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Introduction

Skew polynomial rings F[x;σ, δ] with coefficients over a division ring F (Definition 1.1.6),
were introduced in [27] by Oystein Ore (1933), as a non-commutative generalization of
the conventional polynomial rings. The first applications of skew polynomials appear
with the work of [9, 10] and Jacobson [18] and recently, they have been used to construct
algebraic codes (e.g. see [4, 6, 25]) and for applications in cryptography [5].

Although in general F[x;σ, δ] behaves differently from the classical polynomial ring, it
preserves the important property of having a Euclidean division algorithm. However, this
algorithm holds for right division and not for left division, unless σ is an automorphism
of F, as stated in [27, Theorem 6]. This property, allowed Lam and Leroy in [21, p. 310]
to define the evaluation of a polynomial f(x) ∈ F[x;σ, δ] at any point a ∈ F, as the
unique remainder of the right-hand division of f(x) by x− a (Definition 1.1.11), forcing
a remainder theorem as in the classical case. Having an evaluation map is key to begin
the study of the zeros of a skew polynomial, but unlike the classical case, this study is
more difficult, since in general a skew polynomial of degree n ≥ 2 can have more than n
zeros, possibly infinite (Example 1.1.15).

On the other hand, in literature there exist multivariate generalizations of F[x;σ, δ],
for instance the iterated polynomial rings F[x1, σ1, δ1][x2, σ2, δ2] · · · [xn, σn, δn] (see [30],
[9, p. 532]). However, to define an evaluation map that allows one to evaluate any
polynomial F ∈ F[x1, σ1, δ1][x2, σ2, δ2] · · · [xn, σn, δn] is not possible, because in general
unique remainder algorithms do not hold for iterated skew polynomials (see [23] for
more details). In 2019, the authors in [23] overcome this obstacle by considering an
alternative construction and introduce the so-called free multivariate skew polynomial
rings F[x1, x2, ..., xn;σ, δ] (Definition 1.2.3), showing that in this case, it is possible to
define the evaluation of any free skew polynomial F at any point (a1, a2, ..., an) ∈ Fn, as
the unique remainder of the Euclidean division on the right of F by the polynomials
x1 − a1, x2 − a2, ..., xn − an (Definition 1.2.5).

In this thesis, thanks to the uniqueness of the quotient and remainder that gives
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us the right-hand division of F ∈ F[x1, x2, ..., xn;σ, δ] by the corresponding polynomials
x1 − a1, x2 − a2, ..., xn − an, we introduce for the first time the notion of right (σ, δ)-
partial derivative of a polynomial F ∈ F[x1, x2, ...., xn;σ, δ] at any point (a1, ..., an) ∈
Fn (Definition 2.1.1). Moreover, since in general left division does not work in the
ring F[x1, x2, ..., xn;σ, δ], we show a necessary and sufficient condition that allows the
left division of any polynomial F ∈ F[x1, x2, ...., xn;σ, δ] by the skew polynomials
x1 − a1, x2 − a2, ..., xn − an (Lemma 2.1.2), thus defining the corresponding left (σ, δ)-
evaluation (Definition 2.1.4) and the left (σ, δ)-partial derivatives (Definition 2.1.5).

By using the notion of (σ, δ)-partial derivative, we define generalized zero ideals
(Definition 3.1.1), we introduce the notion of PD-independent (see Definition 3.1.4)
which generalizes the P-independence given in [23, Definition 23] and we use these tools
to prove one of the main results of this thesis which corresponds to a Hermite-type
interpolation Theorem (Theorem 3.1.12) that generalizes the Lagrange interpolation
Theorem given in [23, Theorem 4] and extends the cases n = 1 given in [14, Theorem
4.4] and [26, Corollary 41]. Moreover, unlike [23, Theorem 4], we provide a necessary
and sufficient condition for Hermite and Lagrange interpolation problems to admit a
solution (Theorem 3.1.12 and Corollary 3.1.13).

On the other hand, for the case n = 1, we introduce in the ring F[x;σ, δ] the notion of
right and left (σ, δ)-resultants (Rσ,δ

F (f, g) and Rσ,δ
F,L(f, g), respectively) of two polynomials

f, g ∈ F[x;σ, δ] (Definitions 4.1.3 and 4.2.2), which in general are different in the non-
commutative case, but coincide in the commutative case (i.e. when F is a field, σ = Id

and δ = 0). Moreover, using these concepts and inspired by the classical situation,
we give results that show equivalent conditions to Rσ,δ

F (f, g) = 0 (Rσ,δ
F,L(f, g) = 0)

(Theorems 4.1.6, 4.2.4, 4.1.23, 4.2.9 and Proposition 4.1.25). To conclude, we use
Rσ,δ
F (f, g) and Rσ,δ

F,L(f, g) to give equivalent conditions to the fact that a skew polynomial
f(x) ∈ F[x;σ, δ] admits a right or left root of positive multiplicity (Theorems 4.3.3 and
4.3.5). We would like to stress here that these latest results are a direct application of
our notion of (σ, δ)-derivative given for the case n = 1 (Definition 2.2.1).

The thesis is organized as follows. In Chapter 1, we recall basic definitions and
notations, the main properties of the rings F[x;σ, δ] and F[x1, x2, ..., xn;σ, δ] and we
give some preliminary results. In Chapter 2, we introduce the notion of right and left
(σ, δ)-partial derivatives (Definitions 2.1.1 and 2.1.5), their corresponding higher-order
partial derivatives (Definition 2.1.6) and prove some basic properties (Lemmas 2.1.8
and 2.1.9). Moreover, we show that every free multivariate skew polynomial can be
written in terms of its (σ, δ)-partial derivatives, obtaining in this context a multivariate
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Taylor-type expansion (Proposition 2.1.10). Finally, for the case n = 1, we define the
notions of right and left (σ, δ)-derivatives of a polynomial f(x) ∈ F[x;σ, δ] and we show
some of their properties.

In Chapter 3, by using right (σ, δ)-partial derivatives, we introduce the left ideals
Im⃗(Ω) (Definition 3.1.1), we define the notion of DP-independence (Definition 3.1.4) and
then we prove a Hermitian-type interpolation Theorem (Theorem 3.1.12). Moreover, we
provide a tool for construct DP-independent sets by using conjugacy classes (Proposition
3.1.18) to apply in concrete situations Theorem 3.1.12.

Finally, in Chapter 4, after some technical lemmas, we first introduce the right
(σ, δ)-resultant Rσ,δ

F (f, g) of two skew polynomials f, g ∈ F[x;σ, δ] (Definition 4.1.3) and,
after some of its properties (Propositions 4.1.15 and 4.1.19), we prove three results
about equivalent conditions to Rσ,δ

F (f, g) = 0 (Theorems 4.1.6, 4.1.23 and Proposition
4.1.25) and we give a characterization of the degree of the greatest common right divisor
gcrd(f, g) (Theorem 4.1.8) which can be also applied to check when gcrd(f, g) ̸= 1 .
Moreover, we introduce the new notion of left (σ, δ)-resultant of two skew polynomials
(Definition 4.2.2), rewriting in this context some of the main previous results and giving
some equivalent conditions to the fact that a skew polynomial admits a right or left root
of positive multiplicity (Theorems 4.3.3 and 4.3.5). Furthermore, through this chapter,
we give some algorithms and their respective Magma programs [3] as computational
applications of the main algebraic results which allowed us to construct all the examples
in a very simple manner.

We hope that all the arguments presented here will be useful in the next future for
both theoretical and computational topics involving univariate and free multivariate
skew polynomials.
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Introducción

Los anillos polinomiales torcidos F[x;σ, δ] con coeficientes sobre un anillo de división
F (Definición 1.1.6), fueron introducidos en [27] por Oystein Ore (1933) como una
generalización no conmutativa de los anillos polinomiales convencionales. Las primeras
aplicaciones de los polinomios torcidos aparecen con los trabajos de Cohn [9, 10] y
Jacobson [18] y recientemente, han sido utilizados para construir códigos algebraicos
(ver por ejemplo [4, 6, 25]) y para aplicaciones en Criptografía [5].

Aunque en general F[x;σ, δ] se comporta de manera diferente al anillo polinomial
clásico, conserva la importante propiedad de tener un algoritmo de división Euclidiano.
Sin embargo, este algoritmo se cumple para la división por derecha y no para la división
izquierda, a menos que σ sea un automorfismo de F, como se indica en [27, Teorema
6]. Esta propiedad, permitió a Lam y Leroy en [21, p. 310] definir la evaluación de un
polinomio f(x) ∈ F[x;σ, δ] en cualquier punto a ∈ F, como el único resto de la división
a la derecha de f(x) por x− a (Definición 1.1.11), forzando un teorema del resto como
en el caso clásico. Tener una función de evaluación es clave para iniciar el estudio de
ceros de un polinomio torcido, pero a diferencia del caso clásico, este estudio es mas
delicado, ya que en general un polinomio torcido de grado n ≥ 2 puede tener mas de n
raíces, posiblemente infinitas (Ejemplo 1.1.15).

Por otro lado, en literatura existen generalizaciones multivariables de F[x;σ, δ], por
ejemplo los anillos polinomiales iterados F[x1, σ1, δ1][x2, σ2, δ2] · · · [xn, σn, δn] (ver [30], [9,
p. 532]). Sin embargo, definir una función de evaluación que permita evaluar un cualquier
polinomio F ∈ F[x1, σ1, δ1][x2, σ2, δ2] · · · [xn, σn, δn] no es posible, ya que en general los
algoritmos de división con resto único no se cumplen para polinomios torcidos iterados
(ver [23] para mas detalles). El año 2019, en [23] los autores superan este obstáculo,
considerando una construcción alternativa, e introducen los llamados anillos polinomiales
torcidos multivariables libres F[x1, x2, ..., xn;σ, δ] (Definición 1.2.3), mostrando que en
este caso, es posible definir la evaluación de cualquier polinomio torcido libre F en
cualquier punto (a1, a2, ..., an) ∈ Fn, como el único resto de la división Euclidiana a la
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derecha de F por x1 − a1, x2 − a2, ..., xn − an (Definición 1.2.5).

En esta tesis, gracias a la unicidad del cociente y resto que nos otorga la división a
la derecha de F ∈ F[x1, x2, ..., xn;σ, δ] por los correspondientes polinomios x1 − a1, x2 −
a2, ..., xn− an, introducimos por primera vez la noción de (σ, δ)-derivada parcial derecha
de un polinomio F ∈ F[x1, x2, ..., xn;σ, δ] en cualquier punto (a1, ..., an) ∈ Fn (Definición
2.1.1). Aún mas, dado que en general la división a la izquierda no funciona en el
anillo F[x1, x2, ..., xn;σ, δ], mostramos una condición necesaria y suficiente que permite
dividir a la izquierda cualquier polinomio F ∈ F[x1, x2, ..., xn;σ, δ] por los polinomios
x1−a1, x2−a2, ..., xn−an (Lema 2.1.2), definiendo así la correspondiente (σ, δ)-evaluación
izquierda (Definición 2.1.4) y las (σ, δ)-derivadas parciales izquierdas (Definición 2.1.5).

Usando la noción de (σ, δ)-derivada parcial, definimos ideales de cero generalizados
(Definición 3.1.1), introducimos la noción de DP-independencia (Definición 3.1.4) que
generaliza la P-independencia entregada en [23, Definición 23] y luego hacemos uso
de estas herramientas para probar uno de los resultados principales de esta tesis, el
cual corresponde a un Teorema de interpolación de tipo Hermitiano (Teorema 3.1.12)
que generaliza el Teorema de interpolación de Lagrange dado en [23, Teorema 4] y
extiende los casos n = 1 dados en [14, Teorema 4.4] y [26, Corolario 41]. Aún mas, a
diferencia de [23, Teorema 4], entregamos una condición necesaria y suficiente para que
los problemas de interpolación de Hermite y Lagrange admitan una solución (Teorema
3.1.12 y Corolario 3.1.13).

Por otro lado, para el caso n = 1, introducimos en el anillo F[x;σ, δ] las nociones de
(σ, δ)-resultantes derechos e izquierdos (Rσ,δ

F (f, g) y Rσ,δ
F,L(f, g), respectivamente) de dos

polinomios f, g ∈ F[x;σ, δ] (Definiciones 4.1.3 y 4.2.2), que en general son diferentes en
el caso no conmutativo, pero coinciden en el caso conmutativo, es decir, cuando F es un
campo, σ = Id y δ = 0. Además, utilizando estos conceptos e inspirados por la situación
clásica, entregamos resultados que muestran condiciones equivalentes a Rσ,δ

F (f, g) = 0
(Rσ,δ

F,L(f, g) = 0) (Teoremas 4.1.6, 4.2.4, 4.1.23, 4.2.9 y Proposición 4.1.25). Para finalizar,
utilizamos Rσ,δ

F (f, g) y Rσ,δ
F,L(f, g) para dar condiciones equivalentes al hecho que un

polinomio f(x) ∈ F[x;σ, δ] admita una raíz derecha o izquierda de multiplicidad positiva
(Teoremas 4.3.3 y 4.3.5). Nos gustaría destacar aquí que estos últimos resultados son
una aplicación directa de nuestra noción de (σ, δ)-derivada dada para el caso n = 1
(Definición 2.2.1).

La tesis está organizada de la siguiente manera. En el Capítulo 1, recordamos
definiciones básicas y notaciones, las principales propiedades de los anillos F[x;σ, δ] y
F[x1, x2, ..., xn;σ, δ] y damos algunos resultados preliminares. En el Capítulo 2, intro-
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ducimos la noción de (σ, δ)-derivada parcial derecha e izquierda (Definiciones 2.1.1 y
2.1.5), sus correspondientes (σ, δ)-derivadas parciales de orden superior (Definición 2.1.6)
y probamos algunas propiedades básicas (Lemas 2.1.8 y 2.1.9). Además, mostramos que
todo polinomio torcido libre se puede escribir en función de sus (σ, δ)-derivadas parciales,
obteniendo en este contexto una expansión tipo Taylor multivariable (Proposición 2.1.10).
Finalmente, para el caso n = 1, definimos las nociones de (σ, δ)-derivadas derechas e
izquierdas de un polinomio f(x) ∈ F[x;σ, δ] y mostramos algunas de sus propiedades.

En el Capítulo 3, haciendo uso de las (σ, δ)-derivadas parciales, introducimos los
ideales izquierdos Im⃗(Ω) (Definición 3.1.1), definimos la noción de DP-independencia
(Definición 3.1.4) y luego probamos un Teorema de interpolación de tipo Hermitiano
(ver Teorema 3.1.12). Además, entregamos una herramienta para construir conjuntos
DP-independientes usando clases de conjugación (Proposición 3.1.18) que permite aplicar
en situaciones concretas el Teorema 3.1.12.

Finamente, en el Capítulo 4, luego de algunos lemas técnicos, introducimos el (σ, δ)-
resultante derecho Rσ,δ

F (f, g) de dos polinomios torcidos f, g ∈ F[x;σ, δ] (Definición 4.1.3)
y, después de algunas de sus propiedades (Proposiciones 4.1.15 y 4.1.19), probamos
tres resultados que muestran condiciones equivalentes a Rσ,δ

F (f, g) = 0 (Teoremas 4.1.6,
4.1.23 y Proposición 4.1.25) y damos una caracterización del grado del máximo común
divisor derecho gcrd(f, g) (Teorema 4.1.8) que también puede ser aplicado para chequear
cuando gcrd(f, g) ̸= 1. Además, introducimos la nueva noción de (σ, δ)-resultante
izquierdo de dos polinomios torcidos (Definición 4.2.2), reescribiendo en este contexto
algunos de los principales resultados previos y dando algunas condiciones equivalentes
al hecho que un polinomio torcido admita una raíz derecha o izquierda de multiplicidad
positiva (Teoremas 4.3.3 y 4.3.5). Además, a través de este capítulo, damos algunos
algoritmos y sus respectivos programas Magma [3] como aplicaciones computacionales de
los principales resultados algebraicos que nos han permitido construir todos los ejemplos
de forma muy sencilla.

Esperamos que todos los argumentos aquí presentados, sean útiles en un futuro
próximo tanto para temas teóricos como computacionales, que involucren a los polinomios
torcidos univariables y multivariables libres.
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Chapter 1

Background material

We provide here some basic definitions and preliminary results concerning skew polyno-
mials over division rings. The tools presented in this chapter will be useful for the later
results of this thesis.

1.1 Univariate skew polynomial rings

Denote by F a division ring (or a skew field), that is, a unitary ring (not necessarily
commutative) in which every non-zero element is invertible in F. Evidently, every field
is a division ring. The most familiar example of a division ring which is not a field
is the ring H of Hamilton’s quaternions. However, also there are interesting methods
for constructing non-commutative division rings (e.g., if R is a ring and S is a simple
module over R, then the endomorphisms ring of S is always a division ring [20, Lemma
3.6]). On the other hand, if we assume that F is a finite division ring, then it is known
that F is a finite field (see [17, p. 250]).

To define univariate skew polynomial rings (Ore extensions), we begin by introducing
the concept of σ-derivation.

Definition 1.1.1. Let σ : F→ F be a non-zero ring endomorphism. An additive group
homomorphism δ : F→ F is called a σ-derivation (over F) if

δ(ab) = σ(a)δ(b) + δ(a)b

for every a, b ∈ F.

Example 1.1.2. Let σ : F → F be a ring homomorphism and let β ∈ F. The map

10



1.1. Univariate skew polynomial rings

δβ : F→ F defined by
δβ(a) := σ(a)β − βa

for all a ∈ F is a σ-derivation. These kind of derivations are called in literature simply
inner derivations.

Remark 1.1.3. From Definition 1.1.1, it follows that δ(1) = δ(−1) = 0. Furthermore,
σ is always a monomorphism but, in general, it is not an automorphism. For instance,
in Fp(t) :=

{
f
g

: f, g ∈ Fp[t], g ̸= 0
}

(field of rational functions in the variable t over
the finite field Fp with p prime), the endomorphism ϕ : Fp(t) → Fp(t), x 7→ xp is not
surjective because ϕ(Fp(t)) does not contain t.

The role played by inner derivations when F is a field is shown by the following
result, as indicated in [9, Section 8.3] (see also [24, Proposition 39]).

Proposition 1.1.4. Let F be a field and consider an endomorphism σ : F → F and
a σ-derivation δ : F → F. If σ ̸= Id (the identity automorphism), then δ is an inner
derivation.

Remark 1.1.5. From Proposition 1.1.4, it is natural to ask how are the Id-derivations
over a field. With respect to this question, we can distinguish two cases. If F is a finite
field then the unique Id-derivation is δ = 0 (see [24, Proposition 44]). However, if F is
infinite, then it is possible to define non-zero Id-derivations. For instance, the formal
derivation with respect to the variable t, given by d

dt
, is an Id-derivation over Fp(t).

Following some Ore’s ideas in [27], we recall the ring of univariate skew polynomials.

Definition 1.1.6. Given a ring endomorphism σ : F→ F and a σ-derivation δ : F→ F,
we define the univariate skew polynomial ring, corresponding to σ and δ and denoted by

R := F[x;σ, δ] ,

as the set of all polynomials ∑i aix
i (ai ∈ F) with the usual sum of polynomials and the

product defined accordingly to the following rule

xa = σ(a)x+ δ(a) (1.1)

for all a ∈ F.
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1.1. Univariate skew polynomial rings

Example 1.1.7. Consider F4[x;σ, δα] with F4 = {0, 1, α, α2}, where α2 + α + 1 = 0,
σ(a) = a2 and δα(a) = α(σ(a) + a) for all a ∈ F4. Then we have

αx · α2x = α(xα2)x = α(σ(α2)x+ δα(α2))x = α2x2 + α2x ,

α2x · αx = α2(xα)x = α2(σ(α)x+ δα(α))x = αx2 + x .

The previous example shows that in general the product of skew polynomials is not
commutative and that the product of two monomials is not a monomial. Moreover, let
us recall here some basic properties of R:

1. Let f(x) =
m∑

i=1
aix

i, g(x) =
n∑

j=1
bjx

j ∈ R of degrees m and n, respectively. By (1.4),

we get f(x)g(x) = ... + amσ
m(bn)xm+n with amσ

m(bn) ̸= 0 (because am, bn ̸= 0
and σ is a monomorphism). In particular, we have deg(fg) = deg(f) + deg(g)
which implies that R has not zero divisors.

2. The Euclidean algorithm holds for right division (see [27, p. 483]). For any
f(x), g(x) ∈ R with g(x) ̸= 0, there are unique q(x), r(x) ∈ R such that

f(x) = q(x)g(x) + r(x)

with either deg(r) < deg(g), or r(x) = 0. For instance, in F4[x;σ, δ] with σ, δ

defined as in Example 1.1.7, if we divide x3 by αx, unlike the usual division
algorithm, the action of δ in general makes the quotient is not a monomial, but a
polynomial. In fact, we have x3 = (α2x2 + x+ α)(αx).

3. An important consequence of the right division algorithm is that R is a left
principal ideal domain (LPID), i.e. any left ideal I ⊂ R has the form Rg, where
g ∈ R is a polynomial of minimal degree among non-zero elements of I. However,
it is also widely known that if σ fails to be an automorphism of F, i.e. σ(F) ̸= F,
then the left division does not work (see [27, Theorem 6]) showing that R is not
in general a right principal ideal domain (RPID).

Consider now monomials axi, bxj, xiβ, xjα ∈ R. Motivated by Example 1.1.7, we will
give formulas to calculate easily the products axi · bxj and xiβ · xjα.

Definition 1.1.8. Let a ∈ F. We define Cd,s(a) as the sum of all possible compositions (as
functions) of d copies of δ and s copies of σ evaluated in a when (d, s) ∈ Z≥0×Z≥0\(0, 0),
C0,0(a) = a and Cd,s(a) = 0 otherwise. Moreover, if σ is an automorphism, we define
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1.1. Univariate skew polynomial rings

Tt,r(a) as the sum of all possible compositions (as functions) of t copies of δσ−1 and r

copies of σ−1 evaluated in a when (t, r) ∈ Z≥0 × Z≥0 \ (0, 0), T0,0(a) = a and Tt,r(a) = 0
otherwise.

