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Resumen

En esta tesis mostramos que el modelo sigma no lineal acoplado a un campo
de gauge U(1) en (3+1) dimensiones posee soluciones analiticas las cuales a
respresentan solitones a densidad Barionica finita. Estos solitones generan su
propio campo electromagnético el cual satisface la condición de un plasma libre
de fuerza (FFP). Luego mostramos que las perturbaciones del perfil de los
solitones están relacionadas con operadores del tipo Lamé lo que permite usar
la teoría de resurgencia en el estudio de ciertos fonones del sistema. Por otro
lado, también realizamos perturbaciones electromagnéticas, estas perturbaciones
satisfacen una ecuaciones tipo Schrödinger efectiva donde el fondo de solitones
interactúa con las perturbaciones electromagnéticas a través de un potencial
periodico en dos dimensiones espaciales. Estudiamos numéricamente el espectro
de bandas de energía para diferentes parámetros de la teoría y encontramos que
las bandas de energía están moduladas por la intensidad del potencial.Finalmente
comparamos nuestras soluciones de cristal con las del modelo de Gross-Neveu en
(1+1) dimensiones.

Keywords – Resurgence, Solitons, QCD, FFP
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Abstract

We show that the (3+1)-dimensional gauged non-linear sigma model minimally
coupled to a U(1) gauge field possesses analytic solutions representing gauged
solitons at finite Baryon density whose electromagnetic field is a Force Free
Plasma. These gauged solitons present a crystaline structure at finite density
and generate in a very natural way persistent currents able to support Force
Free Plasma electromagnetic fields. Quite surprisingly, despite the non-integrable
nature of the theory, some of the perturbations of these gauged solitons allows
to identify a proper resurgent parameter. In particular, the perturbations of
the solitons profile are related to the Lamé operator with a suitable “resurgent
parameter". On the other hand, the electromagnetic perturbations of the above
system satisfy a two dimensional effective Schrödinger equation, where the soliton’s
background interacts with the electromagnetic pertubations trought an effective
two-dimensional periodic potential. We study numerically the band energy
spectrum for different values of the free parameters of the theory and we found
that bands-gaps are moduleted by the potential strength. Finally we compare our
crystal solutions with those of the (1+1)-dimesional Gross-Neveu model.

Keywords – Resurgence, Solitons, QCD, FFP
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Chapter 1

Introduction

The current paradigm for studying physical quantities of practical interest in
a Quantum Field Theory and Quantum Mechanics is by perturbation theory.
This paradigm has turned out to be very useful to match both theoretical and
experimental data. To give just one example, in order to extract relevant physical
information from the new LHC data (see [16]) it is necessary to compare the
results of the experiment with precise theoretical predictions arising from the
radiative corrections in the Standard Model. This requires to go to five-loops
computations and beyond. The modern techniques to compute higher loops
radiative corrections are quite well equipped for these kinds of tasks. One can
already find in the literature of more than ten years ago quite non-trivial higher
loops computations (see [29] and references therein). The theoretical techniques
needed to assist experiments such as the LHC are in a very good shape and, above
all, they can be developed in a systematic way.

On the other hand, many important open problems in theoretical physics (such
as the physics of low energy Quantum Chromo-Dynamics) are non-perturbative
in nature. In particular, the Quantum Chromo-Dynamics (QCD henceforth)
phase diagram and its finite density effects are quite challenging to analyze at
non-perturbative level (see the nice reviews [51], [21], [32] and references therein).
This circumstance makes mandatory to expand our knowledge of non-perturbative
features of field theory.

This situation was perfectly understood by Freeman Dyson in his very famous
two-page paper Divergence of Perturbation Theory in Quantum Electrodynamics
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[43]. Dyson propose two possible alternatives in order to redress this problem. The
Alternative A : there may be discovered a new method of carrying through the
renormalization program, not making use of power series expansions. Alternative
B : All the information that can in principle be obtained from the formalism of
QFT is contained in the coefficients of the power series. In this case the observable
are neither physically well-defined nor mathematically calculable, except in so
far as the asymptotic expansions gives some workable approximation to it. In
order to define the observable precisely, not merely new mathematical methods
but a new physical theory is needed. Dyson itself recall the attractive features of
alternative B because it would imply that quantum electrodynamics (and QFT in
general) is in its mathematical nature not a closed theory.

Resurgence is one of the few theoretical techniques which can help to make sense
of the ubiquitous factorially divergent series appearing in perturbation theory
[65]. Such strategy works as follows: First of all, one must use Borel summation
in the complex-g plane (g being the coupling constant of the theory) to handle
the given factorially divergent series so that the divergent series becomes a finite
expression. At a first glance, it seems that we have just traded one problem
for another (maybe worse) problem since the Borel sum possesses ambiguities
which manifest themselves along suitable lines in the complex g-plane (for nice
reviews see [6] and [36]). However, when the models under investigation possess
suitable topological charges labelling non-trivial non-perturbative sectors, the
perturbative expansions in these topologically non-trivial sectors (which, usually,
are also factorially divergent) allow a remarkable rescue. In these relevant theories,
the ambiguities in the Borel summation of the perturbative expansions in the
topologically non-trivial sectors cancel the ambiguities of the perturbative sector
giving rise to a well-defined result [20], [99]. Starting from [63, 67] in recent years
there has been a great revival of these ideas (see, for instance, [6], [36], [34], [100]
and references therein) with applications in Quantum Mechanics, topological
strings, and integrable Quantum Field Theory in low dimensions (see [34], [7], [4],
[5], [41], [66], [62] and references therein)

The non-linear sigma model (NLSM henceforth) is one of the most interesting
effective field theories. Besides the well-known relation with the low energy limit
of QCD, such a model is also very useful in statistical mechanics, in the theory
of the quantum hall effect, in the analysis of superfluids and so on (see [61], [13],
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[45] and [68]). It is worth to emphasize that the NLSM on flat space-time does
not possess static solutions with non-trivial topological charge due to Derrick’s
scaling argument [35]. A well-known method to avoid this no-go theorem was
found by Skyrme (even before the actual paper of Derrick): the so-called Skyrme
term [77] together with the NLSM allows the existence of static solitonic solutions
with finite energy and topological charge, which represents the Baryonic charge,
called Skyrmions (see [94], [14], [12], [2] and references therein). However, the
original arguments in [94] to prove that the topological charge must be identified
with the Baryon charge do not require explicitly the presence of the Skyrme
term. Moreover, the Skyrme term is not the only way to avoid the Derrick’s
argument. The Derrick’s scaling argument can be avoided by constructing time-
dependent ansatz for the matter fields with the characteristic that the corresponding
energy-density is stationary.

The gauged solitons constructed in [26] live at finite Baryon density and most of
the energy and of the topological charge is contained within tube-shaped regions
which are regularly spaced. These structures are expected in the description of
cold and dense nuclear matter as a function of topological charge (commonly
called nuclear pasta), and therefore are quite relevant in the phase diagram of
the low energy limit of QCD (see [32] and [21]). Although until very recently
the nuclear pasta phase was considered to be a very hard nut to crack from the
analytic viewpoint, there are very strong observational evidences supporting it
(see [54], [52], [53], [18] and references therein). The comparison of the energy
density and Baryon density contour plots in [25], [26] and [27] with the ones in, for
instance, [53] is very encouraging. Not only the analytic plots of energy density
and Baryon density in [25], [26] and [27] are very close to the phenomenological
ones in [54], [52], [53], [18], the present analytic framework also allows the explicit
computation of relevant quantities (such as the computation of the shear modulus
of the nuclear lasagna in [3] which is close to the value of the shear modulus of
nuclear lasagna found in [28]).

On the other hand one of the most important types of plasma in plasma physics
is the so-called Force Free Plasma (FFP henceforth). The study of force-free
magnetic fields has its origin in astrophysics. For instance, objects with extremely
intense magnetic fields like pulsars are typical sources of FFP. Also FFP has a
key role in the so-called Blandford-Znajek process [19], mechanism that allows to



4

extract rotational energy from a spinning black hole. It is usually assumed that
FFP is a plasma whose pressure is so small, relative to the magnetic pressure then
that the plasma pressure may be ignored, and so only the magnetic pressure is
considered.

The main goal of the present thesis is to study relevant physical properties of
topologically non trivial gauged solitons and to use them to identify the proper
resurgent parameters which in non-integrable theories are far from obvious. We
use analytic solutions of the (3+1)-dimensional gauged non-linear sigma model
representing crystals of gauged solitons at finite baryon density. Also we show
that the electromagnetic field generated by the solitons crystals found in [25],
[26] (which describe quite well many features of the nuclear spaghetti phase) is
of force free type. In the present approach, the SU(2) non-linear sigma model,
which is the low limit of QCD describing Pions dynamic, provides with explicit
and topologically non-trivial sources of FFP. This is in agreement with the fact
that FFP must occur for objects made of hadronic matter.

