University of Concepcion

Faculty of Engineering - Ingenieria Civil Informéatica

Bayesian parameter estimation using

amortized variational inference

Thesis submitted for the degree of
INGENIERO CIVIL INFORMATICO

By
ALEXIS ELOY SANCHEZ RODRIGUEZ

Concepcion, Chile
January, 2020

Supervisor: Guillermo Cabrera Vives
Committee 1: Cecilia Herndndez Rivas
Committee 2: Diego Seco Naveiras
Department of Computer Science

Faculty of Engineering

University of Concepciéon

(©Se autoriza la reproduccion total o parcial, con fines académicos, por cualquier

medio o procedimiento, incluyendo la cita bibliografica del documento.

Abstract

Through the use of models, it is possible to express information about a process or
data being analyzed. These models seek to explain or predict the process of interest.
Models with a known and fixed number of parameters, known as parametric models,
let us interpret more easily the phenomena being studied by incorporating assumptions
directly in the modeling part through the parameters. The parameters of the model must
be estimated to accomplish a specific task related to the data being used. One way of
finding these parameters is by using the Bayesian approach, which provides information
about the uncertainty of the model being used as well as including prior information into
the learning process. Methods commonly used for Bayesian inference, such as Markov
Chain Monte Carlo or the faster but approximate Variational Inference methods are not
suited when the model is used multiple times on different sets of data. This is because they
work on one set of observations at a time, which means that the same procedure must be
repeated from scratch to find the parameters of the model that work best for the new data.
Instead, we provide experiments on synthetic data that show how Amortized Variational
Inference can be used to obtain results comparable to more precise methods while reducing
the inference time for new observations by making use of global information learned via
an inference network. Our results show that our approximate inference procedure can

provide results similar to classic methods even in the presence of noise for simple models.

Contents

(I _Introduction|

2 Bibliography discussion|

[2.1 Bayesian Interence] oL o

10
10
11
12
15

18
18
20

26
26
29
38

40

List of Tables

[4.1 -ELBO, negative log likelihood and divergence on the dataset corresponding

to the linear parametric model as o increases.|

List of Figures

[3.1 Examples from each dataset, on the left, we have a simple linear model |

[where the added noise 1s ¢ = 0.1, on the right side we have our second |

| model that provides shapes similar to supernovae, the noise injected in this |

| case corresponds to o = 0.01} Lo 20

[3.2 Probabilistic graphical model for both the linear and supernova models |

| used in this work. We show the priors for the parameters of each model. |

[Note that we consider the M curves and /N data points of each one. The |

[with dashed lines, 1x1 convolutions are used when increasing the number |

[of channels. All convolutions are done with kernel of size 3 and stride 1, |

[except on 1x1 convolutions, where the strideis 2. |. 24

[4.1 'Trace plots for three examples of the linear model. The vertical lines repre- |

[sent the true parameters that were used to generate the data. All examples |

[use a =0D] e e 29
[4.2 Mean fit when sampling parameters a and b from the posterior distributions |
| obtained by MCMC. Data corresponds to the one used in figure[4.1{| 30

[4.3 'ITrace plots for three examples of the supernova parametric model. The |

[vertical lines represent the true parameters that we used to generate the |
| data. All examplesuse c =005 31

4.4 Mean it when sampling parameters ¢,;,. and ts,; from the posterior dis- |

| tributions obtained by MCMC. Data corresponds to the one used in figure |

[4.5 Training curves for both models for different levels of noise ¢ in the dataset, |

[the solid lines represent the training data while the dashed lines correponds |
[to the validation data 33
4.6 Results on the test set for the inference network and MCMC. In (&) the |
| dataset has o = 0.1, while the supernova model depicted in (b)) has o = 0.01.| 34
[4.7 Results on the test set for the inference network and MCMC, for |al cor- |

[responding to the linear model the dataset has ¢ = 0.9, while for the |

[supernova model depicted in [b| the noise corresponds to ¢ = 0.09. 36

[4.8 Noise in the parameters of the models as the noise o in the dataset increases,

in green we see the behaviour of MCMC, while blue corresponds to the

inference network trained. Lo

1. Introduction

Often it is desirable to explain some process or find patterns in the data that is being
observed. It may be interesting doing this to perform tasks such as predicting whether
or not a picture is of our favorite animal, which would be a classification task. Or maybe
we want to predict the temperature of an object given certain information, which would
correspond to a regression task given its continuous nature. Independent of the task we
wish to perform, we build models that leverage the available data at our disposal. The
models seek to explain the process that we are interested in, for example, by assuming that
the color of the pixels in our picture helps to identify which animal is present in it. A model
can broadly be classified into two types: parametric and non-parametric. Parametric
models have a known and fixed number of parameters and can include assumptions directly
in the model, for example, assuming a linear relationship between certain variables. On
the other hand, the non-parametric models, although its name may imply the opposite,
do have parameters, but the number and form of these depend directly on the data that
is analyzed. In this work, we focus on parametric models. One example of a parametric
model would be a linear regression model, where the prediction is linear in the parameters
of the model.

Once a model for the problem at hand is selected, the parameters needed to perform the
desired task must be found. One approach to finding these parameters is, for example,
a maximum likelihood approach [I], where the parameters are chosen such that they
maximize the likelihood. This quantity corresponds to how probable the data is for
a given value of the model parameters [I]. Maximizing the likelihood corresponds to
finding the parameters that make the observed data most probable under the proposed
model. One disadvantage of this approach is the fact that a single point estimate for the
parameters of the model is obtained.

We consider the Bayesian approach to infer or learn the parameters of the model. In
this approach, the probabilities represent a degree of belief or uncertainty that a certain
event will occur. The central quantity that we are interested in computing in Bayesian
Inference is the posterior distribution of the model parameters. The posterior corresponds
to the belief about the possible parameter values after we update the prior knowledge with
the observed data. This prior knowledge is expressed in the form of a prior distribution,
which does not depend on the data. On the other hand, the knowledge about the data and

how it relates to the parameters comes in the form of the likelihood which was described

above. These three concepts are related through Bayes Theorem [I], used in order to

compute the posterior distribution:

p(D[0)p(8)
D (1.1)

In the above equation 6 corresponds to the model parameters, while D corresponds

p(0|D) =

to the data. In turn, the prior distribution is expressed as p(6), while the likelihood is
expressed as p(D|@), finally, the quantity p(D) serves as a normalization constant that
ensures that the posterior p(6|D) remains a valid distribution. This quantity p(D) is
called the evidence or marginal likelihood and is computed as p(D) = [p(D|0)p(0)d6.

The likelihood p(D|#) is the quantity that is maximized when using the maximum
likelihood approach to estimate the model parameters. On the other hand the prior
distribution p(€), expresses the beliefs or assumptions about the parameters before the
data is observed. To illustrate this, consider a model where the age of an individual is
used as a parameter, we can incorporate information about its age, for example, we can
say that on average the age of the individual is between 20 and 30 by using a normal
distribution with mean of 25 and an standard deviation of 5.

Note that the posterior obtained from the Bayesian approach differs from a maximum
likelihood method in that the result is a distribution for the parameters of the model.
This distribution provides more information about the uncertainty of the model which
enables further analysis, for example, taking into account extreme parameter values, or
making certain decisions based on the uncertainty of the model. The importance of this
probabilistic approach and applications are discussed further in [2].

An important problem of the Bayesian methods is precisely the computation of the
posterior, this turns out to be a difficult procedure because of the evidence p(D) which
can include an intractable integral or an exponential number of terms for more complex
models. Recall that p(D) = [p(D|0)p(#)df, notice that the evidence considers all possible
values for the parameters. This integral becomes intractable for many models of interest,
for example, hierarchical models with non-linearities such as neural networks are almost
always intractable.

One of the main approaches for performing inference corresponds to the Markov Chain
Monte Carlo (MCMC) methods|3]. In MCMC approximate inference is performed by
constructing a sequence of events known as a Markov Chain in such a way that we can
arrive at the true posterior asymptotically. One of the problems that MCMC methods
possess, is their running time, where complex models may take a long time, and do not
possess a clear or unique stopping criterion for convergence [4]. This means that when
using large datasets or complex models, MCMC methods do not scale.

A common alternative to MCMC methods is using Variational Inference[5] to approxi-
mate the posterior distribution. This family of methods casts inference as an optimization
problem. Here, an approximate distribution ¢ is proposed and an objective function is

minimized to find the parameters of ¢, commonly the objective used is the Evidence Lower

Bound (ELBO). Variational Inference methods result in faster inference procedures when
compared with MCMC. However, this results in a worse approximation to the posterior
when compared with MCMC, since we are restricted by our choice of q.

