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Introduction

Skew polynomial rings F[z; o, §] with coefficients over a division ring F (Definition 1.1.6),
were introduced in [27] by Oystein Ore (1933), as a non-commutative generalization of
the conventional polynomial rings. The first applications of skew polynomials appear
with the work of [9, 10] and Jacobson [18] and recently, they have been used to construct
algebraic codes (e.g. see [4, 6, 25]) and for applications in cryptography [5].

Although in general F[z; o, §] behaves differently from the classical polynomial ring, it
preserves the important property of having a Euclidean division algorithm. However, this
algorithm holds for right division and not for left division, unless ¢ is an automorphism
of IF, as stated in [27, Theorem 6]. This property, allowed Lam and Leroy in [21, p. 310]
to define the evaluation of a polynomial f(z) € F[x;0,d] at any point a € F, as the
unique remainder of the right-hand division of f(x) by z — a (Definition 1.1.11), forcing
a remainder theorem as in the classical case. Having an evaluation map is key to begin
the study of the zeros of a skew polynomial, but unlike the classical case, this study is
more difficult, since in general a skew polynomial of degree n > 2 can have more than n

zeros, possibly infinite (Example 1.1.15).

On the other hand, in literature there exist multivariate generalizations of F|x; o, d],
for instance the iterated polynomial rings F[xq, 01, 01][x2, 02, 0s] - - + [T, 00, 0n] (se€ [30],
[9, p. 532]). However, to define an evaluation map that allows one to evaluate any
polynomial F' € Flzy, 01, 01][2, 09,05 - - - [y, 0pn, 0p] 18 nOt possible, because in general
unique remainder algorithms do not hold for iterated skew polynomials (see [23] for
more details). In 2019, the authors in [23] overcome this obstacle by considering an
alternative construction and introduce the so-called free multivariate skew polynomial
rings F|xy, 2, ..., x,; 0, 0] (Definition 1.2.3), showing that in this case, it is possible to
define the evaluation of any free skew polynomial F' at any point (ay, as, ..., a,) € F", as
the unique remainder of the Euclidean division on the right of ' by the polynomials

Tl — a1,Te — Ag, ..., T, — ay, (Definition 1.2.5).

In this thesis, thanks to the uniqueness of the quotient and remainder that gives
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us the right-hand division of F' € F[zy, xs, ..., x,; 0, 0] by the corresponding polynomials
T — a1, Ty — Ag, ..., Tp — Gy, We introduce for the first time the notion of right (o, d)-
partial derivative of a polynomial F' € Flxy, zy, ...., z,; 0,0] at any point (aq, ...,a,) €
F™ (Definition 2.1.1). Moreover, since in general left division does not work in the
ring Flxy, z9, ..., x,; 0, 0], we show a necessary and sufficient condition that allows the
left division of any polynomial F' € Flzy, s, ....,x,;0,0] by the skew polynomials
Tl — a1,T — Az, ..., T, — @, (Lemma 2.1.2), thus defining the corresponding left (o, d)-
evaluation (Definition 2.1.4) and the left (o, d)-partial derivatives (Definition 2.1.5).

By using the notion of (o, d)-partial derivative, we define generalized zero ideals
(Definition 3.1.1), we introduce the notion of PD-independent (see Definition 3.1.4)
which generalizes the P-independence given in [23, Definition 23] and we use these tools
to prove one of the main results of this thesis which corresponds to a Hermite-type
interpolation Theorem (Theorem 3.1.12) that generalizes the Lagrange interpolation
Theorem given in [23, Theorem 4] and extends the cases n = 1 given in [14, Theorem
4.4] and [26, Corollary 41]. Moreover, unlike [23, Theorem 4|, we provide a necessary
and sufficient condition for Hermite and Lagrange interpolation problems to admit a
solution (Theorem 3.1.12 and Corollary 3.1.13).

On the other hand, for the case n = 1, we introduce in the ring F[x; o, d] the notion of
right and left (o, §)-resultants (R%’d( f,g) and R]{?fz( f,g), respectively) of two polynomials
f,g € Flz;0,0] (Definitions 4.1.3 and 4.2.2), which in general are different in the non-
commutative case, but coincide in the commutative case (i.e. when F is a field, o = Id
and 0 = 0). Moreover, using these concepts and inspired by the classical situation,
we give results that show equivalent conditions to RZ’(f,g) = 0 (R%:(SL( f,9) = 0)
(Theorems 4.1.6, 4.2.4, 4.1.23, 4.2.9 and Proposition 4.1.25). To conclude, we use
RZ°(f,g) and R%:‘Z( f, g) to give equivalent conditions to the fact that a skew polynomial
f(z) € Flz; 0,0] admits a right or left root of positive multiplicity (Theorems 4.3.3 and
4.3.5). We would like to stress here that these latest results are a direct application of

our notion of (o, §)-derivative given for the case n =1 (Definition 2.2.1).

The thesis is organized as follows. In Chapter 1, we recall basic definitions and
notations, the main properties of the rings F[x;0,d] and F[xq, xo, ..., ,; 0, 9] and we
give some preliminary results. In Chapter 2, we introduce the notion of right and left
(0, 6)-partial derivatives (Definitions 2.1.1 and 2.1.5), their corresponding higher-order
partial derivatives (Definition 2.1.6) and prove some basic properties (Lemmas 2.1.8
and 2.1.9). Moreover, we show that every free multivariate skew polynomial can be

written in terms of its (o, §)-partial derivatives, obtaining in this context a multivariate
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Taylor-type expansion (Proposition 2.1.10). Finally, for the case n = 1, we define the
notions of right and left (o, §)-derivatives of a polynomial f(z) € F[z;0, 0] and we show
some of their properties.

In Chapter 3, by using right (o, d)-partial derivatives, we introduce the left ideals
I™(Q) (Definition 3.1.1), we define the notion of DP-independence (Definition 3.1.4) and
then we prove a Hermitian-type interpolation Theorem (Theorem 3.1.12). Moreover, we
provide a tool for construct DP-independent sets by using conjugacy classes (Proposition
3.1.18) to apply in concrete situations Theorem 3.1.12.

Finally, in Chapter 4, after some technical lemmas, we first introduce the right
(0, 0)-resultant Rf;"s(f, g) of two skew polynomials f, g € F[z;0,d] (Definition 4.1.3) and,
after some of its properties (Propositions 4.1.15 and 4.1.19), we prove three results
about equivalent conditions to RF°(f,g) = 0 (Theorems 4.1.6, 4.1.23 and Proposition
4.1.25) and we give a characterization of the degree of the greatest common right divisor
gerd(f,g) (Theorem 4.1.8) which can be also applied to check when gerd(f,g) # 1 .
Moreover, we introduce the new notion of left (¢, d)-resultant of two skew polynomials
(Definition 4.2.2), rewriting in this context some of the main previous results and giving
some equivalent conditions to the fact that a skew polynomial admits a right or left root
of positive multiplicity (Theorems 4.3.3 and 4.3.5). Furthermore, through this chapter,
we give some algorithms and their respective Magma programs [3] as computational
applications of the main algebraic results which allowed us to construct all the examples

in a very simple manner.

We hope that all the arguments presented here will be useful in the next future for
both theoretical and computational topics involving univariate and free multivariate

skew polynomials.




Introduccion

Los anillos polinomiales torcidos F[z; g, §] con coeficientes sobre un anillo de divisién
F (Definicién 1.1.6), fueron introducidos en [27] por Oystein Ore (1933) como una
generalizacion no conmutativa de los anillos polinomiales convencionales. Las primeras
aplicaciones de los polinomios torcidos aparecen con los trabajos de Cohn [9, 10] y
Jacobson [18] y recientemente, han sido utilizados para construir cddigos algebraicos

(ver por ejemplo [4, 6, 25]) y para aplicaciones en Criptografia [5].

Aunque en general Flz; 0, ] se comporta de manera diferente al anillo polinomial
clasico, conserva la importante propiedad de tener un algoritmo de division Euclidiano.
Sin embargo, este algoritmo se cumple para la division por derecha y no para la division
izquierda, a menos que o sea un automorfismo de IF, como se indica en [27, Teorema
6]. Esta propiedad, permiti6é a Lam y Leroy en [21, p. 310] definir la evaluacién de un
polinomio f(z) € F[z;0,0] en cualquier punto a € F, como el tnico resto de la divisién
a la derecha de f(x) por x — a (Definicién 1.1.11), forzando un teorema del resto como
en el caso clasico. Tener una funcién de evaluacion es clave para iniciar el estudio de
ceros de un polinomio torcido, pero a diferencia del caso clasico, este estudio es mas
delicado, ya que en general un polinomio torcido de grado n > 2 puede tener mas de n

raices, posiblemente infinitas (Ejemplo 1.1.15).

Por otro lado, en literatura existen generalizaciones multivariables de F[z; o, 0], por
ejemplo los anillos polinomiales iterados F[xy, 01, §1][xa, 02, 2] - + - [y, 00, 0,] (ver [30], [9,
p. 532]). Sin embargo, definir una funcién de evaluacién que permita evaluar un cualquier
polinomio F' € F[xy, 01, 81][xe, 02,82] - - - [Tn, 00, §,] DO es posible, ya que en general los
algoritmos de divisién con resto tinico no se cumplen para polinomios torcidos iterados
(ver [23] para mas detalles). El ano 2019, en [23] los autores superan este obstéculo,
considerando una construccion alternativa, e introducen los llamados anillos polinomiales
torcidos multivariables libres F[zy, xo, ..., 2,; 0, 6] (Definicién 1.2.3), mostrando que en
este caso, es posible definir la evaluacién de cualquier polinomio torcido libre F' en

cualquier punto (ay, as, ..., a,) € F", como el unico resto de la division Euclidiana a la
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derecha de F por z1 — a1, 9 — ag, ..., T, — a, (Definicién 1.2.5).

En esta tesis, gracias a la unicidad del cociente y resto que nos otorga la division a
la derecha de F' € F[xy, x9, ..., x,; 0, 6] por los correspondientes polinomios xy — ay, xo —
a9, ..., Tp — Ay, introducimos por primera vez la nocién de (o, d)-derivada parcial derecha
de un polinomio F' € Fxq, xa, ..., Z,; 0, ] en cualquier punto (ay, ..., a,) € F" (Definicién
2.1.1). Aun mas, dado que en general la divisién a la izquierda no funciona en el
anillo Flzy, x, ..., x,; 0, 0], mostramos una condicién necesaria y suficiente que permite
dividir a la izquierda cualquier polinomio F' € F[xy, o, ..., z,; 0, 0] por los polinomios
Tr1—aj, To—as, ..., T, —a, (Lema 2.1.2), definiendo asi la correspondiente (o, §)-evaluacién

izquierda (Definicién 2.1.4) y las (o, §)-derivadas parciales izquierdas (Definicion 2.1.5).

Usando la nocién de (o, §)-derivada parcial, definimos ideales de cero generalizados
(Definicién 3.1.1), introducimos la nocién de DP-independencia (Definicién 3.1.4) que
generaliza la P-independencia entregada en [23, Definicién 23| y luego hacemos uso
de estas herramientas para probar uno de los resultados principales de esta tesis, el
cual corresponde a un Teorema de interpolacion de tipo Hermitiano (Teorema 3.1.12)
que generaliza el Teorema de interpolacién de Lagrange dado en [23, Teorema 4] y
extiende los casos n = 1 dados en [14, Teorema 4.4] y [26, Corolario 41]. Atn mas, a
diferencia de [23, Teorema 4|, entregamos una condicién necesaria y suficiente para que
los problemas de interpolacién de Hermite y Lagrange admitan una solucién (Teorema
3.1.12 y Corolario 3.1.13).

Por otro lado, para el caso n = 1, introducimos en el anillo F|x; o, §] las nociones de
(0, 6)-resultantes derechos e izquierdos (R’ (f,g) v Rg{i( f,g), respectivamente) de dos
polinomios f, g € Flx; 0, d] (Definiciones 4.1.3 y 4.2.2), que en general son diferentes en
el caso no conmutativo, pero coinciden en el caso conmutativo, es decir, cuando F es un
campo, 0 = Id y 6 = 0. Ademas, utilizando estos conceptos e inspirados por la situacion
clasica, entregamos resultados que muestran condiciones equivalentes a RI‘E"S( f,9)=0
(R%:i(f, g) = 0) (Teoremas 4.1.6, 4.2.4, 4.1.23, 4.2.9 y Proposicion 4.1.25). Para finalizar,
utilizamos RZ°(f,g) v R%fz( f,9) para dar condiciones equivalentes al hecho que un
polinomio f(z) € F[x; 0, 0] admita una raiz derecha o izquierda de multiplicidad positiva
(Teoremas 4.3.3 y 4.3.5). Nos gustaria destacar aqui que estos tltimos resultados son
una aplicacién directa de nuestra nociéon de (o, d)-derivada dada para el caso n = 1
(Definicién 2.2.1).

La tesis estd organizada de la siguiente manera. En el Capitulo 1, recordamos
definiciones bésicas y notaciones, las principales propiedades de los anillos Flz; 0, d] y

Flxy, z9, ..., xy; 0,0] y damos algunos resultados preliminares. En el Capitulo 2, intro-

8
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ducimos la nocién de (o, §)-derivada parcial derecha e izquierda (Definiciones 2.1.1 y
2.1.5), sus correspondientes (o, d)-derivadas parciales de orden superior (Definicion 2.1.6)
y probamos algunas propiedades bésicas (Lemas 2.1.8 y 2.1.9). Ademads, mostramos que
todo polinomio torcido libre se puede escribir en funcién de sus (o, d)-derivadas parciales,
obteniendo en este contexto una expansion tipo Taylor multivariable (Proposicién 2.1.10).
Finalmente, para el caso n = 1, definimos las nociones de (o, §)-derivadas derechas e

izquierdas de un polinomio f(x) € F[z;0,d] y mostramos algunas de sus propiedades.

En el Capitulo 3, haciendo uso de las (o, §)-derivadas parciales, introducimos los
ideales izquierdos "™ () (Definicién 3.1.1), definimos la nocién de DP-independencia
(Definicién 3.1.4) y luego probamos un Teorema de interpolacién de tipo Hermitiano
(ver Teorema 3.1.12). Ademas, entregamos una herramienta para construir conjuntos
DP-independientes usando clases de conjugacion (Proposicion 3.1.18) que permite aplicar
en situaciones concretas el Teorema 3.1.12.

Finamente, en el Capitulo 4, luego de algunos lemas técnicos, introducimos el (o, §)-
resultante derecho R%"S( f,g) de dos polinomios torcidos f, g € F[z; 0, 0] (Definicién 4.1.3)
y, después de algunas de sus propiedades (Proposiciones 4.1.15 y 4.1.19), probamos
tres resultados que muestran condiciones equivalentes a R3°(f,g) = 0 (Teoremas 4.1.6,
4.1.23 y Proposicién 4.1.25) y damos una caracterizacién del grado del maximo comtn
divisor derecho gerd(f, g) (Teorema 4.1.8) que también puede ser aplicado para chequear
cuando gerd(f,g) # 1. Ademads, introducimos la nueva nocién de (o, d)-resultante
izquierdo de dos polinomios torcidos (Definicién 4.2.2), reescribiendo en este contexto
algunos de los principales resultados previos y dando algunas condiciones equivalentes
al hecho que un polinomio torcido admita una raiz derecha o izquierda de multiplicidad
positiva (Teoremas 4.3.3 y 4.3.5). Ademéds, a través de este capitulo, damos algunos
algoritmos y sus respectivos programas Magma [3] como aplicaciones computacionales de
los principales resultados algebraicos que nos han permitido construir todos los ejemplos

de forma muy sencilla.

Esperamos que todos los argumentos aqui presentados, sean ttiles en un futuro
proximo tanto para temas tedricos como computacionales, que involucren a los polinomios

torcidos univariables y multivariables libres.




Chapter 1
Background material

We provide here some basic definitions and preliminary results concerning skew polyno-
mials over division rings. The tools presented in this chapter will be useful for the later

results of this thesis.

1.1 Univariate skew polynomial rings

Denote by F a division ring (or a skew field), that is, a unitary ring (not necessarily
commutative) in which every non-zero element is invertible in F. Evidently, every field
is a division ring. The most familiar example of a division ring which is not a field
is the ring H of Hamilton’s quaternions. However, also there are interesting methods
for constructing non-commutative division rings (e.g., if R is a ring and S is a simple
module over R, then the endomorphisms ring of S is always a division ring [20, Lemma
3.6]). On the other hand, if we assume that IF is a finite division ring, then it is known
that F is a finite field (see [17, p. 250]).

To define univariate skew polynomial rings (Ore extensions), we begin by introducing

the concept of o-derivation.

Definition 1.1.1. Let ¢ : F — F be a non-zero ring endomorphism. An additive group

homomorphism § : F — F is called a o-derivation (over F) if
d(ab) = a(a)o(b) + o(a)b

for every a,b € F.

Example 1.1.2. Let ¢ : F — F be a ring homomorphism and let § € F. The map

10



1.1. Univariate skew polynomial rings

0g : F — T defined by
55(a) := o(a)f — fa

for all @ € F is a o-derivation. These kind of derivations are called in literature simply

nner derivations.

Remark 1.1.3. From Definition 1.1.1, it follows that 6(1) = §(—1) = 0. Furthermore,
o is always a monomorphism but, in general, it is not an automorphism. For instance,
in Fy(t) := {i cfog eFLlt], g # 0} (field of rational functions in the variable ¢ over
the finite field F,, with p prime), the endomorphism ¢ : F,(t) — F,(¢),z — 27 is not

surjective because ¢(F,(t)) does not contain ¢.

The role played by inner derivations when F is a field is shown by the following
result, as indicated in [9, Section 8.3] (see also [24, Proposition 39]).

Proposition 1.1.4. Let F be a field and consider an endomorphism o : F — F and
a o-derivation § : ¥ — F. If o # Id (the identity automorphism), then 6 is an inner

derivation.

Remark 1.1.5. From Proposition 1.1.4, it is natural to ask how are the Id-derivations
over a field. With respect to this question, we can distinguish two cases. If I is a finite
field then the unique /d-derivation is § = 0 (see [24, Proposition 44]). However, if I is

infinite, then it is possible to define non-zero [d-derivations. For instance, the formal

d

&> is an Id-derivation over [Fp(t).

derivation with respect to the variable ¢, given by
Following some Ore’s ideas in [27], we recall the ring of univariate skew polynomials.