Remark 1.1.9. From Definition 1.1.8, for all a ∈ F and (d, s) ∈ Z× Z we have

Cd,s(a) = δ(Cd−1,s(a)) + σ(Cd,s−1(a)) , Td,s(a) = δσ−1(Td−1,s(a)) + σ−1(Td,s−1(a)) .

Lemma 1.1.10. Given a non-negative integer i and a ∈ F, we have

xia =
i∑

k=0
Ck,i−k(a)xi−k . (1.2)

Moreover, if σ is an automorphism, we get

axi =
i∑

k=0
xi−k(−1)kTk,i−k(a). (1.3)

Proof. We prove (1.2) by induction on i. If i = 0, 1, then it is true by the definition of
C0,0(a) and (1.1), respectively. So, assume that this formula is true for some i− 1 ≥ 0,
i.e. xi−1a = ∑i−1

k=0 Ck,i−1−k(a)xi−1−k. Then, by Remark 1.1.9 we obtain that

xia = x(xi−1a)

= x ·
(

i−1∑
k=0
Ck,i−1−k(a)xi−1−k

)

= x · C0,i−1(a)xi−1 + x · C1,i−2(a)xi−2 + x · C2,i−3(a)xi−3 + ...+ x · Ci−1,0(a)
= σ(C0,i−1(a))xi + [δ(C0,i−1(a)) + σ(C1,i−2(a))]xi−1 + ....+ δ(Ci−1,0(a))
= C0,i(a)xi + C1,i−1(a)xi−1 + C2,i−2(a)xi−2 + ...+ Ci,0(a)

=
i∑

k=0
Ck,i−k(a)xi−k .

By reasoning in a similar way, we obtain the expression for axi as in the statement.

From Lemma 1.1.10, it follows that

axi · bxj =
i∑

k=0
a · Ck,i−k(b)xi+j−k , xiβ · xjα =

j∑
k=0

xi+j−k(−1)kTk,j−k(β)α .

13



1.1. Univariate skew polynomial rings

Furthermore, given non-zero skew polynomials

f(x) =
m∑

i=0
aix

i , g(x) =
n∑

j=0
bjx

j , F (x) =
m∑

i=0
xiβi , G(x) =

n∑
j=0

xjαj

in R, we have

f(x)g(x) =
m∑

i=0

n∑
j=0

(
i∑

k=0
ai Ck,i−k(bj)xi+j−k

)
, (1.4)

F (x)G(x) =
m∑

i=0

n∑
j=0

 j∑
k=0

xi+j−k(−1)kTk,j−k(βi) · αj

 . (1.5)

In particular, if δ = 0, then we get

Cd,s(a) =


a if d = s = 0
σs(a) if d = 0 and s ̸= 0
0 if d ̸= 0

(1.6)

Td,s(a) =


a if d = s = 0
σ−s(a) if d = 0 and s ̸= 0
0 if d ̸= 0

for all a ∈ F and d, s ∈ Z≥0. Thus, the products f(x)g(x) and F (x)G(x) become simply

f(x)g(x) =
(

m∑
i=0

aix
i

)
·

 n∑
j=0

bjx
j

 =
m∑

i=0

n∑
j=0

aiσ
i(bj)xi+j ,

F (x)G(x) =
(

m∑
i=0

xiβi

)
·

 n∑
j=0

xjαj

 =
m∑

i=0

n∑
j=0

xi+jσ−j(βi)αj .

The next Algorithms 1 and 2 show how to compute Cd,s(a) and Td,s(a) (Definition 1.1.8).
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1.1. Univariate skew polynomial rings

Algorithm 1 Computation of Cd,s(a).
Input: R, d, s ∈ Z≥0 and a ∈ F
Output: Cd,s(a)
1: Let Sd ⊂ Fd+s

2 be the set of codewords with weight equal to d.
2: Cd,s(a)← 0
3: for all (s1, s2, . . . , sd+s) ∈ Sd do
4: b← a
5: for i← 1 to d + s do
6: if si = 0 then
7: b← σ(b)
8: else
9: b← δ(b)

10: end if
11: end for
12: Cd,s(a)← Cd,s(a) + b
13: end for
14: return Cd,s(a)

Algorithm 2 Computation of Td,s(a).
Input: R, σ−1, d, s ∈ Z≥0 and a ∈ F
Output: Td,s(a)
1: Let Sd ⊂ Fd+s

2 be the set of codewords with weight equal to d.
2: Td,s(a)← 0
3: for all (s1, s2, . . . , sd+s) ∈ Sd do
4: b← a
5: for i← 1 to d + s do
6: if si = 1 then
7: b← δ(σ−1(b))
8: else
9: b← σ−1(b)

10: end if
11: end for
12: Td,s(a)← Td,s(a) + b
13: end for
14: return Td,s(a)

For instance, let F4[x;σ, δ] be the skew polynomial ring over the finite field F4 =
{0, 1, w, w2}, with σ(a) = a2 and δ(a) = w(σ(a) + a) for all a ∈ F4. As an application
of Algorithm 1, let us give here for this situation the following Magma program [3] (see
Program 1).
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1.1. Univariate skew polynomial rings

We begin by typing the following instructions in Magma.

F<w>:=GF(4);
S:= map< F -> F | x :-> x^2 >;
D:= map< F -> F | x :-> w*(S(x)+x) >;

Then, by the following instructions, we define the function “PosCom".

Program 1.

PosCom:=function(d,s,a)
C:= [u: u in [VectorSpace(GF(2),d+s)!v : v in VectorSpace(GF(2),d+s)\
]| Weight(u) eq d];
A:=0;
for k in [1..#C] do
b:=a;
for l in [1..d+s] do
if C[k][l] eq 0 then
b:=S(b);
else
b:=D(b);

end if;
end for;

A:=A+b;
end for;

return A;
end function;

Thus, to calculate the value of C1,2(w) = δσ2(w) + σδσ(w) + σ2δ(w), we can simply
write

PosCom(1,2,w);

which gives the answer w2. Similarly, one can write a Magma program to calculate
Td,s(a) for any d, s ∈ Z≥0 and a ∈ F.

Finally, using Algorithms 1 and 2, one can compute the products f · g , F ·G ∈ R
(see formulas (1.4) and (1.5)) by the next two algorithms (see Algorithms 3 and 4).

16



1.1. Univariate skew polynomial rings

Algorithm 3 Computation of f(x) · g(x), where f(x) = a0 + a1x + · · · + amx
m and

g(x) = b0 + b1x+ · · ·+ bnx
n.

Input: f, g ∈ R
Output: M = f(x) · g(x)
1: M ← 0
2: for i← 1 to Degree(f) + 1 do
3: for j ← 1 to Degree(g) + 1 do
4: for k ← 0 to i− 1 do
5: n← (i− 1) + (j − 1)− k
6: M ←M + ai−1 · Ck,i−1−k(bj−1) · xn

7: end for
8: end for
9: end for

10: return M

Algorithm 4 Computation of F (x) ·G(x), where F (x) = β0 + xβ1 + · · ·+ xmβm and
G(x) = α0 + xα1 + · · ·+ xnαn.
Input: F, G ∈ R
Output: M = F (x) ·G(x)
1: M ← 0
2: for i← 1 to Degree(F ) + 1 do
3: for j ← 1 to Degree(G) + 1 do
4: for k ← 0 to j − 1 do
5: n← (i− 1) + (j − 1)− k
6: M ←M + xn · (−1)kTk,j−1−k(bi−1) · αj−1
7: end for
8: end for
9: end for

10: return M

For instance, as an application of Algorithm 3, we give here a Magma program to
compute the products fg and gf when f = x2 + 1 and g = x2 + i are skew polynomials
in C[x;σ, δ] with σ(z) = z̄ and δ(z) = z − z̄ for all z ∈ C.

We begin by writing the following instructions:

F<i>:=ComplexField();
R<x>:=PolynomialRing(F);
S:= map< F -> F | x :-> ComplexConjugate(x) >;
D:= map< F -> F | x :-> x-ComplexConjugate(x) >;

then, using the function “PosCom" defined in Program 1, we can continue with the
following instructions to define the new function “MultPol".
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1.1. Univariate skew polynomial rings

Program 2.

MultPol:=function(f,g)
M:=0;
for i in [1..#f] do
for j in [1..#g] do
for k in [0..i-1] do
n:=(i-1)+(j-1)-k;
M:=M+f[i]*PosCom(k,i-k-1,g[j])*x^n;

end for;
end for;

end for;
return M;
end function;

Thus, to calculate (x2 + 1)(x2 + i) and (x2 + i)(x2 + 1), we write in Magma

MultPol([1,0,1],[i,0,1]);
MultPol([i,0,1],[1,0,1]);

obtaining x4 + (1 + i)x2 − 4ix+ 5i and x4 + (1 + i)x2 + i, respectively.

Finally, let us recall here also the process of “evaluating” a skew polynomial f(x) ∈ R
at an element a ∈ F. To define an evaluation map for a skew polynomial ring, we need
to consider the action of σ and δ. Indeed, the classical map that simply replaces the
variable x with a value a ∈ F does not work in R. So, Lam and Leroy in [21, p. 310]
defined an appropriate evaluation using the fact that R is a right Euclidean domain.

Definition 1.1.11. For a ∈ F and f ∈ R, where σ is an endomorphism (automorphism)
of F, we define the right (left) evaluation of f at a, denoted by f(a) (fL(a)), as the
unique remainder upon right (left) division of f by x − a. In the special case when
f(a) = 0 (fL(a) = 0), we say that a is a right (left) zero of f .

We can also compute the right (left) evaluation of a polynomial in R at a ∈ F
without using the right (left) division algorithm. To do this, we first need the following
technical result.

Lemma 1.1.12. Let σ be an automorphism of F. Every skew polynomial f = ∑m
i=0 aix

i ∈
R can be represented as a polynomial with right-hand coefficients, that is, we can write

f =
m∑

i=0
aix

i =
m∑

i=0
xiAi ,

18



1.1. Univariate skew polynomial rings

where
Ai :=

m−i∑
j=0

(−1)jTj,i(aj+i) , ∀i = 0, ...,m . (1.7)

Proof. By Lemma 1.1.10 we have

m∑
i=0

aix
i =

m∑
i=0

(
i∑

k=0
xi−k(−1)kTk,i−k(ai)

)
=
(

m∑
h=0

x0(−1)hTh,0(ah)
)

+

+
(

m∑
h=1

x1(−1)h−1Th−1,1(ah)
)

+ · · ·+
(

m∑
h=m

xm(−1)h−mTh−m,m(ah)
)

=

= x0

 m∑
j=0

(−1)jTj,0(aj)
+x1

 m−1∑
j=0

(−1)jTj,1(aj+1)
+· · ·+xm

 m−m∑
j=0

(−1)jTj,m(aj+m)


and this leads to the statement.

Lemma 1.1.13. [21, Lemma 2.4] For f(x) = ∑
i aix

i ∈ F[x;σ, δ] and a ∈ F, we have
f(a) = ∑

i aiN
σ,δ
i (a), where Nσ,δ

0 (a) := 1 and Nσ,δ
i (a) := σ(Nσ,δ

i−1(a))a+ δ(Nσ,δ
i−1(a)).

Lemma 1.1.14. [2, Theorem 3.1] Let σ be an automorphism of F. For f(x) = ∑
i aix

i =∑
i x

iAi ∈ F[x;σ, δ] and a ∈ F, we have fL(a) = ∑
i M

σ,δ
i (a)Ai, where Mσ,δ

0 (a) := 1 and
Mσ,δ

i (a) := aσ−1(Mσ,δ
i−1(a))− δσ−1(Mσ,δ

i−1(a)).

Example 1.1.15. In F4[x;σ, 0] with σ(a) = a2, the binomials (x + 1), (x + α2) and
(x+ α) are all right (left) factors of f(x) := x2 + 1. Thus, R is not in general a unique
factorization domain. Moreover, {1, α, α2} are right (left) zeros of f(x), showing that
in general a skew polynomial of degree n ≥ 2 could have more than n roots, possibly
infinite. For instance, consider C[x;σ, 0] with σ the complex conjugation (i.e. σ(w) = w̄

for all w ∈ C). Then, since σ−1 = σ, by applying Lemmas 1.1.13 and 1.1.14, we see
that all the complex numbers z such that |z| = 1 are right (left) roots of the polynomial
x2 − 1 ∈ C[x;σ, 0].

For f(x) = g(x)h(x) ∈ R and a ∈ F, we do not have f(a) = g(a)h(a) in general. To
properly define the right (left) evaluation of a product, we first need the notion of the
right (left) (σ, δ)-conjugacy (see [21, p. 311–312] and [2, p. 24 for δ = 0]).

Definition 1.1.16. Given a ∈ F, c ∈ F∗ := F \ {0}, we define the right (left) (σ, δ)-
conjugate ac ( ca ) of a with respect to c as

ac := σ(c)ac−1 + δ(c)c−1 ∈ F ( ca := c−1aσ−1(c)− c−1δ(σ−1(c)) ∈ F ) .
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1.2. Multivariate skew polynomial rings

Lemma 1.1.17. [21, p. 311 for the right case] Given a, b ∈ F and c, d ∈ F∗, we have
a1 = a (1a = a), (ac)d = adc (d(ca) = cda) and the relation ∼ (∼L) defined on F as
a ∼ b ⇐⇒ ∃ e ∈ F∗ such that b = ae (a ∼L b ⇐⇒ ∃ e ∈ F∗ such that b = ea),

is an equivalence relation on F.

Using Definition 1.1.16, the following result provides formulas for right (left) evaluating
a product (see [21, Theorem 2.7] and [2, Theorem 3.2 for δ = 0]).

Theorem 1.1.18. Let f(x), g(x) ∈ R and a ∈ F. Then the following properties hold:

1) If g(a) = 0, then (f · g)(a) = 0; if g(a) ̸= 0 then (f · g)(a) = f
(
ag(a)

)
g(a);

2) If gL(a) = 0, then (g · f)L(a) = 0; if gL(a) ̸= 0 then (g · f)L(a) = gL(a)fL

(
gL(a)a

)
.

Proof. The statements 1) and 2) follows directly from Theorem 2.7 of [21] and a slight
modification of its proof.

1.2 Multivariate skew polynomial rings

As before, denote by F a division ring. Using similar notation as in [23] for positive
integers m and n, Fm×n will denote the set of m×n matrices over F, and Fn will denote
the set of column vectors of length n over F, that is, Fn = Fn×1.

Following the main ideas given in [23], we begin by recalling the definition of the free
multivariate skew polynomial ring, which corresponds to a multivariate generalization
of the ring of univariate skew polynomials given in Definition 1.1.6. To do this, we need
to introduce the concept of σ-vector derivation that extends Definition 1.1.1.

Definition 1.2.1. [23, Definition 1] Given a ring homomorphism

σ : F→ Fn×n, a 7→


σ1,1(a) σ1,2(a) · · · σ1,n(a)
σ2,1(a) σ2,2(a) · · · σ2,n(a)

... ... . . . ...
σn,1(a) σn,2(a) · · · σn,n(a)

 ,

we say that

δ : F→ Fn , a 7→


δ1(a)
δ2(a)

...
δn(a)
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1.2. Multivariate skew polynomial rings

is a σ-vector derivation (over F), if it is an additive group homomorphism and satisfies
δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ F. The ring homomorphism σ : F → Fn×n will
be called a matrix morphism. The maps σi,j : F→ F, δi : F→ F are called component
functions of σ and δ, respectively.

Example 1.2.2. [23, Example 4] Let σ : F → Fn×n be a matrix morphism and let
v ∈ Fn. The map δ : F→ Fn defined by δ(a)v = σ(a)v− va, for all a ∈ F, is a σ-vector
derivation. When n = 1, these vector derivations are called inner derivations.

By using Definition 1.2.1, we define the ring of free multivariate skew polynomials.

Definition 1.2.3. Let x1, x2, ..., xn be n pair-wise distinct letters, which we will call
variables, and we denote by M the set of all finite strings using these characters, that
is, the free (non-commutative) monoid with left basis x1, x2, ..., xn. The empty string
will be denoted by 1, a character xi will be called a variable, an element m ∈M formed
by such variables will be called a monomial, and we will define its degree, denoted by
deg(m), as its length as a string. We define the Free multivariate skew polynomial ring
over F in the variables x1, x2, ..., xn with matrix morphism σ, σ-vector derivation δ and
denoted by

A := F[x;σ, δ],

as the free left F-module with left basis M and product given by appending monomials
with the rule

x · a = σ(a)x + δ(a) (1.8)

for all a ∈ F. Each element F (x) ∈ A is called a free multivariate skew polynomial, or
simply skew polynomial, and can be expressed uniquely as a left linear combination

F (x) =
∑

m∈M
Fmm,

where Fm ∈ F are all zero except for a finite number of monomials.

Remark 1.2.4. If we denote by x = (x1, x2, · · · , xn)T ∈Mn, then (1.8) is a short form
of writing the equations:

xia =
n∑

j=1
σi,j(a)xj + δi(a), (1.9)

for i = 1, 2, ..., n. On the other hand, if we denote by Id : F→ Fn×n the ring morphism
given by Id(a) = aI, for a ∈ F, where I ∈ Fn×n is the n × n identity matrix, then
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1.2. Multivariate skew polynomial rings

F[x; Id, 0] is the free conventional polynomial ring in the variables x1, x2, ..., xn (see [9,
Sec. 0.11]) which do not commute with each other, but commute with constants.

Thanks to the lack of relations among the variables, it was proven in [23, Lemma 5]
that, for any a1, a2, ..., an ∈ F and any F (x) ∈ A, there exist unique G1(x), G2(x), ...,
Gn(x) ∈ A and b ∈ F such that

F (x) =
n∑

i=1
Gi(x)(xi − ai) + b (1.10)

Hence, we may define the right (σ, δ)-evaluation of F at a ∈ Fn as follows.

Definition 1.2.5. [23, Definition 9] For a = (a1, a2, · · · , an) ∈ Fn and any skew
polynomial F ∈ A, we define its right evaluation at a, denoted by F (a), as the unique
constant b ∈ F of (1.10).

The following result allows to compute the right evaluation of any monomial m ∈M
at any point a ∈ Fn, using the so-called fundamentals functions Nσ,δ

m : Fn → F, for
m ∈M. Note that these functions generalize the Nσ,δ

i functions of the case n = 1 given
in Lemma 1.1.13.

Theorem 1.2.6. [23, Theorem 2] Given a monomial m ∈M and a point a ∈ Fn, denote
by Nm(a) ∈ F the right evaluation of the skew monomial m at a. It holds that

Nxm(a) =


Nx1m(a)
Nx2m(a)

...
Nxnm(a)

 = σ(Nm(a))a + δ(Nm(a)) ∈ Fn

To properly define the right evaluation of a product, we first need the notion of the
(σ, δ)-conjugacy.

Definition 1.2.7. [23, Definition 11] Given a ∈ Fn, c ∈ F∗, we define the (σ, δ)-conjugate
of a with respect to c as

ac := σ(c)ac−1 + δ(c)c−1 ∈ Fn

Then, we have the following result which extends the right case n = 1 given in
Lemma 1.1.17.

Lemma 1.2.8. [23, Lemma 12] Given a,b ∈ Fn and c, d ∈ F∗, the following properties
hold:
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1.2. Multivariate skew polynomial rings

1) a1 = a and (ac)d = adc ;

2) The relation ∼ defined on Fn as
a ∼ b ⇐⇒ there exists e ∈ F∗ such that b = ae,

is an equivalence relation on Fn.

By Lemma 1.2.8, let us denote by [a] := {ac : c ∈ F∗} the (σ, δ)-conjugacy class of
a ∈ Fn. Using the notion of (σ, δ)-conjugation, we can give the following result that
extends Theorem 1.1.18 1) and allows us to evaluate a product of two skew polynomials

Theorem 1.2.9. [23, Theorem 3] Consider two skew polynomials F,G ∈ A and a ∈ Fn.
If G(a) = 0, then (FG)(a) = 0. If G(a) ̸= 0 then

(FG)(a) = F (aG(a))G(a)

Finally, we show in the following example that in general the ring A is not Noetherian,
unlike the case n = 1.

Example 1.2.10. Consider A := F[x1, x2;σ, δ] and the left (right) ideals

Ik := Ax1x2 +Ax1x
2
2 + ...+Ax1x

k
2 (Ik,A := x1x2A+ x1x

2
2A+ ...+ x1x

k
2A)

with k ≥ 1. We note that I1 ⊊ I2 ⊊ ... ⊊ Ik ⊊ A (I1,A ⊊ I2,A ⊊ ... ⊊ Ik,A ⊊ A) because
the variables x1, x2 do not commute and x1 /∈ I1 (I1,A). Then A does not satisfy the
ascending chain condition on left and right ideals and therefore it is not Noetherian. In
particular, when σ = Id and δ = 0, the free conventional polynomial ring F[x; Id, 0] is
not Noetherian.
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Chapter 2

Derivatives for skew polynomials

Based on properties of the ringsA andR, we define here some notions of (σ, δ)-derivatives
for multivariate and univariate skew polynomials. The tools presented in this chapter
will be useful to solve a Hermite-type interpolation problem in A (see Theorem 3.1.12)
and to provide equivalent conditions to the fact that a skew polynomial in R admits a
right or left root of positive multiplicity (see Theorems 4.3.3 and 4.3.5).

2.1 (σ, δ)-Partial derivatives

We begin by introducing the concept of right (σ, δ)-partial derivative (for simplicity,
partial derivative) for any skew polynomial in A. Thanks to Lemma 5 of [23], we can
give the following new definition.

