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jandro Belmar, and all my friends from the CECs’ attic where I enjoyed many good

times.

I am also thankful to the Universidad de Concepción for my undergraduate times.

In particular, to the Professors Fernando Izaurieta, Patricio Salgado, and Julio Oliva.

I also want to acknowledge the secretary Soledad Daroch.

I wish to thank all the community of Niels Bohr Institute (NBI) for providing an

i



excellent environment for my doctorate during my short visit. Particularly to the

Modern Approaches to Scattering Amplitudes’s group. I want to thank Professor

Niels Obers for his support during that visit.

I would like to thank my colleagues who have encompassed a vital part of my

academic career. In particular, to Professor Joaquim Gomis for providing support

and fruitful collaborations. I am also grateful to my friend-colleague Ernesto Frod-

den for his essential support during my academic career and life.

Also a big part of my development as a scientist was due to the collaborations

with Luis Avilés, Roberto Casalbuoni, Adolfo Cisterna, Nikolaos Dimakis, Pablo

Pais, and Patricio Salgado-Rebolledo.

Finally, I would thank Cristina for her enormous support and patience during

my life. Her companionship was and will be part of my life.

ii



iii



Contents

Acknowledgments i

Abstract ix

Resumen xi

1 Preamble 3

2 Introduction to Part I 10

3 SU(2) Skyrme model 14

3.1 SU(2) Skyrme model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Energy stabilization and topological charge . . . . . . . . . . . . . . . . . 19

3.1.2 Spherical hedgehog ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Generalized hedgehog ansatz . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 The Gauged Skyrme Model 26

4.1 The U(1) Gauged Skyrme Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Gauged topological charge . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Brief review of Skyrmions at finite volume . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Gauged Skyrmion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



4.2.2 Gauged Time Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Extended duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 External periodic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Tiny time periodic fields in Skyrme background . . . . . . . . . . . . . . . 46

5 Conclusion of Part I 50

6 Introduction to Part II 53

6.1 Symmetries in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Gauge symmetries and trivial currents . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Charges in General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Surface Charges in Gauge Theories 62

7.1 Brief review of phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Derivation of Surfaces Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.1 Covariant Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.2 Surface Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Equivalence between Lee-Wald and Barnich-Brandt procedures for exact symmetries 78

7.4 Gravity theories with metric variables . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4.1 Einstein-Hilbert-Λ theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4.2 Einstein-Hilbert-Maxwell action . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4.3 Einstein-Hilbert-Skyrme action . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5 Gravity Theories in Differential Form Language . . . . . . . . . . . . . . . . . . . 88

7.5.1 Einstein-Cartan formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.5.2 Einstein-Cartan-Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5.3 Topological terms effect on surface charges . . . . . . . . . . . . . . . . . 100

7.5.4 Einstein-Cartan-Maxwell . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

v



7.5.5 Einstein-Cartan with Torsion: Two Examples . . . . . . . . . . . . . . . . 104

7.5.6 Chern-Simons action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Examples: Surface Charges in Action 112

8.0.1 Charged and rotating black hole . . . . . . . . . . . . . . . . . . . . . . . 112

8.0.2 (2 + 1)−Black Hole with Rotation and Electric Charge . . . . . . . . . . . 118

8.0.3 Lorentzian Rotating Taub-NUT space-time . . . . . . . . . . . . . . . . . 124

9 Conclusion to Part II 134

Conclusions 134

A Three differential form operations 137

B Derivation of the Skyrme field equations 140

C SU(2) group 143

D Derivation of the reduced system of equations (4.23), (4.26) and (4.43) 147

E Derivation of Surfaces Charges in Metric Formalism 151

E.1 Einstein-Hilbert-Maxwell action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

E.2 Einstein-Hilbert-Skyrme action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

E.3 Einstein-Cartan-Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

E.4 Einstein-Cartan-Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

E.5 Einstein-Cartan in (2 + 1)-dimensions plus a Torsional Term . . . . . . . . . . . 157

E.6 From a Chern-Simons perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 160

E.7 Einstein-Cartan-Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

E.8 D-dimensional Chern-Simons form . . . . . . . . . . . . . . . . . . . . . . . . . . 167

E.8.1 D-CS surface charge from the contracting homotopy operator . . . . . . . 171

vi



Bibliography 173

vii



List of Figures

2.1 Tony. H. R. Skyrme in 1946. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Energy density T00 of the Skyrmion. . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Skyrme profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Gauge potential Aµ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Magnetic field B ≡ b′(r). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 The solutions for the Eqs. (4.31) and (4.32) correspond to the values: λ = 0.04,

l = 0.47, K = 1.0, p = 1.0, and q = 1.0. Solving for b ≡ −b2 = b3. The above
plots clearly show the suppression of the magnetic field (which is non-vanishing
only in the γ and φ directions) in the core of the Skyrmion. . . . . . . . . . . . . 36

4.6 Energy density T00 of the Time Crystal. . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Time Crystal profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Gauge potential Aµ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.9 Electric field E ≡ b′(r). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.10 The solutions for the Eqs. (4.47) and (4.48) correspond to the values: λ = 0.04,

l = 0.47, ω = 0.95, K = 1.00, p = 1.00, and q = 1.00. Solving for bTC ≡ b1.
Unlike the gauged Skyrmions, here the electric field suffers a suppression in the
core of the time crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Emmy Noether [1882-1935]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1 Integration region: a volume delimited by two spheres and two cones. The wavy
blue lines indicate the Misner strings symmetrically present (C = 0). . . . . . . 127

viii



Abstract

The present thesis consists of two parts. Part I is devoted to the construction of

the first analytic examples of topologically non-trivial solutions of the U(1) gauged

Skyrme model within a finite box in (3 + 1)-dimensional flat space-time. There are

two types of gauged solitons. The first type corresponds to gauged Skyrmions living

within a finite volume. The second corresponds to gauged time-crystals (smooth solu-

tions of the U(1) gauged Skyrme model whose periodic time-dependence is protected

by a winding number). The notion of electromagnetic duality can be extended for

these two types of configurations in the sense that some of the electric and magnetic

field components can be interchanged. These analytic solutions show very explicitly

the Callan-Witten mechanism (according to which magnetic monopoles may “swal-

low” part of the topological charge of the Skyrmion) since the electromagnetic field

contribute directly to the topological charge of the gauged Skyrmions. As it hap-

pens in superconductors, the magnetic field is suppressed in the core of the gauged

Skyrmions. On the other hand, the electric field is strongly suppressed in the centre

of gauged time crystals.

Part II is concerned with studying a new derivation of surface charges in gauge

theories. Part of the focus is on reviewing the method to compute quasi-local surface

charges for gauge theories to clarify conceptual issues and their range of applicabil-
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ity. The surface charges found are quasi-local, explicitly coordinate independent, and

gauge invariant. Many surface charge formulas for gravity theories are expressed in

metric, tetrads-connection, and even Chern-Simons connection. For most of them,

the language of differential forms is exploited and contrasted with the more popu-

lar metric components language. The study focuses on General Relativity theory

coupled with matter fields as Maxwell, Skyrme, and spinors. To derive the sur-

face charges, we specify the phase space by identifying the symplectic structure.

We use the formulation of the covariant phase space method. Here the symplectic

structure has two parts: the standard Lee-Wald term plus a contribution from the

boundary term read from the action. The latter is fixed by requiring the on-shell

and linearized equations of motion condition, and exact symmetry condition. These

conditions guarantees the conservation of the symplectic structure in phase space,

and leads to the new concept of “symplectic symmetry”. Given the “conservation

law” satisfying the symplectic structure, we construct the corresponding charges,

the “symplectic symmetry generators”. The explicit expression of the charges corre-

sponds to a function over the phase space.

We find the remarkable property that, in contrast with usual Noether procedures to

compute charges, the boundary terms and even topological terms do not affect the

surface charges. On the other hand, by studying two concrete examples, we also ex-

amine how torsion affects the surface charges. Both of them conclude that the torsion

field does not affect the general formula for the surface charges. Furthermore, three

examples with ready-to-download Mathematica notebook codes show the method in

full action. The charges and their associated first law of thermodynamics are derived

for: the BTZ black hole, the charged rotating (3 + 1)-black hole, and the Lorentzian

rotating Taub-NUT space-time.
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Resumen

La presente tesis consiste de dos partes. La Parte I está dedicada a la construcción

de los primeros ejemplos anaĺıticos de soluciones topológicamente no-triviales del

modelo U(1)-gauged-Skyrme dentro de una caja finita en un espacio plano (3 + 1)-

dimensional. Existen dos tipos de gauged-solitones: El primer tipo corresponde

a gauged-Skyrmions viviendo dentro de un volumen finito. El segundo tipo cor-

responde a gauged-cristales temporales, soluciones suaves del U(1)-gauged-Skyrme

cuya dependencia temporal periódica es sustentada por un “winding number” no-

trivial. Existe una noción de una dualidad electromagnética para estos dos tipos

de configuraciones en tanto algunas de las componentes del campo eléctrico y el

magnético pueden ser intercambiadas. Estas soluciones anaĺıticas muestran clara-

mente manifestaciones del mecanismo de Callan-Witten (el cual señala que los monopo-

los magnéticos pueden “tragar” parte de la carga topológica del Skyrmion) ya que el

campo electromagnético contribuye directamente a la carga topológica de los gauged-

Skyrmions. Tal como sucede en superconductores, el campo magnético es suprimido

en el centro de los gauged-Skyrmions. Mientras que el campo eléctrico es fuertemente

suprimido en el centro de los gauged-cristales temporales.

La parte II está dedicada al estudio de una nueva derivación de cargas super-

ficiales en teoŕıas de gauge. Parte del enfoque consiste en revisar el método para
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calcular cargas superficiales cuasi-locales para teoŕıas de gauge con el fin de aclarar

los problemas conceptuales y su rango de aplicabilidad. Las cargas superficiales

son cuasi-locales, expĺıcitamente independiente de las coordenadas, e invariantes de

gauge. Muchas de las fórmulas de cargas superficiales para teoŕıas de gravedad son

expresadas en variables métricas, formas diferenciales e incluso conexiones de tipo

Chern-Simons. Para la gran mayoŕıa de las teoŕıas de gauge se utiliza el lenguaje de

formas diferenciales para resaltar y contrastar con el lenguaje más popular de compo-

nentes métricas. El estudio se focaliza en la teoŕıa de Relatividad General acoplada

a campos de materia como: campo electromagnético de Maxwell, campo de Skyrme

y espinores. Para derivar las cargas superficiales usamos la formulación del método

de espacio de fase covariante. Encontramos que la estructura simpléctica posee dos

partes: el estándard término de Lee-Wald más una contribución del término de borde

derivado de la acción. Esto último término es fijado requiriendo las condiciones on-

shell y ecuaciones de movimiento linealizadas, y la condición de simetŕıa exacta.

Estas condiciones garantizan la conservación de la estructura simpléctica en el espa-

cio de fase, resultando al nuevo concepto de “simetŕıa simpléctica”. Dada la ley de

conservación satisfecha por la estructura simpléctica, construimos las correspondi-

entes cargas conservadas: los “generadores de simetŕıa simplécticos”. La expresión

expĺıcita de las cargas corresponden a funciones definidas sobre el espacio de fase.

Encontramos la importante propiedad de que, en contraste a los usuales procedimien-

tos de Noether para calcular cargas, los términos de borde e incluso los términos

topológicos añadidos a la acción no afectan a las cargas superficiales. Por otra parte,

analizando dos ejemplos concretos, estudiamos cómo el campo de torsión afecta las

cargas supericiales. Para ambos casos conclúımos que el campo de torsión no afecta

a las cargas superficiales.

Además, tres ejemplos con códigos del programa Mathematica muestran el método

xii



en acción. Las cargas y su primera ley de termodinámica son derivadas para: el

agujero negro BTZ, el (3 + 1)-agujero negro cargado y rotante, y el espacio-tiempo

Taub-NUT Lorentziano rotante.
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Overview of the Thesis

The first part of this thesis was motivated by understanding the phase diagram of low energy

Quantum Chromodynamics (QCD) by coupling a U(1) gauge field with the Skyrme model. This

is sustained by the well-known reason that the Skyrme model describes the low energy limit of

QCD, one of the most successful theories in physics. This first part possesses an introduction

that explains the role of topology in physics and the birth of Skyrmions. Emphasis is put on the

concepts of topology and the construction of an effective field theory from this mathematical

approach.

In the second chapter of the first part, we study the Skyrme model and explain its main topolog-

ical properties, e.g. the discrete number: the topological charge. We emphasize how important

it is to have solutions, particularly analytic ones, to understand specific underlying properties

in this model. The next chapter is concerned with constructing analytical and topologically

non-trivial solutions of the U(1) gauged Skyrme model in (3 + 1)-dimensional flat space-times

at finite volume. Some properties of these solutions would reveal an essential characterization

of the phase diagram of QCD at this regime.

The second part of this thesis addresses an entirely different topic: the treatment of conser-

vation laws in gauge theories through the surface charge method. Firstly, a general overview of

symmetries in physics and their relations to conservation laws is presented in the introduction.

Next, we offer the derivation of the surface charge method as an alternative to deal with the

1



computations of charges in gauge theories. To exhibit the transparency of this method to com-

pute physical charges, we present three different examples of a family of solutions in General

Relativity with and without matter. The thermodynamics properties of these space-times and

especially the derivation of the first law of black holes mechanics are studied. Furthermore, three

examples with ready-to-download Mathematica notebook codes, show the method in full action.

For each of them, we compute step-by-step the charges associated to the exact symmetries of

the solution. New results as the presence of boundary and topological terms and torsion are

highlighted through the notes.
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Chapter 1

Preamble

The two topics addressed in this thesis become are related through the study of the thermody-

namics properties of the most intriguing and strange objects in the Universe: black holes. The

baryonic (topological) charge ables of characterizing baryonic matter, and the charges derived

from the isometries of space-time will be the two ingredients of the Einstein-Skyrme system that

we try to connect. We do not intend to show a concrete structure of this connection but only

propose how this could turn out.

The first law of black hole thermodynamics is the energy balancing equation among small

variations of the different quantities characterizing a black hole. Each term appearing in the

first law is interpreted as standard physical quantities like energy, angular momentum, elec-

tric charge, electric potential or angular velocity. These quantities are normally defined in a

non-gravitational context then physical interpretation is easier for asymptotic observers (e.g.

space-time energy). Besides that, the true thermodynamical character of the first law emerges

once quantum fields are considered on top of the black hole classical background. The emergence

of the Hawking temperature almost complete the thermodynamic picture for black holes [1]. The

missing piece is a statistical description of the black hole entropy, which is by now an open ques-
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tion almost a half-century old.

From a semi-classical point of view, the first law of thermodynamics of four-dimensional

asymptotically flat black holes might be obtained through the geometric derivation of the Komar

integrals [2], but as we will see throughout this thesis, it has problems. In many cases the charges

obtained with this method must be compared with others, e.g. with the Arnowitt-Deser-Misner

(ADM) expression.

A generalization of the Noether theorem for gauge theories, the surface charges, could better

pave this road. In this approach, for each exact symmetry, δεΦ = 0, there is a conservation law,

dkε ≈ 0, and therefore a conserved charge, δQε ≡
¸
kε. In the gravity context, the integration

is over any surface that encloses the black hole singularity. The symmetry parameter, ε =

ε1 + ε2 + · · · , may be partitioned in several independent exact symmetries and each of them may

produce a different surface charge δQε1 , δQε2 , . . . . Then, in this setup, the first law takes the

form

α1δQε1 + α2δQε2 + · · · = δQε0 , (1.1)

where the charges can be arranged, with the help of the phase space functions αi, such that at the

right hand side we obtain a surface charge δQε0 . A particular version of the previous equation

for an electrically charged and rotating black hole family is the usual balancing equation

δM = ThδS + ΩhδJ + ΦhδQ , (1.2)

where the energy/mass, M(S, J,Q), is a function of the charges: entropy S, angular momentum

J , and the electric charge Q. While Th ≡ ∂M
∂S , Ωh ≡ ∂M

∂J , and Φh ≡ ∂M
∂Q are identified as the

temperature, the angular velocity, and the electric potential, respectively. At the heart of the

surface charges method there is the gauge symmetry: Exact symmetries are a particular choice

of gauge parameters that, for a family of solutions, do not affect the variables.

4



Undoubtedly, there are motivations for connecting the geometry of space-time with the

thermodynamic properties of black holes. In 1977, Ruffini and Wheeler noted that the formation

of a black hole by a gravitational collapse is uniquely specified by the conserved quantities

previously mentioned: mass, angular momentum, and electric charge. This is known as the

famous conjecture “Black holes have no hair”.

During a long time there has been an interest in classical black hole hair [3–7]. In this con-

text, one of the most interesting results are the solutions of the Einstein-Skyrme equations [8].

The so-called “skyrmion black holes” has validity as long as the classical parameter of those

solutions are chosen such the black hole event horizon is smaller than a characteristic length

scale associated to the Skyrmion [9]. Considering the fact the Skyrme theory corresponds to

the low energy limit of QCD, the black holes with Skyrmion hair would be interpreted as black

holes with a baryon hair.

Then, a natural question arise: How the standard first law of black hole mechanics should be

generalized to include topological charges?

In the following, we design a possible answer to this question.

These families of black hole solutions with different topological charges may be very different

in their symmetry properties. For instance, black hole solutions with different baryonic charges

do not have, in general, a continuous symmetry. Instead, they may have different discrete

symmetries. This fact makes a black hole solution of one baryonic number very different from

another. However, there are families of black hole solutions with high baryonic numbers. One

expects that small changes of the baryonic charge do not drastically change the physics of the

problem (for example, the physics as seen by an observer far away from the source). These are

the approximation regime we are interested in. In these cases, one may expect that small but

5



discrete changes of the topological charge to be described similarly as the continuous charges

even though there is no continuous symmetry to define it as a surface charge.

We first note that the surface charges in (1.2) are infinitesimal variation of the finite charges

over the phase space. This is even assumed true for the electric charge which is known to be

discrete. However, topological charges split the phase space into disconnected regions. They are

insensitive to infinitesimal variations of the gauge variables. Then, a possible transformation

that allows us to jump from two solutions with different topological charges may be a discrete

finite transformation on the phase space. Let us define a “variation” that only change discretely

the topological charge δ̃N = 1 and let us define a generalized variation on the phase space by

∆ ≡ δ+ δ̃ such that δN = 0 but ∆N = 1. This variation allows us to explore the tangent space

of a given solution but also to jump between solutions with different topological charges.

Thus, a possible generalization of the usual first law of black hole mechanics is reached by

adding an additional term related with this new variation that connect in principle topologically

disconnected sectors of the phase space, namely

∆M = Th∆S + µN∆N , (1.3)

where µN is the baryonic chemical potential. For simplicity we consider the electrically neutral

and static families of black hole solutions: Q = 0 and J = 0.

To fully complete the previous picture, one should have a description of the dynamical

physical processes−in the same spirit of the known physical process of the first law of black

holes mechanics that relates a change in entropy of a perturbed Killing horizon to the matter

flow into the horizon−that change the baryonic number of a black hole solution. For instance,

to consider a baryonic soliton free falling into a black hole. However, this interesting question

is out of the scope of the present preamble. Here, the best we can say is that if such a process

exists, then a first law as written in (1.3) holds.
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Conventions and notations

We employ units such that the speed of light c, the reduced Planck’s constant ~, and the mag-

netic and electric permeability, µ0 and ε0, are equal to one. But we keep manifest the Newton’s

constant G.

For a D-dimensional space-time M, we use the signature convention for the Minkowski

metric ηab = diag(−1, 1, . . . , 1). The dimension of space-time is generally D. The Levi-Civita

totally anti-symmetric symbol εµ1···µD such that ε01···(D−1) = +1, we also have

εµ1···µD = ε̃µ1···µD , (1.4)

gµ1ν1 · · · gµDνDεµ1···µD =
1

g
ε̃ν1···νD = εν1···νD , (1.5)

gµ1ν1 · · · gµDνD ε̃
µ1···µD = g εν1···νD , (1.6)

with the space-time metric determinant g ≡ det(gµν). We also introduced ε̃µ1···µD such that

ε̃ 01···(D−1) = +1, this twiddle symbol is exactly the Levi-Civita symbol but with indices written

upstairs. In contrast, εµ1···µD is a space-time function, not the Levi-Civita symbol, its indices

are raised with the space-time metric. Thus, similarly to (1.5), to raise and lower indices with

the internal flat metric, yields

ηa1b1 · · · ηaDbDεa1···aD = det(η−1)ε̃b1···bD = −ε̃b1···bD = εb1···bD . (1.7)

The introduction of the object ε̃ is highly recommended as a way to keep consistent the Einstein

notation of index contraction and thus to avoid some usual confusions on the computations.

This object will be extremely useful for the second part of the thesis.

Greek letters α, β, γ, ... generally are space-time indices, µ = 0, 1, 2, ..., D − 1. The index 0
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represents a time-like coordinate. The space-time coordinates are denoted by xµ. Latin indexes

will designate space-like coordinates xi, i = 1, ..., D. Capital latin letters will be used to denote

internal indexes of a certain group. The differentials dxµ anti-commute, and the volume element

is denoted by dDx

dxµ ∧ dxν = −dxν ∧ dxµ , dDx =
√
−gdx0 ∧ · · · ∧ dxD−1 . (1.8)

For example a (D − 2)-space-time form k reads as

k =
1

2(D − 2)!
kµνεµνα3...αDdx

α3 ∧ · · · ∧ dxαD . (1.9)

The Einstein summation convention over repeated upper or lower indices generally applies,

namely pµx
µ = p0x

0 + p1x
1 + · · · .

Complete symmetrization is denoted by ordinary brackets (· · · ), complete anti-symmetrization

by square brackets [· · · ] including the normalization factor

M(µ1···µk) =
1

k!

∑
σ∈Sk

Mµσ(1)···µσ(k)
, M[µ1···µk] =

1

k!

∑
σ∈Sk

(−1)σMµσ(1)···µσ(k)
, (1.10)

where the sums run over all elements σ of the permutation group Sk of k objects and (−1)σ is

1 for an even and −1 for an odd permutation. For example, for k = 2 we have

M(µν) =
1

2
(Mµν +Mνµ) , M[µν] =

1

2
(Mµν −Mνµ) . (1.11)

For the second part of this thesis, we note that waved equalities ≈ represent any equation

that holds if and only if the equations of motion of the theory.
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Part I
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Chapter 2

Introduction to Part I

The principles of many physical theories have been constructed from geometry. The geometrical

character of a physical system can imply a deep understanding and considerable generality of the

theory, and naturally, any physical law will inherit these properties. Analogously, the topology

of a system is also another property equally crucial for understanding a theory.

Topology is an area of mathematics which analyze the equivalence of different objects under

continuous deformations. This analysis allows studying different confined structures in physics,

such as models in condensed matter physics, for example the Bose-Einstein condensates [10,11],

antiferromagnetic superconductors [12]; models in quantum mechanics as the Dirac’s analysis of

magnetic monopoles [13], the Aharonov-Bohm effect [14], applications in topologically quantized

edge and surface conducting states manifesting in quantum Hall effect and its variations [15],

and more importantly for this thesis: baryonic matter described by the Skyrme model.

Probably, one of the first study into using conserved topological properties for describing matter

was made by Kelvin’s vortex atom model [16]. In this model, Kelvin thought to the atoms as

knots in a perfect homogeneous fluid that cannot be smoothly transformed from one to another.

Each knot could represent an atom of different chemical elements so that the atomic spectra

would arise from the dynamics of the perfect fluid producing vibrations of the knots. Although
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Kelvin’s idea was never carried out, it was maybe the first step to involve topology in physics.

This inspired to T. Skyrme to develop his model later.

Figure 2.1: Tony. H. R. Skyrme in
1946.

Image taken from Wikipedia.

In the 1950s, the British high energy physicist

Tony. H. R. Skyrme proposed a radical new field the-

ory [17–19] based on the “degree” of the various topolog-

ical soliton solutions, known now as Skyrmions, which

can be identified with the baryon number of the so-

lution. This model is a highly non-linear field theory

of pions that possesses topologically non-trivial solu-

tions to its field equations: Skyrmions. These topologi-

cal configurations are static and spatially localized field

configurations labelled by an integer-valued topological

charge. Skyrme’s idea was to identify these Skyrmions

as nuclei, with the topological charge being the baryon

number. In his original paper, Skyrme studied the simplest configuration with a topological

charge equal to one. This configuration was a spherically symmetric solution of the equations

of motion with dynamics identical to those of a point particle at low energy.

The importance of the Skyrme model was not widely recognized at the time as research

moved towards the culmination of the currently accepted theory of strong interactions: QCD

theory. A few decades after Skyrme’s paper, Witten showed the remarkable result that as

the number of quark colours becomes large, the baryons act like solitons based on their mass

scale [20] (see also [21]). Witten’s development revived the interest in the Skyrme model. Since

then, it has been a booming field theory in describing the structures of nuclei and outside the

realm of particle physics broadly.
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Despite the successful features of the Skyrme model in describing particle physics, the

(highly) non-linear character of its field equations produces difficult tasks to obtain exact solu-

tions with a topological charge greater than one. Usually, the most common way to tackle this

issue is by adopting a particular ansatz to make the equations of motion more tractable. How-

ever, this guarantees neither the reduction of the number of equations nor a consistent system

of equations. The first and best-known ansatz was given by Skyrme himself in order to reduce

the field equations to only a single scalar differential equation.

Until very recently, no analytic solution with non-trivial topological properties was known. In

particular, the lack of explicit solutions with a topological charge on flat space-times made very

difficult the analysis of the corresponding phase diagram of the low energy limit of QCD at finite

density and low temperatures.

On the other hand, due to the importance of the Skyrme model as a low energy limit of

QCD, it is a mandatory task to analyze the effects of the coupling of a U(1) gauge field with the

Skyrme theory. The so-called gauged Skyrme model−which describes the low energy limit of

QCD minimally coupled with Maxwell theory at the leading order in the ’t Hooft expansion−can

describe the decay of nuclei due to the coupling with weak interactions [22]. Such a model also

describes baryons’ electric and magnetic properties and allows to study the decay of nuclei in

the vicinity of a monopole. Similarly, there have also been studies trying to understand the cou-

pling of the SU(2)L gauged model with weak interactions [23,24]. The gauged Skyrme model is

expected to have exciting applications in nuclear and particle physics and astrophysics when the

coupling of Baryons with strong electromagnetic fields cannot be neglected (see a recent work

on how large amount of Baryon charge present within a finite volume, so-called nuclear pasta

phase, can be described through the Skyrme model [25]).

Recently, in [26–28], (see also [29–31] and references therein) a more general hedgehog ansatz

allowing to depart from spherical symmetry has been introduced for the Skyrme model. Such
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an approach gave rise to the first (3 + 1)−dimensional analytic and topologically non-trivial

solutions of the Skyrme-Einstein system in [29] as well as the Skyrme model without spherical

symmetry living within a finite box in flat space-times in [32].

In this thesis, by using the generalized hedgehog approach, we construct the first analytic, and

topologically non-trivial solutions of the U(1) gauged Skyrme model. The two different topo-

logical configurations found here are: Firstly, gauged Skyrmions living within a finite volume

(which appear as the natural generalization of the usual Skyrmions living within a limited vol-

ume). Secondly, the U(1) gauged Skyrme model also admits smooth solutions whose periodic

time-dependence is protected by a topological conservation law. These solitons manifest fasci-

nating similarities with superconductors as well as with dual superconductors.

The first part of this thesis is organized as follows. In Chapter 3 we shall review the SU(2)

Skyrme model, discussing its Lagrangian, topological charge, energy stability, and the simplest

analytic solution to its field equations. This will provide background material for the original

research presented in Chapter 4. In the latter, we start with Section 4.2 about a review of the

properties of the (3 + 1)-dimensional Skyrme model at finite volume both with and without

isospin chemical potential. Then, in Section 4.2.1 the gauged solitons are constructed and their

main physical properties are discussed. In Section 4.2.2, it is discussed time crystal gauged

Skyrmions which exhibit similar properties to those that appear in low energy limit of QCD.

Next, Section 4.3 is devoted to discuss how electromagnetic duality can be extended to include

these gauged solitons. In Section 4.4 a physically interesting approximation is discussed in which

the Skyrme field is considered as fixed and the electromagnetic field is slowly turned on. We

end with Chapter 5 giving some conclusions and outlook about the results found.

13



Chapter 3

SU(2) Skyrme model

The Skyrme model corresponds to the low energy limit of QCD. In this limit, the quark and

gluon degrees of freedom are frozen out, and therefore the only relevant degrees of freedom are

those of the mesons: neutrons, protons and pions. In this chapter, we describe the (3+1)−SU(2)

Skyrme model. In particular, we will focus on its topological properties and analytic solutions

for its field equations.

3.1 SU(2) Skyrme model

As it is well-known, QCD has asymptotic freedom. At low energies, the running coupling

constant is large; at high energies, it becomes small. Therefore, QCD cannot be studied with

the usual perturbative methods. A way to overcome this problem is the construction of an

effective field theory. Usually, the construction of the effective field theory is based on the

(known) symmetries of the interactions. We follow this road.

As far as the mesonic degrees of freedom are concerned, we will focus on only the lightest mesons:

the pions. In order to construct a principle action for these fields, we will denote the pion fields

by πa = (π−, π+, π0) plus an auxiliary scalar field σ grouped in terms of the SU(2) matrix
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U(t, ~x) = σ(t, ~x)I2×2 +
3∑

a=1

πa(t, ~x)τa , (3.1)

where I2×2 is the identity matrix of 2 × 2, τa ≡ i σa, with σa = (σ1, σ2, σ3) the Pauli matrices

and the fields satisfy σ2 +
∑3

a=1 πaπ
a = 1 (see Appendix C for conventions). The expected

low energy action should inherit Lorentz symmetry, and in the approximation of zero quark

masses, it should also have an approximated chiral symmetry.1 Since chiral symmetry is only

approximated, we therefore expect, by Goldstone’s theorem, to Goldstone to be lightest mesons

of the Standard Model (if the broken symmetry were exact, the Goldstone particles should be

massless).

For N = 2, there are three (lightest) Goldstone bosons: π±, π0 . The pions whose masses are

given by π± ≈ 140 MeV, π0 ≈ 135 MeV. For N = 3, we have eight (lightest) Goldstone bosons:

the three pions, four Kaons K±,K0, K̄0, and the particle η. For this thesis, we put attention

on the former case.

A chirally symmetric action in terms of U means U ′ −→ C U D , with C,D ∈ SU(2) . All of

these conditions combined with the constraint of having at most second order time derivatives

in the equations of motion, it leads us to write the following effective field action

INLσ[U ] =
F 2
π

16

ˆ
d4x
√
−gTr (LµL

µ) , (3.2)

with Fπ corresponding to the decay constant of the pions,
√
−g is the square root of minus

the determinant of the space-time metric, Tr stands for the trace, and the tensor Lµ an algebra

valued field Lµ = Liµ τi corresponding to the left-invariant Maurer-Cartan (MC) one-forms given

by

1The chiral symmetry is partially realized in nature. The symmetry group in nature H is much smaller than
the chiral symmetry group G. It is because the quark masses are too light to cause such a large breaking of
the symmetry. However, they break some of the chiral symmetry. Then, we shall say that the Lagrangian is
approximately invariant under G, but with the vacuum only invariant under H symmetry.
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Lµ = U−1∇µU , (3.3)

with ∇µ the covariant derivative constructed from the Christoffel symbols. This model is called

the non-linear sigma model (NLσ). Indeed, this action has SU(2) × SU(2) symmetry, that is,

when U −→ U ′ = CUD−1, we get

INLσ[U
′] =

F 2
π

16

ˆ
d4x
√
−gTr

[
∇µ(CU−1D)∇µ(DUC−1)

]
= INLσ[U ] . (3.4)

In the last equality, remember that the SU(2) elements C and D are constants, and the trace

has cyclic symmetry.

For a long time, this model was regarded as the simplest effective model for baryons. How-

ever, the simple fact that in three spatial dimensions, the static energy corresponding to the

pion field U = U(~x) decreases with the increase of the space scaling implied that the pion field

were not stable [33]. To overcome this problem, T. H. Skyrme introduced an additional term to

(3.2), the so-called Skyrme term, leading to the action [17–19]

I[U ] =

ˆ
d4x
√
−gTr

(
F 2
π

16
LµL

µ +
1

32e2
[Lµ, Lν ][Lµ, Lν ]

)
. (3.5)

When the fundamental field U(t, ~x) is static, in three spatial dimensions it is thought as the

map

U : R3 7−→ S3 . (3.6)

Due to that S3 is the group manifold of SU(2), we can consider U(t, ~x) to be an static SU(2)-

valued scalar. The parameters of the model, experimentally determined, have the values Fπ =

186 [MeV] and e = 5.45, with the latter introduced for the stabilization of the Skyrmions [34,35].

Notice that from the action principle’s point of view we could have added any term that were of

degree four or higher in spatial derivatives. However, it is easy to check that the Skyrme term is
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the only term of degree four that is Lorentz invariant and that remain the equations of motion

of second order in the time derivatives.