The organization of the present thesis is as follow:

In chapter II we review the main aspects of resurgence theory. We define the basic
concepts and study the canonical example of the Airy equation

Chapter III is devoted to present the origin and properties of crystals of gauged
solitons in the non linear sigma model minimally coupled to Maxwell, the field
equations and how to obtain both energy and topological charge, also we show
that the electromagnetic field generated by the multi-solitons is a FFP.

In chapter IV we perform perturbations in the profile of the gauged solitons and
electromagnetic perturbations. We show how we can use resurgence theory for
the study of these fluctuations identifying resurgent parameters.

The last chapter is dedicated to the conclusions and final comments.
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Chapter 2

Resurgence theory basics

Many problems in mathematics and physics are not solvable in closed form, and
one has to resort to approximation schemes. Many of these approximations lead
to formal power series in a small parameter which are generically divergent.

In the context of ODEs it is common to find solutions in terms of formal power
series. However these series not always are analytic and moreover when one
expand around a irregular point these series will be factorially divergent. Also
perturbation theory in quantum mechanics in most of the cases gives as result
series whose coefficients grow factorially. This situation is even worst in the
context of quantum field theory in which expansion around instatons produce
formal power series in ~ which in general are divergent.

It is crucial, both conceptually and technically, to make sense of these series.
Based on the Jon Écalle work in [44] (see [33] [31] [71]), resurgence provides us
with the only concrete hope to make sense of the deeply unpleasant feature of the
perturbative approach in physics.

In this chapter we review the basic concepts to understand how resurgence theory
works. This chapter is based on the excellent lecture notes by Marcos Mariño (see
[64], [65]).
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2.1 Basic Ingredients of Resurgence theory

Consider the formal power series

ϕ(z) =
∑
n≥0

anz
n (2.1.1)

it will be said that this series is asymptotic to the function f(z), in the sense of
Poincaré, if, for every N, the remainder after N + 1 terms of the series is much
smaller than the last retained term as z → 0. This is,

lim
z→0

z−N

(
f(z)−

N∑
n=0

anz
n

)
= 0 (2.1.2)

Unlike convergent series in which we improve our approximation adding more
terms for asymptotic series there exist a optimal truncation which give a good
approximation. After a optimal N they will diverge. These series are the common
objects in the context of perturbation theory.

The general symptom of the series in which we can apply resurgence are those in
which the coefficients grows factorially

an ∼ n! (2.1.3)

In order to regularize this situation we need to use the Borel transform.

2.1.1 Borel Transform

Consider the following formal power series

ϕ(z) =
∑
n≥0

anz
n (2.1.4)

The Borel transform acts on formal power series as follows

B : C[[z]]→ C[[ζ]],

zn 7→ ζn/n!
(2.1.5)
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Figure 2.1.1: Borel ζ-plane. The zone of convergence delimited by the
circumference

Therefore the Borel transform of (2.1.4) is given by

ϕ̂(ζ) =
∑
n≥0

an
ζn

n!
(2.1.6)

Remark 1: Using the Borel transform we obtain a new power series that It is
convergent at the origin (in a neighborhood of origin) ϕ(z)→ ϕ̂(ζ). Outside the
zone of convergence we can find all kind of singularities (poles, logarithmic, brunch
cut, etc.) But, Why this structure is important? well the answer is that when
you do a local expansion around this singularities (in the Borel ζ-plane) you will
find new formal power series which at the beginning are invisible trough regular
perturbation theory. Consider the following simple example for understand this
point:

Example 1: Consider the serie ϕ(z) and his borel transform given by ϕ̂(ζ). This
series has a pole singularity ζω in the Borel plane. We make a local expansion
around this pole: ζ = ζω + ξ

The general structure of this local expansion is given by

ϕ̂ (ζω + ξ) = − a

2πξ
− 1

2π
log(ξ)

∑
n≥0

ĉnξ
n + regular terms (2.1.7)



8 2.1. Basic Ingredients of Resurgence theory

Now, the next step is think about this new formal power series as the borel
transform ϕ̂ω(ξ) of a new formal power series ϕω(z)

ϕ̂ω(ξ) =
∑
n≥0

ĉnξ
n → ϕω(z) =

∑
n≥0

cnz
n (2.1.8)

By this procedure one obtain a full family of formal power series

ϕ(z)→ {ϕω(z)}ω (2.1.9)

Then the Borel transform can be use for obtain a big picture of the all pertubative
sectors of our theory.

2.1.2 Borel resummation and Stokes rays

Let ζω be a singularity of ϕ̂(ζ). A ray in the Borel plane which starts at origin
and passes the through ζω is called a Stokes ray. It is of the form eiθR+, where
θ = arg (ζω). Let ϕ(z) a formal power series series, z ∈ C, and θ = arg z. If ϕ̂(ζ)

analytically continues to an L1 -analytic function along the ray Cθ := eiθR+ we
define its Laplace transfrom by

s(ϕ)(z) =

∫ ∞
0

ϕ̂(zζ)e−ζdζ =
1

z

∫
Cθ
ϕ̂(ζ)e−ζ/z dζ (2.1.10)

The function s(ϕ)(z) is often called the Borel resummation of the formal power
series ϕ. The main motivation for this procedure is to pass from the world of
formal power series to the world of functions. If s(ϕ)(z) exists, its asymptotic
behavior for small z can be obtained by expanding the integrand and integrating
term by term:

s(ϕ)(z) ∼
∑
n≥0

anz
n (2.1.11)

This is the formal power series that we started with.

But if arg (ζ) = θ is the argument of a Stokes ray we need to avoid the singularity
trough contour deformation. This is the so called Lateral Borel Resummation and
is defined by

s±(ϕ)(z) =
1

z

∫
Cθ±
ϕ̂(ζ)e−ζ/z dζ (2.1.12)
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Figure 2.1.2: Contour deformation in the calculation of the discontinuity.

The discontinuity produced by one singularity is simply given by

s+(ϕ)(z)− s−(ϕ)(z) = ie−ζω/zs− (ϕω) (z) (2.1.13)

More generally, if there are many singularities, we find

s+ (ϕω) (z)− s− (ϕω) (z) = i
∑
ω′

Sωω′e
−ζω′/zs− (ϕω′) (z) (2.1.14)

The natural object that appears in the right hand side of the last expression is
a formal linear combination of a family of formal power series. Formally this
objects are defined as Trans-series and they encoded all the perturbative sectors
of a given theory.

2.1.3 Trans-series

One of the most important implications of resurgence is that, in order to reconstruct
actual functions through Borel resummation, we need, in addition to the “starting”
perturbative series, all additional series ϕω(z) appearing in the resurgent structure.
A trans-series is a formal linear combination of formal power series.

Φ(z; ~C) =
∑
ω

Cωe−ζω/zϕω(z) (2.1.15)

where ~C = (Cω1 , · · · ) is a vector of complex numbers. Note that the trans-series
is fully determined by the terms Cω and −ζω/z which are called trans-series
parameters.
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Figure 2.2.1: Plot of the Airy function Ai(z) as a function of z. We put in blue
the oscillatory behaviour for z < 0 and in red exponentially suppress behaviour
for z > 0

Trans-series are, in a sense, the most general object that one is forced to consider
in the theory of resurgence. The hope of resurgence is to be able to reconstruct as
much is possible from trans-series. In general the expectation in the context of
resurgence theory is that the functions that we want to reconstruct are lateral
Borel resummations of trans-series.

S±(Φ)(z) =
∑
ω

Cωe
−ζω/zS± (ϕω) (z) (2.1.16)

2.2 Canonical Example: Airy Equation

The Airy equation is given by

y′′(z)− zy(z) = 0 (2.2.1)

This equation has two linear independent solutions: the Airy functions Ai(z) and
Bi(z) (sometimes calls Airy function of the second kind). We plot Ai(z) the in
Fig. 2.2.1. Then the general solution to the Eq. (2.2.1) is given by

y(z) = c1Ai(z) + c2Bi(z) (2.2.2)
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But we are now interested in formal power series solutions to this equation. Many
softwares have functions that perform asymptotic expansions, for example using
Mathematica we obtain the first three terms of the asymptotic solutions around
z = +∞

y(z) ≈ c1e
− 2z3/2

3
2z3/2

(
− 5

48z7/4
+

385

4608z13/4
+

1
4
√
z

+ . . .

)
+ c2e

2z3/2

3

(
5

48z7/4
+

385

4608z13/4
+

1
4
√
z

+ . . .