Definition 2.1.1. Let F ∈ A and a = (a1, ..., an) ∈ Fn. For every i = 1, ..., n, we define
the right (σ, δ)-first partial derivative of F at a with respect to the variable xi as the
right evaluation of the unique skew polynomial ∆xi

a F at the point a, which is obtained
by writing

F =
n∑

i=1
∆xi

a F · (xi − ai) + F (a).

The skew polynomial ∆xi
a F ∈ A will be called right (σ, δ)-partial derivative polynomial

of F at a with respect to the variable xi. Moreover, we will denote F (a) by ∆0
aF (a).

However, to define analogously left (σ, δ)-partial derivatives, we need a left-hand
version of [23, Lemma 5] as follows.
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Lemma 2.1.2. For any a1, ..., an ∈ F and any F ∈ A, there exist unique G1, G2, ..., Gn ∈
A and b ∈ F such that

F =
n∑

i=1
(xi − ai) ·Gi + b (2.1)

if and only if the map φ : Fn → Fn, defined by

φ ((γ1, γ2, ..., γn)) :=
 n∑

j=1
σj,1(γj),

n∑
j=1

σj,2(γj), ...,
n∑

j=1
σj,n(γj)

 (2.2)

is an isomorphism of additive groups, where σi,j : F→ F are the component functions of
σ : F→ Fn×n.

Proof. First, evidently φ is an additive group homomorphism because the maps σi,j are
additive group homomorphisms. Since F ∈ A is a sum of monomials, it is sufficient to
consider only monomials of the form αkxk (αk ∈ F) for k = 1, 2, .., n.
Let α := (α1, α2, ..., αn) ∈ Fn and write

αkxk =
n∑

j=1
(xj − aj)Gj,k + bk (∗)

with Gj,k, bk ∈ F. By (1.9), for every k = 1, 2, ..., n, we have

αkxk =
n∑

j=1

(
n∑

i=1
σi,j(Gi,k)

)
xj +

n∑
j=1

(δj(Gj,k)− ajGj,k) + bk.

Then

αk =
n∑

i=1
σi,k(Gi,k), bk =

n∑
j=1

(δj(Gj,k)− ajGj,k) and
n∑

i=1
σi,j(Gi,k) = 0 for all j ̸= k. (∗∗)

Thus,
φ((G1,1, G2,1, ..., Gn,1)) = (α1, 0, ..., 0)
φ((G1,2, G2,2, ..., Gn,2)) = (0, α2, ..., 0)

... = ...
φ((G1,n, G2,n, ..., Gn,n)) = (0, 0, ..., αn)

Therefore, α = φ((β1, β2, ..., βn)) for some (β1, β2, ..., βn) ∈ Fn with βi = ∑n
j=1 Gi,j for

i = 1, 2, ..., n. This proves that φ is a surjective homomorphism. On the other hand, by
the uniqueness of the Gj,k for all k = 1, ..., n, it follows that φ is injective and therefore
and isomorphism of additive groups. Conversely, if φ is a group isomorphism, then given
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(α1, 0, ..., 0), (0, α2, ..., 0), ..., (0, ..., 0, αn) ∈ Fn, there exist unique G1,k, G2,k, ..., Gn,k, bk ∈
F for all k = 1, ..., n such that (∗∗) holds. Then, αkxk can be written as in (∗) and we
are done.

Remark 2.1.3. Note that for the case n = 1, the condition that φ is a group isomorphism
is equivalent to ask that σ is an automorphism of F. On the other hand, in the special
case when σ : F → Fn×n is a diagonal homomorphism, i.e. σi,j(a) = 0 for all i ≠ j,
it follows that any skew polynomial in A can be written as in (2.1) if and only if the
component functions σi,i : F→ F are ring automorphisms. Moreover, in this situation
we can give explicit formulas to write axi as in (2.1). Indeed, for any i = 1, ..., n, we
have

axi = (xi − ai)σ−1
i,i (a) + aiσ

−1
i,i (a)− δi(σ−1

i,i (a)).

From Lemma 2.1.2 and under the assumption that the map φ defined in (2.2) is
a surjective additive group homomorphism, we can define the left (σ, δ)-evaluation of
any skew polynomial F ∈ A at a ∈ Fn and introduce the notion of left (σ, δ)-partial
derivative as follows.

Definition 2.1.4. Let φ : Fn → Fn be a group isomorphism as in (2.2). For a =
(a1, a2, · · · , an) ∈ Fn and any skew polynomial F ∈ A, we define its left (σ, δ)-evaluation
at a, denoted by FL(a), to be the unique constant b ∈ F as in (2.1).

Definition 2.1.5. Let φ : Fn → Fn be a group isomorphism as in (2.2), F ∈ A and
a := (a1, ..., an) ∈ Fn. For all i = 1, ..., n, we define the left (σ, δ)-first partial derivative of
F at a with respect to the variable xi as the left (σ, δ)-evaluation of the skew polynomial
∆xi

a,LF at the point a, obtained by writing as in (2.1)

F =
n∑

i=1
(xi − ai) ·∆xi

a,LF + FL(a).

The skew polynomial ∆xi
a,LF ∈ A will be called left (σ, δ)-partial derivative polynomial

of F at a with respect to the variable xi. Moreover, we will denote FL(a) by ∆0
a,LF (a).

Furthermore, we can define recursively right (left) (σ, δ)-partial derivatives of higher
order of any multivariate skew polynomial in A.

Definition 2.1.6. Let F ∈ A and let a ∈ Fn. For all i = 1, ..., n, we define the right
(left-with φ isomorphism) second (σ, δ)-partial derivative of F at a with respect to xjxi,
denoted by ∆xjxi

a F (a) (∆xjxi

a,L F (a)), as the right (left) (σ, δ)-partial derivative at a with
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2.1. (σ, δ)-Partial derivatives

respect to xj of ∆xi
a F (∆xi

a,LF ), evaluated at the point a, that is,

∆xjxi
a F (a) := ∆xj

a (∆xi
a F )(a) ((∆xjxi

a,L F )L(a) := (∆xj

a,L(∆xi
a,LF ))L(a))

More general, given any m = xi1xi2 ...xis ∈M with il ∈ {1, ..., n} for all l = 1, ..., n, we
define recursively the right (left-with φ isomorphism) (σ, δ)-partial derivative of F at a
with respect to m as

∆m
a F (a) := ∆xi1a (∆xi2 ....xis

a F )(a) ((∆m
a,LF )L(a) := (∆xi1

a,L(∆xi2 ....xis

a,L F ))L(a))

Remark 2.1.7. Let F be a division ring and let a = (a1, a2, ..., an) ∈ Fn. In the special
case when σ = Id and δ = 0, we obtain a notion of partial derivative of classical type.
For instance, given F = x2

1x2 ∈ F[x; Id, 0] and fixed the lexicographic order <lex over
F[x; Id, 0], we have

F = (a2x1 + a2a1)(x1 − a1) + x2
1(x2 − a2) + a2a

2
1

Then, ∆x1
a F (a) = 2a2a1 and ∆x2

a F (a) = a2
1. Note that if F is a commutative division

ring, then we can write ∆x1
a F (a) = 2a1a2. On the other hand, we have ∆x1x2

a F (a) =
2a1 ̸= ∆x2x1

a F (a) = 0. This shows that, unlike in the classical case, in general the mixed
partial derivative of a multivariate skew polynomial are not equal.

The linearity of the right (left-with φ isomorphism) (σ, δ)-partial derivatives is shown
below.

Lemma 2.1.8. Let F,G ∈ A, a ∈ Fn, λ ∈ F and m ∈ M. The following properties
hold:

1) ∆m
a λ = 0 (∆m

a,Lλ = 0);

2) ∆m
a (λF +G) = λ(∆m

a F ) + ∆m
a G (∆m

a,L(Fλ+G) = (∆m
a,LF )λ+ ∆m

a,LG).

Proof. We will only show that the statements are valid for right (σ, δ)-partial derivatives,
because for the left case the proof are analogous, provided that φ is a group isomorphism.

1) Since λ = ∑n
k=1 0 · (xi − ai) + λ it follows that ∆xi

a λ = 0 for all i = 1, ..., n.
Therefore, for any m ∈M, we have ∆m

a λ = 0.
2) It is sufficient to show that it is valid for any variable xi with i = 1, .., n. In fact,

we can write λF = ∑n
i=1 λ∆xi

a F · (xi − ai) + λF (a), G = ∑n
i=1 ∆xi

a G · (xi − ai) +G(a).
Then,

λF +G =
n∑

i=1
(λ∆xi

a F + ∆xi
a G) · (xi − ai) + λF (a) +G(a)
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2.1. (σ, δ)-Partial derivatives

Thus, for each variable xi, we have ∆xi
a (λF + G) = λ(∆xi

a F ) + ∆xi
a G. Finally, by a

recursive argument, it follows that for any m ∈M, ∆m
a (λF +G) = λ(∆m

a F )+∆m
a G.

By using Lemma 2.1.8, we can obtain a useful formula to compute the right (left)
(σ, δ)-partial derivatives of a product of two multivariate skew polynomials in A.

Lemma 2.1.9. Given F,G ∈ A, a ∈ Fn, λ ∈ F and m := xi1 · · ·xis ∈ M with
il ∈ {1, ..., n} for all l = 1, ..., n, we have

∆m
a (F ·G) = F ·∆m

a G+
s∑

k=1
∆xi1 ···xika

(
F ·∆xik+1 ···xis

a G(a)
)
, (2.3)

∆m
a,L(F ·G) = ∆m

a,LF ·G+
s∑

k=1
∆xi1 ···xik

a,L

(
FL(a) ·∆xik+1 ···xis

a,L G
)
. (2.4)

Proof. We begin by showing that (2.3) holds for any variable xi for i = 1, ..., n. Indeed,
we have

F ·G =
n∑

i=1
F ·∆xi

a G · (xi − ai) + F ·G(a)

=
n∑

i=1
F ·∆xi

a G · (xi − ai) +
n∑

i=1
∆xi

a (F ·G(a))(xi − ai) + (F ·G(a))(a)

=
n∑

i=1
(F ·∆xi

a G+ ∆xi
a (F ·G(a))) (xi − ai) + (F ·G(a))(a)

Thus, ∆xi
a (F ·G) = F ·∆xi

a G+ ∆xi
a (F ·G(a)). Suppose (2.3) holds for any monomial

m′ ∈M such that deg(m′) = s− 1. Then, we have

∆m
a (F ·G) = ∆xi1a

(
∆xi2 ···xis

a (F ·G)
)

= ∆xi1a

(
F ·∆xi2 ···xis

a G+
s∑

k=2
∆xi2 ···xika

(
F ·∆xik+1 ···xis

a G(a)
))

= ∆xi1a
(
F ·∆xi2 ···xis

a G
)

+ ∆xi1a

(
s∑

k=2
∆xi2 ···xika

(
F ·∆xik+1 ···xis

a G(a)
))

= F ·∆m
a G+

s∑
k=1

∆xi1 ···xika
(
F ·∆xik+1 ···xis

a G(a)
)
,

where the third equality is due to the linearity of the right (σ, δ)-partial derivatives and
the last equality is due to what was shown in the previous case. Finally, by similar
arguments, one can prove that formula (2.4) holds.
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2.2. (σ, δ)-Univariate derivatives

Finally, let us show here that every skew polynomial F ∈ A can be written in terms of
its right and left (σ, δ)-partial derivatives and keeping in mind that the left (σ, δ)-partial
derivatives exist under the assumption that φ defined in (2.2) is a group isomorphism.
This allows us to obtain a right and left multivariate Taylor-type expansion of F centered
at a point a = (a1, ..., an) ∈ Fn.

Proposition 2.1.10 (Skew Taylor-type expansion). Let F (x) ∈ A and let a ∈ Fn.
The following properties hold:

F (x) =
deg F∑
k=1

 n∑
i1,i2,...,ik=1

∆xi1 xi2 ···xika F (a)(xik
− aik

) · · · (xi2 − ai2)(xi1 − ai1)
+ F (a)

(2.5)

F (x) =
deg F∑
k=1

 n∑
i1,i2,...,ik=1

(xi1 − ai1)(xi2 − ai2) · · · (xik
− aik

)(∆xi1 xi2 ···xik
a,L F )L(a)

+ FL(a)

(2.6)

Proof. By Definition 2.1.1, for any variables xi, xj with i, j ∈ {1, 2, ..., n}, we have

F (x) =
n∑

i=1
∆xi

a F (x) · (xi − ai) + F (a), ∆xi
a F (x) =

n∑
j=1

∆xjxi
a F · (xj − aj) + ∆xi

a F (a).

Then, by substituting ∆xi
a F (x) in F (x), it follows that

F (x) =
n∑

i=1

 n∑
j=1

∆xjxi
a F (x)(xj − aj)(xi − ai)

+
n∑

i=1
∆xi

a F (a)(xi − ai) + F (a)

=
n∑

i1,i2=1

(
∆xi2 xi1a F (x)(xi2 − ai1)(xi1 − ai1)

)
+

n∑
i1=1

∆xi1a F (a)(xi1 − ai1) + F (a) .

Finally, by a recursive argument we can obtain (2.5). The proof of (2.6) is analogous.

2.2 (σ, δ)-Univariate derivatives

In this section, we will give only some further remarks for the (σ, δ)-derivatives of skew
polynomials in R. First, note that specializing Definitions 2.1.1 (2.1.5) to the case n = 1,
we obtain the following definitions of right (left) (σ, δ)-derivatives in R.

Definition 2.2.1. Let f ∈ R with σ an endomorphism (automorphism) of F and a ∈ F.
We define the first right (left) (σ, δ)-derivative of f at a as the right (left) (σ, δ)-evaluation
of ∆1

af(x) ∈ R (∆1
a,Lf(x) ∈ R) at the point a, where ∆1

af(x) (∆1
a,Lf(x)) is obtained
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2.2. (σ, δ)-Univariate derivatives

by writing f(x) = ∆1
af(x) · (x − a) + f(a) (f(x) = (x − a) ·∆1

a,Lf(x) + fL(a)) . The
skew polynomial ∆1

af(x) (∆1
a,Lf(x)) will be called the first right (left) (σ, δ)-derivative

polynomial of f by a.

By a recursive argument, from Definition 2.2.1 one can construct the right (left)
(σ, δ)-derivative polynomials of higher order for any polynomial in R.

Definition 2.2.2. Let σ be an endomorphism (automorphism) of F. Given f ∈ R,
r ∈ Z>0 and a sequence a = (a1, a2, ..., ar) ∈ Fr, we define the right (left) (σ, δ)-derivative
polynomial of f of order r via a, denoted by ∆af(x) (∆a,Lf(x)) as the quotient upon right
(left) division of f by Pa := (x−ar) · · · (x−a2)(x−a1) (Pa,L := (x−a1)(x−a2) · · · (x−ar)).
In particular, when a = a1 = · · · = ar, we will simply write ∆r

af(x) (∆r
a,Lf(x)).

Remark 2.2.3. Let σ be an endomorphism (automorphism) of F and consider a =
(a1, . . . , ar) ∈ Fr. As in [26], one can define the right (left) Hasse derivative Da(f) ∈ F
(Da,L(f) ∈ F) of order r as the coefficient of the monomial of degree r − 1 of the
remainder in the right (left) division of f by Pa (Pa,L) (see [26, Definition 31 and
Lemma 52]). In this case, we have Da(f) = ∆a′f(ar) (Da,L(f) = (∆a′,Lf)L (ar)), where
a′ = (a1, . . . , ar−1).

Let f(x) = ∑m
i=0 αix

i and ∆1
af(x) = ∑m−1

j=0 βjx
j be skew polynomials in R as in

Definition 2.2.1 for some a ∈ F. By Lemma 1.1.10, we have

f(x)−f(a) = ∆1
af(x)·(x−a)⇐⇒

m∑
i=0

αix
i−f(a) =

m−1∑
i=0

(
βix

i+1 −
i∑

k=0
βi Ck,i−k(a)xi−k

)
.

Then, comparing the coefficients of the positive powers xt in the latest equality, we get
the following recursive formula:

βm−1 = αm , βk = αk+1 +
m−k−2∑

i=0
βk+1+i Ci,k+1(a) ∀k = m− 2,m− 3, ..., 0. (2.7)

Using (2.7), the next Algorithm 5 shows how to compute ∆af(x), a = (a1, . . . , an) ∈ Fn.

Algorithm 5 Computation of ∆af(x) ∈ R.
Input: f(x) =

∑m
i=0 αix

i ∈ R, a = (a1, . . . , an) ∈ Fn, n ∈ Z≥1 and n ≤ m
Output: ∆af(x)
1: for i← 1 to n do
2: m← deg f(x)
3: βm−1 ← αm
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2.2. (σ, δ)-Univariate derivatives

4: for h← 0 to m− 2 do
5: s← 0
6: for j ← 0 to h do
7: s1 ← βm−1−h+j · Cj,m−1−h(ai)
8: s← s+ s1
9: end for

10: βm−2−h ← αm−1−h + s
11: end for
12: q(x)← ∑m−1

t=0 βtx
t

13: f(x)← q(x)
14: end for
15: return q(x)

Note that, when σ is an automorphism, similar accounts as above can be made with
f(x)− fL(a) = (x− a) ·∆1

a,Lf(x). Moreover, as an application of Algorithm 5, we apply
the next Magma program to compute ∆(a,a)f when f = x4 − jx2 + (2i− k) ∈ H[x;σ, 0],
a = 1 + j and σ(h) := ihi−1 for all h ∈ H. To do this, begin by writing in Magma the
following instructions:

F<i,j,k> := QuaternionAlgebra< RealField() | -1, -1 >;
R<x>:=PolynomialRing(F);
S:= map< F -> F | x :-> i*x*(1/i) >;
D:= map< F -> F | x :-> 0 >;

then, using the function “PosCom" defined in Program 1, we can continue with the
following instructions to define a new function “DerNA".

Program 3.

DerNA:=function(f,A)
t:=#f;
if #A ge t then
f:=F!0;

end if;
if #A le t-1 then
if t eq 2 then
f:=F!f[t];

end if;
if t ge 3 then
for i in [1..#A] do
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2.2. (σ, δ)-Univariate derivatives

t:=#f;
b:=[ f[t] ];
for h in [0..t-3] do
s:=F!0;
for j in [0..h] do
s1:=b[h+1-j]*PosCom(j,t-2-h,A[i]);
s:= s + s1;

end for;
b:= b cat [ f[t-1-h] + s ];

end for;
g:=[];
for k in [1..#b] do
g:=g cat [ b[#b+1-k] ];

end for;
f:=g;

end for;
end if;

end if;
return R!f;

end function;

Thus, typing in Magma

DerNA([2*i-k,0,-j,0,1],[1+j,1+j]);

we get ∆(1+j,1+j)(x4 − jx2 + 2i− k) = x2 + 2x+ 4− 3j.

Remark 2.2.4. Consider f, g ∈ R, a ∈ F and suppose that σ is an endomorphism
(automorphism) of F. Then the linearity of ∆a and the fact that for any a ∈ F

∆1
a(f · g) = f ·∆1

ag + ∆1
a(f · g(a)) (∆1

a,L(f · g) = ∆1
a,Lf · g + ∆1

a,L(fL(a) · g))

allow one to obtain recursive formulas for right (left) (σ, δ)-derivative polynomials of order
r ∈ Z≥1 via a = (a1, . . . , ar) ∈ Fr. For instance, given any n ∈ Z≥1, we get ∆1

ax
n = xn−1+∑n−1

k=0 Ck,n−1−k(a) ·∆1
ax

n−1−k
(
∆1

a,Lx
n = xn−1 + ∆1

a,L

(∑n−1
k=0 x

n−1−k(−1)kTk,n−1−k(a)
))

.
In particular, if σ = Id and δ = 0, then ∆1

ax
n = xn−1 + axn−2 + a2xn−3 + ... + an−1

and therefore ∆1
ax

n(a) = nan−1. This shows that the right evaluation of ∆1
ax

n in a ∈ F
coincides with the classical notion of derivative of a monomial.
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2.2. (σ, δ)-Univariate derivatives

In [14] the author define a notion of right derivative in scalars for skew polynomials
in F[x;σ, 0]. In Proposition 2.2.6, we will show a relationship between ∆n

af(a) (see
Definition 2.2.2) and [14, Definition 2]. However, to prove this result, we need first to
give a version of Proposition 2.1.10 for n = 1.

Proposition 2.2.5. Let f(x) ∈ R with σ an endomorphism (automorphism) of F and
a = (a1, a2, ..., adeg f ). Then,

f(x) =
deg f∑
i=0

∆aiF (ai+1) · Pai

f(x) =
deg f∑
i=0

Pai,L · (∆ai,LF )L(ai+1)


where ai = (a1, a2, ..., ai) ∈ Fi, Pai (Pai,L) ∈ R is as in Definition 2.2.2, ∆a0F = F

(∆a0,LF = F ) and Pa0 = 1 (Pa0,L = 1) for all i = 1, ..., deg f . In particular, if
a = (a, a, ..., a), then

f(x) =
deg f∑
i=0

∆i
af(a)(x− a)i

f(x) =
deg f∑
i=0

(x− a)i∆i
a,Lf(a)

 ,

where ∆0
af(a) = f(a) ((∆0

a,Lf)L(a) = fL(a)).

By using Proposition 2.2.5, we have the following result.

Proposition 2.2.6. Let f ∈ F[x;σ, 0] and let a ∈ F. Then, for every n ∈ Z≥0 the
following property hold

n! ·∆n
af(a) = f (n)(a),

where f (n)(a) denotes the n-th right derivative of f at a (see [14, Definition 2]) and
∆0

af(a) = f (0)(a) = f(a). In particular, the two definitions coincide when n = 1.

Proof. By Proposition 2.2.5, we have

f(x) = f(a) + ∆1
af(a)(x− a) + ∆2

af(a)(x− a)2 + ...+ ∆deg(f)
a f(a)(x− a)deg(f).

On the other hand, by [14, Theorem 3.14] we know that

f(x) = f(a) + f (1)(a)
1! (x− a) + f (2)(a)

2! (x− a)2 + ...+ fdeg(f)(a)
deg(f)! (x− a)deg(f) .