Instead of learning the parameters of a model a single time as we have talked until
now, consider a situation where we wish to do this procedure multiple times for different
sets of observations. One example where one would like to do this is, a service where
we would like to determine what each user would buy based on previous purchases. In
this case the cost of using MCMC is even higher, given that we run the method in each
instance of the problem. This results in spending a lot of time running the same procedure
multiple times, only with different observations. On the other hand variational methods
while faster, still suffer from needing to perform the inference for each new observation,
even when the model remains the same.

This problem can be solved with Amortized Variational Inference [6], where instead
of inferring the parameters ¢ of our approximation ¢, each time, we learn a function
Jw - * — ¢. Now the parameters ¢ of the approximation are computed with a function g
with parameters w, meaning we now learn global parameters w, instead of local ones. This
enables fast inference by simply using the learned function to compute the parameters
of the approximated distribution in the following way: ¢4)(¢) . We propose to use
Amortized variational inference to learn the approximate posterior g4(#) for a known
and fixed parametric model p(x|w), while using a deep neural network with weights w
as gy (). We present a comparison between MCMC and amortized variational inference
with neural networks to infer the parameters of two parametric models. The models for
which we compare both methods consists in a simple linear model of the form az + b and
a simplified version of the model used in [7]. We evaluate both methods on synthetic data
that we generate and describe later in section

The general objective this work is the Bayesian estimation of the parameters of two
models using Amortized Variational Inference with a deep neural network. We compare
its performance with an MCMC algorithm on simulated data, from which we can compare
the estimated parameters with the ground truth. The specific objectives of this work are

the following:

e Define parametric models and the corresponding simulated data.

Specify the MCMC algorithm to be used as the baseline for Bayesian parameter

estimation.

Description of the Amortized Variational Inference procedure.

Describe the neural network architecture to be used in the Amortized Variational

Inference procedure.

Training of the neural network achitecture.

e Experiments and comparisons between the proposed Amortized Variational Infer-

ence approach and the baseline MCMC algorithm.

The rest of this work is structured the following way: we review the related work of
Bayesian inference, including MCMC and variational inference including works which use
Deep Learning. We describe both our proposed method of using Amortized Variational
Inference and the data we generate to evaluate both the baseline and our proposed method.
After that we proceed to the experiments and results of this work. Finally we discuss our

obtained results and possible future work.

2. Bibliography discussion

In this section we first discuss briefly the problem of Bayesian inference, then we mention
two general and widely used approaches to solve this: Markov Chain Monte Carlo and
Variational inference , including their advantages and disadvantages. Finally, we conclude
this section with a discussion of amortized inference, which corresponds to the method

used in this work.

2.1 Bayesian Inference

We are interested in performing Bayesian inference over the parameters 6 of a model.
The central piece of this procedure is computing the posterior distribution p(#|x) which
expresses the distribution of parameters after we have observed the data x. Using the

Bayes theorem we can express the posterior distribution as:

p(z|0)p(6)

p(0]z) = , Where

As discussed previously, computing the exact posterior distribution may not be pos-
sible. For example, the previous expression for computing the posterior may not have
an analytical solution at all. In other situations, the term p(x), also called marginal

likelihood or evidence, may not be tractable. This can be due to a variety of reasons,

these include: an integral with no closed form solution, or a large number of parameters

that make it impossible to perform enumeration.

2.2 Markov Chain Monte Carlo

One of the most popular approaches to performing Bayesian inference corresponds to the
family of Markov Chain Monte Carlo methods. Broadly speaking these methods work by
constructing a Markov Chain which, given an initial state and transition probabilities T,
move from state ¢ to ¢ + 1 using T until the desired distribution is reached. For example,

the posterior distribution over the model parameters which is what we are after.

More formally, a Markov Chain is a stochastic model defined over a series of random

variables X,,, where the n-th random variable depends only on the previous step, that is:

p($n|$n—l> Tp—2y- - .171) = p(xn‘xn—l)

This means that given an initial probability for xg, p(z¢), we can arrive at the next
state x; and so on using the transition probabilities denoted as T;. A Markov Chain
is said to be homogeneous if its transition probabilities 7T; remain the same at every

step. Additionally a distribution is invariant or stationary if, given a Markov Chain and

transitions 7, the distribution does not change for successive steps in the chain [3] [1].

We set up our Markov Chains to arrive at the distribution of interest, for example
the posterior distribution of a model parameters. We also want our target distribution
to be invariant given the Markov Chain. This way we can sample from this distribution
as we take more steps in the chain, without changing the distribution. Another property
desired for Markov Chains, is called ergodicity, this means that as n — oo we approach
the target distribution. This property ensures that a properly designed MCMC method
will converge to the true distribution with enough steps, enabling exact estimation of the
parameters of a model.

We briefly describe two MCMC algorithms: Metropolis-Hastings and Hamiltonian
Monte Carlo. Both algorithms are related, and we employ a sampler based on Hamiltonian

Monte Carlo as our baseline for comparison with the proposed solution to the problem.

2.2.1 Metropolis-Hastings

The first method which we discuss is the Metropolis-Hastings algorithm [8, ©]. This
method works by using a proposal distribution ¢, from which at each step we draw a

sample x*, this sample is accepted as the next step of the chain with probability:

Ai(z*, 2") = min (1, ZM) . (2.1)

p(z*)qi(z*|z?)
We make two observations, first, if we reject the sample from the proposal distribution
we consider the next step of the chain the same as the previous one. Second, our proposal
distribution can be dependant on the current step, for example, we can choose g to be a
normal distribution with mean at the current value x; and with some predefined variance

which will allow for exploration of the posterior at random.

2.2.2 Hamiltonian Monte Carlo

The second MCMC algorithm discussed is Hamiltonian Monte Carlo(HMC), also called
Hybrid Monte Carlo [I0]. This class of algorithms produce proposals for the Metropolis
algorithm described previously. The proposals take into account gradient information,

in particular, the gradient of the logarithm of the target probability. For this method,

10

we introduce additional "momentum" variables and express the "energy" of the system
as a couple of differential equations. At every step of the Markov chain we simulate the
dynamics of the system and accept the given candidate using the Metropolis Hastings
proposal. For an introduction to the method, [II] provides a conceptual overview of
HMC, from it’s formulation to it’s advantages and where it can prove useful.

One downside of HMC algorithms is the need to tune hyper-parameters. Since system
being simulated in HMC needs to be integrated there exist parameters associated with
the process. Two of the parameters involved are the step size € and the number of
steps L of the integrator. The No U-turn sampler(NUTS)[12] has been proposed as an
extension of HMC, where the parameter L is adaptatively set. The NUTS sampler exhibits
performance comparable with a hand-tuned HMC sampler, meaning that it can be used
to perform inference over a large number of models without requiring as much tuning as
other methods. This sampler is the default algorithm for inference in some probabilistic
programming languages, for example in PyMC [I3] and Stan [14].

Some work where HMC has been used successfully include [I5], where HMC is used to
perform Bayesian inference over neural networks. Meanwhile [16] shows the performance
of HMC on a hierarchical model, and compare it with a Metropolis Hastings algorithm,

showing that HMC has a better time with the model considering its high dimensionality.

2.2.3 Disadvantages

Some disadvantages of MCMC methods that have not been mentioned:

e While they converge to the desired distribution under appropriate conditions, this
is on the limit when the number of steps approaches infinity. This poses a problem
since we need to stop the method at some point and check for convergence. A review
of convergence diagnostics is provided in [I7]. One commonly used method used to
assess convergence is to run multiple chains in parallel from different starting points.
After the chains are done, we can, for example, observe the trace plot, which shows
the sampled values at each step of the chain. With this trace plot of the chains we

can verify if all the chains arrive at the same distribution.

e The samples are correlated since each step in the chain is dependent on the previous
one. This problem can be solved by techniques such as thinning [I8], where we only
consider every kth sample in the chain, however, it may not be necessary to use
thinning, as the use of the full chain may offer higher accuracy as discussed in [19]

when reporting an estimate about the chain, such as the mean of the posterior.

e Related to the first problem mentioned: before the chain converges to the stationary
distribution, the samples that are produced by the chain are not of the target
distribution. Consider for example, a bad initial state which has low probability

of being from the target distribution, as we move further along the chain the initial

11

samples are not representative of the distribution we desire. These samples are

discarded, and called burn in or warm up samples.

Note that all the mentioned MCMC methods only work on a single problem instance.
This means that we run MCMC methods on each single problem that we want to perform
inference on. Even if they correspond to same model, only with different data.

If we have a large number of instances where we wish to perform inference, in addition
with a complex enough model, the time spent on performing MCMC can be significant.
This is due to the fact that it is not taking into account global information between the

different instances of the problem.