)

From classic asymptotic theory the asymptotic expansion of the Airy functions
are given by

Ai(x) ∼ 1

2x1/4
√
π

e−2x3/2/3ϕ1(z), z = x−3/2, x >> 1 (2.2.3)

Bi(x) ∼ 1

2x1/4
√
π

e2x3/2/3ϕ2 (z) , z = x−3/2, x >> 1 (2.2.4)

where

ϕ1,2(z) =
∞∑
n=0

1

2π

(
∓3

4

)n Γ
(
n+ 5

6

)
Γ
(
n+ 1

6

)
n!

zn

= 1± 5

48
z +

385

4608
z2 ± 85085

663552
z3 + · · ·

(2.2.5)

Now trough the eyes of resurgence the asymptotic definitions of the Airy function
has a more powerful meaning and we promote the asymptotic statement to an
exact statement.

From here we want to show the resurgence structure of this simple function. Our
starting point it’s going to be a formal power series whose coefficients are given
by (2.2.5)

ϕ1(z) =
∞∑
n=0

1

2π

(
−3

4

)n Γ
(
n+ 5

6

)
Γ
(
n+ 1

6

)
n!

zn (2.2.6)
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Figure 2.2.2: Borel ζ-plane. The zone of convergence delimited by the blue
circumference and the logarithmic singularity at ζ = −4/3

After the Borel transform we obtain a close expression1 in terms of a hypergeometric
function.

ϕ̂1 (ζ) =
Γ
(

1
6

)
Γ
(

5
6

)
2F1

(
1
6
, 5

6
; 1;−1

4
(3ζ)

)
2π

(2.2.7)

This function is analytic at the origin in a region delimited by the condition

2F1

(
1

6
,
5

6
; 1;−1

4
(3z)

)
= 0

It is easy to see from the plot of the Borel transform in Fig. 2.2.2 that there is a
singularity at ζ = −4/3 just next to the zone of convergence

From the general theory of hypergeometric functions we know that the singularity
is of logarithmic type, and one finds

ϕ̂ (−4/3 + ξ) = − 1

2π
log (ξ) 2F1

(
1

6
,
5

6
, 1;

3ζ

4

)
+ regular terms (2.2.8)

Inmediately we identify this new series as the Borel transform of ϕ2(z) := ϕ−4/3(z)

whose coefficients are given by ϕ2(z) in (2.2.5). Now we can understand the origin
1It is worth to mention that this situation is kind of luxury and in most of the cases there is not
a close expression for the Borel transform.
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of the name “resurgence”: the other solution of the Airy Eq. resurge from the
asymptotic solution of the other.

Now, we can improve the asymptotic statement in 2.2.3 by means of an exact
statement. To reconstruct the Airy function Ai(x) out of Borel resummations of
the formal power series ϕ1,2(z) it will depends on the argument of x.

Ai(x) =
1

2x1/4
√
π

e−2x3/2/3S(ϕ1)(z), |arg(x)| < 2π/3 (2.2.9)

Ai(x) =
1

2x1/4
√
π

{
e−2x3/2/3s (ϕ1) (z) + ie2x3/2/3s (ϕ2) (z)

}
, |arg(x)− π| < π/3

(2.2.10)
This leads to the well-known oscillatory behavior of the Airy function along the
negative real axis,

Ai(−x) ∼ x−1/4

√
π

cos

(
2

3
x3/2 − π

4

)
, x→∞ (2.2.11)

2.2.1 Integral representation of the Airy function

Applying the Fourier transform to the Eq. (2.2.1) we obtain

− t2ŷ(t)− iŷ′(t) = 0 (2.2.12)

then
ŷ(t) = Ceit

3/3 (2.2.13)

where C is an arbitrary constant of integration. The inverse transform is

y(z) =
C

2π

∫ ∞
−∞

dt exp
(
i
[
zt+ t3/3

])
(2.2.14)

The integral representation of the Airy function Ai is given by the choice C = 1

then
Ai(z) =

1

2π

∫ ∞
−∞

dt exp

(
1i

3
t3 + izt

)
, z ∈ C (2.2.15)

The leading term in the asymptotic expansion of (2.2.15) is given by
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Figure 2.2.3: Steepest descent contours for Ai(z) in complex t plane. There
are two saddles for any z, given by t2 + z = 0. Blue (black) dots show locations
of saddles for negative (positive) z. For z < 0, both saddles contribute through
contours C1 and C2. For z > 0, only one saddle contributes, via contour C3.

Ai(z) ∼


1

2
√
πz1/4

exp
(
−2

3
z

3
2

)
, z →∞

1√
π(−z)1/4 sin

(
2
3
(−z)

3
2 + π

4

)
, z → −∞

(2.2.16)

There are two very different asymptotic behaviors even though they are both
derived from the integral which is valid throughout the complex plane. We can see
in the Fig. 2.2.1 the oscillatory behaviour for z < 0 and exponential suppressed
behaviour for z > 0. To understand this situation it is convenient use the steepest
descend method in order to perform the integral.

By looking at the saddles of the argument of the exponential in (2.2.15) in the
complex t plane. There are two saddles, given by t2 + z = 0. When z is on the
real positive line, the saddles are purely imaginary, ±i

√
z. As z decreases and

approaches the origin, the saddles too move closer to the origin until they become
exactly zero. When z moves to the real negative line, the saddles separate out
again and become real, ±

√
−z. Depending on the phase of z, the steepest descent

contour may pass through only one of the saddles. As the phase of z changes, the
contour moves around in the complex plane and at z = 0− it goes through both
the saddles (see Fig. 2.2.3). This phenomena is called the Stokes phenomena,
where saddles exchange (acquire) dominance as we change the phase of z, and it
motivates us to write the asymptotic of the Airy function as a single expression:
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Ai(z) ∼ 1

2
√
πz1/4

e−
2
3
z
3
2 + Ceiπ/4

1

2
√
πz1/4

e
2
3
z
3
2 (2.2.17)

where C is the Stokes parameter. It controls the dominance of the saddles (Stokes
phenomenon) and is an implicit function of the phase of z. From this expression
we recover the exact statement in Eq. (2.2.10).

2.3 Resurgence in Physics

From a historically point of view many of the ideas of resurgence were seen before
of Ecalle resurgence theory (see for example [17], [89], [56]). In these previous
works physicists related large order behavior of perturbative series’s coefficients
with leading instanton terms. Bogomolny and Zinn-Justin ([20], [98]) showed that
the imaginary part arising from the Borel summation of perturbative expansion
of the ground state energy in certain quantum mechanical models cancels exactly
with the 1-instanton contribution. This almost miraculous cancellation is one of
the core features of resurgence theory.

Resurgence theory has been applied successfully to many quantum mechanical
models (see for example [15], [8], [39], [40]). An important application of resurgence
in this context is to the WKB method which is then upgraded to the so-called
“exact WKB method” or “all orders WKB method” (see [78] [40]). One the most
illustrative examples of resurgence in QM is the case of the Schrödinger equation
for the periodic cosine (Mathieu) potential [41].

− ~2

2

d2

dx2
ψ(x) + cos(x)ψ(x) = uψ(x) (2.3.1)

In this case it is known that standard Rayleigh-Schrödinger perturbation theory
leads to a perturbative series that is divergent. This situation can be remedied by
recognizing that the full expansion of the energy at small coupling is in fact of
the “trans-series” form:

utrans (~, N) =
∞∑
k=0

∞∑
n=0

k−1∑
l=1

ck,n,l(N)~n
(

1

~N+1/2
exp

[
−S
~

])k (
ln

[
−1

~

])l
(2.3.2)

Note that in such case is obvious that ~ is a resurgent parameter in the trans-
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series. A very important step in the application of resurgence to physics is the
identification of a proper resurgent parameter. This step usually assumed to be
obvious since in all the known solvable cases the resurgent parameter is the coupling
constant. However in non-integrable theories at finite volume this step is far from
obvious since seems many different choice of parameter may be available. In the
case of the gauged soliton that we study in this thesis the resurgent parameter
doesn’t depend on the coupling constant of the theory (NLSM).

In QFT the procedure of resurgence is not so straightforward. Nevertheless many
important results about resurgence in QFT exist (see [42], [37], [38]). For example,
resurgence theory was used to prove the existence of non-perturbative features
in deformations of the 2D principal chiral model ([72]). The last example shares
some characteristics with the work presented in this thesis in the sense that
in reference [72] using dimensional reduction they go from the complete QFT
to a Schrödinger equation with elliptical potential and for such potential they
study the ground state energy using resurgence. As we will see in Chapter IV,
the perturbations to gauged solitons in (3+1)-dimensions presented in the next
chapter are characterized by elliptical potentials in one dimension.
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Chapter 3

Crystal structures in the (3+1)-D

gauged non-linear sigma model

One of the most relevant field theories (both due to its predictive power as well as its
non-trivial topological features) is the non-linear sigma model minimally coupled
to Maxwell. It is a very effective tool from high energy physics to statistical
mechanics systems like quantum magnetism, the quantum hall effect, meson
interactions, superfluid. He and string theory (see [60] [13] ) it was introduced
in particle physics to describe the low-energy dynamics of pions (see for instance
[45], [68] and references therein).