Definition 1.1.6. Given a ring endomorphism o : F — [ and a o-derivation 6 : F — F,

we define the univariate skew polynomial ring, corresponding to ¢ and ¢ and denoted by
R :=F|z;0,0],

as the set of all polynomials 3>, a;z* (a; € F) with the usual sum of polynomials and the

product defined accordingly to the following rule
za = o(a)x + d(a) (1.1)

forall a € F.

11



1.1. Univariate skew polynomial rings

Example 1.1.7. Consider Fy[z;0,d,] with Fy = {0,1, a, o?}, where o* + a+ 1 = 0,
o(a) = a* and d,(a) = a(o(a) + a) for all @ € Fy. Then we have

az - o’r = a(ra?)r = a(o(a?)z + do(a?))z = o*2* + o’z |

’r - ax = o?(za)r = o(o(a)z + du(a))r = az® + x .

The previous example shows that in general the product of skew polynomials is not
commutative and that the product of two monomials is not a monomial. Moreover, let

us recall here some basic properties of R:

L. Let f(z) =Y a;x’,g(x) = > bz’ € R of degrees m and n, respectively. By (1.4),
i=1 j=1
we get f(z)g(x) = ... + ay0™(by)x™ ™™ with a,,0™(b,) # 0 (because a,,,b, # 0

and o is a monomorphism). In particular, we have deg(fg) = deg(f) + deg(g)

which implies that R has not zero divisors.

2. The Euclidean algorithm holds for right division (see [27, p. 483]). For any
f(z),g9(x) € R with g(x) # 0, there are unique ¢(x),r(z) € R such that

f(@) = q(x)g(z) + r(z)

with either deg(r) < deg(g), or r(xz) = 0. For instance, in Fy[x;0,d] with 0,0
defined as in Example 1.1.7, if we divide 23 by ax, unlike the usual division
algorithm, the action of § in general makes the quotient is not a monomial, but a

polynomial. In fact, we have z® = (a?2? + x + ) (ax).

3. An important consequence of the right division algorithm is that R is a left
principal ideal domain (LPID), i.e. any left ideal I C R has the form Rg, where
g € R is a polynomial of minimal degree among non-zero elements of /. However,
it is also widely known that if o fails to be an automorphism of F, i.e. o(F) # F,
then the left division does not work (see [27, Theorem 6]) showing that R is not
in general a right principal ideal domain (RPID).

Consider now monomials az?, ba?, '3, v7a € R. Motivated by Example 1.1.7, we will

give formulas to calculate easily the products az® - ba’ and '8 - 27 av.

Definition 1.1.8. Let a € F. We define C, 5(a) as the sum of all possible compositions (as
functions) of d copies of § and s copies of ¢ evaluated in a when (d, s) € ZxoxZxo\ (0,0),

Coo(a) = a and C44(a) = 0 otherwise. Moreover, if ¢ is an automorphism, we define

12



1.1. Univariate skew polynomial rings

T:.r(a) as the sum of all possible compositions (as functions) of ¢ copies of do~* and r
copies of 07! evaluated in a when (¢,7) € Zs¢ X Z>o \ (0,0), Too(a) = a and T;,(a) =0

otherwise.

Remark 1.1.9. From Definition 1.1.8, for all a € F and (d, s) € Z x Z we have

Cas(a) = 6(Ca-15(a)) + 0(Cas-1(a)) , Tas(a) =00 (Tamrs(a)) + 0 (Tas-i(a)) -

Lemma 1.1.10. Given a non-negative integer i and a € F, we have

z'a =" Crip(a)z’™* . (1.2)
k=0

Moreover, if o is an automorphism, we get

ar’ —zaf (1) T s (a). (13)

Proof. We prove (1.2) by induction on 4. If ¢ = 0, 1, then it is true by the definition of
Coo(a) and (1.1), respectively. So, assume that this formula is true for some i — 1 > 0,
ie. 27ta = S Cri1_x(a)x' 1. Then, by Remark 1.1.9 we obtain that

r'a = x(xi’la)

—

:x'CO,i—l( ) i- 1+ZE Clz 2((1 i- 2+:1c-Cgi_g(a)xi_3+...—I—x-C,-_LO(a)
= 0(Coi1(a))z’ + [5(Coi-1(a)) + o(Criz(a)] &' + ... + 6(Ci-10(a))
= Coyi(a)ﬂﬁi + Cl,ifl(&).’ll' -1 + 6271',2(@)1'1 2 + ...+ Ci’g(a)

= Z C]m'_k<a>l‘ N
k=0

By reasoning in a similar way, we obtain the expression for az’ as in the statement.

]

From Lemma 1.1.10, it follows that

. . . j . .
az' - b’ = Z a-Crii( TR 2B e = Z xlﬂ_k(—l)kﬁ,j_k(ﬁ)oz
k=0

13



1.1. Univariate skew polynomial rings

Furthermore, given non-zero skew polynomials

f@)=>aa’, glz) = ba? , Flx)=> '8, Gz) =) 2oy
=0 7=0 i=0 j=0

in R, we have
m n

f(x ZZ(Z;“ZC’H gk ( ij) ,

1=0 ]:0 =

F(z)

ng

i (Z IR 1)k77c,jk(5i)'%> :

k=0
In particular, if 6 = 0, then we get

a if d=s=0
Cas(a) =< o°(a) if d=0ands#0

0 if d#0
a if d=s5=0
Tas(a) =4 o7%(a) if d=0ands#0
0 if d#0

(1.4)

(1.5)

for all a € F and d, s € Z>(. Thus, the products f(x)g(x) and F(z)G(x) become simply

=0 7=0

PG = (30 (z xjaj) =3 # (B,

i=0 j=0

The next Algorithms 1 and 2 show how to compute Cy(a) and T s(a) (Definition 1.1.8).
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1.1. Univariate skew polynomial rings

Algorithm 1 Computation of Cys(a).
Input: R, d,s € Z>p and a € F
Output: C;i,(a)
1: Let Sy C Fg+s be the set of codewords with weight equal to d.

2: Cd,s(a) +~0

3: for all (s1,$2,...,84+5) € Sq do
4: b+ a

5: for i+ 1tod+ s do

6: if s; =0 then

7: b+« o(b)

8: else

9: b+« 46(b)

10: end if

11: end for

12: Cd7s(a) < Cd,s(a) +0b
13: end for

14: return Cy4(a)

Algorithm 2 Computation of 73 4(a).
Input: R, 0!, d,s e Z>p and a € F
Output: 7;(a)
1: Let Sy C Fg+s be the set of codewords with weight equal to d.

2: Tgs(a) <0

3: for all (s1,$2,...,84+5) € Sq do
4: b+ a

5: for i + 1tod+ s do

6: if s; =1 then

7 b 6(c (b))

8: else

9: b« 0'_1(6)

10: end if

11: end for

12: 7:1,5(@) A 7;175((1) +b
13: end for

14: return 7; 4(a)

For instance, let Fy[x; 0, d] be the skew polynomial ring over the finite field Fy =
{0,1,w,w?}, with o(a) = a® and 6(a) = w(o(a) + a) for all a € Fy. As an application
of Algorithm 1, let us give here for this situation the following Magma program [3] (see
Program 1).
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1.1. Univariate skew polynomial rings

We begin by typing the following instructions in Magma.

F<w>:=GF(4);
S:=map< F > F | x :=> x72 >;
D:=map< F => F | x :=> wx(S(x)+x) >;

Then, by the following instructions, we define the function “PosCom".
Program 1.

PosCom:=function(d,s,a)
C:= [u: u in [VectorSpace(GF(2),d+s)!v : v in VectorSpace(GF(2),d+s)\
11 Weight(u) eq dJ;
A:=0;
for k in [1..#C] do
b:=a;
for 1 in [1..d+s] do
if C[k][1] eq O then
b:=S(b);
else
b:=D(b);
end if;
end for;
A:=A+b;
end for;
return A;

end function;

Thus, to calculate the value of C5(w) = do?(w) + odo(w) + 02d(w), we can simply

write
PosCom(1,2,w);

which gives the answer w?. Similarly, one can write a Magma program to calculate
Tas(a) for any d,s € Z>g and a € F.

Finally, using Algorithms 1 and 2, one can compute the products f-g, F'-G € R
(see formulas (1.4) and (1.5)) by the next two algorithms (see Algorithms 3 and 4).
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1.1. Univariate skew polynomial rings

Algorithm 3 Computation of f(x) - g(x), where f(z) = ag + a1 + - + ap,x™ and
g(x) =by+ bz + -+ bya".
Input: f,geR
Output: M = f(z) - g(x)

1: M+0

2: for i «+ 1 to Degree(f) + 1 do

3 for j < 1 to Degree(g) + 1 do

4 for k< 0toi—1do
5. ne (i—1)+G—1)—k
6
7

M <M +a;—1-Cryi—1-k(bj—1) - 2"
end for
8: end for
9: end for
10: return M

Algorithm 4 Computation of F(z) - G(z), where F(x) = By + 201 + - -+ + 2™, and
G(z) =ap+za; + -+ 2 ,.

Input: FGeR

Output: M = F(x) - G(x)

1. M+ 0

2: for i < 1 to Degree(F') + 1 do

3 for j < 1 to Degree(G) + 1 do

4 for k< 0toj—1do

5: n«—@G-1)+G—-1)—k

6 M+~ M+ z™- (—1)k77€,j_1_k(bi_1) s
7 end for

8 end for

9: end for

10: return M

For instance, as an application of Algorithm 3, we give here a Magma program to
compute the products fg and gf when f = 22+ 1 and g = 22 + i are skew polynomials
in C[x;0,0] with o(z) = z and 0(2) = z — z for all z € C.

We begin by writing the following instructions:

F<i>:=ComplexField();

R<x>:=PolynomialRing(F);
S:
D:

map< F -> F | x :-> ComplexConjugate(x) >;

map< F -> F | x :-> x-ComplexConjugate(x) >;

then, using the function “PosCom" defined in Program 1, we can continue with the

following instructions to define the new function “MultPol".
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1.1. Univariate skew polynomial rings

Program 2.

MultPol:=function(f,g)
M:=0;
for i in [1..#f] do
for j in [1..#g] do
for k in [0..i-1] do
n:=(i-1)+(j-1)-k;
M:=M+f [i] *PosCom(k,i-k-1,g[j]) *x"n;
end for;
end for;
end for;
return M;

end function;

Thus, to calculate (22 4+ 1)(z? + i) and (z? +4)(2* + 1), we write in Magma

MultPol([1,0,1]1,[i,0,1]1);
MultPol([i,0,1],[1,0,11);

obtaining z* + (1 4 i)2? — 4iz + 5i and z* + (1 + i)2? + 1, respectively.

Finally, let us recall here also the process of “evaluating” a skew polynomial f(z) € R
at an element a € F. To define an evaluation map for a skew polynomial ring, we need
to consider the action of o and . Indeed, the classical map that simply replaces the
variable x with a value a € F does not work in R. So, Lam and Leroy in [21, p. 310]

defined an appropriate evaluation using the fact that R is a right Euclidean domain.

Definition 1.1.11. For a € F and f € R, where o is an endomorphism (automorphism)
of F, we define the right (left) evaluation of f at a, denoted by f(a) (fr(a)), as the
unique remainder upon right (left) division of f by z — a. In the special case when
f(a) =0 (fr(a) = 0), we say that a is a right (left) zero of f.

We can also compute the right (left) evaluation of a polynomial in R at a € F
without using the right (left) division algorithm. To do this, we first need the following

technical result.

Lemma 1.1.12. Let o be an automorphism of F. Every skew polynomial f = Y1 a;x' €

R can be represented as a polynomial with right-hand coefficients, that is, we can write

m . m
=) aa' =) 2'A,
=0 =0
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1.1. Univariate skew polynomial rings

where
Z Tii(ajri) , Yi=0,..,m. (1.7)

Proof. By Lemma 1.1.10 we have

o= $ (S0 ) = (S apt )

=0 =0

+ ( le( ) 771 1 l(ah) > + + < Z xm( 1)h_m771—mm(ah) ) -
h=1 h=m
m m— 1 m—m
=’ ( > (=1 Tjola ) ( Tja(aj+1) )+' T ( > (=D Tjm(ajem) )
j=0 j=0 J=0
and this leads to the statement. O

Lemma 1.1.13. [21, Lemma 2.4] For f(z) = Y, a;2" € Fla;0,8] and a € F, we have
fla) =X, a;N7°(a), where N&°(a) == 1 and N7 (a) := (N7 (a))a + 6(N7)(a)).

Lemma 1.1.14. [2, Theorem 3.1] Let o be an automorphism of F. For f(x) =¥, a;x’ =
Y, #'A; € Fla;0,6] and a € F, we have fr(a) = X; M7°(a)A;, where M’ (a) := 1 and
M7 (a) := ao~ (M7 () — 6o~ (M7 (a)).

)

Example 1.1.15. In Fy[z;0,0] with o(a) = a?, the binomials (z + 1), (z + o?) and
(r + «) are all right (left) factors of f(x) := 2% + 1. Thus, R is not in general a unique
factorization domain. Moreover, {1, a, o?} are right (left) zeros of f(x), showing that
in general a skew polynomial of degree n > 2 could have more than n roots, possibly
infinite. For instance, consider C|x; o, 0] with o the complex conjugation (i.e. o(w) = w

-1

for all w € C). Then, since 0~ = o, by applying Lemmas 1.1.13 and 1.1.14, we see

that all the complex numbers z such that |z| = 1 are right (left) roots of the polynomial
z* —1 € Cla;0,0].

For f(x) = g(z)h(z) € R and a € F, we do not have f(a) = g(a)h(a) in general. To
properly define the right (left) evaluation of a product, we first need the notion of the
right (left) (o, d)-conjugacy (see [21, p. 311-312] and [2, p. 24 for § = 0]).

Definition 1.1.16. Given a € F, ¢ € F* := F \ {0}, we define the right (left) (c,0)-

conjugate a® ( a ) of a with respect to ¢ as

a®:=o(c)act +0(c)c ' €F (“a:=crac ™ (c) —c (e (c) €F) .
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1.2. Multivariate skew polynomial rings

Lemma 1.1.17. [21, p. 311 for the right case|] Given a,b € F and ¢,d € F*, we have
a =a (fa=a), (a°)? = a® (4(°a) = “la) and the relation ~ (~y) defined on F as
a~b < FJeclF* suchthatb=a® (a~pb < 3IeecF* such that b= “a),

is an equivalence relation on [F.

Using Definition 1.1.16, the following result provides formulas for right (left) evaluating
a product (see [21, Theorem 2.7] and [2, Theorem 3.2 for § = 0]).

Theorem 1.1.18. Let f(z),g(x) € R and a € F. Then the following properties hold:
1) Ifg(a) = 0, then (f - g)(a) = 0; if g(a) # O then (f - g)(a) = f (a*®) g(a);

2) If gua) =0, then (g- f)p(a) = 0; if goa) # 0 then (g f)(a) = go(a)fr (*a).

Proof. The statements 1) and 2) follows directly from Theorem 2.7 of [21] and a slight

modification of its proof. O

1.2 Multivariate skew polynomial rings

As before, denote by F a division ring. Using similar notation as in [23] for positive
integers m and n, F*" will denote the set of m x n matrices over F, and F" will denote

the set of column vectors of length n over F, that is, F* = F**!L,

Following the main ideas given in [23], we begin by recalling the definition of the free
multivariate skew polynomial ring, which corresponds to a multivariate generalization
of the ring of univariate skew polynomials given in Definition 1.1.6. To do this, we need

to introduce the concept of o-vector derivation that extends Definition 1.1.1.

Definition 1.2.1. [23, Definition 1] Given a ring homomorphism

o11(a) o1a(a) -+ ora(a)
o:F—=TF"" aw— o21(a) 02,2.(a) - oan(a) ,
5us(0) Guala) - unla)
we say that
o1(a
522(1;
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1.2. Multivariate skew polynomial rings

is a o-vector derivation (over F), if it is an additive group homomorphism and satisfies
d(ab) = a(a)d(b) + 6(a)b for all a,b € F. The ring homomorphism o : F — F"*" will
be called a matriz morphism. The maps o, : F = F, 9, : F — [F are called component

functions of o and ¢, respectively.

Example 1.2.2. [23, Example 4] Let 0 : F — F"" be a matrix morphism and let
v € F". The map § : F — F" defined by d(a)y, = o(a)v — va, for all a € F, is a o-vector

derivation. When n = 1, these vector derivations are called inner derivations.
By using Definition 1.2.1, we define the ring of free multivariate skew polynomials.

Definition 1.2.3. Let 1,29, ..., x, be n pair-wise distinct letters, which we will call
variables, and we denote by M the set of all finite strings using these characters, that
is, the free (non-commutative) monoid with left basis x1, xo, ..., ,,. The empty string
will be denoted by 1, a character x; will be called a variable, an element m € M formed
by such variables will be called a monomial, and we will define its degree, denoted by
deg(m), as its length as a string. We define the Free multivariate skew polynomial ring
over [ in the variables x1, 2o, ..., x,, with matrix morphism o, o-vector derivation ¢ and
denoted by
A :=TF[x;0,d],

as the free left F-module with left basis M and product given by appending monomials
with the rule

x-a=o(a)x+0(a) (1.8)

for all a € F. Each element F'(x) € A is called a free multivariate skew polynomial, or

simply skew polynomial, and can be expressed uniquely as a left linear combination

F(x) = Z F,,m,
meM

where F,,, € F are all zero except for a finite number of monomials.

Remark 1.2.4. If we denote by x = (1,72, -+ ,z,)T € M", then (1.8) is a short form

of writing the equations:
Tr;a = Z ai,j(a)xj + 61'(01), (19)
=1

for i = 1,2,...,n. On the other hand, if we denote by Id : F — F"*" the ring morphism
given by Id(a) = al, for a € F, where I € F"™*" is the n x n identity matrix, then
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1.2. Multivariate skew polynomial rings

F[x; Id, 0] is the free conventional polynomial ring in the variables xy, o, ..., z,, (see [9,

Sec. 0.11]) which do not commute with each other, but commute with constants.

