00

A-n44-k7 1485.62 10800.02 15.87% 1449.85 1477.48 1493.76 1485.00 5.00

A-n45-k6 1588.55 10800.02 19.06% 1523.44 1571.15 1605.95 1592.00 5.00

A-n45-k7 1670.51 10800.02 14.43% 1634.92 1663.98 1677.04 1666.00 5.00

A-n46-k7 1455.28 10800.02 13.86% 1423.17 1448.54 1462.01 1478.00 5.00

A-n48-k7 1675.28 10800.02 16.24% 1626.91 1666.33 1684.23 1657.00 5.00

A-n53-k7 1679.82 10800.03 18.11% 1632.57 1671.81 1687.84 1688.00 7.00

A-n54-k7 1893.60 10800.03 18.92% 1848.17 1885.75 1901.45 1868.00 7.00

A-n55-k9 1689.64 10800.03 16.08% 1661.16 1683.96 1695.32 1699.00 7.00

A-n60-k9 2101.17 10800.07 17.85% 2041.20 2093.19 2109.16 2103.00 9.00

A-n61-k9* 1954.36 10800.03 33.04% 1751.74 1871.71 2037.02 1776.00 10.00

A-n62-k8 2043.15 10800.07 18.65% 1992.07 2036.31 2049.98 2111.00 9.00

A-n63-k10 2093.73 10800.12 18.53% 2033.93 2083.30 2104.16 2082.00 10.00

A-n63-k9 2524.20 10800.16 19.89% 2408.50 2499.09 2549.31 2477.00 10.00

A-n64-k9 2159.01 10800.17 18.41% 2091.81 2147.51 2170.51 2145.00 10.00

A-n65-k9 1994.22 10800.03 20.73% 1924.52 1976.43 2012.00 1986.00 10.00
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Table 4.3: Results of Model 2 with 30 replicas against GTS algorithm presented in L. Liu,
Kunpeng Li, and Z. Liu, 2017 (Cont.)

Instance
Model 2 GTS

Z_ip T Gap Min Low Upper Zip T

A-n69-k9 2102.11 10800.03 21.08% 2030.50 2091.22 2113.01 2067.00 12.00

A-n80-k10 2840.67 10800.03 19.70% 2768.69 2823.94 2857.41 2781.00 20.00

mean 1659.30 10800.04 16.42% 1603.22 1647.73 1670.88 1658.78 6.59

Best 15 - - 25 18 11 12 -

4.4 Sensitivity analysis: The α parameter

Understanding that the objective function can be read as the merge of two different objectives,

where the first corresponds to the minimization of the construction of an optimal set of journeys

for the available vehicles, while the second to minimizes the release time of each vehicle. Thus,

in the original formulation both were considered as equally important, but we can weight them

as follows:

minimize α
∑

(i,j)∈A,i 6=j

dijxij + (1− α)
∑
d∈D

ud (4.1)

Where now α can be set between 0 and 1.

With the addition of a weighted bi-objective function, via the use of an α parameter, we can now

test how sensitive our base and lifted models are to the parameter, and how they compare to ibid.,

when α takes values 0.7 and 0.9. Unfortunately, the inclusion of this objective function on the

model presented in W. Li et al., 2020 would change its nature, thereby it will not be compared

in this section.

Results are displayed in the Tables 4.4 and 4.5, where the first column indicates the instance

name, columns 2 - 4 show the results for each instance tested in our Model 1, columns 5 - 7 in-
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form the outcomes for our Model 2, while columns 8 - 10 communicate the respective solutions

for the instances according to the L. Liu, Kunpeng Li, and Z. Liu, 2017’s formulation. Columns

Zip, T and Gap convey, respectively, the best integer solution found, the time in seconds to

solve the problem to optimality and the relative optimality gap percentage inform by Gurobi.

Moreover, the penultimate presents the mean for each column, whereas the last row Best tallies

the number of times each model outperformed the others according to the gap value. A sign “-”

in last row indicates that the given value is not reported. Bold characters in the Zip and Gap

columns, and the last row mean when that compared to the other models, the corresponding

instance/mean solution is better. Now, on columns T , it means that an optimal solution has been

found. Now, from Table 4.4 we can see that when the α parameter is set equal to 0.7, in 14

out of 27 instances our lifted model is better than the other two formulations, while our Model

1 outperforms the others in 13 opportunities. In addition, we can observe that getting α to 0.7

allows the basic model to find a solution for the A-n61-k9 instance.