Introducing the new parameters K = F 2
π/4 and λ = 4/(e2F 2

π ), the action (3.5) can be rewritten

as

ISkyrme[U ] =
K

2

ˆ
d4x
√
−gTr

(
1

2
LµLµ +

λ

16
[Lµ, Lν ][Lµ, Lν ]

)
. (3.7)

Throughout this thesis, we will refer to (3.7) as the Skyrme action. As we mentioned above, the

action (3.7) possesses two terms: the first term corresponds to the standard kinetic term of the

non-linear sigma model describing the low-energy dynamics of the pions, whereas the second

one, the so-called Skyrme term, is the simplest covariant term by maintaining the second degree

of the field equations and providing the existence of stable topological solitons with finite energy.

Furthermore, the wide range of applications of this theory in other areas (such as astrophysics,

Bose-Einstein condensates, nematic liquids, multi-ferromagnetic materials, chiral magnets and

condensed matter physics in general [36–45]) is well recognized by now.

It is possible to add a mass term in the action (3.7) given by [46,47]

ISKmass =
F 2
π m

2
π

8

ˆ
d4xTr (U − I2×2) . (3.8)

This introduces a pion mass mπ which can be fixed experimentally. As we mentioned above,

when mπ is zero, the action (3.7) is invariant under the full chiral symmetry, namely

U −→ C U DT , C,D ∈ SU(2) . (3.9)

A non-zero pion mass mπ restricts to take C = D, breaking the SU(2)×SU(2) symmetry down

to an SU(2) symmetry. This is called the isospin symmetry and is given by
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U −→ C U CT , C ∈ SU(2) . (3.10)

The last transformation is also known as isorotation because in the internal space it rotates

the triplet of pion fields via ~π → M~π, where Mij = 1
2Tr

(
τiC τj C

T
)

are the components of

an SO(3) matrix. Once quantized, it gives rise the isospin, the responsible quantity that dis-

tinguish protons and neutrons. However, for the purposes of this thesis, we will consider mπ = 0.

The three-non-linear coupled field equations that follows of varying with respect to U the

action (3.7) are2

∇µ
(
Lµ +

λ

4
[Lν , [L

µ, Lν ]]

)
= 0 . (3.11)

Despite the great interest of this model (due to the many applications in different branches of

physics), it is not easy to analytically solve the Skyrme field equations (3.11) due to their highly

non-linear form. Even for the simplest physical SU(2) case, the system (3.11) for U constitutes

a system of three coupled non-linear differential equations which cannot be solved in principle

in a closed-form. In Skyrme’s original works [17–19], he found a way to make this problem

more handle by adopting a particular ansatz for the Skyrme field U(t, ~x). It led him to find

the first topologically non-trivial solution to (3.11): the so-called Skyrmions. As we will see

later, only suitable ansatz for the Skyrme field U allows reducing the number of equations of

motion keeping alive the topological charge. Therefore, the search for solutions to this system

becomes a fascinating subject of study. Together with the coupling of a Maxwell field, the latter

constitutes the main axis of this first part of this thesis.

2Remember that the Skyrme fields U are expanded in terms of the traceless Pauli matrices. Therefore, the
traceless condition reduces the number of field equations from four to three.
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3.1.1 Energy stabilization and topological charge

The stress-energy-momentum tensor is obtained from the Lagrangian density L associated to

the action (3.7) as

TSKµν = − 2√
−g

δ(
√
−gL)

δgµν
,

= −K
4

Tr

(
2LµLν − gµνLαLα +

λ

2

(
gαβ[Lµ, Lα][Lν , Lβ]− 1

4
gµν [Lα, Lβ][Lα, Lβ]

))
.

(3.12)

Restricting to static SU(2) Skyrme fields, say U(~x), the static energy functional can be obtained

as the integral of T00

E = −K
2

ˆ
d3x
√
−gTr

(
1

2
LiL

i +
λ

16
[Li, Lj ][L

i, Lj ]

)
, i, j = 1, 2, 3 . (3.13)

Here a few comments deserve mention: from left to right, the first term arises from the non-

linear sigma model term in the action (3.7) and is quadratic in spatial derivatives. In contrast,

the second term originated from the Skyrme term is quartic in spatial derivatives. We note that

by making a spatial rescaling in the spatial coordinates via ~x → η~x, the static Skyrme energy

E becomes

E(η) =
1

η
Eσ + η ESK term . (3.14)

Because the non-linear sigma term of the energy, Eσ, scales in the opposite way to the Skyrme

one ESK term when the parameter scale η increases, then there is a minimal value of E(η) for a

finite η 6= 0. In other words, the soliton−Skyrmion− will not expand or contract indefinitely

in order to lower its energy. We say that the Skyrme term comes to stabilize the configuration.

Naively, instead of the Skyrme term as the second term in the action (3.7) that stabilize the

non-linear sigma term, we could have considered any term that is of degree four or higher in

spatial derivatives. However, the Skyrme term is the only one of degree four that is: (i) Lorentz
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invariant and (ii) that the resulting field equations remain second order in the time derivatives.

Demanding the existence of an unique vacuum in the theory, one imposes the boundary

condition

U(xµ) −→ I2×2 as |xµ| → ∞ . (3.15)

It implies the compactification of the physical space, R3 ∪ {∞} ∼= S3, resulting that the target

space of SU(2) has group manifold S3, and therefore all finite energy configurations are maps

from S3 to S3. In this case the homotopy group is π3(S3) = Z. Such maps, S3 to itself, are

characterized by a degree that measures how many times the sphere is wrapped around itself.

Explicitly, it is given by

B =
1

24π2

ˆ
Σ
εijk Tr

[(
U−1∂iU

) (
U−1∂jU

) (
U−1∂kU

)]
, (3.16)

which is a topological invariant identified by Skyrme as the baryon number of the configuration.

Because the latter B is also known as the topological charge or baryonic charge. For topological

invariant, we mean that by doing a continuous deformation of the field U , say δU , the topological

charge keeps unchanged. It is not necessary to demand that δU holds the equations of motion.

The normalization factor 1/24π2 is just for later convenience. The hyper-surface Σ where one

integrates is usually considered to be space-like, but as we will see in the next chapter, there

exists specific soliton configurations where it can be time-like as well. The topological charge B

depends on the (time/space-invariant) boundary conditions of the Skyrme field U . For example,

for the boundary conditions (3.15), the topological charge is not zero, and the associated field

configuration is stable because it cannot be deformed through continuum transformations to the

trivial vacuum. As a final comment, we stress that this conserved charge does not arise from an

invariance of the Skyrme action under any symmetry transformation, but rather it comes from

the non-trivial topology of the Skyrme field equations. Then, it is not a Noether charge.
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Completing the square in the integrand of the expression the static energy (3.13) and by

using the Cauchy-Schwarz inequality a2 + b2 ≥ 2ab, one finds

E ≥ 12π2K
√
λ|B| , (3.17)

namely, the static energy is bounded from below. This is known as the Bogomol’ny bound and

it is saturated when E = 12π2K
√
λ|B|, i.e when Li is a self-dual tensor

Li =
4√
λ
εijkL

jLk . (3.18)

This means that for any baryon number there is a lower bound for the energy of Skyrmion solu-

tions. This Bogomol’ny bound was also found by Skyrme himself in his paper [18]. It is worth

noticing that this bound cannot be saturated for any non-trivial finite energy configuration in

flat space-time. This latter was one of the main difficulties to explore solutions to the Skyrme

field equations in contrast to, for instance, monopoles and vortices.

In the following, we will analyze some properties of the best known ansatz for the Skyrme

field that allow to simplify the system (3.11).

3.1.2 Spherical hedgehog ansatz

Despite Skyrmions are not known analytically for any baryon number B, the case B = 1 allows

to the Skyrmion minimizes the energy functional (3.13) with a spherical symmetry. Let us

consider the flat space-time metric ds2 = −dt2 + dx2 + dy2 + dz2, and the Skyrme field U with

the following SU(2) standard parametrization [17–19]
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U±1(xµ) = Y 0(xµ)I2×2 ± Y i(xµ)τi , (Y 0)2 + Y iYi = 1 , (3.19a)

Y 0 = cosα , Y i = n̂i sinα , (3.19b)

n̂1 = sin θ cosφ , n̂2 = sin θ sinφ , n̂3 = cos θ , (3.19c)

where θ, φ are the spherical coordinates, the signs ± in the exponent of the U field denote the

field itself and its inverse, and α(r) is the radial profile subject to the constraints α(0) = π and

α(∞) = 0 due to the boundary condition (3.15). Notice that the element U is not spherically

symmetric (because it depends on all the coordinates), but rather the energy-momentum tensor

Tµν , namely L~LTµν = 0, where L~L denotes the dragging of Tµν along the SO(3) generators.3

This ansatz allows reduce the three non-linear coupled partial differential equations to a single

scalar equation for the function α(r) keeping alive the topological charge equal to one. Usually,

this is also known as the hedgehog solution because the pion fields point radially outwards from

the origin at all points in space.

Substituting the hedgehog ansatz (3.19) into (3.11), it reduces to a single equation

(r2 + 2 sin2 α)α′′ + λ sin(2α)(α′)2 + 2rα′ − sin(2α)− 1

r2
sin2 α sin(2α) = 0 , (3.20)

where prime stands for derivative with respect to r. This second order non-linear ordinary

differential equation cannot be solved in a closed form, but numerical solutions have been found

[18,48].4 The energy of this configuration is given by

E = Kπ

ˆ
r2dr

[
2 sin2 α

r2
+ (α′)2 +

λ sin2 α

r2

(
sin2 α

r2
+ 2(α′)2

)]
. (3.21)

Particularly, the asymptotic behaviour of α can be achieved by linearizing the Euler-Lagrange

equations (3.11), and leading to

3Spherical symmetry on U implies to have a radial-dependent field U = U(r). But, this field configuration has
a vanishing topological charge B.

4See also a numerical computations for B = 2 in [49–51].
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α(r) ∼ c0

r
e−c1r , r →∞ with c0, c1 ∈ R . (3.22)

This means that the pion fields are of the form

~π(~x) ∼ c0 n̂

r
e−c1r , r →∞ . (3.23)

Therefore, at large distances the B = 1 Skyrmion approximates to a triplet of Yukawa dipoles.

Finally, notice that for c1 = 0 the pion fields take the form

~π(~x) ∼ c0 n̂

r
, r →∞ , (3.24)

namely, we have now an approximate triplet of Coulomb triplets.

3.1.3 Generalized hedgehog ansatz

Inspired in the amazing characteristic of the spherically symmetric hedgehog ansatz (3.19) that

reduces a system of coupled non-linear partial differential equations to a single scalar equation,

Canfora and Salgado-Rebolledo in [52] (in the context of Yang-Mills theories) generalized this

study for non-spherical geometrical conditions of the spherical hedgehog ansatz that also allow

to reduce the number of non-linear coupled partial differential equations (PDEs) to a single

scalar PDE. Remarkably, this idea works to Skyrme theory works as well. Let us consider the

most general SU(2) parametrization for the Skyrme field

U±1(xµ) = Y 0(xµ)I2×2 ± Y i(xµ)τi , (Y 0)2 + Y iYi = 1 , (3.25a)

Y 0 = cosα , Y i = n̂i sinα , (3.25b)

n̂1 = sin Θ cos Φ , n̂2 = sin Θ sin Φ , n̂3 = cos Θ , (3.25c)
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where the profile function α = α(xµ), and the angular functions Θ = Θ(xµ), and Φ = Φ(xµ)

depend now on all the four space-time coordinates. Replacing back into the action (3.7) these

three functions can be interpreted as a theory of three interacting scalar fields.

The search of a suitable ansatz for the functions Θ and Φ that reduces the coupled system of

PDEs to a single non-linear equation for the profile α defines the generalized hedgehog ansatz [52].

The Skyrme field equations (3.11) can be written as a 2×2-matrix representation, i.e E ≡ Eiτi,

i = 1, 2, 3, where the linearly independent three coupled non-linear field equations correspond

to the entries of the matrix E. So, substituting (3.25) into (3.11) leads to the system

(
−�α+ sin(α) cos(α)

(
∇µΘ∇µΘ + sin2 Θ∇µΦ∇µΦ

))

+λ



sin(α) cos(α)
(
(∇µα∇µα)(∇νΘ∇νΘ)− (∇µα∇µΘ)2

)
+ sin(α) cos(α) sin2(Θ)

(
(∇µα∇µα)(∇νΦ∇νΦ)− (∇µα∇µΦ)2

)
+2 sin3(α) cos(α) sin2(Θ)

(
(∇µΘ∇µΘ)(∇νΦ∇νΦ)− (∇µΘ∇µΦ)2

)
−∇µ

(
sin2(α)(∇νΘ∇νΘ)∇µα

)
+∇µ

(
sin2(α)(∇να∇νΘ)∇µΘ

)
−∇µ

(
sin2(α) sin2(Θ)(∇νΦ∇νΦ)∇µα

)
+∇µ

(
sin2(α) sin2(Θ)(∇να∇νΦ)∇µΦ

)


= 0 ,

(3.26)

The variation of the Skyrme action with respect to Θ leads to the equation of motion

(
− sin2(α)�Θ− 2 sin(α) cos(α)∇µα∇µΘ + sin2(α) sin(Θ) cos(Θ)∇µΦ∇µΦ

)

+λ



sin2(α) sin(Θ) cos(Θ)
(
(∇µα∇µα)(∇νΦ∇νΦ)− (∇µα∇µΦ)2

)
+ sin4(α) sin(Θ) cos(Θ)

(
(∇µΘ∇µΘ)(∇νΦ∇νΦ)− (∇µΘ∇µΦ)2

)
−∇µ

(
sin2(α)(∇να∇να)∇µΘ

)
+∇µ

(
sin2(α)(∇να∇νΘ)∇µα

)
−∇µ

(
sin4(α) sin2(Θ)(∇νΦ∇νΦ)∇µΘ

)
+∇µ

(
sin4(α) sin2(Θ)(∇νΘ∇νΦ)∇µΦ

)


= 0 ,

(3.27)

24



while the variation of the Skyrme action with respect to Φ yields to

(
− sin2(α) sin2(Θ)�Φ− 2 sin(α) cos(α) sin2(Θ)∇µα∇µΦ− 2 sin2(α) sin(Θ) cos(Θ)∇µΘ∇µΦ

)
+λ

 −∇µ
[
sin2(α) sin2(Θ)(∇να∇να)∇µΦ

]
+∇µ

[
sin2(α) sin2(Θ)(∇να∇νΦ)∇µα

]
−∇µ

[
sin4(α) sin2(Θ)(∇νΘ∇νΘ)∇µΦ

]
+∇µ

[
sin4(α) sin2(Θ)(∇νΘ∇νΦ)∇µΘ

]
 = 0 .

(3.28)

On the other hand, the topological charge becomes

B =
1

24π2

ˆ
Σ

√
−g d3x ρB , ρB = 12 sin2(α) sin(Θ) dα ∧ dΘ ∧ dΦ . (3.29)

Here Σ is considered to be a space-like hyper-surface. We observe that a necessary condition

to have a non-vanishing topological charge is that the three functions must be independent, i.e

dα ∧ dΘ ∧ dΦ 6= 0. For example, a sector with non-vanishing winding number is the original

Skyrme ansatz

α(xµ) = αSK(r) , Θ = θ , Φ = φ , (3.30)

in the flat metric in spherical coordinates ds2 = −dt2 +dr2 + r2(dθ2 +sin2 θdφ2). As we will see,

this approach have allowed the construction of analytical solutions that describe multi-solitons

at finite density for both, in the non-linear sigma model [53] as well as in the Skyrme model

coupled to Maxwell theory [54]. Even recently, configurations of analytic multi-Skyrmions with

crystalline order were constructed in [55] and similar features for the non-linear sigma model

in [56].
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Chapter 4

The Gauged Skyrme Model

Due to the importance of the Skyrme model as a low energy limit of QCD, it is natural to extend

this study to analyze the effects of the coupling of a electromagnetic gauge field with the Skyrme

theory. This theory is known as the Maxwell-Skyrme theory or U(1) Gauged Skyrme Model. In

the following, we will describe the main properties of this model and the first analytic examples

of gauged soliton solutions in flat space-time.

4.1 The U(1) Gauged Skyrme Model

Let us consider the U(1) gauged Skyrme model in four space-time dimensions with global SU(2)

isospin internal symmetry. The action of the system is

S[U,Aµ] = SSkyrme + SU(1) , (4.1)

SSkyrme =
K

2

ˆ
d4x
√
−gTr

(
1

2
LµL

µ +
λ

16
[Lµ, Lν ][Lµ, Lν ]

)
, (4.2)

SU(1) = −1

4

ˆ
d4x
√
−gFµνFµν , (4.3)

where the tensor Lµ is now defined by

26



Lµ = U−1DµU , Dµ(·) = ∇µ(·) +Aµ [τ3, · ] . (4.4)

Since the neutral pion π0 is associated to the generator τ3, the interaction with the electromag-

netic force will occur only with the pions π±. This is the reason because the commutator [τ3, ·]

in the covariant derivative Dµ is only along the generator τ3.

The electromagnetic field strength is given by Fµν = ∂µAν −∂νAµ, with Aµ the electromagnetic

potential. The stress-energy-momentum tensor is

Tµν = TSKµν + TAµν , (4.5)

with TSKµν defined in (3.12) (taking into account the new definition of the tensor (4.4)), and the

electromagnetic stress-energy momentum given by

TAµν = FµαF
α
ν −

1

4
gµνFαβF

αβ . (4.6)

The field equations that follows from varying the action with respect to U and Aµ (4.1) are,

respectively, given by

Dµ

(
Lµ +

λ

4
[Lν , [L

µ, Lν ]]

)
= 0 , (4.7a)

∇µFµν = Jν , (4.7b)

where Jν is the variation of the action (4.1) with respect to Aν , getting

Jµ =
K

2
Tr

(
ÔLµ +

λ

4
Ô [Lν , [L

µ, Lν ]]

)
, (4.8)

where

Ô = U−1τ3U − τ3 .
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It is worth to note that when the gauge potential reduces to a constant along the time-like

direction, the system (4.7) describes the Skyrme model at a finite isospin chemical potential.

Hence, the term gauged Skyrmions (or, more generically, gauged topological configurations of the

U(1) gauged Skyrme model in (3 + 1)-space-time dimensions) refers to smooth regular solutions

of the coupled system in (4.7) possessing a non-vanishing winding number.

4.1.1 Gauged topological charge

By construction, the topological charges are conserved whether or not the equations of motion

are satisfied. When the coupling to a U(1) gauge field is considered, the expression of the

topological charge in (3.29) cannot be correct since it is not gauge invariant under U(1) gauge

transformations. Naively, one could replace in (3.29) all the derivatives with covariant derivatives

leading to a gauge invariant expression, but that topological current would not be conserved.

The correct solution was constructed in [22] (see also the pedagogical analysis in [57]), and the

expression for the gauge invariant and conserved topological charge reads

B =
1

24π2

ˆ
Σ
εijkTr

((
U−1∂iU

) (
U−1∂jU

) (
U−1∂kU

)
− ∂i

(
3Ajτ3

(
U−1∂kU + ∂kUU

−1
)))

.

(4.9)

The topological charge gets one extra contribution which, at the end, is responsible for the

Callan-Witten effect [22]. Notice that the extra contribution from electromagnetism is a total

derivative that makes it still an integer.

As we described, the usual situation considered in the literature corresponds to a space-like

hyper-surface Σ in which case B is the Baryon charge. However, in [32] it has been proposed

to also consider cases in which Σ is time-like or light-like. If B 6= 0 (whether Σ is space-like,

time-like or light-like) then one cannot deform continuously the corresponding ansatz into the

trivial vacuum U = I2×2. Consequently, when Σ is time-like and B 6= 0 one gets a Skyrmionic

configuration whose time-dependence is topologically protected as it cannot decay in static
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solutions. These kind of solitons have been named topologically protected time crystals in

[32]. The computations below show that such an effect (according to which, roughly speaking,

a magnetic monopole may “swallow” part of the topological charge) is more general and, in

principle, strong magnetic fields may be able to support it even without magnetic monopoles.

4.2 Brief review of Skyrmions at finite volume

As a warm-up section, we analyze an extension of the generalized hedgehog ansatz, which also

works in situations in which the Skyrme model (without a Maxwell field) is analyzed within a

finite volume V in a flat metric. One of the reasons to study Skyrmions within a limited volume

comes from the fact that the Skyrme model corresponds to the low-energy limit of QCD. There-

fore, this type of study could reveal essential thermodynamics properties of the phase diagram

of QCD at this energy regime (for example, such as the pressure P = −∂E/∂V ). The first study

of a Skyrmion in a limited region using a phenomenological approach was given by Klebanov in

the eighties [58].

On the other hand, by considering this point of view, a non-vanishing isospin chemical potential

was introduced in [59–61]. In all these cases, numerical tools were needed to implement on

the analysis since the chemical potential breaks explicitly the spherical symmetry. Then, the

spherical hedgehog ansatz does not work.

Later on, by considering the generalized ansatz, the first analytic examples of Skyrmions as well

as Skyrmions-anti-Skyrmions bound states were found within a finite box in (3 + 1)-dimensional

flat space-time [32]. In the following, wee will briefly describe this last approach.

Let us start considering the flat space-time metric

ds2 = −dt2 + l2
(
dr2 + dγ2 + dφ2

)
, (4.10)
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where l denotes the size of the box side where the Skyrmion lives, and the coordinates r, γ and

Φ have the range

0 ≤ r ≤ 2π , 0 ≤ γ ≤ 4π , 0 ≤ φ ≤ 2π . (4.11)

The Skyrme ansatz is based on the following parametrization of the functions

Θ =
γ + φ

2
, tan Φ =

tanH

cosA
, tanα =

√
1 + tan2 Φ

tanA
, (4.12)

where,

A = A(γ, φ) =
γ − φ

2
, H = H (t, r) . (4.13)

The Skyrme field equations (3.11) reduce to a single ordinary differential sine-Gordon equa-

tion for the function H(t, r)

(
− ∂2

∂t2
+

1

l2
∂2

∂r2

)
H − λ

8l2(λ+ 2l2)
sin(4H) = 0 . (4.14)

It can be verified directly that the topological density ρB is non-zero, and is given by

B =
1

24π2

ˆ
t0=cte

ρB , ρB = 3 sin(2H) dH ∧ dγ ∧ dφ , (4.15)

where the integral is computed on a hyper-surface at fix time t0. For certain boundary conditions

on H, we get three different topological sectors

B =


−1 if H(t0, 0) = −π

2 and H(t0, 2π) = 0

0 if H(t0, 0)−H(t0, 2π) = 0

+1 if H(t0, 0) = 0 and H(t0, 2π) = π
2

. (4.16)

In particular, the sector B = 0 is relevant for the construction of Skrymion-anti-Skyrmion

bound states. Hence, the original (3 + 1)-dimensional Skyrme field equations, energy density
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and effective action in a topologically non-trivial sector (as ρB 6= 0) can be reduced to the

corresponding quantities of the (1 + 1)-dimensional sine-Gordon model. Following [32], this

allows constructing Skyrmions as well as Skyrmions-anti-Skyrmions bound states.1 The effective

coupling sine-Gordon density Lagrangian reads

L(Φ) = −1

2
∇µΦ∇µΦ +

α

β2
(cos (βΦ)− 1) , (4.17)

α =
λ

2l2 (λ+ 2l2)
, β =

4l√
λ+ 2l2

. (4.18)

Therefore, the Skyrme model within the finite volume defined above always satisfies the Coleman

bound β2 < 8π.

It is worth emphazing that Skyrme and Perring [62] used sine-Gordon model in (1 + 1)-

dimensions as a “toy model” for the (3 + 1)-dimensional Skyrme model. The analogies between

(a simplified version of) the Skyrme model and the sine-Gordon model have also been emphasized

in [63] and references therein. The very surprising feature of the results in [32] is that there is a

non-trivial topological sector of the full (3 + 1)-dimensional Skyrme model in which it is exactly

equivalent to the sine-Gordon model in (1 + 1)-dimensions.2

4.2.1 Gauged Skyrmion

In this section, we extend the Skyrmion configurations constructed in the previous section to

the cases in which the minimal coupling with the U(1) gauge field cannot be neglected. We will

also analyze the most interesting physical properties of these gauged configurations.

For this analysis we start by considering the following parametrization of the SU(2)-valued

1Indeed, a quite remarkable prediction of the Skyrme model at finite volume discussed in [32] is that the model
possesses around 8π/β2 − 1 Skyrmion-anti-Skyrmion bound states with β of Eq. (4.18). When the size of the
box is large compared with 1fm one gets that the number of these bound states is between 5 and 6 (in good
agreement with the number of Baryon-anti-Baryon resonances appearing in particles physics).

2The semi-classical quantization in the present sector of the Skyrme model can be analyzed following [34,64,65]:
since principle of symmetric criticality applies (see also [32]).
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scalar U

U(xµ) = eτ3αeτ2βeτ3ρ , (4.19)

where α, β and ρ are the Euler angles which in a single covering of space take the values

α ∈ [0, 2π], β ∈
[
0, π2

]
and ρ ∈ [0, π]. Like in the case without an electromagnetic field we

consider the flat space-time metric (4.10), where the ordering of the coordinates that we assume

is

xµ = (t, r, γ, φ) ,

and where again we fix the dimension of the spatial box by requiring

0 ≤ r ≤ 2π , 0 ≤ γ ≤ 4π , 0 ≤ φ ≤ 2π . (4.20)

As before, l represents the size of the box while r, γ and φ are dimensionless angular coordi-

nates, and t represents the time coordinate. It is possible to choose an ansatz for the Skyrme

configuration in the following manner

α(γ) = p
γ

2
, β(r) = H(r) , ρ(φ) = q

φ

2
, p, q ∈ N , (4.21)

where p and q must be integer in order to cover SU(2) an integer number of times. In this

context we assume an electromagnetic potential of the form

A = Aµdx
µ , Aµ = (b1(r), 0, b2(r), b3(r)) . (4.22)

Under the previous setting, the ensuing Maxwell equations (4.7b) become

b′′I (r) =
K

2
(MIJbJ(r) +NI) , I, J = 1, 2, 3 , (4.23)

32



where the non-vanishing components of the 3× 3 matrix MIJ are

M11 = 4 sin2(H)

(
2λH ′2 +

λ
(
p2 + q2

)
2

cos2(H) + 2l2

)
, (4.24a)

M23 = M32 = −pq
2
λ sin2(2H) , (4.24b)

M22 = M11 +
p

q
M23 , (4.24c)

M33 = M11 +
q

p
M23 , (4.24d)

and

N =

(
0,
p

4
M11 −

q2 − p2

4q
M23, −

q

4
M11 −

q2 − p2

4p
M23

)
. (4.25)

Remarkably, the hedgehog property is not destroyed by the coupling to the above U(1) gauge

field since the Skyrme equations continue lead to a single equation for the profile H(r),

4

(
X1 sin2(H) +

λ(p2 + q2)

2
+ 2l2

)
H ′′ + 2X1 sin(2H)(H ′)2 + 4 sin2(H)X ′1H

′

+

(
2λ (pb2 + qb3)

(
pb2 + qb3 +

p2 − q2

2

)
− λp2q2

2
− p2 + q2

2
X1

)
sin(4H)− 2l2X1

λ
sin(2H) = 0 ,

(4.26)

where

X1(r) = 4λ
(
−2l2b21 + b2(2b2 + p) + b3(2b3 − q)

)
. (4.27)

Therefore, we have reduced the whole system to four coupled non-linear ordinary differential

equations. But we also want to solve these remaining equations. Trying to solve the Eq. (4.26)

analytically is a difficult task. However, there is hope, by considering X1(r) to be constant. In

that case, we see that (4.26) turns out to an equation of the form a(H)H ′′(r) + b(H)(H ′)2 +

c(H) = 0, with a, b and c arbitrary functions, which can be solved through quadrature formulas.
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Therefore, a slight pause on Skyrme equation (4.26) and Maxwell equations (4.23) tells us

that it is possible to go further in the simplification by imposing the following relations

X1 = −λ(p2 + q2)

2
, (4.28)

and

b2(r) = −q
p
b3(r)− p2 − q2

4p
. (4.29)

Combining these two relations with (4.27), we can also express b1(r) in terms of b3(r) as

b1(r) = ±(4b3(r)− q)
√
p2 + q2

4lp
. (4.30)

Surprisingly, the Maxwell field equations (4.23) reduce to the following single scalar equation

for b3(r)

b′′3 +
K

4
(q − 4b3) sin2(H)

(
4l2 + 4λ(H ′)2 + λ

(
p2 + q2

)
cos2(H)

)
= 0 , (4.31)

whereas the corresponding equation for the profile H reads

(
8l2

p2 + q2
+ 2λ cos2(H)

)
H ′′ + sin(2H)

(
l2 − λ(H ′)2

)
= 0 . (4.32)

Interestingly enough, the above equation for the profile H interacting with a U(1) gauge field

is equivalent to the Skyrme field equation with a chemical potential possessing a value µ̄2
0 =

p2q2

4l2(p2+q2)
. An interesting non-trivial topological sector of Eq. (4.32) is the simplest solution

H(r) = h0 + h1r, with h0, h1 constants. Here, the coupled field equations of the gauged Skyrme

model (which, in principle, are seven coupled non-linear PDEs) reduce to the Heun equation,

which for some particular choice of the parameters, can be further reduced to the Whittaker-Hill

equation [53].

The remarkable result of reducing the full coupled Skyrme-Maxwell system (4.7) in a topo-
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logically non-trivial sector (as it will be shown below) is that, in the finite box defined in Eq.

(4.10), it can be reduced consistently to a solvable system of two ordinary differential equations.

Then, gauged Skyrmions can be constructed explicitly (see Appendix D for the details of the

derivation of this result).

We can summarize the previous procedure as follows: to use the static ansatz in Eq. (4.21)

for the Skyrme configuration and the ansatz in Eqs. (4.22), (4.28) and (4.29) for the U(1) gauge

field. Thus, one can determine the Skyrme profile H(r) from Eq. (4.32) and then Eq. (4.31)

for the gauge potential b3(r) becomes a simple linear non-homogeneous equation in which there

is an effective potential which depends on H(r). The other components of the gauge potential

are determined solving the simple algebraic conditions (4.28) and (4.29). The above system

allows to clearly disclose many features of the U(1) gauged Skyrme model which are close to

superconductivity (for plots of these analytic solutions, see Figure 4.5).

As a final remark, it is worth mentioning that the Skyrme profile equation (4.32) coupled with

the U(1) gauge field looks like the Skyrme field equations with isospin chemical potential. On

other hand, we know that a non-vanishing isospin chemical potential suppresses the Skyrmion

until it reaches the critical value when the Skyrmion completely disappears [32]. Therefore, we

conclude that the coupling with the Maxwell field suppresses in a certain space-time region (but

without destroying) the Skyrmion.

As a consistency check, if one considers bi → 0⇒ X1 → 0, then (4.26) reduces to

H ′′(r)− λp2 q2 sin(4H(r))

4 (4l2 + λ (p2 + q2))
= 0 , (4.33)

with a first integral given by

(H ′)2 +
λ p2q2 cos(4H(r))

8 (4l2 + λ(p2 + q2))
= I0 = cte , (4.34)

and whose general solution is
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Figure 4.1: Energy density T00 of the
Skyrmion. Figure 4.2: Skyrme profile.

Figure 4.3: Gauge potential Aµ. Figure 4.4: Magnetic field B ≡ b′(r).

Figure 4.5: The solutions for the Eqs. (4.31) and (4.32) correspond to the values: λ = 0.04,
l = 0.47, K = 1.0, p = 1.0, and q = 1.0. Solving for b ≡ −b2 = b3. The above plots clearly show
the suppression of the magnetic field (which is non-vanishing only in the γ and φ directions) in
the core of the Skyrmion.

H(r) = ±1

2
am

(
2c0 ± ir

√
λeff

2
, 2

)
, λeff ≡

λp2q2

8 (4l2 + λ(p2 + q2))
, (4.35)

where am denotes the Jacobi amplitude, and c0 an integration constant.
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Topological charge

For this configuration, we also compute the temporal component of the baryon density as it is

modified by the Maxwell field following the steps of [22]. The full density reads

B0 =
ε0ijk
24π2

(
Tr (LiLjLk)− 3∂i

(
AjTr

(
τ3

(
U−1∂kU + ∂kUU

−1
))))

,

= − pq

8π2
sin(2H)H ′ +

pq

4π2
∂r
(
cos2(H) (b2 − b3)

)
.

(4.36)

So, the Baryon number for the gauged Skyrmion is

B =

ˆ
t=t0

B0 dr ∧ dγ ∧ dφ = −p q
ˆ 2π

0
sin(2H)dH +

[
2 cos2(H) (q b2 − p b3)

]∣∣∣∣2π
0

, (4.37)

which depending on the boundary conditions for the profile function H(r), we get

B =

 −pq − 2 (q b2(0)− p b3(0)) , if H(2π) = π
2 and H(0) = 0

pq + 2 (q b2(2π)− p b3(2π)) , if H(2π) = 0 and H(0) = π
2

. (4.38)

Clearly, B depends now on the size of the system through p and q, as well as on the boundary

values set for b2 and b3 which are related to the magnetic components of Fµν . The solutions

we have found with p = q = 1 for b3 (and the corresponding values of b2) of Eq. (4.31) have

b2(0) = b3(0) so that the topological charge reduces to the usual integer value. However, it is

clear that there are much more general possibilities and one could try to construct configura-

tions in which the topological charged is “shared” by the Skyrmion and the electromagnetic field.