In this section we will study the construction of solutions that describe multi-
solitons charged within a finite volume. These configurations are allowed when the
Skyrme term vanishes. Within this formalism we will also include a mass term.

The solitons that we will consider here are static, in the sense that the energy
density (or more generally, its energy-momentum tensor) does not depend on
time, even though the U field explicitly depends on this coordinate, as we will see
below.
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3.1 The action of the gauged Non-Linear Sigma

model

The action of the U(1) gauged Non-Linear Sigma model (NLSM henceforth)
minimally coupled with Maxwell theory is

S =

∫
d4x
√
−g
[
K

4
Tr (LµLµ)−m2Tr

(
U + U−1

)
− 1

4
FµνF

µν

]
, (3.1.1)

Lµ = U−1DµU , Dµ = ∇µ + Aµ [t3, . ] , (3.1.2)

U ∈ SU(2) , Lµ = Ljµtj , tj = iσj , Fµν = ∂µAν − ∂νAµ , (3.1.3)

where
√
−g is the (square root of minus) the determinant of the metric, m is the

Pions mass, K is the coupling constant of the NLSM, Aµ is the gauge potential,
∇µ is the partial derivative and σi are the Pauli matrices.

The energy-momentum tensor of the model is

Tµν = −K
2

Tr

[
LµLν −

1

2
gµνL

αLα

]
−m2Tr

[
gµν(U + U−1)

]
+T̄µν ,

with
T̄µν = FµαF

α
ν −

1

4
FαβF

αβgµν , (3.1.4)

being the electromagnetic energy-momentum tensor.

The field equations are

DµL
µ +

2m2

K

(
U − U−1

)
= 0 , (3.1.5)

∇µF
µν = Jν , (3.1.6)

where the current Jµ is given by

Jµ =
K

2
Tr
[
ÔLµ

]
, Ô = U−1t3U − t3 . (3.1.7)

On the other hand the correct expression for the topological charge of the gauged
non-linear sigma model has been constructed in [24] (see also the pedagogical
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analysis in [70]):

B =
1

24π2

∫
Σ

ρB , (3.1.8)

where

ρB = εijkTr
[(
U−1∂iU

) (
U−1∂jU

) (
U−1∂kU

)
−∂i

[
3Ajt3

(
U−1∂kU + (∂kU)U−1

)] ]
.

(3.1.9)

Note that the second term in Eq. (3.1.9) guarantees both the conservation and
the gauge invariance of the topological charge. When Σ is space-like, B is the
baryon charge of the configuration.

3.2 Gauged crystals

3.2.1 Te ansatz

As it has been already emphasized, the analytic description of cold and dense
nuclear matter as a function of topological charge is a very interesting but quite
chalenging theoretical problem (see [32] [21] and references therein). Since one
of the main goals of the present analysis is precisely to understand how gauged
solitons react to the presence of a finite volume containing them, we need to
analyze the model in the following flat metric

ds2 = −dt2 + L2
rdr

2 + L2
θdθ

2 + L2dφ2 .

where 4π3LrLθL is the volume of the box in which the gauged solitons are confined.
The adimensional coordinates r, θ and φ have the ranges

0 ≤ r ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π (3.2.1)

For the U field we adopt the standard parametrization of an element of SU(2),
that is

U±1 (xµ) = cos(α)12 ± sin(α)niti , (3.2.2)



20 3.2. Gauged crystals

where 12 is the 2× 2 identity matrix and

n1 = sin Θ cos Φ, n2 = sin Θ sin Φ, n3 = cos Θ , (3.2.3)

α = α(xµ) , Θ = Θ(xµ) , Φ = Φ(xµ) , nini = 1 .

Because we want to construct analytical solutions, it is necessary to have a good
ansatz that significantly reduces the field equations in Eqs. (3.1.5) and (3.1.6).
The approach developed in [25], [26] and [27] lead to the following ansatz for the
gauged solitons

α = α(r),Θ = qθ,Φ = p

(
t

L
− φ
)
, q = 2v + 1, p, v ∈ N, p 6= 0 (3.2.4)

as well as for the electromagnetic potential

Aµ = (u(r, θ), 0, 0,−Lu(r, θ)) (3.2.5)

It is a direct computation to verify that the ansatz defined in Eqs. (3.2.4) and
(3.2.5) possesses the “hedgehog property". Such a property, which in the past
was usually only associated to spherically symmetric solitons, corresponds to
the following desirable feature: one would like to reduce the coupled system of
non-linear field equations defining the solitons to only one non-linear equation
for the profile keeping alive the topological charge. In the present case, quite
remarkably, this property holds despite the lack of spherical symmetry and despite
the minimal coupling with the Maxwell gauge field, as we will see below.

3.2.2 Field equations

Using the ansatz in Eqs. (3.2.4) and (3.2.5) one can check directly that first of all
the three coupled field equations of the gauged NLSM reduce to a single ODE for
the profile α:

α′′ − q2

2

L2
r

L2
θ

sin(2α) +
4L2

rm
2

K
sin(α) = 0

We can note one of the main features of our ansatz is that the U(1) gauged
potential does not enter explicitly in the field equations. The ansatz allows to
decouple Eqs. (3.1.5) and (3.1.6) and thanks to the following relations:
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AµA
µ = 0, (∇µΦ) (∇µΦ) = 0, Aµ∇µΦ = 0

(∇µΘ) (∇µΦ) = 0, Aµ∇µΘ = 0, Aµ∇µα = 0

one can first solve the equation of the gauged non-linear sigma model explicitly.
Then, once the SU(2) valued scalar field is known, the Maxwell equations reduce
to a linear equation in which the soliton plays the role of an effective potential.

Eq. (3.2.2) can be integrated easily in terms of inverse elliptic functions observing
that it is equivalent to the following first order equation

α′ = ±
[
2

(
E0 −

q2

4

L2
r

L2
θ

cos(2α) +
4m2L2

r

K
cos(α)

)]1/2

⇒ (3.2.6)

±dr =
dα[

2
(
E0 − q2

4
L2
r

L2
θ

cos(2α) + 4m2L2
r

K
cos(α)

)]1/2
, (3.2.7)

(E0 being an integration constant). The above equation (3.2.7) can be integrated
in terms of inverse elliptic functions. A necessary condition for stability is that α′

does not change sign so that we must require

E0 >
q2

4

L2
r

L2
θ

+
4m2

K
L2
r . (3.2.8)

The integration constant E0 is fixed in terms of n through the relation

n

∫ π

0

1

η (nα,E0)
dα = 2π, (3.2.9)

η (α,E0) = ±
[
2

(
E0 −

q2

4

L2
r

L2
θ

cos(2α) +
4m2L2

r

K
cos(α)

)]1/2

(3.2.10)

Secondly, the Maxwell equations are reduced to just one linear Schrodinger-like
equation with an effective two-dimensional potential which can be found explicitly
in terms of the soliton profile:

∆u+ V u = σ ,

V =
2Lφ
p
σ , σ =

2Kp

L
sin2(α) sin2(qθ) .
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Defining
Ψ =

2L

p
u− 1 ,

the Maxwell equation becomes

∆Ψ + VΨ = 0 , ∆ ≡ 1

L2
r

∂2
r +

1

L2
θ

∂2
θ .