2.3 Variational Inference

One way to perform faster inference when compared with MCMC is to use approximate
inference methods, one family of methods corresponds to variational inference|20]. Here,
an inference problem is transformed into an optimization one making it more efficient.
To perform variational inference we propose a distribution g,(¢) to approximate the
intractable posterior distribution over parameters p(f|x). Note that we assume that this
distribution has parameters ¢. The goal is to find the parameters ¢ that make our
approximation g, close to the intractable posterior. We can measure how close g, is to p

using the Kullback-Leibler divergence:

Dict(a6(010)] [p(612)) = Eqyo1e {mg %f})] | 22)

The KullBack-Leibler divergence is also known as the relative entropy between both
distributions. From an information theory perspective it represents how much information
is lost when encoding a symbol using the distribution p, while the real one is ¢[1, 21].

Thus in variational inference we are interested in minimizing the Kullback-Leibler
divergence between the proposed approximation and the true posterior. This quantity is
only zero when ¢,(6|z) = p(f|x), that is, the approximation and the true posterior are the
same. Our objective is finding the variational parameters ¢ that make our approximation
close to the intractable posterior. For example, if our approximation ¢, was a normal
distribution, we would find the mean and standard deviation such that the divergence
is minimized. Note that we have not placed restrictions on ¢4, aside from assuming the
existence of parameters ¢, which means we can make g, as flexible as needed. Often
this means trading speed vs quality of approximation. Note that the Kullback-Leibler

divergence is asymmetric, therefore:

Drc(q0(012)|Ip(0]2)) # D (p(0]2)[lgs(0]x)).

Consider that g4(f|z) is our variational approximation for which we want to find ¢ and

p(0]x) is the posterior distribution of the model parameters. When p is the first argument

12

of the divergence we call this the forward divergence. The forward divergence has the
effect of allowing ¢4(f|z) to be large in sections where p(f|x) is small. This happens
because in order to minimize this divergence having a lower p is enough, ignoring the
probability of q. The case where ¢ is the first argument in the divergence is called the
reverse divergence. It encourages g4(6|z) to have higher probability when p(f|x) does
and lower probability in cases where p(f|z) is low. This means that in the case of p
being a multimodal distribution, and ¢ a unimodal approximation, ¢ would match one
of the modes in the reverse divergence. However, the forward divergence would spread ¢
across p. The discussion for the difference between forward and backward divergece can
be found in [I]. In the rest of this work, we use the reverse Kullback Leibler divergence
(Eq. , as is commonly done in variational inference, where the approximation ¢, is
the first argument.

Directly optimizing the divergence between g4 and p is not possible, this is due to the
fact that p(f|x) is the quantity we wish to compute, and it contains the evidence p(x)
which as mentioned before, is often intractable. This is clearly seen if we start from Eq.
and expand the posterior distribution:

qe(0])

Dict(a(010)(610)) = By, log 205 (23)
~ B, Joga,(610)] = B, log 2500 (2.4)
~ E,, lloggu(6]2)] ~ B, logp(r.0)] + By logp(@). (25)

Since we cannot optimize the divergence between the approximation and the posterior
directly, variational inference methods instead optimize a lower bound. This is called the
Evidence Lower Bound(ELBO), defined as:

ELBO = Eg,[log p(z|6)] — Dir(q4(6)|p(6)) (2.6)
— E,, [log p(x|6) — log ‘-’2((99';”)]. (2.7)

In the ELBO, the first term is the expected value of the data likelihood when sampling
0 from the approximate posterior. Maximizing this term encourages learning a model that
is more likely to have generated the observed data. The second term is the negative KL
divergence between the approximate posterior and the prior over the model parameters.
Maximizing this term makes it so that the posterior distribution remains close to the
prior and is sometimes refered to as a regularization term. To better understand why the

ELBO is used we start from the evidence p(z):

13

,0)
q(0)
= Eq, [log p(z]0)] + Ey[log p(6)] — Ey[log ¢(6)]
= Ey,[log p(2|0)] — Drr(q(0)[p(0))
= ELBO.

|, Using Jensen’s inequality

Meaning the ELBO, as it name implies, is a lower bound on the evidence. If we look
again at our previous formulation of the divergence between the approximation and the

true posterior:

D1 (go(0)|[p(0]2)) = Eq, [log] — By, [log p(z, 0)] + Eqg, [log p(z)]
= —FELBO +logp(z).

We see that the divergence between the variational approximation and the true pos-
terior can be minimized by means of maximizing the ELBO. Also, if we look at the
relationship between the ELBO, p(z) and Dy (q,(6]2)|p(f]x)) it becomes clear that the
divergence is the exact distance that exist from the ELBO to p(x). Another fact about
this classical variational inference approach that we have not mentioned before is that for
the optimization procedure of the ELBO, we often try to arrive at an analytical expression
that can be optimized directly, so a simple g4(f|x) can help the optimization.

For a review of classic variational inference see [5]. Also [1] provides a view of vari-
ational inference the context of Machine Learning and approximate inference. A more
recent review of variational inference is done in [22] , where methods that enable varia-
tional inference to scale to larger datasets, among other advances, are described. These
methods include: Stochastic Variational Inference(SVI)[23], where we use noisy estimates
of the gradient for the optimization procedure enabling even the use of mini batches of data
for large datasets. Other methods described include Black Box Variational Inference[24],
where a general approach for optimizing the ELBO is described, making it possible to
perform inference even when the analytical solution to the optimization problem is not
avaibable, using estimates of the gradient. Finally, amortized variational inference is also

explained, which corresponds to technique we employ in this work and discuss next.

14

2.4 Amortized Variational Inference

So far we have discussed MCMC and Variational Inference, both of these methods work
on an instance by instance basis. This means that when we want to perform inference on
a large number of problems, only with different observations, we run the same method
multiple times. For MCMC this implies monitoring convergence of all of these procedures
and a higher total time, and, while variational inference is faster we note that neither
MCMC or variational inference are exploiting global knowledge about the problem. Since
we are solving the same problem multiple times we could use additional information to
solve it faster.

This approach can be used to describe amortized inference, where we leverage existing
information in solving the problem. For example, experiments performed and discussed in
[6] show that multiple related inference problems are not, in fact, processed independently
by human reasoning, and that the order of these problems can affect the result if we exploit
the previous known knowledge. In particular, the experiments in [6] involve asking humans
multiple queries based on information provided about a hierarchy of relationships. Their
experiments were designed so that it was possible to infer the correct answer based on
previous queries, and show that in cases where such previous information is available the
performance improves.

In particular, since we are interested in performing fast inference multiple times, we
talk about amortized variational inference as a method to accomplish this. Suppose that
instead of a having just data for a single instance or problem, we have multiple cases. For
example, having multiple time series for which we wish to perform inference, instead of just
a single one. Let x; ; denote the observations or data points available, with i € {1... M}
and j € {1... N}, where ¢ represents the ¢ — th process or case for which we wish to infer
the parameters of a model, and we have N data points for each case. In the rest of this
section we omit the index j, denoting by z; all the data points of a single instance of the
problem. Consider a parametric model f with parameters for which we wish to perform
Bayesian inference on each x; to obtain the posterior distribution over the parameters.
Notice that now we have a set of parameters #; for each x; that we wish to infer. Next,
following variational methods, instead of computing directly the posterior p(6;|x;), we use
an approximate distribution ¢y, (0;|z;), governed by parameters ¢; for each instance of the
problem. In amortized inference we are interested in using a function g, : ; — ¢;, that
is, a function with parameters w that maps the data points to the variational parameters
of our approximation gg,. This means that we can use g, (z,)(0:|2;) as our approximation.
Importantly, using amortized inference allows us to learn global parameters w that define
the approximation function g, instead of local parameters ¢; for each instance of the
problem, thus we only need to find w shared by all data points. The work done in
[6] mentions amortized inference in probabilistic reasoning, suggesting that reusing sub

queries improves performance, using amortized variational inference is related in learning

15

this common knowledge in the form of the parameters of g.

One advantage of amortized variational inference is that once we have g performing
inference over a new observation is as simple as evaluating ¢ and plugging it into our
variational approximation g,(6|z). This is useful in situations where the number of times
that we wish to perform inference is large and the model is complex enough that an
approximation is useful.

An important part of using amortized variational inference is the function g that is
used to amortize the variational parameters. This function must be flexible enough to
learn the global information across the different instances. It is also useful if we are able
to compute g faster than simply using variational inference on a problem.

Currently the preferred technique to learn the global representation used in amortized

inference is via the use of Deep Learning, these methods directly learn features from the

representation of the data|25]. This is done with multiple layers of abstraction using func-
tion composition. Deep Learning techniques have proven to obtain superior performance
than traditional methods for tasks such as image classification|26], machine translation
[27], generative models[28] and more.

The usage of neural networks for amortized variational inference proves useful both for
their capability to learn complex functions, and also due to their ability to be accelerated
on dedicated hardware such as GPUs. This means that we can perform fast inference
once the model has been trained.