If we compare this results with the ones in Table 4.1 (where α = 0.5), we observe that the

number of best gaps found by the basic model has increased. Previously, our Model 2 outper-

formed 18 to 9 the vanilla model, while in this weighted case our lifted constraint outperforms

our Model 1 only 14 to 13. Also, in Table 4.1, due to the unsolved instance, the basic model

obtained an average gap of 15.80% while the lifted model converged to a gap of 16.47%. In the

new scenario (where α = 0.7) the gaps decreased to 11.14% and 10.39%, respectively. Also,

it is relevant to notice that for the models with fewer nodes (up to 40), our vanilla model has a

better performance; however, our Model 2 keeps obtaining a better mean objective function.

Now, when we set α to 0.9 (see Table 4.5), which means that generation of routes is more

important than minimizing the departure times, we observe an overwhelming change in favor of

our vanilla model, since it manages to obtain better gaps in 22 of 27 instances, even delivering

5 optimal solutions. On the other hand, even though our model with lifted constraints manages

to reach the same 5 optimal values, it only certify optimality in the first instance. As for the

average gaps, we can observe a technical tie, with 6.24% and 6.26% for our basic and our lifted

models, respectively. Nevertheless, the Model 2 outperforms the vanilla model by yielding an
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overall better mean objective function.

Table 4.4: Sentivity analysis: results on VRP-Rd for both models, when α = 0.7.

Instance
Model 1 Model 2 L. Liu, Kunpeng Li, and Z. Liu, 2017

Zip T Gap Zip T Gap Zip T Gap

A-n32-k5 673.40 10800.02 4.28% 673.40 10800.02 5.08% 730.99 10800.02 26.87%

A-n33-k5 571.92 10800.01 4.62% 573.32 10800.02 5.00% 606.09 10800.02 23.30%

A-n33-k6 603.70 10800.02 4.04% 603.70 10800.01 4.99% 610.00 10800.02 20.20%

A-n34-k5 666.03 10800.01 5.33% 670.01 10800.02 6.95% 722.73 10800.01 26.97%

A-n36-k5 680.04 10800.01 7.12% 674.93 10800.02 6.91% 825.11 10800.01 40.10%

A-n37-k5 566.67 10800.01 4.98% 567.19 10800.00 5.78% 613.83 10800.01 21.88%

A-n37-k6 778.16 10800.01 7.19% 782.71 10800.00 7.57% 910.38 10800.01 42.01%

A-n38-k5 653.55 10800.01 5.72% 653.55 10800.02 6.24% 737.71 10800.03 32.14%

A-n39-k5 719.30 10800.01 8.49% 720.31 10800.01 8.45% 867.86 10800.03 38.19%

A-n39-k6 729.67 10800.02 7.28% 729.67 10800.01 8.32% 801.11 10800.03 30.70%

A-n44-k7 817.59 10800.02 9.48% 816.03 10800.02 9.23% 973.96 10800.02 33.56%

A-n45-k6 990.76 10800.01 23.74% 923.67 10800.03 18.18% 1163.58 10800.01 44.90%

A-n45-k7 978.54 10800.02 10.77% 952.63 10800.03 7.57% 1064.19 10800.03 38.35%

A-n46-k7 800.08 10800.01 6.95% 802.20 10800.01 7.12% 926.55 10800.01 34.06%

A-n48-k7 935.28 10800.02 12.00% 937.34 10800.02 11.64% 1156.01 10800.04 44.90%

A-n53-k7 935.14 10800.01 13.66% 903.28 10800.04 11.28% 1211.64 10800.05 45.15%

A-n54-k7 1028.79 10800.03 12.33% 1033.18 10800.03 12.74% 1252.10 10800.05 47.90%

A-n55-k9 956.33 10800.01 11.72% 933.31 10800.02 9.77% 1166.84 10800.03 42.62%

A-n60-k9 1166.06 10800.08 11.95% 1159.00 10800.02 11.55% 1557.60 10800.03 57.85%

A-n61-k9 999.28 10800.03 19.36% 1093.55 10800.01 26.18% 1442.99 10800.08 55.75%

A-n62-k8 1140.72 10800.11 13.39% 1137.65 10800.02 12.70% 1554.60 10800.06 55.51%

A-n63-k10 1147.79 10800.07 12.77% 1162.98 10800.02 14.33% 1599.60 10800.06 54.92%