3.2.3 Topological charge and energy density

According to Eqs. (3.1.8), (3.2.2) and (3.2.3) it follows that the topological charge
density is

ρB = 12(sin2 α sin Θ) dα ∧ dΘ ∧ dΦ . (3.2.11)

The topological density for the configurations here constructed, read

ρB = ρNLSM
B + ρMaxwell

B (3.2.12)

where

ρNLSM
B = −12pq sin(qθ) sin2(α)∂rα

ρMaxwell
B = 12L

[(
2q sin(qθ) sin2(α)u− cos(qθ)∂θu

)
∂rα− q sin(α) cos(α) sin(qθ)∂ru

]
(3.2.13)

which can be also written as

ρB = 3q
∂

∂r
(p sin(qθ)(sin(2α)− 2α)− 2L sin(qθ)u sin(2α))− ∂

∂θ
(12Lα′u cos(qθ))

(3.2.14)
Thus, we can read the boundary conditions for the fields:

α(2π)− α(0) = nπ (3.2.15)

and with this the topological charge becomes

W = −np×
(

1− (−1)q

2

)
− L

π

∫ 2π

0

drα′ ((−1)qu(r, π)− u(r, 0)) (3.2.16)

If we assume a boundary condition for u given by

u(r, π) = (−1)qu(r, 0) (3.2.17)
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we obtain

W =

{
−np if q ∈ 2Z + 1

0 if q ∈ 2Z
(3.2.18)

On the other hand, the energy-density is

T00 =
K

2L2
rL

2
θL

2

(
L2
θL

2α′2 + 2L2
r sin2(α)

[
L2q2 + 2L2

θ sin2(qθ)(p− 2Lu)2

])
+ 4m2 cos(α) +

1

L2
r

(∂ru)2 +
1

L2
θ

(∂θu)2 . (3.2.19)

It is also convenient (as it will be explained in the next sections) to define the
“reduced energy density εr in the r-direction” obtained integrating Eq. (3.2.19)
along the θ and φ:

εr =

∫
(LθL)T00dθdφ . (3.2.20)

This reduced energy density represents the effective energy density (namely, the
energy per unit of length) in the r-direction and can be compared directly with
1-dimensional model possessing solitons crystals. In the particular case in which
both the Maxwell gauge potential and the Pions mass vanish one gets

ε(0)
r = εr(u = 0,m = 0) , (3.2.21)

ε(0)
r =

πK

L2
rLθL

∫
dθ

(
L2
θL

2α′2 + 2L2
r sin2(α)

[
L2q2 + 2L2

θ sin2(qθ)p2

])
. (3.2.22)

ε(0)
r =

πK sin2(α(r)) (2πq (L2q2 + L2
θp

2)− L2
θp

2 sin(2πq))

LLθq
+
π2KLLθα

′2

L2
r

.

(3.2.23)
Figure 3.2.1 shows the energy density of different configurations for a given value
of the topological charge (B = 5 in this case) when the parameters q and m

changes. For this we have imposed the boundary conditions u(r, 0) = u(r, π) = 0.
One can see that, as the value of q increases, the peaks become more localized
and their intensity also increases. On the other hand, when the value of the
mass becomes larger, it is observed that the spacing between the tubes in the r
direction becomes irregular, in such a way that the tubes are grouped in pairs in
this direction.
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Figure 3.2.1: Comparison of the energy density for different configurations with
topological charge B = 5, as function of q and m. Here we have considered n = 5,
K = 2, L = 1 and p = 1.

3.3 Force Free Plasma Condition

One of the most important types of plasma in plasma physics is the so-called
Force Free Plasma (FFP henceforth), and several reasons justify this statement.
First of all, FFP are extremely relevant in many astrophysical situations. For
instance, objects with extremely intense magnetic fields like pulsars are typical
sources of FFP. Secondly, FFP can be characterized in a very elegant way with a
non-linear set of PDEs for the electromagnetic field. This is the so-called force
free condition,

Fµν∇ρF
νρ = 0 . (3.3.1)

The above equation is usually the starting point of the theoretical analysis on
FFP (see for instance [93], [92] and references therein). From one point of view,
the above system of equations is very convenient since many features of FFP
can be analyzed without taking into account the electromagnetic sources (which
are absent in Eq. (3.3.1)). On the other hand, this implies that often the very
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important physical question about which are the actual concrete sources able to
generate such FFP is somehow neglected. In the present chapter, as it will be
explained in the following sections, we identify a very natural and concrete source
of FFP in the low energy limit of Quantum Chromodynamics (QCD). FFP play
also a key role in the so-called Blandford-Znajek process [19], mechanism that
allows to extract rotational energy from a spinning black hole. This happens when
the electric potential becomes larger than the threshold of electron-positron pair
creation, so that the black hole will be surrounded by an FFP in such a way that
the rotation energy can be radiated away. The pioneering theoretical analysis in
[59], [84], [85], [86], [87], [88], [55] and [48] shed considerable light on this process.

In recent years relevant analytic examples of FFP have been constructed (see, for
instance, [23], [58], [22], [95], [96], [57], [97], [49], [30], [50] and references therein),
however, many of the available examples (which analyze in detail solutions of the
system in Eq. (3.3.1)) leave open the issue to identify the actual sources of the
force-free electromagnetic field. Due to the interesting astrophysical applications
of FFP it is of great importance to find also analytic examples of FFP in which
the sources of the electromagnetic field can be traced back directly to observed
particles of the standard model.

3.3.1 Emergent force free plasma

The force free condition
Fµν∇ρF

νρ = 0 , (3.3.2)

is realized in many relevant examples of plasmas such as in the solar corona [93]
or close to rotating neutron stars and black holes [46], [69], [47]. As it was already
mentioned the FFP plays an important role in the Blandford-Znajek process [19]
but, even in such process, the FFP emerge as a suitable choice that “provide a
reasonable approximation to the time-averaged structure of the magnetosphere”,
and then, the black hole parameters are estimate values in order to satisfy the
force-free condition.

It can be readily seen that the Maxwell field surrounding our gauged solitons
satisfies the force-free condition in Eq. (3.3.2). First, note that the U(1) gauge
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potential in Eq. (3.2.5) can be written as

Aµdx
µ = u(r, θ) (dt− Ldφ) ,

so that the field strength is found to be

Fµν = ((∂ru) dr + (∂θu) dθ) ∧ (dt− Ldφ) .

It follows that the divergence of the field strength, identified with the current, is

Jν = ∇µF
µν = c1 sin2(α) sin2(qθ) (∂µΦ− c2A

µ) ,

with c1 = −2K

L
, c2 = 2L ,

which is manifestly orthogonal to the field strength Fµν . Therefore we see that
the force-free condition in Eq. (3.3.2) is automatically satisfied.

The electromagnetic field lines (for suitable choice of the parameters) are presented
in Fig. 3.3.2, where we have used the following boundary conditions for the Maxwell
potential

u(r, 0) = u(r, π) = 0 , u(0, r) = u(2π, 0) = 0 . (3.3.3)

At this point it is important to emphasize that, although several analytic solutions
to the force-free Maxwell equations could be found (for instance, using the
approaches in [23], [22], [95], [96], [97], [49] and [30]) most of these analytic
solutions to the force-free electrodynamics do not discuss the corresponding
sources. Instead, the source of the FFP electromagnetic field found here can be
clearly identified with the Hadronic degrees of freedom described by the NLSM.

3.3.2 Trajectory of charged particles on the FFP

Here we will draw some qualitative plots of the trajectories of charged test particles
(like electrons) on the FFP generated by the gauged solitons.

First of all, it follows from Eq. (3.2.5) that the electric and magnetic fields
generated by the gauged solitons are

~E = (Er, Eθ, 0) , ~B = (Br, Bθ, 0) , (3.3.4)
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Figure 3.3.1: Electric field, magnetic field and the current of two gauged solitons,
with n = 2, m = 0, and p = q = 1. The electric and magnetic fields vanish in the
center of the tubes while the current is completely contained inside these.

where the components read

Er = −∂ru , Eθ = −∂θu , Br =
1

L3
∂θu , Bθ = − 1

L3
∂ru . (3.3.5)

For a test particle of charge qe and velocity ~v, the Lorentz force generated by the
FFP acting on the particle is

~F = qe( ~E + ~v × ~B) , (3.3.6)

with ~v = (vr, vθ, vφ).

Eq. (3.3.6) is a set of three coupled differential equations, namely

m

qe

d2r

dt2
= Er −Bθ

dφ

dt
, (3.3.7)

m

qe

d2θ

dt2
= Eθ +Br

dφ

dt
, (3.3.8)

m

qe

d2φ

dt2
= Bθ

dr

dt
−Br

dθ

dt
. (3.3.9)

The above equations can be numerically integrated to know the trajectory of test
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Electric Field Lines

(a)

Magnetic Field Lines

(b)

Figure 3.3.2: Electric field lines and magnetic field lines of two gauged solitons,
with n = 2,m = 0, and p = q = 1.

particles. We show the trajectory of a single particle for 0 < t < 1 in Fig. 3.3.3a,
for 1 < t < 50 in Fig. 3.3.3b and for 490 < t < 500 in Fig. 3.3.3c.