It is worth notice that by combining these tools with the techniques introduced in [30], one

can construct multi-layered configurations of the gauged Skyrme model such that each layer

corresponds to the present gauged-Skyrmion configuration with Baryon charge the product pq,

while the number of layers is related to the number of peaks of the (energy density associated to
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the) profile H(r). This observation suggests that the present formalism could be used to describe

analytically the regular patterns known to appear in the Skyrme model when fine-density effects

are taken into account.

4.2.2 Gauged Time Crystals

In [66,67], Wilczek and Shapere made the following deep observation. One can construct simple

models in which it is possible to break spontaneously time translation symmetry.

Although it is well-known that no-go theorems [68,69] ruled out the original proposals, new

research fields started trying to realize in a concrete system the ideas presented in [66, 67, 70]

(see [71] for a review on time crystals). Many examples have been found since then in condensed

matter physics [72–77]. The first example in nuclear and particles physics has been found in [32]

in the Skyrme model at finite volume.

Namely, the (3 + 1)-dimensional Skyrme model supports exact time-periodic configurations

which cannot be deformed continuously to the trivial vacuum as they possess a non-trivial wind-

ing number. Consequently, these time crystals are only allowed to decay into other time-periodic

configurations: hence, the name topologically protected time crystals.

Following [32], a very efficient choice to describe the finite box is the line element (4.10),

where the coordinate γ now plays the role of time. The Skyrme configuration reads

α =
φ

2
, β = H(r) , ρ =

ωγ

2
, (4.39)

where ω again is a frequency so that ρ is a dimensionless quantity. Once more we assume an

electromagnetic potential of the form (4.22), but now we have to consider that the coordinate

ordering is

xµ = (γ, r, z, φ) . (4.40)
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The Maxwell field equations have the same form as (4.23), but the entries of the matrix M now

read

M11 = 2 sin2(H(r))
(
4λ(H ′)2 + λ cos2(H) + 4l2

)
, (4.41a)

M13 = −λω
2

sin2(2H) , (4.41b)

M22 = M11 +
l2ω2 + 1

ω
M13 , (4.41c)

M33 = M11 + l2ωM13 , (4.41d)

M31 = −l2M13 , (4.41e)

while

N =

(
1

4
(M13 − ωM11), 0,

1

4

((
2l2ω2 + 1

)
ω

M13 +M11

))
. (4.42)

Interestingly enough, also in this case the hedgehog property is not lost. Namely, the full

Skyrme field equations for the time-crystal ansatz defined above coupled to the U(1) gauge field

in Eq. (4.22) (taking into account that the coordinates are as in Eq. (4.40)) reduce to a single

ordinary differential equation for the profile function H(r) (for more details see Appendix D)

4
(
l2
(
4− λω2

)
+X2 sin2(H) + λ

)
H ′′ + 2X2 sin(2H)(H ′)2 + 4 sin2(H)X ′2H

′

+

[
1

4

(
l2ω2 − 1

)
X2 + λ

(
2l2ωb1 − 2b3 − 1

) (
2l2ωb1 − 2b3 − l2ω2

)]
sin(4H)− 2l2X2

λ
sin(2H) = 0 ,

(4.43)

where

X2(r) = 8λ
(
l2b1(ω − 2b1) + 2b22 + b3(1 + 2b3)

)
. (4.44)

The closeness with the situation in which one has (instead of the dynamical Maxwell field) a
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non-vanishing chemical potential is useful in this case as well. Indeed, by requiring

X2 = λ
(
l2ω2 − 1

)
, (4.45)

and

b3(r) = l2ωb1(r)− l2ω2

4
− 1

4
, (4.46)

not only the equation for the time-crystal profile becomes solvable (as it is reduced to a quadra-

ture) but also the full Maxwell equations reduce consistently to a scalar ordinary differential

equation for b1(r).

All in all, using the ansatz in Eqs. (4.22), (4.45) and (4.46) (in the line element in (4.10))

with coordinates (4.40)) the full coupled Skyrme Maxwell system made by Eqs. (4.7) and (4.7b)

in a topologically non-trivial sector can be reduced consistently to the following solvable system

of two coupled ODEs for H(r) and b1(r) (a detailed derivation of this result can be encountered

in the Appendix D)

b′′1 −
K

8
(ω − 4b1) sin2(H)

(
l2(λω2 − 8)− λ+ λ

(
l2ω2 − 1

)
cos(2H)− 8λ(H ′)2

)
= 0 , (4.47)

H ′′ +

(
l2ω2 − 1

)
sin(2H)

(
l2 − λ(H ′)2

)
2 (λ (l2ω2 − 1) cos2(H)− 4l2)

= 0 . (4.48)

Hence, also in this case the recipe is to determine the profile H(r) (as the corresponding equation

(4.48) is solvable) and then to replace the result into the equation for (4.47) which becomes a

simple linear non-homogeneous equation in which there is an effective potential which depends

on H(r). It is worth noticing that there are two simple topologically non-trivial sectors: the

first case is when l2 − λ(H ′)2 = 0, and the sector l2ω2 − 1 = 0. In this thesis, we do not explore

those sectors.
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The remaining components of the gauge potential are determined solving the simple algebraic

conditions in Eqs. (4.45) and (4.46). The above system allows to clearly disclose many features

of the gauged time-crystals (and, more in general, of the U(1) gauged Skyrme model) which are

close to a “dual superconductivity”.

The first integral of (4.48), which allows to reduce it to quadratures, is given by

(
4l2 + λ

(
1− l2ω2

)
cos2(H)

)
(H ′)2 − 1

2
l2
(
1− l2ω2

)
cos(2H) = I0 , (4.49)

where I0 is determined by the boundary conditions. As we did in the previous section for the

gauged Skyrmion, we also calculate here for the time crystal, the non-vanishing topological

charge density which for this case becomes

B2 =
ε2ijk
24π2

(
Tr (LiLjLk)− 3∂i

(
AjTr

(
τ3

(
U−1∂kU + ∂kUU

−1
))))

,

=
1

4π2

[ω
2

sin(2H)H ′ + ∂r
(
cos2(H) (b1 − ωb3)

)]
,

(4.50)

where the Latin indices of the previous relation assume the values 0, 1, 3 and the resulting integral

is

W =

ˆ
B2 dr ∧ d (ωγ) ∧ dφ = 1 + 2

[
cos2(H(r))

(
b1(r)

ω
− b3(r)

)]∣∣∣∣2π
0

= 1− 2

(
b1(0)

ω
− b3(0)

)
,

(4.51)

if we consider r ∈ [0, 2π], ωγ ∈ [0, 4π], φ ∈ [0, 2π] and H(2π) = π/2, H(0) = 0.

However, a “normal” topological charge is also present here due to the correction from the

electromagnetic potential. By taking B0 as defined in (4.36) as an integral over spatial slices we

obtain

B =

ˆ
B0 dr ∧ dz ∧ dφ = −2

[
cos2(H(r))b2(r)

]∣∣∣∣2π
0

= 2b2(0) ,

with the same boundary values used as in (4.51) with the difference now that we have z in place
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of γ for which we consider z ∈ [0, 2π]. The charge B is non-zero as long as b2(0) 6= 0.

Figure 4.6: Energy density T00 of the
Time Crystal. Figure 4.7: Time Crystal profile.

Figure 4.8: Gauge potential Aµ. Figure 4.9: Electric field E ≡ b′(r).

Figure 4.10: The solutions for the Eqs. (4.47) and (4.48) correspond to the values: λ = 0.04,
l = 0.47, ω = 0.95, K = 1.00, p = 1.00, and q = 1.00. Solving for bTC ≡ b1. Unlike the gauged
Skyrmions, here the electric field suffers a suppression in the core of the time crystal.
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4.3 Extended duality

In this section, we show that an extended electromagnetic duality3 exists between the gauged

Skyrmion and the gauged time-crystal constructed above. This means that to disclose such

a duality, one needs to interchange electric and magnetic components suitably and transform

specific parameters of the gauged solitons. In other words, the question we want to answer in

this section is: how do the usual duality transformations of the electromagnetic field have to be

generalized (so as to act on the Skyrmions and time-crystals considered here) in such a way that

the field equations Eqs. (4.31) and (4.32), corresponding to the gauged Skyrmion, are mapped

into the field equations Eqs. (4.47) and (4.48) of the gauged time-crystal?

Let us take the simplest non-trivial cases of gauged configurations we examined above. For

the Skyrmion we have the profile equation (4.32), which for p = q = 1 reduces to

2
(
2l2 + λ cos2(H)

)
H ′′ + sin(2H)

(
l2 − λ(H ′)2

)
= 0 , (4.53)

while for the electromagnetic potential components we get from relations (4.28) and (4.29)

b1(r) = ± 1− 4b3(r)

2
√

2l
, b2(r) = −b3(r) , (4.54)

with b3(r) being determined by the differential equation

b′′3 +
K

2
(1− 4b3) sin2(H)

(
2l2 + 2λ(H ′)2 + λ cos2(H)

)
= 0 . (4.55)

Let us now consider the corresponding time crystal equations, where−in order to avoid

3This extended electromagnetic duality does not correspond to the electromagnetic duality in vacuum because
not all the components of the electric and magnetic fields hold the relation

~E −→ ~B , (4.52a)

~B −→ − ~E . (4.52b)
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confusion−we denote the potential as Aµ = (a1(r), 0, a2(r), a3(r)) (namely, we label differently

the components). The profile equation is, of course, given by Eq. (4.48) with the potential

components related as

a2(r) = ± 1

4
l
√

1− l2ω2(ω − 4a1(r)) , a3(r) = l2ωa1(r)− (l2ω2 + 1)

4
, (4.56)

and with a1 determined by the following equation

a′′1 −
K

8
(ω − 4a1) sin2(H)

(
l2(λω2 − 8)− λ+ λ

(
l2ω2 − 1

)
cos(2H)− 8λ(H ′)2

)
= 0 . (4.57)

These are just equations (4.45), (4.46) and (4.47) with the new labeling of the components.

An immediate observation is that profile equations (4.48) and (4.53) become identical if we

set ω = − i
l . Then, it is an easy task to see that (4.57) and (4.56) are mapped to (4.55) and

(4.54) under the linear transformation

a1(r) =
i

l
b2(r) , a2(r) = i l b1(r) , a3(r) = −b3(r) . (4.58)

The appearance of the imaginary units is not alarming since one also needs a suitable imaginary

scaling in the relevant coordinates to map one space-time metric to the other. Notice that the

imaginary part of the transformation involves only the γ and z components of Aµ. Hence, after

performing such a transformation, the result is a real electromagnetic tensor of the Skyrmion

case. We have to note, however, that transformation (4.58) is not unique. Other linear trans-

formations map the two sets of equations to each other by mixing the electric and magnetic

components. However, (4.58) belongs to a smaller class of transformations that associates the

electric component of the time crystal potential a1 with the purely magnetic components of the

Skyrmion, namely b2 and b3. In particular, this property is respected by any linear transforma-
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tion of the form ai = Lijbj as long as the following set conditions hold

L13 = L12 −
i

l
, L21 = i l , L23 = L22 , L11 = L31 = 0 , L33 = L32 − 1 . (4.59)

Of course, the free parameters appearing in the above transformation must be chosen each

time in such a way so that the result is strictly real. In the following table, we can see how

the gauged Skyrmion and the time crystal (TC) components of the electromagnetic field are

mapped into each other as well as H, A and G (in relations (4.12) and (4.13)) that are involved

in the generalized hedgehog ansatz. So, we can see that the two configurations correspond

to an interchange between the electric and one of the magnetic components that looks like a

duality relation as seen in the plane formed by the x1 and x3 components. We shall call this

transformation an extended or generalized duality.

gauged Skyrmion −→ gauged TC

E1 −B3

B2 −B2

B3 E1

(H,A,G) (H,A,G)

It is a surprising result that a duality symmetry exists, which maps the gauged Skyrmion into

the gauged time crystal. Thus, if such extended duality transformations discussed here would

have been known in advance, one could have found that time-crystals exist just by applying such

transformations to the gauged Skyrmion. Moreover, the plots in Fig. 4.5 and Fig. 4.10 clearly

show that, as the magnetic field is suppressed in the gauged Skyrmion core, the electric field is

suppressed in the gauged time-crystal core. Thus, as gauged Skyrmions have some features in

common with superconductor, gauged time-crystals have some features in common with dual

superconductor.
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4.4 External periodic fields

In this section, we will discuss an approximation which can be of practical importance in many

applications from nuclear physics to astrophysics.

We have been able to construct analytically two different types of topologically non-trivial

configurations of the full (3 + 1)−dimensional U(1) gauged Skyrme model (which are dual to

each other in the electromagnetic sense). Thus, it is natural to ask why we should analyze

approximated solutions as we have the exact ones. The obvious reason is that, in this way, we

will be able to discuss electromagnetic fields more general than the ones leading to the exact

solutions discussed in the previous sections. In particular, it is interesting to discuss the physical

effects of time−periodic electromagnetic fields (which do not belong to the class leading to the

above exact solutions).

Here it will be considered the case in which the Skyrme configuration is fixed and not

affected by the electromagnetic field (as in [32]) which is slowly turned on to get a tiny time-

periodic electromagnetic field in these Skyrme background solutions. In this case, the Skyrme

background plays the role of an effective medium for the Maxwell equations. Very interesting is

the situation in which the background is a time-crystal as the reaction of the time−dependent

Maxwell perturbation to the presence of the time-crystal critically depends on the ratio between

the frequency of the perturbation and the frequency of the time-crystal.

4.4.1 Tiny time periodic fields in Skyrme background

Let us consider the approximate situation where we introduce a small enough electromagnetic

field with the purpose not to consider its effect on the profile equations. Additionally, we demand

that it is periodic in time in one of its components

Aµ = (b1(r), 0, b2(r) cos(Ωγ), b3(r)) . (4.60)
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The electromagnetic current is conserved ∂µJ
µ = 0, while the Maxwell equations constitute a

compatible system of differential equations. For example, the one that corresponds to b2(r) is

given by

b′′2
b2

=
K

2

[
λ
(
8H ′2 + 2

(
1− l2ω2

)
cos2(H)

)
+ 8l2

]
sin2(H)− l2Ω2 , (4.61)

and by considering the approximation b2 << 1 we are led to the single profile equation

H ′′ − l2λω2 sin(4H)

4 (l2 (λω2 − 4)− λ)
= 0 , (4.62)

therefore with a first integral given by

l2λω2 cos(4H)

16 (l2 (λω2 − 4)− λ)
+

1

2
(H ′)2 = I0 = cte . (4.63)

With the help of the latter and using the change of variable x = cos(H(r)), we can express

(4.61) as

b′′2
b2

=
K

2

(
x2 − 1

)(2l4
(
λω2 − 4

) (
λx2ω2 − 4

)
+ l2λ

(
λ
(
8x4 − 10x2 + 1

)
ω2 + 8

)
l2 (λω2 − 4)− λ

− 2λ
(
8I0 + x2

))
− l2Ω2 . (4.64)

From the form of (4.64) we can deduce that the nature of the solution strongly depends on the

sign of the right hand side. If the sign is negative one expects a periodic type of behavior. On

the other hand, if it is positive, we rather expect an exponential kind of behavior. Clearly, the

appearance of these two possibilities has to do with the value of the frequency Ω of the field and

its relation to the rest of the parameters of the model.
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In general, one can consider the function

f(x) =
(
x2 − 1

)(2l4
(
λω2 − 4

) (
λx2ω2 − 4

)
+ l2λ

(
λ
(
8x4 − 10x2 + 1

)
ω2 + 8

)
l2 (λω2 − 4)− λ

− 2λ
(
8I0 + x2

))
,

(4.65)

which at most possesses five extrema. The value x = 0 is always a global extremum, for the

rest of the values of x in [−1, 1] one may have from none up to four extrema depending on

the parameters λ, l, ω and I0. For example, when l = ω = λ = 1, I0 = −1/2 one gets five

extrema in the region x ∈ [−1, 1], of which, x = 0 is a global maximum; on the other hand,

when l = ω = λ = 1, I0 = −1 one gets only one extremum, x = 0, which now is a minimum.

In any case, it is possible to arrange the external field frequency Ω so that the right hand

side of (4.64) has a clearly positive or negative sign. The critical value for this is Ωcr = K
2l2
f(0),

where

f(0) =
λ
(
4l2 + λ

)
l2 (4− λω2) + λ

+ 8l2 + λ (16I0 − 1) . (4.66)

If f(0) is a maximum, we need to have Ω > Ωcr in order to obtain a periodic type of behaviour.

Alternatively, if f(0) is a minimum, the condition Ω < Ωcr leads to an exponential type behavior.

This simple analysis shows that the reaction of a time periodic Maxwell perturbation to

the presence of a time-crystal strongly depends on the relations between the frequency of the

Maxwell perturbation and the parameters characterizing the time-crystal.

Let us conclude with an important remark. In this chapter, we found a suitable choice of

variables that enables us to decouple the field equations partially. It is worth noticing that it

can be successfully extended to analyze the gravitating Abelian-Higgs model [78]. Here, the

strategy is the same, but now the decouple is between the Maxwell field from the Einstein field

equations by demanding

AµA
µ = ∇µAµ = Aµ∇µψ = 0 , (4.67)
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with ψ being the scalar field. With this requirement, three exact solutions characterized by a

non-vanishing superconducting current were studied: pp-waves, AdS waves, and Kundt spaces

for which both the Maxwell field and the gradient of the phase of the scalar are aligned with

the null direction defining these spaces. One of the most interesting case was the Kundt family.

Here, the geometry of the two-dimensional surfaces orthogonal to the superconducting current

is determined by the solutions of the two-dimensional Liouville equation, and in consequence,

these surfaces are of constant curvature, as it occurs in a vacuum. The solution to the Liouville

equation also acts as a potential for the Maxwell field, which we integrate into a closed-form.

Using these results, we show that the combined effects of the gravitational and scalar interactions

can confine the electromagnetic field within a bounded region in the surfaces transverse to the

current.
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Chapter 5

Conclusion of Part I

In this first part of this thesis, we began by reviewing the main properties of the Skyrme model,

particularly how it can be thought of as an approximate, low-energy effective field theory for

QCD. Then, we stress the task of finding solutions to the Skyrme field equations by considering

suitable ansatz for the Skyrme field. The background chapter concluded with a generalization

of the hedgehog ansatz, which helped develop the next chapter.

In the second chapter by using the generalized hedgehog approach we constructed the first

analytic and topologically non-trivial solutions of the U(1) gauged Skyrme model in (3 + 1)-

dimensional flat space-times at finite volume. There are two types of gauged solitons. Firstly,

gauged Skyrmions living within a finite volume appear as the natural generalization of the usual

Skyrmions living within a finite volume. The second type of gauged solitons corresponds to

gauged time-crystals. These are smooth solutions of the U(1) gauged Skyrme model whose peri-

odic time-dependence is protected by a topological conservation law. Interestingly enough, elec-

tromagnetic duality can be extended to include these two types of solitons. Gauged Skyrmions

manifest very interesting similarities with superconductors while gauged time-crystals with dual

superconductors.
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Due to the relations of the Skyrme model with low energy limit of QCD, the present results

can be useful in many situations in which the back reaction of baryons on Maxwell field (and

viceversa) cannot be neglected (this is especially true in plasma physics and astrophysics).

It is a very interesting issue to understand the relevance of the present results in Yang-

Mills theory. From the technical point of view, the tools which allowed the construction of the

present gauged configurations have been extended to the Yang-Mills case as well (see [79–81]

and references therein). Thus, it is natural to wonder whether time-crystal can be defined in

these theories. The present analysis suggests that this construction could shed some light on

the dual superconductor picture.
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Part II
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Chapter 6

Introduction to Part II

6.1 Symmetries in Physics

As we observe the world around us, we see patterns and symmetrical combinations in the ob-

jects of nature. For instance, the crystals found in rocks exhibit unique symmetry patterns,

which often allows us to reveal the structure of solids. The study of symmetry for objects spans

hundreds of years; for example, the Greeks and others civilizations were intrigued by the sym-

metries in things and believed that these would be mirrored in the structure of nature. However,

our perspective of analyzing symmetry had a twist. More than studying the well-proportioned

objects, we care more about the symmetry of the fundamental laws of nature themselves.

In Physics, before Einstein’s advance in 1905, the people thought of symmetry as a conse-

quence of the dynamical laws of a physical system. By analyzing Maxwell’s equations, Einstein

changed the attitude to deal with symmetry by considering it a main feature of nature that

constrains the dynamical laws. The invariance under Lorentz and gauge transformations of

Electromagnetism were not derived from Maxwell’s equations but were consequences of a sym-

metry principle. Fascinated with the geometry of space and time, Einstein thought of the
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“principle of equivalence” as a geometrization of symmetry which allowed him to understand

the dynamics of gravity. Ten years later, it culminated in his famous General Relativity theory

of gravitation.

With the progress in physics, symmetry principles have played an important role on the

understanding and structure of the fundamental laws of nature. The simple fact of being able

to carry out an experiment in different places at different times is a consequence of space-time

translations.

We now know that symmetry principles constraint the form of the fundamental laws of nature.

It can be understood already in the classical description of a mechanical system in the follow-

ing way. For example, let us describe the position of a point particle in space by a dynamical

variable ~x(t). The actual motion of the particle from ~x(t1) to ~x(t2) happens when the local

functional−the action−S[~x(t)] is extremal. This is known as a principle of least action and the

classical equations of motion for ~̃x(t) follow from this principle.

One says that there is a symmetry in the classical system when on the dynamical variable ~̃x(t)

we act with a transformation, ~̃x(t)→ R[~̃x(t)], that leaves the action unchanged. If the classical

equations of motion are also unchanged under that transformation, and R produces a symmetry

of the action, then, R[~̃x(t)] is also an extremum. Therefore, the symmetry can then be used to

derive new solutions. This classic example reaffirms the fact that symmetry can constrain the

form of the equations of motion.
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Figure 6.1: Emmy Noether [1882-1935].

Probably, the main consequence of sym-

metry in physics is the existence of conser-

vation laws. It can already be noted in

the conservation of energy and momentum

in Newton’s law of mechanics due to time

and spatial translation invariance, respec-

tively. The connection between every global

continuous symmetry−set of parameters var-

ied continuously−and conservation laws was

fully understood by Emmy Noether in 1918 [82]. In this paper, Noether proved two different

theorems. The first theorem deals with symmetries generated by finite Lie groups and states

that those global symmetries lead to conserved charges. It is important to emphasize that the

transformations must be generated by continuous transformations. Discrete symmetries do not

lead to conserved quantities.

The second theorem applies for infinite dimensional Lie groups and show that gauge symmetries

containing arbitrary functions of space-time lead to (off-shell) relations among the equations of

motion, the so-called Noether identities.

6.2 Gauge symmetries and trivial currents

Usually, the symmetries appearing in physics correspond to global symmetries.1 They are for-

mulated in terms of physical events; namely, after a symmetry transformation, we find a new

physical situation, but all the observations are unchanged under that transformation. For ex-

ample, spatial translations on a laboratory translate either the observer and the apparatus, but

1In terms of the Lagrangian approach, those that preserve the Lagrangian up to a boundary term.
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observations will remain undisturbed. However, for gauge symmetries, the situation is different.

Gauge symmetries or local symmetries are by definition a transformation in fields parametrized

by one or more arbitrary functions of space-time. The main difference with global symmetries

is that gauge symmetries only change the description of the same physical situation but do not

lead to a different physical situation.

Despite its character, gauge theories have assumed a central role in describing fundamental theo-

ries of nature. The first time that gauge symmetry appeared was in Maxwell’s electrodynamics.

In this theory the observable fields ~E(t, ~x) and ~B(t, ~x) could be written in terms of a vector

potential ~A to simplify the equations. In this description one can notice that there exists a

transformation−gauge transformation− ~A→ ~A+ ~∇χ(x) that remains unchanged the values of

~E and ~B.

From Noether’s point of view, a natural question that follows from here is: Is there any connec-

tion between charges and global symmetries in the case of gauge theories? To understand this

point, let us be more precise in certain concepts. A gauge theory is a Lagrangian theory such

that Euler-Lagrange equations of motion admit non-trivial Noether identities and that admits

non-trivial gauge transformations. If gauge transformations vanish on-shell, we would call them

trivial gauge transformations.

Now, returning to the question previously posed, we find certain issues and ambiguities when

first Noether theorem applies for gauge symmetries. The reason is that the would-be Noether

current is trivially conserved, i.e. it is conserved without requiring the equations of motion

(without the on-shell condition). As we will show, this is in fact a consequence of the second

Noether theorem. Then, the would-be Noether charge is ambiguous as it has the arbitrary gauge

parameter on it. To stress this point, let us put in action the First Noether Theorem for the

gauge symmetry of pure Maxwell’s electrodynamics theory:

In differential form language, Maxwell’s electrodynamics theory is described by the Lagrangian

is L[A] = F ? F, where the two-form field strength is the exterior derivative of the one-form

56



connection, F = dA, and ? is the Hodge operator2. The theory has a U(1) gauge symmetry

on the dynamical field A → A′ = A + dΛ, with the infinitesimal version δλA = −dλ, with λ,

a space-time function, corresponding to an infinitesimal parameter of Λ ≈ 1 + λ. The general

variation of the Lagrangian is given by

δL = −2(d ? F)δA + 2d(δA ? F) . (6.1)

If we now restrict this general variation to an infinitesimal gauge symmetry, say δ → δλ, such

that δλL = 0, then the variation (6.1) reduces, off-shell, to

0 = 2(d ? F)dλ− 2d(dλ ? F) = −2d((d ? F)λ+ dλ ? F) , (6.2)

where in the second equality we used −2d(d ? F)λ = 0 because d2 = 0. We may be tempted to

interpret the previous equation as a conservation law, say dJλ = 0, for the current

Jλ ≡ −2(d ? F)λ− 2dλ ? F = −2d(λ ? F) , (6.3)

however, the second equality tells us that the current is trivially conserved, even without im-

posing the equation of motion. In the differential form parlance, a current built from a gauge

symmetry is always (locally) an exact form and, therefore, a closed-form. This is another form

of the old Second Noether Theorem. Therefore, the would-be Noether current Jλ is trivial and

thus is physically meaningless to define a charge with it. In fact (6.2) is an off-shell identity by

virtue of the Noether identity Nλ ≡ −2d(d?F)λ ≡ 0 which here, in the case of electromagnetism

written in differential forms language, is a mere consequence of d2 = 0 and not of whether the

on-shell condition holds. This analysis is in agreement with the expected well-known result that

gauge symmetries do not produce charges.

2All the operators and conventions are detailed in Appendix A.6 and 1.
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Now, a subset of gauge symmetries in special cases may become global symmetries: the

so-called exact symmetries. They are the non-trivial subset of gauge transformations generated

by ε, for which δεΦ = 0, with Φ a generic solution to the field equations of a gauge theory. This

type of symmetries do not move us in the solution space. If we consider diffeomorphisms, the

exact symmetries are the isometries of space-time which are generated by Killing vector fields.

In the presence of gauge fields, the exact symmetries are not limited to Killing vectors, and there

could be a subset of internal gauge transformation which does not change a given solution.

In the case of pure electromagnetism this stands for solving δλA = −dλ = 0 which has the

solution (the global part of the U(1) gauge transformations) λ = λ0 = cte.3 The previous

analysis will still not change its triviality because it was wholly general, and this is just a

particular choice of λ. This is important to stress because a naive use of Jλ0 as defined before

will produce here the right formula for the electric charge. However, the logic is misleading, and

that mistake will hit back in other gauge theories.

To get a sensitive charge from the exact symmetry in gauge theories, δλ0A = 0, we should

not follow Noether’s approach but use another strategy.

6.3 Charges in General Relativity

Like in Electromagnetism, a similar situation happens in gravitational physics, mainly in Gen-

eral Relativity (GR). From the early days of GR, many proposals for computing conserved

charges associated with exact isometries of space-time, Killing vector fields, have been consid-

ered. The first covariant formula for conserved charges associated with Killing vectors was given

by A. Komar [83], which was followed by a Hamiltonian formulation by Arnowitt, Deser, and

3 Just for electromagnetism this solution does not depend on the fields and thus the rest of the analysis is
quite general. In the case of general relativity the analogous equation is the Killing equation which is a property
of certain symmetric space-time, or for the case of Yang-Mills theory δλA

a = −dAλa = 0 also depends on the
fields. Therefore, there is no a general solution.
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Misner (ADM) in [84] by defining charges associated with symmetries of asymptotic flat space

on constant time slices. Also it is worth mentioning papers by Bondi, van der Burg, Metzner,

and Sachs, in the same asymptotic context, but now in asymptotic flat isometries at null infin-

ity [85,86]. Of course, there have also been different approaches in computing charges in gravity.

The most popular are, by name of authors, Abbott-Deser-Tekin [87,88], Regge-Teitelboim [89],

Lee-Wald [90], Iyer-Wald [91], Barnich-Brandt [92, 93], and Torre-Anderson [94, 95] method.

Their developments were sometimes independent and cross inseminated. Nevertheless, all of

them have common features. One is their relying, directly or indirectly, on the structure of the

phase space, more specifically on the symplectic structure. Another common feature is that in

all of them the obtained charges are expressed as closed surface integrals (or (D − 2)-surface

integrals for D-dimensional space-times). The equivalence and connection among some of them

have been established in the literature.4 However, a systematic study of their connection is still

missing. Although these methods have many advantages in their ease of working, they have

their shortcomings. For example, they are not covariant enough or crucially depend on the form

of Einstein-Hilbert action or the asymptotic behavior of fields.

The study of the computation of charges in Lagrangian gauge theories constitutes the core

of the second part of this thesis. With this context in mind, the present thesis is a first step

to explore, from a different perspective, the study of physical and gauge symmetries of the

symplectic structure when boundary conditions are imposed. To do so, we focus on “surface

charges” as the principal quantity that encodes the physical information related to symmetries

in the context of gauge theories.

One may ask for a “covariant” Hamiltonian formulation of generally invariant theories. A key

object in this formulation is the construction of covariant phase space and its symplectic struc-

4See for instance a recent review about the equivalence among the Iyer-Wald and Barnich-Brandt procedure
[96]. Analogously, in [97] was shown that the of-shell Abbot-Deser-Tekin formalism is related to the Iyer-Wald
and Barnich-Brandt-Compère formalism.
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ture. We follow in general terms the Lee-Wald symplectic method [90] but being well aware

about the close equivalent Barnich-Brandt symplectic method [93], and also, being well aware

that the method differs from the original Noether proposal. One main difference of the approach

presented here is the emphasis on the quasi-local nature, explicit coordinate independence, and

gauge invariance of the formulas for charges (but of course, they might be used at space-time

asymptotic regions too).5 To achieve clarity our terminology and notation slightly differ from

the original Lee-Wald treatment but the core logic is the same. For a complementary approach

see the lecture [98].

The procedure to compute charges for a given solution within a gauge theory can be ordered

in five simple steps 1) Identify the fields infinitesimal gauge transformations, 2) Obtain the gen-

eral surface charge density formula for the theory, 3) Identify the parameters solving the exact

symmetry condition (e.g. generalized Killing equation), 4) Compute the surface charge integral

with those parameters (to get a differential charge), and 5) Integrate the differential charge on

phase space. The present part of the thesis extensively explores these steps for different gravity

theories coupled to matter fields by considering three families of solutions of the field equations.

This part of this thesis is organized as follows. In Chapter 7 we make a brief review on

symplectic mechanics, the covariant phase space method and its connection with the surface

charges. In Section 7.2 we explicitly derive surface charges for a general gauge theory. In

Sections 7.4 and 7.5 we progressively establish the explicit formulae for the surface charges for

the theory of gravity in the presence of cosmological constant, gravity coupled to Maxwell and

Skyrme fields, and spinors. In Subsection 7.5.3 we show that boundary terms in the Lagrangian

5It is worth to note here that the quasi-local treatment for the charge conservation ensures, given a space-time
with exact symmetries, the independence of the radius. This contrast with some asymptotic approaches where
r →∞ is required to get rid of terms appearing on the specific computation of charge formula even if the solution
is everywhere specified, e.g. a black hole solution.
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have no effects on surface charges. In Subsection 7.5.5 it is demonstrated that torsion, for two

particular examples, disappears from the formulas. Finally, in Section 8 we perform a test of

the reliability of the formalism by recovering the standard first law of black hole mechanics in a

quasi-local way.
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Chapter 7

Surface Charges in Gauge Theories

It is well-known for theoretical gravitational physicists that Noether’s theorem does not work

correctly in gauge theories [93, 95, 99]. This latter is borne out by the fact that the would be-

Noether current is conserved without requiring the equations of motion of the theory, i.e. a

trivial conservation law. As an alternative to overcome this problem, this chapter shows explicit

derivations of charges through the so-called surface charge method with focus on GR coupled to

matter fields. To get a better understanding of the mathematical background on phase space,

we first show the main ingredients for the formulation of the covariant phase space.