A-n63-k9 1441.15 10800.09 15.75% 1418.96 10800.01 14.03% 1943.87 10800.12 58.17%

A-n64-k9 1223.86 10800.22 13.73% 1205.10 10800.02 12.71% 1808.44 10800.05 56.90%

A-n65-k9 1181.59 10800.04 21.81% 1046.13 10800.04 11.95% 1779.32 10800.06 58.95%

A-n69-k9 1088.21 10800.02 13.36% 1098.15 10800.02 14.33% 1601.09 10800.07 49.36%

A-n80-k10 1671.44 10800.03 18.86% 1569.62 10800.02 13.47% 2388.80 10800.01 57.06%

mean 931.30 10800.03 11.14% 900.87 10800.02 10.39% 1185.81 10800.04 42.16%

Best - - 13 - - 14 - - 0
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Table 4.5: Sentivity analysis: results on VRP-Rd for both models, when α = 0.9.

Model 1 Model 2 L. Liu, Kunpeng Li, and Z. Liu, 2017

Instance Zip T Gap Zip T Gap Zip T Gap

A-n32-k5 739.80 926.20 0.00% 739.80 6083.68 0.00% 831.13 10800.01 29.83%

A-n33-k5 623.97 3839.34 0.00% 623.97 10800.04 1.96% 643.77 10800.01 21.59%

A-n33-k6 685.23 5221.51 0.01% 685.23 10800.01 1.92% 703.49 10800.02 22.96%

A-n34-k5 733.11 10800.01 1.80% 736.67 10800.01 3.77% 773.81 10800.04 26.53%

A-n36-k5 750.98 10800.00 3.03% 750.98 10800.01 3.65% 827.98 10800.02 34.96%

A-n37-k5 626.40 8892.39 0.00% 626.40 10800.01 1.90% 643.1 10800.03 17.13%

A-n37-k6 884.79 10800.02 4.37% 884.79 10800.02 4.91% 1018.05 10800.02 39.94%

A-n38-k5 696.95 8504.12 0.00% 696.95 10800.05 1.95% 789.96 10800.02 35.98%

A-n39-k5 781.62 10800.00 4.19% 782.52 10800.01 5.41% 858.4 10800.01 33.99%

A-n39-k6 787.19 10800.02 3.68% 789.89 10800.00 5.38% 803.58 10800.01 26.76%

A-n44-k7 884.71 10800.01 4.58% 893.71 10800.02 5.67% 1025.83 10800.01 31.50%

A-n45-k6 937.82 10800.02 12.61% 985.61 10800.03 13.69% 1089.35 10800.04 38.43%

A-n45-k7 1072.52 10800.01 5.12% 1076.22 10800.02 5.57% 1307.62 10800.03 45.38%

A-n46-k7 863.17 10800.01 2.64% 864.07 10800.03 3.35% 1004.42 10800.03 36.24%

A-n48-k7 1038.72 10800.01 8.17% 1039.93 10800.02 8.17% 1323.46 10800.03 47.58%

A-n53-k7 969.30 10800.01 5.04% 967.77 10800.03 6.68% 1346.1 10800.02 47.80%

A-n54-k7 1111.43 10800.01 7.66% 1108.10 10800.06 7.46% 1630.11 10800.03 58.71%

A-n55-k9 1007.87 10800.01 4.77% 1012.00 10800.02 6.04% 1293.12 10800.04 45.96%

A-n60-k9 1293.30 10800.00 8.08% 1296.48 10800.03 9.53% 1732.58 10800.06 61.40%

A-n61-k9 1149.77 10800.01 22.87% 1008.55 10800.03 9.51% 1588.91 10800.07 58.50%

A-n62-k8 1250.98 10800.01 9.04% 1261.49 10800.01 10.10% 1646.76 10800.03 56.17%

A-n63-k10 1256.04 10800.07 8.28% 1241.98 10800.02 7.71% 1881.35 10800.1 59.56%

A-n63-k9 1657.69 10800.01 14.39% 1539.09 10800.03 7.58% 2363.46 10800.03 63.05%

A-n64-k9 1330.53 10800.01 7.63% 1336.20 10800.04 8.52% 1900.63 10800.01 55.31%

A-n65-k9 1128.41 10800.01 11.38% 1185.40 10800.03 11.73% 1872.76 10800.03 58.68%

A-n69-k9 1143.17 10800.01 8.99% 1141.75 10800.05 9.00% 1609.05 10800.02 48.99%

A-n80-k10 1750.98 10800.00 10.28% 1722.46 10800.02 9.31% 2589.2 10800.03 58.50%

mean 1005.79 9814.22 6.24% 979.19 10618.63 6.26% 1299.92 10800.03 43.02%

Best 5 5 22 5 0 6 0 0 0

4.5 Improvement Schemes

In our search for better results, but at the same time with the philosophy of an easy implemen-

tation, our next step was to achieve possible improvement schemes for our model. We now take
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into consideration our lifted model with an alpha of 0.5, which for this given alpha showed better

performance in the previous analyses, and we try to improve it. A first approach is the insertion

of a feasible initial solution for this we used the implementation of the classic savings algorithm

(Clarke and Wright, 1964) included in the free use package ortools from google (Perron and

Furnon, 2019). Then, a repair method is used to add the respective variables to convert the

CVRP solution into one for VRP-Rd. Additionally, we try with guided local search method to

improve this initial solution, with a limit of 600 seconds or until we find 100 possible solutions.

The results are shown in the Table 4.6. In this Table, the first column indicates the instance

name, columns 2 - 4 (Lifted) deliver the results for each instance for our Model 1, columns 5