In these figure one can notice that the charged test particles oscillate in the r − θ
plane while moving along the axis of the tube. It is also worth to emphasize that
this motion is quite different from the usual trajectory of a charged test particle
in the magnetic field of a thin straight wire. Indeed, in the case of a thin solenoid
there is only the θ−component of the magnetic field (and no electric field) while
in the present case there is also a radial component and both the electric and the
magnetic fields are non-vanishing.
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(a)

(b)

(c)

Figure 3.3.3: Trayectory of a single particle under the Lorentz force in a time
interval between 0 and 1 in (a), a time interval between 1 and 50 in (b) and a
time interval between 490 and 500 in (c). The arrow denotes the “increasing time
direction” on the trajectory of the test particle. The dots on the trajectory have
been taken at equal time interval. Thus, regions where neighbouring dots are “far
apart” correspond to “high velocity” regions of the trajectory.
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Chapter 4

Resurgence in the fluctuations of

the fields

In this chapter we perform perturbations of the gauged solitons present in
the previous section. From these perturbation emerges Lamé operators which
determines the fluctuations of the soliton’s background that is to say part of the
phonons in the system. This operators are well known from resurgence theory.

On the other hand the electromagnetic perturbations are describes by a two-
dimensional Schrodinger equation. We compute numerically the spectrum of this
equation and we find that the band are modulated by the strength of the potential.

In the final seccion we show that it is possible to disclose a relation of the present
(3+1)-dimensional solitons with the Gross-Neveu model in (1+1)-dimensions (see
[83], [81], [73], [74], [82], [9], [10], [11]).

4.1 Pertubative analysis

In this section, we will analyze various perturbations of these gauged solitons. A
complete perturbative analysis of these gauged solitons and the corresponding FFP
is beyond the scope of the present thesis. First of all, the complete perturbative
analysis is a really hard task (not only analytically but also numerically) since
it invloves the analysis of seven coupled PDEs in a quite non-trivial background
(provided by the gauged solitons and the corresponging FFP themselves). Secondly,
it is possible to identify a special class of perturbations of the hadronic field and
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of the FFP which has both interesting physical meaning and allows some analytic
control.

4.1.1 Perturbations on the U field

A relevant perturbation of these gauged solitons is the one which keeps the
hedgehog structure intact. Namely, these are perturbations which keep alive
the hedgehog property defined in the previous chapter. In the present context
such perturbations are defined by the following small deformations of the original
ansatz in Eqs. (3.2.2) and (3.2.4):

α(r)→ α(r) + εf1(xµ) , Φ(t, φ)→ Φ(t, φ) + εf2(xµ) , (4.1.1)

with 0 < ε� 1. We will consider

f1(xµ) = F1(r) , f2(xµ) = F2(r)ei(
t
L
−φ) . (4.1.2)

Such perturbations (and, in particular, the little disturbances f1 of the profile
α(r)) are very likely to be the “smallest energy perturbations”. The reason is that
it takes “a little effort” to perform a radial deformation of α (see, for instance, the
discussion of the “hedgehog ansatz” in [75] and [76]) as compared, for instance, to
deformations of the Isospin degrees of freedom Θ and Φ. For instance, the classic
reference [2] showed that the low energy “Isospin perturbations” have a gap. Hence,
there are examples in the literatures in which the unstable negative energy-modes
are precisely in this sector while the perturbations of the Isospin degrees of freedom
have positive energies. of the hadronic degrees of freedom. For this reason the
linear operator which deterimines the spectrum of these perturbations has a very
important role.

The field equations in Eq. (3.1.5) at first order in ε for the perturbations defined
in Eq. (4.1.1) read

℘(1)F1 = 0 , ℘(2)F2 = 0 , (4.1.3)
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where we have defined

℘(1) = − d2

dr2
+

L2
r

KL2
θ

(
Kq2 cos(2α)− 4L2

θm
2 cosα

)
,

℘(2) = − d

dr2
− cot(α)α′ .

First of all, one can notice that F2(r) can be readily integrated giving rise to

F2(r) =

∫ r

1

c1 csc2(α(γ))dγ + c2 . (4.1.4)

On the other hand the situation for F1(r) is different. We will write down such
linear operator in the case m = 0 since in this way the analysis is cleaner, however
a non-vanishing m will not change the results and will only make the analytic
formulas a bit more involved. In the m = 0 case the soliton profile (see Eqs.
(3.2.2) and (3.2.7)) is given by

α′ = ±
[
2

(
E0 −

q2

4

L2
r

L2
θ

cos(2α)

)] 1
2

, α(0) = 0 , (4.1.5)

α(r) = ± am

(√
−L

2
rq

2

L2
θ

r

k
; k

)
, k =

√
2L2

rq
2

L2
rq

2 − 4E0L2
θ

, (4.1.6)

where am(x; k) is the the Jacobi Amplitude ([91], [1]) and k is the elliptic parameter
(related to the elliptic modulus m in [91], [1] as k ≡

√
m). From here on we are

going to use the parameter k instead m. The periodic structure appears due to
the well-known properties of the function am(r; k), namely

sin (am(r; k)) = sn(r; k) , (4.1.7)

cos (am(r; k)) = cn(r; k) , (4.1.8)√
1− k2 sin2(am(u, k)) = dn(u, k) , (4.1.9)

where sn(r; k), cn(r; k) and dn(r; k) are the Jacobi Elliptic Functions
[91].The function sn2(r; k) is periodic, with period 2K(k), where K(k) =∫ π/2

0
dθ/
√

1− k sin2 θ is the elliptic-quarter period.

Going back to the linearized equations, the equation for F1(r) in Eq. (4.1.3) in
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the case m = 0 takes the form

℘(0)F1 = 0 , ℘(0) = − d2

dr2
+
L2
rq

2

L2
θ

cos(2α) . (4.1.10)

Quite interestingly, using the properties of Jacobi Amplitudes in Eqs. (4.1.7),
(4.1.8) and (4.1.9), the operator ℘(0) (which determines the stability of the present
gauged solitons system under the perturbations in Eqs. (4.1.1) and (4.1.2)) can
be cast in the form of a Lamé Operator:

℘(0) = − d2

dr2
+
L2
rq

2

L2
θ

(cn(r/k; k)2 − sn(r/k; k)2) . (4.1.11)

Consequently, the spectrum of the family of operators ℘(0) (or ℘(m)) defined
above is very important not only in relation with the stability analysis of the
present gauged solitons but also because such spectrum encodes relevant physical
informations about the band spectrum of these gauged solitons.

As far as the stability of this gauged solitons-FFP system one need to study the
following eigenvalues problem

℘(0)Ψ = Ω2Ψ , (4.1.12)

so that the stability condition under this family of perturbation is

Ω2 ≥ 0 . (4.1.13)

It can be seen that the condition in Eq. (4.1.13) can be satisfied. Indeed, it is
easy to find a zero mode just taking

Ψ0 = ∂rα0 ⇒ ℘(0)Ψ0 = 0 ,

where α0 is a background solution of Eqs. (4.1.5) and (4.1.6) (or Eq. (3.2.2) in
the case with m 6= 0). Moreover we can also deduce that Ψ0 has no node since
∂rα0 does not vanish. Consequently, standard theorems in Quantum Mechanics
ensure that Ω2 = 0 is the minimal eigenvalue and all the other are positive. In
fact, Eq. (4.1.12) encodes many more informations since it has to do with the
spectrum of the lowest energy perturbations of the present gauged solitons. In
other words, the spectrum of ℘(0) (or ℘(m)) will tell us the “phonons” of the system.
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In the next section we will analyze such spectrum in the case m = 0 in which the
results are cleaner and directly related with the theory of resurgence. The results
with m 6= 0 are very similar but more difficult to analyze with resurgence since
such spectrum involves two relevant parameters (this case belongs to the so-called
parametric resurgence).

4.1.2 Electromagnetic perturbations

An effective technique to analyze the stability of solutions presented here is to
consider the gauged solitons as an effective background medium on which the
electromagnetic perturbations propagate. This is an excellent approximation
especially in the ’t Hooft limit because in the semiclassical Photon-Baryon
scattering, the Baryon is basically not affected since the Photon has zero mass
(for a detailed discussion see [90]). Consequently, the Photons perceive the gauged
soliton as an effective medium while the solitons are not affected by the small
fluctuations of the electromagnetic field. Correspondingly, in this section we will
consider the SU(2) degrees of freedom as fixed to be the background solution.
As it has been already emphasized, the complete stability analysis not only is
completely out of reach from analytical methods but also numerically is a very
hard task. Nevertheless, the perturbations we are considering here encode relevant
features of the gauged solitons and of the corresponding FFP, as we will see below.