7.1 Brief review of phase space

A symplectic manifold (usually referred as phase space) is a manifold M which is equipped with

a two-form Ω, called symplectic form. Because the symplectic form Ω has degeneracy directions,

the manifold M considered here is already the reduced symplectic phase space, namely without

those redundancy directions. See an exhaustive analysis in gauge theories in [102].1

1We use the BLACKBOARD BOLD notation to refer to the phase space M and then avoiding confusion with
space-time M.
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If the manifold M is parametrized by the coordinates XA, inducing basis for the cotangent

space of the manifold as δXA, then Ω = ΩABδX
A ∧ δXB, has the following properties:

• ΩAB = −ΩBA.

• δΩ = 0 .

• ΩABV
B = 0⇐⇒ V B = 0 ,

where V A is a vector in the tangent space of the manifold. We use CAPITAL letters coordinates

in phase space XA, with A,B = 1, ..., 2N where N are the degrees of freedom of the theory, and

δ (instead of d) to denote the exterior derivative in phase space. In particular, in the canonical

formalism one chooses a Darboux chart by introducing introducing momenta pi and coordinates

qi, i = 1, ..., N , in which the symplectic structures takes the form

Ω = δpi ∧ δqi . (7.1)

However, it is convenient to combine the set {pi, qi} in a variable, which we denote XA. Here

Xi = Ωijpj for i ≤ N and Qi = qi−N for i > N . The symplectic structure Ω can be thought

as a two-form in phase space with the antisymmetric components ΩAB being a 2N × 2N matrix

with non-zero elements Ωi,i+N = −Ωi+N,i = 1.

The first condition tells us simply that the symplectic structure is anti-symmetric. The sec-

ond condition is read as Ω is closed, and the third one as Ω is non-degenerate. Due to this last

condition, Ω is invertible and one can define its inverse ΩAB = (Ω−1)AB. In phase space, the

matrices ΩAB and ΩAB are responsible for lowering and raising the indices, respectively.

By considering a differentiable function f = f(XA) on the phase space, it is possible to

associate a vector field to it as
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Vf ≡ δf = ∂AfδX
A , (7.2)

where ∂A ≡ ∂/∂XA. In reverse, given a vector field V A(XB), it is also possible to associate a

function HV (usually called Hamiltonian generator) to it such that

δHV = V = ΩABδX
AV B , (7.3)

in which δHV = ∂AHV δX
A. The set of conditions for the existence of HV are called integrability

conditions. If V is not integrable, we should use the notation /δ instead of δ, namely V = /δHV .

In other words, there is no any function HV such that its exterior derivative on all phase space

would be equal to V .

With this formalism, the Poisson bracket of two functions f and g is defined as

{f, g} ≡ ΩAB(Vf )A(Vg)B = (Vf )B∂Bg = LVf
g , (7.4)

where LV denotes the Lie derivative in direction V on the phase space.2 By anti-symmetry on

Ω, the Eq. (7.4) is also equal to −LVgf .

Example 1: One-dimensional motion of a particle.

The simplest example to apply this approach is the one-dimensional motion of a particle,

with position q and momentum p. In our notation, i, j, ... = 1, then A,B, ... = 1, 2, and by

setting X1 ≡ q and X2 ≡ p, we have

2Remember that the Lie derivative, exterior derivative, interior product, etc are defined independent of the
metric, therefore they apply in the phase space in the usual manner.
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ΩAB =

 0 1

−1 0

 , {q, p} = 1 , {q, q} = {p, p} = 0 . (7.5)

The basis for the tangent and cotangent spaces are ∂XA and δXA, respectively. They are related

to the matrix Ω given in (7.5) as ∂XA = ΩABδX
B, for instance in this case we have ∂q = δp.

Notice that it is also possible to read the symplectic two-form from the surface term in the

variation of the Lagrangian. For this example, the dynamics of this particle is described by the

Lagrangian functional L = L(q, q̇), whose general variation is given by

δL =

(
∂L
∂q
− ∂t

(
∂L
∂q̇

))
δq +

d

dt
(pδq) . (7.6)

A second variation of the on-shell action will then becomes d(δp ∧ δq)/dt which is nothing but

the time derivative of the symplectic structure two-form computed over the tangent space of the

phase space parametrized by δp and δq. From here, we get

Ω = δ(p ∧ δq) = δp ∧ δq , (7.7)

where in the second equality we used the nilpotency of the operator δ. In particular, we can

choose the function f to be the momentum or Hamiltonian H. Then,

f = p −→ Vp = δp = ∂q , (7.8)

f = H −→ VH = δH = −∂H
∂q

δq +
∂H

∂p
δp = ṗ∂p + q̇∂q = ∂t , (7.9)

where we used the Hamiltonian equations of motion. These relations correspond to the well-

known results “momentum is generator of translations in space” and “Hamiltonian is generator

of translations in time”. While momentum or Hamiltonian are generators of evolution in spatial

and time, respectively, any symmetry direction of the symplectic form is produced by a generator.
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The symplectic structure Ω leads to the notion of symplectic symmetries over the phase

space. A vector V is called a symplectic symmetry over the phase space if

LV Ω = V · dΩ + d(V · Ω) = d(V · Ω) = 0 . (7.10)

By using the Poincaré’s lemma on the one form V ·Ω, which says that it can be written locally

as an exact form, we find3

V · Ω = dHV , (7.11)

or in index notation ΩABV
B = ∂AHV . Multiplying this by the inverse ΩCA we find

V A = ΩAB∂BHV . (7.12)

Therefore, HV is the generator of evolution along the symmetry vector field V through the

Poisson bracket. It is worth noticing that symplectic symmetries form an algebra through the

Lie bracket. Let us assume V,W are two symplectic symmetries, LV Ω = 0 = LWΩ. Then, the

Lie bracket [V,W ] ≡ LVW is also a symplectic symmetry, explicitly

L[V,W ]Ω = (LVLW −LWLV )Ω = 0 . (7.13)

Example 2: Free Scalar Field in Two-Dimensional Space-Time.

Let us consider a massive scalar field Φ(t, x) with mass m living in a two-dimensional space-

time M endowed with the Minkowski metric η = diag(−1, 1). We will choose a particular

foliation with time-like hyper-surfaces Σt. The action is given by

3If α is a p-form which can be written in terms of a (p− 1)-form β as dα = β, we say that α is an exact form.
If now the p-form α fulfills dα = 0, we say that α is a closed form.

66



S[Φ] =

ˆ
M
L[Φ, ∂Φ]dtdx , L[Φ, ∂Φ] =

1

2

(
∂µΦ∂µΦ−m2Φ2

)
, (7.14)

where M = [ti, tf ]× V , with V a spatial region. Varying this action for ti < t < tf , we get

δS =

ˆ
M
dtdx

(
∂µδΦ∂

µΦ−m2ΦδΦ
)
,

=

ˆ
∂M

dx(∂0ΦδΦ)−
ˆ
M
dtdx(∂µ∂

µΦ +m2Φ)δΦ . (7.15)

By boundary conditions, the surface term at the spatial boundary vanishes, and the remaining

surface terms specify the canonical one-form in phase space

Θ(t) =

ˆ
Σt

dx∂0Φ(t, x)δΦ(t, x) , (7.16)

whose variational exterior derivative gives the canonical two-form symplectic structure

Ω(t) =

ˆ ˆ
Σt

dxδ∂0Φ(t, x) ∧ δΦ(t, x) , (7.17)

=

ˆ ˆ
Σt

dxdx′δ(x− x′)δ∂0Φ(t, x) ∧ δΦ(t, x′) . (7.18)

The only non-vanishing momentum pµ is p0 = ∂0Φ. This is the usual conjugate variable com-

puted as Π ≡ δL/δ(∂0Φ). Thus, ΩAB(x, x′) and its inverse (Ω−1)AB(x, x′) are given by

ΩAB =

 0 δ(x− x′)

−δ(x− x′) 0

 , (Ω−1)AB(x, x′) =

 0 −δ(x− x′)

δ(x− x′) 0

 , (7.19)

so that the Poisson brackets become

{Φ(t, x), pµ(t, x′)} = δµ,0δ(x− x′) , {Φ(t, x), Φ(t, x′)} = {pµ(t, x), pν(t, x′)} = 0 . (7.20)

67



It is worth mentioning that choosing this specific foliation (time foliation) breaks the theory’s

covariance. To have a covariant phase space, we should proceed differently. This result gives

rise to the covariant phase space method which is a covariant way of defining phase space and

symplectic structure for field theories and gauge theories.

7.2 Derivation of Surfaces Charges

7.2.1 Covariant Phase Space

In this section, we provide a brief introduction to the covariant phase space method (CPSM).

The CPSM provides a systematic way of calculating variations of conserved charges in generic

theories with local gauge symmetries, in particular generally covariant theories. This method

was primarily developed in the papers of Iyer, Lee and Wald [90,91] (see also Crnkovic and Wit-

ten [100]). In this approach, the invariant symplectic form Ω is derived from the action. However,

there exists an alternative way of formulating the CPSM, developed by Barnich, Brandt and

Compère, based on equations of motion instead of the action [93,101]. We will see that for exact

symmetries, these two formalisms become equivalent.

This section discusses a less appreciated application of the CPSM for computing the con-

served charges associated with exact symmetries. First, we introduce the Lee-Wald symplectic

structure, which provides a covariantly way of building a manifold equipped with a covariant

symplectic two-form [90]. Then, by evaluating the symplectic structure on exact symmetries, we

derive a lower degree conservation law that allows us to define the so-called surface charges. We

will carry out this derivation in parallel both at geometric language as differential form language.

To highlight the difference, we will use BOLD letters for differential forms and ordinary letters

for geometric language (see also Appendix A.6 and 1 for conventions).

Let us start with a Lagrangian theory in a D-dimensional space-time M
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S[Φ] =

ˆ
M

√
−g dDxL[Φ, ∂µΦ, ...] , [S[Φ] =

ˆ
M
L[Φ, ∂µΦ, ...]] , (7.21)

where L[Φ, ∂µΦ, ...] = LdDx is the diffeomorphism-invariant Lagrangian depending on the col-

lection of dynamical field configuration Φ(x) and its first derivatives, with Φ = Φi.4 A field

configuration Φ(x) in the space-timeM corresponds to a point in the phase space M, to say Φ.

Those field configurations satisfying the equations of motion of the theory form a sub-space in

the phase space denoted by M.

An arbitrary variation of the Lagrangian is given by

δL = E[Φ]δΦ + ∂µΘµ[Φ, δΦ] , [δL = E[Φ]δΦ + dΘ[Φ, δΦ]] , (7.22)

where E[Φ] are the equations of motion of the Lagrangian theory and they locally depend on the

dynamical fields and their derivatives, while Θ[Φ, δΦ] locally depends on the dynamical fields Φ,

their variations δΦ and derivatives. The letter d stands for exterior derivative in space-time. In

agreement with the previous section, an infinitesimal field perturbation δΦ(x) over a configura-

tion Φ(x) then corresponds to a vector tangent to the phase space at Φ. We denote this vector

by δΦ5.

By excluding theories with higher derivatives in the fields, the boundary term Θ[Φ, δΦ] is

linear in the variations δΦ, therefore is a one-form in phase space. But, it is a (D− 1)−form in

space-time and is called the symplectic potential form. It suffers from two types of ambiguities:

The first ambiguity arises from adding an exact D−form to the Lagrangian top−form, namely

4“· · · ” in L[Φ] means for higher derivatives of the fields. We neglect theories with higher derivatives in the
dynamical fields.

5Following the terminology of the previous section, we should write [δΦ]A instead of δΦ. However, for clarity
in the notation we follow the latter.
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L[Φ, ∂Φ]→ L[Φ, ∂Φ] + ∂µA
µ[Φ] , [L[Φ, ∂Φ]→ L[Φ, ∂Φ] + dA[Φ]] , (7.23)

which shifts the symplectic potential form by an exact form

Θµ[Φ, δΦ]→ Θµ[Φ, δΦ] + δAµ[Φ] , [Θ[Φ, δΦ]→ Θ[Φ, δΦ] + δA[Φ]] . (7.24)

The second ambiguity arises from adding an exact (D − 1)−form to Θ as follows

Θµ[Φ, δΦ]→ Θµ[Φ, δΦ]− ∂νY µν [Φ, δΦ] , [Θ[Φ, δΦ]→ Θ[Φ, δΦ]− dY [Φ, δΦ]] , (7.25)

where Y [Φ, δΦ] is a (D− 2)−form space-time. As we will show in a moment, these freedoms of

defining Θ may cease to exist for exact symmetries. We will return to this point later.

The Lagrangian has a symmetry if for certain infinitesimal variations over the configuration

space it becomes at most an exact form

δεL = ∂µM
µ
ε , [δεL = dM ε] , (7.26)

where ε are the collection of parameters that generate the infinitesimal symmetry, and denote

the infinitesimal transformation generated over any quantity, in particular acting over the fields

as δεΦ. Here M ε is a (D − 1)−form in space-time. Comparing this last result with (7.22), we

have

∂µM
µ
ε = E[Φ]δεΦ + ∂µΘµ[Φ, δεΦ] , [dM ε = E[Φ]δεΦ + dΘ[Φ, δεΦ]] . (7.27)

Now, let us consider that the transformations δεΦ are linear in the symmetry parameters ε.

This allows to remove the derivatives over all symmetry parameters by integrating by parts and

formally decompose
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E[Φ]δεΦ = ∂µS
µ
ε −Nε , [E[Φ]δεΦ = dSε −N ε] , (7.28)

such that in the quantity N ε the symmetry parameters appear only as factors. Using the new

expression for E[Φ]δεΦ we get

∂µ (Θµ[Φ, δεΦ]−Mµ
ε + Sµε ) = Nε , [d (Θ[Φ, δεΦ]−M ε + Sε) = N ε] . (7.29)

Restricting to gauge symmetries, the very structure of the last expression implies

Nε ≡ 0 . (7.30)

These are called Noether identities and there is one of them for each independent gauge param-

eter. Notice that these identities are satisfied off-shell (see, for instance, Section 7.4.1 for the

derivation of these identities in Einstein-Hilbert theory). They also are the usual constraints due

to the redundancy of using gauge variables to deal with the theory and why the First Noether

theorem does not apply appropriately for non-trivial gauge symmetries.6 Considering this latter,

it is natural to define the form

Jµε ≡ Θµ[Φ, δεΦ]−Mµ
ε + Sµε , [J ε ≡ Θε[Φ, δεΦ]−M ε + Sε] , (7.32)

such that by virtue of the Noether identities (7.30) satisfies

∂µJ
µ
ε = 0 , [dJ ε = 0] , (7.33)

6A gauge transformation of the form δεΦ
i = ε[ij]δS/δΦj leaves the action S[Φi] invariant, but no matter what

εij are, namely

δS[Φi] =
δS

δΦi
δS

δΦj
ε[ij] ≡ 0 . (7.31)

In Hamiltonian formalism, these gauge symmetries vanish when the equations of motion hold (so called-“on-shell
condition”) because they are not generated by a constraint. This type of transformation are named trivial-gauge
transformations [102].
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which is identically conserved, i.e. even without the use of the equations of motion. Notice also

that although δε is a gauge symmetry, the current defined above has an off-shell conservation

law. In this sense, one says that J ε is trivially conserved. When the equations of motion are

used, J ε becomes the sometimes called Noether current J ε ≈ Θε −M ε, which due to the pre-

vious analysis is also trivially conserved.

At this stage, we can evoke the Poincaré’s lemma for the conservation law of the current J ε,

i.e. it says that locally exist a co-dimension two-form Q̃ε such that

Jµε = ∂νQ̃
µν
ε ,

[
J ε = dQ̃ε

]
, (7.34)

where Q̃ε is a (D − 2)-form in space-time called the Noether-Wald potential. We observe that

Q̃ε suffers from an ambiguity since is defined up to a closed co-dimension two-form.

Because of this trivial conservation, charges should not be defined using J ε. A natural al-

ternative is to consider lower-degree conservation laws [93–95] (all of these approaches can be

thought as a generalization of Noether’s theory of conserved currents to differential forms of any

degree).

Now, let us return to our previous discussion. To go further let us assume that ε contains

diffeomorphisms. More precisely, suppose the collection of gauge parameters can be split as

ε = (ξ, λ), such that

δεΦ = δξΦ + δλΦ , (7.35)

where ξ is a vector field generating infinitesimal diffeomorphisms and δλ denotes the rest of the

infinitesimal gauge symmetry transformations.

In order to define charges for gauge theories one has to rely on the symplectic structures of the
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theory. A way to define the symplectic structure current is [90]

Ωµ[Φ, δ1Φ, δ2Φ] ≡ δ1Θµ[Φ, δ2Φ]− δ2Θµ[Φ, δ1Φ]−Θµ[ Φ, [δ1, δ2]Φ] ] . (7.36)

The last term ensures linearity on the variations, and where δ1 and δ2 are, for the moment, two

arbitrary variations. Note that Ωµ[Φ, δ1Φ, δ2Φ] is a double variation in the phase space and a

(D − 1)-form in space-time. The double variation can also be understood as a two-form in the

phase space.

Now, let us consider the arbitrary (off-shell) variation of the current Jµε in (7.32), we get

δJµε = δΘµ[Φ, δεΦ]− δMµ
ε + δSµε = ∂νδQ̃

µν
ε ,

[
δJ ε = d(δQ̃ε)

]
. (7.37)

From here, we find

δΘµ[Φ, δεΦ] = δMµ
ε − δSµε + ∂νδQ̃

µν
ε , [δΘ[Φ, δεΦ] = δM ε − δSε + dδQ̃ε] . (7.38)

Evaluating the symplectic current (7.36) on the gauge symmetry, δ2 → δε and δ1 → δ, one

obtains

Ωµ[δΦ, δεΦ] = −δεΘµ[Φ, δΦ]−Θµ[Φ, [δ, δε]Φ] + δMµ
ε − δSµε + ∂νδQ̃

µν
ε . (7.39)

We will also assume that the Lagrangian theory is left invariant under transformations generated

by λ, namely δλL = 0.7 As a top form in the space-time manifold, the Lagrangian satisfies

δεL = δξL = LξL = d(iξL), then, Mµ
ε = ξµL. Here and in the following we assume δξ = 0.

Then, the Eq. (7.37) yields

δJµε = δΘµ[Φ, δεΦ]− ξµδL+ δSµε = ∂νδQ̃
µν
ε ,

[
δJ ε = d(δQ̃ε)

]
. (7.40)

7Notice that if λ is a gauge symmetry parameter for a Chern-Simons theory, this assumption is not longer
valid [103,104].
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With this assumption, the symplectic current (7.39) takes the form8

Ωµ[δΦ, δεΦ] = δΘµ[Φ, δξΦ]− δεΘµ[Φ, δΦ] ,

= ξµ (E δΦ + ∂νΘν [Φ, δΦ])− δSµε + ∂νδQ̃
µν
ε − 2∂ν

(
ξ[νΘµ][Φ, δΦ]

)
− ξµ∂νΘν [Φ, δΦ] ,

= ξµE δΦ− δSµε + ∂ν

(
δQ̃µνε + 2ξ[µΘν][Φ, δΦ]

)
, (7.42)

in second line we replaced δΘµ[Φ, δξΦ] from Eq. (7.40), we expressed the variation of the La-

grangian δL, and we used the Lie derivative of the tensor density Θµ as δξΘ
µ = LξΘ

µ =

2∂ν(ξ[νΘµ]) + ξµ∂νΘν .

To be consistent, with differential forms we have

Ω[δΦ, δξΦ] = δΘ[Φ, δξΦ]− δξΘ[Φ, δΦ] ,

= iξ (EδΦ + dΘ[Φ, δΦ])− δSξ + d(δQ̃ξ)− d(iξΘ[Φ, δΦ])− iξ(dΘ[Φ, δΦ]) ,

= iξEδΦ− δSε + d
(
δQ̃ε − iξΘ[Φ, δΦ]

)
. (7.43)

In the next section, we will implement a set of conditions on the Lee-Wald symplectic structure

(7.42) to find the desired lower degree conservation law we are looking for.

7.2.2 Surface Charges

Let us consider a field configuration Φ̄ satisfying the equations of motion

8In the following, we are assuming that variations commute, i.e. [δ, δξ]Φ = 0 and, therefore, Θ(Φ, [δ, δξ]Φ]) = 0.
This is true if ξ is assumed to be fix on the phase space as we do here. But if besides ξ the theory has more gauge
symmetry parameters involved, e.g. a collection ε = (ξ, λab, λi, . . . ), then the term Θ(Φ, [δ, δε]Φ) can always be
decomposed as (in analogy to Eq. (7.28))

Θ[Φ, [δ, δε]Φ] = dBδε + Cδε , (7.41)

where Cδε collects all terms linear in the variation of the symmetry parameter and it vanishes on-shell, Cδε ≈ 0.
The term Bδε will affect the surface charge density as far as some of the symmetry parameter could be field
dependent, δε = (δξ, δλab, δλi, . . . ) 6= 0, still with δξ = 0.
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E[Φ̄] = 0 . (7.44)

Given Φ̄, it is also possible to study perturbations around that exact solution at linear order.

These kind of perturbations are called linearized equations of motion, and are found at first

order expansion of the equations of motion as

δE[Φ̄] = 0 . (7.45)

For example, for the Einstein-Hilbert theory in vacuum, the equations of motion are given by

Gµν = 0. Here the dynamical field is the metric gµν . The linearized equations of motion are given

as G(l.e.o.m)
µν ≡ δGµν

δgαβ
|ḡ δgαβ = 0. We can think

δGµν
δgαβ

|ḡ as a differential operator built from the

background metric ḡ which acts linearly on gαβ. See Section 7.4.1 for the explicit form of G(l.e.o.m)
µν .

Therefore, when the equations of motion and linearized equations of motion are satisfied,

the symplectic structure (7.42) takes the form

Ωµ[Φ̄, δΦ̄, δεΦ̄] ≈ ∂ν

(
δQ̃µνε + 2ξ[µΘν][Φ̄, δΦ̄]

)
,

[
Ω[Φ̄, δΦ̄, δξΦ̄] ≈ d

(
δQ̃ε − iξΘ[Φ̄, δΦ̄]

)]
.

(7.46)

Remember that ≈ denotes the on-shell condition. The final step consists in defining, up to a

total derivative, the surface charge density

kµνε [Φ̄, δΦ̄] ≡ δQ̃µνε + 2ξ[µΘν][Φ̄, δΦ̄],
[
kε[Φ̄, δΦ̄] ≡ δQ̃ε − iξΘ[Φ̄, δΦ̄]

]
. (7.47)

In the special case of an exact symmetry, i.e. specific ε function satisfying δεΦ = 0, it turns out

that the surface charge density is conserved on-shell

∂µk
µν
ε ≈ 0 , [dkε ≈ 0] . (7.48)
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The exactness condition of the surface charge density guarantees that the value of its integration

on a closed surface is independent of the choice of the surface. By integrating it over any closed

surface S (e.g. a (D − 2)-dimensional sphere), one obtains the surface charge

/δQε[Φ̄, δΦ̄] =
1

2(D − 2)!

˛
S
kµνε εµνα3...αDdx

α3 ∧ · · · ∧ dxαD =

˛
S
kε[Φ̄, δΦ̄] , (7.49)

naturally on both languages one obtains the same value for the surface charge. Note that this

quantity is a differential or one-form on the phase space. The symbol /δ emphasizes that the

surface charge is not necessarily an exact differential on the phase space of the solutions. In

other words the function Qε may not exists. A sufficient condition for the integrability of the

surface charge to become a finite charge is δ

(˛
S

kε

)
= 0. If the condition holds, then, after an

integration on the phase space it is possible to obtain the finite surface charge Qε.

It is worth to emphasize that this quantity is a charge because it is conserved only because the

exactness of the symmetry guarantee the conservation law (7.48).

Properties of Surfaces Charges:

1. The surface charge density exhibits linearity in the vector field generating diffeomorphism

and in all the gauge parameters, i.e

α1kε1 + α2kε2 = kα1ε1+α2ε2 , (7.50)

where α1 and α2 are arbitrary functions defined on the phase space. Thus, if kε1 and kε2

are closed forms for exact symmetries generated by ε1 and ε2, then kε3 ≡ kα1ε1+α2ε2 is

also a closed form for the exact symmetry generated by ε3 with the precise identification

ε3 = α1ε1 + α2ε2. This linearity property of surface charges will be exploited in the

examples of Section 8.
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2. The charges have to be finite. Usually, in the literature it is common to carry out an

expansion, say in r, in the symmetry parameters or make the integration “close to infinity”,

r → ∞, on the (D − 2)-surface ∂S. For both scenarios one could find divergences in the

charges. However, in the case of exact solutions and exact symmetries thereof, the theory

of charges developed above does not depend on asymptotic properties of the fields near

some boundary.

3. The charges have to be integrable. In some situations, the function Qε̄ such that its

variation on the phase space satisfies δQε̄ = /δQε̄ may not exist. A sufficient condition for

its existence is

δ
(
/δQε̄

)
= 0 , (7.51)

or

δ1

˛
S
kε[Φ, δ2Φ]− δ2

˛
S
kε[Φ, δ1Φ] = 0 , (7.52)

for all δiΦ, i = 1, 2. This is the condition of integrability for the surface charge to become

integrable and therefore finite. In this context, it is worth mentioning that in the context

of asymptotic symmetries, integrability implies that charges form a representation of the

asymptotic symmetry algebra, up to a central extension [101].

4. The charges have to be conserved in time. This corresponds to the particular and usual

case when one performs the integration of kµνε on a space-like (D− 2)-dimensional surface

∂S. Note that no mention on the asymptotic regions is realized.
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7.3 Equivalence between Lee-Wald and Barnich-Brandt proce-

dures for exact symmetries

To make contact with other approaches, in this section we introduce a different definition for

surface charges used in [101], and further import the comparison with the prescription presented

in the previous section. We elaborate this section in differential forms language. The key of

this different definition is the direct use of the quantity Sε introduced in (7.28). Namely, the

particular equations of motion combined with the gauge parameters that result from the use of

Noether identities. In other words, the only term appearing in the trivially conserved current,

J ε = Θ[Φ, δεΦ]− ξyL+Sε, that does not depend directly of the Lagrangian boundary term. In

this approach, the surface charge integrand is expressed as [101]

k′ε ≡ IδΦSε , (7.53)

where IδΦ is called the homotopy operator (see Appendix A for its conventions and definitions).

The homotopy operator is an efficient way to get a sensible (p− 1)-form from an exact p-form.

In particular, it can be used to select the boundary term in the Lagrangian variation

δL = EδΦ + d
[
Θ′[Φ, δΦ] + dY

]
= EδΦ + d [IδΦL] . (7.54)

With the risk of keeping the discussion rather abstract while brief, we just pick up the properties

that allow us to understand the comparison (see [101] for a detailed definition of the homotopy

operator). The defining property of the homotopy operator is its relation with a variation of

fields in the space of configuration

δ′ ≡ dIδΦ + IδΦd , (7.55)
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where d is the exterior derivative. In fact, the homotopy operator provides a prescription to

define a variation on the phase space. Therefore we called it δ′ to distinguish it from our previous

treatment. Note the analogy with the expression of the space-time Lie derivative (7.129).

Already with this property we can prove

dk′ε = −IδΦdSε + δ′Sε , (7.56)

= −IδΦ[EδεΦ] + δ′Sε , (7.57)

= −IδΦ[E]δεΦ− (−1)pEE IδΦ[δεΦ] + δ′Sε , (7.58)

where we used the Noether identities EδεΦ = dSε −Nε = dSε, and pE is the form degree of E,

i.e. IδΦE = (−1)pEE IδΦ. Therefore, it is shown that k′ε is closed if the equations of motion,

the linearized equations of motion, and the exactness condition hold, i.e. E = 0, δE = 0,

and δεΦ = 0. These conditions are exactly the ones required for the surface charge integrand

defined in (7.48) to be closed! In the previous calculation we made use of the so-called invariant

pre-symplectic structure density

Ω′[δ1Φ, δ2Φ] ≡ Iδ[1Φ(Eδ2]Φ) . (7.59)

It differs from the pre-symplectic structure density introduced before

Ω[δ1Φ, δ2Φ] = δ1Θ[Φ, δ2Φ]− δ2Θ[Φ, δ1Φ]−Θ[Φ, [δ1, δ2]Φ] . (7.60)

Both prescription are in general inequivalent as it is shown in the following.

The boundary term Θ[Φ, δΦ] has an intrinsic ambiguity that can be selected with the ho-

motopy operator (7.54), we use it to fix the ambiguity of the pre-symplectic structure density
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Ω[δ1Φ, δ2Φ] = δ′1(Iδ2ΦL)− δ′2(Iδ1ΦL) . (7.61)

The use of δ′1,2 as defined by (7.55) ensure linearity in the variations, then to introduce the

commutator term is unnecessary. Although we have selected the boundary term, there is still

another intrinsic ambiguity if the Lagrangian is allowed to change by an exact form, L→ L+dα,

it is in this sense that this prescription for the symplectic structure density is not invariant. The

comparison of both pre-symplectic structure densities goes as

Ω′[δ1Φ, δ2Φ] = Iδ[1Φ(Eδ2]Φ) , (7.62)

= Iδ[1Φ(δ′2]L− dIδ2]ΦL) , (7.63)

= δ′[2Iδ1]ΦL+ δ′[1Iδ2]ΦL− d
(
Iδ[1ΦIδ2]ΦL

)
, (7.64)

= Ω[δ1Φ, δ2Φ]− dẼ1,2 , (7.65)

where we used that the homotopy operator satisfies Iδ1δ
′
2 = δ′2Iδ1 ,9 and Ẽ1,2 ≡ Iδ[1ΦIδ2]ΦL. Thus,

in the case we have exact symmetries (when δ1 or δ2 is a gauge symmetry), Ẽ vanishes and there

is a match in both prescriptions. The Lee-Wald and Barnich-Brandt procedures are equivalent

for exact symmetries.

It is worth to point out the differences in the prescription: k′ε and Ω′[δ1Φ, δ2Φ] depend

directly on the equations of motion and it is insensitive to the intrinsic ambiguities of the

variational principle. On the other hand, kε and Ω[δ1Φ, δ2Φ] can be computed from standard

procedures without introducing the homotopy operator. As a final remark, we note that in

(7.53) we exhibited and explicit formula for the homotopy operator written for a gravity theory

in tetrad-connection variables.

9In this notation, this property is the equivalent of equation [dV , IdV ] = 0 where dV denotes vertical derivatives
in the jet-bundle approach (see A.5 in [101]).

80



Example: We can illustrate this comparison for GR theory defined in (7.69). The (D− 2)-

space-time form Ẽ[Φ, δ1Φ, δ2Φ] for this case is given, in components, by

Ẽµν1,2 =
κ

4

√
−g(δ1g)[µ

σ ∧ (δ2g)|σ|ν] , (7.66)

which taking δ1 → δξ and δ2 → δ, we get

Ẽµν1,2 −→ Ẽµν [g; δg, δξg] = −κ
2

√
−g
(
∇[µξσ +∇σξ[µ

)
∧ (δg)|σ|ν] , (7.67)

where we have used δgµν = −gµαgνβδgαβ. Notice that this term vanishes for an exact symmetry,

i.e when ξµ is a Killing vector.

7.4 Gravity theories with metric variables

In this section, we study the surface charges for gravity theories in the metric formalism language

whose action reads

S[gµν ,Φ] = S(EH)[gµν ] + S(matter)[gµν ,Φ] , (7.68)

where S(EH)[gµν ] is the Einstein-Hilbert (EH) action describing GR, and S(matter)[gµν ,Φ] is the

action describing the dynamics of any matter fields Φ.

Particularly, we focus on the derivation of surface charges in GR by studying the known family

of solutions and its comparison with standard procedures of the derivation of charges.

7.4.1 Einstein-Hilbert-Λ theory

Let us consider the Einstein-Hilbert (EH) action in D-dimensional space-time with an additional

cosmological constant term Λ

S(EH)[gµν ] =
κ

2

ˆ
M
dDx
√
−g (R− 2Λ) , (7.69)
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where κ = 1/(8πG) with G the Newton’s constant. The variation of the metric field under an

infinitesimal diffeomorphism amounts for its Lie derivative generated by the vector field ξ

δξgµν = Lξgµν = ∇µξν +∇νξµ . (7.70)

This corresponds to the gauge symmetry of GR. We take the perspective of GR as a gauge

theory in the sense that for arbitrary vector field the Lie derivative of the metric is both 1) a

local transformation and 2) a symmetry of the action (i.e. the varied action after replacement of

the symmetry becomes, at most, a boundary term). Therefore, as we know, to compute charges

we should use the surface charge method.