- 7 (Initial Solution) inform the outcomes for our Model 1 with the insertion of an initial so-

lution, columns 8 - 10 (Initial Solution Plus Improvement) convey the results for our Model 1

with the insertion of an initial solution plus the use of an guided local search, while columns

11 - 13 (LISPI: Lifted with Initial Solution Plus Improvement) communicate the respective so-

lutions for our Model 2 with the insertion of an initial solution plus the use of an guided local

search. Columns Zip, T and Gap convey, respectively, the best integer solution found, the time

in seconds to solve the problem to optimality or relative optimality gap percentage and the gap

inform by Gurobi. Moreover, on the penultimate row is the mean for each value reported and

in the last row the Best values found comparing the corresponding models for columns Gap and

Zip. A sign "-" in last row represents that the given value is not reported. Bold characters in

Zip and Gap columns; and the last row means that compare with the other models, for a given

instance/mean that solution is better, while on columns T means that an optimal solution has

been found and in case more than one model yield the optimal solution T will indicate which

one is faster. On Instance column the instances that are follow by a "*" sign as A-n33-k6*

means that for the respective instance or-tools could not yield a solution and therefore, the in-

stance undergoes a normal optimization of either the our vanilla or our lifted model. From the

results presented in the table we can see how the one that has the best performance relative to

the average gap and average target value is the Initial Solution Plus Improvement model, with

15.14% and 829.25, respectively, even improving the results of our Lifted with Initial Solution
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Plus Improvement model that we would have expected to be better. The first exceeded the others

by 9 out of 27 intents, in terms of gap, followed very closely by 8 out of 27 for our lifted model.

As for who gets better objective functions, the model with initial solution manages to get the

best objective value in 12 out of 27 opportunities. We can conclude that the data help us to see

a not so obvious dominance of a model over the others, in fact, for instances with less than 50

nodes it is difficult to say which model has better gaps, even when the Initial Solution model to

obtain more times the best objective value; on the other hand, for bigger instances, the indicated

model seems to be Initial Solution Plus Improvement.
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4.6 Commercial Solver parameter tunning

For an analysis of Gurobi’s internal parameters, we took 100 instances of those generated in

the replicas, that is, of the 27 original problems with different seeds for the generation of release

dates, and we tested with the tune() method, giving Gurobi a time limit of the process of

three days of resolution, a time limit per instance of 30 minutes (1800 seconds) and 15 runs

per set of parameters, to eliminate possible errors due to seed selection. From these results it

was obtained that in 89 out of 100 instances the base parameters were improved. From the base

parameters we obtain an average gap (here we will only consider the instances in which it was

possible to improve the base parameters) of 19.83% against 18. 57% when compared with the

improved parameters, now if we consider that there are disturbing effects by adding to these

calculations the instances in which it was not possible to solve the 15 runs per sample, which in

this case are 9 instances out of the 89 in which it is achieved to improve the results, we are left

with 80 instances and even so it is observed a decrease from 17.61% to 16.78%, which means a

reduction of 4.71% of the mean gaps. Within the parameters that are most repeated in this tuning

process are MIPFocus, Heuristics, GomoryPasses, Aggregate and PreDual, with

an appearance of 24, 14, 12, 12 and 10 times, respectively, in the set of improved parameters.