Let us consider the following perturbations on the Maxwell potential

(u, 0, 0,−Lu)→ (u+ εξ1(xµ), 0, 0,−Lu+ εξ2(xµ)) , (4.1.14)

with 0 < ε� 1. At first order in the parameter ε and for the perturbation defined
in Eq. (4.1.14) the Maxwell equations in Eq. (3.1.6) become

∂θ(∂φξ2 − L2∂tξ1) = 0 ,

∂r(∂φξ2 − L2∂tξ1) = 0 ,(
1

L2
r

∂2
r +

1

L2
θ

∂2
θ +

1

L2
∂2
φ

)
ξ1 −

1

L2
∂φ∂tξ2 + 4K sin2(α) sin2(qθ)ξ1 = 0 ,(

1

L2
r

∂2
r +

1

L2
θ

∂2
θ − ∂2

t

)
ξ2 + ∂φ∂tξ1 + 4K sin2(α) sin2(qθ)ξ2 = 0 .

Since we want to test linear stability we need to check the (absence of) growing
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modes in time. This implies that ξ1 and ξ2 must depend on the temporal coordinate.
But, according to the previous equations if ξ1 and ξ2 depend on time these functions
must also depend on the coordinate φ, that is

∂tξi 6= 0 ⇒ ∂φξi 6= 0 , ξi = {ξ1, ξ2} . (4.1.15)

For simplicity we will assume that

∂φξ2 = L2∂tξ1, (4.1.16)

so that the above equations system is reduced to

�ξi + V ξi = 0 , � ≡ −∂2
t +

1

L2
r

∂2
r +

1

L2
θ

∂2
θ +

1

L2
∂2
φ ,

with V = 4K sin2(α) sin2(qθ). Then, performing the Fourier transformation in
the coordinate φ and time t,

ξi(t, r, θ, φ) =

∫
ξ̂i(ω, r, θ, k3)e−i(k3φ+ωt)dk3dω ,

we obtain an eigenvalue equation for ξ̂i,

−∆ξ̂i + Veffξ̂i = ω2ξ̂i , (4.1.17)

with

∆ =
1

L2
r

∂2
r +

1

L2
θ

∂2
θ , Veff =

(k3)2

L2
− V , k3 6= 0 , (4.1.18)

The non-vanishing eigenvalue
k3 =

l

(2π)
(4.1.19)

in the effective potential in Eq. (4.1.18) is the wave-number along the φ-direction,
with l a non-vanishing integer. A sufficient condition ensuring linear stability
under the perturbation defined in Eqs. (4.1.15) and (4.1.16) is the requirement

Veff > 0 , (4.1.20)

where Veff is defined in Eq. (4.1.18). The obvious reason is that the above condition
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implies that the eigenvalues E of the operator ÔS defined as

ÔS = −∆ + Veff

are positive and, consequently, the ω in the time-Fourier transform of the
perturbations is real (so that there are no growing modes in time).

However, this condition is not necessary in the sense that it could be possible
for Veff to be “slightly negative” keeping, at the same time, the eigenvalue ω2 in
Eq. (4.1.17) real and positive. On the other hand, the mathematical task to find
a sharp characterization of the stability in this sector can be very complicated
from the viewpoint of functional analysis in the case of Schrodinger-like potentials
which depend in a non-trivial way on two (or more) spatial coordinates. Hence,
here we will only consider the criterion in Eq. (4.1.20) which is more than
enough to provide a qualitative picture. We hope to come back on this interesting
mathematical issue in a future publication.

The requirement in Eq. (4.1.20) imposes an upper bound for the length of the
box. This can be seen as follows. The “less favorable case” (from the stability
viewpoint) corresponds to the least possible value for (k3)2 in Eq. (4.1.19) when
the positive part of the effective potential is the smallest. Correspondingly, Eq.
(4.1.20) becomes

(k3)2

L2
− 4K > 0 ⇒ (4.1.21)

L <
1

4π
√
K
≈ 1 fm . (4.1.22)

In terms of Baryon density, the above bound implies that the present configurations
are viable when the Baryon density is of the order of 1 Baryon per fm3 or higher
(this range is well within the range of validity of the NLSM). In fact, we expect
that a more refined mathematical analysis would give a better bound showing
that these solutions are viable even at lower densities.

4.2 Resurgence Structures in the fluctuations

As it has been described in the previous sections, the perturbations for the SU(2)

field are governed by operators with a well-established resurgence character such as
the Lamé operator. The singularities analysis (using, for instance, the Borel-Pade
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approximation) of these operators in the Borel plane of the effective coupling
constant is crucial in order to understand the resurgent character of these type of
perturbations. This will be done in the next subsection.

Although resurgence techniques in one-dimensional quantum mechanical system are
very well tested, in the case of two-dimensional (and, indeed, higher dimensional)
potentials the situation is far less clear. Since the electromagnetic perturbations
satisfy an effective two-dimensional Schrodinger equation, the spectrum of the
electromagnetic perturbations has been determined numerically. In the following
subsections we will describe the numerical results related to the electromagnetic
perturbations determined by the two-dimensional Schrödinger (4.2.1) equation

− 1

L2
r

∂2

∂r2
Ψ(r, θ)− 1

L2
θ

∂2

∂θ2
Ψ(r, θ)+(

k2

L2
−4K sin2(α) sin2(qθ))Ψ(r, θ) = ω2Ψ(r, θ) .

(4.2.1)

4.2.1 WKB Analysis for the SU(2) perturbations

We study a Schrodinger Equation

− g2

2

d2ψ

dx2
+ V (x)ψ = uψ (4.2.2)

with the potential

V (x) = cn2 (x/k; k)− sn2 (x/k; k) (4.2.3)

This potential is especially well-suited for the resurgence analysis as it has been
shown in [41], [8] and [15]. One of the main results of this section is that the
proper resurgent parameter g (in the m = 0 case) is

1

g2
=
L2
rq

2

L2
θ

. (4.2.4)

Although this result is very simple (one just needs to compare Eq. (4.1.11) with
those in [41], [8] and [15]) it is very non-trivial. It is relevant to note that the
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effective resurgent parameter1 g don’t involve the coupling constant of the theory,
namely K. Instead, the direct computation discussed in this section shows that
the suitable parameter is in Eq. (4.2.4), which depends on the odd integer q as
well as on the “asymmetry ratio” L2

r

L2
θ
which defines how far from a square is the

basis in the r − θ plane of the box in which these gauged solitons are living. The
reason why we were able to derive this result explicitly is “just” that we have
constructed analytically these gauged solitons which are sources of FFP. Without
analytical solutions it would be impossible a proper identification of the correct
resurgent parameter.

It is worth to emphasize the similarity of the spectrum of the “phonons” defined
by the operator in Eq. (4.1.12) with the ones of the crystal of kinks in [80] as well
as in the analysis of the small fluctuations of solitons crystals in integrable field
theory models in (1+1) dimensions. In the next section we will elaborate more on
this comparison.

We show the Energy spectrum in Fig. 4.2.1 as a function of the coupling g (see
Eq. (4.2.4)). We employ the WKB method to obtain an expansion in g2 → 0. We
make an ansatz

Ψ(x) = exp

(
i

g2

∫ 0

x0

dxS(x)

)
(4.2.5)

This is an standard procedure in which one solve the resulting Ricatti equation
by power series ansatz for S(x) and the Energy

S(x) =
∑
n=0

g2nSn(x), E =
∑
n≥0

ang
2n (4.2.6)

We use the BenderWu package [79] to compute WKB expansion so that we obtain
a perturbative asymptotic expansion of the ground state energy (we will not
consider higher level states in this paper).

1One of the requirements to be a “good resurgent parameter" is that, for instance, it should
determine the spectrum of the small fluctuation of the profile. In particular, when moving the
parameter from small to large, one should get the transition in the spectrum from small gaps
to large gaps as in the Mathieu equation [41].
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Figure 4.2.1: Energy Spectrum for Lamé operators from SU(2) perturbations
for m = 0.2 in (a) and m = 0.7 in (b). The regions of stability (the bands) are
shaded and they are separated by regions of instability (gaps), which are unshaded.
We see a similar behaviour to the Mathieu spectrum in wich at small g, the bands
are exponentially narrow and high in the spectrum, the gaps are exponentially
narrow.
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Figure 4.2.2: The complex Borel plane for elliptic modulus m = 0.9, dots
indicating poles of the Borel-Padé approximation obtained from 100 orders of
perturbation theory in g2 (hence we computed a total of 50 poles). Accumulations
of poles are anticipated to encode branch cuts in the full Borel transform, and
isolated poles are expected to be residuals of the numerical approximation.
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4.2.2 Numerical Results

We present numerical solutions for the two dimensional eigenvalue problem in Eq.
(4.2.1) using finite difference method. We considered a two dimensional grid in
the (r, θ)-plane of Nr ×Nθ grid of 70× 70 on a domain delimited by 0 < r < 2π

and 0 < θ < π. We use the Library Linear algebra (scipy.linalg) of Python for the
eigenvalues problems.