Thanks to the lack of relations among the variables, it was proven in [23, Lemma 5]
that, for any ay, as, ...,a, € F and any F(x) € A, there exist unique G1(x), Ga(x), ...,
Gn(x) € A and b € F such that

F(x) :ZGi(x)(xi—ai)—l—b (1.10)

Hence, we may define the right (o, d)-evaluation of F' at a € F™ as follows.

Definition 1.2.5. [23, Definition 9] For a = (a,as, -+ ,a,) € F" and any skew
polynomial F' € A, we define its right evaluation at a, denoted by F'(a), as the unique
constant b € F of (1.10).

The following result allows to compute the right evaluation of any monomial m € M
at any point a € F", using the so-called fundamentals functions N%° : F* — F, for
m € M. Note that these functions generalize the NV * functions of the case n = 1 given

in Lemma 1.1.13.

Theorem 1.2.6. [23, Theorem 2] Given a monomial m € M and a point a € F" denote
by N, (a) € F the right evaluation of the skew monomial m at a. It holds that

Niym(a)
Nxm(a) = N@’:”(a) = 0(Nm(a))a+ 6(Np(a)) € F”
Ny, m(a)

To properly define the right evaluation of a product, we first need the notion of the
(0, d)-conjugacy.

Definition 1.2.7. [23, Definition 11] Given a € F", ¢ € F*, we define the (o, §)-conjugate
of a with respect to c as
a®:=o(c)ac”' +d(c)ct € F"

Then, we have the following result which extends the right case n = 1 given in
Lemma 1.1.17.

Lemma 1.2.8. [23, Lemma 12] Given a,b € F" and ¢, d € F*, the following properties
hold:
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1.2. Multivariate skew polynomial rings

1) al =a and (a%)? = a’ ;
2) The relation ~ defined on F" as

a~b <= there exists e € F* such that b = a®,

is an equivalence relation on F".

By Lemma 1.2.8, let us denote by [a] := {a“: ¢ € F*} the (o, )-conjugacy class of
a € F". Using the notion of (o, d)-conjugation, we can give the following result that

extends Theorem 1.1.18 1) and allows us to evaluate a product of two skew polynomials

Theorem 1.2.9. [23, Theorem 3] Consider two skew polynomials F,G € A and a € F".
If G(a) =0, then (F'G)(a) =0. If G(a) # 0 then

(FG)(a) = F(a“®™)G(a)
Finally, we show in the following example that in general the ring A is not Noetherian,
unlike the case n = 1.

Example 1.2.10. Consider A := F[z1, x9; 0, d] and the left (right) ideals
I, = Arizy + Azy22 + ... + Aziah (Lg,a =122 A + T1rE A+ L+ :leg.A)

with £ > 1. Wenotethat Iy C b C ... C [;; C A (I14 C Ioa C ... C I a4 C A) because
the variables 1, x5 do not commute and xy ¢ Iy (I1.4). Then A does not satisfy the
ascending chain condition on left and right ideals and therefore it is not Noetherian. In
particular, when o = Id and ¢ = 0, the free conventional polynomial ring F[x; Id, 0] is

not Noetherian.
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Chapter 2
Derivatives for skew polynomials

Based on properties of the rings A and R, we define here some notions of (o, §)-derivatives
for multivariate and univariate skew polynomials. The tools presented in this chapter
will be useful to solve a Hermite-type interpolation problem in A (see Theorem 3.1.12)
and to provide equivalent conditions to the fact that a skew polynomial in R admits a

right or left root of positive multiplicity (see Theorems 4.3.3 and 4.3.5).

2.1 (o,6)-Partial derivatives

We begin by introducing the concept of right (o, d)-partial derivative (for simplicity,
partial derivative) for any skew polynomial in 4. Thanks to Lemma 5 of [23], we can

give the following new definition.

Definition 2.1.1. Let F' € A and a = (ay, ..., a,) € F". For every i = 1, ..., n, we define
the right (o,9)-first partial derivative of F at a with respect to the variable z; as the
right evaluation of the unique skew polynomial AZiF" at the point a, which is obtained
by writing
F = ZA?F . ("L‘Z — CLi) + F(a)
i=1

The skew polynomial AZF' € A will be called right (o, d)-partial derivative polynomial
of F' at a with respect to the variable x;. Moreover, we will denote F'(a) by AYF(a).

However, to define analogously left (o, d)-partial derivatives, we need a left-hand

version of [23, Lemma 5] as follows.
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1. (0,0)-Partial derivatives

Lemma 2.1.2. For any ay, ...,a, € F and any F € A, there exist unique G1, G, ...,G,, €
A and b € F such that

F= Z i—ai) Gi+b (2.1)

if and only if the map ¢ : F" — F", defined by

@ (71,725 7)) - (20317] Zajzfyj Zan’}/j) (2.2)

is an isomorphism of additive groups, where o; ; : F — I are the component functions of
o:F — Fvn,

Proof. First, evidently ¢ is an additive group homomorphism because the maps o; ; are
additive group homomorphisms. Since F' € A is a sum of monomials, it is sufficient to
consider only monomials of the form agzy (o € F) for k=1,2,...n

Let a:= (aq, ag, ..., ) € F™ and write

n

ORI = Z(x] —aj)Gjp+ b (%)

J=1

with G, b, € F. By (1.9), for every k = 1,2, ..., n, we have

TE =Y (Z Ui,j(Gi,k)> 2+ Y (0;(Gix) — a;Gj) + b
j=1 \i=1 j=1
Then

. — Zgi,k(Gi,k>7 bk = Z(éﬂ(G%k) — CL]'G]‘7]€) and Zai,j(Gi,k) = ( for all j 7§ k. (**)
i j=1 =1
Thus,
@((Gl,laGZly--'aGn,l)) = (alaoa"'ao)
QO((GLQ, G272, ceey G

@((Gl,naGZ,na"an,n)) = (0,0,...,0./”)

Therefore, a = ¢((B1, Ba; ..., Bn)) for some (B, B, ..., Bn) € F" with 3; = 37, G, ; for
1 =1,2,...,n. This proves that ¢ is a surjective homomorphism. On the other hand, by
the uniqueness of the G, for all k£ =1, ..., n, it follows that ¢ is injective and therefore

and isomorphism of additive groups. Conversely, if ¢ is a group isomorphism, then given
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2.1. (o, 0)-Partial derivatives

(0q,0,...,0),(0,ag, ...,0), ..., (0,...,0,,) € F™, there exist unique G i, Go g, ..., G, b €
F for all £ =1,...,n such that (xx) holds. Then, ajz; can be written as in (x) and we

are done. O

Remark 2.1.3. Note that for the case n = 1, the condition that ¢ is a group isomorphism
is equivalent to ask that ¢ is an automorphism of F. On the other hand, in the special
case when o : F — F"*" is a diagonal homomorphism, i.e. ¢;;(a) = 0 for all i # j,
it follows that any skew polynomial in A can be written as in (2.1) if and only if the
component functions o;; : F — F are ring automorphisms. Moreover, in this situation
we can give explicit formulas to write azx; as in (2.1). Indeed, for any i = 1,...,n, we
have

az; = (x; — a;)0;; (a) + 4,07} (a) — 6;(07; (a)).

From Lemma 2.1.2 and under the assumption that the map ¢ defined in (2.2) is
a surjective additive group homomorphism, we can define the left (o, §)-evaluation of
any skew polynomial F' € A at a € F" and introduce the notion of left (o, §)-partial

derivative as follows.

Definition 2.1.4. Let ¢ : F* — F" be a group isomorphism as in (2.2). For a =
(ay,a9,- -+ ,a,) € F" and any skew polynomial F' € A, we define its left (o, d)-evaluation
at a, denoted by Fp(a), to be the unique constant b € F as in (2.1).

Definition 2.1.5. Let ¢ : F* — F" be a group isomorphism as in (2.2), F' € A and
a:= (a,...,a,) € F". For alli = 1, ...,n, we define the left (o, d)-first partial derivative of
F at a with respect to the variable x; as the left (o, §)-evaluation of the skew polynomial
Ay’ F at the point a, obtained by writing as in (2.1)

n

F = Z(l’z — CLZ') . A:LF + FL(a).
i=1
The skew polynomial A7’} F' € A will be called left (0, 0)-partial derivative polynomial
of F at a with respect to the variable x;. Moreover, we will denote Fy(a) by AJ ; F(a).

Furthermore, we can define recursively right (left) (o, d)-partial derivatives of higher

order of any multivariate skew polynomial in A.

Definition 2.1.6. Let F' € A and let a € F". For all i = 1, ..., n, we define the right
(left-with ¢ isomorphism) second (o, §)-partial derivative of F' at a with respect to x;x;,
denoted by A" F(a) (A;'F(a)), as the right (left) (o, 0)-partial derivative at a with
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1. (0,0)-Partial derivatives

respect to x; of AZF (A7 F), evaluated at the point a, that is,
AT F(a) == AY(AYF)(a) (AL F)i(a) = (AYL(AZLF))())

More general, given any m = x;, z;,...x;, € M with 4, € {1,...,n} forall [ = 1,...,n, we
define recursively the right (left-with ¢ isomorphism) (e, d)-partial derivative of F' at a

with respect to m as
ApF(a) = Aa" (A" F)(a) (A7LF)c(a) = (A1 (An1 " F)L(a))

Remark 2.1.7. Let F be a division ring and let a = (aq, as, ..., a,) € F". In the special
case when o = Id and § = 0, we obtain a notion of partial derivative of classical type.
For instance, given F' = x3zy € F[x;Id, 0] and fixed the lexicographic order <j., over
Flx; Id, 0], we have

F = (apxy + agay)(zy — a1) + 25 (20 — ag) + axas

Then, A F(a) = 2asa; and A¥F(a) = a?. Note that if F is a commutative division
ring, then we can write AZ' F'(a) = 2ajas. On the other hand, we have A" F(a) =
2a; # AZ?"1 F(a) = 0. This shows that, unlike in the classical case, in general the mixed

partial derivative of a multivariate skew polynomial are not equal.

The linearity of the right (left-with ¢ isomorphism) (o, d)-partial derivatives is shown

below.

Lemma 2.1.8. Let F,G € A, a € F*", A € F and m € M. The following properties
hold:

1) AZA =0 (A7 A =0);
2) ATAF +G) = MAZPF) + ATG (AP (FA+G) = (AT, F)A+ A, G).

Proof. We will only show that the statements are valid for right (o, §)-partial derivatives,
because for the left case the proof are analogous, provided that ¢ is a group isomorphism.
1) Since A = >3, 0 (x; —a;) + A it follows that AZN = 0 for all i = 1,...,n
Therefore, for any m € M, we have AJ'A = 0.
2) It is sufficient to show that it is valid for any variable z; with ¢ = 1, ..,n. In fact,
we can write A\F = Y1  ANADF - (z; —a;) + AF(a), G = Y0 AZG - (x; — a;) + G(a).
Then,

AF +G =S (AA%F + A%G) - (z; — a;) + AF(a) + G(a)

=1

27



2.1. (o, 0)-Partial derivatives

Thus, for each variable z;, we have AZi(AF + G) = AMAZF) + AZG. Finally, by a
recursive argument, it follows that for any m € M, AT(AF+G) = AMAJ'F)+ArG. O

By using Lemma 2.1.8, we can obtain a useful formula to compute the right (left)

(0, 6)-partial derivatives of a product of two multivariate skew polynomials in A.

Lemma 2.1.9. Given ;G € A, a € F", A € F and m = z;,---z;,, € M with
iy €{1,...,n} foralll =1,...,n, we have

AT(F-G)=F-AG+ > A (F- A" G(a)) (2.3)
k=1

ATL(F-G) = AR F -G+ Y AL (Fua) - A6 (2.4)
k=1

Proof. We begin by showing that (2.3) holds for any variable x; for i = 1,...,n. Indeed,

we have

I
M=

F.-G F-AJG - (v; —a;) + F-G(a)

a
1

~.
I

F-AVG - (x; —a;) + zn: AY(F-G(a))(z; —a;) + (F-G(a))(a)

1 =1

(F- Ay G+ A (F - G(a) (z; — a;) + (F - G(a))(a)

Il
WE

<.
Il

Il

s
Il
—

Thus, AZ(F-G) = F - AZG + AZ(F - G(a)). Suppose (2.3) holds for any monomial
m’ € M such that deg(m') = s — 1. Then, we have

AT™(F-G) = A" (Aﬁiz---xis(F : G))

_ Azil (F ‘ Aﬁiz”'ziSG N zs: AﬁleZk <F ] Azik+1'-.l‘is G(a>>>
k=2
_ Ai“ (F ‘ Aﬁm..wis G) i Azil (i Azz'zwmik (F . Azik-!—l"‘xiSG(a)))
k=2
_FLATG LY AL (F- e

k=1

G(a)) .

where the third equality is due to the linearity of the right (o, 0)-partial derivatives and
the last equality is due to what was shown in the previous case. Finally, by similar

arguments, one can prove that formula (2.4) holds. O
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2. (o, 6)-Univariate derivatives

Finally, let us show here that every skew polynomial F' € A can be written in terms of
its right and left (o, d)-partial derivatives and keeping in mind that the left (o, d)-partial
derivatives exist under the assumption that ¢ defined in (2.2) is a group isomorphism.
This allows us to obtain a right and left multivariate Taylor-type expansion of F' centered

at a point a = (aq, ..., a,) € F™.

Proposition 2.1.10 (Skew Taylor-type expansion). Let F(x) € A and let a € F",
The following properties hold:

deg I n .
F(X) = Z ( Z AV kF(a)<ka - aik) T (l’w - ai2)<xi1 - ai1)) + F(a)
k=1 \i1ig,...,ig=1
(2.5)
deg ¥ " Tiy Tio T
Fx)= 3 ( S (@ - )@ - i) (2, -0 ) (AL ) a >) + Fr(a)
k=1 \i1ig,...,ix=1
(2.6)
Proof. By Definition 2.1.1, for any variables z;, z; with 4, j € {1,2,...,n}, we have
F(x) =) AyF(z)-(v;—a)+ F(a), AFF(x) =) AY"F-(x; —a;) + Ay F(a).
i=1 Jj=1
Then, by substituting AZ F'(x) in F(x), it follows that
F(x)=>_ (ZAWCIF x)(z; — a;)(z; — a; ) —|—ZAIZ x; —a;) + F(a)

=1 \j=1
n

= Z (AIQIZIF( )(%2 - ail)(‘ril - a’il)) + Z AzilF(a>($i1 - ail) + F<a> :

i1,i2=1 i1=1

Finally, by a recursive argument we can obtain (2.5). The proof of (2.6) is analogous. [J

2.2 (0,0)-Univariate derivatives

In this section, we will give only some further remarks for the (o, §)-derivatives of skew
polynomials in R. First, note that specializing Definitions 2.1.1 (2.1.5) to the case n = 1,
we obtain the following definitions of right (left) (o, )-derivatives in R.

Definition 2.2.1. Let f € R with ¢ an endomorphism (automorphism) of F and a € F.
We define the first right (left) (o, §)-derivative of f at a as the right (left) (o, §)-evaluation
of ALf(z) € R (A, f(z) € R) at the point a, where A} f(x) (A} ,f(z)) is obtained

29



2.2. (0,6)-Univariate derivatives

by writing f(z) = Ay f(2) - (x —a) + f(a) (f(x) = (x —a) - Ay L f(x) + fr(a)) . The
skew polynomial A} f(z) (A; ;f(z)) will be called the first right (left) (o,9)-derivative
polynomial of f by a.

By a recursive argument, from Definition 2.2.1 one can construct the right (left)

(0, §)-derivative polynomials of higher order for any polynomial in R.

Definition 2.2.2. Let ¢ be an endomorphism (automorphism) of F. Given f € R,
r € Z~o and a sequence a = (ay, as, ..., a,) € F", we define the right (left) (o, 9)-derivative
polynomial of f of order r via a, denoted by A, f(2) (Aa,rf(x)) as the quotient upon right
(left) division of f by P, := (z—a,) -+ (r—ag)(x—a1) (Par = (z—a1)(z—ag) - - - (x—a,)).

In particular, when a = a; = - - - = a,, we will simply write Aj f(x) (A7, f(7)).

Remark 2.2.3. Let 0 be an endomorphism (automorphism) of F and consider a =
(a,...,a.) € F". As in [26], one can define the right (left) Hasse derivative Dy(f) € F
(Dar(f) € F) of order r as the coefficient of the monomial of degree r — 1 of the
remainder in the right (left) division of f by P, (Par) (see [26, Definition 31 and
Lemma 52]). In this case, we have Da(f) = Aa/ f(ar) (Da,r(f) = (Aar,nf); (ar)), where

a = (ay,...,a,_1).

Let f(z) = Y ax’ and Al f(z) = Y7 B;27 be skew polynomials in R as in
Definition 2.2.1 for some a € F. By Lemma 1.1.10, we have

f(x)=f(a) = A f(x)-(z—a) = i_n: o' — fla) = mz__: <5i$i+1 - zi: B Ck,i—k(a)xi_k> .

Then, comparing the coefficients of the positive powers z* in the latest equality, we get
the following recursive formula:
m—k—2
Bno1=0m, Be=ar1+ >, Brriti Cipri(a) Vk=m—2m~—3,..,0. (2.7)

1=0

Using (2.7), the next Algorithm 5 shows how to compute A, f(x), a = (aq,...,a,) € F™.

Algorithm 5 Computation of A, f(z) € R.
Input: f(z)=Y",qx' € R, a= (ai,...,a,) EF", n€Z>; andn < m
Output: A, f(z)

1: for i <~ 1 ton do

2: m < deg f(z)

3: Bm—1 <
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2.2. (0,6)-Univariate derivatives

4: for h< 0tom—2do

5: s+ 0

6: for 7 < 0to h do

T 51 ¢ Bm-1-n+j - Cjm-1-n(a;)
8: §<4— S+ 51

9: end for

10: 6m—2—h S~ Qp_1_p+ S8

11: end for

122 q(x) « X! Bt
3. f(x) < q(x)

14: end for

15: return ¢(z)

Note that, when ¢ is an automorphism, similar accounts as above can be made with
flz) = frla) = (z—a)- A;Lf(x). Moreover, as an application of Algorithm 5, we apply
the next Magma program to compute A(,q)f when f = 2* — ja? + (2i — k) € H[z; 0,0],
a=1+jand o(h) :=ihi~! for all h € H. To do this, begin by writing in Magma the

following instructions:

F<i,j,k> := QuaternionAlgebra< RealField() | -1, -1 >;
R<x>:=PolynomialRing(F) ;

S:=map< F -> F | x :=> i*xx*x(1/1) >;

D:=map< F > F | x :=> 0 >;

then, using the function “PosCom" defined in Program 1, we can continue with the

following instructions to define a new function “DerNA".
Program 3.