Then, by the equality property of skew polynomials, we obtain the statement.
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Chapter 3

Hermite-type interpolation for skew
multivariate polynomial rings

Let K be a field. Given a finite set of points Ω = {a1, a2, ..., ak} ⊆ K and S = {(r, sr) ∈
Z≥0 × Z≥0 : 1 ≤ r ≤ k, 0 ≤ sr ≤ nr} where n1, n2, ..., nk ∈ Z≥0 and br,sr ∈ K, the
classical Hermite interpolation problem consists of finding a polynomial f ∈ K[x] of
degree ≤ N−1 such that f (sr)(ar) = br,sr for all pairs (r, sr) ∈ S, where N = ∑k

r=1(nr+1)
and f (sr) denotes the derivatives of f of order sr. In the special case when derivatives
are replaced by only the evaluations of f(x) at the points ai, the problem is referred in
literature as Lagrange interpolation problem, and it can be stated in the following form:
given a finite number of points Ω = {a1, a2, ..., ak} ⊆ K and any values b1, b2, ..., bk ∈ K
one wants to find a polynomial f ∈ K[x] of degree ≤ k, such that f(ai) = bi for all
i = 1, 2, ..., k.

It is well known that if the elements of Ω are different, then there exist unique
polynomials satisfying the above conditions of the Hermite and Lagrange problem.
However, the condition ai ̸= aj for all i, j is not sufficient for existence of such a
polynomial in the non-commutative cases.

Inspired by [14] and [23], the main purpose of this chapter is to solve a Hermite-type
interpolation problem in A that generalizes the Lagrange interpolation Theorem given
in [23, Theorem 4] and extends the cases n = 1 given in [14, Theorem 4.4] and [26,
Corollary 41].
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3.1. Skew Hermite-type interpolation

3.1 Skew Hermite-type interpolation

Let us start by defining the following generalized zero ideals associated to a finite set of
points in Fn.

Definition 3.1.1. Let Ω = {a1, a2, . . . , ak} ⊆ Fn be a finite set and consider the
monomials mj = xjs(j) · · · xj2xj1 ∈ M such that either jl ∈ {1, 2, ..., n} and l ≥ 1, or
mj = 0 (zero monomial). Given m⃗ = (m1,m2, ...,mk), we denote by Im⃗(Ω) the following
set:

{F ∈ A : F (aj) = ∆xj1aj F (aj) = ∆xj2 xj1aj F (aj) = ... = ∆mj
aj
F (aj) = 0, ∀j = 1, . . . , k} .

Proposition 3.1.2. For any finite set Ω = {a1, a2, . . . , ak} ⊆ Fn and m⃗ = (m1,m2, ...,mk),
the set Im⃗(Ω) ⊆ A is a left ideal.

Proof. Given F,G ∈ Im⃗(Ω), by Lemma 2.1.8 we have F +G ∈ Im⃗(Ω). Finally, for any
F ∈ A and G ∈ Im⃗(Ω), by Lemma 2.1.9 and the product rule (Theorem 1.2.9) we obtain
that FG ∈ Im⃗(Ω). Thus, Im⃗(Ω) is a left ideal.

Remark 3.1.3. In the special case when m⃗ = 0⃗ := (0, . . . , 0), denoting by ∆0
aj
F (aj) :=

F (aj) for every j ≥ 1, we have

I 0⃗(Ω) = I(Ω) := {F ∈ A : F (a) = 0, ∀a ∈ Ω} ,

obtaining the left ideal given in [23, Definition 13].

By using the left ideals Im⃗(Ω), we can define the notion of Derivative Polynomial
(DP) independence of type (m1, . . . ,mk) ∈Mk as follows.

Definition 3.1.4. For k ∈ Z≥1, let Ω = {a1, a2, . . . , ak} ⊆ Fn be a finite set and let
m⃗ = (m1, . . . ,mk) ∈Mk with either mj = xjs(j) · · ·xj2xj1 , or mj = 0, for all j = 1, ..., k.
We say that a ∈ Fn \ Ω is DP-independent of type m⃗ from Ω if

Im⃗(Ω) ⊋ Im⃗,0(Ω ∪ {a}) := {F ∈ Im⃗(Ω) : F (a) = 0} .

Moreover, letting Ω(j) := Ω \ {aj} and m⃗j := (m1, . . . ,mj−1,mj+1, . . . ,mk) ∈Mk−1 for
each j ∈ {1, . . . , k}, we say that Ω is DP-independent of type m⃗ = (m1, . . . ,mk) if

Im⃗j

(
Ω(j)

)
⊋ Im⃗j ,0(Ω(j) ∪ {aj})

for all j = 1, . . . , k.
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3.1. Skew Hermite-type interpolation

Remark 3.1.5. The definition of Ω := {a1, . . . , ak} ⊂ Fn as a P-independent set given
in [23, Definition 23] is equivalent to require that I(Ω \ {aj}) ⊋ I(Ω) for all j = 1, . . . , k.

The next result shows that in the special case when Ω is DP-independent of type
(0, . . . , 0), we obtain the notion of P-independence given in [23, Definition 23].

Lemma 3.1.6. A finite set Ω = {a1, . . . , ak} ⊆ Fn is DP-independent of type (0, . . . , 0)
if and only if it is P-independent.

Proof. From Definition 3.1.4 and Remark 3.1.3, it follows that Ω ⊆ Fn is DP-independent
of type (0, . . . , 0) if and only if I(Ω \ {aj}) ⊋ I(Ω) for all j = 1, 2, ..., k, that is, Ω is
P-independent by Remark 3.1.5.

From Definition 3.1.4 and Lemma 3.1.6, we can deduce also the following result.

Proposition 3.1.7. If Ω = {a1, . . . , ak} ⊆ Fn is DP-independent of type (m1, . . . ,mk),
then any W = {aj1 , . . . , ajs} ⊆ Ω is DP-independent of type (mj1 , ...,mjs), where
ji ∈ {1, 2, .., k}. In particular, every subset of a P-independent set is P-independent.

Proof. Let t ∈ {j1, . . . , js}, m⃗ := (m1, . . . ,mk) and m⃗′ := (mj1 , ...,mjs). Since we have

Im⃗t
(
Ω(t)

)
⊋ Im⃗t,0(Ω(t) ∪ {at}) ,

it follows that there exists F ∈ Im⃗t
(
Ω(t)

)
⊆ Im⃗′

t
(
W(t)

)
such that F (at) ̸= 0. Hence

Im⃗′
t
(
W(t)

)
⊋ Im⃗′

t,0(W(t) ∪ {at}) for any t ∈ {j1, . . . , js}, i.e. W = {aj1 , . . . , ajs} ⊆ Ω
is DP-independent of type m⃗′ = (mj1 , ...,mjs). Finally, the last part of the statement
follows from Lemma 3.1.6.

The following result will be crucial to perform the skew Hermite-type interpolation
recursively in A and it extends the equivalence between 1 and 3 of [23, Proposition 25].

Proposition 3.1.8. Let Ω = {a1, . . . , ak} ⊆ Fn be a finite set and let m1, . . . ,mk ∈M.
Then the following conditions are equivalent:

1) Ω is DP-independent of type (m1, . . . ,mk);

2) for any ordering b1, . . . ,bk of the elements in Ω and for any i = 1, . . . , k − 1, it
holds that bi+1 is DP-independent of type (m′

1, . . . ,m
′
i) from Ωi := {b1, . . . ,bi},

where m′
j = mk(j) with bj = ak(j) for j = 1, . . . , i.
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3.1. Skew Hermite-type interpolation

Proof. 1)⇒ 2) Suppose that bi+1 is not DP-independent of type (m′
1, . . . ,m

′
i) from Ωi

for some i and a given ordering b1, . . . ,bk of Ω. Then from Definition 3.1.4 it follows
that F (bi+1) = 0 for all F ∈ I(m′

1,...,m′
i)(Ωi), but this contradicts Proposition 3.1.7 by

considering W = {b1, . . . ,bi,bi+1} ⊆ Ω.
2)⇒ 1) Assume that Ω is not DP-independent of type m⃗ := (m1,m2, ...,mk). Thus

there exists ai ∈ Ω such that F (ai) = 0 for every F ∈ Im⃗i(Ω \ {ai}). By ordering the k
elements in Ω in such a way that bk = ai, it follows that bk is not DP-independent of
type (m′

1, . . . ,m
′
k−1) from Ωk−1, but this contradicts 2).

The following technical results will be the key tools for the skew Hermite-type
interpolation problem.

Lemma 3.1.9. Let Ω = {a1, . . . , ak} ⊆ Fn be a finite set and let m⃗ = (m1, . . . ,mk) ∈
Mk with either mj = 0, or mj = xjs(j) · · ·xj2xj1 for all j = 1, ..., k and jl ∈ {1, . . . , n}.
Then for any m ∈ M with degm = N := ∑k

i=1 [deg(mi) + 1] there exists F ∈ Im⃗(Ω)
such that degF = N and LM(F ) = m.

Proof. Write m = xkN
· . . . · xk2 · xk1 ∈ M. Defining F1(x) := xk1 − (a1)k1 , we have

F1(a1) = 0 with degF1(x) = 1 and ∆x11a1 F1(x) = 0 or 1. Then, define F2(x) :=
(xk2 − (a1)k2)F1(x). By Lemma 2.1.9, we have

∆x11a1 F2(x) = (xk2 − (a1)k2) ∆x11a1 F1(x) .

In any case, we get F2(a1) = ∆x11a1 F2(a1) = 0 with degF2(x) = 2 and ∆x12 x11a1 F2(x) = 0
or 1. By a recursive argument, we can construct Fm(x) := Πm

i=1 (xki
− (a1)ki

) with
m = deg(m1) + 1 and such that Fm(x) ∈ Im1({a1}). Thus, define now G1(x) :=
(xkm+1 − α1)Fm(x) for some α1 ∈ F. If Fm(a2) = 0 then G1(x) ∈ Im1,0({a1} ∪ {a2}).
Otherwise, by taking α1 :=

(
a2

Fm(a2)
)

km+1
we get again G1(x) ∈ Im1,0({a1} ∪ {a2})

with degG1(x) = m + 1. Therefore, defining G2(x) =
(
xkm+2 − α2

)
G1(x), we have

G2(x) ∈ Im1,0({a1} ∪ {a2}) and by Lemma 2.1.9 it follows that

∆x21a2 G2(x) =
(
xkm+2 − α2

)
·∆x21a2 G1(x) .

If ∆x21a2 G1(a2) = 0, then ∆x21a2 G2(a2) = 0. If ∆x21a2 G1(a2) ̸= 0, then by choosing
α2 :=

(
a2

∆
x21
a2 G1(a2)

)
km+2

we obtain ∆x21a2 G2(a2) = 0 again. Hence there exists G2(x) ∈

Im1,x21 ({a1} ∪ {a2}) with degG2(x) = m + 2. By recursive arguments, we can find
a skew polynomial F (x) ∈ Im⃗(Ω) such that degF (x) = N and LM(F (x)) = m by
construction.
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Lemma 3.1.10. Let Ω = {a1, . . . , ak} ⊆ Fn be a finite DP-independent set of type
m⃗ := (m1, . . . ,mk) and let a ∈ Fn \ Ω such that Im⃗(Ω) ⊋ Im⃗,0(Ω ∪ {a}). Then there
exists a skew polynomial F ∈ Im⃗(Ω) \ Im⃗,0(Ω ∪ {a}) such that

deg(F ) ≤
k∑

i=1
(deg(mi) + 1) .

Proof. Since Im⃗(Ω) ⊋ Im⃗(Ω ∪ {a}), take F ∈ Im⃗(Ω) \ Im⃗,0(Ω ∪ {a}) such that LM(F )
is minimum possible with respect to ≺, where ≺ denotes any monomial order of M
preserving degrees. If we suppose that deg(F ) ≥ N + 1, where N := ∑k

i=1(deg(mi) + 1),
then deg(LM(F )) ≥ N + 1 by the choice of ≺. Then, applying Lemma 3.1.9 we can
construct a skew polynomial G ∈ Im⃗(Ω) such that LM(F ) = m · LM(G) for some
m ∈ M with degm > 0. If G(a) ̸= 0, then we get G ∈ Im⃗(Ω) \ Im⃗,0(Ω ∪ {a}), a
contradiction because degF > degG. Suppose now that G(a) = 0. Then there exists
α ∈ F such that H := F − αm ·G satisfies LM(H) ≺ LM(F ). Now, by the definition
of G, it holds that H ∈ Im⃗(Ω) \ Im⃗,0(Ω ∪ {a}), which is absurd by the minimality of
LM(F ). Therefore we have deg(F ) ≤ N and this gives the statement.

Lemma 3.1.11. Let Ω ⊆ Fn be a finite set and consider a /∈ Ω. If there exists
F ∈ Im⃗(Ω) \ Im⃗,0(Ω ∪ {a}), then for any xj,m

′ ∈ M there exists G ∈ Im⃗,m′(Ω ∪
{a}) \ Im⃗,xjm′(Ω ∪ {a}) such that ∆xjm′

a G(a) = 1 and degG = degF + deg(m′) + 1.

Proof. Without loss of generality, we can assume that F (a) = 1. Define

G(x) := [xt − (a)t] · F (x) .

Therefore we see that G(a) = 0, degG = degF + 1 and

∆xj
a G(x) = [xt − (a)t] ·∆

xj
a F (x) + ∆xj

a [xt − (a)t] .

Let H(x) := [xt − (a)t] · ∆
xj
a F (x). If H(a) = 0, then we choose t = j. If H(a) ̸= 0,

then we take any t ≠ j. In both cases, we obtain that ∆xj
a G(a) ̸= 0. Hence, up to

multiplying G(x) by a non zero scalar, we have G(x) ∈ Im⃗,0(Ω ∪ {a}) \ Im⃗,xj (Ω ∪ {a})
with ∆xj

a G(a) = 1 and degG(x) = degF (x) + deg(0) + 1.
By induction, assume that there exists G(x) ∈ Im⃗,m̂(Ω ∪ {a}) \ Im⃗,xjm̂(Ω ∪ {a})

with ∆xjm̂
a G(a) = 1 and degG(x) = degF (x) + deg(m̂) + 1, where either deg m̂ > 0, or

m̂ = 0 and xjm̂ = xj. Therefore, define

L(x) := [xt − (a)t] ·G(x) .
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3.1. Skew Hermite-type interpolation

Then we have
∆xjm̂

a L(x) = [xt − (a)t] ·∆
xjm̂
a G(x) ,

∆xixjm̂
a L(x) = [xt − (a)t] ·∆

xixjm̂
a G(x) + ∆xi

a [xt − (a)t] .

Note that ∆xjm̂
a L(a) = 0 and write M(x) := [xt − (a)t] · ∆

xixjm̂
a G(x). If M(a) = 0,

then we choose t = j. If M(a) ̸= 0, then we take any t ̸= j. In both cases, we
get that ∆xixjm̂

a L(a) ̸= 0. Hence, up to multiplying L(x) by a non zero scalar, we
obtain that L(x) ∈ Im⃗,xjm̂(Ω ∪ {a}) \ Im⃗,xixjm̂(Ω ∪ {a}) with ∆xixjm̂

a L(a) = 1 and
degL(x) = degG(x) + 1 = degF (x) + deg(m̂) + 1 + 1 = degF (x) + deg(xjm̂) + 1.

The main result here is a Hermite-type interpolation theorem in A that generalizes
the skew Lagrange interpolation given in [23, Theorem 4] and it extends the cases n = 1
given in [26, Theorem 3, Corollary 41].

Theorem 3.1.12 (A skew Hermite-type interpolation). Let Ω = {a1, . . . , ak} ⊆ Fn

be a finite set and let m1, . . . ,mk ∈M. The following conditions are equivalent:

1) Ω is DP-independent of type (m1, ...,mk).

2) The map ψ : AN → FN defined by

F 7→ (F (a1), . . . ,∆m1
a1
F (a1), . . . , F (aj), . . . ,∆mj

aj
F (aj), . . . , F (ak), . . . ,∆mk

ak
F (ak))

is a surjective left F-module homomorphism, where N := ∑k
j=1(deg(mj) + 1) and

AN := {F ∈ A : degF < N}.

3) Given any finite set of N values in F

{bj,0, bj,xj1
, bj,xj2 xj1

, . . . , bj,mj
: j = 1, 2, . . . , k} ,

where N := ∑k
i=1(deg(mi) + 1), there exists a skew polynomial F ∈ A with

deg(F ) < N such that

F (aj) = bj,0,∆
xj1aj F (aj) = bj,xj1

,∆xj2 xj1aj F (aj) = bj,xj2 xj1
, ...,∆mj

aj
F (aj) = bj,mj

for all j = 1, . . . , k.

Proof. First, note that the equivalence between 2) and 3) is immediate.
1)⇒ 2) From Lemma 2.1.8, it is evident that ψ is a left F-module homomorphism.

Let a1 := (a11 , a12 , ..., a1n) ∈ Fn. We start by defining the skew polynomial G1,0 := 1.
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3.1. Skew Hermite-type interpolation

Then we see that G1,0(a1) = 1, deg(G1,0) = 0 < 1 and ∆x1j
···x12 x11

a1 G1,0(a1) = 0 for all
j = 1, . . . , deg(m1). On the other hand, note that the skew polynomials

G1,j := (x1j
− a1j

) · · · (x12 − a12)(x11 − a11) ∈ A

are such that G1,j ∈ Ix1j−1 ···x12 x11 ({a1}) \ Ix1j
···x12 x11 ({a1}), deg(G1,j) < j + 1 and

∆x1j
···x12 x11

a1 G1,j(a1) = 1 for all j = 1, . . . , deg(m1), where Ix10 ({a1}) := I({a1}).
Let a2 := (a21 , a22 , ..., a2n) ∈ Fn. Since Ω is DP-independent of type (m1, ...,mk),

then by Proposition 3.1.8 and Lemma 3.1.10 there exists F2,0 ∈ Im1({a1})\Im1,0({a1, a2})
such that deg(F2,0) ≤ deg(m1) + 1. Then the skew polynomial G2,0 := F2,0(a2)−1F2,0 is
such that G2,0 ∈ Im1({a1}) \ Im1,0({a1, a2}), G2,0(a2) = 1 and deg(G2,0) ≤ deg(m1) + 1.
By Lemma 3.1.11, we can construct polynomials G2,i ∈ A for i = 1, . . . , deg(m2) such
that G2,i ∈ Im1,x2i−1 ···x22 x21 ({a1, a2}) \ Im1,x2i

···x22 x21 ({a1, a2}), ∆x2i
···x22 x21a2 G2,i(a2) = 1

and degG2,i ≤ deg(m1) + 1 + i, for all i = 2, . . . , deg(m2). Then, arguing as above,
by Lemmas 3.1.10 and 3.1.11 we can construct for all aj ∈ Ω with j = 1, . . . , k skew
polynomials Gj,0, Gj,1, . . . , Gj,deg(mj) ∈ A such that

ψ(Gj,0) = (0, ..., 0, ..., 1, ∗, ∗, ..., ∗, ∗, ..., ∗, ..., ∗)
ψ(Gj,1) = (0, ..., 0, ..., 0, 1, ∗, ..., ∗, ∗, ..., ∗, ..., ∗)

... = ...
ψ(Gj,deg(mj)) = (0, ..., 0, ..., 0, 0, 0, ..., 1, ∗, ..., ∗, ..., ∗)

Thus, making left linear operations on all the skew polynomials Gj,0, Gj,1, . . . , Gj,deg(mj)

for j = 1, . . . , k, we can obtain polynomials G̃j,0, G̃j,1, . . . , G̃j,deg(mj) ∈ A such that

ψ(G̃j,0) = e⃗j,0 := (0, ..., 0, ..., 1, 0, 0, ..., 0, ..., 0, ..., 0)
ψ(G̃j,1) = e⃗j,1 := (0, ..., 0, ..., 0, 1, 0, ..., 0, ..., 0, ..., 0)

... = ... := ...
ψ(G̃j,deg(mj)) = e⃗j,deg(mj) := (0, ..., 0, ..., 0, 0, 0, ..., 1, ..., 0, ..., 0)

for all j = 1, ..., k. Therefore, given any

b = (b1,0, b1,1, ..., b1,deg(m1), ..., bj,0, bj,1, ..., bj,deg(mj), ..., bk,0, bk,1, ..., bk,deg(mk)) ∈ FN
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3.1. Skew Hermite-type interpolation

it follows that

b =
deg(m1)∑

i=0
b1,ie⃗1,i + ...+

deg(mj)∑
i=0

bj,ie⃗j,i + ...+
deg(mk)∑

i=0
bk,ie⃗k,i

=
deg(m1)∑

i=0
b1,iψ(G̃1,i) + ...+

deg(mj)∑
i=0

bj,iψ(G̃j,i) + ...+
deg(mk)∑

i=0
bk,iψ(G̃k,i)

= ψ

 k∑
t=1

deg(mt)∑
i=0

bt,iG̃t,i


with deg

(∑k
t=1

(∑deg(mt)
i=0 bt,iG̃t,i

))
≤ N − 1 < N and we are done.

2)⇒ 1) Since ψ is a surjective left F-module homomorphism, then for each e⃗j,0 ∈ FN

with j = 1, 2, ..., k as before, there exists a skew polynomial

Fj,0 ∈ Im⃗j

(
Ω(j)

)
⊋ Im⃗j ,0(Ω(j) ∪ {aj})

for all j = 1, ..., k, where m⃗ = (m1, . . . ,mk). Hence, from Definition 3.1.4 we deduce
that Ω is DP-independent of type (m1, ...,mk).

In the special case when Ω is DP-independent of type (0, ..., 0), that is, Ω is P-
independent (see Lemma 3.1.6), we give a necessary and sufficient condition to solve the
skew Lagrange interpolation problem as follows.

Corollary 3.1.13 (Skew Lagrange interpolation). Let Ω = {a1, . . . , ak} ⊆ Fn be a
finite set. The following conditions are equivalent:

1) Ω is P-independent.