Now from these five, if we consider the percentage improvement in mean gaps, we can find

improvements of 11.36%, 3.03%, 2.96%, 2.85% and 2.70%, for Heuristics, MIPFocus,

PreDual, GomoryPasses and Aggregate, respectively (Samples with runs that do not

obtain full solutions are not considered again in these mean gap improvements.)

As for these samples with runs without integer solution, we can observe a substantial improve-

ment, due to the fact that in the nine instances without solution a solution is not found in 30 out

of 135 seeds, on the other hand when comparing it with the set of tuned parameters, this amount

drops to 10 seeds. At the same time, the average gap in these instances drops from 39.56% to

34.41%, which reports a percentage decrease of 13.01% (Note that there are instances in which

solutions are found in a little more than half of the seeds, while the improved parameters manage

to obtain a solution in almost all of them, but reporting higher average gaps).

Finally, in the following box we show the parameters and their (average) values for the previous
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analysis2:

Heuristics: 0.5

MIPFocus: 2

PreDual: 1

GomoryPasses: 1

Aggregate: 0

This is by no means an exhaustive analysis, it is recommended to tune the parameters using

gurobi’s own tools.

2For a further explanation on these parameter see A.3
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Chapter 5

Concluding remarks

In this research, a compact formulation for the vehicle routing problem with release times (VRP-

Rd) has been proposed, a variant of the vehicle routing problem in which each customer’s order

has a release date indicating the earliest time that the order is available at the depot for delivery.

Additionally, it has been proposed both valid inequalities and lifted constraints that accelerate

the proposed model. Furthermore, it has undergone researches on ease-to-follow improvement

schemes and try by tuning Gurobi’s parameters.

The computational results suggest that the proposed formation outperforms the existing ones,

reported in the literature, for the VRP-Rd (W. Li et al., 2020; L. Liu, Kunpeng Li, and Z. Liu,

2017) when solved directly in a commercial solver. Moreover, after a comprehensive study of

our model under different scenarios, it has been empirically demonstrated that it is competitive

(in terms of solution quality) with a state-of-the-art algorithm reported in the literature. Another

advantage of our model over existing algorithms reported in the literature is that it can be easily

implemented by practitioners. Then, it is shown that the formulation can be solved efficiently by

a commercial solver without complicated algorithmic implementations. Finally, computational

experiments suggest that the insertion of an initial solution can indeed improve the solutions and

a further improvement of this initial solution can be beneficial for larger instances.

For future research, it will be intended to extend and adapt our formulation to other routing prob-

lems with release dates arising in the literature and in real-life applications. Another potential
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research direction is to develop customized, exact algorithms via column generation or Branch

& Cut to exploit the structure of the proposed formulations.
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Appendix A

VRP-Rd

A.1 Value of Ms

In this section, the derivation of the structural parameters for our model are presented.

A.1.1 Journeys duration constraints

ui + tij − uj ≤ M1(1− xij), ∀i, j ∈ A, i 6= j (3.8)

Derivation: If xij = 0, then it is obtained ui + tij − uj ≤ M1. Thus, the minimum value for uj

occurs when j ∈ C, then uj ≥ min
d∈D

ud+ min
d∈D,j∈C

tdj = min
i∈C

ri+ min
d∈D,j∈C

tdj . Because the VRP-Rd

does not consider a maximum time limit nor time windows, ui does not have an structural limit

parameter, rather it will be defined this maximum as ui ≤ maxuf and further explain in A.2.

By definition, tij ≤ max
i,j∈C

tij . Thus, M1 = max uf + max
i,j∈C,i 6=j

tij −min
i∈C

ri − min
d∈D,j∈C

tdj .