The ingredients that we need are

L =
κ

2

√
−g (R− 2Λ) , (7.71)

Eµν =
κ

2

√
−g
(
Rµν − 1

2
gµνR+ Λgµν

)
, (7.72)

Eµν(l.e.o.m) = 2∇̄α∇̄(νh
α
µ) − �̄hµν − ∇̄ν∇̄µh− ḡµν [∇̄α∇̄βhαβ − �̄h] + Λhµν , (7.73)

Θµ(g, δξg) = κ
√
−g∇[α(gµ]βδξgαβ) ,

= κ
√
−g
(
∇α∇(αξµ) −∇µ∇αξα

)
,

= κ
√
−g
(
∇α∇[αξµ] + [∇α,∇µ]ξα

)
,

= κ
√
−g
(
∇α∇[αξµ] +Rµαξα

)
, (7.74)

where we used the identity [∇α,∇µ]ξα = Rµαξα, and we defined hµν ≡ δgµν and h ≡ hµµ, and

�̄ ≡ ∇̄µ∇̄µ. Notice that we used bar notation in the linearized equations of motion Eµν(l.e.o.m) to

indicate that ḡµν is the dynamical field satisfying the equations of motion Eµν = 0, and where

the covariant derivative ∇̄µ is built using ḡµν . Now, we first need to compute the variation of

the Lagrangian generated by an arbitrary vector field ξ = ξµ∂µ. One has, from Eq. (7.27), that
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∂µ(ξµL) = Eµνδξg
µν +∇µΘµ(g, δξg) ,

= −2Eµν∇(µξν) +∇µΘµ(g, δξg) ,

= −∇(µ
(

2Eµνξ
ν)
)

+ 2ξ(ν∇µ)Eµν +∇µΘµ(g, δξg) ,

= −∇µ (2Eµνξ
ν) +∇µΘµ(g, δξg) ,

= ∇µ (−2Eµνξ
ν + Θµ(g, δξg)) . (7.75)

In the second line we replaced10 δξg
µν = −∇µξν −∇νξµ = −2∇(µξν), in the third line we made

use of the Leibniz’s rule, and in the fourth line we used the symmetry of Eµν and the Noether

(Bianchi) identity ∇µEµν = 0.

As seen in the general case, Eq. (7.29), and using Eqs. (7.71)-(7.72)-(7.74), one has the

trivially conserved current

Jµξ = Θµ(g, δξg)− ξµL− 2ξνE
µν ,

= κ
√
−g∇ν∇[νξµ] ,

= κ ∂ν

(√
−g∇[νξµ]

)
= κ ∂ν

(
−
√
−g∇[µξν]

)
. (7.76)

Then, the Noether potential reads

Q̃µνξ = −κ
√
−g∇[µξν] , (7.77)

because its anti-symmetry the current is trivially conserved, ∂µ∂νQ̃
µν
ξ = 0, without using the

equations of motion.

Finally, the surface charge density is taking the form

10Notice that from the variation of the metric, δξgµν = ∇µξν + ∇νξµ, and from the identity 0 = δ(δµν ) =
δgµαgαν + gµαδgαν , the variation of the inverse metric gets a minus sign.
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kµνξ = δQ̃µνξ + 2ξ[µΘν](g, δg) ,

= −κδ
(√
−g∇[µξν]

)
+ 2κ

√
−gξ [̇µ∇[α

(
gν]]̇βδgαβ

)
. (7.78)

To compute the variation of the first term we use

δ(∇αξν) = δΓναγξ
γ =

1

2
gνλ (∇γδgαλ +∇αδgγλ −∇λδgαγ) ξγ , (7.79)

we insert this in the first term of (7.78) as

δ
(√
−g∇[µξν]

)
= δ

(√
−gg[µ|α∇αξν]

)
, (7.80)

=
√
−g
(
−1

2
δg∇[µξν] + δgσ[µ∇σξν] − ξσ∇[µδgν]σ

)
, (7.81)

with δg ≡ gµνδg
αβ, then we replace the result in (7.78). Then, the surface charge density for

GR is given by the following expression11

k̊µνξ =
√
−gκ

(
ξ[ν∇σδgµ]σ − ξ[ν∇µ]δg + ξσ∇[µδgν]σ − 1

2
δg∇[νξµ] + δgσ[ν∇σξµ]

)
, (7.82)

where δg = gαβδg
αβ. The surface charge density does not depend on the cosmological constant

term. This last is because the cosmological term in the EH action does not produce a boundary

term when one integrates by parts in the derivation of the pre-symplectic structure Θ(g, δg).

Moreover, it is linear in the symmetry vector field ξ and in the variation of the metric field δgµν .

Note also that k̊µνξ is anti-symmetric: An indication that the differential form language may be

appropriated here.

If we assume the condition that ξ obeys an exact symmetry for the metric field, i.e. ξ is a

Killing vector

11See also [98] or [105]. Note the overall sign difference. It is due to our conventions on the variation symbol δ.
We assume it respects δgµν = −gµαgνβδgαβ .
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Lξgµν = ∇µξν +∇νξµ = 0 , (7.83)

then, the surface charge density satisfies a conservation law, ∂µk̊
µν
ξ = 0, and therefore it is

suitable to define a surface charge through the integral expression (7.49).

7.4.2 Einstein-Hilbert-Maxwell action

Maxwell theory is considered to be a fundamental theory with a domain of validity at a much

larger energy scale than other effective models. In the gravity context, Maxwell potential is the

simplest matter field that, coupled to GR, allows for black hole solutions [106, 107]. As we will

see next in the examples, it introduces an additional term of the form ΦδQ in the first law of

black hole mechanics that takes into account the variation in the mass of the black hole when

its electric charge Q varies. In this term, Φ corresponds to the electric potential on the horizon.

The Einstein-Hilbert-Maxwell theory is described by the following action

S[gµν , Aµ] =

ˆ
M
dDx
√
−g
(
κ

2
(R− 2Λ)− 1

4
FµνF

µν

)
, (7.84)

where Aµ is the electromagnetic gauge potential and Fµν = ∂µAν − ∂νAµ is the electromagnetic

field strength.

The infinitesimal gauge transformations for this theory are

δξgµν = Lξgµν = ∇µξν +∇νξµ , (7.85)

δεAµ = δ(ξ,λ)Aµ = LξAµ −∇µλ′ = ξνFνµ −∇µλ , (7.86)

where in addition to the diffeomorphisms on the Aµ field we must consider the U(1) gauge

symmetry of the electromagnetism. Note that we use λ = λ′ − ξµAµ, which is the prescription

for the so-called “improved gauge transformations”. It will be explained better in Section 7.5.2.
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We use ε = (ξ, λ) to pack all gauge symmetry parameters. This prescription is useful each time

there is a gauge transformation acting on connections. The advantage is that the transformations

become explicitly invariant as far as the gauge parameter λ transforms in an invariant way. To

undo the prescription, a simple replacement of λ in the final formulas is enough.

The surface charge density for Einstein-Hilbert-Maxwell theory is12 (see Appendix E.1)

kµνε = k̊µνξ +
√
−g
[
λ

(
δFµν − 1

2
δgFµν

)
− δAα

(
ξαFµν + 2ξ[µF ν]α

)]
, (7.87)

where again δg ≡ gµνδgµν .

In order to define a conserved surface charge the exact symmetry conditions must be satisfied.

The conditions stand for equating the infinitesimal gauge transformations (7.85) and (7.86) to

zero and solve for the parameters ε = (ξ, λ). As we know for pure gravity this is the Killing

condition on ξ, but here we also need to solve λ in terms of ξ. The standard way to solve this

system is first consider a (given) Killing field ξ, and then introduce it in (7.86) to solve λ = λ(ξ).

Note that even if there is no Killing field at all, still ξ = 0 and λ = λ0 is a general solution. This

is the origin of the electric charge in curved space-times discussed in the Introduction. This

formula will be used when we study the example of the electrically charged and rotating either

(2 + 1) and (3 + 1)-dimensional black hole in the examples in Chapter 8.

7.4.3 Einstein-Hilbert-Skyrme action

As we explained in the first part of this thesis, the Skyrme theory is one of the most useful

nuclear and particle physics models due to its close relationship to low energy QCD. With its

various developments in particle physics, it has been interested to apply this theory to GR

and astrophysics. For example, through numerical computations, the existence of spherically

12This formula should be compared with the results in [99], Eq. (4.22) in [108], Eq. (4.13) in [109], or recently
Eq. (51) in [97]. In the explicit formulas of [108] and [109], an extra term 2Fµρδgρσg

σν appears, due to their
different definition of the variation of the field strength with the indices up: δFµν ≡ gµσgνρδFσρ.
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symmetric black solutions with a non-trivial Skyrme field has been found in [8,110], and sectors

with non-vanishing topological charge where the Skyrme model has interesting consequences

[111–113].

Here we consider gravity coupled to a Skyrme field U(xµ), which is a SU(2) group valued

field on space-time. The Einstein-Hilbert-Skyrme action is

S[gµν , U ] =

ˆ
M
dDx
√
−g
(
κ

2
(R− Λ) +

K

4

〈
LµL

µ +
λ

8
[Lµ, Lν ] [Lµ, Lν ]

〉)
, (7.88)

with Lµ defined in (3.3), and K and λ are positive coupling constants. Here we use 〈·〉 to denote

the trace on the su(2) algebra elements.

Analogously with the previous theory there is no new gauge symmetry. Then, we must

consider just the infinitesimal diffeomorphism transformations on the fields

δξgµν = Lξgµν = ∇µξν +∇νξµ , (7.89)

δξU = LξU = ξµ∂µU . (7.90)

In Appendix E.2, it is worked out the derivation of the surface charge density. The result is

kµνξ = k̊µνξ +K
√
−gξ[µ

〈(
Lν] +

λ

4

[
Lσ,

[
Lν], Lσ

]])
U−1δU

〉
. (7.91)

Again, to have the conservation law, ∂µk
µν
ξ ≈ 0, the exactness symmetry condition must hold.

That is, equating Eqs. (7.89) and (7.90) to zero and solving for ξ (have a Killing vector).

As an application, this is the formula one should use, within this formalism, to compute the

mass/energy of a spherically symmetric black holes in the presence of a Skyrme field.
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7.5 Gravity Theories in Differential Form Language

Theories of gravity are mainly studied in metric formalism, where the metric tensor gµν is the

dynamical variable describing the gravitational field. It comes from Einstein’s cornerstone idea

that gravity is geometry. When Einstein was formulating his theory of gravity, the only geome-

try available to him was the Riemannian geometry of metric described by the tensor calculus of

Ricci and Levi-Civita. However, at the same time, Élie Cartan was developing a very different

type of geometry [114, 115]. The geometry can also be recast using the language of differential

forms. This alternative approach is nowadays known as the Cartan formulation of gravity, and

the metric tensor is traded for tetrads and spin connections as dynamical variables in the action

principle.

The Cartan formulation of gravity, though less preferred in the literature,13 has undoubted

advantages to provide an explicit coordinate-invariant description, describe the coupling with

fermionic matter fields, and study dynamical and non-dynamical torsion.

In the following, we start by presenting theories of gravity in tetrad formalism. The reader

might appreciate comparing the two formalisms mentioned above and the benefits and dis-

advantages in either formulation. We aim at presenting the surface charge formulas for the

Einstein-Cartan theory coupled to electromagnetic and matter fields. For the equivalent the-

ories, the formulas in this section are equivalent to those derived in the previous section with

the metric formalism. We comment on some features highlighted by using differential forms by

deepening the direct consequences of the formulas.

In the case of a pure gravity theory and for asymptotically (anti)-de Sitter space-times,

we show that the corresponding surface charge evaluated in the asymptotic region gets a very

compact form, as recently noted in [117, 118]. Finally, a new result is about torsional gravity

13One recent exception is the work [116], where boundary charges for the Holst Lagrangian in tetrad-connection
variables are analyzed.
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theories: We show two relevant examples where the charges are unaffected by the presence of

non-dynamical torsion fields.

7.5.1 Einstein-Cartan formalism

In the early 1900s, Einstein noted that under the assumptions of locality in space and short

periods, one should not feel the effect of gravity in a freely falling laboratory. This Gendanken-

experiment tells us at least two things: 1) the experiments carried out in gravity, under these

assumptions, will be indistinguishable from those in Minkowski space.; 2) in a local neighbor-

hood, the space-time will be ruled by Lorentz invariance. As we know, Lorentz invariance is

reached by performing a coordinate transformation to a freely falling reference system. How-

ever, in the absence of gravity, one can consider an accelerated laboratory where gravitation and

acceleration look the same in a small space-time region. This latter is known as the equivalence

principle.

From the point of view of differential geometry, to have locally inertial frames moving in straight

lines corresponds to have a flat tangent space at every point of a differentiable manifold. Here

we introduce the basics of the Einstein-Cartan formulation of gravity. For a complete review we

suggest [119,120].

Let us consider the space-time as a differentiable D-dimensional manifold M, i.e. one can

considers the differentiable manifold M as smoothly connected local infinitesimal patches of

RD. At every point x ∈ M there is a D−dimensional flat tangent space Tx describing, in the

neighborhood of x, the manifold M. In other words, one can define the open bijective map

Φ : V → U , where V ⊂ RD and U ⊂ M. Physically, this map corresponds to a change of

reference frame to that of a freely falling observer (change in space-time coordinates).

In Einstein’s theory of special relativity, an observer at x ∈ M relies upon the ability of

89



measuring lengths and angles locally. In order to do this, we must define a scalar product of

vectors ~v, ~u ∈ Tx such that lengths and angles are well-defined. In gravity, to this end, we need

an extra ingredient: the metric. Let us define a metric g(x) on M defined at each point in

x ∈M such that

〈~v(x), ~u(x)〉 ≡ g(x)[~v(x), ~u(x)] = vµ(x)gµν(x)uν(x) . (7.92)

g defines a scalar product 〈 , 〉 between two vectors. The invariance under coordinate transfor-

mation, e.g. Lorentz transformation Λ ∈ SO(1, 3) requires that g(x) transforms as

gµ′ν′(x) = Λµµ′(x) Λνν′(x) gµν(x) . (7.93)

Then, lengths and angles are well-defined in the standard way in terms of the scalar product,

and the infinitesimal element is defined by

ds2(x) = gµν(x)dxµ(x)dxν(x) . (7.94)

The isomorphism between M and the collection of tangent vectors {Tx} can be constructed as

a coordinate transformation between a local coordinates {xµ} in an open neighborhood in M

and an orthonormal frame in the Minkowski space Tx with coordinates xa. The Jacobian matrix

eaµ(x) ≡ ∂xa

∂xµ
, (7.95)

is such that allows us construct a relation between tensors on M and tensors in Tx, namely if

T is a tensor in M, then the corresponding tensor in the tangent space Tx is given by

P a1···an(x) = ea1
µ1(x) · · · eanµn(x)T µ1···µn(x) . (7.96)

In particular, for the Minkowski metric g(x) = η, this isomorphism induces a metric on M as
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follows: by considering a coordinate separation dxµ between two infinitesimally close points on

M, the corresponding separation xa in Tx is

dxa = eaµdx
µ . (7.97)

Then, the length in Tx given in (7.94) can also be expressed as ηabe
a
µ(x)ebν(x)dxµdxν , where

the metric in M is identified as

gµν(x) = eaµ(x)ebν(x)ηab . (7.98)

Therefore, this relation tells us that all metric properties of space-time are contained in the so-

called veilbein eaµ(x). Notice that there are many choices of veilbein that give the same metric

gµν because there exists Lorentz invariance.

Under coordinate transformation eaµ(x) transforms as a covector

eaµ′(x) = (J−1)µ′
µ
(x)eaµ(x) , (7.99)

while for a Lorentz transformation, the veilbein eaµ(x) transforms as a vector

ea
′
µ(x) = Λa

′
b(x)ebµ(x) , (7.100)

Λab(x) ∈ SO(D − 1, 1). The veilbein has inverse, and is defined by

ea
µ(x) eaν(x) = δµν . (7.101)

Now, let us introduce another important ingredient to describe Cartan geometry. In standard

Riemannian geometry, the notion of parallelism of a vector is codified by the connection Γλµν , also

known as Christoffel symbol, which roughly speaking does not belong to space-time manifold but
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rather it belongs to a bigger manifold called fiber bundle. We want to implement the same idea

on an orthonormal basis defined by the veilbein. The problem one faces is that the derivative

of the components of a vector of SO(D − 1, 1) is not a vector of SO(D − 1, 1).

As an attempt, suppose V a(x) to be a field that transforms like a vector under the Lorentz

group SO(D − 1, 1), and we will take the following ansatz for denoting its covariant derivative

DµV
a(x) = ∂µV

a(x) + ωa bµ(x)V b(x) , (7.102)

where ωa b(x) = ωa bµ(x)dxµ is a one-form playing the analogous role of Γλµν in the basis manifold

but now in the tangent space Tx. Under a SO(D − 1, 1) rotation, ωa b(x) transforms as

ωabµ(x) = Λac(x)Λb
d(x)ωcdµ(x) + Λac(x)∂µΛb

c(x) , (7.103)

where Λb
d = ηabη

cdΛac is the inverse transpose of Λbd. Due to its presence in the covariant

derivative, ωab(x) is called the Lorentz connection and define the parallel transport of Lorentz

tensors in the tangent space between Tx and Tx+dx. For instance, the parallel transport of a

vector V a(x) from x to x+ dx is a vector V a
|| (x) defined as

V a
|| (x) ≡ V a(x) + dxµDµV

a(x) , (7.104)

or,

dxµDµV
a(x) = V a

|| (x)− V a(x) . (7.105)

So far, we see that all the affine properties are encoded in the arbitrary and metric-independent

connection ωabµ(x). On the other hand, we would like to find a relation between the two

covariant derivative ∇µ and Dµ. To this end, let us consider an arbitrary vector field

Xa = eaµX
µ , (7.106)
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satisfying

DµX
a = ∂µX

a + ωabµX
b , ∇µXν = ∂µX

ν + ΓνµλX
λ . (7.107)

As we see, these two derivatives have only in common the ordinary partial derivative ∂ and it

seems there is no further relation to be established. To go further, let us define a full covariant

derivative of a hybrid vector

Dµ(·) ≡ ∂µ(·) + ωabµ (·)ba + Γνµλ (·)ν . (7.108)

Now, applying Dµ on the following hybrid object Xa = eaµX
λ, we get

DµXa = (Dµeaλ)Xλ + eaλDµXλ . (7.109)

For each term, the full covariant derivative Dµ reduces to the covariant derivative of each factor,

D or ∇, when the connection in the other factor vanishes. With this in mind, we find the

relation (
Dµeaλ − ∂µeaλ − ωabµebλ + Γρµλe

a
ρ

)
Xλ = 0 . (7.110)

Because we supposed X to be an arbitrary vector, from this equation we find the full covariant

derivative of the veilbein

Dµeaλ = ∂µe
a
λ + ωabµe

b
λ − Γρµλe

a
ρ . (7.111)

Now, if one adds the assumption of that the metric (and its inverse) should be invariant under

parallel transport, i.e

∇λgµν = 0 , ∇λgµν = 0 , (7.112)

using (7.98), we find

2ηab(Dλeaµ)ebν = 0 , (7.113)
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and because the veilbein has inverse, multiplying by ec
ν , we get

Dλeaµ = ∂µe
a
λ + ωabµe

b
λ − Γρµλe

a
ρ = 0 . (7.114)

This expression is so-called veilbein postulate. It is worth mentioning that this equation is not

an extra hypothesis on the notion of parallel transport, but rather a simple relation between the

connections Γλµν and ωabµ.

An important consequence of this postulate is that together with the metric compatibility con-

dition (7.112) restricts to ωab to be anti-symmetric

ωab = −ωba . (7.115)

These two fundamental fields: the veilbein ea and the Lorentz connection ωab define the

so-called Cartan formalism or first order formalism.

Lorentz curvature and Torsion

One of the fundamental properties of the ordinary derivative operator is that [∂µ, ∂ν ] = 0, i.e.

the partial derivatives commute. However, the covariant derivative D does not hold this. In

effect, it is an easy check to see

D2V a = D ∧ (dV a + ωab ∧ V b) = (dωab + ωac ∧ ωcb) ∧ V b . (7.116)

As we see, it does not involve any derivative of V a! The term in angle brackets in the rightest

expression is named the two-form Lorentz curvature, and is defined as

Rab ≡ dωab + ωac ∧ ωcb . (7.117)
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This verifies that both ωab(x) and the gauge potential A = Aµ(x)dxµ in Yang-Mills like-theories

share very similarities from the fiber bundle perspective because they are connections of a gauge

group [119].

Another two-form that one can define solely involving derivatives of the veilbein is

Dea = dea + ωab ∧ eb ≡ T a , (7.118)

which is called torsion. In an explicit coordinate basis, reads

∂µe
a
ν + ωaµb e

b
ν − ∂νeaµ − ωaνb ∧ ebµ = T aµν , (7.119)

where the two-form torsion is given by T a = (1/2)T aµνdx
µ ∧ dxν . The last equation can be

rewritten as

∂µe
a
ν + ωaµb e

b
ν =

1

2
T aµν +

1

2
P aµν =

1

2

(
T λµν + P λµν

)
eaλ , (7.120)

where P aµν is an arbitrary symmetric tensor. By comparing this result with veilbein postulate

(7.114) we find

Γλµν = T λµν + P λµν , (7.121)

where by Eq. (7.118) T λµν is the torsion tensor, and P λµν is still non-defined. But, if we evoke the

metric compatibility condition ∇λgµν = 0, or equivalently Dηab = 0, we find

1

2
P λµν =

1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) . (7.122)

Let us conclude this review section with a final comment. At the end of the fifties, the seminal

paper by Yang and Mills [121] generated a great interest in describing gravity as a gauge theory.

In 1956, Ryoyu Utiyama showed that Einstein theory would be rewritten as a gauge theory

with a gauge group: the Lorentz group [122]. This latter raised the question of whether one
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would be able of replicating this idea for a bigger gauge group including translations, i.e. the

Poincaré group. However, the main problem one faces is how the Poincaré symmetry, as a gauge

symmetry, looks for the dynamical fields e, ω and gµν . In spite that gravity in four space-time

dimensions cannot be developed as a gauge theory using the standard fiber bundle machinery,

this does not prevent rewriting this theory elegantly in the language of differential forms.

7.5.2 Einstein-Cartan-Λ

The EH action with cosmological constant (7.69) is equivalent to the so-called Einstein-Cartan

action with cosmological constant

S[ea, ωab] = κ′
ˆ
M
εabcd

(
Rabeced ± 1

2`2
eaebeced

)
, (7.123)

where the wedge product among forms is left implicit, for instance eaeb = ea∧eb = 1
2e
a
νe
b
µdx

ν∧

dxµ = −1
2e
a
µe
b
νdx

ν ∧ dxµ = −eb ∧ ea. The coupling constants are related to the old ones by

κ′ = κ/4 = 1/(32πG) and `2 = 3
|Λ| . The ± signs correspond to negative and positive cosmolog-

ical constants, respectively. As expected from the metric analysis, the surface charges will not

depend on the cosmological constant in the Einstein-Cartan formalism either.

In metric formalism, space-time symmetries or isometries are encoded in the Killing equation.

The general wording used to refer to it on arbitrary fields is the exact symmetry condition. As

we showed before, it is not always just a Lie derivative because when a local gauge symmetry

is present, it quickly spoils the symmetry condition. The infinitesimal transformations of the

fundamental fields in this formalism, the vielbein and connection, by the local Lorentz group

is14

14Throughout this section we use dω instead of D for the covariant derivative defined by the Lorentz connection
ω.
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δλe
a = λabe

b , (7.124)

δλω
a
b = −(dωλ)ab = −dλab − ωacλcb + ωb

cλac , (7.125)

where λab = −λba are the parameters of the infinitesimal Lorentz transformation Λ ≈ δab +λab.

Remember that it is a gauge symmetry; the group elements take different values at different

points on the manifold M.

Improved gauge transformations

The infinitesimal transformations of the fields due to diffeomorphisms are normally assumed to

be generated by an arbitrary vector field

δ̃ξe = Lξe = d(ξye) + ξy(de) , (7.126)

δ̃ξω = Lξω = d(ξyω) + ξy(dω) , (7.127)

where in the second equality we use the Cartan’s formula: Lξe
a = d(ξyea) + ξy(dea). However,

note that they are not homogeneous under local Lorentz transformation due to the presence of

exterior derivatives. The intuitive interpretation of δ̃ξe and δ̃ξω as infinitesimal variation require

them to be homogeneous under the action of the local Lorentz group. More precisely, if we attach

ourselves to the intuitive idea of variations as a comparison of fields in a neighborhood, δe ≈

e′ − e, we expect them to have a covariant transformation under the local Lorentz group. This

criterion is not satisfied by the infinitesimal diffeomorphism transformation presented before,

and therefore we correct Eqs. (7.126) and (7.127) by eliminating the non-homogeneous part.

This can be done by adding an infinitesimal Lorentz transformation with a parameter ξyω. This

corrects the non-homogeneous part of both transformations at once, and we get
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δξe = Lξe+ δξyωe = dω(ξye) + ξy(dωe) , (7.128)

δξω = Lξω + δξyωω = ξyR . (7.129)

Another way to think about this, is that in the transformation of the tetrad, the exterior deriva-

tive d is promoted to a covariant exterior derivative dω, while in the transformation of the

Lorentz connection, because of the identity d(ξyω)+ξydω = dω(ξyω)+ξyR, the ill-transforming

part, dω(ξyω), is subtracted. This kind of Lie derivatives are also called the Lie-Lorentz deriva-

tive which implements the adequate compensating local Lorentz for each general coordinate

transformation [123–125]. In simple terms, it is just a Lorentz-covariant Lie derivative.

By grouping the infinitesimal parameters as ε = (ξ, λ), such that δε ≡ Lξ +δλ+ξyω, the exact

symmetry condition that is gauge invariant is

δεe
a = dω(ξyea) + ξy(dωe

a) + λabe
b = 0 , (7.130)

δεω
ab = ξyRab − dωλab = 0 , (7.131)

which in fact can be understood as a Lie derivative on forms plus a specific infinitesimal Lorentz

transformation,15 δλ′e
a = λ′abe

b generated by the field dependent parameter λ′ab = λab + ξyωab.

This combination of infinitesimal transformation is just a convenient prescription, sometimes

called improved transformation, and it has the advantage of being homogeneous under local

Lorentz transformations, δε(Λ
a
be
b) = Λab δεe

b, which is crucial to keep the local Lorentz gauge

symmetry explicitly free while imposing the exact symmetry. If we do not do this, a local Lorentz

transformation will change the Killing equation, and one has to keep track of the extra piece in

all formulas. A simple analysis shows that the exact symmetry condition δεe
a = 0, an on-shell

condition, implies the usual Killing equation on the metric field

15We use the notation ξy = iξ for the interior product, for instance ξyea = ξµeaµ.
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Lξg = Lξe
a ⊗ ea + ea ⊗Lξea = δεe

a ⊗ ea + ea ⊗ δεea = 0 , (7.132)

where we used that g = gµν(dxµ ⊗ dxν) = ηab(e
a ⊗ eb) with ⊗ the symmetric tensorial product,

and the anti-symmetry of λab makes that δλe
a ⊗ ea = λab eb ⊗ ea = 0. Note also that if the

connection can be expressed in terms of the vielbein, ωab(e), the condition δεω
ab = 0 is a trivial

consequence of δεe
a = 0. And note also that the equation is linear and thus it is straightforward

to solve for the parameter λab. In fact, we find

λab = eay(dω(ξyeb)) , (7.133)

which is equivalent to

λab = eaµebν∇[µξν] , (7.134)

where the anti-symmetry in the Greek indexes is an explicit consequence of the Killing equation

∇(µξν) = 0.

Now, let us return to the derivation of the surface charge density. For the details we refer to

the Appendix E.3, where the surface charge density for this theory is worked out step−by−step.

The final result is simply (see [126,127])

k̊ε = −κ′εabcd
(
λabδ(ec ∧ ed)− δωabξy(ec ∧ ed)

)
, (7.135)

or equivalently

k̊ε = −2κ′εabcd

(
λabδec − δωabξyec

)
∧ ed . (7.136)

Thus, as mentioned earlier, it does not depend explicitly on the cosmological constant. In partic-

ular, if there is no cosmological constant term in the action, the surface charge density formula

is the same. We explicitly put the wedge product among differential forms again to emphasize
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that this expression is a two-form in space-time.

The previous formula can be used to define charges in wherever space-time region the exact

symmetry condition holds! Suppose the space-time is assumed to have an exact symmetry

with parameters ε defined on a limited region in that region. In that case, the surface charge

density will satisfy d̊kε ≈ 0, and therefore, a surface charge may be defined. In particular,

for exact solutions with exact symmetries, like simple black hole solutions, the surface charge

defines charges quasi-locally: an asymptotic analysis is not needed, and the charge is defined at

any two-surface enclosing the black hole. This property makes surface charge a useful tool to

compute the charges in space-times with complicated asymptotic structures.

As a final comment, let us mention again that the cosmological constant term does not

affect the surface charge. This fact is just because it does not contribute to the pre-symplectic

structure. A similar phenomenon, but not equal, happens for any addition of boundary terms in

the Lagrangian and topological terms. This result will be analyzed in detail in the next section.

7.5.3 Topological terms effect on surface charges

As we mentioned in Section 7.2, any boundary term added to the Lagrangian does not affect

the surface charge formula for exact symmetries. This is a remarkable property that is in high

contrast with usual Noether procedures to compute charges (see, for instance, the recent review

[128]). To see how this happens let us add a boundary term to the Lagrangian: L → L + dα,

with the assumption that α is gauge invariant, δεα = Lξα. Now we can repeat the procedure of

Section 7.2 by keeping track of this boundary term. We have Jε → Jε + d(ξyα), and the surface

charge density acquires the additional terms

kε −→ kε + δ(ξyα)− ξyδα . (7.137)

100



If we use that δξ = 0, thus, the terms proportional to α in the last expression vanish, and

therefore no change at all for the surface charges.

The previous case is quite general. Let us take a few examples. For example in D = 4 the

Nieh-Yan topological term, given by

χ
(4)
NY =

ˆ
M(4)

(
Ta ∧ T a −Rab ∧ ea ∧ eb

)
, (7.138)

is in this category. However, there are examples where α is not gauge invariant. This is the case

for the Euler or the Pontryaguin topological terms, whose densities are, respectively, given by

χ
(4)
E =

ˆ
M(4)

εabcdR
ab ∧Rcd , χ

(4)
P =

ˆ
M(4)

Rab ∧Rba . (7.139)

Both are exterior derivatives of Chern-Simons Lagrangian which are gauge quasi-invariant forms

[120]. The contribution of the Euler term to the surface charge density expression explicitly yields

k(E)
ε = −2κ (λ ? δR− δω ? ξyR) = −2κ (d(λ ? δω) + δεω ? δω) . (7.140)

The first term vanishes because is an exact form and disappears when the density is integrated

on a smooth boundary ∂Σ = S of a manifold, and the second factor vanishes by the exactness

symmetry condition on δεω = 0. A similar computation for the Pontryaguin χ
(4)
P yields

k(P )
ε = −2κ (λδR− δωξyR) = −2κ (d(λδω) + δεωδω) , (7.141)

where in the rightest side of the last expression: the first term does not contribute to the

conservation law dkε ≈ 0 (because d2 = 0); and the second one vanishes due to the exact

symmetry condition δεω = 0. Then, surface charges are blind to the Pontryaguin topological

term too.

Finally, in D = 4 we may also be interested in using the Holst term density
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χ
(4)
H =

ˆ
M(4)

ea ∧ eb ∧Rab , (7.142)

inside the gravity action. This is not a topological term by itself but a part of the Nieh-

Yan term, and it does not affect the equations of motion either. To deal with it note that

ea ∧ eb ∧ Rab = T a ∧ Ta − d(ea ∧ Ta). The second term was already studied, then, it is enough

to keep track of T a ∧ Ta in the computation of surface charges potential. This term also does

not produce any changes because already at the level of the pre-symplectic structure density,

Ω(δ, δε), the contributions are all proportional to the torsion T a and therefore vanish when the

on-shell condition holds.

Then, boundary terms, and in particular topological terms, do not affect the surface charges.

Note that this is already explicit for surface charges computed through the contracting homotopy

operator (7.53) because it depends only of Sε̄ and not of the Lagrangian. In this sense here we

have stressed what is already indirectly known due to the fact that surface charges obtained

through both methods are equivalent (see section 7.3).

7.5.4 Einstein-Cartan-Maxwell

The electromagnetic field is described by the one-form potential A and the field strength is

simply the exterior derivative of the potential, F = dA. The Einstein-Cartan action coupled to

the electromagnetic field is

S[ea, ωab, A] =

ˆ
M

(
κ′εabcdR

abeced + αF ? F
)
, (7.143)

with α = −1/2. The coupling with the vielbein field in the second term is through the Hodge

operator ?. Explicit components on the frame field are F = 1
2Fabe

aeb, and the Hodge dual is

?F = 1
4εabcdF

abeced (see Appendix 1 for conventions).

To impose the exact symmetry conditions we still should impose the equations δεe
a = 0
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and δεω
ab = 0 as in (7.130) and (7.131), but now we have the field A with its own extra gauge

symmetry. The corresponding infinitesimal gauge transformation is δλ′A = −dλ′. Therefore,

besides the two previous conditions, we should add a third exact symmetry condition directly

on the potential, namely

δεA = ξyF − dλ = 0 . (7.144)

Once more for the symmetry condition, we use the improved transformation or the Lie-Maxwell

derivative that is the composition of a Lie derivative and a particular U(1) gauge transformation

with parameter λ′ = λ+ ξyA; explicitly

δεA = LξA+ δ(λ+ξyA)A = d(ξyA) + ξydA− d(λ+ ξyA) . (7.145)

In this set up we group together all the parameters as ε = (ξ, λab, λ). Notice that A does not

transform with local Lorentz, i.e δλabA = 0. Likewise, ea or ωab do not change with U(1) gauge

transformation.