2) The map ϕ : Ak → Fk, defined by F 7→ (F (a1), F (a2), ..., F (ak)) is a surjective
left F-module homomorphism.

3) For every b1, b2, ..., bk ∈ F, there exists a skew polynomial F ∈ A with deg(F ) < k

such that F (aj) = bj for all j = 1, ..., k.

By using Theorem 3.1.12, we give also the following result which allows us to
construct DP-independent sets of type (m1, . . . ,mk) for some mi ∈M.

Corollary 3.1.14. Let Ω = {a1, . . . , ak} ⊆ Fn be a DP-independent finite set of type
m⃗ := (m1, . . . ,mk). If ak+1 ∈ Fn \ Ω is such that Im⃗(Ω) ⊋ Im⃗,0(Ω ∪ {ak+1}), then
Ω ∪ {ak+1} is DP-independent of type (m1, . . . ,mk,mk+1) for any mk+1 ∈M.
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3.1. Skew Hermite-type interpolation

Proof. Since Ω is DP-independent of type m⃗ and ak+1 ∈ Fn \ Ω is such that Im⃗(Ω) ⊋
Im⃗,0(Ω ∪ {ak+1}), then by Lemma 3.1.10 we deduce that there exists F ∈ Im⃗(Ω) ⊋
Im⃗,0(Ω∪{ak+1}) such that degF ≤ ∑k

i=1 (deg(mi) + 1). Thus by Lemma 3.1.11 it follows
that ψ : AN → FN defined by F 7→ (F (a1), ...,∆m1

a1
F (a1), ..., F (ak+1), ...,∆mk+1

ak+1 F (ak+1))
is a surjective left linear map for any mk+1 ∈M with N := ∑k+1

j=1(deg(mj) + 1). Thus,
by Theorem 3.1.12 it follows that Ω∪{a} is DP-independent of type (m1, ...,mk+1).

Remark 3.1.15. In the special case when Ω is DP-independent of type (0, ..., 0), i.e. Ω
is P-independent, and a ∈ Fn \Ω is such that I(Ω \ {a}) ⊋ I(Ω), it follows that Ω∪ {a}
is P-independent, obtaining [23, Lemma 36].

Note that Proposition 3.1.14 gives us a method to construct DP-independent sets of a
certain type. Another way to construct DP-independent sets will be given in Proposition
3.1.18, but before to prove it we need the following two technical results.

Lemma 3.1.16. Let Ωh = {a1, . . . , ah} be a subset of Fn and consider a ∈ Fn such
that a /∈ {[a1], . . . , [ah]}, where [aj] denotes the (σ, δ)-conjugacy class of aj for all
j = 1, . . . , h. If there exists

F ∈ Im1,...,mh−1,m(Ωh) \ Im1,...,mh−1,m,0(Ωh ∪ {a}) ,

then for any xj ∈M there exists

G ∈ Im1,...,mh−1,xjm(Ωh) \ Im1,...,mh−1,xjm,0(Ωh ∪ {a})

such that degG = degF + 1.

Proof. Define G(x) := (xt − α)F (x). Let δ := ∆xjm
ah F (ah). Moreover, by Lemma 2.1.9

we have ∆xjm
ah G(ah) =

(
(ah

δ)t − α
)
· δ. If δ = 0, then we take any α ∈ F such that

α ̸=
(
aF (a)

)
t
. If δ ≠ 0, then there exists t ∈ {1, . . . , n} such that

(
ah

δ
)

t
≠
(
aF (a)

)
t
,

because a /∈ [ah]. In this situation, take α :=
(
ah

δ
)

t
. Therefore, in both cases we have

G ∈ Im1,...,mh−1,xjm(Ωh) \ Im1,...,mh−1,xjm,0(Ωh ∪ {a}) with degG = degF + 1.

Lemma 3.1.17. Let Ωh = {a1, . . . , ah} be a subset of Fn and consider a ∈ Fn such
that a /∈ {[a1], . . . , [ah]}, where [aj] denotes the (σ, δ)-conjugacy class of aj for all
j = 1, . . . , h. Define Ωs := {a1, . . . , as} for s = 1, . . . , h. If for some t = 1, . . . , h − 1
there exists

F ∈ Im1,...,mt(Ωt) \ Im1,...,mt,0(Ωt ∪ {a}) ,
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3.1. Skew Hermite-type interpolation

then there exists

G ∈ Im1,...,mt,0(Ωt+1) \ Im1,...,mt,0,0(Ωt+1 ∪ {a})

such that degG = degF + 1.

Proof. Define G(x) := (xs − β)F (x). Let γ := F (at+1). If γ = 0, then take any
β ∈ F such that β ̸=

(
aF (a)

)
s
. If γ ̸= 0, then there exists s ∈ {1, . . . , n} such

that (at+1
γ)s ̸=

(
aF (a)

)
s
, because a /∈ [at+1]. In this situation, take β := (at+1

γ)s.
Thus, in both cases, we get that G ∈ Im1,...,mt,0(Ωt+1) \ Im1,...,mt,0,0(Ωt+1 ∪ {a}) with
degG = degF + 1.

Finally, the next result gives another method to construct a DP-independent set in Fn.

Proposition 3.1.18. If Ω = {a1, . . . , ak} ⊆ Fn is a DP-independent finite set of
type (m1, ...,mk) and a ∈ Fn is such that a /∈ {[a1], . . . , [ak]}, where [aj] denotes the
(σ, δ)-conjugacy class of aj for all j = 1, . . . , k, then Ω ∪ {a} is DP-independent of type
(m1, . . . ,mk,mk+1) for any mk+1 ∈M.

Proof. Since a /∈ [a1], we deduce that (a)s ̸= (a1)s for some s ∈ {1, . . . , n}. Thus,
start with the skew polynomial F (x) := xs − (a1)s. Then degF = 1 and F ∈ I0 (Ω1) \
I0,0 (Ω1 ∪ {a}). Therefore, by iterating the Lemmas 3.1.16 and 3.1.17, we obtain that
there exists F ∈ Im1,...,mh (Ωh) \ Im1,...,mh,0 (Ωh ∪ {a}) with degF = ∑h

i=1 (deg(mi) + 1).
Thus, one can conclude by using Lemma 3.1.11.
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Chapter 4

Resultants of skew polynomials over
division rings

In commutative algebra, the notion of resultant (or eliminant) of two univariate poly-
nomials defined over a field is well-known and classical and many results about it
can be found in literature (e.g, see [29], [16] or [22]). The classical resultant of two
polynomials is in fact a polynomial expression of their coefficients, which is equal to
zero if and only if the polynomials have a common root, possibly in a field extension, or
equivalently, a common factor over their field of coefficients. The resultant is widely
used in number theory, algebraic geometry, symbolic integration, computer algebra,
and it is a built-in function of most computer algebra systems. The resultant of two
univariate polynomials over a field, or a commutative ring, is commonly defined as the
determinant of their Sylvester matrix. More precisely, let p(x) = prx

r + · · ·+ p1x+ p0

and q(x) = qsx
s + · · · + q1x + q0 be two non-zero polynomials with pr ≠ 0, qs ̸= 0.

The map φ : Ps × Pr → Pr+s given by φ(a, b) = ap + bq is a linear map between two
vector spaces of the same dimension, where Pi is the vector space of dimension i whose
elements are the polynomials of degree less than i. Over the basis of the powers of the
variable x, the above map φ is represented by a square matrix of dimension r+ s, which
is called the Sylvester matrix of p and q.

Inspired by [15], the main purpose of this chapter is to extend in F[x;σ, δ] all the
above results and well-known criteria equivalent to the condition that the resultant of
two univariate skew polynomials is equal to zero. Finally, through this chapter, we give
some algorithms and their respective Magma programs [3] as computational applications
of the main algebraic results which allowed us to construct all the examples in a very
simple manner.
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4.1 Right (σ, δ)-Resultant

Let F be a division ring. We begin by proving two technical results which are useful to
define the so called right (σ, δ)-resultant of two skew polynomials in R (see Definition
4.1.3).

Lemma 4.1.1. Let f, g ∈ R be non-constant skew polynomials. The following hold:

1) R/Rf is a left F-module and dim R/Rf = deg(f).

2) If Rg ⊆ Rf , then Rf/Rg is a left F-module and dim Rf/Rg = deg(g)− deg(f).

3) If k, h ∈ R are such that Rf ∩Rg = Rh and Rf +Rg = Rk, then

deg(f) + deg(g) = deg(h) + deg(k)

Proof. 1) Defining in R/Rf := {p+Rf : p ∈ R} the usual operations of addition and
scalar multiplication (on the left) given by (p1 +Rf) + (p2 +Rf) := (p1 + p2) +Rf and
α(p1 +Rf) := αp1 +Rf , for all p1, p2 ∈ R and α ∈ F, one can see easily that R/Rf is
a left F-module. Since every coset in R/Rf contains a unique representative of degree
less than deg(f), it follows that B := {1 +Rf, x+Rf, x2 +Rf, ..., xdeg(f)−1 +Rf} is a
left basis for R/Rf . Therefore, dimR/Rf = deg(f).

2) Since g ∈ Rg ⊆ Rf , we have g = hf for some h ∈ R. Thus, we can write
Rf/Rg = {rf + Rhf : r ∈ R}. On the other hand, since ψ : R → Rf/Rhf ,
p 7→ pf +Rhf is a surjective left F-module homomorphism with kerψ = Rh, we have
R/Rh ∼= Rf/Rhf = Rf/Rg. Finally, by 1) it follows that dimRf/Rg = dimR/Rh =
deg(h) = deg(g)− deg(f)

3) Since R is a LPID, we can write Rf ∩ Rg = Rh and Rf + Rg = Rk for
some h, k ∈ R. Since Rf,Rg,Rh and Rk are left F-submodules of R, we deduce
that (Rf + Rg)/Rf ∼= Rg/(Rf ∩ Rg), i.e. Rk/Rf ∼= Rg/Rh. Hence dimRk/Rf =
dimRg/Rh and by 2) we have deg(f) + deg(g) = deg(h) + deg(k).

The previous lemma is an extension of some results showed in [15, p. 4]. Moreover,
by Lemma 4.1.1 it is possible to prove also the following technical result, but we omit
its proof because it is analogous to the one presented in [15, Theorem 2.4] for the case
δ = 0.

Lemma 4.1.2. Two non-constant skew polynomials f, g ∈ R of respective degrees m
and n, have a common (non-unit) right factor in R, if and only if there exist skew
polynomials c, d ∈ R such that cf + dg = 0, deg(c) < n and deg(d) < m.
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By Lemma 4.1.2 we can define the right (σ, δ)-resultant of two skew polynomials in
R as shown below. Let

f = amx
m + ...+ a1x+ a0, am ̸= 0 , g = bnx

n + ...+ b1x+ b0, bn ̸= 0 ,
c = cn−1x

n−1 + ...+ c1x+ c0 , d = dm−1x
m−1 + ...+ d1x+ d0

be skew polynomials as in Lemma 4.1.2. By (1.4), we have

cf =
n−1∑
i=0

m∑
j=0

(
i∑

k=0
ci · Ck,i−k(aj)xi+j−k

)
, dg =

m−1∑
i=0

n∑
j=0

(
i∑

k=0
di · Ck,i−k(bj)xi+j−k

)

Keeping in mind that two skew polynomials are equal if and only if they have the same
degree and their respective coefficients are equal, the equation cf+dg = 0 of Lemma 4.1.2
gives a system of m+ n linear equations with m+ n unknowns c0, ..., cn−1, d0, ..., dm−1,
that is

(c0, ..., cn−1, d0, ..., dm−1) · A = (0, ..., 0) , (4.1)

where A is the following (m+ n)× (m+ n) matrix:

A =



a0 a1 a2 · · · am 0 0 0 · · · 0

C1,0(a0)
1∑

i=0
C1−i,i(a1−i)

1∑
i=0
C1−i,i(a2−i) · · ·

1∑
i=0
C1−i,i(am−i) C0,1(am) 0 0 · · · 0

C2,0(a0)
1∑

i=0
C2−i,i(a1−i)

2∑
i=0
C2−i,i(a2−i) · · ·

2∑
i=0
C2−i,i(am−i)

2∑
i=1
C2−i,i(am+1−i) C0,2(am) 0 · · · 0

C3,0(a0)
1∑

i=0
C3−i,i(a1−i)

2∑
i=0
C3−i,i(a2−i) · · ·

3∑
i=0
C3−i,i(am−i)

3∑
i=1
C3−i,i(am+1−i)

3∑
i=2
C3−i,i(am+2−i) C0,3(am) · · · 0

... ... ... · · · ... ... ... . . . . . . ...

Cn−1,0(a0)
1∑

i=0
Cn−1−i,i(a1−i)

2∑
i=0
Cn−1−i,i(a2−i) · · ·

m∑
i=0
Cn−1−i,i(am−i)

n−1∑
i=1
Cn−1−i,i(am+1−i)

n−1∑
i=2
Cn−1−i,i(am+2−i)

n−1∑
i=3
Cn−1−i,i(am+3−i) · · · C0,n−1(am)

b0 b1 b2 · · · bn 0 0 0 · · · 0

C1,0(b0)
1∑

i=0
C1−i,i(b1−i)

1∑
i=0
C1−i,i(b2−i) · · ·

1∑
i=0
C1−i,i(bn−i) C0,1(bn) 0 0 · · · 0

C2,0(b0)
1∑

i=0
C2−i,i(b1−i)

2∑
i=0
C2−i,i(b2−i) · · ·

2∑
i=0
C2−i,i(bn−i)

2∑
i=1
C2−i,i(bn+1−i) C0,2(bn) 0 · · · 0

C3,0(b0)
1∑

i=0
C3−i,i(b1−i)

2∑
i=0
C3−i,i(b2−i) · · ·

3∑
i=0
C3−i,i(bn−i)

3∑
i=1
C3−i,i(bn+1−i)

3∑
i=2
C3−i,i(bn+2−i) C0,3(bn) · · · 0

... ... ... · · · ... ... ... . . . . . . ...

Cm−1,0(b0)
1∑

i=0
Cm−1−i,i(b1−i)

2∑
i=0
Cm−1−i,i(b2−i) · · ·

n∑
i=0
Cm−1−i,i(bn−i)

m−1∑
i=1
Cm−1−i,i(bn+1−i)

m−1∑
i=2
Cm−1−i,i(bn+2−i)

m−1∑
i=3
Cm−1−i,i(bn+3−i) · · · C0,m−1(bn)



Note that the first n rows involve the ai’s and the last m rows involve the bj’s.

By the previous (m+ n)× (m+ n) matrix A, we can define the right (σ, δ)-resultant
of two skew polynomials in R as follows.
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Definition 4.1.3. Let f, g ∈ R be skew polynomials of non-negative degrees m and n,
respectively. The above matrix A will be called the right (σ, δ)-Sylvester matrix of f
and g, which we denote by Sylvσ,δ

F (f, g). We define the right (σ, δ)-resultant of f and g

(over F), denoted by Rσ,δ
F (f, g), as the Dieudonné determinant of Sylvσ,δ

F (f, g).

Let us recall that the Dieudonné determinant, denoted here by Ddet, is a non-
commutative generalization of the classical determinant of a matrix with entries in a
field, to matrices over division rings. This determinant takes values in {0} ∪ F∗/[F∗,F∗],
where [F∗,F∗] is the commutator of the multiplicative group F∗ := F \ {0}. If F is a field,
then Ddet coincides with the classical definition of determinant and in this case, we will
write simply det instead of Ddet. For more details on the properties of the Dieudonné
determinant, see e.g [11], [1, p. 151] and [12, p. 133].

Remark 4.1.4. In the special case when δ = 0, Rσ,δ
F (f, g) coincides with the resultant

R(f, g) defined in [15, p. 6]. In fact, by (1.6) we have

Rσ,0
F (f, g) = Ddet



a0 a1 a2 · · · am 0 · · · 0
0 σ(a0) σ(a1) · · · σ(am−1) σ(am) · · · 0
... ... . . . ... ... ... . . . ...
0 0 0 · · · σn−1(a0) σn−1(a1) · · · σn−1(am)
b0 b1 b2 · · · bn 0 · · · 0
0 σ(b0) σ(b1) · · · σ(bn−1) σ(bn) · · · 0
... ... . . . ... ... ... . . . ...
0 0 0 · · · σm−1(b0) σm−1(b1) · · · σm−1(bn)


Furthermore, if σ = Id then we obtain the classical notion of resultant.

Applying Algorithm 1, the next algorithm shows how to find the right (σ, δ)-Silvester
matrix of f and g (see Definition 4.1.3).

Algorithm 6 Computation of the right (σ, δ)-Sylvester matrix of f(x) = a0 + a1x +
· · ·+ amx

m and g(x) = b0 + b1x+ · · ·+ bnx
n.

Input: f, g ∈ R.
Output: (σ, δ)-Sylvester matrix M of f and g.
1: M1 ←

(
a0 a1 a2 · · · an+m

)
2: M2 ←

(
b0 b1 b2 · · · bn+m

)
3: for p← 1 to n− 1 do
4: M3 ←

(
Cp,0(a0)

)
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5: for q ← 1 to n+m− 1 do
6: Z1 ← 0
7: for l← 0 to p do
8: if 0 ≤ q − l ≤ m then
9: Z1 ← Z1 + Cp−l,l(aq−l)

10: end if
11: end for
12: M3 ←

(
M3 Z1

)
13: end for
14: M1 ←

(
M1
M3

)
15: end for
16: for p← 1 to m− 1 do
17: M4 ←

(
Cp,0(b0)

)
18: for q ← 1 to n+m− 1 do
19: Z2 ← 0
20: for l← 0 to p do
21: if 0 ≤ q − l ≤ n then
22: Z2 ← Z2 + Cp−l,l(bq−l)
23: end if
24: end for
25: M4 ←

(
M4 Z2

)
26: end for
27: M2 ←

(
M2
M4

)
28: end for
29: return M ←

(
M1
M2

)

As an application of Algorithm 6, let us give here the following Magma program to
compute Sylvσ,δ

H (f, g) when f = x4 + kx3− jx2− i and g = x3 + j are skew polynomials
in H[x;σ, 0] with σ(h) := ihi−1 for all h ∈ H.

F<i,j,k> := QuaternionAlgebra< RealField() | -1, -1 >;
S:= map< F -> F | x :-> i*x*(1/i) >;
D:= map< F -> F | x :-> 0 >;

Then, using the function “PosCom" defined in Program 1, we can define the new function
“SylvesterMatrix" (see Program 4) with previously the function “SumPosCom" as follows.
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Program 4.

SumPosCom:=function(f,i,j)
AA:=0;
n:=#f-1;
for I in [0..i-1] do
if j-1-I ge 0 and j-1-I le n then
if i-1 ne 0 then
AA:=AA+PosCom(i-1-I,I,f[j-I]);
else
AA:=f[j-I];

end if;
end if;

end for;
return AA;
end function;

SylvesterMatrix:=function(f,g)
n:=#f-1;
m:=#g-1;
if m ne 0 then
M1:= Matrix(F,1,n+m,[SumPosCom(f,s,t): s in {1}, t in {1..n+m}]);
for p in [2..m] do
X:=Matrix(F,1,n+m,[SumPosCom(f,s,t): s in {p}, t in {1..n+m}]);
M1:=VerticalJoin(M1,X);

end for;
else
M1:=RemoveRow(ZeroMatrix(F,1,n+m),1);

end if;
if n ne 0 then
M2:= Matrix(F,1,n+m,[SumPosCom(g,s,t): s in {1}, t in {1..n+m}]);
for p in [2..n] do
X:=Matrix(F,1,n+m,[SumPosCom(g,s,t): s in {p}, t in {1..n+m}]);
M2:=VerticalJoin(M2,X);

end for;
else
M2:=RemoveRow(ZeroMatrix(F,1,n+m),1);
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end if;
M:=VerticalJoin(M1,M2);
return M;
end function;

Then, by typing in Magma

SylvesterMatrix([-i,-j,0,k,1],[j,0,0,1]);

we obtain the right (σ, δ)-Sylvester matrix of f(x) = x4 +kx3− jx− i and g(x) = x3 + j:


−i −j 0 k 1 0 0
0 −i j 0 −k 1 0
0 0 −i −j 0 k 1
j 0 0 1 0 0 0
0 −j 0 0 1 0 0
0 0 j 0 0 1 0
0 0 0 −j 0 0 1


. (4.2)

Remark 4.1.5. When F is a field, we can write Rσ,δ
F (f, g) := det(Sylvσ,δ

F (f, g)), where
det is the classical determinant. Therefore, in this case, we can easily compute Rσ,δ

F (f, g)
in Magma by using the command “Determinant( )”. However, this command in Magma
generates difficulties in some situations. For example, when F is the field of the complex
numbers, this field can only be dealt with a certain level of precision, and therefore
Magma cannot give the exact value of the determinant. For this reason, we provide
below a Magma program (Program 5) based on the definition of the determinant detA
of an n× n matrix A with entries aij ∈ F using the Leibniz’s formula, i.e.

detA :=
∑

Σ∈Sn

(sgn(Σ)a1,Σ1 . . . an,Σn) ,

where Sn is the symmetric group of n elements, sgn(Σ) is the sign of the permutation
Σ ∈ Sn and Σi is the value in the i-th position after the reordering Σ. The advantage of
this Magma program is that it avoids the Gaussian elimination and consequently the
computation of quotients, because it only works with sums and products.
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Program 5.

Det:=function(M)
n:=NumberOfColumns(M);
P:=[ p : p in Permutations({a : a in [1..n]})];
S2:=0;
for k in [1..#P] do
S1:=1;
for j in [1..n] do
S1:=S1*M[j,P[k][j]];

end for;
g:=Sym(n)!P[k];
if IsEven(g) then
S2:=S2+S1;
else
S2:=S2-S1;

end if;
end for;

return S2;
end function;

Now, let us give here the main results of this section for polynomials in R.