A.1.2 Release date constraints

ud ≥ hi −M2(1− xdi), ∀d ∈ D, ∀i ∈ C (3.9)
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Derivation: If xdi = 0, then it is obtained hi − ud ≤ M2. Then, it is easy to see that any vehicle

cannot depart before the release time have been completed, and therefore, ud ≥ min
i∈C

ri. Also,

by definition hi ≤ max
i∈C

ri. Thus, M2 = maxi∈C ri −mini∈C ri

hj ≥ hi −M3(1− xij), ∀i, j ∈ C, i 6= j (3.10)

Derivation: If xij = 0, then it is obtained hi − hj ≤ M3. Then, it can be observed how hj

is restricted to be at least min
i∈C

ri. Also, by definition hi ≤ max
i∈C

ri. Thus, M3 = maxi∈C ri −

mini∈C ri

And in a similar fashion it can be also derived the value for M4

hi ≥ hj −M4(1− xij), ∀i, j ∈ C, i 6= j (3.11)

Derivation: If xdi = 0, then it is obtained hj − hi ≤ M4. Thus, M = maxi∈C ri −mini∈C ri

A.2 Calculating maxuf

The issue when calculating maxuf is first to understand what problem does it refers to. As

initially, there is no limit for our problem, for example, a time limit of tH , virtually the arrival

times, i.e., ui∀i ∈ N , could be any given number to infinity, then, it is needed to find the upper

bound given a VRP-Rd instance. This problem can be visualized as finding a set of routes of

maximum distance, such that it pass through all nodes, that leave and return to the depot without

violating the maximum capacity of the fleet. This problem could be defined as a maximum VRP,

that is, finding one or a set of Hamiltonian cycles without surpassing the fleet capacity. As it

can be seen and if it is considered as base the graph with weights −c, this problem, except for

some similar cases to its related VRP, would be NP-hard and therefore complex to solve for

our interest that is to find a value for the big-M. If the restrictions of fleet capacity are relaxed
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it is obtained the maximum TSP problem, which continues being NP-hard (Barvinok, Gimadi,

and Serdyukov, 2007). Then again a constraint is relaxed, in this case the sub-tour elimination

constraints, it is obtained a maximum general assignment problem, which can be solved with

the Hungarian algorithm with a known complexity of O(|N |3) (Jonker and Volgenant, 1986).

As a quicker example of possible value for maxuf it can be set it as the maximum arc times the

number of nodes, i.e., |N | max
i,j∈C,i 6=j

tij

Then the objective value of these problems should look like:

Zmaximum V RP ≤ Zmaximum TSP ≤ Zmax GAP ≤ |N | max
i,j∈C,i 6=j

tij

A.3 Parameter used in the tunning of Gurobi

For a complete overview of Gurobi and its parameters it is highly recommended seeing the

documentation available on the website www.gurobi.com. The five parameter mention on

this paper an their usage are the following:

• Heuristics: Time spent in feasibility heuristics. Determines the amount of time spent

in MIP heuristics. Type: double, default value: 0.05, minimum value: 0, maximum

value: 1.

• MIPFocus: MIP solver focus. Allows you to modify your high-level solution strategy,

depending on your goals. If you are more interested in finding feasible solutions quickly,

you can select MIPFocus=1. If you believe the solver is having no trouble finding good

quality solutions, and wish to focus more attention on proving optimality, select MIPFo-

cus=2. If the best objective bound is moving very slowly (or not at all), you may want to

try MIPFocus=3 to focus on the bound. Type: int, default value: 0, minimum value: 0,

maximum value: 3.

• PreDual: Controls presolve model dualization. Controls whether presolve forms the

dual of a continuous model. Depending on the structure of the model, solving the dual
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can reduce overall solution time. Type: int, default value: -1, minimum value: -1,

maximum value: 2.

• GomoryPasses: Gomory cut passes. A non-negative value indicates the maximum

number of Gomory cut passes performed. Type: int, default value: -1, minimum value:

-1, maximum value: MAXINT.

• Aggregate: Presolve aggregation. Enables or disables aggregation in presolve. In rare

instances, aggregation can lead to an accumulation of numerical errors. Turning it off can

sometimes improve solution accuracy. Type: int, default value: 1, minimum value: 0,

maximum value: 1.
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