Then, the surface charge density is the sum of k̊ε, from (7.135), and an extra electromagnetic

piece

kECMε = k̊ε − 2α (λ δ ? F − δA ξy ? F ) . (7.146)

The derivation is presented in Appendix E.4 for a general Yang-Mills theory. The surface charge

for gravity coupled with extra fields is then given by the surface charge of the pure gravity plus

the contributions from the additional fields. This is because these additional fields enter the

boundary term Θ(δ) in a linear way. An exception to this structure is for non-linear couplings

to gravity (see, for instance, the conformally coupled scalar field studied in [123]).

Particularly, we mention that the exact symmetry condition δλA = 0 is solved for λ =

λ0 = cte, such that the gauge symmetry turns into a rigid symmetry. Note that here the exact

condition is independent of the fields and admits a general solution. Then, we have
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dkλ0 ≈ 0 , (7.147)

which can be integrated in a three-dimensional space-like surface Σ enclosed by a two-dimensional

space-like surface S ˆ
Σ
dkλ0 =

‹
S
kλ0 = 0 , (7.148)

where we have used the Gauss’ theorem in the first equality. It defines

/δQλ0 =
λ0

4π

‹
S
? δF , (7.149)

where we have restored the value of α, and where the overall factor 1/4π is due to that S has

been considered a sphere. For simplicity, the parameter λ0 is chosen to be a constant in the

phase space. Then, the variation can be trivially removed by integration on phase space. The

integration constant coming from this operation can be fixed to zero by demanding that the

fields vanish at infinity. Then, we obtain the definition of the electric charge

Qλ0 =
λ0

4π

‹
S
?F , (7.150)

The conservation dkλ0 ≈ 0 ensures that for any other surface, say S′, obtained by a continuous

deformation of S, the electric charge is the same. If there are no sources S can be contracted

to a point and all charges are zero. This finishes the analysis of surface charges for Einstein-

Cartan-Maxwell theory.

7.5.5 Einstein-Cartan with Torsion: Two Examples

In the Einstein-Cartan theory, as a first-order formulation, the connection ωab is an independent

variable. Therefore, in this frame, the torsion does not vanish in general. It is enough to have

a source in the corresponding field equation to turn on the torsion field. While being a natural
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option to consider for the geometry of real space-times, so far, the torsion seems an elusive

feature of physical space-time, and there is no experimental indication for it at the moment.

Still, it is not ruled out, and thus for the sake of generality, it is worth studying.

Here, in particular, we wonder in the following questions:

How is that surface charges get modified with the presence of torsion in space-time? How the

torsion affects the space-time charges?

We do not have a general answer. However, by studying two particular and quite different

theories, the conclusion for both of them is that the torsion field seems not to affect the general

formula for the charges.

The role of torsion in the following charge formulas is analogous with the role played by the

cosmological constant term: Although present in gravity theories, explicitly modifying the field

equations and their respective solutions, it does not appear as a direct contributing term into

surface charges.

The first theory we consider is a simple, pure gravity example in (2 + 1)-space-time where

torsion is sourced without adding extra fields. The term, first introduced by Mielke and Baekler

in [129], is built from the same gravity fields. In a second example, now in (3 + 1)-dimensional

space-time, we consider the well-known Einstein-Cartan-Dirac theory where Dirac spinors source

torsion.

For both theories, we find the remarkable fact that torsion is explicitly absent from the

charge formula (this result may be contrasted with the recent work [130]). It remains an open

problem to specify under which conditions the torsion does not affect the charges.

Einstein-Cartan in (2 + 1)-dimensions plus a Torsion Term

Consider the gravitational action in three dimensions
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S[ea, ωab] =

ˆ
M

(
εabce

a ∧Rbc + β ea ∧ T a
)
, (7.151)

for simplicity we set the overall parameter to one and introduce β as the coupling constant for

the new term, where T a = dωe
a. As a matter of fact, ea ∧ T a cannot be written as a boundary

term. Furthermore, it produces a source for torsion, as can be checked in the equations of motion

(E.43). This action can be seen as a sector of the more general Mielke-Baekler model [129] which

contains two more terms: A cosmological constant term and a Chern-Simons term built with

ωab. A general analysis of the surface charges for the Mielke-Baekler model is straightforward,

but this additional torsional term is enough for our purposes. An even more elegant perspective

can be done by writing the full Mielke-Baekler model as a Chern-Simons theory and use the

results of the Chern-Simons Section 7.5.6 below.

Because the theory depends only on vielbein and spin connection fields, the corresponding

exact symmetry conditions are just the same as before, (7.130) and (7.131), which are valid for

any dimension. The computation of the surface charge density is straightforward and is done in

full detail in Appendix E.5. It reads

kε = −εabc(λabδec − δωabξyec) + 2βξyeaδea . (7.152)

Note that the first two terms have a similar structure than the four dimensional case Eq. (7.135),

this is not casual (see a discussion about the general formula in arbitrary dimensions, for

Lovelock-Cartan theories in [123]).

As explained in Appendix E.5 we can go further and split ωab = ω̃ab + ω̄ab, such that the

torsionless part of the connection satisfies dω̃e
a = dea+ω̃abe

b = 0, and we can use the equations of

motion to solve algebraically the contorsion ω̄ab. With this, the surface charge formula simplifies

to

kε = −εabc(λ̃abδec − δω̃abξyec) , (7.153)
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where λ̃ab = eay(dω̃(ξyeb)) is the parameter that solves the exact symmetry condition with just

the torsionless part of the connection, (E.52). Then, (7.153) shows that the contorsion is absent

from the seed formula for the charges, i.e before computing it for any specific solution and even

without use any kind of symmetry. This is not a fact due to exact symmetry. As we will see in

a moment, this is also true in a completely different theory.

Einstein-Cartan-Dirac

The action for the massless Einstein-Cartan-Dirac theory in four space-time dimensions is

S[ea, ωab, ψ] =

ˆ
M
εabcd e

a ∧ eb ∧
[
κ′Rcd − i

3
αψ e

c ∧
(
ψ̄γdγ5dωψ + dωψγ

dγ5ψ
)]

, (7.154)

with αψ the coupling parameter and the γ-matrices satisfying {γa, γb} = γaγb + γbγa = 2ηab.

The covariant derivative acting on spinors is

dωψ = dψ +
1

2
ωabγ

abψ , dωψ = dψ − 1

2
ωabγ

abψ , (7.155)

with γab ≡ 1
4 [γa, γb]. The special matrix γ5 ≡ γ0γ1γ2γ3 satisfies γ5γa = −γaγ5, and we use the

bar to denote the complex conjugate.

Besides the exact symmetry condition on ea and ωab given by (7.130) and (7.131), we need

to impose the exact symmetry condition directly on the spinor field

δεψ = Lξψ + λ′ψ = ξydωψ + λψ = 0 , (7.156)

where again we used an improved version with the algebra valued parameter λ′ = 1
2λ
′abγab =

1
2(λab+ξyωab)γab. Remember that the gauge symmetry for spinors is the local Lorentz symmetry,

then ε = (ξ, λab). Spinors change under an infinitesimal Lorentz transformation as δλ′ψ = λ′ψ,

with the algebra valued parameter λ′ = 1
2λ
′abγab. Hence, in this section λ′ without indices is a
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matrix.

For the surface charge density the calculations are long, details are in Appendix E.7. The

result is

kε = k̊ε − iαψ εabcd ξyeaebecδ
(
ψ̄γdγ5ψ

)
, (7.157)

which is again a simple modification of the Einstein-Cartan surface charge density produced by

the spinor field. The new term comes directly from the spinor contribution to the boundary

term in the varied action.

As we saw in the previous section we can go further if we consider the splitting ωab = ω̃ab+ω̄ab

such that ω̃ab is the torsionless part of the connection and the contorsion field ω̄ab is solved from

the equations of motion. Replacing this back we find a cancellation to simply get (see Appendix

E.7)

kε = −κ′εabcd
(
λ̃abδ(eced)− δω̃abξy(eced)

)
, (7.158)

where again λ̃ab = eay(dω̃(ξyeb)). This surface charge density is exactly k̊ε but using on it the

Levi-Civita connection, ω̃ab(e), instead of the general connection ωab. Therefore, the conclusion

for the Einstein-Cartan-Dirac theory is the same, contorsion leaves no trace on charges.

7.5.6 Chern-Simons action

In this section we discuss the surface charge formula for the Chern-Simons (CS) theory in

(2 + 1)-space-time dimensions. CS theories are quasi gauge invariant theories only defined in

odd dimensions which allows describe elegantly gravitational actions with promising quantum

versions.

In D = 3 space-time dimensions the CS action is given by

S[A] = κCS

ˆ
M

〈
A ∧ dA+

2

3
A ∧A ∧A

〉
, (7.159)
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the one-form gauge connection A is valued on the Lie algebra defining the theory, 〈·〉 denotes a

group invariant symmetric polynomial here of rank r = 2, which in this dimension is also named

the bilinear form; and κCS the level of the theory which is not relevant for the classical analysis.

Under a gauge transformation the CS action (7.159) is not invariant but quasi-invariant because

it produces a boundary term, this is of course still a gauge symmetry of the theory as far as the

equations of motion are concerned. In the following, we consider diffeomorphisms and gauge

symmetries and group them in ε = (ξ, λ), with ξ a vector field and λ a Lie algebra valued gauge

parameter. The general infinitesimal symmetry transformation reads

δεA = LξA− dAλ′ = ξyF − dAλ , (7.160)

notice that we use the exterior covariant derivative dA(·) ≡ d(·) + [A, (·)] and define a displaced

parameter as λ = λ′ − ξyA to work directly with the improved general transformation. Now,

the variation of the action produces the equation of motion F = dA + A ∧ A = 0 which holds

only if one gets rid of the boundary term given by the potential Θ(δA) = κCS〈A ∧ δA〉. The

symplectic structure density is simply Ω(δ1, δ2) = 2κCS 〈δ1A∧ δ2A〉, which we evaluate with one

of its entries on the gauge symmetry transformation (7.160)

Ω(δ, δε) = 2κCS 〈δA ∧ (ξyF − dAλ)〉 = 2κCS d〈δAλ〉 , (7.161)

where to get second equality we used the equation of motion, F = 0 and the linearized equation

of motion δF = dAδA = 0. Hence, for the CS theory in D = 3 we have the surface charge

density

kCSε = 2κCS 〈λδA〉 . (7.162)
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This simple formula covers all CS theories in D = 3 dimensions in the sense that the algebra

of the theory is not specified yet.16 In particular we can choose the Poincaré or (anti-)de Sitter

group to obtain the surface charge formula for general relativity in (2 + 1)-dimensions (as we do

in the first torsion example).

The previous derivation is a particular case of the more general derivation for CS theory in

D = 2n + 1 dimensions. The details of the general calculation are explained in Appendix E.8.

The general result for the surface charge density is

k(2n+1)
ε = n(n+ 1)κCS

〈
λδA ∧ Fn−1

〉
, (7.163)

which could probably had been guessed, in fact we note there is also a very direct computa-

tion to get this result by using the contracting homotopy operator, see Appendix E.8.1. The

infinitesimal symmetry transformation for the connection are the same (7.160) and the actions

for these theories are compactly written in equation (E.92).

We conclude this chapter with a summary table of all formulas found for the surface charge

densities corresponding to each theory described previously and additional ones studied in [123].

Moreover, we choose three family solutions as examples to show the complete scheme in full

detail for three different gravity formulations.

16This formula coincides with [131] when diffeomorphisms are considered only, i.e. setting λ = −ξyA in
Eq. (7.162).
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Chapter 8

Examples: Surface Charges in Action

In this chapter, we exhibit the surface charge method to compute charges in three different

examples: (i) The rotating charged BTZ black hole, (ii) The anti-de Sitter Kerr-Newman family,

and (iii) The Lorentzian rotating Taub-NUT solution in four dimensions. For each of them,

we compute step-by-step the charges associated with the exact symmetries of the solution.

Some of them have an explicit replicable calculation in Mathematica notebooks available at

[sites.google.com/view/surfacechargetoolkit/h].

8.0.1 Charged and rotating black hole

As an example, we apply the result to a particular black hole family. We show that surface

charges are compatible with the ones obtained through the standard asymptotic analysis. Then,

we offer how the quasi-local nature of surface charge allows having the first law of black hole

mechanics without relying on the asymptotic structure of space-time [132]. Note that this

quasi-local perspective is the best that can be done when the black hole is embedded in an

asymptotically de Sitter space-time.

We consider a black hole solution family which is electrically charged, rotating, and satisfies

the asymptotically constant curvature boundary conditions
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Rab ± 1

`2
eaeb = 0 in ∂M . (8.1)

This is known as the (anti-)de Sitter Kerr-Newman family. Its horizon is homeomorphic to

a sphere, and its metric, which is axisymmetric, reads in Boyer-Lindquist-type coordinates

as [133,134]

ds2 = −∆r

ρ2

[
dt− a sin2 θ

Ξ
dφ

]2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin2 θ

ρ2

[
a dt− r2 + a2

Ξ
dφ

]2

, (8.2)

where

ρ2 = r2 + a2 cos2 θ , Ξ = 1− a2

`2
, (8.3)

∆r = (r2 + a2)

(
1 +

r2

`2

)
− 2mr + z2 , ∆θ = 1− a2

l2
cos2 θ , (8.4)

with z defined by z2 = q2 + q2
m, q and qm being the electric and magnetic charge parameters,

respectively. For simplicity, we set qm = 0. m is associated with the source’s mass, and a is

called the rotation parameter and is responsible for measuring the twist of the repeated principal

null congruence. Note also that the constant Ξ in the metric (8.2) can be removed by applying

a rescaling to the angular coordinate φ, as dφ/Ξ → dφ. However, this constant is included to

have a metric with a well-behaved axis both at θ = 0 and θ = π with φ ∈ [0, 2π[.1

The electromagnetic potential and a possible tetrad describing the solution are2 [135]

1 A metric without this rescaling implies the appearance of a singularity along the axial axis. In this last case,
one should take into account those singularities by changing the region of integration for the charges. Something
similar will happen in the Taub-NUT example.

2We use ea = eaµdx
µ and gµν = ηabe

a
µe
b
ν , where the flat Minkowski metric is η = diag(−1,+1,+1,+1).
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e0 =

√
∆r

ρ

(
dt− a sin2 θ

Ξ
dφ

)
, e1 =

ρ√
∆r

dr , (8.5)

e2 = − ρ√
∆θ

dθ , e3 =

√
∆θ sin θ

ρ

(
adt− a2 + r2

Ξ
dφ

)
, (8.6)

A = −qr
ρ2

(
dt− a sin2 θ

Ξ
dφ

)
. (8.7)

We stress that it is possible to use another set of variables related to a gauge transformation.

Still, as the procedure is explicitly gauge invariant it will not have any impact on the results.

In particular, rotating eI by an arbitrary Lorentz transformation or adding a term of the form

dλ̃ to A has no effect. From the equation dωe
I = 0 we solve the connection and compute: δωIJ ,

δR̄IJ , δA, and δ ? F . At this level, we have reduced the phase space to the particular family

solution spanned by the parameters (m, a, q). Thus, the variation δ acts only on functions of

those parameters.

In metric formalism, ∂t and ∂φ are two independent Killing fields. Through the solution of

the exactness conditions for eI , Eq. (7.128), we get λIJt and λIJφ , respectively. Similarly through

the exactness conditions on A, Eq. (7.144), we obtain the corresponding λt and λφ. Now we

have the ingredients to compute surface charges. Plugging all the quantities in (7.146) we get

the associated integrands kt and kφ, one for each symmetry. The space-time described by eI

has non-contractible spheres due to the singularity. The integration can be performed over any

two-surface enclosing the singularity. The surface charges associated to the exact symmetries

generated by εt = (∂t, λ
IJ
t , λt) and εφ = (∂φ, λ

IJ
φ , λφ) are

/δQt =

‹
S
kt =

δm

Ξ
± 3amδa

`2Ξ2
, (8.8)

/δQφ =

‹
S
kφ = −aδm

Ξ2
+

(
3

Ξ2
− 4

Ξ3

)
mδa , (8.9)

where S is a two-sphere at r and t constant, then we must integrate in θ and φ. The exactness

condition δεA = 0 has a further independent solution for a constant λ0 such that δλ0A = −dλ0 =
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0. The corresponding exact symmetry parameter is ελ0 = (0, 0, λ0) and the surface charge is

/δQλ0 =

‹
S
kλ0 =

λ0

4π

‹
S
δ(?F ) = −λ0

(
δq

Ξ
± 2aqδa

`2Ξ2

)
. (8.10)

To proceed now, we have two strategies: Fit the scheme in the results from the asymptotic

picture or insist on a quasi-local approach. We sketch both.

Asymptotic strategy: In order to fit with the asymptotic picture we can exploit the

linearity of each surface charge (7.50), and to adjust the freedom of the gauge parameters in the

phase space to obtain the standard integrated charges (see for instance [136])

M ≡ Qξ=∂t∓(a/`2)∂φ =
m

Ξ2
, (8.11)

J ≡ Q−φ =
am

Ξ2
, (8.12)

Q ≡ Qλ0=−1 =
q

Ξ
. (8.13)

The surface charge associated to ∂t is not integrable. However, the linearity property (7.50)

allows us to choose a different combination of the symmetry parameter ξ ≡ ∂t ∓ a
`2
∂φ that in

fact produces an integrable charge. Note that ξ is phase space dependent: δξ 6= 0.

The charges satisfy the equation known as the black hole fundamental thermodynamics

relation

M2 =
S

4π

(
1± S

π`2

)2

+ J2

(
π

S
± 1

`2

)
+
Q2

2

(
1± S

π`2
+
πQ2

2S

)
, (8.14)

which can be obtained by rewriting the condition ∆r = 0 in terms of the integrated charges plus

S ≡ A/4 with the area of the horizon A = 4π(r2
+ + a2). The horizon is at r = r+ with r+ the

largest solution of ∆r = 0. From the last equation it follows

δM = TδS + ΩδJ + ΦδQ , (8.15)
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where the parametrization of the phase space is done with the integrable charges S, J , and Q

such that M = M(S, J,Q). Then, the quantities T , Ω, and Φ have the usual physical inter-

pretation: T ≡ ∂M
∂S coincides with the Hawking’s temperature, Ω ≡ ∂M

∂J is the horizon angular

velocity, and Φ ≡ ∂M
∂Q the electric potential at the horizon.

The drawback of this logic line is that it relies on previous results. Ultimately, it depends

upon a choice of asymptotic tailing of the field components, which admits an asymptotic time

symmetry and allow us to make sense of a general asymptotic mass definition. We fixed the gauge

parameters in practice to obtain a known mass expression obtained with the asymptotic method.

That, for the case of anti-de Sitter space-times, indeed relies on asymptotic analysis. However,

in the cases of asymptotically de Sitter space-times, there is no notion of time symmetry in the

asymptotic region and not a physical argument to define a standard mass,3 we just kept the ±

in the formulae because it is consistent. Thus, given the quasi-local construction just developed,

a pertinent question is: Is there a way to derive the first law of black hole mechanics based just

on a quasi-local data?

Quasi-local strategy: To use the area of the black hole horizon as a starting point is a

possibility. The horizon area is a well−defined quasi-local quantity which is also a finite function

of the parameters of the solution. The variation of A(m, a, q) on the phase space can be expressed

as a combination of all the surface charges

δA =

˛
kε = α(m, a, q)/δQt + β(m, a, q)/δQφ + γ(m, a, q)/δQλ0 , (8.16)

= α′(m, a, q)

˛
kξ + β′(m, a, q)

˛
k−φ + γ′(m, a, q)

˛
kλ0=−1 , (8.17)

=
4

T
δM − 4Ω

T
δJ − 4Φ

T
δQ , (8.18)

3Remember that the boundary of asymptotically de Sitter space-times are two disconnected three-dimensional
spacelike regions, one for the infinite past and one for the infinite future, and therefore none of them have a notion
of time symmetry.
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we expressed the freedom of the gauge parameter on the phase space explicitly. On the second

line, we expanded in a linear combination of integrable quantities. The problem reduces to

find the coefficient accompanying the integrated charges. Indeed, we already know that the

result, expressed in the third line, is a rearrangement of the first law presented just before.

However, we stress the difference in the logic; in this approach, the mass appears as an integrable

charge computed in a quasi-local way without the need of any asymptotic structure or physical

interpretation to define it. This quantity coincides with the mass obtained by an asymptotic

definition when such definition is at its disposal. Still, it is more general because it requires just

a quasi-local description of the space-time.

Note that the two closed two-surfaces where the integration of kε is performed, enclosing

the singularity, are arbitrary. For a matter of physical interpretation, the one of
‚
kε can be

chosen to be a section of the horizon, thus being associated with the area. In contrast, for each

of the other integrals, it can be chosen at convenience, producing the same value of the charges

for each of them. This freedom plus the gauge invariance of kε can be exploited to compute

the quantities quickly. For instance, when a bifurcated horizon is at disposal, the pullback of

a particular combination of the Killing fields vanishes on it, and the surface charge formula

simplifies considerably.

Summarizing, from this second perspective the first law of black hole mechanics is a con-

sequence of the expansion of δA =
‚
kε into independent integrable quantities. One for each

independent exact symmetry εi. To accomplish integrability the symmetry parameters should

satisfy the condition δ
‚
kεi = 0 in each case, where the variation δ becomes an exterior deriva-

tive on the reduced phase space. Certainly, to have a true first law much more should be said,

and it has been said, regarding the physical interpretation of each term, but the stress here is

that the quantity sometimes playing the role of the mass can be relegated and be indirectly

defined, in particular when the asymptotic time translation symmetry is not present or is dif-

117



ficult to identify.4 To decide the true thermodynamic value of the quasi-local first law relation

obtained we would need to figure out a thermodynamics processes that allows us to change the

value of the integrated charges. That is, a physical exchange of the amount of charges to flow in

a description outside the reduced phase space, even when the usual far away of the black hole

notion is not available.

8.0.2 (2 + 1)−Black Hole with Rotation and Electric Charge

In (2 + 1)−space-time dimensions the equations of motion for gravity coupled to electromag-

netism (E.5) admits a black hole solution with rotation and electric charge [137]. The solution

is a generalization of the black hole solution known as Bañados-Teitelboim-Zanelli (BTZ) [138].

Part of the solution is given by the metric field gµν . The line element is

ds2 = − r
2

R2
F 2dt2 +

dr2

F 2
+R2(Nφdt+ dφ)2 , (8.19)

with r-dependent functions [139]

R2 = r2 +

(
ω2

1− ω2

)
r2

+ +
2

π
(qω`)2 ln

(
r

r+

)
, (8.20)

F 2 =
r2

`2
−
r2

+

`2
− 2

π
q2(1− ω2) ln

(
r

r+

)
, (8.21)

Nφ = − `

R2

(
ω

1− ω2

)(
r2

`2
− F 2

)
, (8.22)

where the negative cosmological constant Λ = −1/`2, the constant r+ is defined by F 2(r+) = 0,

ω2 < 1, and q associated to the electric charge. Another part of the solution is the electromag-

netic field

4For instance, this is the strategy used in [140], where the embedding of a charged and rotating black hole in
a magnetic field makes subtle the selection of a preferred asymptotic time-like Killing vector field to define the
space-time mass.
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A = Aµdx
µ , At = − q

2π
ln
(r
`

)
, Aφ =

q ` ω

2π
ln
(r
`

)
. (8.23)

A curiosity of this solution is the logarithmic dependence on the radius brought in by the electric

charge of the black hole. Not present in other dimensions, this particular dependence has put

some trouble to the usual asymptotic analysis because standard asymptotic tailings do not admit

it—the charge formulas for the standard asymptotic blow up when is computed for this black

hole.

In [139, 141] the asymptotic analysis has been widened to correctly work out the asymptotic

charges. However, it is possible to take another perspective and use the surface charge formula

corresponding to the whole theory. Because we have an explicit solution with exact symmetries

defined everywhere, we do not need to rely on asymptotic analysis and perform the calculation

quasi-local.

To illustrate this example, we choose the formula for surface charge density kµνξ in metric

variables (7.87). Indeed, the same can be done by using the surface charge formula in differential

form language for Einstein-Cartan-Maxwell theory in (2 + 1)-dimensions.5

To compute charges, we first identify the exact symmetries of the solution and the parameters

generating them, (ξ, λ). They should solve (7.85) and (7.86). Then, we replace the parameters

and the field solutions with the corresponding surface charge formula. This has to be done for

each independent exact symmetry, obtaining thus a surface charge for each of them.

For the solution (8.19)-(8.23) we have three exact symmetries (remember the use of improved

prescription λ = λ′ − ξµAµ)

There is a surface charge density for each of them: kµν(t) , k
µν
(φ), and kµν(e). For the time symmetry

5A Mathematica notebook with the surface charge formula implemented for gravity coupled to electromag-
netism in (2 + 1)-dimensions can be found at [sites.google.com/view/surfacechargetoolkit/h].
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Exact Symmetries for BTZ black hole

Type of Symmetry Diffeomorphism parameter Gauge symmetry parameter

Temporal ξµ(φ) = (1, 0, 0) λt = q
2π ln

(
r
`

)
Axial ξµ(φ) = (0, 0,−1) λφ = `ωq

2π ln
(
r
`

)
U(1)-rigid ξµ(e) = (0, 0, 0) λe = −1

the non-vanishing components are ktr(t) = −krt(t) and krφ(t) = −kφr(t). Explicitly

ktr(t) =
1

8π2`2r+ (1− ω2)2

[
(1− ω4)(πr2

+ − `2q2(1− ω2))δr+

− 2`2qr+(1− ω2)2
(
ω2 + (1 + ω2) ln

(r+

`

))
δq

+ 2r+ω
(
πr2

+ − `2q2(1− ω2)2
(

1 + ln
(r+

`

)))
δω
]
, (8.24)

and

krφ(t) =
1

8π2`3r+ (1− ω2)2

[
−2ω(1− ω2)(πr2

+ − `2q2(1− ω2))δr+

+ 2`2qr+ω(1− ω2)2
(

1 + 2 ln
(r+

`

))
δq

− r+

(
πr2

+(1 + ω2)− `2q2(1− ω2)2
(

1 + 2 ln
(r+

`

)))
δω
]
. (8.25)

It is not always the case, but for this example, all surface charge densities kµνξ are coordinate

independent. Usually, coordinate independence is achieved only after space-time integration

(see the following example to contrast this point). In particular, notice that there is no risk in

evaluating them at asymptotic regions, say r →∞, because the value is simply independent of

r. By construction (∂µk
µν
ξ = 0), the integration can be done over any loop C around the origin

r = 0 at t = cte, and because coordinate independence holds, it is trivially performed
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/δM ≡ 1

2

˛
C
kµν(t)εµνρdx

ρ =

ˆ 2π

0
ktr(t)dφ = 2πktr(t) . (8.26)

We remember that /δ means a priori non-integrability in phase space. Note also that krφ(t) does

not play a role.

A non-trivial check is the integrability on the reduced phase space δ(/δM) = 2πδktr(t) = 0,

where the variation δ acts on r+, q, and ω. This guarantees the existence of the finite charge

M(r+, q, ω). If the integrability condition was not satisfied one may try to define a combination

of Killing symmetries that produce integrable charges, as we did in the Kerr-Newman-de Sitter

black hole solution [127]. Here, by integrating the differential surface charge and setting the

integration constant to zero we get the finite charge

M =
r2

+

8`2

(
1 + ω2

1− ω2

)
− q2

4π

(
ω2 + (1 + ω2) ln

(r+

`

))
. (8.27)

Notice that leaving implicit the integration on time as ∆t ≡
´∞
−∞ dt, we can compute a second

differential charge as

/δM̃ =
1

2

˛
kµν(t)εµνρdx

ρ =

ˆ ∞
−∞

krφ(t)dt = ∆tk
rφ
(t) , (8.28)

where we identified future with past asymptotic regions in order to have a closed integration

path. Fortunately, /δM̃ is an integrable charge, with its integrated version

M̃ = −ω
`

(
r2

+

4`2(1− ω2)
− q2

4π

(
1 + 2 ln

(r+

`

))) ∆t

2π
. (8.29)

The interpretation of this charge is not entirely clear, but we advance that it may has a precise

meaning for the Euclidean BTZ black hole (for an Euclidean time ∆t becomes finite).

For the axial symmetry we find that the surface charge density is related with the previous one,

(8.24) and (8.25), as

121



ktr(φ) = −`2krφ(t) , (8.30)

krφ(φ) = −ktr(t) + δ

(
q2

8π2
(1− ω2)

)
. (8.31)

After integration on any loop C of constant time the associated surface charge differential is

/δJ ≡ 1

2

˛
C
kµν(Φ)εµνρdx

ρ =

ˆ 2π

0
ktr(φ)dφ = 2πktr(φ) . (8.32)

This quantity can be integrated on phase space and produces a charge identified with the angular

momentum6

J =
ω

4`

(
r2

+

1− ω2
− q2`2

π

(
1 + 2 ln

(r+

`

)))
. (8.33)

Finally, for the U(1)-rigid symmetry

ktr(e) =
δq

2π
, and krφ(e) = − 1

2π`
(qδω + ωδq) , (8.34)

by integrating both in space-time (loop around the origin) and in phase space we obtain the

(electric) charge7

Qe = q . (8.35)

Now, we can establish the first law of black hole mechanics for this family of black hole

solutions spanned by the parameter r+, ω, and q. With all the charges at hand and defining the

entropy

S =
L

4
=
π

2
R(r+) =

πr+

2
√

1− ω2
, (8.36)

with L the perimeter of the black hole horizon and R(r+) is given by (8.20), we have

6Notice the interesting relation J = −`2 2π
∆t
M̃ . A similar relation is obtained from (8.31). The relations among

tilded and untilded quantities is a clear signal of a duality for the Euclidean BTZ charges not reported so far.
7There is also the second charge, Q̃e = −q ω

`
∆t
2π

, we can obtain identifying past and future and integrating over

an (infinite) loop in time, as we did for M̃ in (8.28).
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δM = TδS + ΩδJ + ΦδQe . (8.37)

The previous first law, expressed in terms of r+, ω, and q, is a linear system exactly solved by

T =

√
1− ω2

2π`2

(
1− q2`2

πr2
+

(1− ω2)

)
, (8.38)

Ω =
ω

`
, (8.39)

Φ = − q

2π
(1− ω2) ln

(r+

`

)
, (8.40)

these quantities might be further identified with standard physical quantities: A temperature

(Hawking thermal radiation), angular velocity of the horizon, and electrostatic potential, re-

spectively.

Notice that one may get a non-physical negative temperature by increasing the electric

charge. This problem is related to the possibility of having a negative mass (8.27). This result is

a non-desirable possibility if one expects to interpret the mass as the energy of the system. The

negativity of this mass expression has been addressed from a Hamiltonian analysis of charges and

an asymptotic perspective in [139, 141]. There, the authors introduce an improper gauge trans-

formation for the electromagnetic field and then impose the so-called holographic asymptotic

boundary conditions on the fields to fix it. The result within this frame is a consistently positive

mass: A better candidate for the energy of the system. From the surface charge perspective, it

can also be reached by adding from the very beginning an arbitrary function of the phase space

in the Maxwell potential A (called ν in [139, 141]) such that it gives the well thermodynamic

behaviour between the mass and the electric charge. In our context, the arbitrariness of this

function is completely determined by the integrability condition at the end. It is worth noticing

again that no mention of the asymptotic region is made.

Now, we give another family of solutions that breaks the standard relation between the entropy

and horizon area of the black hole.
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8.0.3 Lorentzian Rotating Taub-NUT space-time

The properties of black holes are intimately related with gravitational thermodynamics [1,2,142].

As we observe in the previous examples, the area A of the event horizon of a black hole can be

identified with 4 times its entropy S, and its surface gravity is proportional to its temperature

β−1. Usually, the understanding of black hole entropy comes from the use of Euclidean space-

times. In this Euclidean regime, the event horizon continue being and obstruction to foliate the

space-time with surface of constant periodic time τ . Such obstructions give rise to entropy by

leading to

S = H∆τ − I , (8.41)

where I corresponds to the Euclidean on-shell action, H the Hamiltonian and ∆τ the period of

the Euclidean time.

As the event horizon in the black holes, there exists a similar defect in Taub-NUT (TN)

space-times obstructing the foliation: the Misner string [143–145]. At the Euclidean regime,

Hawking and Hunter [146] showed that the Misner strings could contribute to the entropy of

these space-times, by leading that the entropy was not just a quarter the are, as it is for usual

black holes [2]. For a long time, it has been considered as a interesting property of gravitation

which reveals some features of the geometric entropy.

Usually, from a Euclidean signature perspective, the interpretation of thermodynamic quan-

tities in TN geometries has been a work in progress in the literature. Although this analytical

continuation in time does not produce significant problems in the Euclidean regime, in Lorentzian

signature, it implies closed time-like curves (CTCs) and then cast doubt on the physical rele-

vance of these singularities.

Very recently, the study of Lorentzian versions of TN space-times with and without cosmolog-
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ical constant has attracted enough attention. For example, in [147–149] the authors consider,

based on the observation of Lorentzian TN space-times, the motion of free-falling observers in

the presence of Misner strings. One of the main results is that the Misner string is entirely in-

visible for their geodesics hitting it and the TN space-times turn out to be geodesically complete.

In this example, we face whether the Misner strings have relevance in establishing a First

Law for TN space-times. In particular, we will focus on TN space-times with rotation. We do

not adopt periodicity in time, and we work directly with them at the Lorentzian regime. The

non-trivial contributions to the mass and angular momentum of these solutions (supported by

the presence of the NUT charge) can be understood with a suitable integration in space-time.