Theorem 4.1.6. Let f, g ∈ R be non-constant skew polynomials of degrees m and n,
respectively. The following conditions are equivalent:

1) Rσ,δ
F (f, g) = 0;

2) f and g have a common (non-unit) right factor in R;

3) gcrd(f, g) ̸= 1 (where "gcrd" means greatest common right divisor);

4) there are no polynomials p, q ∈ R such that pf + qg = 1;

5) Rf +Rg ⊊ R.

Proof. 1)⇔ 2) : Rσ,δ
F (f, g) := Ddet(A) = 0 if and only if the homogeneous linear system

(4.1) has a non-trivial solution. The above, is equivalent to say that there exist skew
polynomials c, d ∈ R such that cf + dg = 0, deg(c) < n and deg(d) < m. However, by
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Lemma 4.1.2, the latter is true if and only if f and g have a common (non-unit) right
factor in R.

2)⇔ 3) : obvious.
3) ⇒ 4) : Let r ∈ R be the common (non-unit) right factor of f and g (it exists

because gcrd(f, g) ̸= 1). Then, f = q1r y g = q2r, for some q1, q2 ∈ R. Since for all
p, q ∈ R, pf + qg = (pq1 + qq2)r, it follows that pf + qg ̸= 1.

4) ⇒ 3) : Assume that for all p, q ∈ R, pf + qg ̸= 1. Since R is a LPID, we can
write Rf +Rg = Rh ⊊ R, for some h ∈ R of positive degree. Thus h is a common
(non-unit) right factor of f and g.

4)⇔ 5) : It follows from the fact that Rf +Rg = R if and only if 1 ∈ Rf +Rg.

Remark 4.1.7. When δ = 0, the equivalence between 1) and 2) in Theorem 4.1.6 gives
Theorem 2.5 in [15]. Moreover, if F = H (Hamilton’s quaternions), σ = Id and δ = 0,
then the equivalence between 1) and 3) in Theorem 4.1.6 gives also an analogous result
to [32, Theorem 4.3], but with a different notion of determinant.

In what follows, the objective is to determine if the Dieudonné determinant of
any matrix is zero or not in line with 1) of Theorem 4.1.6. To do this, we first need
Algorithm 7 to obtain (via elementary row operations on the left) the corresponding
upper triangular matrix D of any matrix M with entries in F. Note that this operation
does not change the nullity of M .

Algorithm 7 Computation of the upper triangular matrix D of M
Input: Square matrix M = (aij) of order n, with entries in F
Output: Upper triangular matrix D
1: j ← 0
2: repeat
3: j ← j + 1
4: i← 0, k ← 0
5: repeat
6: i← i + 1
7: if aij ̸= 0 then
8: Bi = (bij)←

(
a1j a2j · · · anj

)
9: for i1 ← 1 to n and i1 ̸= i do

10: Ci1 ←
(

(ai11 − ai1j · a−1
ij · b11) (ai12 − ai1j · a−1

ij · b1j) · · ·

· · · (ai1n − ai1j · a−1
ij · b1n)

)
11: end for
12: D ←

(
D

Bi

)
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13: M = (aij)←


C1
...
Cn


14: Let m be the number of rows of M .
15: else
16: k ← k + 1
17: end if
18: if k = m and k ̸= 0 then
19: Bi ←

(
0 0 · · · 0

)
20: D ←

(
D
Bi

)
21: end if
22: until i ≥ m
23: until j = n
24: return D

Moreover, as an application of Algorithm 7, we give here a Magma program to
compute the upper triangular matrix of (4.2) with entries in the real quaternion division
ring H.

Defining before the division ring H,

F<i,j,k> := QuaternionAlgebra< RealField() | -1, -1 >;

we have the following Magma program:

Program 6.

MT:=function(M)
n:=NumberOfRows(M); m:=NumberOfRows(M);
MM:=RemoveRow(SubmatrixRange(M,1,1,1,n),1);
j:=0;
repeat
j:=j+1; i:=0; k:=0;
repeat
i:=i+1;
if M[i,j] ne 0 then
a:=M[i,j]; M1:=SubmatrixRange(M,i,1,i,n); M4:=M1; M2:=RemoveRow(M,i);
n1:=NumberOfRows(M2);
for i1 in [1..n1] do
M3:=Matrix(F,1,n,[ M2[i1,j1]-M2[i1,j]*(1/a)*M1[1,j1] : j1 in [1..n]]);
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M4:=VerticalJoin(M4,M3);
end for;

MM:=VerticalJoin(MM,M1); M:=RemoveRow(M4,1); m:=NumberOfRows(M);
else
k:=k+1;

end if;
if k eq m and k ne 0 then
MM:=VerticalJoin(MM,ZeroMatrix(F,1,n));

end if;
if k eq n then
j:=n;

end if;
until i ge m;
until j eq n;
return MM;
end function;

So, by typing in Magma

MT(Matrix(F,7,7,[-i,-j,0,k,1,0,0,0,-i,j,0,-k,1,0,0,0,-i,-j,0,k,1,j,0,0,
1,0,0,0,0,-j,0,0,1,0,0,0,0,j,0,0,1,0,0,0,0,-j,0,0,1]));

we obtain the upper triangular matrix E of (4.2),

E =



−i −j 0 k 1 0 0
0 −i j 0 −k 1 0
0 0 −i −j 0 k 1
0 0 0 i 0 0 k

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (4.3)

Now, let us recall that the Dieudonné determinant of an upper (or lower) triangular
matrix D with entries in a division ring F is the coset a[F∗,F∗], where a is the product
of the elements of the main diagonal of D (see [13, p. 104]). Having in mind this, the
above Algorithm 7 together with the next Algorithm 8 allow us to calculate up to a
sign the Dieudonné determinant of any square matrix with entries in F.
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Algorithm 8 Computation of Dieudonné determinant of an upper triangular matrix.
Input: Upper triangular matrix M .
Output: Dieudonné determinant of M
1: Let M = (aij) be the upper triangular matrix
2: A← 1
3: for n← 1 to n do
4: A← A · ann

5: end for
6: if A = 0 then
7: return Dieudonné determinant is 0
8: else
9: if A ∈ [F∗,F∗] then

10: return Dieudonné determinant is 0
11: else
12: return Dieudonné determinant is A (mod [F∗,F∗])
13: end if
14: end if

Finally, using the function “MT" of Program 6 and having in mind that [H∗,H∗] =
{q ∈ H : |q| = 1} (see [31, Lemma 8, p. 151 ]), the following Magma test allows us to
check if the Dieudonné determinant of a matrix with entries in H is zero or not.

Program 7.

DD:=function(M)
MM:=MT(M);
A:=1;
n:=NumberOfRows(M);
for N in [1..n] do
A:=A*MM[N,N];

end for;
if A*Conjugate(A) eq F!1 or A*Conjugate(A) eq F!0 then
print"Ddet is";
return 0;

end if;
print"Ddet is NOT";
return 0;
end function;
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Let us give here a characterization of the degree of the gcrd(f, g) which can be useful
also to check condition 3) in Theorem 4.1.6.

Theorem 4.1.8. Let Pk(F) be the set of the polynomials in R of degree less than or
equal to k with coefficients in F. Let f, g ∈ R be two polynomials of positive degree m,n
respectively. Consider the left F-linear map

φ : Pn−1(F)⊕ Pm−1(F)→ Pn+m−1(F)

defined by φ((a, b)) := af + bg. Then

deg gcrd(f, g) = dim kerφ = dim kerϕ = n+m− lr.rk(A) = n+m− rc.rk(A) ,

where ϕ : Fn+m → Fn+m is the left F-linear map given by ϕ(x⃗) := x⃗A with A :=
Sylvσ,δ

F (f, g) the matrix defined in (4.1) and lr.rk(A) (rc.rk(A)) is the left row (right
column) rank of A which means the dimension of the F-subspace spanned by the rows
(columns) of A viewed as elements of the n + m-dimensional left (right) vector space
Pn+m−1(F) over F.

Proof. The equality dim kerφ = dim kerϕ can be obtained using the identification
Pk(F) ∼= Fk+1 given by the left F-linear map pkx

k + · · ·+ p1x+ p0 7→ (pk, . . . , p1, p0).
Since R is a LPID, then we have

Rf +Rg = RM , Rf ∩Rg = Rm ,

where M := gcrd(f, g) and m := lcrm(f, g) (least common right multiple). Then there
are unique polynomials α, β ∈ R such that m = αf = βg. Moreover, by Lemma 4.1.1
3) we get also

degα = deg(m)− deg f = (n+m− degM)−m = n− degM ,

deg β = deg(m)− deg g = (n+m− degM)− n = m− degM .

Now, let (a, b) ∈ kerφ. Hence af = (−b)g ∈ Rm. Thus there exists t ∈ R such that
af = (−b)g = tm. This gives af = tαf and (−b)g = t(−β)g, i.e a = tα and b = tβ.
Therefore, by Lemma 4.1.1 3) we obtain that (a, b) = (tα, tβ) with

deg t+ (n− degM) = deg(tα) = deg a ≤ n− 1 ,

deg t+ (m− degM) = deg(tβ) = deg b ≤ m− 1 ,
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that is, deg t ≤ degM − 1 for both cases. This shows that

kerφ ⊆ {(tα, tβ) : t ∈ R , deg t ≤ degM − 1} .

Finally, let (tα, tβ) for some t ∈ R with deg t ≤ degM − 1. Then (tα, tβ) ∈ Pn−1(F)⊕
Pm−1(F) and φ((tα, tβ)) = tαf + tβg = t(αf +βg) = 0. Hence (tα, tβ) ∈ kerφ for some
t ∈ R with deg t ≤ degM − 1. This gives

kerφ = {(tα, tβ) : t ∈ R , deg t ≤ degM − 1} .

Observe that the set

(α, β), (xα, xβ), (x2α, x2β), . . . , (xdeg M−1α, xdeg M−1β)

is a left basis for kerφ. Thus it follows that dim kerφ = degM = deg gcrd(f, g). Finally,
since dim Im(ϕ) = lr.rk(A) = rc.rk(A), by the rank-nullity theorem we obtain also that
dim kerϕ = n+m− dim Im(ϕ) = n+m− lr.rk(A) = n+m− rc.rk(A).

Remark 4.1.9. Given a matrix A over a division ring F, it is known that the rank of A,
denoted by rk(A) := lr.rk(A) = rc.rk(A), is equal to the number of all non-zero rows
of the reduced-row echelon matrix of A (see [8, Theorem 1.3]). Thus, by Algorithm 7
we can easily compute rk(Sylvσ,δ

F (f, g)) (see Example 4.1.13).

Here are some examples concerning Theorem 4.1.6.

Example 4.1.10. Consider F4[x;σ, δt] with F4 = {0, 1, α, α2}, where α2 + α + 1 = 0,
σ(a) = a2 and δt(a) = t(σ(a) + a) for all a ∈ F4 and t ∈ {0, 1, α, α2}. Given f1 :=
x2 + α2x+ α and g1 := x2 + αx+ α2, we have

Rσ,δt

F4 (f1, g1) = det


α α2 1 0
t α2 + t α 1
α2 α 1 0
t α + t α2 1

 = 0

This shows that f1 and g1 have a common (non-unit) right factor, independent of
t ∈ F4. In fact, the common right factor is (x + 1), because f1 = (x + α)(x + 1) and
g1 = (x+ α2)(x+ 1). On the other hand, consider δα(a) = α(σ(a) + a) and the skew
polynomials
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f2 := (x+ 1)(x+ α) = x2 + αx , g2 := (x+ 1)(x+ α2) = x2 + α2x+ 1.

Note that (x + 1) is a common (non-unit) left factor of f2 and g2, but this does not
guarantee that Rσ,δα

F4 (f2, g2) is zero as in the commutative case. Indeed, we have

Rσ,δα

F4 (f2, g2) = det


0 α 1 0
0 α α2 1
1 α2 1 0
0 α2 α 1

 = α2 ̸= 0.

Example 4.1.11. Let F5(t) be the field of rational functions over F5 and consider
F5(t)[x;σ, δ], where σ : F5(t) → F5(t), t 7→ t5 (σ is not an automorphism by Remark
1.1.3) and δ is the classical derivation with respect to the variable t, i.e. δ := d

dt
. Given

f1 := 1
t
x(x+ 1) = 1

t
x2 + 1

t
x and g1 := (x+ t2)(x+ 1) = x2 + (t2 + 1)x+ t2, we have

Rσ,δ
F5(t)(f1, g1) = det


0 1

t
1
t

0
0 4

t2
1+4t3

t5
1
t5

t2 t2 + 1 1 0
2t t10 + 2t t10 + 1 1

 = 0.

Thus, f1 and g1 have a common right factor in F5(t)[x;σ, δ]. On the other hand, if we
consider f2 := (x+1)1

t
x = 1

t5x
2+
(

t+4
t2

)
x and g2 := (x+1)(x+t2) = x2+(t10+1)x+(t2+2t),

having (x+ 1) as a common left factor, we have

Rσ,δ
F5(t)(f2, g2) = det


0 t+4

t2
1
t5 0

0 2+4t
t3

t5+4
t10

1
t25

t2 + 2t t10 + 1 1 0
2t+ 2 t10 + 2t5 t50 + 1 1

 = k ̸= 0

where k = 1
t30 (4t56 + 4t55 + 2t54 + t26 + 2t25 + 3t24 + t23 + 4t21 + 4t20 + 2t19 + t12 + 3t10 +

2t7 + 3t6 + t5 + 2t4 + 3t3 + 3t+ 3).

Example 4.1.12. Consider C[x;σ, δ], with σ(z) = z̄ (the complex conjugation) and
δ(z) = z − z̄, for all z ∈ C. Given f = x4 + (1 + i)x2 − 4ix+ 5i and g = x3 − ix+ 2i,
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we have

Rσ,δ
C (f, g) = det



5i −4i 1 + i 0 1 0 0
10i −13i 6i 1− i 0 1 0
20i −36i 25i −8i 1 + i 0 1
2i −i 0 1 0 0 0
4i −4i i 0 1 0 0
8i −12i 6i −i 0 1 0
16i −32i 24i −8i i 0 1


= 0.

Then, by Theorem 4.1.6 we have gcrd(f, g) ̸= 1. By using the right division algorithm,
we can find gcrd(f, g) (as in the classical case):

x4 + (1 + i)x2 − 4ix+ 5i = x(x3 − ix+ 2i) + x2 + i

x3 − ix+ 2i = x(x2 + i) + 0

Hence gcrd(f, g) = x2 + i.

Example 4.1.13. Consider H[x;σ, 0], where σ(h) := ihi−1 (inner automorphism) for
all h ∈ H. Given p = x2 + (i− j)x+ k and q = x+ i in H[x;σ, 0], we have

Rσ,0
H (p, q) = Ddet


k i− j 1
i 1 0
0 i 1

 = 0

Therefore p and q have a common (non-unit) right factor in H[x;σ, 0], which must be
q = (x+i). In fact, p = x2 +(i−j)x+k = (x−j)(x+i). Given now f = x4 +kx3−jx−i
and g = x3 +j, the right (σ, δ)-Sylvester matrix of f(x) and g(x) and its upper triangular
matrix are (4.2) and (4.3), respectively. Hence we have Rσ,0

H (f, g) = 0. Therefore f and
g have a common (non-unit) right factor in H[x;σ, 0], which must be g = (x3 + j). In
fact, f = x4 + kx3 − jx− i = (x+ k)(x3 + j). Moreover, note that the echelon form of
Sylvσ,0

H (f, g) is the matrix (4.3). Therefore rk(Sylvσ,0
H (f, g)) = 4 and by Theorem 4.1.8

we have deg(gcrd(f, g)) = 3. In fact, gcrd(f, g) = x3 + j.

Remark 4.1.14. In the commutative case, it is known that the last non-zero row of the
Sylvester’s matrix, when we put it in echelon form by using only row transformations,
gives the coefficients of the greatest common divisor (see [19, Theorem 3]). However, this
is not true for the noncommutative case. In fact, given f, g ∈ H[x;σ, 0] as in Example
4.1.13, the echelon form of Sylvσ,0

H (f, g) is the matrix (4.3) and the entries of the last
non-zero row of (4.3) are different from the coefficients of gcrd(f, g) = x3 + j.

59



4.1. Right (σ, δ)-Resultant

Here are some basic properties of the right (σ, δ)-resultant.

Proposition 4.1.15. Let f, g ∈ R be two skew polynomials of non-negative degrees m
and n, respectively. The following properties hold:

1) Rσ,δ
F (g, f) = (−1)mnRσ,δ

F (f, g);

2) Rσ,δ
F (−f, g) = (−1)nRσ,δ

F (f, g) and Rσ,δ
F (f,−g) = (−1)mRσ,δ

F (f, g);

3) if g = x− a, then Rσ,δ
F (f, g) = 0 if and only if f(a) = 0. In particular, for a = 0

we have Rσ,δ
F (f, g) = f(0) (mod [F∗,F∗]);

4) if g = b0, then Rσ,δ
F (f, g) = b0σ(b0)σ2(b0) · · ·σm−1(b0) (mod [F∗,F∗]);

5) if δ = 0 and c ∈ F∗, then Rσ,0
F (cf, g) = Nσ,0

n (c)(mod [F∗,F∗]) Rσ,0
F (f, g) .

Proof. 1) The (σ, δ)-resultant Rσ,δ
F (g, f) is obtained by permuting the rows of the

Sylvester matrix Sylvσ,δ
F (f, g). The number of permutations is mn and, since the

exchange of two any rows of a matrix changes the sign of the Dieudonné determinant, it
follows that Rσ,δ

F (g, f) = (−1)mnRσ,δ
F (f, g).

2) By the properties of the Dieudonné determinant, if a row of a matrix is left
multiplied by a ∈ F∗, then Ddet is left multiplied by a (mod [F∗,F∗]). Thus, since the
first n rows of Sylvσ,δ

F (f, g) contain the coefficients of f , σ(−a) = −σ(a) and δ(−a) =
−δ(a), it follows that Rσ,δ

F (−f, g) = (−1)nRσ,δ
F (f, g). Similarly, we get Rσ,δ

F (f,−g) =
(−1)mRσ,δ

F (f, g).
3) It follows easily from the equivalence between 1) and 2) of Theorem 4.1.6.
4) If g = b0, then Sylvσ,δ

F (f, g) is a lower triangular matrix whose elements on the
main diagonal are b0, σ(b0), σ2(b0), ..., σm−1(b0). Then, the statement holds because Ddet
of a lower (or upper) triangular matrix is the coset a[F∗,F∗], where a is the (ordered)
product of the elements on the main diagonal (see [13, p. 104]).

5) Since δ = 0 and σ is an endomorphism of F, we have

Sylvσ,0
F (cf, g) =



ca0 ca1 ca2 · · · cam 0 · · · 0
0 σ(c)σ(a0) σ(c)σ(a1) · · · σ(c)σ(am−1) σ(c)σ(am) · · · 0
... ... . . . ... ... ... . . . ...
0 0 0 · · · σn−1(c)σn−1(a0) σn−1(c)σn−1(a1) · · · σn−1(c)σn−1(am)
b0 b1 b2 · · · bn 0 · · · 0
0 σ(b0) σ(b1) · · · σ(bn−1) σ(bn) · · · 0
... ... . . . ... ... ... . . . ...
0 0 0 · · · σm−1(b0) σm−1(b1) · · · σm−1(bn) .
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Noting that the first n rows of the above matrix are multiplied on the left by c, σ(c), σ2(c),
..., σn−1(c), respectively, it follows that

Rσ,0
F (cf, g) = σn−1(c) · · ·σ(c)c (mod [F∗,F∗])Rσ,0

F (f, g) = Nσ,0
n (c) (mod [F∗,F∗])Rσ,0

F (f, g) .

Remark 4.1.16. The known property of “factorization" of the classical resultants, that
is, R(f1f2, g) = R(f1, g) · R(f2, g), is not true in general for our notion of resultant.
Indeed, if we consider the ring C[x;σ, δ], with σ(z) = z̄ and δ(z) = z − z̄, for all z ∈ C
and the skew polynomials f1 = x2 + 1, f2 = x2 + i and g = 2x2 + x+ 1, we have

Rσ,δ
C (f1, g) ·Rσ,δ

C (f2, g) = det


1 0 1 0
0 1 0 1
1 1 2 0
0 1 1 2

 · det


i 0 1 0
2i −i 0 1
1 1 2 0
0 1 1 2

 = 10 + 10i

However,

Rσ,δ
C (f1f2, g) = det



5i −4i 1 + i 0 1 0
10i −13i 6i 1− i 0 1
1 1 2 0 0 0
0 1 1 2 0 0
0 0 1 1 2 0
0 0 0 1 1 2


= 650 + 90i.

This shows that in general Rσ,δ
F (f1f2, g) ̸= Rσ,δ

F (f1, g) ·Rσ,δ
F (f2, g), also when δ = 0.

Lemma 4.1.17 (Cramer’s Rule). Let A be a non-singular square matrix n × n with
entries in F and consider the linear system A · x = b for some column vector b, where
x is the transpose of the unknown vector (x1, x2, . . . , xn). If we write A = [v1| . . . |vn],
where the vi’s are the columns of A, then we have for i = 1, . . . , n

xi (mod [F∗,F∗]) = (Ddet(A))−1Ddet(Ai),

where Ai := [v1| . . . |b| . . . |vn] is the matrix A with the i-th column vi replaced by b.

Proof. Write A−1vj = ej for j = 1, . . . , n, where the ej’s are the canonical column
vectors. Then we have

A−1 ·
[
v1| · · · |b| · · · |vn

]
= [e1| · · · |x| · · · |en] .
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Therefore, by [7, Theorem 4.5] we deduce that

xi (mod [F∗,F∗]) = Ddet [e1| · · · |x| · · · |en] = Ddet
(
A−1

)
Ddet

[
v1| · · · |b| · · · |vn

]
,

obtaining the formula of the statement having in mind that Ddet (A−1) = (DdetA)−1.