An example of a simple model where amortized variational inference is when learning
the latent variables in the Variational Autoencoder(VAE) [29] [30]. The VAE is a gen-
erative model that seeks to generate data similar to the one it is being trained on. This
model assumes the generative process depends on a set of latent variables. It uses two
neural networks: a generative network that learns to generate data from a given prior
distribution of latent variables and an inference or recognition network that performs
amortized variational inference over the set of latent variables. These two networks are
also called the decoder and encoder, respectively, due to similarities with autoencoder
models. Once trained, the decoder takes samples from the prior distribution and provides
examples similar to the data used to trained the neural network, for example, generating
images of digits. On the other hand the encoder is used for training the model, acting
as the approximation function g of amortized variational inference, and mapping from
the input to the set of variational parameters ¢;. Importantly, these works also describe

an estimator known as the reparameterization trick. This estimator can produce lower

variance estimates of the gradient for the optimization procedure [31].

Amortized inference is also mentioned in [32], where its usage is explored for proba-
bilistic programming with experiments for different models such as a Gaussian Mixture
Model, showing that amortized inference obtains performance comparable to that of a
Mean field approximation. In [33] they amortize the inference procedure by learning an

inverse to the probabilistic model, this is done by learning from prior or posterior samples.

16

However one difference between [33] and our work is the fact that we consider the problem
of performing inference from scratch, learning the information accross different cases in
the parameters of the approximation function g.

In [34] a recognition network is trained to perform amortized inference for the posterior
of spikes in a signal, which is then used then for different generative models. They apply
this work to inference the spikes in signals that serve to their generative procedure, and
their results show similar results even to MCMC.

These methods also use Stochastic Variational Inference (SVI) [23], briefly mentioned
before. SVI provides scalable variational inference by making updates in the variational
parameters with subsamples of the data instead of using the whole data set at each step.
This results in using noisy estimates of the gradient when optimization takes place. SVI
enables fast variational inference with the gradient estimates that are computed in the
optimization procedure for training neural networks.

To the best of our knowledge using amortized variational inference where the genera-
tive model is not a neural network has not been explored extensively. The authors of [34]
explicitly mention the learning of a generative model, however, it is not the main focus of
the work and as such, a more in depth comparison with methods such as MCMC is not
provided. Details about the training procedure or difficulties of the amortized inference
problem are not provided. In the next section, we describe the model implemented for

addressing these issues.

17

3. Developed Model

In this section we describe the main problem that we solve in this work. To start with,
we describe the parametric models that will be used in this work. Using this information
we describe the data over which we will perform amortized variational inference and how
it is generated. Finally, we will describe the inferecence procedure that we follow to infer

the parameters of the parametric models that we use.

3.1 Data

To evaluate the use of amortized variational inference we make use of two parametric
models for which we will infer the posterior distribution of the parameters. Since the
objective of this work is to determine whether or not amortized inference serves as an
alternative to MCMC, we make use of synthetic data that we generate from the parametric
model of choice. We will be also adding normally distributed noise with zero mean and a
standard deviation of o.

The first parametric model that we consider is arguably the simplest and corresponds

to a two parameters model:

f(z) = azx +0. (3.1)

This model consists of parameters § = {a, b}, where the parameter a describes the
slope and b the intercept. This model serves the purpose of evaluating if the inference
procedure works at all. We expect that using amortized inference in this model results in
a correct estimation of the parameters. We describe the generative procedure to create
datasets that follow this model:

a ~ Uniform(0,10),
b ~ Uniform(0,10),
x ~ Uniform(—1,1),
f(x) =azx+ 0,
y ~N(f(z),0).

18

Note that we will use y to refer to the observed output of our model f when taking
into account the noise present in the data, where we have defined distributions over the
parameters as well as z. Note that here f both receives and outputs a scalar. The data
that we generate consists of several points {z; ;,v;;} where the index ¢ represents the
object and j the observation or data point within the object. Additionally, the value of
o is specified when creating the simulated dataset over which we will perform inference.
We provide results using different values of o.

The second model corresponds to a simplified version of the supernova light curve
model used in [7] as shown in equation [3.2] The model has parameters that allow it to
have a smooth rise until a maximum is reached, with a smooth fall after this. This means
the model can generate curves with shapes that mimic those found in supernovae. The
model was used in [7] to fit supernova light curves due to its shape. The parameters of the
model are a which acts as a scaling parameter, b which shifts the model, ¢, approximately
defines where the curve begins rising and ?,;s. and ts,; that describe how quickly the

curve rises and falls, respectively.

e~ (x—to)/traul

fx) =

For this work we only use two of the five parameters of the model. These are t,;,. and

al + 6_(x_t0)/trise + b (32)

tsan that are responsible for mainly controlling the shape of the resulting function. The
rest of the parameters were set to a =1, b =0, {; = 75 in order to simplify the model to

just two parameters, this results in:

e_(x_75)/tm'se

f(x) = 14+ e—(x—75)/tfa” :

(3.3)

The generative procedure that we use to generate data that follows equation [3.3]is the

following;:

trise ~ Uniform(0.2,10),
trau ~ Uni form(20,50),
x ~ Uniform(0,150),

6_(x_75)/tfall

T 1 e @ T5)/trise
y~N(f(z),0)

/()

Once again we assume that y has a mean equal to our parametric model with normally
distributed noise o that is set to a specific value at the moment of generating the dataset.
In the figure 3.1] we present examples from both generative models used to construct
the datasets for this work. The examples on the left corresponds to the model of equation

B.I]with o = 0.1, while the plot on the right considers examples from the model of equation

19

Datasets examples

10 -

-1.0 -05 0.0 0.5 1.0 0 50 100 150
X X

Figure 3.1: Examples from each dataset, on the left, we have a simple linear model where
the added noise is ¢ = 0.1, on the right side we have our second model that provides
shapes similar to supernovae, the noise injected in this case corresponds to o = 0.01

with o = 0.01.

3.2 Inference procedure

We are interested in performing Bayesian inference for a parametric model f with param-
eters 0, specifically for the case where we infer the parameters for multiple sets of obser-
vations. We denote as {x;;,v;,} the set of observations, where the index i € {1... M}
denotes a single observation, for example, one time series. On the other hand j € {1... N}
corresponds to the points of a specific observation, for example, the individual points of
the time series or curve. Here y; ; = f(z;;), that is, the output of the parametric model
f with parameters . Throughout this work we assume each curve or time series has
the same number of points, that is, N remains constant. In the rest of this section x,
denoted without indices, corresponds to a specific time series observations. As discussed

previously, to do this we compute the posterior over the model parameters:

p(z|0)p(0)
p(x)
While techniques such as MCMC converge to sampling from the exact posterior, they

p(0]z) =

can be expensive in terms of time for complex models. This is especially true for our

problem, where we wish to do inference multiple times. Instead of using MCMC methods,

20

we use variational inference, where we use ¢,(6) as an approximation to the posterior, and
then maximize the ELBO(2.6). Furthermore, we parameterize the parameters ¢ of g, (6|x)
with a neural network to learn global parameters instead of local ones for each x;, these
global parameters correspond to the weights of the neural network. This means that
we amortize the computation, enabling fast inference with just a forward pass through
the neural network. Notice, that we assume the parametric model f is known, and do
not use a neural network to model p(z|f) as it is typically done with deep generative
models, such as the VAE. Instead our approach directly uses the parametric model f in
the computation of p(x|@), this approach would be similar to taking a VAE and replacing
the decoder or generator network with f.

The literature around these methods involve the use of latent variables, commonly
written as z for this kind of models. These latent variables consider both the model
parameters #, as well as other possible causes. Here we assume that the latent variables
z consists only of the parameters 6.

In order to perform inference we maximize the ELBO. To do this we employ an al-
gorithm such as Stochastic Gradient Descent (SGD) or some extension as done when
training neural networks, this means we need to differentiate the ELBO. We take a step
back and consider differentiating the expectation of a function h(z) under a distribution
¢s(%) with respect to the ¢. Additionally consider z ~ g,, where z would be for example,

the parameters ¢. For this we can construct a naive estimator:

Vi, [h(2)) =V [a:(:)h(:)dz,

We can use monte carlo to estimate this quantity, but this estimator exhibits the
problem that it can produce high variance estimates of the gradient, requiring many
samples in order to bring the variance of the expectation down [35]. However, [29] and

[30] propose using the reparameterization trick as a way to produce estimates with lower

variance. Instead of sampling directly the latent variable z from g4, the reparameterization
trick uses a function g,(€,) as a transformation such that through the use of an auxiliary
noise variable € that comes from a distribution p, we can express z deterministically. More

precisely instead of z ~ ¢,(f|x) we use the following:

21

z = gy(€,x), with € ~ p(e).