With this quantities, what would-be an entropy can be obtained naturally from a conservation

law’s perspective.

The rotating TN space-time is described by the metric [150,151]

ds2 = −∆

Σ

(
dt+ (2n cos θ + 2Cn− a sin2 θ)dφ

)2
+

Σ

∆
dr2 + Σ dθ2

+
sin2 θ

Σ

(
adt− (r2 + a2 + n2 − 2anC)dφ

)2
, (8.42)

where the metric functions are given by

∆ = r2 + a2 − 2mr − n2 , (8.43a)

Σ = r2 + (n+ a cos θ)2 , (8.43b)

with m the integration constant associated to the mass, n the so-called NUT parameter, and a

the rotation parameter.

The two Killing symmetries produce two independent varied surface charges. We check that our
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corrected formula delivers the expected result. Let us consider the surface charge k~ξ, being ~ξ a

time-like Killing vector ~ξ = (1, 0, 0, 0) or axial-like Killing vector ~ξ = (0, 0, 0, 1), integrated on

the volume limited by two spherical shells, say S1 and S2, at t = cte and r = cte, with radius R1

and R2, respectively, such that R2 > R1, and two auxiliary tubes (actually cones) TS and TN ,

at t = cte and θ = π + ε, with ε � 1, opening towards the south pole and passing to close the

wire (See Fig. 8.1). The Misner strings correspond to string/wire singularities stretching from

the r = 0 to the infinity. They are labelled by the discrete integer C which is related to the

location of the singularity: for C = +1 the south pole axis is regular, for C = −1 the north one

is regular, and for C = 0 both wires/strings are symmetrically present.

The integration on the volume enclosed by these surfaces can be translated to the boundary

by using the Gauss’ theorem, we have

0 =

ˆ
Σ
dkξ =

ˆ
∂Σ
kξ =

ˆ
S1

kξ −
ˆ
S2

kξ +

ˆ
TS

k +

ˆ
TN

kξ , (8.44)

where the radial integration over each cone decouples in two terms associated to the circles found

as the intersection of the cone with the shells, we have

ˆ
TS

k = Kξ

∣∣∣∣
r=R1; θ=π−ε

−Kξ

∣∣∣∣
r=R2; θ=π−ε

, (8.45a)

ˆ
TN

k = Kξ

∣∣∣∣
r=R1; θ=ε

−Kξ

∣∣∣∣
r=R2; θ=ε

, (8.45b)

where Kξ denotes the primitive of kξ in the south or north cone. We refer to θ = 0 as south pole,

and θ = 0 as north. Then, we take the limit ε→ 0 and reorder (8.44) with terms associated to

each shell to get an expression for the surface charge that is defined at a sphere S and is truly

conserved, i.e. its value does not depend on the specific surface S

126



Figure 8.1: Integration region: a volume delimited by two spheres and two cones. The wavy
blue lines indicate the Misner strings symmetrically present (C = 0).

/δQξ =

ˆ
S
kξ +Kξ

∣∣∣∣
S;south

+Kξ

∣∣∣∣
S;north

. (8.46)

This charge corresponds to the mass or angular momentum depending on whether the Killing

vector ~ξ is time-like or axial-like, respectively.

Although we formally use a specific parametrization for the geometrical objects, the result

does not depend on them. We can deform either the shells or the cones before shrinking them
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and still have the same resulting surface charge. In particular, it does not depends on the specific

radius we compute it. Therefore, we have sketched how the K contribution solves the problem

of naively computing (7.49) when defects cross the surface S. For space-times, without strings-

like defects, the K terms automatically vanish. Still, we note that even for regular space-times,

we can introduce artificial string-like defects. This breaks down the charge conservation unless

terms similar to the K are considered (an example of this is the conical defect appearing in the

axial axis for some versions of the Kerr-(A)dS metric solution).

We emphasize that to get (8.46) we rely on the conservation law and its correct integrated

version, which requires the identification of the cones to compute the K-es correctly. We do not

know another way to identify how to correct (7.49) relying just on the surface S, even knowing

that string-like defects cross it.

Mass and angular momenta

The two Killing symmetries produces two independent varied surface charges, we check that

our corrected formula delivers the expected result. In fact, for the time translations symmetry

generator, as we expect the mass/energy let us rename δM = /δQ∂t , then (8.46) reproduces

δM = δm , (8.47)

which is indeed integrable, δ2M = 0. We set the integration constant equal to zero to obtain

the finite charge

M = m, (8.48)

which means that the parameter m can still be identified with the total mass/energy of rotating

TN space-time.

Analogously, for the axial symmetry generator we expect the angular momentum, thus we
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rename δJ = /δQ−∂Φ
. We find an integrable charge δ2J = 0. The variation of the angular

momentum is

δJ = (δa− 3Cδn)m+ (a− 3Cn)δm , (8.49)

with a finite version given by

J = (a− 3Cn)m. (8.50)

Note that as expected the TN space-time with a = 0 still carries angular momentum but just

when then strings are not symmetrically distributed along the axis.

Let us conclude here with a few remarks:

• the charges do not present divergences of any kind (e.g. r-divergences when we evaluate

it in asymptotic regions). While each integral in (8.46) is r-dependent and therefore

susceptible to divergences, it is only the sum of the three that produces r-independent

charges which are insensitive to asymptotic limits.

• No asymptotic region is required. We do not demand a particular location for the sphere

S. In that sense, we shall say that the charges computed above are quasi-local.

• The charges are trivially integrable. The procedure also works with the presence of the

integer parameter C.

Entropy and The First Law

We now turn to the thermodynamics of rotating TN space-time. We constructively present

the first law to determine the entropy of this space-time. For simplicity, we set C = 0 in the

following formulas.
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The temperature is

T =

√
−a2 +m2 + n2

4π
(
m
(√
−a2 +m2 + n2 +m

)
+ n2

) , (8.51)

and the angular velocity, of the r = r+ surface as measured from infinity, is

Ω =
gtφ
gφφ

∣∣∣∣
r+

= − a

2
(
m
(√
−a2 +m2 + n2 +m

)
+ n2

) , (8.52)

with r+ read from ∆(r+) = 0. The expectation is that the temperature multiplies the entropy

variation, we call it /δS, and the angular velocity multiplies the angular momentum variation.

We isolate /δS to get

/δS =
1

T
(δM − ΩδJ) =

2πm√
−a2 +m2 + n2

[
−aδa+ δm

(
2
(√
−a2 +m2 + n2 +m

)
+

2n2 − a2

m

)]
.

(8.53)

Note that for n = 0 the previous expression is integrable, and it is the variation of the usual black

hole entropy of the Kerr solution. For TN space-time, n 6= 0, the expression is not integrable,

δ2S 6= 0, which is a problem to have a well-defined entropy charge. Note that, as presented,

the entropy variation is indeed conserved in the sense that it can be directly computed from

(8.46) with the Killing vector ξ = 1
T (∂t + Ω∂φ), that is, it is a proper varied surface charge as it

does not depend on the surface one choose to compute it. Therefore, this expression should be

a good seed to compute an entropy as a Noether charge as we did with the mass or the angular

momentum (we keep the Noether charge name, understanding that surface charge method to

compute charges generalizes the Noether procedure).

In the literature, it has been explored the possibility of adding extra terms to the first law

associated with the Misner strings. At this level, this strategy is equivalent to the splitting of

(8.53) in different terms and providing interpretation to each one. Here we choose another path.
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We stick ourselves to the criteria of having an entropy which is a conserved, a Noether charge.

Therefore the expression in (8.53) can not be split; otherwise, we can not write the entropy

variation as (8.46) with an arbitrary closed surface S.

Discussion parenthesis: We do not have formal proof that there is no splitting simultane-

ously producing conserved and integrable charges. We have just checked the natural splitting of

surface and tubes terms in (8.46). As explained before, separately surfaces and tube terms are

not conserved quantities and neither they are integrable. One may be tempted to fix the arbi-

trary closed surface and choose the r = r+ surface in an analogy with black holes. In this case,

the surface integral in (8.46) indeed becomes the variation of one-fourth of the area. However,

we are not computing a conserved charge if we have to fix the surface where it is defined. For

completeness, insisting in this approach the terms associated with the tubes are not integrable

and another temperature should be introduced to achieve their integrability. This path would

be similar to the one presented in [151].

A way to have, simultaneously, the entropy as a charge and integrable is to reduce the

parameter space. Let us assume that m, a, and n are dependent quantities and solve this

dependence such that the integrability condition is satisfied. Consider m(n, a), because the way

these parameters enter in the metric components it is easy to see that, under scaling of the metric,

all the tree parameters should scale with the same factor, then, the allowed relation among them

is simpler: m = nh(a/n), with h(a/n) a function to be determined by the integrability condition

δ(/δS) = 0. The differential equation is solved by

h
(a
n

)
= α , (8.54)

with α an integration constant. Note that this relation among parameter is simpler rewritten

in terms of m, indeed: m = αn.
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Thus, with this relation we have reduced the parameter space of our solution to two param-

eters. Replacing this in the equation for the varied surface charge (8.53) we can integrate it to

obtain a finite entropy

S = 2παn2

(
α+

√
1 + α2 − a2

n2

)
. (8.55)

where we have set the integration constant to zero. Our method do not fix α and in what

follows it can be left untouched. However, we can fix the constant α if we require our result to

be compatible with the non-rotating TN entropy obtained through standard Euclidean methods

in [146], SHH = πn2, then, with α = 1
2
√

2
we get

S =
1

4
πn2

(
1 +

√
9− 8a2

n2

)
. (8.56)

as the generalization of the entropy for the rotating TN solution. This entropy fulfills a standard

first law

δM = TδS + ΩδJ , (8.57)

where M = n
2
√

2
and J = an

2
√

2
. In contrast with the usual black hole solutions, the entropy is

not one-fourth of the area, already noted in [146] for non-rotating TN. This first law is standard

as to be fulfilled. It does not require additional terms not justified in terms of charges. It may

be seen as not standard as we had reduced the parameter space to achieve integrability. But as

explained before, this is a consequence of having well-defined charges M , J , and S to compose

the first law. Then we conclude that there is a consistent thermodynamic description only for a

subset of the parameter space of the rotating TN.

The entropy (8.56) is compatible with the Euclidean method. We use the grand canonical

ensemble computed in [151] as a limit of a regularized Euclidean (A)dS action
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G(T,Ω) =
m

2
=

1

8πT

(
1 + 3

√
1 + Ω2

4π2T 2

) , (8.58)

where in the second equality we have replaced m in terms of T and Ω following (8.51) and (8.52)

and the relation among parameters m = nh(a/n) with the fix constant α = 1/(2
√

2). The

entropy of (8.56) is recovered from the standard equation

S = −∂G
∂T

. (8.59)

Thus, we have shown that our covariant symplectic method to compute charges and the first

law is fully compatible with the Euclidean approach.

133



Chapter 9

Conclusion to Part II

In this second part of this thesis, we have analyzed a powerful tool to deal with physical sym-

metries in gauge theories. In the Introduction 6 we have shown the importance of symmetries in

physics and how they may carve a physical theory. We examined Emmy Noether’s work about

the deep relationship between global symmetries and conservation laws with this motivation.

As a particular consequence, she taught us that the celebrated principle of energy conservation

in a given theory is a consequence of the symmetry under time translations of that theory. Her

general result is known as the First Noether Theorem. We discussed another Noether’s result

now applying to gauge theories: For each independent gauge symmetry, a relation among field

equations holds (off-shell relations), the so-called Noether identities (e.g. Bianchi identity for

gravity). This is the content of the Second Noether Theorem.

Motivated by the fact that the First Noether theorem does not apply appropriately in gauge

theories, we have presented the method, known as the surface charge method, to compute charges

for gauge theories in Chapter 7.

We stress the main difference with the First Noether Theorem is that in the surface charge

method the construction is over a one-dimension lower sub-manifold. That is, for theories with-
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out gauge symmetries, the usual Noether current Jµε corresponds to a (D−1)-form and defines a

charge over a (D−1)-dimensional space-time slice Σ as Qε =
´

Σ J
µ
ε dΣµ. In Σ contrast, for gauge

theories, we have the surface charge density kµνε , playing the role of a current, that corresponds

to a (D− 2)-form and defines a (differential) charge over a closed (D− 2)-dimensional surface S

as /δQε =
¸
S k

µν
ε dSµν . Thus, a second difference is that in the surface charge method, instead of

finite charges, one defines differential charges on phase space. They require further phase space

integration.

One of the aims of Chapter 7 and the next is to fill a key gap by obtaining the formulae of

the surface charges from the usual canonical symplectic approach (7.46). Another aim is to show

the relation with the so called invariant symplectic approach based on the contracting homotopy

operators [101]. We do so because a part of the community is unaware of the powerful results

related with the surface charges. And specifically, unaware of the way they help to solve the

problems of using Noether currents in gauge theories.

Along the derivation of surface charges we put attention on asymptotic charges, which are a

consequence of asymptotic symmetries, a lot of work is focused on providing the conditions to

have integrable asymptotic charges. In contrast insufficient effort is put in providing an expla-

nation of what those non-conserved asymptotic charges mean. Through these notes it is clear

that to have a conservation law an exact symmetry equation is needed: An equation that by

definition asymptotic symmetries do not satisfy.

In the hope to easy the work of gravity physicist and specially to those who decide to use

alternative variables, in Chapters 7.4 and 7.5 we systematically wrote the surface charge density

formulas for many gravity theories, presented all of them in a Table, and furthermore we also

performed all the step-by-step calculation in the appendices.
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A key field where the results here are of direct use is in analyzing black holes, more specifi-

cally, their thermodynamic properties. The surface charge method allows us to have good control

of the space of exact symmetries and the space of differential charges at once. In the case of

black holes this analysis can lead to a well-posed first law of black hole mechanics. In the first

of the three examples, Chapter 8, this was worked in detail for a complicated enough black hole

family and showed that a consistent first law holds.

As a final comment, and to put this part of this thesis in a wider perspective, we should stress

that all the methods to compute charges for gauge theories are defined in a classical regime.

Then, it remains as a challenge to understand how the surface charge method works within a

quantum gravity theory. It certainly depends on the quantization procedure one applies to the

classical phase space structure and the different quantities defined there. Still, nowadays there

is no clear path to achieve this quantization. We hope that future research will provide it.
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Appendix A

Three differential form operations

Let us consider a p-form expressed in a coordinate basis

α =
1

p!
αµ1...µpdx

µ1 ∧ · · · ∧ dxµp . (A.1)

The operator exterior derivative on differential forms defined as

d : Ωp 7−→ Ωp+1 , (A.2)

has the explicit action

dα =
1

p!
∂µ0αµ1...µpdx

µ0 ∧ dxµ1 ∧ · · · ∧ dxµp . (A.3)

This operator satisfies the following Leibniz’s rule d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ, and it is

nilpotent, that is, d2 = 0.

The Hodge dual operator

? : Ωp 7−→ ΩD−p , (A.4)

acts on a p-form as
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?α =
1

(D − p)!p!
αa1...apεa1...apb1...bD−pe

b1 ∧ · · · ∧ ebD−p , (A.5)

or with the differential form expressed in a coordinate basis

?α =
1

(D − p)!p!
√
|g|αµ1...µpεµ1...µpν1...νD−pdx

ν1 ∧ · · · ∧ dxνD−p . (A.6)

For a vector field ξ = ~ξ = ξaea = ξµ∂µ, the interior product on forms is either denoted by iξ

or also with the alternative notation ξy. This operation lows by one the form degree

iξ ≡ ξy : Ωp 7−→ Ωp−1 . (A.7)

Explicitly, on a p-form it has the action

ξyα =
1

(p− 1)!
ξνανµ2....µpdx

µ2 ∧ · · · ∧ dxµp . (A.8)

The homotopy operator or Anderson’s homotopy operator IpδΦ is defined as the map

IpδΦ : Ωp 7−→ Ωp−1 , (A.9)

and acts as

IpδΦα =
∑
k≥0

k + 1

n− p+ k + 1
∂µ1 · · · ∂µk

(
δΦi δ

δΦi
µ1...µkν

∂α

∂dxν

)
. (A.10)

This operator satisfies the following relations

δ = δΦi δ

δΦi
− dInδΦ , when acting on space-time n-forms , (A.11)

δ = Ip+1
δΦ d− dIpδΦ , when acting on space-time p-forms (p < n) . (A.12)

and,
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δIpδΦ = IpδΦδ . (A.13)

For example, expanding the sum in (A.10), we get [98]

InδΦ =

[
δΦi ∂

∂∂µΦi
− δΦi∂ν

∂

∂∂µ∂νΦi
+ ∂νδΦ

i ∂

∂∂µ∂νΦi
+ · · ·

]
∂

∂dxµ
, (A.14)

In−1
δΦ =

[
1

2
δΦi ∂

∂∂µΦi
− 1

3
δΦi∂ν

∂

∂∂µ∂νΦi
+

2

3
∂νδΦ

i ∂

∂∂µ∂νΦi
+ · · ·

]
∂

∂dxµ
, (A.15)

where dots mean for higher derivatives depending on the nature of the theory.
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Appendix B

Derivation of the Skyrme field

equations

In this appendix, we make an explicit derivation of the Skyrme field equations (3.11). Let us

start by applying a general variation to the Lagrangian density associated to the Skyrme action

(3.7)

δLSkyrme[U ] =
K

4
δTr

(
LµLµ +

λ

8
[Lµ, Lν ][Lµ, Lν ]

)
,

=
K

2
Tr

(
LµδLµ +

λ

8
[Lµ, Lν ] δ ([Lµ, Lν ])

)
, (B.1)

The variation of the tensor Lµ is given by

δLµ = δ(U−1∂µU) ,

= δ(U−1)∂µU + U−1δ(∂µU) ,

= −U−1δULµ + LµU
−1δU + ∂µ(U−1δU) , (B.2)
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where we have used the identity δU−1 = −U−1δUU−1 deduced from the variation of the invert-

ibility condition U−1U = 1. With this, we get

Tr(LµδLµ) = −Tr
[
∂µL

µU−1δU + ∂µ
(
U−1δULµ

)]
. (B.3)

To compute the second term in (B.1) we notice that

[Lµ, Lν ] = [U−1∂µU,U
−1∂νU ] ,

= U−1∂µUU
−1∂νU − U−1∂νUU

−1∂µU ,

= −∂µ(U−1∂νU) + ∂ν(U−1∂µU) ,

= −∂µLν + ∂νLµ . (B.4)

Now, we take a variation on this last term

δ([Lµ, Lν ]) = −∂µδLν + ∂νδLµ ,

= −∂µ(−U−1δULν + LνU
−1δU) + ∂ν(−U−1δULµ + LµU

−1δU) . (B.5)

Therefore, the second term in (B.1) reads

Tr ([Lµ, Lν ]δ([Lµ, Lν ])) = 2Tr
(
[Lµ, Lν ]∂ν(−U−1δULµ + LµU

−1δU)
)
,

= 2Tr
(
∂µ(U−1δU [Lν , [L

µ, Lν ]])− U−1δU [Lν , ∂µ[Lµ, Lν ]]
)
.(B.6)

Then, plugging back Eqs. (B.3) and (B.6) into Eq. (B.1), we find

δL = −K
2

Tr

(
(∂µL

µ +
λ

4
[Lν , ∂µ[Lµ, Lν ]])U−1δU

)
, (B.7)

but [Lν , ∂µ[Lµ, Lν ]] = ∂µ[Lν , [L
µ, Lν ]], then
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δL = −K
2

Tr

(
∂µ(Lµ +

λ

4
[Lν , [L

µ, Lν ]])U−1δU

)
, (B.8)

for an arbitrary group element U 6= 0, we arrive to the Skyrme field equations

∂µ

(
Lµ +

λ

4
[Lν , [L

µ, Lν ]]

)
= 0 . (B.9)
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Appendix C

SU(2) group

In this appendix we provide details of the parametrization of the SU(2) group. The SU(2)

group is the set of all traceless anti-Hermitian 2× 2 complex matrices M2(C) of det = +1 that

satisfies A†A = I, namely

SU(2) =

{
A ∈M2(C)

∣∣∣∣A† = A−1 ,det(A) = 1

}
, (C.1)

where A† denotes the Hermitian conjugate of A, namely, conjugate transpose of the matrix A,

explicitly A† = (AT )∗. The Lie algebra associated to this group over the field C is given by

su(2) =

{
A ∈M2(C)

∣∣∣∣ (etA)† = (etA)−1, det(etA) = 1,∀t ∈ R
}
. (C.2)

Since (etA)† = e(tA)† = etA
†

and det(etA) = etr(tA) = et tr(A), the conditions translate to

A† = A−1 and tr(A) = 0 . (C.3)

An arbitrary representation of the group SU(2) is given by the set of the three generators

Ti which satisfy the Lie algebra
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[Ti, Tj ] = −2εijkTk , ε012 = +1 . (C.4)

An element of this group is given by the matrix

U = eT
kωk , (C.5)

where the vector ~ω has components ωi in a given coordinate system, and in the fundamental

representation Tk = τk, with τk = i σk, k = 1, 2, 3 and

σ1 =


0 1

1 0

 , σ2 =


0 −i

i 0

 , σ3 =


1 0

0 −1

 , (C.6)

the standard Pauli matrices, which satisfy the relation

τi τj = −δij − εijkτk . (C.7)

It implies

[τi, τj ] = −2εijkτk , {τi, τj} = −2δij . (C.8)

Geometrically, the matrices U are generators of spinor rotations in three dimensional space R3

and the components of the vector ωi are the corresponding angles of rotation. For SU(2) group,

there exists a parametrization for the elements U called the Euler parametrization and is defined

in terms of three angles θ, ϕ and ψ as
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U(θ, ϕ, ψ) = Uz(ϕ)Uy(θ)Uz(ψ) = eτ3ϕ eτ2θ eτ3ψ , (C.9)

=


eiϕ 0

0 e−iϕ




cos θ sin θ

− sin θ cos θ



eiψ 0

0 e−iψ

 , (C.10)

=


cos θ ei(ψ+ϕ) sin θ e−i(ψ−ϕ)

− sin θ ei(ψ−ϕ) cos θ e−i(ψ+ϕ)

 , (C.11)

with 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , 0 ≤ ψ ≤ 4π. Then, the SU(2) group manifold is isomorphic to

three-sphere S3.1

Using the matrices (C.9) it is possible to define the so-called left and right invariant one-forms

on the group SU(2): the Maurer-Cartan one-forms2

L = U−1dU = Lk τk , R = dUU−1 = Rk τk . (C.12)

Because det(U) = 1 then tr(L) = tr(R) = 0. In term of the Euler angles, the Maurer-Cartan

forms in the Pauli basis are given by

L1 = − sin(2ψ) dθ + cos(2ψ) sin(2θ) dϕ , R1 = sin(2ϕ) dθ − cos(2ϕ) sin(2θ) dψ ,(C.13)

L2 = cos(2ψ) dθ + sin(2ψ) sin(2θ) dϕ , R2 = cos(2ϕ) dθ + sin(2ϕ) sin(2θ) dψ ,(C.14)

L3 = dψ + cos(2θ) dϕ , R3 = dϕ + cos(2θ) dψ , (C.15)

satisfying the Maurer-Cartan equations

1The reduction to the parametric space SO(3) is reached through ψ ∼ ψ + 2π.
2In the literature these quantities are defined in the opposite way, i.e R̃ := U−1dU and L̃ := dUU−1. Because

in much of the Part I of the thesis we work with R̃, in order to avoid confusion with Part II of the thesis, we
prefer to use the conventions of Eq. (C.12).
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dRi = εijkRj ∧Rk , dLi = − εijkLj ∧ Lk . (C.16)
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Appendix D

Derivation of the reduced system of

equations (4.23), (4.26) and (4.43)

In this appendix we demonstrate how equations (4.23), (4.26) and (4.43) are obtained from the

general field equations (4.7) and (4.7b); thanks to the generalized Hedgehog ansatz [27,28,113,

152], which remarkably enough still holds when the Skyrme field is coupled to Maxwell theory.

By considering the order of the space-time coordinates in the gauged Skyrmion case as

xµ = (z, r, γ, φ), it can be easily seen that, under the choice (4.21) for the Euler angles and

(4.22) for the electromagnetic potential, the three components of Lµ = Liµti, i = 1, 2, 3 read

L1
µ =

(
b1 cos(qφ) sin(2H),− sin(qφ)H ′,

(p
2

+ b2

)
cos(qΦ) sin(2H), b3 cos(qφ) sin(2H)

)
, (D.1a)

L2
µ =

(
b1 sin(qφ) sin(2H), cos(qφ)H ′,

(p
2

+ b2

)
sin(qΦ) sin(2H), b3 sin(qφ) sin(2H)

)
, (D.1b)

L3
µ =

(
−2b1 sin2(H), 0,

p

2
cos(2H)− 2b2 sin2(H),

q

2
− 2b3 sin2(H)

)
. (D.1c)

With the help of the latter, the electromagnetic current vector can be computed through (4.8)
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to be

Jµ =
K

2l2
(M1IbI +N1, 0,M2IbJ +N2,M3IbJ +N3) , I, J = 1, 2, 3 , (D.2)

with the expressions MIJ and NJ being given by (4.24) and (4.25), respectively. It can be easily

verified that ∇µJµ = 0 holds as an identity for the previous expression.

By using (D.1), in the three gauged Skyrme equations

Dµ

(
Liµ +

λ

4
[Lν , [Lµ, Lν ]]i

)
τi ≡ Eiτi = 0 , (D.3)

the latter become

E1 = −sin(qΦ)

16l4
A(r) = 0 , (D.4a)

E2 =
cos(qΦ)

16l4
A(r) = 0 , (D.4b)

E3 ≡ 0 , (D.4c)

where

A(r) = 4
(
8λ sin2(H)

(
−2l2b21 + b2(2b2 + p)− b3(q − 2b3)

)
+ 4l2 + λ

(
p2 + q2

))
H ′′

− 16λ sin(2H)
(
2l2b21 − b2(2b2 + p) + b3(q − 2b3)

)
(H ′)2

− 32λ sin2(H)
(
4l2b1b

′
1 − (4b2 + p)b′2 + (q − 4b3)b′3

)
H ′

+ λ
(
4l2b21

(
p2 + q2

)
− (2qb2 + p(q − 2b3))2

)
sin(4H)

+ 16l2
(
2l2b21 − b2(2b2 + p) + b3(q − 2b3)

)
sin(2H) .

(D.5)

We can see that the τ3 component becomes identically zero, while the other two are proportional

after the substitution of all the involved quantities. The remaining φ variable is decoupled from

r and the system is reduced to the single equation, A = 0, for H(r), which we have expressed

in a more compact form in (4.26). At the same time, the current Jµ, as given by (D.2), is only
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r-dependent and leads to the Maxwell set of equations (4.23).

The exact same thing can be repeated for the profile equation of the gauged time crystal

(4.43). This time we have to consider (4.39) for the Euler angles, with the help of which the

three Lµ components are written as (remember that now xµ = (γ, r, z, φ))

L1
µ = sin(2H)

(
b1 cos(ωγ), − sin(ωγ)

sin(2H)
H ′, b2 cos(ωγ) ,

(
1

2
+ b3

)
cos(ωγ)

)
, (D.6a)

L2
µ = sin(2H)

(
b1 sin(ωγ),

cos(ωγ)

sin(2H)
H ′ , b2 sin(ωγ) ,

(
1

2
+ b3

)
sin(ωγ)

)
, (D.6b)

L3
µ =

(
ω

2
− 2b1 sin2(H) , 0, −2b2 sin2(H) ,

1

2
cos(2H)− 2b3 sin2(H)

)
. (D.6c)

In the same manner the variables are decoupled in the three profile equations (D.3) and the

system once more reduces to the single equation. The τ3 component is identically zero, while

the rest two are proportional to each other leading to a single equation for H(r), which is given

by (4.43). In particular, we obtain

E1 = −sin(ωγ)

16l4
B(r) = 0 , (D.7a)

E2 =
cos(ωγ)

16l4
B(r) = 0 , (D.7b)

E3 ≡ 0 , (D.7c)

with

B(r) = 4
(
8λ sin2(H)

(
l2b1(ω − 2b1) + 2b22 + b3(1 + 2b3)

)
+ l2

(
4− λω2

)
+ λ

)
H ′′

+ 16λ sin(2H)
(
l2b1(ω − 2b1) + 2b22 + b3(1 + 2b3)

)
(H ′)2

+ 32λ sin2(H)
(
l2(ω − 4b1)b′1 + 4b2b

′
2 + (4b3 + 1)b′3

)
H ′

+ λ
(
l2ω2 + 4l2b1(b1 − ω) + 4b22

(
l2ω2 − 1

)
+ 4l2ωb3(−2b1 + ωb3 + ω)

)
sin(4H)

− 16l2
(
l2b1(ω − 2b1) + 2b22 + 2b23 + b3

)
sin(2H) .

(D.8)
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It is easy to verify that B = 0 is equivalent to (4.43). Of course the same considerations are also

true for the Maxwell equations and relation (D.2) still holds for the current, where now the MIJ

and NI are given by the expressions (4.41) and (4.42), respectively.
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Appendix E

Derivation of Surfaces Charges in

Metric Formalism

E.1 Einstein-Hilbert-Maxwell action

The variation of the Lagrangian generated by an arbitrary vector field ξ = ξµ∂µ and gauge

transformation λ′ = λ+ ξµAµ (with δε = δξ + δλ′) is given by

δξL = Eµνδξg
µν + EµδεA

µ + ∂µΘµ(δε) , (E.1)

∂µ(ξµL) = −Eµν(∇µξν +∇νξµ) + Eµ(ξνF
νµ −∇µλ) + ∂µΘµ(δε) , (E.2)

∂µ(ξµL) = ∂µ [−2(ξνE
µν)− Eµλ+ Θµ(δε)] , (E.3)

where we used the corresponding Noether identities Fµν Eν − 2∇νEµν = 0 and ∇µEµ = 0. The

explicit functions in (E.3) are
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L =
√
−g
(
κ

2
(R− 2Λ)− 1

4
FµνF

µν

)
, (E.4)

Eµν =
√
−g
[
κ

2

(
Rµν − 1

2
gµνR+ Λgµν

)
− 1

2

(
gαβF

αµF βν − 1

4
gµνFαβFαβ

)]
, (E.5)

Eµ = −
√
−g∇νFµν , (E.6)

Θµ(δε) =
√
−g
(
κ∇[α(gµ]βδξgαβ)− δεAνFµν

)
, (E.7)

=
√
−g
[
κ
(
∇α∇(αξµ) −∇µ∇αξα

)
− (ξαFαν −∇νλ)Fµν

]
.

Replacing them we note that the three terms inside the total derivative in (E.3) can be rewritten

as a total derivative too

Jµε ≡ Θµ(δε)− ξµL− 2ξνE
µν − λEµ = ∂ν

[
−
√
−g
(
κ∇[µξν] − λFµν

)]
, (E.8)

where we used [∇µ,∇ν ]ξµ = Rµνξµ. The term inside the total derivative is Q̃µνξ . Then, we

obtain the surface charge density

kµνξ = δQ̃µνξ + 2ξ[µΘν](δ) , (E.9)

= −δ
[√
−g
(
κ∇[µξν] − λFµν

)]
+ 2
√
−gξ [̇µ

(
κ∇[α(gν]]̇βδgαβ)− δAαF ν ]̇α

)
.

Note that when using improved transformations we have δλ = δ(λ′ − ξµAµ) = −ξµδAµ.1 Ex-

panding all we obtain the surface charge density for this theory (7.87).

E.2 Einstein-Hilbert-Skyrme action

The variation of the Lagrangian (7.88) generated by an arbitrary vector field ξ = ξµ∂µ is

1Equivalently, we can forget this and note that in the symplectic structure density the variations do not
commute, thus we should include a term Θ([δ, δε]) which will contribute to the surface charge. The specific non-
commutation in this case is [δ, δε]Aµ = δ(ξνδAν)Aµ = −∂µ(ξνδAν).
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δξL = Eµνδξg
µν + 〈EUδξU〉+ ∂µΘµ(δξ) , (E.10)

∂µ(ξµL) = −Eµν(∇µξν +∇νξµ) + 〈EUξµ∇µU〉+ ∂µΘµ(δξ) , (E.11)

∂µ(ξµL) = ∂µ [−2ξνE
µν + Θµ(δξ)] , (E.12)

where we used the Noether identity 2∇µEµν + 〈EU∇νU〉 = 0. The explicit functions in (E.12)

are

L =
√
−g
[
κ

2
(R− 2Λ) +

K

4

〈
RµRµ +

λ

8
FµνF

µν

〉]
(E.13)

Eµν =
√
−g
[
κ

2

(
Rµν − 1

2
gµνR− Λgµν

)
,

+
K

4

〈
RµRν − 1

2
gµνRαRα +

λ

4

(
FµαF να −

1

4
gµνFαβF

αβ

)〉]
, (E.14)

EU = −K
2

√
−g
〈
∇µ
(
Rµ +

λ

4
[Rν , F

µν ]

)
U−1

〉
, (E.15)

Θµ(δξ) =
√
−g
[
κ∇[α(gµ]βδξgαβ) +

K

2

〈(
Rµ +

λ

4
[Rν , F

µν ]

)
U−1δξU

〉]
. (E.16)

and again, after cancellations, we simply have

Jµε ≡ Θµ(δξ)− ξµL− 2ξνE
µν = ∂ν

[
−κ
√
−g∇[µξν]

]
,

where the cyclic property of the trace was used to show that 〈[Rν , Fµν ]ξαRα − ξνFµαF να 〉 = 0.