Remark 4.1.18. In a similar way as in Lemma 4.1.17, one can obtain the following
row version of the Cramer’s Rule. Let B be a square matrix n × n with entries in F
and consider the linear system y ·B = c for some row vector c, where y is the unknown
vector (y1, y2, . . . , yn). If we denote by wj the j-th row of B, then by [7, Theorems 3.9
and 4.5] we have for j = 1, . . . , n

yj (mod [F∗,F∗]) = DdetBj(DdetB)−1 ,

where Bj is the matrix B with the j-th row wj replaced by c.

Proposition 4.1.19. Let f, g ∈ R be two skew polynomials of positive degree. Then,
there are A,B ∈ R such that

Af +Bg = Rσ,δ
F (f, g) ,

where the coefficients of A and B (mod [F∗,F∗]) are integer polynomials in the entries
of Sylvσ,δ

F (f, g).

Proof. Assume that Rσ,δ
F (f, g) ̸= 0, otherwise we are done by choosing A = B = 0. Let

f = a0x
l + · · ·+ al , a0 ̸= 0 ,

g = b0x
m + · · ·+ bm , b0 ̸= 0 ,

A′ = c0x
m−1 + · · ·+ cm−1 ,

B′ = d0x
l−1 + · · ·+ dl−1 ,

such that A′f +B′g = 1, where the coefficients c0, . . . , cm−1, d0, . . . , dl−1 are unknowns
in F. If we compare coefficients of powers of x in the formula A′f +B′g = 1, then we
get the following system of linear equations similar to (4.1) with unknowns ci, di:

(cm−1, . . . , c0, dl−1, . . . , d0) · Sylvσ,δ
F (f, g) = (0, . . . , 0, 1) . (4.4)

By applying Remark 4.1.18 to the square linear system (4.4), we obtain that all the ci’s
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and the di’s are as follow:

ci (mod [F∗,F∗]) = Rσ,δ
F (f, g)−1Ddet Sylvσ,δ

F (f, g)m−i , for i = 0, · · · ,m− 1 ,

dj (mod [F∗,F∗]) = Rσ,δ
F (f, g)−1Ddet Sylvσ,δ

F (f, g)m+l−j , for j = 0, · · · , l − 1 ,

where Sylvσ,δ
F (f, g)k is the matrix Sylvσ,δ

F (f, g) with the k-th row replaced by the row
vector (0, . . . , 0, 1). Defining A := Rσ,δ

F (f, g)A′, B := Rσ,δ
F (f, g)B′, we see that Af+Bg =

Rσ,δ
F (f, g) and the coefficients of A and B (mod [F∗,F∗]) are given by expressions of type

Ddet Sylvσ,δ
F (f, g)h for some h = 1, . . . ,m+ l. We conclude by noting that these latest

expressions are simply integer polynomials in the entries of Sylvσ,δ
F (f, g).

Now, let us show that under certain conditions, it is possible to add a sixth equivalent
condition in Theorem 4.1.6. To do that, we first need to introduce the following definition.

Definition 4.1.20. We say that F̃[x; σ̃, δ̃] is a polynomial ring extension of R if F is a
subring of F̃, σ̃|F = σ and δ̃|F = δ.

Remark 4.1.21. Since R ⊆ F̃[x; σ̃, δ̃], σ̃|F = σ and δ̃|F = δ, it is evident that R is closed
with respect to the sum and the product of polynomials in F̃[x; σ̃, δ̃]. Moreover, since R
contains the multiplicative identity of F̃[x; σ̃, δ̃] (because F is a subring of F̃), it follows
that R is a subring of F̃[x; σ̃, δ̃].

Definition 4.1.20 is motivated by the following situation.

Consider C[x, σ, δ], where σ is the complex conjugation and δ is an inner derivation
given by δ(z) = z − σ(z) = 2Im(z)i, for all z ∈ C. Note that the skew polynomial
f = x2 + i has no right roots in C. In fact, for all z ∈ C, we have

f(z) = N2(z) + iN0(z) = |z|2 + (2Im(z) + 1)i ̸= 0.

The natural question is then the following: where does f have a right root? Unlike the
classical case, i.e. when σ = Id and δ = 0, it will not be sufficient to extend C to find
a right root of f , but it will be necessary to extend also the maps σ and δ, because
the evaluation of f at such a root will depend on the action of these new functions.
Therefore, we need to construct a polynomial ring extension of C[x;σ, δ] for finding a
right root of f . More in general, we will construct a polynomial ring extension F̃[x; σ̃, δ̃]
of C[x;σ, δ] such that any irreducible skew polynomial g ∈ C[x;σ, δ] has a right root in
F̃[x; σ̃, δ̃]. Let H be the division ring of real quaternions. If we define over H the maps
σ̃(t) := a− bi+ cj − dk and δ̃(t) := t− σ̃(t), for all t := a+ bi+ cj + dk ∈ H, it follows
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that σ̃ is an automorphism of H such that σ̃|C = σ and δ̃ is a σ̃-derivation such that
δ̃|C = δ. Thus, H[x; σ̃, δ̃] is a polynomial ring extension of C[x;σ, δ]. Moreover, since
every non-constant skew polynomial g ∈ H[x;σ, δ] splits into linear factors in H[x;σ, δ]
independently of σ and δ (see [28, Corollary 3]), it follows that g has all its roots in
H[x;σ, δ]. In particular, the skew polynomial f = x2 + i ∈ C[x;σ, δ] will have its roots
in H[x; σ̃, δ̃]. Therefore, H[x; σ̃, δ̃] it looks like as a “closure" of C[x;σ, δ].

Remark 4.1.22. Let F = Fq be a finite field with q elements, where q = pm for some
prime p and m ∈ Z≥1. Given any field extension F̃/Fq and any automorphism σ of Fq,
that is, σ(a) := apj for any a ∈ Fq and some integer j such that 1 ≤ j ≤ m, we see that
one can always extend trivially σ to an automorphism σ̃ : F̃ → F̃ such that σ̃|Fq = σ

by defining σ̃(b) := bpj for any b ∈ F̃q. Moreover, since any σ-derivation δ is an inner
derivation (see Proposition 1.1.4), that is, δβ(a) := β(σ(a)− a) for any a ∈ Fq and some
β ∈ Fq, we can also extend trivially δβ to a σ̃-derivation δ̃β : F̃→ F̃ such that δ̃β |Fq

= δβ

by defining δ̃β(b) := β(σ̃(b) − b) for any b ∈ F̃. This gives a special polynomial ring
extension F̃[x; σ̃, δ̃] of Fq[x;σ, δ] such that N σ̃,δ̃

i (y) = Nσ,δ
i (y) for any y ∈ F̃ and i ∈ Z≥0.

The above remark shows that if F is a finite division ring (i.e. a finite field), then we
can always construct a suitable polynomial ring extension. So, by Remark 4.1.22 we
can obtain the following result.

Theorem 4.1.23. Two non-constant skew polynomials f, g ∈ Fq[x;σ, δ] have a com-
mon right root in some polynomial ring extension F̃[x; σ̃, δ̃] of Fq[x;σ, δ] if and only if
Rσ,δ
Fq

(f, g) = 0.

Proof. If f(x) and g(x) have a common right root α in some polynomial ring extension
F̃[x; σ̃, δ̃] of Fq[x;σ, δ], then f(x) = f1(x)(x − α) and g(x) = g1(x)(x − α), for some
f1(x), g1(x) ∈ F̃[x; σ̃, δ̃]. By Theorem 4.1.6, since f(x) and g(x) have a common (non-
unit) right factor (x − α) in F̃[x; σ̃, δ̃] it follows that Rσ̃,δ̃

F̃ (f, g) = 0. However, since
σ̃|Fq = σ and δ̃|Fq = δ, we obtain that Rσ,δ

Fq
(f, g) = Rσ̃,δ̃

F̃ (f, g) = 0. Conversely, if
Rσ,δ
Fq

(f, g) = 0 then f and g have a common (non-unit) right factor h(x) := ∑
i hix

i ∈
Fq[x;σ, δ]. Thus, we can write f(x) = f ′(x)h(x) and g(x) = g′(x)h(x), for some
f ′(x), g′(x) ∈ Fq[x;σ, δ]. If h(x) has a right root in Fq then we are done. Otherwise,
since any endomorphism σ of Fq is an automorphism of the form σ(a) = apj for
some integer j such that 1 ≤ j ≤ m and each δ is an inner derivation, observe that∑

i hiN
σ,δ
i (y) ∈ Fq[y]. Therefore, from classical field theory it follows that there exists

a field extension F̃ of Fq such that ∑i hiN
σ,δ
i (ỹ) = 0 for some ỹ ∈ F̃. So considering
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the special polynomial ring extension F̃[x; σ̃, δ̃] of Fq[x;σ, δ] of Remark 4.1.22 with
F̃ as above, we have h(ỹ) = ∑

i hiN
σ̃,δ̃
i (ỹ) = ∑

i hiN
σ,δ
i (ỹ) = 0 in F̃[x; σ̃, δ̃]. Since

Fq[x;σ, δ] ⊆ F̃[x; σ̃, δ̃], we can conclude by Theorem 1.1.18 that there exists ỹ ∈ F̃ such
that f(ỹ) = g(ỹ) = 0 in F̃[x; σ̃, δ̃], that is, f and g have a common right root in some
polynomial ring extension of R.

Corollary 4.1.24. Let F be a division ring and let f, g ∈ R be two non-constant skew
polynomials. If f and g have a common right root in some polynomial ring extension
F̃[x; σ̃, δ̃] of R, then Rσ,δ

F (f, g) = 0.

Proof. It follows easily from the first part of the proof of Theorem 4.1.23.

An interesting problem would be to determine, in general, when the reciprocal of
Corollary 4.1.24 is true. We know that if Rσ,δ

F (f, g) = 0 then f and g have a common
(non-unit) right factor h ∈ R. Then, the existence of a common right root between f

and g is reduced to guarantee the existence of some polynomial ring extension where h
has a right root. If F = Fq is a finite field, then we have seen in Theorem 4.1.23 that for
any skew polynomial h ∈ Fq[x;σ, δ] we can find a polynomial ring extension where h
has a right root. If F = C, then for the case C[x;σ, δ] with σ the complex conjugation
and δ an inner derivation, we know that H[x;σ, δ] is a “closure" of C[x;σ, δ]. Therefore,
every irreducible skew polynomial h ∈ C[x;σ, δ] has a right root in H[x;σ, δ] and then
the reciprocal of Corollary 4.1.24 is true also in this case.

Thus, one could ask in which other cases the reciprocal of Corollary 4.1.24 is true.
The following result gives a partial answer when F is an infinite division ring.

Proposition 4.1.25. Let F be an infinite division ring and let σ be an inner automor-
phism of F. Skew polynomials f, g ∈ F[x;σ] = F[x;σ, 0] have a common right root in
some polynomial ring extension F̃[x; σ̃] of F[x;σ] if and only if Rσ,0

F (f, g) = 0.

Proof. By Corollary 4.1.24, the left-to-right implication is true. Conversely, suppose that
Rσ,0
F (f, g) = 0. Then f(x) = a(x)h(x) and g(x) = b(x)h(x), for some a(x), b(x), h(x) ∈
F[x;σ] with h(x) := ∑n

i=0 hix
i ∈ F[x;σ] of positive degree. If h(x) has a right root in F,

then we are done. Otherwise, since σ is an inner automorphism, that is, σ(a) := g−1ag

for all a ∈ F and g ∈ F∗, we have

Nσ,0
i (a) := Ni(a) = g1−i(ag)ig−1, for all a ∈ F, i ∈ Z≥0.

Then, we get∑n
i=0 hiNi(a) = ∑n

i=0 hig
1−i(ag)ig−1 = (∑n

i=0 hig
1−i(ag)i)g−1 = (∑n

i=0 h
′
ib

i)g−1
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4.1. Right (σ, δ)-Resultant

where b := ag and h′
i := hig

1−i for all i = 0, 1, ..., n. Since ∑n
i=0 hiNi(a) = 0 if and

only if ∑n
i=0 h

′
ib

i = 0, it is sufficient to guarantee the existence of a right root of
p(y) := ∑n

i=0 h
′
ib

i ∈ F[y]. By [10, Theorem 8.5.1], there exists a division ring extension
(or skew field extension) F̃ of F such that p has a right root, say p(α) = ∑n

i=0 h
′
iα

i = 0
for some α ∈ F̃. Thus, defining σ̃(z) := g−1zg for all z ∈ F̃ and putting β := αg−1 ∈ F̃,
we have

h(β) =
n∑

i=0
hiN

σ̃,0
i (β) =

n∑
i=0

hiNi(β) =
(

n∑
i=0

h′
i(βg)i

)
g−1 = p(βg)g−1 = p(α)g−1 = 0

in F̃[x; σ̃]. Since F[x;σ] ⊆ F̃[x; σ̃], we can conclude again by Theorem 1.1.18 that there
exists β ∈ F̃ such that f(β) = g(β) = 0 in F̃[x; σ̃], that is, f and g have a common right
root in some polynomial ring extension of F[x;σ].

Remark 4.1.26. Let F be an infinite division ring. If F is finite dimensional over
its center Z, then every automorphism of F over Z is inner (see [10, Corollary 3.3.6]).
Therefore, under this hypothesis, the result of Proposition 4.1.25 still holds.

Corollary 4.1.27. Let F be an infinite division ring, σ an inner automorphism and δ
an inner derivation of F. Skew polynomials f, g ∈ F[x;σ, δ] have a common right root in
some polynomial ring extension F̃[x; σ̃, δ̃] of F[x;σ, δ] if and only if Rσ,δ

F (f, g) = 0.

Proof. By Corollary 4.1.24, the left-to-right implication is true. Conversely, if Rσ,δ
F (f, g) =

0, then by Theorem 4.1.6 f(x) and g(x) have a common (non-unit) right factor in F[x;σ, δ].
Since σ, δ are inner, i.e. σ(a) := g−1ag and δ(a) := σ(a)v− va with g ∈ F∗ and v ∈ F for
all a ∈ F, then by the change of variable x′ := x+v, we have a ring isomorphism between
F[x;σ, δ] and F[x′;σ] (see [9, p. 295]). Then it follows that f(x′ − v), g(x′ − v) have a
common (non-unit) right factor in F[x′;σ] and therefore Rσ,δ

F (f(x′ − v), g(x′ − v)) = 0.
Thus, by Proposition 4.1.25 f(x′ − v) and g(x′ − v) have a common right root in some
polynomial ring extension F̃[x′; σ̃] of F[x′;σ], where σ̃(z) := g−1zg for all z ∈ F̃. Now,
constructing the ring isomorphism φ̃ between F̃[x′, σ̃] and F̃[x; σ̃, δ̃] (by the change of
variable x := x′ − v), where δ̃(z) := σ̃(z)v − va for all z ∈ F̃, it follows that f(x), g(x)
have a common right root in F̃[x; σ̃, δ̃].

F[x;σ, δ] F[x′;σ]

F̃[x; σ̃, δ̃] F̃[x′; σ̃]

i

φ

j

φ̃
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4.2 Left (σ, δ)-Resultant

In Examples 4.1.10 and 4.1.11 we have seen that in general the condition Rσ,δ
F (f, g) = 0

is not related with the existence of common (non-unit) left factor of f and g. From
this, it seems interesting to study the possibility of defining a left (σ, δ)-resultant which
allows us to guarantee the existence of a common (non-unit) left factor for two skew
polynomials. Since not every endomorphism σ over a division ring F is an automorphism
(see Remark 1.1.3), we would like to emphasize the fact that in general the left-hand
division of two skew polynomials cannot be performed in R (see e.g. [27]). On the other
hand, under the assumption that σ is an automorphism, one can give a left-hand version
of some of the main results shown in § 4.1.

Keeping in mind that if σ is an automorphism then R is a left Euclidean domain
and hence a RPID (see [27, Theorem 6]), it is possible to give a left version of Lemma
4.1.2 as follows.

Lemma 4.2.1. Let σ be an automorphism of F. Two non-constant skew polynomials
f, g ∈ R of respective degrees m and n, have a common (non-unit) left factor in R if
and only if there exist skew polynomials c, d ∈ R such that fc+ gd = 0, deg(c) < n and
deg(d) < m.

By Lemmas 1.1.12 and 4.2.1, we can define a left (σ, δ)-resultant as follows. Let

f = amx
m + ...+ a1x+ a0, am ̸= 0 , g = bnx

n + ...+ b1x+ b0, bn ̸= 0 ,
c = cn−1x

n−1 + ...+ c1x+ c0 , d = dm−1x
m−1 + ...+ d1x+ d0

be skew polynomials as in Lemma 4.2.1. By Lemma 1.1.12, we can write

f = xmAm + ...+ xA1 + A0, Am ̸= 0 , g = xnBn + ...+ xB1 +B0, Bn ̸= 0 ,
c = xn−1Cn−1 + ...+ xC1 + C0 , d = xm−1Dm−1 + ...+ xD1 +D0

where Ai, Bi, Ci, Di are given by (1.7). Then, by (1.5) we have

fc =
m∑

i=0

n−1∑
j=0

 j∑
k=0

xi+j−k(−1)kTk,j−k(Ai) · Cj


gd =

n∑
i=0

m−1∑
j=0

 j∑
k=0

xi+j−k(−1)kTk,j−k(Bi) ·Dj


Thus the equation fc+ gd = 0 of Lemma 4.2.1 gives a homogeneous system of m+ n
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4.2. Left (σ, δ)-Resultant

linear equations with m+ n unknowns C0, ..., Cn−1, D0, ..., Dm−1, that is

M · (C0, ..., Cn−1, D0, ..., Dm−1)T = (0, ..., 0) , (4.5)

where M is the following (m+ n)× (m+ n) matrix:

M =



A0 A1 A2 · · · Am 0 0 0 · · · 0

−T1,0(A0)
1∑

i=0
(−1)1+iT1−i,i(A1−i)

1∑
i=0

(−1)1+iT1−i,i(A2−i) · · ·
1∑

i=0
(−1)1+iT1−i,i(Am−i) T0,1(Am) 0 0 · · · 0

T2,0(A0)
1∑

i=0
(−1)2+iT2−i,i(A1−i)

2∑
i=0

(−1)2+iT2−i,i(A2−i) · · ·
2∑

i=0
(−1)2+iT2−i,i(Am−i)

2∑
i=1

(−1)2+iT2−i,i(Am+1−i) T0,2(Am) 0 · · · 0

−T3,0(A0)
1∑

i=0
(−1)3+iT3−i,i(A1−i)

2∑
i=0

(−1)3+iT3−i,i(A2−i) · · ·
3∑

i=0
(−1)3+iT3−i,i(Am−i)

3∑
i=1

(−1)3+iT3−i,i(Am+1−i)
3∑

i=2
(−1)3+iT3−i,i(Am+1−i) T0,3(Am) · · · 0

... ... ... · · · ... ... ... . . . . . . ...

(−1)n−1Tn−1,0(A0)
1∑

i=0
(−1)n−1+iTn−1−i,i(A1−i)

2∑
i=0

(−1)n−1+iTn−1−i,i(A2−i) · · ·
m∑

i=0
(−1)n−1+iTn−1−i,i(Am−i)

n−1∑
i=1

(−1)n−1+iTn−1−i,i(Am+1−i)
n−1∑
i=2

(−1)n−1+iTn−1−i,i(Am+2−i)
n−1∑
i=3

(−1)n−1+iTn−1−i,i(Am+3−i) · · · T0,n−1(Am)

B0 B1 B2 · · · Bn 0 0 0 · · · 0

−T1,0(B0)
1∑

i=0
(−1)1+iT1−i,i(B1−i)

1∑
i=0

(−1)1+iT1−i,i(B2−i) · · ·
1∑

i=0
(−1)1+iT1−i,i(Bn−i) T0,1(Bn) 0 0 · · · 0

T2,0(B0)
1∑

i=0
(−1)2+iT2−i,i(B1−i)

2∑
i=0

(−1)2+iT2−i,i(B2−i) · · ·
2∑

i=0
(−1)2+iT2−i,i(Bn−i)

2∑
i=1

(−1)2+iT2−i,i(Bn+1−i) T0,2(Bn) 0 · · · 0

−T3,0(B0)
1∑

i=0
(−1)3+iT3−i,i(B1−i)

2∑
i=0

(−1)3+iT3−i,i(B2−i) · · ·
3∑

i=0
(−1)3+iT3−i,i(Bn−i)

3∑
i=1

(−1)3+iT3−i,i(Bn+1−i)
3∑

i=2
(−1)3+iT3−i,i(Bn+1−i) T0,3(Am) · · · 0

... ... ... · · · ... ... ... . . . . . . ...

(−1)m−1Tm−1,0(B0)
1∑

i=0
(−1)m−1+iTm−1−i,i(B1−i)

2∑
i=0

(−1)m−1+iTm−1−i,i(B2−i) · · ·
n∑

i=0
(−1)m−1+iTm−1−i,i(Bn−i)

m−1∑
i=1

(−1)m−1+iTm−1−i,i(Bn+1−i)
m−1∑
i=2

(−1)m−1+iTm−1−i,i(Bn+2−i)
m−1∑
i=3

(−1)m−1+iTm−1−i,i(Bn+3−i) · · · T0,m−1(Bn)



The first n rows involve the Ai’s and the last m rows involve the Bj’s.

From the preceding (m+n)×(m+n) matrix M , we can define the left (σ, δ)-resultant.

Definition 4.2.2. Let f, g ∈ R be skew polynomials of non-negative degrees m and
n, respectively, with σ an automorphism. The above matrix M will be called the left
(σ, δ)-Sylvester matrix of f and g, we will denote by Sylvσ,δ

F,L(f, g). Finally, we define
the left (σ, δ)-resultant of f and g (over F), denoted by Rσ,δ

F,L(f, g), as the Dieudonné
determinant of M .