DerNA:=function(f,A)
t:=#f;
if #A ge t then
f:=F10;
end if;
if #A le t-1 then
if t eq 2 then
f:=FIf[t];
end if;
if t ge 3 then
for i in [1..#A] do
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2.2. (0,6)-Univariate derivatives

t:=#f;

b:=[ £f[t] ];

for h in [0..t-3] do
s:=F10;

for j in [0..h] do
s1:=b[h+1-j]*PosCom(j,t-2-h,A[i]);
s:= s + si;
end for;
b:= b cat [ f[t-1-h] + s 1;
end for;
g:=[];
for k in [1..#b] do
g:=g cat [ b[#b+1-k] ];
end for;
f:=g;
end for;
end if;
end if;
return R!f;

end function;

Thus, typing in Magma
DerNA([2*i-k,0,-j,0,1], [1+j,1+j1);
we get Aqpjip(at —ja® +2i — k) =2 + 22 + 4 — 3.

Remark 2.2.4. Consider f,g € R, a € F and suppose that ¢ is an endomorphism
(automorphism) of F. Then the linearity of A, and the fact that for any a € F

Ao(f9) =T Dog+ DS 9(a) (AoL(f9)=200f 9+ A0s.(fea) g))

allow one to obtain recursive formulas for right (left) (o, §)-derivative polynomials of order
r € Zsy viaa = (ay,...,a,) € F". For instance, given any n € Z>1, we get Alz" = 27714
S0 Chnoai(a) A= (AL o = 2" 4+ Al (SR 2" M1 Ten11(0))-
In particular, if ¢ = Id and § = 0, then Alz" = 2" ! + az" 2 + a2 3 + ... + a7}
and therefore Alz"(a) = na™ . This shows that the right evaluation of Alz™ in a € F

coincides with the classical notion of derivative of a monomial.
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2.2. (0,6)-Univariate derivatives

In [14] the author define a notion of right derivative in scalars for skew polynomials
in F[z;0,0]. In Proposition 2.2.6, we will show a relationship between A” f(a) (see
Definition 2.2.2) and [14, Definition 2|. However, to prove this result, we need first to

give a version of Proposition 2.1.10 for n = 1.

Proposition 2.2.5. Let f(z) € R with o an endomorphism (automorphism) of F and

a = (ay,as,...,ad4egr). Then,
deg f deg f
f(z) = Z AaFais1)  Po, | f(2) = Z Payr - (Bt F)p(aiyr)
i=0 1=0

where a; = (a1, as,...,a;) € F, Pa, (Pa,1) € R is as in Definition 2.2.2, A, F = F
(AporF = F) and Py = 1 (Payr = 1) for all ¢ = 1,...,deg f. In particular, if

a=(a,a,...,a), then

degf ) deg f o
fl) =2 Auf(a)(z —a) (f(ﬂ?) =2 (@- a)ZAZ,Lf(a)) :

1=0
where AQf(a) = f(a) ((AG Lf)r(a) = fr(a)).
By using Proposition 2.2.5, we have the following result.

Proposition 2.2.6. Let f € F[x;0,0] and let a € F. Then, for every n € Zso the
following property hold

nl- AL f(a) = f™)(a),

where f™(a) denotes the n-th right derivative of f at a (see [14, Definition 2]) and
Alf(a) = fO(a) = f(a). In particular, the two definitions coincide when n = 1.

Proof. By Proposition 2.2.5, we have
f(x) = f(a) + A f(a)(z — a) + AL f(a)(z — @)’ + ... + AFED f(a) (2 — a) e,
On the other hand, by [14, Theorem 3.14] we know that

deg(f)
(x—a)+ ..+ JM(I —q)dsl)

f®(a)
2l

fW(a)
1

f(x) = f(a) + (z —a)+

Then, by the equality property of skew polynomials, we obtain the statement.
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Chapter 3

Hermite-type interpolation for skew

multivariate polynomial rings

Let K be a field. Given a finite set of points Q = {ay, ag,...,ax} € K and S = {(r, s,) €
Zso X Lso : 1 <r <k, 0<s,<n,} where ny,no,...,ng € Z>o and b, 5, € K, the
classical Hermite interpolation problem consists of finding a polynomial f € K[x] of
degree < N —1 such that f(")(a,) = b, for all pairs (r,s,) € S, where N = S2*_, (n,+1)
and ) denotes the derivatives of f of order s,. In the special case when derivatives
are replaced by only the evaluations of f(z) at the points a;, the problem is referred in
literature as Lagrange interpolation problem, and it can be stated in the following form:
given a finite number of points Q = {ay, as, ...,ax} C K and any values by, bs, ..., b, € K
one wants to find a polynomial f € K|[z] of degree < k, such that f(a;) = b; for all
i=1,2,.. k.

It is well known that if the elements of 2 are different, then there exist unique
polynomials satisfying the above conditions of the Hermite and Lagrange problem.
However, the condition a; # a; for all 7, is not sufficient for existence of such a

polynomial in the non-commutative cases.

Inspired by [14] and [23], the main purpose of this chapter is to solve a Hermite-type
interpolation problem in A that generalizes the Lagrange interpolation Theorem given
in [23, Theorem 4] and extends the cases n = 1 given in [14, Theorem 4.4] and [26,
Corollary 41].
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3.1. Skew Hermite-type interpolation

3.1 Skew Hermite-type interpolation

Let us start by defining the following generalized zero ideals associated to a finite set of

points in F”".

Definition 3.1.1. Let Q = {aj,as,...,ax} C F” be a finite set and consider the
monomials m; = x;, . -+ xjx; € M such that either j, € {1,2,..,n} and | > 1, or

m; = 0 (zero monomial). Given 17 = (my, ma, ..., my), we denote by I"™(€2) the following

set:
{F e A: F(ay) = Aa)' Fay) = Ao " Flay) = .. = A F(ag) = 0, Vj=1,... .k} .
Proposition 3.1.2. For any finite set Q) = {a;y,aq,...,ax} C F" and m = (mq, ma, ..., my),

the set I™(Q) C A is a left ideal.

Proof. Given F,G € I"™(Q), by Lemma 2.1.8 we have F' + G € I"™(Q). Finally, for any
F e Aand G € I"(Q), by Lemma 2.1.9 and the product rule (Theorem 1.2.9) we obtain
that FG € I"™(Q). Thus, I™(Q) is a left ideal. O

Remark 3.1.3. In the special case when 7 = 0 := (0,...,0), denoting by Ang(aj) =
F(ay) for every j > 1, we have

Q) =1(Q) :={FeA: F(a) =0, Va € Q} ,

obtaining the left ideal given in [23, Definition 13].

By using the left ideals I™((2), we can define the notion of Derivative Polynomial

(DP) independence of type (my, ..., m;) € MF as follows.

Definition 3.1.4. For k € Z>1, let Q = {aj,as,...,ax} C F" be a finite set and let
m = (mi,...,my) € M" with either m; = Tjoo " TiaTj, ormy =0, forall j =1,.. k.
We say that a € F* \ Q is DP-independent of type m from € if

Q) 2 1"%Qui{a}) :={FeI™Q): Fa)=0} .

Moreover, letting Q) := Q\ {a;} and 7; := (m1, ..., my_1,mj1,...,my) € M for

each j € {1,...,k}, we say that Q is DP-independent of type m = (mq,...,my) if
™ (Q)) 2 I™°(Q) U {a;})

forall j=1,... k.
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3.1. Skew Hermite-type interpolation

Remark 3.1.5. The definition of Q := {ay,...,ax} C F" as a P-independent set given
in [23, Definition 23] is equivalent to require that I(Q2\ {a;}) 2 I(Q) forall j =1,... k.

The next result shows that in the special case when €2 is DP-independent of type
(0,...,0), we obtain the notion of P-independence given in [23, Definition 23].

Lemma 3.1.6. A finite set Q = {ay,...,ax} C F" is DP-independent of type (0,...,0)
if and only if it is P-independent.

Proof. From Definition 3.1.4 and Remark 3.1.3, it follows that 2 C F" is DP-independent
of type (0,...,0) if and only if 7(Q\ {a;}) 2 I(Q2) for all j = 1,2,..., k, that is, Q is
P-independent by Remark 3.1.5. [l

From Definition 3.1.4 and Lemma 3.1.6, we can deduce also the following result.

Proposition 3.1.7. If Q = {ay,...,ax} C F" is DP-independent of type (mq, ..., my),
then any W = {aj,,...,a;,} C Q is DP-independent of type (mj,,...,m;,), where
Ji € {1,2,..,k}. In particular, every subset of a P-independent set is P-independent.

Proof. Let t € {j1,...,js}, m = (mq,...,my) and m' := (m,,, ..., m;,). Since we have
17 (Q) 2 1™ U {ad))

it follows that there exists F' € I (Q(t)) = (W(t)) such that F(a;) # 0. Hence
I (W) 2 I™0(Wiey U {ag}) for any t € {ji,....Ja}, ie. W = {ay,,...,a,} € Q
is DP-independent of type m' = (mj,, ..., m;,). Finally, the last part of the statement

follows from Lemma 3.1.6. OJ

The following result will be crucial to perform the skew Hermite-type interpolation

recursively in A4 and it extends the equivalence between 1 and 3 of [23, Proposition 25].

Proposition 3.1.8. Let Q = {ay,...,ax} CF" be a finite set and let mq, ..., myp € M.

Then the following conditions are equivalent:
1) Q is DP-independent of type (mq, ..., mg);

2) for any ordering by, ..., by of the elements in Q and for anyi=1,...,k—1, it
holds that biyq is DP-independent of type (my,...,m}) from Q; := {by,...,b;},

where m’; = my,j) with by = ayg) for j=1,... 1.
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3.1. Skew Hermite-type interpolation

Proof. 1) = 2) Suppose that b;;; is not DP-independent of type (m7,...,m}) from Q;
for some ¢ and a given ordering by, ..., by of 2. Then from Definition 3.1.4 it follows
that F(bi11) = 0 for all F € I(™-m)(Q),), but this contradicts Proposition 3.1.7 by
considering W = {by,...,b;, bi 1} C Q.

2) = 1) Assume that € is not DP-independent of type i := (mq, ma, ..., my). Thus
there exists a; € Q such that F(a;) = 0 for every F' € I"™(Q\ {a;}). By ordering the k
elements in €2 in such a way that by = a;, it follows that by is not DP-independent of

type (m/},...,m,_,) from €_;, but this contradicts 2). H
y 1 k-1

The following technical results will be the key tools for the skew Hermite-type

interpolation problem.

Lemma 3.1.9. Let Q = {a;,...,ax} CF" be a finite set and let m = (my,...,my) €
M with either m; =0, or m; = T, TpTy forallj=1,.. k and ji € {1,...,n}.
Then for any m € M with degm = N := ¥ | [deg(m;) + 1] there exists F € I™()
such that deg ' = N and LM(F) = m.

Proof. Write m = xy, - ... xy, - T, € M. Defining Fi(x) := xx, — (a1)g,, we have
Fi(ay) = 0 with deg Fy(x) = 1 and Aa'Fi(x) = 0 or 1. Then, define Fy(x) :=
(g, — (A1)ky) F1(x). By Lemma 2.1.9, we have

Aoy Fy(x) = (2, — (1)) Aay Fi(x) -

In any case, we get Fy(a;) = Aa;' Fa(ag) = 0 with deg Fy(x) = 2 and Aa> " Fy(x) = 0
or 1. By a recursive argument, we can construct F,,(x) := I, (zg, — (a1),) with
m = deg(my) + 1 and such that F,,(x) € I" ({a1}). Thus, define now G;(x) :=
(ko — 1) Ep(x) for some oy € F. If F,(az) = 0 then Gi(x) € I™°({a; } U {az}).

Otherwise, by taking «; := (asz(az))k we get again G(x) € I™9({a;} U {as})
m+1

with deg G1(x) = m + 1. Therefore, defining Gs(x) = (:ckm+2 — ag) G1(x), we have
Ga(x) € I™2({a;} U {az}) and by Lemma 2.1.9 it follows that

Aag' Go(x) = ($km+2 - 042) Aoy Gi(x) .

If Aas'Gi(ag) = 0, then Aay'Go(az) = 0. If Axl'Gi(ag) # 0, then by choosing

Qg 1= a2A831G1(32)> we obtain Aay' G(ag) = 0 again. Hence there exists Gy(x) €
km+2

™72 ({ag } U {ag}) with degG(x) = m + 2. By recursive arguments, we can find

a skew polynomial F(x) € I"™(Q) such that deg F(x) = N and LM(F(x)) = m by

construction. ]
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3.1. Skew Hermite-type interpolation

Lemma 3.1.10. Let Q = {ay,...,ax} C F" be a finite DP-independent set of type
m = (my,...,my) and let a € F*\ Q such that I"™(Q)) D I™°(Q U {a}). Then there
exists a skew polynomial F € I™(Q) \ I"™°(Q U {a}) such that

k
deg(F Z deg(m;) + 1)

Proof. Since I™(Q)) 2 I™(Q U {a}), take F' € I™(Q2) \ I™°(Q U {a}) such that LM (F)
is minimum possible with respect to <, where < denotes any monomial order of M
preserving degrees. If we suppose that deg(F) > N + 1, where N := >-F | (deg(m;) + 1),
then deg(LM(F')) > N + 1 by the choice of <. Then, applying Lemma 3.1.9 we can
construct a skew polynomial G € I"™(Q) such that LM (F) = m - LM(G) for some
m € M with degm > 0. If G(a) # 0, then we get G € I"™(Q) \ I"™(Q U {a}), a
contradiction because deg F' > deg G. Suppose now that G(a) = 0. Then there exists
a € F such that H := F — am - G satisfies LM (H) < LM (F'). Now, by the definition
of G, it holds that H € I"™(Q2) \ I™9(Q U {a}), which is absurd by the minimality of
LM (F). Therefore we have deg(F) < N and this gives the statement. O

Lemma 3.1.11. Let Q C F" be a finite set and consider a ¢ ). If there exists
F e I™(Q)\ I™(Q U {a}), then for any x;,m’ € M there exists G € I"™™ (Q U
{a})\ I™=™(Q U {a}) such that Aﬁjm/G(a) =1 and deg G = deg F' + deg(m’) + 1.

Proof. Without loss of generality, we can assume that F'(a) = 1. Define

Therefore we see that G(a) = 0, deg G = deg F' + 1 and
AZG(x) = [ = (a),] - AZ F(x) + AY [z — (a),]

Let H(x) := [z, — (a),] - Aa’ F(x). If H(a) = 0, then we choose t = j. If H(a) # 0,
then we take any ¢t # j. In both cases, we obtain that Az’G(a) # 0. Hence, up to
multiplying G/(x) by a non zero scalar, we have G(x) € I"™%(Q U {a})\ I™%(Q U {a})
with AZ’G(a) = 1 and deg G(x) = deg F(x) + deg(0) + 1.

By induction, assume that there exists G(x) € I"™™(Q U {a})\ I™%™(Q U {a})
with AZ™G(a) = 1 and deg G(x) = deg F(x) + deg(r) + 1, where either degm > 0, or

m = 0 and z;7m = x;. Therefore, define

L(x) := [ = (a),] - G(x) .
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3.1. Skew Hermite-type interpolation

Then we have
APML(X) = 1 — (a),] - AFTG(x)

AL LX) = [1 — (a),] - AZTG(x) + AL [z — (a),]

Note that AZ™L(a) = 0 and write M(x) := [z, — (a),] - AZ™™G(x). If M(a) = 0,
then we choose t = j. If M(a) # 0, then we take any ¢ # j. In both cases, we
get that Aiixij(a) # 0. Hence, up to multiplying L(x) by a non zero scalar, we
obtain that L(x) € I™=™(Q U {a})\ I™*=™(Q U {a}) with AZ“™L(a) = 1 and
deg L(x) = deg G(x) + 1 = deg F'(x) + deg() + 1 + 1 = deg F'(x) + deg(x;m) + 1. O

The main result here is a Hermite-type interpolation theorem in A that generalizes
the skew Lagrange interpolation given in [23, Theorem 4] and it extends the cases n =1

given in [26, Theorem 3, Corollary 41].

Theorem 3.1.12 (A skew Hermite-type interpolation). Let Q = {ay,...,ax} CF"

be a finite set and let my,...,my € M. The following conditions are equivalent:
1) Q is DP-independent of type (my, ..., mg).

2) The map ¢ : Ay — FY defined by

F (F(ag),...,An F(ay), ..., F(a),..., A7 F(a),..., F(ak),..., Ay F(a))

a;

is a surjective left F-module homomorphism, where N := %, (deg(m;) + 1) and
Ay ={F € A:degF < N}.

3) Given any finite set of N values in F

{bj,07 bj,le ) bj,xj2xj1 PRI bj,’mj : ] = ]-7 27 EIRCI) k} y

where N = YF_ (deg(m;) + 1), there exists a skew polynomial F € A with
deg(F) < N such that

F(aJ) = 5,0 Agle(aJ) e bj,le s Ag?leF(aj) e ijxﬂéle’ ceey AmJF(aJ) = bj,mj

a;j
forallj=1,... k.

Proof. First, note that the equivalence between 2) and 3) is immediate.
1) = 2) From Lemma 2.1.8, it is evident that ¢ is a left F-module homomorphism.
Let a; := (a1,, a1,, ..., a1,) € F*. We start by defining the skew polynomial G, := 1.
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3.1. Skew Hermite-type interpolation

T,

Then we see that Gig(a;) = 1, deg(G1p) =0 < 1 and Azij xllGl,g(al) = 0 for all
j=1,...,deg(my). On the other hand, note that the skew polynomials

Gl,j = (xlj - alj) e (xh - CL12)($11 - all) cA

are such that Gy, € I"-17"2"1({as}) \ I 2" ({ay}), deg(Gy;) < j+ 1 and
Ao @G s(ay) = 1forall j =1,...,deg(my), where I"0 ({ay}) := I({a1}).