For the numerically implementation we are going to consider the case Lr = Lθ = L.
For this case the gauged non-linear sigma model field equations and the perturbed
Maxwell equations reads

α′′ − q2

2
sin(2α) +

4m2

K
sin(α) = 0 (4.2.7)

The boundary for the field α are α(2π) − α(0) = nπ. The Topological charge
density is directly related with the boundary conditions through the parameter n
in the sense it is equal to number of “peaks” of the potential in the r-direction
(see Figure 4.2.3).

−
(
∂2

∂r2
+

∂2

∂θ2

)
Ψ +

(
k2

L2
− 4KL2 sin2(α(r)) sin2(qθ)

)
Ψ = EΨ (4.2.8)

In this case the potential is fully determined by fixing the parameters q, K and
m. In Figure 4.2.4 we plot the energy eigenvalues as a function of L. Making the
comparison with the one dimensional Mathieu system [41] (where the band-gaps
are modulated by ~) here L plays the role of an effective ~

4.3 A comparison with the (1+1)-dimensional

crystals in the Gross-Neveu model

The Gross-Neveu model (GN in what follows) is one of the most analyzed quantum
field theory in (1+1)-dimensions since it shares many non-trivial properties with
interacting quantum field theories in (3+1)-dimensions, such as the appearance
of non-trivial condensates at non-perturbative level, asymptotic freedom, Chiral
symmetry breaking, dimensional transmutation and so on, but can be analyzed
with the tools of the integrable models. Such a model is a theory of N Dirac
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Figure 4.2.3: r-component of two dimensional potential for the perturbed
Maxwell equations: sin2(α(r)) with n = 1 and n = 10
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Figure 4.2.4: the Energy Spectrum for the potential L2 sin (α(r))2 sin (θ)2 as a
function of L, where α(r) is a numerical solution of Eq. (4.2.7) with n = 1
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fermions interacting via a quartic Fermionic potential, and its Lagrangian is given
by

LGN =
N∑
a=1

(
iψ̄aγ

µ∂µψ
a +

g2

2
(ψ̄aψ

a)2

)
. (4.3.1)

This theory exhibits a phase diagram with a crystalline structure similar to what
is expected in QCD, which is invisible to standard perturbation theory being only
accessible to the non-perturbative 1/N expansion [9], [10], [11]. Using an auxiliary
field, the GN field equations can be written as a Hartree-Fock-Dirac equation (see,
for instance, [83] and [81]), namely(

γ5 1

i

∂

∂x
+ γ0S(x)

)
ψ(x) = ωψ(x) . (4.3.2)

The self-consistent analysis of the previous references allows to assume that S(x)

is a Lamé potential leading to an analytical solution for the GN model describing
a crystal of kinks at finite density. The upper component of the Dirac spinor φ+

corresponds to an Elliptic Function and satisfies a Schrödinger equation(
− ∂2

∂ξ2
+ 2κ2 sn2

(
ξ|κ2

))
φ+ = Eφ+ , (4.3.3)

where
E =

a2

`2
ω2 + κ2 . (4.3.4)

The eigenvalue term E depends of the constants a, ` which are fixed by the mean
density. The elliptic parameter κ is fixed by minimized the ground state energy
density

Egs = −2
`2

a2

∫ kmax

kmin

dk

2π

√
E − κ2 +

`

2Ng2a2

∫ `

0

dξS̃2(ξ) ≡ E1 + E2 . (4.3.5)

It is relevant to note the close similarity of the results in the references [81], [73], [74],
[82], [9], [10], [11] and [80] in the case of the solitons crystals in (1+1)-dimensions
with the (3+1)-dimensional gauged solitons discussed here. Not only the energy
density of the solitons crystal of the GN model and of the Sine-Gordon model in [80]
are very similar to the energy density of the present gauged solitons. This similarity
is especially clear comparing the form of the reduced energy density defined in
Eqs. (3.2.20) and (3.2.23) with, for instance, the corresponding expression in [80].
Also, the spectrum of the fluctuations of these (1+1)-dimensional solitons crystals
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in [81], [73], [74], [82], [9], [10], [11] and [80] are determined by a one-dimensional
Schrödinger operator of the same Lamé family as the one in Eq. (4.1.11). This
supports very strongly the existence of non-homogeneous condensates in the low
energy limit of QCD in (3+1)-dimensions.
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Chapter 5

Conclusions

In this thesis we have shown analytically that topologically non-trivial gauged
solitons of the (3+1)-dimensional gauged non-linear sigma model at finite Baryon
density are natural sources of Force Free Plasma. For these multi-solitons most
of the total energy and the topological charge are gathered within tube-shaped
regions while the magnetic field lines go around the tubes. Our explicit analytical
solutions allow to discuss the trajectories of charged test particles moving close to
these gauged solitons and also identify the proper resurgent parameters through
the analysis of the perturbations. In particular, the perturbations of the solitons
profile are related to Lamé operators with a suitable resurgent parameter. On
the other hand, the electromagnetic perturbations of the above system satisfy a
two dimensional effective Schrödinger equation, where the soliton’s background
interacts with the electromagnetic perturbations through an effective periodic
potential in two spatial dimensions. Also we studied numerically the band energy
spectrum for different values of the free parameters of the theory and we found that
bands-gaps are modulated by the potential strength. Finally we have shown that
the crystal solutions constructed here are qualitatively very similar to those of the
Gross-Neveu model in (1+1) dimensions, which strongly support the existence of
non-homogeneous condensates in the low energy limit of QCD in (3+1)-dimensions.

At a last remark it is worth to say that all the analysis both resurgence and physical
aspects of these gauged solitons is possible because we have analytical solutions
of the NLSM coupled to Maxwell. Otherwise it would have been impossible to
shed light on ideas as abstract as those of resurgence even in (3+1)-dimensions.
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A1 Obtaining the field equations

Explicitly, the SU(2) scalar field, according to our ansatz defined in chapter III is
given by

U =

(
cos(α) + i cos(qθ) sin(α) ie−

ip
L

(t−Lφ) sin(qθ) sin(α)

ie
ip
L

(t−Lφ) sin(qθ) sin(α) cos(α)− i cos(qθ) sin(α)

)
.

It follows that the components of Lµ = U−1DµU read

Lt =
P

L

(
i sin2(qθ) sin2(α) E(+)F (−)

−E(−)F (+) −i sin2(qθ) sin2(α)

)
, Lr = iα′

(
cos(qθ) E(+) sin(qθ)

E(−) sin(qθ) − cos(qθ)

)
,

Lθ = q sin(α)

(
−i sin(qθ) cos(α) E(+)G(+)

E(−)G(−) i sin(qθ) cos(α)

)
, Lφ = P

(
−i sin2(qθ) sin2(α) −E(+)F (−)

E(−)F (+) i sin2(qθ) sin2(α)

)
,

where we have defined

P = p− 2Lu , F (±) =

(
cot(α)± i cos(qθ)

)
sin(qθ) sin2(α) ,

E(±) = e±i
p
L

(Lφ−t) , G(±) = i cos(qθ) cos(α)± sin(α) .

On the other hand, varying the Lagrangian w.r.t the U field we obtain

δL = Tr
[
K

4
δ(LµLµ)−m2δ(U + U−1)

]
= Tr

[
K

2
LµδLµ −m2(δU + δU−1)

]
.

For the non-linear sigma model term, we use

δ(UU−1) = 0 → δU−1 = −U−1δUU−1 ,

Dµ(UU−1) = 0 → DµU
−1 = −U−1DµUU

−1 = −LµU−1 ,
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so that

δLµ = δ(U−1DµU)

= −U−1δUU−1DµU + U−1δDµU

= −U−1δULµ + LµU
−1δU +Dµ(U−1δU) . (A1.1)

From the above, the variation of the non-linear sigma model term (using the
cyclicity of the trace for the first two terms) becomes

Tr(LµδLµ) = Tr(LµDµ(U−1δU))

= −Tr(DµL
µU−1δU) + Tr(Dµ(U−1δULµ)) , (A1.2)

where we have integrated by parts. Now, introducing this in the variation of the
Lagrangian, we obtain

δL = Tr
[
−K

2
DµL

µU−1δU −m2(δU − U−1δUU−1)

]
+ Boundary term

= −Tr
[
K

2
DµL

µU−1δU +m2(UU−1δU − U−1U−1δU)

]
+ Boundary term

= −Tr
[(

K

2
DµL

µ +m2(U − U−1)

)
U−1δU

]
+ Boundary term ,

and because U 6= 0 and the first factor in the trace is in the algebra, it is necessarily
that

DµL
µ +

2m2

K

(
U − U−1

)
= 0 .

Replacing the Lµ in the previous equation we obtain the equation for the soliton
profile.
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