Where the sampling process is now done in the variable €, and using the transformation
g we can instead recover z. As an example consider z ~ N (u, o), then g,(e,) = p+ oe
where € ~ N(0,1). With this reparameterization we use the estimate E,)[h(gs(€, 2))]
instead of the original Ey, [h(2)], thus we have:

Vg, [1(2)] = V(e [h(gs (€,)] (3.4)
= Ep[Voh(gs(e,)] (3.5)

This last expression allows us to work with the expected value of the gradient of the
function instead of differentiating its expected value, reducing the variance considerably.
The reparameterized expectation can be approximated with a Monte Carlo estimate:
%Zle h(ge(€e, x)) where L corresponds to the number of samples used to form the es-
timator. The use of Monte Carlo can also be applied to the equation to obtain an
estimate of the derivative.

A more in depth explanation of the requirements to use the reparameterization trick
is mentioned in the original work, as well as in [36]. Where the authors propose an
alternative way to reparameterize z, enabling the use of more distributions such as the
gamma, via implicit differentiation of the transformation g.

As mentioned above, we can express the ELBO as an expectation (Eq. , this
means the previous discussion on estimates of the gradient of expectations of functions
can be applied to the ELBO. Furthermore, since we can decompose the ELBO into both a
likelihood term and a Kullback-Leibler divergence (Eq. term, depending on our choice
of prior and posterior distributions we can use analytical expresions for the divergence.
This way, a lower variance estimate of the gradient can be obtained, where we only need
to use monte carlo to estimate the likelihood. We use this last information to express the

ELBO estimate £ that we will employ for the optimization procedure:

ELBO = E,[log p(z|0)] — Dx1(q5(0)||p(6))

£0,61:) = 7 > logp(wnlzaa) = Dics aa(012) Ip(0))

Where the variable z; has been sampled using the reparameterization trick described
before, that is z;; = g4(€, z;) with ¢ ~ p(e). The second term corresponding to the
divergence is computed analytically when available, such as when we use both a normal
prior and posterior. Additionally, we make use of mini batches of data for training, which

results in a new estimate:

22

Y -
Tij o Lij
Ma rise
(@) r
O-Cl 6trise
Kb Xt payy
a —»{Yij o l@ ——»{(Yij o
o
b je{l...N} Btsan je{l...N}
ie{l...M} ie{l...M}
J J
(a) Linear model. (b) Supernova model.

Figure 3.2: Probabilistic graphical model for both the linear and supernova models used
in this work. We show the priors for the parameters of each model. Note that we consider
the M curves and N data points of each one. The value of ¢ is assumed known and
constant.

Vi o) = VN 260
LM, ¢; X) = MZE(@,Q%). (3.6)
=1

We use £M to train the neural network such that the ELBO is optimized with a
particular choice of g4(f).

So far we have described the general optimization of the ELBO, however we still
need to define the components needed to perform inference. These are: the variational
approximation g,(6|z), the likelihood function p(x|f) and the prior p(f).

We use a normal likelihood in both the linear parametric model and the supernova
parametric model, where the mean is defined by the parametric model f using the param-
eters # sampled from the variational approximation and with noise ¢ which we assume
knowledge of.

As for the prior distributions used in this work we choose different priors for each
model. For the linear model we place a normal distribution with zero mean and unit
standard deviation for the parameters a and b. While in the supernova model we use
gamma, distributions as the prior to enforce positive parameters, more concretely, we
use a ['(3.25,0.63) for the ¢,;5 parameter and I'(16.3,0.47) for ¢;,;. The distributions are
chosen such that they have an approximate mean of 5 and 35 with standard deviations of 5
and 15 for the parameters t,;,. and ;4 respectively. Using gamma distributions provided
more stable training than using logt,;s. and logt,; for obtaining positive parameters.

Figures and show an overview of the prior and likelihood that we use for
inference in the models. The rectangles with N and M represent the fact that we have
N data points for each curve, with a total of M curves. Each of the parameters has a
prior shared by all M models, which correspond to normal priors for the linear model
and gamma priors in the case of the supernova model. The likelihood is expressed in the
generative process of y, where the parametric model f has parameters 6; = {a;, b;} in the

linear model, and 6; = {t,isc,tsau} for the supernova model. In addition, the model f

23

takes as input x; ; both cases to produce the mean of the normal distribution used in the
likelihood. Finally, the standard deviation is set to the known o of the dataset.

We illustrate the priors used for the parameters of the two models and their relationship
with the likelihood through the parametric model f.

At this point knowing both the prior and the likelihood of the models we can employ a
MCMC method to compute a posterior distribution over the parameters of the models. In
the case of variational inference we need to specify a variational distribution g4(f|z) as an
approximation to the posterior. We employ a normal distribution for the posterior of the
parameters a and b in the linear model (Eq. and for the supernova parametric model
(Eq. we instead use a gamma distribution on both ¢,;,. and ¢;,;. The reasoning for
using a gamma posterior is once again that we can force positive values of the parameters
with the gamma distribution.

Since we use both a normal posterior and prior in the linear model, we can obtain an
analytical expression for the divergence term of our objective function as described in Eq.
3.6 This means that we obtain lower variance estimates of the gradient than if we were to
use monte carlo for this term, since we would only need to compute an expectation for the
likelihood term. For the supernova model, given that we use gamma distributions both
for the variational posterior and the prior, we use the approach described in [36]. Using
this approach for the gamma distribution it is possible to construct a reparameterization
that uses the derivative of the Cumulative Distribution Function. This once again enables
lower variance gradients for the gamma distribution.

In order to perform the inference procedure that has been proposed, we must addi-
tionally describe the function that maps from observations to the variational parameters.
We employ a 1d convolutional neural network with residual connections [37] depicted in
figure 3.3l The use of convolutional networks for time series is mentioned in [38, 39,

where architectures such as the one used exhibit a good baseline performance.

Ua/atrise
<
O
—
o
=
0 0
<)) N [\l [\l o) < < < Q
= ™ ™ ™ < O O O Ko/ teall
= L=} L=} = J= = L=} L=} 3
= SLIS LT LY o Sl S S L, 8
— S y 2P 22 > = > 2P 22 » Q.
I~ o [Q — o o o go
O O O o O O >
(=] =1 3
1S) — — — 1S) — — —
= X X > o >] >
— & & & —) & & 0./B:.
™ ™ rise
— — <
e}
Ly &
Fry
Gb/Btfa“

Figure 3.3: Architecture of the CNN used in this work. Residual connections are shown
with dashed lines, 1x1 convolutions are used when increasing the number of channels. All
convolutions are done with kernel of size 3 and stride 1, except on 1x1 convolutions, where
the stride is 2.

24

This architecture consists of a series of 1d-convolutions followed by Batch Normalization [40]

and ReLU activation functions. The 1x1 convolutions with stride 2 are used when we in-
crease the number of channels from the initial 3, to 32 and later to 64, where the first 3
channels correspond to the observations in x, y and o. After the use of 1x1 convolutions
we use residual connections in the blocks that follow, depicted as dashed lines in the figure
above. Finally at the end of the network we use global average pooling before the fully
connected layers to predict the parameters of the variational approximation. The output
of the network corresponds to the means p and standard deviations ¢ for the normal pos-
terior used in the first model (Eq. and the parameters of rate a and concentration (3
of the gamma posterior used for the second model (Eq. .

To summarize, we are interested in performing Bayesian Inference and obtain the pos-
terior distribution of the parameters of a given model f with parameters #. In particular,
we are interested in the case where we have multiple sets of observations, for example,
multiple time series. In this case, techniques such as MCMC or Variational Inference
would need to be run for each instance of the problem.

We propose using Amortized Variational Inference to obtain an approximation to
the true posterior. To evaluate our method, we generate two artificial datasets from two
parametric models and added normally distributed noise. We then defined the components
needed to perform Bayesian Inference for these models: the likelihood and the prior.
Additionally for variational inference we defined the variational distributions g4(0|x) used.
Finally we described a neural network architecture used to amortize the parameters of the
variational approximation, which enables learning a global set of parameters (the weights

of the neural network) instead of local variational parameters for each observation.

25

4. Experiments and results

4.1 Experimental setup

To test our proposed model we generate the datasets described previously for different
levels of noise ¢. In total, we consider 10 different values for o, for a total of 10 datasets
to be used for each model. The values of o for the linear parametric model (Eq. start
from 0.1 and increase by 0.1 until 1.0. For the supernova parametric model (Eq. we
start from o = 0.01 and increase it by 0.01 until we arrive at a total of o = 0.1.

For each of the 20 datasets, 10 for each model with different values of o, we generate a
total of M = 10,000 simulated time series where each one has a total of N = 100 points.
From these 10, 000 we set aside 200 curves for testing, where the 9800 remaining are split
into 9000 for training and 800 for validation of the neural network. The datasets that we
generate are similar to the ones shown in figure 3.1] only that we consider multiple values
of 0.

We train a neural network for each of the 20 datasets. As input to the neural network
we use x;,y;, 0;, where o; is the noise that is present on each point, note that the model
would be able to work using only z;,y;. The input x;,y;, o; is used such that each one
is a channel in the convolutional neural network. For the implementation of the neural
network we use the PyTorch [41] library.