Let ay := (ag,, as,, ...,as,) € F". Since 2 is DP-independent of type (my, ..., my),
then by Proposition 3.1.8 and Lemma 3.1.10 there exists Fo g € I"™ ({as })\I"™"°({a1, az})
such that deg(Fz) < deg(m;) + 1. Then the skew polynomial Gog := Fho(ag) ' Fyyg is
such that Gog € I™ ({a1}) \ I™°({a1,az2}), Gop(az) = 1 and deg(Gap) < deg(my) + 1.
By Lemma 3.1.11, we can construct polynomials Go,; € A for i = 1,..., deg(mz) such
that Go; € I"™"2-17"2%1 ({ay an}) \ I™72 %272 ({ag, as}), Aay 2 1Gy(ag) = 1
and degGy; < deg(my) + 1414, for all i = 2,...,deg(msy). Then, arguing as above,
by Lemmas 3.1.10 and 3.1.11 we can construct for all a; € 2 with j = 1,...,k skew
polynomials Gjo,Gj1, ..., Gjdeg(m;) € A such that

P(Gio) = (0,00, 0,y 1,5k, o 5k, kL, %)
Y(Gj1) = (0,.5,0,.,0, 1%, %, %, ok, L %)

@Z)(Gj,deg(mj))

|
—
\'O
=
=
=
\.o
\.H
\.*
\.%
*
~—

Thus, making left linear operations on all the skew polynomials G, Gj1,- .., Gjdeg(m;)

for j =1,...,k, we can obtain polynomials éj,o, @jvl, .o+, Gjdeg(m;) € A such that

(Gj0) =  &o = (0,..,0,..,1,0,0,...,0,...,0, ..., 0)
(G;1) = € (0,...,0,...,0,1,0,...,0,...,0,...,0)

(4
(4

O(Cacgimy) = Crdegimy) = (0,.,0,..,0,0,0,..,1,...,0,...,0)

for all j =1, ..., k. Therefore, given any

b= (bl,Oa b1,17 sy bl,deg(m1)7 ey bj,(b bj,l: sy bj,deg(mj)a ceey bk,Oa bk,b ceey bk,deg(mk)) € FN
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3.1. Skew Hermite-type interpolation

it follows that

deg(m1) deg(m;) deg(myg)
b - Z bl,igl,i + ...+ Z bj,igj,'i + ...+ Z bmé’k’i
1=0 =0 =0
deg(m1) deg(m;) deg(my)

= 3 bab(Gr) et D> bib(Gi) et D beb(Giy)
=0 =0

= i=0
ko [deg(me)
= T/) (Z ( Z bt,z‘Gm‘))
t=1 i=0

with deg (Zle (Z?i%(mi) bmém)) < N —1 < N and we are done.
2) = 1) Since ¢ is a surjective left F-module homomorphism, then for each €;¢ € FY

with j = 1,2, ..., k as before, there exists a skew polynomial

Fjo € I (Q)) 2 I™°(Q U {ay})
for all 7 = 1,..., k, where mi = (my,...,my). Hence, from Definition 3.1.4 we deduce
that  is DP-independent of type (my, ..., mg). ]

In the special case when 2 is DP-independent of type (0,...,0), that is, Q is P-
independent (see Lemma 3.1.6), we give a necessary and sufficient condition to solve the

skew Lagrange interpolation problem as follows.

Corollary 3.1.13 (Skew Lagrange interpolation). Let Q = {a;,...,ax} CF" be a

finite set. The following conditions are equivalent:
1) Q is P-independent.

2) The map ¢ : Ay — F*, defined by F + (F(ay), F(as), ..., F(ay)) is a surjective

left F-module homomorphism.

3) For every by, bs,...,b, € F, there exists a skew polynomial F € A with deg(F') < k
such that F(a;) = b; forall j =1,... k.

By using Theorem 3.1.12, we give also the following result which allows us to

construct DP-independent sets of type (my, ..., my) for some m; € M.

Corollary 3.1.14. Let Q = {ay,...,ax} C F" be a DP-independent finite set of type
m o= (my,...,mg). If axn € F*\ Q is such that I™(Q2) 2 I™O(Q U {ax1}), then
QU {aky1} is DP-independent of type (mq, ..., my, mi1) for any myy € M.
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Proof. Since Q is DP-independent of type 1 and ay,; € F* \ 2 is such that I"™(Q) 2
I™%(Q U {ak;1}), then by Lemma 3.1.10 we deduce that there exists F' € I™(Q) D
I™0(QU{ay,1}) such that deg I < 3% | (deg(m;) + 1). Thus by Lemma 3.1.11 it follows
that ¢ : Ay — FY defined by F — (F(ay), ..., AT F(ay), ..., F(ak41), ..., Aoy F(aks1))
is a surjective left linear map for any my1 € M with N := 3-5*](deg(m;) 4 1). Thus,
by Theorem 3.1.12 it follows that QU {a} is DP-independent of type (mq, ..., my+1). O

Remark 3.1.15. In the special case when € is DP-independent of type (0, ...,0), i.e. Q
is P-independent, and a € F™ \ 2 is such that 1(Q\ {a}) D I(Q), it follows that QU {a}
is P-independent, obtaining [23, Lemma 36].

Note that Proposition 3.1.14 gives us a method to construct DP-independent sets of a
certain type. Another way to construct DP-independent sets will be given in Proposition

3.1.18, but before to prove it we need the following two technical results.

Lemma 3.1.16. Let Q) = {ay,...,an} be a subset of F" and consider a € F™ such
that a ¢ {[a1],...,[an]}, where [a;] denotes the (o,0)-conjugacy class of a; for all
g =1,... h. If there exists

such that deg G = deg F' + 1.

Proof. Define G(x) := (z; — a)F(x). Let 6 := A4l " F(ay). Moreover, by Lemma 2.1.9
we have Ax)"'G(ay) = ((ah‘s)t — a) -0. If 6 = 0, then we take any a € F such that
a # (aF(a)>t. If 6 # 0, then there exists t € {1,...,n} such that (ah‘s)t £ (aF(a))t,
because a ¢ [ap]. In this situation, take o := (ah‘s)t. Therefore, in both cases we have
G € [rsemnregm (@) \ [ruemi-12m0(Q, U {a}) with deg G = deg F + 1. 0

Lemma 3.1.17. Let Q) = {ay,...,an} be a subset of F" and consider a € F™ such
that a ¢ {[a1],...,[an]}, where [a;] denotes the (o,0)-conjugacy class of a; for all
j=1,...,h. Define Qg :={aq,...,as} fors=1,... h. If for somet=1,... h —1
there exists
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3.1. Skew Hermite-type interpolation

then there exists

such that deg G = deg F' + 1.

Proof. Define G(x) := (zs — B)F(x). Let v := F(ag11). If v = 0, then take any
B € F such that 5 # (aF("‘)> . If v # 0, then there exists s € {1,...,n} such

that (ag17), # (aF(a)) , because a ¢ [a¢11]. In this situation, take § := (ay117),.
Thus, in both cases, we get that G € I™v-m0(Q, )\ [™-me00(Q), U {a}) with
deg G = deg F' + 1. O

Finally, the next result gives another method to construct a DP-independent set in [F”.

Proposition 3.1.18. If Q = {ay,...,ax} C F" is a DP-independent finite set of
type (mq,...,mg) and a € F™ is such that a ¢ {[a;],...,[ax]}, where [a;] denotes the
(0,0)-conjugacy class of aj for all j =1,... k, then QU {a} is DP-independent of type

(ma, ..., mg, mpyr) for any my € M.

Proof. Since a ¢ [a;], we deduce that (a), # (a;), for some s € {1,...,n}. Thus,
start with the skew polynomial F(x) := x, — (a1)s. Then deg F =1 and F € I° () \
1°0(Q, U {a}). Therefore, by iterating the Lemmas 3.1.16 and 3.1.17, we obtain that

Thus, one can conclude by using Lemma 3.1.11. O]
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Chapter 4

Resultants of skew polynomials over

division rings

In commutative algebra, the notion of resultant (or eliminant) of two univariate poly-
nomials defined over a field is well-known and classical and many results about it
can be found in literature (e.g, see [29], [16] or [22]). The classical resultant of two
polynomials is in fact a polynomial expression of their coefficients, which is equal to
zero if and only if the polynomials have a common root, possibly in a field extension, or
equivalently, a common factor over their field of coefficients. The resultant is widely
used in number theory, algebraic geometry, symbolic integration, computer algebra,
and it is a built-in function of most computer algebra systems. The resultant of two
univariate polynomials over a field, or a commutative ring, is commonly defined as the
determinant of their Sylvester matrix. More precisely, let p(z) = p.a” + -+ + p1z + po
and q(z) = qsx® + -+ + @1 + qo be two non-zero polynomials with p, # 0,qs # 0.
The map ¢ : Py X P, — P,o, given by p(a,b) = ap + bq is a linear map between two
vector spaces of the same dimension, where P; is the vector space of dimension ¢ whose
elements are the polynomials of degree less than . Over the basis of the powers of the
variable x, the above map ¢ is represented by a square matrix of dimension r 4 s, which

is called the Sylvester matrix of p and ¢.

Inspired by [15], the main purpose of this chapter is to extend in Flz; o, d] all the
above results and well-known criteria equivalent to the condition that the resultant of
two univariate skew polynomials is equal to zero. Finally, through this chapter, we give
some algorithms and their respective Magma programs [3] as computational applications
of the main algebraic results which allowed us to construct all the examples in a very

simple manner.
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4.1. Right (o, d)-Resultant

4.1 Right (0,6)-Resultant

Let [F be a division ring. We begin by proving two technical results which are useful to

define the so called right (o, §)-resultant of two skew polynomials in R (see Definition
4.1.3).

Lemma 4.1.1. Let f,g € R be non-constant skew polynomials. The following hold:
1) R/Rf is a left F-module and dim R/Rf = deg(f).
2) If Rg CRf, then Rf/Rg is a left F-module and dim R f/Rg = deg(g) — deg(f).

3) If k,h € R are such that Rf N Rg = Rh and Rf + Rg = Rk, then
deg(f) + deg(g) = deg(h) + deg(k)

Proof. 1) Defining in R/Rf :={p+ Rf :p € R} the usual operations of addition and
scalar multiplication (on the left) given by (p1 + Rf) + (p2 + Rf) := (p1 +p2) + Rf and
alpr+Rf) :=ap1 + Rf, for all p;,p; € R and a € F, one can see easily that R/Rf is
a left F-module. Since every coset in R/R f contains a unique representative of degree
less than deg(f), it follows that B := {1+ Rf,z 4+ Rf, 2> + Rf, ...,z 1 L Rf}is a
left basis for R/Rf. Therefore, dimR/Rf = deg(f).

2) Since g € Rg € Rf, we have g = hf for some h € R. Thus, we can write
Rf/Rg = {rf + Rhf : r € R}. On the other hand, since v» : R — Rf/Rhf,
p— pf + Rhf is a surjective left F-module homomorphism with ker ) = Rh, we have
R/Rh=ZRf/Rhf =TRf/Rg. Finally, by 1) it follows that dim R f/R¢g = dimR/Rh =
deg(h) = deg(g) — deg(f)

3) Since R is a LPID, we can write Rf N Rg = Rh and Rf + Rg = Rk for
some h,k € R. Since Rf, Rg, Rh and Rk are left F-submodules of R, we deduce
that (Rf + Rg)/Rf = Rg/(Rf N Rg), i.e. Rk/Rf = Rg/Rh. Hence dim Rk/Rf =
dim Rg/Rh and by 2) we have deg(f) + deg(g) = deg(h) + deg(k). O

The previous lemma is an extension of some results showed in [15, p. 4]. Moreover,
by Lemma 4.1.1 it is possible to prove also the following technical result, but we omit
its proof because it is analogous to the one presented in [15, Theorem 2.4] for the case
0 =0.

Lemma 4.1.2. Two non-constant skew polynomials f,g € R of respective degrees m
and n, have a common (non-unit) right factor in R, if and only if there exist skew
polynomials ¢,d € R such that cf + dg = 0, deg(c) < n and deg(d) < m.
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By Lemma 4.1.2 we can define the right (o, §)-resultant of two skew polynomials in
R as shown below. Let

f=apx™ 4+ ... +ax+ag,a, #0, g=byx" + ...+ bx+by,b, #0,
c=cpx" V.ot d=d, 12" '+ ...+ dix + do

be skew polynomials as in Lemma 4.1.2. By (1.4), we have

n—1 m m—1 n 7

Cf Z Z (Z C; - C]“ k (]JJ Z+J k) dg = Z (Z dz . Ckﬂ'k(bj)lCiJrjk)

i=0 j=0 \k=0 '

Keeping in mind that two skew polynomials are equal if and only if they have the same
degree and their respective coefficients are equal, the equation c¢f+dg = 0 of Lemma 4.1.2
gives a system of m + n linear equations with m + n unknowns co, ..., c,_1,do, ..., dpm_1,
that is

(Co, .oy Cpn—1, do, ceey dm—l) A= (0, ceey O) y (41)

where A is the following (m + n) x (m + n) matrix:

ap a ay e ;8 0 0 0 e 0

1 1 1

Cl,o(ao) ch—z,i(al—i) ZCH‘J(GH) chfi,i(amfz) Co,l(llm) 0 0 0
1 P 2 2

Cz,o(ao) ZCZ—i.i<al—i) Zcz—z,z(az—z) ZCZ—i,i(am—i) ZCZ—i.i<am+l—z> Co.z(am) 0 0
1 P 5 3 3

CZ},O(GO) Z CS—L,L<a1—L) Z C3—1'.1,((12—i) e Z CZ}—i,i(am—r,) Z CS—i,r,(a‘erl—z) Z CS—M,(aer?—i) CO.Z}(a‘m) e 0
i=0 i=0 i=0 i=1 i=2

m n—1 n—1 n—1

A= i=0 i=1 i=2 i=3
bo by b ax by 0 0 0 I 0
1 1 1
Cl.ﬂ(bﬂ) chfl‘,’t‘(blfl) chfl,i(b27i) e ch,“‘(bn,l) Cﬂ,l (bn) 0 0 e 0
i=0 i=0 i=0
1 2 2 2
CZ.O(bD) Z CZ—i,i(bl—l) Z C?—i.i(bZ—i) e Z CZ—i,z(bn—l) Z CZ—i,i<bn+l—1) CO.Z(bn) 0 e 0
i=0 i=0 i=0 i=1
1 2 3 3 3
CS.O(b[]) Z C:}—m (b1—7,> Z CS—/J(b2—1) e Z C3—1,i,(bn—r) Z CS—M,(anrl—i) z CS—M,(anrQ—i) CO“&(bn) e 0
i=0 =0 i=0 i=1 =2

m—1 m—1 m—1

1 2
Cm—l,ﬂ(b()) Zcm—l—m(bl—i) Zcm—l—i,i(bQ—z) Zcm 1- ll n 1 Zcm 1- l‘l n+l 1 Zcm—l—l.i(anrZ—i) Zcm—l—m(anrS—i) CO«m—l(bn)
i=2 i=3

i=0 i=0

Note that the first n rows involve the a;’s and the last m rows involve the b;’s.

By the previous (m +n) X (m + n) matrix A, we can define the right (o, d)-resultant
of two skew polynomials in R as follows.
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Definition 4.1.3. Let f,g € R be skew polynomials of non-negative degrees m and n,
respectively. The above matrix A will be called the right (o, d)-Sylvester matriz of f
and ¢, which we denote by SylvZ’(f, g). We define the right (o, 8)-resultant of f and g
(over F), denoted by R%’(f,g), as the Dieudonné determinant of Sylvi(f, g).

Let us recall that the Dieudonné determinant, denoted here by Ddet, is a non-
commutative generalization of the classical determinant of a matrix with entries in a
field, to matrices over division rings. This determinant takes values in {0} U F*/[F*, F*],
where [F*,F*] is the commutator of the multiplicative group F* := F\ {0}. If F is a field,
then Ddet coincides with the classical definition of determinant and in this case, we will
write simply det instead of Ddet. For more details on the properties of the Dieudonné
determinant, see e.g [11], [1, p. 151] and [12, p. 133].

Remark 4.1.4. In the special case when § = 0, R7°(f, g) coincides with the resultant
R(f,g) defined in [15, p. 6]. In fact, by (1.6) we have

0 o(ap) o(ar) -+ olam-1) olam) - 0
0 0 0 O-n—l(ao) o 1(0,1) O'nfl(am)
R%°(f, g) = Ddet
]F(fg) e by b, b /) . |
0 o(by) o(by) ==+ o(bp-1) o(by,) . 0
0 0 0 - 0™b) o™ THb) - 0™ (ba)

Furthermore, if ¢ = Id then we obtain the classical notion of resultant.

Applying Algorithm 1, the next algorithm shows how to find the right (o, d)-Silvester
matrix of f and g (see Definition 4.1.3).

Algorithm 6 Computation of the right (o, d)-Sylvester matrix of f(x) = ap + a1z +
<o+ apr™ and g(x) = by + by + - + by

Input: f,geR.

Output: (o,0)-Sylvester matrix M of f and g.

1: My + (ag a1 as --- an+m)
2 My (by b1 by c+r bugm)
3: forp+—1ton—1do

4: Mg + (Cpp(ao))
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5: forg<—1ton+m—1do
6: Z1+0

7: for [ + 0 to p do

8: if 0<qg—1<m then
9: 1+ 41+ Cp_u(aq_l)
10: end if

11: end for

12: Mge(Mg)\Zl)

13: end for

14: My +— %;

15: end for

16: for p+ 1tom —1do
17: M4 — (Cp,O(b0)>
18: forg<—1ton+m—1do

19: Zy+ 0

20: for [ + 0 to p do

21: if 0<qg—1<n then
22: Lo — Loy + Cp—l,l(bq—l)
23: end if

24: end for

25: M4%(M4‘Zg)

26: end for

M
27: My <+ M, )

28: end for

M,
29: return M <« < YA )

As an application of Algorithm 6, let us give here the following Magma program to

2

compute Sylv]%fé(f, g) when f = 2%+ ka® — j2? — i and g = 2® + j are skew polynomials

in H[z; 0,0] with o(h) :=ihi~"! for all h € H.

F<i,j,k> := QuaternionAlgebra< RealField() | -1, -1 >;
S:=map< F -> F | x :=> i*xxx(1/1) >;
D:=map< F -> F | x :=> 0 >;

Then, using the function “PosCom" defined in Program 1, we can define the new function

“SylvesterMatrix" (see Program 4) with previously the function “SumPosCom" as follows.
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Program 4.