Therefore, Q̃µνξ = −κ
√
−g∇[µξν], and we use the surface charge formula kµνξ = δQ̃µνξ +2ξ[µΘν](δξ)

to get (7.91).

E.3 Einstein-Cartan-Λ

Consider four-dimensional General Relativity with a cosmological term in the differential form

language2

2We will omit the wedge product ∧ among differential forms throughout these Appendix.
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S[ea, ωab] = κ′
ˆ
M
εabcd

(
Rabeced ± 1

2`2
eaebeced

)
, `2 =

3

|Λ|
, (E.17)

with a, b = 0, 1, 2, 3. The general variation of the Lagrangian density is

δL = Eaδe
a + Eabδω

ab + dΘ(δω) . (E.18)

The equations of motion and boundary term are given by

Ea = 2κ′εabcd

(
Rbc ± 1

`2
ebec

)
ed = 0 , (E.19)

Eab = 2κ′εabcdT
ced = 0 , (E.20)

Θ(δω) = κ′εabcdδω
abeced . (E.21)

The action (E.17) is invariant under diffeomorphisms and local Lorentz transformations. In-

finitesimal generators of these symmetries are a vector field ξ and the set of parameters λab,

we group them in ε = (ξ, λab). Both can be combined such that the dynamical fields transform

infinitesimally as

δεe
a = dω(ξyea) + ξy(dωe

a) + λabe
b , (E.22)

δεω
ab = ξyRab − dωλab . (E.23)

The symplectic structure density computed with these local symmetries as one of its entries is

Ω(δ, δε) = δΘ(δεω)− δεΘ(δω)−Θ([δ, δε]ω) , (E.24)

= κ′εabcd

(
δεω

abδ(eced)− δωabδε(eced)
)
, (E.25)

= 2κ′εabcd

(
[ξyRab − dωλab]ecδed − δωab[dωξye

c + ξydωe
c + λcfe

f ]ed
)
, (E.26)

= dkε , (E.27)
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note a subtle point, the term Θ([δ, δε]ω) should be formally included to guarantee the bilinearity

on δ and δε because the variations do not commute in general. The surface charge density is

kε = −κ′εabcd
(
λabδ(eced)− δωabξy(eced)

)
. (E.28)

In the last step of (E.27) we used both, the equations of motion and the linearized equations of

motion too. Knowing the result of this kind of calculation the strategy is always to rearrange

the exterior derivatives on the parameters ξ and λab, second and third terms in (E.26), to

complete exact differential forms and then check that all the remaining terms vanish due to the

equations of motion and the linearized equations of motion, for instance T a = dea + ωabe
b = 0

and δT a = dδea + δωabe
b + ωabδe

b = 0, as a general rule all of them have to be explicitly used.

E.4 Einstein-Cartan-Yang-Mills

The four-dimensional Einstein-Cartan gravity coupled to a non-Abelian field reads

S[ea, ωab, A] =

ˆ
M

(
κ′εabcdR

abeced + αYM 〈F ? F 〉
)
, (E.29)

where 〈·〉 denotes an invariant bilinear form on the Lie algebra of the non-Abelian Lie group

SU(N), αYM is the coupling constant, the two-form F is defined as F = dA+A∧A = 1
2F

i
ab e

aebτi,

the Hodge operator acts as ?F = 1
2εabcdF

iabecedτi, with τi the SU(N) generators.

The variation of the Lagrangian is

δL = Eaδe
a + Eabδω

ab + 〈EAδA〉+ dΘ(δω, δA) , (E.30)

with the equations of motion and boundary term given by
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Ea = κ′εabcdR
bced − αYM 〈eayF ? F − Feay ? F 〉 = 0 , (E.31)

Eab = 2κ′εabcdT
ced = 0 , (E.32)

EA = −2αYM dA ? F = 0 , (E.33)

Θ(δω, δA) = κ′εabcdδω
abeced + 2αYM 〈δA ? F 〉 , (E.34)

with the covariant derivative defined by dA(·) = d(·) + [A, · ]. Remember the operation of the

interior product eayF = 1
2Fbceay(e

bec) = 1
2Fbc(δ

b
ae
c − ebδca) = Face

c.

The gauge symmetries are diffeomorphisms, local Lorentz transformations, and SU(N) act-

ing on A. The parameters of the infinitesimal symmetries are grouped in ε = (ξ, λab, λi), with λi

the components of the algebra valued gauge parameter λ = λiτi. The improved exact symmetry

conditions are

δεe
a = dω(ξyea) + ξy(dωe

a) + λabe
b = 0 , (E.35)

δεω
ab = ξyRab − dωλab = 0 , (E.36)

δεA
i = ξyF i − dAλi = 0 . (E.37)

As showed in the general case for the differential form language, the surface charge density

is the sum of three terms

kε = δQ̃ε − ξyΘ(δ)−Bδε . (E.38)

We already have the boundary term, (E.34). Evaluating on an infinitesimal gauge symmetry

Eaδεe
a + Eabδεω

ab + 〈EAδεA〉 = dSε + Nε, with the Noether identities Nε = 0, we obtain Sε.

Then, as usual, the would-be Noether charge Jε = Θ(δε)− ξyL+Sε = dQ̃ε is an exact form with

Q̃ε = −κ′εabcdλabeced − 2αYM 〈λ ? F 〉 . (E.39)

Now, we use that [δ, δε] = [δ,Lξ + δλab+ξyωab + δλ+ξyA] = δδλab+ξyδωab + δδλ+ξyδA because the
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vector field ξ is assumed fixed on the phase space. Then, we have Θ([δ, δε]) = dBδε + Cε such

that on-shell Cε ≈ 0. Thus, we obtain

Bδε = −κ′εabcd(δλab + ξyδωab)eced − 2αYM 〈(δλ+ ξyδA) ? F 〉 . (E.40)

Replacing all back in the general expression (E.38) we get

kε = −κ′εabcd
(
λabδ(eced)− δωabξy(eced)

)
− 2αYM 〈λδ ? F − δAξy ? F 〉 , (E.41)

with the first two terms just the surface charge density of pure gravity (E.28). Thus, roughly,

to consider the extension to a general YM theory from a pure electromagnetic field one should

include the 〈·〉 brackets to deal with the algebra valued fields.

E.5 Einstein-Cartan in (2+1)-dimensions plus a Torsional Term

In this appendix, we compute the surface charge density explicitly. Because is faster and equiv-

alent, we use the contracting homotopy operator method to do it. Consider the Lagrangian for

(2 + 1)-space-time dimensions

L = εabce
aRbc + βeaT

a , (E.42)

where T a = dea + ωabe
b, and the term proportional to β is the one that would produce torsion.

The variation of the Lagrangian is

δL = δea(εabcR
bc + 2βTa) + δωab(εabcT

c − βeaeb)− d(εabce
aδωbc + βeaδea) , (E.43)

the second equation of motion tells us that torsion does not vanish, and because of the first one,

we can advance that in fact it plays the role of a cosmological constant term.

With the improved infinitesimal gauge transformation for the fields, δεe
a and δεω

ab from
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(7.130) and (7.131), respectively, we rearrange the combination Eaδεe
a + Eabδεω

ab = dSε +Nε,

such that

Sε = ξyea(εabcR
bc + 2βTa)− λab(εabcT c − βeaeb), (E.44)

and Nε = 0 are the Noether identities. The Sε is what we need to compute the surface charge

density using the contracting homotopy operator. For the Einstein-Cartan theory the operator

is (see Eq. (3.29) in [127])

Iδe,δω ≡ δea
∂

∂T a
+ δωab

∂

∂Rab
, (E.45)

because apart from ea and ωab there are no extra fields in the phase space, this is the full

operator for this theory. Then, the surface charge density, kε ≡ Iδe,δωSε, becomes

kε = −εabc(λabδec − δωabξyec) + 2βξyeaδea . (E.46)

By following the prescription that uses the symplectic structure density, Ω(δ, δε) = dkε, we arrive

at exactly the same expression.

We remember that in general, boundary terms (exact forms) at the level of the Lagrangian do

not contribute to the surface charges, or at most they contribute as exact forms in the kε formula

and therefore can be neglected. However, notice that the term used here can not be written as

an exact form, the tentative term one would try vanishes identically d(eaea) = T aea− eaTa = 0.

Then, at this level βeaT
a is a genuine term that produces torsion. In particular, it contributes to

the surface charge density as is explicit in (E.46) with the last term, and again, this contribution

is not an exact form at this level either.

Now, we make a step further to analyze the surface charge density by performing a split of

the connection in torsionless and contorsion parts. That is,

ωab = ω̃ab + ω̄ab , (E.47)
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with ω̃ab(e) solving dea + ω̃abe
b = 0. Then, the torsion is simply T a = ω̄abe

b. From the equation

of motion, εabcT
a = βebec, we solve

ω̄ab =
β

2
εabcec , (E.48)

where we used εabcε
dbc = −εabcε̃dbc = −2δda.3 The split of the connection induces also a split of

the parameter, λab, that solves the exact symmetry condition. In general the condition δεe
a = 0

is solved by

λab = eay(dω(ξyeb) + ξydωe
b) , (E.49)

= eay(d(ξyeb) + ω̃bcξye
c + ω̄bcξye

c + ξy(ω̄bce
c)) , (E.50)

= eay(dω̃(ξyeb))− ξyω̄ab , (E.51)

= λ̃ab − ξyω̄ab , (E.52)

where we used dω̃e
b = 0, eayec = ηac, and introduced λ̃ab ≡ eay(dω̃(ξyeb)), the torsionless part

of the parameter. An equivalent way to define this parameter is to use the exact symmetry

condition but improving the transformation only with the torsionless connection

δεe
a = ξy(dω̃e

a) + dω̃(ξyea) + λ̃abe
b = 0 , (E.53)

note that the first term vanishes by construction. Collecting all, we can now use the split of the

connection and the λab parameter on the surface charge density formula to show that

kε = −εabc(λ̃abδec − δω̃abξyec) + εabc(ξyω̄
abδec + δω̄abξyec) + 2βξyeaδe

a , (E.54)

= k̃ε +
β

2
εabcε

abd(ξyedδe
c + δedξye

c) + 2βξyeaδe
a , (E.55)

= k̃ε , (E.56)

3Remember εdbc = ηdd
′
ηbb

′
ηcc

′
εd′b′c′ = −εdbc = −ε̃dbc we put a twiddle to the Levi-Civita symbol that do not

carry information about the flat metric even if it has upstairs indices. Check this prescription in (1.7).
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in the second line we defined k̃ε ≡ −εabc(λ̃abδec − δω̃abξyec) and used the explicit expression for

ω̄ab computed at (E.48). To reach the third line remember that εabd = −ε̃abd, as in (1.7), then

εabcε
abd = −2δdc . The remarkable fact is the third line. At the level of surface charge density,

the torsion contribution to the connection cancels exactly with the extra source term 2βξyeaδea.

In other words, the surface charge can be computed with the usual expression if one uses the

Levi-Civita, or torsionless, connection ω̃ab(e).

The equation kε = k̃ε tells us that contorsion will never contribute to the charges in this

theory. For this simple theory this result could have been expected as from the beginning we

knew that the torsional term in the action is equivalent to a cosmological constant term. And we

already know, at least in four dimensions but for any dimensions is the same, that a cosmological

term do not enter in the surface charge formula.4

E.6 From a Chern-Simons perspective

The previous result can be understood from a Chern-Simons (CS) perspective too. In fact, it is

well-known that three-dimensional General Relativity with negative cosmological constant can

be written as a topological Chern-Simons theory of a one-form gauge connection Ã = eaP̃a+ωaJ̃a

valued on the anti-de Sitter algebra in three space-time dimensions (AdS3), so(2, 1). For the

spin connection we use ωa = 1
2εabcω

cb. The algebra reads

[P̃a, P̃b] = ΛεabcJ̃
c , [J̃a, P̃b] = εabcP̃

c , [J̃a, J̃b] = εabcJ̃
c , (E.57)

4As an extra comment, we contrast our results with the charges computed in [153]. To compare, all contri-
butions coming from the action term, ωdω + 2

3
ω3, in [153], shall be set to zero. Still, due to the eaT

a term in
the action, it is found that the theory admits a so-called BTZ solution with torsion. The formulas for the mass
and angular momentum presented in [153] have a direct torsion contribution, and not only through the effective
cosmological constant parameter, as can be appreciated in Eqs. (20) and (21) there. This is in tension with our
results because, as we just checked, torsion disappears from our charge formulas. Another curiosity is that in [153]
the proposed quasi-local charge expressions depend on the r coordinate. This dependence is avoided there, in
their final formula, by taking the usual r →∞. From the surface charges density perspective we adopt here this
can not happen simply because of the conservation law, dkε = 0, guarantee independence of the radius.
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with Λ the cosmological constant. The algebra (E.57) admits a non-degenerate and invariant

bilinear form 〈
J̃a, P̃b

〉
= ηab . (E.58)

These two ingredients provide a CS construction for three-dimensional General Relativity as

follows

LCS =

〈
Ã ∧ dÃ+

1

3
Ã ∧ [Ã, Ã]

〉
,

= 2eaRa(ω) +
Λ

3
εabce

aebec + d(eaωa) , (E.59)

with the curvature Ra(ω) = dωa + 1
2εabcω

bωc. Note that the equivalence is up to a boundary

term. Now, the physics does not depend on the chosen algebra basis. Let us introduce a different

basis for the algebra generators

Pa = P̃a +
β

2
J̃a , (E.60)

Ja = J̃a , (E.61)

with β a constant. Then, the AdS3 algebra commutators (E.57) in this basis are

[Pa, Pb] =

(
Λ− β2

4

)
εabcJ

c + βεabcP
c ,

[Ja, Pb] = εabcP
c ,

[Ja, Jb] = εabcJ
c . (E.62)

The invariant and non-degenerate bilinear form associated to (E.62) is now

〈
Ja, Pb

〉
= ηab ,

〈
Pa, Pb

〉
= βηab . (E.63)
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Thus, the equivalent CS Lagrangian for the one-form gauge connection A = eaPa +ωaJa valued

on the algebra (E.57) and associated to the bilinear form (E.63) is

LCS = 2eaRa(ω) + βeaTa +
Λeff

3
εabce

aebec + d(eaωa) , (E.64)

with the torsion Ta = dea + εabcω
bec, and the effective cosmological constant Λeff ≡ Λ − 3

4β
2.

We can choose the parameter β2 = 4
3Λ and the last Lagrangian becomes exactly the Lagrangian

(E.42) considered previously. Therefore, we conclude that the torsional Lagrangian (E.42) is just

equivalent to the Einstein-Cartan Lagrangian (E.59) with a specific value for the cosmological

constant Λ = 3
4β

2.

E.7 Einstein-Cartan-Dirac

Consider the gravity contribution to the surface charge density in four space-time dimensions

k̊ε = −κ′εabcd
[
λabδ(eced)− δωabξy(eced)

]
. (E.65)

As a preliminary we will rearrange this formula. First note that the spin connection can have a

torsion part, named the contorsion, we want to isolate its contribution into the formula. Exactly

as in the previous appendix, (E.52), we perform a split of the spin connection, ωab = ω̃ab(e)+ω̄ab,

such that dω̃e
a = 0. The exact symmetry condition, δεe

a = 0, is solved by the parameter

λab = e[ay(ξydωe
b]) + e[ay(dωξye

b]) = e[ay(dω̃ξye
b])− ξyω̄ab , (E.66)

thus, the split of the connection is translated in a split of the parameter λab = λ̃ab + λ̄ab. Then,

the gravity contribution to the surface charge density has two parts

k̊ε = k̃ε + k̄ε , (E.67)
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the torsionless part

k̃ε = −κ′εabcd
[
λ̃abδ(eced)− δω̃abξy(eced)

]
, (E.68)

where λ̃ab = eay(dω̃(ξyeb)), and the contorsion part that we wanted to isolate

k̄ε = −κ′εabcd
[
λ̄abδ(eced)− δω̄abξy(eced)

]
, (E.69)

where λ̄ab = −ξyω̄ab. If we further express the contorsion one-form in frame components,

ω̄ab = ω̄abf e
f , we can write

k̄ε = 2κ′εabcd

[
ω̄abf e

c(ξyefδed + ξyedδef )− δω̄abf efecξyed
]
. (E.70)

Now, we compute the whole surface charge density. Consider the Einstein-Cartan-Dirac

action

S[ea, ωab, ψ] =

ˆ
M
εabcde

aeb
[
κ′Rcd − i

3
αψ e

c
(
ψ̄γdγ5dωψ + dωψγ

dγ5ψ
)]

, (E.71)

with dωψ = dψ + 1
2ωabγ

abψ and γab ≡ 1
4 [γa, γb] satisfying the Lorentz algebra. The special

matrix γ5 ≡ γ0γ1γ2γ3 satisfies γ5γa = −γaγ5. The following computation of surface charge is

very sensitive to the coefficients, therefore we make a scriptsize detour to be self-contained and

to check the consistence of our conventions.

The γ-matrices satisfy the Clifford algebra {γa, γb} = γaγb + γbγa = 2ηab. Then, we have also [γa, (γbγc − γcγb)] =

4(ηabγc − ηacγb). If we define γab ≡ 1
4

[γa, γb] we can check that [γa, γbc] = ηabγc − ηacγb, and the matrices γab satisfy the

Lorentz algebra, namely

[γab, γcd] = ηbdγca − ηadγcb + ηbcγad − ηacγbd , (E.72)

this fix the 1/4 normalization of the γab definition. The coefficient multiplying the connection in the covariant derivative

acting on a spinor is fixed by the defining equation of the covariant derivatives on spinors

dω′ (Λψ) = Λdωψ . (E.73)
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The Lorentz transformation is Λ = exp
(

1
2
λabγab

)
, thus we define the algebra valued coefficient λ = 1

2
λabγab. We check

that the 1/2 is consistent with (E.73). If we expand to first order in the Lorentz transformation both sides of (E.73), we

get

dλψ + λdψ −
1

2
(dωλab)γ

abψ +
1

2
ωabγ

abλψ = λdψ +
1

2
λωabγ

abψ , (E.74)

where we used ω′ab = ωab + δλω
ab with δλωab = −dωλab = −dλab + λacωcb − λcbωac. The last expression brings

into the formula the convention for the infinitesimal transformation λab used in the other variables (δλe
a = λabe

b or

equivalently δλωab = −dωλab). Then, we check that (E.74) is in fact an identity because our conventions are correct such

that dλ = 1
2
dλabγ

ab, and

ωab

[
λ, γab

]
=

1

2
ωabλcd

[
γcd, γab

]
= −

1

2
ωabλcd

[
γab, γcd

]
, (E.75)

= (λacω
c
b − λ

c
bωac) γ

ab . (E.76)

Those checks set correctly the three coefficients in γab = 1
4

[γa, γb], λ = 1
2
λabγ

ab, and dωψ = dψ + 1
2
ωabγ

abψ.

Now, besides the usual exact symmetry conditions on the gravity fields, (7.130) and (7.131),

we should impose the exact symmetry condition on the spinor field. Spinor field transform

under an infinitesimal local Lorentz transformation as δλ′ψ = λ′ψ. Therefore, the correct exact

symmetry condition is

δεψ = Lξψ + λ′ψ = ξydωψ + λψ = 0 , (E.77)

with, again, the improved prescription given by λ = 1
2γab(λ

′ab − ξyωab) (remember λab = λ′ab −

ξyωab).

A general formula for the surface charge density in differential form language is (see Eq.

(2.19) in [127])

kε = δQ̃ε − ξyΘ(δ)−Bδε . (E.78)

The variation of the Lagrangian is

δL = Eaδe
a + Eabω

ab + Eψδψ + +Eψ̄δψ̄ + dΘ(δ) , (E.79)

with the boundary term
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Θ(δ) = εabcde
aeb
(
κ′δωcd +

i

3
αψ e

cδ
(
ψ̄γdγ5ψ

))
. (E.80)

This is the middle term we need in (E.78). For the first term we compute the trivial current

Jε = Θ(δε)− ξyL+ Sε = dQ̃ε, and after cancellations we get the usual Q̃ε = −κ′εabcdeaebλcd we

find for pure Einstein-Cartan theory. For the third term in (E.78), the prescription tells us that

the symplectic potential term Θ([δ, δε]) = dBδε+Cδε with Cδε ≈ 0, thus we use the commutation

of variations [δ, δε] = [δ,Lξ + δλ+ξyω] = δδλ+ξyδω, and we get Bδε = −κ′εabcdeaeb(δλcd + ξyδωcd).

Thus the spinor field does not contribute through Bδε nor Q̃ε in the general formula (E.78), it

only enters through the extra boundary term in (E.80). The complete surface charge density

for the Einstein-Cartan-Dirac theory is

kε = −εabcd
(
κ′
(
λabδ(eced)− δωabξy(eced)

)
+ iαψ ξye

aebecδ
(
ψ̄γdγ5ψ

))
. (E.81)

We stress that the addition of a spinorial mass term in the action does not change the surface

charge formula. Then, this result is already useful enough to compute charges for this theory,

its massive spinor equivalent, or even with an additional cosmological constant term. But we

can go further. Let us split the gravity terms as we did at the beginning, (E.67), then

kε = k̃ε + k̄ε + kψε , (E.82)

with

kψε = −iαψ εabcdξyeaebecδ(ψ̄γdγ5ψ) . (E.83)

We can compute k̄ε explicitly, as given by (E.70), by solving the contorsion ω̄ab from the torsion

equation of motion. We do it step by step. The equation we need is

εabcdT
ced =

i

12
αψ εcdmne

cedenψ̄ (δma γb − δmb γa) γ5ψ , (E.84)
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with T c = dωe
c = ω̄cf e

f = ω̄afge
gef , we have

εabcdω̄
a
fge

gefed =
i

12
αψ εcdmne

cedenψ̄ (δma γb − δmb γa) γ5ψ , (E.85)

or its dual equation

εabcdε
gfdhω̄cfg =

i

12
αψ εcdmnε

cdnhψ̄ (δma γb − δmb γa) γ5ψ . (E.86)

Note that in the left hand side εabcdε
gfdh = −(−3!δg[aδ

f
b δ

h
c]) = 3!δg[aδ

f
b δ

h
c], where we have to be

careful with the extra minus sign because we raise indices with the flat metric ηab. We also use

in the right hand side εcdmnε
cdnh = −εcdnmεcdnh = −(−6δhm) = 6δhm. Therefore

2ω̄hba + δha ω̄
c
cb − δhb ω̄cca =

i

2
αψ ψ̄ (δma γb − δmb γa) γ5ψ . (E.87)

To completely solve this equation we have to contract it and then replace the result in itself.

Contracting h = b we get ω̄cca = 3i
2 αψ ψ̄γaγ5ψ. Then

ω̄hba =
i

2
αψ ψ̄

(
δhb γa − δhaγb

)
γ5ψ , (E.88)

or equivalently

ω̄abf =
i

2
αψ ψ̄

(
ηabγf − δafγb

)
γ5ψ . (E.89)

We are ready to replace this into the expression for k̄ε, (E.70). We do it by parts. First note

that the following combination simply vanishes

εabcdω̄
ab
f e
c(ξyefδed + ξyedδef ) =

i

2
αψ εabcdψ̄

(
ηabγf − δafγb

)
γ5ψe

c(ξyefδed + ξyedδef ) = 0 .

Then
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k̄ε = −2εabcdδω̄
ab
f e
fecξyed = iαψ εabcde

aebξyecδ(ψ̄γdγ5ψ) , (E.90)

this term is exactly −kψε as in (E.83). Therefore, as it might have been suspected, for the surface

charge density, we have an exact cancellation of all the terms concerning the spinor field

k̄ε + kψε = 0 , (E.91)

or equivalently, this means that the full surface charge density for the Einstein-Cartan-Dirac

theory is simply kε = k̃ε as in equation (E.68). In particular, this implies that in a space-time

with a spinor field living on it, as far as exact symmetries are satisfied, it is not needed to have

the explicit solution for the spinor field to compute charges.

E.8 D-dimensional Chern-Simons form

A CS Lagrangian in D = 2n+ 1 dimensions is a local function of a one-form gauge connection,

A, valued on a Lie algebra. That is A = Aiτi = Aiaτi e
a with ea the one-form frame field, τi the

generators of the algebra, [τi, τj ] = f k
ij τk, and f k

ij the algebra structure constants. The full

CS Lagrangian can be expressed in a very compact form using the trick of an integral over an

auxiliary variable t [154]

L(2n+1)[A] = κn

ˆ 1

0
dt〈AFnt 〉 , (E.92)

where Ft ≡ dAt + At ∧ At, At = tA, and κn = κCS(n + 1) with κCS the CS level. Notice

that the one-form nature of A induces the algebra commutator on the A2
t term, explicitly

A2
t = (tA)∧ (tA) = t2A∧A = 1

2 t
2Ai ∧Aj [τi, τj ]. The angled bracket

〈
·
〉

denotes the symmetric

invariant polynomial on the algebra such that for any two algebra valued forms, says the p-form

P and the q-form Q, the usual commutation properties are respected, namely

〈
· · ·PQ · · ·

〉
= (−1)pq

〈
· · ·QP · · ·

〉
. (E.93)
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The CS theory possesses two symmetries, in fact the Lagrangian is invariant under diffeomor-

phisms and also quasi-invariant (up to a boundary term/exact form) under gauge symmetries,

these are the key gauge symmetries that push us to compute surface charges. The trick to have

a compact expression for the Lagrangian allows us to perform all calculations directly, we show

them in detail. Let us start with a general variation of (E.92), we have

δL(2n+1)[A] = κn

ˆ 1

0
dt〈δAFnt + nAδFtF

n−1
t 〉 ,

= κn

ˆ 1

0
dt〈δAFnt + nAdAt(δAt)F

n−1
t 〉 ,

= κn

ˆ 1

0
dt〈δAFnt +

d

dt
δAtF

n
t − δAFnt − nd(AδAtF

n−1
t )〉 ,

= κn〈δAFn〉 − dΘ(δA) , (E.94)

where we used δFt = dδAt + [At, δAt] = dAtδAt with the notation dAt for the exterior covariant

derivative for the connection At, we used also the Leibniz’s rule for dAt , that dAtFt = 0, the

identity d
dtFt = dAtA, integration by parts in the variable t, that d

dt δAt = δA, and the invariance

property of the symmetric polynomial
〈
·
〉
. Then, the equations of motion and the boundary

term are

〈Fn〉 = 0 , (E.95)

Θ(δA) = −nκn
ˆ 1

0
dt〈δAtAFn−1

t 〉 . (E.96)

Notice that we defined the boundary term with an overall minus sign, this convention save us of

carrying a minus sing in the following calculations. This is conventional, remember that surface

charge densities are defined up to overall factors.

Later we will also need the linearized equation of motion, namely

δ〈Fn〉 = n〈(δF )Fn−1〉 = n〈dA(δA)Fn−1〉 = 0 , (E.97)
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where dA(·) ≡ d(·) + [A, · ] denotes the covariant exterior derivative for the connection A.

To obtain the surface charge density we first compute the symplectic structure density using

the boundary term. With two independent general variations on the phase space, say δ1 and δ2,

the symplectic structure density reads

Ω(δ1, δ2) = δ1Θ(δ2A)− δ2Θ(δ1A)−Θ([δ1, δ2]A) ,

= −nκn
ˆ 1

0
dt
〈
2δ2Atδ1AF

n−1
t + δ2AtAδ1F

n−1
t − δ1AtAδ2F

n−1
t

〉
. (E.98)

Now, the key to get a more tractable expression is to rewrite the second term as

〈
δ2AtAδ1F

n−1
t

〉
= (n− 1)

〈
δ2AtAdAt(δ1At)F

n−2
t

〉
,

= (n− 1)
〈
d
(
δ2AtAδ1AtF

n−2
t

)
− dAt(δ2At)Aδ1AtF

n−2
t + δ2At dAtAδ1AtF

n−2
t

〉
,

= (n− 1)
〈
d(δ2AtAδ1AtF

n−2
t )− δ2FtAδ1AtF

n−2
t + δ2At

d

dt
(Ft)δ1AtF

n−2
t

〉
,

= (n− 1)
〈
d(δ2AtAδ1AtF

n−2
t )− δ2FtAδ1AtF

n−2
t

〉
+
d

dt

〈
δ2Atδ1AtF

n−1
t

〉
− 2
〈
δ2Atδ1AF

n−1
t

〉
,

where we used in the second line the Leibniz’s rule for the covariant derivative dAt and the

identity dAtF
n−2
t = 0. In the third line, dAt(δ2At) = δ2Ft and d

dtFt = dAtA. In the fourth line,

we introduce a total derivative in t, we use that all the expression is inside the bracket 〈·〉 to

perform commutations of the algebra valued forms, and used also that d
dt δAt = δA.

Now, replacing back, the second and fourth terms of (E.99) cancel exactly the first and third

terms of (E.98), respectively. We are left with a total derivative in t which we can integrate

trivially, and also an exact form. Then, the result is a symplectic structure density composed

by a piece that could have been expected plus another piece which is an exact form

Ω(2n+1)(δ1, δ2) = nκn
〈
δ1Aδ2AF

n−1
〉
− n(n+ 1)κn d

(ˆ 1

0
dt
〈
δ2AtAδ1AtF

n−2
t

〉)
. (E.99)
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We observe that unlike other theories, the symplectic structure density for CS is not gauge

invariant due to the last term, this is expected because the Lagrangian as well as the boundary

term Θ(δA) are not gauge invariant forms. Remember that the theory is just quasi-invariant.

Now, we combine infinitesimal diffeomorphisms and gauge transformations for the connection

to write an improved general infinitesimal symmetry transformation as

δεA = LξA− dAλ′ = ξyF − dAλ , (E.100)

where as usual we select the parameter as λ′ = λ+ξyA in order to define an overall homogeneous

infinitesimal transformation. Remember that λ = λiτi = (λ′i − ξµAiµ)τi is an algebra valued

gauge parameter which is also field dependent.

Then, we evaluate the symplectic structure density, (E.99), such that one of its entries is

an improved symmetry transformation, δ2A → δεA as in (E.100) (and δ1A → δA). Using the

equation of motion (E.95), and also the linearized equation of motion (E.97) (varied equation of

motion on phase space), it is straightforward to show that the first term becomes also an exact

form

Ω(2n+1)(δ, δε) = nκnd
〈
λδAFn−1

〉
− n(n+ 1)κnd

(ˆ 1

0
dt
〈
δεAAtδAtF

n−2
t

〉)
. (E.101)

When the exact symmetry condition is satisfied: δεA = 0 the symplectic structure density

simply vanishes and it also vanishes the integral second term of the last expression. Therefore,

we conclude that the surface charge density for a D-dimensional Chern-Simons theory, that

satisfies the conservation law (i.e. is closed dkε = 0), is

k(2n+1)
ε = nκn

〈
λδAFn−1

〉
. (E.102)

This is the main result of this appendix and it could have been expected by symmetry considera-
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tions. In fact, with only a connection at disposal there are no other ways to write a (D−2)-form

which is also a variation (or one-form in field space) and at the same time a gauge invariant

expression.

On the other hand, in contrast to [155] and [156] we observe the advantage to group the

improved gauge parameter λ and the Killing vector ξ in the symmetry parameter ε which allows

us to define an unique charge.

Note that for n = 1 we recover the standard D = 3 dimensional surface charge for a CS

theory computed in the main text.

We remark that in the last step we needed to invoke the exact symmetry condition to get rid

of the integral term in the symplectic structure density, (E.101). This is not usually the case.

For all other theories worked out through these notes the surface charge density is read directly

once we replace the symmetry transformation as one of the entries of the symplectic structure.

Instead, here there is this extra exact form, expressed as an integral in t. As stressed before

this is related with the quasi-invariance of the CS theory and that our prescription to define

the symplectic structure relies on the Lagrangian.5 Having said that, at this stage it should be

already clear through our discussions that it is only for those cases, when the exact symmetry

condition holds, that the surface charge density is closed and therefore it becomes a meaningful

formula to compute true charges.

E.8.1 D-CS surface charge from the contracting homotopy operator

As a final remark of this appendix we note that the surface charge density formula for CS

in D = 2n + 1 could had been easily obtained using the corresponding contracting homotopy

operator. For a CS theory we can sketch the operator as

5In the method based on the contracting homotopy operator this is not the case and the symplectic structure
is defined directly form the equations of motion. Because of this reason this alternative prescription is sometimes
called invariant symplectic structure [101].
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IδA ≡ δA
∂

∂F
. (E.103)

Now the Noether identity implies that −〈κnδεAFn〉 = dSε +��>
0

Nε with Sε = κn〈λFn〉. Thus, for

the surface charge density

k(2n+1)
ε ≡ IδASε = nκn

〈
λδAFn−1

〉
, (E.104)

and we directly recover (E.102). This short calculation shows the power of the contracting

homotopy operator approach. Of course the procedure to obtain (E.103) as a rigorous expression

for the operator is the missing part here but, as we checked, its naive application it is certainly

powerful enough.
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