We follow the same training procedure for all datasets: we train the neural network
with Adam [42] with a weight decay of 107* as described in [43], using a learning rate
of 107, and parameters (8, 32) = (0.9,0.999) for the optimizer. We train all neural
networks for a total of 300 epochs with early stopping, where if the ELBO over the
validation data has not improved for 10 epochs we stop the training. We use a batch
size of 128 for all of the neural networks trained. Additionally, we consider L = 1 for the
monte carlo estimate of the likelihood in Eq. [3.6] Finally, before initiating the training
we initialize the parameters of the neural network according to [44].

For the supernova parametric model (Eq. , we improve stability when training by
using the natural logarithm of the model and the logarithm of the sum of exponentials,
also called the logsumexp trick(Eq. , to improve numerical stability. With this we can
avoid overflow in the computation of sum of the exponentials before taking the logarithm.

After that we can use an exponential function to recover the original desired output.

26

logsumexp(zy, ..., x,) = log Z exp(x;),
i=1

= 2" +log Z exp(z; — "), (4.1)

i=1

* .
Where z* = max {z;}.

f(z) = exp(—logsumexp((:Et;al?), (xt;al?) — (wt;?))) (4.2)

Additionally we normalize the reconstruction of the neural network, that is, after we
sample the parameters and reconstruct y; using ¢, and t,; sampled from the posterior,

we perform min-max normalization, where we set the new value of f(x) to:

h = f(z)
- h—min(h)
J(w) = maz(h) — min(h)

This later normalization step allow us to train the model which has exponentials more
easily, however, note that in modifying this value the noise that is used in the likelihood
does change, we do not take this change into account and instead use the original o value
of the dataset. This normalization is used only for the parametric supernova model and
not in the case of the first one, corresponding to a simple linear relationship.

After training we test the neural network on the remaining 200 instances of the cor-
responding dataset. We also evaluate the inference of MCMC to serve as our baseline,
in particular, we use the NUTS sampler from Stan [14] to fit the corresponding model.
With MCMC we can compare the quality of the variational approximation with respect
to a more precise method where the sampler is run on each instance of the model. Note
that this sampler also uses gradient information in order to sample from the posterior
distribution.

For MCMC we use a total of 4 parallel chains, with a burn-in or warm up of 2000
samples, a total of 4000 samples per chain with thinning of 1 which means we skip 1
sample in the chain. With this choice of parameters for the sampler we end up with
a total of 2000 samples per chain or 8000 in total. Importantly note that the use of
normalization for the supernova model is exclusive to the neural network procedure used
for inference, we do not employ said normalization for the MCMC sampler.

We measure the time taken by Amortized Variational Inference to train the neural
network a total of five times. For this purpose, the network is trained for the total of 300
epochs without early stopping to measure a worst case scenario. We use the supernova

parametric model with noise added of o = 0.05 for measuring time. The supernova model

27

is used since it has higher computational cost when compared to the linear model. We
measure the time that it takes the neural network and MCMC in estimating the model
parameters for the 200 curves used for testing. The time taken to complete inference on

the testing data is also measured five times.

28

4.2 Results

The average time it took the neural network to train with 300 epochs was 2187.24 4+ 32.54
seconds. Inference on the 200 testing curves took the neural network an average time of
2.27+1.07 seconds. On the other hand MCMC took an average time of 2047.17 + 140.41
seconds on the same 200 curves used for testing and measuring time.

In order to demonstrate that the MCMC sampler is run until convergence we present
trace plots on three examples from each model. We consider ¢ = 0.5 for the examples of

the linear model and o = 0.05 for the supernova model.

/\L
\

250 500 750 1000 1250 1500 1750

b
9.85 9.90 9.95 10.00 10.05 10.10 10.15 10.20 250 500 750 1000 1250 1500 1750
) Mean posterior: a = 0.84 £+ 0.08 and b = 9.93 + 0.05.
a
5.00
4754
4501 , , , , , ,
0 250 500 750 1000 1250 1500 1750
b
5.0
48
475 4.80 4.85 4.90 4.95 500 5.05 5.10 0 250 500 750 1000 1250 1500 1750

) Mean posterior: a = 4.89 + 0.08 and b = 5.02 + 0.05.

a

250 500 750 1000 1250 1500 1750
b

j/\

250 500 750 1000 1250 1500 1750
(¢) Mean posterior: a =9.90 £ 0.08 and b = 1. + 0.05.

Figure 4.1: Trace plots for three examples of the linear model. The vertical lines represent
the true parameters that were used to generate the data. All examples use o = 0.5.

29

In figure we show the three trace plots corresponding to the linear parametric
model. We see that we do not recover always the original parameters exactly. In the first
trace plot of figure we get a mean value of @ and b of 0.84 and 9.93 respectively, where
the true values are 1. and 10., resulting in an error of 0.16 and 0.07 if using the mean of
the posterior distribution. For the second trace plot we obtain an error of 0.11 for the
parameters a and 0.02 for the parameter b when using the mean of 4.89 and 5.02. Finally,
in the last example we get an error between the true value and the mean of the posterior

of 0.10 for the parameter a and 0 for the parameter b.

MCMC linear model fit

—5.0 1
—— a=1.0,b=10
—7.54 ! _|_ a = 5.07 b=5.0
4 —— a=10.0,b=1.0
T T T ! A T T T T
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

X

Figure 4.2: Mean fit when sampling parameters a and b from the posterior distributions
obtained by MCMC. Data corresponds to the one used in figure @

In addition to the trace plots provided for the linear model, we also plot the mean
value of the model when sampling the parameters a and b from the posterior distribution.
This is shown in figure [4.2] where we see that each fit is close to the noisy observations.
We measure the error between observations and the mean fit using the Mean Absolute
Error (MAE), shown in equation 4.3l The Mean Absolute Error represents the average
error between the predictions and the true values. The MAE we obtain for the three
examples are 0.41 for the first trace plot, 0.44 for the second and 0.38 for the third. All
three examples have errors that are within the added noise that was used in the data

generation process, corresponding to ¢ = 0.5 in this example.

N
1
MAE = — i — Ui 4.
N 2l = (1.3)

For the supernova parametric model we show the three example trace plots in figure
4.3l As with the previous linear model, we do not recover exactly the true parameters,

depicted with the vertical line. For the first trace plot we have a mean posterior of

30

trise trise

0.75
0.50
0.25
02 03 04 05 06 07 08 09 0 250 500 750 1000 1250 1500 1750
tfall tfall
52.5
50.0
475
46 48 50 52 54 0 250 500 750 1000 1250 1500 1750
) Mean posterior: t,;se = 0.44 + 0.11 and tray = 49.66 £ 1.17.
trise trise
6
5
425 00 525 5.5 6.00 1000 1250 1500 1750
tfall tfall
375
35.0
325
32 33 34 35 36 37 38 39 0 250 500 750 1000 1250 1500 1750
(b) Mean posterior: tpjse = 5.06 = 0.24 and t ¢, = 35.64 £ 0.24.
trise trise
16
14
135 140 145 150 155 160 165 17.0 0 250 500 750 1000 1250 1500 1750
tfall tfall
2.5
20.0
18 19 20 21 22 23 24 0 250 500 750 1000 1250 1500 1750

(c) Mean posterior: tyise = 15.19 +0.48 and ¢, = 20.58 & 0.81.

Figure 4.3: Trace plots for three examples of the supernova parametric model. The vertical
lines represent the true parameters that we used to generate the data. All examples use
o = 0.05.

tirise = 0.44 £ 0.11 and ty,; = 49.66 £ 1.17 which results in an error of 0.06 and 0.34
respectively when using the mean value. For the second trace plot the mean of the
posterior parameters is t;5c = 5.06 & 0.24 and ¢4 = 35.64 + 0.24 with an error of 0.06
and 0.64 from the true parameters of 5. for t,;, and ty,; = 35.64. Finally, the last trace
plot shows a mean posterior of #;;c = 15.19 & 0.48 and t¢,; = 20.58 £ 0.81 with an error
of 0.19 and 0.81.

In figure[d.4 we show the mean of the parametric supernova model when the parameters

trise and ty,y; are sampled from the posterior distributions. We obtain a MAE of 0.04

31

MCMC supernova model fit

1.0 7 rise = 0.5, t o = 50.0

| t

—— trise = 5.0, tray = 35.0
!

| trise = 1507 tfa,ll = 20.0

0.8 1

0.6

0.2 1

0.0 4

—0.2 - T T T T T T T T
0 20 40 60 80 100 120 140

Figure 4.4: Mean fit when sampling parameters ¢,;,. and ¢, from the posterior distribu-
tions obtained by MCMC. Data corresponds to the one used in figure 4.3

across all fits, this shows that even though we do not recover the exact parameters in the
posterior, we obtain a good fit of the model to the data.

For the neural network we present the training curves information for both models in
figure with some levels of sigma. We show that the neural network has been trained
until convergence, even considering the use of early stopping.