Remark 4.2.3. If δ = 0, then formula (1.7) can be written as Ai = σ−i(ai) for all
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4.2. Left (σ, δ)-Resultant

i = 1, ...,m, and A0 = a0. Hence Rσ,0
F,L(f, g) = Ddet(M) with

M =



a0 σ−1(a1) σ−2(a2) · · · σ−m(am) 0 · · · 0
0 σ−1(a0) σ−2(a1) · · · σ−m(am−1) σ−(m+1)(am) · · · 0
... ... . . . ... ... ... . . . ...
0 0 0 · · · σ−(n−1)(a0) σ−n(a1) · · · σ−(n−1+m)(am)
b0 σ−1(b1) σ−2(b2) · · · σ−n(bn) 0 · · · 0
0 σ−1(b0) σ−2(b1) · · · σ−n(bn−1) σ−(n+1)(bn) · · · 0
... ... . . . ... ... ... . . . ...
0 0 0 · · · σ−(m−1)(b0) σ−m(b1) · · · σ−(m−1+n)(bn)


To obtain an algorithm that allows us to compute the left (σ, δ)-Sylvester matrix

(see Definition 4.2.2), we will need first the Algorithm 9 below.

Algorithm 9 Computation of Ai

Input: f(x) =
∑m

i=0 aix
i and i ∈ {0, . . . , m}

Output: Ai

1: Ai ← 0
2: for j ← 0 to m + 1− i do
3: Ai ← Ai + (−1)j · Tj,i(aj+i−1)
4: end for
5: return Ai

By Algorithms 2 and 9, we can produce now the following algorithm which allows us
to compute Sylvσ,δ

F,L(f, g).

Algorithm 10 Computation of the left (σ, δ)-Sylvester matrix of f(x) = a0 + a1x +
· · ·+ amx

m and g(x) = b0 + b1x+ · · ·+ bnx
n.

Input: f, g ∈ R.
Output: Left (σ, δ)-Sylvester matrix M of f and g.
1: M1 ←

(
A0 A1 A2 · · · An+m

)
2: M2 ←

(
B0 B1 B2 · · · Bn+m

)
3: for p← 1 to n− 1 do
4: M3 ←

(
(−1)p · Tp,0(A0)

)
5: for q ← 1 to n + m− 1 do
6: Z1 ← 0
7: for l← 0 to p do
8: if 0 ≤ q − l ≤ m then
9: Z1 ← Z1 + Tp−l,l(Aq−l)

10: end if
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4.2. Left (σ, δ)-Resultant

11: end for
12: M3 ←

(
M3 Z1

)
13: end for
14: M1 ←

(
M1
M3

)
15: end for
16: for p← 1 to m− 1 do
17: M4 ←

(
Tp,0(B0)

)
18: for q ← 1 to n+m− 1 do
19: Z2 ← 0
20: for l← 0 to p do
21: if 0 ≤ q − l ≤ n then
22: Z2 ← Z2 + Tp−l,l(Bq−l)
23: end if
24: end for
25: M4 ←

(
M4 Z2

)
26: end for
27: M2 ←

(
M2
M4

)
28: end for
29: M ←

(
M1
M2

)
30: return M

As an application of the above algorithms, we can calculate in Magma the left
(σ, δ)-Sylvester matrix of f = x2 + wx and g = x2 + w2x + 1 in F4[x;σ, δ], where
F4 = {0, 1, w, w2}, σ(a) = a2, δ(a) = w(σ(a) + a) for every a ∈ F4. Note that in this
situation σ−1 = σ.

First, write the following instructions in Magma:

F<w>:=GF(4);
\\ In this situation S must be the inverse of sigma
S:= map< F -> F | x :-> x^2 >;
D:= map< F -> F | x :-> w*(S(x)+x) >;

Then, by typing the next Magma program

Program 8.

PosComT:=function(i,j,a)
C:= [u: u in [VectorSpace(GF(2),i+j)!v : v in
VectorSpace(GF(2),i+j)]| Weight(u) eq i];
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A:=0;
for k in [1..#C] do
b:=a;
for l in [1..i+j] do
if C[k][l] eq 1 then
b:=D(S(b));
else
b:=S(b);

end if;
end for;

A:=A+b;
end for;
return A;
end function;

Ai:=function(f,i)
A:=0;
for j in [0..#f-i] do
A:=A+(-1)^(j)*PosComT(j,i-1,f[j+i]);

end for;
return A;
end function;

SumPosComT:=function(f,i,j)
AA:=0;
for k in [0..i-1] do
if j-k ge 1 and j-k le #f then
if i-1 ne 0 then
AA:=AA+(-1)^(i-1+k)*PosComT(i-1-k,k,Ai(f,j-k));
else
AA:=(-1)^(i-1+k)*Ai(f,j-k);

end if;
end if;

end for;
return AA;
end function;
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LeftSylvesterMatrix:=function(f,g)
m:=#f-1;
n:=#g-1;
if n ne 0 then
M1:= Matrix(F,1,n+m,[SumPosComT(f,s,t): s in {1}, t in {1..n+m}]);
for p in [2..n] do
X:=Matrix(F,1,n+m,[SumPosComT(f,s,t): s in {p}, t in {1..n+m}]);
M1:=VerticalJoin(M1,X);

end for;
else
M1:=RemoveRow(ZeroMatrix(F,1,n+m),1);

end if;
if m ne 0 then
M2:= Matrix(F,1,n+m,[SumPosComT(g,s,t): s in {1}, t in {1..n+m}]);
for p in [2..m] do
X:=Matrix(F,1,n+m,[SumPosComT(g,s,t): s in {p}, t in {1..n+m}]);
M2:=VerticalJoin(M2,X);

end for;
else
M2:=RemoveRow(ZeroMatrix(F,1,n+m),1);

end if;
M:=VerticalJoin(M1,M2);
return M;
end function;

and writing the following instruction

LeftSylvesterMatrix([0,w,1],[1,w^2,1]);

we obtain

S := Sylvσ,δ
F4,L(f, g) =


w w2 1 0
w 1 w 1
w2 w 1 0
w 0 w2 1

 . (4.6)

By using Rσ,δ
F,L(f, g), we can give a left-hand version of Theorem 4.1.6 as follows.
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Theorem 4.2.4. Let σ be an automorphism of F and let f, g ∈ R be two skew polynomials
of positive degree m and n, respectively. Then the following conditions are equivalent:

1) Rσ,δ
F,L(f, g) = 0;

2) f and g have a common (non-unit) left factor in R;

3) gcld(f, g) ̸= 1 (where "gcld" means greatest common left divisor);

4) there are no polynomials p, q ∈ R such that fp+ gq = 1;

5) fR+ gR ⊊ R.

Proof. Similar to Theorem 4.1.6.

Example 4.2.5. Consider F4[x;σ, δ] with F4 = {0, 1, w, w2}, where w2 + w + 1 = 0,
σ(a) = a2 and δ(a) = w(σ(a) + a) for all a ∈ F4. In Example 4.1.10 we have seen that
given f := (x + 1)(x + w) = x2 + wx and g := (x + 1)(x + w2) = x2 + w2x + 1 we
have Rσ,δ

F4 (f, g) = w2 ̸= 0, but Rσ,δ
F4,L(f, g) = detS = 0 with S as in (4.6), according to

Theorem 4.2.4.

Let us continue here by giving left-hand versions of some previous results, whose
proofs we omit because are similar to those of Theorem 4.1.8 and Proposition 4.1.19,
respectively.

Theorem 4.2.6. Let σ an automorphism of F and Pk(F) be the set of the polynomials in
R of degree less than or equal to k with coefficients in F. Let f, g ∈ R be two polynomials
of positive degree m,n respectively. Consider the right F-linear map

φ : Pn−1(F)⊕ Pm−1(F)→ Pn+m−1(F)

defined by φ((a, b)) := fa+ gb. Then

deg gcld(f, g) = dim kerφ = dim kerϕ = n+m− rr.rk(M) = n+m− lc.rk(M) ,

where ϕ : Fn+m → Fn+m is the right F-linear map given by ϕ(x⃗) := M · x⃗T with
M := Sylvσ,δ

F,L(f, g) the matrix defined in (4.5) and rr.rk(M) (lc.rk(M)) is the right row
(left column) rank of M which means the dimension of the F-subspace spanned by the
rows (columns) of M viewed as elements of the n+m-dimensional right (left) vector
space Pn+m−1(F) over F.
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Proposition 4.2.7. Let f, g ∈ R be two skew polynomials of positive degree. Then,
there are A,B ∈ R such that

fA+ gB = Rσ,δ
F,L(f, g) ,

where the coefficients of A and B (mod [F∗,F∗]) are integer polynomials in the entries
of Sylvσ,δ

F,L(f, g).

Moreover, we can reformulate Proposition 4.1.15, Theorem 4.1.23 and Corollary
4.1.24 as follows.

Proposition 4.2.8. Let σ be an automorphism of F and let f, g ∈ R be two skew
polynomials of non-negative degree m and n, respectively. The following properties hold:

1) Rσ,δ
F,L(g, f) = (−1)mnRσ,δ

F,L(f, g).

2) Rσ,δ
F,L(−f, g) = (−1)nRσ,δ

F,L(f, g) and Rσ,δ
F,L(f,−g) = (−1)mRσ,δ

F,L(f, g).

3) If g = x− a, then Rσ,δ
F,L(f, g) = 0 if and only if fL(a) = 0. In particular, if a = 0

we have Rσ,δ
F,L(f, g) = fL(0) (mod [F∗,F∗])

4) If g = b0, then Rσ,δ
F,L(f, g) = b0σ

−1(b0)σ−2(b0) · · ·σ−(m−1)(b0) (mod [F∗,F∗]).

Proof. The proofs of the statements 1), 2) and 4) are similar to the proof of Proposition
4.1.15. Finally, statement 3) follows easily from equivalence between 1) and 2) of
Theorem 4.2.4.

Theorem 4.2.9. Two non-constant skew polynomials f, g ∈ Fq[x;σ, δ] have a com-
mon left root in some polynomial ring extension F̃[x; σ̃, δ̃] of Fq[x;σ, δ] if and only if
Rσ,δ
Fq ,L(f, g) = 0.

Proof. The left-to-right implication follows from Theorem 4.2.4 and the fact that
Rσ̃,δ̃

F̃,L
(f, g) = Rσ,δ

Fq ,L(f, g). Conversely, the proof it is analogous to the right-to-left
implication of Theorem 4.1.23 by using [2, Theorem 3.2] and by exchanging the functions
Nσ,δ

i with Mσ,δ
i of Lemma 1.1.14 together with slight modifications.

Corollary 4.2.10. Let F be a division ring and let f, g ∈ R be two non-constant skew
polynomials. If f and g have a common left root in some polynomial ring extension
F̃[x; σ̃, δ̃] of R, then Rσ,δ

F,L(f, g) = 0.
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4.3 Right and left multiple roots

In this section, under the assumption that σ is an automorphism of F, we will use the
left and right (σ, δ)-resultants to analyse the existence of right and left multiple roots of
a skew polynomial f ∈ R, respectively.

First, let us give here the next classical definition of right (left) multiplicity of roots.

Definition 4.3.1. Consider f ∈ R, a ∈ F and r ∈ Z≥1. If σ is an endomorphism
(automorphism), we say that a is a right (left) root of f of multiplicity ≥ r if the skew
polynomial (x − a)r divides f on the right (left). Moreover, we say that a is a right
(left) root of f of multiplicity r if the skew polynomial (x− a)r is the maximum power
of x− a which divides f on the right (left).

Example 4.3.2. Let F9[x;σ, 0] with σ(z) := z3 for all z ∈ F9. If x = a ∈ F9 is a right
root of g(x) ∈ F9[x;σ, 0] of multiplicity ≥ 2, then Rσ,δ

F9 (g,∆1
ag) = 0. On the other hand,

consider f(x) = (x+ 1)(x− 1) ∈ F9[x;σ, 0]. Then ∆1
1f(x) = x+ 1 and Rσ,0

F9 (f,∆1
1f) = 0,

because we can write f(x) = (x − 1)(x + 1), but x = 1 is a right root of f(x) of
multiplicity one.

Keeping in mind the previous definition, we obtain the following result.

Theorem 4.3.3. Consider f ∈ R, a ∈ F and r a positive integer such that r < deg f .
If σ is an automorphism of F, then the following are equivalent:

1) a is a right (left) root of f of multiplicity ≥ r;

2) a is a common right (left) root of f,∆1
af, . . . ,∆r−1

a f
(
f,∆1

a,Lf, . . . ,∆r−1
a,L f

)
;

3) Rσ,δ
F,L(∆j

af,∆j+1
a f) = 0

(
Rσ,δ
F (∆j

a,Lf,∆
j+1
a,L f) = 0

)
for j = 0, . . . , r − 1;

4) gcld(∆j
af,∆j+1

a f) ̸= 1
(
gcrd(∆j

a,Lf,∆
j+1
a,L f) ̸= 1

)
for j = 0, . . . , r − 1,

where ∆0
af(a) := f(a)

((
∆0

a,Lf
)

L
(a) := fL(a)

)
.

Proof. The equivalence between 1) and 2) follows from Definition 4.3.1 and the equalities

∆i
a

(
g(x)(x− a)t

)
= g(x)(x− a)t−i (∆i

a,L

(
(x− a)tg(x)

)
= (x− a)t−ig(x)) ,

(∗) ∆i
af(x) = ∆i+1

a f(x)(x−a)+∆i
af(a) (∆i

a,Lf(x) = (x−a)∆i+1
a,Lf(x)+

(
∆i

a,Lf
)

L
(a)) ,

for i = 0, . . . , r − 1, where ∆0
af(x) = f(x)

(
∆0

a,Lf(x) = f(x)
)
, while the equivalences

2) ⇔ 3) ⇔ 4) follow from Theorems 4.1.6 and 4.2.4, and the fact that for every
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4.3. Right and left multiple roots

j = 0, . . . , r − 1, we have ∆j
af(a) = 0 (∆j

a,Lf(a) = 0) ⇐⇒ Rσ,δ
F,L(∆j

af,∆j+1
a f) =

0 (Rσ,δ
F (∆j

a,Lf,∆
j+1
a,L f) = 0) by the equations (∗).

Recently, in [26] the author proposed a definition of multiplicity distinct from the
previous one, but which coincide in the commutative case (that is, when F is a field,
σ = Id and δ = 0).

Definition 4.3.4. Let σ be an endomorphism (automorphism) of F. For r ∈ Z>0, we
say that a sequence a = (a1, a2, ..., ar) ∈ Fr is a right (left) (σ, δ)-multiplicity sequence if
a1 is the only right (left) root of the skew polynomial Pa (Pa,L). Moreover, given f ∈ R,
r ∈ Z>0 and a right (left) (σ, δ)-multiplicity sequence a = (a1, ..., ar) ∈ Fr as before, we
say that a1 is a right (left) zero of f of multiplicity r via a if the skew polynomial Pa

(Pa,L) divides f on the right (left).

Finally, with this new notion of multiplicity, we get also the next result.

Theorem 4.3.5. Let σ be an automorphism of F. Consider f ∈ R, a ∈ F, r a positive
integer such that r < deg f and a = (a1, ..., ar) ∈ Fr a right (left) (σ, δ)-multiplicity
sequence. Then the following are equivalent:

1) a1 is a right (left) root of f of multiplicity r via a;

2) ∆aif(ai+1) = 0
(
(∆ai,Lf)L (ai+1) = 0

)
for all i = 0, 1, ..., r − 1, where aj =

(a1, . . . , aj) for j = 1, 2, ..., r − 1, ∆a0f(a1) := f(a1)
(
(∆a0,Lf)L (a1) := fL(a1)

)
;

3) Rσ,δ
F,L(∆aif,∆ai+1f) = 0

(
Rσ,δ
F (∆ai,Lf,∆ai+1,Lf) = 0

)
for all i = 0, 1, ..., r − 1 ;

4) gcld(∆aif,∆ai+1f) ̸= 1
(
gcrd(∆ai,Lf,∆ai+1,Lf) ̸= 1

)
for all i = 0, 1, ..., r − 1.

Proof. The equivalence between 1) and 2) follows from [26, Proposition 45] (a left-hand
version of [26, Proposition 45] with suitable modifications) and Remark 2.2.3, while the
equivalences 2) ⇔ 3) ⇔ 4) follow from Theorem 4.2.4 (Theorem 4.1.6) and the fact
that for every i = 0, . . . , r − 1, we have ∆aif(ai+1) = 0

(
(∆ai,Lf)L (ai+1) = 0

)
⇐⇒

Rσ,δ
F,L(∆aif,∆ai+1f) = 0

(
Rσ,δ
F (∆ai,Lf,∆ai+1,Lf) = 0

)
because ∆aif(x) = ∆ai+1f(x)(x−

ai+1) + ∆aif(ai+1)
(
∆ai,Lf(x) = (x− ai+1)∆ai+1,Lf(x) + (∆ai,Lf)L (ai+1)

)
.

76



Bibliography

[1] E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957.

[2] T. Baumbaugh, Results on Common Left/Right Divisors of Skew Polynomials, PhD
thesis, Clemson University, 2016.

[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265.

[4] D. Boucher, F. Ulmer, Coding with skew polynomial rings, J. Symbolic Comput. 44
(2009), no. 12, 1644–1656.

[5] D. Boucher D, P. Gaborit, W. Geiselmann, F. Ulmer, Key exchange and encryption
schemes based on non-commutative skew polynomials, Proc. PQCrypto. 6061 (2010),
126–141.

[6] D. Boucher, W. Geiselmann, F.Ulmer, Skew-cyclic codes. Appl. Algebra Engrg.
Comm. Comput. 18 (2007), no. 4, 379–389.

[7] J.L. Brenner, Applications of the Dieudonné determinant, Linear Algebra Appl. 1
(1968), 511–536.

[8] N. Buaphim, K. Onsaard , P. So-ngoen, and T. Rungratgasame, Some reviews on
ranks of upper triangular block matrices over a skew field, International Mathemati-
cal Forum (2018), vol. 13, no. 7, pp. 323–335.

[9] P.M. Cohn, Free Rings and Their Relations, London Math. Soc. Monographs, No.
2. Academic Press, London-New York, 1971.

[10] P.M. Cohn, Skew fields. Theory of general division rings, Encyclopedia of Mathe-
matics and its Applications 57, Cambridge University Press, Cambridge, 1995.

[11] J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math.
France 71 (1943), 27–45.

77



BIBLIOGRAPHY

[12] P.K. Draxl, Skew fields, London Mathematical Society Lecture Note Series 81,
Cambridge University Press, Cambridge, 1983.

[13] P. Draxl, M. Kneser, SK1 von Schiefkörpern, Seminar held at Bielefeld and Göttin-
gen, 1976, Lecture Notes in Mathematics 778, Springer, Berlin, 1980.

[14] A. Lj. Erić, Polynomial interpolation problem for skew polynomials, Appl. Anal.
Disc. Math. 1 (2007), 403–414.

[15] A. Lj. Erić, The resultant of non-commutative polynomials, Mat. Vesnik 60 (2008),
no. 1, 3–8.

[16] I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky, Discriminants, resultants, and
multidimensional determinants, Birkhäuser Boston, Inc., Boston, 1994.

[17] I.N. Herstein, Wedderburn’s theorem and a theorem of Jacobson, Amer. Math.
Monthly 68 (1961), 249–251.

[18] N. Jacobson, Finite-dimensional division algebras over fields, Springer-Verlag,
Berlin, 1996.

[19] M.A. Laidacker, Another theorem relating Sylvester’s matrix and the greatest com-
mon divisor, Math. Mag. 42 (1969), 126–128.

[20] T.Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics
131, Springer-Verlag, New York, 1991.

[21] T.Y. Lam, A. Leroy, Vandermonde and Wronskian matrices over division rings, J.
Algebra 119 (1988), no. 2, 308–336.

[22] S. Lang, Algebra. Revised third edition, Graduate Texts in Mathematics 211,
Springer-Verlag, New York, 2002.

[23] U. Martínez-Peñas, F. Kschischang, Evaluation and interpolation over multivariate
skew polynomial rings, J. Algebra 525 (2019), 111–139.

[24] U. Martínez-Peñas, Skew and linearized Reed-Solomon codes and maximum sum
rank distance codes over any division ring, J. Algebra 504 (2018), 587–612.

[25] U. Martínez-Peñas, Sum-rank BCH codes and cyclic-skew-cyclic codes, IEEE Trans.
Inform. Theory 67 (2021), no. 8, 5149–5167.

78



BIBLIOGRAPHY

[26] U. Martínez-Peñas, Zeros with multiplicity, Hasse derivatives and linear factors of
general skew polynomials, ArXiv preprint arXiv: 2103.07239 (2021).

[27] O. Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), no.
3, 480–508.

[28] S. Pumplün, Factoring skew polynomials over Hamilton’s quaternion algebra and
the complex numbers, J. Algebra 427 (2015), 20–29.

[29] B.L. Van der Waerden, Modern Algebra, Vol. I, Translated from the second revised
German edition by Fred Blum. With revisions and additions by the author. Frederick
Ungar Publishing Co., New York, N. Y., 1949.

[30] M. Voskoglou, Derivations and Iterated Skew Polynomial Rings, International
journal of applied mathematics and informatics, Issue 2, Volume 5, 2011.

[31] R. Wilson, J. Gray, Mathematical conversations: selections from The Mathematical
Intelligencer, Springer, 2001.

[32] X. Zhao, Y. Zhang, Resultants of quaternion polynomials, Hacet. J. Math. Stat. 48
(2019), no. 5, 1304–1311.

79


	Acknowledgments
	Introduction
	Introducción
	Background material
	Univariate skew polynomial rings
	Multivariate skew polynomial rings

	Derivatives for skew polynomials
	(,)-Partial derivatives
	(,)-Univariate derivatives

	Hermite-type interpolation for skew multivariate polynomial rings
	Skew Hermite-type interpolation

	Resultants of skew polynomials over division rings
	Right (,)-Resultant
	Left (,)-Resultant
	Right and left multiple roots

	Bibliography