SumPosCom:=function(f,i, j)
AA:=0;
n:=#f-1;
for I in [0..i-1] do
if j-1-I ge O and j-1-I le n then
if i-1 ne O then
AA:=AA+PosCom(i-1-I,I,f[j-I1);
else
AA:=f[j-1I];
end if;
end if;
end for;
return AA;

end function;

SylvesterMatrix:=function(f,g)
n:=#f-1;
m:=#g-1;
if m ne O then
M1:= Matrix(F,1,n+m, [SumPosCom(f,s,t): s in {1}, t in {1..n+m}]);
for p in [2..m] do
X:=Matrix(F,1,n+m, [SumPosCom(f,s,t): s in {p}, t in {1..n+m}]);
M1:=VerticalJoin(M1,X);
end for;
else
M1:=RemoveRow (ZeroMatrix(F,1,n+m),1);
end if;
if n ne O then
M2:= Matrix(F,1,n+m, [SumPosCom(g,s,t): s in {1}, t in {1..n+m}]);
for p in [2..n] do
X:=Matrix(F,1,n+m, [SumPosCom(g,s,t): s in {p}, t in {1..n+m}]);
M2:=VerticalJoin(M2,X);
end for;
else

M2:=RemoveRow(ZeroMatrix(F,1,n+m),1);
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end if;
M:=VerticalJoin(M1,M2);
return M;

end function;
Then, by typing in Magma
SylvesterMatrix([-i,-j,0,k,1],[j,0,0,1]);

we obtain the right (o, §)-Sylvester matrix of f(z) = 2* + k2® — jx —i and g(z) = 23 + j:

i —j5 0 k 1 00
0 —i j 0 —k 10
0 0 —i —j 0 k 1
i 0 0 1 0 00 (4.2)
0 —j 0 0 1 00
0O 0 5 0 0 10
0 0 0 —j 0 01

Remark 4.1.5. When F is a field, we can write R3°(f, g) := det(SylvZ’(f, g)), where
det is the classical determinant. Therefore, in this case, we can easily compute R%’é( f,9)
in Magma by using the command “Determinant( )”. However, this command in Magma
generates difficulties in some situations. For example, when F is the field of the complex
numbers, this field can only be dealt with a certain level of precision, and therefore
Magma cannot give the exact value of the determinant. For this reason, we provide
below a Magma program (Program 5) based on the definition of the determinant det A
of an n X n matrix A with entries a;; € F using the Leibniz’s formula, i.e.

det A = Z (sgn(X)ar s, - .- anx,) -

YeSn

where S, is the symmetric group of n elements, sgn(3) is the sign of the permutation
Y € S, and %; is the value in the i-th position after the reordering 3. The advantage of
this Magma program is that it avoids the Gaussian elimination and consequently the

computation of quotients, because it only works with sums and products.
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Program 5.

Det:=function (M)
n:=NumberOfColumns (M) ;
P:=[ p : p in Permutations({a : a in [1..n]1})];
52:=0;
for k in [1..#P] do
S1:=1;
for j in [1..n] do
S1:=81*M[j,P[k] [j1];
end for;
g:=Sym(n) !'P[k];
if IsEven(g) then
S2:=S2+S1;
else
S52:=82-51;
end if;
end for;
return S2;

end function;

Now, let us give here the main results of this section for polynomials in R.

Theorem 4.1.6. Let f,g € R be non-constant skew polynomials of degrees m and n,
respectively. The following conditions are equivalent:

1) RZ*(f.9) =0;

2) f and g have a common (non-unit) right factor in R;

3) gerd(f,g) # 1 (where "gerd" means greatest common right divisor);
4) there are no polynomials p,q € R such that pf + qg = 1;

5) Rf +Rg T R.

Proof. 1) < 2) : RZ°(f, g) := Ddet(A) = 0 if and only if the homogeneous linear system
(4.1) has a non-trivial solution. The above, is equivalent to say that there exist skew

polynomials ¢,d € R such that ¢f + dg = 0, deg(c) < n and deg(d) < m. However, by
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Lemma 4.1.2; the latter is true if and only if f and g have a common (non-unit) right
factor in R.

2) < 3) : obvious.

3) = 4) : Let r € R be the common (non-unit) right factor of f and ¢ (it exists
because gerd(f,g) # 1). Then, f = q1r y g = ¢or, for some ¢, ¢ € R. Since for all
p,q € R, pf +qg = (pq1 + qqo)r, it follows that pf + qg # 1.

4) = 3) : Assume that for all p,q € R, pf + qg # 1. Since R is a LPID, we can
write Rf + Rg = Rh & R, for some h € R of positive degree. Thus h is a common
(non-unit) right factor of f and g.

4) < 5) : It follows from the fact that Rf + Rg =R ifand only if 1 € Rf + Rg. O

Remark 4.1.7. When § = 0, the equivalence between 1) and 2) in Theorem 4.1.6 gives
Theorem 2.5 in [15]. Moreover, if F = H (Hamilton’s quaternions), o = Id and 6 = 0,
then the equivalence between 1) and 3) in Theorem 4.1.6 gives also an analogous result

to [32, Theorem 4.3], but with a different notion of determinant.

In what follows, the objective is to determine if the Dieudonné determinant of
any matrix is zero or not in line with 1) of Theorem 4.1.6. To do this, we first need
Algorithm 7 to obtain (via elementary row operations on the left) the corresponding
upper triangular matrix D of any matrix M with entries in IF. Note that this operation

does not change the nullity of M.

Algorithm 7 Computation of the upper triangular matrix D of M

Input: Square matrix M = (a;;) of order n, with entries in F
Output: Upper triangular matrix D

1. 50
2: repeat
3: j<J+1
4 1+ 0,k<0
) repeat
6: 1 i+1
7 if a;; # 0 then
8 Bi = (bij) (alj agj - anj)
9 for iy + 1 ton and i; #1i do
10: C; — ( (a1 — Qjpj - ai_jl b11)  (ai2 — Qi ° ai_jl . blj) e
(Qiyn — G4y 'ai_jl ~b1n) )
11: end for
D
12: D
— B,
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Ch
13: M = (aij) < :
Cn
14: Let m be the number of rows of M.
15: else
16: k+k+1
17: end if
18: if £ =m and k # 0 then
19: BZ-<—(O 0 - 0)
D
20: D + Bi )
21: end if

22: until > m
23: until j =n
24: return D

Moreover, as an application of Algorithm 7, we give here a Magma program to
compute the upper triangular matrix of (4.2) with entries in the real quaternion division

ring H.
Defining before the division ring H,
F<i,j,k> := QuaternionAlgebra< RealField() | -1, -1 >;
we have the following Magma program:
Program 6.

MT:=function(M)
n:=NumberO0fRows (M) ; m:=NumberOfRows (M) ;
MM:=RemoveRow (SubmatrixRange(M,1,1,1,n),1);
j:=0;
repeat
j:=j+1; 1:=0; k:=0;
repeat
i:=i+1;
if M[i,j] ne O then
a:=M[i,j]; M1l:=SubmatrixRange(M,i,1,i,n); M4:=M1; M2:=RemoveRow(M,i);
nl:=Number0fRows (M2) ;
for i1 in [1..n1] do
M3:=Matrix(F,1,n, [ M2[i1,j11-M2[i1,jI1*(1/a)*M1[1,j1] : j1 in [1..n]1);
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M4 :=VerticalJoin(M4,M3);
end for;
MM:=VerticalJoin(MM,M1); M:=RemoveRow(M4,1); m:=NumberOfRows(M);
else
k:=k+1;
end if;
if k eq m and k ne O then
MM:=VerticalJoin(MM, ZeroMatrix(F,1,n));
end if;
if k eq n then
j:=n;
end if;
until i ge m;
until j eq n;
return MM;

end function;
So, by typing in Magma

MT (Matrix(F,7,7,[-i,-j,0,k,1,0,0,0,-1,5,0,-k,1,0,0,0,-1,-j,0,k,1,5,0,0,
1!O’O,O’OJ_j’0’0313010’030,j,O’O,l,o,o,o’oi_j,020’1]));

we obtain the upper triangular matrix F of (4.2),

i —j 0 k 1 00
0 —i j 0 —k 10
0 0 —i —j 0 k 1
E=|0 0 0 i 0 0 kf. (4.3)
0O 0 0 0 0 00
0O 0 0 0 0 00
0O 0 0 0 0 00

Now, let us recall that the Dieudonné determinant of an upper (or lower) triangular
matrix D with entries in a division ring F is the coset a[F*, F*], where a is the product
of the elements of the main diagonal of D (see [13, p. 104]). Having in mind this, the
above Algorithm 7 together with the next Algorithm 8 allow us to calculate up to a

sign the Dieudonné determinant of any square matrix with entries in .
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Algorithm 8 Computation of Dieudonné determinant of an upper triangular matrix.
Input: Upper triangular matrix M.
Output: Dieudonné determinant of M
: Let M = (a;;) be the upper triangular matrix
A+1
for n < 1 ton do
A A-apy,
end for
if A =0 then
return Dieudonné determinant is 0
else
if A € [F*,F*] then
return Dieudonné determinant is 0
else
: return Dieudonné determinant is A (mod [F*, F*])
end if
: end if

I T
el

Finally, using the function “MT" of Program 6 and having in mind that [H*, H*| =
{geH: |q| =1} (see [31, Lemma 8, p. 151 ]), the following Magma test allows us to

check if the Dieudonné determinant of a matrix with entries in H is zero or not.

Program 7.

DD:=function(M)
MM:=MT (M) ;
A:=1;
n:=NumberOfRows (M) ;
for N in [1..n] do
A:=AxMM[N,N];
end for;
if A*Conjugate(A) eq F!1 or AxConjugate(A) eq F!0 then
print'"Ddet is";
return O;
end if;
print"Ddet is NOT";
return O;

end function;
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Let us give here a characterization of the degree of the gerd(f, g) which can be useful

also to check condition 3) in Theorem 4.1.6.

Theorem 4.1.8. Let Pr(F) be the set of the polynomials in R of degree less than or
equal to k with coefficients in F. Let f,g € R be two polynomials of positive degree m,n

respectively. Consider the left F-linear map
0 Poo1(F) & Prei (F) = Prym-1(F)
defined by p((a,b)) := af + bg. Then
deg gerd(f, g) = dimker p = dimker ¢ = n+ m — lr.ork(A) = n+m —rerk(A) ,

where ¢ : F"T™ — F™ s the left F-linear map given by ¢(T) = FA with A =
SylZ’(f,g) the matriz defined in (4.1) and lr.rk(A) (rerk(A)) is the left row (right
column) rank of A which means the dimension of the F-subspace spanned by the rows

(columns) of A viewed as elements of the n + m-dimensional left (right) vector space
Prim-1(F) over F.

Proof. The equality dimker p = dimker ¢ can be obtained using the identification
Py (F) = F**1 given by the left F-linear map ppa® + -+ piz +po = (Prs- -, P1,P0)-
Since R is a LPID, then we have

Rf+Rg=RM , RfNRg=Rm,

where M := gerd(f, g) and m := lerm(f, g) (least common right multiple). Then there
are unique polynomials «, 8 € R such that m = af = $g. Moreover, by Lemma 4.1.1

3) we get also
dega = deg(m) —deg f=(n+m —degM) —m =n—degM |,

deg f = deg(m) —degg=(n+m —degM) —n=m —deg M .
Now, let (a,b) € ker p. Hence af = (—b)g € Rm. Thus there exists ¢ € R such that
af = (=b)g = tm. This gives af = taf and (—b)g = t(—f)g, i.e a = taw and b = 5.
Therefore, by Lemma 4.1.1 3) we obtain that (a,b) = (t«, t5) with
degt + (n — deg M) = deg(ta) = dega <n —1,

degt+ (m — deg M) = deg(t8) =degb<m — 1,
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that is, degt < deg M — 1 for both cases. This shows that
kerp C{(ta,tp) : te R, degt <degM — 1} .

Finally, let (ta,t3) for some ¢t € R with degt < deg M — 1. Then (ta,t8) € Pp_1(F) &
Pr—1(F) and o((ta,tf)) = taf +tBg = t(af + Fg) = 0. Hence (ta,tf3) € ker ¢ for some
t € R with degt < deg M — 1. This gives

kerp = {(ta,tp) : t€ R, degt < degM — 1} .
Observe that the set
(a7 /6)7 (:Ua7 l/'I;‘/8)7 (x2a7 x25)7 AR (degM_1a7 ‘/‘UdegM_l/B>

is a left basis for ker ¢. Thus it follows that dim ker p = deg M = deg gerd(f, g). Finally,
since dim Im(¢) = lr.rk(A) = re.rk(A), by the rank-nullity theorem we obtain also that
dimker ¢ =n+m —dimIm(¢) =n+m — lrrk(A) =n+m —rcrk(A). O

Remark 4.1.9. Given a matrix A over a division ring [, it is known that the rank of A,
denoted by rk(A) := lr.rk(A) = re.rk(A), is equal to the number of all non-zero rows
of the reduced-row echelon matrix of A (see [8, Theorem 1.3]). Thus, by Algorithm 7
we can easily compute rk(Sylv];’é(f, g)) (see Example 4.1.13).

Here are some examples concerning Theorem 4.1.6.
Example 4.1.10. Consider Fy[x; 0, d;] with Fy = {0,1, o, a?}, where a® + a +1 = 0,

o(a) = a® and d6;(a) = t(o(a) + a) for all @ € Fy and ¢t € {0,1,a,a?}. Given f; :=

2?2 + o’z + a and gy := 22 + ax + o?, we have

a o 1 0

y t o+t a 1
RMt(fl,gl):det a2 o 1 0 =0

t a+t o 1

This shows that f; and g; have a common (non-unit) right factor, independent of
t € Fy. In fact, the common right factor is (x 4+ 1), because f; = (z + «)(x 4+ 1) and
g1 = (z + a®)(z 4+ 1). On the other hand, consider d,(a) = a(c(a) + a) and the skew

polynomials
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=@+ D(z+a)=2>+az , g:=(z+1)(z+a?) =22+ %z + 1.

Note that (z 4+ 1) is a common (non-unit) left factor of fo and g, but this does not

guarantee that Rgfa( f2, g2) is zero as in the commutative case. Indeed, we have

0 o 1 O
0 a o 1
R%%(f5, g2) = det =a’#£0.
Fy (f2,92) 1 a2 1 0 #
0 o> a 1

Example 4.1.11. Let F5(¢) be the field of rational functions over F5 and consider
F5(t)[z; 0,0], where o : F5(t) — F5(t),t — t5 (0 is not an automorphism by Remark
1.1.3) and ¢ is the classical derivation with respect to the variable ¢, i.e. ¢ := %. Given
fii=1z(z+1) =122+ tz and g := (z + t*)(z + 1) = 2® + (t* + 1)z + {2, we have

1 1
0 1 ! 0
5 0 % L 1
Ry ,g1) = det ¢ ¢ “1=0
ot (12 91) £ 2+1 1 0
2t t1942t 1941 1

Thus, f; and g; have a common right factor in F5(¢)[z; 0, 0]. On the other hand, if we
consider fo := (z+1)1z = —|—(t+4) rand go == (z+1)(z+t2) = 22+ (104 1) 2+ (£2+21),

having (z + 1) as a common left factor, we have

0 gE 0
0 244t 544 1
R;‘f(t)(f% g2) = det t3 £10 = g 40

2+2t t1041 1 0
2t +2 10495 5041 1

where k = 75 (46%° + 4455 + 265% + 120 4 2425 4 3124 4 ¢33 4 42 4 4420 4 2019 4 412 4 3¢10 +
27 + 316 + 15 + 2t + 313 + 3t + 3).

Example 4.1.12. Consider C[z; 0, 0], with o(z)

= Z (the complex conjugation) and
§(z) =z—2z, forall 2z € C. Given f =2+ (1 +1i)2? —

4iz + 5i and g = 2% — iz + 24,
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we have
51 —4i 144 0 1 00
100 —13; 6i 1—4i 0 1 0
200 —36i 250 —8 14+i 0 1
RZ(f,g)=det| 2 —i 0 1 0 00[|=0
4i —4i i 0 1 00
& —12i 6i —i 0 1 0
160 —32 24i -8 i 0 1

Then, by Theorem 4.1.6 we have gerd(f, g) # 1. By using the right division algorithm,

we can find gerd(f, g) (as in the classical case):

o+ (1 +d)2? —diz+5i = z(2®—iv+20)+ 22+
2 —ir+2 = x(2®+1i)+0

Hence gerd(f, g) = 2% + 1.

Example 4.1.13. Consider H|x; 0, 0], where o(h) := ihi~! (inner automorphism) for
all h € H. Given p =22+ (i — j)xr + k and ¢ = x + 7 in H[z; 0, 0], we have

ki—j 1
RZ(p,q)=Ddet |[i 1 0]|=0
0 ) 1

Therefore p and ¢ have a common (non-unit) right factor in H[z; o, 0], which must be
q = (z+1). Infact, p = 2>+ (i—j)r+k = (x—j)(x+1). Given now f = z'+ka®—jr—i
and g = 3+ 7, the right (o, §)-Sylvester matrix of f(z) and g(z) and its upper triangular
matrix are (4.2) and (4.3), respectively. Hence we have RG’(f,g) = 0. Therefore f and
g have a common (non-unit) right factor in H[z; o, 0], which must be g = (23 + j). In
fact, f = a* + ka® — jo — i = (v + k)(2® + j). Moreover, note that the echelon form of
Sylvi”(f, g) is the matrix (4.3). Therefore rk(Sylv’(f, g)) = 4 and by Theorem 4.1.8
we have deg(gerd(f, g)) = 3. In fact, gerd(f,g) = 23 + j.

Remark 4.1.14. In the commutative case, it is known that the last non-zero row of the
Sylvester’s matrix, when we put it in echelon form by using only row transformations,
gives the coefficients of the greatest common divisor (see [19, Theorem 3|). However, this
is not true for the noncommutative case. In fact, given f, g € H|x; 0, 0] as in Example
4.1.13, the echelon form of Sylv’(f,g) is the matrix (4.3) and the entries of the last

non-zero row of (4.3) are different from the coefficients of gerd(f, g) = 2 + j.
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Here are some basic properties of the right (o, §)-resultant.