To show the results on the test data we plot in figure [4.6] the true parameter values
on the x-axis and the mean and standard deviation from the posterior on the y-axis both
by our method and by MCMC. We show that MCMC is more precise in recovering the
true parameters that generated the data, however, note that each MCMC prediction is
the result of running the MCMC sampler again, while the amortized approximation just
performs a single forward pass through the neural network. The results that we present
in figure [4.6] correspond to the lowest amount of noise present in the generated datasets,
with ¢ = 0.1 for the linear model and ¢ = 0.01 for the supernova one.

We see that for the parameters of the linear model both the neural network and MCMC
are able to recover the original parameters. However, for the supernova parametric model
the proposed inference procedure fails to perform as well as MCMC. This is seen more
clearly in figure for higher values of the parameter t,;, where the inference network
produces higher estimates. This could be due to the normalization procedure that we use
in this case, since we do not take into account normalization of the noise of the dataset.
Finally, note that the proposed model produces estimates with higher error or standard
deviation, meaning that we are less certain about the predicted value.

Since the performance of the neural network is expected to diminish as we increase

the noise in the dataset we also present results for when o = 0.9 and ¢ = 0.09 for the

32

105 4

104 4

-ELBO

108 4

102-

105 4

104 4

102 4

10! -

0 20 40 60 80 100

Epoch

(a) Linear parametric model training curve.

0 20 40 60 80 100 120

Epoch

(b) Supernova parametric model training curve.

Figure 4.5: Training curves for both models for different levels of noise ¢ in the dataset, the
solid lines represent the training data while the dashed lines correponds to the validation

data.

33

(a) Results for the parameters a and b of the linear model

a b
10 Inference Network " 10 Inference Network
MCMC 0 MCMC
@© 2
° °
3 3
9 3
=] =]
9] @
~ =~
[A
0 2 4 6 8 10 0 2 4 6 8 10
True a True b

(b) Results for the parameters ¢,;s. and ¢ fatl of the supernova model

trise tfall

Inference Network 60 Inference Network

101 MCMC MCMC

Predicted trise
Predicted tfall

0 2 4 6 8 10 20 30 40 50
True trise True tfall

Figure 4.6: Results on the test set for the inference network and MCMC. In @) the
dataset has o = 0.1, while the supernova model depicted in (]E[) has ¢ = 0.01.

34

linear and supernova models respectively. This is shown in figure where we see the
inference network exhibit notable worst performance in the supernova parametric model
with parameters ¢,;s. and t74;. It can be seen that the mean prediction from the posterior
is higher than the true value consistently, however, the deviation in these predictions is
higher as well.

In order to show how the standard deviation of the predicted parameters behaves as
we increase the amount of noise in the dataset, we plot the noise ¢ in the dataset versus
the mean and standard deviation of the error in Figure [£.8] We would expect MCMC to
scale linearly as we increase ¢ in the dataset and for the inference network to not scale
as good. The results show that MCMC behaves as predicted, with the inference network
being erratic on the results from the linear model in Figure , with the performance

being as expected for the supernova model parameters in Figure [4.8b]

35

(a) Results for the parameters a and b of the linear model

a b
10 4 Inference Network \ 10 - Inference Network
MCMC f . MCMC
© Q
o o
2 2
9 3
s} s}
o} 5]
~ ~
~ A
0 2 4 6 8 10 0 2 4 6 8 10
True a True b

b) Results for the parameters t,;s. and t ¢, of the supernova model
f

trise tfall

Inference Network Inference Network
124 © MCMC 604 = MCMC

Predicted trise
Predicted tfall

20 30 40 50
True trise True tfall

Figure 4.7: Results on the test set for the inference network and MCMC, for @ correspond-

ing to the linear model the dataset has ¢ = 0.9, while for the supernova model depicted
in @ the noise corresponds to o = 0.09.

36

(a) Noise in a and b

0.15
£ 0.104
[+

0.05 -

—— Inference Network
— MCMC
0.15 A

2 0.10
[+

0.05 -

0.00 T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Dataset o

(b) Noise in tyise and tgqy

1.254
1.00 4

0.75 A

o (trise)

0.50 -

0.25 -

0.00 -

—— Inference Network
—— MCMC

/—%M

OAE)I 0.‘02 0463 OAE)4 0.65 04‘06 OAE)7 O.E)S 0.69 Otl
Dataset o

6

IS
L

o (tfall)

IN)
N

Figure 4.8: Noise in the parameters of the models as the noise ¢ in the dataset increases,
in green we see the behaviour of MCMC, while blue corresponds to the inference network
trained.

37

4.3 Discussion

The results in terms of execution time show that when performing inference the neu-
ral network is faster than MCMC. However, there is a need to perform a training step
previously. This training step can be as slow as performing MCMC on the test dataset
but, the training step has considerably more data: 9000 examples for training and 600
for validation versus 200 for testing. Consider two factors that make MCMC slower for
performing inference in this situation. First, we are we are dealing with 4 parallel chains
for each of the 200 curves with a work done on CPU, this means we need a high core
count to distribute the work. Second, MCMC is inherently a sequential algorithm, where
each step depends on the previous one. On the other hand, the neural network can easily
be parallelized on GPUs to achieve lower times when compared with MCMC, as well
as avoiding the sequential nature of MCMC. The neural network can be trained in less
epochs or with better hardware resulting in less time overall. Additionally, one benefit
of the neural network is that once trained the inference time is almost a hundred times
faster than MCMC.

Our results show that Amortized Variational Inference is capable of obtaining com-
parable results to a MCMC sampler when the model is simple like the parametric linear
model (Eq. B.1)). The results show this is the case when the noise is as small as o = 0.1
or as large as 0 = 0.9 as demonstrated in the figures [1.6] and [4.7]

As for the slightly more complex supernova parametric model (Eq. which contains
exponential functions, the performance of the amortized variational inference procedure
is close to MCMC when the noise is small as seen in Figure [1.6b] However, as the noise
in the dataset increases we see the performance degrades (see Figure , where we are
far from the true parameter value, while MCMC still manages to remain close to the line
that represents the true parameters.

The good performance of MCMC is to be expected, since we run an individual algo-
rithm for each instance of the dataset. With MCMC we recover the true parameters from
the posterior distribution, even when the noise is relatively high, as shown in figures
and [£.3] where 0 = 0.5 and o = 0.05 for each model respectively. Even though MCMC
does not recover exactly the parameters of the supernova model, we see that it may be
due simply to the noise, since the mean fit when sampling from the posterior results in
an acceptable reconstruction with MAE = 0.04 in the three examples that are provided
(see Figure [4.4]

Although our proposed inference procedure does not manage to recover the true pa-
rameters in the supernova model, it exhibits high variance in its predicted parameters.
This high variance can be interpreted as the model having low confidence in the prediction
that is making. We believe that the poor performance may be due to the use of normal-
ization (Eq. on this model which may affect affect the noise used in the computation.

However, removing this normalization leads to a less stable training, due to exploding

38

Table 4.1: -ELBO, negative log likelihood and divergence on the dataset corresponding
to the linear parametric model as ¢ increases.

o -ELBO -LL Dgr,
0.1 79.74 60.21 19.54
0.2 58.12 39.79 18.32
0.3 97.69 81.21 16.48
0.4 87.90 69.68 18.22
0.5 101.21 82.32 18.90
0.6 116.88 97.61 19.27
0.7 130.78 110.30 20.48
0.8 150.83 122.05 18.77
0.9 153.08 134.94 18.13
1.0 164.72 145.52 19.20

gradients when we perform backpropagation.

As for the results that show how the algorithms behave when the noise in the re-
spective dataset increases (Figure . MCMC behaves as we expect, seing an increase
proportional to the increase in ¢ in every parameter. On the other hand, the inference
network presents an erratic behaviour for the parameters of the linear model a and b,
where we see an unexpected spike around o = 0.3, while for ¢,;,. and t,; the rise in
noise was expected to be higher, considering that it tends to estimate higher values for
the parameters when the noise is near ¢ = 0.9.

In table we explicitly show the validation -ELBO (Eq. , including both the
expected negative log likelihood term and Kullback-Leibler divergence term as o increases
for the linear model. We see that for ¢ = 0.3 the models experience a sudden jump in
the ELBO, and that this is caused by a reduction in the likelihood value. This could
mean that the neural network fails to learn the mapping from the data to the variational

parameters that correctly reconstructs the observed data.

39

5. Conclusion

We have used amortized variational inference for two parametric models, the first model
being a linear one (Eq. , while the second model corresponds to a supernova para-
metric model (Eq. and compared their performances with an MCMC method. We
evaluate both our proposed method and MCMC on synthetic data, generated using the
two parametric models. We provide results when different amounts of noise are added
to the data, allowing us to compare the performance of both algorithms in presence of
different levels of noise. We see how both methods behave in presence of more noise in
the data, when the model is simple or slightly more complex.

Our work suggests that for simple models we are able to estimate the posterior of the
parameters as well as MCMC, even as we increase the amount of noise present in the
data. However, for slightly complex models the gap between the two compared methods
increases. This may be due to the use of normalization in the supernova model, where
if the noise is high our method fails to recover the original parameters that were used
to generate the data. On the other hand, our method exhibits a high uncertainty in the
predicted value, indicating that it is not confident in its prediction when the noise is high.

This work shows promising results that more complex models may be approximated
correctly with more complex techniques. The implemented method is one of the simplest
forms to perform amortized inference and does not differ significantly from the works of
[29] and [30].

Future work regarding the use of amortized variational inference include:

e Performing inference for models over real data. One example where performing
Bayesian inference multiple times may be desired is in the analysis of multiple time
series, where we wish to fit a model for each time series and obtain estimates of the

parameters for each one.

e Inference for more complex models, these could be either in the number of param-
eters or in the computation of the model. The former is useful for more expressive
models or models where we have a high number of parameters for which we wish to
perform Bayesian inference, while the latter is interesting in that we could have a
model which itself has a high computational cost which could be avoided once we

train the inference network.

e Different neural network architectures, in this work we have use a 1d convolutional

40

neural network, however for other data types we may wish to consider another
architecture, for example, in time series the use of recurrent neural networks can

better model time dependencies.

More powerful posterior approximations, we have used a simple posterior approxi-
mation scheme that is not flexible enough for more complex posterior distributions
such as multi modal ones. Using more expressive posterior approximations would
improve the performance of the model. These could be in the form of better prior
distributions [45] or better posteriors either via a tighter bound on the ELBO[46]
or with flexible distributions [47].

41

Glossary

CNN Convolutional Neural Network.

ELBO Evidence Lower Bound.

HMC Hamiltonian Monte Carlo.

MAE Mean Absolute Error.

MCMC Markov Chain Monte Carlo.

NUTS No U-Turn Sampler.

ReLU Rectified Linear Unit.

SGD Stochastic Gradient Descent.

SVI Stochastic Variational Inference.

VAE Variational Auto Encoder.

42

Bibliography

1

2l

3]

4]

[5]

(6]

17l

8]

19]

[10]

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

7. Ghahramani, “Probabilistic machine learning and artificial intelligence,” Nature,
vol. 521, no. 7553, p. 452, 2015.

S. Brooks, A. Gelman, G. Jones, and X.-L.. Meng, Handbook of markov chain monte

carlo. CRC press, 2011.

S. P. Brooks and G. O. Roberts, “Assessing convergence of markov chain monte carlo
algorithms,” Statistics and Computing, vol. 8, no. 4, pp. 319-335, 1998.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review
for statisticians,” Journal of the American Statistical Association, vol. 112, no. 518,
pp. 859-877, 2017.

S. Gershman and N. Goodman, “Amortized inference in probabilistic reasoning,” in

Proceedings of the annual meeting of the cognitive science society, vol. 36, 2014.

Bazin, G., Palanque-Delabrouille, N.; Rich, J., Ruhlmann-Kleider, V., Aubourg, E.,
Le Guillou, L., Astier, P., Balland, C., Basa, S., Carlberg, R. G., Conley, A., Fouchez,
D., Guy, J., Hardin, D., Hook, I. M., Howell, D. A., Pain, R., Perrett, K., Pritchet, C.
J., Regnault, N.; Sullivan, M., Antilogus, P., Arsenijevic, V., Baumont, S., Fabbro,
S., Le Du, J., Lidman, C., Mouchet, M., Mourao, A., and Walker, E. S., “The core-
collapse rate from the supernova legacy survey,” A&A, vol. 499, no. 3, pp. 653-660,
2009.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of state calculations by fast computing machines,” The journal of chemical
physics, vol. 21, no. 6, pp. 1087-1092, 1953.

W. K. Hastings, “Monte carlo sampling methods using markov chains and their ap-
plications,” 1970.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid monte carlo,”
Physics letters B, vol. 195, no. 2, pp. 216222, 1987.

43

[11] M. Betancourt, “A conceptual introduction to hamiltonian monte carlo,” arXiv
preprint arXiv:1701.02434, 2017.

[12] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: adaptively setting path
lengths in hamiltonian monte carlo.,” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1593-1623, 2014.

[13] A. Patil, D. Huard, and C. J. Fonnesbeck, “Pymc: Bayesian stochastic modelling in
python,” Journal of statistical software, vol. 35, no. 4, p. 1, 2010.

[14] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic programming

language,” Journal of statistical software, vol. 76, no. 1, 2017.

[15] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science &
Business Media, 2012.

[16] M. Betancourt and M. Girolami, “Hamiltonian monte carlo for hierarchical models,”

Current trends in Bayesian methodology with applications, vol. 79, p. 30, 2015.

[17] M. K. Cowles and B. P. Carlin, “Markov chain monte carlo convergence diagnostics: a

comparative review,” Journal of the American Statistical Association, vol. 91, no. 434,

pp- 883-904, 1996.

[18] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal, “Markov chain monte carlo in
practice: a roundtable discussion,” The American Statistician, vol. 52, no. 2, pp. 93—

100, 1998.

[19] W. A. Link and M. J. Eaton, “On thinning of chains in mcme,” Methods in ecology
and evolution, vol. 3, no. 1, pp. 112-115, 2012.

[20] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to
variational methods for graphical models,” Machine learning, vol. 37, no. 2, pp. 183—
233, 1999.

[21] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms. New York,
NY, USA: Cambridge University Press, 2002.

[22] C. Zhang, J. Butepage, H. Kjellstrom, and S. Mandt, “Advances in variational infer-

ence,” IEEE transactions on pattern analysis and machine intelligence, 2018.

[23] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational infer-
ence,” The Journal of Machine Learning Research, vol. 14, no. 1, pp. 1303-1347,
2013.

[24] R. Ranganath, S. Gerrish, and D. Blei, “Black box variational inference,” in Artificial
Intelligence and Statistics, pp. 814-822, 2014.

44

[25]

[26]

[27]

28]

[29]

[30]

[31]

32|

[33]

[34]

[35]

[36]

[37]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in neural information processing systems,
pp. 10971105, 2012.

[. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, pp. 3104-3112,
2014.

[. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, pp. 2672-2680, 2014.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and
approximate inference in deep generative models,” arXiv preprint arXiv:1401.4082,
2014.

Y. Gal, “Uncertainty in deep learning,” 2016.

D. Ritchie, P. Horsfall, and N. D. Goodman, “Deep amortized inference for proba-
bilistic programs,” arXiv preprint arXiv:1610.05735, 2016.

A. Stuhlmiiller, J. Taylor, and N. Goodman, “Learning stochastic inverses,” in

Advances in neural information processing systems, pp. 3048-3056, 2013.

A. Speiser, J. Yan, E. W. Archer, L. Buesing, S. C. Turaga, and J. H. Macke, “Fast
amortized inference of neural activity from calcium imaging data with variational
autoencoders,” in Advances in Neural Information Processing Systems 30 (I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), pp. 4024-4034, Curran Associates, Inc., 2017.

J. Paisley, D. M. Blei, and M. I. Jordan, “Variational bayesian inference with stochas-
tic search,” in Proceedings of the 29th International Coference on International
Conference on Machine Learning, ICML’12, (USA), pp. 1363-1370, Omnipress, 2012.

M. Figurnov, S. Mohamed, and A. Mnih, “Implicit reparameterization gradients,” in
Proceedings of the 32Nd International Conference on Neural Information Processing
Systems, NIPS’18, (USA), pp. 439-450, Curran Associates Inc., 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770-778, 2016.

45

38

[39]

[40]

|41]

42|

[43]

[44]

[45]

[46]

[47]

Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep
neural networks: A strong baseline,” in 2017 international joint conference on neural
networks (IJCNN), pp. 1578-1585, IEEE, 2017.

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learn-
ing for time series classification: a review,” Data Mining and Knowledge Discovery,
vol. 33, no. 4, pp. 917-963, 2019.

S. loffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International

Conference on Learning Representations, 2019.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256, 2010.

J. M. Tomczak and M. Welling, “Vae with a vampprior,” arXiv preprint
arXiv:1705.07120, 2017.

Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,”
arXiv preprint arXiv:1509.00519, 2015.

D. J. Rezende and S. Mohamed, “Variational inference with normalizing flows,” arXiv
preprint arXiv:1505.05770, 2015.

46

	Introduction
	Bibliography discussion
	Bayesian Inference
	Markov Chain Monte Carlo
	Metropolis-Hastings
	Hamiltonian Monte Carlo
	Disadvantages

	Variational Inference
	Amortized Variational Inference

	Developed Model
	Data
	Inference procedure

	Experiments and results
	Experimental setup
	Results
	Discussion

	Conclusion