Proposition 4.1.15. Let f,g € R be two skew polynomials of non-negative degrees m
and n, respectively. The following properties hold:

1) RZ’(g, f) = (=1)™Rg’(f,9);
2) RZ’(—f.g9) = (=1)"Rg’(f.g) and RZ"(f,—g) = (—=1)"RZ°(f, 9);

3) if g =z —a, then R%"S(f, g) =0 if and only if f(a) = 0. In particular, for a =0
we have RZ’(f,g) = f(0) (mod [F*, F*));

4) if g = by, then RZ°(f, g) = boo(bo)o?(bo) - - - 0™ (bo) (mod [F*, F*));
5) if 6 =0 and ¢ € F*, then RZ"(cf, g) = N7°(c)(mod [F*,F*]) RZ"(f,q) .

Proof. 1) The (o,8)-resultant RZ(g, f) is obtained by permuting the rows of the
Sylvester matrix SylvZ®(f,g). The number of permutations is mn and, since the
exchange of two any rows of a matrix changes the sign of the Dieudonné determinant, it
follows that RZ°(g, f) = (—=1)™R%°(f, g).

2) By the properties of the Dieudonné determinant, if a row of a matrix is left
multiplied by a € F*, then Ddet is left multiplied by a (mod [F*, F*]). Thus, since the
first n rows of Sylvi®(f, g) contain the coefficients of f, o(—a) = —o(a) and §(—a) =
—d(a), it follows that RZ’(—f,g) = (=1)"RF°(f,g). Similarly, we get R3°(f,—g) =
(~)"RZ(f,9).

3) It follows easily from the equivalence between 1) and 2) of Theorem 4.1.6.

4) If g = by, then SylvZ®’(f, ¢) is a lower triangular matrix whose elements on the
main diagonal are by, o (bg), 0%(bg), ..., ™ 1(bg). Then, the statement holds because Ddet
of a lower (or upper) triangular matrix is the coset a[F*, F*|, where a is the (ordered)
product of the elements on the main diagonal (see [13, p. 104]).

5) Since 6 = 0 and o is an endomorphism of [F, we have

cayg cay cay Cly, 0
0 o(c)a(ag) olc)o(ar) -+ o(c)o(am1) a(c)o(an)
angterg |0 DD ) e o
0 o(bo) a(by) o(bp_1) o(by)
0 0 0 o™ (by) o™ 1(by) o™ 1(b,)
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Noting that the first n rows of the above matrix are multiplied on the left by ¢, o(c), 02(c),

..., Y(c), respectively, it follows that
Ri°(cf.g) = 0""}(c) -+ o(c)e (mod [F*, F)RE’(f, 9) = Ni°(c) (mod [F*, FNRF(f,9) .

]

Remark 4.1.16. The known property of “factorization" of the classical resultants, that
is, R(fif2,9) = R(f1,9) - R(f2,9), is not true in general for our notion of resultant.
Indeed, if we consider the ring C[z; 0, d], with o(z) = z and §(z) = z — z, for all z € C
and the skew polynomials f; = 2>+ 1, f, = 2* + 7 and g = 22? + x + 1, we have

1010 i 0 10
0101 2 —i 0 1
RZ°(f1,9) - RZ°(fy, g) = det - det =10+ 10i
c(flg) c(f29) € 1192 0 € 1 1 2 0 + 102
011 2 0 1 1 2
However,
5 —4i 144 0 1 0
100 =13 6 1—i 0 1
11 2 0 00
R%(f1fa, g) = det = 650 + 905.
clhfpg)=detf o g g !
0 0 1 1 20
0 0 0 1 1 2

This shows that in general RZ°(f1fs, g) # RZ°(f1.9) - R2°(f2, g), also when & = 0.

Lemma 4.1.17 (Cramer’s Rule). Let A be a non-singular square matriz n x n with
entries in F and consider the linear system A-T = b for some column vector b, where
T is the transpose of the unknown vector (r1,xa, ..., x,). If we write A = [v1]. .. |v,],

where the v;’s are the columns of A, then we have fori=1,...,n
z; (mod [F*,F*]) = (Ddet(A)) ™' Ddet(4;),

where A; == [v1]...|b] ... |v,] is the matriz A with the i-th column v; replaced by b.

Proof. Write A~'w; = e; for j = 1,...,n, where the €’s are the canonical column

vectors. Then we have

AT (ol Bl o] = (el [l o)
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Therefore, by [7, Theorem 4.5] we deduce that
z; (mod [F*, F*]) = Ddet [&7] - - [7] - - - [] = Ddet (A~") Ddet [w7] -+ [B] - -+ 73]
obtaining the formula of the statement having in mind that Ddet (A~!) = (DdetA)™". O

Remark 4.1.18. In a similar way as in Lemma 4.1.17, one can obtain the following
row version of the Cramer’s Rule. Let B be a square matrix n x n with entries in F
and consider the linear system 7 - B = ¢ for some row vector ¢, where 7 is the unknown
vector (y1,¥z,...,Yn). If we denote by w; the j-th row of B, then by [7, Theorems 3.9
and 4.5] we have for j =1,...,n

y; (mod [F*,F*]) = DdetB;(DdetB) "

where B; is the matrix B with the j-th row w; replaced by ¢.

Proposition 4.1.19. Let f,g € R be two skew polynomials of positive degree. Then,
there are A, B € R such that

Af + Bg=R¥(f,9) ,

where the coefficients of A and B (mod [F*,F*]) are integer polynomials in the entries

of Sy’ (f.9).
Proof. Assume that Rg"s( f,g) # 0, otherwise we are done by choosing A = B = 0. Let
f=a'+-+a, ag#0,
g=box" + -+ by, by #0,
A= COxmi1 R GO
B =dyx' "+ +diy

such that A'f + B’g = 1, where the coefficients ¢, ..., ¢pn_1,do, ..., d;_1 are unknowns
in F. If we compare coefficients of powers of z in the formula A’'f + B’g = 1, then we

get the following system of linear equations similar to (4.1) with unknowns ¢;, d;:

(Cmets .- s Cosdi_1, ... do) - Syva°(f,g9) = (0,...,0,1) . (4.4)

By applying Remark 4.1.18 to the square linear system (4.4), we obtain that all the ¢;’s
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and the d;’s are as follow:
¢; (mod [F*,F*]) = R%’(s(f, g) 'Ddet Sylv%’é(f, @m—i , fori=0,--- m—1,

d; (mod [F*,F*)) = RZ°(f, g) "' Ddet SyWa’(f, )msi—j , for j=0,--- 1 —1,

where Sylva?(f, g)i is the matrix Sylv3’(f,¢) with the k-th row replaced by the row
vector (0,...,0,1). Defining A := RZ°(f,g)A", B := RZ’(f,g)B’, we see that Af+Bg =
R]‘F”‘S( f,g) and the coefficients of A and B (mod [F*,F*]) are given by expressions of type
Ddet Sylv%’5( f,g)n for some h =1,...,m + (. We conclude by noting that these latest

expressions are simply integer polynomials in the entries of SylvZ®(f, g). O

Now, let us show that under certain conditions, it is possible to add a sixth equivalent

condition in Theorem 4.1.6. To do that, we first need to introduce the following definition.

Definition 4.1.20. We say that IF‘[:B; g, 5] is a polynomial ring extension of R if F is a
subring of F, oF = o and &F =90.

Remark 4.1.21. Since R C Flz;5,0], 6 = 0 and o = 4, it is evident that R is closed
with respect to the sum and the product of polynomials in I@[:c; g, 5] Moreover, since R
contains the multiplicative identity of F[z; &, 9] (because F is a subring of F), it follows
that R is a subring of F[z; 4, 0].

Definition 4.1.20 is motivated by the following situation.

Consider Clz, o, ], where o is the complex conjugation and § is an inner derivation
given by 6(z) = z — o(z) = 2Im(z)i, for all z € C. Note that the skew polynomial

f = 2% + 4 has no right roots in C. In fact, for all z € C, we have
f(2) = Na(2) +iNg(2) = |z|> + (2Im(z) + 1)i # 0.

The natural question is then the following: where does f have a right root? Unlike the
classical case, i.e. when o0 = Id and § = 0, it will not be sufficient to extend C to find
a right root of f, but it will be necessary to extend also the maps ¢ and ¢, because
the evaluation of f at such a root will depend on the action of these new functions.
Therefore, we need to construct a polynomial ring extension of C|x; 0, 4] for finding a
right root of f. More in general, we will construct a polynomial ring extension F[z; &, 4]
of C[x; 0, ] such that any irreducible skew polynomial g € C|x; 0, d] has a right root in
F[z; g, 5] Let H be the division ring of real quaternions. If we define over H the maps
G(t) == a—bi+cj — dk and 6(t) :=t — &(t), for all t := a + bi + ¢j + dk € H, it follows
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that ¢ is an automorphism of H such that ¢ = o and § is a &-derivation such that
5~|<c — §. Thus, H[z;4,0] is a polynomial ring extension of C[z; 0, d]. Moreover, since
every non-constant skew polynomial g € Hz; o, d] splits into linear factors in H[z; o, 0]
independently of o and § (see [28, Corollary 3]), it follows that ¢ has all its roots in
H[z; 0, 4]. In particular, the skew polynomial f = x? + i € C[z; 0, ] will have its roots

in H[z; &,8]. Therefore, H[z; 4, 4] it looks like as a “closure" of Clz; 0, ).

Remark 4.1.22. Let F = [, be a finite field with ¢ elements, where ¢ = p™ for some
prime p and m € Z>;. Given any field extension IE:“/ F, and any automorphism o of [F,
that is, o(a) := a?’ for any a € [, and some integer j such that 1 < 7 < m, we see that
one can always extend trivially o to an automorphism & : F — F such that Olp, =0
by defining &(b) := W for any b € ]Fq. Moreover, since any o-derivation ¢ is an inner
derivation (see Proposition 1.1.4), that is, dg(a) := B(o(a) — a) for any a € F, and some
B € F,, we can also extend trivially d to a g-derivation d5 : F — T such that (5j3|]Fq =03
by defining d5(b) := B(&(b) — b) for any b € F. This gives a special polynomial ring
extension F[z; &, 6] of Fy[x; 0, ] such that Ni&’s(y) — N7°(y) for any y € F and i € Zs,.

The above remark shows that if F is a finite division ring (i.e. a finite field), then we
can always construct a suitable polynomial ring extension. So, by Remark 4.1.22 we

can obtain the following result.

Theorem 4.1.23. Two non-constant skew polynomials f,g € F,[x;0,6] have a com-
mon right Toot in some polynomial ring extension F[x;&,0] of F[x;a,6] if and only if

RZ’(f,9) =0.

Proof. If f(x) and g(x) have a common right root « in some polynomial ring extension
Flz;5,0] of F[z;0,0], then f(z) = fi(z)(z — @) and g(z) = g1(z)(z — ), for some
fi(x), g1(z) € F[z;5,4]. By Theorem 4.1.6, since f(z) and g(z) have a common (non-
unit) right factor (z — a) in Flz; 4, 4] it follows that Rg’g(f, g) = 0. However, since
o, = o and &Fq = 0, we obtain that R%f(f, g) = R%’S(f, g) = 0. Conversely, if
R%f(f, g) = 0 then f and g have a common (non-unit) right factor h(x) := 3, bz’ €
F,[x;0,0]. Thus, we can write f(z) = f'(x)h(x) and g(z) = ¢'(x)h(x), for some
f(x),d'(x) € Fylz;0,6]. If h(x) has a right root in F, then we are done. Otherwise,
since any endomorphism ¢ of F, is an automorphism of the form o(a) = a?” for
some integer j such that 1 < j < m and each ¢ is an inner derivation, observe that
> hi N7 (y) € F,[y]. Therefore, from classical field theory it follows that there exists
a field extension F of F, such that 3, 2;N7°(§) = 0 for some j € F. So considering
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the special polynomial ring extension IF‘[:r; &,5] of F,[z;0,6] of Remark 4.1.22 with
F as above, we have h(j) = Y hiNf’S(g}) = SN2 () = 0 in Fla;5,4]. Since
Fylz;0,0] C F[x;5,0], we can conclude by Theorem 1.1.18 that there exists § € F such
that f(7) = g(§) = 0 in F[x: 4, 4], that is, f and g have a common right root in some

polynomial ring extension of R. ]

Corollary 4.1.24. Let F be a division ring and let f,g € R be two non-constant skew
polynomials. If f and g have a common right root in some polynomial ring extension

Flx:6,0] of R, then RY’(f,g) = 0.
Proof. Tt follows easily from the first part of the proof of Theorem 4.1.23. O

An interesting problem would be to determine, in general, when the reciprocal of
Corollary 4.1.24 is true. We know that if R%’é(f, g) = 0 then f and g have a common
(non-unit) right factor A € R. Then, the existence of a common right root between f
and g is reduced to guarantee the existence of some polynomial ring extension where h
has a right root. If F = IF, is a finite field, then we have seen in Theorem 4.1.23 that for
any skew polynomial h € F,[z; 0, 0] we can find a polynomial ring extension where h
has a right root. If F = C, then for the case C[z; 0, d] with ¢ the complex conjugation
and ¢ an inner derivation, we know that Hl[z; o, d] is a “closure" of C[z; 0, ]. Therefore,
every irreducible skew polynomial h € C[z; 0, 0] has a right root in H[z; o, 0] and then

the reciprocal of Corollary 4.1.24 is true also in this case.

Thus, one could ask in which other cases the reciprocal of Corollary 4.1.24 is true.

The following result gives a partial answer when F is an infinite division ring.

Proposition 4.1.25. Let F be an infinite division ring and let o be an inner automor-
phism of F. Skew polynomials f,g € F|x; 0] = F[x;0,0] have a common right root in

some polynomial ring extension Fx; 5] of Flx; o] if and only if R%’O(f, g) =0.

Proof. By Corollary 4.1.24, the left-to-right implication is true. Conversely, suppose that
R7°(f,g) = 0. Then f(z) = a(z)h(z) and g(z) = b(x)h(z), for some a(z),b(z), h(z) €
Fz; o] with h(z) := X1, hiz' € Flz; 0] of positive degree. If h(z) has a right root in T,
then we are done. Otherwise, since ¢ is an inner automorphism, that is, o(a) := g 'ag
for all @ € F and g € F*, we have

N7%a) := Ny(a) = g*(ag)ig™", for all a € F, i € Zsy.
Then, we get

o hiNi(a) = Y1 hig' (ag)'g™" = (X hig' "(ag))g™ = (Xi, hib')g ™
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where b := ag and h} := h;g' ™ for all i = 0,1,...,n. Since ", h;N;(a) = 0 if and
only if Y1 hib" = 0, it is sufficient to guarantee the existence of a right root of
p(y) := > o hib" € Fly]. By [10, Theorem 8.5.1], there exists a division ring extension
(or skew field extension) I of I such that p has a right root, say p(a) = 1, hia’ =0
for some a € F. Thus, defining 5(z) := g 'zg for all z € F and putting 5 := ag~! € F,
we have

h(B) = > hN7P(B) = 3 haNi(B) = (Z hé(ﬁg)’) g =p(Bg)g =pla)g™" =0
=0 i=0 i=0
in Flz;5]. Since Flz; 0] C F[z; 6], we can conclude again by Theorem 1.1.18 that there
exists 3 € F such that f(3) = g(8) = 0 in F[z; 5], that is, f and ¢ have a common right

root in some polynomial ring extension of F[z;o]. O

Remark 4.1.26. Let F be an infinite division ring. If F is finite dimensional over
its center Z, then every automorphism of IF over Z is inner (see [10, Corollary 3.3.6]).
Therefore, under this hypothesis, the result of Proposition 4.1.25 still holds.

Corollary 4.1.27. Let F be an infinite division ring, o an inner automorphism and ¢
an inner derivation of F. Skew polynomials f,g € F|x;0,d] have a common right root in

some polynomial ring extension Flx:,0] of Fla; o, 0] if and only if RZ°(f,g) = 0.

Proof. By Corollary 4.1.24, the left-to-right implication is true. Conversely, if R%"S( f,9) =
0, then by Theorem 4.1.6 f(z) and g(z) have a common (non-unit) right factor in Flz; o, ].
Since 7,4 are inner, i.e. o(a) := g 'ag and d(a) := o(a)v —va with g € F* and v € F for
all a € F, then by the change of variable 2’ := x+v, we have a ring isomorphism between
Flz; 0, 6] and F[2'; o] (see [9, p. 295]). Then it follows that f(z' —v),g(2’ — v) have a
common (non-unit) right factor in F[z’; o] and therefore R’ (f(z' — v), g(a’ — v)) = 0.
Thus, by Proposition 4.1.25 f(z’ — v) and g(2' — v) have a common right root in some
polynomial ring extension F[z'; 5] of F[z'; o], where G(z) := g~ 'zg for all z € F. Now,
constructing the ring isomorphism ¢ between F[+’, 5] and F[z; &, 4] (by the change of
variable z := 2/ — v), where 0(z) := &(2)v — va for all z € F, it follows that f(z), g(z)

have a common right root in F[z; &, d].

Flz; 0, 0] «—~— Flz'; 0]

Ji b

Flz;5,0] «+~— F[z’; 5]
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4.2 Left (0,0)-Resultant

In Examples 4.1.10 and 4.1.11 we have seen that in general the condition RZ°(f, ) = 0
is not related with the existence of common (non-unit) left factor of f and g. From
this, it seems interesting to study the possibility of defining a left (o, §)-resultant which
allows us to guarantee the existence of a common (non-unit) left factor for two skew
polynomials. Since not every endomorphism o over a division ring F is an automorphism
(see Remark 1.1.3), we would like to emphasize the fact that in general the left-hand
division of two skew polynomials cannot be performed in R (see e.g. [27]). On the other
hand, under the assumption that ¢ is an automorphism, one can give a left-hand version

of some of the main results shown in § 4.1.

Keeping in mind that if ¢ is an automorphism then R is a left Euclidean domain
and hence a RPID (see [27, Theorem 6)), it is possible to give a left version of Lemma
4.1.2 as follows.

Lemma 4.2.1. Let o be an automorphism of F. Two non-constant skew polynomials
fyg € R of respective degrees m and n, have a common (non-unit) left factor in R if
and only if there exist skew polynomials ¢,d € R such that fc+ gd = 0, deg(c) < n and
deg(d) <m

By Lemmas 1.1.12 and 4.2.1, we can define a left (o, 0)-resultant as follows. Let

f=apx™ 4+ ... +ax+ag,a, #0, g=byx" + ...+ bx+by,b, #0,
c=cCpax" .+t d=dp, 12"+ ...+ dix + dy

be skew polynomials as in Lemma 4.2.1. By Lemma 1.1.12, we can write

f=a"An+ .. . +2A 4+ A, An#0, g=2"B,+..+xB1+ By,B, #0,
c=z"1'C, 1+ ..+ 2C, +Cy, d=2""'Dy_1 +..4+xD; + Dy

where A;, B;, C;, D; are given by (1.7). Then, by (1.5) we have
=zz(zw'€ a0
=58 (£ ot ae )

i=0 j=

Thus the equation fc+ gd = 0 of Lemma 4.2.1 gives a homogeneous system of m +n
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linear equations with m + n unknowns Cj, ...

aCn—17D07

,D,,_1, that is

T
M - (Cyy ey Cot, Doy vy Dyp1)T = (0, .., 0) (4.5)
where M is the following (m + n) x (m + n) matrix:
A A A An 0 0 0 0
1 1 1
_73 0(‘40) Z(_l)mﬂ—m(fllﬂ] Z(_UHWTI—H(A'Z-I) Z(_I)Hﬂ—x.i(flm—z) 7641(‘4"A) 0 0 0
i=0) i=0 i=0
1 2 2 2
/B.(]H(]) E(’l)‘lﬁTlﬂ.z(AlfzJ 2(71]2“ Z*I.X(A?rl) Z(’I)H%ﬂ.z(flmﬁ) 2(71)27177271.1(’%#171) 762(‘4VHJ 0 0
=0 i=0 =0 i=1
1 2 3 3 3
’73‘0("10) 2(71)3+173*l.1[:‘41*1] Z(’HHHTH.L(APJ Z(’ULITX*ZJ(AM*J Z(’l)zﬂTlﬂJ(Amez) Z(’Uaﬂﬁﬂ.l(AmAl%] 763(4m) 0
i=0 i=0 i=0 i=1 i=2
‘ 1 2 n n-1 . n-1 n-1
D Toosld) Y™ Tl YA i) - YU Tomildns) YU el U Tesildnesd Y i) Ta(d)
M= i=0 i=0 i=0 i=l i=2 =3
By B, B B, 0 0 0 0
1 1 1
_ﬂ‘O(BO] Z(_l)mﬂ—mwl-i) Z(_I)HZ l—v.z(B‘Z—l) Z(_l)mﬂ—m(\Bn—z) %l(Bn] 0 0 U
i=0 i=0 i=0
1 2 2 2
%.U(B(]) Z(_I)HZTZfz.z[’BH) Z(_l)wﬂﬂ.v(‘g’lﬂ) Z(_l)ﬂq‘—lﬂ.z(l}nﬂ) E(_I)ZHTFH(BMH) %?(Bn) 0 U
=0 i=0 =0 i=1
1 2 3 3 3
’T}U(BU] z(’l)ﬂvl.—lﬂnwlﬂ) Z(’UHZ%%.i(BZﬁ) Z(’USW].—Z%.L(Bnﬂ) Z(’DZHTHJ(BHP:) Z(’l)aﬁﬂﬂ.iu}wlﬂ) 7?)3('1m) 0
i=0 i=0 i=0 i=1 i=2
2 n m-— l m-1 n- l
(=110l By) 2 ToetiilBi) (1" ToctcisBre) -+ Y T Bicd) ToetilBuid) Y (" Tt Buoas neteiilBuga-i) o Tonaa(Bo)
i=0 i=0 L:l =2 :3

The first n rows involve the A;’s and the last m rows involve the B;’s.

From the preceding (m-+n) x (m+n) matrix M, we can define the left (o, §)-resultant.

Definition 4.2.2. Let f,g € R be skew polynomials of non-negative degrees m and
n, respectively, with ¢ an automorphism. The above matrix M will be called the left
(0,0)-Sylvester matriz of f and g, we will denote by Sylv%:i( f,g). Finally, we define

the left (o,0)-resultant of f and g (over F), denoted by R%ji(f, g), as the Dieudonné
determinant of M.

Remark 4.2.3. If § = 0, then formula (1.7) can be written as A; = 0~ (a;) for all
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i=1,...,m, and Ay = ag. Hence R;z%(f, g) = Ddet(M) with

ap o '(ar) o *(ag) - o (am) 0 e 0
0 (7—1<a0) 0-—2(a1> e U_m(am—l) U_(m+1)(am) . 0
m=|? 0 0 o 07 D) o) o o THM(g,)
b oM b)) o E(by) o o (by) 0 . 0
0 o’*l(bo) 0'72(61) o 0 (byoy) Uf(nJrl)(bn) o 0
0 0 0 om (b)) o) e oTTH(D,)

To obtain an algorithm that allows us to compute the left (o, d)-Sylvester matrix
(see Definition 4.2.2), we will need first the Algorithm 9 below.

Algorithm 9 Computation of A;
Input: f(z)=Y1",a;z' and i € {0,...,m}
Output: A;
for j < 0tom+1—ido
A = A+ (1) Tja(ajpi)
end for
return A;

By Algorithms 2 and 9, we can produce now the following algorithm which allows us

to compute Sylv%’i(f, g).

Algorithm 10 Computation of the left (o, d)-Sylvester matrix of f(z) = ap + a1z +
<o+ apa™ and g(z) = by + bix + - - + by
Input: f,geR.
Output: Left (o,d)-Sylvester matrix M of f and g.
1: My « (.Ao A1 Ay - An+m)

2 My (By Bi By - Buym)
3: forp+ 1ton—1do
Mz ((=1)7 - Tpo(Ao))
forg+— 1ton+m—1do

Z1 <0

for [ <+ 0 topdo

if 0 <qg—1<m then
21— Z1+ Tp—11(Ag—i)

10: end if
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11: end for
12: Mg(—(Mig‘Zl)
13: end for
M,
14: My +— M,
15: end for

16: for p+1tom —1 do
17: M4 — (7;70(60))
18: forq< 1ton+m—1do

19: Zo+ 0
20: for [ + 0 to p do
21: if 0 <g—1<nthen
22: Ly — Loy + 7;_171([5(1_1)
23: end if
24: end for
25: M4(_(M4‘ZQ)
26: end for
27: My +— %i
28: end for ur
1
20: M + M,
30: return M

As an application of the above algorithms, we can calculate in Magma the left
(0,0)-Sylvester matrix of f = 2% + wr and g = 2* + w?x + 1 in Fy[z;0,0], where
Fy = {0,1,w,w?*},0(a) = a* 6(a) = w(o(a) + a) for every a € Fy. Note that in this

situation o~ ! = o.

First, write the following instructions in Magma:
F<w>:=GF(4);
\\ In this situation S must be the inverse of sigma

S:=map< F > F | x :=> x72 >;
D:=map< F > F | x :=> wx(S(x)+x) >;

Then, by typing the next Magma program
Program 8.

PosComT:=function(i,j,a)
C:= [u: u in [VectorSpace(GF(2),i+j)!v : v in
VectorSpace(GF(2),i+j)]| Weight(u) eq il;
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A:=0;
for k in [1..#C] do
b:=a;
for 1 in [1..i+j] do
if C[k][1] eq 1 then
b:=D(S(b));
else
b:=S(b);
end if;
end for;
A:=A+Db;
end for;
return A;

end function;

Ai:=function(f,i)

A:=0;

for j in [0..#f-i] do
A:=A+(-1)"(j)*PosComT(j,i-1,f[j+i]);
end for;

return A;

end function;

SumPosComT:=function(f,i, j)
AA:=0;
for k in [0..i-1] do
if j-k ge 1 and j-k le #f then
if i-1 ne O then
AA:=AA+(-1)"(i-1+k)*PosComT (i-1-k,k,Ai (f, j-k));
else
AA:=(-1)"(i-1+k)*Ai(f,j-k);
end if;
end if;
end for;
return AA;

end function;
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LeftSylvesterMatrix:=function(f,g)
m:=#f-1;
n:=#g-1;
if n ne O then
M1:= Matrix(F,1,n+m, [SumPosComT(f,s,t): s in {1}, t in {1..n+m}]);
for p in [2..n] do
X:=Matrix(F,1,n+m, [SumPosComT(f,s,t): s in {p}, t in {1..n+m}]);
M1:=VerticalJoin(M1,X);
end for;
else
M1:=RemoveRow(ZeroMatrix(F,1,n+m),1);
end if;
if m ne O then
M2:= Matrix(F,1,n+m, [SumPosComT(g,s,t): s in {1}, t in {1..n+m}]);
for p in [2..m] do
X:=Matrix(F,1,n+m, [SumPosComT(g,s,t): s in {p}, t in {1..n+m}]);
M2:=VerticalJoin(M2,X);
end for;
else
M2:=RemoveRow(ZeroMatrix(F,1,n+m),1);
end if;
M:=VerticalJoin(M1,M2);
return M;

end function;
and writing the following instruction
LeftSylvesterMatrix([0,w,1],[1,w"2,1]);

we obtain

g

S =

S = Sylvg’(f.9) =

w
w
U)2

o &
= O = O

g —

w

By using R%:‘Z( f,g), we can give a left-hand version of Theorem 4.1.6 as follows.
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Theorem 4.2.4. Let o be an automorphism of F and let f, g € R be two skew polynomials

of positive degree m and n, respectively. Then the following conditions are equivalent:
1) Rg).(f.9) =0;
2) f and g have a common (non-unit) left factor in R;
3) geld(f,g) # 1 (where "geld" means greatest common left divisor);
4) there are no polynomials p,q € R such that fp+ gq=1;
5 fR+gRCTR.
Proof. Similar to Theorem 4.1.6. [

Example 4.2.5. Consider Fy[z;0,0] with F, = {0,1,w, w?}, where w? + w + 1 = 0,
o(a) = a*® and §(a) = w(o(a) + a) for all @ € Fy. In Example 4.1.10 we have seen that
given f := (x + 1)(z + w) = 2 + wr and g := (z + 1)(z + w?) = 22 + w?zr + 1 we
have R]‘F’f(f, g) = w? # 0, but R]‘F’fL(f, g) = det S =0 with S as in (4.6), according to
Theorem 4.2.4.

Let us continue here by giving left-hand versions of some previous results, whose
proofs we omit because are similar to those of Theorem 4.1.8 and Proposition 4.1.19,

respectively.

Theorem 4.2.6. Let o an automorphism of F and Py (F) be the set of the polynomials in
R of degree less than or equal to k with coefficients in F. Let f, g € R be two polynomials

of positive degree m,n respectively. Consider the right F-linear map
@ : Pn1(F) ® Pro1(F) = Prim—1(F)
defined by p((a,b)) := fa+ gb. Then
deg gcld(f, g) = dimker ¢ = dimker¢p =n+m —rr.rk(M) =n+m — lerk(M) ,

where ¢ : FH™ — T s the right F-linear map given by ¢(T) := M - 71 with
M = Sylv];:‘z(f, g) the matriz defined in (4.5) and rr.rk(M) (le.rk(M)) is the right row
(left column) rank of M which means the dimension of the F-subspace spanned by the
rows (columns) of M viewed as elements of the n + m-dimensional right (left) vector

space Ppym-1(F) over F.
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Proposition 4.2.7. Let f,g € R be two skew polynomials of positive degree. Then,
there are A, B € R such that

fA+gB =R (f.9),

where the coefficients of A and B (mod [F*,F*]) are integer polynomials in the entries
of Syh(1. 9).

Moreover, we can reformulate Proposition 4.1.15, Theorem 4.1.23 and Corollary
4.1.24 as follows.

Proposition 4.2.8. Let o be an automorphism of F and let f,g € R be two skew

polynomials of non-negative degree m and n, respectively. The following properties hold:
1) Rgy(g.f) = (~1)"Rz3(f.9)-
2) Rgy(~f.9) = (V)"BZ}(f.9) and RY}(f,—g) = (-1)"RZ}(f.9).

3) If g=x — a, then R%’i(f, g) = 0 if and only if fr(a) = 0. In particular, if a =0
we have Rg5(f,9) = f1(0) (mod [F*, F*])

4) If g = by, then RZS(f,g) = boo~ (bo)o~2(by) - - ="~V (by) (mod [F*, F*)).

Proof. The proofs of the statements 1), 2) and 4) are similar to the proof of Proposition
4.1.15. Finally, statement 3) follows easily from equivalence between 1) and 2) of
Theorem 4.2.4. O

Theorem 4.2.9. Two non-constant skew polynomials f,g € F,[z;0,0] have a com-
mon left root in some polynomial ring extension Flx;,0] of Fylx;0,0] if and only if

RiL(f,9) = 0.

Proof. The left-to-right implication follows from Theorem 4.2.4 and the fact that
R%:i( fig9) = R%ﬁL( fyg). Conversely, the proof it is analogous to the right-to-left
implication of Theorem 4.1.23 by using [2, Theorem 3.2] and by exchanging the functions

N7 with M7° of Lemma 1.1.14 together with slight modifications. O

Corollary 4.2.10. Let F be a division ring and let f,g € R be two non-constant skew
polynomials. If f and g have a common left root in some polynomial ring extension
F[I;&, 5] of R, then Rf{;:i(f, g)=0.
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4.3 Right and left multiple roots

In this section, under the assumption that ¢ is an automorphism of [F, we will use the
left and right (o, d)-resultants to analyse the existence of right and left multiple roots of

a skew polynomial f € R, respectively.

First, let us give here the next classical definition of right (left) multiplicity of roots.

Definition 4.3.1. Consider f € R, a € F and r € Z>;. If ¢ is an endomorphism
(automorphism), we say that a is a right (left) root of f of multiplicity > r if the skew
polynomial (z — a)" divides f on the right (left). Moreover, we say that a is a right
(left) root of f of multiplicity r if the skew polynomial (x — a)” is the maximum power
of © — a which divides f on the right (left).

Example 4.3.2. Let Fy[z;0,0] with o(2) := 23 for all z € Fy. If z = a € Fy is a right
root of g(x) € Fy[x; 0, 0] of multiplicity > 2, then R]‘;f(g, Alg) = 0. On the other hand,
consider f(z) = (z+1)(z — 1) € Fy[z;0,0]. Then Al f(z) = 2+ 1 and RZ°(f, Al f) =0,

9

because we can write f(z) = (x — 1)(z + 1), but x = 1 is a right root of f(x) of

multiplicity one.
Keeping in mind the previous definition, we obtain the following result.

Theorem 4.3.3. Consider f € R, a € F and r a positive integer such that r < deg f.

If o is an automorphism of F, then the following are equivalent:
1) a is a right (left) root of f of multiplicity > r;
2) a is a common right (left) root of f,ALf ... AI71f (f, ALpfoo. AZ}‘; );
3) REL(ALF, ALY =0 (RPN f, AL ) =0) forj=0,...,r—1;
4) geld(ALf, ALV F) £ 1 (gerd(A] A58 f) # 1) for j=0,...,r =1,
where A f(a) == f(a) ((A%.f), (@) = fu(a)).
Proof. The equivalence between 1) and 2) follows from Definition 4.3.1 and the equalities

AL (g(a) (@ —a)') = g(@)(z — )" (AL, ((z = a)g(z)) = (x — a)'Tg(x)) ,

(¥) ALf(x) = AP f(@)(x—a)+ AL f(a) (AL f(x) = (x=a) AT @)+ (A]Lf), (a))

fori =0,...,7 — 1, where AYf(z) = f(x) (Ag}Lf(x) = f(a:)), while the equivalences
2) & 3) & 4) follow from Theorems 4.1.6 and 4.2.4, and the fact that for every
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j =0,...,7r =1, we have Al f(a) = 0 (Af;’Lf(a) =0) <= REZJL(AH,AZLHJ“) _
0 (R%J(Ai,Lf, Af;rLlf) = 0) by the equations (x). O

Recently, in [26] the author proposed a definition of multiplicity distinct from the
previous one, but which coincide in the commutative case (that is, when F is a field,
o= 1Idand 6 =0).

Definition 4.3.4. Let o be an endomorphism (automorphism) of F. For r € Z-,, we
say that a sequence a = (aq, as, ..., a,) € F" is a right (left) (o, d)-multiplicity sequence if
ay is the only right (left) root of the skew polynomial P, (P, ). Moreover, given f € R,
r € Zso and a right (left) (o, d)-multiplicity sequence a = (ay, ..., a,) € F" as before, we
say that a; is a right (left) zero of f of multiplicity r via a if the skew polynomial P,
(Pa,r) divides f on the right (left).

Finally, with this new notion of multiplicity, we get also the next result.

Theorem 4.3.5. Let o be an automorphism of F. Consider f € R, a € F, r a positive
integer such that r < deg f and a = (ay,...,a,) € F" a right (left) (o,d)-multiplicity

sequence. Then the following are equivalent:
1) ay is a right (left) root of f of multiplicity r via a;

2) Aa f(aip1) = 0 ((Aai,Lf)L (@is1) :0) for all i = 0,1,...,r — 1, where a; =
(ar, . .ya5) for j =1,2,...7 = 1, Agg flar) = f(a1) ((Dag.rf)y (a1) := fular));

3) RZL(Daf, Da f) =0 (BF(Aayrf, Do,y nf) = 0) foralli =0,1,..,r =1 ;

4) geld(Da,f, Doy, ) # 1 (9erd(Dag i f, Doy nf) # 1) for all i =0,1,...,7 — 1.

Proof. The equivalence between 1) and 2) follows from [26, Proposition 45] (a left-hand
version of [26, Proposition 45] with suitable modifications) and Remark 2.2.3, while the
equivalences 2) < 3) < 4) follow from Theorem 4.2.4 (Theorem 4.1.6) and the fact
that for every i = 0,...,r — 1, we have A, f(ai11) = 0 ((Aai’Lf)L (ai41) = 0) =
RED (Ao f, Doy f) =0 (RE° (Mg, 1f, Dayy 1 f) = 0) becanse Ay, f(z) = Aa,., f(2)(z —
aiv1) + Day flair1) (Aai,Lf(UC) = (z = ais1)Ba 0 f (@) + (Baynf) (az‘+1))- 0
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